1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_IMPORT_NS(LIBIE); 40 MODULE_LICENSE("GPL v2"); 41 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 42 43 static int debug = -1; 44 module_param(debug, int, 0644); 45 #ifndef CONFIG_DYNAMIC_DEBUG 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 47 #else 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 49 #endif /* !CONFIG_DYNAMIC_DEBUG */ 50 51 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 52 EXPORT_SYMBOL(ice_xdp_locking_key); 53 54 /** 55 * ice_hw_to_dev - Get device pointer from the hardware structure 56 * @hw: pointer to the device HW structure 57 * 58 * Used to access the device pointer from compilation units which can't easily 59 * include the definition of struct ice_pf without leading to circular header 60 * dependencies. 61 */ 62 struct device *ice_hw_to_dev(struct ice_hw *hw) 63 { 64 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 65 66 return &pf->pdev->dev; 67 } 68 69 static struct workqueue_struct *ice_wq; 70 struct workqueue_struct *ice_lag_wq; 71 static const struct net_device_ops ice_netdev_safe_mode_ops; 72 static const struct net_device_ops ice_netdev_ops; 73 74 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 75 76 static void ice_vsi_release_all(struct ice_pf *pf); 77 78 static int ice_rebuild_channels(struct ice_pf *pf); 79 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 80 81 static int 82 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 83 void *cb_priv, enum tc_setup_type type, void *type_data, 84 void *data, 85 void (*cleanup)(struct flow_block_cb *block_cb)); 86 87 bool netif_is_ice(const struct net_device *dev) 88 { 89 return dev && (dev->netdev_ops == &ice_netdev_ops); 90 } 91 92 /** 93 * ice_get_tx_pending - returns number of Tx descriptors not processed 94 * @ring: the ring of descriptors 95 */ 96 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 97 { 98 u16 head, tail; 99 100 head = ring->next_to_clean; 101 tail = ring->next_to_use; 102 103 if (head != tail) 104 return (head < tail) ? 105 tail - head : (tail + ring->count - head); 106 return 0; 107 } 108 109 /** 110 * ice_check_for_hang_subtask - check for and recover hung queues 111 * @pf: pointer to PF struct 112 */ 113 static void ice_check_for_hang_subtask(struct ice_pf *pf) 114 { 115 struct ice_vsi *vsi = NULL; 116 struct ice_hw *hw; 117 unsigned int i; 118 int packets; 119 u32 v; 120 121 ice_for_each_vsi(pf, v) 122 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 123 vsi = pf->vsi[v]; 124 break; 125 } 126 127 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 128 return; 129 130 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 131 return; 132 133 hw = &vsi->back->hw; 134 135 ice_for_each_txq(vsi, i) { 136 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 137 struct ice_ring_stats *ring_stats; 138 139 if (!tx_ring) 140 continue; 141 if (ice_ring_ch_enabled(tx_ring)) 142 continue; 143 144 ring_stats = tx_ring->ring_stats; 145 if (!ring_stats) 146 continue; 147 148 if (tx_ring->desc) { 149 /* If packet counter has not changed the queue is 150 * likely stalled, so force an interrupt for this 151 * queue. 152 * 153 * prev_pkt would be negative if there was no 154 * pending work. 155 */ 156 packets = ring_stats->stats.pkts & INT_MAX; 157 if (ring_stats->tx_stats.prev_pkt == packets) { 158 /* Trigger sw interrupt to revive the queue */ 159 ice_trigger_sw_intr(hw, tx_ring->q_vector); 160 continue; 161 } 162 163 /* Memory barrier between read of packet count and call 164 * to ice_get_tx_pending() 165 */ 166 smp_rmb(); 167 ring_stats->tx_stats.prev_pkt = 168 ice_get_tx_pending(tx_ring) ? packets : -1; 169 } 170 } 171 } 172 173 /** 174 * ice_init_mac_fltr - Set initial MAC filters 175 * @pf: board private structure 176 * 177 * Set initial set of MAC filters for PF VSI; configure filters for permanent 178 * address and broadcast address. If an error is encountered, netdevice will be 179 * unregistered. 180 */ 181 static int ice_init_mac_fltr(struct ice_pf *pf) 182 { 183 struct ice_vsi *vsi; 184 u8 *perm_addr; 185 186 vsi = ice_get_main_vsi(pf); 187 if (!vsi) 188 return -EINVAL; 189 190 perm_addr = vsi->port_info->mac.perm_addr; 191 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 192 } 193 194 /** 195 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 196 * @netdev: the net device on which the sync is happening 197 * @addr: MAC address to sync 198 * 199 * This is a callback function which is called by the in kernel device sync 200 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 201 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 202 * MAC filters from the hardware. 203 */ 204 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 205 { 206 struct ice_netdev_priv *np = netdev_priv(netdev); 207 struct ice_vsi *vsi = np->vsi; 208 209 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 210 ICE_FWD_TO_VSI)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 /** 217 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 218 * @netdev: the net device on which the unsync is happening 219 * @addr: MAC address to unsync 220 * 221 * This is a callback function which is called by the in kernel device unsync 222 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 223 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 224 * delete the MAC filters from the hardware. 225 */ 226 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 227 { 228 struct ice_netdev_priv *np = netdev_priv(netdev); 229 struct ice_vsi *vsi = np->vsi; 230 231 /* Under some circumstances, we might receive a request to delete our 232 * own device address from our uc list. Because we store the device 233 * address in the VSI's MAC filter list, we need to ignore such 234 * requests and not delete our device address from this list. 235 */ 236 if (ether_addr_equal(addr, netdev->dev_addr)) 237 return 0; 238 239 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 240 ICE_FWD_TO_VSI)) 241 return -EINVAL; 242 243 return 0; 244 } 245 246 /** 247 * ice_vsi_fltr_changed - check if filter state changed 248 * @vsi: VSI to be checked 249 * 250 * returns true if filter state has changed, false otherwise. 251 */ 252 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 253 { 254 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 255 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 256 } 257 258 /** 259 * ice_set_promisc - Enable promiscuous mode for a given PF 260 * @vsi: the VSI being configured 261 * @promisc_m: mask of promiscuous config bits 262 * 263 */ 264 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 265 { 266 int status; 267 268 if (vsi->type != ICE_VSI_PF) 269 return 0; 270 271 if (ice_vsi_has_non_zero_vlans(vsi)) { 272 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 273 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 274 promisc_m); 275 } else { 276 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 277 promisc_m, 0); 278 } 279 if (status && status != -EEXIST) 280 return status; 281 282 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 283 vsi->vsi_num, promisc_m); 284 return 0; 285 } 286 287 /** 288 * ice_clear_promisc - Disable promiscuous mode for a given PF 289 * @vsi: the VSI being configured 290 * @promisc_m: mask of promiscuous config bits 291 * 292 */ 293 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 294 { 295 int status; 296 297 if (vsi->type != ICE_VSI_PF) 298 return 0; 299 300 if (ice_vsi_has_non_zero_vlans(vsi)) { 301 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 302 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 303 promisc_m); 304 } else { 305 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 306 promisc_m, 0); 307 } 308 309 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 310 vsi->vsi_num, promisc_m); 311 return status; 312 } 313 314 /** 315 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 316 * @vsi: ptr to the VSI 317 * 318 * Push any outstanding VSI filter changes through the AdminQ. 319 */ 320 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 321 { 322 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 323 struct device *dev = ice_pf_to_dev(vsi->back); 324 struct net_device *netdev = vsi->netdev; 325 bool promisc_forced_on = false; 326 struct ice_pf *pf = vsi->back; 327 struct ice_hw *hw = &pf->hw; 328 u32 changed_flags = 0; 329 int err; 330 331 if (!vsi->netdev) 332 return -EINVAL; 333 334 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 335 usleep_range(1000, 2000); 336 337 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 338 vsi->current_netdev_flags = vsi->netdev->flags; 339 340 INIT_LIST_HEAD(&vsi->tmp_sync_list); 341 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 342 343 if (ice_vsi_fltr_changed(vsi)) { 344 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 345 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 346 347 /* grab the netdev's addr_list_lock */ 348 netif_addr_lock_bh(netdev); 349 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 /* our temp lists are populated. release lock */ 354 netif_addr_unlock_bh(netdev); 355 } 356 357 /* Remove MAC addresses in the unsync list */ 358 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 359 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 360 if (err) { 361 netdev_err(netdev, "Failed to delete MAC filters\n"); 362 /* if we failed because of alloc failures, just bail */ 363 if (err == -ENOMEM) 364 goto out; 365 } 366 367 /* Add MAC addresses in the sync list */ 368 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 369 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 370 /* If filter is added successfully or already exists, do not go into 371 * 'if' condition and report it as error. Instead continue processing 372 * rest of the function. 373 */ 374 if (err && err != -EEXIST) { 375 netdev_err(netdev, "Failed to add MAC filters\n"); 376 /* If there is no more space for new umac filters, VSI 377 * should go into promiscuous mode. There should be some 378 * space reserved for promiscuous filters. 379 */ 380 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 381 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 382 vsi->state)) { 383 promisc_forced_on = true; 384 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 385 vsi->vsi_num); 386 } else { 387 goto out; 388 } 389 } 390 err = 0; 391 /* check for changes in promiscuous modes */ 392 if (changed_flags & IFF_ALLMULTI) { 393 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 394 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 395 if (err) { 396 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 397 goto out_promisc; 398 } 399 } else { 400 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 401 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 402 if (err) { 403 vsi->current_netdev_flags |= IFF_ALLMULTI; 404 goto out_promisc; 405 } 406 } 407 } 408 409 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 410 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 411 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 412 if (vsi->current_netdev_flags & IFF_PROMISC) { 413 /* Apply Rx filter rule to get traffic from wire */ 414 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 415 err = ice_set_dflt_vsi(vsi); 416 if (err && err != -EEXIST) { 417 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 418 err, vsi->vsi_num); 419 vsi->current_netdev_flags &= 420 ~IFF_PROMISC; 421 goto out_promisc; 422 } 423 err = 0; 424 vlan_ops->dis_rx_filtering(vsi); 425 426 /* promiscuous mode implies allmulticast so 427 * that VSIs that are in promiscuous mode are 428 * subscribed to multicast packets coming to 429 * the port 430 */ 431 err = ice_set_promisc(vsi, 432 ICE_MCAST_PROMISC_BITS); 433 if (err) 434 goto out_promisc; 435 } 436 } else { 437 /* Clear Rx filter to remove traffic from wire */ 438 if (ice_is_vsi_dflt_vsi(vsi)) { 439 err = ice_clear_dflt_vsi(vsi); 440 if (err) { 441 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 442 err, vsi->vsi_num); 443 vsi->current_netdev_flags |= 444 IFF_PROMISC; 445 goto out_promisc; 446 } 447 if (vsi->netdev->features & 448 NETIF_F_HW_VLAN_CTAG_FILTER) 449 vlan_ops->ena_rx_filtering(vsi); 450 } 451 452 /* disable allmulti here, but only if allmulti is not 453 * still enabled for the netdev 454 */ 455 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 456 err = ice_clear_promisc(vsi, 457 ICE_MCAST_PROMISC_BITS); 458 if (err) { 459 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 460 err, vsi->vsi_num); 461 } 462 } 463 } 464 } 465 goto exit; 466 467 out_promisc: 468 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 469 goto exit; 470 out: 471 /* if something went wrong then set the changed flag so we try again */ 472 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 473 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 474 exit: 475 clear_bit(ICE_CFG_BUSY, vsi->state); 476 return err; 477 } 478 479 /** 480 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 481 * @pf: board private structure 482 */ 483 static void ice_sync_fltr_subtask(struct ice_pf *pf) 484 { 485 int v; 486 487 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 488 return; 489 490 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 491 492 ice_for_each_vsi(pf, v) 493 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 494 ice_vsi_sync_fltr(pf->vsi[v])) { 495 /* come back and try again later */ 496 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 497 break; 498 } 499 } 500 501 /** 502 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 503 * @pf: the PF 504 * @locked: is the rtnl_lock already held 505 */ 506 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 507 { 508 int node; 509 int v; 510 511 ice_for_each_vsi(pf, v) 512 if (pf->vsi[v]) 513 ice_dis_vsi(pf->vsi[v], locked); 514 515 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 516 pf->pf_agg_node[node].num_vsis = 0; 517 518 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 519 pf->vf_agg_node[node].num_vsis = 0; 520 } 521 522 /** 523 * ice_clear_sw_switch_recipes - clear switch recipes 524 * @pf: board private structure 525 * 526 * Mark switch recipes as not created in sw structures. There are cases where 527 * rules (especially advanced rules) need to be restored, either re-read from 528 * hardware or added again. For example after the reset. 'recp_created' flag 529 * prevents from doing that and need to be cleared upfront. 530 */ 531 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 532 { 533 struct ice_sw_recipe *recp; 534 u8 i; 535 536 recp = pf->hw.switch_info->recp_list; 537 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 538 recp[i].recp_created = false; 539 } 540 541 /** 542 * ice_prepare_for_reset - prep for reset 543 * @pf: board private structure 544 * @reset_type: reset type requested 545 * 546 * Inform or close all dependent features in prep for reset. 547 */ 548 static void 549 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 550 { 551 struct ice_hw *hw = &pf->hw; 552 struct ice_vsi *vsi; 553 struct ice_vf *vf; 554 unsigned int bkt; 555 556 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 557 558 /* already prepared for reset */ 559 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 560 return; 561 562 synchronize_irq(pf->oicr_irq.virq); 563 564 ice_unplug_aux_dev(pf); 565 566 /* Notify VFs of impending reset */ 567 if (ice_check_sq_alive(hw, &hw->mailboxq)) 568 ice_vc_notify_reset(pf); 569 570 /* Disable VFs until reset is completed */ 571 mutex_lock(&pf->vfs.table_lock); 572 ice_for_each_vf(pf, bkt, vf) 573 ice_set_vf_state_dis(vf); 574 mutex_unlock(&pf->vfs.table_lock); 575 576 if (ice_is_eswitch_mode_switchdev(pf)) { 577 if (reset_type != ICE_RESET_PFR) 578 ice_clear_sw_switch_recipes(pf); 579 } 580 581 /* release ADQ specific HW and SW resources */ 582 vsi = ice_get_main_vsi(pf); 583 if (!vsi) 584 goto skip; 585 586 /* to be on safe side, reset orig_rss_size so that normal flow 587 * of deciding rss_size can take precedence 588 */ 589 vsi->orig_rss_size = 0; 590 591 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 592 if (reset_type == ICE_RESET_PFR) { 593 vsi->old_ena_tc = vsi->all_enatc; 594 vsi->old_numtc = vsi->all_numtc; 595 } else { 596 ice_remove_q_channels(vsi, true); 597 598 /* for other reset type, do not support channel rebuild 599 * hence reset needed info 600 */ 601 vsi->old_ena_tc = 0; 602 vsi->all_enatc = 0; 603 vsi->old_numtc = 0; 604 vsi->all_numtc = 0; 605 vsi->req_txq = 0; 606 vsi->req_rxq = 0; 607 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 608 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 609 } 610 } 611 612 if (vsi->netdev) 613 netif_device_detach(vsi->netdev); 614 skip: 615 616 /* clear SW filtering DB */ 617 ice_clear_hw_tbls(hw); 618 /* disable the VSIs and their queues that are not already DOWN */ 619 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 620 ice_pf_dis_all_vsi(pf, false); 621 622 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 623 ice_ptp_prepare_for_reset(pf, reset_type); 624 625 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 626 ice_gnss_exit(pf); 627 628 if (hw->port_info) 629 ice_sched_clear_port(hw->port_info); 630 631 ice_shutdown_all_ctrlq(hw, false); 632 633 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 634 } 635 636 /** 637 * ice_do_reset - Initiate one of many types of resets 638 * @pf: board private structure 639 * @reset_type: reset type requested before this function was called. 640 */ 641 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 642 { 643 struct device *dev = ice_pf_to_dev(pf); 644 struct ice_hw *hw = &pf->hw; 645 646 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 647 648 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 649 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 650 reset_type = ICE_RESET_CORER; 651 } 652 653 ice_prepare_for_reset(pf, reset_type); 654 655 /* trigger the reset */ 656 if (ice_reset(hw, reset_type)) { 657 dev_err(dev, "reset %d failed\n", reset_type); 658 set_bit(ICE_RESET_FAILED, pf->state); 659 clear_bit(ICE_RESET_OICR_RECV, pf->state); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 clear_bit(ICE_CORER_REQ, pf->state); 663 clear_bit(ICE_GLOBR_REQ, pf->state); 664 wake_up(&pf->reset_wait_queue); 665 return; 666 } 667 668 /* PFR is a bit of a special case because it doesn't result in an OICR 669 * interrupt. So for PFR, rebuild after the reset and clear the reset- 670 * associated state bits. 671 */ 672 if (reset_type == ICE_RESET_PFR) { 673 pf->pfr_count++; 674 ice_rebuild(pf, reset_type); 675 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 676 clear_bit(ICE_PFR_REQ, pf->state); 677 wake_up(&pf->reset_wait_queue); 678 ice_reset_all_vfs(pf); 679 } 680 } 681 682 /** 683 * ice_reset_subtask - Set up for resetting the device and driver 684 * @pf: board private structure 685 */ 686 static void ice_reset_subtask(struct ice_pf *pf) 687 { 688 enum ice_reset_req reset_type = ICE_RESET_INVAL; 689 690 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 691 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 692 * of reset is pending and sets bits in pf->state indicating the reset 693 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 694 * prepare for pending reset if not already (for PF software-initiated 695 * global resets the software should already be prepared for it as 696 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 697 * by firmware or software on other PFs, that bit is not set so prepare 698 * for the reset now), poll for reset done, rebuild and return. 699 */ 700 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 701 /* Perform the largest reset requested */ 702 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 703 reset_type = ICE_RESET_CORER; 704 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 705 reset_type = ICE_RESET_GLOBR; 706 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 707 reset_type = ICE_RESET_EMPR; 708 /* return if no valid reset type requested */ 709 if (reset_type == ICE_RESET_INVAL) 710 return; 711 ice_prepare_for_reset(pf, reset_type); 712 713 /* make sure we are ready to rebuild */ 714 if (ice_check_reset(&pf->hw)) { 715 set_bit(ICE_RESET_FAILED, pf->state); 716 } else { 717 /* done with reset. start rebuild */ 718 pf->hw.reset_ongoing = false; 719 ice_rebuild(pf, reset_type); 720 /* clear bit to resume normal operations, but 721 * ICE_NEEDS_RESTART bit is set in case rebuild failed 722 */ 723 clear_bit(ICE_RESET_OICR_RECV, pf->state); 724 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 725 clear_bit(ICE_PFR_REQ, pf->state); 726 clear_bit(ICE_CORER_REQ, pf->state); 727 clear_bit(ICE_GLOBR_REQ, pf->state); 728 wake_up(&pf->reset_wait_queue); 729 ice_reset_all_vfs(pf); 730 } 731 732 return; 733 } 734 735 /* No pending resets to finish processing. Check for new resets */ 736 if (test_bit(ICE_PFR_REQ, pf->state)) { 737 reset_type = ICE_RESET_PFR; 738 if (pf->lag && pf->lag->bonded) { 739 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 740 reset_type = ICE_RESET_CORER; 741 } 742 } 743 if (test_bit(ICE_CORER_REQ, pf->state)) 744 reset_type = ICE_RESET_CORER; 745 if (test_bit(ICE_GLOBR_REQ, pf->state)) 746 reset_type = ICE_RESET_GLOBR; 747 /* If no valid reset type requested just return */ 748 if (reset_type == ICE_RESET_INVAL) 749 return; 750 751 /* reset if not already down or busy */ 752 if (!test_bit(ICE_DOWN, pf->state) && 753 !test_bit(ICE_CFG_BUSY, pf->state)) { 754 ice_do_reset(pf, reset_type); 755 } 756 } 757 758 /** 759 * ice_print_topo_conflict - print topology conflict message 760 * @vsi: the VSI whose topology status is being checked 761 */ 762 static void ice_print_topo_conflict(struct ice_vsi *vsi) 763 { 764 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 765 case ICE_AQ_LINK_TOPO_CONFLICT: 766 case ICE_AQ_LINK_MEDIA_CONFLICT: 767 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 768 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 769 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 770 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 771 break; 772 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 773 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 774 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 775 else 776 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 777 break; 778 default: 779 break; 780 } 781 } 782 783 /** 784 * ice_print_link_msg - print link up or down message 785 * @vsi: the VSI whose link status is being queried 786 * @isup: boolean for if the link is now up or down 787 */ 788 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 789 { 790 struct ice_aqc_get_phy_caps_data *caps; 791 const char *an_advertised; 792 const char *fec_req; 793 const char *speed; 794 const char *fec; 795 const char *fc; 796 const char *an; 797 int status; 798 799 if (!vsi) 800 return; 801 802 if (vsi->current_isup == isup) 803 return; 804 805 vsi->current_isup = isup; 806 807 if (!isup) { 808 netdev_info(vsi->netdev, "NIC Link is Down\n"); 809 return; 810 } 811 812 switch (vsi->port_info->phy.link_info.link_speed) { 813 case ICE_AQ_LINK_SPEED_200GB: 814 speed = "200 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_100GB: 817 speed = "100 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_50GB: 820 speed = "50 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_40GB: 823 speed = "40 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_25GB: 826 speed = "25 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_20GB: 829 speed = "20 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_10GB: 832 speed = "10 G"; 833 break; 834 case ICE_AQ_LINK_SPEED_5GB: 835 speed = "5 G"; 836 break; 837 case ICE_AQ_LINK_SPEED_2500MB: 838 speed = "2.5 G"; 839 break; 840 case ICE_AQ_LINK_SPEED_1000MB: 841 speed = "1 G"; 842 break; 843 case ICE_AQ_LINK_SPEED_100MB: 844 speed = "100 M"; 845 break; 846 default: 847 speed = "Unknown "; 848 break; 849 } 850 851 switch (vsi->port_info->fc.current_mode) { 852 case ICE_FC_FULL: 853 fc = "Rx/Tx"; 854 break; 855 case ICE_FC_TX_PAUSE: 856 fc = "Tx"; 857 break; 858 case ICE_FC_RX_PAUSE: 859 fc = "Rx"; 860 break; 861 case ICE_FC_NONE: 862 fc = "None"; 863 break; 864 default: 865 fc = "Unknown"; 866 break; 867 } 868 869 /* Get FEC mode based on negotiated link info */ 870 switch (vsi->port_info->phy.link_info.fec_info) { 871 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 872 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 873 fec = "RS-FEC"; 874 break; 875 case ICE_AQ_LINK_25G_KR_FEC_EN: 876 fec = "FC-FEC/BASE-R"; 877 break; 878 default: 879 fec = "NONE"; 880 break; 881 } 882 883 /* check if autoneg completed, might be false due to not supported */ 884 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 885 an = "True"; 886 else 887 an = "False"; 888 889 /* Get FEC mode requested based on PHY caps last SW configuration */ 890 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 891 if (!caps) { 892 fec_req = "Unknown"; 893 an_advertised = "Unknown"; 894 goto done; 895 } 896 897 status = ice_aq_get_phy_caps(vsi->port_info, false, 898 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 899 if (status) 900 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 901 902 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 903 904 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 905 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 906 fec_req = "RS-FEC"; 907 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 908 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 909 fec_req = "FC-FEC/BASE-R"; 910 else 911 fec_req = "NONE"; 912 913 kfree(caps); 914 915 done: 916 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 917 speed, fec_req, fec, an_advertised, an, fc); 918 ice_print_topo_conflict(vsi); 919 } 920 921 /** 922 * ice_vsi_link_event - update the VSI's netdev 923 * @vsi: the VSI on which the link event occurred 924 * @link_up: whether or not the VSI needs to be set up or down 925 */ 926 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 927 { 928 if (!vsi) 929 return; 930 931 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 932 return; 933 934 if (vsi->type == ICE_VSI_PF) { 935 if (link_up == netif_carrier_ok(vsi->netdev)) 936 return; 937 938 if (link_up) { 939 netif_carrier_on(vsi->netdev); 940 netif_tx_wake_all_queues(vsi->netdev); 941 } else { 942 netif_carrier_off(vsi->netdev); 943 netif_tx_stop_all_queues(vsi->netdev); 944 } 945 } 946 } 947 948 /** 949 * ice_set_dflt_mib - send a default config MIB to the FW 950 * @pf: private PF struct 951 * 952 * This function sends a default configuration MIB to the FW. 953 * 954 * If this function errors out at any point, the driver is still able to 955 * function. The main impact is that LFC may not operate as expected. 956 * Therefore an error state in this function should be treated with a DBG 957 * message and continue on with driver rebuild/reenable. 958 */ 959 static void ice_set_dflt_mib(struct ice_pf *pf) 960 { 961 struct device *dev = ice_pf_to_dev(pf); 962 u8 mib_type, *buf, *lldpmib = NULL; 963 u16 len, typelen, offset = 0; 964 struct ice_lldp_org_tlv *tlv; 965 struct ice_hw *hw = &pf->hw; 966 u32 ouisubtype; 967 968 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 969 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 970 if (!lldpmib) { 971 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 972 __func__); 973 return; 974 } 975 976 /* Add ETS CFG TLV */ 977 tlv = (struct ice_lldp_org_tlv *)lldpmib; 978 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 979 ICE_IEEE_ETS_TLV_LEN); 980 tlv->typelen = htons(typelen); 981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 982 ICE_IEEE_SUBTYPE_ETS_CFG); 983 tlv->ouisubtype = htonl(ouisubtype); 984 985 buf = tlv->tlvinfo; 986 buf[0] = 0; 987 988 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 989 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 990 * Octets 13 - 20 are TSA values - leave as zeros 991 */ 992 buf[5] = 0x64; 993 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 994 offset += len + 2; 995 tlv = (struct ice_lldp_org_tlv *) 996 ((char *)tlv + sizeof(tlv->typelen) + len); 997 998 /* Add ETS REC TLV */ 999 buf = tlv->tlvinfo; 1000 tlv->typelen = htons(typelen); 1001 1002 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1003 ICE_IEEE_SUBTYPE_ETS_REC); 1004 tlv->ouisubtype = htonl(ouisubtype); 1005 1006 /* First octet of buf is reserved 1007 * Octets 1 - 4 map UP to TC - all UPs map to zero 1008 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1009 * Octets 13 - 20 are TSA value - leave as zeros 1010 */ 1011 buf[5] = 0x64; 1012 offset += len + 2; 1013 tlv = (struct ice_lldp_org_tlv *) 1014 ((char *)tlv + sizeof(tlv->typelen) + len); 1015 1016 /* Add PFC CFG TLV */ 1017 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1018 ICE_IEEE_PFC_TLV_LEN); 1019 tlv->typelen = htons(typelen); 1020 1021 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1022 ICE_IEEE_SUBTYPE_PFC_CFG); 1023 tlv->ouisubtype = htonl(ouisubtype); 1024 1025 /* Octet 1 left as all zeros - PFC disabled */ 1026 buf[0] = 0x08; 1027 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1028 offset += len + 2; 1029 1030 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1031 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1032 1033 kfree(lldpmib); 1034 } 1035 1036 /** 1037 * ice_check_phy_fw_load - check if PHY FW load failed 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check if external PHY FW load failed and print an error message if it did 1042 */ 1043 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1044 { 1045 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1046 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1047 return; 1048 } 1049 1050 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1051 return; 1052 1053 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1054 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1055 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1056 } 1057 } 1058 1059 /** 1060 * ice_check_module_power 1061 * @pf: pointer to PF struct 1062 * @link_cfg_err: bitmap from the link info structure 1063 * 1064 * check module power level returned by a previous call to aq_get_link_info 1065 * and print error messages if module power level is not supported 1066 */ 1067 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1068 { 1069 /* if module power level is supported, clear the flag */ 1070 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1071 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1072 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1073 return; 1074 } 1075 1076 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1077 * above block didn't clear this bit, there's nothing to do 1078 */ 1079 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1080 return; 1081 1082 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1083 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1084 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1085 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1086 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1087 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1088 } 1089 } 1090 1091 /** 1092 * ice_check_link_cfg_err - check if link configuration failed 1093 * @pf: pointer to the PF struct 1094 * @link_cfg_err: bitmap from the link info structure 1095 * 1096 * print if any link configuration failure happens due to the value in the 1097 * link_cfg_err parameter in the link info structure 1098 */ 1099 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1100 { 1101 ice_check_module_power(pf, link_cfg_err); 1102 ice_check_phy_fw_load(pf, link_cfg_err); 1103 } 1104 1105 /** 1106 * ice_link_event - process the link event 1107 * @pf: PF that the link event is associated with 1108 * @pi: port_info for the port that the link event is associated with 1109 * @link_up: true if the physical link is up and false if it is down 1110 * @link_speed: current link speed received from the link event 1111 * 1112 * Returns 0 on success and negative on failure 1113 */ 1114 static int 1115 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1116 u16 link_speed) 1117 { 1118 struct device *dev = ice_pf_to_dev(pf); 1119 struct ice_phy_info *phy_info; 1120 struct ice_vsi *vsi; 1121 u16 old_link_speed; 1122 bool old_link; 1123 int status; 1124 1125 phy_info = &pi->phy; 1126 phy_info->link_info_old = phy_info->link_info; 1127 1128 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1129 old_link_speed = phy_info->link_info_old.link_speed; 1130 1131 /* update the link info structures and re-enable link events, 1132 * don't bail on failure due to other book keeping needed 1133 */ 1134 status = ice_update_link_info(pi); 1135 if (status) 1136 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1137 pi->lport, status, 1138 ice_aq_str(pi->hw->adminq.sq_last_status)); 1139 1140 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1141 1142 /* Check if the link state is up after updating link info, and treat 1143 * this event as an UP event since the link is actually UP now. 1144 */ 1145 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1146 link_up = true; 1147 1148 vsi = ice_get_main_vsi(pf); 1149 if (!vsi || !vsi->port_info) 1150 return -EINVAL; 1151 1152 /* turn off PHY if media was removed */ 1153 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1154 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1155 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1156 ice_set_link(vsi, false); 1157 } 1158 1159 /* if the old link up/down and speed is the same as the new */ 1160 if (link_up == old_link && link_speed == old_link_speed) 1161 return 0; 1162 1163 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1164 1165 if (ice_is_dcb_active(pf)) { 1166 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1167 ice_dcb_rebuild(pf); 1168 } else { 1169 if (link_up) 1170 ice_set_dflt_mib(pf); 1171 } 1172 ice_vsi_link_event(vsi, link_up); 1173 ice_print_link_msg(vsi, link_up); 1174 1175 ice_vc_notify_link_state(pf); 1176 1177 return 0; 1178 } 1179 1180 /** 1181 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1182 * @pf: board private structure 1183 */ 1184 static void ice_watchdog_subtask(struct ice_pf *pf) 1185 { 1186 int i; 1187 1188 /* if interface is down do nothing */ 1189 if (test_bit(ICE_DOWN, pf->state) || 1190 test_bit(ICE_CFG_BUSY, pf->state)) 1191 return; 1192 1193 /* make sure we don't do these things too often */ 1194 if (time_before(jiffies, 1195 pf->serv_tmr_prev + pf->serv_tmr_period)) 1196 return; 1197 1198 pf->serv_tmr_prev = jiffies; 1199 1200 /* Update the stats for active netdevs so the network stack 1201 * can look at updated numbers whenever it cares to 1202 */ 1203 ice_update_pf_stats(pf); 1204 ice_for_each_vsi(pf, i) 1205 if (pf->vsi[i] && pf->vsi[i]->netdev) 1206 ice_update_vsi_stats(pf->vsi[i]); 1207 } 1208 1209 /** 1210 * ice_init_link_events - enable/initialize link events 1211 * @pi: pointer to the port_info instance 1212 * 1213 * Returns -EIO on failure, 0 on success 1214 */ 1215 static int ice_init_link_events(struct ice_port_info *pi) 1216 { 1217 u16 mask; 1218 1219 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1220 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1221 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1222 1223 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1224 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1225 pi->lport); 1226 return -EIO; 1227 } 1228 1229 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1230 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1231 pi->lport); 1232 return -EIO; 1233 } 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * ice_handle_link_event - handle link event via ARQ 1240 * @pf: PF that the link event is associated with 1241 * @event: event structure containing link status info 1242 */ 1243 static int 1244 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1245 { 1246 struct ice_aqc_get_link_status_data *link_data; 1247 struct ice_port_info *port_info; 1248 int status; 1249 1250 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1251 port_info = pf->hw.port_info; 1252 if (!port_info) 1253 return -EINVAL; 1254 1255 status = ice_link_event(pf, port_info, 1256 !!