1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_qs_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 /** 1397 * __ice_clean_ctrlq - helper function to clean controlq rings 1398 * @pf: ptr to struct ice_pf 1399 * @q_type: specific Control queue type 1400 */ 1401 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1402 { 1403 struct device *dev = ice_pf_to_dev(pf); 1404 struct ice_rq_event_info event; 1405 struct ice_hw *hw = &pf->hw; 1406 struct ice_ctl_q_info *cq; 1407 u16 pending, i = 0; 1408 const char *qtype; 1409 u32 oldval, val; 1410 1411 /* Do not clean control queue if/when PF reset fails */ 1412 if (test_bit(ICE_RESET_FAILED, pf->state)) 1413 return 0; 1414 1415 switch (q_type) { 1416 case ICE_CTL_Q_ADMIN: 1417 cq = &hw->adminq; 1418 qtype = "Admin"; 1419 break; 1420 case ICE_CTL_Q_SB: 1421 cq = &hw->sbq; 1422 qtype = "Sideband"; 1423 break; 1424 case ICE_CTL_Q_MAILBOX: 1425 cq = &hw->mailboxq; 1426 qtype = "Mailbox"; 1427 /* we are going to try to detect a malicious VF, so set the 1428 * state to begin detection 1429 */ 1430 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1431 break; 1432 default: 1433 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1434 return 0; 1435 } 1436 1437 /* check for error indications - PF_xx_AxQLEN register layout for 1438 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1439 */ 1440 val = rd32(hw, cq->rq.len); 1441 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1442 PF_FW_ARQLEN_ARQCRIT_M)) { 1443 oldval = val; 1444 if (val & PF_FW_ARQLEN_ARQVFE_M) 1445 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1446 qtype); 1447 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1448 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1449 qtype); 1450 } 1451 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1452 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1453 qtype); 1454 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1455 PF_FW_ARQLEN_ARQCRIT_M); 1456 if (oldval != val) 1457 wr32(hw, cq->rq.len, val); 1458 } 1459 1460 val = rd32(hw, cq->sq.len); 1461 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1462 PF_FW_ATQLEN_ATQCRIT_M)) { 1463 oldval = val; 1464 if (val & PF_FW_ATQLEN_ATQVFE_M) 1465 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1466 qtype); 1467 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1468 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1469 qtype); 1470 } 1471 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1472 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1473 qtype); 1474 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1475 PF_FW_ATQLEN_ATQCRIT_M); 1476 if (oldval != val) 1477 wr32(hw, cq->sq.len, val); 1478 } 1479 1480 event.buf_len = cq->rq_buf_size; 1481 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1482 if (!event.msg_buf) 1483 return 0; 1484 1485 do { 1486 u16 opcode; 1487 int ret; 1488 1489 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1490 if (ret == -EALREADY) 1491 break; 1492 if (ret) { 1493 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1494 ret); 1495 break; 1496 } 1497 1498 opcode = le16_to_cpu(event.desc.opcode); 1499 1500 /* Notify any thread that might be waiting for this event */ 1501 ice_aq_check_events(pf, opcode, &event); 1502 1503 switch (opcode) { 1504 case ice_aqc_opc_get_link_status: 1505 if (ice_handle_link_event(pf, &event)) 1506 dev_err(dev, "Could not handle link event\n"); 1507 break; 1508 case ice_aqc_opc_event_lan_overflow: 1509 ice_vf_lan_overflow_event(pf, &event); 1510 break; 1511 case ice_mbx_opc_send_msg_to_pf: 1512 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1513 ice_vc_process_vf_msg(pf, &event); 1514 break; 1515 case ice_aqc_opc_fw_logging: 1516 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1517 break; 1518 case ice_aqc_opc_lldp_set_mib_change: 1519 ice_dcb_process_lldp_set_mib_change(pf, &event); 1520 break; 1521 default: 1522 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1523 qtype, opcode); 1524 break; 1525 } 1526 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1527 1528 kfree(event.msg_buf); 1529 1530 return pending && (i == ICE_DFLT_IRQ_WORK); 1531 } 1532 1533 /** 1534 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1535 * @hw: pointer to hardware info 1536 * @cq: control queue information 1537 * 1538 * returns true if there are pending messages in a queue, false if there aren't 1539 */ 1540 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1541 { 1542 u16 ntu; 1543 1544 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1545 return cq->rq.next_to_clean != ntu; 1546 } 1547 1548 /** 1549 * ice_clean_adminq_subtask - clean the AdminQ rings 1550 * @pf: board private structure 1551 */ 1552 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1553 { 1554 struct ice_hw *hw = &pf->hw; 1555 1556 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1557 return; 1558 1559 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1560 return; 1561 1562 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1563 1564 /* There might be a situation where new messages arrive to a control 1565 * queue between processing the last message and clearing the 1566 * EVENT_PENDING bit. So before exiting, check queue head again (using 1567 * ice_ctrlq_pending) and process new messages if any. 1568 */ 1569 if (ice_ctrlq_pending(hw, &hw->adminq)) 1570 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1571 1572 ice_flush(hw); 1573 } 1574 1575 /** 1576 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1577 * @pf: board private structure 1578 */ 1579 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1580 { 1581 struct ice_hw *hw = &pf->hw; 1582 1583 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1584 return; 1585 1586 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1587 return; 1588 1589 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1590 1591 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1593 1594 ice_flush(hw); 1595 } 1596 1597 /** 1598 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1599 * @pf: board private structure 1600 */ 1601 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1602 { 1603 struct ice_hw *hw = &pf->hw; 1604 1605 /* Nothing to do here if sideband queue is not supported */ 1606 if (!ice_is_sbq_supported(hw)) { 1607 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1608 return; 1609 } 1610 1611 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1612 return; 1613 1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1615 return; 1616 1617 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1618 1619 if (ice_ctrlq_pending(hw, &hw->sbq)) 1620 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1621 1622 ice_flush(hw); 1623 } 1624 1625 /** 1626 * ice_service_task_schedule - schedule the service task to wake up 1627 * @pf: board private structure 1628 * 1629 * If not already scheduled, this puts the task into the work queue. 1630 */ 1631 void ice_service_task_schedule(struct ice_pf *pf) 1632 { 1633 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1634 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1635 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1636 queue_work(ice_wq, &pf->serv_task); 1637 } 1638 1639 /** 1640 * ice_service_task_complete - finish up the service task 1641 * @pf: board private structure 1642 */ 1643 static void ice_service_task_complete(struct ice_pf *pf) 1644 { 1645 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1646 1647 /* force memory (pf->state) to sync before next service task */ 1648 smp_mb__before_atomic(); 1649 clear_bit(ICE_SERVICE_SCHED, pf->state); 1650 } 1651 1652 /** 1653 * ice_service_task_stop - stop service task and cancel works 1654 * @pf: board private structure 1655 * 1656 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1657 * 1 otherwise. 1658 */ 1659 static int ice_service_task_stop(struct ice_pf *pf) 1660 { 1661 int ret; 1662 1663 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1664 1665 if (pf->serv_tmr.function) 1666 del_timer_sync(&pf->serv_tmr); 1667 if (pf->serv_task.func) 1668 cancel_work_sync(&pf->serv_task); 1669 1670 clear_bit(ICE_SERVICE_SCHED, pf->state); 1671 return ret; 1672 } 1673 1674 /** 1675 * ice_service_task_restart - restart service task and schedule works 1676 * @pf: board private structure 1677 * 1678 * This function is needed for suspend and resume works (e.g WoL scenario) 1679 */ 1680 static void ice_service_task_restart(struct ice_pf *pf) 1681 { 1682 clear_bit(ICE_SERVICE_DIS, pf->state); 1683 ice_service_task_schedule(pf); 1684 } 1685 1686 /** 1687 * ice_service_timer - timer callback to schedule service task 1688 * @t: pointer to timer_list 1689 */ 1690 static void ice_service_timer(struct timer_list *t) 1691 { 1692 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1693 1694 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1695 ice_service_task_schedule(pf); 1696 } 1697 1698 /** 1699 * ice_handle_mdd_event - handle malicious driver detect event 1700 * @pf: pointer to the PF structure 1701 * 1702 * Called from service task. OICR interrupt handler indicates MDD event. 1703 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1704 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1705 * disable the queue, the PF can be configured to reset the VF using ethtool 1706 * private flag mdd-auto-reset-vf. 1707 */ 1708 static void ice_handle_mdd_event(struct ice_pf *pf) 1709 { 1710 struct device *dev = ice_pf_to_dev(pf); 1711 struct ice_hw *hw = &pf->hw; 1712 struct ice_vf *vf; 1713 unsigned int bkt; 1714 u32 reg; 1715 1716 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1717 /* Since the VF MDD event logging is rate limited, check if 1718 * there are pending MDD events. 1719 */ 1720 ice_print_vfs_mdd_events(pf); 1721 return; 1722 } 1723 1724 /* find what triggered an MDD event */ 1725 reg = rd32(hw, GL_MDET_TX_PQM); 1726 if (reg & GL_MDET_TX_PQM_VALID_M) { 1727 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1728 GL_MDET_TX_PQM_PF_NUM_S; 1729 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1730 GL_MDET_TX_PQM_VF_NUM_S; 1731 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1732 GL_MDET_TX_PQM_MAL_TYPE_S; 1733 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1734 GL_MDET_TX_PQM_QNUM_S); 1735 1736 if (netif_msg_tx_err(pf)) 1737 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1738 event, queue, pf_num, vf_num); 1739 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1740 } 1741 1742 reg = rd32(hw, GL_MDET_TX_TCLAN); 1743 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1744 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1745 GL_MDET_TX_TCLAN_PF_NUM_S; 1746 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1747 GL_MDET_TX_TCLAN_VF_NUM_S; 1748 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1749 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1750 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1751 GL_MDET_TX_TCLAN_QNUM_S); 1752 1753 if (netif_msg_tx_err(pf)) 1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1755 event, queue, pf_num, vf_num); 1756 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1757 } 1758 1759 reg = rd32(hw, GL_MDET_RX); 1760 if (reg & GL_MDET_RX_VALID_M) { 1761 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1762 GL_MDET_RX_PF_NUM_S; 1763 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1764 GL_MDET_RX_VF_NUM_S; 1765 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1766 GL_MDET_RX_MAL_TYPE_S; 1767 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1768 GL_MDET_RX_QNUM_S); 1769 1770 if (netif_msg_rx_err(pf)) 1771 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1772 event, queue, pf_num, vf_num); 1773 wr32(hw, GL_MDET_RX, 0xffffffff); 1774 } 1775 1776 /* check to see if this PF caused an MDD event */ 1777 reg = rd32(hw, PF_MDET_TX_PQM); 1778 if (reg & PF_MDET_TX_PQM_VALID_M) { 1779 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1780 if (netif_msg_tx_err(pf)) 1781 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1782 } 1783 1784 reg = rd32(hw, PF_MDET_TX_TCLAN); 1785 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1786 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_RX); 1792 if (reg & PF_MDET_RX_VALID_M) { 1793 wr32(hw, PF_MDET_RX, 0xFFFF); 1794 if (netif_msg_rx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1796 } 1797 1798 /* Check to see if one of the VFs caused an MDD event, and then 1799 * increment counters and set print pending 1800 */ 1801 mutex_lock(&pf->vfs.table_lock); 1802 ice_for_each_vf(pf, bkt, vf) { 1803 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1804 if (reg & VP_MDET_TX_PQM_VALID_M) { 1805 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1806 vf->mdd_tx_events.count++; 1807 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1808 if (netif_msg_tx_err(pf)) 1809 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1810 vf->vf_id); 1811 } 1812 1813 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1814 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1815 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1816 vf->mdd_tx_events.count++; 1817 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1818 if (netif_msg_tx_err(pf)) 1819 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1820 vf->vf_id); 1821 } 1822 1823 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1824 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1825 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1826 vf->mdd_tx_events.count++; 1827 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1828 if (netif_msg_tx_err(pf)) 1829 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1830 vf->vf_id); 1831 } 1832 1833 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1834 if (reg & VP_MDET_RX_VALID_M) { 1835 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1836 vf->mdd_rx_events.count++; 1837 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1838 if (netif_msg_rx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1840 vf->vf_id); 1841 1842 /* Since the queue is disabled on VF Rx MDD events, the 1843 * PF can be configured to reset the VF through ethtool 1844 * private flag mdd-auto-reset-vf. 1845 */ 1846 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1847 /* VF MDD event counters will be cleared by 1848 * reset, so print the event prior to reset. 1849 */ 1850 ice_print_vf_rx_mdd_event(vf); 1851 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1852 } 1853 } 1854 } 1855 mutex_unlock(&pf->vfs.table_lock); 1856 1857 ice_print_vfs_mdd_events(pf); 1858 } 1859 1860 /** 1861 * ice_force_phys_link_state - Force the physical link state 1862 * @vsi: VSI to force the physical link state to up/down 1863 * @link_up: true/false indicates to set the physical link to up/down 1864 * 1865 * Force the physical link state by getting the current PHY capabilities from 1866 * hardware and setting the PHY config based on the determined capabilities. If 1867 * link changes a link event will be triggered because both the Enable Automatic 1868 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1869 * 1870 * Returns 0 on success, negative on failure 1871 */ 1872 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1873 { 1874 struct ice_aqc_get_phy_caps_data *pcaps; 1875 struct ice_aqc_set_phy_cfg_data *cfg; 1876 struct ice_port_info *pi; 1877 struct device *dev; 1878 int retcode; 1879 1880 if (!vsi || !vsi->port_info || !vsi->back) 1881 return -EINVAL; 1882 if (vsi->type != ICE_VSI_PF) 1883 return 0; 1884 1885 dev = ice_pf_to_dev(vsi->back); 1886 1887 pi = vsi->port_info; 1888 1889 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1890 if (!pcaps) 1891 return -ENOMEM; 1892 1893 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1894 NULL); 1895 if (retcode) { 1896 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1897 vsi->vsi_num, retcode); 1898 retcode = -EIO; 1899 goto out; 1900 } 1901 1902 /* No change in link */ 1903 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1904 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1905 goto out; 1906 1907 /* Use the current user PHY configuration. The current user PHY 1908 * configuration is initialized during probe from PHY capabilities 1909 * software mode, and updated on set PHY configuration. 1910 */ 1911 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1912 if (!cfg) { 1913 retcode = -ENOMEM; 1914 goto out; 1915 } 1916 1917 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1918 if (link_up) 1919 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1920 else 1921 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1922 1923 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1924 if (retcode) { 1925 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1926 vsi->vsi_num, retcode); 1927 retcode = -EIO; 1928 } 1929 1930 kfree(cfg); 1931 out: 1932 kfree(pcaps); 1933 return retcode; 1934 } 1935 1936 /** 1937 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1938 * @pi: port info structure 1939 * 1940 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1941 */ 1942 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1943 { 1944 struct ice_aqc_get_phy_caps_data *pcaps; 1945 struct ice_pf *pf = pi->hw->back; 1946 int err; 1947 1948 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1949 if (!pcaps) 1950 return -ENOMEM; 1951 1952 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1953 pcaps, NULL); 1954 1955 if (err) { 1956 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1957 goto out; 1958 } 1959 1960 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1961 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1962 1963 out: 1964 kfree(pcaps); 1965 return err; 1966 } 1967 1968 /** 1969 * ice_init_link_dflt_override - Initialize link default override 1970 * @pi: port info structure 1971 * 1972 * Initialize link default override and PHY total port shutdown during probe 1973 */ 1974 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1975 { 1976 struct ice_link_default_override_tlv *ldo; 1977 struct ice_pf *pf = pi->hw->back; 1978 1979 ldo = &pf->link_dflt_override; 1980 if (ice_get_link_default_override(ldo, pi)) 1981 return; 1982 1983 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1984 return; 1985 1986 /* Enable Total Port Shutdown (override/replace link-down-on-close 1987 * ethtool private flag) for ports with Port Disable bit set. 1988 */ 1989 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1990 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1991 } 1992 1993 /** 1994 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1995 * @pi: port info structure 1996 * 1997 * If default override is enabled, initialize the user PHY cfg speed and FEC 1998 * settings using the default override mask from the NVM. 1999 * 2000 * The PHY should only be configured with the default override settings the 2001 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2002 * is used to indicate that the user PHY cfg default override is initialized 2003 * and the PHY has not been configured with the default override settings. The 2004 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2005 * configured. 