1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_LICENSE("GPL v2"); 41 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 42 43 static int debug = -1; 44 module_param(debug, int, 0644); 45 #ifndef CONFIG_DYNAMIC_DEBUG 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 47 #else 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 49 #endif /* !CONFIG_DYNAMIC_DEBUG */ 50 51 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 52 EXPORT_SYMBOL(ice_xdp_locking_key); 53 54 /** 55 * ice_hw_to_dev - Get device pointer from the hardware structure 56 * @hw: pointer to the device HW structure 57 * 58 * Used to access the device pointer from compilation units which can't easily 59 * include the definition of struct ice_pf without leading to circular header 60 * dependencies. 61 */ 62 struct device *ice_hw_to_dev(struct ice_hw *hw) 63 { 64 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 65 66 return &pf->pdev->dev; 67 } 68 69 static struct workqueue_struct *ice_wq; 70 struct workqueue_struct *ice_lag_wq; 71 static const struct net_device_ops ice_netdev_safe_mode_ops; 72 static const struct net_device_ops ice_netdev_ops; 73 74 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 75 76 static void ice_vsi_release_all(struct ice_pf *pf); 77 78 static int ice_rebuild_channels(struct ice_pf *pf); 79 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 80 81 static int 82 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 83 void *cb_priv, enum tc_setup_type type, void *type_data, 84 void *data, 85 void (*cleanup)(struct flow_block_cb *block_cb)); 86 87 bool netif_is_ice(const struct net_device *dev) 88 { 89 return dev && (dev->netdev_ops == &ice_netdev_ops); 90 } 91 92 /** 93 * ice_get_tx_pending - returns number of Tx descriptors not processed 94 * @ring: the ring of descriptors 95 */ 96 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 97 { 98 u16 head, tail; 99 100 head = ring->next_to_clean; 101 tail = ring->next_to_use; 102 103 if (head != tail) 104 return (head < tail) ? 105 tail - head : (tail + ring->count - head); 106 return 0; 107 } 108 109 /** 110 * ice_check_for_hang_subtask - check for and recover hung queues 111 * @pf: pointer to PF struct 112 */ 113 static void ice_check_for_hang_subtask(struct ice_pf *pf) 114 { 115 struct ice_vsi *vsi = NULL; 116 struct ice_hw *hw; 117 unsigned int i; 118 int packets; 119 u32 v; 120 121 ice_for_each_vsi(pf, v) 122 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 123 vsi = pf->vsi[v]; 124 break; 125 } 126 127 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 128 return; 129 130 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 131 return; 132 133 hw = &vsi->back->hw; 134 135 ice_for_each_txq(vsi, i) { 136 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 137 struct ice_ring_stats *ring_stats; 138 139 if (!tx_ring) 140 continue; 141 if (ice_ring_ch_enabled(tx_ring)) 142 continue; 143 144 ring_stats = tx_ring->ring_stats; 145 if (!ring_stats) 146 continue; 147 148 if (tx_ring->desc) { 149 /* If packet counter has not changed the queue is 150 * likely stalled, so force an interrupt for this 151 * queue. 152 * 153 * prev_pkt would be negative if there was no 154 * pending work. 155 */ 156 packets = ring_stats->stats.pkts & INT_MAX; 157 if (ring_stats->tx_stats.prev_pkt == packets) { 158 /* Trigger sw interrupt to revive the queue */ 159 ice_trigger_sw_intr(hw, tx_ring->q_vector); 160 continue; 161 } 162 163 /* Memory barrier between read of packet count and call 164 * to ice_get_tx_pending() 165 */ 166 smp_rmb(); 167 ring_stats->tx_stats.prev_pkt = 168 ice_get_tx_pending(tx_ring) ? packets : -1; 169 } 170 } 171 } 172 173 /** 174 * ice_init_mac_fltr - Set initial MAC filters 175 * @pf: board private structure 176 * 177 * Set initial set of MAC filters for PF VSI; configure filters for permanent 178 * address and broadcast address. If an error is encountered, netdevice will be 179 * unregistered. 180 */ 181 static int ice_init_mac_fltr(struct ice_pf *pf) 182 { 183 struct ice_vsi *vsi; 184 u8 *perm_addr; 185 186 vsi = ice_get_main_vsi(pf); 187 if (!vsi) 188 return -EINVAL; 189 190 perm_addr = vsi->port_info->mac.perm_addr; 191 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 192 } 193 194 /** 195 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 196 * @netdev: the net device on which the sync is happening 197 * @addr: MAC address to sync 198 * 199 * This is a callback function which is called by the in kernel device sync 200 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 201 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 202 * MAC filters from the hardware. 203 */ 204 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 205 { 206 struct ice_netdev_priv *np = netdev_priv(netdev); 207 struct ice_vsi *vsi = np->vsi; 208 209 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 210 ICE_FWD_TO_VSI)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 /** 217 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 218 * @netdev: the net device on which the unsync is happening 219 * @addr: MAC address to unsync 220 * 221 * This is a callback function which is called by the in kernel device unsync 222 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 223 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 224 * delete the MAC filters from the hardware. 225 */ 226 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 227 { 228 struct ice_netdev_priv *np = netdev_priv(netdev); 229 struct ice_vsi *vsi = np->vsi; 230 231 /* Under some circumstances, we might receive a request to delete our 232 * own device address from our uc list. Because we store the device 233 * address in the VSI's MAC filter list, we need to ignore such 234 * requests and not delete our device address from this list. 235 */ 236 if (ether_addr_equal(addr, netdev->dev_addr)) 237 return 0; 238 239 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 240 ICE_FWD_TO_VSI)) 241 return -EINVAL; 242 243 return 0; 244 } 245 246 /** 247 * ice_vsi_fltr_changed - check if filter state changed 248 * @vsi: VSI to be checked 249 * 250 * returns true if filter state has changed, false otherwise. 251 */ 252 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 253 { 254 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 255 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 256 } 257 258 /** 259 * ice_set_promisc - Enable promiscuous mode for a given PF 260 * @vsi: the VSI being configured 261 * @promisc_m: mask of promiscuous config bits 262 * 263 */ 264 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 265 { 266 int status; 267 268 if (vsi->type != ICE_VSI_PF) 269 return 0; 270 271 if (ice_vsi_has_non_zero_vlans(vsi)) { 272 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 273 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 274 promisc_m); 275 } else { 276 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 277 promisc_m, 0); 278 } 279 if (status && status != -EEXIST) 280 return status; 281 282 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 283 vsi->vsi_num, promisc_m); 284 return 0; 285 } 286 287 /** 288 * ice_clear_promisc - Disable promiscuous mode for a given PF 289 * @vsi: the VSI being configured 290 * @promisc_m: mask of promiscuous config bits 291 * 292 */ 293 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 294 { 295 int status; 296 297 if (vsi->type != ICE_VSI_PF) 298 return 0; 299 300 if (ice_vsi_has_non_zero_vlans(vsi)) { 301 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 302 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 303 promisc_m); 304 } else { 305 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 306 promisc_m, 0); 307 } 308 309 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 310 vsi->vsi_num, promisc_m); 311 return status; 312 } 313 314 /** 315 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 316 * @vsi: ptr to the VSI 317 * 318 * Push any outstanding VSI filter changes through the AdminQ. 319 */ 320 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 321 { 322 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 323 struct device *dev = ice_pf_to_dev(vsi->back); 324 struct net_device *netdev = vsi->netdev; 325 bool promisc_forced_on = false; 326 struct ice_pf *pf = vsi->back; 327 struct ice_hw *hw = &pf->hw; 328 u32 changed_flags = 0; 329 int err; 330 331 if (!vsi->netdev) 332 return -EINVAL; 333 334 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 335 usleep_range(1000, 2000); 336 337 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 338 vsi->current_netdev_flags = vsi->netdev->flags; 339 340 INIT_LIST_HEAD(&vsi->tmp_sync_list); 341 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 342 343 if (ice_vsi_fltr_changed(vsi)) { 344 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 345 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 346 347 /* grab the netdev's addr_list_lock */ 348 netif_addr_lock_bh(netdev); 349 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 /* our temp lists are populated. release lock */ 354 netif_addr_unlock_bh(netdev); 355 } 356 357 /* Remove MAC addresses in the unsync list */ 358 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 359 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 360 if (err) { 361 netdev_err(netdev, "Failed to delete MAC filters\n"); 362 /* if we failed because of alloc failures, just bail */ 363 if (err == -ENOMEM) 364 goto out; 365 } 366 367 /* Add MAC addresses in the sync list */ 368 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 369 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 370 /* If filter is added successfully or already exists, do not go into 371 * 'if' condition and report it as error. Instead continue processing 372 * rest of the function. 373 */ 374 if (err && err != -EEXIST) { 375 netdev_err(netdev, "Failed to add MAC filters\n"); 376 /* If there is no more space for new umac filters, VSI 377 * should go into promiscuous mode. There should be some 378 * space reserved for promiscuous filters. 379 */ 380 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 381 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 382 vsi->state)) { 383 promisc_forced_on = true; 384 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 385 vsi->vsi_num); 386 } else { 387 goto out; 388 } 389 } 390 err = 0; 391 /* check for changes in promiscuous modes */ 392 if (changed_flags & IFF_ALLMULTI) { 393 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 394 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 395 if (err) { 396 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 397 goto out_promisc; 398 } 399 } else { 400 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 401 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 402 if (err) { 403 vsi->current_netdev_flags |= IFF_ALLMULTI; 404 goto out_promisc; 405 } 406 } 407 } 408 409 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 410 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 411 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 412 if (vsi->current_netdev_flags & IFF_PROMISC) { 413 /* Apply Rx filter rule to get traffic from wire */ 414 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 415 err = ice_set_dflt_vsi(vsi); 416 if (err && err != -EEXIST) { 417 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 418 err, vsi->vsi_num); 419 vsi->current_netdev_flags &= 420 ~IFF_PROMISC; 421 goto out_promisc; 422 } 423 err = 0; 424 vlan_ops->dis_rx_filtering(vsi); 425 426 /* promiscuous mode implies allmulticast so 427 * that VSIs that are in promiscuous mode are 428 * subscribed to multicast packets coming to 429 * the port 430 */ 431 err = ice_set_promisc(vsi, 432 ICE_MCAST_PROMISC_BITS); 433 if (err) 434 goto out_promisc; 435 } 436 } else { 437 /* Clear Rx filter to remove traffic from wire */ 438 if (ice_is_vsi_dflt_vsi(vsi)) { 439 err = ice_clear_dflt_vsi(vsi); 440 if (err) { 441 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 442 err, vsi->vsi_num); 443 vsi->current_netdev_flags |= 444 IFF_PROMISC; 445 goto out_promisc; 446 } 447 if (vsi->netdev->features & 448 NETIF_F_HW_VLAN_CTAG_FILTER) 449 vlan_ops->ena_rx_filtering(vsi); 450 } 451 452 /* disable allmulti here, but only if allmulti is not 453 * still enabled for the netdev 454 */ 455 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 456 err = ice_clear_promisc(vsi, 457 ICE_MCAST_PROMISC_BITS); 458 if (err) { 459 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 460 err, vsi->vsi_num); 461 } 462 } 463 } 464 } 465 goto exit; 466 467 out_promisc: 468 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 469 goto exit; 470 out: 471 /* if something went wrong then set the changed flag so we try again */ 472 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 473 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 474 exit: 475 clear_bit(ICE_CFG_BUSY, vsi->state); 476 return err; 477 } 478 479 /** 480 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 481 * @pf: board private structure 482 */ 483 static void ice_sync_fltr_subtask(struct ice_pf *pf) 484 { 485 int v; 486 487 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 488 return; 489 490 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 491 492 ice_for_each_vsi(pf, v) 493 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 494 ice_vsi_sync_fltr(pf->vsi[v])) { 495 /* come back and try again later */ 496 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 497 break; 498 } 499 } 500 501 /** 502 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 503 * @pf: the PF 504 * @locked: is the rtnl_lock already held 505 */ 506 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 507 { 508 int node; 509 int v; 510 511 ice_for_each_vsi(pf, v) 512 if (pf->vsi[v]) 513 ice_dis_vsi(pf->vsi[v], locked); 514 515 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 516 pf->pf_agg_node[node].num_vsis = 0; 517 518 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 519 pf->vf_agg_node[node].num_vsis = 0; 520 } 521 522 /** 523 * ice_clear_sw_switch_recipes - clear switch recipes 524 * @pf: board private structure 525 * 526 * Mark switch recipes as not created in sw structures. There are cases where 527 * rules (especially advanced rules) need to be restored, either re-read from 528 * hardware or added again. For example after the reset. 'recp_created' flag 529 * prevents from doing that and need to be cleared upfront. 530 */ 531 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 532 { 533 struct ice_sw_recipe *recp; 534 u8 i; 535 536 recp = pf->hw.switch_info->recp_list; 537 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 538 recp[i].recp_created = false; 539 } 540 541 /** 542 * ice_prepare_for_reset - prep for reset 543 * @pf: board private structure 544 * @reset_type: reset type requested 545 * 546 * Inform or close all dependent features in prep for reset. 547 */ 548 static void 549 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 550 { 551 struct ice_hw *hw = &pf->hw; 552 struct ice_vsi *vsi; 553 struct ice_vf *vf; 554 unsigned int bkt; 555 556 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 557 558 /* already prepared for reset */ 559 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 560 return; 561 562 ice_unplug_aux_dev(pf); 563 564 /* Notify VFs of impending reset */ 565 if (ice_check_sq_alive(hw, &hw->mailboxq)) 566 ice_vc_notify_reset(pf); 567 568 /* Disable VFs until reset is completed */ 569 mutex_lock(&pf->vfs.table_lock); 570 ice_for_each_vf(pf, bkt, vf) 571 ice_set_vf_state_dis(vf); 572 mutex_unlock(&pf->vfs.table_lock); 573 574 if (ice_is_eswitch_mode_switchdev(pf)) { 575 if (reset_type != ICE_RESET_PFR) 576 ice_clear_sw_switch_recipes(pf); 577 } 578 579 /* release ADQ specific HW and SW resources */ 580 vsi = ice_get_main_vsi(pf); 581 if (!vsi) 582 goto skip; 583 584 /* to be on safe side, reset orig_rss_size so that normal flow 585 * of deciding rss_size can take precedence 586 */ 587 vsi->orig_rss_size = 0; 588 589 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 590 if (reset_type == ICE_RESET_PFR) { 591 vsi->old_ena_tc = vsi->all_enatc; 592 vsi->old_numtc = vsi->all_numtc; 593 } else { 594 ice_remove_q_channels(vsi, true); 595 596 /* for other reset type, do not support channel rebuild 597 * hence reset needed info 598 */ 599 vsi->old_ena_tc = 0; 600 vsi->all_enatc = 0; 601 vsi->old_numtc = 0; 602 vsi->all_numtc = 0; 603 vsi->req_txq = 0; 604 vsi->req_rxq = 0; 605 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 606 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 607 } 608 } 609 skip: 610 611 /* clear SW filtering DB */ 612 ice_clear_hw_tbls(hw); 613 /* disable the VSIs and their queues that are not already DOWN */ 614 ice_pf_dis_all_vsi(pf, false); 615 616 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 617 ice_ptp_prepare_for_reset(pf, reset_type); 618 619 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 620 ice_gnss_exit(pf); 621 622 if (hw->port_info) 623 ice_sched_clear_port(hw->port_info); 624 625 ice_shutdown_all_ctrlq(hw); 626 627 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 } 629 630 /** 631 * ice_do_reset - Initiate one of many types of resets 632 * @pf: board private structure 633 * @reset_type: reset type requested before this function was called. 634 */ 635 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 636 { 637 struct device *dev = ice_pf_to_dev(pf); 638 struct ice_hw *hw = &pf->hw; 639 640 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 641 642 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 643 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 644 reset_type = ICE_RESET_CORER; 645 } 646 647 ice_prepare_for_reset(pf, reset_type); 648 649 /* trigger the reset */ 650 if (ice_reset(hw, reset_type)) { 651 dev_err(dev, "reset %d failed\n", reset_type); 652 set_bit(ICE_RESET_FAILED, pf->state); 653 clear_bit(ICE_RESET_OICR_RECV, pf->state); 654 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 655 clear_bit(ICE_PFR_REQ, pf->state); 656 clear_bit(ICE_CORER_REQ, pf->state); 657 clear_bit(ICE_GLOBR_REQ, pf->state); 658 wake_up(&pf->reset_wait_queue); 659 return; 660 } 661 662 /* PFR is a bit of a special case because it doesn't result in an OICR 663 * interrupt. So for PFR, rebuild after the reset and clear the reset- 664 * associated state bits. 665 */ 666 if (reset_type == ICE_RESET_PFR) { 667 pf->pfr_count++; 668 ice_rebuild(pf, reset_type); 669 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 670 clear_bit(ICE_PFR_REQ, pf->state); 671 wake_up(&pf->reset_wait_queue); 672 ice_reset_all_vfs(pf); 673 } 674 } 675 676 /** 677 * ice_reset_subtask - Set up for resetting the device and driver 678 * @pf: board private structure 679 */ 680 static void ice_reset_subtask(struct ice_pf *pf) 681 { 682 enum ice_reset_req reset_type = ICE_RESET_INVAL; 683 684 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 685 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 686 * of reset is pending and sets bits in pf->state indicating the reset 687 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 688 * prepare for pending reset if not already (for PF software-initiated 689 * global resets the software should already be prepared for it as 690 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 691 * by firmware or software on other PFs, that bit is not set so prepare 692 * for the reset now), poll for reset done, rebuild and return. 693 */ 694 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 695 /* Perform the largest reset requested */ 696 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 697 reset_type = ICE_RESET_CORER; 698 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 699 reset_type = ICE_RESET_GLOBR; 700 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 701 reset_type = ICE_RESET_EMPR; 702 /* return if no valid reset type requested */ 703 if (reset_type == ICE_RESET_INVAL) 704 return; 705 ice_prepare_for_reset(pf, reset_type); 706 707 /* make sure we are ready to rebuild */ 708 if (ice_check_reset(&pf->hw)) { 709 set_bit(ICE_RESET_FAILED, pf->state); 710 } else { 711 /* done with reset. start rebuild */ 712 pf->hw.reset_ongoing = false; 713 ice_rebuild(pf, reset_type); 714 /* clear bit to resume normal operations, but 715 * ICE_NEEDS_RESTART bit is set in case rebuild failed 716 */ 717 clear_bit(ICE_RESET_OICR_RECV, pf->state); 718 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 719 clear_bit(ICE_PFR_REQ, pf->state); 720 clear_bit(ICE_CORER_REQ, pf->state); 721 clear_bit(ICE_GLOBR_REQ, pf->state); 722 wake_up(&pf->reset_wait_queue); 723 ice_reset_all_vfs(pf); 724 } 725 726 return; 727 } 728 729 /* No pending resets to finish processing. Check for new resets */ 730 if (test_bit(ICE_PFR_REQ, pf->state)) { 731 reset_type = ICE_RESET_PFR; 732 if (pf->lag && pf->lag->bonded) { 733 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 734 reset_type = ICE_RESET_CORER; 735 } 736 } 737 if (test_bit(ICE_CORER_REQ, pf->state)) 738 reset_type = ICE_RESET_CORER; 739 if (test_bit(ICE_GLOBR_REQ, pf->state)) 740 reset_type = ICE_RESET_GLOBR; 741 /* If no valid reset type requested just return */ 742 if (reset_type == ICE_RESET_INVAL) 743 return; 744 745 /* reset if not already down or busy */ 746 if (!test_bit(ICE_DOWN, pf->state) && 747 !test_bit(ICE_CFG_BUSY, pf->state)) { 748 ice_do_reset(pf, reset_type); 749 } 750 } 751 752 /** 753 * ice_print_topo_conflict - print topology conflict message 754 * @vsi: the VSI whose topology status is being checked 755 */ 756 static void ice_print_topo_conflict(struct ice_vsi *vsi) 757 { 758 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 759 case ICE_AQ_LINK_TOPO_CONFLICT: 760 case ICE_AQ_LINK_MEDIA_CONFLICT: 761 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 764 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 765 break; 766 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 767 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 768 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 769 else 770 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 771 break; 772 default: 773 break; 774 } 775 } 776 777 /** 778 * ice_print_link_msg - print link up or down message 779 * @vsi: the VSI whose link status is being queried 780 * @isup: boolean for if the link is now up or down 781 */ 782 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 783 { 784 struct ice_aqc_get_phy_caps_data *caps; 785 const char *an_advertised; 786 const char *fec_req; 787 const char *speed; 788 const char *fec; 789 const char *fc; 790 const char *an; 791 int status; 792 793 if (!vsi) 794 return; 795 796 if (vsi->current_isup == isup) 797 return; 798 799 vsi->current_isup = isup; 800 801 if (!isup) { 802 netdev_info(vsi->netdev, "NIC Link is Down\n"); 803 return; 804 } 805 806 switch (vsi->port_info->phy.link_info.link_speed) { 807 case ICE_AQ_LINK_SPEED_100GB: 808 speed = "100 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_50GB: 811 speed = "50 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_40GB: 814 speed = "40 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_25GB: 817 speed = "25 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_20GB: 820 speed = "20 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_10GB: 823 speed = "10 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_5GB: 826 speed = "5 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_2500MB: 829 speed = "2.5 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_1000MB: 832 speed = "1 G"; 833 break; 834 case ICE_AQ_LINK_SPEED_100MB: 835 speed = "100 M"; 836 break; 837 default: 838 speed = "Unknown "; 839 break; 840 } 841 842 switch (vsi->port_info->fc.current_mode) { 843 case ICE_FC_FULL: 844 fc = "Rx/Tx"; 845 break; 846 case ICE_FC_TX_PAUSE: 847 fc = "Tx"; 848 break; 849 case ICE_FC_RX_PAUSE: 850 fc = "Rx"; 851 break; 852 case ICE_FC_NONE: 853 fc = "None"; 854 break; 855 default: 856 fc = "Unknown"; 857 break; 858 } 859 860 /* Get FEC mode based on negotiated link info */ 861 switch (vsi->port_info->phy.link_info.fec_info) { 862 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 863 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 864 fec = "RS-FEC"; 865 break; 866 case ICE_AQ_LINK_25G_KR_FEC_EN: 867 fec = "FC-FEC/BASE-R"; 868 break; 869 default: 870 fec = "NONE"; 871 break; 872 } 873 874 /* check if autoneg completed, might be false due to not supported */ 875 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 876 an = "True"; 877 else 878 an = "False"; 879 880 /* Get FEC mode requested based on PHY caps last SW configuration */ 881 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 882 if (!caps) { 883 fec_req = "Unknown"; 884 an_advertised = "Unknown"; 885 goto done; 886 } 887 888 status = ice_aq_get_phy_caps(vsi->port_info, false, 889 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 890 if (status) 891 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 892 893 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 894 895 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 897 fec_req = "RS-FEC"; 898 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 899 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 900 fec_req = "FC-FEC/BASE-R"; 901 else 902 fec_req = "NONE"; 903 904 kfree(caps); 905 906 done: 907 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 908 speed, fec_req, fec, an_advertised, an, fc); 909 ice_print_topo_conflict(vsi); 910 } 911 912 /** 913 * ice_vsi_link_event - update the VSI's netdev 914 * @vsi: the VSI on which the link event occurred 915 * @link_up: whether or not the VSI needs to be set up or down 916 */ 917 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 918 { 919 if (!vsi) 920 return; 921 922 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 923 return; 924 925 if (vsi->type == ICE_VSI_PF) { 926 if (link_up == netif_carrier_ok(vsi->netdev)) 927 return; 928 929 if (link_up) { 930 netif_carrier_on(vsi->netdev); 931 netif_tx_wake_all_queues(vsi->netdev); 932 } else { 933 netif_carrier_off(vsi->netdev); 934 netif_tx_stop_all_queues(vsi->netdev); 935 } 936 } 937 } 938 939 /** 940 * ice_set_dflt_mib - send a default config MIB to the FW 941 * @pf: private PF struct 942 * 943 * This function sends a default configuration MIB to the FW. 944 * 945 * If this function errors out at any point, the driver is still able to 946 * function. The main impact is that LFC may not operate as expected. 947 * Therefore an error state in this function should be treated with a DBG 948 * message and continue on with driver rebuild/reenable. 949 */ 950 static void ice_set_dflt_mib(struct ice_pf *pf) 951 { 952 struct device *dev = ice_pf_to_dev(pf); 953 u8 mib_type, *buf, *lldpmib = NULL; 954 u16 len, typelen, offset = 0; 955 struct ice_lldp_org_tlv *tlv; 956 struct ice_hw *hw = &pf->hw; 957 u32 ouisubtype; 958 959 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 960 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 961 if (!lldpmib) { 962 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 963 __func__); 964 return; 965 } 966 967 /* Add ETS CFG TLV */ 968 tlv = (struct ice_lldp_org_tlv *)lldpmib; 969 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 970 ICE_IEEE_ETS_TLV_LEN); 971 tlv->typelen = htons(typelen); 972 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 973 ICE_IEEE_SUBTYPE_ETS_CFG); 974 tlv->ouisubtype = htonl(ouisubtype); 975 976 buf = tlv->tlvinfo; 977 buf[0] = 0; 978 979 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 980 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 981 * Octets 13 - 20 are TSA values - leave as zeros 982 */ 983 buf[5] = 0x64; 984 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 985 offset += len + 2; 986 tlv = (struct ice_lldp_org_tlv *) 987 ((char *)tlv + sizeof(tlv->typelen) + len); 988 989 /* Add ETS REC TLV */ 990 buf = tlv->tlvinfo; 991 tlv->typelen = htons(typelen); 992 993 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 994 ICE_IEEE_SUBTYPE_ETS_REC); 995 tlv->ouisubtype = htonl(ouisubtype); 996 997 /* First octet of buf is reserved 998 * Octets 1 - 4 map UP to TC - all UPs map to zero 999 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1000 * Octets 13 - 20 are TSA value - leave as zeros 1001 */ 1002 buf[5] = 0x64; 1003 offset += len + 2; 1004 tlv = (struct ice_lldp_org_tlv *) 1005 ((char *)tlv + sizeof(tlv->typelen) + len); 1006 1007 /* Add PFC CFG TLV */ 1008 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1009 ICE_IEEE_PFC_TLV_LEN); 1010 tlv->typelen = htons(typelen); 1011 1012 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1013 ICE_IEEE_SUBTYPE_PFC_CFG); 1014 tlv->ouisubtype = htonl(ouisubtype); 1015 1016 /* Octet 1 left as all zeros - PFC disabled */ 1017 buf[0] = 0x08; 1018 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1019 offset += len + 2; 1020 1021 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1022 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1023 1024 kfree(lldpmib); 1025 } 1026 1027 /** 1028 * ice_check_phy_fw_load - check if PHY FW load failed 1029 * @pf: pointer to PF struct 1030 * @link_cfg_err: bitmap from the link info structure 1031 * 1032 * check if external PHY FW load failed and print an error message if it did 1033 */ 1034 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1035 { 1036 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1037 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1038 return; 1039 } 1040 1041 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1042 return; 1043 1044 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1045 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1046 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1047 } 1048 } 1049 1050 /** 1051 * ice_check_module_power 1052 * @pf: pointer to PF struct 1053 * @link_cfg_err: bitmap from the link info structure 1054 * 1055 * check module power level returned by a previous call to aq_get_link_info 1056 * and print error messages if module power level is not supported 1057 */ 1058 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1059 { 1060 /* if module power level is supported, clear the flag */ 1061 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1062 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1063 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1064 return; 1065 } 1066 1067 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1068 * above block didn't clear this bit, there's nothing to do 1069 */ 1070 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1071 return; 1072 1073 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1074 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1076 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1077 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1078 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1079 } 1080 } 1081 1082 /** 1083 * ice_check_link_cfg_err - check if link configuration failed 1084 * @pf: pointer to the PF struct 1085 * @link_cfg_err: bitmap from the link info structure 1086 * 1087 * print if any link configuration failure happens due to the value in the 1088 * link_cfg_err parameter in the link info structure 1089 */ 1090 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1091 { 1092 ice_check_module_power(pf, link_cfg_err); 1093 ice_check_phy_fw_load(pf, link_cfg_err); 1094 } 1095 1096 /** 1097 * ice_link_event - process the link event 1098 * @pf: PF that the link event is associated with 1099 * @pi: port_info for the port that the link event is associated with 1100 * @link_up: true if the physical link is up and false if it is down 1101 * @link_speed: current link speed received from the link event 1102 * 1103 * Returns 0 on success and negative on failure 1104 */ 1105 static int 1106 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1107 u16 link_speed) 1108 { 1109 struct device *dev = ice_pf_to_dev(pf); 1110 struct ice_phy_info *phy_info; 1111 struct ice_vsi *vsi; 1112 u16 old_link_speed; 1113 bool old_link; 1114 int status; 1115 1116 phy_info = &pi->phy; 1117 phy_info->link_info_old = phy_info->link_info; 1118 1119 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1120 old_link_speed = phy_info->link_info_old.link_speed; 1121 1122 /* update the link info structures and re-enable link events, 1123 * don't bail on failure due to other book keeping needed 1124 */ 1125 status = ice_update_link_info(pi); 1126 if (status) 1127 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1128 pi->lport, status, 1129 ice_aq_str(pi->hw->adminq.sq_last_status)); 1130 1131 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1132 1133 /* Check if the link state is up after updating link info, and treat 1134 * this event as an UP event since the link is actually UP now. 1135 */ 1136 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1137 link_up = true; 1138 1139 vsi = ice_get_main_vsi(pf); 1140 if (!vsi || !vsi->port_info) 1141 return -EINVAL; 1142 1143 /* turn off PHY if media was removed */ 1144 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1145 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1146 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1147 ice_set_link(vsi, false); 1148 } 1149 1150 /* if the old link up/down and speed is the same as the new */ 1151 if (link_up == old_link && link_speed == old_link_speed) 1152 return 0; 1153 1154 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1155 1156 if (ice_is_dcb_active(pf)) { 1157 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1158 ice_dcb_rebuild(pf); 1159 } else { 1160 if (link_up) 1161 ice_set_dflt_mib(pf); 1162 } 1163 ice_vsi_link_event(vsi, link_up); 1164 ice_print_link_msg(vsi, link_up); 1165 1166 ice_vc_notify_link_state(pf); 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1173 * @pf: board private structure 1174 */ 1175 static void ice_watchdog_subtask(struct ice_pf *pf) 1176 { 1177 int i; 1178 1179 /* if interface is down do nothing */ 1180 if (test_bit(ICE_DOWN, pf->state) || 1181 test_bit(ICE_CFG_BUSY, pf->state)) 1182 return; 1183 1184 /* make sure we don't do these things too often */ 1185 if (time_before(jiffies, 1186 pf->serv_tmr_prev + pf->serv_tmr_period)) 1187 return; 1188 1189 pf->serv_tmr_prev = jiffies; 1190 1191 /* Update the stats for active netdevs so the network stack 1192 * can look at updated numbers whenever it cares to 1193 */ 1194 ice_update_pf_stats(pf); 1195 ice_for_each_vsi(pf, i) 1196 if (pf->vsi[i] && pf->vsi[i]->netdev) 1197 ice_update_vsi_stats(pf->vsi[i]); 1198 } 1199 1200 /** 1201 * ice_init_link_events - enable/initialize link events 1202 * @pi: pointer to the port_info instance 1203 * 1204 * Returns -EIO on failure, 0 on success 1205 */ 1206 static int ice_init_link_events(struct ice_port_info *pi) 1207 { 1208 u16 mask; 1209 1210 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1211 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1212 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1213 1214 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1215 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1216 pi->lport); 1217 return -EIO; 1218 } 1219 1220 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1221 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1222 pi->lport); 1223 return -EIO; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * ice_handle_link_event - handle link event via ARQ 1231 * @pf: PF that the link event is associated with 1232 * @event: event structure containing link status info 1233 */ 1234 static int 1235 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1236 { 1237 struct ice_aqc_get_link_status_data *link_data; 1238 struct ice_port_info *port_info; 1239 int status; 1240 1241 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1242 port_info = pf->hw.port_info; 1243 if (!port_info) 1244 return -EINVAL; 1245 1246 status = ice_link_event(pf, port_info, 1247 !!