(link_data->link_info & ICE_AQ_LINK_UP), 1257 le16_to_cpu(link_data->link_speed)); 1258 if (status) 1259 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1260 status); 1261 1262 return status; 1263 } 1264 1265 /** 1266 * ice_get_fwlog_data - copy the FW log data from ARQ event 1267 * @pf: PF that the FW log event is associated with 1268 * @event: event structure containing FW log data 1269 */ 1270 static void 1271 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1272 { 1273 struct ice_fwlog_data *fwlog; 1274 struct ice_hw *hw = &pf->hw; 1275 1276 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1277 1278 memset(fwlog->data, 0, PAGE_SIZE); 1279 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1280 1281 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1282 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1283 1284 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1285 /* the rings are full so bump the head to create room */ 1286 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1287 hw->fwlog_ring.size); 1288 } 1289 } 1290 1291 /** 1292 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1293 * @pf: pointer to the PF private structure 1294 * @task: intermediate helper storage and identifier for waiting 1295 * @opcode: the opcode to wait for 1296 * 1297 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1298 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1299 * 1300 * Calls are separated to allow caller registering for event before sending 1301 * the command, which mitigates a race between registering and FW responding. 1302 * 1303 * To obtain only the descriptor contents, pass an task->event with null 1304 * msg_buf. If the complete data buffer is desired, allocate the 1305 * task->event.msg_buf with enough space ahead of time. 1306 */ 1307 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1308 u16 opcode) 1309 { 1310 INIT_HLIST_NODE(&task->entry); 1311 task->opcode = opcode; 1312 task->state = ICE_AQ_TASK_WAITING; 1313 1314 spin_lock_bh(&pf->aq_wait_lock); 1315 hlist_add_head(&task->entry, &pf->aq_wait_list); 1316 spin_unlock_bh(&pf->aq_wait_lock); 1317 } 1318 1319 /** 1320 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1321 * @pf: pointer to the PF private structure 1322 * @task: ptr prepared by ice_aq_prep_for_event() 1323 * @timeout: how long to wait, in jiffies 1324 * 1325 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1326 * current thread will be put to sleep until the specified event occurs or 1327 * until the given timeout is reached. 1328 * 1329 * Returns: zero on success, or a negative error code on failure. 1330 */ 1331 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1332 unsigned long timeout) 1333 { 1334 enum ice_aq_task_state *state = &task->state; 1335 struct device *dev = ice_pf_to_dev(pf); 1336 unsigned long start = jiffies; 1337 long ret; 1338 int err; 1339 1340 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1341 *state != ICE_AQ_TASK_WAITING, 1342 timeout); 1343 switch (*state) { 1344 case ICE_AQ_TASK_NOT_PREPARED: 1345 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1346 err = -EINVAL; 1347 break; 1348 case ICE_AQ_TASK_WAITING: 1349 err = ret < 0 ? ret : -ETIMEDOUT; 1350 break; 1351 case ICE_AQ_TASK_CANCELED: 1352 err = ret < 0 ? ret : -ECANCELED; 1353 break; 1354 case ICE_AQ_TASK_COMPLETE: 1355 err = ret < 0 ? ret : 0; 1356 break; 1357 default: 1358 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1359 err = -EINVAL; 1360 break; 1361 } 1362 1363 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1364 jiffies_to_msecs(jiffies - start), 1365 jiffies_to_msecs(timeout), 1366 task->opcode); 1367 1368 spin_lock_bh(&pf->aq_wait_lock); 1369 hlist_del(&task->entry); 1370 spin_unlock_bh(&pf->aq_wait_lock); 1371 1372 return err; 1373 } 1374 1375 /** 1376 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1377 * @pf: pointer to the PF private structure 1378 * @opcode: the opcode of the event 1379 * @event: the event to check 1380 * 1381 * Loops over the current list of pending threads waiting for an AdminQ event. 1382 * For each matching task, copy the contents of the event into the task 1383 * structure and wake up the thread. 1384 * 1385 * If multiple threads wait for the same opcode, they will all be woken up. 1386 * 1387 * Note that event->msg_buf will only be duplicated if the event has a buffer 1388 * with enough space already allocated. Otherwise, only the descriptor and 1389 * message length will be copied. 1390 * 1391 * Returns: true if an event was found, false otherwise 1392 */ 1393 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1394 struct ice_rq_event_info *event) 1395 { 1396 struct ice_rq_event_info *task_ev; 1397 struct ice_aq_task *task; 1398 bool found = false; 1399 1400 spin_lock_bh(&pf->aq_wait_lock); 1401 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1402 if (task->state != ICE_AQ_TASK_WAITING) 1403 continue; 1404 if (task->opcode != opcode) 1405 continue; 1406 1407 task_ev = &task->event; 1408 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1409 task_ev->msg_len = event->msg_len; 1410 1411 /* Only copy the data buffer if a destination was set */ 1412 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1413 memcpy(task_ev->msg_buf, event->msg_buf, 1414 event->buf_len); 1415 task_ev->buf_len = event->buf_len; 1416 } 1417 1418 task->state = ICE_AQ_TASK_COMPLETE; 1419 found = true; 1420 } 1421 spin_unlock_bh(&pf->aq_wait_lock); 1422 1423 if (found) 1424 wake_up(&pf->aq_wait_queue); 1425 } 1426 1427 /** 1428 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1429 * @pf: the PF private structure 1430 * 1431 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1432 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1433 */ 1434 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1435 { 1436 struct ice_aq_task *task; 1437 1438 spin_lock_bh(&pf->aq_wait_lock); 1439 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1440 task->state = ICE_AQ_TASK_CANCELED; 1441 spin_unlock_bh(&pf->aq_wait_lock); 1442 1443 wake_up(&pf->aq_wait_queue); 1444 } 1445 1446 #define ICE_MBX_OVERFLOW_WATERMARK 64 1447 1448 /** 1449 * __ice_clean_ctrlq - helper function to clean controlq rings 1450 * @pf: ptr to struct ice_pf 1451 * @q_type: specific Control queue type 1452 */ 1453 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1454 { 1455 struct device *dev = ice_pf_to_dev(pf); 1456 struct ice_rq_event_info event; 1457 struct ice_hw *hw = &pf->hw; 1458 struct ice_ctl_q_info *cq; 1459 u16 pending, i = 0; 1460 const char *qtype; 1461 u32 oldval, val; 1462 1463 /* Do not clean control queue if/when PF reset fails */ 1464 if (test_bit(ICE_RESET_FAILED, pf->state)) 1465 return 0; 1466 1467 switch (q_type) { 1468 case ICE_CTL_Q_ADMIN: 1469 cq = &hw->adminq; 1470 qtype = "Admin"; 1471 break; 1472 case ICE_CTL_Q_SB: 1473 cq = &hw->sbq; 1474 qtype = "Sideband"; 1475 break; 1476 case ICE_CTL_Q_MAILBOX: 1477 cq = &hw->mailboxq; 1478 qtype = "Mailbox"; 1479 /* we are going to try to detect a malicious VF, so set the 1480 * state to begin detection 1481 */ 1482 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1483 break; 1484 default: 1485 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1486 return 0; 1487 } 1488 1489 /* check for error indications - PF_xx_AxQLEN register layout for 1490 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1491 */ 1492 val = rd32(hw, cq->rq.len); 1493 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1494 PF_FW_ARQLEN_ARQCRIT_M)) { 1495 oldval = val; 1496 if (val & PF_FW_ARQLEN_ARQVFE_M) 1497 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1498 qtype); 1499 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1500 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1501 qtype); 1502 } 1503 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1504 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1505 qtype); 1506 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1507 PF_FW_ARQLEN_ARQCRIT_M); 1508 if (oldval != val) 1509 wr32(hw, cq->rq.len, val); 1510 } 1511 1512 val = rd32(hw, cq->sq.len); 1513 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1514 PF_FW_ATQLEN_ATQCRIT_M)) { 1515 oldval = val; 1516 if (val & PF_FW_ATQLEN_ATQVFE_M) 1517 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1518 qtype); 1519 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1520 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1521 qtype); 1522 } 1523 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1524 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1525 qtype); 1526 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1527 PF_FW_ATQLEN_ATQCRIT_M); 1528 if (oldval != val) 1529 wr32(hw, cq->sq.len, val); 1530 } 1531 1532 event.buf_len = cq->rq_buf_size; 1533 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1534 if (!event.msg_buf) 1535 return 0; 1536 1537 do { 1538 struct ice_mbx_data data = {}; 1539 u16 opcode; 1540 int ret; 1541 1542 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1543 if (ret == -EALREADY) 1544 break; 1545 if (ret) { 1546 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1547 ret); 1548 break; 1549 } 1550 1551 opcode = le16_to_cpu(event.desc.opcode); 1552 1553 /* Notify any thread that might be waiting for this event */ 1554 ice_aq_check_events(pf, opcode, &event); 1555 1556 switch (opcode) { 1557 case ice_aqc_opc_get_link_status: 1558 if (ice_handle_link_event(pf, &event)) 1559 dev_err(dev, "Could not handle link event\n"); 1560 break; 1561 case ice_aqc_opc_event_lan_overflow: 1562 ice_vf_lan_overflow_event(pf, &event); 1563 break; 1564 case ice_mbx_opc_send_msg_to_pf: 1565 data.num_msg_proc = i; 1566 data.num_pending_arq = pending; 1567 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1568 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1569 1570 ice_vc_process_vf_msg(pf, &event, &data); 1571 break; 1572 case ice_aqc_opc_fw_logs_event: 1573 ice_get_fwlog_data(pf, &event); 1574 break; 1575 case ice_aqc_opc_lldp_set_mib_change: 1576 ice_dcb_process_lldp_set_mib_change(pf, &event); 1577 break; 1578 default: 1579 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1580 qtype, opcode); 1581 break; 1582 } 1583 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1584 1585 kfree(event.msg_buf); 1586 1587 return pending && (i == ICE_DFLT_IRQ_WORK); 1588 } 1589 1590 /** 1591 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1592 * @hw: pointer to hardware info 1593 * @cq: control queue information 1594 * 1595 * returns true if there are pending messages in a queue, false if there aren't 1596 */ 1597 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1598 { 1599 u16 ntu; 1600 1601 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1602 return cq->rq.next_to_clean != ntu; 1603 } 1604 1605 /** 1606 * ice_clean_adminq_subtask - clean the AdminQ rings 1607 * @pf: board private structure 1608 */ 1609 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1610 { 1611 struct ice_hw *hw = &pf->hw; 1612 1613 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1614 return; 1615 1616 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1617 return; 1618 1619 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1620 1621 /* There might be a situation where new messages arrive to a control 1622 * queue between processing the last message and clearing the 1623 * EVENT_PENDING bit. So before exiting, check queue head again (using 1624 * ice_ctrlq_pending) and process new messages if any. 1625 */ 1626 if (ice_ctrlq_pending(hw, &hw->adminq)) 1627 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1628 1629 ice_flush(hw); 1630 } 1631 1632 /** 1633 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1634 * @pf: board private structure 1635 */ 1636 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1637 { 1638 struct ice_hw *hw = &pf->hw; 1639 1640 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1641 return; 1642 1643 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1644 return; 1645 1646 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1647 1648 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1649 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1650 1651 ice_flush(hw); 1652 } 1653 1654 /** 1655 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1656 * @pf: board private structure 1657 */ 1658 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1659 { 1660 struct ice_hw *hw = &pf->hw; 1661 1662 /* if mac_type is not generic, sideband is not supported 1663 * and there's nothing to do here 1664 */ 1665 if (!ice_is_generic_mac(hw)) { 1666 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1667 return; 1668 } 1669 1670 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1671 return; 1672 1673 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1674 return; 1675 1676 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1677 1678 if (ice_ctrlq_pending(hw, &hw->sbq)) 1679 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1680 1681 ice_flush(hw); 1682 } 1683 1684 /** 1685 * ice_service_task_schedule - schedule the service task to wake up 1686 * @pf: board private structure 1687 * 1688 * If not already scheduled, this puts the task into the work queue. 1689 */ 1690 void ice_service_task_schedule(struct ice_pf *pf) 1691 { 1692 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1693 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1694 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1695 queue_work(ice_wq, &pf->serv_task); 1696 } 1697 1698 /** 1699 * ice_service_task_complete - finish up the service task 1700 * @pf: board private structure 1701 */ 1702 static void ice_service_task_complete(struct ice_pf *pf) 1703 { 1704 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1705 1706 /* force memory (pf->state) to sync before next service task */ 1707 smp_mb__before_atomic(); 1708 clear_bit(ICE_SERVICE_SCHED, pf->state); 1709 } 1710 1711 /** 1712 * ice_service_task_stop - stop service task and cancel works 1713 * @pf: board private structure 1714 * 1715 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1716 * 1 otherwise. 1717 */ 1718 static int ice_service_task_stop(struct ice_pf *pf) 1719 { 1720 int ret; 1721 1722 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1723 1724 if (pf->serv_tmr.function) 1725 del_timer_sync(&pf->serv_tmr); 1726 if (pf->serv_task.func) 1727 cancel_work_sync(&pf->serv_task); 1728 1729 clear_bit(ICE_SERVICE_SCHED, pf->state); 1730 return ret; 1731 } 1732 1733 /** 1734 * ice_service_task_restart - restart service task and schedule works 1735 * @pf: board private structure 1736 * 1737 * This function is needed for suspend and resume works (e.g WoL scenario) 1738 */ 1739 static void ice_service_task_restart(struct ice_pf *pf) 1740 { 1741 clear_bit(ICE_SERVICE_DIS, pf->state); 1742 ice_service_task_schedule(pf); 1743 } 1744 1745 /** 1746 * ice_service_timer - timer callback to schedule service task 1747 * @t: pointer to timer_list 1748 */ 1749 static void ice_service_timer(struct timer_list *t) 1750 { 1751 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1752 1753 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1754 ice_service_task_schedule(pf); 1755 } 1756 1757 /** 1758 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1759 * @pf: pointer to the PF structure 1760 * @vf: pointer to the VF structure 1761 * @reset_vf_tx: whether Tx MDD has occurred 1762 * @reset_vf_rx: whether Rx MDD has occurred 1763 * 1764 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1765 * automatically reset the VF by enabling the private ethtool flag 1766 * mdd-auto-reset-vf. 1767 */ 1768 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1769 bool reset_vf_tx, bool reset_vf_rx) 1770 { 1771 struct device *dev = ice_pf_to_dev(pf); 1772 1773 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1774 return; 1775 1776 /* VF MDD event counters will be cleared by reset, so print the event 1777 * prior to reset. 1778 */ 1779 if (reset_vf_tx) 1780 ice_print_vf_tx_mdd_event(vf); 1781 1782 if (reset_vf_rx) 1783 ice_print_vf_rx_mdd_event(vf); 1784 1785 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1786 pf->hw.pf_id, vf->vf_id); 1787 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1788 } 1789 1790 /** 1791 * ice_handle_mdd_event - handle malicious driver detect event 1792 * @pf: pointer to the PF structure 1793 * 1794 * Called from service task. OICR interrupt handler indicates MDD event. 1795 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1796 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1797 * disable the queue, the PF can be configured to reset the VF using ethtool 1798 * private flag mdd-auto-reset-vf. 1799 */ 1800 static void ice_handle_mdd_event(struct ice_pf *pf) 1801 { 1802 struct device *dev = ice_pf_to_dev(pf); 1803 struct ice_hw *hw = &pf->hw; 1804 struct ice_vf *vf; 1805 unsigned int bkt; 1806 u32 reg; 1807 1808 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1809 /* Since the VF MDD event logging is rate limited, check if 1810 * there are pending MDD events. 1811 */ 1812 ice_print_vfs_mdd_events(pf); 1813 return; 1814 } 1815 1816 /* find what triggered an MDD event */ 1817 reg = rd32(hw, GL_MDET_TX_PQM); 1818 if (reg & GL_MDET_TX_PQM_VALID_M) { 1819 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1820 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1821 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1822 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1823 1824 if (netif_msg_tx_err(pf)) 1825 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1826 event, queue, pf_num, vf_num); 1827 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1828 } 1829 1830 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1831 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1832 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1833 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1834 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1835 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1836 1837 if (netif_msg_tx_err(pf)) 1838 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1839 event, queue, pf_num, vf_num); 1840 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1841 } 1842 1843 reg = rd32(hw, GL_MDET_RX); 1844 if (reg & GL_MDET_RX_VALID_M) { 1845 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1846 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1847 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1848 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1849 1850 if (netif_msg_rx_err(pf)) 1851 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1852 event, queue, pf_num, vf_num); 1853 wr32(hw, GL_MDET_RX, 0xffffffff); 1854 } 1855 1856 /* check to see if this PF caused an MDD event */ 1857 reg = rd32(hw, PF_MDET_TX_PQM); 1858 if (reg & PF_MDET_TX_PQM_VALID_M) { 1859 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1860 if (netif_msg_tx_err(pf)) 1861 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1862 } 1863 1864 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1865 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1866 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1867 if (netif_msg_tx_err(pf)) 1868 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1869 } 1870 1871 reg = rd32(hw, PF_MDET_RX); 1872 if (reg & PF_MDET_RX_VALID_M) { 1873 wr32(hw, PF_MDET_RX, 0xFFFF); 1874 if (netif_msg_rx_err(pf)) 1875 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1876 } 1877 1878 /* Check to see if one of the VFs caused an MDD event, and then 1879 * increment counters and set print pending 1880 */ 1881 mutex_lock(&pf->vfs.table_lock); 1882 ice_for_each_vf(pf, bkt, vf) { 1883 bool reset_vf_tx = false, reset_vf_rx = false; 1884 1885 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1886 if (reg & VP_MDET_TX_PQM_VALID_M) { 1887 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1888 vf->mdd_tx_events.count++; 1889 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1890 if (netif_msg_tx_err(pf)) 1891 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1892 vf->vf_id); 1893 1894 reset_vf_tx = true; 1895 } 1896 1897 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1898 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1899 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1900 vf->mdd_tx_events.count++; 1901 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1902 if (netif_msg_tx_err(pf)) 1903 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1904 vf->vf_id); 1905 1906 reset_vf_tx = true; 1907 } 1908 1909 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1910 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1911 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1912 vf->mdd_tx_events.count++; 1913 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1914 if (netif_msg_tx_err(pf)) 1915 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1916 vf->vf_id); 1917 1918 reset_vf_tx = true; 1919 } 1920 1921 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1922 if (reg & VP_MDET_RX_VALID_M) { 1923 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1924 vf->mdd_rx_events.count++; 1925 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1926 if (netif_msg_rx_err(pf)) 1927 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1928 vf->vf_id); 1929 1930 reset_vf_rx = true; 1931 } 1932 1933 if (reset_vf_tx || reset_vf_rx) 1934 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1935 reset_vf_rx); 1936 } 1937 mutex_unlock(&pf->vfs.table_lock); 1938 1939 ice_print_vfs_mdd_events(pf); 1940 } 1941 1942 /** 1943 * ice_force_phys_link_state - Force the physical link state 1944 * @vsi: VSI to force the physical link state to up/down 1945 * @link_up: true/false indicates to set the physical link to up/down 1946 * 1947 * Force the physical link state by getting the current PHY capabilities from 1948 * hardware and setting the PHY config based on the determined capabilities. If 1949 * link changes a link event will be triggered because both the Enable Automatic 1950 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1951 * 1952 * Returns 0 on success, negative on failure 1953 */ 1954 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1955 { 1956 struct ice_aqc_get_phy_caps_data *pcaps; 1957 struct ice_aqc_set_phy_cfg_data *cfg; 1958 struct ice_port_info *pi; 1959 struct device *dev; 1960 int retcode; 1961 1962 if (!vsi || !vsi->port_info || !vsi->back) 1963 return -EINVAL; 1964 if (vsi->type != ICE_VSI_PF) 1965 return 0; 1966 1967 dev = ice_pf_to_dev(vsi->back); 1968 1969 pi = vsi->port_info; 1970 1971 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1972 if (!pcaps) 1973 return -ENOMEM; 1974 1975 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1976 NULL); 1977 if (retcode) { 1978 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1979 vsi->vsi_num, retcode); 1980 retcode = -EIO; 1981 goto out; 1982 } 1983 1984 /* No change in link */ 1985 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1986 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1987 goto out; 1988 1989 /* Use the current user PHY configuration. The current user PHY 1990 * configuration is initialized during probe from PHY capabilities 1991 * software mode, and updated on set PHY configuration. 1992 */ 1993 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1994 if (!cfg) { 1995 retcode = -ENOMEM; 1996 goto out; 1997 } 1998 1999 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2000 if (link_up) 2001 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2002 else 2003 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2004 2005 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2006 if (retcode) { 2007 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2008 vsi->vsi_num, retcode); 2009 retcode = -EIO; 2010 } 2011 2012 kfree(cfg); 2013 out: 2014 kfree(pcaps); 2015 return retcode; 2016 } 2017 2018 /** 2019 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2020 * @pi: port info structure 2021 * 2022 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2023 */ 2024 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2025 { 2026 struct ice_aqc_get_phy_caps_data *pcaps; 2027 struct ice_pf *pf = pi->hw->back; 2028 int err; 2029 2030 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2031 if (!pcaps) 2032 return -ENOMEM; 2033 2034 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2035 pcaps, NULL); 2036 2037 if (err) { 2038 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2039 goto out; 2040 } 2041 2042 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2043 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2044 2045 out: 2046 kfree(pcaps); 2047 return err; 2048 } 2049 2050 /** 2051 * ice_init_link_dflt_override - Initialize link default override 2052 * @pi: port info structure 2053 * 2054 * Initialize link default override and PHY total port shutdown during probe 2055 */ 2056 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2057 { 2058 struct ice_link_default_override_tlv *ldo; 2059 struct ice_pf *pf = pi->hw->back; 2060 2061 ldo = &pf->link_dflt_override; 2062 if (ice_get_link_default_override(ldo, pi)) 2063 return; 2064 2065 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2066 return; 2067 2068 /* Enable Total Port Shutdown (override/replace link-down-on-close 2069 * ethtool private flag) for ports with Port Disable bit set. 2070 */ 2071 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2072 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2073 } 2074 2075 /** 2076 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2077 * @pi: port info structure 2078 * 2079 * If default override is enabled, initialize the user PHY cfg speed and FEC 2080 * settings using the default override mask from the NVM. 2081 * 2082 * The PHY should only be configured with the default override settings the 2083 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2084 * is used to indicate that the user PHY cfg default override is initialized 2085 * and the PHY has not been configured with the default override settings. The 2086 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2087 * configured. 2088 * 2089 * This function should be called only if the FW doesn't support default 2090 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2091 */ 2092 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2093 { 2094 struct ice_link_default_override_tlv *ldo; 2095 struct ice_aqc_set_phy_cfg_data *cfg; 2096 struct ice_phy_info *phy = &pi->phy; 2097 struct ice_pf *pf = pi->hw->back; 2098 2099 ldo = &pf->link_dflt_override; 2100 2101 /* If link default override is enabled, use to mask NVM PHY capabilities 2102 * for speed and FEC default configuration. 2103 */ 2104 cfg = &phy->curr_user_phy_cfg; 2105 2106 if (ldo->phy_type_low || ldo->phy_type_high) { 2107 cfg->phy_type_low = pf->nvm_phy_type_lo & 2108 cpu_to_le64(ldo->phy_type_low); 2109 cfg->phy_type_high = pf->nvm_phy_type_hi & 2110 cpu_to_le64(ldo->phy_type_high); 2111 } 2112 cfg->link_fec_opt = ldo->fec_options; 2113 phy->curr_user_fec_req = ICE_FEC_AUTO; 2114 2115 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2116 } 2117 2118 /** 2119 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2120 * @pi: port info structure 2121 * 2122 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2123 * mode to default. The PHY defaults are from get PHY capabilities topology 2124 * with media so call when media is first available. An error is returned if 2125 * called when media is not available. The PHY initialization completed state is 2126 * set here. 2127 * 2128 * These configurations are used when setting PHY 2129 * configuration. The user PHY configuration is updated on set PHY 2130 * configuration. Returns 0 on success, negative on failure 2131 */ 2132 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2133 { 2134 struct ice_aqc_get_phy_caps_data *pcaps; 2135 struct ice_phy_info *phy = &pi->phy; 2136 struct ice_pf *pf = pi->hw->back; 2137 int err; 2138 2139 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2140 return -EIO; 2141 2142 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2143 if (!pcaps) 2144 return -ENOMEM; 2145 2146 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2148 pcaps, NULL); 2149 else 2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2151 pcaps, NULL); 2152 if (err) { 2153 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2154 goto err_out; 2155 } 2156 2157 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2158 2159 /* check if lenient mode is supported and enabled */ 2160 if (ice_fw_supports_link_override(pi->hw) && 2161 !(pcaps->module_compliance_enforcement & 2162 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2163 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2164 2165 /* if the FW supports default PHY configuration mode, then the driver 2166 * does not have to apply link override settings. If not, 2167 * initialize user PHY configuration with link override values 2168 */ 2169 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2170 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2171 ice_init_phy_cfg_dflt_override(pi); 2172 goto out; 2173 } 2174 } 2175 2176 /* if link default override is not enabled, set user flow control and 2177 * FEC settings based on what get_phy_caps returned 2178 */ 2179 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2180 pcaps->link_fec_options); 2181 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2182 2183 out: 2184 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2185 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2186 err_out: 2187 kfree(pcaps); 2188 return err; 2189 } 2190 2191 /** 2192 * ice_configure_phy - configure PHY 2193 * @vsi: VSI of PHY 2194 * 2195 * Set the PHY configuration. If the current PHY configuration is the same as 2196 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2197 * configure the based get PHY capabilities for topology with media. 2198 */ 2199 static int ice_configure_phy(struct ice_vsi *vsi) 2200 { 2201 struct device *dev = ice_pf_to_dev(vsi->back); 2202 struct ice_port_info *pi = vsi->port_info; 2203 struct ice_aqc_get_phy_caps_data *pcaps; 2204 struct ice_aqc_set_phy_cfg_data *cfg; 2205 struct ice_phy_info *phy = &pi->phy; 2206 struct ice_pf *pf = vsi->back; 2207 int err; 2208 2209 /* Ensure we have media as we cannot configure a medialess port */ 2210 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2211 return -ENOMEDIUM; 2212 2213 ice_print_topo_conflict(vsi); 2214 2215 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2216 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2217 return -EPERM; 2218 2219 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2220 return ice_force_phys_link_state(vsi, true); 2221 2222 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2223 if (!pcaps) 2224 return -ENOMEM; 2225 2226 /* Get current PHY config */ 2227 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2228 NULL); 2229 if (err) { 2230 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2231 vsi->vsi_num, err); 2232 goto done; 2233 } 2234 2235 /* If PHY enable link is configured and configuration has not changed, 2236 * there's nothing to do 2237 */ 2238 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2239 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2240 goto done; 2241 2242 /* Use PHY topology as baseline for configuration */ 2243 memset(pcaps, 0, sizeof(*pcaps)); 2244 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2245 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2246 pcaps, NULL); 2247 else 2248 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2249 pcaps, NULL); 2250 if (err) { 2251 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2252 vsi->vsi_num, err); 2253 goto done; 2254 } 2255 2256 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2257 if (!cfg) { 2258 err = -ENOMEM; 2259 goto done; 2260 } 2261 2262 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2263 2264 /* Speed - If default override pending, use curr_user_phy_cfg set in 2265 * ice_init_phy_user_cfg_ldo. 2266 */ 2267 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2268 vsi->back->state)) { 2269 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2270 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2271 } else { 2272 u64 phy_low = 0, phy_high = 0; 2273 2274 ice_update_phy_type(&phy_low, &phy_high, 2275 pi->phy.curr_user_speed_req); 2276 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2277 cfg->phy_type_high = pcaps->phy_type_high & 2278 cpu_to_le64(phy_high); 2279 } 2280 2281 /* Can't provide what was requested; use PHY capabilities */ 2282 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2283 cfg->phy_type_low = pcaps->phy_type_low; 2284 cfg->phy_type_high = pcaps->phy_type_high; 2285 } 2286 2287 /* FEC */ 2288 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2289 2290 /* Can't provide what was requested; use PHY capabilities */ 2291 if (cfg->link_fec_opt != 2292 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2293 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2294 cfg->link_fec_opt = pcaps->link_fec_options; 2295 } 2296 2297 /* Flow Control - always supported; no need to check against 2298 * capabilities 2299 */ 2300 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2301 2302 /* Enable link and link update */ 2303 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2304 2305 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2306 if (err) 2307 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2308 vsi->vsi_num, err); 2309 2310 kfree(cfg); 2311 done: 2312 kfree(pcaps); 2313 return err; 2314 } 2315 2316 /** 2317 * ice_check_media_subtask - Check for media 2318 * @pf: pointer to PF struct 2319 * 2320 * If media is available, then initialize PHY user configuration if it is not 2321 * been, and configure the PHY if the interface is up. 2322 */ 2323 static void ice_check_media_subtask(struct ice_pf *pf) 2324 { 2325 struct ice_port_info *pi; 2326 struct ice_vsi *vsi; 2327 int err; 2328 2329 /* No need to check for media if it's already present */ 2330 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2331 return; 2332 2333 vsi = ice_get_main_vsi(pf); 2334 if (!vsi) 2335 return; 2336 2337 /* Refresh link info and check if media is present */ 2338 pi = vsi->port_info; 2339 err = ice_update_link_info(pi); 2340 if (err) 2341 return; 2342 2343 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2344 2345 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2346 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2347 ice_init_phy_user_cfg(pi); 2348 2349 /* PHY settings are reset on media insertion, reconfigure 2350 * PHY to preserve settings. 