2006 * 2007 * This function should be called only if the FW doesn't support default 2008 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2009 */ 2010 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2011 { 2012 struct ice_link_default_override_tlv *ldo; 2013 struct ice_aqc_set_phy_cfg_data *cfg; 2014 struct ice_phy_info *phy = &pi->phy; 2015 struct ice_pf *pf = pi->hw->back; 2016 2017 ldo = &pf->link_dflt_override; 2018 2019 /* If link default override is enabled, use to mask NVM PHY capabilities 2020 * for speed and FEC default configuration. 2021 */ 2022 cfg = &phy->curr_user_phy_cfg; 2023 2024 if (ldo->phy_type_low || ldo->phy_type_high) { 2025 cfg->phy_type_low = pf->nvm_phy_type_lo & 2026 cpu_to_le64(ldo->phy_type_low); 2027 cfg->phy_type_high = pf->nvm_phy_type_hi & 2028 cpu_to_le64(ldo->phy_type_high); 2029 } 2030 cfg->link_fec_opt = ldo->fec_options; 2031 phy->curr_user_fec_req = ICE_FEC_AUTO; 2032 2033 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2034 } 2035 2036 /** 2037 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2038 * @pi: port info structure 2039 * 2040 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2041 * mode to default. The PHY defaults are from get PHY capabilities topology 2042 * with media so call when media is first available. An error is returned if 2043 * called when media is not available. The PHY initialization completed state is 2044 * set here. 2045 * 2046 * These configurations are used when setting PHY 2047 * configuration. The user PHY configuration is updated on set PHY 2048 * configuration. Returns 0 on success, negative on failure 2049 */ 2050 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2051 { 2052 struct ice_aqc_get_phy_caps_data *pcaps; 2053 struct ice_phy_info *phy = &pi->phy; 2054 struct ice_pf *pf = pi->hw->back; 2055 int err; 2056 2057 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2058 return -EIO; 2059 2060 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2061 if (!pcaps) 2062 return -ENOMEM; 2063 2064 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2065 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2066 pcaps, NULL); 2067 else 2068 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2069 pcaps, NULL); 2070 if (err) { 2071 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2072 goto err_out; 2073 } 2074 2075 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2076 2077 /* check if lenient mode is supported and enabled */ 2078 if (ice_fw_supports_link_override(pi->hw) && 2079 !(pcaps->module_compliance_enforcement & 2080 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2081 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2082 2083 /* if the FW supports default PHY configuration mode, then the driver 2084 * does not have to apply link override settings. If not, 2085 * initialize user PHY configuration with link override values 2086 */ 2087 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2088 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2089 ice_init_phy_cfg_dflt_override(pi); 2090 goto out; 2091 } 2092 } 2093 2094 /* if link default override is not enabled, set user flow control and 2095 * FEC settings based on what get_phy_caps returned 2096 */ 2097 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2098 pcaps->link_fec_options); 2099 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2100 2101 out: 2102 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2103 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2104 err_out: 2105 kfree(pcaps); 2106 return err; 2107 } 2108 2109 /** 2110 * ice_configure_phy - configure PHY 2111 * @vsi: VSI of PHY 2112 * 2113 * Set the PHY configuration. If the current PHY configuration is the same as 2114 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2115 * configure the based get PHY capabilities for topology with media. 2116 */ 2117 static int ice_configure_phy(struct ice_vsi *vsi) 2118 { 2119 struct device *dev = ice_pf_to_dev(vsi->back); 2120 struct ice_port_info *pi = vsi->port_info; 2121 struct ice_aqc_get_phy_caps_data *pcaps; 2122 struct ice_aqc_set_phy_cfg_data *cfg; 2123 struct ice_phy_info *phy = &pi->phy; 2124 struct ice_pf *pf = vsi->back; 2125 int err; 2126 2127 /* Ensure we have media as we cannot configure a medialess port */ 2128 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2129 return -EPERM; 2130 2131 ice_print_topo_conflict(vsi); 2132 2133 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2134 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2135 return -EPERM; 2136 2137 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2138 return ice_force_phys_link_state(vsi, true); 2139 2140 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2141 if (!pcaps) 2142 return -ENOMEM; 2143 2144 /* Get current PHY config */ 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2146 NULL); 2147 if (err) { 2148 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2149 vsi->vsi_num, err); 2150 goto done; 2151 } 2152 2153 /* If PHY enable link is configured and configuration has not changed, 2154 * there's nothing to do 2155 */ 2156 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2157 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2158 goto done; 2159 2160 /* Use PHY topology as baseline for configuration */ 2161 memset(pcaps, 0, sizeof(*pcaps)); 2162 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2163 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2164 pcaps, NULL); 2165 else 2166 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2167 pcaps, NULL); 2168 if (err) { 2169 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2170 vsi->vsi_num, err); 2171 goto done; 2172 } 2173 2174 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2175 if (!cfg) { 2176 err = -ENOMEM; 2177 goto done; 2178 } 2179 2180 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2181 2182 /* Speed - If default override pending, use curr_user_phy_cfg set in 2183 * ice_init_phy_user_cfg_ldo. 2184 */ 2185 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2186 vsi->back->state)) { 2187 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2188 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2189 } else { 2190 u64 phy_low = 0, phy_high = 0; 2191 2192 ice_update_phy_type(&phy_low, &phy_high, 2193 pi->phy.curr_user_speed_req); 2194 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2195 cfg->phy_type_high = pcaps->phy_type_high & 2196 cpu_to_le64(phy_high); 2197 } 2198 2199 /* Can't provide what was requested; use PHY capabilities */ 2200 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2201 cfg->phy_type_low = pcaps->phy_type_low; 2202 cfg->phy_type_high = pcaps->phy_type_high; 2203 } 2204 2205 /* FEC */ 2206 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2207 2208 /* Can't provide what was requested; use PHY capabilities */ 2209 if (cfg->link_fec_opt != 2210 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2211 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2212 cfg->link_fec_opt = pcaps->link_fec_options; 2213 } 2214 2215 /* Flow Control - always supported; no need to check against 2216 * capabilities 2217 */ 2218 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2219 2220 /* Enable link and link update */ 2221 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2222 2223 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2224 if (err) 2225 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2226 vsi->vsi_num, err); 2227 2228 kfree(cfg); 2229 done: 2230 kfree(pcaps); 2231 return err; 2232 } 2233 2234 /** 2235 * ice_check_media_subtask - Check for media 2236 * @pf: pointer to PF struct 2237 * 2238 * If media is available, then initialize PHY user configuration if it is not 2239 * been, and configure the PHY if the interface is up. 2240 */ 2241 static void ice_check_media_subtask(struct ice_pf *pf) 2242 { 2243 struct ice_port_info *pi; 2244 struct ice_vsi *vsi; 2245 int err; 2246 2247 /* No need to check for media if it's already present */ 2248 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2249 return; 2250 2251 vsi = ice_get_main_vsi(pf); 2252 if (!vsi) 2253 return; 2254 2255 /* Refresh link info and check if media is present */ 2256 pi = vsi->port_info; 2257 err = ice_update_link_info(pi); 2258 if (err) 2259 return; 2260 2261 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2262 2263 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2264 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2265 ice_init_phy_user_cfg(pi); 2266 2267 /* PHY settings are reset on media insertion, reconfigure 2268 * PHY to preserve settings. 2269 */ 2270 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2271 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2272 return; 2273 2274 err = ice_configure_phy(vsi); 2275 if (!err) 2276 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2277 2278 /* A Link Status Event will be generated; the event handler 2279 * will complete bringing the interface up 2280 */ 2281 } 2282 } 2283 2284 /** 2285 * ice_service_task - manage and run subtasks 2286 * @work: pointer to work_struct contained by the PF struct 2287 */ 2288 static void ice_service_task(struct work_struct *work) 2289 { 2290 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2291 unsigned long start_time = jiffies; 2292 2293 /* subtasks */ 2294 2295 /* process reset requests first */ 2296 ice_reset_subtask(pf); 2297 2298 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2299 if (ice_is_reset_in_progress(pf->state) || 2300 test_bit(ICE_SUSPENDED, pf->state) || 2301 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2302 ice_service_task_complete(pf); 2303 return; 2304 } 2305 2306 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2307 struct iidc_event *event; 2308 2309 event = kzalloc(sizeof(*event), GFP_KERNEL); 2310 if (event) { 2311 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2312 /* report the entire OICR value to AUX driver */ 2313 swap(event->reg, pf->oicr_err_reg); 2314 ice_send_event_to_aux(pf, event); 2315 kfree(event); 2316 } 2317 } 2318 2319 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2320 /* Plug aux device per request */ 2321 ice_plug_aux_dev(pf); 2322 2323 /* Mark plugging as done but check whether unplug was 2324 * requested during ice_plug_aux_dev() call 2325 * (e.g. from ice_clear_rdma_cap()) and if so then 2326 * plug aux device. 2327 */ 2328 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2329 ice_unplug_aux_dev(pf); 2330 } 2331 2332 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2333 struct iidc_event *event; 2334 2335 event = kzalloc(sizeof(*event), GFP_KERNEL); 2336 if (event) { 2337 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2338 ice_send_event_to_aux(pf, event); 2339 kfree(event); 2340 } 2341 } 2342 2343 ice_clean_adminq_subtask(pf); 2344 ice_check_media_subtask(pf); 2345 ice_check_for_hang_subtask(pf); 2346 ice_sync_fltr_subtask(pf); 2347 ice_handle_mdd_event(pf); 2348 ice_watchdog_subtask(pf); 2349 2350 if (ice_is_safe_mode(pf)) { 2351 ice_service_task_complete(pf); 2352 return; 2353 } 2354 2355 ice_process_vflr_event(pf); 2356 ice_clean_mailboxq_subtask(pf); 2357 ice_clean_sbq_subtask(pf); 2358 ice_sync_arfs_fltrs(pf); 2359 ice_flush_fdir_ctx(pf); 2360 2361 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2362 ice_service_task_complete(pf); 2363 2364 /* If the tasks have taken longer than one service timer period 2365 * or there is more work to be done, reset the service timer to 2366 * schedule the service task now. 2367 */ 2368 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2369 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2370 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2371 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2372 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2373 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2375 mod_timer(&pf->serv_tmr, jiffies); 2376 } 2377 2378 /** 2379 * ice_set_ctrlq_len - helper function to set controlq length 2380 * @hw: pointer to the HW instance 2381 */ 2382 static void ice_set_ctrlq_len(struct ice_hw *hw) 2383 { 2384 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2385 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2386 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2387 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2388 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2389 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2390 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2391 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2392 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2393 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2394 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2395 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2396 } 2397 2398 /** 2399 * ice_schedule_reset - schedule a reset 2400 * @pf: board private structure 2401 * @reset: reset being requested 2402 */ 2403 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2404 { 2405 struct device *dev = ice_pf_to_dev(pf); 2406 2407 /* bail out if earlier reset has failed */ 2408 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2409 dev_dbg(dev, "earlier reset has failed\n"); 2410 return -EIO; 2411 } 2412 /* bail if reset/recovery already in progress */ 2413 if (ice_is_reset_in_progress(pf->state)) { 2414 dev_dbg(dev, "Reset already in progress\n"); 2415 return -EBUSY; 2416 } 2417 2418 switch (reset) { 2419 case ICE_RESET_PFR: 2420 set_bit(ICE_PFR_REQ, pf->state); 2421 break; 2422 case ICE_RESET_CORER: 2423 set_bit(ICE_CORER_REQ, pf->state); 2424 break; 2425 case ICE_RESET_GLOBR: 2426 set_bit(ICE_GLOBR_REQ, pf->state); 2427 break; 2428 default: 2429 return -EINVAL; 2430 } 2431 2432 ice_service_task_schedule(pf); 2433 return 0; 2434 } 2435 2436 /** 2437 * ice_irq_affinity_notify - Callback for affinity changes 2438 * @notify: context as to what irq was changed 2439 * @mask: the new affinity mask 2440 * 2441 * This is a callback function used by the irq_set_affinity_notifier function 2442 * so that we may register to receive changes to the irq affinity masks. 2443 */ 2444 static void 2445 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2446 const cpumask_t *mask) 2447 { 2448 struct ice_q_vector *q_vector = 2449 container_of(notify, struct ice_q_vector, affinity_notify); 2450 2451 cpumask_copy(&q_vector->affinity_mask, mask); 2452 } 2453 2454 /** 2455 * ice_irq_affinity_release - Callback for affinity notifier release 2456 * @ref: internal core kernel usage 2457 * 2458 * This is a callback function used by the irq_set_affinity_notifier function 2459 * to inform the current notification subscriber that they will no longer 2460 * receive notifications. 2461 */ 2462 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2463 2464 /** 2465 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2466 * @vsi: the VSI being configured 2467 */ 2468 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2469 { 2470 struct ice_hw *hw = &vsi->back->hw; 2471 int i; 2472 2473 ice_for_each_q_vector(vsi, i) 2474 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2475 2476 ice_flush(hw); 2477 return 0; 2478 } 2479 2480 /** 2481 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2482 * @vsi: the VSI being configured 2483 * @basename: name for the vector 2484 */ 2485 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2486 { 2487 int q_vectors = vsi->num_q_vectors; 2488 struct ice_pf *pf = vsi->back; 2489 int base = vsi->base_vector; 2490 struct device *dev; 2491 int rx_int_idx = 0; 2492 int tx_int_idx = 0; 2493 int vector, err; 2494 int irq_num; 2495 2496 dev = ice_pf_to_dev(pf); 2497 for (vector = 0; vector < q_vectors; vector++) { 2498 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2499 2500 irq_num = pf->msix_entries[base + vector].vector; 2501 2502 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2503 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2504 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2505 tx_int_idx++; 2506 } else if (q_vector->rx.rx_ring) { 2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2508 "%s-%s-%d", basename, "rx", rx_int_idx++); 2509 } else if (q_vector->tx.tx_ring) { 2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2511 "%s-%s-%d", basename, "tx", tx_int_idx++); 2512 } else { 2513 /* skip this unused q_vector */ 2514 continue; 2515 } 2516 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2517 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2518 IRQF_SHARED, q_vector->name, 2519 q_vector); 2520 else 2521 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2522 0, q_vector->name, q_vector); 2523 if (err) { 2524 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2525 err); 2526 goto free_q_irqs; 2527 } 2528 2529 /* register for affinity change notifications */ 2530 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2531 struct irq_affinity_notify *affinity_notify; 2532 2533 affinity_notify = &q_vector->affinity_notify; 2534 affinity_notify->notify = ice_irq_affinity_notify; 2535 affinity_notify->release = ice_irq_affinity_release; 2536 irq_set_affinity_notifier(irq_num, affinity_notify); 2537 } 2538 2539 /* assign the mask for this irq */ 2540 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2541 } 2542 2543 err = ice_set_cpu_rx_rmap(vsi); 2544 if (err) { 2545 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2546 vsi->vsi_num, ERR_PTR(err)); 2547 goto free_q_irqs; 2548 } 2549 2550 vsi->irqs_ready = true; 2551 return 0; 2552 2553 free_q_irqs: 2554 while (vector) { 2555 vector--; 2556 irq_num = pf->msix_entries[base + vector].vector; 2557 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2558 irq_set_affinity_notifier(irq_num, NULL); 2559 irq_set_affinity_hint(irq_num, NULL); 2560 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2561 } 2562 return err; 2563 } 2564 2565 /** 2566 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2567 * @vsi: VSI to setup Tx rings used by XDP 2568 * 2569 * Return 0 on success and negative value on error 2570 */ 2571 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2572 { 2573 struct device *dev = ice_pf_to_dev(vsi->back); 2574 struct ice_tx_desc *tx_desc; 2575 int i, j; 2576 2577 ice_for_each_xdp_txq(vsi, i) { 2578 u16 xdp_q_idx = vsi->alloc_txq + i; 2579 struct ice_ring_stats *ring_stats; 2580 struct ice_tx_ring *xdp_ring; 2581 2582 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2583 if (!xdp_ring) 2584 goto free_xdp_rings; 2585 2586 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2587 if (!ring_stats) { 2588 ice_free_tx_ring(xdp_ring); 2589 goto free_xdp_rings; 2590 } 2591 2592 xdp_ring->ring_stats = ring_stats; 2593 xdp_ring->q_index = xdp_q_idx; 2594 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2595 xdp_ring->vsi = vsi; 2596 xdp_ring->netdev = NULL; 2597 xdp_ring->dev = dev; 2598 xdp_ring->count = vsi->num_tx_desc; 2599 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2600 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2602 if (ice_setup_tx_ring(xdp_ring)) 2603 goto free_xdp_rings; 2604 ice_set_ring_xdp(xdp_ring); 2605 spin_lock_init(&xdp_ring->tx_lock); 2606 for (j = 0; j < xdp_ring->count; j++) { 2607 tx_desc = ICE_TX_DESC(xdp_ring, j); 2608 tx_desc->cmd_type_offset_bsz = 0; 2609 } 2610 } 2611 2612 return 0; 2613 2614 free_xdp_rings: 2615 for (; i >= 0; i--) { 2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2618 vsi->xdp_rings[i]->ring_stats = NULL; 2619 ice_free_tx_ring(vsi->xdp_rings[i]); 2620 } 2621 } 2622 return -ENOMEM; 2623 } 2624 2625 /** 2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2627 * @vsi: VSI to set the bpf prog on 2628 * @prog: the bpf prog pointer 2629 */ 2630 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2631 { 2632 struct bpf_prog *old_prog; 2633 int i; 2634 2635 old_prog = xchg(&vsi->xdp_prog, prog); 2636 if (old_prog) 2637 bpf_prog_put(old_prog); 2638 2639 ice_for_each_rxq(vsi, i) 2640 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2641 } 2642 2643 /** 2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2645 * @vsi: VSI to bring up Tx rings used by XDP 2646 * @prog: bpf program that will be assigned to VSI 2647 * 2648 * Return 0 on success and negative value on error 2649 */ 2650 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2651 { 2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2653 int xdp_rings_rem = vsi->num_xdp_txq; 2654 struct ice_pf *pf = vsi->back; 2655 struct ice_qs_cfg xdp_qs_cfg = { 2656 .qs_mutex = &pf->avail_q_mutex, 2657 .pf_map = pf->avail_txqs, 2658 .pf_map_size = pf->max_pf_txqs, 2659 .q_count = vsi->num_xdp_txq, 2660 .scatter_count = ICE_MAX_SCATTER_TXQS, 2661 .vsi_map = vsi->txq_map, 2662 .vsi_map_offset = vsi->alloc_txq, 2663 .mapping_mode = ICE_VSI_MAP_CONTIG 2664 }; 2665 struct device *dev; 2666 int i, v_idx; 2667 int status; 2668 2669 dev = ice_pf_to_dev(pf); 2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2671 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2672 if (!vsi->xdp_rings) 2673 return -ENOMEM; 2674 2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2676 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2677 goto err_map_xdp; 2678 2679 if (static_key_enabled(&ice_xdp_locking_key)) 2680 netdev_warn(vsi->netdev, 2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2682 2683 if (ice_xdp_alloc_setup_rings(vsi)) 2684 goto clear_xdp_rings; 2685 2686 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2687 ice_for_each_q_vector(vsi, v_idx) { 2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2689 int xdp_rings_per_v, q_id, q_base; 2690 2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2692 vsi->num_q_vectors - v_idx); 2693 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2694 2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2697 2698 xdp_ring->q_vector = q_vector; 2699 xdp_ring->next = q_vector->tx.tx_ring; 2700 q_vector->tx.tx_ring = xdp_ring; 2701 } 2702 xdp_rings_rem -= xdp_rings_per_v; 2703 } 2704 2705 ice_for_each_rxq(vsi, i) { 2706 if (static_key_enabled(&ice_xdp_locking_key)) { 2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2708 } else { 2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2710 struct ice_tx_ring *ring; 2711 2712 ice_for_each_tx_ring(ring, q_vector->tx) { 2713 if (ice_ring_is_xdp(ring)) { 2714 vsi->rx_rings[i]->xdp_ring = ring; 2715 break; 2716 } 2717 } 2718 } 2719 ice_tx_xsk_pool(vsi, i); 2720 } 2721 2722 /* omit the scheduler update if in reset path; XDP queues will be 2723 * taken into account at the end of ice_vsi_rebuild, where 2724 * ice_cfg_vsi_lan is being called 2725 */ 2726 if (ice_is_reset_in_progress(pf->state)) 2727 return 0; 2728 2729 /* tell the Tx scheduler that right now we have 2730 * additional queues 2731 */ 2732 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2734 2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2736 max_txqs); 2737 if (status) { 2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2739 status); 2740 goto clear_xdp_rings; 2741 } 2742 2743 /* assign the prog only when it's not already present on VSI; 2744 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2745 * VSI rebuild that happens under ethtool -L can expose us to 2746 * the bpf_prog refcount issues as we would be swapping same 2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2749 * this is not harmful as dev_xdp_install bumps the refcount 2750 * before calling the op exposed by the driver; 2751 */ 2752 if (!ice_is_xdp_ena_vsi(vsi)) 2753 ice_vsi_assign_bpf_prog(vsi, prog); 2754 2755 return 0; 2756 clear_xdp_rings: 2757 ice_for_each_xdp_txq(vsi, i) 2758 if (vsi->xdp_rings[i]) { 2759 kfree_rcu(vsi->xdp_rings[i], rcu); 2760 vsi->xdp_rings[i] = NULL; 2761 } 2762 2763 err_map_xdp: 2764 mutex_lock(&pf->avail_q_mutex); 2765 ice_for_each_xdp_txq(vsi, i) { 2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2768 } 2769 mutex_unlock(&pf->avail_q_mutex); 2770 2771 devm_kfree(dev, vsi->xdp_rings); 2772 return -ENOMEM; 2773 } 2774 2775 /** 2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2777 * @vsi: VSI to remove XDP rings 2778 * 2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2780 * resources 2781 */ 2782 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2783 { 2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2785 struct ice_pf *pf = vsi->back; 2786 int i, v_idx; 2787 2788 /* q_vectors are freed in reset path so there's no point in detaching 2789 * rings; in case of rebuild being triggered not from reset bits 2790 * in pf->state won't be set, so additionally check first q_vector 2791 * against NULL 2792 */ 2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2794 goto free_qmap; 2795 2796 ice_for_each_q_vector(vsi, v_idx) { 2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2798 struct ice_tx_ring *ring; 2799 2800 ice_for_each_tx_ring(ring, q_vector->tx) 2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2802 break; 2803 2804 /* restore the value of last node prior to XDP setup */ 2805 q_vector->tx.tx_ring = ring; 2806 } 2807 2808 free_qmap: 2809 mutex_lock(&pf->avail_q_mutex); 2810 ice_for_each_xdp_txq(vsi, i) { 2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2813 } 2814 mutex_unlock(&pf->avail_q_mutex); 2815 2816 ice_for_each_xdp_txq(vsi, i) 2817 if (vsi->xdp_rings[i]) { 2818 if (vsi->xdp_rings[i]->desc) { 2819 synchronize_rcu(); 2820 ice_free_tx_ring(vsi->xdp_rings[i]); 2821 } 2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2823 vsi->xdp_rings[i]->ring_stats = NULL; 2824 kfree_rcu(vsi->xdp_rings[i], rcu); 2825 vsi->xdp_rings[i] = NULL; 2826 } 2827 2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2829 vsi->xdp_rings = NULL; 2830 2831 if (static_key_enabled(&ice_xdp_locking_key)) 2832 static_branch_dec(&ice_xdp_locking_key); 2833 2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2835 return 0; 2836 2837 ice_vsi_assign_bpf_prog(vsi, NULL); 2838 2839 /* notify Tx scheduler that we destroyed XDP queues and bring 2840 * back the old number of child nodes 2841 */ 2842 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2843 max_txqs[i] = vsi->num_txq; 2844 2845 /* change number of XDP Tx queues to 0 */ 2846 vsi->num_xdp_txq = 0; 2847 2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2849 max_txqs); 2850 } 2851 2852 /** 2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2854 * @vsi: VSI to schedule napi on 2855 */ 2856 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2857 { 2858 int i; 2859 2860 ice_for_each_rxq(vsi, i) { 2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2862 2863 if (rx_ring->xsk_pool) 2864 napi_schedule(&rx_ring->q_vector->napi); 2865 } 2866 } 2867 2868 /** 2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2870 * @vsi: VSI to determine the count of XDP Tx qs 2871 * 2872 * returns 0 if Tx qs count is higher than at least half of CPU count, 2873 * -ENOMEM otherwise 2874 */ 2875 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2876 { 2877 u16 avail = ice_get_avail_txq_count(vsi->back); 2878 u16 cpus = num_possible_cpus(); 2879 2880 if (avail < cpus / 2) 2881 return -ENOMEM; 2882 2883 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2884 2885 if (vsi->num_xdp_txq < cpus) 2886 static_branch_inc(&ice_xdp_locking_key); 2887 2888 return 0; 2889 } 2890 2891 /** 2892 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2893 * @vsi: VSI to setup XDP for 2894 * @prog: XDP program 2895 * @extack: netlink extended ack 2896 */ 2897 static int 2898 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2899 struct netlink_ext_ack *extack) 2900 { 2901 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2902 bool if_running = netif_running(vsi->netdev); 2903 int ret = 0, xdp_ring_err = 0; 2904 2905 if (frame_size > vsi->rx_buf_len) { 2906 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2907 return -EOPNOTSUPP; 2908 } 2909 2910 /* need to stop netdev while setting up the program for Rx rings */ 2911 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2912 ret = ice_down(vsi); 2913 if (ret) { 2914 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2915 return ret; 2916 } 2917 } 2918 2919 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2920 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2921 if (xdp_ring_err) { 2922 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2923 } else { 2924 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2925 if (xdp_ring_err) 2926 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2927 } 2928 /* reallocate Rx queues that are used for zero-copy */ 2929 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2930 if (xdp_ring_err) 2931 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2932 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2933 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2934 if (xdp_ring_err) 2935 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2936 /* reallocate Rx queues that were used for zero-copy */ 2937 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2938 if (xdp_ring_err) 2939 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2940 } else { 2941 /* safe to call even when prog == vsi->xdp_prog as 2942 * dev_xdp_install in net/core/dev.c incremented prog's 2943 * refcount so corresponding bpf_prog_put won't cause 2944 * underflow 2945 */ 2946 ice_vsi_assign_bpf_prog(vsi, prog); 2947 } 2948 2949 if (if_running) 2950 ret = ice_up(vsi); 2951 2952 if (!ret && prog) 2953 ice_vsi_rx_napi_schedule(vsi); 2954 2955 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2956 } 2957 2958 /** 2959 * ice_xdp_safe_mode - XDP handler for safe mode 2960 * @dev: netdevice 2961 * @xdp: XDP command 2962 */ 2963 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2964 struct netdev_bpf *xdp) 2965 { 2966 NL_SET_ERR_MSG_MOD(xdp->extack, 2967 "Please provide working DDP firmware package in order to use XDP\n" 2968 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2969 return -EOPNOTSUPP; 2970 } 2971 2972 /** 2973 * ice_xdp - implements XDP handler 2974 * @dev: netdevice 2975 * @xdp: XDP command 2976 */ 2977 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2978 { 2979 struct ice_netdev_priv *np = netdev_priv(dev); 2980 struct ice_vsi *vsi = np->vsi; 2981 2982 if (vsi->type != ICE_VSI_PF) { 2983 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2984 return -EINVAL; 2985 } 2986 2987 switch (xdp->command) { 2988 case XDP_SETUP_PROG: 2989 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2990 case XDP_SETUP_XSK_POOL: 2991 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2992 xdp->xsk.queue_id); 2993 default: 2994 return -EINVAL; 2995 } 2996 } 2997 2998 /** 2999 * ice_ena_misc_vector - enable the non-queue interrupts 3000 * @pf: board private structure 3001 */ 3002 static void ice_ena_misc_vector(struct ice_pf *pf) 3003 { 3004 struct ice_hw *hw = &pf->hw; 3005 u32 val; 3006 3007 /* Disable anti-spoof detection interrupt to prevent spurious event 3008 * interrupts during a function reset. Anti-spoof functionally is 3009 * still supported. 3010 */ 3011 val = rd32(hw, GL_MDCK_TX_TDPU); 3012 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3013 wr32(hw, GL_MDCK_TX_TDPU, val); 3014 3015 /* clear things first */ 3016 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3017 rd32(hw, PFINT_OICR); /* read to clear */ 3018 3019 val = (PFINT_OICR_ECC_ERR_M | 3020 PFINT_OICR_MAL_DETECT_M | 3021 PFINT_OICR_GRST_M | 3022 PFINT_OICR_PCI_EXCEPTION_M | 3023 PFINT_OICR_VFLR_M | 3024 PFINT_OICR_HMC_ERR_M | 3025 PFINT_OICR_PE_PUSH_M | 3026 PFINT_OICR_PE_CRITERR_M); 3027 3028 wr32(hw, PFINT_OICR_ENA, val); 3029 3030 /* SW_ITR_IDX = 0, but don't change INTENA */ 3031 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3032 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3033 } 3034 3035 /** 3036 * ice_misc_intr - misc interrupt handler 3037 * @irq: interrupt number 3038 * @data: pointer to a q_vector 3039 */ 3040 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3041 { 3042 struct ice_pf *pf = (struct ice_pf *)data; 3043 struct ice_hw *hw = &pf->hw; 3044 irqreturn_t ret = IRQ_NONE; 3045 struct device *dev; 3046 u32 oicr, ena_mask; 3047 3048 dev = ice_pf_to_dev(pf); 3049 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3050 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3051 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3052 3053 oicr = rd32(hw, PFINT_OICR); 3054 ena_mask = rd32(hw, PFINT_OICR_ENA); 3055 3056 if (oicr & PFINT_OICR_SWINT_M) { 3057 ena_mask &= ~PFINT_OICR_SWINT_M; 3058 pf->sw_int_count++; 3059 } 3060 3061 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3062 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3063 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3064 } 3065 if (oicr & PFINT_OICR_VFLR_M) { 3066 /* disable any further VFLR event notifications */ 3067 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3068 u32 reg = rd32(hw, PFINT_OICR_ENA); 3069 3070 reg &= ~PFINT_OICR_VFLR_M; 3071 wr32(hw, PFINT_OICR_ENA, reg); 3072 } else { 3073 ena_mask &= ~PFINT_OICR_VFLR_M; 3074 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3075 } 3076 } 3077 3078 if (oicr & PFINT_OICR_GRST_M) { 3079 u32 reset; 3080 3081 /* we have a reset warning */ 3082 ena_mask &= ~PFINT_OICR_GRST_M; 3083 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3084 GLGEN_RSTAT_RESET_TYPE_S; 3085 3086 if (reset == ICE_RESET_CORER) 3087 pf->corer_count++; 3088 else if (reset == ICE_RESET_GLOBR) 3089 pf->globr_count++; 3090 else if (reset == ICE_RESET_EMPR) 3091 pf->empr_count++; 3092 else 3093 dev_dbg(dev, "Invalid reset type %d\n", reset); 3094 3095 /* If a reset cycle isn't already in progress, we set a bit in 3096 * pf->state so that the service task can start a reset/rebuild. 3097 */ 3098 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3099 if (reset == ICE_RESET_CORER) 3100 set_bit(ICE_CORER_RECV, pf->state); 3101 else if (reset == ICE_RESET_GLOBR) 3102 set_bit(ICE_GLOBR_RECV, pf->state); 3103 else 3104 set_bit(ICE_EMPR_RECV, pf->state); 3105 3106 /* There are couple of different bits at play here. 3107 * hw->reset_ongoing indicates whether the hardware is 3108 * in reset. This is set to true when a reset interrupt 3109 * is received and set back to false after the driver 3110 * has determined that the hardware is out of reset. 3111 * 3112 * ICE_RESET_OICR_RECV in pf->state indicates 3113 * that a post reset rebuild is required before the 3114 * driver is operational again. This is set above. 3115 * 3116 * As this is the start of the reset/rebuild cycle, set 3117 * both to indicate that. 3118 */ 3119 hw->reset_ongoing = true; 3120 } 3121 } 3122 3123 if (oicr & PFINT_OICR_TSYN_TX_M) { 3124 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3125 if (!hw->reset_ongoing) 3126 ret = IRQ_WAKE_THREAD; 3127 } 3128 3129 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3130 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3131 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3132 3133 /* Save EVENTs from GTSYN register */ 3134 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3135 GLTSYN_STAT_EVENT1_M | 3136 GLTSYN_STAT_EVENT2_M); 3137 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3138 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3139 } 3140 3141 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3142 if (oicr & ICE_AUX_CRIT_ERR) { 3143 pf->oicr_err_reg |= oicr; 3144 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3145 ena_mask &= ~ICE_AUX_CRIT_ERR; 3146 } 3147 3148 /* Report any remaining unexpected interrupts */ 3149 oicr &= ena_mask; 3150 if (oicr) { 3151 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3152 /* If a critical error is pending there is no choice but to 3153 * reset the device. 3154 */ 3155 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3156 PFINT_OICR_ECC_ERR_M)) { 3157 set_bit(ICE_PFR_REQ, pf->state); 3158 ice_service_task_schedule(pf); 3159 } 3160 } 3161 if (!ret) 3162 ret = IRQ_HANDLED; 3163 3164 ice_service_task_schedule(pf); 3165 ice_irq_dynamic_ena(hw, NULL, NULL); 3166 3167 return ret; 3168 } 3169 3170 /** 3171 * ice_misc_intr_thread_fn - misc interrupt thread function 3172 * @irq: interrupt number 3173 * @data: pointer to a q_vector 3174 */ 3175 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3176 { 3177 struct ice_pf *pf = data; 3178 3179 if (ice_is_reset_in_progress(pf->state)) 3180 return IRQ_HANDLED; 3181 3182 while (!ice_ptp_process_ts(pf)) 3183 usleep_range(50, 100); 3184 3185 return IRQ_HANDLED; 3186 } 3187 3188 /** 3189 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3190 * @hw: pointer to HW structure 3191 */ 3192 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3193 { 3194 /* disable Admin queue Interrupt causes */ 3195 wr32(hw, PFINT_FW_CTL, 3196 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3197 3198 /* disable Mailbox queue Interrupt causes */ 3199 wr32(hw, PFINT_MBX_CTL, 3200 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3201 3202 wr32(hw, PFINT_SB_CTL, 3203 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3204 3205 /* disable Control queue Interrupt causes */ 3206 wr32(hw, PFINT_OICR_CTL, 3207 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3208 3209 ice_flush(hw); 3210 } 3211 3212 /** 3213 * ice_free_irq_msix_misc - Unroll misc vector setup 3214 * @pf: board private structure 3215 */ 3216 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3217 { 3218 struct ice_hw *hw = &pf->hw; 3219 3220 ice_dis_ctrlq_interrupts(hw); 3221 3222 /* disable OICR interrupt */ 3223 wr32(hw, PFINT_OICR_ENA, 0); 3224 ice_flush(hw); 3225 3226 if (pf->msix_entries) { 3227 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3228 devm_free_irq(ice_pf_to_dev(pf), 3229 pf->msix_entries[pf->oicr_idx].vector, pf); 3230 } 3231 3232 pf->num_avail_sw_msix += 1; 3233 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3234 } 3235 3236 /** 3237 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3238 * @hw: pointer to HW structure 3239 * @reg_idx: HW vector index to associate the control queue interrupts with 3240 */ 3241 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3242 { 3243 u32 val; 3244 3245 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3246 PFINT_OICR_CTL_CAUSE_ENA_M); 3247 wr32(hw, PFINT_OICR_CTL, val); 3248 3249 /* enable Admin queue Interrupt causes */ 3250 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3251 PFINT_FW_CTL_CAUSE_ENA_M); 3252 wr32(hw, PFINT_FW_CTL, val); 3253 3254 /* enable Mailbox queue Interrupt causes */ 3255 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3256 PFINT_MBX_CTL_CAUSE_ENA_M); 3257 wr32(hw, PFINT_MBX_CTL, val); 3258 3259 /* This enables Sideband queue Interrupt causes */ 3260 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3261 PFINT_SB_CTL_CAUSE_ENA_M); 3262 wr32(hw, PFINT_SB_CTL, val); 3263 3264 ice_flush(hw); 3265 } 3266 3267 /** 3268 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3269 * @pf: board private structure 3270 * 3271 * This sets up the handler for MSIX 0, which is used to manage the 3272 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3273 * when in MSI or Legacy interrupt mode. 3274 */ 3275 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3276 { 3277 struct device *dev = ice_pf_to_dev(pf); 3278 struct ice_hw *hw = &pf->hw; 3279 int oicr_idx, err = 0; 3280 3281 if (!pf->int_name[0]) 3282 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3283 dev_driver_string(dev), dev_name(dev)); 3284 3285 /* Do not request IRQ but do enable OICR interrupt since settings are 3286 * lost during reset. Note that this function is called only during 3287 * rebuild path and not while reset is in progress. 