(link_data->link_info & ICE_AQ_LINK_UP), 1248 le16_to_cpu(link_data->link_speed)); 1249 if (status) 1250 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1251 status); 1252 1253 return status; 1254 } 1255 1256 /** 1257 * ice_get_fwlog_data - copy the FW log data from ARQ event 1258 * @pf: PF that the FW log event is associated with 1259 * @event: event structure containing FW log data 1260 */ 1261 static void 1262 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1263 { 1264 struct ice_fwlog_data *fwlog; 1265 struct ice_hw *hw = &pf->hw; 1266 1267 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1268 1269 memset(fwlog->data, 0, PAGE_SIZE); 1270 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1271 1272 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1273 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1274 1275 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1276 /* the rings are full so bump the head to create room */ 1277 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1278 hw->fwlog_ring.size); 1279 } 1280 } 1281 1282 /** 1283 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1284 * @pf: pointer to the PF private structure 1285 * @task: intermediate helper storage and identifier for waiting 1286 * @opcode: the opcode to wait for 1287 * 1288 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1289 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1290 * 1291 * Calls are separated to allow caller registering for event before sending 1292 * the command, which mitigates a race between registering and FW responding. 1293 * 1294 * To obtain only the descriptor contents, pass an task->event with null 1295 * msg_buf. If the complete data buffer is desired, allocate the 1296 * task->event.msg_buf with enough space ahead of time. 1297 */ 1298 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1299 u16 opcode) 1300 { 1301 INIT_HLIST_NODE(&task->entry); 1302 task->opcode = opcode; 1303 task->state = ICE_AQ_TASK_WAITING; 1304 1305 spin_lock_bh(&pf->aq_wait_lock); 1306 hlist_add_head(&task->entry, &pf->aq_wait_list); 1307 spin_unlock_bh(&pf->aq_wait_lock); 1308 } 1309 1310 /** 1311 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1312 * @pf: pointer to the PF private structure 1313 * @task: ptr prepared by ice_aq_prep_for_event() 1314 * @timeout: how long to wait, in jiffies 1315 * 1316 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1317 * current thread will be put to sleep until the specified event occurs or 1318 * until the given timeout is reached. 1319 * 1320 * Returns: zero on success, or a negative error code on failure. 1321 */ 1322 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1323 unsigned long timeout) 1324 { 1325 enum ice_aq_task_state *state = &task->state; 1326 struct device *dev = ice_pf_to_dev(pf); 1327 unsigned long start = jiffies; 1328 long ret; 1329 int err; 1330 1331 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1332 *state != ICE_AQ_TASK_WAITING, 1333 timeout); 1334 switch (*state) { 1335 case ICE_AQ_TASK_NOT_PREPARED: 1336 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1337 err = -EINVAL; 1338 break; 1339 case ICE_AQ_TASK_WAITING: 1340 err = ret < 0 ? ret : -ETIMEDOUT; 1341 break; 1342 case ICE_AQ_TASK_CANCELED: 1343 err = ret < 0 ? ret : -ECANCELED; 1344 break; 1345 case ICE_AQ_TASK_COMPLETE: 1346 err = ret < 0 ? ret : 0; 1347 break; 1348 default: 1349 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1350 err = -EINVAL; 1351 break; 1352 } 1353 1354 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1355 jiffies_to_msecs(jiffies - start), 1356 jiffies_to_msecs(timeout), 1357 task->opcode); 1358 1359 spin_lock_bh(&pf->aq_wait_lock); 1360 hlist_del(&task->entry); 1361 spin_unlock_bh(&pf->aq_wait_lock); 1362 1363 return err; 1364 } 1365 1366 /** 1367 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1368 * @pf: pointer to the PF private structure 1369 * @opcode: the opcode of the event 1370 * @event: the event to check 1371 * 1372 * Loops over the current list of pending threads waiting for an AdminQ event. 1373 * For each matching task, copy the contents of the event into the task 1374 * structure and wake up the thread. 1375 * 1376 * If multiple threads wait for the same opcode, they will all be woken up. 1377 * 1378 * Note that event->msg_buf will only be duplicated if the event has a buffer 1379 * with enough space already allocated. Otherwise, only the descriptor and 1380 * message length will be copied. 1381 * 1382 * Returns: true if an event was found, false otherwise 1383 */ 1384 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1385 struct ice_rq_event_info *event) 1386 { 1387 struct ice_rq_event_info *task_ev; 1388 struct ice_aq_task *task; 1389 bool found = false; 1390 1391 spin_lock_bh(&pf->aq_wait_lock); 1392 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1393 if (task->state != ICE_AQ_TASK_WAITING) 1394 continue; 1395 if (task->opcode != opcode) 1396 continue; 1397 1398 task_ev = &task->event; 1399 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1400 task_ev->msg_len = event->msg_len; 1401 1402 /* Only copy the data buffer if a destination was set */ 1403 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1404 memcpy(task_ev->msg_buf, event->msg_buf, 1405 event->buf_len); 1406 task_ev->buf_len = event->buf_len; 1407 } 1408 1409 task->state = ICE_AQ_TASK_COMPLETE; 1410 found = true; 1411 } 1412 spin_unlock_bh(&pf->aq_wait_lock); 1413 1414 if (found) 1415 wake_up(&pf->aq_wait_queue); 1416 } 1417 1418 /** 1419 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1420 * @pf: the PF private structure 1421 * 1422 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1423 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1424 */ 1425 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1426 { 1427 struct ice_aq_task *task; 1428 1429 spin_lock_bh(&pf->aq_wait_lock); 1430 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1431 task->state = ICE_AQ_TASK_CANCELED; 1432 spin_unlock_bh(&pf->aq_wait_lock); 1433 1434 wake_up(&pf->aq_wait_queue); 1435 } 1436 1437 #define ICE_MBX_OVERFLOW_WATERMARK 64 1438 1439 /** 1440 * __ice_clean_ctrlq - helper function to clean controlq rings 1441 * @pf: ptr to struct ice_pf 1442 * @q_type: specific Control queue type 1443 */ 1444 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1445 { 1446 struct device *dev = ice_pf_to_dev(pf); 1447 struct ice_rq_event_info event; 1448 struct ice_hw *hw = &pf->hw; 1449 struct ice_ctl_q_info *cq; 1450 u16 pending, i = 0; 1451 const char *qtype; 1452 u32 oldval, val; 1453 1454 /* Do not clean control queue if/when PF reset fails */ 1455 if (test_bit(ICE_RESET_FAILED, pf->state)) 1456 return 0; 1457 1458 switch (q_type) { 1459 case ICE_CTL_Q_ADMIN: 1460 cq = &hw->adminq; 1461 qtype = "Admin"; 1462 break; 1463 case ICE_CTL_Q_SB: 1464 cq = &hw->sbq; 1465 qtype = "Sideband"; 1466 break; 1467 case ICE_CTL_Q_MAILBOX: 1468 cq = &hw->mailboxq; 1469 qtype = "Mailbox"; 1470 /* we are going to try to detect a malicious VF, so set the 1471 * state to begin detection 1472 */ 1473 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1474 break; 1475 default: 1476 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1477 return 0; 1478 } 1479 1480 /* check for error indications - PF_xx_AxQLEN register layout for 1481 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1482 */ 1483 val = rd32(hw, cq->rq.len); 1484 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1485 PF_FW_ARQLEN_ARQCRIT_M)) { 1486 oldval = val; 1487 if (val & PF_FW_ARQLEN_ARQVFE_M) 1488 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1489 qtype); 1490 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1491 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1492 qtype); 1493 } 1494 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1495 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1496 qtype); 1497 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1498 PF_FW_ARQLEN_ARQCRIT_M); 1499 if (oldval != val) 1500 wr32(hw, cq->rq.len, val); 1501 } 1502 1503 val = rd32(hw, cq->sq.len); 1504 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1505 PF_FW_ATQLEN_ATQCRIT_M)) { 1506 oldval = val; 1507 if (val & PF_FW_ATQLEN_ATQVFE_M) 1508 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1509 qtype); 1510 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1511 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1512 qtype); 1513 } 1514 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1515 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1516 qtype); 1517 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1518 PF_FW_ATQLEN_ATQCRIT_M); 1519 if (oldval != val) 1520 wr32(hw, cq->sq.len, val); 1521 } 1522 1523 event.buf_len = cq->rq_buf_size; 1524 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1525 if (!event.msg_buf) 1526 return 0; 1527 1528 do { 1529 struct ice_mbx_data data = {}; 1530 u16 opcode; 1531 int ret; 1532 1533 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1534 if (ret == -EALREADY) 1535 break; 1536 if (ret) { 1537 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1538 ret); 1539 break; 1540 } 1541 1542 opcode = le16_to_cpu(event.desc.opcode); 1543 1544 /* Notify any thread that might be waiting for this event */ 1545 ice_aq_check_events(pf, opcode, &event); 1546 1547 switch (opcode) { 1548 case ice_aqc_opc_get_link_status: 1549 if (ice_handle_link_event(pf, &event)) 1550 dev_err(dev, "Could not handle link event\n"); 1551 break; 1552 case ice_aqc_opc_event_lan_overflow: 1553 ice_vf_lan_overflow_event(pf, &event); 1554 break; 1555 case ice_mbx_opc_send_msg_to_pf: 1556 data.num_msg_proc = i; 1557 data.num_pending_arq = pending; 1558 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1559 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 break; 1563 case ice_aqc_opc_fw_logs_event: 1564 ice_get_fwlog_data(pf, &event); 1565 break; 1566 case ice_aqc_opc_lldp_set_mib_change: 1567 ice_dcb_process_lldp_set_mib_change(pf, &event); 1568 break; 1569 default: 1570 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1571 qtype, opcode); 1572 break; 1573 } 1574 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1575 1576 kfree(event.msg_buf); 1577 1578 return pending && (i == ICE_DFLT_IRQ_WORK); 1579 } 1580 1581 /** 1582 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1583 * @hw: pointer to hardware info 1584 * @cq: control queue information 1585 * 1586 * returns true if there are pending messages in a queue, false if there aren't 1587 */ 1588 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1589 { 1590 u16 ntu; 1591 1592 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1593 return cq->rq.next_to_clean != ntu; 1594 } 1595 1596 /** 1597 * ice_clean_adminq_subtask - clean the AdminQ rings 1598 * @pf: board private structure 1599 */ 1600 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1601 { 1602 struct ice_hw *hw = &pf->hw; 1603 1604 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1605 return; 1606 1607 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1608 return; 1609 1610 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1611 1612 /* There might be a situation where new messages arrive to a control 1613 * queue between processing the last message and clearing the 1614 * EVENT_PENDING bit. So before exiting, check queue head again (using 1615 * ice_ctrlq_pending) and process new messages if any. 1616 */ 1617 if (ice_ctrlq_pending(hw, &hw->adminq)) 1618 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1619 1620 ice_flush(hw); 1621 } 1622 1623 /** 1624 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1625 * @pf: board private structure 1626 */ 1627 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1628 { 1629 struct ice_hw *hw = &pf->hw; 1630 1631 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1632 return; 1633 1634 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1635 return; 1636 1637 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1638 1639 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1640 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1641 1642 ice_flush(hw); 1643 } 1644 1645 /** 1646 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1647 * @pf: board private structure 1648 */ 1649 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1650 { 1651 struct ice_hw *hw = &pf->hw; 1652 1653 /* if mac_type is not generic, sideband is not supported 1654 * and there's nothing to do here 1655 */ 1656 if (!ice_is_generic_mac(hw)) { 1657 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1658 return; 1659 } 1660 1661 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1662 return; 1663 1664 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1665 return; 1666 1667 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1668 1669 if (ice_ctrlq_pending(hw, &hw->sbq)) 1670 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1671 1672 ice_flush(hw); 1673 } 1674 1675 /** 1676 * ice_service_task_schedule - schedule the service task to wake up 1677 * @pf: board private structure 1678 * 1679 * If not already scheduled, this puts the task into the work queue. 1680 */ 1681 void ice_service_task_schedule(struct ice_pf *pf) 1682 { 1683 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1684 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1685 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1686 queue_work(ice_wq, &pf->serv_task); 1687 } 1688 1689 /** 1690 * ice_service_task_complete - finish up the service task 1691 * @pf: board private structure 1692 */ 1693 static void ice_service_task_complete(struct ice_pf *pf) 1694 { 1695 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1696 1697 /* force memory (pf->state) to sync before next service task */ 1698 smp_mb__before_atomic(); 1699 clear_bit(ICE_SERVICE_SCHED, pf->state); 1700 } 1701 1702 /** 1703 * ice_service_task_stop - stop service task and cancel works 1704 * @pf: board private structure 1705 * 1706 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1707 * 1 otherwise. 1708 */ 1709 static int ice_service_task_stop(struct ice_pf *pf) 1710 { 1711 int ret; 1712 1713 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1714 1715 if (pf->serv_tmr.function) 1716 del_timer_sync(&pf->serv_tmr); 1717 if (pf->serv_task.func) 1718 cancel_work_sync(&pf->serv_task); 1719 1720 clear_bit(ICE_SERVICE_SCHED, pf->state); 1721 return ret; 1722 } 1723 1724 /** 1725 * ice_service_task_restart - restart service task and schedule works 1726 * @pf: board private structure 1727 * 1728 * This function is needed for suspend and resume works (e.g WoL scenario) 1729 */ 1730 static void ice_service_task_restart(struct ice_pf *pf) 1731 { 1732 clear_bit(ICE_SERVICE_DIS, pf->state); 1733 ice_service_task_schedule(pf); 1734 } 1735 1736 /** 1737 * ice_service_timer - timer callback to schedule service task 1738 * @t: pointer to timer_list 1739 */ 1740 static void ice_service_timer(struct timer_list *t) 1741 { 1742 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1743 1744 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1745 ice_service_task_schedule(pf); 1746 } 1747 1748 /** 1749 * ice_handle_mdd_event - handle malicious driver detect event 1750 * @pf: pointer to the PF structure 1751 * 1752 * Called from service task. OICR interrupt handler indicates MDD event. 1753 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1754 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1755 * disable the queue, the PF can be configured to reset the VF using ethtool 1756 * private flag mdd-auto-reset-vf. 1757 */ 1758 static void ice_handle_mdd_event(struct ice_pf *pf) 1759 { 1760 struct device *dev = ice_pf_to_dev(pf); 1761 struct ice_hw *hw = &pf->hw; 1762 struct ice_vf *vf; 1763 unsigned int bkt; 1764 u32 reg; 1765 1766 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1767 /* Since the VF MDD event logging is rate limited, check if 1768 * there are pending MDD events. 1769 */ 1770 ice_print_vfs_mdd_events(pf); 1771 return; 1772 } 1773 1774 /* find what triggered an MDD event */ 1775 reg = rd32(hw, GL_MDET_TX_PQM); 1776 if (reg & GL_MDET_TX_PQM_VALID_M) { 1777 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1778 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1779 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1780 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1781 1782 if (netif_msg_tx_err(pf)) 1783 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1784 event, queue, pf_num, vf_num); 1785 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1786 } 1787 1788 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1789 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1790 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1791 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1792 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1793 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1794 1795 if (netif_msg_tx_err(pf)) 1796 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1797 event, queue, pf_num, vf_num); 1798 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1799 } 1800 1801 reg = rd32(hw, GL_MDET_RX); 1802 if (reg & GL_MDET_RX_VALID_M) { 1803 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1804 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1805 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1806 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1807 1808 if (netif_msg_rx_err(pf)) 1809 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1810 event, queue, pf_num, vf_num); 1811 wr32(hw, GL_MDET_RX, 0xffffffff); 1812 } 1813 1814 /* check to see if this PF caused an MDD event */ 1815 reg = rd32(hw, PF_MDET_TX_PQM); 1816 if (reg & PF_MDET_TX_PQM_VALID_M) { 1817 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1818 if (netif_msg_tx_err(pf)) 1819 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1820 } 1821 1822 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1823 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1824 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1825 if (netif_msg_tx_err(pf)) 1826 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1827 } 1828 1829 reg = rd32(hw, PF_MDET_RX); 1830 if (reg & PF_MDET_RX_VALID_M) { 1831 wr32(hw, PF_MDET_RX, 0xFFFF); 1832 if (netif_msg_rx_err(pf)) 1833 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1834 } 1835 1836 /* Check to see if one of the VFs caused an MDD event, and then 1837 * increment counters and set print pending 1838 */ 1839 mutex_lock(&pf->vfs.table_lock); 1840 ice_for_each_vf(pf, bkt, vf) { 1841 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1842 if (reg & VP_MDET_TX_PQM_VALID_M) { 1843 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1844 vf->mdd_tx_events.count++; 1845 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1846 if (netif_msg_tx_err(pf)) 1847 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1848 vf->vf_id); 1849 } 1850 1851 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1852 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1853 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1854 vf->mdd_tx_events.count++; 1855 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1856 if (netif_msg_tx_err(pf)) 1857 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1858 vf->vf_id); 1859 } 1860 1861 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1862 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1863 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1864 vf->mdd_tx_events.count++; 1865 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1866 if (netif_msg_tx_err(pf)) 1867 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1868 vf->vf_id); 1869 } 1870 1871 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1872 if (reg & VP_MDET_RX_VALID_M) { 1873 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1874 vf->mdd_rx_events.count++; 1875 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1876 if (netif_msg_rx_err(pf)) 1877 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1878 vf->vf_id); 1879 1880 /* Since the queue is disabled on VF Rx MDD events, the 1881 * PF can be configured to reset the VF through ethtool 1882 * private flag mdd-auto-reset-vf. 1883 */ 1884 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1885 /* VF MDD event counters will be cleared by 1886 * reset, so print the event prior to reset. 1887 */ 1888 ice_print_vf_rx_mdd_event(vf); 1889 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1890 } 1891 } 1892 } 1893 mutex_unlock(&pf->vfs.table_lock); 1894 1895 ice_print_vfs_mdd_events(pf); 1896 } 1897 1898 /** 1899 * ice_force_phys_link_state - Force the physical link state 1900 * @vsi: VSI to force the physical link state to up/down 1901 * @link_up: true/false indicates to set the physical link to up/down 1902 * 1903 * Force the physical link state by getting the current PHY capabilities from 1904 * hardware and setting the PHY config based on the determined capabilities. If 1905 * link changes a link event will be triggered because both the Enable Automatic 1906 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1907 * 1908 * Returns 0 on success, negative on failure 1909 */ 1910 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1911 { 1912 struct ice_aqc_get_phy_caps_data *pcaps; 1913 struct ice_aqc_set_phy_cfg_data *cfg; 1914 struct ice_port_info *pi; 1915 struct device *dev; 1916 int retcode; 1917 1918 if (!vsi || !vsi->port_info || !vsi->back) 1919 return -EINVAL; 1920 if (vsi->type != ICE_VSI_PF) 1921 return 0; 1922 1923 dev = ice_pf_to_dev(vsi->back); 1924 1925 pi = vsi->port_info; 1926 1927 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1928 if (!pcaps) 1929 return -ENOMEM; 1930 1931 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1932 NULL); 1933 if (retcode) { 1934 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1935 vsi->vsi_num, retcode); 1936 retcode = -EIO; 1937 goto out; 1938 } 1939 1940 /* No change in link */ 1941 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1942 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1943 goto out; 1944 1945 /* Use the current user PHY configuration. The current user PHY 1946 * configuration is initialized during probe from PHY capabilities 1947 * software mode, and updated on set PHY configuration. 1948 */ 1949 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1950 if (!cfg) { 1951 retcode = -ENOMEM; 1952 goto out; 1953 } 1954 1955 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1956 if (link_up) 1957 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1958 else 1959 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1960 1961 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1962 if (retcode) { 1963 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1964 vsi->vsi_num, retcode); 1965 retcode = -EIO; 1966 } 1967 1968 kfree(cfg); 1969 out: 1970 kfree(pcaps); 1971 return retcode; 1972 } 1973 1974 /** 1975 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1976 * @pi: port info structure 1977 * 1978 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1979 */ 1980 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1981 { 1982 struct ice_aqc_get_phy_caps_data *pcaps; 1983 struct ice_pf *pf = pi->hw->back; 1984 int err; 1985 1986 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1987 if (!pcaps) 1988 return -ENOMEM; 1989 1990 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1991 pcaps, NULL); 1992 1993 if (err) { 1994 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1995 goto out; 1996 } 1997 1998 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1999 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2000 2001 out: 2002 kfree(pcaps); 2003 return err; 2004 } 2005 2006 /** 2007 * ice_init_link_dflt_override - Initialize link default override 2008 * @pi: port info structure 2009 * 2010 * Initialize link default override and PHY total port shutdown during probe 2011 */ 2012 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2013 { 2014 struct ice_link_default_override_tlv *ldo; 2015 struct ice_pf *pf = pi->hw->back; 2016 2017 ldo = &pf->link_dflt_override; 2018 if (ice_get_link_default_override(ldo, pi)) 2019 return; 2020 2021 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2022 return; 2023 2024 /* Enable Total Port Shutdown (override/replace link-down-on-close 2025 * ethtool private flag) for ports with Port Disable bit set. 2026 */ 2027 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2028 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2029 } 2030 2031 /** 2032 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2033 * @pi: port info structure 2034 * 2035 * If default override is enabled, initialize the user PHY cfg speed and FEC 2036 * settings using the default override mask from the NVM. 2037 * 2038 * The PHY should only be configured with the default override settings the 2039 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2040 * is used to indicate that the user PHY cfg default override is initialized 2041 * and the PHY has not been configured with the default override settings. The 2042 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2043 * configured. 2044 * 2045 * This function should be called only if the FW doesn't support default 2046 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2047 */ 2048 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2049 { 2050 struct ice_link_default_override_tlv *ldo; 2051 struct ice_aqc_set_phy_cfg_data *cfg; 2052 struct ice_phy_info *phy = &pi->phy; 2053 struct ice_pf *pf = pi->hw->back; 2054 2055 ldo = &pf->link_dflt_override; 2056 2057 /* If link default override is enabled, use to mask NVM PHY capabilities 2058 * for speed and FEC default configuration. 2059 */ 2060 cfg = &phy->curr_user_phy_cfg; 2061 2062 if (ldo->phy_type_low || ldo->phy_type_high) { 2063 cfg->phy_type_low = pf->nvm_phy_type_lo & 2064 cpu_to_le64(ldo->phy_type_low); 2065 cfg->phy_type_high = pf->nvm_phy_type_hi & 2066 cpu_to_le64(ldo->phy_type_high); 2067 } 2068 cfg->link_fec_opt = ldo->fec_options; 2069 phy->curr_user_fec_req = ICE_FEC_AUTO; 2070 2071 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2072 } 2073 2074 /** 2075 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2076 * @pi: port info structure 2077 * 2078 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2079 * mode to default. The PHY defaults are from get PHY capabilities topology 2080 * with media so call when media is first available. An error is returned if 2081 * called when media is not available. The PHY initialization completed state is 2082 * set here. 2083 * 2084 * These configurations are used when setting PHY 2085 * configuration. The user PHY configuration is updated on set PHY 2086 * configuration. Returns 0 on success, negative on failure 2087 */ 2088 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2089 { 2090 struct ice_aqc_get_phy_caps_data *pcaps; 2091 struct ice_phy_info *phy = &pi->phy; 2092 struct ice_pf *pf = pi->hw->back; 2093 int err; 2094 2095 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2096 return -EIO; 2097 2098 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2099 if (!pcaps) 2100 return -ENOMEM; 2101 2102 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2103 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2104 pcaps, NULL); 2105 else 2106 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2107 pcaps, NULL); 2108 if (err) { 2109 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2110 goto err_out; 2111 } 2112 2113 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2114 2115 /* check if lenient mode is supported and enabled */ 2116 if (ice_fw_supports_link_override(pi->hw) && 2117 !(pcaps->module_compliance_enforcement & 2118 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2119 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2120 2121 /* if the FW supports default PHY configuration mode, then the driver 2122 * does not have to apply link override settings. If not, 2123 * initialize user PHY configuration with link override values 2124 */ 2125 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2126 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2127 ice_init_phy_cfg_dflt_override(pi); 2128 goto out; 2129 } 2130 } 2131 2132 /* if link default override is not enabled, set user flow control and 2133 * FEC settings based on what get_phy_caps returned 2134 */ 2135 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2136 pcaps->link_fec_options); 2137 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2138 2139 out: 2140 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2141 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2142 err_out: 2143 kfree(pcaps); 2144 return err; 2145 } 2146 2147 /** 2148 * ice_configure_phy - configure PHY 2149 * @vsi: VSI of PHY 2150 * 2151 * Set the PHY configuration. If the current PHY configuration is the same as 2152 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2153 * configure the based get PHY capabilities for topology with media. 2154 */ 2155 static int ice_configure_phy(struct ice_vsi *vsi) 2156 { 2157 struct device *dev = ice_pf_to_dev(vsi->back); 2158 struct ice_port_info *pi = vsi->port_info; 2159 struct ice_aqc_get_phy_caps_data *pcaps; 2160 struct ice_aqc_set_phy_cfg_data *cfg; 2161 struct ice_phy_info *phy = &pi->phy; 2162 struct ice_pf *pf = vsi->back; 2163 int err; 2164 2165 /* Ensure we have media as we cannot configure a medialess port */ 2166 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2167 return -ENOMEDIUM; 2168 2169 ice_print_topo_conflict(vsi); 2170 2171 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2172 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2173 return -EPERM; 2174 2175 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2176 return ice_force_phys_link_state(vsi, true); 2177 2178 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2179 if (!pcaps) 2180 return -ENOMEM; 2181 2182 /* Get current PHY config */ 2183 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2184 NULL); 2185 if (err) { 2186 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2187 vsi->vsi_num, err); 2188 goto done; 2189 } 2190 2191 /* If PHY enable link is configured and configuration has not changed, 2192 * there's nothing to do 2193 */ 2194 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2195 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2196 goto done; 2197 2198 /* Use PHY topology as baseline for configuration */ 2199 memset(pcaps, 0, sizeof(*pcaps)); 2200 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2201 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2202 pcaps, NULL); 2203 else 2204 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2205 pcaps, NULL); 2206 if (err) { 2207 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2208 vsi->vsi_num, err); 2209 goto done; 2210 } 2211 2212 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2213 if (!cfg) { 2214 err = -ENOMEM; 2215 goto done; 2216 } 2217 2218 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2219 2220 /* Speed - If default override pending, use curr_user_phy_cfg set in 2221 * ice_init_phy_user_cfg_ldo. 2222 */ 2223 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2224 vsi->back->state)) { 2225 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2226 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2227 } else { 2228 u64 phy_low = 0, phy_high = 0; 2229 2230 ice_update_phy_type(&phy_low, &phy_high, 2231 pi->phy.curr_user_speed_req); 2232 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2233 cfg->phy_type_high = pcaps->phy_type_high & 2234 cpu_to_le64(phy_high); 2235 } 2236 2237 /* Can't provide what was requested; use PHY capabilities */ 2238 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2239 cfg->phy_type_low = pcaps->phy_type_low; 2240 cfg->phy_type_high = pcaps->phy_type_high; 2241 } 2242 2243 /* FEC */ 2244 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2245 2246 /* Can't provide what was requested; use PHY capabilities */ 2247 if (cfg->link_fec_opt != 2248 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2249 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2250 cfg->link_fec_opt = pcaps->link_fec_options; 2251 } 2252 2253 /* Flow Control - always supported; no need to check against 2254 * capabilities 2255 */ 2256 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2257 2258 /* Enable link and link update */ 2259 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2260 2261 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2262 if (err) 2263 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2264 vsi->vsi_num, err); 2265 2266 kfree(cfg); 2267 done: 2268 kfree(pcaps); 2269 return err; 2270 } 2271 2272 /** 2273 * ice_check_media_subtask - Check for media 2274 * @pf: pointer to PF struct 2275 * 2276 * If media is available, then initialize PHY user configuration if it is not 2277 * been, and configure the PHY if the interface is up. 2278 */ 2279 static void ice_check_media_subtask(struct ice_pf *pf) 2280 { 2281 struct ice_port_info *pi; 2282 struct ice_vsi *vsi; 2283 int err; 2284 2285 /* No need to check for media if it's already present */ 2286 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2287 return; 2288 2289 vsi = ice_get_main_vsi(pf); 2290 if (!vsi) 2291 return; 2292 2293 /* Refresh link info and check if media is present */ 2294 pi = vsi->port_info; 2295 err = ice_update_link_info(pi); 2296 if (err) 2297 return; 2298 2299 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2300 2301 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2302 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2303 ice_init_phy_user_cfg(pi); 2304 2305 /* PHY settings are reset on media insertion, reconfigure 2306 * PHY to preserve settings. 