2351 */ 2352 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2353 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2354 return; 2355 2356 err = ice_configure_phy(vsi); 2357 if (!err) 2358 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2359 2360 /* A Link Status Event will be generated; the event handler 2361 * will complete bringing the interface up 2362 */ 2363 } 2364 } 2365 2366 /** 2367 * ice_service_task - manage and run subtasks 2368 * @work: pointer to work_struct contained by the PF struct 2369 */ 2370 static void ice_service_task(struct work_struct *work) 2371 { 2372 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2373 unsigned long start_time = jiffies; 2374 2375 /* subtasks */ 2376 2377 /* process reset requests first */ 2378 ice_reset_subtask(pf); 2379 2380 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2381 if (ice_is_reset_in_progress(pf->state) || 2382 test_bit(ICE_SUSPENDED, pf->state) || 2383 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2384 ice_service_task_complete(pf); 2385 return; 2386 } 2387 2388 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2389 struct iidc_event *event; 2390 2391 event = kzalloc(sizeof(*event), GFP_KERNEL); 2392 if (event) { 2393 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2394 /* report the entire OICR value to AUX driver */ 2395 swap(event->reg, pf->oicr_err_reg); 2396 ice_send_event_to_aux(pf, event); 2397 kfree(event); 2398 } 2399 } 2400 2401 /* unplug aux dev per request, if an unplug request came in 2402 * while processing a plug request, this will handle it 2403 */ 2404 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2405 ice_unplug_aux_dev(pf); 2406 2407 /* Plug aux device per request */ 2408 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2409 ice_plug_aux_dev(pf); 2410 2411 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2412 struct iidc_event *event; 2413 2414 event = kzalloc(sizeof(*event), GFP_KERNEL); 2415 if (event) { 2416 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2417 ice_send_event_to_aux(pf, event); 2418 kfree(event); 2419 } 2420 } 2421 2422 ice_clean_adminq_subtask(pf); 2423 ice_check_media_subtask(pf); 2424 ice_check_for_hang_subtask(pf); 2425 ice_sync_fltr_subtask(pf); 2426 ice_handle_mdd_event(pf); 2427 ice_watchdog_subtask(pf); 2428 2429 if (ice_is_safe_mode(pf)) { 2430 ice_service_task_complete(pf); 2431 return; 2432 } 2433 2434 ice_process_vflr_event(pf); 2435 ice_clean_mailboxq_subtask(pf); 2436 ice_clean_sbq_subtask(pf); 2437 ice_sync_arfs_fltrs(pf); 2438 ice_flush_fdir_ctx(pf); 2439 2440 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2441 ice_service_task_complete(pf); 2442 2443 /* If the tasks have taken longer than one service timer period 2444 * or there is more work to be done, reset the service timer to 2445 * schedule the service task now. 2446 */ 2447 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2448 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2449 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2450 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2451 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2452 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2453 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2454 mod_timer(&pf->serv_tmr, jiffies); 2455 } 2456 2457 /** 2458 * ice_set_ctrlq_len - helper function to set controlq length 2459 * @hw: pointer to the HW instance 2460 */ 2461 static void ice_set_ctrlq_len(struct ice_hw *hw) 2462 { 2463 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2464 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2465 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2466 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2467 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2468 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2469 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2470 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2471 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2472 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2473 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2474 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2475 } 2476 2477 /** 2478 * ice_schedule_reset - schedule a reset 2479 * @pf: board private structure 2480 * @reset: reset being requested 2481 */ 2482 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2483 { 2484 struct device *dev = ice_pf_to_dev(pf); 2485 2486 /* bail out if earlier reset has failed */ 2487 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2488 dev_dbg(dev, "earlier reset has failed\n"); 2489 return -EIO; 2490 } 2491 /* bail if reset/recovery already in progress */ 2492 if (ice_is_reset_in_progress(pf->state)) { 2493 dev_dbg(dev, "Reset already in progress\n"); 2494 return -EBUSY; 2495 } 2496 2497 switch (reset) { 2498 case ICE_RESET_PFR: 2499 set_bit(ICE_PFR_REQ, pf->state); 2500 break; 2501 case ICE_RESET_CORER: 2502 set_bit(ICE_CORER_REQ, pf->state); 2503 break; 2504 case ICE_RESET_GLOBR: 2505 set_bit(ICE_GLOBR_REQ, pf->state); 2506 break; 2507 default: 2508 return -EINVAL; 2509 } 2510 2511 ice_service_task_schedule(pf); 2512 return 0; 2513 } 2514 2515 /** 2516 * ice_irq_affinity_notify - Callback for affinity changes 2517 * @notify: context as to what irq was changed 2518 * @mask: the new affinity mask 2519 * 2520 * This is a callback function used by the irq_set_affinity_notifier function 2521 * so that we may register to receive changes to the irq affinity masks. 2522 */ 2523 static void 2524 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2525 const cpumask_t *mask) 2526 { 2527 struct ice_q_vector *q_vector = 2528 container_of(notify, struct ice_q_vector, affinity_notify); 2529 2530 cpumask_copy(&q_vector->affinity_mask, mask); 2531 } 2532 2533 /** 2534 * ice_irq_affinity_release - Callback for affinity notifier release 2535 * @ref: internal core kernel usage 2536 * 2537 * This is a callback function used by the irq_set_affinity_notifier function 2538 * to inform the current notification subscriber that they will no longer 2539 * receive notifications. 2540 */ 2541 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2542 2543 /** 2544 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2545 * @vsi: the VSI being configured 2546 */ 2547 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2548 { 2549 struct ice_hw *hw = &vsi->back->hw; 2550 int i; 2551 2552 ice_for_each_q_vector(vsi, i) 2553 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2554 2555 ice_flush(hw); 2556 return 0; 2557 } 2558 2559 /** 2560 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2561 * @vsi: the VSI being configured 2562 * @basename: name for the vector 2563 */ 2564 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2565 { 2566 int q_vectors = vsi->num_q_vectors; 2567 struct ice_pf *pf = vsi->back; 2568 struct device *dev; 2569 int rx_int_idx = 0; 2570 int tx_int_idx = 0; 2571 int vector, err; 2572 int irq_num; 2573 2574 dev = ice_pf_to_dev(pf); 2575 for (vector = 0; vector < q_vectors; vector++) { 2576 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2577 2578 irq_num = q_vector->irq.virq; 2579 2580 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2581 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2582 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2583 tx_int_idx++; 2584 } else if (q_vector->rx.rx_ring) { 2585 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2586 "%s-%s-%d", basename, "rx", rx_int_idx++); 2587 } else if (q_vector->tx.tx_ring) { 2588 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2589 "%s-%s-%d", basename, "tx", tx_int_idx++); 2590 } else { 2591 /* skip this unused q_vector */ 2592 continue; 2593 } 2594 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2595 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2596 IRQF_SHARED, q_vector->name, 2597 q_vector); 2598 else 2599 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2600 0, q_vector->name, q_vector); 2601 if (err) { 2602 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2603 err); 2604 goto free_q_irqs; 2605 } 2606 2607 /* register for affinity change notifications */ 2608 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2609 struct irq_affinity_notify *affinity_notify; 2610 2611 affinity_notify = &q_vector->affinity_notify; 2612 affinity_notify->notify = ice_irq_affinity_notify; 2613 affinity_notify->release = ice_irq_affinity_release; 2614 irq_set_affinity_notifier(irq_num, affinity_notify); 2615 } 2616 2617 /* assign the mask for this irq */ 2618 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2619 } 2620 2621 err = ice_set_cpu_rx_rmap(vsi); 2622 if (err) { 2623 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2624 vsi->vsi_num, ERR_PTR(err)); 2625 goto free_q_irqs; 2626 } 2627 2628 vsi->irqs_ready = true; 2629 return 0; 2630 2631 free_q_irqs: 2632 while (vector--) { 2633 irq_num = vsi->q_vectors[vector]->irq.virq; 2634 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2635 irq_set_affinity_notifier(irq_num, NULL); 2636 irq_update_affinity_hint(irq_num, NULL); 2637 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2638 } 2639 return err; 2640 } 2641 2642 /** 2643 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2644 * @vsi: VSI to setup Tx rings used by XDP 2645 * 2646 * Return 0 on success and negative value on error 2647 */ 2648 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2649 { 2650 struct device *dev = ice_pf_to_dev(vsi->back); 2651 struct ice_tx_desc *tx_desc; 2652 int i, j; 2653 2654 ice_for_each_xdp_txq(vsi, i) { 2655 u16 xdp_q_idx = vsi->alloc_txq + i; 2656 struct ice_ring_stats *ring_stats; 2657 struct ice_tx_ring *xdp_ring; 2658 2659 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2660 if (!xdp_ring) 2661 goto free_xdp_rings; 2662 2663 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2664 if (!ring_stats) { 2665 ice_free_tx_ring(xdp_ring); 2666 goto free_xdp_rings; 2667 } 2668 2669 xdp_ring->ring_stats = ring_stats; 2670 xdp_ring->q_index = xdp_q_idx; 2671 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2672 xdp_ring->vsi = vsi; 2673 xdp_ring->netdev = NULL; 2674 xdp_ring->dev = dev; 2675 xdp_ring->count = vsi->num_tx_desc; 2676 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2677 if (ice_setup_tx_ring(xdp_ring)) 2678 goto free_xdp_rings; 2679 ice_set_ring_xdp(xdp_ring); 2680 spin_lock_init(&xdp_ring->tx_lock); 2681 for (j = 0; j < xdp_ring->count; j++) { 2682 tx_desc = ICE_TX_DESC(xdp_ring, j); 2683 tx_desc->cmd_type_offset_bsz = 0; 2684 } 2685 } 2686 2687 return 0; 2688 2689 free_xdp_rings: 2690 for (; i >= 0; i--) { 2691 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2692 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2693 vsi->xdp_rings[i]->ring_stats = NULL; 2694 ice_free_tx_ring(vsi->xdp_rings[i]); 2695 } 2696 } 2697 return -ENOMEM; 2698 } 2699 2700 /** 2701 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2702 * @vsi: VSI to set the bpf prog on 2703 * @prog: the bpf prog pointer 2704 */ 2705 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2706 { 2707 struct bpf_prog *old_prog; 2708 int i; 2709 2710 old_prog = xchg(&vsi->xdp_prog, prog); 2711 ice_for_each_rxq(vsi, i) 2712 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2713 2714 if (old_prog) 2715 bpf_prog_put(old_prog); 2716 } 2717 2718 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2719 { 2720 struct ice_q_vector *q_vector; 2721 struct ice_tx_ring *ring; 2722 2723 if (static_key_enabled(&ice_xdp_locking_key)) 2724 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2725 2726 q_vector = vsi->rx_rings[qid]->q_vector; 2727 ice_for_each_tx_ring(ring, q_vector->tx) 2728 if (ice_ring_is_xdp(ring)) 2729 return ring; 2730 2731 return NULL; 2732 } 2733 2734 /** 2735 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2736 * @vsi: the VSI with XDP rings being configured 2737 * 2738 * Map XDP rings to interrupt vectors and perform the configuration steps 2739 * dependent on the mapping. 2740 */ 2741 void ice_map_xdp_rings(struct ice_vsi *vsi) 2742 { 2743 int xdp_rings_rem = vsi->num_xdp_txq; 2744 int v_idx, q_idx; 2745 2746 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2747 ice_for_each_q_vector(vsi, v_idx) { 2748 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2749 int xdp_rings_per_v, q_id, q_base; 2750 2751 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2752 vsi->num_q_vectors - v_idx); 2753 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2754 2755 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2756 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2757 2758 xdp_ring->q_vector = q_vector; 2759 xdp_ring->next = q_vector->tx.tx_ring; 2760 q_vector->tx.tx_ring = xdp_ring; 2761 } 2762 xdp_rings_rem -= xdp_rings_per_v; 2763 } 2764 2765 ice_for_each_rxq(vsi, q_idx) { 2766 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2767 q_idx); 2768 ice_tx_xsk_pool(vsi, q_idx); 2769 } 2770 } 2771 2772 /** 2773 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2774 * @vsi: VSI to bring up Tx rings used by XDP 2775 * @prog: bpf program that will be assigned to VSI 2776 * @cfg_type: create from scratch or restore the existing configuration 2777 * 2778 * Return 0 on success and negative value on error 2779 */ 2780 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2781 enum ice_xdp_cfg cfg_type) 2782 { 2783 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2784 struct ice_pf *pf = vsi->back; 2785 struct ice_qs_cfg xdp_qs_cfg = { 2786 .qs_mutex = &pf->avail_q_mutex, 2787 .pf_map = pf->avail_txqs, 2788 .pf_map_size = pf->max_pf_txqs, 2789 .q_count = vsi->num_xdp_txq, 2790 .scatter_count = ICE_MAX_SCATTER_TXQS, 2791 .vsi_map = vsi->txq_map, 2792 .vsi_map_offset = vsi->alloc_txq, 2793 .mapping_mode = ICE_VSI_MAP_CONTIG 2794 }; 2795 struct device *dev; 2796 int status, i; 2797 2798 dev = ice_pf_to_dev(pf); 2799 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2800 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2801 if (!vsi->xdp_rings) 2802 return -ENOMEM; 2803 2804 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2805 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2806 goto err_map_xdp; 2807 2808 if (static_key_enabled(&ice_xdp_locking_key)) 2809 netdev_warn(vsi->netdev, 2810 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2811 2812 if (ice_xdp_alloc_setup_rings(vsi)) 2813 goto clear_xdp_rings; 2814 2815 /* omit the scheduler update if in reset path; XDP queues will be 2816 * taken into account at the end of ice_vsi_rebuild, where 2817 * ice_cfg_vsi_lan is being called 2818 */ 2819 if (cfg_type == ICE_XDP_CFG_PART) 2820 return 0; 2821 2822 ice_map_xdp_rings(vsi); 2823 2824 /* tell the Tx scheduler that right now we have 2825 * additional queues 2826 */ 2827 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2828 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2829 2830 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2831 max_txqs); 2832 if (status) { 2833 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2834 status); 2835 goto clear_xdp_rings; 2836 } 2837 2838 /* assign the prog only when it's not already present on VSI; 2839 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2840 * VSI rebuild that happens under ethtool -L can expose us to 2841 * the bpf_prog refcount issues as we would be swapping same 2842 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2843 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2844 * this is not harmful as dev_xdp_install bumps the refcount 2845 * before calling the op exposed by the driver; 2846 */ 2847 if (!ice_is_xdp_ena_vsi(vsi)) 2848 ice_vsi_assign_bpf_prog(vsi, prog); 2849 2850 return 0; 2851 clear_xdp_rings: 2852 ice_for_each_xdp_txq(vsi, i) 2853 if (vsi->xdp_rings[i]) { 2854 kfree_rcu(vsi->xdp_rings[i], rcu); 2855 vsi->xdp_rings[i] = NULL; 2856 } 2857 2858 err_map_xdp: 2859 mutex_lock(&pf->avail_q_mutex); 2860 ice_for_each_xdp_txq(vsi, i) { 2861 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2862 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2863 } 2864 mutex_unlock(&pf->avail_q_mutex); 2865 2866 devm_kfree(dev, vsi->xdp_rings); 2867 return -ENOMEM; 2868 } 2869 2870 /** 2871 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2872 * @vsi: VSI to remove XDP rings 2873 * @cfg_type: disable XDP permanently or allow it to be restored later 2874 * 2875 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2876 * resources 2877 */ 2878 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2879 { 2880 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2881 struct ice_pf *pf = vsi->back; 2882 int i, v_idx; 2883 2884 /* q_vectors are freed in reset path so there's no point in detaching 2885 * rings 2886 */ 2887 if (cfg_type == ICE_XDP_CFG_PART) 2888 goto free_qmap; 2889 2890 ice_for_each_q_vector(vsi, v_idx) { 2891 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2892 struct ice_tx_ring *ring; 2893 2894 ice_for_each_tx_ring(ring, q_vector->tx) 2895 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2896 break; 2897 2898 /* restore the value of last node prior to XDP setup */ 2899 q_vector->tx.tx_ring = ring; 2900 } 2901 2902 free_qmap: 2903 mutex_lock(&pf->avail_q_mutex); 2904 ice_for_each_xdp_txq(vsi, i) { 2905 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2906 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2907 } 2908 mutex_unlock(&pf->avail_q_mutex); 2909 2910 ice_for_each_xdp_txq(vsi, i) 2911 if (vsi->xdp_rings[i]) { 2912 if (vsi->xdp_rings[i]->desc) { 2913 synchronize_rcu(); 2914 ice_free_tx_ring(vsi->xdp_rings[i]); 2915 } 2916 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2917 vsi->xdp_rings[i]->ring_stats = NULL; 2918 kfree_rcu(vsi->xdp_rings[i], rcu); 2919 vsi->xdp_rings[i] = NULL; 2920 } 2921 2922 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2923 vsi->xdp_rings = NULL; 2924 2925 if (static_key_enabled(&ice_xdp_locking_key)) 2926 static_branch_dec(&ice_xdp_locking_key); 2927 2928 if (cfg_type == ICE_XDP_CFG_PART) 2929 return 0; 2930 2931 ice_vsi_assign_bpf_prog(vsi, NULL); 2932 2933 /* notify Tx scheduler that we destroyed XDP queues and bring 2934 * back the old number of child nodes 2935 */ 2936 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2937 max_txqs[i] = vsi->num_txq; 2938 2939 /* change number of XDP Tx queues to 0 */ 2940 vsi->num_xdp_txq = 0; 2941 2942 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2943 max_txqs); 2944 } 2945 2946 /** 2947 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2948 * @vsi: VSI to schedule napi on 2949 */ 2950 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2951 { 2952 int i; 2953 2954 ice_for_each_rxq(vsi, i) { 2955 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2956 2957 if (READ_ONCE(rx_ring->xsk_pool)) 2958 napi_schedule(&rx_ring->q_vector->napi); 2959 } 2960 } 2961 2962 /** 2963 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2964 * @vsi: VSI to determine the count of XDP Tx qs 2965 * 2966 * returns 0 if Tx qs count is higher than at least half of CPU count, 2967 * -ENOMEM otherwise 2968 */ 2969 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2970 { 2971 u16 avail = ice_get_avail_txq_count(vsi->back); 2972 u16 cpus = num_possible_cpus(); 2973 2974 if (avail < cpus / 2) 2975 return -ENOMEM; 2976 2977 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2978 2979 if (vsi->num_xdp_txq < cpus) 2980 static_branch_inc(&ice_xdp_locking_key); 2981 2982 return 0; 2983 } 2984 2985 /** 2986 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2987 * @vsi: Pointer to VSI structure 2988 */ 2989 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2990 { 2991 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2992 return ICE_RXBUF_1664; 2993 else 2994 return ICE_RXBUF_3072; 2995 } 2996 2997 /** 2998 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2999 * @vsi: VSI to setup XDP for 3000 * @prog: XDP program 3001 * @extack: netlink extended ack 3002 */ 3003 static int 3004 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3005 struct netlink_ext_ack *extack) 3006 { 3007 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3008 int ret = 0, xdp_ring_err = 0; 3009 bool if_running; 3010 3011 if (prog && !prog->aux->xdp_has_frags) { 3012 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3013 NL_SET_ERR_MSG_MOD(extack, 3014 "MTU is too large for linear frames and XDP prog does not support frags"); 3015 return -EOPNOTSUPP; 3016 } 3017 } 3018 3019 /* hot swap progs and avoid toggling link */ 3020 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3021 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3022 ice_vsi_assign_bpf_prog(vsi, prog); 3023 return 0; 3024 } 3025 3026 if_running = netif_running(vsi->netdev) && 3027 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3028 3029 /* need to stop netdev while setting up the program for Rx rings */ 3030 if (if_running) { 3031 ret = ice_down(vsi); 3032 if (ret) { 3033 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3034 return ret; 3035 } 3036 } 3037 3038 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3039 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3040 if (xdp_ring_err) { 3041 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3042 } else { 3043 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3044 ICE_XDP_CFG_FULL); 3045 if (xdp_ring_err) 3046 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3047 } 3048 xdp_features_set_redirect_target(vsi->netdev, true); 3049 /* reallocate Rx queues that are used for zero-copy */ 3050 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3053 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3054 xdp_features_clear_redirect_target(vsi->netdev); 3055 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3056 if (xdp_ring_err) 3057 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3058 /* reallocate Rx queues that were used for zero-copy */ 3059 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3060 if (xdp_ring_err) 3061 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3062 } 3063 3064 if (if_running) 3065 ret = ice_up(vsi); 3066 3067 if (!ret && prog) 3068 ice_vsi_rx_napi_schedule(vsi); 3069 3070 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3071 } 3072 3073 /** 3074 * ice_xdp_safe_mode - XDP handler for safe mode 3075 * @dev: netdevice 3076 * @xdp: XDP command 3077 */ 3078 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3079 struct netdev_bpf *xdp) 3080 { 3081 NL_SET_ERR_MSG_MOD(xdp->extack, 3082 "Please provide working DDP firmware package in order to use XDP\n" 3083 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3084 return -EOPNOTSUPP; 3085 } 3086 3087 /** 3088 * ice_xdp - implements XDP handler 3089 * @dev: netdevice 3090 * @xdp: XDP command 3091 */ 3092 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3093 { 3094 struct ice_netdev_priv *np = netdev_priv(dev); 3095 struct ice_vsi *vsi = np->vsi; 3096 int ret; 3097 3098 if (vsi->type != ICE_VSI_PF) { 3099 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3100 return -EINVAL; 3101 } 3102 3103 mutex_lock(&vsi->xdp_state_lock); 3104 3105 switch (xdp->command) { 3106 case XDP_SETUP_PROG: 3107 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3108 break; 3109 case XDP_SETUP_XSK_POOL: 3110 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3111 break; 3112 default: 3113 ret = -EINVAL; 3114 } 3115 3116 mutex_unlock(&vsi->xdp_state_lock); 3117 return ret; 3118 } 3119 3120 /** 3121 * ice_ena_misc_vector - enable the non-queue interrupts 3122 * @pf: board private structure 3123 */ 3124 static void ice_ena_misc_vector(struct ice_pf *pf) 3125 { 3126 struct ice_hw *hw = &pf->hw; 3127 u32 pf_intr_start_offset; 3128 u32 val; 3129 3130 /* Disable anti-spoof detection interrupt to prevent spurious event 3131 * interrupts during a function reset. Anti-spoof functionally is 3132 * still supported. 3133 */ 3134 val = rd32(hw, GL_MDCK_TX_TDPU); 3135 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3136 wr32(hw, GL_MDCK_TX_TDPU, val); 3137 3138 /* clear things first */ 3139 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3140 rd32(hw, PFINT_OICR); /* read to clear */ 3141 3142 val = (PFINT_OICR_ECC_ERR_M | 3143 PFINT_OICR_MAL_DETECT_M | 3144 PFINT_OICR_GRST_M | 3145 PFINT_OICR_PCI_EXCEPTION_M | 3146 PFINT_OICR_VFLR_M | 3147 PFINT_OICR_HMC_ERR_M | 3148 PFINT_OICR_PE_PUSH_M | 3149 PFINT_OICR_PE_CRITERR_M); 3150 3151 wr32(hw, PFINT_OICR_ENA, val); 3152 3153 /* SW_ITR_IDX = 0, but don't change INTENA */ 3154 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3155 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3156 3157 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3158 return; 3159 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3160 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3161 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3162 } 3163 3164 /** 3165 * ice_ll_ts_intr - ll_ts interrupt handler 3166 * @irq: interrupt number 3167 * @data: pointer to a q_vector 3168 */ 3169 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3170 { 3171 struct ice_pf *pf = data; 3172 u32 pf_intr_start_offset; 3173 struct ice_ptp_tx *tx; 3174 unsigned long flags; 3175 struct ice_hw *hw; 3176 u32 val; 3177 u8 idx; 3178 3179 hw = &pf->hw; 3180 tx = &pf->ptp.port.tx; 3181 spin_lock_irqsave(&tx->lock, flags); 3182 ice_ptp_complete_tx_single_tstamp(tx); 3183 3184 idx = find_next_bit_wrap(tx->in_use, tx->len, 3185 tx->last_ll_ts_idx_read + 1); 3186 if (idx != tx->len) 3187 ice_ptp_req_tx_single_tstamp(tx, idx); 3188 spin_unlock_irqrestore(&tx->lock, flags); 3189 3190 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3191 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3192 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3193 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3194 val); 3195 3196 return IRQ_HANDLED; 3197 } 3198 3199 /** 3200 * ice_misc_intr - misc interrupt handler 3201 * @irq: interrupt number 3202 * @data: pointer to a q_vector 3203 */ 3204 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3205 { 3206 struct ice_pf *pf = (struct ice_pf *)data; 3207 irqreturn_t ret = IRQ_HANDLED; 3208 struct ice_hw *hw = &pf->hw; 3209 struct device *dev; 3210 u32 oicr, ena_mask; 3211 3212 dev = ice_pf_to_dev(pf); 3213 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3214 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3215 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3216 3217 oicr = rd32(hw, PFINT_OICR); 3218 ena_mask = rd32(hw, PFINT_OICR_ENA); 3219 3220 if (oicr & PFINT_OICR_SWINT_M) { 3221 ena_mask &= ~PFINT_OICR_SWINT_M; 3222 pf->sw_int_count++; 3223 } 3224 3225 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3226 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3227 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3228 } 3229 if (oicr & PFINT_OICR_VFLR_M) { 3230 /* disable any further VFLR event notifications */ 3231 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3232 u32 reg = rd32(hw, PFINT_OICR_ENA); 3233 3234 reg &= ~PFINT_OICR_VFLR_M; 3235 wr32(hw, PFINT_OICR_ENA, reg); 3236 } else { 3237 ena_mask &= ~PFINT_OICR_VFLR_M; 3238 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3239 } 3240 } 3241 3242 if (oicr & PFINT_OICR_GRST_M) { 3243 u32 reset; 3244 3245 /* we have a reset warning */ 3246 ena_mask &= ~PFINT_OICR_GRST_M; 3247 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3248 rd32(hw, GLGEN_RSTAT)); 3249 3250 if (reset == ICE_RESET_CORER) 3251 pf->corer_count++; 3252 else if (reset == ICE_RESET_GLOBR) 3253 pf->globr_count++; 3254 else if (reset == ICE_RESET_EMPR) 3255 pf->empr_count++; 3256 else 3257 dev_dbg(dev, "Invalid reset type %d\n", reset); 3258 3259 /* If a reset cycle isn't already in progress, we set a bit in 3260 * pf->state so that the service task can start a reset/rebuild. 3261 */ 3262 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3263 if (reset == ICE_RESET_CORER) 3264 set_bit(ICE_CORER_RECV, pf->state); 3265 else if (reset == ICE_RESET_GLOBR) 3266 set_bit(ICE_GLOBR_RECV, pf->state); 3267 else 3268 set_bit(ICE_EMPR_RECV, pf->state); 3269 3270 /* There are couple of different bits at play here. 3271 * hw->reset_ongoing indicates whether the hardware is 3272 * in reset. This is set to true when a reset interrupt 3273 * is received and set back to false after the driver 3274 * has determined that the hardware is out of reset. 3275 * 3276 * ICE_RESET_OICR_RECV in pf->state indicates 3277 * that a post reset rebuild is required before the 3278 * driver is operational again. This is set above. 3279 * 3280 * As this is the start of the reset/rebuild cycle, set 3281 * both to indicate that. 3282 */ 3283 hw->reset_ongoing = true; 3284 } 3285 } 3286 3287 if (oicr & PFINT_OICR_TSYN_TX_M) { 3288 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3289 if (ice_pf_state_is_nominal(pf) && 3290 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3291 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3292 unsigned long flags; 3293 u8 idx; 3294 3295 spin_lock_irqsave(&tx->lock, flags); 3296 idx = find_next_bit_wrap(tx->in_use, tx->len, 3297 tx->last_ll_ts_idx_read + 1); 3298 if (idx != tx->len) 3299 ice_ptp_req_tx_single_tstamp(tx, idx); 3300 spin_unlock_irqrestore(&tx->lock, flags); 3301 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3302 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3303 ret = IRQ_WAKE_THREAD; 3304 } 3305 } 3306 3307 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3308 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3309 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3310 3311 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3312 3313 if (ice_pf_src_tmr_owned(pf)) { 3314 /* Save EVENTs from GLTSYN register */ 3315 pf->ptp.ext_ts_irq |= gltsyn_stat & 3316 (GLTSYN_STAT_EVENT0_M | 3317 GLTSYN_STAT_EVENT1_M | 3318 GLTSYN_STAT_EVENT2_M); 3319 3320 ice_ptp_extts_event(pf); 3321 } 3322 } 3323 3324 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3325 if (oicr & ICE_AUX_CRIT_ERR) { 3326 pf->oicr_err_reg |= oicr; 3327 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3328 ena_mask &= ~ICE_AUX_CRIT_ERR; 3329 } 3330 3331 /* Report any remaining unexpected interrupts */ 3332 oicr &= ena_mask; 3333 if (oicr) { 3334 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3335 /* If a critical error is pending there is no choice but to 3336 * reset the device. 3337 */ 3338 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3339 PFINT_OICR_ECC_ERR_M)) { 3340 set_bit(ICE_PFR_REQ, pf->state); 3341 } 3342 } 3343 ice_service_task_schedule(pf); 3344 if (ret == IRQ_HANDLED) 3345 ice_irq_dynamic_ena(hw, NULL, NULL); 3346 3347 return ret; 3348 } 3349 3350 /** 3351 * ice_misc_intr_thread_fn - misc interrupt thread function 3352 * @irq: interrupt number 3353 * @data: pointer to a q_vector 3354 */ 3355 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3356 { 3357 struct ice_pf *pf = data; 3358 struct ice_hw *hw; 3359 3360 hw = &pf->hw; 3361 3362 if (ice_is_reset_in_progress(pf->state)) 3363 goto skip_irq; 3364 3365 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3366 /* Process outstanding Tx timestamps. If there is more work, 3367 * re-arm the interrupt to trigger again. 3368 */ 3369 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3370 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3371 ice_flush(hw); 3372 } 3373 } 3374 3375 skip_irq: 3376 ice_irq_dynamic_ena(hw, NULL, NULL); 3377 3378 return IRQ_HANDLED; 3379 } 3380 3381 /** 3382 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3383 * @hw: pointer to HW structure 3384 */ 3385 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3386 { 3387 /* disable Admin queue Interrupt causes */ 3388 wr32(hw, PFINT_FW_CTL, 3389 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3390 3391 /* disable Mailbox queue Interrupt causes */ 3392 wr32(hw, PFINT_MBX_CTL, 3393 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3394 3395 wr32(hw, PFINT_SB_CTL, 3396 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3397 3398 /* disable Control queue Interrupt causes */ 3399 wr32(hw, PFINT_OICR_CTL, 3400 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3401 3402 ice_flush(hw); 3403 } 3404 3405 /** 3406 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3407 * @pf: board private structure 3408 */ 3409 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3410 { 3411 int irq_num = pf->ll_ts_irq.virq; 3412 3413 synchronize_irq(irq_num); 3414 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3415 3416 ice_free_irq(pf, pf->ll_ts_irq); 3417 } 3418 3419 /** 3420 * ice_free_irq_msix_misc - Unroll misc vector setup 3421 * @pf: board private structure 3422 */ 3423 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3424 { 3425 int misc_irq_num = pf->oicr_irq.virq; 3426 struct ice_hw *hw = &pf->hw; 3427 3428 ice_dis_ctrlq_interrupts(hw); 3429 3430 /* disable OICR interrupt */ 3431 wr32(hw, PFINT_OICR_ENA, 0); 3432 ice_flush(hw); 3433 3434 synchronize_irq(misc_irq_num); 3435 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3436 3437 ice_free_irq(pf, pf->oicr_irq); 3438 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3439 ice_free_irq_msix_ll_ts(pf); 3440 } 3441 3442 /** 3443 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3444 * @hw: pointer to HW structure 3445 * @reg_idx: HW vector index to associate the control queue interrupts with 3446 */ 3447 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3448 { 3449 u32 val; 3450 3451 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3452 PFINT_OICR_CTL_CAUSE_ENA_M); 3453 wr32(hw, PFINT_OICR_CTL, val); 3454 3455 /* enable Admin queue Interrupt causes */ 3456 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3457 PFINT_FW_CTL_CAUSE_ENA_M); 3458 wr32(hw, PFINT_FW_CTL, val); 3459 3460 /* enable Mailbox queue Interrupt causes */ 3461 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3462 PFINT_MBX_CTL_CAUSE_ENA_M); 3463 wr32(hw, PFINT_MBX_CTL, val); 3464 3465 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3466 /* enable Sideband queue Interrupt causes */ 3467 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3468 PFINT_SB_CTL_CAUSE_ENA_M); 3469 wr32(hw, PFINT_SB_CTL, val); 3470 } 3471 3472 ice_flush(hw); 3473 } 3474 3475 /** 3476 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3477 * @pf: board private structure 3478 * 3479 * This sets up the handler for MSIX 0, which is used to manage the 3480 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3481 * when in MSI or Legacy interrupt mode. 3482 */ 3483 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3484 { 3485 struct device *dev = ice_pf_to_dev(pf); 3486 struct ice_hw *hw = &pf->hw; 3487 u32 pf_intr_start_offset; 3488 struct msi_map irq; 3489 int err = 0; 3490 3491 if (!pf->int_name[0]) 3492 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3493 dev_driver_string(dev), dev_name(dev)); 3494 3495 if (!pf->int_name_ll_ts[0]) 3496 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3497 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3498 /* Do not request IRQ but do enable OICR interrupt since settings are 3499 * lost during reset. Note that this function is called only during 3500 * rebuild path and not while reset is in progress. 