3288 */ 3289 if (ice_is_reset_in_progress(pf->state)) 3290 goto skip_req_irq; 3291 3292 /* reserve one vector in irq_tracker for misc interrupts */ 3293 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3294 if (oicr_idx < 0) 3295 return oicr_idx; 3296 3297 pf->num_avail_sw_msix -= 1; 3298 pf->oicr_idx = (u16)oicr_idx; 3299 3300 err = devm_request_threaded_irq(dev, 3301 pf->msix_entries[pf->oicr_idx].vector, 3302 ice_misc_intr, ice_misc_intr_thread_fn, 3303 0, pf->int_name, pf); 3304 if (err) { 3305 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3306 pf->int_name, err); 3307 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3308 pf->num_avail_sw_msix += 1; 3309 return err; 3310 } 3311 3312 skip_req_irq: 3313 ice_ena_misc_vector(pf); 3314 3315 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3316 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3317 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3318 3319 ice_flush(hw); 3320 ice_irq_dynamic_ena(hw, NULL, NULL); 3321 3322 return 0; 3323 } 3324 3325 /** 3326 * ice_napi_add - register NAPI handler for the VSI 3327 * @vsi: VSI for which NAPI handler is to be registered 3328 * 3329 * This function is only called in the driver's load path. Registering the NAPI 3330 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3331 * reset/rebuild, etc.) 3332 */ 3333 static void ice_napi_add(struct ice_vsi *vsi) 3334 { 3335 int v_idx; 3336 3337 if (!vsi->netdev) 3338 return; 3339 3340 ice_for_each_q_vector(vsi, v_idx) 3341 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3342 ice_napi_poll); 3343 } 3344 3345 /** 3346 * ice_set_ops - set netdev and ethtools ops for the given netdev 3347 * @netdev: netdev instance 3348 */ 3349 static void ice_set_ops(struct net_device *netdev) 3350 { 3351 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3352 3353 if (ice_is_safe_mode(pf)) { 3354 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3355 ice_set_ethtool_safe_mode_ops(netdev); 3356 return; 3357 } 3358 3359 netdev->netdev_ops = &ice_netdev_ops; 3360 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3361 ice_set_ethtool_ops(netdev); 3362 } 3363 3364 /** 3365 * ice_set_netdev_features - set features for the given netdev 3366 * @netdev: netdev instance 3367 */ 3368 static void ice_set_netdev_features(struct net_device *netdev) 3369 { 3370 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3371 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3372 netdev_features_t csumo_features; 3373 netdev_features_t vlano_features; 3374 netdev_features_t dflt_features; 3375 netdev_features_t tso_features; 3376 3377 if (ice_is_safe_mode(pf)) { 3378 /* safe mode */ 3379 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3380 netdev->hw_features = netdev->features; 3381 return; 3382 } 3383 3384 dflt_features = NETIF_F_SG | 3385 NETIF_F_HIGHDMA | 3386 NETIF_F_NTUPLE | 3387 NETIF_F_RXHASH; 3388 3389 csumo_features = NETIF_F_RXCSUM | 3390 NETIF_F_IP_CSUM | 3391 NETIF_F_SCTP_CRC | 3392 NETIF_F_IPV6_CSUM; 3393 3394 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3395 NETIF_F_HW_VLAN_CTAG_TX | 3396 NETIF_F_HW_VLAN_CTAG_RX; 3397 3398 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3399 if (is_dvm_ena) 3400 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3401 3402 tso_features = NETIF_F_TSO | 3403 NETIF_F_TSO_ECN | 3404 NETIF_F_TSO6 | 3405 NETIF_F_GSO_GRE | 3406 NETIF_F_GSO_UDP_TUNNEL | 3407 NETIF_F_GSO_GRE_CSUM | 3408 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3409 NETIF_F_GSO_PARTIAL | 3410 NETIF_F_GSO_IPXIP4 | 3411 NETIF_F_GSO_IPXIP6 | 3412 NETIF_F_GSO_UDP_L4; 3413 3414 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3415 NETIF_F_GSO_GRE_CSUM; 3416 /* set features that user can change */ 3417 netdev->hw_features = dflt_features | csumo_features | 3418 vlano_features | tso_features; 3419 3420 /* add support for HW_CSUM on packets with MPLS header */ 3421 netdev->mpls_features = NETIF_F_HW_CSUM | 3422 NETIF_F_TSO | 3423 NETIF_F_TSO6; 3424 3425 /* enable features */ 3426 netdev->features |= netdev->hw_features; 3427 3428 netdev->hw_features |= NETIF_F_HW_TC; 3429 netdev->hw_features |= NETIF_F_LOOPBACK; 3430 3431 /* encap and VLAN devices inherit default, csumo and tso features */ 3432 netdev->hw_enc_features |= dflt_features | csumo_features | 3433 tso_features; 3434 netdev->vlan_features |= dflt_features | csumo_features | 3435 tso_features; 3436 3437 /* advertise support but don't enable by default since only one type of 3438 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3439 * type turns on the other has to be turned off. This is enforced by the 3440 * ice_fix_features() ndo callback. 3441 */ 3442 if (is_dvm_ena) 3443 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3444 NETIF_F_HW_VLAN_STAG_TX; 3445 3446 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3447 * be changed at runtime 3448 */ 3449 netdev->hw_features |= NETIF_F_RXFCS; 3450 } 3451 3452 /** 3453 * ice_cfg_netdev - Allocate, configure and register a netdev 3454 * @vsi: the VSI associated with the new netdev 3455 * 3456 * Returns 0 on success, negative value on failure 3457 */ 3458 static int ice_cfg_netdev(struct ice_vsi *vsi) 3459 { 3460 struct ice_netdev_priv *np; 3461 struct net_device *netdev; 3462 u8 mac_addr[ETH_ALEN]; 3463 3464 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3465 vsi->alloc_rxq); 3466 if (!netdev) 3467 return -ENOMEM; 3468 3469 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3470 vsi->netdev = netdev; 3471 np = netdev_priv(netdev); 3472 np->vsi = vsi; 3473 3474 ice_set_netdev_features(netdev); 3475 3476 ice_set_ops(netdev); 3477 3478 if (vsi->type == ICE_VSI_PF) { 3479 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3480 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3481 eth_hw_addr_set(netdev, mac_addr); 3482 ether_addr_copy(netdev->perm_addr, mac_addr); 3483 } 3484 3485 netdev->priv_flags |= IFF_UNICAST_FLT; 3486 3487 /* Setup netdev TC information */ 3488 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3489 3490 /* setup watchdog timeout value to be 5 second */ 3491 netdev->watchdog_timeo = 5 * HZ; 3492 3493 netdev->min_mtu = ETH_MIN_MTU; 3494 netdev->max_mtu = ICE_MAX_MTU; 3495 3496 return 0; 3497 } 3498 3499 /** 3500 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3501 * @lut: Lookup table 3502 * @rss_table_size: Lookup table size 3503 * @rss_size: Range of queue number for hashing 3504 */ 3505 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3506 { 3507 u16 i; 3508 3509 for (i = 0; i < rss_table_size; i++) 3510 lut[i] = i % rss_size; 3511 } 3512 3513 /** 3514 * ice_pf_vsi_setup - Set up a PF VSI 3515 * @pf: board private structure 3516 * @pi: pointer to the port_info instance 3517 * 3518 * Returns pointer to the successfully allocated VSI software struct 3519 * on success, otherwise returns NULL on failure. 3520 */ 3521 static struct ice_vsi * 3522 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3523 { 3524 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3525 } 3526 3527 static struct ice_vsi * 3528 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3529 struct ice_channel *ch) 3530 { 3531 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3532 } 3533 3534 /** 3535 * ice_ctrl_vsi_setup - Set up a control VSI 3536 * @pf: board private structure 3537 * @pi: pointer to the port_info instance 3538 * 3539 * Returns pointer to the successfully allocated VSI software struct 3540 * on success, otherwise returns NULL on failure. 3541 */ 3542 static struct ice_vsi * 3543 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3544 { 3545 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3546 } 3547 3548 /** 3549 * ice_lb_vsi_setup - Set up a loopback VSI 3550 * @pf: board private structure 3551 * @pi: pointer to the port_info instance 3552 * 3553 * Returns pointer to the successfully allocated VSI software struct 3554 * on success, otherwise returns NULL on failure. 3555 */ 3556 struct ice_vsi * 3557 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3558 { 3559 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3560 } 3561 3562 /** 3563 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3564 * @netdev: network interface to be adjusted 3565 * @proto: VLAN TPID 3566 * @vid: VLAN ID to be added 3567 * 3568 * net_device_ops implementation for adding VLAN IDs 3569 */ 3570 static int 3571 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3572 { 3573 struct ice_netdev_priv *np = netdev_priv(netdev); 3574 struct ice_vsi_vlan_ops *vlan_ops; 3575 struct ice_vsi *vsi = np->vsi; 3576 struct ice_vlan vlan; 3577 int ret; 3578 3579 /* VLAN 0 is added by default during load/reset */ 3580 if (!vid) 3581 return 0; 3582 3583 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3584 usleep_range(1000, 2000); 3585 3586 /* Add multicast promisc rule for the VLAN ID to be added if 3587 * all-multicast is currently enabled. 3588 */ 3589 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3590 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3591 ICE_MCAST_VLAN_PROMISC_BITS, 3592 vid); 3593 if (ret) 3594 goto finish; 3595 } 3596 3597 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3598 3599 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3600 * packets aren't pruned by the device's internal switch on Rx 3601 */ 3602 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3603 ret = vlan_ops->add_vlan(vsi, &vlan); 3604 if (ret) 3605 goto finish; 3606 3607 /* If all-multicast is currently enabled and this VLAN ID is only one 3608 * besides VLAN-0 we have to update look-up type of multicast promisc 3609 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3610 */ 3611 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3612 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3613 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3614 ICE_MCAST_PROMISC_BITS, 0); 3615 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3616 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3617 } 3618 3619 finish: 3620 clear_bit(ICE_CFG_BUSY, vsi->state); 3621 3622 return ret; 3623 } 3624 3625 /** 3626 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3627 * @netdev: network interface to be adjusted 3628 * @proto: VLAN TPID 3629 * @vid: VLAN ID to be removed 3630 * 3631 * net_device_ops implementation for removing VLAN IDs 3632 */ 3633 static int 3634 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3635 { 3636 struct ice_netdev_priv *np = netdev_priv(netdev); 3637 struct ice_vsi_vlan_ops *vlan_ops; 3638 struct ice_vsi *vsi = np->vsi; 3639 struct ice_vlan vlan; 3640 int ret; 3641 3642 /* don't allow removal of VLAN 0 */ 3643 if (!vid) 3644 return 0; 3645 3646 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3647 usleep_range(1000, 2000); 3648 3649 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3650 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3651 if (ret) { 3652 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3653 vsi->vsi_num); 3654 vsi->current_netdev_flags |= IFF_ALLMULTI; 3655 } 3656 3657 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3658 3659 /* Make sure VLAN delete is successful before updating VLAN 3660 * information 3661 */ 3662 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3663 ret = vlan_ops->del_vlan(vsi, &vlan); 3664 if (ret) 3665 goto finish; 3666 3667 /* Remove multicast promisc rule for the removed VLAN ID if 3668 * all-multicast is enabled. 3669 */ 3670 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3671 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3672 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3673 3674 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3675 /* Update look-up type of multicast promisc rule for VLAN 0 3676 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3677 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3678 */ 3679 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3680 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3681 ICE_MCAST_VLAN_PROMISC_BITS, 3682 0); 3683 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3684 ICE_MCAST_PROMISC_BITS, 0); 3685 } 3686 } 3687 3688 finish: 3689 clear_bit(ICE_CFG_BUSY, vsi->state); 3690 3691 return ret; 3692 } 3693 3694 /** 3695 * ice_rep_indr_tc_block_unbind 3696 * @cb_priv: indirection block private data 3697 */ 3698 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3699 { 3700 struct ice_indr_block_priv *indr_priv = cb_priv; 3701 3702 list_del(&indr_priv->list); 3703 kfree(indr_priv); 3704 } 3705 3706 /** 3707 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3708 * @vsi: VSI struct which has the netdev 3709 */ 3710 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3711 { 3712 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3713 3714 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3715 ice_rep_indr_tc_block_unbind); 3716 } 3717 3718 /** 3719 * ice_tc_indir_block_remove - clean indirect TC block notifications 3720 * @pf: PF structure 3721 */ 3722 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3723 { 3724 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3725 3726 if (!pf_vsi) 3727 return; 3728 3729 ice_tc_indir_block_unregister(pf_vsi); 3730 } 3731 3732 /** 3733 * ice_tc_indir_block_register - Register TC indirect block notifications 3734 * @vsi: VSI struct which has the netdev 3735 * 3736 * Returns 0 on success, negative value on failure 3737 */ 3738 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3739 { 3740 struct ice_netdev_priv *np; 3741 3742 if (!vsi || !vsi->netdev) 3743 return -EINVAL; 3744 3745 np = netdev_priv(vsi->netdev); 3746 3747 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3748 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3749 } 3750 3751 /** 3752 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3753 * @pf: board private structure 3754 * 3755 * Returns 0 on success, negative value on failure 3756 */ 3757 static int ice_setup_pf_sw(struct ice_pf *pf) 3758 { 3759 struct device *dev = ice_pf_to_dev(pf); 3760 bool dvm = ice_is_dvm_ena(&pf->hw); 3761 struct ice_vsi *vsi; 3762 int status; 3763 3764 if (ice_is_reset_in_progress(pf->state)) 3765 return -EBUSY; 3766 3767 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3768 if (status) 3769 return -EIO; 3770 3771 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3772 if (!vsi) 3773 return -ENOMEM; 3774 3775 /* init channel list */ 3776 INIT_LIST_HEAD(&vsi->ch_list); 3777 3778 status = ice_cfg_netdev(vsi); 3779 if (status) 3780 goto unroll_vsi_setup; 3781 /* netdev has to be configured before setting frame size */ 3782 ice_vsi_cfg_frame_size(vsi); 3783 3784 /* init indirect block notifications */ 3785 status = ice_tc_indir_block_register(vsi); 3786 if (status) { 3787 dev_err(dev, "Failed to register netdev notifier\n"); 3788 goto unroll_cfg_netdev; 3789 } 3790 3791 /* Setup DCB netlink interface */ 3792 ice_dcbnl_setup(vsi); 3793 3794 /* registering the NAPI handler requires both the queues and 3795 * netdev to be created, which are done in ice_pf_vsi_setup() 3796 * and ice_cfg_netdev() respectively 3797 */ 3798 ice_napi_add(vsi); 3799 3800 status = ice_init_mac_fltr(pf); 3801 if (status) 3802 goto unroll_napi_add; 3803 3804 return 0; 3805 3806 unroll_napi_add: 3807 ice_tc_indir_block_unregister(vsi); 3808 unroll_cfg_netdev: 3809 if (vsi) { 3810 ice_napi_del(vsi); 3811 if (vsi->netdev) { 3812 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3813 free_netdev(vsi->netdev); 3814 vsi->netdev = NULL; 3815 } 3816 } 3817 3818 unroll_vsi_setup: 3819 ice_vsi_release(vsi); 3820 return status; 3821 } 3822 3823 /** 3824 * ice_get_avail_q_count - Get count of queues in use 3825 * @pf_qmap: bitmap to get queue use count from 3826 * @lock: pointer to a mutex that protects access to pf_qmap 3827 * @size: size of the bitmap 3828 */ 3829 static u16 3830 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3831 { 3832 unsigned long bit; 3833 u16 count = 0; 3834 3835 mutex_lock(lock); 3836 for_each_clear_bit(bit, pf_qmap, size) 3837 count++; 3838 mutex_unlock(lock); 3839 3840 return count; 3841 } 3842 3843 /** 3844 * ice_get_avail_txq_count - Get count of Tx queues in use 3845 * @pf: pointer to an ice_pf instance 3846 */ 3847 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3848 { 3849 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3850 pf->max_pf_txqs); 3851 } 3852 3853 /** 3854 * ice_get_avail_rxq_count - Get count of Rx queues in use 3855 * @pf: pointer to an ice_pf instance 3856 */ 3857 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3858 { 3859 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3860 pf->max_pf_rxqs); 3861 } 3862 3863 /** 3864 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3865 * @pf: board private structure to initialize 3866 */ 3867 static void ice_deinit_pf(struct ice_pf *pf) 3868 { 3869 ice_service_task_stop(pf); 3870 mutex_destroy(&pf->adev_mutex); 3871 mutex_destroy(&pf->sw_mutex); 3872 mutex_destroy(&pf->tc_mutex); 3873 mutex_destroy(&pf->avail_q_mutex); 3874 mutex_destroy(&pf->vfs.table_lock); 3875 3876 if (pf->avail_txqs) { 3877 bitmap_free(pf->avail_txqs); 3878 pf->avail_txqs = NULL; 3879 } 3880 3881 if (pf->avail_rxqs) { 3882 bitmap_free(pf->avail_rxqs); 3883 pf->avail_rxqs = NULL; 3884 } 3885 3886 if (pf->ptp.clock) 3887 