2307 */ 2308 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2309 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2310 return; 2311 2312 err = ice_configure_phy(vsi); 2313 if (!err) 2314 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2315 2316 /* A Link Status Event will be generated; the event handler 2317 * will complete bringing the interface up 2318 */ 2319 } 2320 } 2321 2322 /** 2323 * ice_service_task - manage and run subtasks 2324 * @work: pointer to work_struct contained by the PF struct 2325 */ 2326 static void ice_service_task(struct work_struct *work) 2327 { 2328 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2329 unsigned long start_time = jiffies; 2330 2331 /* subtasks */ 2332 2333 /* process reset requests first */ 2334 ice_reset_subtask(pf); 2335 2336 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2337 if (ice_is_reset_in_progress(pf->state) || 2338 test_bit(ICE_SUSPENDED, pf->state) || 2339 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2340 ice_service_task_complete(pf); 2341 return; 2342 } 2343 2344 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2345 struct iidc_event *event; 2346 2347 event = kzalloc(sizeof(*event), GFP_KERNEL); 2348 if (event) { 2349 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2350 /* report the entire OICR value to AUX driver */ 2351 swap(event->reg, pf->oicr_err_reg); 2352 ice_send_event_to_aux(pf, event); 2353 kfree(event); 2354 } 2355 } 2356 2357 /* unplug aux dev per request, if an unplug request came in 2358 * while processing a plug request, this will handle it 2359 */ 2360 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2361 ice_unplug_aux_dev(pf); 2362 2363 /* Plug aux device per request */ 2364 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2365 ice_plug_aux_dev(pf); 2366 2367 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2368 struct iidc_event *event; 2369 2370 event = kzalloc(sizeof(*event), GFP_KERNEL); 2371 if (event) { 2372 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2373 ice_send_event_to_aux(pf, event); 2374 kfree(event); 2375 } 2376 } 2377 2378 ice_clean_adminq_subtask(pf); 2379 ice_check_media_subtask(pf); 2380 ice_check_for_hang_subtask(pf); 2381 ice_sync_fltr_subtask(pf); 2382 ice_handle_mdd_event(pf); 2383 ice_watchdog_subtask(pf); 2384 2385 if (ice_is_safe_mode(pf)) { 2386 ice_service_task_complete(pf); 2387 return; 2388 } 2389 2390 ice_process_vflr_event(pf); 2391 ice_clean_mailboxq_subtask(pf); 2392 ice_clean_sbq_subtask(pf); 2393 ice_sync_arfs_fltrs(pf); 2394 ice_flush_fdir_ctx(pf); 2395 2396 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2397 ice_service_task_complete(pf); 2398 2399 /* If the tasks have taken longer than one service timer period 2400 * or there is more work to be done, reset the service timer to 2401 * schedule the service task now. 2402 */ 2403 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2404 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2405 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2406 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2407 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2408 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2409 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2410 mod_timer(&pf->serv_tmr, jiffies); 2411 } 2412 2413 /** 2414 * ice_set_ctrlq_len - helper function to set controlq length 2415 * @hw: pointer to the HW instance 2416 */ 2417 static void ice_set_ctrlq_len(struct ice_hw *hw) 2418 { 2419 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2420 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2421 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2422 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2423 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2424 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2425 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2426 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2427 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2428 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2429 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2430 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2431 } 2432 2433 /** 2434 * ice_schedule_reset - schedule a reset 2435 * @pf: board private structure 2436 * @reset: reset being requested 2437 */ 2438 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2439 { 2440 struct device *dev = ice_pf_to_dev(pf); 2441 2442 /* bail out if earlier reset has failed */ 2443 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2444 dev_dbg(dev, "earlier reset has failed\n"); 2445 return -EIO; 2446 } 2447 /* bail if reset/recovery already in progress */ 2448 if (ice_is_reset_in_progress(pf->state)) { 2449 dev_dbg(dev, "Reset already in progress\n"); 2450 return -EBUSY; 2451 } 2452 2453 switch (reset) { 2454 case ICE_RESET_PFR: 2455 set_bit(ICE_PFR_REQ, pf->state); 2456 break; 2457 case ICE_RESET_CORER: 2458 set_bit(ICE_CORER_REQ, pf->state); 2459 break; 2460 case ICE_RESET_GLOBR: 2461 set_bit(ICE_GLOBR_REQ, pf->state); 2462 break; 2463 default: 2464 return -EINVAL; 2465 } 2466 2467 ice_service_task_schedule(pf); 2468 return 0; 2469 } 2470 2471 /** 2472 * ice_irq_affinity_notify - Callback for affinity changes 2473 * @notify: context as to what irq was changed 2474 * @mask: the new affinity mask 2475 * 2476 * This is a callback function used by the irq_set_affinity_notifier function 2477 * so that we may register to receive changes to the irq affinity masks. 2478 */ 2479 static void 2480 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2481 const cpumask_t *mask) 2482 { 2483 struct ice_q_vector *q_vector = 2484 container_of(notify, struct ice_q_vector, affinity_notify); 2485 2486 cpumask_copy(&q_vector->affinity_mask, mask); 2487 } 2488 2489 /** 2490 * ice_irq_affinity_release - Callback for affinity notifier release 2491 * @ref: internal core kernel usage 2492 * 2493 * This is a callback function used by the irq_set_affinity_notifier function 2494 * to inform the current notification subscriber that they will no longer 2495 * receive notifications. 2496 */ 2497 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2498 2499 /** 2500 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2501 * @vsi: the VSI being configured 2502 */ 2503 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2504 { 2505 struct ice_hw *hw = &vsi->back->hw; 2506 int i; 2507 2508 ice_for_each_q_vector(vsi, i) 2509 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2510 2511 ice_flush(hw); 2512 return 0; 2513 } 2514 2515 /** 2516 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2517 * @vsi: the VSI being configured 2518 * @basename: name for the vector 2519 */ 2520 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2521 { 2522 int q_vectors = vsi->num_q_vectors; 2523 struct ice_pf *pf = vsi->back; 2524 struct device *dev; 2525 int rx_int_idx = 0; 2526 int tx_int_idx = 0; 2527 int vector, err; 2528 int irq_num; 2529 2530 dev = ice_pf_to_dev(pf); 2531 for (vector = 0; vector < q_vectors; vector++) { 2532 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2533 2534 irq_num = q_vector->irq.virq; 2535 2536 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2537 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2538 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2539 tx_int_idx++; 2540 } else if (q_vector->rx.rx_ring) { 2541 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2542 "%s-%s-%d", basename, "rx", rx_int_idx++); 2543 } else if (q_vector->tx.tx_ring) { 2544 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2545 "%s-%s-%d", basename, "tx", tx_int_idx++); 2546 } else { 2547 /* skip this unused q_vector */ 2548 continue; 2549 } 2550 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2551 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2552 IRQF_SHARED, q_vector->name, 2553 q_vector); 2554 else 2555 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2556 0, q_vector->name, q_vector); 2557 if (err) { 2558 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2559 err); 2560 goto free_q_irqs; 2561 } 2562 2563 /* register for affinity change notifications */ 2564 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2565 struct irq_affinity_notify *affinity_notify; 2566 2567 affinity_notify = &q_vector->affinity_notify; 2568 affinity_notify->notify = ice_irq_affinity_notify; 2569 affinity_notify->release = ice_irq_affinity_release; 2570 irq_set_affinity_notifier(irq_num, affinity_notify); 2571 } 2572 2573 /* assign the mask for this irq */ 2574 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2575 } 2576 2577 err = ice_set_cpu_rx_rmap(vsi); 2578 if (err) { 2579 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2580 vsi->vsi_num, ERR_PTR(err)); 2581 goto free_q_irqs; 2582 } 2583 2584 vsi->irqs_ready = true; 2585 return 0; 2586 2587 free_q_irqs: 2588 while (vector--) { 2589 irq_num = vsi->q_vectors[vector]->irq.virq; 2590 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2591 irq_set_affinity_notifier(irq_num, NULL); 2592 irq_set_affinity_hint(irq_num, NULL); 2593 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2594 } 2595 return err; 2596 } 2597 2598 /** 2599 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2600 * @vsi: VSI to setup Tx rings used by XDP 2601 * 2602 * Return 0 on success and negative value on error 2603 */ 2604 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2605 { 2606 struct device *dev = ice_pf_to_dev(vsi->back); 2607 struct ice_tx_desc *tx_desc; 2608 int i, j; 2609 2610 ice_for_each_xdp_txq(vsi, i) { 2611 u16 xdp_q_idx = vsi->alloc_txq + i; 2612 struct ice_ring_stats *ring_stats; 2613 struct ice_tx_ring *xdp_ring; 2614 2615 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2616 if (!xdp_ring) 2617 goto free_xdp_rings; 2618 2619 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2620 if (!ring_stats) { 2621 ice_free_tx_ring(xdp_ring); 2622 goto free_xdp_rings; 2623 } 2624 2625 xdp_ring->ring_stats = ring_stats; 2626 xdp_ring->q_index = xdp_q_idx; 2627 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2628 xdp_ring->vsi = vsi; 2629 xdp_ring->netdev = NULL; 2630 xdp_ring->dev = dev; 2631 xdp_ring->count = vsi->num_tx_desc; 2632 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2633 if (ice_setup_tx_ring(xdp_ring)) 2634 goto free_xdp_rings; 2635 ice_set_ring_xdp(xdp_ring); 2636 spin_lock_init(&xdp_ring->tx_lock); 2637 for (j = 0; j < xdp_ring->count; j++) { 2638 tx_desc = ICE_TX_DESC(xdp_ring, j); 2639 tx_desc->cmd_type_offset_bsz = 0; 2640 } 2641 } 2642 2643 return 0; 2644 2645 free_xdp_rings: 2646 for (; i >= 0; i--) { 2647 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2648 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2649 vsi->xdp_rings[i]->ring_stats = NULL; 2650 ice_free_tx_ring(vsi->xdp_rings[i]); 2651 } 2652 } 2653 return -ENOMEM; 2654 } 2655 2656 /** 2657 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2658 * @vsi: VSI to set the bpf prog on 2659 * @prog: the bpf prog pointer 2660 */ 2661 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2662 { 2663 struct bpf_prog *old_prog; 2664 int i; 2665 2666 old_prog = xchg(&vsi->xdp_prog, prog); 2667 ice_for_each_rxq(vsi, i) 2668 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2669 2670 if (old_prog) 2671 bpf_prog_put(old_prog); 2672 } 2673 2674 /** 2675 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2676 * @vsi: VSI to bring up Tx rings used by XDP 2677 * @prog: bpf program that will be assigned to VSI 2678 * 2679 * Return 0 on success and negative value on error 2680 */ 2681 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2682 { 2683 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2684 int xdp_rings_rem = vsi->num_xdp_txq; 2685 struct ice_pf *pf = vsi->back; 2686 struct ice_qs_cfg xdp_qs_cfg = { 2687 .qs_mutex = &pf->avail_q_mutex, 2688 .pf_map = pf->avail_txqs, 2689 .pf_map_size = pf->max_pf_txqs, 2690 .q_count = vsi->num_xdp_txq, 2691 .scatter_count = ICE_MAX_SCATTER_TXQS, 2692 .vsi_map = vsi->txq_map, 2693 .vsi_map_offset = vsi->alloc_txq, 2694 .mapping_mode = ICE_VSI_MAP_CONTIG 2695 }; 2696 struct device *dev; 2697 int i, v_idx; 2698 int status; 2699 2700 dev = ice_pf_to_dev(pf); 2701 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2702 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2703 if (!vsi->xdp_rings) 2704 return -ENOMEM; 2705 2706 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2707 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2708 goto err_map_xdp; 2709 2710 if (static_key_enabled(&ice_xdp_locking_key)) 2711 netdev_warn(vsi->netdev, 2712 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2713 2714 if (ice_xdp_alloc_setup_rings(vsi)) 2715 goto clear_xdp_rings; 2716 2717 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2718 ice_for_each_q_vector(vsi, v_idx) { 2719 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2720 int xdp_rings_per_v, q_id, q_base; 2721 2722 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2723 vsi->num_q_vectors - v_idx); 2724 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2725 2726 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2727 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2728 2729 xdp_ring->q_vector = q_vector; 2730 xdp_ring->next = q_vector->tx.tx_ring; 2731 q_vector->tx.tx_ring = xdp_ring; 2732 } 2733 xdp_rings_rem -= xdp_rings_per_v; 2734 } 2735 2736 ice_for_each_rxq(vsi, i) { 2737 if (static_key_enabled(&ice_xdp_locking_key)) { 2738 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2739 } else { 2740 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2741 struct ice_tx_ring *ring; 2742 2743 ice_for_each_tx_ring(ring, q_vector->tx) { 2744 if (ice_ring_is_xdp(ring)) { 2745 vsi->rx_rings[i]->xdp_ring = ring; 2746 break; 2747 } 2748 } 2749 } 2750 ice_tx_xsk_pool(vsi, i); 2751 } 2752 2753 /* omit the scheduler update if in reset path; XDP queues will be 2754 * taken into account at the end of ice_vsi_rebuild, where 2755 * ice_cfg_vsi_lan is being called 2756 */ 2757 if (ice_is_reset_in_progress(pf->state)) 2758 return 0; 2759 2760 /* tell the Tx scheduler that right now we have 2761 * additional queues 2762 */ 2763 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2764 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2765 2766 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2767 max_txqs); 2768 if (status) { 2769 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2770 status); 2771 goto clear_xdp_rings; 2772 } 2773 2774 /* assign the prog only when it's not already present on VSI; 2775 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2776 * VSI rebuild that happens under ethtool -L can expose us to 2777 * the bpf_prog refcount issues as we would be swapping same 2778 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2779 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2780 * this is not harmful as dev_xdp_install bumps the refcount 2781 * before calling the op exposed by the driver; 2782 */ 2783 if (!ice_is_xdp_ena_vsi(vsi)) 2784 ice_vsi_assign_bpf_prog(vsi, prog); 2785 2786 return 0; 2787 clear_xdp_rings: 2788 ice_for_each_xdp_txq(vsi, i) 2789 if (vsi->xdp_rings[i]) { 2790 kfree_rcu(vsi->xdp_rings[i], rcu); 2791 vsi->xdp_rings[i] = NULL; 2792 } 2793 2794 err_map_xdp: 2795 mutex_lock(&pf->avail_q_mutex); 2796 ice_for_each_xdp_txq(vsi, i) { 2797 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2798 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2799 } 2800 mutex_unlock(&pf->avail_q_mutex); 2801 2802 devm_kfree(dev, vsi->xdp_rings); 2803 return -ENOMEM; 2804 } 2805 2806 /** 2807 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2808 * @vsi: VSI to remove XDP rings 2809 * 2810 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2811 * resources 2812 */ 2813 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2814 { 2815 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2816 struct ice_pf *pf = vsi->back; 2817 int i, v_idx; 2818 2819 /* q_vectors are freed in reset path so there's no point in detaching 2820 * rings; in case of rebuild being triggered not from reset bits 2821 * in pf->state won't be set, so additionally check first q_vector 2822 * against NULL 2823 */ 2824 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2825 goto free_qmap; 2826 2827 ice_for_each_q_vector(vsi, v_idx) { 2828 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2829 struct ice_tx_ring *ring; 2830 2831 ice_for_each_tx_ring(ring, q_vector->tx) 2832 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2833 break; 2834 2835 /* restore the value of last node prior to XDP setup */ 2836 q_vector->tx.tx_ring = ring; 2837 } 2838 2839 free_qmap: 2840 mutex_lock(&pf->avail_q_mutex); 2841 ice_for_each_xdp_txq(vsi, i) { 2842 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2843 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2844 } 2845 mutex_unlock(&pf->avail_q_mutex); 2846 2847 ice_for_each_xdp_txq(vsi, i) 2848 if (vsi->xdp_rings[i]) { 2849 if (vsi->xdp_rings[i]->desc) { 2850 synchronize_rcu(); 2851 ice_free_tx_ring(vsi->xdp_rings[i]); 2852 } 2853 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2854 vsi->xdp_rings[i]->ring_stats = NULL; 2855 kfree_rcu(vsi->xdp_rings[i], rcu); 2856 vsi->xdp_rings[i] = NULL; 2857 } 2858 2859 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2860 vsi->xdp_rings = NULL; 2861 2862 if (static_key_enabled(&ice_xdp_locking_key)) 2863 static_branch_dec(&ice_xdp_locking_key); 2864 2865 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2866 return 0; 2867 2868 ice_vsi_assign_bpf_prog(vsi, NULL); 2869 2870 /* notify Tx scheduler that we destroyed XDP queues and bring 2871 * back the old number of child nodes 2872 */ 2873 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2874 max_txqs[i] = vsi->num_txq; 2875 2876 /* change number of XDP Tx queues to 0 */ 2877 vsi->num_xdp_txq = 0; 2878 2879 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2880 max_txqs); 2881 } 2882 2883 /** 2884 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2885 * @vsi: VSI to schedule napi on 2886 */ 2887 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2888 { 2889 int i; 2890 2891 ice_for_each_rxq(vsi, i) { 2892 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2893 2894 if (rx_ring->xsk_pool) 2895 napi_schedule(&rx_ring->q_vector->napi); 2896 } 2897 } 2898 2899 /** 2900 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2901 * @vsi: VSI to determine the count of XDP Tx qs 2902 * 2903 * returns 0 if Tx qs count is higher than at least half of CPU count, 2904 * -ENOMEM otherwise 2905 */ 2906 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2907 { 2908 u16 avail = ice_get_avail_txq_count(vsi->back); 2909 u16 cpus = num_possible_cpus(); 2910 2911 if (avail < cpus / 2) 2912 return -ENOMEM; 2913 2914 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2915 2916 if (vsi->num_xdp_txq < cpus) 2917 static_branch_inc(&ice_xdp_locking_key); 2918 2919 return 0; 2920 } 2921 2922 /** 2923 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2924 * @vsi: Pointer to VSI structure 2925 */ 2926 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2927 { 2928 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2929 return ICE_RXBUF_1664; 2930 else 2931 return ICE_RXBUF_3072; 2932 } 2933 2934 /** 2935 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2936 * @vsi: VSI to setup XDP for 2937 * @prog: XDP program 2938 * @extack: netlink extended ack 2939 */ 2940 static int 2941 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2942 struct netlink_ext_ack *extack) 2943 { 2944 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2945 bool if_running = netif_running(vsi->netdev); 2946 int ret = 0, xdp_ring_err = 0; 2947 2948 if (prog && !prog->aux->xdp_has_frags) { 2949 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2950 NL_SET_ERR_MSG_MOD(extack, 2951 "MTU is too large for linear frames and XDP prog does not support frags"); 2952 return -EOPNOTSUPP; 2953 } 2954 } 2955 2956 /* hot swap progs and avoid toggling link */ 2957 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2958 ice_vsi_assign_bpf_prog(vsi, prog); 2959 return 0; 2960 } 2961 2962 /* need to stop netdev while setting up the program for Rx rings */ 2963 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2964 ret = ice_down(vsi); 2965 if (ret) { 2966 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2967 return ret; 2968 } 2969 } 2970 2971 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2972 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2973 if (xdp_ring_err) { 2974 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2975 } else { 2976 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2977 if (xdp_ring_err) 2978 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2979 } 2980 xdp_features_set_redirect_target(vsi->netdev, true); 2981 /* reallocate Rx queues that are used for zero-copy */ 2982 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2983 if (xdp_ring_err) 2984 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2985 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2986 xdp_features_clear_redirect_target(vsi->netdev); 2987 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2988 if (xdp_ring_err) 2989 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2990 /* reallocate Rx queues that were used for zero-copy */ 2991 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2992 if (xdp_ring_err) 2993 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2994 } 2995 2996 if (if_running) 2997 ret = ice_up(vsi); 2998 2999 if (!ret && prog) 3000 ice_vsi_rx_napi_schedule(vsi); 3001 3002 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3003 } 3004 3005 /** 3006 * ice_xdp_safe_mode - XDP handler for safe mode 3007 * @dev: netdevice 3008 * @xdp: XDP command 3009 */ 3010 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3011 struct netdev_bpf *xdp) 3012 { 3013 NL_SET_ERR_MSG_MOD(xdp->extack, 3014 "Please provide working DDP firmware package in order to use XDP\n" 3015 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3016 return -EOPNOTSUPP; 3017 } 3018 3019 /** 3020 * ice_xdp - implements XDP handler 3021 * @dev: netdevice 3022 * @xdp: XDP command 3023 */ 3024 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3025 { 3026 struct ice_netdev_priv *np = netdev_priv(dev); 3027 struct ice_vsi *vsi = np->vsi; 3028 3029 if (vsi->type != ICE_VSI_PF) { 3030 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3031 return -EINVAL; 3032 } 3033 3034 switch (xdp->command) { 3035 case XDP_SETUP_PROG: 3036 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3037 case XDP_SETUP_XSK_POOL: 3038 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3039 xdp->xsk.queue_id); 3040 default: 3041 return -EINVAL; 3042 } 3043 } 3044 3045 /** 3046 * ice_ena_misc_vector - enable the non-queue interrupts 3047 * @pf: board private structure 3048 */ 3049 static void ice_ena_misc_vector(struct ice_pf *pf) 3050 { 3051 struct ice_hw *hw = &pf->hw; 3052 u32 pf_intr_start_offset; 3053 u32 val; 3054 3055 /* Disable anti-spoof detection interrupt to prevent spurious event 3056 * interrupts during a function reset. Anti-spoof functionally is 3057 * still supported. 3058 */ 3059 val = rd32(hw, GL_MDCK_TX_TDPU); 3060 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3061 wr32(hw, GL_MDCK_TX_TDPU, val); 3062 3063 /* clear things first */ 3064 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3065 rd32(hw, PFINT_OICR); /* read to clear */ 3066 3067 val = (PFINT_OICR_ECC_ERR_M | 3068 PFINT_OICR_MAL_DETECT_M | 3069 PFINT_OICR_GRST_M | 3070 PFINT_OICR_PCI_EXCEPTION_M | 3071 PFINT_OICR_VFLR_M | 3072 PFINT_OICR_HMC_ERR_M | 3073 PFINT_OICR_PE_PUSH_M | 3074 PFINT_OICR_PE_CRITERR_M); 3075 3076 wr32(hw, PFINT_OICR_ENA, val); 3077 3078 /* SW_ITR_IDX = 0, but don't change INTENA */ 3079 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3080 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3081 3082 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3083 return; 3084 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3085 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3086 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3087 } 3088 3089 /** 3090 * ice_ll_ts_intr - ll_ts interrupt handler 3091 * @irq: interrupt number 3092 * @data: pointer to a q_vector 3093 */ 3094 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3095 { 3096 struct ice_pf *pf = data; 3097 u32 pf_intr_start_offset; 3098 struct ice_ptp_tx *tx; 3099 unsigned long flags; 3100 struct ice_hw *hw; 3101 u32 val; 3102 u8 idx; 3103 3104 hw = &pf->hw; 3105 tx = &pf->ptp.port.tx; 3106 spin_lock_irqsave(&tx->lock, flags); 3107 ice_ptp_complete_tx_single_tstamp(tx); 3108 3109 idx = find_next_bit_wrap(tx->in_use, tx->len, 3110 tx->last_ll_ts_idx_read + 1); 3111 if (idx != tx->len) 3112 ice_ptp_req_tx_single_tstamp(tx, idx); 3113 spin_unlock_irqrestore(&tx->lock, flags); 3114 3115 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3116 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3117 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3118 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3119 val); 3120 3121 return IRQ_HANDLED; 3122 } 3123 3124 /** 3125 * ice_misc_intr - misc interrupt handler 3126 * @irq: interrupt number 3127 * @data: pointer to a q_vector 3128 */ 3129 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3130 { 3131 struct ice_pf *pf = (struct ice_pf *)data; 3132 irqreturn_t ret = IRQ_HANDLED; 3133 struct ice_hw *hw = &pf->hw; 3134 struct device *dev; 3135 u32 oicr, ena_mask; 3136 3137 dev = ice_pf_to_dev(pf); 3138 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3139 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3140 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3141 3142 oicr = rd32(hw, PFINT_OICR); 3143 ena_mask = rd32(hw, PFINT_OICR_ENA); 3144 3145 if (oicr & PFINT_OICR_SWINT_M) { 3146 ena_mask &= ~PFINT_OICR_SWINT_M; 3147 pf->sw_int_count++; 3148 } 3149 3150 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3151 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3152 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3153 } 3154 if (oicr & PFINT_OICR_VFLR_M) { 3155 /* disable any further VFLR event notifications */ 3156 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3157 u32 reg = rd32(hw, PFINT_OICR_ENA); 3158 3159 reg &= ~PFINT_OICR_VFLR_M; 3160 wr32(hw, PFINT_OICR_ENA, reg); 3161 } else { 3162 ena_mask &= ~PFINT_OICR_VFLR_M; 3163 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3164 } 3165 } 3166 3167 if (oicr & PFINT_OICR_GRST_M) { 3168 u32 reset; 3169 3170 /* we have a reset warning */ 3171 ena_mask &= ~PFINT_OICR_GRST_M; 3172 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3173 rd32(hw, GLGEN_RSTAT)); 3174 3175 if (reset == ICE_RESET_CORER) 3176 pf->corer_count++; 3177 else if (reset == ICE_RESET_GLOBR) 3178 pf->globr_count++; 3179 else if (reset == ICE_RESET_EMPR) 3180 pf->empr_count++; 3181 else 3182 dev_dbg(dev, "Invalid reset type %d\n", reset); 3183 3184 /* If a reset cycle isn't already in progress, we set a bit in 3185 * pf->state so that the service task can start a reset/rebuild. 3186 */ 3187 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3188 if (reset == ICE_RESET_CORER) 3189 set_bit(ICE_CORER_RECV, pf->state); 3190 else if (reset == ICE_RESET_GLOBR) 3191 set_bit(ICE_GLOBR_RECV, pf->state); 3192 else 3193 set_bit(ICE_EMPR_RECV, pf->state); 3194 3195 /* There are couple of different bits at play here. 3196 * hw->reset_ongoing indicates whether the hardware is 3197 * in reset. This is set to true when a reset interrupt 3198 * is received and set back to false after the driver 3199 * has determined that the hardware is out of reset. 3200 * 3201 * ICE_RESET_OICR_RECV in pf->state indicates 3202 * that a post reset rebuild is required before the 3203 * driver is operational again. This is set above. 3204 * 3205 * As this is the start of the reset/rebuild cycle, set 3206 * both to indicate that. 3207 */ 3208 hw->reset_ongoing = true; 3209 } 3210 } 3211 3212 if (oicr & PFINT_OICR_TSYN_TX_M) { 3213 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3214 if (ice_pf_state_is_nominal(pf) && 3215 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3216 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3217 unsigned long flags; 3218 u8 idx; 3219 3220 spin_lock_irqsave(&tx->lock, flags); 3221 idx = find_next_bit_wrap(tx->in_use, tx->len, 3222 tx->last_ll_ts_idx_read + 1); 3223 if (idx != tx->len) 3224 ice_ptp_req_tx_single_tstamp(tx, idx); 3225 spin_unlock_irqrestore(&tx->lock, flags); 3226 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3227 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3228 ret = IRQ_WAKE_THREAD; 3229 } 3230 } 3231 3232 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3233 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3234 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3235 3236 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3237 3238 if (ice_pf_src_tmr_owned(pf)) { 3239 /* Save EVENTs from GLTSYN register */ 3240 pf->ptp.ext_ts_irq |= gltsyn_stat & 3241 (GLTSYN_STAT_EVENT0_M | 3242 GLTSYN_STAT_EVENT1_M | 3243 GLTSYN_STAT_EVENT2_M); 3244 3245 ice_ptp_extts_event(pf); 3246 } 3247 } 3248 3249 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3250 if (oicr & ICE_AUX_CRIT_ERR) { 3251 pf->oicr_err_reg |= oicr; 3252 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3253 ena_mask &= ~ICE_AUX_CRIT_ERR; 3254 } 3255 3256 /* Report any remaining unexpected interrupts */ 3257 oicr &= ena_mask; 3258 if (oicr) { 3259 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3260 /* If a critical error is pending there is no choice but to 3261 * reset the device. 3262 */ 3263 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3264 PFINT_OICR_ECC_ERR_M)) { 3265 set_bit(ICE_PFR_REQ, pf->state); 3266 } 3267 } 3268 ice_service_task_schedule(pf); 3269 if (ret == IRQ_HANDLED) 3270 ice_irq_dynamic_ena(hw, NULL, NULL); 3271 3272 return ret; 3273 } 3274 3275 /** 3276 * ice_misc_intr_thread_fn - misc interrupt thread function 3277 * @irq: interrupt number 3278 * @data: pointer to a q_vector 3279 */ 3280 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3281 { 3282 struct ice_pf *pf = data; 3283 struct ice_hw *hw; 3284 3285 hw = &pf->hw; 3286 3287 if (ice_is_reset_in_progress(pf->state)) 3288 goto skip_irq; 3289 3290 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3291 /* Process outstanding Tx timestamps. If there is more work, 3292 * re-arm the interrupt to trigger again. 3293 */ 3294 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3295 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3296 ice_flush(hw); 3297 } 3298 } 3299 3300 skip_irq: 3301 ice_irq_dynamic_ena(hw, NULL, NULL); 3302 3303 return IRQ_HANDLED; 3304 } 3305 3306 /** 3307 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3308 * @hw: pointer to HW structure 3309 */ 3310 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3311 { 3312 /* disable Admin queue Interrupt causes */ 3313 wr32(hw, PFINT_FW_CTL, 3314 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3315 3316 /* disable Mailbox queue Interrupt causes */ 3317 wr32(hw, PFINT_MBX_CTL, 3318 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3319 3320 wr32(hw, PFINT_SB_CTL, 3321 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3322 3323 /* disable Control queue Interrupt causes */ 3324 wr32(hw, PFINT_OICR_CTL, 3325 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3326 3327 ice_flush(hw); 3328 } 3329 3330 /** 3331 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3332 * @pf: board private structure 3333 */ 3334 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3335 { 3336 int irq_num = pf->ll_ts_irq.virq; 3337 3338 synchronize_irq(irq_num); 3339 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3340 3341 ice_free_irq(pf, pf->ll_ts_irq); 3342 } 3343 3344 /** 3345 * ice_free_irq_msix_misc - Unroll misc vector setup 3346 * @pf: board private structure 3347 */ 3348 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3349 { 3350 int misc_irq_num = pf->oicr_irq.virq; 3351 struct ice_hw *hw = &pf->hw; 3352 3353 ice_dis_ctrlq_interrupts(hw); 3354 3355 /* disable OICR interrupt */ 3356 wr32(hw, PFINT_OICR_ENA, 0); 3357 ice_flush(hw); 3358 3359 synchronize_irq(misc_irq_num); 3360 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3361 3362 ice_free_irq(pf, pf->oicr_irq); 3363 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3364 ice_free_irq_msix_ll_ts(pf); 3365 } 3366 3367 /** 3368 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3369 * @hw: pointer to HW structure 3370 * @reg_idx: HW vector index to associate the control queue interrupts with 3371 */ 3372 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3373 { 3374 u32 val; 3375 3376 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3377 PFINT_OICR_CTL_CAUSE_ENA_M); 3378 wr32(hw, PFINT_OICR_CTL, val); 3379 3380 /* enable Admin queue Interrupt causes */ 3381 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3382 PFINT_FW_CTL_CAUSE_ENA_M); 3383 wr32(hw, PFINT_FW_CTL, val); 3384 3385 /* enable Mailbox queue Interrupt causes */ 3386 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3387 PFINT_MBX_CTL_CAUSE_ENA_M); 3388 wr32(hw, PFINT_MBX_CTL, val); 3389 3390 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3391 /* enable Sideband queue Interrupt causes */ 3392 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3393 PFINT_SB_CTL_CAUSE_ENA_M); 3394 wr32(hw, PFINT_SB_CTL, val); 3395 } 3396 3397 ice_flush(hw); 3398 } 3399 3400 /** 3401 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3402 * @pf: board private structure 3403 * 3404 * This sets up the handler for MSIX 0, which is used to manage the 3405 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3406 * when in MSI or Legacy interrupt mode. 3407 */ 3408 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3409 { 3410 struct device *dev = ice_pf_to_dev(pf); 3411 struct ice_hw *hw = &pf->hw; 3412 u32 pf_intr_start_offset; 3413 struct msi_map irq; 3414 int err = 0; 3415 3416 if (!pf->int_name[0]) 3417 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3418 dev_driver_string(dev), dev_name(dev)); 3419 3420 if (!pf->int_name_ll_ts[0]) 3421 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3422 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3423 /* Do not request IRQ but do enable OICR interrupt since settings are 3424 * lost during reset. Note that this function is called only during 3425 * rebuild path and not while reset is in progress. 