3501 */ 3502 if (ice_is_reset_in_progress(pf->state)) 3503 goto skip_req_irq; 3504 3505 /* reserve one vector in irq_tracker for misc interrupts */ 3506 irq = ice_alloc_irq(pf, false); 3507 if (irq.index < 0) 3508 return irq.index; 3509 3510 pf->oicr_irq = irq; 3511 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3512 ice_misc_intr_thread_fn, 0, 3513 pf->int_name, pf); 3514 if (err) { 3515 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3516 pf->int_name, err); 3517 ice_free_irq(pf, pf->oicr_irq); 3518 return err; 3519 } 3520 3521 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3522 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3523 goto skip_req_irq; 3524 3525 irq = ice_alloc_irq(pf, false); 3526 if (irq.index < 0) 3527 return irq.index; 3528 3529 pf->ll_ts_irq = irq; 3530 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3531 pf->int_name_ll_ts, pf); 3532 if (err) { 3533 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3534 pf->int_name_ll_ts, err); 3535 ice_free_irq(pf, pf->ll_ts_irq); 3536 return err; 3537 } 3538 3539 skip_req_irq: 3540 ice_ena_misc_vector(pf); 3541 3542 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3543 /* This enables LL TS interrupt */ 3544 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3545 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3546 wr32(hw, PFINT_SB_CTL, 3547 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3548 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3549 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3550 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3551 3552 ice_flush(hw); 3553 ice_irq_dynamic_ena(hw, NULL, NULL); 3554 3555 return 0; 3556 } 3557 3558 /** 3559 * ice_napi_add - register NAPI handler for the VSI 3560 * @vsi: VSI for which NAPI handler is to be registered 3561 * 3562 * This function is only called in the driver's load path. Registering the NAPI 3563 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3564 * reset/rebuild, etc.) 3565 */ 3566 static void ice_napi_add(struct ice_vsi *vsi) 3567 { 3568 int v_idx; 3569 3570 if (!vsi->netdev) 3571 return; 3572 3573 ice_for_each_q_vector(vsi, v_idx) 3574 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3575 ice_napi_poll); 3576 } 3577 3578 /** 3579 * ice_set_ops - set netdev and ethtools ops for the given netdev 3580 * @vsi: the VSI associated with the new netdev 3581 */ 3582 static void ice_set_ops(struct ice_vsi *vsi) 3583 { 3584 struct net_device *netdev = vsi->netdev; 3585 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3586 3587 if (ice_is_safe_mode(pf)) { 3588 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3589 ice_set_ethtool_safe_mode_ops(netdev); 3590 return; 3591 } 3592 3593 netdev->netdev_ops = &ice_netdev_ops; 3594 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3595 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3596 ice_set_ethtool_ops(netdev); 3597 3598 if (vsi->type != ICE_VSI_PF) 3599 return; 3600 3601 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3602 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3603 NETDEV_XDP_ACT_RX_SG; 3604 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3605 } 3606 3607 /** 3608 * ice_set_netdev_features - set features for the given netdev 3609 * @netdev: netdev instance 3610 */ 3611 static void ice_set_netdev_features(struct net_device *netdev) 3612 { 3613 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3614 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3615 netdev_features_t csumo_features; 3616 netdev_features_t vlano_features; 3617 netdev_features_t dflt_features; 3618 netdev_features_t tso_features; 3619 3620 if (ice_is_safe_mode(pf)) { 3621 /* safe mode */ 3622 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3623 netdev->hw_features = netdev->features; 3624 return; 3625 } 3626 3627 dflt_features = NETIF_F_SG | 3628 NETIF_F_HIGHDMA | 3629 NETIF_F_NTUPLE | 3630 NETIF_F_RXHASH; 3631 3632 csumo_features = NETIF_F_RXCSUM | 3633 NETIF_F_IP_CSUM | 3634 NETIF_F_SCTP_CRC | 3635 NETIF_F_IPV6_CSUM; 3636 3637 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3638 NETIF_F_HW_VLAN_CTAG_TX | 3639 NETIF_F_HW_VLAN_CTAG_RX; 3640 3641 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3642 if (is_dvm_ena) 3643 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3644 3645 tso_features = NETIF_F_TSO | 3646 NETIF_F_TSO_ECN | 3647 NETIF_F_TSO6 | 3648 NETIF_F_GSO_GRE | 3649 NETIF_F_GSO_UDP_TUNNEL | 3650 NETIF_F_GSO_GRE_CSUM | 3651 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3652 NETIF_F_GSO_PARTIAL | 3653 NETIF_F_GSO_IPXIP4 | 3654 NETIF_F_GSO_IPXIP6 | 3655 NETIF_F_GSO_UDP_L4; 3656 3657 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3658 NETIF_F_GSO_GRE_CSUM; 3659 /* set features that user can change */ 3660 netdev->hw_features = dflt_features | csumo_features | 3661 vlano_features | tso_features; 3662 3663 /* add support for HW_CSUM on packets with MPLS header */ 3664 netdev->mpls_features = NETIF_F_HW_CSUM | 3665 NETIF_F_TSO | 3666 NETIF_F_TSO6; 3667 3668 /* enable features */ 3669 netdev->features |= netdev->hw_features; 3670 3671 netdev->hw_features |= NETIF_F_HW_TC; 3672 netdev->hw_features |= NETIF_F_LOOPBACK; 3673 3674 /* encap and VLAN devices inherit default, csumo and tso features */ 3675 netdev->hw_enc_features |= dflt_features | csumo_features | 3676 tso_features; 3677 netdev->vlan_features |= dflt_features | csumo_features | 3678 tso_features; 3679 3680 /* advertise support but don't enable by default since only one type of 3681 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3682 * type turns on the other has to be turned off. This is enforced by the 3683 * ice_fix_features() ndo callback. 3684 */ 3685 if (is_dvm_ena) 3686 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3687 NETIF_F_HW_VLAN_STAG_TX; 3688 3689 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3690 * be changed at runtime 3691 */ 3692 netdev->hw_features |= NETIF_F_RXFCS; 3693 3694 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3695 } 3696 3697 /** 3698 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3699 * @lut: Lookup table 3700 * @rss_table_size: Lookup table size 3701 * @rss_size: Range of queue number for hashing 3702 */ 3703 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3704 { 3705 u16 i; 3706 3707 for (i = 0; i < rss_table_size; i++) 3708 lut[i] = i % rss_size; 3709 } 3710 3711 /** 3712 * ice_pf_vsi_setup - Set up a PF VSI 3713 * @pf: board private structure 3714 * @pi: pointer to the port_info instance 3715 * 3716 * Returns pointer to the successfully allocated VSI software struct 3717 * on success, otherwise returns NULL on failure. 3718 */ 3719 static struct ice_vsi * 3720 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3721 { 3722 struct ice_vsi_cfg_params params = {}; 3723 3724 params.type = ICE_VSI_PF; 3725 params.port_info = pi; 3726 params.flags = ICE_VSI_FLAG_INIT; 3727 3728 return ice_vsi_setup(pf, ¶ms); 3729 } 3730 3731 static struct ice_vsi * 3732 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3733 struct ice_channel *ch) 3734 { 3735 struct ice_vsi_cfg_params params = {}; 3736 3737 params.type = ICE_VSI_CHNL; 3738 params.port_info = pi; 3739 params.ch = ch; 3740 params.flags = ICE_VSI_FLAG_INIT; 3741 3742 return ice_vsi_setup(pf, ¶ms); 3743 } 3744 3745 /** 3746 * ice_ctrl_vsi_setup - Set up a control VSI 3747 * @pf: board private structure 3748 * @pi: pointer to the port_info instance 3749 * 3750 * Returns pointer to the successfully allocated VSI software struct 3751 * on success, otherwise returns NULL on failure. 3752 */ 3753 static struct ice_vsi * 3754 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3755 { 3756 struct ice_vsi_cfg_params params = {}; 3757 3758 params.type = ICE_VSI_CTRL; 3759 params.port_info = pi; 3760 params.flags = ICE_VSI_FLAG_INIT; 3761 3762 return ice_vsi_setup(pf, ¶ms); 3763 } 3764 3765 /** 3766 * ice_lb_vsi_setup - Set up a loopback VSI 3767 * @pf: board private structure 3768 * @pi: pointer to the port_info instance 3769 * 3770 * Returns pointer to the successfully allocated VSI software struct 3771 * on success, otherwise returns NULL on failure. 3772 */ 3773 struct ice_vsi * 3774 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3775 { 3776 struct ice_vsi_cfg_params params = {}; 3777 3778 params.type = ICE_VSI_LB; 3779 params.port_info = pi; 3780 params.flags = ICE_VSI_FLAG_INIT; 3781 3782 return ice_vsi_setup(pf, ¶ms); 3783 } 3784 3785 /** 3786 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3787 * @netdev: network interface to be adjusted 3788 * @proto: VLAN TPID 3789 * @vid: VLAN ID to be added 3790 * 3791 * net_device_ops implementation for adding VLAN IDs 3792 */ 3793 static int 3794 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3795 { 3796 struct ice_netdev_priv *np = netdev_priv(netdev); 3797 struct ice_vsi_vlan_ops *vlan_ops; 3798 struct ice_vsi *vsi = np->vsi; 3799 struct ice_vlan vlan; 3800 int ret; 3801 3802 /* VLAN 0 is added by default during load/reset */ 3803 if (!vid) 3804 return 0; 3805 3806 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3807 usleep_range(1000, 2000); 3808 3809 /* Add multicast promisc rule for the VLAN ID to be added if 3810 * all-multicast is currently enabled. 3811 */ 3812 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3813 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3814 ICE_MCAST_VLAN_PROMISC_BITS, 3815 vid); 3816 if (ret) 3817 goto finish; 3818 } 3819 3820 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3821 3822 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3823 * packets aren't pruned by the device's internal switch on Rx 3824 */ 3825 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3826 ret = vlan_ops->add_vlan(vsi, &vlan); 3827 if (ret) 3828 goto finish; 3829 3830 /* If all-multicast is currently enabled and this VLAN ID is only one 3831 * besides VLAN-0 we have to update look-up type of multicast promisc 3832 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3833 */ 3834 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3835 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3836 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3837 ICE_MCAST_PROMISC_BITS, 0); 3838 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3839 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3840 } 3841 3842 finish: 3843 clear_bit(ICE_CFG_BUSY, vsi->state); 3844 3845 return ret; 3846 } 3847 3848 /** 3849 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3850 * @netdev: network interface to be adjusted 3851 * @proto: VLAN TPID 3852 * @vid: VLAN ID to be removed 3853 * 3854 * net_device_ops implementation for removing VLAN IDs 3855 */ 3856 static int 3857 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3858 { 3859 struct ice_netdev_priv *np = netdev_priv(netdev); 3860 struct ice_vsi_vlan_ops *vlan_ops; 3861 struct ice_vsi *vsi = np->vsi; 3862 struct ice_vlan vlan; 3863 int ret; 3864 3865 /* don't allow removal of VLAN 0 */ 3866 if (!vid) 3867 return 0; 3868 3869 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3870 usleep_range(1000, 2000); 3871 3872 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3873 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3874 if (ret) { 3875 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3876 vsi->vsi_num); 3877 vsi->current_netdev_flags |= IFF_ALLMULTI; 3878 } 3879 3880 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3881 3882 /* Make sure VLAN delete is successful before updating VLAN 3883 * information 3884 */ 3885 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3886 ret = vlan_ops->del_vlan(vsi, &vlan); 3887 if (ret) 3888 goto finish; 3889 3890 /* Remove multicast promisc rule for the removed VLAN ID if 3891 * all-multicast is enabled. 3892 */ 3893 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3894 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3895 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3896 3897 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3898 /* Update look-up type of multicast promisc rule for VLAN 0 3899 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3900 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3901 */ 3902 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3903 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3904 ICE_MCAST_VLAN_PROMISC_BITS, 3905 0); 3906 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3907 ICE_MCAST_PROMISC_BITS, 0); 3908 } 3909 } 3910 3911 finish: 3912 clear_bit(ICE_CFG_BUSY, vsi->state); 3913 3914 return ret; 3915 } 3916 3917 /** 3918 * ice_rep_indr_tc_block_unbind 3919 * @cb_priv: indirection block private data 3920 */ 3921 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3922 { 3923 struct ice_indr_block_priv *indr_priv = cb_priv; 3924 3925 list_del(&indr_priv->list); 3926 kfree(indr_priv); 3927 } 3928 3929 /** 3930 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3931 * @vsi: VSI struct which has the netdev 3932 */ 3933 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3934 { 3935 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3936 3937 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3938 ice_rep_indr_tc_block_unbind); 3939 } 3940 3941 /** 3942 * ice_tc_indir_block_register - Register TC indirect block notifications 3943 * @vsi: VSI struct which has the netdev 3944 * 3945 * Returns 0 on success, negative value on failure 3946 */ 3947 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3948 { 3949 struct ice_netdev_priv *np; 3950 3951 if (!vsi || !vsi->netdev) 3952 return -EINVAL; 3953 3954 np = netdev_priv(vsi->netdev); 3955 3956 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3957 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3958 } 3959 3960 /** 3961 * ice_get_avail_q_count - Get count of queues in use 3962 * @pf_qmap: bitmap to get queue use count from 3963 * @lock: pointer to a mutex that protects access to pf_qmap 3964 * @size: size of the bitmap 3965 */ 3966 static u16 3967 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3968 { 3969 unsigned long bit; 3970 u16 count = 0; 3971 3972 mutex_lock(lock); 3973 for_each_clear_bit(bit, pf_qmap, size) 3974 count++; 3975 mutex_unlock(lock); 3976 3977 return count; 3978 } 3979 3980 /** 3981 * ice_get_avail_txq_count - Get count of Tx queues in use 3982 * @pf: pointer to an ice_pf instance 3983 */ 3984 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3985 { 3986 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3987 pf->max_pf_txqs); 3988 } 3989 3990 /** 3991 * ice_get_avail_rxq_count - Get count of Rx queues in use 3992 * @pf: pointer to an ice_pf instance 3993 */ 3994 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3995 { 3996 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3997 pf->max_pf_rxqs); 3998 } 3999 4000 /** 4001 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 4002 * @pf: board private structure to initialize 4003 */ 4004 static void ice_deinit_pf(struct ice_pf *pf) 4005 { 4006 ice_service_task_stop(pf); 4007 mutex_destroy(&pf->lag_mutex); 4008 mutex_destroy(&pf->adev_mutex); 4009 mutex_destroy(&pf->sw_mutex); 4010 mutex_destroy(&pf->tc_mutex); 4011 mutex_destroy(&pf->avail_q_mutex); 4012 mutex_destroy(&pf->vfs.table_lock); 4013 4014 if (pf->avail_txqs) { 4015 bitmap_free(pf->avail_txqs); 4016 pf->avail_txqs = NULL; 4017 } 4018 4019 if (pf->avail_rxqs) { 4020 bitmap_free(pf->avail_rxqs); 4021 pf->avail_rxqs = NULL; 4022 } 4023 4024 if (pf->ptp.clock) 4025 ptp_clock_unregister(pf->ptp.clock); 4026 } 4027 4028 /** 4029 * ice_set_pf_caps - set PFs capability flags 4030 * @pf: pointer to the PF instance 4031 */ 4032 static void ice_set_pf_caps(struct ice_pf *pf) 4033 { 4034 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4035 4036 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4037 if (func_caps->common_cap.rdma) 4038 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4039 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4040 if (func_caps->common_cap.dcb) 4041 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4042 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4043 if (func_caps->common_cap.sr_iov_1_1) { 4044 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4045 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4046 ICE_MAX_SRIOV_VFS); 4047 } 4048 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4049 if (func_caps->common_cap.rss_table_size) 4050 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4051 4052 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4053 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4054 u16 unused; 4055 4056 /* ctrl_vsi_idx will be set to a valid value when flow director 4057 * is setup by ice_init_fdir 4058 */ 4059 pf->ctrl_vsi_idx = ICE_NO_VSI; 4060 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4061 /* force guaranteed filter pool for PF */ 4062 ice_alloc_fd_guar_item(&pf->hw, &unused, 4063 func_caps->fd_fltr_guar); 4064 /* force shared filter pool for PF */ 4065 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4066 func_caps->fd_fltr_best_effort); 4067 } 4068 4069 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4070 if (func_caps->common_cap.ieee_1588 && 4071 !(pf->hw.mac_type == ICE_MAC_E830)) 4072 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4073 4074 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4075 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4076 } 4077 4078 /** 4079 * ice_init_pf - Initialize general software structures (struct ice_pf) 4080 * @pf: board private structure to initialize 4081 */ 4082 static int ice_init_pf(struct ice_pf *pf) 4083 { 4084 ice_set_pf_caps(pf); 4085 4086 mutex_init(&pf->sw_mutex); 4087 mutex_init(&pf->tc_mutex); 4088 mutex_init(&pf->adev_mutex); 4089 mutex_init(&pf->lag_mutex); 4090 4091 INIT_HLIST_HEAD(&pf->aq_wait_list); 4092 spin_lock_init(&pf->aq_wait_lock); 4093 init_waitqueue_head(&pf->aq_wait_queue); 4094 4095 init_waitqueue_head(&pf->reset_wait_queue); 4096 4097 /* setup service timer and periodic service task */ 4098 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4099 pf->serv_tmr_period = HZ; 4100 INIT_WORK(&pf->serv_task, ice_service_task); 4101 clear_bit(ICE_SERVICE_SCHED, pf->state); 4102 4103 mutex_init(&pf->avail_q_mutex); 4104 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4105 if (!pf->avail_txqs) 4106 return -ENOMEM; 4107 4108 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4109 if (!pf->avail_rxqs) { 4110 bitmap_free(pf->avail_txqs); 4111 pf->avail_txqs = NULL; 4112 return -ENOMEM; 4113 } 4114 4115 mutex_init(&pf->vfs.table_lock); 4116 hash_init(pf->vfs.table); 4117 ice_mbx_init_snapshot(&pf->hw); 4118 4119 return 0; 4120 } 4121 4122 /** 4123 * ice_is_wol_supported - check if WoL is supported 4124 * @hw: pointer to hardware info 4125 * 4126 * Check if WoL is supported based on the HW configuration. 4127 * Returns true if NVM supports and enables WoL for this port, false otherwise 4128 */ 4129 bool ice_is_wol_supported(struct ice_hw *hw) 4130 { 4131 u16 wol_ctrl; 4132 4133 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4134 * word) indicates WoL is not supported on the corresponding PF ID. 4135 */ 4136 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4137 return false; 4138 4139 return !(BIT(hw->port_info->lport) & wol_ctrl); 4140 } 4141 4142 /** 4143 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4144 * @vsi: VSI being changed 4145 * @new_rx: new number of Rx queues 4146 * @new_tx: new number of Tx queues 4147 * @locked: is adev device_lock held 4148 * 4149 * Only change the number of queues if new_tx, or new_rx is non-0. 4150 * 4151 * Returns 0 on success. 4152 */ 4153 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4154 { 4155 struct ice_pf *pf = vsi->back; 4156 int i, err = 0, timeout = 50; 4157 4158 if (!new_rx && !new_tx) 4159 return -EINVAL; 4160 4161 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4162 timeout--; 4163 if (!timeout) 4164 return -EBUSY; 4165 usleep_range(1000, 2000); 4166 } 4167 4168 if (new_tx) 4169 vsi->req_txq = (u16)new_tx; 4170 if (new_rx) 4171 vsi->req_rxq = (u16)new_rx; 4172 4173 /* set for the next time the netdev is started */ 4174 if (!netif_running(vsi->netdev)) { 4175 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4176 if (err) 4177 goto rebuild_err; 4178 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4179 goto done; 4180 } 4181 4182 ice_vsi_close(vsi); 4183 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4184 if (err) 4185 goto rebuild_err; 4186 4187 ice_for_each_traffic_class(i) { 4188 if (vsi->tc_cfg.ena_tc & BIT(i)) 4189 netdev_set_tc_queue(vsi->netdev, 4190 vsi->tc_cfg.tc_info[i].netdev_tc, 4191 vsi->tc_cfg.tc_info[i].qcount_tx, 4192 vsi->tc_cfg.tc_info[i].qoffset); 4193 } 4194 ice_pf_dcb_recfg(pf, locked); 4195 ice_vsi_open(vsi); 4196 goto done; 4197 4198 rebuild_err: 4199 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4200 err); 4201 done: 4202 clear_bit(ICE_CFG_BUSY, pf->state); 4203 return err; 4204 } 4205 4206 /** 4207 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4208 * @pf: PF to configure 4209 * 4210 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4211 * VSI can still Tx/Rx VLAN tagged packets. 4212 */ 4213 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4214 { 4215 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4216 struct ice_vsi_ctx *ctxt; 4217 struct ice_hw *hw; 4218 int status; 4219 4220 if (!vsi) 4221 return; 4222 4223 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4224 if (!ctxt) 4225 return; 4226 4227 hw = &pf->hw; 4228 ctxt->info = vsi->info; 4229 4230 ctxt->info.valid_sections = 4231 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4232 ICE_AQ_VSI_PROP_SECURITY_VALID | 4233 ICE_AQ_VSI_PROP_SW_VALID); 4234 4235 /* disable VLAN anti-spoof */ 4236 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4237 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4238 4239 /* disable VLAN pruning and keep all other settings */ 4240 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4241 4242 /* allow all VLANs on Tx and don't strip on Rx */ 4243 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4244 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4245 4246 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4247 if (status) { 4248 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4249 status, ice_aq_str(hw->adminq.sq_last_status)); 4250 } else { 4251 vsi->info.sec_flags = ctxt->info.sec_flags; 4252 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4253 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4254 } 4255 4256 kfree(ctxt); 4257 } 4258 4259 /** 4260 * ice_log_pkg_init - log result of DDP package load 4261 * @hw: pointer to hardware info 4262 * @state: state of package load 4263 */ 4264 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4265 { 4266 struct ice_pf *pf = hw->back; 4267 struct device *dev; 4268 4269 dev = ice_pf_to_dev(pf); 4270 4271 switch (state) { 4272 case ICE_DDP_PKG_SUCCESS: 4273 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4274 hw->active_pkg_name, 4275 hw->active_pkg_ver.major, 4276 hw->active_pkg_ver.minor, 4277 hw->active_pkg_ver.update, 4278 hw->active_pkg_ver.draft); 4279 break; 4280 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4281 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4282 hw->active_pkg_name, 4283 hw->active_pkg_ver.major, 4284 hw->active_pkg_ver.minor, 4285 hw->active_pkg_ver.update, 4286 hw->active_pkg_ver.draft); 4287 break; 4288 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4289 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4290 hw->active_pkg_name, 4291 hw->active_pkg_ver.major, 4292 hw->active_pkg_ver.minor, 4293 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4294 break; 4295 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4296 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4297 hw->active_pkg_name, 4298 hw->active_pkg_ver.major, 4299 hw->active_pkg_ver.minor, 4300 hw->active_pkg_ver.update, 4301 hw->active_pkg_ver.draft, 4302 hw->pkg_name, 4303 hw->pkg_ver.major, 4304 hw->pkg_ver.minor, 4305 hw->pkg_ver.update, 4306 hw->pkg_ver.draft); 4307 break; 4308 case ICE_DDP_PKG_FW_MISMATCH: 4309 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4310 break; 4311 case ICE_DDP_PKG_INVALID_FILE: 4312 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4313 break; 4314 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4315 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4316 break; 4317 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4318 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4319 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4320 break; 4321 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4322 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4323 break; 4324 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4325 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4326 break; 4327 case ICE_DDP_PKG_LOAD_ERROR: 4328 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4329 /* poll for reset to complete */ 4330 if (ice_check_reset(hw)) 4331 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4332 break; 4333 case ICE_DDP_PKG_ERR: 4334 default: 4335 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4336 break; 4337 } 4338 } 4339 4340 /** 4341 * ice_load_pkg - load/reload the DDP Package file 4342 * @firmware: firmware structure when firmware requested or NULL for reload 4343 * @pf: pointer to the PF instance 4344 * 4345 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4346 * initialize HW tables. 4347 */ 4348 static void 4349 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4350 { 4351 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4352 struct device *dev = ice_pf_to_dev(pf); 4353 struct ice_hw *hw = &pf->hw; 4354 4355 /* Load DDP Package */ 4356 if (firmware && !hw->pkg_copy) { 4357 state = ice_copy_and_init_pkg(hw, firmware->data, 4358 firmware->size); 4359 ice_log_pkg_init(hw, state); 4360 } else if (!firmware && hw->pkg_copy) { 4361 /* Reload package during rebuild after CORER/GLOBR reset */ 4362 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4363 ice_log_pkg_init(hw, state); 4364 } else { 4365 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4366 } 4367 4368 if (!ice_is_init_pkg_successful(state)) { 4369 /* Safe Mode */ 4370 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4371 return; 4372 } 4373 4374 /* Successful download package is the precondition for advanced 4375 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4376 */ 4377 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4378 } 4379 4380 /** 4381 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4382 * @pf: pointer to the PF structure 4383 * 4384 * There is no error returned here because the driver should be able to handle 4385 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4386 * specifically with Tx. 4387 */ 4388 static void ice_verify_cacheline_size(struct ice_pf *pf) 4389 { 4390 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4391 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4392 ICE_CACHE_LINE_BYTES); 4393 } 4394 4395 /** 4396 * ice_send_version - update firmware with driver version 4397 * @pf: PF struct 4398 * 4399 * Returns 0 on success, else error code 4400 */ 4401 static int ice_send_version(struct ice_pf *pf) 4402 { 4403 struct ice_driver_ver dv; 4404 4405 dv.major_ver = 0xff; 4406 dv.minor_ver = 0xff; 4407 dv.build_ver = 0xff; 4408 dv.subbuild_ver = 0; 4409 strscpy((char *)dv.driver_string, UTS_RELEASE, 4410 sizeof(dv.driver_string)); 4411 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4412 } 4413 4414 /** 4415 * ice_init_fdir - Initialize flow director VSI and configuration 4416 * @pf: pointer to the PF instance 4417 * 4418 * returns 0 on success, negative on error 4419 */ 4420 static int ice_init_fdir(struct ice_pf *pf) 4421 { 4422 struct device *dev = ice_pf_to_dev(pf); 4423 struct ice_vsi *ctrl_vsi; 4424 int err; 4425 4426 /* Side Band Flow Director needs to have a control VSI. 4427 * Allocate it and store it in the PF. 4428 */ 4429 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4430 if (!ctrl_vsi) { 4431 dev_dbg(dev, "could not create control VSI\n"); 4432 return -ENOMEM; 4433 } 4434 4435 err = ice_vsi_open_ctrl(ctrl_vsi); 4436 if (err) { 4437 dev_dbg(dev, "could not open control VSI\n"); 4438 goto err_vsi_open; 4439 } 4440 4441 mutex_init(&pf->hw.fdir_fltr_lock); 4442 4443 err = ice_fdir_create_dflt_rules(pf); 4444 if (err) 4445 goto err_fdir_rule; 4446 4447 return 0; 4448 4449 err_fdir_rule: 4450 ice_fdir_release_flows(&pf->hw); 4451 ice_vsi_close(ctrl_vsi); 4452 err_vsi_open: 4453 ice_vsi_release(ctrl_vsi); 4454 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4455 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4456 pf->ctrl_vsi_idx = ICE_NO_VSI; 4457 } 4458 return err; 4459 } 4460 4461 static void ice_deinit_fdir(struct ice_pf *pf) 4462 { 4463 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4464 4465 if (!vsi) 4466 return; 4467 4468 ice_vsi_manage_fdir(vsi, false); 4469 ice_vsi_release(vsi); 4470 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4471 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4472 pf->ctrl_vsi_idx = ICE_NO_VSI; 4473 } 4474 4475 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4476 } 4477 4478 /** 4479 * ice_get_opt_fw_name - return optional firmware file name or NULL 4480 * @pf: pointer to the PF instance 4481 */ 4482 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4483 { 4484 /* Optional firmware name same as default with additional dash 4485 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4486 */ 4487 struct pci_dev *pdev = pf->pdev; 4488 char *opt_fw_filename; 4489 u64 dsn; 4490 4491 /* Determine the name of the optional file using the DSN (two 4492 * dwords following the start of the DSN Capability). 4493 */ 4494 dsn = pci_get_dsn(pdev); 4495 if (!dsn) 4496 return NULL; 4497 4498 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4499 if (!opt_fw_filename) 4500 return NULL; 4501 4502 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4503 ICE_DDP_PKG_PATH, dsn); 4504 4505 return opt_fw_filename; 4506 } 4507 4508 /** 4509 * ice_request_fw - Device initialization routine 4510 * @pf: pointer to the PF instance 4511 * @firmware: double pointer to firmware struct 4512 * 4513 * Return: zero when successful, negative values otherwise. 4514 */ 4515 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4516 { 4517 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4518 struct device *dev = ice_pf_to_dev(pf); 4519 int err = 0; 4520 4521 /* optional device-specific DDP (if present) overrides the default DDP 4522 * package file. kernel logs a debug message if the file doesn't exist, 4523 * and warning messages for other errors. 4524 */ 4525 if (opt_fw_filename) { 4526 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4527 kfree(opt_fw_filename); 4528 if (!err) 4529 return err; 4530 } 4531 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4532 if (err) 4533 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4534 4535 return err; 4536 } 4537 4538 /** 4539 * ice_init_tx_topology - performs Tx topology initialization 4540 * @hw: pointer to the hardware structure 4541 * @firmware: pointer to firmware structure 4542 * 4543 * Return: zero when init was successful, negative values otherwise. 4544 */ 4545 static int 4546 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4547 { 4548 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4549 struct ice_pf *pf = hw->back; 4550 struct device *dev; 4551 u8 *buf_copy; 4552 int err; 4553 4554 dev = ice_pf_to_dev(pf); 4555 /* ice_cfg_tx_topo buf argument is not a constant, 4556 * so we have to make a copy 4557 */ 4558 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4559 4560 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4561 if (!err) { 4562 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4563 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4564 else 4565 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4566 /* if there was a change in topology ice_cfg_tx_topo triggered 4567 * a CORER and we need to re-init hw 4568 */ 4569 ice_deinit_hw(hw); 4570 err = ice_init_hw(hw); 4571 4572 return err; 4573 } else if (err == -EIO) { 4574 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4575 } 4576 4577 return 0; 4578 } 4579 4580 /** 4581 * ice_init_ddp_config - DDP related configuration 4582 * @hw: pointer to the hardware structure 4583 * @pf: pointer to pf structure 4584 * 4585 * This function loads DDP file from the disk, then initializes Tx 4586 * topology. At the end DDP package is loaded on the card. 4587 * 4588 * Return: zero when init was successful, negative values otherwise. 4589 */ 4590 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4591 { 4592 struct device *dev = ice_pf_to_dev(pf); 4593 const struct firmware *firmware = NULL; 4594 int err; 4595 4596 err = ice_request_fw(pf, &firmware); 4597 if (err) { 4598 dev_err(dev, "Fail during requesting FW: %d\n", err); 4599 return err; 4600 } 4601 4602 err = ice_init_tx_topology(hw, firmware); 4603 if (err) { 4604 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4605 err); 4606 release_firmware(firmware); 4607 return err; 4608 } 4609 4610 /* Download firmware to device */ 4611 ice_load_pkg(firmware, pf); 4612 release_firmware(firmware); 4613 4614 return 0; 4615 } 4616 4617 /** 4618 * ice_print_wake_reason - show the wake up cause in the log 4619 * @pf: pointer to the PF struct 4620 */ 4621 static void ice_print_wake_reason(struct ice_pf *pf) 4622 { 4623 u32 wus = pf->wakeup_reason; 4624 const char *wake_str; 4625 4626 /* if no wake event, nothing to print */ 4627 if (!wus) 4628 return; 4629 4630 if (wus & PFPM_WUS_LNKC_M) 4631 wake_str = "Link\n"; 4632 else if (wus & PFPM_WUS_MAG_M) 4633 wake_str = "Magic Packet\n"; 4634 else if (wus & PFPM_WUS_MNG_M) 4635 wake_str = "Management\n"; 4636 else if (wus & PFPM_WUS_FW_RST_WK_M) 4637 wake_str = "Firmware Reset\n"; 4638 else 4639 wake_str = "Unknown\n"; 4640 4641 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4642 } 4643 4644 /** 4645 * ice_pf_fwlog_update_module - update 1 module 4646 * @pf: pointer to the PF struct 4647 * @log_level: log_level to use for the @module 4648 * @module: module to update 4649 */ 4650 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4651 { 4652 struct ice_hw *hw = &pf->hw; 4653 4654 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4655 } 4656 4657 /** 4658 * ice_register_netdev - register netdev 4659 * @vsi: pointer to the VSI struct 4660 */ 4661 static int ice_register_netdev(struct ice_vsi *vsi) 4662 { 4663 int err; 4664 4665 if (!vsi || !vsi->netdev) 4666 return -EIO; 4667 4668 err = register_netdev(vsi->netdev); 4669 if (err) 4670 return err; 4671 4672 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4673 netif_carrier_off(vsi->netdev); 4674 netif_tx_stop_all_queues(vsi->netdev); 4675 4676 return 0; 4677 } 4678 4679 static void ice_unregister_netdev(struct ice_vsi *vsi) 4680 { 4681 if (!vsi || !vsi->netdev) 4682 return; 4683 4684 unregister_netdev(vsi->netdev); 4685 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4686 } 4687 4688 /** 4689 * ice_cfg_netdev - Allocate, configure and register a netdev 4690 * @vsi: the VSI associated with the new netdev 4691 * 4692 * Returns 0 on success, negative value on failure 4693 */ 4694 static int ice_cfg_netdev(struct ice_vsi *vsi) 4695 { 4696 struct ice_netdev_priv *np; 4697 struct net_device *netdev; 4698 u8 mac_addr[ETH_ALEN]; 4699 4700 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4701 vsi->alloc_rxq); 4702 if (!netdev) 4703 return -ENOMEM; 4704 4705 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4706 vsi->netdev = netdev; 4707 np = netdev_priv(netdev); 4708 np->vsi = vsi; 4709 4710 ice_set_netdev_features(netdev); 4711 ice_set_ops(vsi); 4712 4713 if (vsi->type == ICE_VSI_PF) { 4714 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4715 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4716 eth_hw_addr_set(netdev, mac_addr); 4717 } 4718 4719 netdev->priv_flags |= IFF_UNICAST_FLT; 4720 4721 /* Setup netdev TC information */ 4722 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4723 4724 netdev->max_mtu = ICE_MAX_MTU; 4725 4726 return 0; 4727 } 4728 4729 static void ice_decfg_netdev(struct ice_vsi *vsi) 4730 { 4731 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4732 free_netdev(vsi->netdev); 4733 vsi->netdev = NULL; 4734 } 4735 4736 /** 4737 * ice_wait_for_fw - wait for full FW readiness 4738 * @hw: pointer to the hardware structure 4739 * @timeout: milliseconds that can elapse before timing out 4740 */ 4741 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4742 { 4743 int fw_loading; 4744 u32 elapsed = 0; 4745 4746 while (elapsed <= timeout) { 4747 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4748 4749 /* firmware was not yet loaded, we have to wait more */ 4750 if (fw_loading) { 4751 elapsed += 100; 4752 msleep(100); 4753 continue; 4754 } 4755 return 0; 4756 } 4757 4758 return -ETIMEDOUT; 4759 } 4760 4761 int ice_init_dev(struct ice_pf *pf) 4762 { 4763 struct device *dev = ice_pf_to_dev(pf); 4764 struct ice_hw *hw = &pf->hw; 4765 int err; 4766 4767 err = ice_init_hw(hw); 4768 if (err) { 4769 dev_err(dev, "ice_init_hw failed: %d\n", err); 4770 return err; 4771 } 4772 4773 /* Some cards require longer initialization times 4774 * due to necessity of loading FW from an external source. 