ptp_clock_unregister(pf->ptp.clock); 3888 } 3889 3890 /** 3891 * ice_set_pf_caps - set PFs capability flags 3892 * @pf: pointer to the PF instance 3893 */ 3894 static void ice_set_pf_caps(struct ice_pf *pf) 3895 { 3896 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3897 3898 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3899 if (func_caps->common_cap.rdma) 3900 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3901 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3902 if (func_caps->common_cap.dcb) 3903 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3904 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3905 if (func_caps->common_cap.sr_iov_1_1) { 3906 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3907 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3908 ICE_MAX_SRIOV_VFS); 3909 } 3910 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3911 if (func_caps->common_cap.rss_table_size) 3912 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3913 3914 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3915 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3916 u16 unused; 3917 3918 /* ctrl_vsi_idx will be set to a valid value when flow director 3919 * is setup by ice_init_fdir 3920 */ 3921 pf->ctrl_vsi_idx = ICE_NO_VSI; 3922 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3923 /* force guaranteed filter pool for PF */ 3924 ice_alloc_fd_guar_item(&pf->hw, &unused, 3925 func_caps->fd_fltr_guar); 3926 /* force shared filter pool for PF */ 3927 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3928 func_caps->fd_fltr_best_effort); 3929 } 3930 3931 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3932 if (func_caps->common_cap.ieee_1588) 3933 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3934 3935 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3936 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3937 } 3938 3939 /** 3940 * ice_init_pf - Initialize general software structures (struct ice_pf) 3941 * @pf: board private structure to initialize 3942 */ 3943 static int ice_init_pf(struct ice_pf *pf) 3944 { 3945 ice_set_pf_caps(pf); 3946 3947 mutex_init(&pf->sw_mutex); 3948 mutex_init(&pf->tc_mutex); 3949 mutex_init(&pf->adev_mutex); 3950 3951 INIT_HLIST_HEAD(&pf->aq_wait_list); 3952 spin_lock_init(&pf->aq_wait_lock); 3953 init_waitqueue_head(&pf->aq_wait_queue); 3954 3955 init_waitqueue_head(&pf->reset_wait_queue); 3956 3957 /* setup service timer and periodic service task */ 3958 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3959 pf->serv_tmr_period = HZ; 3960 INIT_WORK(&pf->serv_task, ice_service_task); 3961 clear_bit(ICE_SERVICE_SCHED, pf->state); 3962 3963 mutex_init(&pf->avail_q_mutex); 3964 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3965 if (!pf->avail_txqs) 3966 return -ENOMEM; 3967 3968 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3969 if (!pf->avail_rxqs) { 3970 bitmap_free(pf->avail_txqs); 3971 pf->avail_txqs = NULL; 3972 return -ENOMEM; 3973 } 3974 3975 mutex_init(&pf->vfs.table_lock); 3976 hash_init(pf->vfs.table); 3977 3978 return 0; 3979 } 3980 3981 /** 3982 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3983 * @pf: board private structure 3984 * @v_remain: number of remaining MSI-X vectors to be distributed 3985 * 3986 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3987 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3988 * remaining vectors. 3989 */ 3990 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3991 { 3992 int v_rdma; 3993 3994 if (!ice_is_rdma_ena(pf)) { 3995 pf->num_lan_msix = v_remain; 3996 return; 3997 } 3998 3999 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 4000 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 4001 4002 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 4003 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 4004 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4005 4006 pf->num_rdma_msix = 0; 4007 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 4008 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 4009 (v_remain - v_rdma < v_rdma)) { 4010 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 4011 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 4012 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 4013 } else { 4014 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 4015 */ 4016 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 4017 ICE_RDMA_NUM_AEQ_MSIX; 4018 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 4019 } 4020 } 4021 4022 /** 4023 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 4024 * @pf: board private structure 4025 * 4026 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 4027 * device usage if there are not enough vectors. Return the number of vectors 4028 * reserved or negative on failure. 4029 */ 4030 static int ice_ena_msix_range(struct ice_pf *pf) 4031 { 4032 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 4033 struct device *dev = ice_pf_to_dev(pf); 4034 int err, i; 4035 4036 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 4037 num_cpus = num_online_cpus(); 4038 4039 /* LAN miscellaneous handler */ 4040 v_other = ICE_MIN_LAN_OICR_MSIX; 4041 4042 /* Flow Director */ 4043 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 4044 v_other += ICE_FDIR_MSIX; 4045 4046 /* switchdev */ 4047 v_other += ICE_ESWITCH_MSIX; 4048 4049 v_wanted = v_other; 4050 4051 /* LAN traffic */ 4052 pf->num_lan_msix = num_cpus; 4053 v_wanted += pf->num_lan_msix; 4054 4055 /* RDMA auxiliary driver */ 4056 if (ice_is_rdma_ena(pf)) { 4057 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 4058 v_wanted += pf->num_rdma_msix; 4059 } 4060 4061 if (v_wanted > hw_num_msix) { 4062 int v_remain; 4063 4064 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 4065 v_wanted, hw_num_msix); 4066 4067 if (hw_num_msix < ICE_MIN_MSIX) { 4068 err = -ERANGE; 4069 goto exit_err; 4070 } 4071 4072 v_remain = hw_num_msix - v_other; 4073 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 4074 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 4075 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4076 } 4077 4078 ice_reduce_msix_usage(pf, v_remain); 4079 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4080 4081 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4082 pf->num_lan_msix); 4083 if (ice_is_rdma_ena(pf)) 4084 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4085 pf->num_rdma_msix); 4086 } 4087 4088 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4089 sizeof(*pf->msix_entries), GFP_KERNEL); 4090 if (!pf->msix_entries) { 4091 err = -ENOMEM; 4092 goto exit_err; 4093 } 4094 4095 for (i = 0; i < v_wanted; i++) 4096 pf->msix_entries[i].entry = i; 4097 4098 /* actually reserve the vectors */ 4099 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4100 ICE_MIN_MSIX, v_wanted); 4101 if (v_actual < 0) { 4102 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4103 err = v_actual; 4104 goto msix_err; 4105 } 4106 4107 if (v_actual < v_wanted) { 4108 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4109 v_wanted, v_actual); 4110 4111 if (v_actual < ICE_MIN_MSIX) { 4112 /* error if we can't get minimum vectors */ 4113 pci_disable_msix(pf->pdev); 4114 err = -ERANGE; 4115 goto msix_err; 4116 } else { 4117 int v_remain = v_actual - v_other; 4118 4119 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4120 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4121 4122 ice_reduce_msix_usage(pf, v_remain); 4123 4124 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4125 pf->num_lan_msix); 4126 4127 if (ice_is_rdma_ena(pf)) 4128 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4129 pf->num_rdma_msix); 4130 } 4131 } 4132 4133 return v_actual; 4134 4135 msix_err: 4136 devm_kfree(dev, pf->msix_entries); 4137 4138 exit_err: 4139 pf->num_rdma_msix = 0; 4140 pf->num_lan_msix = 0; 4141 return err; 4142 } 4143 4144 /** 4145 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4146 * @pf: board private structure 4147 */ 4148 static void ice_dis_msix(struct ice_pf *pf) 4149 { 4150 pci_disable_msix(pf->pdev); 4151 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4152 pf->msix_entries = NULL; 4153 } 4154 4155 /** 4156 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4157 * @pf: board private structure 4158 */ 4159 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4160 { 4161 ice_dis_msix(pf); 4162 4163 if (pf->irq_tracker) { 4164 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4165 pf->irq_tracker = NULL; 4166 } 4167 } 4168 4169 /** 4170 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4171 * @pf: board private structure to initialize 4172 */ 4173 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4174 { 4175 int vectors; 4176 4177 vectors = ice_ena_msix_range(pf); 4178 4179 if (vectors < 0) 4180 return vectors; 4181 4182 /* set up vector assignment tracking */ 4183 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4184 struct_size(pf->irq_tracker, list, vectors), 4185 GFP_KERNEL); 4186 if (!pf->irq_tracker) { 4187 ice_dis_msix(pf); 4188 return -ENOMEM; 4189 } 4190 4191 /* populate SW interrupts pool with number of OS granted IRQs. */ 4192 pf->num_avail_sw_msix = (u16)vectors; 4193 pf->irq_tracker->num_entries = (u16)vectors; 4194 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4195 4196 return 0; 4197 } 4198 4199 /** 4200 * ice_is_wol_supported - check if WoL is supported 4201 * @hw: pointer to hardware info 4202 * 4203 * Check if WoL is supported based on the HW configuration. 4204 * Returns true if NVM supports and enables WoL for this port, false otherwise 4205 */ 4206 bool ice_is_wol_supported(struct ice_hw *hw) 4207 { 4208 u16 wol_ctrl; 4209 4210 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4211 * word) indicates WoL is not supported on the corresponding PF ID. 4212 */ 4213 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4214 return false; 4215 4216 return !(BIT(hw->port_info->lport) & wol_ctrl); 4217 } 4218 4219 /** 4220 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4221 * @vsi: VSI being changed 4222 * @new_rx: new number of Rx queues 4223 * @new_tx: new number of Tx queues 4224 * @locked: is adev device_lock held 4225 * 4226 * Only change the number of queues if new_tx, or new_rx is non-0. 4227 * 4228 * Returns 0 on success. 4229 */ 4230 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4231 { 4232 struct ice_pf *pf = vsi->back; 4233 int err = 0, timeout = 50; 4234 4235 if (!new_rx && !new_tx) 4236 return -EINVAL; 4237 4238 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4239 timeout--; 4240 if (!timeout) 4241 return -EBUSY; 4242 usleep_range(1000, 2000); 4243 } 4244 4245 if (new_tx) 4246 vsi->req_txq = (u16)new_tx; 4247 if (new_rx) 4248 vsi->req_rxq = (u16)new_rx; 4249 4250 /* set for the next time the netdev is started */ 4251 if (!netif_running(vsi->netdev)) { 4252 ice_vsi_rebuild(vsi, false); 4253 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4254 goto done; 4255 } 4256 4257 ice_vsi_close(vsi); 4258 ice_vsi_rebuild(vsi, false); 4259 ice_pf_dcb_recfg(pf, locked); 4260 ice_vsi_open(vsi); 4261 done: 4262 clear_bit(ICE_CFG_BUSY, pf->state); 4263 return err; 4264 } 4265 4266 /** 4267 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4268 * @pf: PF to configure 4269 * 4270 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4271 * VSI can still Tx/Rx VLAN tagged packets. 4272 */ 4273 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4274 { 4275 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4276 struct ice_vsi_ctx *ctxt; 4277 struct ice_hw *hw; 4278 int status; 4279 4280 if (!vsi) 4281 return; 4282 4283 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4284 if (!ctxt) 4285 return; 4286 4287 hw = &pf->hw; 4288 ctxt->info = vsi->info; 4289 4290 ctxt->info.valid_sections = 4291 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4292 ICE_AQ_VSI_PROP_SECURITY_VALID | 4293 ICE_AQ_VSI_PROP_SW_VALID); 4294 4295 /* disable VLAN anti-spoof */ 4296 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4297 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4298 4299 /* disable VLAN pruning and keep all other settings */ 4300 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4301 4302 /* allow all VLANs on Tx and don't strip on Rx */ 4303 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4304 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4305 4306 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4307 if (status) { 4308 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4309 status, ice_aq_str(hw->adminq.sq_last_status)); 4310 } else { 4311 vsi->info.sec_flags = ctxt->info.sec_flags; 4312 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4313 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4314 } 4315 4316 kfree(ctxt); 4317 } 4318 4319 /** 4320 * ice_log_pkg_init - log result of DDP package load 4321 * @hw: pointer to hardware info 4322 * @state: state of package load 4323 */ 4324 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4325 { 4326 struct ice_pf *pf = hw->back; 4327 struct device *dev; 4328 4329 dev = ice_pf_to_dev(pf); 4330 4331 switch (state) { 4332 case ICE_DDP_PKG_SUCCESS: 4333 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4334 hw->active_pkg_name, 4335 hw->active_pkg_ver.major, 4336 hw->active_pkg_ver.minor, 4337 hw->active_pkg_ver.update, 4338 hw->active_pkg_ver.draft); 4339 break; 4340 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4341 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4342 hw->active_pkg_name, 4343 hw->active_pkg_ver.major, 4344 hw->active_pkg_ver.minor, 4345 hw->active_pkg_ver.update, 4346 hw->active_pkg_ver.draft); 4347 break; 4348 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4349 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4350 hw->active_pkg_name, 4351 hw->active_pkg_ver.major, 4352 hw->active_pkg_ver.minor, 4353 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4354 break; 4355 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4356 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4357 hw->active_pkg_name, 4358 hw->active_pkg_ver.major, 4359 hw->active_pkg_ver.minor, 4360 hw->active_pkg_ver.update, 4361 hw->active_pkg_ver.draft, 4362 hw->pkg_name, 4363 hw->pkg_ver.major, 4364 hw->pkg_ver.minor, 4365 hw->pkg_ver.update, 4366 hw->pkg_ver.draft); 4367 break; 4368 case ICE_DDP_PKG_FW_MISMATCH: 4369 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4370 break; 4371 case ICE_DDP_PKG_INVALID_FILE: 4372 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4373 break; 4374 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4375 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4376 break; 4377 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4378 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4379 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4380 break; 4381 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4382 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4383 break; 4384 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4385 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4386 break; 4387 case ICE_DDP_PKG_LOAD_ERROR: 4388 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4389 /* poll for reset to complete */ 4390 if (ice_check_reset(hw)) 4391 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4392 break; 4393 case ICE_DDP_PKG_ERR: 4394 default: 4395 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4396 break; 4397 } 4398 } 4399 4400 /** 4401 * ice_load_pkg - load/reload the DDP Package file 4402 * @firmware: firmware structure when firmware requested or NULL for reload 4403 * @pf: pointer to the PF instance 4404 * 4405 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4406 * initialize HW tables. 4407 */ 4408 static void 4409 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4410 { 4411 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4412 struct device *dev = ice_pf_to_dev(pf); 4413 struct ice_hw *hw = &pf->hw; 4414 4415 /* Load DDP Package */ 4416 if (firmware && !hw->pkg_copy) { 4417 state = ice_copy_and_init_pkg(hw, firmware->data, 4418 firmware->size); 4419 ice_log_pkg_init(hw, state); 4420 } else if (!firmware && hw->pkg_copy) { 4421 /* Reload package during rebuild after CORER/GLOBR reset */ 4422 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4423 ice_log_pkg_init(hw, state); 4424 } else { 4425 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4426 } 4427 4428 if (!ice_is_init_pkg_successful(state)) { 4429 /* Safe Mode */ 4430 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4431 return; 4432 } 4433 4434 /* Successful download package is the precondition for advanced 4435 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4436 */ 4437 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4438 } 4439 4440 /** 4441 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4442 * @pf: pointer to the PF structure 4443 * 4444 * There is no error returned here because the driver should be able to handle 4445 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4446 * specifically with Tx. 4447 */ 4448 static void ice_verify_cacheline_size(struct ice_pf *pf) 4449 { 4450 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4451 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4452 ICE_CACHE_LINE_BYTES); 4453 } 4454 4455 /** 4456 * ice_send_version - update firmware with driver version 4457 * @pf: PF struct 4458 * 4459 * Returns 0 on success, else error code 4460 */ 4461 static int ice_send_version(struct ice_pf *pf) 4462 { 4463 struct ice_driver_ver dv; 4464 4465 dv.major_ver = 0xff; 4466 dv.minor_ver = 0xff; 4467 dv.build_ver = 0xff; 4468 dv.subbuild_ver = 0; 4469 strscpy((char *)dv.driver_string, UTS_RELEASE, 4470 sizeof(dv.driver_string)); 4471 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4472 } 4473 4474 /** 4475 * ice_init_fdir - Initialize flow director VSI and configuration 4476 * @pf: pointer to the PF instance 4477 * 4478 * returns 0 on success, negative on error 4479 */ 4480 static int ice_init_fdir(struct ice_pf *pf) 4481 { 4482 struct device *dev = ice_pf_to_dev(pf); 4483 struct ice_vsi *ctrl_vsi; 4484 int err; 4485 4486 /* Side Band Flow Director needs to have a control VSI. 4487 * Allocate it and store it in the PF. 4488 */ 4489 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4490 if (!ctrl_vsi) { 4491 dev_dbg(dev, "could not create control VSI\n"); 4492 return -ENOMEM; 4493 } 4494 4495 err = ice_vsi_open_ctrl(ctrl_vsi); 4496 if (err) { 4497 dev_dbg(dev, "could not open control VSI\n"); 4498 goto err_vsi_open; 4499 } 4500 4501 mutex_init(&pf->hw.fdir_fltr_lock); 4502 4503 err = ice_fdir_create_dflt_rules(pf); 4504 if (err) 4505 goto err_fdir_rule; 4506 4507 return 0; 4508 4509 err_fdir_rule: 4510 ice_fdir_release_flows(&pf->hw); 4511 ice_vsi_close(ctrl_vsi); 4512 err_vsi_open: 4513 ice_vsi_release(ctrl_vsi); 4514 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4515 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4516 pf->ctrl_vsi_idx = ICE_NO_VSI; 4517 } 4518 return err; 4519 } 4520 4521 /** 4522 * ice_get_opt_fw_name - return optional firmware file name or NULL 4523 * @pf: pointer to the PF instance 4524 */ 4525 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4526 { 4527 /* Optional firmware name same as default with additional dash 4528 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4529 */ 4530 struct pci_dev *pdev = pf->pdev; 4531 char *opt_fw_filename; 4532 u64 dsn; 4533 4534 /* Determine the name of the optional file using the DSN (two 4535 * dwords following the start of the DSN Capability). 