3426 */ 3427 if (ice_is_reset_in_progress(pf->state)) 3428 goto skip_req_irq; 3429 3430 /* reserve one vector in irq_tracker for misc interrupts */ 3431 irq = ice_alloc_irq(pf, false); 3432 if (irq.index < 0) 3433 return irq.index; 3434 3435 pf->oicr_irq = irq; 3436 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3437 ice_misc_intr_thread_fn, 0, 3438 pf->int_name, pf); 3439 if (err) { 3440 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3441 pf->int_name, err); 3442 ice_free_irq(pf, pf->oicr_irq); 3443 return err; 3444 } 3445 3446 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3447 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3448 goto skip_req_irq; 3449 3450 irq = ice_alloc_irq(pf, false); 3451 if (irq.index < 0) 3452 return irq.index; 3453 3454 pf->ll_ts_irq = irq; 3455 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3456 pf->int_name_ll_ts, pf); 3457 if (err) { 3458 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3459 pf->int_name_ll_ts, err); 3460 ice_free_irq(pf, pf->ll_ts_irq); 3461 return err; 3462 } 3463 3464 skip_req_irq: 3465 ice_ena_misc_vector(pf); 3466 3467 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3468 /* This enables LL TS interrupt */ 3469 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3470 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3471 wr32(hw, PFINT_SB_CTL, 3472 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3473 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3474 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3475 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3476 3477 ice_flush(hw); 3478 ice_irq_dynamic_ena(hw, NULL, NULL); 3479 3480 return 0; 3481 } 3482 3483 /** 3484 * ice_napi_add - register NAPI handler for the VSI 3485 * @vsi: VSI for which NAPI handler is to be registered 3486 * 3487 * This function is only called in the driver's load path. Registering the NAPI 3488 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3489 * reset/rebuild, etc.) 3490 */ 3491 static void ice_napi_add(struct ice_vsi *vsi) 3492 { 3493 int v_idx; 3494 3495 if (!vsi->netdev) 3496 return; 3497 3498 ice_for_each_q_vector(vsi, v_idx) { 3499 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3500 ice_napi_poll); 3501 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3502 } 3503 } 3504 3505 /** 3506 * ice_set_ops - set netdev and ethtools ops for the given netdev 3507 * @vsi: the VSI associated with the new netdev 3508 */ 3509 static void ice_set_ops(struct ice_vsi *vsi) 3510 { 3511 struct net_device *netdev = vsi->netdev; 3512 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3513 3514 if (ice_is_safe_mode(pf)) { 3515 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3516 ice_set_ethtool_safe_mode_ops(netdev); 3517 return; 3518 } 3519 3520 netdev->netdev_ops = &ice_netdev_ops; 3521 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3522 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3523 ice_set_ethtool_ops(netdev); 3524 3525 if (vsi->type != ICE_VSI_PF) 3526 return; 3527 3528 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3529 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3530 NETDEV_XDP_ACT_RX_SG; 3531 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3532 } 3533 3534 /** 3535 * ice_set_netdev_features - set features for the given netdev 3536 * @netdev: netdev instance 3537 */ 3538 static void ice_set_netdev_features(struct net_device *netdev) 3539 { 3540 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3541 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3542 netdev_features_t csumo_features; 3543 netdev_features_t vlano_features; 3544 netdev_features_t dflt_features; 3545 netdev_features_t tso_features; 3546 3547 if (ice_is_safe_mode(pf)) { 3548 /* safe mode */ 3549 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3550 netdev->hw_features = netdev->features; 3551 return; 3552 } 3553 3554 dflt_features = NETIF_F_SG | 3555 NETIF_F_HIGHDMA | 3556 NETIF_F_NTUPLE | 3557 NETIF_F_RXHASH; 3558 3559 csumo_features = NETIF_F_RXCSUM | 3560 NETIF_F_IP_CSUM | 3561 NETIF_F_SCTP_CRC | 3562 NETIF_F_IPV6_CSUM; 3563 3564 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3565 NETIF_F_HW_VLAN_CTAG_TX | 3566 NETIF_F_HW_VLAN_CTAG_RX; 3567 3568 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3569 if (is_dvm_ena) 3570 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3571 3572 tso_features = NETIF_F_TSO | 3573 NETIF_F_TSO_ECN | 3574 NETIF_F_TSO6 | 3575 NETIF_F_GSO_GRE | 3576 NETIF_F_GSO_UDP_TUNNEL | 3577 NETIF_F_GSO_GRE_CSUM | 3578 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3579 NETIF_F_GSO_PARTIAL | 3580 NETIF_F_GSO_IPXIP4 | 3581 NETIF_F_GSO_IPXIP6 | 3582 NETIF_F_GSO_UDP_L4; 3583 3584 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3585 NETIF_F_GSO_GRE_CSUM; 3586 /* set features that user can change */ 3587 netdev->hw_features = dflt_features | csumo_features | 3588 vlano_features | tso_features; 3589 3590 /* add support for HW_CSUM on packets with MPLS header */ 3591 netdev->mpls_features = NETIF_F_HW_CSUM | 3592 NETIF_F_TSO | 3593 NETIF_F_TSO6; 3594 3595 /* enable features */ 3596 netdev->features |= netdev->hw_features; 3597 3598 netdev->hw_features |= NETIF_F_HW_TC; 3599 netdev->hw_features |= NETIF_F_LOOPBACK; 3600 3601 /* encap and VLAN devices inherit default, csumo and tso features */ 3602 netdev->hw_enc_features |= dflt_features | csumo_features | 3603 tso_features; 3604 netdev->vlan_features |= dflt_features | csumo_features | 3605 tso_features; 3606 3607 /* advertise support but don't enable by default since only one type of 3608 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3609 * type turns on the other has to be turned off. This is enforced by the 3610 * ice_fix_features() ndo callback. 3611 */ 3612 if (is_dvm_ena) 3613 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3614 NETIF_F_HW_VLAN_STAG_TX; 3615 3616 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3617 * be changed at runtime 3618 */ 3619 netdev->hw_features |= NETIF_F_RXFCS; 3620 3621 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3622 } 3623 3624 /** 3625 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3626 * @lut: Lookup table 3627 * @rss_table_size: Lookup table size 3628 * @rss_size: Range of queue number for hashing 3629 */ 3630 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3631 { 3632 u16 i; 3633 3634 for (i = 0; i < rss_table_size; i++) 3635 lut[i] = i % rss_size; 3636 } 3637 3638 /** 3639 * ice_pf_vsi_setup - Set up a PF VSI 3640 * @pf: board private structure 3641 * @pi: pointer to the port_info instance 3642 * 3643 * Returns pointer to the successfully allocated VSI software struct 3644 * on success, otherwise returns NULL on failure. 3645 */ 3646 static struct ice_vsi * 3647 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3648 { 3649 struct ice_vsi_cfg_params params = {}; 3650 3651 params.type = ICE_VSI_PF; 3652 params.pi = pi; 3653 params.flags = ICE_VSI_FLAG_INIT; 3654 3655 return ice_vsi_setup(pf, ¶ms); 3656 } 3657 3658 static struct ice_vsi * 3659 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3660 struct ice_channel *ch) 3661 { 3662 struct ice_vsi_cfg_params params = {}; 3663 3664 params.type = ICE_VSI_CHNL; 3665 params.pi = pi; 3666 params.ch = ch; 3667 params.flags = ICE_VSI_FLAG_INIT; 3668 3669 return ice_vsi_setup(pf, ¶ms); 3670 } 3671 3672 /** 3673 * ice_ctrl_vsi_setup - Set up a control VSI 3674 * @pf: board private structure 3675 * @pi: pointer to the port_info instance 3676 * 3677 * Returns pointer to the successfully allocated VSI software struct 3678 * on success, otherwise returns NULL on failure. 3679 */ 3680 static struct ice_vsi * 3681 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3682 { 3683 struct ice_vsi_cfg_params params = {}; 3684 3685 params.type = ICE_VSI_CTRL; 3686 params.pi = pi; 3687 params.flags = ICE_VSI_FLAG_INIT; 3688 3689 return ice_vsi_setup(pf, ¶ms); 3690 } 3691 3692 /** 3693 * ice_lb_vsi_setup - Set up a loopback VSI 3694 * @pf: board private structure 3695 * @pi: pointer to the port_info instance 3696 * 3697 * Returns pointer to the successfully allocated VSI software struct 3698 * on success, otherwise returns NULL on failure. 3699 */ 3700 struct ice_vsi * 3701 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3702 { 3703 struct ice_vsi_cfg_params params = {}; 3704 3705 params.type = ICE_VSI_LB; 3706 params.pi = pi; 3707 params.flags = ICE_VSI_FLAG_INIT; 3708 3709 return ice_vsi_setup(pf, ¶ms); 3710 } 3711 3712 /** 3713 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3714 * @netdev: network interface to be adjusted 3715 * @proto: VLAN TPID 3716 * @vid: VLAN ID to be added 3717 * 3718 * net_device_ops implementation for adding VLAN IDs 3719 */ 3720 static int 3721 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3722 { 3723 struct ice_netdev_priv *np = netdev_priv(netdev); 3724 struct ice_vsi_vlan_ops *vlan_ops; 3725 struct ice_vsi *vsi = np->vsi; 3726 struct ice_vlan vlan; 3727 int ret; 3728 3729 /* VLAN 0 is added by default during load/reset */ 3730 if (!vid) 3731 return 0; 3732 3733 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3734 usleep_range(1000, 2000); 3735 3736 /* Add multicast promisc rule for the VLAN ID to be added if 3737 * all-multicast is currently enabled. 3738 */ 3739 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3740 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3741 ICE_MCAST_VLAN_PROMISC_BITS, 3742 vid); 3743 if (ret) 3744 goto finish; 3745 } 3746 3747 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3748 3749 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3750 * packets aren't pruned by the device's internal switch on Rx 3751 */ 3752 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3753 ret = vlan_ops->add_vlan(vsi, &vlan); 3754 if (ret) 3755 goto finish; 3756 3757 /* If all-multicast is currently enabled and this VLAN ID is only one 3758 * besides VLAN-0 we have to update look-up type of multicast promisc 3759 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3760 */ 3761 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3762 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3763 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3764 ICE_MCAST_PROMISC_BITS, 0); 3765 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3766 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3767 } 3768 3769 finish: 3770 clear_bit(ICE_CFG_BUSY, vsi->state); 3771 3772 return ret; 3773 } 3774 3775 /** 3776 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3777 * @netdev: network interface to be adjusted 3778 * @proto: VLAN TPID 3779 * @vid: VLAN ID to be removed 3780 * 3781 * net_device_ops implementation for removing VLAN IDs 3782 */ 3783 static int 3784 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3785 { 3786 struct ice_netdev_priv *np = netdev_priv(netdev); 3787 struct ice_vsi_vlan_ops *vlan_ops; 3788 struct ice_vsi *vsi = np->vsi; 3789 struct ice_vlan vlan; 3790 int ret; 3791 3792 /* don't allow removal of VLAN 0 */ 3793 if (!vid) 3794 return 0; 3795 3796 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3797 usleep_range(1000, 2000); 3798 3799 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3800 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3801 if (ret) { 3802 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3803 vsi->vsi_num); 3804 vsi->current_netdev_flags |= IFF_ALLMULTI; 3805 } 3806 3807 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3808 3809 /* Make sure VLAN delete is successful before updating VLAN 3810 * information 3811 */ 3812 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3813 ret = vlan_ops->del_vlan(vsi, &vlan); 3814 if (ret) 3815 goto finish; 3816 3817 /* Remove multicast promisc rule for the removed VLAN ID if 3818 * all-multicast is enabled. 3819 */ 3820 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3821 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3822 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3823 3824 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3825 /* Update look-up type of multicast promisc rule for VLAN 0 3826 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3827 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3828 */ 3829 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3830 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3831 ICE_MCAST_VLAN_PROMISC_BITS, 3832 0); 3833 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3834 ICE_MCAST_PROMISC_BITS, 0); 3835 } 3836 } 3837 3838 finish: 3839 clear_bit(ICE_CFG_BUSY, vsi->state); 3840 3841 return ret; 3842 } 3843 3844 /** 3845 * ice_rep_indr_tc_block_unbind 3846 * @cb_priv: indirection block private data 3847 */ 3848 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3849 { 3850 struct ice_indr_block_priv *indr_priv = cb_priv; 3851 3852 list_del(&indr_priv->list); 3853 kfree(indr_priv); 3854 } 3855 3856 /** 3857 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3858 * @vsi: VSI struct which has the netdev 3859 */ 3860 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3861 { 3862 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3863 3864 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3865 ice_rep_indr_tc_block_unbind); 3866 } 3867 3868 /** 3869 * ice_tc_indir_block_register - Register TC indirect block notifications 3870 * @vsi: VSI struct which has the netdev 3871 * 3872 * Returns 0 on success, negative value on failure 3873 */ 3874 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3875 { 3876 struct ice_netdev_priv *np; 3877 3878 if (!vsi || !vsi->netdev) 3879 return -EINVAL; 3880 3881 np = netdev_priv(vsi->netdev); 3882 3883 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3884 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3885 } 3886 3887 /** 3888 * ice_get_avail_q_count - Get count of queues in use 3889 * @pf_qmap: bitmap to get queue use count from 3890 * @lock: pointer to a mutex that protects access to pf_qmap 3891 * @size: size of the bitmap 3892 */ 3893 static u16 3894 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3895 { 3896 unsigned long bit; 3897 u16 count = 0; 3898 3899 mutex_lock(lock); 3900 for_each_clear_bit(bit, pf_qmap, size) 3901 count++; 3902 mutex_unlock(lock); 3903 3904 return count; 3905 } 3906 3907 /** 3908 * ice_get_avail_txq_count - Get count of Tx queues in use 3909 * @pf: pointer to an ice_pf instance 3910 */ 3911 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3912 { 3913 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3914 pf->max_pf_txqs); 3915 } 3916 3917 /** 3918 * ice_get_avail_rxq_count - Get count of Rx queues in use 3919 * @pf: pointer to an ice_pf instance 3920 */ 3921 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3922 { 3923 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3924 pf->max_pf_rxqs); 3925 } 3926 3927 /** 3928 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3929 * @pf: board private structure to initialize 3930 */ 3931 static void ice_deinit_pf(struct ice_pf *pf) 3932 { 3933 ice_service_task_stop(pf); 3934 mutex_destroy(&pf->lag_mutex); 3935 mutex_destroy(&pf->adev_mutex); 3936 mutex_destroy(&pf->sw_mutex); 3937 mutex_destroy(&pf->tc_mutex); 3938 mutex_destroy(&pf->avail_q_mutex); 3939 mutex_destroy(&pf->vfs.table_lock); 3940 3941 if (pf->avail_txqs) { 3942 bitmap_free(pf->avail_txqs); 3943 pf->avail_txqs = NULL; 3944 } 3945 3946 if (pf->avail_rxqs) { 3947 bitmap_free(pf->avail_rxqs); 3948 pf->avail_rxqs = NULL; 3949 } 3950 3951 if (pf->ptp.clock) 3952 ptp_clock_unregister(pf->ptp.clock); 3953 } 3954 3955 /** 3956 * ice_set_pf_caps - set PFs capability flags 3957 * @pf: pointer to the PF instance 3958 */ 3959 static void ice_set_pf_caps(struct ice_pf *pf) 3960 { 3961 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3962 3963 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3964 if (func_caps->common_cap.rdma) 3965 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3966 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3967 if (func_caps->common_cap.dcb) 3968 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3969 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3970 if (func_caps->common_cap.sr_iov_1_1) { 3971 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3972 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3973 ICE_MAX_SRIOV_VFS); 3974 } 3975 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3976 if (func_caps->common_cap.rss_table_size) 3977 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3978 3979 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3980 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3981 u16 unused; 3982 3983 /* ctrl_vsi_idx will be set to a valid value when flow director 3984 * is setup by ice_init_fdir 3985 */ 3986 pf->ctrl_vsi_idx = ICE_NO_VSI; 3987 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3988 /* force guaranteed filter pool for PF */ 3989 ice_alloc_fd_guar_item(&pf->hw, &unused, 3990 func_caps->fd_fltr_guar); 3991 /* force shared filter pool for PF */ 3992 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3993 func_caps->fd_fltr_best_effort); 3994 } 3995 3996 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3997 if (func_caps->common_cap.ieee_1588 && 3998 !(pf->hw.mac_type == ICE_MAC_E830)) 3999 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4000 4001 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4002 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4003 } 4004 4005 /** 4006 * ice_init_pf - Initialize general software structures (struct ice_pf) 4007 * @pf: board private structure to initialize 4008 */ 4009 static int ice_init_pf(struct ice_pf *pf) 4010 { 4011 ice_set_pf_caps(pf); 4012 4013 mutex_init(&pf->sw_mutex); 4014 mutex_init(&pf->tc_mutex); 4015 mutex_init(&pf->adev_mutex); 4016 mutex_init(&pf->lag_mutex); 4017 4018 INIT_HLIST_HEAD(&pf->aq_wait_list); 4019 spin_lock_init(&pf->aq_wait_lock); 4020 init_waitqueue_head(&pf->aq_wait_queue); 4021 4022 init_waitqueue_head(&pf->reset_wait_queue); 4023 4024 /* setup service timer and periodic service task */ 4025 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4026 pf->serv_tmr_period = HZ; 4027 INIT_WORK(&pf->serv_task, ice_service_task); 4028 clear_bit(ICE_SERVICE_SCHED, pf->state); 4029 4030 mutex_init(&pf->avail_q_mutex); 4031 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4032 if (!pf->avail_txqs) 4033 return -ENOMEM; 4034 4035 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4036 if (!pf->avail_rxqs) { 4037 bitmap_free(pf->avail_txqs); 4038 pf->avail_txqs = NULL; 4039 return -ENOMEM; 4040 } 4041 4042 mutex_init(&pf->vfs.table_lock); 4043 hash_init(pf->vfs.table); 4044 ice_mbx_init_snapshot(&pf->hw); 4045 4046 return 0; 4047 } 4048 4049 /** 4050 * ice_is_wol_supported - check if WoL is supported 4051 * @hw: pointer to hardware info 4052 * 4053 * Check if WoL is supported based on the HW configuration. 4054 * Returns true if NVM supports and enables WoL for this port, false otherwise 4055 */ 4056 bool ice_is_wol_supported(struct ice_hw *hw) 4057 { 4058 u16 wol_ctrl; 4059 4060 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4061 * word) indicates WoL is not supported on the corresponding PF ID. 4062 */ 4063 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4064 return false; 4065 4066 return !(BIT(hw->port_info->lport) & wol_ctrl); 4067 } 4068 4069 /** 4070 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4071 * @vsi: VSI being changed 4072 * @new_rx: new number of Rx queues 4073 * @new_tx: new number of Tx queues 4074 * @locked: is adev device_lock held 4075 * 4076 * Only change the number of queues if new_tx, or new_rx is non-0. 4077 * 4078 * Returns 0 on success. 4079 */ 4080 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4081 { 4082 struct ice_pf *pf = vsi->back; 4083 int err = 0, timeout = 50; 4084 4085 if (!new_rx && !new_tx) 4086 return -EINVAL; 4087 4088 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4089 timeout--; 4090 if (!timeout) 4091 return -EBUSY; 4092 usleep_range(1000, 2000); 4093 } 4094 4095 if (new_tx) 4096 vsi->req_txq = (u16)new_tx; 4097 if (new_rx) 4098 vsi->req_rxq = (u16)new_rx; 4099 4100 /* set for the next time the netdev is started */ 4101 if (!netif_running(vsi->netdev)) { 4102 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4103 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4104 goto done; 4105 } 4106 4107 ice_vsi_close(vsi); 4108 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4109 ice_pf_dcb_recfg(pf, locked); 4110 ice_vsi_open(vsi); 4111 done: 4112 clear_bit(ICE_CFG_BUSY, pf->state); 4113 return err; 4114 } 4115 4116 /** 4117 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4118 * @pf: PF to configure 4119 * 4120 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4121 * VSI can still Tx/Rx VLAN tagged packets. 4122 */ 4123 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4124 { 4125 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4126 struct ice_vsi_ctx *ctxt; 4127 struct ice_hw *hw; 4128 int status; 4129 4130 if (!vsi) 4131 return; 4132 4133 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4134 if (!ctxt) 4135 return; 4136 4137 hw = &pf->hw; 4138 ctxt->info = vsi->info; 4139 4140 ctxt->info.valid_sections = 4141 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4142 ICE_AQ_VSI_PROP_SECURITY_VALID | 4143 ICE_AQ_VSI_PROP_SW_VALID); 4144 4145 /* disable VLAN anti-spoof */ 4146 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4147 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4148 4149 /* disable VLAN pruning and keep all other settings */ 4150 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4151 4152 /* allow all VLANs on Tx and don't strip on Rx */ 4153 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4154 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4155 4156 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4157 if (status) { 4158 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4159 status, ice_aq_str(hw->adminq.sq_last_status)); 4160 } else { 4161 vsi->info.sec_flags = ctxt->info.sec_flags; 4162 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4163 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4164 } 4165 4166 kfree(ctxt); 4167 } 4168 4169 /** 4170 * ice_log_pkg_init - log result of DDP package load 4171 * @hw: pointer to hardware info 4172 * @state: state of package load 4173 */ 4174 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4175 { 4176 struct ice_pf *pf = hw->back; 4177 struct device *dev; 4178 4179 dev = ice_pf_to_dev(pf); 4180 4181 switch (state) { 4182 case ICE_DDP_PKG_SUCCESS: 4183 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4184 hw->active_pkg_name, 4185 hw->active_pkg_ver.major, 4186 hw->active_pkg_ver.minor, 4187 hw->active_pkg_ver.update, 4188 hw->active_pkg_ver.draft); 4189 break; 4190 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4191 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4192 hw->active_pkg_name, 4193 hw->active_pkg_ver.major, 4194 hw->active_pkg_ver.minor, 4195 hw->active_pkg_ver.update, 4196 hw->active_pkg_ver.draft); 4197 break; 4198 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4199 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4200 hw->active_pkg_name, 4201 hw->active_pkg_ver.major, 4202 hw->active_pkg_ver.minor, 4203 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4204 break; 4205 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4206 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4207 hw->active_pkg_name, 4208 hw->active_pkg_ver.major, 4209 hw->active_pkg_ver.minor, 4210 hw->active_pkg_ver.update, 4211 hw->active_pkg_ver.draft, 4212 hw->pkg_name, 4213 hw->pkg_ver.major, 4214 hw->pkg_ver.minor, 4215 hw->pkg_ver.update, 4216 hw->pkg_ver.draft); 4217 break; 4218 case ICE_DDP_PKG_FW_MISMATCH: 4219 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4220 break; 4221 case ICE_DDP_PKG_INVALID_FILE: 4222 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4223 break; 4224 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4225 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4226 break; 4227 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4228 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4229 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4230 break; 4231 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4232 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4233 break; 4234 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4235 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4236 break; 4237 case ICE_DDP_PKG_LOAD_ERROR: 4238 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4239 /* poll for reset to complete */ 4240 if (ice_check_reset(hw)) 4241 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4242 break; 4243 case ICE_DDP_PKG_ERR: 4244 default: 4245 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4246 break; 4247 } 4248 } 4249 4250 /** 4251 * ice_load_pkg - load/reload the DDP Package file 4252 * @firmware: firmware structure when firmware requested or NULL for reload 4253 * @pf: pointer to the PF instance 4254 * 4255 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4256 * initialize HW tables. 4257 */ 4258 static void 4259 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4260 { 4261 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4262 struct device *dev = ice_pf_to_dev(pf); 4263 struct ice_hw *hw = &pf->hw; 4264 4265 /* Load DDP Package */ 4266 if (firmware && !hw->pkg_copy) { 4267 state = ice_copy_and_init_pkg(hw, firmware->data, 4268 firmware->size); 4269 ice_log_pkg_init(hw, state); 4270 } else if (!firmware && hw->pkg_copy) { 4271 /* Reload package during rebuild after CORER/GLOBR reset */ 4272 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4273 ice_log_pkg_init(hw, state); 4274 } else { 4275 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4276 } 4277 4278 if (!ice_is_init_pkg_successful(state)) { 4279 /* Safe Mode */ 4280 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4281 return; 4282 } 4283 4284 /* Successful download package is the precondition for advanced 4285 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4286 */ 4287 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4288 } 4289 4290 /** 4291 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4292 * @pf: pointer to the PF structure 4293 * 4294 * There is no error returned here because the driver should be able to handle 4295 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4296 * specifically with Tx. 4297 */ 4298 static void ice_verify_cacheline_size(struct ice_pf *pf) 4299 { 4300 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4301 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4302 ICE_CACHE_LINE_BYTES); 4303 } 4304 4305 /** 4306 * ice_send_version - update firmware with driver version 4307 * @pf: PF struct 4308 * 4309 * Returns 0 on success, else error code 4310 */ 4311 static int ice_send_version(struct ice_pf *pf) 4312 { 4313 struct ice_driver_ver dv; 4314 4315 dv.major_ver = 0xff; 4316 dv.minor_ver = 0xff; 4317 dv.build_ver = 0xff; 4318 dv.subbuild_ver = 0; 4319 strscpy((char *)dv.driver_string, UTS_RELEASE, 4320 sizeof(dv.driver_string)); 4321 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4322 } 4323 4324 /** 4325 * ice_init_fdir - Initialize flow director VSI and configuration 4326 * @pf: pointer to the PF instance 4327 * 4328 * returns 0 on success, negative on error 4329 */ 4330 static int ice_init_fdir(struct ice_pf *pf) 4331 { 4332 struct device *dev = ice_pf_to_dev(pf); 4333 struct ice_vsi *ctrl_vsi; 4334 int err; 4335 4336 /* Side Band Flow Director needs to have a control VSI. 4337 * Allocate it and store it in the PF. 4338 */ 4339 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4340 if (!ctrl_vsi) { 4341 dev_dbg(dev, "could not create control VSI\n"); 4342 return -ENOMEM; 4343 } 4344 4345 err = ice_vsi_open_ctrl(ctrl_vsi); 4346 if (err) { 4347 dev_dbg(dev, "could not open control VSI\n"); 4348 goto err_vsi_open; 4349 } 4350 4351 mutex_init(&pf->hw.fdir_fltr_lock); 4352 4353 err = ice_fdir_create_dflt_rules(pf); 4354 if (err) 4355 goto err_fdir_rule; 4356 4357 return 0; 4358 4359 err_fdir_rule: 4360 ice_fdir_release_flows(&pf->hw); 4361 ice_vsi_close(ctrl_vsi); 4362 err_vsi_open: 4363 ice_vsi_release(ctrl_vsi); 4364 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4365 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4366 pf->ctrl_vsi_idx = ICE_NO_VSI; 4367 } 4368 return err; 4369 } 4370 4371 static void ice_deinit_fdir(struct ice_pf *pf) 4372 { 4373 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4374 4375 if (!vsi) 4376 return; 4377 4378 ice_vsi_manage_fdir(vsi, false); 4379 ice_vsi_release(vsi); 4380 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4381 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4382 pf->ctrl_vsi_idx = ICE_NO_VSI; 4383 } 4384 4385 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4386 } 4387 4388 /** 4389 * ice_get_opt_fw_name - return optional firmware file name or NULL 4390 * @pf: pointer to the PF instance 4391 */ 4392 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4393 { 4394 /* Optional firmware name same as default with additional dash 4395 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4396 */ 4397 struct pci_dev *pdev = pf->pdev; 4398 char *opt_fw_filename; 4399 u64 dsn; 4400 4401 /* Determine the name of the optional file using the DSN (two 4402 * dwords following the start of the DSN Capability). 4403 */ 4404 dsn = pci_get_dsn(pdev); 4405 if (!dsn) 4406 return NULL; 4407 4408 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4409 if (!opt_fw_filename) 4410 return NULL; 4411 4412 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4413 ICE_DDP_PKG_PATH, dsn); 4414 4415 return opt_fw_filename; 4416 } 4417 4418 /** 4419 * ice_request_fw - Device initialization routine 4420 * @pf: pointer to the PF instance 4421 */ 4422 static void ice_request_fw(struct ice_pf *pf) 4423 { 4424 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4425 const struct firmware *firmware = NULL; 4426 struct device *dev = ice_pf_to_dev(pf); 4427 int err = 0; 4428 4429 /* optional device-specific DDP (if present) overrides the default DDP 4430 * package file. kernel logs a debug message if the file doesn't exist, 4431 * and warning messages for other errors. 4432 */ 4433 if (opt_fw_filename) { 4434 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4435 if (err) { 4436 kfree(opt_fw_filename); 4437 goto dflt_pkg_load; 4438 } 4439 4440 /* request for firmware was successful. Download to device */ 4441 ice_load_pkg(firmware, pf); 4442 kfree(opt_fw_filename); 4443 release_firmware(firmware); 4444 return; 4445 } 4446 4447 dflt_pkg_load: 4448 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4449 if (err) { 4450 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4451 return; 4452 } 4453 4454 /* request for firmware was successful. Download to device */ 4455 ice_load_pkg(firmware, pf); 4456 release_firmware(firmware); 4457 } 4458 4459 /** 4460 * ice_print_wake_reason - show the wake up cause in the log 4461 * @pf: pointer to the PF struct 4462 */ 4463 static void ice_print_wake_reason(struct ice_pf *pf) 4464 { 4465 u32 wus = pf->wakeup_reason; 4466 const char *wake_str; 4467 4468 /* if no wake event, nothing to print */ 4469 if (!wus) 4470 return; 4471 4472 if (wus & PFPM_WUS_LNKC_M) 4473 wake_str = "Link\n"; 4474 else if (wus & PFPM_WUS_MAG_M) 4475 wake_str = "Magic Packet\n"; 4476 else if (wus & PFPM_WUS_MNG_M) 4477 wake_str = "Management\n"; 4478 else if (wus & PFPM_WUS_FW_RST_WK_M) 4479 wake_str = "Firmware Reset\n"; 4480 else 4481 wake_str = "Unknown\n"; 4482 4483 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4484 } 4485 4486 /** 4487 * ice_pf_fwlog_update_module - update 1 module 4488 * @pf: pointer to the PF struct 4489 * @log_level: log_level to use for the @module 4490 * @module: module to update 4491 */ 4492 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4493 { 4494 struct ice_hw *hw = &pf->hw; 4495 4496 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4497 } 4498 4499 /** 4500 * ice_register_netdev - register netdev 4501 * @vsi: pointer to the VSI struct 4502 */ 4503 static int ice_register_netdev(struct ice_vsi *vsi) 4504 { 4505 int err; 4506 4507 if (!vsi || !vsi->netdev) 4508 return -EIO; 4509 4510 err = register_netdev(vsi->netdev); 4511 if (err) 4512 return err; 4513 4514 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4515 netif_carrier_off(vsi->netdev); 4516 netif_tx_stop_all_queues(vsi->netdev); 4517 4518 return 0; 4519 } 4520 4521 static void ice_unregister_netdev(struct ice_vsi *vsi) 4522 { 4523 if (!vsi || !vsi->netdev) 4524 return; 4525 4526 unregister_netdev(vsi->netdev); 4527 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4528 } 4529 4530 /** 4531 * ice_cfg_netdev - Allocate, configure and register a netdev 4532 * @vsi: the VSI associated with the new netdev 4533 * 4534 * Returns 0 on success, negative value on failure 4535 */ 4536 static int ice_cfg_netdev(struct ice_vsi *vsi) 4537 { 4538 struct ice_netdev_priv *np; 4539 struct net_device *netdev; 4540 u8 mac_addr[ETH_ALEN]; 4541 4542 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4543 vsi->alloc_rxq); 4544 if (!netdev) 4545 return -ENOMEM; 4546 4547 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4548 vsi->netdev = netdev; 4549 np = netdev_priv(netdev); 4550 np->vsi = vsi; 4551 4552 ice_set_netdev_features(netdev); 4553 ice_set_ops(vsi); 4554 4555 if (vsi->type == ICE_VSI_PF) { 4556 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4557 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4558 eth_hw_addr_set(netdev, mac_addr); 4559 } 4560 4561 netdev->priv_flags |= IFF_UNICAST_FLT; 4562 4563 /* Setup netdev TC information */ 4564 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4565 4566 netdev->max_mtu = ICE_MAX_MTU; 4567 4568 return 0; 4569 } 4570 4571 static void ice_decfg_netdev(struct ice_vsi *vsi) 4572 { 4573 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4574 free_netdev(vsi->netdev); 4575 vsi->netdev = NULL; 4576 } 4577 4578 /** 4579 * ice_wait_for_fw - wait for full FW readiness 4580 * @hw: pointer to the hardware structure 4581 * @timeout: milliseconds that can elapse before timing out 4582 */ 4583 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4584 { 4585 int fw_loading; 4586 u32 elapsed = 0; 4587 4588 while (elapsed <= timeout) { 4589 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4590 4591 /* firmware was not yet loaded, we have to wait more */ 4592 if (fw_loading) { 4593 elapsed += 100; 4594 msleep(100); 4595 continue; 4596 } 4597 return 0; 4598 } 4599 4600 return -ETIMEDOUT; 4601 } 4602 4603 int ice_init_dev(struct ice_pf *pf) 4604 { 4605 struct device *dev = ice_pf_to_dev(pf); 4606 struct ice_hw *hw = &pf->hw; 4607 int err; 4608 4609 err = ice_init_hw(hw); 4610 if (err) { 4611 dev_err(dev, "ice_init_hw failed: %d\n", err); 4612 return err; 4613 } 4614 4615 /* Some cards require longer initialization times 4616 * due to necessity of loading FW from an external source. 4617 * This can take even half a minute. 