4775 * This can take even half a minute. 4776 */ 4777 if (ice_is_pf_c827(hw)) { 4778 err = ice_wait_for_fw(hw, 30000); 4779 if (err) { 4780 dev_err(dev, "ice_wait_for_fw timed out"); 4781 return err; 4782 } 4783 } 4784 4785 ice_init_feature_support(pf); 4786 4787 err = ice_init_ddp_config(hw, pf); 4788 if (err) 4789 return err; 4790 4791 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4792 * set in pf->state, which will cause ice_is_safe_mode to return 4793 * true 4794 */ 4795 if (ice_is_safe_mode(pf)) { 4796 /* we already got function/device capabilities but these don't 4797 * reflect what the driver needs to do in safe mode. Instead of 4798 * adding conditional logic everywhere to ignore these 4799 * device/function capabilities, override them. 4800 */ 4801 ice_set_safe_mode_caps(hw); 4802 } 4803 4804 err = ice_init_pf(pf); 4805 if (err) { 4806 dev_err(dev, "ice_init_pf failed: %d\n", err); 4807 goto err_init_pf; 4808 } 4809 4810 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4811 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4812 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4813 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4814 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4815 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4816 pf->hw.tnl.valid_count[TNL_VXLAN]; 4817 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4818 UDP_TUNNEL_TYPE_VXLAN; 4819 } 4820 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4821 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4822 pf->hw.tnl.valid_count[TNL_GENEVE]; 4823 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4824 UDP_TUNNEL_TYPE_GENEVE; 4825 } 4826 4827 err = ice_init_interrupt_scheme(pf); 4828 if (err) { 4829 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4830 err = -EIO; 4831 goto err_init_interrupt_scheme; 4832 } 4833 4834 /* In case of MSIX we are going to setup the misc vector right here 4835 * to handle admin queue events etc. In case of legacy and MSI 4836 * the misc functionality and queue processing is combined in 4837 * the same vector and that gets setup at open. 4838 */ 4839 err = ice_req_irq_msix_misc(pf); 4840 if (err) { 4841 dev_err(dev, "setup of misc vector failed: %d\n", err); 4842 goto err_req_irq_msix_misc; 4843 } 4844 4845 return 0; 4846 4847 err_req_irq_msix_misc: 4848 ice_clear_interrupt_scheme(pf); 4849 err_init_interrupt_scheme: 4850 ice_deinit_pf(pf); 4851 err_init_pf: 4852 ice_deinit_hw(hw); 4853 return err; 4854 } 4855 4856 void ice_deinit_dev(struct ice_pf *pf) 4857 { 4858 ice_free_irq_msix_misc(pf); 4859 ice_deinit_pf(pf); 4860 ice_deinit_hw(&pf->hw); 4861 4862 /* Service task is already stopped, so call reset directly. */ 4863 ice_reset(&pf->hw, ICE_RESET_PFR); 4864 pci_wait_for_pending_transaction(pf->pdev); 4865 ice_clear_interrupt_scheme(pf); 4866 } 4867 4868 static void ice_init_features(struct ice_pf *pf) 4869 { 4870 struct device *dev = ice_pf_to_dev(pf); 4871 4872 if (ice_is_safe_mode(pf)) 4873 return; 4874 4875 /* initialize DDP driven features */ 4876 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4877 ice_ptp_init(pf); 4878 4879 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4880 ice_gnss_init(pf); 4881 4882 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4883 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4884 ice_dpll_init(pf); 4885 4886 /* Note: Flow director init failure is non-fatal to load */ 4887 if (ice_init_fdir(pf)) 4888 dev_err(dev, "could not initialize flow director\n"); 4889 4890 /* Note: DCB init failure is non-fatal to load */ 4891 if (ice_init_pf_dcb(pf, false)) { 4892 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4893 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4894 } else { 4895 ice_cfg_lldp_mib_change(&pf->hw, true); 4896 } 4897 4898 if (ice_init_lag(pf)) 4899 dev_warn(dev, "Failed to init link aggregation support\n"); 4900 4901 ice_hwmon_init(pf); 4902 } 4903 4904 static void ice_deinit_features(struct ice_pf *pf) 4905 { 4906 if (ice_is_safe_mode(pf)) 4907 return; 4908 4909 ice_deinit_lag(pf); 4910 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4911 ice_cfg_lldp_mib_change(&pf->hw, false); 4912 ice_deinit_fdir(pf); 4913 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4914 ice_gnss_exit(pf); 4915 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4916 ice_ptp_release(pf); 4917 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4918 ice_dpll_deinit(pf); 4919 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4920 xa_destroy(&pf->eswitch.reprs); 4921 } 4922 4923 static void ice_init_wakeup(struct ice_pf *pf) 4924 { 4925 /* Save wakeup reason register for later use */ 4926 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4927 4928 /* check for a power management event */ 4929 ice_print_wake_reason(pf); 4930 4931 /* clear wake status, all bits */ 4932 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4933 4934 /* Disable WoL at init, wait for user to enable */ 4935 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4936 } 4937 4938 static int ice_init_link(struct ice_pf *pf) 4939 { 4940 struct device *dev = ice_pf_to_dev(pf); 4941 int err; 4942 4943 err = ice_init_link_events(pf->hw.port_info); 4944 if (err) { 4945 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4946 return err; 4947 } 4948 4949 /* not a fatal error if this fails */ 4950 err = ice_init_nvm_phy_type(pf->hw.port_info); 4951 if (err) 4952 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4953 4954 /* not a fatal error if this fails */ 4955 err = ice_update_link_info(pf->hw.port_info); 4956 if (err) 4957 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4958 4959 ice_init_link_dflt_override(pf->hw.port_info); 4960 4961 ice_check_link_cfg_err(pf, 4962 pf->hw.port_info->phy.link_info.link_cfg_err); 4963 4964 /* if media available, initialize PHY settings */ 4965 if (pf->hw.port_info->phy.link_info.link_info & 4966 ICE_AQ_MEDIA_AVAILABLE) { 4967 /* not a fatal error if this fails */ 4968 err = ice_init_phy_user_cfg(pf->hw.port_info); 4969 if (err) 4970 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4971 4972 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4973 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4974 4975 if (vsi) 4976 ice_configure_phy(vsi); 4977 } 4978 } else { 4979 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4980 } 4981 4982 return err; 4983 } 4984 4985 static int ice_init_pf_sw(struct ice_pf *pf) 4986 { 4987 bool dvm = ice_is_dvm_ena(&pf->hw); 4988 struct ice_vsi *vsi; 4989 int err; 4990 4991 /* create switch struct for the switch element created by FW on boot */ 4992 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4993 if (!pf->first_sw) 4994 return -ENOMEM; 4995 4996 if (pf->hw.evb_veb) 4997 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4998 else 4999 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 5000 5001 pf->first_sw->pf = pf; 5002 5003 /* record the sw_id available for later use */ 5004 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 5005 5006 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 5007 if (err) 5008 goto err_aq_set_port_params; 5009 5010 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 5011 if (!vsi) { 5012 err = -ENOMEM; 5013 goto err_pf_vsi_setup; 5014 } 5015 5016 return 0; 5017 5018 err_pf_vsi_setup: 5019 err_aq_set_port_params: 5020 kfree(pf->first_sw); 5021 return err; 5022 } 5023 5024 static void ice_deinit_pf_sw(struct ice_pf *pf) 5025 { 5026 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5027 5028 if (!vsi) 5029 return; 5030 5031 ice_vsi_release(vsi); 5032 kfree(pf->first_sw); 5033 } 5034 5035 static int ice_alloc_vsis(struct ice_pf *pf) 5036 { 5037 struct device *dev = ice_pf_to_dev(pf); 5038 5039 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5040 if (!pf->num_alloc_vsi) 5041 return -EIO; 5042 5043 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5044 dev_warn(dev, 5045 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5046 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5047 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5048 } 5049 5050 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5051 GFP_KERNEL); 5052 if (!pf->vsi) 5053 return -ENOMEM; 5054 5055 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5056 sizeof(*pf->vsi_stats), GFP_KERNEL); 5057 if (!pf->vsi_stats) { 5058 devm_kfree(dev, pf->vsi); 5059 return -ENOMEM; 5060 } 5061 5062 return 0; 5063 } 5064 5065 static void ice_dealloc_vsis(struct ice_pf *pf) 5066 { 5067 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5068 pf->vsi_stats = NULL; 5069 5070 pf->num_alloc_vsi = 0; 5071 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5072 pf->vsi = NULL; 5073 } 5074 5075 static int ice_init_devlink(struct ice_pf *pf) 5076 { 5077 int err; 5078 5079 err = ice_devlink_register_params(pf); 5080 if (err) 5081 return err; 5082 5083 ice_devlink_init_regions(pf); 5084 ice_devlink_register(pf); 5085 5086 return 0; 5087 } 5088 5089 static void ice_deinit_devlink(struct ice_pf *pf) 5090 { 5091 ice_devlink_unregister(pf); 5092 ice_devlink_destroy_regions(pf); 5093 ice_devlink_unregister_params(pf); 5094 } 5095 5096 static int ice_init(struct ice_pf *pf) 5097 { 5098 int err; 5099 5100 err = ice_init_dev(pf); 5101 if (err) 5102 return err; 5103 5104 err = ice_alloc_vsis(pf); 5105 if (err) 5106 goto err_alloc_vsis; 5107 5108 err = ice_init_pf_sw(pf); 5109 if (err) 5110 goto err_init_pf_sw; 5111 5112 ice_init_wakeup(pf); 5113 5114 err = ice_init_link(pf); 5115 if (err) 5116 goto err_init_link; 5117 5118 err = ice_send_version(pf); 5119 if (err) 5120 goto err_init_link; 5121 5122 ice_verify_cacheline_size(pf); 5123 5124 if (ice_is_safe_mode(pf)) 5125 ice_set_safe_mode_vlan_cfg(pf); 5126 else 5127 /* print PCI link speed and width */ 5128 pcie_print_link_status(pf->pdev); 5129 5130 /* ready to go, so clear down state bit */ 5131 clear_bit(ICE_DOWN, pf->state); 5132 clear_bit(ICE_SERVICE_DIS, pf->state); 5133 5134 /* since everything is good, start the service timer */ 5135 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5136 5137 return 0; 5138 5139 err_init_link: 5140 ice_deinit_pf_sw(pf); 5141 err_init_pf_sw: 5142 ice_dealloc_vsis(pf); 5143 err_alloc_vsis: 5144 ice_deinit_dev(pf); 5145 return err; 5146 } 5147 5148 static void ice_deinit(struct ice_pf *pf) 5149 { 5150 set_bit(ICE_SERVICE_DIS, pf->state); 5151 set_bit(ICE_DOWN, pf->state); 5152 5153 ice_deinit_pf_sw(pf); 5154 ice_dealloc_vsis(pf); 5155 ice_deinit_dev(pf); 5156 } 5157 5158 /** 5159 * ice_load - load pf by init hw and starting VSI 5160 * @pf: pointer to the pf instance 5161 * 5162 * This function has to be called under devl_lock. 5163 */ 5164 int ice_load(struct ice_pf *pf) 5165 { 5166 struct ice_vsi *vsi; 5167 int err; 5168 5169 devl_assert_locked(priv_to_devlink(pf)); 5170 5171 vsi = ice_get_main_vsi(pf); 5172 5173 /* init channel list */ 5174 INIT_LIST_HEAD(&vsi->ch_list); 5175 5176 err = ice_cfg_netdev(vsi); 5177 if (err) 5178 return err; 5179 5180 /* Setup DCB netlink interface */ 5181 ice_dcbnl_setup(vsi); 5182 5183 err = ice_init_mac_fltr(pf); 5184 if (err) 5185 goto err_init_mac_fltr; 5186 5187 err = ice_devlink_create_pf_port(pf); 5188 if (err) 5189 goto err_devlink_create_pf_port; 5190 5191 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5192 5193 err = ice_register_netdev(vsi); 5194 if (err) 5195 goto err_register_netdev; 5196 5197 err = ice_tc_indir_block_register(vsi); 5198 if (err) 5199 goto err_tc_indir_block_register; 5200 5201 ice_napi_add(vsi); 5202 5203 err = ice_init_rdma(pf); 5204 if (err) 5205 goto err_init_rdma; 5206 5207 ice_init_features(pf); 5208 ice_service_task_restart(pf); 5209 5210 clear_bit(ICE_DOWN, pf->state); 5211 5212 return 0; 5213 5214 err_init_rdma: 5215 ice_tc_indir_block_unregister(vsi); 5216 err_tc_indir_block_register: 5217 ice_unregister_netdev(vsi); 5218 err_register_netdev: 5219 ice_devlink_destroy_pf_port(pf); 5220 err_devlink_create_pf_port: 5221 err_init_mac_fltr: 5222 ice_decfg_netdev(vsi); 5223 return err; 5224 } 5225 5226 /** 5227 * ice_unload - unload pf by stopping VSI and deinit hw 5228 * @pf: pointer to the pf instance 5229 * 5230 * This function has to be called under devl_lock. 5231 */ 5232 void ice_unload(struct ice_pf *pf) 5233 { 5234 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5235 5236 devl_assert_locked(priv_to_devlink(pf)); 5237 5238 ice_deinit_features(pf); 5239 ice_deinit_rdma(pf); 5240 ice_tc_indir_block_unregister(vsi); 5241 ice_unregister_netdev(vsi); 5242 ice_devlink_destroy_pf_port(pf); 5243 ice_decfg_netdev(vsi); 5244 } 5245 5246 /** 5247 * ice_probe - Device initialization routine 5248 * @pdev: PCI device information struct 5249 * @ent: entry in ice_pci_tbl 5250 * 5251 * Returns 0 on success, negative on failure 5252 */ 5253 static int 5254 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5255 { 5256 struct device *dev = &pdev->dev; 5257 struct ice_adapter *adapter; 5258 struct ice_pf *pf; 5259 struct ice_hw *hw; 5260 int err; 5261 5262 if (pdev->is_virtfn) { 5263 dev_err(dev, "can't probe a virtual function\n"); 5264 return -EINVAL; 5265 } 5266 5267 /* when under a kdump kernel initiate a reset before enabling the 5268 * device in order to clear out any pending DMA transactions. These 5269 * transactions can cause some systems to machine check when doing 5270 * the pcim_enable_device() below. 5271 */ 5272 if (is_kdump_kernel()) { 5273 pci_save_state(pdev); 5274 pci_clear_master(pdev); 5275 err = pcie_flr(pdev); 5276 if (err) 5277 return err; 5278 pci_restore_state(pdev); 5279 } 5280 5281 /* this driver uses devres, see 5282 * Documentation/driver-api/driver-model/devres.rst 5283 */ 5284 err = pcim_enable_device(pdev); 5285 if (err) 5286 return err; 5287 5288 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5289 if (err) { 5290 dev_err(dev, "BAR0 I/O map error %d\n", err); 5291 return err; 5292 } 5293 5294 pf = ice_allocate_pf(dev); 5295 if (!pf) 5296 return -ENOMEM; 5297 5298 /* initialize Auxiliary index to invalid value */ 5299 pf->aux_idx = -1; 5300 5301 /* set up for high or low DMA */ 5302 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5303 if (err) { 5304 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5305 return err; 5306 } 5307 5308 pci_set_master(pdev); 5309 5310 adapter = ice_adapter_get(pdev); 5311 if (IS_ERR(adapter)) 5312 return PTR_ERR(adapter); 5313 5314 pf->pdev = pdev; 5315 pf->adapter = adapter; 5316 pci_set_drvdata(pdev, pf); 5317 set_bit(ICE_DOWN, pf->state); 5318 /* Disable service task until DOWN bit is cleared */ 5319 set_bit(ICE_SERVICE_DIS, pf->state); 5320 5321 hw = &pf->hw; 5322 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5323 pci_save_state(pdev); 5324 5325 hw->back = pf; 5326 hw->port_info = NULL; 5327 hw->vendor_id = pdev->vendor; 5328 hw->device_id = pdev->device; 5329 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5330 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5331 hw->subsystem_device_id = pdev->subsystem_device; 5332 hw->bus.device = PCI_SLOT(pdev->devfn); 5333 hw->bus.func = PCI_FUNC(pdev->devfn); 5334 ice_set_ctrlq_len(hw); 5335 5336 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5337 5338 #ifndef CONFIG_DYNAMIC_DEBUG 5339 if (debug < -1) 5340 hw->debug_mask = debug; 5341 #endif 5342 5343 err = ice_init(pf); 5344 if (err) 5345 goto err_init; 5346 5347 devl_lock(priv_to_devlink(pf)); 5348 err = ice_load(pf); 5349 if (err) 5350 goto err_load; 5351 5352 err = ice_init_devlink(pf); 5353 if (err) 5354 goto err_init_devlink; 5355 devl_unlock(priv_to_devlink(pf)); 5356 5357 return 0; 5358 5359 err_init_devlink: 5360 ice_unload(pf); 5361 err_load: 5362 devl_unlock(priv_to_devlink(pf)); 5363 ice_deinit(pf); 5364 err_init: 5365 ice_adapter_put(pdev); 5366 pci_disable_device(pdev); 5367 return err; 5368 } 5369 5370 /** 5371 * ice_set_wake - enable or disable Wake on LAN 5372 * @pf: pointer to the PF struct 5373 * 5374 * Simple helper for WoL control 5375 */ 5376 static void ice_set_wake(struct ice_pf *pf) 5377 { 5378 struct ice_hw *hw = &pf->hw; 5379 bool wol = pf->wol_ena; 5380 5381 /* clear wake state, otherwise new wake events won't fire */ 5382 wr32(hw, PFPM_WUS, U32_MAX); 5383 5384 /* enable / disable APM wake up, no RMW needed */ 5385 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5386 5387 /* set magic packet filter enabled */ 5388 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5389 } 5390 5391 /** 5392 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5393 * @pf: pointer to the PF struct 5394 * 5395 * Issue firmware command to enable multicast magic wake, making 5396 * sure that any locally administered address (LAA) is used for 5397 * wake, and that PF reset doesn't undo the LAA. 5398 */ 5399 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5400 { 5401 struct device *dev = ice_pf_to_dev(pf); 5402 struct ice_hw *hw = &pf->hw; 5403 u8 mac_addr[ETH_ALEN]; 5404 struct ice_vsi *vsi; 5405 int status; 5406 u8 flags; 5407 5408 if (!pf->wol_ena) 5409 return; 5410 5411 vsi = ice_get_main_vsi(pf); 5412 if (!vsi) 5413 return; 5414 5415 /* Get current MAC address in case it's an LAA */ 5416 if (vsi->netdev) 5417 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5418 else 5419 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5420 5421 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5422 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5423 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5424 5425 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5426 if (status) 5427 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5428 status, ice_aq_str(hw->adminq.sq_last_status)); 5429 } 5430 5431 /** 5432 * ice_remove - Device removal routine 5433 * @pdev: PCI device information struct 5434 */ 5435 static void ice_remove(struct pci_dev *pdev) 5436 { 5437 struct ice_pf *pf = pci_get_drvdata(pdev); 5438 int i; 5439 5440 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5441 if (!ice_is_reset_in_progress(pf->state)) 5442 break; 5443 msleep(100); 5444 } 5445 5446 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5447 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5448 ice_free_vfs(pf); 5449 } 5450 5451 ice_hwmon_exit(pf); 5452 5453 ice_service_task_stop(pf); 5454 ice_aq_cancel_waiting_tasks(pf); 5455 set_bit(ICE_DOWN, pf->state); 5456 5457 if (!ice_is_safe_mode(pf)) 5458 ice_remove_arfs(pf); 5459 5460 devl_lock(priv_to_devlink(pf)); 5461 ice_deinit_devlink(pf); 5462 5463 ice_unload(pf); 5464 devl_unlock(priv_to_devlink(pf)); 5465 5466 ice_deinit(pf); 5467 ice_vsi_release_all(pf); 5468 5469 ice_setup_mc_magic_wake(pf); 5470 ice_set_wake(pf); 5471 5472 ice_adapter_put(pdev); 5473 pci_disable_device(pdev); 5474 } 5475 5476 /** 5477 * ice_shutdown - PCI callback for shutting down device 5478 * @pdev: PCI device information struct 5479 */ 5480 static void ice_shutdown(struct pci_dev *pdev) 5481 { 5482 struct ice_pf *pf = pci_get_drvdata(pdev); 5483 5484 ice_remove(pdev); 5485 5486 if (system_state == SYSTEM_POWER_OFF) { 5487 pci_wake_from_d3(pdev, pf->wol_ena); 5488 pci_set_power_state(pdev, PCI_D3hot); 5489 } 5490 } 5491 5492 /** 5493 * ice_prepare_for_shutdown - prep for PCI shutdown 5494 * @pf: board private structure 5495 * 5496 * Inform or close all dependent features in prep for PCI device shutdown 5497 */ 5498 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5499 { 5500 struct ice_hw *hw = &pf->hw; 5501 u32 v; 5502 5503 /* Notify VFs of impending reset */ 5504 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5505 ice_vc_notify_reset(pf); 5506 5507 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5508 5509 /* disable the VSIs and their queues that are not already DOWN */ 5510 ice_pf_dis_all_vsi(pf, false); 5511 5512 ice_for_each_vsi(pf, v) 5513 if (pf->vsi[v]) 5514 pf->vsi[v]->vsi_num = 0; 5515 5516 ice_shutdown_all_ctrlq(hw, true); 5517 } 5518 5519 /** 5520 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5521 * @pf: board private structure to reinitialize 5522 * 5523 * This routine reinitialize interrupt scheme that was cleared during 5524 * power management suspend callback. 5525 * 5526 * This should be called during resume routine to re-allocate the q_vectors 5527 * and reacquire interrupts. 5528 */ 5529 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5530 { 5531 struct device *dev = ice_pf_to_dev(pf); 5532 int ret, v; 5533 5534 /* Since we clear MSIX flag during suspend, we need to 5535 * set it back during resume... 5536 */ 5537 5538 ret = ice_init_interrupt_scheme(pf); 5539 if (ret) { 5540 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5541 return ret; 5542 } 5543 5544 /* Remap vectors and rings, after successful re-init interrupts */ 5545 ice_for_each_vsi(pf, v) { 5546 if (!pf->vsi[v]) 5547 continue; 5548 5549 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5550 if (ret) 5551 goto err_reinit; 5552 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5553 rtnl_lock(); 5554 ice_vsi_set_napi_queues(pf->vsi[v]); 5555 rtnl_unlock(); 5556 } 5557 5558 ret = ice_req_irq_msix_misc(pf); 5559 if (ret) { 5560 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5561 ret); 5562 goto err_reinit; 5563 } 5564 5565 return 0; 5566 5567 err_reinit: 5568 while (v--) 5569 if (pf->vsi[v]) { 5570 rtnl_lock(); 5571 ice_vsi_clear_napi_queues(pf->vsi[v]); 5572 rtnl_unlock(); 5573 ice_vsi_free_q_vectors(pf->vsi[v]); 5574 } 5575 5576 return ret; 5577 } 5578 5579 /** 5580 * ice_suspend 5581 * @dev: generic device information structure 5582 * 5583 * Power Management callback to quiesce the device and prepare 5584 * for D3 transition. 5585 */ 5586 static int ice_suspend(struct device *dev) 5587 { 5588 struct pci_dev *pdev = to_pci_dev(dev); 5589 struct ice_pf *pf; 5590 int disabled, v; 5591 5592 pf = pci_get_drvdata(pdev); 5593 5594 if (!ice_pf_state_is_nominal(pf)) { 5595 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5596 return -EBUSY; 5597 } 5598 5599 /* Stop watchdog tasks until resume completion. 5600 * Even though it is most likely that the service task is 5601 * disabled if the device is suspended or down, the service task's 5602 * state is controlled by a different state bit, and we should 5603 * store and honor whatever state that bit is in at this point. 5604 */ 5605 disabled = ice_service_task_stop(pf); 5606 5607 ice_deinit_rdma(pf); 5608 5609 /* Already suspended?, then there is nothing to do */ 5610 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5611 if (!disabled) 5612 ice_service_task_restart(pf); 5613 return 0; 5614 } 5615 5616 if (test_bit(ICE_DOWN, pf->state) || 5617 ice_is_reset_in_progress(pf->state)) { 5618 dev_err(dev, "can't suspend device in reset or already down\n"); 5619 if (!disabled) 5620 ice_service_task_restart(pf); 5621 return 0; 5622 } 5623 5624 ice_setup_mc_magic_wake(pf); 5625 5626 ice_prepare_for_shutdown(pf); 5627 5628 ice_set_wake(pf); 5629 5630 /* Free vectors, clear the interrupt scheme and release IRQs 5631 * for proper hibernation, especially with large number of CPUs. 5632 * Otherwise hibernation might fail when mapping all the vectors back 5633 * to CPU0. 5634 */ 5635 ice_free_irq_msix_misc(pf); 5636 ice_for_each_vsi(pf, v) { 5637 if (!pf->vsi[v]) 5638 continue; 5639 rtnl_lock(); 5640 ice_vsi_clear_napi_queues(pf->vsi[v]); 5641 rtnl_unlock(); 5642 ice_vsi_free_q_vectors(pf->vsi[v]); 5643 } 5644 ice_clear_interrupt_scheme(pf); 5645 5646 pci_save_state(pdev); 5647 pci_wake_from_d3(pdev, pf->wol_ena); 5648 pci_set_power_state(pdev, PCI_D3hot); 5649 return 0; 5650 } 5651 5652 /** 5653 * ice_resume - PM callback for waking up from D3 5654 * @dev: generic device information structure 5655 */ 5656 static int ice_resume(struct device *dev) 5657 { 5658 struct pci_dev *pdev = to_pci_dev(dev); 5659 enum ice_reset_req reset_type; 5660 struct ice_pf *pf; 5661 struct ice_hw *hw; 5662 int ret; 5663 5664 pci_set_power_state(pdev, PCI_D0); 5665 pci_restore_state(pdev); 5666 pci_save_state(pdev); 5667 5668 if (!pci_device_is_present(pdev)) 5669 return -ENODEV; 5670 5671 ret = pci_enable_device_mem(pdev); 5672 if (ret) { 5673 dev_err(dev, "Cannot enable device after suspend\n"); 5674 return ret; 5675 } 5676 5677 pf = pci_get_drvdata(pdev); 5678 hw = &pf->hw; 5679 5680 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5681 ice_print_wake_reason(pf); 5682 5683 /* We cleared the interrupt scheme when we suspended, so we need to 5684 * restore it now to resume device functionality. 5685 */ 5686 ret = ice_reinit_interrupt_scheme(pf); 5687 if (ret) 5688 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5689 5690 ret = ice_init_rdma(pf); 5691 if (ret) 5692 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5693 ret); 5694 5695 clear_bit(ICE_DOWN, pf->state); 5696 /* Now perform PF reset and rebuild */ 5697 reset_type = ICE_RESET_PFR; 5698 /* re-enable service task for reset, but allow reset to schedule it */ 5699 clear_bit(ICE_SERVICE_DIS, pf->state); 5700 5701 if (ice_schedule_reset(pf, reset_type)) 5702 dev_err(dev, "Reset during resume failed.\n"); 5703 5704 clear_bit(ICE_SUSPENDED, pf->state); 5705 ice_service_task_restart(pf); 5706 5707 /* Restart the service task */ 5708 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5709 5710 return 0; 5711 } 5712 5713 /** 5714 * ice_pci_err_detected - warning that PCI error has been detected 5715 * @pdev: PCI device information struct 5716 * @err: the type of PCI error 5717 * 5718 * Called to warn that something happened on the PCI bus and the error handling 5719 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5720 */ 5721 static pci_ers_result_t 5722 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5723 { 5724 struct ice_pf *pf = pci_get_drvdata(pdev); 5725 5726 if (!pf) { 5727 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5728 __func__, err); 5729 return PCI_ERS_RESULT_DISCONNECT; 5730 } 5731 5732 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5733 ice_service_task_stop(pf); 5734 5735 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5736 set_bit(ICE_PFR_REQ, pf->state); 5737 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5738 } 5739 } 5740 5741 return PCI_ERS_RESULT_NEED_RESET; 5742 } 5743 5744 /** 5745 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5746 * @pdev: PCI device information struct 5747 * 5748 * Called to determine if the driver can recover from the PCI slot reset by 5749 * using a register read to determine if the device is recoverable. 5750 */ 5751 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5752 { 5753 struct ice_pf *pf = pci_get_drvdata(pdev); 5754 pci_ers_result_t result; 5755 int err; 5756 u32 reg; 5757 5758 err = pci_enable_device_mem(pdev); 5759 if (err) { 5760 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5761 err); 5762 result = PCI_ERS_RESULT_DISCONNECT; 5763 } else { 5764 pci_set_master(pdev); 5765 pci_restore_state(pdev); 5766 pci_save_state(pdev); 5767 pci_wake_from_d3(pdev, false); 5768 5769 /* Check for life */ 5770 reg = rd32(&pf->hw, GLGEN_RTRIG); 5771 if (!reg) 5772 result = PCI_ERS_RESULT_RECOVERED; 5773 else 5774 result = PCI_ERS_RESULT_DISCONNECT; 5775 } 5776 5777 return result; 5778 } 5779 5780 /** 5781 * ice_pci_err_resume - restart operations after PCI error recovery 5782 * @pdev: PCI device information struct 5783 * 5784 * Called to allow the driver to bring things back up after PCI error and/or 5785 * reset recovery have finished 5786 */ 5787 static void ice_pci_err_resume(struct pci_dev *pdev) 5788 { 5789 struct ice_pf *pf = pci_get_drvdata(pdev); 5790 5791 if (!pf) { 5792 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5793 __func__); 5794 return; 5795 } 5796 5797 if (test_bit(ICE_SUSPENDED, pf->state)) { 5798 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5799 __func__); 5800 return; 5801 } 5802 5803 ice_restore_all_vfs_msi_state(pf); 5804 5805 ice_do_reset(pf, ICE_RESET_PFR); 5806 ice_service_task_restart(pf); 5807 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5808 } 5809 5810 /** 5811 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5812 * @pdev: PCI device information struct 5813 */ 5814 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5815 { 5816 struct ice_pf *pf = pci_get_drvdata(pdev); 5817 5818 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5819 ice_service_task_stop(pf); 5820 5821 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5822 set_bit(ICE_PFR_REQ, pf->state); 5823 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5824 } 5825 } 5826 } 5827 5828 /** 5829 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5830 * @pdev: PCI device information struct 5831 */ 5832 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5833 { 5834 ice_pci_err_resume(pdev); 5835 } 5836 5837 /* ice_pci_tbl - PCI Device ID Table 5838 * 5839 * Wildcard entries (PCI_ANY_ID) should come last 5840 * Last entry must be all 0s 5841 * 5842 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5843 * Class, Class Mask, private data (not used) } 5844 */ 5845 static const struct pci_device_id ice_pci_tbl[] = { 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5886 /* required last entry */ 5887 {} 5888 }; 5889 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5890 5891 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5892 5893 static const struct pci_error_handlers ice_pci_err_handler = { 5894 .error_detected = ice_pci_err_detected, 5895 .slot_reset = ice_pci_err_slot_reset, 5896 .reset_prepare = ice_pci_err_reset_prepare, 5897 .reset_done = ice_pci_err_reset_done, 5898 .resume = ice_pci_err_resume 5899 }; 5900 5901 static struct pci_driver ice_driver = { 5902 .name = KBUILD_MODNAME, 5903 .id_table = ice_pci_tbl, 5904 .probe = ice_probe, 5905 .remove = ice_remove, 5906 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5907 .shutdown = ice_shutdown, 5908 .sriov_configure = ice_sriov_configure, 5909 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5910 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5911 .err_handler = &ice_pci_err_handler 5912 }; 5913 5914 /** 5915 * ice_module_init - Driver registration routine 5916 * 5917 * ice_module_init is the first routine called when the driver is 5918 * loaded. All it does is register with the PCI subsystem. 5919 */ 5920 static int __init ice_module_init(void) 5921 { 5922 int status = -ENOMEM; 5923 5924 pr_info("%s\n", ice_driver_string); 5925 pr_info("%s\n", ice_copyright); 5926 5927 ice_adv_lnk_speed_maps_init(); 5928 5929 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5930 if (!ice_wq) { 5931 pr_err("Failed to create workqueue\n"); 5932 return status; 5933 } 5934 5935 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5936 if (!ice_lag_wq) { 5937 pr_err("Failed to create LAG workqueue\n"); 5938 goto err_dest_wq; 5939 } 5940 5941 ice_debugfs_init(); 5942 5943 status = pci_register_driver(&ice_driver); 5944 if (status) { 5945 pr_err("failed to register PCI driver, err %d\n", status); 5946 goto err_dest_lag_wq; 5947 } 5948 5949 return 0; 5950 5951 err_dest_lag_wq: 5952 destroy_workqueue(ice_lag_wq); 5953 ice_debugfs_exit(); 5954 err_dest_wq: 5955 destroy_workqueue(ice_wq); 5956 return status; 5957 } 5958 module_init(ice_module_init); 5959 5960 /** 5961 * ice_module_exit - Driver exit cleanup routine 5962 * 5963 * ice_module_exit is called just before the driver is removed 5964 * from memory. 5965 */ 5966 static void __exit ice_module_exit(void) 5967 { 5968 pci_unregister_driver(&ice_driver); 5969 ice_debugfs_exit(); 5970 destroy_workqueue(ice_wq); 5971 destroy_workqueue(ice_lag_wq); 5972 pr_info("module unloaded\n"); 5973 } 5974 module_exit(ice_module_exit); 5975 5976 /** 5977 * ice_set_mac_address - NDO callback to set MAC address 5978 * @netdev: network interface device structure 5979 * @pi: pointer to an address structure 5980 * 5981 * Returns 0 on success, negative on failure 5982 */ 5983 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5984 { 5985 struct ice_netdev_priv *np = netdev_priv(netdev); 5986 struct ice_vsi *vsi = np->vsi; 5987 struct ice_pf *pf = vsi->back; 5988 struct ice_hw *hw = &pf->hw; 5989 struct sockaddr *addr = pi; 5990 u8 old_mac[ETH_ALEN]; 5991 u8 flags = 0; 5992 u8 *mac; 5993 int err; 5994 5995 mac = (u8 *)addr->sa_data; 5996 5997 if (!is_valid_ether_addr(mac)) 5998 return -EADDRNOTAVAIL; 5999 6000 if (test_bit(ICE_DOWN, pf->state) || 6001 ice_is_reset_in_progress(pf->state)) { 6002 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6003 mac); 6004 return -EBUSY; 6005 } 6006 6007 if (ice_chnl_dmac_fltr_cnt(pf)) { 6008 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6009 mac); 6010 return -EAGAIN; 6011 } 6012 6013 netif_addr_lock_bh(netdev); 6014 ether_addr_copy(old_mac, netdev->dev_addr); 6015 /* change the netdev's MAC address */ 6016 eth_hw_addr_set(netdev, mac); 6017 netif_addr_unlock_bh(netdev); 6018 6019 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6020 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6021 if (err && err != -ENOENT) { 6022 err = -EADDRNOTAVAIL; 6023 goto err_update_filters; 6024 } 6025 6026 /* Add filter for new MAC. If filter exists, return success */ 6027 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6028 if (err == -EEXIST) { 6029 /* Although this MAC filter is already present in hardware it's 6030 * possible in some cases (e.g. bonding) that dev_addr was 6031 * modified outside of the driver and needs to be restored back 6032 * to this value. 