4536 */ 4537 dsn = pci_get_dsn(pdev); 4538 if (!dsn) 4539 return NULL; 4540 4541 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4542 if (!opt_fw_filename) 4543 return NULL; 4544 4545 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4546 ICE_DDP_PKG_PATH, dsn); 4547 4548 return opt_fw_filename; 4549 } 4550 4551 /** 4552 * ice_request_fw - Device initialization routine 4553 * @pf: pointer to the PF instance 4554 */ 4555 static void ice_request_fw(struct ice_pf *pf) 4556 { 4557 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4558 const struct firmware *firmware = NULL; 4559 struct device *dev = ice_pf_to_dev(pf); 4560 int err = 0; 4561 4562 /* optional device-specific DDP (if present) overrides the default DDP 4563 * package file. kernel logs a debug message if the file doesn't exist, 4564 * and warning messages for other errors. 4565 */ 4566 if (opt_fw_filename) { 4567 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4568 if (err) { 4569 kfree(opt_fw_filename); 4570 goto dflt_pkg_load; 4571 } 4572 4573 /* request for firmware was successful. Download to device */ 4574 ice_load_pkg(firmware, pf); 4575 kfree(opt_fw_filename); 4576 release_firmware(firmware); 4577 return; 4578 } 4579 4580 dflt_pkg_load: 4581 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4582 if (err) { 4583 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4584 return; 4585 } 4586 4587 /* request for firmware was successful. Download to device */ 4588 ice_load_pkg(firmware, pf); 4589 release_firmware(firmware); 4590 } 4591 4592 /** 4593 * ice_print_wake_reason - show the wake up cause in the log 4594 * @pf: pointer to the PF struct 4595 */ 4596 static void ice_print_wake_reason(struct ice_pf *pf) 4597 { 4598 u32 wus = pf->wakeup_reason; 4599 const char *wake_str; 4600 4601 /* if no wake event, nothing to print */ 4602 if (!wus) 4603 return; 4604 4605 if (wus & PFPM_WUS_LNKC_M) 4606 wake_str = "Link\n"; 4607 else if (wus & PFPM_WUS_MAG_M) 4608 wake_str = "Magic Packet\n"; 4609 else if (wus & PFPM_WUS_MNG_M) 4610 wake_str = "Management\n"; 4611 else if (wus & PFPM_WUS_FW_RST_WK_M) 4612 wake_str = "Firmware Reset\n"; 4613 else 4614 wake_str = "Unknown\n"; 4615 4616 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4617 } 4618 4619 /** 4620 * ice_register_netdev - register netdev 4621 * @pf: pointer to the PF struct 4622 */ 4623 static int ice_register_netdev(struct ice_pf *pf) 4624 { 4625 struct ice_vsi *vsi; 4626 int err = 0; 4627 4628 vsi = ice_get_main_vsi(pf); 4629 if (!vsi || !vsi->netdev) 4630 return -EIO; 4631 4632 err = register_netdev(vsi->netdev); 4633 if (err) 4634 goto err_register_netdev; 4635 4636 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4637 netif_carrier_off(vsi->netdev); 4638 netif_tx_stop_all_queues(vsi->netdev); 4639 4640 return 0; 4641 err_register_netdev: 4642 free_netdev(vsi->netdev); 4643 vsi->netdev = NULL; 4644 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4645 return err; 4646 } 4647 4648 /** 4649 * ice_probe - Device initialization routine 4650 * @pdev: PCI device information struct 4651 * @ent: entry in ice_pci_tbl 4652 * 4653 * Returns 0 on success, negative on failure 4654 */ 4655 static int 4656 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4657 { 4658 struct device *dev = &pdev->dev; 4659 struct ice_vsi *vsi; 4660 struct ice_pf *pf; 4661 struct ice_hw *hw; 4662 int i, err; 4663 4664 if (pdev->is_virtfn) { 4665 dev_err(dev, "can't probe a virtual function\n"); 4666 return -EINVAL; 4667 } 4668 4669 /* this driver uses devres, see 4670 * Documentation/driver-api/driver-model/devres.rst 4671 */ 4672 err = pcim_enable_device(pdev); 4673 if (err) 4674 return err; 4675 4676 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4677 if (err) { 4678 dev_err(dev, "BAR0 I/O map error %d\n", err); 4679 return err; 4680 } 4681 4682 pf = ice_allocate_pf(dev); 4683 if (!pf) 4684 return -ENOMEM; 4685 4686 /* initialize Auxiliary index to invalid value */ 4687 pf->aux_idx = -1; 4688 4689 /* set up for high or low DMA */ 4690 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4691 if (err) { 4692 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4693 return err; 4694 } 4695 4696 pci_enable_pcie_error_reporting(pdev); 4697 pci_set_master(pdev); 4698 4699 pf->pdev = pdev; 4700 pci_set_drvdata(pdev, pf); 4701 set_bit(ICE_DOWN, pf->state); 4702 /* Disable service task until DOWN bit is cleared */ 4703 set_bit(ICE_SERVICE_DIS, pf->state); 4704 4705 hw = &pf->hw; 4706 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4707 pci_save_state(pdev); 4708 4709 hw->back = pf; 4710 hw->vendor_id = pdev->vendor; 4711 hw->device_id = pdev->device; 4712 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4713 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4714 hw->subsystem_device_id = pdev->subsystem_device; 4715 hw->bus.device = PCI_SLOT(pdev->devfn); 4716 hw->bus.func = PCI_FUNC(pdev->devfn); 4717 ice_set_ctrlq_len(hw); 4718 4719 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4720 4721 #ifndef CONFIG_DYNAMIC_DEBUG 4722 if (debug < -1) 4723 hw->debug_mask = debug; 4724 #endif 4725 4726 err = ice_init_hw(hw); 4727 if (err) { 4728 dev_err(dev, "ice_init_hw failed: %d\n", err); 4729 err = -EIO; 4730 goto err_exit_unroll; 4731 } 4732 4733 ice_init_feature_support(pf); 4734 4735 ice_request_fw(pf); 4736 4737 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4738 * set in pf->state, which will cause ice_is_safe_mode to return 4739 * true 4740 */ 4741 if (ice_is_safe_mode(pf)) { 4742 /* we already got function/device capabilities but these don't 4743 * reflect what the driver needs to do in safe mode. Instead of 4744 * adding conditional logic everywhere to ignore these 4745 * device/function capabilities, override them. 4746 */ 4747 ice_set_safe_mode_caps(hw); 4748 } 4749 4750 err = ice_init_pf(pf); 4751 if (err) { 4752 dev_err(dev, "ice_init_pf failed: %d\n", err); 4753 goto err_init_pf_unroll; 4754 } 4755 4756 ice_devlink_init_regions(pf); 4757 4758 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4759 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4760 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4761 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4762 i = 0; 4763 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4764 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4765 pf->hw.tnl.valid_count[TNL_VXLAN]; 4766 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4767 UDP_TUNNEL_TYPE_VXLAN; 4768 i++; 4769 } 4770 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4771 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4772 pf->hw.tnl.valid_count[TNL_GENEVE]; 4773 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4774 UDP_TUNNEL_TYPE_GENEVE; 4775 i++; 4776 } 4777 4778 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4779 if (!pf->num_alloc_vsi) { 4780 err = -EIO; 4781 goto err_init_pf_unroll; 4782 } 4783 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4784 dev_warn(&pf->pdev->dev, 4785 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4786 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4787 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4788 } 4789 4790 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4791 GFP_KERNEL); 4792 if (!pf->vsi) { 4793 err = -ENOMEM; 4794 goto err_init_pf_unroll; 4795 } 4796 4797 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4798 sizeof(*pf->vsi_stats), GFP_KERNEL); 4799 if (!pf->vsi_stats) { 4800 err = -ENOMEM; 4801 goto err_init_vsi_unroll; 4802 } 4803 4804 err = ice_init_interrupt_scheme(pf); 4805 if (err) { 4806 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4807 err = -EIO; 4808 goto err_init_vsi_stats_unroll; 4809 } 4810 4811 /* In case of MSIX we are going to setup the misc vector right here 4812 * to handle admin queue events etc. In case of legacy and MSI 4813 * the misc functionality and queue processing is combined in 4814 * the same vector and that gets setup at open. 4815 */ 4816 err = ice_req_irq_msix_misc(pf); 4817 if (err) { 4818 dev_err(dev, "setup of misc vector failed: %d\n", err); 4819 goto err_init_interrupt_unroll; 4820 } 4821 4822 /* create switch struct for the switch element created by FW on boot */ 4823 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4824 if (!pf->first_sw) { 4825 err = -ENOMEM; 4826 goto err_msix_misc_unroll; 4827 } 4828 4829 if (hw->evb_veb) 4830 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4831 else 4832 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4833 4834 pf->first_sw->pf = pf; 4835 4836 /* record the sw_id available for later use */ 4837 pf->first_sw->sw_id = hw->port_info->sw_id; 4838 4839 err = ice_setup_pf_sw(pf); 4840 if (err) { 4841 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4842 goto err_alloc_sw_unroll; 4843 } 4844 4845 clear_bit(ICE_SERVICE_DIS, pf->state); 4846 4847 /* tell the firmware we are up */ 4848 err = ice_send_version(pf); 4849 if (err) { 4850 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4851 UTS_RELEASE, err); 4852 goto err_send_version_unroll; 4853 } 4854 4855 /* since everything is good, start the service timer */ 4856 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4857 4858 err = ice_init_link_events(pf->hw.port_info); 4859 if (err) { 4860 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4861 goto err_send_version_unroll; 4862 } 4863 4864 /* not a fatal error if this fails */ 4865 err = ice_init_nvm_phy_type(pf->hw.port_info); 4866 if (err) 4867 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4868 4869 /* not a fatal error if this fails */ 4870 err = ice_update_link_info(pf->hw.port_info); 4871 if (err) 4872 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4873 4874 ice_init_link_dflt_override(pf->hw.port_info); 4875 4876 ice_check_link_cfg_err(pf, 4877 pf->hw.port_info->phy.link_info.link_cfg_err); 4878 4879 /* if media available, initialize PHY settings */ 4880 if (pf->hw.port_info->phy.link_info.link_info & 4881 ICE_AQ_MEDIA_AVAILABLE) { 4882 /* not a fatal error if this fails */ 4883 err = ice_init_phy_user_cfg(pf->hw.port_info); 4884 if (err) 4885 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4886 4887 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4888 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4889 4890 if (vsi) 4891 ice_configure_phy(vsi); 4892 } 4893 } else { 4894 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4895 } 4896 4897 ice_verify_cacheline_size(pf); 4898 4899 /* Save wakeup reason register for later use */ 4900 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4901 4902 /* check for a power management event */ 4903 ice_print_wake_reason(pf); 4904 4905 /* clear wake status, all bits */ 4906 wr32(hw, PFPM_WUS, U32_MAX); 4907 4908 /* Disable WoL at init, wait for user to enable */ 4909 device_set_wakeup_enable(dev, false); 4910 4911 if (ice_is_safe_mode(pf)) { 4912 ice_set_safe_mode_vlan_cfg(pf); 4913 goto probe_done; 4914 } 4915 4916 /* initialize DDP driven features */ 4917 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4918 ice_ptp_init(pf); 4919 4920 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4921 ice_gnss_init(pf); 4922 4923 /* Note: Flow director init failure is non-fatal to load */ 4924 if (ice_init_fdir(pf)) 4925 dev_err(dev, "could not initialize flow director\n"); 4926 4927 /* Note: DCB init failure is non-fatal to load */ 4928 if (ice_init_pf_dcb(pf, false)) { 4929 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4930 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4931 } else { 4932 ice_cfg_lldp_mib_change(&pf->hw, true); 4933 } 4934 4935 if (ice_init_lag(pf)) 4936 dev_warn(dev, "Failed to init link aggregation support\n"); 4937 4938 /* print PCI link speed and width */ 4939 pcie_print_link_status(pf->pdev); 4940 4941 probe_done: 4942 err = ice_devlink_create_pf_port(pf); 4943 if (err) 4944 goto err_create_pf_port; 4945 4946 vsi = ice_get_main_vsi(pf); 4947 if (!vsi || !vsi->netdev) { 4948 err = -EINVAL; 4949 goto err_netdev_reg; 4950 } 4951 4952 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4953 4954 err = ice_register_netdev(pf); 4955 if (err) 4956 goto err_netdev_reg; 4957 4958 err = ice_devlink_register_params(pf); 4959 if (err) 4960 goto err_netdev_reg; 4961 4962 /* ready to go, so clear down state bit */ 4963 clear_bit(ICE_DOWN, pf->state); 4964 if (ice_is_rdma_ena(pf)) { 4965 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4966 if (pf->aux_idx < 0) { 4967 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4968 err = -ENOMEM; 4969 goto err_devlink_reg_param; 4970 } 4971 4972 err = ice_init_rdma(pf); 4973 if (err) { 4974 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4975 err = -EIO; 4976 goto err_init_aux_unroll; 4977 } 4978 } else { 4979 dev_warn(dev, "RDMA is not supported on this device\n"); 4980 } 4981 4982 ice_devlink_register(pf); 4983 return 0; 4984 4985 err_init_aux_unroll: 4986 pf->adev = NULL; 4987 ida_free(&ice_aux_ida, pf->aux_idx); 4988 err_devlink_reg_param: 4989 ice_devlink_unregister_params(pf); 4990 err_netdev_reg: 4991 ice_devlink_destroy_pf_port(pf); 4992 err_create_pf_port: 4993 err_send_version_unroll: 4994 ice_vsi_release_all(pf); 4995 err_alloc_sw_unroll: 4996 set_bit(ICE_SERVICE_DIS, pf->state); 4997 set_bit(ICE_DOWN, pf->state); 4998 devm_kfree(dev, pf->first_sw); 4999 err_msix_misc_unroll: 5000 ice_free_irq_msix_misc(pf); 5001 err_init_interrupt_unroll: 5002 ice_clear_interrupt_scheme(pf); 5003 err_init_vsi_stats_unroll: 5004 devm_kfree(dev, pf->vsi_stats); 5005 pf->vsi_stats = NULL; 5006 err_init_vsi_unroll: 5007 devm_kfree(dev, pf->vsi); 5008 err_init_pf_unroll: 5009 ice_deinit_pf(pf); 5010 ice_devlink_destroy_regions(pf); 5011 ice_deinit_hw(hw); 5012 err_exit_unroll: 5013 pci_disable_pcie_error_reporting(pdev); 5014 pci_disable_device(pdev); 5015 return err; 5016 } 5017 5018 /** 5019 * ice_set_wake - enable or disable Wake on LAN 5020 * @pf: pointer to the PF struct 5021 * 5022 * Simple helper for WoL control 5023 */ 5024 static void ice_set_wake(struct ice_pf *pf) 5025 { 5026 struct ice_hw *hw = &pf->hw; 5027 bool wol = pf->wol_ena; 5028 5029 /* clear wake state, otherwise new wake events won't fire */ 5030 wr32(hw, PFPM_WUS, U32_MAX); 5031 5032 /* enable / disable APM wake up, no RMW needed */ 5033 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5034 5035 /* set magic packet filter enabled */ 5036 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5037 } 5038 5039 /** 5040 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5041 * @pf: pointer to the PF struct 5042 * 5043 * Issue firmware command to enable multicast magic wake, making 5044 * sure that any locally administered address (LAA) is used for 5045 * wake, and that PF reset doesn't undo the LAA. 5046 */ 5047 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5048 { 5049 struct device *dev = ice_pf_to_dev(pf); 5050 struct ice_hw *hw = &pf->hw; 5051 u8 mac_addr[ETH_ALEN]; 5052 struct ice_vsi *vsi; 5053 int status; 5054 u8 flags; 5055 5056 if (!pf->wol_ena) 5057 return; 5058 5059 vsi = ice_get_main_vsi(pf); 5060 if (!vsi) 5061 return; 5062 5063 /* Get current MAC address in case it's an LAA */ 5064 if (vsi->netdev) 5065 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5066 else 5067 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5068 5069 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5070 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5071 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5072 5073 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5074 if (status) 5075 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5076 status, ice_aq_str(hw->adminq.sq_last_status)); 5077 } 5078 5079 /** 5080 * ice_remove - Device removal routine 5081 * @pdev: PCI device information struct 5082 */ 5083 static void ice_remove(struct pci_dev *pdev) 5084 { 5085 struct ice_pf *pf = pci_get_drvdata(pdev); 5086 int i; 5087 5088 ice_devlink_unregister(pf); 5089 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5090 if (!ice_is_reset_in_progress(pf->state)) 5091 break; 5092 msleep(100); 5093 } 5094 5095 ice_tc_indir_block_remove(pf); 5096 5097 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5098 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5099 ice_free_vfs(pf); 5100 } 5101 5102 ice_service_task_stop(pf); 5103 5104 ice_aq_cancel_waiting_tasks(pf); 5105 ice_unplug_aux_dev(pf); 5106 if (pf->aux_idx >= 0) 5107 ida_free(&ice_aux_ida, pf->aux_idx); 5108 ice_devlink_unregister_params(pf); 5109 set_bit(ICE_DOWN, pf->state); 5110 5111 ice_deinit_lag(pf); 5112 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5113 ice_ptp_release(pf); 5114 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5115 ice_gnss_exit(pf); 5116 if (!ice_is_safe_mode(pf)) 5117 ice_remove_arfs(pf); 5118 ice_setup_mc_magic_wake(pf); 5119 ice_vsi_release_all(pf); 5120 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5121 ice_devlink_destroy_pf_port(pf); 5122 ice_set_wake(pf); 5123 ice_free_irq_msix_misc(pf); 5124 ice_for_each_vsi(pf, i) { 5125 if (!pf->vsi[i]) 5126 continue; 5127 ice_vsi_free_q_vectors(pf->vsi[i]); 5128 } 5129 devm_kfree(&pdev->dev, pf->vsi_stats); 5130 pf->vsi_stats = NULL; 5131 ice_deinit_pf(pf); 5132 ice_devlink_destroy_regions(pf); 5133 ice_deinit_hw(&pf->hw); 5134 5135 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5136 * do it via ice_schedule_reset() since there is no need to rebuild 5137 * and the service task is already stopped. 5138 */ 5139 ice_reset(&pf->hw, ICE_RESET_PFR); 5140 pci_wait_for_pending_transaction(pdev); 5141 ice_clear_interrupt_scheme(pf); 5142 pci_disable_pcie_error_reporting(pdev); 5143 pci_disable_device(pdev); 5144 } 5145 5146 /** 5147 * ice_shutdown - PCI callback for shutting down device 5148 * @pdev: PCI device information struct 5149 */ 5150 static void ice_shutdown(struct pci_dev *pdev) 5151 { 5152 struct ice_pf *pf = pci_get_drvdata(pdev); 5153 5154 ice_remove(pdev); 5155 5156 if (system_state == SYSTEM_POWER_OFF) { 5157 pci_wake_from_d3(pdev, pf->wol_ena); 5158 pci_set_power_state(pdev, PCI_D3hot); 5159 } 5160 } 5161 5162 #ifdef CONFIG_PM 5163 /** 5164 * ice_prepare_for_shutdown - prep for PCI shutdown 5165 * @pf: board private structure 5166 * 5167 * Inform or close all dependent features in prep for PCI device shutdown 5168 */ 5169 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5170 { 5171 struct ice_hw *hw = &pf->hw; 5172 u32 v; 5173 5174 /* Notify VFs of impending reset */ 5175 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5176 ice_vc_notify_reset(pf); 5177 5178 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5179 5180 /* disable the VSIs and their queues that are not already DOWN */ 5181 ice_pf_dis_all_vsi(pf, false); 5182 5183 ice_for_each_vsi(pf, v) 5184 if (pf->vsi[v]) 5185 pf->vsi[v]->vsi_num = 0; 5186 5187 ice_shutdown_all_ctrlq(hw); 5188 } 5189 5190 /** 5191 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5192 * @pf: board private structure to reinitialize 5193 * 5194 * This routine reinitialize interrupt scheme that was cleared during 5195 * power management suspend callback. 