4618 */ 4619 if (ice_is_pf_c827(hw)) { 4620 err = ice_wait_for_fw(hw, 30000); 4621 if (err) { 4622 dev_err(dev, "ice_wait_for_fw timed out"); 4623 return err; 4624 } 4625 } 4626 4627 ice_init_feature_support(pf); 4628 4629 ice_request_fw(pf); 4630 4631 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4632 * set in pf->state, which will cause ice_is_safe_mode to return 4633 * true 4634 */ 4635 if (ice_is_safe_mode(pf)) { 4636 /* we already got function/device capabilities but these don't 4637 * reflect what the driver needs to do in safe mode. Instead of 4638 * adding conditional logic everywhere to ignore these 4639 * device/function capabilities, override them. 4640 */ 4641 ice_set_safe_mode_caps(hw); 4642 } 4643 4644 err = ice_init_pf(pf); 4645 if (err) { 4646 dev_err(dev, "ice_init_pf failed: %d\n", err); 4647 goto err_init_pf; 4648 } 4649 4650 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4651 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4652 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4653 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4654 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4655 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4656 pf->hw.tnl.valid_count[TNL_VXLAN]; 4657 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4658 UDP_TUNNEL_TYPE_VXLAN; 4659 } 4660 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4661 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4662 pf->hw.tnl.valid_count[TNL_GENEVE]; 4663 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4664 UDP_TUNNEL_TYPE_GENEVE; 4665 } 4666 4667 err = ice_init_interrupt_scheme(pf); 4668 if (err) { 4669 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4670 err = -EIO; 4671 goto err_init_interrupt_scheme; 4672 } 4673 4674 /* In case of MSIX we are going to setup the misc vector right here 4675 * to handle admin queue events etc. In case of legacy and MSI 4676 * the misc functionality and queue processing is combined in 4677 * the same vector and that gets setup at open. 4678 */ 4679 err = ice_req_irq_msix_misc(pf); 4680 if (err) { 4681 dev_err(dev, "setup of misc vector failed: %d\n", err); 4682 goto err_req_irq_msix_misc; 4683 } 4684 4685 return 0; 4686 4687 err_req_irq_msix_misc: 4688 ice_clear_interrupt_scheme(pf); 4689 err_init_interrupt_scheme: 4690 ice_deinit_pf(pf); 4691 err_init_pf: 4692 ice_deinit_hw(hw); 4693 return err; 4694 } 4695 4696 void ice_deinit_dev(struct ice_pf *pf) 4697 { 4698 ice_free_irq_msix_misc(pf); 4699 ice_deinit_pf(pf); 4700 ice_deinit_hw(&pf->hw); 4701 4702 /* Service task is already stopped, so call reset directly. */ 4703 ice_reset(&pf->hw, ICE_RESET_PFR); 4704 pci_wait_for_pending_transaction(pf->pdev); 4705 ice_clear_interrupt_scheme(pf); 4706 } 4707 4708 static void ice_init_features(struct ice_pf *pf) 4709 { 4710 struct device *dev = ice_pf_to_dev(pf); 4711 4712 if (ice_is_safe_mode(pf)) 4713 return; 4714 4715 /* initialize DDP driven features */ 4716 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4717 ice_ptp_init(pf); 4718 4719 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4720 ice_gnss_init(pf); 4721 4722 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4723 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4724 ice_dpll_init(pf); 4725 4726 /* Note: Flow director init failure is non-fatal to load */ 4727 if (ice_init_fdir(pf)) 4728 dev_err(dev, "could not initialize flow director\n"); 4729 4730 /* Note: DCB init failure is non-fatal to load */ 4731 if (ice_init_pf_dcb(pf, false)) { 4732 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4733 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4734 } else { 4735 ice_cfg_lldp_mib_change(&pf->hw, true); 4736 } 4737 4738 if (ice_init_lag(pf)) 4739 dev_warn(dev, "Failed to init link aggregation support\n"); 4740 4741 ice_hwmon_init(pf); 4742 } 4743 4744 static void ice_deinit_features(struct ice_pf *pf) 4745 { 4746 if (ice_is_safe_mode(pf)) 4747 return; 4748 4749 ice_deinit_lag(pf); 4750 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4751 ice_cfg_lldp_mib_change(&pf->hw, false); 4752 ice_deinit_fdir(pf); 4753 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4754 ice_gnss_exit(pf); 4755 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4756 ice_ptp_release(pf); 4757 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4758 ice_dpll_deinit(pf); 4759 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4760 xa_destroy(&pf->eswitch.reprs); 4761 } 4762 4763 static void ice_init_wakeup(struct ice_pf *pf) 4764 { 4765 /* Save wakeup reason register for later use */ 4766 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4767 4768 /* check for a power management event */ 4769 ice_print_wake_reason(pf); 4770 4771 /* clear wake status, all bits */ 4772 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4773 4774 /* Disable WoL at init, wait for user to enable */ 4775 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4776 } 4777 4778 static int ice_init_link(struct ice_pf *pf) 4779 { 4780 struct device *dev = ice_pf_to_dev(pf); 4781 int err; 4782 4783 err = ice_init_link_events(pf->hw.port_info); 4784 if (err) { 4785 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4786 return err; 4787 } 4788 4789 /* not a fatal error if this fails */ 4790 err = ice_init_nvm_phy_type(pf->hw.port_info); 4791 if (err) 4792 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4793 4794 /* not a fatal error if this fails */ 4795 err = ice_update_link_info(pf->hw.port_info); 4796 if (err) 4797 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4798 4799 ice_init_link_dflt_override(pf->hw.port_info); 4800 4801 ice_check_link_cfg_err(pf, 4802 pf->hw.port_info->phy.link_info.link_cfg_err); 4803 4804 /* if media available, initialize PHY settings */ 4805 if (pf->hw.port_info->phy.link_info.link_info & 4806 ICE_AQ_MEDIA_AVAILABLE) { 4807 /* not a fatal error if this fails */ 4808 err = ice_init_phy_user_cfg(pf->hw.port_info); 4809 if (err) 4810 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4811 4812 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4813 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4814 4815 if (vsi) 4816 ice_configure_phy(vsi); 4817 } 4818 } else { 4819 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4820 } 4821 4822 return err; 4823 } 4824 4825 static int ice_init_pf_sw(struct ice_pf *pf) 4826 { 4827 bool dvm = ice_is_dvm_ena(&pf->hw); 4828 struct ice_vsi *vsi; 4829 int err; 4830 4831 /* create switch struct for the switch element created by FW on boot */ 4832 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4833 if (!pf->first_sw) 4834 return -ENOMEM; 4835 4836 if (pf->hw.evb_veb) 4837 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4838 else 4839 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4840 4841 pf->first_sw->pf = pf; 4842 4843 /* record the sw_id available for later use */ 4844 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4845 4846 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4847 if (err) 4848 goto err_aq_set_port_params; 4849 4850 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4851 if (!vsi) { 4852 err = -ENOMEM; 4853 goto err_pf_vsi_setup; 4854 } 4855 4856 return 0; 4857 4858 err_pf_vsi_setup: 4859 err_aq_set_port_params: 4860 kfree(pf->first_sw); 4861 return err; 4862 } 4863 4864 static void ice_deinit_pf_sw(struct ice_pf *pf) 4865 { 4866 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4867 4868 if (!vsi) 4869 return; 4870 4871 ice_vsi_release(vsi); 4872 kfree(pf->first_sw); 4873 } 4874 4875 static int ice_alloc_vsis(struct ice_pf *pf) 4876 { 4877 struct device *dev = ice_pf_to_dev(pf); 4878 4879 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4880 if (!pf->num_alloc_vsi) 4881 return -EIO; 4882 4883 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4884 dev_warn(dev, 4885 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4886 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4887 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4888 } 4889 4890 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4891 GFP_KERNEL); 4892 if (!pf->vsi) 4893 return -ENOMEM; 4894 4895 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4896 sizeof(*pf->vsi_stats), GFP_KERNEL); 4897 if (!pf->vsi_stats) { 4898 devm_kfree(dev, pf->vsi); 4899 return -ENOMEM; 4900 } 4901 4902 return 0; 4903 } 4904 4905 static void ice_dealloc_vsis(struct ice_pf *pf) 4906 { 4907 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4908 pf->vsi_stats = NULL; 4909 4910 pf->num_alloc_vsi = 0; 4911 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4912 pf->vsi = NULL; 4913 } 4914 4915 static int ice_init_devlink(struct ice_pf *pf) 4916 { 4917 int err; 4918 4919 err = ice_devlink_register_params(pf); 4920 if (err) 4921 return err; 4922 4923 ice_devlink_init_regions(pf); 4924 ice_devlink_register(pf); 4925 4926 return 0; 4927 } 4928 4929 static void ice_deinit_devlink(struct ice_pf *pf) 4930 { 4931 ice_devlink_unregister(pf); 4932 ice_devlink_destroy_regions(pf); 4933 ice_devlink_unregister_params(pf); 4934 } 4935 4936 static int ice_init(struct ice_pf *pf) 4937 { 4938 int err; 4939 4940 err = ice_init_dev(pf); 4941 if (err) 4942 return err; 4943 4944 err = ice_alloc_vsis(pf); 4945 if (err) 4946 goto err_alloc_vsis; 4947 4948 err = ice_init_pf_sw(pf); 4949 if (err) 4950 goto err_init_pf_sw; 4951 4952 ice_init_wakeup(pf); 4953 4954 err = ice_init_link(pf); 4955 if (err) 4956 goto err_init_link; 4957 4958 err = ice_send_version(pf); 4959 if (err) 4960 goto err_init_link; 4961 4962 ice_verify_cacheline_size(pf); 4963 4964 if (ice_is_safe_mode(pf)) 4965 ice_set_safe_mode_vlan_cfg(pf); 4966 else 4967 /* print PCI link speed and width */ 4968 pcie_print_link_status(pf->pdev); 4969 4970 /* ready to go, so clear down state bit */ 4971 clear_bit(ICE_DOWN, pf->state); 4972 clear_bit(ICE_SERVICE_DIS, pf->state); 4973 4974 /* since everything is good, start the service timer */ 4975 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4976 4977 return 0; 4978 4979 err_init_link: 4980 ice_deinit_pf_sw(pf); 4981 err_init_pf_sw: 4982 ice_dealloc_vsis(pf); 4983 err_alloc_vsis: 4984 ice_deinit_dev(pf); 4985 return err; 4986 } 4987 4988 static void ice_deinit(struct ice_pf *pf) 4989 { 4990 set_bit(ICE_SERVICE_DIS, pf->state); 4991 set_bit(ICE_DOWN, pf->state); 4992 4993 ice_deinit_pf_sw(pf); 4994 ice_dealloc_vsis(pf); 4995 ice_deinit_dev(pf); 4996 } 4997 4998 /** 4999 * ice_load - load pf by init hw and starting VSI 5000 * @pf: pointer to the pf instance 5001 * 5002 * This function has to be called under devl_lock. 5003 */ 5004 int ice_load(struct ice_pf *pf) 5005 { 5006 struct ice_vsi *vsi; 5007 int err; 5008 5009 devl_assert_locked(priv_to_devlink(pf)); 5010 5011 vsi = ice_get_main_vsi(pf); 5012 5013 /* init channel list */ 5014 INIT_LIST_HEAD(&vsi->ch_list); 5015 5016 err = ice_cfg_netdev(vsi); 5017 if (err) 5018 return err; 5019 5020 /* Setup DCB netlink interface */ 5021 ice_dcbnl_setup(vsi); 5022 5023 err = ice_init_mac_fltr(pf); 5024 if (err) 5025 goto err_init_mac_fltr; 5026 5027 err = ice_devlink_create_pf_port(pf); 5028 if (err) 5029 goto err_devlink_create_pf_port; 5030 5031 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5032 5033 err = ice_register_netdev(vsi); 5034 if (err) 5035 goto err_register_netdev; 5036 5037 err = ice_tc_indir_block_register(vsi); 5038 if (err) 5039 goto err_tc_indir_block_register; 5040 5041 ice_napi_add(vsi); 5042 5043 err = ice_init_rdma(pf); 5044 if (err) 5045 goto err_init_rdma; 5046 5047 ice_init_features(pf); 5048 ice_service_task_restart(pf); 5049 5050 clear_bit(ICE_DOWN, pf->state); 5051 5052 return 0; 5053 5054 err_init_rdma: 5055 ice_tc_indir_block_unregister(vsi); 5056 err_tc_indir_block_register: 5057 ice_unregister_netdev(vsi); 5058 err_register_netdev: 5059 ice_devlink_destroy_pf_port(pf); 5060 err_devlink_create_pf_port: 5061 err_init_mac_fltr: 5062 ice_decfg_netdev(vsi); 5063 return err; 5064 } 5065 5066 /** 5067 * ice_unload - unload pf by stopping VSI and deinit hw 5068 * @pf: pointer to the pf instance 5069 * 5070 * This function has to be called under devl_lock. 5071 */ 5072 void ice_unload(struct ice_pf *pf) 5073 { 5074 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5075 5076 devl_assert_locked(priv_to_devlink(pf)); 5077 5078 ice_deinit_features(pf); 5079 ice_deinit_rdma(pf); 5080 ice_tc_indir_block_unregister(vsi); 5081 ice_unregister_netdev(vsi); 5082 ice_devlink_destroy_pf_port(pf); 5083 ice_decfg_netdev(vsi); 5084 } 5085 5086 /** 5087 * ice_probe - Device initialization routine 5088 * @pdev: PCI device information struct 5089 * @ent: entry in ice_pci_tbl 5090 * 5091 * Returns 0 on success, negative on failure 5092 */ 5093 static int 5094 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5095 { 5096 struct device *dev = &pdev->dev; 5097 struct ice_adapter *adapter; 5098 struct ice_pf *pf; 5099 struct ice_hw *hw; 5100 int err; 5101 5102 if (pdev->is_virtfn) { 5103 dev_err(dev, "can't probe a virtual function\n"); 5104 return -EINVAL; 5105 } 5106 5107 /* when under a kdump kernel initiate a reset before enabling the 5108 * device in order to clear out any pending DMA transactions. These 5109 * transactions can cause some systems to machine check when doing 5110 * the pcim_enable_device() below. 5111 */ 5112 if (is_kdump_kernel()) { 5113 pci_save_state(pdev); 5114 pci_clear_master(pdev); 5115 err = pcie_flr(pdev); 5116 if (err) 5117 return err; 5118 pci_restore_state(pdev); 5119 } 5120 5121 /* this driver uses devres, see 5122 * Documentation/driver-api/driver-model/devres.rst 5123 */ 5124 err = pcim_enable_device(pdev); 5125 if (err) 5126 return err; 5127 5128 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5129 if (err) { 5130 dev_err(dev, "BAR0 I/O map error %d\n", err); 5131 return err; 5132 } 5133 5134 pf = ice_allocate_pf(dev); 5135 if (!pf) 5136 return -ENOMEM; 5137 5138 /* initialize Auxiliary index to invalid value */ 5139 pf->aux_idx = -1; 5140 5141 /* set up for high or low DMA */ 5142 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5143 if (err) { 5144 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5145 return err; 5146 } 5147 5148 pci_set_master(pdev); 5149 5150 adapter = ice_adapter_get(pdev); 5151 if (IS_ERR(adapter)) 5152 return PTR_ERR(adapter); 5153 5154 pf->pdev = pdev; 5155 pf->adapter = adapter; 5156 pci_set_drvdata(pdev, pf); 5157 set_bit(ICE_DOWN, pf->state); 5158 /* Disable service task until DOWN bit is cleared */ 5159 set_bit(ICE_SERVICE_DIS, pf->state); 5160 5161 hw = &pf->hw; 5162 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5163 pci_save_state(pdev); 5164 5165 hw->back = pf; 5166 hw->port_info = NULL; 5167 hw->vendor_id = pdev->vendor; 5168 hw->device_id = pdev->device; 5169 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5170 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5171 hw->subsystem_device_id = pdev->subsystem_device; 5172 hw->bus.device = PCI_SLOT(pdev->devfn); 5173 hw->bus.func = PCI_FUNC(pdev->devfn); 5174 ice_set_ctrlq_len(hw); 5175 5176 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5177 5178 #ifndef CONFIG_DYNAMIC_DEBUG 5179 if (debug < -1) 5180 hw->debug_mask = debug; 5181 #endif 5182 5183 err = ice_init(pf); 5184 if (err) 5185 goto err_init; 5186 5187 devl_lock(priv_to_devlink(pf)); 5188 err = ice_load(pf); 5189 if (err) 5190 goto err_load; 5191 5192 err = ice_init_devlink(pf); 5193 if (err) 5194 goto err_init_devlink; 5195 devl_unlock(priv_to_devlink(pf)); 5196 5197 return 0; 5198 5199 err_init_devlink: 5200 ice_unload(pf); 5201 err_load: 5202 devl_unlock(priv_to_devlink(pf)); 5203 ice_deinit(pf); 5204 err_init: 5205 ice_adapter_put(pdev); 5206 pci_disable_device(pdev); 5207 return err; 5208 } 5209 5210 /** 5211 * ice_set_wake - enable or disable Wake on LAN 5212 * @pf: pointer to the PF struct 5213 * 5214 * Simple helper for WoL control 5215 */ 5216 static void ice_set_wake(struct ice_pf *pf) 5217 { 5218 struct ice_hw *hw = &pf->hw; 5219 bool wol = pf->wol_ena; 5220 5221 /* clear wake state, otherwise new wake events won't fire */ 5222 wr32(hw, PFPM_WUS, U32_MAX); 5223 5224 /* enable / disable APM wake up, no RMW needed */ 5225 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5226 5227 /* set magic packet filter enabled */ 5228 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5229 } 5230 5231 /** 5232 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5233 * @pf: pointer to the PF struct 5234 * 5235 * Issue firmware command to enable multicast magic wake, making 5236 * sure that any locally administered address (LAA) is used for 5237 * wake, and that PF reset doesn't undo the LAA. 5238 */ 5239 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5240 { 5241 struct device *dev = ice_pf_to_dev(pf); 5242 struct ice_hw *hw = &pf->hw; 5243 u8 mac_addr[ETH_ALEN]; 5244 struct ice_vsi *vsi; 5245 int status; 5246 u8 flags; 5247 5248 if (!pf->wol_ena) 5249 return; 5250 5251 vsi = ice_get_main_vsi(pf); 5252 if (!vsi) 5253 return; 5254 5255 /* Get current MAC address in case it's an LAA */ 5256 if (vsi->netdev) 5257 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5258 else 5259 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5260 5261 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5262 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5263 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5264 5265 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5266 if (status) 5267 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5268 status, ice_aq_str(hw->adminq.sq_last_status)); 5269 } 5270 5271 /** 5272 * ice_remove - Device removal routine 5273 * @pdev: PCI device information struct 5274 */ 5275 static void ice_remove(struct pci_dev *pdev) 5276 { 5277 struct ice_pf *pf = pci_get_drvdata(pdev); 5278 int i; 5279 5280 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5281 if (!ice_is_reset_in_progress(pf->state)) 5282 break; 5283 msleep(100); 5284 } 5285 5286 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5287 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5288 ice_free_vfs(pf); 5289 } 5290 5291 ice_hwmon_exit(pf); 5292 5293 ice_service_task_stop(pf); 5294 ice_aq_cancel_waiting_tasks(pf); 5295 set_bit(ICE_DOWN, pf->state); 5296 5297 if (!ice_is_safe_mode(pf)) 5298 ice_remove_arfs(pf); 5299 5300 devl_lock(priv_to_devlink(pf)); 5301 ice_deinit_devlink(pf); 5302 5303 ice_unload(pf); 5304 devl_unlock(priv_to_devlink(pf)); 5305 5306 ice_deinit(pf); 5307 ice_vsi_release_all(pf); 5308 5309 ice_setup_mc_magic_wake(pf); 5310 ice_set_wake(pf); 5311 5312 ice_adapter_put(pdev); 5313 pci_disable_device(pdev); 5314 } 5315 5316 /** 5317 * ice_shutdown - PCI callback for shutting down device 5318 * @pdev: PCI device information struct 5319 */ 5320 static void ice_shutdown(struct pci_dev *pdev) 5321 { 5322 struct ice_pf *pf = pci_get_drvdata(pdev); 5323 5324 ice_remove(pdev); 5325 5326 if (system_state == SYSTEM_POWER_OFF) { 5327 pci_wake_from_d3(pdev, pf->wol_ena); 5328 pci_set_power_state(pdev, PCI_D3hot); 5329 } 5330 } 5331 5332 /** 5333 * ice_prepare_for_shutdown - prep for PCI shutdown 5334 * @pf: board private structure 5335 * 5336 * Inform or close all dependent features in prep for PCI device shutdown 5337 */ 5338 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5339 { 5340 struct ice_hw *hw = &pf->hw; 5341 u32 v; 5342 5343 /* Notify VFs of impending reset */ 5344 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5345 ice_vc_notify_reset(pf); 5346 5347 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5348 5349 /* disable the VSIs and their queues that are not already DOWN */ 5350 ice_pf_dis_all_vsi(pf, false); 5351 5352 ice_for_each_vsi(pf, v) 5353 if (pf->vsi[v]) 5354 pf->vsi[v]->vsi_num = 0; 5355 5356 ice_shutdown_all_ctrlq(hw); 5357 } 5358 5359 /** 5360 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5361 * @pf: board private structure to reinitialize 5362 * 5363 * This routine reinitialize interrupt scheme that was cleared during 5364 * power management suspend callback. 5365 * 5366 * This should be called during resume routine to re-allocate the q_vectors 5367 * and reacquire interrupts. 5368 */ 5369 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5370 { 5371 struct device *dev = ice_pf_to_dev(pf); 5372 int ret, v; 5373 5374 /* Since we clear MSIX flag during suspend, we need to 5375 * set it back during resume... 5376 */ 5377 5378 ret = ice_init_interrupt_scheme(pf); 5379 if (ret) { 5380 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5381 return ret; 5382 } 5383 5384 /* Remap vectors and rings, after successful re-init interrupts */ 5385 ice_for_each_vsi(pf, v) { 5386 if (!pf->vsi[v]) 5387 continue; 5388 5389 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5390 if (ret) 5391 goto err_reinit; 5392 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5393 ice_vsi_set_napi_queues(pf->vsi[v]); 5394 } 5395 5396 ret = ice_req_irq_msix_misc(pf); 5397 if (ret) { 5398 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5399 ret); 5400 goto err_reinit; 5401 } 5402 5403 return 0; 5404 5405 err_reinit: 5406 while (v--) 5407 if (pf->vsi[v]) 5408 ice_vsi_free_q_vectors(pf->vsi[v]); 5409 5410 return ret; 5411 } 5412 5413 /** 5414 * ice_suspend 5415 * @dev: generic device information structure 5416 * 5417 * Power Management callback to quiesce the device and prepare 5418 * for D3 transition. 5419 */ 5420 static int ice_suspend(struct device *dev) 5421 { 5422 struct pci_dev *pdev = to_pci_dev(dev); 5423 struct ice_pf *pf; 5424 int disabled, v; 5425 5426 pf = pci_get_drvdata(pdev); 5427 5428 if (!ice_pf_state_is_nominal(pf)) { 5429 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5430 return -EBUSY; 5431 } 5432 5433 /* Stop watchdog tasks until resume completion. 5434 * Even though it is most likely that the service task is 5435 * disabled if the device is suspended or down, the service task's 5436 * state is controlled by a different state bit, and we should 5437 * store and honor whatever state that bit is in at this point. 5438 */ 5439 disabled = ice_service_task_stop(pf); 5440 5441 ice_unplug_aux_dev(pf); 5442 5443 /* Already suspended?, then there is nothing to do */ 5444 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5445 if (!disabled) 5446 ice_service_task_restart(pf); 5447 return 0; 5448 } 5449 5450 if (test_bit(ICE_DOWN, pf->state) || 5451 ice_is_reset_in_progress(pf->state)) { 5452 dev_err(dev, "can't suspend device in reset or already down\n"); 5453 if (!disabled) 5454 ice_service_task_restart(pf); 5455 return 0; 5456 } 5457 5458 ice_setup_mc_magic_wake(pf); 5459 5460 ice_prepare_for_shutdown(pf); 5461 5462 ice_set_wake(pf); 5463 5464 /* Free vectors, clear the interrupt scheme and release IRQs 5465 * for proper hibernation, especially with large number of CPUs. 5466 * Otherwise hibernation might fail when mapping all the vectors back 5467 * to CPU0. 5468 */ 5469 ice_free_irq_msix_misc(pf); 5470 ice_for_each_vsi(pf, v) { 5471 if (!pf->vsi[v]) 5472 continue; 5473 ice_vsi_free_q_vectors(pf->vsi[v]); 5474 } 5475 ice_clear_interrupt_scheme(pf); 5476 5477 pci_save_state(pdev); 5478 pci_wake_from_d3(pdev, pf->wol_ena); 5479 pci_set_power_state(pdev, PCI_D3hot); 5480 return 0; 5481 } 5482 5483 /** 5484 * ice_resume - PM callback for waking up from D3 5485 * @dev: generic device information structure 5486 */ 5487 static int ice_resume(struct device *dev) 5488 { 5489 struct pci_dev *pdev = to_pci_dev(dev); 5490 enum ice_reset_req reset_type; 5491 struct ice_pf *pf; 5492 struct ice_hw *hw; 5493 int ret; 5494 5495 pci_set_power_state(pdev, PCI_D0); 5496 pci_restore_state(pdev); 5497 pci_save_state(pdev); 5498 5499 if (!pci_device_is_present(pdev)) 5500 return -ENODEV; 5501 5502 ret = pci_enable_device_mem(pdev); 5503 if (ret) { 5504 dev_err(dev, "Cannot enable device after suspend\n"); 5505 return ret; 5506 } 5507 5508 pf = pci_get_drvdata(pdev); 5509 hw = &pf->hw; 5510 5511 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5512 ice_print_wake_reason(pf); 5513 5514 /* We cleared the interrupt scheme when we suspended, so we need to 5515 * restore it now to resume device functionality. 5516 */ 5517 ret = ice_reinit_interrupt_scheme(pf); 5518 if (ret) 5519 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5520 5521 clear_bit(ICE_DOWN, pf->state); 5522 /* Now perform PF reset and rebuild */ 5523 reset_type = ICE_RESET_PFR; 5524 /* re-enable service task for reset, but allow reset to schedule it */ 5525 clear_bit(ICE_SERVICE_DIS, pf->state); 5526 5527 if (ice_schedule_reset(pf, reset_type)) 5528 dev_err(dev, "Reset during resume failed.\n"); 5529 5530 clear_bit(ICE_SUSPENDED, pf->state); 5531 ice_service_task_restart(pf); 5532 5533 /* Restart the service task */ 5534 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5535 5536 return 0; 5537 } 5538 5539 /** 5540 * ice_pci_err_detected - warning that PCI error has been detected 5541 * @pdev: PCI device information struct 5542 * @err: the type of PCI error 5543 * 5544 * Called to warn that something happened on the PCI bus and the error handling 5545 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5546 */ 5547 static pci_ers_result_t 5548 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5549 { 5550 struct ice_pf *pf = pci_get_drvdata(pdev); 5551 5552 if (!pf) { 5553 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5554 __func__, err); 5555 return PCI_ERS_RESULT_DISCONNECT; 5556 } 5557 5558 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5559 ice_service_task_stop(pf); 5560 5561 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5562 set_bit(ICE_PFR_REQ, pf->state); 5563 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5564 } 5565 } 5566 5567 return PCI_ERS_RESULT_NEED_RESET; 5568 } 5569 5570 /** 5571 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5572 * @pdev: PCI device information struct 5573 * 5574 * Called to determine if the driver can recover from the PCI slot reset by 5575 * using a register read to determine if the device is recoverable. 5576 */ 5577 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5578 { 5579 struct ice_pf *pf = pci_get_drvdata(pdev); 5580 pci_ers_result_t result; 5581 int err; 5582 u32 reg; 5583 5584 err = pci_enable_device_mem(pdev); 5585 if (err) { 5586 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5587 err); 5588 result = PCI_ERS_RESULT_DISCONNECT; 5589 } else { 5590 pci_set_master(pdev); 5591 pci_restore_state(pdev); 5592 pci_save_state(pdev); 5593 pci_wake_from_d3(pdev, false); 5594 5595 /* Check for life */ 5596 reg = rd32(&pf->hw, GLGEN_RTRIG); 5597 if (!reg) 5598 result = PCI_ERS_RESULT_RECOVERED; 5599 else 5600 result = PCI_ERS_RESULT_DISCONNECT; 5601 } 5602 5603 return result; 5604 } 5605 5606 /** 5607 * ice_pci_err_resume - restart operations after PCI error recovery 5608 * @pdev: PCI device information struct 5609 * 5610 * Called to allow the driver to bring things back up after PCI error and/or 5611 * reset recovery have finished 5612 */ 5613 static void ice_pci_err_resume(struct pci_dev *pdev) 5614 { 5615 struct ice_pf *pf = pci_get_drvdata(pdev); 5616 5617 if (!pf) { 5618 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5619 __func__); 5620 return; 5621 } 5622 5623 if (test_bit(ICE_SUSPENDED, pf->state)) { 5624 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5625 __func__); 5626 return; 5627 } 5628 5629 ice_restore_all_vfs_msi_state(pf); 5630 5631 ice_do_reset(pf, ICE_RESET_PFR); 5632 ice_service_task_restart(pf); 5633 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5634 } 5635 5636 /** 5637 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5638 * @pdev: PCI device information struct 5639 */ 5640 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5641 { 5642 struct ice_pf *pf = pci_get_drvdata(pdev); 5643 5644 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5645 ice_service_task_stop(pf); 5646 5647 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5648 set_bit(ICE_PFR_REQ, pf->state); 5649 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5650 } 5651 } 5652 } 5653 5654 /** 5655 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5656 * @pdev: PCI device information struct 5657 */ 5658 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5659 { 5660 ice_pci_err_resume(pdev); 5661 } 5662 5663 /* ice_pci_tbl - PCI Device ID Table 5664 * 5665 * Wildcard entries (PCI_ANY_ID) should come last 5666 * Last entry must be all 0s 5667 * 5668 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5669 * Class, Class Mask, private data (not used) } 5670 */ 5671 static const struct pci_device_id ice_pci_tbl[] = { 5672 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5673 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5674 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5675 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5676 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5677 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5678 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5679 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5680 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5681 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5682 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5683 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5684 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5685 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5686 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5687 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5688 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5689 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5690 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5691 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5692 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5693 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5694 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5695 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5696 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5697 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5698 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5699 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5700 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5701 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5702 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5703 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5704 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5705 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5706 /* required last entry */ 5707 {} 5708 }; 5709 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5710 5711 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5712 5713 static const struct pci_error_handlers ice_pci_err_handler = { 5714 .error_detected = ice_pci_err_detected, 5715 .slot_reset = ice_pci_err_slot_reset, 5716 .reset_prepare = ice_pci_err_reset_prepare, 5717 .reset_done = ice_pci_err_reset_done, 5718 .resume = ice_pci_err_resume 5719 }; 5720 5721 static struct pci_driver ice_driver = { 5722 .name = KBUILD_MODNAME, 5723 .id_table = ice_pci_tbl, 5724 .probe = ice_probe, 5725 .remove = ice_remove, 5726 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5727 .shutdown = ice_shutdown, 5728 .sriov_configure = ice_sriov_configure, 5729 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5730 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5731 .err_handler = &ice_pci_err_handler 5732 }; 5733 5734 /** 5735 * ice_module_init - Driver registration routine 5736 * 5737 * ice_module_init is the first routine called when the driver is 5738 * loaded. All it does is register with the PCI subsystem. 5739 */ 5740 static int __init ice_module_init(void) 5741 { 5742 int status = -ENOMEM; 5743 5744 pr_info("%s\n", ice_driver_string); 5745 pr_info("%s\n", ice_copyright); 5746 5747 ice_adv_lnk_speed_maps_init(); 5748 5749 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5750 if (!ice_wq) { 5751 pr_err("Failed to create workqueue\n"); 5752 return status; 5753 } 5754 5755 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5756 if (!ice_lag_wq) { 5757 pr_err("Failed to create LAG workqueue\n"); 5758 goto err_dest_wq; 5759 } 5760 5761 ice_debugfs_init(); 5762 5763 status = pci_register_driver(&ice_driver); 5764 if (status) { 5765 pr_err("failed to register PCI driver, err %d\n", status); 5766 goto err_dest_lag_wq; 5767 } 5768 5769 return 0; 5770 5771 err_dest_lag_wq: 5772 destroy_workqueue(ice_lag_wq); 5773 ice_debugfs_exit(); 5774 err_dest_wq: 5775 destroy_workqueue(ice_wq); 5776 return status; 5777 } 5778 module_init(ice_module_init); 5779 5780 /** 5781 * ice_module_exit - Driver exit cleanup routine 5782 * 5783 * ice_module_exit is called just before the driver is removed 5784 * from memory. 5785 */ 5786 static void __exit ice_module_exit(void) 5787 { 5788 pci_unregister_driver(&ice_driver); 5789 ice_debugfs_exit(); 5790 destroy_workqueue(ice_wq); 5791 destroy_workqueue(ice_lag_wq); 5792 pr_info("module unloaded\n"); 5793 } 5794 module_exit(ice_module_exit); 5795 5796 /** 5797 * ice_set_mac_address - NDO callback to set MAC address 5798 * @netdev: network interface device structure 5799 * @pi: pointer to an address structure 5800 * 5801 * Returns 0 on success, negative on failure 5802 */ 5803 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5804 { 5805 struct ice_netdev_priv *np = netdev_priv(netdev); 5806 struct ice_vsi *vsi = np->vsi; 5807 struct ice_pf *pf = vsi->back; 5808 struct ice_hw *hw = &pf->hw; 5809 struct sockaddr *addr = pi; 5810 u8 old_mac[ETH_ALEN]; 5811 u8 flags = 0; 5812 u8 *mac; 5813 int err; 5814 5815 mac = (u8 *)addr->sa_data; 5816 5817 if (!is_valid_ether_addr(mac)) 5818 return -EADDRNOTAVAIL; 5819 5820 if (test_bit(ICE_DOWN, pf->state) || 5821 ice_is_reset_in_progress(pf->state)) { 5822 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5823 mac); 5824 return -EBUSY; 5825 } 5826 5827 if (ice_chnl_dmac_fltr_cnt(pf)) { 5828 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5829 mac); 5830 return -EAGAIN; 5831 } 5832 5833 netif_addr_lock_bh(netdev); 5834 ether_addr_copy(old_mac, netdev->dev_addr); 5835 /* change the netdev's MAC address */ 5836 eth_hw_addr_set(netdev, mac); 5837 netif_addr_unlock_bh(netdev); 5838 5839 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5840 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5841 if (err && err != -ENOENT) { 5842 err = -EADDRNOTAVAIL; 5843 goto err_update_filters; 5844 } 5845 5846 /* Add filter for new MAC. If filter exists, return success */ 5847 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5848 if (err == -EEXIST) { 5849 /* Although this MAC filter is already present in hardware it's 5850 * possible in some cases (e.g. bonding) that dev_addr was 5851 * modified outside of the driver and needs to be restored back 5852 * to this value. 