6033 */ 6034 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6035 6036 return 0; 6037 } else if (err) { 6038 /* error if the new filter addition failed */ 6039 err = -EADDRNOTAVAIL; 6040 } 6041 6042 err_update_filters: 6043 if (err) { 6044 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6045 mac); 6046 netif_addr_lock_bh(netdev); 6047 eth_hw_addr_set(netdev, old_mac); 6048 netif_addr_unlock_bh(netdev); 6049 return err; 6050 } 6051 6052 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6053 netdev->dev_addr); 6054 6055 /* write new MAC address to the firmware */ 6056 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6057 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6058 if (err) { 6059 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6060 mac, err); 6061 } 6062 return 0; 6063 } 6064 6065 /** 6066 * ice_set_rx_mode - NDO callback to set the netdev filters 6067 * @netdev: network interface device structure 6068 */ 6069 static void ice_set_rx_mode(struct net_device *netdev) 6070 { 6071 struct ice_netdev_priv *np = netdev_priv(netdev); 6072 struct ice_vsi *vsi = np->vsi; 6073 6074 if (!vsi || ice_is_switchdev_running(vsi->back)) 6075 return; 6076 6077 /* Set the flags to synchronize filters 6078 * ndo_set_rx_mode may be triggered even without a change in netdev 6079 * flags 6080 */ 6081 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6082 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6083 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6084 6085 /* schedule our worker thread which will take care of 6086 * applying the new filter changes 6087 */ 6088 ice_service_task_schedule(vsi->back); 6089 } 6090 6091 /** 6092 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6093 * @netdev: network interface device structure 6094 * @queue_index: Queue ID 6095 * @maxrate: maximum bandwidth in Mbps 6096 */ 6097 static int 6098 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6099 { 6100 struct ice_netdev_priv *np = netdev_priv(netdev); 6101 struct ice_vsi *vsi = np->vsi; 6102 u16 q_handle; 6103 int status; 6104 u8 tc; 6105 6106 /* Validate maxrate requested is within permitted range */ 6107 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6108 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6109 maxrate, queue_index); 6110 return -EINVAL; 6111 } 6112 6113 q_handle = vsi->tx_rings[queue_index]->q_handle; 6114 tc = ice_dcb_get_tc(vsi, queue_index); 6115 6116 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6117 if (!vsi) { 6118 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6119 queue_index); 6120 return -EINVAL; 6121 } 6122 6123 /* Set BW back to default, when user set maxrate to 0 */ 6124 if (!maxrate) 6125 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6126 q_handle, ICE_MAX_BW); 6127 else 6128 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6129 q_handle, ICE_MAX_BW, maxrate * 1000); 6130 if (status) 6131 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6132 status); 6133 6134 return status; 6135 } 6136 6137 /** 6138 * ice_fdb_add - add an entry to the hardware database 6139 * @ndm: the input from the stack 6140 * @tb: pointer to array of nladdr (unused) 6141 * @dev: the net device pointer 6142 * @addr: the MAC address entry being added 6143 * @vid: VLAN ID 6144 * @flags: instructions from stack about fdb operation 6145 * @extack: netlink extended ack 6146 */ 6147 static int 6148 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6149 struct net_device *dev, const unsigned char *addr, u16 vid, 6150 u16 flags, struct netlink_ext_ack __always_unused *extack) 6151 { 6152 int err; 6153 6154 if (vid) { 6155 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6156 return -EINVAL; 6157 } 6158 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6159 netdev_err(dev, "FDB only supports static addresses\n"); 6160 return -EINVAL; 6161 } 6162 6163 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6164 err = dev_uc_add_excl(dev, addr); 6165 else if (is_multicast_ether_addr(addr)) 6166 err = dev_mc_add_excl(dev, addr); 6167 else 6168 err = -EINVAL; 6169 6170 /* Only return duplicate errors if NLM_F_EXCL is set */ 6171 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6172 err = 0; 6173 6174 return err; 6175 } 6176 6177 /** 6178 * ice_fdb_del - delete an entry from the hardware database 6179 * @ndm: the input from the stack 6180 * @tb: pointer to array of nladdr (unused) 6181 * @dev: the net device pointer 6182 * @addr: the MAC address entry being added 6183 * @vid: VLAN ID 6184 * @extack: netlink extended ack 6185 */ 6186 static int 6187 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6188 struct net_device *dev, const unsigned char *addr, 6189 __always_unused u16 vid, struct netlink_ext_ack *extack) 6190 { 6191 int err; 6192 6193 if (ndm->ndm_state & NUD_PERMANENT) { 6194 netdev_err(dev, "FDB only supports static addresses\n"); 6195 return -EINVAL; 6196 } 6197 6198 if (is_unicast_ether_addr(addr)) 6199 err = dev_uc_del(dev, addr); 6200 else if (is_multicast_ether_addr(addr)) 6201 err = dev_mc_del(dev, addr); 6202 else 6203 err = -EINVAL; 6204 6205 return err; 6206 } 6207 6208 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6209 NETIF_F_HW_VLAN_CTAG_TX | \ 6210 NETIF_F_HW_VLAN_STAG_RX | \ 6211 NETIF_F_HW_VLAN_STAG_TX) 6212 6213 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6214 NETIF_F_HW_VLAN_STAG_RX) 6215 6216 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6217 NETIF_F_HW_VLAN_STAG_FILTER) 6218 6219 /** 6220 * ice_fix_features - fix the netdev features flags based on device limitations 6221 * @netdev: ptr to the netdev that flags are being fixed on 6222 * @features: features that need to be checked and possibly fixed 6223 * 6224 * Make sure any fixups are made to features in this callback. This enables the 6225 * driver to not have to check unsupported configurations throughout the driver 6226 * because that's the responsiblity of this callback. 6227 * 6228 * Single VLAN Mode (SVM) Supported Features: 6229 * NETIF_F_HW_VLAN_CTAG_FILTER 6230 * NETIF_F_HW_VLAN_CTAG_RX 6231 * NETIF_F_HW_VLAN_CTAG_TX 6232 * 6233 * Double VLAN Mode (DVM) Supported Features: 6234 * NETIF_F_HW_VLAN_CTAG_FILTER 6235 * NETIF_F_HW_VLAN_CTAG_RX 6236 * NETIF_F_HW_VLAN_CTAG_TX 6237 * 6238 * NETIF_F_HW_VLAN_STAG_FILTER 6239 * NETIF_HW_VLAN_STAG_RX 6240 * NETIF_HW_VLAN_STAG_TX 6241 * 6242 * Features that need fixing: 6243 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6244 * These are mutually exlusive as the VSI context cannot support multiple 6245 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6246 * is not done, then default to clearing the requested STAG offload 6247 * settings. 6248 * 6249 * All supported filtering has to be enabled or disabled together. For 6250 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6251 * together. If this is not done, then default to VLAN filtering disabled. 6252 * These are mutually exclusive as there is currently no way to 6253 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6254 * prune rules. 6255 */ 6256 static netdev_features_t 6257 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6258 { 6259 struct ice_netdev_priv *np = netdev_priv(netdev); 6260 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6261 bool cur_ctag, cur_stag, req_ctag, req_stag; 6262 6263 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6264 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6265 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6266 6267 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6268 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6269 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6270 6271 if (req_vlan_fltr != cur_vlan_fltr) { 6272 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6273 if (req_ctag && req_stag) { 6274 features |= NETIF_VLAN_FILTERING_FEATURES; 6275 } else if (!req_ctag && !req_stag) { 6276 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6277 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6278 (!cur_stag && req_stag && !cur_ctag)) { 6279 features |= NETIF_VLAN_FILTERING_FEATURES; 6280 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6281 } else if ((cur_ctag && !req_ctag && cur_stag) || 6282 (cur_stag && !req_stag && cur_ctag)) { 6283 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6284 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6285 } 6286 } else { 6287 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6288 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6289 6290 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6291 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6292 } 6293 } 6294 6295 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6296 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6297 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6298 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6299 NETIF_F_HW_VLAN_STAG_TX); 6300 } 6301 6302 if (!(netdev->features & NETIF_F_RXFCS) && 6303 (features & NETIF_F_RXFCS) && 6304 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6305 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6306 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6307 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6308 } 6309 6310 return features; 6311 } 6312 6313 /** 6314 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6315 * @vsi: PF's VSI 6316 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6317 * 6318 * Store current stripped VLAN proto in ring packet context, 6319 * so it can be accessed more efficiently by packet processing code. 6320 */ 6321 static void 6322 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6323 { 6324 u16 i; 6325 6326 ice_for_each_alloc_rxq(vsi, i) 6327 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6328 } 6329 6330 /** 6331 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6332 * @vsi: PF's VSI 6333 * @features: features used to determine VLAN offload settings 6334 * 6335 * First, determine the vlan_ethertype based on the VLAN offload bits in 6336 * features. Then determine if stripping and insertion should be enabled or 6337 * disabled. Finally enable or disable VLAN stripping and insertion. 6338 */ 6339 static int 6340 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6341 { 6342 bool enable_stripping = true, enable_insertion = true; 6343 struct ice_vsi_vlan_ops *vlan_ops; 6344 int strip_err = 0, insert_err = 0; 6345 u16 vlan_ethertype = 0; 6346 6347 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6348 6349 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6350 vlan_ethertype = ETH_P_8021AD; 6351 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6352 vlan_ethertype = ETH_P_8021Q; 6353 6354 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6355 enable_stripping = false; 6356 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6357 enable_insertion = false; 6358 6359 if (enable_stripping) 6360 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6361 else 6362 strip_err = vlan_ops->dis_stripping(vsi); 6363 6364 if (enable_insertion) 6365 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6366 else 6367 insert_err = vlan_ops->dis_insertion(vsi); 6368 6369 if (strip_err || insert_err) 6370 return -EIO; 6371 6372 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6373 htons(vlan_ethertype) : 0); 6374 6375 return 0; 6376 } 6377 6378 /** 6379 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6380 * @vsi: PF's VSI 6381 * @features: features used to determine VLAN filtering settings 6382 * 6383 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6384 * features. 6385 */ 6386 static int 6387 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6388 { 6389 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6390 int err = 0; 6391 6392 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6393 * if either bit is set 6394 */ 6395 if (features & 6396 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6397 err = vlan_ops->ena_rx_filtering(vsi); 6398 else 6399 err = vlan_ops->dis_rx_filtering(vsi); 6400 6401 return err; 6402 } 6403 6404 /** 6405 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6406 * @netdev: ptr to the netdev being adjusted 6407 * @features: the feature set that the stack is suggesting 6408 * 6409 * Only update VLAN settings if the requested_vlan_features are different than 6410 * the current_vlan_features. 6411 */ 6412 static int 6413 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6414 { 6415 netdev_features_t current_vlan_features, requested_vlan_features; 6416 struct ice_netdev_priv *np = netdev_priv(netdev); 6417 struct ice_vsi *vsi = np->vsi; 6418 int err; 6419 6420 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6421 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6422 if (current_vlan_features ^ requested_vlan_features) { 6423 if ((features & NETIF_F_RXFCS) && 6424 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6425 dev_err(ice_pf_to_dev(vsi->back), 6426 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6427 return -EIO; 6428 } 6429 6430 err = ice_set_vlan_offload_features(vsi, features); 6431 if (err) 6432 return err; 6433 } 6434 6435 current_vlan_features = netdev->features & 6436 NETIF_VLAN_FILTERING_FEATURES; 6437 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6438 if (current_vlan_features ^ requested_vlan_features) { 6439 err = ice_set_vlan_filtering_features(vsi, features); 6440 if (err) 6441 return err; 6442 } 6443 6444 return 0; 6445 } 6446 6447 /** 6448 * ice_set_loopback - turn on/off loopback mode on underlying PF 6449 * @vsi: ptr to VSI 6450 * @ena: flag to indicate the on/off setting 6451 */ 6452 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6453 { 6454 bool if_running = netif_running(vsi->netdev); 6455 int ret; 6456 6457 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6458 ret = ice_down(vsi); 6459 if (ret) { 6460 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6461 return ret; 6462 } 6463 } 6464 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6465 if (ret) 6466 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6467 if (if_running) 6468 ret = ice_up(vsi); 6469 6470 return ret; 6471 } 6472 6473 /** 6474 * ice_set_features - set the netdev feature flags 6475 * @netdev: ptr to the netdev being adjusted 6476 * @features: the feature set that the stack is suggesting 6477 */ 6478 static int 6479 ice_set_features(struct net_device *netdev, netdev_features_t features) 6480 { 6481 netdev_features_t changed = netdev->features ^ features; 6482 struct ice_netdev_priv *np = netdev_priv(netdev); 6483 struct ice_vsi *vsi = np->vsi; 6484 struct ice_pf *pf = vsi->back; 6485 int ret = 0; 6486 6487 /* Don't set any netdev advanced features with device in Safe Mode */ 6488 if (ice_is_safe_mode(pf)) { 6489 dev_err(ice_pf_to_dev(pf), 6490 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6491 return ret; 6492 } 6493 6494 /* Do not change setting during reset */ 6495 if (ice_is_reset_in_progress(pf->state)) { 6496 dev_err(ice_pf_to_dev(pf), 6497 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6498 return -EBUSY; 6499 } 6500 6501 /* Multiple features can be changed in one call so keep features in 6502 * separate if/else statements to guarantee each feature is checked 6503 */ 6504 if (changed & NETIF_F_RXHASH) 6505 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6506 6507 ret = ice_set_vlan_features(netdev, features); 6508 if (ret) 6509 return ret; 6510 6511 /* Turn on receive of FCS aka CRC, and after setting this 6512 * flag the packet data will have the 4 byte CRC appended 6513 */ 6514 if (changed & NETIF_F_RXFCS) { 6515 if ((features & NETIF_F_RXFCS) && 6516 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6517 dev_err(ice_pf_to_dev(vsi->back), 6518 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6519 return -EIO; 6520 } 6521 6522 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6523 ret = ice_down_up(vsi); 6524 if (ret) 6525 return ret; 6526 } 6527 6528 if (changed & NETIF_F_NTUPLE) { 6529 bool ena = !!(features & NETIF_F_NTUPLE); 6530 6531 ice_vsi_manage_fdir(vsi, ena); 6532 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6533 } 6534 6535 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6536 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6537 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6538 return -EACCES; 6539 } 6540 6541 if (changed & NETIF_F_HW_TC) { 6542 bool ena = !!(features & NETIF_F_HW_TC); 6543 6544 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6545 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6546 } 6547 6548 if (changed & NETIF_F_LOOPBACK) 6549 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6550 6551 return ret; 6552 } 6553 6554 /** 6555 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6556 * @vsi: VSI to setup VLAN properties for 6557 */ 6558 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6559 { 6560 int err; 6561 6562 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6563 if (err) 6564 return err; 6565 6566 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6567 if (err) 6568 return err; 6569 6570 return ice_vsi_add_vlan_zero(vsi); 6571 } 6572 6573 /** 6574 * ice_vsi_cfg_lan - Setup the VSI lan related config 6575 * @vsi: the VSI being configured 6576 * 6577 * Return 0 on success and negative value on error 6578 */ 6579 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6580 { 6581 int err; 6582 6583 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6584 ice_set_rx_mode(vsi->netdev); 6585 6586 err = ice_vsi_vlan_setup(vsi); 6587 if (err) 6588 return err; 6589 } 6590 ice_vsi_cfg_dcb_rings(vsi); 6591 6592 err = ice_vsi_cfg_lan_txqs(vsi); 6593 if (!err && ice_is_xdp_ena_vsi(vsi)) 6594 err = ice_vsi_cfg_xdp_txqs(vsi); 6595 if (!err) 6596 err = ice_vsi_cfg_rxqs(vsi); 6597 6598 return err; 6599 } 6600 6601 /* THEORY OF MODERATION: 6602 * The ice driver hardware works differently than the hardware that DIMLIB was 6603 * originally made for. ice hardware doesn't have packet count limits that 6604 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6605 * which is hard-coded to a limit of 250,000 ints/second. 6606 * If not using dynamic moderation, the INTRL value can be modified 6607 * by ethtool rx-usecs-high. 6608 */ 6609 struct ice_dim { 6610 /* the throttle rate for interrupts, basically worst case delay before 6611 * an initial interrupt fires, value is stored in microseconds. 6612 */ 6613 u16 itr; 6614 }; 6615 6616 /* Make a different profile for Rx that doesn't allow quite so aggressive 6617 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6618 * second. 6619 */ 6620 static const struct ice_dim rx_profile[] = { 6621 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6622 {8}, /* 125,000 ints/s */ 6623 {16}, /* 62,500 ints/s */ 6624 {62}, /* 16,129 ints/s */ 6625 {126} /* 7,936 ints/s */ 6626 }; 6627 6628 /* The transmit profile, which has the same sorts of values 6629 * as the previous struct 6630 */ 6631 static const struct ice_dim tx_profile[] = { 6632 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6633 {8}, /* 125,000 ints/s */ 6634 {40}, /* 16,125 ints/s */ 6635 {128}, /* 7,812 ints/s */ 6636 {256} /* 3,906 ints/s */ 6637 }; 6638 6639 static void ice_tx_dim_work(struct work_struct *work) 6640 { 6641 struct ice_ring_container *rc; 6642 struct dim *dim; 6643 u16 itr; 6644 6645 dim = container_of(work, struct dim, work); 6646 rc = dim->priv; 6647 6648 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6649 6650 /* look up the values in our local table */ 6651 itr = tx_profile[dim->profile_ix].itr; 6652 6653 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6654 ice_write_itr(rc, itr); 6655 6656 dim->state = DIM_START_MEASURE; 6657 } 6658 6659 static void ice_rx_dim_work(struct work_struct *work) 6660 { 6661 struct ice_ring_container *rc; 6662 struct dim *dim; 6663 u16 itr; 6664 6665 dim = container_of(work, struct dim, work); 6666 rc = dim->priv; 6667 6668 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6669 6670 /* look up the values in our local table */ 6671 itr = rx_profile[dim->profile_ix].itr; 6672 6673 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6674 ice_write_itr(rc, itr); 6675 6676 dim->state = DIM_START_MEASURE; 6677 } 6678 6679 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6680 6681 /** 6682 * ice_init_moderation - set up interrupt moderation 6683 * @q_vector: the vector containing rings to be configured 6684 * 6685 * Set up interrupt moderation registers, with the intent to do the right thing 6686 * when called from reset or from probe, and whether or not dynamic moderation 6687 * is enabled or not. Take special care to write all the registers in both 6688 * dynamic moderation mode or not in order to make sure hardware is in a known 6689 * state. 6690 */ 6691 static void ice_init_moderation(struct ice_q_vector *q_vector) 6692 { 6693 struct ice_ring_container *rc; 6694 bool tx_dynamic, rx_dynamic; 6695 6696 rc = &q_vector->tx; 6697 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6698 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6699 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6700 rc->dim.priv = rc; 6701 tx_dynamic = ITR_IS_DYNAMIC(rc); 6702 6703 /* set the initial TX ITR to match the above */ 6704 ice_write_itr(rc, tx_dynamic ? 6705 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6706 6707 rc = &q_vector->rx; 6708 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6709 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6710 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6711 rc->dim.priv = rc; 6712 rx_dynamic = ITR_IS_DYNAMIC(rc); 6713 6714 /* set the initial RX ITR to match the above */ 6715 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6716 rc->itr_setting); 6717 6718 ice_set_q_vector_intrl(q_vector); 6719 } 6720 6721 /** 6722 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6723 * @vsi: the VSI being configured 6724 */ 6725 static void ice_napi_enable_all(struct ice_vsi *vsi) 6726 { 6727 int q_idx; 6728 6729 if (!vsi->netdev) 6730 return; 6731 6732 ice_for_each_q_vector(vsi, q_idx) { 6733 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6734 6735 ice_init_moderation(q_vector); 6736 6737 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6738 napi_enable(&q_vector->napi); 6739 } 6740 } 6741 6742 /** 6743 * ice_up_complete - Finish the last steps of bringing up a connection 6744 * @vsi: The VSI being configured 6745 * 6746 * Return 0 on success and negative value on error 6747 */ 6748 static int ice_up_complete(struct ice_vsi *vsi) 6749 { 6750 struct ice_pf *pf = vsi->back; 6751 int err; 6752 6753 ice_vsi_cfg_msix(vsi); 6754 6755 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6756 * Tx queue group list was configured and the context bits were 6757 * programmed using ice_vsi_cfg_txqs 6758 */ 6759 err = ice_vsi_start_all_rx_rings(vsi); 6760 if (err) 6761 return err; 6762 6763 clear_bit(ICE_VSI_DOWN, vsi->state); 6764 ice_napi_enable_all(vsi); 6765 ice_vsi_ena_irq(vsi); 6766 6767 if (vsi->port_info && 6768 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6769 vsi->netdev && vsi->type == ICE_VSI_PF) { 6770 ice_print_link_msg(vsi, true); 6771 netif_tx_start_all_queues(vsi->netdev); 6772 netif_carrier_on(vsi->netdev); 6773 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6774 } 6775 6776 /* Perform an initial read of the statistics registers now to 6777 * set the baseline so counters are ready when interface is up 6778 */ 6779 ice_update_eth_stats(vsi); 6780 6781 if (vsi->type == ICE_VSI_PF) 6782 ice_service_task_schedule(pf); 6783 6784 return 0; 6785 } 6786 6787 /** 6788 * ice_up - Bring the connection back up after being down 6789 * @vsi: VSI being configured 6790 */ 6791 int ice_up(struct ice_vsi *vsi) 6792 { 6793 int err; 6794 6795 err = ice_vsi_cfg_lan(vsi); 6796 if (!err) 6797 err = ice_up_complete(vsi); 6798 6799 return err; 6800 } 6801 6802 /** 6803 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6804 * @syncp: pointer to u64_stats_sync 6805 * @stats: stats that pkts and bytes count will be taken from 6806 * @pkts: packets stats counter 6807 * @bytes: bytes stats counter 6808 * 6809 * This function fetches stats from the ring considering the atomic operations 6810 * that needs to be performed to read u64 values in 32 bit machine. 6811 */ 6812 void 6813 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6814 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6815 { 6816 unsigned int start; 6817 6818 do { 6819 start = u64_stats_fetch_begin(syncp); 6820 *pkts = stats.pkts; 6821 *bytes = stats.bytes; 6822 } while (u64_stats_fetch_retry(syncp, start)); 6823 } 6824 6825 /** 6826 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6827 * @vsi: the VSI to be updated 6828 * @vsi_stats: the stats struct to be updated 6829 * @rings: rings to work on 6830 * @count: number of rings 6831 */ 6832 static void 6833 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6834 struct rtnl_link_stats64 *vsi_stats, 6835 struct ice_tx_ring **rings, u16 count) 6836 { 6837 u16 i; 6838 6839 for (i = 0; i < count; i++) { 6840 struct ice_tx_ring *ring; 6841 u64 pkts = 0, bytes = 0; 6842 6843 ring = READ_ONCE(rings[i]); 6844 if (!ring || !ring->ring_stats) 6845 continue; 6846 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6847 ring->ring_stats->stats, &pkts, 6848 &bytes); 6849 vsi_stats->tx_packets += pkts; 6850 vsi_stats->tx_bytes += bytes; 6851 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6852 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6853 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6854 } 6855 } 6856 6857 /** 6858 * ice_update_vsi_ring_stats - Update VSI stats counters 6859 * @vsi: the VSI to be updated 6860 */ 6861 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6862 { 6863 struct rtnl_link_stats64 *net_stats, *stats_prev; 6864 struct rtnl_link_stats64 *vsi_stats; 6865 struct ice_pf *pf = vsi->back; 6866 u64 pkts, bytes; 6867 int i; 6868 6869 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6870 if (!vsi_stats) 6871 return; 6872 6873 /* reset non-netdev (extended) stats */ 6874 vsi->tx_restart = 0; 6875 vsi->tx_busy = 0; 6876 vsi->tx_linearize = 0; 6877 vsi->rx_buf_failed = 0; 6878 vsi->rx_page_failed = 0; 6879 6880 rcu_read_lock(); 6881 6882 /* update Tx rings counters */ 6883 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6884 vsi->num_txq); 6885 6886 /* update Rx rings counters */ 6887 ice_for_each_rxq(vsi, i) { 6888 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6889 struct ice_ring_stats *ring_stats; 6890 6891 ring_stats = ring->ring_stats; 6892 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6893 ring_stats->stats, &pkts, 6894 &bytes); 6895 vsi_stats->rx_packets += pkts; 6896 vsi_stats->rx_bytes += bytes; 6897 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6898 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6899 } 6900 6901 /* update XDP Tx rings counters */ 6902 if (ice_is_xdp_ena_vsi(vsi)) 6903 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6904 vsi->num_xdp_txq); 6905 6906 rcu_read_unlock(); 6907 6908 net_stats = &vsi->net_stats; 6909 stats_prev = &vsi->net_stats_prev; 6910 6911 /* Update netdev counters, but keep in mind that values could start at 6912 * random value after PF reset. And as we increase the reported stat by 6913 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6914 * let's skip this round. 6915 */ 6916 if (likely(pf->stat_prev_loaded)) { 6917 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6918 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6919 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6920 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6921 } 6922 6923 stats_prev->tx_packets = vsi_stats->tx_packets; 6924 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6925 stats_prev->rx_packets = vsi_stats->rx_packets; 6926 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6927 6928 kfree(vsi_stats); 6929 } 6930 6931 /** 6932 * ice_update_vsi_stats - Update VSI stats counters 6933 * @vsi: the VSI to be updated 6934 */ 6935 void ice_update_vsi_stats(struct ice_vsi *vsi) 6936 { 6937 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6938 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6939 struct ice_pf *pf = vsi->back; 6940 6941 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6942 test_bit(ICE_CFG_BUSY, pf->state)) 6943 return; 6944 6945 /* get stats as recorded by Tx/Rx rings */ 6946 ice_update_vsi_ring_stats(vsi); 6947 6948 /* get VSI stats as recorded by the hardware */ 6949 ice_update_eth_stats(vsi); 6950 6951 cur_ns->tx_errors = cur_es->tx_errors; 6952 cur_ns->rx_dropped = cur_es->rx_discards; 6953 cur_ns->tx_dropped = cur_es->tx_discards; 6954 cur_ns->multicast = cur_es->rx_multicast; 6955 6956 /* update some more netdev stats if this is main VSI */ 6957 if (vsi->type == ICE_VSI_PF) { 6958 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6959 cur_ns->rx_errors = pf->stats.crc_errors + 6960 pf->stats.illegal_bytes + 6961 pf->stats.rx_undersize + 6962 pf->hw_csum_rx_error + 6963 pf->stats.rx_jabber + 6964 pf->stats.rx_fragments + 6965 pf->stats.rx_oversize; 6966 /* record drops from the port level */ 6967 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6968 } 6969 } 6970 6971 /** 6972 * ice_update_pf_stats - Update PF port stats counters 6973 * @pf: PF whose stats needs to be updated 6974 */ 6975 void ice_update_pf_stats(struct ice_pf *pf) 6976 { 6977 struct ice_hw_port_stats *prev_ps, *cur_ps; 6978 struct ice_hw *hw = &pf->hw; 6979 u16 fd_ctr_base; 6980 u8 port; 6981 6982 port = hw->port_info->lport; 6983 prev_ps = &pf->stats_prev; 6984 cur_ps = &pf->stats; 6985 6986 if (ice_is_reset_in_progress(pf->state)) 6987 pf->stat_prev_loaded = false; 6988 6989 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6990 &prev_ps->eth.rx_bytes, 6991 &cur_ps->eth.rx_bytes); 6992 6993 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6994 &prev_ps->eth.rx_unicast, 6995 &cur_ps->eth.rx_unicast); 6996 6997 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6998 &prev_ps->eth.rx_multicast, 6999 &cur_ps->eth.rx_multicast); 7000 7001 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7002 &prev_ps->eth.rx_broadcast, 7003 &cur_ps->eth.rx_broadcast); 7004 7005 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7006 &prev_ps->eth.rx_discards, 7007 &cur_ps->eth.rx_discards); 7008 7009 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7010 &prev_ps->eth.tx_bytes, 7011 &cur_ps->eth.tx_bytes); 7012 7013 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7014 &prev_ps->eth.tx_unicast, 7015 &cur_ps->eth.tx_unicast); 7016 7017 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7018 &prev_ps->eth.tx_multicast, 7019 &cur_ps->eth.tx_multicast); 7020 7021 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7022 &prev_ps->eth.tx_broadcast, 7023 &cur_ps->eth.tx_broadcast); 7024 7025 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7026 &prev_ps->tx_dropped_link_down, 7027 &cur_ps->tx_dropped_link_down); 7028 7029 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7030 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7031 7032 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7033 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7034 7035 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7036 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7037 7038 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7039 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7040 7041 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7042 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7043 7044 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7045 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7046 7047 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7048 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7049 7050 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7051 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7052 7053 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7054 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7055 7056 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7057 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7058 7059 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7060 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7061 7062 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7063 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7064 7065 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7066 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7067 7068 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7069 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7070 7071 fd_ctr_base = hw->fd_ctr_base; 7072 7073 ice_stat_update40(hw, 7074 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7075 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7076 &cur_ps->fd_sb_match); 7077 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7078 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7079 7080 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7081 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7082 7083 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7084 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7085 7086 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7087 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7088 7089 ice_update_dcb_stats(pf); 7090 7091 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7092 &prev_ps->crc_errors, &cur_ps->crc_errors); 7093 7094 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7095 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7096 7097 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7098 &prev_ps->mac_local_faults, 7099 &cur_ps->mac_local_faults); 7100 7101 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7102 &prev_ps->mac_remote_faults, 7103 &cur_ps->mac_remote_faults); 7104 7105 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7106 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7107 7108 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7109 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7110 7111 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7112 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7113 7114 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7115 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7116 7117 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7118 7119 pf->stat_prev_loaded = true; 7120 } 7121 7122 /** 7123 * ice_get_stats64 - get statistics for network device structure 7124 * @netdev: network interface device structure 7125 * @stats: main device statistics structure 7126 */ 7127 static 7128 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7129 { 7130 struct ice_netdev_priv *np = netdev_priv(netdev); 7131 struct rtnl_link_stats64 *vsi_stats; 7132 struct ice_vsi *vsi = np->vsi; 7133 7134 vsi_stats = &vsi->net_stats; 7135 7136 if (!vsi->num_txq || !vsi->num_rxq) 7137 return; 7138 7139 /* netdev packet/byte stats come from ring counter. These are obtained 7140 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7141 * But, only call the update routine and read the registers if VSI is 7142 * not down. 7143 */ 7144 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7145 ice_update_vsi_ring_stats(vsi); 7146 stats->tx_packets = vsi_stats->tx_packets; 7147 stats->tx_bytes = vsi_stats->tx_bytes; 7148 stats->rx_packets = vsi_stats->rx_packets; 7149 stats->rx_bytes = vsi_stats->rx_bytes; 7150 7151 /* The rest of the stats can be read from the hardware but instead we 7152 * just return values that the watchdog task has already obtained from 7153 * the hardware. 