5196 * 5197 * This should be called during resume routine to re-allocate the q_vectors 5198 * and reacquire interrupts. 5199 */ 5200 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5201 { 5202 struct device *dev = ice_pf_to_dev(pf); 5203 int ret, v; 5204 5205 /* Since we clear MSIX flag during suspend, we need to 5206 * set it back during resume... 5207 */ 5208 5209 ret = ice_init_interrupt_scheme(pf); 5210 if (ret) { 5211 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5212 return ret; 5213 } 5214 5215 /* Remap vectors and rings, after successful re-init interrupts */ 5216 ice_for_each_vsi(pf, v) { 5217 if (!pf->vsi[v]) 5218 continue; 5219 5220 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5221 if (ret) 5222 goto err_reinit; 5223 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5224 } 5225 5226 ret = ice_req_irq_msix_misc(pf); 5227 if (ret) { 5228 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5229 ret); 5230 goto err_reinit; 5231 } 5232 5233 return 0; 5234 5235 err_reinit: 5236 while (v--) 5237 if (pf->vsi[v]) 5238 ice_vsi_free_q_vectors(pf->vsi[v]); 5239 5240 return ret; 5241 } 5242 5243 /** 5244 * ice_suspend 5245 * @dev: generic device information structure 5246 * 5247 * Power Management callback to quiesce the device and prepare 5248 * for D3 transition. 5249 */ 5250 static int __maybe_unused ice_suspend(struct device *dev) 5251 { 5252 struct pci_dev *pdev = to_pci_dev(dev); 5253 struct ice_pf *pf; 5254 int disabled, v; 5255 5256 pf = pci_get_drvdata(pdev); 5257 5258 if (!ice_pf_state_is_nominal(pf)) { 5259 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5260 return -EBUSY; 5261 } 5262 5263 /* Stop watchdog tasks until resume completion. 5264 * Even though it is most likely that the service task is 5265 * disabled if the device is suspended or down, the service task's 5266 * state is controlled by a different state bit, and we should 5267 * store and honor whatever state that bit is in at this point. 5268 */ 5269 disabled = ice_service_task_stop(pf); 5270 5271 ice_unplug_aux_dev(pf); 5272 5273 /* Already suspended?, then there is nothing to do */ 5274 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5275 if (!disabled) 5276 ice_service_task_restart(pf); 5277 return 0; 5278 } 5279 5280 if (test_bit(ICE_DOWN, pf->state) || 5281 ice_is_reset_in_progress(pf->state)) { 5282 dev_err(dev, "can't suspend device in reset or already down\n"); 5283 if (!disabled) 5284 ice_service_task_restart(pf); 5285 return 0; 5286 } 5287 5288 ice_setup_mc_magic_wake(pf); 5289 5290 ice_prepare_for_shutdown(pf); 5291 5292 ice_set_wake(pf); 5293 5294 /* Free vectors, clear the interrupt scheme and release IRQs 5295 * for proper hibernation, especially with large number of CPUs. 5296 * Otherwise hibernation might fail when mapping all the vectors back 5297 * to CPU0. 5298 */ 5299 ice_free_irq_msix_misc(pf); 5300 ice_for_each_vsi(pf, v) { 5301 if (!pf->vsi[v]) 5302 continue; 5303 ice_vsi_free_q_vectors(pf->vsi[v]); 5304 } 5305 ice_clear_interrupt_scheme(pf); 5306 5307 pci_save_state(pdev); 5308 pci_wake_from_d3(pdev, pf->wol_ena); 5309 pci_set_power_state(pdev, PCI_D3hot); 5310 return 0; 5311 } 5312 5313 /** 5314 * ice_resume - PM callback for waking up from D3 5315 * @dev: generic device information structure 5316 */ 5317 static int __maybe_unused ice_resume(struct device *dev) 5318 { 5319 struct pci_dev *pdev = to_pci_dev(dev); 5320 enum ice_reset_req reset_type; 5321 struct ice_pf *pf; 5322 struct ice_hw *hw; 5323 int ret; 5324 5325 pci_set_power_state(pdev, PCI_D0); 5326 pci_restore_state(pdev); 5327 pci_save_state(pdev); 5328 5329 if (!pci_device_is_present(pdev)) 5330 return -ENODEV; 5331 5332 ret = pci_enable_device_mem(pdev); 5333 if (ret) { 5334 dev_err(dev, "Cannot enable device after suspend\n"); 5335 return ret; 5336 } 5337 5338 pf = pci_get_drvdata(pdev); 5339 hw = &pf->hw; 5340 5341 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5342 ice_print_wake_reason(pf); 5343 5344 /* We cleared the interrupt scheme when we suspended, so we need to 5345 * restore it now to resume device functionality. 5346 */ 5347 ret = ice_reinit_interrupt_scheme(pf); 5348 if (ret) 5349 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5350 5351 clear_bit(ICE_DOWN, pf->state); 5352 /* Now perform PF reset and rebuild */ 5353 reset_type = ICE_RESET_PFR; 5354 /* re-enable service task for reset, but allow reset to schedule it */ 5355 clear_bit(ICE_SERVICE_DIS, pf->state); 5356 5357 if (ice_schedule_reset(pf, reset_type)) 5358 dev_err(dev, "Reset during resume failed.\n"); 5359 5360 clear_bit(ICE_SUSPENDED, pf->state); 5361 ice_service_task_restart(pf); 5362 5363 /* Restart the service task */ 5364 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5365 5366 return 0; 5367 } 5368 #endif /* CONFIG_PM */ 5369 5370 /** 5371 * ice_pci_err_detected - warning that PCI error has been detected 5372 * @pdev: PCI device information struct 5373 * @err: the type of PCI error 5374 * 5375 * Called to warn that something happened on the PCI bus and the error handling 5376 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5377 */ 5378 static pci_ers_result_t 5379 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5380 { 5381 struct ice_pf *pf = pci_get_drvdata(pdev); 5382 5383 if (!pf) { 5384 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5385 __func__, err); 5386 return PCI_ERS_RESULT_DISCONNECT; 5387 } 5388 5389 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5390 ice_service_task_stop(pf); 5391 5392 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5393 set_bit(ICE_PFR_REQ, pf->state); 5394 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5395 } 5396 } 5397 5398 return PCI_ERS_RESULT_NEED_RESET; 5399 } 5400 5401 /** 5402 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5403 * @pdev: PCI device information struct 5404 * 5405 * Called to determine if the driver can recover from the PCI slot reset by 5406 * using a register read to determine if the device is recoverable. 5407 */ 5408 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5409 { 5410 struct ice_pf *pf = pci_get_drvdata(pdev); 5411 pci_ers_result_t result; 5412 int err; 5413 u32 reg; 5414 5415 err = pci_enable_device_mem(pdev); 5416 if (err) { 5417 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5418 err); 5419 result = PCI_ERS_RESULT_DISCONNECT; 5420 } else { 5421 pci_set_master(pdev); 5422 pci_restore_state(pdev); 5423 pci_save_state(pdev); 5424 pci_wake_from_d3(pdev, false); 5425 5426 /* Check for life */ 5427 reg = rd32(&pf->hw, GLGEN_RTRIG); 5428 if (!reg) 5429 result = PCI_ERS_RESULT_RECOVERED; 5430 else 5431 result = PCI_ERS_RESULT_DISCONNECT; 5432 } 5433 5434 return result; 5435 } 5436 5437 /** 5438 * ice_pci_err_resume - restart operations after PCI error recovery 5439 * @pdev: PCI device information struct 5440 * 5441 * Called to allow the driver to bring things back up after PCI error and/or 5442 * reset recovery have finished 5443 */ 5444 static void ice_pci_err_resume(struct pci_dev *pdev) 5445 { 5446 struct ice_pf *pf = pci_get_drvdata(pdev); 5447 5448 if (!pf) { 5449 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5450 __func__); 5451 return; 5452 } 5453 5454 if (test_bit(ICE_SUSPENDED, pf->state)) { 5455 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5456 __func__); 5457 return; 5458 } 5459 5460 ice_restore_all_vfs_msi_state(pdev); 5461 5462 ice_do_reset(pf, ICE_RESET_PFR); 5463 ice_service_task_restart(pf); 5464 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5465 } 5466 5467 /** 5468 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5469 * @pdev: PCI device information struct 5470 */ 5471 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5472 { 5473 struct ice_pf *pf = pci_get_drvdata(pdev); 5474 5475 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5476 ice_service_task_stop(pf); 5477 5478 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5479 set_bit(ICE_PFR_REQ, pf->state); 5480 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5481 } 5482 } 5483 } 5484 5485 /** 5486 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5487 * @pdev: PCI device information struct 5488 */ 5489 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5490 { 5491 ice_pci_err_resume(pdev); 5492 } 5493 5494 /* ice_pci_tbl - PCI Device ID Table 5495 * 5496 * Wildcard entries (PCI_ANY_ID) should come last 5497 * Last entry must be all 0s 5498 * 5499 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5500 * Class, Class Mask, private data (not used) } 5501 */ 5502 static const struct pci_device_id ice_pci_tbl[] = { 5503 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5504 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5505 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5506 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5507 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5508 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5509 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5510 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5523 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5524 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5529 /* required last entry */ 5530 { 0, } 5531 }; 5532 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5533 5534 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5535 5536 static const struct pci_error_handlers ice_pci_err_handler = { 5537 .error_detected = ice_pci_err_detected, 5538 .slot_reset = ice_pci_err_slot_reset, 5539 .reset_prepare = ice_pci_err_reset_prepare, 5540 .reset_done = ice_pci_err_reset_done, 5541 .resume = ice_pci_err_resume 5542 }; 5543 5544 static struct pci_driver ice_driver = { 5545 .name = KBUILD_MODNAME, 5546 .id_table = ice_pci_tbl, 5547 .probe = ice_probe, 5548 .remove = ice_remove, 5549 #ifdef CONFIG_PM 5550 .driver.pm = &ice_pm_ops, 5551 #endif /* CONFIG_PM */ 5552 .shutdown = ice_shutdown, 5553 .sriov_configure = ice_sriov_configure, 5554 .err_handler = &ice_pci_err_handler 5555 }; 5556 5557 /** 5558 * ice_module_init - Driver registration routine 5559 * 5560 * ice_module_init is the first routine called when the driver is 5561 * loaded. All it does is register with the PCI subsystem. 5562 */ 5563 static int __init ice_module_init(void) 5564 { 5565 int status; 5566 5567 pr_info("%s\n", ice_driver_string); 5568 pr_info("%s\n", ice_copyright); 5569 5570 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5571 if (!ice_wq) { 5572 pr_err("Failed to create workqueue\n"); 5573 return -ENOMEM; 5574 } 5575 5576 status = pci_register_driver(&ice_driver); 5577 if (status) { 5578 pr_err("failed to register PCI driver, err %d\n", status); 5579 destroy_workqueue(ice_wq); 5580 } 5581 5582 return status; 5583 } 5584 module_init(ice_module_init); 5585 5586 /** 5587 * ice_module_exit - Driver exit cleanup routine 5588 * 5589 * ice_module_exit is called just before the driver is removed 5590 * from memory. 5591 */ 5592 static void __exit ice_module_exit(void) 5593 { 5594 pci_unregister_driver(&ice_driver); 5595 destroy_workqueue(ice_wq); 5596 pr_info("module unloaded\n"); 5597 } 5598 module_exit(ice_module_exit); 5599 5600 /** 5601 * ice_set_mac_address - NDO callback to set MAC address 5602 * @netdev: network interface device structure 5603 * @pi: pointer to an address structure 5604 * 5605 * Returns 0 on success, negative on failure 5606 */ 5607 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5608 { 5609 struct ice_netdev_priv *np = netdev_priv(netdev); 5610 struct ice_vsi *vsi = np->vsi; 5611 struct ice_pf *pf = vsi->back; 5612 struct ice_hw *hw = &pf->hw; 5613 struct sockaddr *addr = pi; 5614 u8 old_mac[ETH_ALEN]; 5615 u8 flags = 0; 5616 u8 *mac; 5617 int err; 5618 5619 mac = (u8 *)addr->sa_data; 5620 5621 if (!is_valid_ether_addr(mac)) 5622 return -EADDRNOTAVAIL; 5623 5624 if (ether_addr_equal(netdev->dev_addr, mac)) { 5625 netdev_dbg(netdev, "already using mac %pM\n", mac); 5626 return 0; 5627 } 5628 5629 if (test_bit(ICE_DOWN, pf->state) || 5630 ice_is_reset_in_progress(pf->state)) { 5631 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5632 mac); 5633 return -EBUSY; 5634 } 5635 5636 if (ice_chnl_dmac_fltr_cnt(pf)) { 5637 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5638 mac); 5639 return -EAGAIN; 5640 } 5641 5642 netif_addr_lock_bh(netdev); 5643 ether_addr_copy(old_mac, netdev->dev_addr); 5644 /* change the netdev's MAC address */ 5645 eth_hw_addr_set(netdev, mac); 5646 netif_addr_unlock_bh(netdev); 5647 5648 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5649 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5650 if (err && err != -ENOENT) { 5651 err = -EADDRNOTAVAIL; 5652 goto err_update_filters; 5653 } 5654 5655 /* Add filter for new MAC. If filter exists, return success */ 5656 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5657 if (err == -EEXIST) { 5658 /* Although this MAC filter is already present in hardware it's 5659 * possible in some cases (e.g. bonding) that dev_addr was 5660 * modified outside of the driver and needs to be restored back 5661 * to this value. 5662 */ 5663 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5664 5665 return 0; 5666 } else if (err) { 5667 /* error if the new filter addition failed */ 5668 err = -EADDRNOTAVAIL; 5669 } 5670 5671 err_update_filters: 5672 if (err) { 5673 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5674 mac); 5675 netif_addr_lock_bh(netdev); 5676 eth_hw_addr_set(netdev, old_mac); 5677 netif_addr_unlock_bh(netdev); 5678 return err; 5679 } 5680 5681 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5682 netdev->dev_addr); 5683 5684 /* write new MAC address to the firmware */ 5685 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5686 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5687 if (err) { 5688 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5689 mac, err); 5690 } 5691 return 0; 5692 } 5693 5694 /** 5695 * ice_set_rx_mode - NDO callback to set the netdev filters 5696 * @netdev: network interface device structure 5697 */ 5698 static void ice_set_rx_mode(struct net_device *netdev) 5699 { 5700 struct ice_netdev_priv *np = netdev_priv(netdev); 5701 struct ice_vsi *vsi = np->vsi; 5702 5703 if (!vsi) 5704 return; 5705 5706 /* Set the flags to synchronize filters 5707 * ndo_set_rx_mode may be triggered even without a change in netdev 5708 * flags 5709 */ 5710 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5711 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5712 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5713 5714 /* schedule our worker thread which will take care of 5715 * applying the new filter changes 5716 */ 5717 ice_service_task_schedule(vsi->back); 5718 } 5719 5720 /** 5721 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5722 * @netdev: network interface device structure 5723 * @queue_index: Queue ID 5724 * @maxrate: maximum bandwidth in Mbps 5725 */ 5726 static int 5727 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5728 { 5729 struct ice_netdev_priv *np = netdev_priv(netdev); 5730 struct ice_vsi *vsi = np->vsi; 5731 u16 q_handle; 5732 int status; 5733 u8 tc; 5734 5735 /* Validate maxrate requested is within permitted range */ 5736 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5737 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5738 maxrate, queue_index); 5739 return -EINVAL; 5740 } 5741 5742 q_handle = vsi->tx_rings[queue_index]->q_handle; 5743 tc = ice_dcb_get_tc(vsi, queue_index); 5744 5745 /* Set BW back to default, when user set maxrate to 0 */ 5746 if (!maxrate) 5747 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5748 q_handle, ICE_MAX_BW); 5749 else 5750 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5751 q_handle, ICE_MAX_BW, maxrate * 1000); 5752 if (status) 5753 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5754 status); 5755 5756 return status; 5757 } 5758 5759 /** 5760 * ice_fdb_add - add an entry to the hardware database 5761 * @ndm: the input from the stack 5762 * @tb: pointer to array of nladdr (unused) 5763 * @dev: the net device pointer 5764 * @addr: the MAC address entry being added 5765 * @vid: VLAN ID 5766 * @flags: instructions from stack about fdb operation 5767 * @extack: netlink extended ack 5768 */ 5769 static int 5770 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5771 struct net_device *dev, const unsigned char *addr, u16 vid, 5772 u16 flags, struct netlink_ext_ack __always_unused *extack) 5773 { 5774 int err; 5775 5776 if (vid) { 5777 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5778 return -EINVAL; 5779 } 5780 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5781 netdev_err(dev, "FDB only supports static addresses\n"); 5782 return -EINVAL; 5783 } 5784 5785 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5786 err = dev_uc_add_excl(dev, addr); 5787 else if (is_multicast_ether_addr(addr)) 5788 err = dev_mc_add_excl(dev, addr); 5789 else 5790 err = -EINVAL; 5791 5792 /* Only return duplicate errors if NLM_F_EXCL is set */ 5793 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5794 err = 0; 5795 5796 return err; 5797 } 5798 5799 /** 5800 * ice_fdb_del - delete an entry from the hardware database 5801 * @ndm: the input from the stack 5802 * @tb: pointer to array of nladdr (unused) 5803 * @dev: the net device pointer 5804 * @addr: the MAC address entry being added 5805 * @vid: VLAN ID 5806 * @extack: netlink extended ack 5807 */ 5808 static int 5809 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5810 struct net_device *dev, const unsigned char *addr, 5811 __always_unused u16 vid, struct netlink_ext_ack *extack) 5812 { 5813 int err; 5814 5815 if (ndm->ndm_state & NUD_PERMANENT) { 5816 netdev_err(dev, "FDB only supports static addresses\n"); 5817 return -EINVAL; 5818 } 5819 5820 if (is_unicast_ether_addr(addr)) 5821 err = dev_uc_del(dev, addr); 5822 else if (is_multicast_ether_addr(addr)) 5823 err = dev_mc_del(dev, addr); 5824 else 5825 err = -EINVAL; 5826 5827 return err; 5828 } 5829 5830 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5831 NETIF_F_HW_VLAN_CTAG_TX | \ 5832 NETIF_F_HW_VLAN_STAG_RX | \ 5833 NETIF_F_HW_VLAN_STAG_TX) 5834 5835 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5836 NETIF_F_HW_VLAN_STAG_RX) 5837 5838 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5839 NETIF_F_HW_VLAN_STAG_FILTER) 5840 5841 /** 5842 * ice_fix_features - fix the netdev features flags based on device limitations 5843 * @netdev: ptr to the netdev that flags are being fixed on 5844 * @features: features that need to be checked and possibly fixed 5845 * 5846 * Make sure any fixups are made to features in this callback. This enables the 5847 * driver to not have to check unsupported configurations throughout the driver 5848 * because that's the responsiblity of this callback. 