5853 */ 5854 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5855 5856 return 0; 5857 } else if (err) { 5858 /* error if the new filter addition failed */ 5859 err = -EADDRNOTAVAIL; 5860 } 5861 5862 err_update_filters: 5863 if (err) { 5864 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5865 mac); 5866 netif_addr_lock_bh(netdev); 5867 eth_hw_addr_set(netdev, old_mac); 5868 netif_addr_unlock_bh(netdev); 5869 return err; 5870 } 5871 5872 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5873 netdev->dev_addr); 5874 5875 /* write new MAC address to the firmware */ 5876 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5877 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5878 if (err) { 5879 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5880 mac, err); 5881 } 5882 return 0; 5883 } 5884 5885 /** 5886 * ice_set_rx_mode - NDO callback to set the netdev filters 5887 * @netdev: network interface device structure 5888 */ 5889 static void ice_set_rx_mode(struct net_device *netdev) 5890 { 5891 struct ice_netdev_priv *np = netdev_priv(netdev); 5892 struct ice_vsi *vsi = np->vsi; 5893 5894 if (!vsi || ice_is_switchdev_running(vsi->back)) 5895 return; 5896 5897 /* Set the flags to synchronize filters 5898 * ndo_set_rx_mode may be triggered even without a change in netdev 5899 * flags 5900 */ 5901 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5902 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5903 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5904 5905 /* schedule our worker thread which will take care of 5906 * applying the new filter changes 5907 */ 5908 ice_service_task_schedule(vsi->back); 5909 } 5910 5911 /** 5912 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5913 * @netdev: network interface device structure 5914 * @queue_index: Queue ID 5915 * @maxrate: maximum bandwidth in Mbps 5916 */ 5917 static int 5918 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5919 { 5920 struct ice_netdev_priv *np = netdev_priv(netdev); 5921 struct ice_vsi *vsi = np->vsi; 5922 u16 q_handle; 5923 int status; 5924 u8 tc; 5925 5926 /* Validate maxrate requested is within permitted range */ 5927 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5928 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5929 maxrate, queue_index); 5930 return -EINVAL; 5931 } 5932 5933 q_handle = vsi->tx_rings[queue_index]->q_handle; 5934 tc = ice_dcb_get_tc(vsi, queue_index); 5935 5936 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5937 if (!vsi) { 5938 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5939 queue_index); 5940 return -EINVAL; 5941 } 5942 5943 /* Set BW back to default, when user set maxrate to 0 */ 5944 if (!maxrate) 5945 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5946 q_handle, ICE_MAX_BW); 5947 else 5948 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5949 q_handle, ICE_MAX_BW, maxrate * 1000); 5950 if (status) 5951 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5952 status); 5953 5954 return status; 5955 } 5956 5957 /** 5958 * ice_fdb_add - add an entry to the hardware database 5959 * @ndm: the input from the stack 5960 * @tb: pointer to array of nladdr (unused) 5961 * @dev: the net device pointer 5962 * @addr: the MAC address entry being added 5963 * @vid: VLAN ID 5964 * @flags: instructions from stack about fdb operation 5965 * @extack: netlink extended ack 5966 */ 5967 static int 5968 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5969 struct net_device *dev, const unsigned char *addr, u16 vid, 5970 u16 flags, struct netlink_ext_ack __always_unused *extack) 5971 { 5972 int err; 5973 5974 if (vid) { 5975 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5976 return -EINVAL; 5977 } 5978 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5979 netdev_err(dev, "FDB only supports static addresses\n"); 5980 return -EINVAL; 5981 } 5982 5983 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5984 err = dev_uc_add_excl(dev, addr); 5985 else if (is_multicast_ether_addr(addr)) 5986 err = dev_mc_add_excl(dev, addr); 5987 else 5988 err = -EINVAL; 5989 5990 /* Only return duplicate errors if NLM_F_EXCL is set */ 5991 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5992 err = 0; 5993 5994 return err; 5995 } 5996 5997 /** 5998 * ice_fdb_del - delete an entry from the hardware database 5999 * @ndm: the input from the stack 6000 * @tb: pointer to array of nladdr (unused) 6001 * @dev: the net device pointer 6002 * @addr: the MAC address entry being added 6003 * @vid: VLAN ID 6004 * @extack: netlink extended ack 6005 */ 6006 static int 6007 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6008 struct net_device *dev, const unsigned char *addr, 6009 __always_unused u16 vid, struct netlink_ext_ack *extack) 6010 { 6011 int err; 6012 6013 if (ndm->ndm_state & NUD_PERMANENT) { 6014 netdev_err(dev, "FDB only supports static addresses\n"); 6015 return -EINVAL; 6016 } 6017 6018 if (is_unicast_ether_addr(addr)) 6019 err = dev_uc_del(dev, addr); 6020 else if (is_multicast_ether_addr(addr)) 6021 err = dev_mc_del(dev, addr); 6022 else 6023 err = -EINVAL; 6024 6025 return err; 6026 } 6027 6028 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6029 NETIF_F_HW_VLAN_CTAG_TX | \ 6030 NETIF_F_HW_VLAN_STAG_RX | \ 6031 NETIF_F_HW_VLAN_STAG_TX) 6032 6033 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6034 NETIF_F_HW_VLAN_STAG_RX) 6035 6036 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6037 NETIF_F_HW_VLAN_STAG_FILTER) 6038 6039 /** 6040 * ice_fix_features - fix the netdev features flags based on device limitations 6041 * @netdev: ptr to the netdev that flags are being fixed on 6042 * @features: features that need to be checked and possibly fixed 6043 * 6044 * Make sure any fixups are made to features in this callback. This enables the 6045 * driver to not have to check unsupported configurations throughout the driver 6046 * because that's the responsiblity of this callback. 6047 * 6048 * Single VLAN Mode (SVM) Supported Features: 6049 * NETIF_F_HW_VLAN_CTAG_FILTER 6050 * NETIF_F_HW_VLAN_CTAG_RX 6051 * NETIF_F_HW_VLAN_CTAG_TX 6052 * 6053 * Double VLAN Mode (DVM) Supported Features: 6054 * NETIF_F_HW_VLAN_CTAG_FILTER 6055 * NETIF_F_HW_VLAN_CTAG_RX 6056 * NETIF_F_HW_VLAN_CTAG_TX 6057 * 6058 * NETIF_F_HW_VLAN_STAG_FILTER 6059 * NETIF_HW_VLAN_STAG_RX 6060 * NETIF_HW_VLAN_STAG_TX 6061 * 6062 * Features that need fixing: 6063 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6064 * These are mutually exlusive as the VSI context cannot support multiple 6065 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6066 * is not done, then default to clearing the requested STAG offload 6067 * settings. 6068 * 6069 * All supported filtering has to be enabled or disabled together. For 6070 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6071 * together. If this is not done, then default to VLAN filtering disabled. 6072 * These are mutually exclusive as there is currently no way to 6073 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6074 * prune rules. 6075 */ 6076 static netdev_features_t 6077 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6078 { 6079 struct ice_netdev_priv *np = netdev_priv(netdev); 6080 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6081 bool cur_ctag, cur_stag, req_ctag, req_stag; 6082 6083 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6084 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6085 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6086 6087 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6088 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6089 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6090 6091 if (req_vlan_fltr != cur_vlan_fltr) { 6092 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6093 if (req_ctag && req_stag) { 6094 features |= NETIF_VLAN_FILTERING_FEATURES; 6095 } else if (!req_ctag && !req_stag) { 6096 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6097 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6098 (!cur_stag && req_stag && !cur_ctag)) { 6099 features |= NETIF_VLAN_FILTERING_FEATURES; 6100 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6101 } else if ((cur_ctag && !req_ctag && cur_stag) || 6102 (cur_stag && !req_stag && cur_ctag)) { 6103 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6104 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6105 } 6106 } else { 6107 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6108 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6109 6110 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6111 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6112 } 6113 } 6114 6115 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6116 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6117 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6118 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6119 NETIF_F_HW_VLAN_STAG_TX); 6120 } 6121 6122 if (!(netdev->features & NETIF_F_RXFCS) && 6123 (features & NETIF_F_RXFCS) && 6124 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6125 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6126 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6127 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6128 } 6129 6130 return features; 6131 } 6132 6133 /** 6134 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6135 * @vsi: PF's VSI 6136 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6137 * 6138 * Store current stripped VLAN proto in ring packet context, 6139 * so it can be accessed more efficiently by packet processing code. 6140 */ 6141 static void 6142 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6143 { 6144 u16 i; 6145 6146 ice_for_each_alloc_rxq(vsi, i) 6147 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6148 } 6149 6150 /** 6151 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6152 * @vsi: PF's VSI 6153 * @features: features used to determine VLAN offload settings 6154 * 6155 * First, determine the vlan_ethertype based on the VLAN offload bits in 6156 * features. Then determine if stripping and insertion should be enabled or 6157 * disabled. Finally enable or disable VLAN stripping and insertion. 6158 */ 6159 static int 6160 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6161 { 6162 bool enable_stripping = true, enable_insertion = true; 6163 struct ice_vsi_vlan_ops *vlan_ops; 6164 int strip_err = 0, insert_err = 0; 6165 u16 vlan_ethertype = 0; 6166 6167 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6168 6169 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6170 vlan_ethertype = ETH_P_8021AD; 6171 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6172 vlan_ethertype = ETH_P_8021Q; 6173 6174 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6175 enable_stripping = false; 6176 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6177 enable_insertion = false; 6178 6179 if (enable_stripping) 6180 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6181 else 6182 strip_err = vlan_ops->dis_stripping(vsi); 6183 6184 if (enable_insertion) 6185 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6186 else 6187 insert_err = vlan_ops->dis_insertion(vsi); 6188 6189 if (strip_err || insert_err) 6190 return -EIO; 6191 6192 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6193 htons(vlan_ethertype) : 0); 6194 6195 return 0; 6196 } 6197 6198 /** 6199 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6200 * @vsi: PF's VSI 6201 * @features: features used to determine VLAN filtering settings 6202 * 6203 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6204 * features. 6205 */ 6206 static int 6207 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6208 { 6209 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6210 int err = 0; 6211 6212 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6213 * if either bit is set 6214 */ 6215 if (features & 6216 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6217 err = vlan_ops->ena_rx_filtering(vsi); 6218 else 6219 err = vlan_ops->dis_rx_filtering(vsi); 6220 6221 return err; 6222 } 6223 6224 /** 6225 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6226 * @netdev: ptr to the netdev being adjusted 6227 * @features: the feature set that the stack is suggesting 6228 * 6229 * Only update VLAN settings if the requested_vlan_features are different than 6230 * the current_vlan_features. 6231 */ 6232 static int 6233 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6234 { 6235 netdev_features_t current_vlan_features, requested_vlan_features; 6236 struct ice_netdev_priv *np = netdev_priv(netdev); 6237 struct ice_vsi *vsi = np->vsi; 6238 int err; 6239 6240 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6241 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6242 if (current_vlan_features ^ requested_vlan_features) { 6243 if ((features & NETIF_F_RXFCS) && 6244 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6245 dev_err(ice_pf_to_dev(vsi->back), 6246 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6247 return -EIO; 6248 } 6249 6250 err = ice_set_vlan_offload_features(vsi, features); 6251 if (err) 6252 return err; 6253 } 6254 6255 current_vlan_features = netdev->features & 6256 NETIF_VLAN_FILTERING_FEATURES; 6257 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6258 if (current_vlan_features ^ requested_vlan_features) { 6259 err = ice_set_vlan_filtering_features(vsi, features); 6260 if (err) 6261 return err; 6262 } 6263 6264 return 0; 6265 } 6266 6267 /** 6268 * ice_set_loopback - turn on/off loopback mode on underlying PF 6269 * @vsi: ptr to VSI 6270 * @ena: flag to indicate the on/off setting 6271 */ 6272 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6273 { 6274 bool if_running = netif_running(vsi->netdev); 6275 int ret; 6276 6277 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6278 ret = ice_down(vsi); 6279 if (ret) { 6280 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6281 return ret; 6282 } 6283 } 6284 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6285 if (ret) 6286 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6287 if (if_running) 6288 ret = ice_up(vsi); 6289 6290 return ret; 6291 } 6292 6293 /** 6294 * ice_set_features - set the netdev feature flags 6295 * @netdev: ptr to the netdev being adjusted 6296 * @features: the feature set that the stack is suggesting 6297 */ 6298 static int 6299 ice_set_features(struct net_device *netdev, netdev_features_t features) 6300 { 6301 netdev_features_t changed = netdev->features ^ features; 6302 struct ice_netdev_priv *np = netdev_priv(netdev); 6303 struct ice_vsi *vsi = np->vsi; 6304 struct ice_pf *pf = vsi->back; 6305 int ret = 0; 6306 6307 /* Don't set any netdev advanced features with device in Safe Mode */ 6308 if (ice_is_safe_mode(pf)) { 6309 dev_err(ice_pf_to_dev(pf), 6310 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6311 return ret; 6312 } 6313 6314 /* Do not change setting during reset */ 6315 if (ice_is_reset_in_progress(pf->state)) { 6316 dev_err(ice_pf_to_dev(pf), 6317 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6318 return -EBUSY; 6319 } 6320 6321 /* Multiple features can be changed in one call so keep features in 6322 * separate if/else statements to guarantee each feature is checked 6323 */ 6324 if (changed & NETIF_F_RXHASH) 6325 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6326 6327 ret = ice_set_vlan_features(netdev, features); 6328 if (ret) 6329 return ret; 6330 6331 /* Turn on receive of FCS aka CRC, and after setting this 6332 * flag the packet data will have the 4 byte CRC appended 6333 */ 6334 if (changed & NETIF_F_RXFCS) { 6335 if ((features & NETIF_F_RXFCS) && 6336 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6337 dev_err(ice_pf_to_dev(vsi->back), 6338 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6339 return -EIO; 6340 } 6341 6342 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6343 ret = ice_down_up(vsi); 6344 if (ret) 6345 return ret; 6346 } 6347 6348 if (changed & NETIF_F_NTUPLE) { 6349 bool ena = !!(features & NETIF_F_NTUPLE); 6350 6351 ice_vsi_manage_fdir(vsi, ena); 6352 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6353 } 6354 6355 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6356 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6357 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6358 return -EACCES; 6359 } 6360 6361 if (changed & NETIF_F_HW_TC) { 6362 bool ena = !!(features & NETIF_F_HW_TC); 6363 6364 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6365 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6366 } 6367 6368 if (changed & NETIF_F_LOOPBACK) 6369 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6370 6371 return ret; 6372 } 6373 6374 /** 6375 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6376 * @vsi: VSI to setup VLAN properties for 6377 */ 6378 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6379 { 6380 int err; 6381 6382 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6383 if (err) 6384 return err; 6385 6386 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6387 if (err) 6388 return err; 6389 6390 return ice_vsi_add_vlan_zero(vsi); 6391 } 6392 6393 /** 6394 * ice_vsi_cfg_lan - Setup the VSI lan related config 6395 * @vsi: the VSI being configured 6396 * 6397 * Return 0 on success and negative value on error 6398 */ 6399 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6400 { 6401 int err; 6402 6403 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6404 ice_set_rx_mode(vsi->netdev); 6405 6406 err = ice_vsi_vlan_setup(vsi); 6407 if (err) 6408 return err; 6409 } 6410 ice_vsi_cfg_dcb_rings(vsi); 6411 6412 err = ice_vsi_cfg_lan_txqs(vsi); 6413 if (!err && ice_is_xdp_ena_vsi(vsi)) 6414 err = ice_vsi_cfg_xdp_txqs(vsi); 6415 if (!err) 6416 err = ice_vsi_cfg_rxqs(vsi); 6417 6418 return err; 6419 } 6420 6421 /* THEORY OF MODERATION: 6422 * The ice driver hardware works differently than the hardware that DIMLIB was 6423 * originally made for. ice hardware doesn't have packet count limits that 6424 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6425 * which is hard-coded to a limit of 250,000 ints/second. 6426 * If not using dynamic moderation, the INTRL value can be modified 6427 * by ethtool rx-usecs-high. 6428 */ 6429 struct ice_dim { 6430 /* the throttle rate for interrupts, basically worst case delay before 6431 * an initial interrupt fires, value is stored in microseconds. 6432 */ 6433 u16 itr; 6434 }; 6435 6436 /* Make a different profile for Rx that doesn't allow quite so aggressive 6437 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6438 * second. 6439 */ 6440 static const struct ice_dim rx_profile[] = { 6441 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6442 {8}, /* 125,000 ints/s */ 6443 {16}, /* 62,500 ints/s */ 6444 {62}, /* 16,129 ints/s */ 6445 {126} /* 7,936 ints/s */ 6446 }; 6447 6448 /* The transmit profile, which has the same sorts of values 6449 * as the previous struct 6450 */ 6451 static const struct ice_dim tx_profile[] = { 6452 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6453 {8}, /* 125,000 ints/s */ 6454 {40}, /* 16,125 ints/s */ 6455 {128}, /* 7,812 ints/s */ 6456 {256} /* 3,906 ints/s */ 6457 }; 6458 6459 static void ice_tx_dim_work(struct work_struct *work) 6460 { 6461 struct ice_ring_container *rc; 6462 struct dim *dim; 6463 u16 itr; 6464 6465 dim = container_of(work, struct dim, work); 6466 rc = dim->priv; 6467 6468 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6469 6470 /* look up the values in our local table */ 6471 itr = tx_profile[dim->profile_ix].itr; 6472 6473 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6474 ice_write_itr(rc, itr); 6475 6476 dim->state = DIM_START_MEASURE; 6477 } 6478 6479 static void ice_rx_dim_work(struct work_struct *work) 6480 { 6481 struct ice_ring_container *rc; 6482 struct dim *dim; 6483 u16 itr; 6484 6485 dim = container_of(work, struct dim, work); 6486 rc = dim->priv; 6487 6488 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6489 6490 /* look up the values in our local table */ 6491 itr = rx_profile[dim->profile_ix].itr; 6492 6493 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6494 ice_write_itr(rc, itr); 6495 6496 dim->state = DIM_START_MEASURE; 6497 } 6498 6499 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6500 6501 /** 6502 * ice_init_moderation - set up interrupt moderation 6503 * @q_vector: the vector containing rings to be configured 6504 * 6505 * Set up interrupt moderation registers, with the intent to do the right thing 6506 * when called from reset or from probe, and whether or not dynamic moderation 6507 * is enabled or not. Take special care to write all the registers in both 6508 * dynamic moderation mode or not in order to make sure hardware is in a known 6509 * state. 6510 */ 6511 static void ice_init_moderation(struct ice_q_vector *q_vector) 6512 { 6513 struct ice_ring_container *rc; 6514 bool tx_dynamic, rx_dynamic; 6515 6516 rc = &q_vector->tx; 6517 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6518 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6519 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6520 rc->dim.priv = rc; 6521 tx_dynamic = ITR_IS_DYNAMIC(rc); 6522 6523 /* set the initial TX ITR to match the above */ 6524 ice_write_itr(rc, tx_dynamic ? 6525 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6526 6527 rc = &q_vector->rx; 6528 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6529 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6530 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6531 rc->dim.priv = rc; 6532 rx_dynamic = ITR_IS_DYNAMIC(rc); 6533 6534 /* set the initial RX ITR to match the above */ 6535 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6536 rc->itr_setting); 6537 6538 ice_set_q_vector_intrl(q_vector); 6539 } 6540 6541 /** 6542 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6543 * @vsi: the VSI being configured 6544 */ 6545 static void ice_napi_enable_all(struct ice_vsi *vsi) 6546 { 6547 int q_idx; 6548 6549 if (!vsi->netdev) 6550 return; 6551 6552 ice_for_each_q_vector(vsi, q_idx) { 6553 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6554 6555 ice_init_moderation(q_vector); 6556 6557 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6558 napi_enable(&q_vector->napi); 6559 } 6560 } 6561 6562 /** 6563 * ice_up_complete - Finish the last steps of bringing up a connection 6564 * @vsi: The VSI being configured 6565 * 6566 * Return 0 on success and negative value on error 6567 */ 6568 static int ice_up_complete(struct ice_vsi *vsi) 6569 { 6570 struct ice_pf *pf = vsi->back; 6571 int err; 6572 6573 ice_vsi_cfg_msix(vsi); 6574 6575 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6576 * Tx queue group list was configured and the context bits were 6577 * programmed using ice_vsi_cfg_txqs 6578 */ 6579 err = ice_vsi_start_all_rx_rings(vsi); 6580 if (err) 6581 return err; 6582 6583 clear_bit(ICE_VSI_DOWN, vsi->state); 6584 ice_napi_enable_all(vsi); 6585 ice_vsi_ena_irq(vsi); 6586 6587 if (vsi->port_info && 6588 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6589 vsi->netdev && vsi->type == ICE_VSI_PF) { 6590 ice_print_link_msg(vsi, true); 6591 netif_tx_start_all_queues(vsi->netdev); 6592 netif_carrier_on(vsi->netdev); 6593 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6594 } 6595 6596 /* Perform an initial read of the statistics registers now to 6597 * set the baseline so counters are ready when interface is up 6598 */ 6599 ice_update_eth_stats(vsi); 6600 6601 if (vsi->type == ICE_VSI_PF) 6602 ice_service_task_schedule(pf); 6603 6604 return 0; 6605 } 6606 6607 /** 6608 * ice_up - Bring the connection back up after being down 6609 * @vsi: VSI being configured 6610 */ 6611 int ice_up(struct ice_vsi *vsi) 6612 { 6613 int err; 6614 6615 err = ice_vsi_cfg_lan(vsi); 6616 if (!err) 6617 err = ice_up_complete(vsi); 6618 6619 return err; 6620 } 6621 6622 /** 6623 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6624 * @syncp: pointer to u64_stats_sync 6625 * @stats: stats that pkts and bytes count will be taken from 6626 * @pkts: packets stats counter 6627 * @bytes: bytes stats counter 6628 * 6629 * This function fetches stats from the ring considering the atomic operations 6630 * that needs to be performed to read u64 values in 32 bit machine. 6631 */ 6632 void 6633 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6634 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6635 { 6636 unsigned int start; 6637 6638 do { 6639 start = u64_stats_fetch_begin(syncp); 6640 *pkts = stats.pkts; 6641 *bytes = stats.bytes; 6642 } while (u64_stats_fetch_retry(syncp, start)); 6643 } 6644 6645 /** 6646 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6647 * @vsi: the VSI to be updated 6648 * @vsi_stats: the stats struct to be updated 6649 * @rings: rings to work on 6650 * @count: number of rings 6651 */ 6652 static void 6653 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6654 struct rtnl_link_stats64 *vsi_stats, 6655 struct ice_tx_ring **rings, u16 count) 6656 { 6657 u16 i; 6658 6659 for (i = 0; i < count; i++) { 6660 struct ice_tx_ring *ring; 6661 u64 pkts = 0, bytes = 0; 6662 6663 ring = READ_ONCE(rings[i]); 6664 if (!ring || !ring->ring_stats) 6665 continue; 6666 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6667 ring->ring_stats->stats, &pkts, 6668 &bytes); 6669 vsi_stats->tx_packets += pkts; 6670 vsi_stats->tx_bytes += bytes; 6671 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6672 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6673 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6674 } 6675 } 6676 6677 /** 6678 * ice_update_vsi_ring_stats - Update VSI stats counters 6679 * @vsi: the VSI to be updated 6680 */ 6681 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6682 { 6683 struct rtnl_link_stats64 *net_stats, *stats_prev; 6684 struct rtnl_link_stats64 *vsi_stats; 6685 struct ice_pf *pf = vsi->back; 6686 u64 pkts, bytes; 6687 int i; 6688 6689 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6690 if (!vsi_stats) 6691 return; 6692 6693 /* reset non-netdev (extended) stats */ 6694 vsi->tx_restart = 0; 6695 vsi->tx_busy = 0; 6696 vsi->tx_linearize = 0; 6697 vsi->rx_buf_failed = 0; 6698 vsi->rx_page_failed = 0; 6699 6700 rcu_read_lock(); 6701 6702 /* update Tx rings counters */ 6703 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6704 vsi->num_txq); 6705 6706 /* update Rx rings counters */ 6707 ice_for_each_rxq(vsi, i) { 6708 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6709 struct ice_ring_stats *ring_stats; 6710 6711 ring_stats = ring->ring_stats; 6712 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6713 ring_stats->stats, &pkts, 6714 &bytes); 6715 vsi_stats->rx_packets += pkts; 6716 vsi_stats->rx_bytes += bytes; 6717 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6718 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6719 } 6720 6721 /* update XDP Tx rings counters */ 6722 if (ice_is_xdp_ena_vsi(vsi)) 6723 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6724 vsi->num_xdp_txq); 6725 6726 rcu_read_unlock(); 6727 6728 net_stats = &vsi->net_stats; 6729 stats_prev = &vsi->net_stats_prev; 6730 6731 /* Update netdev counters, but keep in mind that values could start at 6732 * random value after PF reset. And as we increase the reported stat by 6733 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6734 * let's skip this round. 6735 */ 6736 if (likely(pf->stat_prev_loaded)) { 6737 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6738 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6739 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6740 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6741 } 6742 6743 stats_prev->tx_packets = vsi_stats->tx_packets; 6744 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6745 stats_prev->rx_packets = vsi_stats->rx_packets; 6746 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6747 6748 kfree(vsi_stats); 6749 } 6750 6751 /** 6752 * ice_update_vsi_stats - Update VSI stats counters 6753 * @vsi: the VSI to be updated 6754 */ 6755 void ice_update_vsi_stats(struct ice_vsi *vsi) 6756 { 6757 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6758 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6759 struct ice_pf *pf = vsi->back; 6760 6761 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6762 test_bit(ICE_CFG_BUSY, pf->state)) 6763 return; 6764 6765 /* get stats as recorded by Tx/Rx rings */ 6766 ice_update_vsi_ring_stats(vsi); 6767 6768 /* get VSI stats as recorded by the hardware */ 6769 ice_update_eth_stats(vsi); 6770 6771 cur_ns->tx_errors = cur_es->tx_errors; 6772 cur_ns->rx_dropped = cur_es->rx_discards; 6773 cur_ns->tx_dropped = cur_es->tx_discards; 6774 cur_ns->multicast = cur_es->rx_multicast; 6775 6776 /* update some more netdev stats if this is main VSI */ 6777 if (vsi->type == ICE_VSI_PF) { 6778 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6779 cur_ns->rx_errors = pf->stats.crc_errors + 6780 pf->stats.illegal_bytes + 6781 pf->stats.rx_undersize + 6782 pf->hw_csum_rx_error + 6783 pf->stats.rx_jabber + 6784 pf->stats.rx_fragments + 6785 pf->stats.rx_oversize; 6786 /* record drops from the port level */ 6787 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6788 } 6789 } 6790 6791 /** 6792 * ice_update_pf_stats - Update PF port stats counters 6793 * @pf: PF whose stats needs to be updated 6794 */ 6795 void ice_update_pf_stats(struct ice_pf *pf) 6796 { 6797 struct ice_hw_port_stats *prev_ps, *cur_ps; 6798 struct ice_hw *hw = &pf->hw; 6799 u16 fd_ctr_base; 6800 u8 port; 6801 6802 port = hw->port_info->lport; 6803 prev_ps = &pf->stats_prev; 6804 cur_ps = &pf->stats; 6805 6806 if (ice_is_reset_in_progress(pf->state)) 6807 pf->stat_prev_loaded = false; 6808 6809 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6810 &prev_ps->eth.rx_bytes, 6811 &cur_ps->eth.rx_bytes); 6812 6813 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6814 &prev_ps->eth.rx_unicast, 6815 &cur_ps->eth.rx_unicast); 6816 6817 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6818 &prev_ps->eth.rx_multicast, 6819 &cur_ps->eth.rx_multicast); 6820 6821 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6822 &prev_ps->eth.rx_broadcast, 6823 &cur_ps->eth.rx_broadcast); 6824 6825 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6826 &prev_ps->eth.rx_discards, 6827 &cur_ps->eth.rx_discards); 6828 6829 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6830 &prev_ps->eth.tx_bytes, 6831 &cur_ps->eth.tx_bytes); 6832 6833 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6834 &prev_ps->eth.tx_unicast, 6835 &cur_ps->eth.tx_unicast); 6836 6837 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6838 &prev_ps->eth.tx_multicast, 6839 &cur_ps->eth.tx_multicast); 6840 6841 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6842 &prev_ps->eth.tx_broadcast, 6843 &cur_ps->eth.tx_broadcast); 6844 6845 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6846 &prev_ps->tx_dropped_link_down, 6847 &cur_ps->tx_dropped_link_down); 6848 6849 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6850 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6851 6852 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6853 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6854 6855 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6856 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6857 6858 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6859 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6860 6861 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6862 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6863 6864 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6865 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6866 6867 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6868 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6869 6870 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6871 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6872 6873 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6874 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6875 6876 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6877 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6878 6879 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6880 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6881 6882 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6883 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6884 6885 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6886 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6887 6888 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6889 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6890 6891 fd_ctr_base = hw->fd_ctr_base; 6892 6893 ice_stat_update40(hw, 6894 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6895 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6896 &cur_ps->fd_sb_match); 6897 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6898 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6899 6900 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6901 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6902 6903 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6904 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6905 6906 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6907 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6908 6909 ice_update_dcb_stats(pf); 6910 6911 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6912 &prev_ps->crc_errors, &cur_ps->crc_errors); 6913 6914 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6915 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6916 6917 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6918 &prev_ps->mac_local_faults, 6919 &cur_ps->mac_local_faults); 6920 6921 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6922 &prev_ps->mac_remote_faults, 6923 &cur_ps->mac_remote_faults); 6924 6925 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6926 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6927 6928 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6929 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6930 6931 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6932 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6933 6934 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6935 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6936 6937 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6938 6939 pf->stat_prev_loaded = true; 6940 } 6941 6942 /** 6943 * ice_get_stats64 - get statistics for network device structure 6944 * @netdev: network interface device structure 6945 * @stats: main device statistics structure 6946 */ 6947 static 6948 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6949 { 6950 struct ice_netdev_priv *np = netdev_priv(netdev); 6951 struct rtnl_link_stats64 *vsi_stats; 6952 struct ice_vsi *vsi = np->vsi; 6953 6954 vsi_stats = &vsi->net_stats; 6955 6956 if (!vsi->num_txq || !vsi->num_rxq) 6957 return; 6958 6959 /* netdev packet/byte stats come from ring counter. These are obtained 6960 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6961 * But, only call the update routine and read the registers if VSI is 6962 * not down. 6963 */ 6964 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6965 ice_update_vsi_ring_stats(vsi); 6966 stats->tx_packets = vsi_stats->tx_packets; 6967 stats->tx_bytes = vsi_stats->tx_bytes; 6968 stats->rx_packets = vsi_stats->rx_packets; 6969 stats->rx_bytes = vsi_stats->rx_bytes; 6970 6971 /* The rest of the stats can be read from the hardware but instead we 6972 * just return values that the watchdog task has already obtained from 6973 * the hardware. 