7154 */ 7155 stats->multicast = vsi_stats->multicast; 7156 stats->tx_errors = vsi_stats->tx_errors; 7157 stats->tx_dropped = vsi_stats->tx_dropped; 7158 stats->rx_errors = vsi_stats->rx_errors; 7159 stats->rx_dropped = vsi_stats->rx_dropped; 7160 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7161 stats->rx_length_errors = vsi_stats->rx_length_errors; 7162 } 7163 7164 /** 7165 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7166 * @vsi: VSI having NAPI disabled 7167 */ 7168 static void ice_napi_disable_all(struct ice_vsi *vsi) 7169 { 7170 int q_idx; 7171 7172 if (!vsi->netdev) 7173 return; 7174 7175 ice_for_each_q_vector(vsi, q_idx) { 7176 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7177 7178 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7179 napi_disable(&q_vector->napi); 7180 7181 cancel_work_sync(&q_vector->tx.dim.work); 7182 cancel_work_sync(&q_vector->rx.dim.work); 7183 } 7184 } 7185 7186 /** 7187 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7188 * @vsi: the VSI being un-configured 7189 */ 7190 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7191 { 7192 struct ice_pf *pf = vsi->back; 7193 struct ice_hw *hw = &pf->hw; 7194 u32 val; 7195 int i; 7196 7197 /* disable interrupt causation from each Rx queue; Tx queues are 7198 * handled in ice_vsi_stop_tx_ring() 7199 */ 7200 if (vsi->rx_rings) { 7201 ice_for_each_rxq(vsi, i) { 7202 if (vsi->rx_rings[i]) { 7203 u16 reg; 7204 7205 reg = vsi->rx_rings[i]->reg_idx; 7206 val = rd32(hw, QINT_RQCTL(reg)); 7207 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7208 wr32(hw, QINT_RQCTL(reg), val); 7209 } 7210 } 7211 } 7212 7213 /* disable each interrupt */ 7214 ice_for_each_q_vector(vsi, i) { 7215 if (!vsi->q_vectors[i]) 7216 continue; 7217 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7218 } 7219 7220 ice_flush(hw); 7221 7222 /* don't call synchronize_irq() for VF's from the host */ 7223 if (vsi->type == ICE_VSI_VF) 7224 return; 7225 7226 ice_for_each_q_vector(vsi, i) 7227 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7228 } 7229 7230 /** 7231 * ice_down - Shutdown the connection 7232 * @vsi: The VSI being stopped 7233 * 7234 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7235 */ 7236 int ice_down(struct ice_vsi *vsi) 7237 { 7238 int i, tx_err, rx_err, vlan_err = 0; 7239 7240 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7241 7242 if (vsi->netdev) { 7243 vlan_err = ice_vsi_del_vlan_zero(vsi); 7244 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7245 netif_carrier_off(vsi->netdev); 7246 netif_tx_disable(vsi->netdev); 7247 } 7248 7249 ice_vsi_dis_irq(vsi); 7250 7251 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7252 if (tx_err) 7253 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7254 vsi->vsi_num, tx_err); 7255 if (!tx_err && vsi->xdp_rings) { 7256 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7257 if (tx_err) 7258 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7259 vsi->vsi_num, tx_err); 7260 } 7261 7262 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7263 if (rx_err) 7264 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7265 vsi->vsi_num, rx_err); 7266 7267 ice_napi_disable_all(vsi); 7268 7269 ice_for_each_txq(vsi, i) 7270 ice_clean_tx_ring(vsi->tx_rings[i]); 7271 7272 if (vsi->xdp_rings) 7273 ice_for_each_xdp_txq(vsi, i) 7274 ice_clean_tx_ring(vsi->xdp_rings[i]); 7275 7276 ice_for_each_rxq(vsi, i) 7277 ice_clean_rx_ring(vsi->rx_rings[i]); 7278 7279 if (tx_err || rx_err || vlan_err) { 7280 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7281 vsi->vsi_num, vsi->vsw->sw_id); 7282 return -EIO; 7283 } 7284 7285 return 0; 7286 } 7287 7288 /** 7289 * ice_down_up - shutdown the VSI connection and bring it up 7290 * @vsi: the VSI to be reconnected 7291 */ 7292 int ice_down_up(struct ice_vsi *vsi) 7293 { 7294 int ret; 7295 7296 /* if DOWN already set, nothing to do */ 7297 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7298 return 0; 7299 7300 ret = ice_down(vsi); 7301 if (ret) 7302 return ret; 7303 7304 ret = ice_up(vsi); 7305 if (ret) { 7306 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7307 return ret; 7308 } 7309 7310 return 0; 7311 } 7312 7313 /** 7314 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7315 * @vsi: VSI having resources allocated 7316 * 7317 * Return 0 on success, negative on failure 7318 */ 7319 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7320 { 7321 int i, err = 0; 7322 7323 if (!vsi->num_txq) { 7324 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7325 vsi->vsi_num); 7326 return -EINVAL; 7327 } 7328 7329 ice_for_each_txq(vsi, i) { 7330 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7331 7332 if (!ring) 7333 return -EINVAL; 7334 7335 if (vsi->netdev) 7336 ring->netdev = vsi->netdev; 7337 err = ice_setup_tx_ring(ring); 7338 if (err) 7339 break; 7340 } 7341 7342 return err; 7343 } 7344 7345 /** 7346 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7347 * @vsi: VSI having resources allocated 7348 * 7349 * Return 0 on success, negative on failure 7350 */ 7351 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7352 { 7353 int i, err = 0; 7354 7355 if (!vsi->num_rxq) { 7356 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7357 vsi->vsi_num); 7358 return -EINVAL; 7359 } 7360 7361 ice_for_each_rxq(vsi, i) { 7362 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7363 7364 if (!ring) 7365 return -EINVAL; 7366 7367 if (vsi->netdev) 7368 ring->netdev = vsi->netdev; 7369 err = ice_setup_rx_ring(ring); 7370 if (err) 7371 break; 7372 } 7373 7374 return err; 7375 } 7376 7377 /** 7378 * ice_vsi_open_ctrl - open control VSI for use 7379 * @vsi: the VSI to open 7380 * 7381 * Initialization of the Control VSI 7382 * 7383 * Returns 0 on success, negative value on error 7384 */ 7385 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7386 { 7387 char int_name[ICE_INT_NAME_STR_LEN]; 7388 struct ice_pf *pf = vsi->back; 7389 struct device *dev; 7390 int err; 7391 7392 dev = ice_pf_to_dev(pf); 7393 /* allocate descriptors */ 7394 err = ice_vsi_setup_tx_rings(vsi); 7395 if (err) 7396 goto err_setup_tx; 7397 7398 err = ice_vsi_setup_rx_rings(vsi); 7399 if (err) 7400 goto err_setup_rx; 7401 7402 err = ice_vsi_cfg_lan(vsi); 7403 if (err) 7404 goto err_setup_rx; 7405 7406 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7407 dev_driver_string(dev), dev_name(dev)); 7408 err = ice_vsi_req_irq_msix(vsi, int_name); 7409 if (err) 7410 goto err_setup_rx; 7411 7412 ice_vsi_cfg_msix(vsi); 7413 7414 err = ice_vsi_start_all_rx_rings(vsi); 7415 if (err) 7416 goto err_up_complete; 7417 7418 clear_bit(ICE_VSI_DOWN, vsi->state); 7419 ice_vsi_ena_irq(vsi); 7420 7421 return 0; 7422 7423 err_up_complete: 7424 ice_down(vsi); 7425 err_setup_rx: 7426 ice_vsi_free_rx_rings(vsi); 7427 err_setup_tx: 7428 ice_vsi_free_tx_rings(vsi); 7429 7430 return err; 7431 } 7432 7433 /** 7434 * ice_vsi_open - Called when a network interface is made active 7435 * @vsi: the VSI to open 7436 * 7437 * Initialization of the VSI 7438 * 7439 * Returns 0 on success, negative value on error 7440 */ 7441 int ice_vsi_open(struct ice_vsi *vsi) 7442 { 7443 char int_name[ICE_INT_NAME_STR_LEN]; 7444 struct ice_pf *pf = vsi->back; 7445 int err; 7446 7447 /* allocate descriptors */ 7448 err = ice_vsi_setup_tx_rings(vsi); 7449 if (err) 7450 goto err_setup_tx; 7451 7452 err = ice_vsi_setup_rx_rings(vsi); 7453 if (err) 7454 goto err_setup_rx; 7455 7456 err = ice_vsi_cfg_lan(vsi); 7457 if (err) 7458 goto err_setup_rx; 7459 7460 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7461 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7462 err = ice_vsi_req_irq_msix(vsi, int_name); 7463 if (err) 7464 goto err_setup_rx; 7465 7466 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7467 7468 if (vsi->type == ICE_VSI_PF) { 7469 /* Notify the stack of the actual queue counts. */ 7470 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7471 if (err) 7472 goto err_set_qs; 7473 7474 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7475 if (err) 7476 goto err_set_qs; 7477 7478 ice_vsi_set_napi_queues(vsi); 7479 } 7480 7481 err = ice_up_complete(vsi); 7482 if (err) 7483 goto err_up_complete; 7484 7485 return 0; 7486 7487 err_up_complete: 7488 ice_down(vsi); 7489 err_set_qs: 7490 ice_vsi_free_irq(vsi); 7491 err_setup_rx: 7492 ice_vsi_free_rx_rings(vsi); 7493 err_setup_tx: 7494 ice_vsi_free_tx_rings(vsi); 7495 7496 return err; 7497 } 7498 7499 /** 7500 * ice_vsi_release_all - Delete all VSIs 7501 * @pf: PF from which all VSIs are being removed 7502 */ 7503 static void ice_vsi_release_all(struct ice_pf *pf) 7504 { 7505 int err, i; 7506 7507 if (!pf->vsi) 7508 return; 7509 7510 ice_for_each_vsi(pf, i) { 7511 if (!pf->vsi[i]) 7512 continue; 7513 7514 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7515 continue; 7516 7517 err = ice_vsi_release(pf->vsi[i]); 7518 if (err) 7519 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7520 i, err, pf->vsi[i]->vsi_num); 7521 } 7522 } 7523 7524 /** 7525 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7526 * @pf: pointer to the PF instance 7527 * @type: VSI type to rebuild 7528 * 7529 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7530 */ 7531 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7532 { 7533 struct device *dev = ice_pf_to_dev(pf); 7534 int i, err; 7535 7536 ice_for_each_vsi(pf, i) { 7537 struct ice_vsi *vsi = pf->vsi[i]; 7538 7539 if (!vsi || vsi->type != type) 7540 continue; 7541 7542 /* rebuild the VSI */ 7543 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7544 if (err) { 7545 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7546 err, vsi->idx, ice_vsi_type_str(type)); 7547 return err; 7548 } 7549 7550 /* replay filters for the VSI */ 7551 err = ice_replay_vsi(&pf->hw, vsi->idx); 7552 if (err) { 7553 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7554 err, vsi->idx, ice_vsi_type_str(type)); 7555 return err; 7556 } 7557 7558 /* Re-map HW VSI number, using VSI handle that has been 7559 * previously validated in ice_replay_vsi() call above 7560 */ 7561 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7562 7563 /* enable the VSI */ 7564 err = ice_ena_vsi(vsi, false); 7565 if (err) { 7566 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7567 err, vsi->idx, ice_vsi_type_str(type)); 7568 return err; 7569 } 7570 7571 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7572 ice_vsi_type_str(type)); 7573 } 7574 7575 return 0; 7576 } 7577 7578 /** 7579 * ice_update_pf_netdev_link - Update PF netdev link status 7580 * @pf: pointer to the PF instance 7581 */ 7582 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7583 { 7584 bool link_up; 7585 int i; 7586 7587 ice_for_each_vsi(pf, i) { 7588 struct ice_vsi *vsi = pf->vsi[i]; 7589 7590 if (!vsi || vsi->type != ICE_VSI_PF) 7591 return; 7592 7593 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7594 if (link_up) { 7595 netif_carrier_on(pf->vsi[i]->netdev); 7596 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7597 } else { 7598 netif_carrier_off(pf->vsi[i]->netdev); 7599 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7600 } 7601 } 7602 } 7603 7604 /** 7605 * ice_rebuild - rebuild after reset 7606 * @pf: PF to rebuild 7607 * @reset_type: type of reset 7608 * 7609 * Do not rebuild VF VSI in this flow because that is already handled via 7610 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7611 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7612 * to reset/rebuild all the VF VSI twice. 7613 */ 7614 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7615 { 7616 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7617 struct device *dev = ice_pf_to_dev(pf); 7618 struct ice_hw *hw = &pf->hw; 7619 bool dvm; 7620 int err; 7621 7622 if (test_bit(ICE_DOWN, pf->state)) 7623 goto clear_recovery; 7624 7625 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7626 7627 #define ICE_EMP_RESET_SLEEP_MS 5000 7628 if (reset_type == ICE_RESET_EMPR) { 7629 /* If an EMP reset has occurred, any previously pending flash 7630 * update will have completed. We no longer know whether or 7631 * not the NVM update EMP reset is restricted. 7632 */ 7633 pf->fw_emp_reset_disabled = false; 7634 7635 msleep(ICE_EMP_RESET_SLEEP_MS); 7636 } 7637 7638 err = ice_init_all_ctrlq(hw); 7639 if (err) { 7640 dev_err(dev, "control queues init failed %d\n", err); 7641 goto err_init_ctrlq; 7642 } 7643 7644 /* if DDP was previously loaded successfully */ 7645 if (!ice_is_safe_mode(pf)) { 7646 /* reload the SW DB of filter tables */ 7647 if (reset_type == ICE_RESET_PFR) 7648 ice_fill_blk_tbls(hw); 7649 else 7650 /* Reload DDP Package after CORER/GLOBR reset */ 7651 ice_load_pkg(NULL, pf); 7652 } 7653 7654 err = ice_clear_pf_cfg(hw); 7655 if (err) { 7656 dev_err(dev, "clear PF configuration failed %d\n", err); 7657 goto err_init_ctrlq; 7658 } 7659 7660 ice_clear_pxe_mode(hw); 7661 7662 err = ice_init_nvm(hw); 7663 if (err) { 7664 dev_err(dev, "ice_init_nvm failed %d\n", err); 7665 goto err_init_ctrlq; 7666 } 7667 7668 err = ice_get_caps(hw); 7669 if (err) { 7670 dev_err(dev, "ice_get_caps failed %d\n", err); 7671 goto err_init_ctrlq; 7672 } 7673 7674 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7675 if (err) { 7676 dev_err(dev, "set_mac_cfg failed %d\n", err); 7677 goto err_init_ctrlq; 7678 } 7679 7680 dvm = ice_is_dvm_ena(hw); 7681 7682 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7683 if (err) 7684 goto err_init_ctrlq; 7685 7686 err = ice_sched_init_port(hw->port_info); 7687 if (err) 7688 goto err_sched_init_port; 7689 7690 /* start misc vector */ 7691 err = ice_req_irq_msix_misc(pf); 7692 if (err) { 7693 dev_err(dev, "misc vector setup failed: %d\n", err); 7694 goto err_sched_init_port; 7695 } 7696 7697 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7698 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7699 if (!rd32(hw, PFQF_FD_SIZE)) { 7700 u16 unused, guar, b_effort; 7701 7702 guar = hw->func_caps.fd_fltr_guar; 7703 b_effort = hw->func_caps.fd_fltr_best_effort; 7704 7705 /* force guaranteed filter pool for PF */ 7706 ice_alloc_fd_guar_item(hw, &unused, guar); 7707 /* force shared filter pool for PF */ 7708 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7709 } 7710 } 7711 7712 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7713 ice_dcb_rebuild(pf); 7714 7715 /* If the PF previously had enabled PTP, PTP init needs to happen before 7716 * the VSI rebuild. If not, this causes the PTP link status events to 7717 * fail. 7718 */ 7719 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7720 ice_ptp_rebuild(pf, reset_type); 7721 7722 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7723 ice_gnss_init(pf); 7724 7725 /* rebuild PF VSI */ 7726 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7727 if (err) { 7728 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7729 goto err_vsi_rebuild; 7730 } 7731 7732 if (reset_type == ICE_RESET_PFR) { 7733 err = ice_rebuild_channels(pf); 7734 if (err) { 7735 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7736 err); 7737 goto err_vsi_rebuild; 7738 } 7739 } 7740 7741 /* If Flow Director is active */ 7742 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7743 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7744 if (err) { 7745 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7746 goto err_vsi_rebuild; 7747 } 7748 7749 /* replay HW Flow Director recipes */ 7750 if (hw->fdir_prof) 7751 ice_fdir_replay_flows(hw); 7752 7753 /* replay Flow Director filters */ 7754 ice_fdir_replay_fltrs(pf); 7755 7756 ice_rebuild_arfs(pf); 7757 } 7758 7759 if (vsi && vsi->netdev) 7760 netif_device_attach(vsi->netdev); 7761 7762 ice_update_pf_netdev_link(pf); 7763 7764 /* tell the firmware we are up */ 7765 err = ice_send_version(pf); 7766 if (err) { 7767 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7768 err); 7769 goto err_vsi_rebuild; 7770 } 7771 7772 ice_replay_post(hw); 7773 7774 /* if we get here, reset flow is successful */ 7775 clear_bit(ICE_RESET_FAILED, pf->state); 7776 7777 ice_plug_aux_dev(pf); 7778 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7779 ice_lag_rebuild(pf); 7780 7781 /* Restore timestamp mode settings after VSI rebuild */ 7782 ice_ptp_restore_timestamp_mode(pf); 7783 return; 7784 7785 err_vsi_rebuild: 7786 err_sched_init_port: 7787 ice_sched_cleanup_all(hw); 7788 err_init_ctrlq: 7789 ice_shutdown_all_ctrlq(hw, false); 7790 set_bit(ICE_RESET_FAILED, pf->state); 7791 clear_recovery: 7792 /* set this bit in PF state to control service task scheduling */ 7793 set_bit(ICE_NEEDS_RESTART, pf->state); 7794 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7795 } 7796 7797 /** 7798 * ice_change_mtu - NDO callback to change the MTU 7799 * @netdev: network interface device structure 7800 * @new_mtu: new value for maximum frame size 7801 * 7802 * Returns 0 on success, negative on failure 7803 */ 7804 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7805 { 7806 struct ice_netdev_priv *np = netdev_priv(netdev); 7807 struct ice_vsi *vsi = np->vsi; 7808 struct ice_pf *pf = vsi->back; 7809 struct bpf_prog *prog; 7810 u8 count = 0; 7811 int err = 0; 7812 7813 if (new_mtu == (int)netdev->mtu) { 7814 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7815 return 0; 7816 } 7817 7818 prog = vsi->xdp_prog; 7819 if (prog && !prog->aux->xdp_has_frags) { 7820 int frame_size = ice_max_xdp_frame_size(vsi); 7821 7822 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7823 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7824 frame_size - ICE_ETH_PKT_HDR_PAD); 7825 return -EINVAL; 7826 } 7827 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7828 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7829 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7830 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7831 return -EINVAL; 7832 } 7833 } 7834 7835 /* if a reset is in progress, wait for some time for it to complete */ 7836 do { 7837 if (ice_is_reset_in_progress(pf->state)) { 7838 count++; 7839 usleep_range(1000, 2000); 7840 } else { 7841 break; 7842 } 7843 7844 } while (count < 100); 7845 7846 if (count == 100) { 7847 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7848 return -EBUSY; 7849 } 7850 7851 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7852 err = ice_down_up(vsi); 7853 if (err) 7854 return err; 7855 7856 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7857 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7858 7859 return err; 7860 } 7861 7862 /** 7863 * ice_eth_ioctl - Access the hwtstamp interface 7864 * @netdev: network interface device structure 7865 * @ifr: interface request data 7866 * @cmd: ioctl command 7867 */ 7868 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7869 { 7870 struct ice_netdev_priv *np = netdev_priv(netdev); 7871 struct ice_pf *pf = np->vsi->back; 7872 7873 switch (cmd) { 7874 case SIOCGHWTSTAMP: 7875 return ice_ptp_get_ts_config(pf, ifr); 7876 case SIOCSHWTSTAMP: 7877 return ice_ptp_set_ts_config(pf, ifr); 7878 default: 7879 return -EOPNOTSUPP; 7880 } 7881 } 7882 7883 /** 7884 * ice_aq_str - convert AQ err code to a string 7885 * @aq_err: the AQ error code to convert 7886 */ 7887 const char *ice_aq_str(enum ice_aq_err aq_err) 7888 { 7889 switch (aq_err) { 7890 case ICE_AQ_RC_OK: 7891 return "OK"; 7892 case ICE_AQ_RC_EPERM: 7893 return "ICE_AQ_RC_EPERM"; 7894 case ICE_AQ_RC_ENOENT: 7895 return "ICE_AQ_RC_ENOENT"; 7896 case ICE_AQ_RC_ENOMEM: 7897 return "ICE_AQ_RC_ENOMEM"; 7898 case ICE_AQ_RC_EBUSY: 7899 return "ICE_AQ_RC_EBUSY"; 7900 case ICE_AQ_RC_EEXIST: 7901 return "ICE_AQ_RC_EEXIST"; 7902 case ICE_AQ_RC_EINVAL: 7903 return "ICE_AQ_RC_EINVAL"; 7904 case ICE_AQ_RC_ENOSPC: 7905 return "ICE_AQ_RC_ENOSPC"; 7906 case ICE_AQ_RC_ENOSYS: 7907 return "ICE_AQ_RC_ENOSYS"; 7908 case ICE_AQ_RC_EMODE: 7909 return "ICE_AQ_RC_EMODE"; 7910 case ICE_AQ_RC_ENOSEC: 7911 return "ICE_AQ_RC_ENOSEC"; 7912 case ICE_AQ_RC_EBADSIG: 7913 return "ICE_AQ_RC_EBADSIG"; 7914 case ICE_AQ_RC_ESVN: 7915 return "ICE_AQ_RC_ESVN"; 7916 case ICE_AQ_RC_EBADMAN: 7917 return "ICE_AQ_RC_EBADMAN"; 7918 case ICE_AQ_RC_EBADBUF: 7919 return "ICE_AQ_RC_EBADBUF"; 7920 } 7921 7922 return "ICE_AQ_RC_UNKNOWN"; 7923 } 7924 7925 /** 7926 * ice_set_rss_lut - Set RSS LUT 7927 * @vsi: Pointer to VSI structure 7928 * @lut: Lookup table 7929 * @lut_size: Lookup table size 7930 * 7931 * Returns 0 on success, negative on failure 7932 */ 7933 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7934 { 7935 struct ice_aq_get_set_rss_lut_params params = {}; 7936 struct ice_hw *hw = &vsi->back->hw; 7937 int status; 7938 7939 if (!lut) 7940 return -EINVAL; 7941 7942 params.vsi_handle = vsi->idx; 7943 params.lut_size = lut_size; 7944 params.lut_type = vsi->rss_lut_type; 7945 params.lut = lut; 7946 7947 status = ice_aq_set_rss_lut(hw, ¶ms); 7948 if (status) 7949 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7950 status, ice_aq_str(hw->adminq.sq_last_status)); 7951 7952 return status; 7953 } 7954 7955 /** 7956 * ice_set_rss_key - Set RSS key 7957 * @vsi: Pointer to the VSI structure 7958 * @seed: RSS hash seed 7959 * 7960 * Returns 0 on success, negative on failure 7961 */ 7962 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7963 { 7964 struct ice_hw *hw = &vsi->back->hw; 7965 int status; 7966 7967 if (!seed) 7968 return -EINVAL; 7969 7970 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7971 if (status) 7972 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7973 status, ice_aq_str(hw->adminq.sq_last_status)); 7974 7975 return status; 7976 } 7977 7978 /** 7979 * ice_get_rss_lut - Get RSS LUT 7980 * @vsi: Pointer to VSI structure 7981 * @lut: Buffer to store the lookup table entries 7982 * @lut_size: Size of buffer to store the lookup table entries 7983 * 7984 * Returns 0 on success, negative on failure 7985 */ 7986 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7987 { 7988 struct ice_aq_get_set_rss_lut_params params = {}; 7989 struct ice_hw *hw = &vsi->back->hw; 7990 int status; 7991 7992 if (!lut) 7993 return -EINVAL; 7994 7995 params.vsi_handle = vsi->idx; 7996 params.lut_size = lut_size; 7997 params.lut_type = vsi->rss_lut_type; 7998 params.lut = lut; 7999 8000 status = ice_aq_get_rss_lut(hw, ¶ms); 8001 if (status) 8002 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 8003 status, ice_aq_str(hw->adminq.sq_last_status)); 8004 8005 return status; 8006 } 8007 8008 /** 8009 * ice_get_rss_key - Get RSS key 8010 * @vsi: Pointer to VSI structure 8011 * @seed: Buffer to store the key in 8012 * 8013 * Returns 0 on success, negative on failure 8014 */ 8015 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8016 { 8017 struct ice_hw *hw = &vsi->back->hw; 8018 int status; 8019 8020 if (!seed) 8021 return -EINVAL; 8022 8023 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8024 if (status) 8025 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8026 status, ice_aq_str(hw->adminq.sq_last_status)); 8027 8028 return status; 8029 } 8030 8031 /** 8032 * ice_set_rss_hfunc - Set RSS HASH function 8033 * @vsi: Pointer to VSI structure 8034 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8035 * 8036 * Returns 0 on success, negative on failure 8037 */ 8038 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8039 { 8040 struct ice_hw *hw = &vsi->back->hw; 8041 struct ice_vsi_ctx *ctx; 8042 bool symm; 8043 int err; 8044 8045 if (hfunc == vsi->rss_hfunc) 8046 return 0; 8047 8048 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8049 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8050 return -EOPNOTSUPP; 8051 8052 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8053 if (!ctx) 8054 return -ENOMEM; 8055 8056 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8057 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8058 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8059 ctx->info.q_opt_rss |= 8060 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8061 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8062 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8063 8064 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8065 if (err) { 8066 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8067 vsi->vsi_num, err); 8068 } else { 8069 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8070 vsi->rss_hfunc = hfunc; 8071 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8072 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8073 "Symmetric " : ""); 8074 } 8075 kfree(ctx); 8076 if (err) 8077 return err; 8078 8079 /* Fix the symmetry setting for all existing RSS configurations */ 8080 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8081 return ice_set_rss_cfg_symm(hw, vsi, symm); 8082 } 8083 8084 /** 8085 * ice_bridge_getlink - Get the hardware bridge mode 8086 * @skb: skb buff 8087 * @pid: process ID 8088 * @seq: RTNL message seq 8089 * @dev: the netdev being configured 8090 * @filter_mask: filter mask passed in 8091 * @nlflags: netlink flags passed in 8092 * 8093 * Return the bridge mode (VEB/VEPA) 8094 */ 8095 static int 8096 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8097 struct net_device *dev, u32 filter_mask, int nlflags) 8098 { 8099 struct ice_netdev_priv *np = netdev_priv(dev); 8100 struct ice_vsi *vsi = np->vsi; 8101 struct ice_pf *pf = vsi->back; 8102 u16 bmode; 8103 8104 bmode = pf->first_sw->bridge_mode; 8105 8106 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8107 filter_mask, NULL); 8108 } 8109 8110 /** 8111 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8112 * @vsi: Pointer to VSI structure 8113 * @bmode: Hardware bridge mode (VEB/VEPA) 8114 * 8115 * Returns 0 on success, negative on failure 8116 */ 8117 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8118 { 8119 struct ice_aqc_vsi_props *vsi_props; 8120 struct ice_hw *hw = &vsi->back->hw; 8121 struct ice_vsi_ctx *ctxt; 8122 int ret; 8123 8124 vsi_props = &vsi->info; 8125 8126 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8127 if (!ctxt) 8128 return -ENOMEM; 8129 8130 ctxt->info = vsi->info; 8131 8132 if (bmode == BRIDGE_MODE_VEB) 8133 /* change from VEPA to VEB mode */ 8134 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8135 else 8136 /* change from VEB to VEPA mode */ 8137 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8138 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8139 8140 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8141 if (ret) { 8142 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8143 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8144 goto out; 8145 } 8146 /* Update sw flags for book keeping */ 8147 vsi_props->sw_flags = ctxt->info.sw_flags; 8148 8149 out: 8150 kfree(ctxt); 8151 return ret; 8152 } 8153 8154 /** 8155 * ice_bridge_setlink - Set the hardware bridge mode 8156 * @dev: the netdev being configured 8157 * @nlh: RTNL message 8158 * @flags: bridge setlink flags 8159 * @extack: netlink extended ack 8160 * 8161 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8162 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8163 * not already set for all VSIs connected to this switch. And also update the 8164 * unicast switch filter rules for the corresponding switch of the netdev. 8165 */ 8166 static int 8167 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8168 u16 __always_unused flags, 8169 struct netlink_ext_ack __always_unused *extack) 8170 { 8171 struct ice_netdev_priv *np = netdev_priv(dev); 8172 struct ice_pf *pf = np->vsi->back; 8173 struct nlattr *attr, *br_spec; 8174 struct ice_hw *hw = &pf->hw; 8175 struct ice_sw *pf_sw; 8176 int rem, v, err = 0; 8177 8178 pf_sw = pf->first_sw; 8179 /* find the attribute in the netlink message */ 8180 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8181 if (!br_spec) 8182 return -EINVAL; 8183 8184 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8185 __u16 mode = nla_get_u16(attr); 8186 8187 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8188 return -EINVAL; 8189 /* Continue if bridge mode is not being flipped */ 8190 if (mode == pf_sw->bridge_mode) 8191 continue; 8192 /* Iterates through the PF VSI list and update the loopback 8193 * mode of the VSI 8194 */ 8195 ice_for_each_vsi(pf, v) { 8196 if (!pf->vsi[v]) 8197 continue; 8198 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8199 if (err) 8200 return err; 8201 } 8202 8203 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8204 /* Update the unicast switch filter rules for the corresponding 8205 * switch of the netdev 8206 */ 8207 err = ice_update_sw_rule_bridge_mode(hw); 8208 if (err) { 8209 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8210 mode, err, 8211 ice_aq_str(hw->adminq.sq_last_status)); 8212 /* revert hw->evb_veb */ 8213 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8214 return err; 8215 } 8216 8217 pf_sw->bridge_mode = mode; 8218 } 8219 8220 return 0; 8221 } 8222 8223 /** 8224 * ice_tx_timeout - Respond to a Tx Hang 8225 * @netdev: network interface device structure 8226 * @txqueue: Tx queue 8227 */ 8228 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8229 { 8230 struct ice_netdev_priv *np = netdev_priv(netdev); 8231 struct ice_tx_ring *tx_ring = NULL; 8232 struct ice_vsi *vsi = np->vsi; 8233 struct ice_pf *pf = vsi->back; 8234 u32 i; 8235 8236 pf->tx_timeout_count++; 8237 8238 /* Check if PFC is enabled for the TC to which the queue belongs 8239 * to. If yes then Tx timeout is not caused by a hung queue, no 8240 * need to reset and rebuild 8241 */ 8242 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8243 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8244 txqueue); 8245 return; 8246 } 8247 8248 /* now that we have an index, find the tx_ring struct */ 8249 ice_for_each_txq(vsi, i) 8250 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8251 if (txqueue == vsi->tx_rings[i]->q_index) { 8252 tx_ring = vsi->tx_rings[i]; 8253 break; 8254 } 8255 8256 /* Reset recovery level if enough time has elapsed after last timeout. 8257 * Also ensure no new reset action happens before next timeout period. 8258 */ 8259 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8260 pf->tx_timeout_recovery_level = 1; 8261 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8262 netdev->watchdog_timeo))) 8263 return; 8264 8265 if (tx_ring) { 8266 struct ice_hw *hw = &pf->hw; 8267 u32 head, val = 0; 8268 8269 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8270 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8271 /* Read interrupt register */ 8272 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8273 8274 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8275 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8276 head, tx_ring->next_to_use, val); 8277 } 8278 8279 pf->tx_timeout_last_recovery = jiffies; 8280 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8281 pf->tx_timeout_recovery_level, txqueue); 8282 8283 switch (pf->tx_timeout_recovery_level) { 8284 case 1: 8285 set_bit(ICE_PFR_REQ, pf->state); 8286 break; 8287 case 2: 8288 set_bit(ICE_CORER_REQ, pf->state); 8289 break; 8290 case 3: 8291 set_bit(ICE_GLOBR_REQ, pf->state); 8292 break; 8293 default: 8294 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8295 set_bit(ICE_DOWN, pf->state); 8296 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8297 set_bit(ICE_SERVICE_DIS, pf->state); 8298 break; 8299 } 8300 8301 ice_service_task_schedule(pf); 8302 pf->tx_timeout_recovery_level++; 8303 } 8304 8305 /** 8306 * ice_setup_tc_cls_flower - flower classifier offloads 8307 * @np: net device to configure 8308 * @filter_dev: device on which filter is added 8309 * @cls_flower: offload data 8310 */ 8311 static int 8312 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8313 struct net_device *filter_dev, 8314 struct flow_cls_offload *cls_flower) 8315 { 8316 struct ice_vsi *vsi = np->vsi; 8317 8318 if (cls_flower->common.chain_index) 8319 return -EOPNOTSUPP; 8320 8321 switch (cls_flower->command) { 8322 case FLOW_CLS_REPLACE: 8323 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8324 case FLOW_CLS_DESTROY: 8325 return ice_del_cls_flower(vsi, cls_flower); 8326 default: 8327 return -EINVAL; 8328 } 8329 } 8330 8331 /** 8332 * ice_setup_tc_block_cb - callback handler registered for TC block 8333 * @type: TC SETUP type 8334 * @type_data: TC flower offload data that contains user input 8335 * @cb_priv: netdev private data 8336 */ 8337 static int 8338 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8339 { 8340 struct ice_netdev_priv *np = cb_priv; 8341 8342 switch (type) { 8343 case TC_SETUP_CLSFLOWER: 8344 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8345 type_data); 8346 default: 8347 return -EOPNOTSUPP; 8348 } 8349 } 8350 8351 /** 8352 * ice_validate_mqprio_qopt - Validate TCF input parameters 8353 * @vsi: Pointer to VSI 8354 * @mqprio_qopt: input parameters for mqprio queue configuration 8355 * 8356 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8357 * needed), and make sure user doesn't specify qcount and BW rate limit 8358 * for TCs, which are more than "num_tc" 8359 */ 8360 static int 8361 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8362 struct tc_mqprio_qopt_offload *mqprio_qopt) 8363 { 8364 int non_power_of_2_qcount = 0; 8365 struct ice_pf *pf = vsi->back; 8366 int max_rss_q_cnt = 0; 8367 u64 sum_min_rate = 0; 8368 struct device *dev; 8369 int i, speed; 8370 u8 num_tc; 8371 8372 if (vsi->type != ICE_VSI_PF) 8373 return -EINVAL; 8374 8375 if (mqprio_qopt->qopt.offset[0] != 0 || 8376 mqprio_qopt->qopt.num_tc < 1 || 8377 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8378 return -EINVAL; 8379 8380 dev = ice_pf_to_dev(pf); 8381 vsi->ch_rss_size = 0; 8382 num_tc = mqprio_qopt->qopt.num_tc; 8383 speed = ice_get_link_speed_kbps(vsi); 8384 8385 for (i = 0; num_tc; i++) { 8386 int qcount = mqprio_qopt->qopt.count[i]; 8387 u64 max_rate, min_rate, rem; 8388 8389 if (!qcount) 8390 return -EINVAL; 8391 8392 if (is_power_of_2(qcount)) { 8393 if (non_power_of_2_qcount && 8394 qcount > non_power_of_2_qcount) { 8395 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8396 qcount, non_power_of_2_qcount); 8397 return -EINVAL; 8398 } 8399 if (qcount > max_rss_q_cnt) 8400 max_rss_q_cnt = qcount; 8401 } else { 8402 if (non_power_of_2_qcount && 8403 qcount != non_power_of_2_qcount) { 8404 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8405 qcount, non_power_of_2_qcount); 8406 return -EINVAL; 8407 } 8408 if (qcount < max_rss_q_cnt) { 8409 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8410 qcount, max_rss_q_cnt); 8411 return -EINVAL; 8412 } 8413 max_rss_q_cnt = qcount; 8414 non_power_of_2_qcount = qcount; 8415 } 8416 8417 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8418 * converts the bandwidth rate limit into Bytes/s when 8419 * passing it down to the driver. So convert input bandwidth 8420 * from Bytes/s to Kbps 8421 */ 8422 max_rate = mqprio_qopt->max_rate[i]; 8423 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8424 8425 /* min_rate is minimum guaranteed rate and it can't be zero */ 8426 min_rate = mqprio_qopt->min_rate[i]; 8427 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8428 sum_min_rate += min_rate; 8429 8430 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8431 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8432 min_rate, ICE_MIN_BW_LIMIT); 8433 return -EINVAL; 8434 } 8435 8436 if (max_rate && max_rate > speed) { 8437 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8438 i, max_rate, speed); 8439 return -EINVAL; 8440 } 8441 8442 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8443 if (rem) { 8444 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8445 i, ICE_MIN_BW_LIMIT); 8446 return -EINVAL; 8447 } 8448 8449 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8450 if (rem) { 8451 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8452 i, ICE_MIN_BW_LIMIT); 8453 return -EINVAL; 8454 } 8455 8456 /* min_rate can't be more than max_rate, except when max_rate 8457 * is zero (implies max_rate sought is max line rate). In such 8458 * a case min_rate can be more than max. 8459 */ 8460 if (max_rate && min_rate > max_rate) { 8461 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8462 min_rate, max_rate); 8463 return -EINVAL; 8464 } 8465 8466 if (i >= mqprio_qopt->qopt.num_tc - 1) 8467 break; 8468 if (mqprio_qopt->qopt.offset[i + 1] != 8469 (mqprio_qopt->qopt.offset[i] + qcount)) 8470 return -EINVAL; 8471 } 8472 if (vsi->num_rxq < 8473 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8474 return -EINVAL; 8475 if (vsi->num_txq < 8476 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8477 return -EINVAL; 8478 8479 if (sum_min_rate && sum_min_rate > (u64)speed) { 8480 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8481 sum_min_rate, speed); 8482 return -EINVAL; 8483 } 8484 8485 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8486 vsi->ch_rss_size = max_rss_q_cnt; 8487 8488 return 0; 8489 } 8490 8491 /** 8492 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8493 * @pf: ptr to PF device 8494 * @vsi: ptr to VSI 8495 */ 8496 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8497 { 8498 struct device *dev = ice_pf_to_dev(pf); 8499 bool added = false; 8500 struct ice_hw *hw; 8501 int flow; 8502 8503 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8504 return -EINVAL; 8505 8506 hw = &pf->hw; 8507 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8508 struct ice_fd_hw_prof *prof; 8509 int tun, status; 8510 u64 entry_h; 8511 8512 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8513 hw->fdir_prof[flow]->cnt)) 8514 continue; 8515 8516 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8517 enum ice_flow_priority prio; 8518 8519 /* add this VSI to FDir profile for this flow */ 8520 prio = ICE_FLOW_PRIO_NORMAL; 8521 prof = hw->fdir_prof[flow]; 8522 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8523 prof->prof_id[tun], 8524 prof->vsi_h[0], vsi->idx, 8525 prio, prof->fdir_seg[tun], 8526 &entry_h); 8527 if (status) { 8528 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8529 vsi->idx, flow); 8530 continue; 8531 } 8532 8533 prof->entry_h[prof->cnt][tun] = entry_h; 8534 } 8535 8536 /* store VSI for filter replay and delete */ 8537 prof->vsi_h[prof->cnt] = vsi->idx; 8538 prof->cnt++; 8539 8540 added = true; 8541 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8542 flow); 8543 } 8544 8545 if (!added) 8546 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8547 8548 return 0; 8549 } 8550 8551 /** 8552 * ice_add_channel - add a channel by adding VSI 8553 * @pf: ptr to PF device 8554 * @sw_id: underlying HW switching element ID 8555 * @ch: ptr to channel structure 8556 * 8557 * Add a channel (VSI) using add_vsi and queue_map 8558 */ 8559 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8560 { 8561 struct device *dev = ice_pf_to_dev(pf); 8562 struct ice_vsi *vsi; 8563 8564 if (ch->type != ICE_VSI_CHNL) { 8565 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8566 return -EINVAL; 8567 } 8568 8569 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8570 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8571 dev_err(dev, "create chnl VSI failure\n"); 8572 return -EINVAL; 8573 } 8574 8575 ice_add_vsi_to_fdir(pf, vsi); 8576 8577 ch->sw_id = sw_id; 8578 ch->vsi_num = vsi->vsi_num; 8579 ch->info.mapping_flags = vsi->info.mapping_flags; 8580 ch->ch_vsi = vsi; 8581 /* set the back pointer of channel for newly created VSI */ 8582 vsi->ch = ch; 8583 8584 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8585 sizeof(vsi->info.q_mapping)); 8586 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8587 sizeof(vsi->info.tc_mapping)); 8588 8589 return 0; 8590 } 8591 8592 /** 8593 * ice_chnl_cfg_res 8594 * @vsi: the VSI being setup 8595 * @ch: ptr to channel structure 8596 * 8597 * Configure channel specific resources such as rings, vector. 8598 */ 8599 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8600 { 8601 int i; 8602 8603 for (i = 0; i < ch->num_txq; i++) { 8604 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8605 struct ice_ring_container *rc; 8606 struct ice_tx_ring *tx_ring; 8607 struct ice_rx_ring *rx_ring; 8608 8609 tx_ring = vsi->tx_rings[ch->base_q + i]; 8610 rx_ring = vsi->rx_rings[ch->base_q + i]; 8611 if (!tx_ring || !rx_ring) 8612 continue; 8613 8614 /* setup ring being channel enabled */ 8615 tx_ring->ch = ch; 8616 rx_ring->ch = ch; 8617 8618 /* following code block sets up vector specific attributes */ 8619 tx_q_vector = tx_ring->q_vector; 8620 rx_q_vector = rx_ring->q_vector; 8621 if (!tx_q_vector && !rx_q_vector) 8622 continue; 8623 8624 if (tx_q_vector) { 8625 tx_q_vector->ch = ch; 8626 /* setup Tx and Rx ITR setting if DIM is off */ 8627 rc = &tx_q_vector->tx; 8628 if (!ITR_IS_DYNAMIC(rc)) 8629 ice_write_itr(rc, rc->itr_setting); 8630 } 8631 if (rx_q_vector) { 8632 rx_q_vector->ch = ch; 8633 /* setup Tx and Rx ITR setting if DIM is off */ 8634 rc = &rx_q_vector->rx; 8635 if (!ITR_IS_DYNAMIC(rc)) 8636 ice_write_itr(rc, rc->itr_setting); 8637 } 8638 } 8639 8640 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8641 * GLINT_ITR register would have written to perform in-context 8642 * update, hence perform flush 8643 */ 8644 if (ch->num_txq || ch->num_rxq) 8645 ice_flush(&vsi->back->hw); 8646 } 8647 8648 /** 8649 * ice_cfg_chnl_all_res - configure channel resources 8650 * @vsi: pte to main_vsi 8651 * @ch: ptr to channel structure 8652 * 8653 * This function configures channel specific resources such as flow-director 8654 * counter index, and other resources such as queues, vectors, ITR settings 8655 */ 8656 static void 8657 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8658 { 8659 /* configure channel (aka ADQ) resources such as queues, vectors, 8660 * ITR settings for channel specific vectors and anything else 8661 */ 8662 ice_chnl_cfg_res(vsi, ch); 8663 } 8664 8665 /** 8666 * ice_setup_hw_channel - setup new channel 8667 * @pf: ptr to PF device 8668 * @vsi: the VSI being setup 8669 * @ch: ptr to channel structure 8670 * @sw_id: underlying HW switching element ID 8671 * @type: type of channel to be created (VMDq2/VF) 8672 * 8673 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8674 * and configures Tx rings accordingly 8675 */ 8676 static int 8677 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8678 struct ice_channel *ch, u16 sw_id, u8 type) 8679 { 8680 struct device *dev = ice_pf_to_dev(pf); 8681 int ret; 8682 8683 ch->base_q = vsi->next_base_q; 8684 ch->type = type; 8685 8686 ret = ice_add_channel(pf, sw_id, ch); 8687 if (ret) { 8688 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8689 return ret; 8690 } 8691 8692 /* configure/setup ADQ specific resources */ 8693 ice_cfg_chnl_all_res(vsi, ch); 8694 8695 /* make sure to update the next_base_q so that subsequent channel's 8696 * (aka ADQ) VSI queue map is correct 8697 */ 8698 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8699 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8700 ch->num_rxq); 8701 8702 return 0; 8703 } 8704 8705 /** 8706 * ice_setup_channel - setup new channel using uplink element 8707 * @pf: ptr to PF device 8708 * @vsi: the VSI being setup 8709 * @ch: ptr to channel structure 8710 * 8711 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8712 * and uplink switching element 8713 */ 8714 static bool 8715 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8716 struct ice_channel *ch) 8717 { 8718 struct device *dev = ice_pf_to_dev(pf); 8719 u16 sw_id; 8720 int ret; 8721 8722 if (vsi->type != ICE_VSI_PF) { 8723 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8724 return false; 8725 } 8726 8727 sw_id = pf->first_sw->sw_id; 8728 8729 /* create channel (VSI) */ 8730 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8731 if (ret) { 8732 dev_err(dev, "failed to setup hw_channel\n"); 8733 return false; 8734 } 8735 dev_dbg(dev, "successfully created channel()\n"); 8736 8737 return ch->ch_vsi ? true : false; 8738 } 8739 8740 /** 8741 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8742 * @vsi: VSI to be configured 8743 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8744 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8745 */ 8746 static int 8747 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8748 { 8749 int err; 8750 8751 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8752 if (err) 8753 return err; 8754 8755 return ice_set_max_bw_limit(vsi, max_tx_rate); 8756 } 8757 8758 /** 8759 * ice_create_q_channel - function to create channel 8760 * @vsi: VSI to be configured 8761 * @ch: ptr to channel (it contains channel specific params) 8762 * 8763 * This function creates channel (VSI) using num_queues specified by user, 8764 * reconfigs RSS if needed. 8765 */ 8766 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8767 { 8768 struct ice_pf *pf = vsi->back; 8769 struct device *dev; 8770 8771 if (!ch) 8772 return -EINVAL; 8773 8774 dev = ice_pf_to_dev(pf); 8775 if (!ch->num_txq || !ch->num_rxq) { 8776 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8777 return -EINVAL; 8778 } 8779 8780 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8781 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8782 vsi->cnt_q_avail, ch->num_txq); 8783 return -EINVAL; 8784 } 8785 8786 if (!ice_setup_channel(pf, vsi, ch)) { 8787 dev_info(dev, "Failed to setup channel\n"); 8788 return -EINVAL; 8789 } 8790 /* configure BW rate limit */ 8791 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8792 int ret; 8793 8794 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8795 ch->min_tx_rate); 8796 if (ret) 8797 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8798 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8799 else 8800 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8801 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8802 } 8803 8804 vsi->cnt_q_avail -= ch->num_txq; 8805 8806 return 0; 8807 } 8808 8809 /** 8810 * ice_rem_all_chnl_fltrs - removes all channel filters 8811 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8812 * 8813 * Remove all advanced switch filters only if they are channel specific 8814 * tc-flower based filter 8815 */ 8816 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8817 { 8818 struct ice_tc_flower_fltr *fltr; 8819 struct hlist_node *node; 8820 8821 /* to remove all channel filters, iterate an ordered list of filters */ 8822 hlist_for_each_entry_safe(fltr, node, 8823 &pf->tc_flower_fltr_list, 8824 tc_flower_node) { 8825 struct ice_rule_query_data rule; 8826 int status; 8827 8828 /* for now process only channel specific filters */ 8829 if (!ice_is_chnl_fltr(fltr)) 8830 continue; 8831 8832 rule.rid = fltr->rid; 8833 rule.rule_id = fltr->rule_id; 8834 rule.vsi_handle = fltr->dest_vsi_handle; 8835 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8836 if (status) { 8837 if (status == -ENOENT) 8838 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8839 rule.rule_id); 8840 else 8841 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8842 status); 8843 } else if (fltr->dest_vsi) { 8844 /* update advanced switch filter count */ 8845 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8846 u32 flags = fltr->flags; 8847 8848 fltr->dest_vsi->num_chnl_fltr--; 8849 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8850 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8851 pf->num_dmac_chnl_fltrs--; 8852 } 8853 } 8854 8855 hlist_del(&fltr->tc_flower_node); 8856 kfree(fltr); 8857 } 8858 } 8859 8860 /** 8861 * ice_remove_q_channels - Remove queue channels for the TCs 8862 * @vsi: VSI to be configured 8863 * @rem_fltr: delete advanced switch filter or not 8864 * 8865 * Remove queue channels for the TCs 8866 */ 8867 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8868 { 8869 struct ice_channel *ch, *ch_tmp; 8870 struct ice_pf *pf = vsi->back; 8871 int i; 8872 8873 /* remove all tc-flower based filter if they are channel filters only */ 8874 if (rem_fltr) 8875 ice_rem_all_chnl_fltrs(pf); 8876 8877 /* remove ntuple filters since queue configuration is being changed */ 8878 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8879 struct ice_hw *hw = &pf->hw; 8880 8881 mutex_lock(&hw->fdir_fltr_lock); 8882 ice_fdir_del_all_fltrs(vsi); 8883 mutex_unlock(&hw->fdir_fltr_lock); 8884 } 8885 8886 /* perform cleanup for channels if they exist */ 8887 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8888 struct ice_vsi *ch_vsi; 8889 8890 list_del(&ch->list); 8891 ch_vsi = ch->ch_vsi; 8892 if (!ch_vsi) { 8893 kfree(ch); 8894 continue; 8895 } 8896 8897 /* Reset queue contexts */ 8898 for (i = 0; i < ch->num_rxq; i++) { 8899 struct ice_tx_ring *tx_ring; 8900 struct ice_rx_ring *rx_ring; 8901 8902 tx_ring = vsi->tx_rings[ch->base_q + i]; 8903 rx_ring = vsi->rx_rings[ch->base_q + i]; 8904 if (tx_ring) { 8905 tx_ring->ch = NULL; 8906 if (tx_ring->q_vector) 8907 tx_ring->q_vector->ch = NULL; 8908 } 8909 if (rx_ring) { 8910 rx_ring->ch = NULL; 8911 if (rx_ring->q_vector) 8912 rx_ring->q_vector->ch = NULL; 8913 } 8914 } 8915 8916 /* Release FD resources for the channel VSI */ 8917 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8918 8919 /* clear the VSI from scheduler tree */ 8920 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8921 8922 /* Delete VSI from FW, PF and HW VSI arrays */ 8923 ice_vsi_delete(ch->ch_vsi); 8924 8925 /* free the channel */ 8926 kfree(ch); 8927 } 8928 8929 /* clear the channel VSI map which is stored in main VSI */ 8930 ice_for_each_chnl_tc(i) 8931 vsi->tc_map_vsi[i] = NULL; 8932 8933 /* reset main VSI's all TC information */ 8934 vsi->all_enatc = 0; 8935 vsi->all_numtc = 0; 8936 } 8937 8938 /** 8939 * ice_rebuild_channels - rebuild channel 8940 * @pf: ptr to PF 8941 * 8942 * Recreate channel VSIs and replay filters 8943 */ 8944 static int ice_rebuild_channels(struct ice_pf *pf) 8945 { 8946 struct device *dev = ice_pf_to_dev(pf); 8947 struct ice_vsi *main_vsi; 8948 bool rem_adv_fltr = true; 8949 struct ice_channel *ch; 8950 struct ice_vsi *vsi; 8951 int tc_idx = 1; 8952 int i, err; 8953 8954 main_vsi = ice_get_main_vsi(pf); 8955 if (!main_vsi) 8956 return 0; 8957 8958 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8959 main_vsi->old_numtc == 1) 8960 return 0; /* nothing to be done */ 8961 8962 /* reconfigure main VSI based on old value of TC and cached values 8963 * for MQPRIO opts 8964 */ 8965 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8966 if (err) { 8967 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8968 main_vsi->old_ena_tc, main_vsi->vsi_num); 8969 return err; 8970 } 8971 8972 /* rebuild ADQ VSIs */ 8973 ice_for_each_vsi(pf, i) { 8974 enum ice_vsi_type type; 8975 8976 vsi = pf->vsi[i]; 8977 if (!vsi || vsi->type != ICE_VSI_CHNL) 8978 continue; 8979 8980 type = vsi->type; 8981 8982 /* rebuild ADQ VSI */ 8983 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8984 if (err) { 8985 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8986 ice_vsi_type_str(type), vsi->idx, err); 8987 goto cleanup; 8988 } 8989 8990 /* Re-map HW VSI number, using VSI handle that has been 8991 * previously validated in ice_replay_vsi() call above 8992 */ 8993 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8994 8995 /* replay filters for the VSI */ 8996 err = ice_replay_vsi(&pf->hw, vsi->idx); 8997 if (err) { 8998 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8999 ice_vsi_type_str(type), err, vsi->idx); 9000 rem_adv_fltr = false; 9001 goto cleanup; 9002 } 9003 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9004 ice_vsi_type_str(type), vsi->idx); 9005 9006 /* store ADQ VSI at correct TC index in main VSI's 9007 * map of TC to VSI 9008 */ 9009 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9010 } 9011 9012 /* ADQ VSI(s) has been rebuilt successfully, so setup 9013 * channel for main VSI's Tx and Rx rings 9014 */ 9015 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9016 struct ice_vsi *ch_vsi; 9017 9018 ch_vsi = ch->ch_vsi; 9019 if (!ch_vsi) 9020 continue; 9021 9022 /* reconfig channel resources */ 9023 ice_cfg_chnl_all_res(main_vsi, ch); 9024 9025 /* replay BW rate limit if it is non-zero */ 9026 if (!ch->max_tx_rate && !ch->min_tx_rate) 9027 continue; 9028 9029 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9030 ch->min_tx_rate); 9031 if (err) 9032 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9033 err, ch->max_tx_rate, ch->min_tx_rate, 9034 ch_vsi->vsi_num); 9035 else 9036 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9037 ch->max_tx_rate, ch->min_tx_rate, 9038 ch_vsi->vsi_num); 9039 } 9040 9041 /* reconfig RSS for main VSI */ 9042 if (main_vsi->ch_rss_size) 9043 ice_vsi_cfg_rss_lut_key(main_vsi); 9044 9045 return 0; 9046 9047 cleanup: 9048 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9049 return err; 9050 } 9051 9052 /** 9053 * ice_create_q_channels - Add queue channel for the given TCs 9054 * @vsi: VSI to be configured 9055 * 9056 * Configures queue channel mapping to the given TCs 9057 */ 9058 static int ice_create_q_channels(struct ice_vsi *vsi) 9059 { 9060 struct ice_pf *pf = vsi->back; 9061 struct ice_channel *ch; 9062 int ret = 0, i; 9063 9064 ice_for_each_chnl_tc(i) { 9065 if (!(vsi->all_enatc & BIT(i))) 9066 continue; 9067 9068 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9069 if (!ch) { 9070 ret = -ENOMEM; 9071 goto err_free; 9072 } 9073 INIT_LIST_HEAD(&ch->list); 9074 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9075 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9076 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9077 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9078 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9079 9080 /* convert to Kbits/s */ 9081 if (ch->max_tx_rate) 9082 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9083 ICE_BW_KBPS_DIVISOR); 9084 if (ch->min_tx_rate) 9085 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9086 ICE_BW_KBPS_DIVISOR); 9087 9088 ret = ice_create_q_channel(vsi, ch); 9089 if (ret) { 9090 dev_err(ice_pf_to_dev(pf), 9091 "failed creating channel TC:%d\n", i); 9092 kfree(ch); 9093 goto err_free; 9094 } 9095 list_add_tail(&ch->list, &vsi->ch_list); 9096 vsi->tc_map_vsi[i] = ch->ch_vsi; 9097 dev_dbg(ice_pf_to_dev(pf), 9098 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9099 } 9100 return 0; 9101 9102 err_free: 9103 ice_remove_q_channels(vsi, false); 9104 9105 return ret; 9106 } 9107 9108 /** 9109 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9110 * @netdev: net device to configure 9111 * @type_data: TC offload data 9112 */ 9113 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9114 { 9115 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9116 struct ice_netdev_priv *np = netdev_priv(netdev); 9117 struct ice_vsi *vsi = np->vsi; 9118 struct ice_pf *pf = vsi->back; 9119 u16 mode, ena_tc_qdisc = 0; 9120 int cur_txq, cur_rxq; 9121 u8 hw = 0, num_tcf; 9122 struct device *dev; 9123 int ret, i; 9124 9125 dev = ice_pf_to_dev(pf); 9126 num_tcf = mqprio_qopt->qopt.num_tc; 9127 hw = mqprio_qopt->qopt.hw; 9128 mode = mqprio_qopt->mode; 9129 if (!hw) { 9130 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9131 vsi->ch_rss_size = 0; 9132 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9133 goto config_tcf; 9134 } 9135 9136 /* Generate queue region map for number of TCF requested */ 9137 for (i = 0; i < num_tcf; i++) 9138 ena_tc_qdisc |= BIT(i); 9139 9140 switch (mode) { 9141 case TC_MQPRIO_MODE_CHANNEL: 9142 9143 if (pf->hw.port_info->is_custom_tx_enabled) { 9144 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9145 return -EBUSY; 9146 } 9147 ice_tear_down_devlink_rate_tree(pf); 9148 9149 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9150 if (ret) { 9151 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9152 ret); 9153 return ret; 9154 } 9155 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9156 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9157 /* don't assume state of hw_tc_offload during driver load 9158 * and set the flag for TC flower filter if hw_tc_offload 9159 * already ON 9160 */ 9161 if (vsi->netdev->features & NETIF_F_HW_TC) 9162 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9163 break; 9164 default: 9165 return -EINVAL; 9166 } 9167 9168 config_tcf: 9169 9170 /* Requesting same TCF configuration as already enabled */ 9171 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9172 mode != TC_MQPRIO_MODE_CHANNEL) 9173 return 0; 9174 9175 /* Pause VSI queues */ 9176 ice_dis_vsi(vsi, true); 9177 9178 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9179 ice_remove_q_channels(vsi, true); 9180 9181 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9182 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9183 num_online_cpus()); 9184 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9185 num_online_cpus()); 9186 } else { 9187 /* logic to rebuild VSI, same like ethtool -L */ 9188 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9189 9190 for (i = 0; i < num_tcf; i++) { 9191 if (!(ena_tc_qdisc & BIT(i))) 9192 continue; 9193 9194 offset = vsi->mqprio_qopt.qopt.offset[i]; 9195 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9196 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9197 } 9198 vsi->req_txq = offset + qcount_tx; 9199 vsi->req_rxq = offset + qcount_rx; 9200 9201 /* store away original rss_size info, so that it gets reused 9202 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9203 * determine, what should be the rss_sizefor main VSI 9204 */ 9205 vsi->orig_rss_size = vsi->rss_size; 9206 } 9207 9208 /* save current values of Tx and Rx queues before calling VSI rebuild 9209 * for fallback option 9210 */ 9211 cur_txq = vsi->num_txq; 9212 cur_rxq = vsi->num_rxq; 9213 9214 /* proceed with rebuild main VSI using correct number of queues */ 9215 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9216 if (ret) { 9217 /* fallback to current number of queues */ 9218 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9219 vsi->req_txq = cur_txq; 9220 vsi->req_rxq = cur_rxq; 9221 clear_bit(ICE_RESET_FAILED, pf->state); 9222 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9223 dev_err(dev, "Rebuild of main VSI failed again\n"); 9224 return ret; 9225 } 9226 } 9227 9228 vsi->all_numtc = num_tcf; 9229 vsi->all_enatc = ena_tc_qdisc; 9230 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9231 if (ret) { 9232 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9233 vsi->vsi_num); 9234 goto exit; 9235 } 9236 9237 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9238 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9239 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9240 9241 /* set TC0 rate limit if specified */ 9242 if (max_tx_rate || min_tx_rate) { 9243 /* convert to Kbits/s */ 9244 if (max_tx_rate) 9245 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9246 if (min_tx_rate) 9247 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9248 9249 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9250 if (!ret) { 9251 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9252 max_tx_rate, min_tx_rate, vsi->vsi_num); 9253 } else { 9254 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9255 max_tx_rate, min_tx_rate, vsi->vsi_num); 9256 goto exit; 9257 } 9258 } 9259 ret = ice_create_q_channels(vsi); 9260 if (ret) { 9261 netdev_err(netdev, "failed configuring queue channels\n"); 9262 goto exit; 9263 } else { 9264 netdev_dbg(netdev, "successfully configured channels\n"); 9265 } 9266 } 9267 9268 if (vsi->ch_rss_size) 9269 ice_vsi_cfg_rss_lut_key(vsi); 9270 9271 exit: 9272 /* if error, reset the all_numtc and all_enatc */ 9273 if (ret) { 9274 vsi->all_numtc = 0; 9275 vsi->all_enatc = 0; 9276 } 9277 /* resume VSI */ 9278 ice_ena_vsi(vsi, true); 9279 9280 return ret; 9281 } 9282 9283 static LIST_HEAD(ice_block_cb_list); 9284 9285 static int 9286 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9287 void *type_data) 9288 { 9289 struct ice_netdev_priv *np = netdev_priv(netdev); 9290 struct ice_pf *pf = np->vsi->back; 9291 bool locked = false; 9292 int err; 9293 9294 switch (type) { 9295 case TC_SETUP_BLOCK: 9296 return flow_block_cb_setup_simple(type_data, 9297 &ice_block_cb_list, 9298 ice_setup_tc_block_cb, 9299 np, np, true); 9300 case TC_SETUP_QDISC_MQPRIO: 9301 if (ice_is_eswitch_mode_switchdev(pf)) { 9302 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9303 return -EOPNOTSUPP; 9304 } 9305 9306 if (pf->adev) { 9307 mutex_lock(&pf->adev_mutex); 9308 device_lock(&pf->adev->dev); 9309 locked = true; 9310 if (pf->adev->dev.driver) { 9311 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9312 err = -EBUSY; 9313 goto adev_unlock; 9314 } 9315 } 9316 9317 /* setup traffic classifier for receive side */ 9318 mutex_lock(&pf->tc_mutex); 9319 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9320 mutex_unlock(&pf->tc_mutex); 9321 9322 adev_unlock: 9323 if (locked) { 9324 device_unlock(&pf->adev->dev); 9325 mutex_unlock(&pf->adev_mutex); 9326 } 9327 return err; 9328 default: 9329 return -EOPNOTSUPP; 9330 } 9331 return -EOPNOTSUPP; 9332 } 9333 9334 static struct ice_indr_block_priv * 9335 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9336 struct net_device *netdev) 9337 { 9338 struct ice_indr_block_priv *cb_priv; 9339 9340 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9341 if (!cb_priv->netdev) 9342 return NULL; 9343 if (cb_priv->netdev == netdev) 9344 return cb_priv; 9345 } 9346 return NULL; 9347 } 9348 9349 static int 9350 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9351 void *indr_priv) 9352 { 9353 struct ice_indr_block_priv *priv = indr_priv; 9354 struct ice_netdev_priv *np = priv->np; 9355 9356 switch (type) { 9357 case TC_SETUP_CLSFLOWER: 9358 return ice_setup_tc_cls_flower(np, priv->netdev, 9359 (struct flow_cls_offload *) 9360 type_data); 9361 default: 9362 return -EOPNOTSUPP; 9363 } 9364 } 9365 9366 static int 9367 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9368 struct ice_netdev_priv *np, 9369 struct flow_block_offload *f, void *data, 9370 void (*cleanup)(struct flow_block_cb *block_cb)) 9371 { 9372 struct ice_indr_block_priv *indr_priv; 9373 struct flow_block_cb *block_cb; 9374 9375 if (!ice_is_tunnel_supported(netdev) && 9376 !(is_vlan_dev(netdev) && 9377 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9378 return -EOPNOTSUPP; 9379 9380 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9381 return -EOPNOTSUPP; 9382 9383 switch (f->command) { 9384 case FLOW_BLOCK_BIND: 9385 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9386 if (indr_priv) 9387 return -EEXIST; 9388 9389 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9390 if (!indr_priv) 9391 return -ENOMEM; 9392 9393 indr_priv->netdev = netdev; 9394 indr_priv->np = np; 9395 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9396 9397 block_cb = 9398 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9399 indr_priv, indr_priv, 9400 ice_rep_indr_tc_block_unbind, 9401 f, netdev, sch, data, np, 9402 cleanup); 9403 9404 if (IS_ERR(block_cb)) { 9405 list_del(&indr_priv->list); 9406 kfree(indr_priv); 9407 return PTR_ERR(block_cb); 9408 } 9409 flow_block_cb_add(block_cb, f); 9410 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9411 break; 9412 case FLOW_BLOCK_UNBIND: 9413 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9414 if (!indr_priv) 9415 return -ENOENT; 9416 9417 block_cb = flow_block_cb_lookup(f->block, 9418 ice_indr_setup_block_cb, 9419 indr_priv); 9420 if (!block_cb) 9421 return -ENOENT; 9422 9423 flow_indr_block_cb_remove(block_cb, f); 9424 9425 list_del(&block_cb->driver_list); 9426 break; 9427 default: 9428 return -EOPNOTSUPP; 9429 } 9430 return 0; 9431 } 9432 9433 static int 9434 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9435 void *cb_priv, enum tc_setup_type type, void *type_data, 9436 void *data, 9437 void (*cleanup)(struct flow_block_cb *block_cb)) 9438 { 9439 switch (type) { 9440 case TC_SETUP_BLOCK: 9441 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9442 data, cleanup); 9443 9444 default: 9445 return -EOPNOTSUPP; 9446 } 9447 } 9448 9449 /** 9450 * ice_open - Called when a network interface becomes active 9451 * @netdev: network interface device structure 9452 * 9453 * The open entry point is called when a network interface is made 9454 * active by the system (IFF_UP). At this point all resources needed 9455 * for transmit and receive operations are allocated, the interrupt 9456 * handler is registered with the OS, the netdev watchdog is enabled, 9457 * and the stack is notified that the interface is ready. 9458 * 9459 * Returns 0 on success, negative value on failure 9460 */ 9461 int ice_open(struct net_device *netdev) 9462 { 9463 struct ice_netdev_priv *np = netdev_priv(netdev); 9464 struct ice_pf *pf = np->vsi->back; 9465 9466 if (ice_is_reset_in_progress(pf->state)) { 9467 netdev_err(netdev, "can't open net device while reset is in progress"); 9468 return -EBUSY; 9469 } 9470 9471 return ice_open_internal(netdev); 9472 } 9473 9474 /** 9475 * ice_open_internal - Called when a network interface becomes active 9476 * @netdev: network interface device structure 9477 * 9478 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9479 * handling routine 9480 * 9481 * Returns 0 on success, negative value on failure 9482 */ 9483 int ice_open_internal(struct net_device *netdev) 9484 { 9485 struct ice_netdev_priv *np = netdev_priv(netdev); 9486 struct ice_vsi *vsi = np->vsi; 9487 struct ice_pf *pf = vsi->back; 9488 struct ice_port_info *pi; 9489 int err; 9490 9491 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9492 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9493 return -EIO; 9494 } 9495 9496 netif_carrier_off(netdev); 9497 9498 pi = vsi->port_info; 9499 err = ice_update_link_info(pi); 9500 if (err) { 9501 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9502 return err; 9503 } 9504 9505 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9506 9507 /* Set PHY if there is media, otherwise, turn off PHY */ 9508 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9509 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9510 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9511 err = ice_init_phy_user_cfg(pi); 9512 if (err) { 9513 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9514 err); 9515 return err; 9516 } 9517 } 9518 9519 err = ice_configure_phy(vsi); 9520 if (err) { 9521 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9522 err); 9523 return err; 9524 } 9525 } else { 9526 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9527 ice_set_link(vsi, false); 9528 } 9529 9530 err = ice_vsi_open(vsi); 9531 if (err) 9532 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9533 vsi->vsi_num, vsi->vsw->sw_id); 9534 9535 /* Update existing tunnels information */ 9536 udp_tunnel_get_rx_info(netdev); 9537 9538 return err; 9539 } 9540 9541 /** 9542 * ice_stop - Disables a network interface 9543 * @netdev: network interface device structure 9544 * 9545 * The stop entry point is called when an interface is de-activated by the OS, 9546 * and the netdevice enters the DOWN state. The hardware is still under the 9547 * driver's control, but the netdev interface is disabled. 9548 * 9549 * Returns success only - not allowed to fail 9550 */ 9551 int ice_stop(struct net_device *netdev) 9552 { 9553 struct ice_netdev_priv *np = netdev_priv(netdev); 9554 struct ice_vsi *vsi = np->vsi; 9555 struct ice_pf *pf = vsi->back; 9556 9557 if (ice_is_reset_in_progress(pf->state)) { 9558 netdev_err(netdev, "can't stop net device while reset is in progress"); 9559 return -EBUSY; 9560 } 9561 9562 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9563 int link_err = ice_force_phys_link_state(vsi, false); 9564 9565 if (link_err) { 9566 if (link_err == -ENOMEDIUM) 9567 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9568 vsi->vsi_num); 9569 else 9570 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9571 vsi->vsi_num, link_err); 9572 9573 ice_vsi_close(vsi); 9574 return -EIO; 9575 } 9576 } 9577 9578 ice_vsi_close(vsi); 9579 9580 return 0; 9581 } 9582 9583 /** 9584 * ice_features_check - Validate encapsulated packet conforms to limits 9585 * @skb: skb buffer 9586 * @netdev: This port's netdev 9587 * @features: Offload features that the stack believes apply 9588 */ 9589 static netdev_features_t 9590 ice_features_check(struct sk_buff *skb, 9591 struct net_device __always_unused *netdev, 9592 netdev_features_t features) 9593 { 9594 bool gso = skb_is_gso(skb); 9595 size_t len; 9596 9597 /* No point in doing any of this if neither checksum nor GSO are 9598 * being requested for this frame. We can rule out both by just 9599 * checking for CHECKSUM_PARTIAL 9600 */ 9601 if (skb->ip_summed != CHECKSUM_PARTIAL) 9602 return features; 9603 9604 /* We cannot support GSO if the MSS is going to be less than 9605 * 64 bytes. If it is then we need to drop support for GSO. 9606 */ 9607 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9608 features &= ~NETIF_F_GSO_MASK; 9609 9610 len = skb_network_offset(skb); 9611 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9612 goto out_rm_features; 9613 9614 len = skb_network_header_len(skb); 9615 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9616 goto out_rm_features; 9617 9618 if (skb->encapsulation) { 9619 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9620 * the case of IPIP frames, the transport header pointer is 9621 * after the inner header! So check to make sure that this 9622 * is a GRE or UDP_TUNNEL frame before doing that math. 9623 */ 9624 if (gso && (skb_shinfo(skb)->gso_type & 9625 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9626 len = skb_inner_network_header(skb) - 9627 skb_transport_header(skb); 9628 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9629 goto out_rm_features; 9630 } 9631 9632 len = skb_inner_network_header_len(skb); 9633 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9634 goto out_rm_features; 9635 } 9636 9637 return features; 9638 out_rm_features: 9639 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9640 } 9641 9642 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9643 .ndo_open = ice_open, 9644 .ndo_stop = ice_stop, 9645 .ndo_start_xmit = ice_start_xmit, 9646 .ndo_set_mac_address = ice_set_mac_address, 9647 .ndo_validate_addr = eth_validate_addr, 9648 .ndo_change_mtu = ice_change_mtu, 9649 .ndo_get_stats64 = ice_get_stats64, 9650 .ndo_tx_timeout = ice_tx_timeout, 9651 .ndo_bpf = ice_xdp_safe_mode, 9652 }; 9653 9654 static const struct net_device_ops ice_netdev_ops = { 9655 .ndo_open = ice_open, 9656 .ndo_stop = ice_stop, 9657 .ndo_start_xmit = ice_start_xmit, 9658 .ndo_select_queue = ice_select_queue, 9659 .ndo_features_check = ice_features_check, 9660 .ndo_fix_features = ice_fix_features, 9661 .ndo_set_rx_mode = ice_set_rx_mode, 9662 .ndo_set_mac_address = ice_set_mac_address, 9663 .ndo_validate_addr = eth_validate_addr, 9664 .ndo_change_mtu = ice_change_mtu, 9665 .ndo_get_stats64 = ice_get_stats64, 9666 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9667 .ndo_eth_ioctl = ice_eth_ioctl, 9668 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9669 .ndo_set_vf_mac = ice_set_vf_mac, 9670 .ndo_get_vf_config = ice_get_vf_cfg, 9671 .ndo_set_vf_trust = ice_set_vf_trust, 9672 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9673 .ndo_set_vf_link_state = ice_set_vf_link_state, 9674 .ndo_get_vf_stats = ice_get_vf_stats, 9675 .ndo_set_vf_rate = ice_set_vf_bw, 9676 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9677 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9678 .ndo_setup_tc = ice_setup_tc, 9679 .ndo_set_features = ice_set_features, 9680 .ndo_bridge_getlink = ice_bridge_getlink, 9681 .ndo_bridge_setlink = ice_bridge_setlink, 9682 .ndo_fdb_add = ice_fdb_add, 9683 .ndo_fdb_del = ice_fdb_del, 9684 #ifdef CONFIG_RFS_ACCEL 9685 .ndo_rx_flow_steer = ice_rx_flow_steer, 9686 #endif 9687 .ndo_tx_timeout = ice_tx_timeout, 9688 .ndo_bpf = ice_xdp, 9689 .ndo_xdp_xmit = ice_xdp_xmit, 9690 .ndo_xsk_wakeup = ice_xsk_wakeup, 9691 }; 9692