6974 */ 6975 stats->multicast = vsi_stats->multicast; 6976 stats->tx_errors = vsi_stats->tx_errors; 6977 stats->tx_dropped = vsi_stats->tx_dropped; 6978 stats->rx_errors = vsi_stats->rx_errors; 6979 stats->rx_dropped = vsi_stats->rx_dropped; 6980 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6981 stats->rx_length_errors = vsi_stats->rx_length_errors; 6982 } 6983 6984 /** 6985 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6986 * @vsi: VSI having NAPI disabled 6987 */ 6988 static void ice_napi_disable_all(struct ice_vsi *vsi) 6989 { 6990 int q_idx; 6991 6992 if (!vsi->netdev) 6993 return; 6994 6995 ice_for_each_q_vector(vsi, q_idx) { 6996 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6997 6998 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6999 napi_disable(&q_vector->napi); 7000 7001 cancel_work_sync(&q_vector->tx.dim.work); 7002 cancel_work_sync(&q_vector->rx.dim.work); 7003 } 7004 } 7005 7006 /** 7007 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7008 * @vsi: the VSI being un-configured 7009 */ 7010 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7011 { 7012 struct ice_pf *pf = vsi->back; 7013 struct ice_hw *hw = &pf->hw; 7014 u32 val; 7015 int i; 7016 7017 /* disable interrupt causation from each Rx queue; Tx queues are 7018 * handled in ice_vsi_stop_tx_ring() 7019 */ 7020 if (vsi->rx_rings) { 7021 ice_for_each_rxq(vsi, i) { 7022 if (vsi->rx_rings[i]) { 7023 u16 reg; 7024 7025 reg = vsi->rx_rings[i]->reg_idx; 7026 val = rd32(hw, QINT_RQCTL(reg)); 7027 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7028 wr32(hw, QINT_RQCTL(reg), val); 7029 } 7030 } 7031 } 7032 7033 /* disable each interrupt */ 7034 ice_for_each_q_vector(vsi, i) { 7035 if (!vsi->q_vectors[i]) 7036 continue; 7037 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7038 } 7039 7040 ice_flush(hw); 7041 7042 /* don't call synchronize_irq() for VF's from the host */ 7043 if (vsi->type == ICE_VSI_VF) 7044 return; 7045 7046 ice_for_each_q_vector(vsi, i) 7047 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7048 } 7049 7050 /** 7051 * ice_down - Shutdown the connection 7052 * @vsi: The VSI being stopped 7053 * 7054 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7055 */ 7056 int ice_down(struct ice_vsi *vsi) 7057 { 7058 int i, tx_err, rx_err, vlan_err = 0; 7059 7060 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7061 7062 if (vsi->netdev) { 7063 vlan_err = ice_vsi_del_vlan_zero(vsi); 7064 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7065 netif_carrier_off(vsi->netdev); 7066 netif_tx_disable(vsi->netdev); 7067 } 7068 7069 ice_vsi_dis_irq(vsi); 7070 7071 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7072 if (tx_err) 7073 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7074 vsi->vsi_num, tx_err); 7075 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7076 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7077 if (tx_err) 7078 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7079 vsi->vsi_num, tx_err); 7080 } 7081 7082 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7083 if (rx_err) 7084 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7085 vsi->vsi_num, rx_err); 7086 7087 ice_napi_disable_all(vsi); 7088 7089 ice_for_each_txq(vsi, i) 7090 ice_clean_tx_ring(vsi->tx_rings[i]); 7091 7092 if (ice_is_xdp_ena_vsi(vsi)) 7093 ice_for_each_xdp_txq(vsi, i) 7094 ice_clean_tx_ring(vsi->xdp_rings[i]); 7095 7096 ice_for_each_rxq(vsi, i) 7097 ice_clean_rx_ring(vsi->rx_rings[i]); 7098 7099 if (tx_err || rx_err || vlan_err) { 7100 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7101 vsi->vsi_num, vsi->vsw->sw_id); 7102 return -EIO; 7103 } 7104 7105 return 0; 7106 } 7107 7108 /** 7109 * ice_down_up - shutdown the VSI connection and bring it up 7110 * @vsi: the VSI to be reconnected 7111 */ 7112 int ice_down_up(struct ice_vsi *vsi) 7113 { 7114 int ret; 7115 7116 /* if DOWN already set, nothing to do */ 7117 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7118 return 0; 7119 7120 ret = ice_down(vsi); 7121 if (ret) 7122 return ret; 7123 7124 ret = ice_up(vsi); 7125 if (ret) { 7126 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7127 return ret; 7128 } 7129 7130 return 0; 7131 } 7132 7133 /** 7134 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7135 * @vsi: VSI having resources allocated 7136 * 7137 * Return 0 on success, negative on failure 7138 */ 7139 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7140 { 7141 int i, err = 0; 7142 7143 if (!vsi->num_txq) { 7144 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7145 vsi->vsi_num); 7146 return -EINVAL; 7147 } 7148 7149 ice_for_each_txq(vsi, i) { 7150 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7151 7152 if (!ring) 7153 return -EINVAL; 7154 7155 if (vsi->netdev) 7156 ring->netdev = vsi->netdev; 7157 err = ice_setup_tx_ring(ring); 7158 if (err) 7159 break; 7160 } 7161 7162 return err; 7163 } 7164 7165 /** 7166 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7167 * @vsi: VSI having resources allocated 7168 * 7169 * Return 0 on success, negative on failure 7170 */ 7171 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7172 { 7173 int i, err = 0; 7174 7175 if (!vsi->num_rxq) { 7176 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7177 vsi->vsi_num); 7178 return -EINVAL; 7179 } 7180 7181 ice_for_each_rxq(vsi, i) { 7182 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7183 7184 if (!ring) 7185 return -EINVAL; 7186 7187 if (vsi->netdev) 7188 ring->netdev = vsi->netdev; 7189 err = ice_setup_rx_ring(ring); 7190 if (err) 7191 break; 7192 } 7193 7194 return err; 7195 } 7196 7197 /** 7198 * ice_vsi_open_ctrl - open control VSI for use 7199 * @vsi: the VSI to open 7200 * 7201 * Initialization of the Control VSI 7202 * 7203 * Returns 0 on success, negative value on error 7204 */ 7205 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7206 { 7207 char int_name[ICE_INT_NAME_STR_LEN]; 7208 struct ice_pf *pf = vsi->back; 7209 struct device *dev; 7210 int err; 7211 7212 dev = ice_pf_to_dev(pf); 7213 /* allocate descriptors */ 7214 err = ice_vsi_setup_tx_rings(vsi); 7215 if (err) 7216 goto err_setup_tx; 7217 7218 err = ice_vsi_setup_rx_rings(vsi); 7219 if (err) 7220 goto err_setup_rx; 7221 7222 err = ice_vsi_cfg_lan(vsi); 7223 if (err) 7224 goto err_setup_rx; 7225 7226 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7227 dev_driver_string(dev), dev_name(dev)); 7228 err = ice_vsi_req_irq_msix(vsi, int_name); 7229 if (err) 7230 goto err_setup_rx; 7231 7232 ice_vsi_cfg_msix(vsi); 7233 7234 err = ice_vsi_start_all_rx_rings(vsi); 7235 if (err) 7236 goto err_up_complete; 7237 7238 clear_bit(ICE_VSI_DOWN, vsi->state); 7239 ice_vsi_ena_irq(vsi); 7240 7241 return 0; 7242 7243 err_up_complete: 7244 ice_down(vsi); 7245 err_setup_rx: 7246 ice_vsi_free_rx_rings(vsi); 7247 err_setup_tx: 7248 ice_vsi_free_tx_rings(vsi); 7249 7250 return err; 7251 } 7252 7253 /** 7254 * ice_vsi_open - Called when a network interface is made active 7255 * @vsi: the VSI to open 7256 * 7257 * Initialization of the VSI 7258 * 7259 * Returns 0 on success, negative value on error 7260 */ 7261 int ice_vsi_open(struct ice_vsi *vsi) 7262 { 7263 char int_name[ICE_INT_NAME_STR_LEN]; 7264 struct ice_pf *pf = vsi->back; 7265 int err; 7266 7267 /* allocate descriptors */ 7268 err = ice_vsi_setup_tx_rings(vsi); 7269 if (err) 7270 goto err_setup_tx; 7271 7272 err = ice_vsi_setup_rx_rings(vsi); 7273 if (err) 7274 goto err_setup_rx; 7275 7276 err = ice_vsi_cfg_lan(vsi); 7277 if (err) 7278 goto err_setup_rx; 7279 7280 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7281 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7282 err = ice_vsi_req_irq_msix(vsi, int_name); 7283 if (err) 7284 goto err_setup_rx; 7285 7286 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7287 7288 if (vsi->type == ICE_VSI_PF) { 7289 /* Notify the stack of the actual queue counts. */ 7290 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7291 if (err) 7292 goto err_set_qs; 7293 7294 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7295 if (err) 7296 goto err_set_qs; 7297 } 7298 7299 err = ice_up_complete(vsi); 7300 if (err) 7301 goto err_up_complete; 7302 7303 return 0; 7304 7305 err_up_complete: 7306 ice_down(vsi); 7307 err_set_qs: 7308 ice_vsi_free_irq(vsi); 7309 err_setup_rx: 7310 ice_vsi_free_rx_rings(vsi); 7311 err_setup_tx: 7312 ice_vsi_free_tx_rings(vsi); 7313 7314 return err; 7315 } 7316 7317 /** 7318 * ice_vsi_release_all - Delete all VSIs 7319 * @pf: PF from which all VSIs are being removed 7320 */ 7321 static void ice_vsi_release_all(struct ice_pf *pf) 7322 { 7323 int err, i; 7324 7325 if (!pf->vsi) 7326 return; 7327 7328 ice_for_each_vsi(pf, i) { 7329 if (!pf->vsi[i]) 7330 continue; 7331 7332 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7333 continue; 7334 7335 err = ice_vsi_release(pf->vsi[i]); 7336 if (err) 7337 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7338 i, err, pf->vsi[i]->vsi_num); 7339 } 7340 } 7341 7342 /** 7343 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7344 * @pf: pointer to the PF instance 7345 * @type: VSI type to rebuild 7346 * 7347 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7348 */ 7349 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7350 { 7351 struct device *dev = ice_pf_to_dev(pf); 7352 int i, err; 7353 7354 ice_for_each_vsi(pf, i) { 7355 struct ice_vsi *vsi = pf->vsi[i]; 7356 7357 if (!vsi || vsi->type != type) 7358 continue; 7359 7360 /* rebuild the VSI */ 7361 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7362 if (err) { 7363 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7364 err, vsi->idx, ice_vsi_type_str(type)); 7365 return err; 7366 } 7367 7368 /* replay filters for the VSI */ 7369 err = ice_replay_vsi(&pf->hw, vsi->idx); 7370 if (err) { 7371 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7372 err, vsi->idx, ice_vsi_type_str(type)); 7373 return err; 7374 } 7375 7376 /* Re-map HW VSI number, using VSI handle that has been 7377 * previously validated in ice_replay_vsi() call above 7378 */ 7379 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7380 7381 /* enable the VSI */ 7382 err = ice_ena_vsi(vsi, false); 7383 if (err) { 7384 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7385 err, vsi->idx, ice_vsi_type_str(type)); 7386 return err; 7387 } 7388 7389 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7390 ice_vsi_type_str(type)); 7391 } 7392 7393 return 0; 7394 } 7395 7396 /** 7397 * ice_update_pf_netdev_link - Update PF netdev link status 7398 * @pf: pointer to the PF instance 7399 */ 7400 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7401 { 7402 bool link_up; 7403 int i; 7404 7405 ice_for_each_vsi(pf, i) { 7406 struct ice_vsi *vsi = pf->vsi[i]; 7407 7408 if (!vsi || vsi->type != ICE_VSI_PF) 7409 return; 7410 7411 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7412 if (link_up) { 7413 netif_carrier_on(pf->vsi[i]->netdev); 7414 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7415 } else { 7416 netif_carrier_off(pf->vsi[i]->netdev); 7417 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7418 } 7419 } 7420 } 7421 7422 /** 7423 * ice_rebuild - rebuild after reset 7424 * @pf: PF to rebuild 7425 * @reset_type: type of reset 7426 * 7427 * Do not rebuild VF VSI in this flow because that is already handled via 7428 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7429 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7430 * to reset/rebuild all the VF VSI twice. 7431 */ 7432 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7433 { 7434 struct device *dev = ice_pf_to_dev(pf); 7435 struct ice_hw *hw = &pf->hw; 7436 bool dvm; 7437 int err; 7438 7439 if (test_bit(ICE_DOWN, pf->state)) 7440 goto clear_recovery; 7441 7442 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7443 7444 #define ICE_EMP_RESET_SLEEP_MS 5000 7445 if (reset_type == ICE_RESET_EMPR) { 7446 /* If an EMP reset has occurred, any previously pending flash 7447 * update will have completed. We no longer know whether or 7448 * not the NVM update EMP reset is restricted. 7449 */ 7450 pf->fw_emp_reset_disabled = false; 7451 7452 msleep(ICE_EMP_RESET_SLEEP_MS); 7453 } 7454 7455 err = ice_init_all_ctrlq(hw); 7456 if (err) { 7457 dev_err(dev, "control queues init failed %d\n", err); 7458 goto err_init_ctrlq; 7459 } 7460 7461 /* if DDP was previously loaded successfully */ 7462 if (!ice_is_safe_mode(pf)) { 7463 /* reload the SW DB of filter tables */ 7464 if (reset_type == ICE_RESET_PFR) 7465 ice_fill_blk_tbls(hw); 7466 else 7467 /* Reload DDP Package after CORER/GLOBR reset */ 7468 ice_load_pkg(NULL, pf); 7469 } 7470 7471 err = ice_clear_pf_cfg(hw); 7472 if (err) { 7473 dev_err(dev, "clear PF configuration failed %d\n", err); 7474 goto err_init_ctrlq; 7475 } 7476 7477 ice_clear_pxe_mode(hw); 7478 7479 err = ice_init_nvm(hw); 7480 if (err) { 7481 dev_err(dev, "ice_init_nvm failed %d\n", err); 7482 goto err_init_ctrlq; 7483 } 7484 7485 err = ice_get_caps(hw); 7486 if (err) { 7487 dev_err(dev, "ice_get_caps failed %d\n", err); 7488 goto err_init_ctrlq; 7489 } 7490 7491 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7492 if (err) { 7493 dev_err(dev, "set_mac_cfg failed %d\n", err); 7494 goto err_init_ctrlq; 7495 } 7496 7497 dvm = ice_is_dvm_ena(hw); 7498 7499 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7500 if (err) 7501 goto err_init_ctrlq; 7502 7503 err = ice_sched_init_port(hw->port_info); 7504 if (err) 7505 goto err_sched_init_port; 7506 7507 /* start misc vector */ 7508 err = ice_req_irq_msix_misc(pf); 7509 if (err) { 7510 dev_err(dev, "misc vector setup failed: %d\n", err); 7511 goto err_sched_init_port; 7512 } 7513 7514 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7515 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7516 if (!rd32(hw, PFQF_FD_SIZE)) { 7517 u16 unused, guar, b_effort; 7518 7519 guar = hw->func_caps.fd_fltr_guar; 7520 b_effort = hw->func_caps.fd_fltr_best_effort; 7521 7522 /* force guaranteed filter pool for PF */ 7523 ice_alloc_fd_guar_item(hw, &unused, guar); 7524 /* force shared filter pool for PF */ 7525 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7526 } 7527 } 7528 7529 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7530 ice_dcb_rebuild(pf); 7531 7532 /* If the PF previously had enabled PTP, PTP init needs to happen before 7533 * the VSI rebuild. If not, this causes the PTP link status events to 7534 * fail. 7535 */ 7536 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7537 ice_ptp_rebuild(pf, reset_type); 7538 7539 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7540 ice_gnss_init(pf); 7541 7542 /* rebuild PF VSI */ 7543 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7544 if (err) { 7545 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7546 goto err_vsi_rebuild; 7547 } 7548 7549 ice_eswitch_rebuild(pf); 7550 7551 if (reset_type == ICE_RESET_PFR) { 7552 err = ice_rebuild_channels(pf); 7553 if (err) { 7554 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7555 err); 7556 goto err_vsi_rebuild; 7557 } 7558 } 7559 7560 /* If Flow Director is active */ 7561 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7562 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7563 if (err) { 7564 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7565 goto err_vsi_rebuild; 7566 } 7567 7568 /* replay HW Flow Director recipes */ 7569 if (hw->fdir_prof) 7570 ice_fdir_replay_flows(hw); 7571 7572 /* replay Flow Director filters */ 7573 ice_fdir_replay_fltrs(pf); 7574 7575 ice_rebuild_arfs(pf); 7576 } 7577 7578 ice_update_pf_netdev_link(pf); 7579 7580 /* tell the firmware we are up */ 7581 err = ice_send_version(pf); 7582 if (err) { 7583 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7584 err); 7585 goto err_vsi_rebuild; 7586 } 7587 7588 ice_replay_post(hw); 7589 7590 /* if we get here, reset flow is successful */ 7591 clear_bit(ICE_RESET_FAILED, pf->state); 7592 7593 ice_plug_aux_dev(pf); 7594 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7595 ice_lag_rebuild(pf); 7596 7597 /* Restore timestamp mode settings after VSI rebuild */ 7598 ice_ptp_restore_timestamp_mode(pf); 7599 return; 7600 7601 err_vsi_rebuild: 7602 err_sched_init_port: 7603 ice_sched_cleanup_all(hw); 7604 err_init_ctrlq: 7605 ice_shutdown_all_ctrlq(hw); 7606 set_bit(ICE_RESET_FAILED, pf->state); 7607 clear_recovery: 7608 /* set this bit in PF state to control service task scheduling */ 7609 set_bit(ICE_NEEDS_RESTART, pf->state); 7610 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7611 } 7612 7613 /** 7614 * ice_change_mtu - NDO callback to change the MTU 7615 * @netdev: network interface device structure 7616 * @new_mtu: new value for maximum frame size 7617 * 7618 * Returns 0 on success, negative on failure 7619 */ 7620 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7621 { 7622 struct ice_netdev_priv *np = netdev_priv(netdev); 7623 struct ice_vsi *vsi = np->vsi; 7624 struct ice_pf *pf = vsi->back; 7625 struct bpf_prog *prog; 7626 u8 count = 0; 7627 int err = 0; 7628 7629 if (new_mtu == (int)netdev->mtu) { 7630 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7631 return 0; 7632 } 7633 7634 prog = vsi->xdp_prog; 7635 if (prog && !prog->aux->xdp_has_frags) { 7636 int frame_size = ice_max_xdp_frame_size(vsi); 7637 7638 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7639 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7640 frame_size - ICE_ETH_PKT_HDR_PAD); 7641 return -EINVAL; 7642 } 7643 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7644 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7645 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7646 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7647 return -EINVAL; 7648 } 7649 } 7650 7651 /* if a reset is in progress, wait for some time for it to complete */ 7652 do { 7653 if (ice_is_reset_in_progress(pf->state)) { 7654 count++; 7655 usleep_range(1000, 2000); 7656 } else { 7657 break; 7658 } 7659 7660 } while (count < 100); 7661 7662 if (count == 100) { 7663 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7664 return -EBUSY; 7665 } 7666 7667 netdev->mtu = (unsigned int)new_mtu; 7668 err = ice_down_up(vsi); 7669 if (err) 7670 return err; 7671 7672 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7673 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7674 7675 return err; 7676 } 7677 7678 /** 7679 * ice_eth_ioctl - Access the hwtstamp interface 7680 * @netdev: network interface device structure 7681 * @ifr: interface request data 7682 * @cmd: ioctl command 7683 */ 7684 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7685 { 7686 struct ice_netdev_priv *np = netdev_priv(netdev); 7687 struct ice_pf *pf = np->vsi->back; 7688 7689 switch (cmd) { 7690 case SIOCGHWTSTAMP: 7691 return ice_ptp_get_ts_config(pf, ifr); 7692 case SIOCSHWTSTAMP: 7693 return ice_ptp_set_ts_config(pf, ifr); 7694 default: 7695 return -EOPNOTSUPP; 7696 } 7697 } 7698 7699 /** 7700 * ice_aq_str - convert AQ err code to a string 7701 * @aq_err: the AQ error code to convert 7702 */ 7703 const char *ice_aq_str(enum ice_aq_err aq_err) 7704 { 7705 switch (aq_err) { 7706 case ICE_AQ_RC_OK: 7707 return "OK"; 7708 case ICE_AQ_RC_EPERM: 7709 return "ICE_AQ_RC_EPERM"; 7710 case ICE_AQ_RC_ENOENT: 7711 return "ICE_AQ_RC_ENOENT"; 7712 case ICE_AQ_RC_ENOMEM: 7713 return "ICE_AQ_RC_ENOMEM"; 7714 case ICE_AQ_RC_EBUSY: 7715 return "ICE_AQ_RC_EBUSY"; 7716 case ICE_AQ_RC_EEXIST: 7717 return "ICE_AQ_RC_EEXIST"; 7718 case ICE_AQ_RC_EINVAL: 7719 return "ICE_AQ_RC_EINVAL"; 7720 case ICE_AQ_RC_ENOSPC: 7721 return "ICE_AQ_RC_ENOSPC"; 7722 case ICE_AQ_RC_ENOSYS: 7723 return "ICE_AQ_RC_ENOSYS"; 7724 case ICE_AQ_RC_EMODE: 7725 return "ICE_AQ_RC_EMODE"; 7726 case ICE_AQ_RC_ENOSEC: 7727 return "ICE_AQ_RC_ENOSEC"; 7728 case ICE_AQ_RC_EBADSIG: 7729 return "ICE_AQ_RC_EBADSIG"; 7730 case ICE_AQ_RC_ESVN: 7731 return "ICE_AQ_RC_ESVN"; 7732 case ICE_AQ_RC_EBADMAN: 7733 return "ICE_AQ_RC_EBADMAN"; 7734 case ICE_AQ_RC_EBADBUF: 7735 return "ICE_AQ_RC_EBADBUF"; 7736 } 7737 7738 return "ICE_AQ_RC_UNKNOWN"; 7739 } 7740 7741 /** 7742 * ice_set_rss_lut - Set RSS LUT 7743 * @vsi: Pointer to VSI structure 7744 * @lut: Lookup table 7745 * @lut_size: Lookup table size 7746 * 7747 * Returns 0 on success, negative on failure 7748 */ 7749 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7750 { 7751 struct ice_aq_get_set_rss_lut_params params = {}; 7752 struct ice_hw *hw = &vsi->back->hw; 7753 int status; 7754 7755 if (!lut) 7756 return -EINVAL; 7757 7758 params.vsi_handle = vsi->idx; 7759 params.lut_size = lut_size; 7760 params.lut_type = vsi->rss_lut_type; 7761 params.lut = lut; 7762 7763 status = ice_aq_set_rss_lut(hw, ¶ms); 7764 if (status) 7765 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7766 status, ice_aq_str(hw->adminq.sq_last_status)); 7767 7768 return status; 7769 } 7770 7771 /** 7772 * ice_set_rss_key - Set RSS key 7773 * @vsi: Pointer to the VSI structure 7774 * @seed: RSS hash seed 7775 * 7776 * Returns 0 on success, negative on failure 7777 */ 7778 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7779 { 7780 struct ice_hw *hw = &vsi->back->hw; 7781 int status; 7782 7783 if (!seed) 7784 return -EINVAL; 7785 7786 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7787 if (status) 7788 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7789 status, ice_aq_str(hw->adminq.sq_last_status)); 7790 7791 return status; 7792 } 7793 7794 /** 7795 * ice_get_rss_lut - Get RSS LUT 7796 * @vsi: Pointer to VSI structure 7797 * @lut: Buffer to store the lookup table entries 7798 * @lut_size: Size of buffer to store the lookup table entries 7799 * 7800 * Returns 0 on success, negative on failure 7801 */ 7802 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7803 { 7804 struct ice_aq_get_set_rss_lut_params params = {}; 7805 struct ice_hw *hw = &vsi->back->hw; 7806 int status; 7807 7808 if (!lut) 7809 return -EINVAL; 7810 7811 params.vsi_handle = vsi->idx; 7812 params.lut_size = lut_size; 7813 params.lut_type = vsi->rss_lut_type; 7814 params.lut = lut; 7815 7816 status = ice_aq_get_rss_lut(hw, ¶ms); 7817 if (status) 7818 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7819 status, ice_aq_str(hw->adminq.sq_last_status)); 7820 7821 return status; 7822 } 7823 7824 /** 7825 * ice_get_rss_key - Get RSS key 7826 * @vsi: Pointer to VSI structure 7827 * @seed: Buffer to store the key in 7828 * 7829 * Returns 0 on success, negative on failure 7830 */ 7831 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7832 { 7833 struct ice_hw *hw = &vsi->back->hw; 7834 int status; 7835 7836 if (!seed) 7837 return -EINVAL; 7838 7839 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7840 if (status) 7841 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7842 status, ice_aq_str(hw->adminq.sq_last_status)); 7843 7844 return status; 7845 } 7846 7847 /** 7848 * ice_set_rss_hfunc - Set RSS HASH function 7849 * @vsi: Pointer to VSI structure 7850 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7851 * 7852 * Returns 0 on success, negative on failure 7853 */ 7854 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7855 { 7856 struct ice_hw *hw = &vsi->back->hw; 7857 struct ice_vsi_ctx *ctx; 7858 bool symm; 7859 int err; 7860 7861 if (hfunc == vsi->rss_hfunc) 7862 return 0; 7863 7864 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7865 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7866 return -EOPNOTSUPP; 7867 7868 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7869 if (!ctx) 7870 return -ENOMEM; 7871 7872 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 7873 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 7874 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 7875 ctx->info.q_opt_rss |= 7876 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 7877 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 7878 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 7879 7880 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 7881 if (err) { 7882 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 7883 vsi->vsi_num, err); 7884 } else { 7885 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 7886 vsi->rss_hfunc = hfunc; 7887 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 7888 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 7889 "Symmetric " : ""); 7890 } 7891 kfree(ctx); 7892 if (err) 7893 return err; 7894 7895 /* Fix the symmetry setting for all existing RSS configurations */ 7896 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 7897 return ice_set_rss_cfg_symm(hw, vsi, symm); 7898 } 7899 7900 /** 7901 * ice_bridge_getlink - Get the hardware bridge mode 7902 * @skb: skb buff 7903 * @pid: process ID 7904 * @seq: RTNL message seq 7905 * @dev: the netdev being configured 7906 * @filter_mask: filter mask passed in 7907 * @nlflags: netlink flags passed in 7908 * 7909 * Return the bridge mode (VEB/VEPA) 7910 */ 7911 static int 7912 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7913 struct net_device *dev, u32 filter_mask, int nlflags) 7914 { 7915 struct ice_netdev_priv *np = netdev_priv(dev); 7916 struct ice_vsi *vsi = np->vsi; 7917 struct ice_pf *pf = vsi->back; 7918 u16 bmode; 7919 7920 bmode = pf->first_sw->bridge_mode; 7921 7922 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7923 filter_mask, NULL); 7924 } 7925 7926 /** 7927 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7928 * @vsi: Pointer to VSI structure 7929 * @bmode: Hardware bridge mode (VEB/VEPA) 7930 * 7931 * Returns 0 on success, negative on failure 7932 */ 7933 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7934 { 7935 struct ice_aqc_vsi_props *vsi_props; 7936 struct ice_hw *hw = &vsi->back->hw; 7937 struct ice_vsi_ctx *ctxt; 7938 int ret; 7939 7940 vsi_props = &vsi->info; 7941 7942 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7943 if (!ctxt) 7944 return -ENOMEM; 7945 7946 ctxt->info = vsi->info; 7947 7948 if (bmode == BRIDGE_MODE_VEB) 7949 /* change from VEPA to VEB mode */ 7950 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7951 else 7952 /* change from VEB to VEPA mode */ 7953 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7954 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7955 7956 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7957 if (ret) { 7958 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7959 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7960 goto out; 7961 } 7962 /* Update sw flags for book keeping */ 7963 vsi_props->sw_flags = ctxt->info.sw_flags; 7964 7965 out: 7966 kfree(ctxt); 7967 return ret; 7968 } 7969 7970 /** 7971 * ice_bridge_setlink - Set the hardware bridge mode 7972 * @dev: the netdev being configured 7973 * @nlh: RTNL message 7974 * @flags: bridge setlink flags 7975 * @extack: netlink extended ack 7976 * 7977 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7978 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7979 * not already set for all VSIs connected to this switch. And also update the 7980 * unicast switch filter rules for the corresponding switch of the netdev. 7981 */ 7982 static int 7983 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7984 u16 __always_unused flags, 7985 struct netlink_ext_ack __always_unused *extack) 7986 { 7987 struct ice_netdev_priv *np = netdev_priv(dev); 7988 struct ice_pf *pf = np->vsi->back; 7989 struct nlattr *attr, *br_spec; 7990 struct ice_hw *hw = &pf->hw; 7991 struct ice_sw *pf_sw; 7992 int rem, v, err = 0; 7993 7994 pf_sw = pf->first_sw; 7995 /* find the attribute in the netlink message */ 7996 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7997 if (!br_spec) 7998 return -EINVAL; 7999 8000 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8001 __u16 mode = nla_get_u16(attr); 8002 8003 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8004 return -EINVAL; 8005 /* Continue if bridge mode is not being flipped */ 8006 if (mode == pf_sw->bridge_mode) 8007 continue; 8008 /* Iterates through the PF VSI list and update the loopback 8009 * mode of the VSI 8010 */ 8011 ice_for_each_vsi(pf, v) { 8012 if (!pf->vsi[v]) 8013 continue; 8014 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8015 if (err) 8016 return err; 8017 } 8018 8019 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8020 /* Update the unicast switch filter rules for the corresponding 8021 * switch of the netdev 8022 */ 8023 err = ice_update_sw_rule_bridge_mode(hw); 8024 if (err) { 8025 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8026 mode, err, 8027 ice_aq_str(hw->adminq.sq_last_status)); 8028 /* revert hw->evb_veb */ 8029 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8030 return err; 8031 } 8032 8033 pf_sw->bridge_mode = mode; 8034 } 8035 8036 return 0; 8037 } 8038 8039 /** 8040 * ice_tx_timeout - Respond to a Tx Hang 8041 * @netdev: network interface device structure 8042 * @txqueue: Tx queue 8043 */ 8044 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8045 { 8046 struct ice_netdev_priv *np = netdev_priv(netdev); 8047 struct ice_tx_ring *tx_ring = NULL; 8048 struct ice_vsi *vsi = np->vsi; 8049 struct ice_pf *pf = vsi->back; 8050 u32 i; 8051 8052 pf->tx_timeout_count++; 8053 8054 /* Check if PFC is enabled for the TC to which the queue belongs 8055 * to. If yes then Tx timeout is not caused by a hung queue, no 8056 * need to reset and rebuild 8057 */ 8058 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8059 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8060 txqueue); 8061 return; 8062 } 8063 8064 /* now that we have an index, find the tx_ring struct */ 8065 ice_for_each_txq(vsi, i) 8066 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8067 if (txqueue == vsi->tx_rings[i]->q_index) { 8068 tx_ring = vsi->tx_rings[i]; 8069 break; 8070 } 8071 8072 /* Reset recovery level if enough time has elapsed after last timeout. 8073 * Also ensure no new reset action happens before next timeout period. 8074 */ 8075 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8076 pf->tx_timeout_recovery_level = 1; 8077 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8078 netdev->watchdog_timeo))) 8079 return; 8080 8081 if (tx_ring) { 8082 struct ice_hw *hw = &pf->hw; 8083 u32 head, val = 0; 8084 8085 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8086 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8087 /* Read interrupt register */ 8088 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8089 8090 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8091 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8092 head, tx_ring->next_to_use, val); 8093 } 8094 8095 pf->tx_timeout_last_recovery = jiffies; 8096 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8097 pf->tx_timeout_recovery_level, txqueue); 8098 8099 switch (pf->tx_timeout_recovery_level) { 8100 case 1: 8101 set_bit(ICE_PFR_REQ, pf->state); 8102 break; 8103 case 2: 8104 set_bit(ICE_CORER_REQ, pf->state); 8105 break; 8106 case 3: 8107 set_bit(ICE_GLOBR_REQ, pf->state); 8108 break; 8109 default: 8110 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8111 set_bit(ICE_DOWN, pf->state); 8112 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8113 set_bit(ICE_SERVICE_DIS, pf->state); 8114 break; 8115 } 8116 8117 ice_service_task_schedule(pf); 8118 pf->tx_timeout_recovery_level++; 8119 } 8120 8121 /** 8122 * ice_setup_tc_cls_flower - flower classifier offloads 8123 * @np: net device to configure 8124 * @filter_dev: device on which filter is added 8125 * @cls_flower: offload data 8126 */ 8127 static int 8128 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8129 struct net_device *filter_dev, 8130 struct flow_cls_offload *cls_flower) 8131 { 8132 struct ice_vsi *vsi = np->vsi; 8133 8134 if (cls_flower->common.chain_index) 8135 return -EOPNOTSUPP; 8136 8137 switch (cls_flower->command) { 8138 case FLOW_CLS_REPLACE: 8139 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8140 case FLOW_CLS_DESTROY: 8141 return ice_del_cls_flower(vsi, cls_flower); 8142 default: 8143 return -EINVAL; 8144 } 8145 } 8146 8147 /** 8148 * ice_setup_tc_block_cb - callback handler registered for TC block 8149 * @type: TC SETUP type 8150 * @type_data: TC flower offload data that contains user input 8151 * @cb_priv: netdev private data 8152 */ 8153 static int 8154 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8155 { 8156 struct ice_netdev_priv *np = cb_priv; 8157 8158 switch (type) { 8159 case TC_SETUP_CLSFLOWER: 8160 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8161 type_data); 8162 default: 8163 return -EOPNOTSUPP; 8164 } 8165 } 8166 8167 /** 8168 * ice_validate_mqprio_qopt - Validate TCF input parameters 8169 * @vsi: Pointer to VSI 8170 * @mqprio_qopt: input parameters for mqprio queue configuration 8171 * 8172 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8173 * needed), and make sure user doesn't specify qcount and BW rate limit 8174 * for TCs, which are more than "num_tc" 8175 */ 8176 static int 8177 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8178 struct tc_mqprio_qopt_offload *mqprio_qopt) 8179 { 8180 int non_power_of_2_qcount = 0; 8181 struct ice_pf *pf = vsi->back; 8182 int max_rss_q_cnt = 0; 8183 u64 sum_min_rate = 0; 8184 struct device *dev; 8185 int i, speed; 8186 u8 num_tc; 8187 8188 if (vsi->type != ICE_VSI_PF) 8189 return -EINVAL; 8190 8191 if (mqprio_qopt->qopt.offset[0] != 0 || 8192 mqprio_qopt->qopt.num_tc < 1 || 8193 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8194 return -EINVAL; 8195 8196 dev = ice_pf_to_dev(pf); 8197 vsi->ch_rss_size = 0; 8198 num_tc = mqprio_qopt->qopt.num_tc; 8199 speed = ice_get_link_speed_kbps(vsi); 8200 8201 for (i = 0; num_tc; i++) { 8202 int qcount = mqprio_qopt->qopt.count[i]; 8203 u64 max_rate, min_rate, rem; 8204 8205 if (!qcount) 8206 return -EINVAL; 8207 8208 if (is_power_of_2(qcount)) { 8209 if (non_power_of_2_qcount && 8210 qcount > non_power_of_2_qcount) { 8211 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8212 qcount, non_power_of_2_qcount); 8213 return -EINVAL; 8214 } 8215 if (qcount > max_rss_q_cnt) 8216 max_rss_q_cnt = qcount; 8217 } else { 8218 if (non_power_of_2_qcount && 8219 qcount != non_power_of_2_qcount) { 8220 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8221 qcount, non_power_of_2_qcount); 8222 return -EINVAL; 8223 } 8224 if (qcount < max_rss_q_cnt) { 8225 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8226 qcount, max_rss_q_cnt); 8227 return -EINVAL; 8228 } 8229 max_rss_q_cnt = qcount; 8230 non_power_of_2_qcount = qcount; 8231 } 8232 8233 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8234 * converts the bandwidth rate limit into Bytes/s when 8235 * passing it down to the driver. So convert input bandwidth 8236 * from Bytes/s to Kbps 8237 */ 8238 max_rate = mqprio_qopt->max_rate[i]; 8239 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8240 8241 /* min_rate is minimum guaranteed rate and it can't be zero */ 8242 min_rate = mqprio_qopt->min_rate[i]; 8243 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8244 sum_min_rate += min_rate; 8245 8246 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8247 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8248 min_rate, ICE_MIN_BW_LIMIT); 8249 return -EINVAL; 8250 } 8251 8252 if (max_rate && max_rate > speed) { 8253 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8254 i, max_rate, speed); 8255 return -EINVAL; 8256 } 8257 8258 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8259 if (rem) { 8260 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8261 i, ICE_MIN_BW_LIMIT); 8262 return -EINVAL; 8263 } 8264 8265 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8266 if (rem) { 8267 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8268 i, ICE_MIN_BW_LIMIT); 8269 return -EINVAL; 8270 } 8271 8272 /* min_rate can't be more than max_rate, except when max_rate 8273 * is zero (implies max_rate sought is max line rate). In such 8274 * a case min_rate can be more than max. 8275 */ 8276 if (max_rate && min_rate > max_rate) { 8277 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8278 min_rate, max_rate); 8279 return -EINVAL; 8280 } 8281 8282 if (i >= mqprio_qopt->qopt.num_tc - 1) 8283 break; 8284 if (mqprio_qopt->qopt.offset[i + 1] != 8285 (mqprio_qopt->qopt.offset[i] + qcount)) 8286 return -EINVAL; 8287 } 8288 if (vsi->num_rxq < 8289 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8290 return -EINVAL; 8291 if (vsi->num_txq < 8292 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8293 return -EINVAL; 8294 8295 if (sum_min_rate && sum_min_rate > (u64)speed) { 8296 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8297 sum_min_rate, speed); 8298 return -EINVAL; 8299 } 8300 8301 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8302 vsi->ch_rss_size = max_rss_q_cnt; 8303 8304 return 0; 8305 } 8306 8307 /** 8308 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8309 * @pf: ptr to PF device 8310 * @vsi: ptr to VSI 8311 */ 8312 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8313 { 8314 struct device *dev = ice_pf_to_dev(pf); 8315 bool added = false; 8316 struct ice_hw *hw; 8317 int flow; 8318 8319 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8320 return -EINVAL; 8321 8322 hw = &pf->hw; 8323 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8324 struct ice_fd_hw_prof *prof; 8325 int tun, status; 8326 u64 entry_h; 8327 8328 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8329 hw->fdir_prof[flow]->cnt)) 8330 continue; 8331 8332 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8333 enum ice_flow_priority prio; 8334 8335 /* add this VSI to FDir profile for this flow */ 8336 prio = ICE_FLOW_PRIO_NORMAL; 8337 prof = hw->fdir_prof[flow]; 8338 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8339 prof->prof_id[tun], 8340 prof->vsi_h[0], vsi->idx, 8341 prio, prof->fdir_seg[tun], 8342 &entry_h); 8343 if (status) { 8344 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8345 vsi->idx, flow); 8346 continue; 8347 } 8348 8349 prof->entry_h[prof->cnt][tun] = entry_h; 8350 } 8351 8352 /* store VSI for filter replay and delete */ 8353 prof->vsi_h[prof->cnt] = vsi->idx; 8354 prof->cnt++; 8355 8356 added = true; 8357 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8358 flow); 8359 } 8360 8361 if (!added) 8362 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8363 8364 return 0; 8365 } 8366 8367 /** 8368 * ice_add_channel - add a channel by adding VSI 8369 * @pf: ptr to PF device 8370 * @sw_id: underlying HW switching element ID 8371 * @ch: ptr to channel structure 8372 * 8373 * Add a channel (VSI) using add_vsi and queue_map 8374 */ 8375 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8376 { 8377 struct device *dev = ice_pf_to_dev(pf); 8378 struct ice_vsi *vsi; 8379 8380 if (ch->type != ICE_VSI_CHNL) { 8381 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8382 return -EINVAL; 8383 } 8384 8385 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8386 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8387 dev_err(dev, "create chnl VSI failure\n"); 8388 return -EINVAL; 8389 } 8390 8391 ice_add_vsi_to_fdir(pf, vsi); 8392 8393 ch->sw_id = sw_id; 8394 ch->vsi_num = vsi->vsi_num; 8395 ch->info.mapping_flags = vsi->info.mapping_flags; 8396 ch->ch_vsi = vsi; 8397 /* set the back pointer of channel for newly created VSI */ 8398 vsi->ch = ch; 8399 8400 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8401 sizeof(vsi->info.q_mapping)); 8402 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8403 sizeof(vsi->info.tc_mapping)); 8404 8405 return 0; 8406 } 8407 8408 /** 8409 * ice_chnl_cfg_res 8410 * @vsi: the VSI being setup 8411 * @ch: ptr to channel structure 8412 * 8413 * Configure channel specific resources such as rings, vector. 8414 */ 8415 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8416 { 8417 int i; 8418 8419 for (i = 0; i < ch->num_txq; i++) { 8420 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8421 struct ice_ring_container *rc; 8422 struct ice_tx_ring *tx_ring; 8423 struct ice_rx_ring *rx_ring; 8424 8425 tx_ring = vsi->tx_rings[ch->base_q + i]; 8426 rx_ring = vsi->rx_rings[ch->base_q + i]; 8427 if (!tx_ring || !rx_ring) 8428 continue; 8429 8430 /* setup ring being channel enabled */ 8431 tx_ring->ch = ch; 8432 rx_ring->ch = ch; 8433 8434 /* following code block sets up vector specific attributes */ 8435 tx_q_vector = tx_ring->q_vector; 8436 rx_q_vector = rx_ring->q_vector; 8437 if (!tx_q_vector && !rx_q_vector) 8438 continue; 8439 8440 if (tx_q_vector) { 8441 tx_q_vector->ch = ch; 8442 /* setup Tx and Rx ITR setting if DIM is off */ 8443 rc = &tx_q_vector->tx; 8444 if (!ITR_IS_DYNAMIC(rc)) 8445 ice_write_itr(rc, rc->itr_setting); 8446 } 8447 if (rx_q_vector) { 8448 rx_q_vector->ch = ch; 8449 /* setup Tx and Rx ITR setting if DIM is off */ 8450 rc = &rx_q_vector->rx; 8451 if (!ITR_IS_DYNAMIC(rc)) 8452 ice_write_itr(rc, rc->itr_setting); 8453 } 8454 } 8455 8456 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8457 * GLINT_ITR register would have written to perform in-context 8458 * update, hence perform flush 8459 */ 8460 if (ch->num_txq || ch->num_rxq) 8461 ice_flush(&vsi->back->hw); 8462 } 8463 8464 /** 8465 * ice_cfg_chnl_all_res - configure channel resources 8466 * @vsi: pte to main_vsi 8467 * @ch: ptr to channel structure 8468 * 8469 * This function configures channel specific resources such as flow-director 8470 * counter index, and other resources such as queues, vectors, ITR settings 8471 */ 8472 static void 8473 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8474 { 8475 /* configure channel (aka ADQ) resources such as queues, vectors, 8476 * ITR settings for channel specific vectors and anything else 8477 */ 8478 ice_chnl_cfg_res(vsi, ch); 8479 } 8480 8481 /** 8482 * ice_setup_hw_channel - setup new channel 8483 * @pf: ptr to PF device 8484 * @vsi: the VSI being setup 8485 * @ch: ptr to channel structure 8486 * @sw_id: underlying HW switching element ID 8487 * @type: type of channel to be created (VMDq2/VF) 8488 * 8489 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8490 * and configures Tx rings accordingly 8491 */ 8492 static int 8493 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8494 struct ice_channel *ch, u16 sw_id, u8 type) 8495 { 8496 struct device *dev = ice_pf_to_dev(pf); 8497 int ret; 8498 8499 ch->base_q = vsi->next_base_q; 8500 ch->type = type; 8501 8502 ret = ice_add_channel(pf, sw_id, ch); 8503 if (ret) { 8504 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8505 return ret; 8506 } 8507 8508 /* configure/setup ADQ specific resources */ 8509 ice_cfg_chnl_all_res(vsi, ch); 8510 8511 /* make sure to update the next_base_q so that subsequent channel's 8512 * (aka ADQ) VSI queue map is correct 8513 */ 8514 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8515 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8516 ch->num_rxq); 8517 8518 return 0; 8519 } 8520 8521 /** 8522 * ice_setup_channel - setup new channel using uplink element 8523 * @pf: ptr to PF device 8524 * @vsi: the VSI being setup 8525 * @ch: ptr to channel structure 8526 * 8527 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8528 * and uplink switching element 8529 */ 8530 static bool 8531 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8532 struct ice_channel *ch) 8533 { 8534 struct device *dev = ice_pf_to_dev(pf); 8535 u16 sw_id; 8536 int ret; 8537 8538 if (vsi->type != ICE_VSI_PF) { 8539 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8540 return false; 8541 } 8542 8543 sw_id = pf->first_sw->sw_id; 8544 8545 /* create channel (VSI) */ 8546 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8547 if (ret) { 8548 dev_err(dev, "failed to setup hw_channel\n"); 8549 return false; 8550 } 8551 dev_dbg(dev, "successfully created channel()\n"); 8552 8553 return ch->ch_vsi ? true : false; 8554 } 8555 8556 /** 8557 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8558 * @vsi: VSI to be configured 8559 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8560 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8561 */ 8562 static int 8563 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8564 { 8565 int err; 8566 8567 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8568 if (err) 8569 return err; 8570 8571 return ice_set_max_bw_limit(vsi, max_tx_rate); 8572 } 8573 8574 /** 8575 * ice_create_q_channel - function to create channel 8576 * @vsi: VSI to be configured 8577 * @ch: ptr to channel (it contains channel specific params) 8578 * 8579 * This function creates channel (VSI) using num_queues specified by user, 8580 * reconfigs RSS if needed. 8581 */ 8582 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8583 { 8584 struct ice_pf *pf = vsi->back; 8585 struct device *dev; 8586 8587 if (!ch) 8588 return -EINVAL; 8589 8590 dev = ice_pf_to_dev(pf); 8591 if (!ch->num_txq || !ch->num_rxq) { 8592 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8593 return -EINVAL; 8594 } 8595 8596 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8597 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8598 vsi->cnt_q_avail, ch->num_txq); 8599 return -EINVAL; 8600 } 8601 8602 if (!ice_setup_channel(pf, vsi, ch)) { 8603 dev_info(dev, "Failed to setup channel\n"); 8604 return -EINVAL; 8605 } 8606 /* configure BW rate limit */ 8607 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8608 int ret; 8609 8610 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8611 ch->min_tx_rate); 8612 if (ret) 8613 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8614 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8615 else 8616 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8617 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8618 } 8619 8620 vsi->cnt_q_avail -= ch->num_txq; 8621 8622 return 0; 8623 } 8624 8625 /** 8626 * ice_rem_all_chnl_fltrs - removes all channel filters 8627 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8628 * 8629 * Remove all advanced switch filters only if they are channel specific 8630 * tc-flower based filter 8631 */ 8632 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8633 { 8634 struct ice_tc_flower_fltr *fltr; 8635 struct hlist_node *node; 8636 8637 /* to remove all channel filters, iterate an ordered list of filters */ 8638 hlist_for_each_entry_safe(fltr, node, 8639 &pf->tc_flower_fltr_list, 8640 tc_flower_node) { 8641 struct ice_rule_query_data rule; 8642 int status; 8643 8644 /* for now process only channel specific filters */ 8645 if (!ice_is_chnl_fltr(fltr)) 8646 continue; 8647 8648 rule.rid = fltr->rid; 8649 rule.rule_id = fltr->rule_id; 8650 rule.vsi_handle = fltr->dest_vsi_handle; 8651 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8652 if (status) { 8653 if (status == -ENOENT) 8654 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8655 rule.rule_id); 8656 else 8657 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8658 status); 8659 } else if (fltr->dest_vsi) { 8660 /* update advanced switch filter count */ 8661 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8662 u32 flags = fltr->flags; 8663 8664 fltr->dest_vsi->num_chnl_fltr--; 8665 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8666 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8667 pf->num_dmac_chnl_fltrs--; 8668 } 8669 } 8670 8671 hlist_del(&fltr->tc_flower_node); 8672 kfree(fltr); 8673 } 8674 } 8675 8676 /** 8677 * ice_remove_q_channels - Remove queue channels for the TCs 8678 * @vsi: VSI to be configured 8679 * @rem_fltr: delete advanced switch filter or not 8680 * 8681 * Remove queue channels for the TCs 8682 */ 8683 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8684 { 8685 struct ice_channel *ch, *ch_tmp; 8686 struct ice_pf *pf = vsi->back; 8687 int i; 8688 8689 /* remove all tc-flower based filter if they are channel filters only */ 8690 if (rem_fltr) 8691 ice_rem_all_chnl_fltrs(pf); 8692 8693 /* remove ntuple filters since queue configuration is being changed */ 8694 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8695 struct ice_hw *hw = &pf->hw; 8696 8697 mutex_lock(&hw->fdir_fltr_lock); 8698 ice_fdir_del_all_fltrs(vsi); 8699 mutex_unlock(&hw->fdir_fltr_lock); 8700 } 8701 8702 /* perform cleanup for channels if they exist */ 8703 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8704 struct ice_vsi *ch_vsi; 8705 8706 list_del(&ch->list); 8707 ch_vsi = ch->ch_vsi; 8708 if (!ch_vsi) { 8709 kfree(ch); 8710 continue; 8711 } 8712 8713 /* Reset queue contexts */ 8714 for (i = 0; i < ch->num_rxq; i++) { 8715 struct ice_tx_ring *tx_ring; 8716 struct ice_rx_ring *rx_ring; 8717 8718 tx_ring = vsi->tx_rings[ch->base_q + i]; 8719 rx_ring = vsi->rx_rings[ch->base_q + i]; 8720 if (tx_ring) { 8721 tx_ring->ch = NULL; 8722 if (tx_ring->q_vector) 8723 tx_ring->q_vector->ch = NULL; 8724 } 8725 if (rx_ring) { 8726 rx_ring->ch = NULL; 8727 if (rx_ring->q_vector) 8728 rx_ring->q_vector->ch = NULL; 8729 } 8730 } 8731 8732 /* Release FD resources for the channel VSI */ 8733 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8734 8735 /* clear the VSI from scheduler tree */ 8736 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8737 8738 /* Delete VSI from FW, PF and HW VSI arrays */ 8739 ice_vsi_delete(ch->ch_vsi); 8740 8741 /* free the channel */ 8742 kfree(ch); 8743 } 8744 8745 /* clear the channel VSI map which is stored in main VSI */ 8746 ice_for_each_chnl_tc(i) 8747 vsi->tc_map_vsi[i] = NULL; 8748 8749 /* reset main VSI's all TC information */ 8750 vsi->all_enatc = 0; 8751 vsi->all_numtc = 0; 8752 } 8753 8754 /** 8755 * ice_rebuild_channels - rebuild channel 8756 * @pf: ptr to PF 8757 * 8758 * Recreate channel VSIs and replay filters 8759 */ 8760 static int ice_rebuild_channels(struct ice_pf *pf) 8761 { 8762 struct device *dev = ice_pf_to_dev(pf); 8763 struct ice_vsi *main_vsi; 8764 bool rem_adv_fltr = true; 8765 struct ice_channel *ch; 8766 struct ice_vsi *vsi; 8767 int tc_idx = 1; 8768 int i, err; 8769 8770 main_vsi = ice_get_main_vsi(pf); 8771 if (!main_vsi) 8772 return 0; 8773 8774 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8775 main_vsi->old_numtc == 1) 8776 return 0; /* nothing to be done */ 8777 8778 /* reconfigure main VSI based on old value of TC and cached values 8779 * for MQPRIO opts 8780 */ 8781 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8782 if (err) { 8783 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8784 main_vsi->old_ena_tc, main_vsi->vsi_num); 8785 return err; 8786 } 8787 8788 /* rebuild ADQ VSIs */ 8789 ice_for_each_vsi(pf, i) { 8790 enum ice_vsi_type type; 8791 8792 vsi = pf->vsi[i]; 8793 if (!vsi || vsi->type != ICE_VSI_CHNL) 8794 continue; 8795 8796 type = vsi->type; 8797 8798 /* rebuild ADQ VSI */ 8799 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8800 if (err) { 8801 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8802 ice_vsi_type_str(type), vsi->idx, err); 8803 goto cleanup; 8804 } 8805 8806 /* Re-map HW VSI number, using VSI handle that has been 8807 * previously validated in ice_replay_vsi() call above 8808 */ 8809 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8810 8811 /* replay filters for the VSI */ 8812 err = ice_replay_vsi(&pf->hw, vsi->idx); 8813 if (err) { 8814 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8815 ice_vsi_type_str(type), err, vsi->idx); 8816 rem_adv_fltr = false; 8817 goto cleanup; 8818 } 8819 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8820 ice_vsi_type_str(type), vsi->idx); 8821 8822 /* store ADQ VSI at correct TC index in main VSI's 8823 * map of TC to VSI 8824 */ 8825 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8826 } 8827 8828 /* ADQ VSI(s) has been rebuilt successfully, so setup 8829 * channel for main VSI's Tx and Rx rings 8830 */ 8831 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8832 struct ice_vsi *ch_vsi; 8833 8834 ch_vsi = ch->ch_vsi; 8835 if (!ch_vsi) 8836 continue; 8837 8838 /* reconfig channel resources */ 8839 ice_cfg_chnl_all_res(main_vsi, ch); 8840 8841 /* replay BW rate limit if it is non-zero */ 8842 if (!ch->max_tx_rate && !ch->min_tx_rate) 8843 continue; 8844 8845 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8846 ch->min_tx_rate); 8847 if (err) 8848 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8849 err, ch->max_tx_rate, ch->min_tx_rate, 8850 ch_vsi->vsi_num); 8851 else 8852 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8853 ch->max_tx_rate, ch->min_tx_rate, 8854 ch_vsi->vsi_num); 8855 } 8856 8857 /* reconfig RSS for main VSI */ 8858 if (main_vsi->ch_rss_size) 8859 ice_vsi_cfg_rss_lut_key(main_vsi); 8860 8861 return 0; 8862 8863 cleanup: 8864 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8865 return err; 8866 } 8867 8868 /** 8869 * ice_create_q_channels - Add queue channel for the given TCs 8870 * @vsi: VSI to be configured 8871 * 8872 * Configures queue channel mapping to the given TCs 8873 */ 8874 static int ice_create_q_channels(struct ice_vsi *vsi) 8875 { 8876 struct ice_pf *pf = vsi->back; 8877 struct ice_channel *ch; 8878 int ret = 0, i; 8879 8880 ice_for_each_chnl_tc(i) { 8881 if (!(vsi->all_enatc & BIT(i))) 8882 continue; 8883 8884 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8885 if (!ch) { 8886 ret = -ENOMEM; 8887 goto err_free; 8888 } 8889 INIT_LIST_HEAD(&ch->list); 8890 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8891 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8892 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8893 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8894 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8895 8896 /* convert to Kbits/s */ 8897 if (ch->max_tx_rate) 8898 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8899 ICE_BW_KBPS_DIVISOR); 8900 if (ch->min_tx_rate) 8901 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8902 ICE_BW_KBPS_DIVISOR); 8903 8904 ret = ice_create_q_channel(vsi, ch); 8905 if (ret) { 8906 dev_err(ice_pf_to_dev(pf), 8907 "failed creating channel TC:%d\n", i); 8908 kfree(ch); 8909 goto err_free; 8910 } 8911 list_add_tail(&ch->list, &vsi->ch_list); 8912 vsi->tc_map_vsi[i] = ch->ch_vsi; 8913 dev_dbg(ice_pf_to_dev(pf), 8914 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8915 } 8916 return 0; 8917 8918 err_free: 8919 ice_remove_q_channels(vsi, false); 8920 8921 return ret; 8922 } 8923 8924 /** 8925 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8926 * @netdev: net device to configure 8927 * @type_data: TC offload data 8928 */ 8929 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8930 { 8931 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8932 struct ice_netdev_priv *np = netdev_priv(netdev); 8933 struct ice_vsi *vsi = np->vsi; 8934 struct ice_pf *pf = vsi->back; 8935 u16 mode, ena_tc_qdisc = 0; 8936 int cur_txq, cur_rxq; 8937 u8 hw = 0, num_tcf; 8938 struct device *dev; 8939 int ret, i; 8940 8941 dev = ice_pf_to_dev(pf); 8942 num_tcf = mqprio_qopt->qopt.num_tc; 8943 hw = mqprio_qopt->qopt.hw; 8944 mode = mqprio_qopt->mode; 8945 if (!hw) { 8946 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8947 vsi->ch_rss_size = 0; 8948 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8949 goto config_tcf; 8950 } 8951 8952 /* Generate queue region map for number of TCF requested */ 8953 for (i = 0; i < num_tcf; i++) 8954 ena_tc_qdisc |= BIT(i); 8955 8956 switch (mode) { 8957 case TC_MQPRIO_MODE_CHANNEL: 8958 8959 if (pf->hw.port_info->is_custom_tx_enabled) { 8960 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8961 return -EBUSY; 8962 } 8963 ice_tear_down_devlink_rate_tree(pf); 8964 8965 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8966 if (ret) { 8967 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8968 ret); 8969 return ret; 8970 } 8971 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8972 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8973 /* don't assume state of hw_tc_offload during driver load 8974 * and set the flag for TC flower filter if hw_tc_offload 8975 * already ON 8976 */ 8977 if (vsi->netdev->features & NETIF_F_HW_TC) 8978 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8979 break; 8980 default: 8981 return -EINVAL; 8982 } 8983 8984 config_tcf: 8985 8986 /* Requesting same TCF configuration as already enabled */ 8987 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8988 mode != TC_MQPRIO_MODE_CHANNEL) 8989 return 0; 8990 8991 /* Pause VSI queues */ 8992 ice_dis_vsi(vsi, true); 8993 8994 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8995 ice_remove_q_channels(vsi, true); 8996 8997 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8998 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8999 num_online_cpus()); 9000 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9001 num_online_cpus()); 9002 } else { 9003 /* logic to rebuild VSI, same like ethtool -L */ 9004 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9005 9006 for (i = 0; i < num_tcf; i++) { 9007 if (!(ena_tc_qdisc & BIT(i))) 9008 continue; 9009 9010 offset = vsi->mqprio_qopt.qopt.offset[i]; 9011 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9012 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9013 } 9014 vsi->req_txq = offset + qcount_tx; 9015 vsi->req_rxq = offset + qcount_rx; 9016 9017 /* store away original rss_size info, so that it gets reused 9018 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9019 * determine, what should be the rss_sizefor main VSI 9020 */ 9021 vsi->orig_rss_size = vsi->rss_size; 9022 } 9023 9024 /* save current values of Tx and Rx queues before calling VSI rebuild 9025 * for fallback option 9026 */ 9027 cur_txq = vsi->num_txq; 9028 cur_rxq = vsi->num_rxq; 9029 9030 /* proceed with rebuild main VSI using correct number of queues */ 9031 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9032 if (ret) { 9033 /* fallback to current number of queues */ 9034 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9035 vsi->req_txq = cur_txq; 9036 vsi->req_rxq = cur_rxq; 9037 clear_bit(ICE_RESET_FAILED, pf->state); 9038 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9039 dev_err(dev, "Rebuild of main VSI failed again\n"); 9040 return ret; 9041 } 9042 } 9043 9044 vsi->all_numtc = num_tcf; 9045 vsi->all_enatc = ena_tc_qdisc; 9046 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9047 if (ret) { 9048 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9049 vsi->vsi_num); 9050 goto exit; 9051 } 9052 9053 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9054 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9055 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9056 9057 /* set TC0 rate limit if specified */ 9058 if (max_tx_rate || min_tx_rate) { 9059 /* convert to Kbits/s */ 9060 if (max_tx_rate) 9061 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9062 if (min_tx_rate) 9063 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9064 9065 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9066 if (!ret) { 9067 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9068 max_tx_rate, min_tx_rate, vsi->vsi_num); 9069 } else { 9070 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9071 max_tx_rate, min_tx_rate, vsi->vsi_num); 9072 goto exit; 9073 } 9074 } 9075 ret = ice_create_q_channels(vsi); 9076 if (ret) { 9077 netdev_err(netdev, "failed configuring queue channels\n"); 9078 goto exit; 9079 } else { 9080 netdev_dbg(netdev, "successfully configured channels\n"); 9081 } 9082 } 9083 9084 if (vsi->ch_rss_size) 9085 ice_vsi_cfg_rss_lut_key(vsi); 9086 9087 exit: 9088 /* if error, reset the all_numtc and all_enatc */ 9089 if (ret) { 9090 vsi->all_numtc = 0; 9091 vsi->all_enatc = 0; 9092 } 9093 /* resume VSI */ 9094 ice_ena_vsi(vsi, true); 9095 9096 return ret; 9097 } 9098 9099 static LIST_HEAD(ice_block_cb_list); 9100 9101 static int 9102 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9103 void *type_data) 9104 { 9105 struct ice_netdev_priv *np = netdev_priv(netdev); 9106 struct ice_pf *pf = np->vsi->back; 9107 bool locked = false; 9108 int err; 9109 9110 switch (type) { 9111 case TC_SETUP_BLOCK: 9112 return flow_block_cb_setup_simple(type_data, 9113 &ice_block_cb_list, 9114 ice_setup_tc_block_cb, 9115 np, np, true); 9116 case TC_SETUP_QDISC_MQPRIO: 9117 if (ice_is_eswitch_mode_switchdev(pf)) { 9118 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9119 return -EOPNOTSUPP; 9120 } 9121 9122 if (pf->adev) { 9123 mutex_lock(&pf->adev_mutex); 9124 device_lock(&pf->adev->dev); 9125 locked = true; 9126 if (pf->adev->dev.driver) { 9127 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9128 err = -EBUSY; 9129 goto adev_unlock; 9130 } 9131 } 9132 9133 /* setup traffic classifier for receive side */ 9134 mutex_lock(&pf->tc_mutex); 9135 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9136 mutex_unlock(&pf->tc_mutex); 9137 9138 adev_unlock: 9139 if (locked) { 9140 device_unlock(&pf->adev->dev); 9141 mutex_unlock(&pf->adev_mutex); 9142 } 9143 return err; 9144 default: 9145 return -EOPNOTSUPP; 9146 } 9147 return -EOPNOTSUPP; 9148 } 9149 9150 static struct ice_indr_block_priv * 9151 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9152 struct net_device *netdev) 9153 { 9154 struct ice_indr_block_priv *cb_priv; 9155 9156 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9157 if (!cb_priv->netdev) 9158 return NULL; 9159 if (cb_priv->netdev == netdev) 9160 return cb_priv; 9161 } 9162 return NULL; 9163 } 9164 9165 static int 9166 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9167 void *indr_priv) 9168 { 9169 struct ice_indr_block_priv *priv = indr_priv; 9170 struct ice_netdev_priv *np = priv->np; 9171 9172 switch (type) { 9173 case TC_SETUP_CLSFLOWER: 9174 return ice_setup_tc_cls_flower(np, priv->netdev, 9175 (struct flow_cls_offload *) 9176 type_data); 9177 default: 9178 return -EOPNOTSUPP; 9179 } 9180 } 9181 9182 static int 9183 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9184 struct ice_netdev_priv *np, 9185 struct flow_block_offload *f, void *data, 9186 void (*cleanup)(struct flow_block_cb *block_cb)) 9187 { 9188 struct ice_indr_block_priv *indr_priv; 9189 struct flow_block_cb *block_cb; 9190 9191 if (!ice_is_tunnel_supported(netdev) && 9192 !(is_vlan_dev(netdev) && 9193 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9194 return -EOPNOTSUPP; 9195 9196 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9197 return -EOPNOTSUPP; 9198 9199 switch (f->command) { 9200 case FLOW_BLOCK_BIND: 9201 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9202 if (indr_priv) 9203 return -EEXIST; 9204 9205 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9206 if (!indr_priv) 9207 return -ENOMEM; 9208 9209 indr_priv->netdev = netdev; 9210 indr_priv->np = np; 9211 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9212 9213 block_cb = 9214 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9215 indr_priv, indr_priv, 9216 ice_rep_indr_tc_block_unbind, 9217 f, netdev, sch, data, np, 9218 cleanup); 9219 9220 if (IS_ERR(block_cb)) { 9221 list_del(&indr_priv->list); 9222 kfree(indr_priv); 9223 return PTR_ERR(block_cb); 9224 } 9225 flow_block_cb_add(block_cb, f); 9226 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9227 break; 9228 case FLOW_BLOCK_UNBIND: 9229 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9230 if (!indr_priv) 9231 return -ENOENT; 9232 9233 block_cb = flow_block_cb_lookup(f->block, 9234 ice_indr_setup_block_cb, 9235 indr_priv); 9236 if (!block_cb) 9237 return -ENOENT; 9238 9239 flow_indr_block_cb_remove(block_cb, f); 9240 9241 list_del(&block_cb->driver_list); 9242 break; 9243 default: 9244 return -EOPNOTSUPP; 9245 } 9246 return 0; 9247 } 9248 9249 static int 9250 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9251 void *cb_priv, enum tc_setup_type type, void *type_data, 9252 void *data, 9253 void (*cleanup)(struct flow_block_cb *block_cb)) 9254 { 9255 switch (type) { 9256 case TC_SETUP_BLOCK: 9257 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9258 data, cleanup); 9259 9260 default: 9261 return -EOPNOTSUPP; 9262 } 9263 } 9264 9265 /** 9266 * ice_open - Called when a network interface becomes active 9267 * @netdev: network interface device structure 9268 * 9269 * The open entry point is called when a network interface is made 9270 * active by the system (IFF_UP). At this point all resources needed 9271 * for transmit and receive operations are allocated, the interrupt 9272 * handler is registered with the OS, the netdev watchdog is enabled, 9273 * and the stack is notified that the interface is ready. 9274 * 9275 * Returns 0 on success, negative value on failure 9276 */ 9277 int ice_open(struct net_device *netdev) 9278 { 9279 struct ice_netdev_priv *np = netdev_priv(netdev); 9280 struct ice_pf *pf = np->vsi->back; 9281 9282 if (ice_is_reset_in_progress(pf->state)) { 9283 netdev_err(netdev, "can't open net device while reset is in progress"); 9284 return -EBUSY; 9285 } 9286 9287 return ice_open_internal(netdev); 9288 } 9289 9290 /** 9291 * ice_open_internal - Called when a network interface becomes active 9292 * @netdev: network interface device structure 9293 * 9294 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9295 * handling routine 9296 * 9297 * Returns 0 on success, negative value on failure 9298 */ 9299 int ice_open_internal(struct net_device *netdev) 9300 { 9301 struct ice_netdev_priv *np = netdev_priv(netdev); 9302 struct ice_vsi *vsi = np->vsi; 9303 struct ice_pf *pf = vsi->back; 9304 struct ice_port_info *pi; 9305 int err; 9306 9307 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9308 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9309 return -EIO; 9310 } 9311 9312 netif_carrier_off(netdev); 9313 9314 pi = vsi->port_info; 9315 err = ice_update_link_info(pi); 9316 if (err) { 9317 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9318 return err; 9319 } 9320 9321 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9322 9323 /* Set PHY if there is media, otherwise, turn off PHY */ 9324 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9325 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9326 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9327 err = ice_init_phy_user_cfg(pi); 9328 if (err) { 9329 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9330 err); 9331 return err; 9332 } 9333 } 9334 9335 err = ice_configure_phy(vsi); 9336 if (err) { 9337 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9338 err); 9339 return err; 9340 } 9341 } else { 9342 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9343 ice_set_link(vsi, false); 9344 } 9345 9346 err = ice_vsi_open(vsi); 9347 if (err) 9348 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9349 vsi->vsi_num, vsi->vsw->sw_id); 9350 9351 /* Update existing tunnels information */ 9352 udp_tunnel_get_rx_info(netdev); 9353 9354 return err; 9355 } 9356 9357 /** 9358 * ice_stop - Disables a network interface 9359 * @netdev: network interface device structure 9360 * 9361 * The stop entry point is called when an interface is de-activated by the OS, 9362 * and the netdevice enters the DOWN state. The hardware is still under the 9363 * driver's control, but the netdev interface is disabled. 9364 * 9365 * Returns success only - not allowed to fail 9366 */ 9367 int ice_stop(struct net_device *netdev) 9368 { 9369 struct ice_netdev_priv *np = netdev_priv(netdev); 9370 struct ice_vsi *vsi = np->vsi; 9371 struct ice_pf *pf = vsi->back; 9372 9373 if (ice_is_reset_in_progress(pf->state)) { 9374 netdev_err(netdev, "can't stop net device while reset is in progress"); 9375 return -EBUSY; 9376 } 9377 9378 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9379 int link_err = ice_force_phys_link_state(vsi, false); 9380 9381 if (link_err) { 9382 if (link_err == -ENOMEDIUM) 9383 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9384 vsi->vsi_num); 9385 else 9386 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9387 vsi->vsi_num, link_err); 9388 9389 ice_vsi_close(vsi); 9390 return -EIO; 9391 } 9392 } 9393 9394 ice_vsi_close(vsi); 9395 9396 return 0; 9397 } 9398 9399 /** 9400 * ice_features_check - Validate encapsulated packet conforms to limits 9401 * @skb: skb buffer 9402 * @netdev: This port's netdev 9403 * @features: Offload features that the stack believes apply 9404 */ 9405 static netdev_features_t 9406 ice_features_check(struct sk_buff *skb, 9407 struct net_device __always_unused *netdev, 9408 netdev_features_t features) 9409 { 9410 bool gso = skb_is_gso(skb); 9411 size_t len; 9412 9413 /* No point in doing any of this if neither checksum nor GSO are 9414 * being requested for this frame. We can rule out both by just 9415 * checking for CHECKSUM_PARTIAL 9416 */ 9417 if (skb->ip_summed != CHECKSUM_PARTIAL) 9418 return features; 9419 9420 /* We cannot support GSO if the MSS is going to be less than 9421 * 64 bytes. If it is then we need to drop support for GSO. 9422 */ 9423 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9424 features &= ~NETIF_F_GSO_MASK; 9425 9426 len = skb_network_offset(skb); 9427 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9428 goto out_rm_features; 9429 9430 len = skb_network_header_len(skb); 9431 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9432 goto out_rm_features; 9433 9434 if (skb->encapsulation) { 9435 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9436 * the case of IPIP frames, the transport header pointer is 9437 * after the inner header! So check to make sure that this 9438 * is a GRE or UDP_TUNNEL frame before doing that math. 9439 */ 9440 if (gso && (skb_shinfo(skb)->gso_type & 9441 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9442 len = skb_inner_network_header(skb) - 9443 skb_transport_header(skb); 9444 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9445 goto out_rm_features; 9446 } 9447 9448 len = skb_inner_network_header_len(skb); 9449 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9450 goto out_rm_features; 9451 } 9452 9453 return features; 9454 out_rm_features: 9455 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9456 } 9457 9458 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9459 .ndo_open = ice_open, 9460 .ndo_stop = ice_stop, 9461 .ndo_start_xmit = ice_start_xmit, 9462 .ndo_set_mac_address = ice_set_mac_address, 9463 .ndo_validate_addr = eth_validate_addr, 9464 .ndo_change_mtu = ice_change_mtu, 9465 .ndo_get_stats64 = ice_get_stats64, 9466 .ndo_tx_timeout = ice_tx_timeout, 9467 .ndo_bpf = ice_xdp_safe_mode, 9468 }; 9469 9470 static const struct net_device_ops ice_netdev_ops = { 9471 .ndo_open = ice_open, 9472 .ndo_stop = ice_stop, 9473 .ndo_start_xmit = ice_start_xmit, 9474 .ndo_select_queue = ice_select_queue, 9475 .ndo_features_check = ice_features_check, 9476 .ndo_fix_features = ice_fix_features, 9477 .ndo_set_rx_mode = ice_set_rx_mode, 9478 .ndo_set_mac_address = ice_set_mac_address, 9479 .ndo_validate_addr = eth_validate_addr, 9480 .ndo_change_mtu = ice_change_mtu, 9481 .ndo_get_stats64 = ice_get_stats64, 9482 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9483 .ndo_eth_ioctl = ice_eth_ioctl, 9484 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9485 .ndo_set_vf_mac = ice_set_vf_mac, 9486 .ndo_get_vf_config = ice_get_vf_cfg, 9487 .ndo_set_vf_trust = ice_set_vf_trust, 9488 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9489 .ndo_set_vf_link_state = ice_set_vf_link_state, 9490 .ndo_get_vf_stats = ice_get_vf_stats, 9491 .ndo_set_vf_rate = ice_set_vf_bw, 9492 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9493 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9494 .ndo_setup_tc = ice_setup_tc, 9495 .ndo_set_features = ice_set_features, 9496 .ndo_bridge_getlink = ice_bridge_getlink, 9497 .ndo_bridge_setlink = ice_bridge_setlink, 9498 .ndo_fdb_add = ice_fdb_add, 9499 .ndo_fdb_del = ice_fdb_del, 9500 #ifdef CONFIG_RFS_ACCEL 9501 .ndo_rx_flow_steer = ice_rx_flow_steer, 9502 #endif 9503 .ndo_tx_timeout = ice_tx_timeout, 9504 .ndo_bpf = ice_xdp, 9505 .ndo_xdp_xmit = ice_xdp_xmit, 9506 .ndo_xsk_wakeup = ice_xsk_wakeup, 9507 }; 9508