5849 * 5850 * Single VLAN Mode (SVM) Supported Features: 5851 * NETIF_F_HW_VLAN_CTAG_FILTER 5852 * NETIF_F_HW_VLAN_CTAG_RX 5853 * NETIF_F_HW_VLAN_CTAG_TX 5854 * 5855 * Double VLAN Mode (DVM) Supported Features: 5856 * NETIF_F_HW_VLAN_CTAG_FILTER 5857 * NETIF_F_HW_VLAN_CTAG_RX 5858 * NETIF_F_HW_VLAN_CTAG_TX 5859 * 5860 * NETIF_F_HW_VLAN_STAG_FILTER 5861 * NETIF_HW_VLAN_STAG_RX 5862 * NETIF_HW_VLAN_STAG_TX 5863 * 5864 * Features that need fixing: 5865 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5866 * These are mutually exlusive as the VSI context cannot support multiple 5867 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5868 * is not done, then default to clearing the requested STAG offload 5869 * settings. 5870 * 5871 * All supported filtering has to be enabled or disabled together. For 5872 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5873 * together. If this is not done, then default to VLAN filtering disabled. 5874 * These are mutually exclusive as there is currently no way to 5875 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5876 * prune rules. 5877 */ 5878 static netdev_features_t 5879 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5880 { 5881 struct ice_netdev_priv *np = netdev_priv(netdev); 5882 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5883 bool cur_ctag, cur_stag, req_ctag, req_stag; 5884 5885 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5886 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5887 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5888 5889 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5890 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5891 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5892 5893 if (req_vlan_fltr != cur_vlan_fltr) { 5894 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5895 if (req_ctag && req_stag) { 5896 features |= NETIF_VLAN_FILTERING_FEATURES; 5897 } else if (!req_ctag && !req_stag) { 5898 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5899 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5900 (!cur_stag && req_stag && !cur_ctag)) { 5901 features |= NETIF_VLAN_FILTERING_FEATURES; 5902 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5903 } else if ((cur_ctag && !req_ctag && cur_stag) || 5904 (cur_stag && !req_stag && cur_ctag)) { 5905 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5906 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5907 } 5908 } else { 5909 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5910 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5911 5912 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5913 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5914 } 5915 } 5916 5917 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5918 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5919 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5920 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5921 NETIF_F_HW_VLAN_STAG_TX); 5922 } 5923 5924 if (!(netdev->features & NETIF_F_RXFCS) && 5925 (features & NETIF_F_RXFCS) && 5926 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5927 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5928 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5929 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5930 } 5931 5932 return features; 5933 } 5934 5935 /** 5936 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5937 * @vsi: PF's VSI 5938 * @features: features used to determine VLAN offload settings 5939 * 5940 * First, determine the vlan_ethertype based on the VLAN offload bits in 5941 * features. Then determine if stripping and insertion should be enabled or 5942 * disabled. Finally enable or disable VLAN stripping and insertion. 5943 */ 5944 static int 5945 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5946 { 5947 bool enable_stripping = true, enable_insertion = true; 5948 struct ice_vsi_vlan_ops *vlan_ops; 5949 int strip_err = 0, insert_err = 0; 5950 u16 vlan_ethertype = 0; 5951 5952 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5953 5954 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5955 vlan_ethertype = ETH_P_8021AD; 5956 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5957 vlan_ethertype = ETH_P_8021Q; 5958 5959 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5960 enable_stripping = false; 5961 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5962 enable_insertion = false; 5963 5964 if (enable_stripping) 5965 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5966 else 5967 strip_err = vlan_ops->dis_stripping(vsi); 5968 5969 if (enable_insertion) 5970 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5971 else 5972 insert_err = vlan_ops->dis_insertion(vsi); 5973 5974 if (strip_err || insert_err) 5975 return -EIO; 5976 5977 return 0; 5978 } 5979 5980 /** 5981 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5982 * @vsi: PF's VSI 5983 * @features: features used to determine VLAN filtering settings 5984 * 5985 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5986 * features. 5987 */ 5988 static int 5989 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5990 { 5991 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5992 int err = 0; 5993 5994 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5995 * if either bit is set 5996 */ 5997 if (features & 5998 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5999 err = vlan_ops->ena_rx_filtering(vsi); 6000 else 6001 err = vlan_ops->dis_rx_filtering(vsi); 6002 6003 return err; 6004 } 6005 6006 /** 6007 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6008 * @netdev: ptr to the netdev being adjusted 6009 * @features: the feature set that the stack is suggesting 6010 * 6011 * Only update VLAN settings if the requested_vlan_features are different than 6012 * the current_vlan_features. 6013 */ 6014 static int 6015 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6016 { 6017 netdev_features_t current_vlan_features, requested_vlan_features; 6018 struct ice_netdev_priv *np = netdev_priv(netdev); 6019 struct ice_vsi *vsi = np->vsi; 6020 int err; 6021 6022 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6023 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6024 if (current_vlan_features ^ requested_vlan_features) { 6025 if ((features & NETIF_F_RXFCS) && 6026 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6027 dev_err(ice_pf_to_dev(vsi->back), 6028 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6029 return -EIO; 6030 } 6031 6032 err = ice_set_vlan_offload_features(vsi, features); 6033 if (err) 6034 return err; 6035 } 6036 6037 current_vlan_features = netdev->features & 6038 NETIF_VLAN_FILTERING_FEATURES; 6039 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6040 if (current_vlan_features ^ requested_vlan_features) { 6041 err = ice_set_vlan_filtering_features(vsi, features); 6042 if (err) 6043 return err; 6044 } 6045 6046 return 0; 6047 } 6048 6049 /** 6050 * ice_set_loopback - turn on/off loopback mode on underlying PF 6051 * @vsi: ptr to VSI 6052 * @ena: flag to indicate the on/off setting 6053 */ 6054 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6055 { 6056 bool if_running = netif_running(vsi->netdev); 6057 int ret; 6058 6059 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6060 ret = ice_down(vsi); 6061 if (ret) { 6062 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6063 return ret; 6064 } 6065 } 6066 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6067 if (ret) 6068 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6069 if (if_running) 6070 ret = ice_up(vsi); 6071 6072 return ret; 6073 } 6074 6075 /** 6076 * ice_set_features - set the netdev feature flags 6077 * @netdev: ptr to the netdev being adjusted 6078 * @features: the feature set that the stack is suggesting 6079 */ 6080 static int 6081 ice_set_features(struct net_device *netdev, netdev_features_t features) 6082 { 6083 netdev_features_t changed = netdev->features ^ features; 6084 struct ice_netdev_priv *np = netdev_priv(netdev); 6085 struct ice_vsi *vsi = np->vsi; 6086 struct ice_pf *pf = vsi->back; 6087 int ret = 0; 6088 6089 /* Don't set any netdev advanced features with device in Safe Mode */ 6090 if (ice_is_safe_mode(pf)) { 6091 dev_err(ice_pf_to_dev(pf), 6092 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6093 return ret; 6094 } 6095 6096 /* Do not change setting during reset */ 6097 if (ice_is_reset_in_progress(pf->state)) { 6098 dev_err(ice_pf_to_dev(pf), 6099 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6100 return -EBUSY; 6101 } 6102 6103 /* Multiple features can be changed in one call so keep features in 6104 * separate if/else statements to guarantee each feature is checked 6105 */ 6106 if (changed & NETIF_F_RXHASH) 6107 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6108 6109 ret = ice_set_vlan_features(netdev, features); 6110 if (ret) 6111 return ret; 6112 6113 /* Turn on receive of FCS aka CRC, and after setting this 6114 * flag the packet data will have the 4 byte CRC appended 6115 */ 6116 if (changed & NETIF_F_RXFCS) { 6117 if ((features & NETIF_F_RXFCS) && 6118 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6119 dev_err(ice_pf_to_dev(vsi->back), 6120 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6121 return -EIO; 6122 } 6123 6124 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6125 ret = ice_down_up(vsi); 6126 if (ret) 6127 return ret; 6128 } 6129 6130 if (changed & NETIF_F_NTUPLE) { 6131 bool ena = !!(features & NETIF_F_NTUPLE); 6132 6133 ice_vsi_manage_fdir(vsi, ena); 6134 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6135 } 6136 6137 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6138 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6139 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6140 return -EACCES; 6141 } 6142 6143 if (changed & NETIF_F_HW_TC) { 6144 bool ena = !!(features & NETIF_F_HW_TC); 6145 6146 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6147 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6148 } 6149 6150 if (changed & NETIF_F_LOOPBACK) 6151 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6152 6153 return ret; 6154 } 6155 6156 /** 6157 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6158 * @vsi: VSI to setup VLAN properties for 6159 */ 6160 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6161 { 6162 int err; 6163 6164 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6165 if (err) 6166 return err; 6167 6168 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6169 if (err) 6170 return err; 6171 6172 return ice_vsi_add_vlan_zero(vsi); 6173 } 6174 6175 /** 6176 * ice_vsi_cfg - Setup the VSI 6177 * @vsi: the VSI being configured 6178 * 6179 * Return 0 on success and negative value on error 6180 */ 6181 int ice_vsi_cfg(struct ice_vsi *vsi) 6182 { 6183 int err; 6184 6185 if (vsi->netdev) { 6186 ice_set_rx_mode(vsi->netdev); 6187 6188 if (vsi->type != ICE_VSI_LB) { 6189 err = ice_vsi_vlan_setup(vsi); 6190 6191 if (err) 6192 return err; 6193 } 6194 } 6195 ice_vsi_cfg_dcb_rings(vsi); 6196 6197 err = ice_vsi_cfg_lan_txqs(vsi); 6198 if (!err && ice_is_xdp_ena_vsi(vsi)) 6199 err = ice_vsi_cfg_xdp_txqs(vsi); 6200 if (!err) 6201 err = ice_vsi_cfg_rxqs(vsi); 6202 6203 return err; 6204 } 6205 6206 /* THEORY OF MODERATION: 6207 * The ice driver hardware works differently than the hardware that DIMLIB was 6208 * originally made for. ice hardware doesn't have packet count limits that 6209 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6210 * which is hard-coded to a limit of 250,000 ints/second. 6211 * If not using dynamic moderation, the INTRL value can be modified 6212 * by ethtool rx-usecs-high. 6213 */ 6214 struct ice_dim { 6215 /* the throttle rate for interrupts, basically worst case delay before 6216 * an initial interrupt fires, value is stored in microseconds. 6217 */ 6218 u16 itr; 6219 }; 6220 6221 /* Make a different profile for Rx that doesn't allow quite so aggressive 6222 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6223 * second. 6224 */ 6225 static const struct ice_dim rx_profile[] = { 6226 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6227 {8}, /* 125,000 ints/s */ 6228 {16}, /* 62,500 ints/s */ 6229 {62}, /* 16,129 ints/s */ 6230 {126} /* 7,936 ints/s */ 6231 }; 6232 6233 /* The transmit profile, which has the same sorts of values 6234 * as the previous struct 6235 */ 6236 static const struct ice_dim tx_profile[] = { 6237 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6238 {8}, /* 125,000 ints/s */ 6239 {40}, /* 16,125 ints/s */ 6240 {128}, /* 7,812 ints/s */ 6241 {256} /* 3,906 ints/s */ 6242 }; 6243 6244 static void ice_tx_dim_work(struct work_struct *work) 6245 { 6246 struct ice_ring_container *rc; 6247 struct dim *dim; 6248 u16 itr; 6249 6250 dim = container_of(work, struct dim, work); 6251 rc = (struct ice_ring_container *)dim->priv; 6252 6253 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6254 6255 /* look up the values in our local table */ 6256 itr = tx_profile[dim->profile_ix].itr; 6257 6258 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6259 ice_write_itr(rc, itr); 6260 6261 dim->state = DIM_START_MEASURE; 6262 } 6263 6264 static void ice_rx_dim_work(struct work_struct *work) 6265 { 6266 struct ice_ring_container *rc; 6267 struct dim *dim; 6268 u16 itr; 6269 6270 dim = container_of(work, struct dim, work); 6271 rc = (struct ice_ring_container *)dim->priv; 6272 6273 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6274 6275 /* look up the values in our local table */ 6276 itr = rx_profile[dim->profile_ix].itr; 6277 6278 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6279 ice_write_itr(rc, itr); 6280 6281 dim->state = DIM_START_MEASURE; 6282 } 6283 6284 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6285 6286 /** 6287 * ice_init_moderation - set up interrupt moderation 6288 * @q_vector: the vector containing rings to be configured 6289 * 6290 * Set up interrupt moderation registers, with the intent to do the right thing 6291 * when called from reset or from probe, and whether or not dynamic moderation 6292 * is enabled or not. Take special care to write all the registers in both 6293 * dynamic moderation mode or not in order to make sure hardware is in a known 6294 * state. 6295 */ 6296 static void ice_init_moderation(struct ice_q_vector *q_vector) 6297 { 6298 struct ice_ring_container *rc; 6299 bool tx_dynamic, rx_dynamic; 6300 6301 rc = &q_vector->tx; 6302 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6303 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6304 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6305 rc->dim.priv = rc; 6306 tx_dynamic = ITR_IS_DYNAMIC(rc); 6307 6308 /* set the initial TX ITR to match the above */ 6309 ice_write_itr(rc, tx_dynamic ? 6310 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6311 6312 rc = &q_vector->rx; 6313 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6314 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6315 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6316 rc->dim.priv = rc; 6317 rx_dynamic = ITR_IS_DYNAMIC(rc); 6318 6319 /* set the initial RX ITR to match the above */ 6320 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6321 rc->itr_setting); 6322 6323 ice_set_q_vector_intrl(q_vector); 6324 } 6325 6326 /** 6327 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6328 * @vsi: the VSI being configured 6329 */ 6330 static void ice_napi_enable_all(struct ice_vsi *vsi) 6331 { 6332 int q_idx; 6333 6334 if (!vsi->netdev) 6335 return; 6336 6337 ice_for_each_q_vector(vsi, q_idx) { 6338 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6339 6340 ice_init_moderation(q_vector); 6341 6342 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6343 napi_enable(&q_vector->napi); 6344 } 6345 } 6346 6347 /** 6348 * ice_up_complete - Finish the last steps of bringing up a connection 6349 * @vsi: The VSI being configured 6350 * 6351 * Return 0 on success and negative value on error 6352 */ 6353 static int ice_up_complete(struct ice_vsi *vsi) 6354 { 6355 struct ice_pf *pf = vsi->back; 6356 int err; 6357 6358 ice_vsi_cfg_msix(vsi); 6359 6360 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6361 * Tx queue group list was configured and the context bits were 6362 * programmed using ice_vsi_cfg_txqs 6363 */ 6364 err = ice_vsi_start_all_rx_rings(vsi); 6365 if (err) 6366 return err; 6367 6368 clear_bit(ICE_VSI_DOWN, vsi->state); 6369 ice_napi_enable_all(vsi); 6370 ice_vsi_ena_irq(vsi); 6371 6372 if (vsi->port_info && 6373 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6374 vsi->netdev) { 6375 ice_print_link_msg(vsi, true); 6376 netif_tx_start_all_queues(vsi->netdev); 6377 netif_carrier_on(vsi->netdev); 6378 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6379 } 6380 6381 /* Perform an initial read of the statistics registers now to 6382 * set the baseline so counters are ready when interface is up 6383 */ 6384 ice_update_eth_stats(vsi); 6385 ice_service_task_schedule(pf); 6386 6387 return 0; 6388 } 6389 6390 /** 6391 * ice_up - Bring the connection back up after being down 6392 * @vsi: VSI being configured 6393 */ 6394 int ice_up(struct ice_vsi *vsi) 6395 { 6396 int err; 6397 6398 err = ice_vsi_cfg(vsi); 6399 if (!err) 6400 err = ice_up_complete(vsi); 6401 6402 return err; 6403 } 6404 6405 /** 6406 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6407 * @syncp: pointer to u64_stats_sync 6408 * @stats: stats that pkts and bytes count will be taken from 6409 * @pkts: packets stats counter 6410 * @bytes: bytes stats counter 6411 * 6412 * This function fetches stats from the ring considering the atomic operations 6413 * that needs to be performed to read u64 values in 32 bit machine. 6414 */ 6415 void 6416 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6417 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6418 { 6419 unsigned int start; 6420 6421 do { 6422 start = u64_stats_fetch_begin(syncp); 6423 *pkts = stats.pkts; 6424 *bytes = stats.bytes; 6425 } while (u64_stats_fetch_retry(syncp, start)); 6426 } 6427 6428 /** 6429 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6430 * @vsi: the VSI to be updated 6431 * @vsi_stats: the stats struct to be updated 6432 * @rings: rings to work on 6433 * @count: number of rings 6434 */ 6435 static void 6436 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6437 struct rtnl_link_stats64 *vsi_stats, 6438 struct ice_tx_ring **rings, u16 count) 6439 { 6440 u16 i; 6441 6442 for (i = 0; i < count; i++) { 6443 struct ice_tx_ring *ring; 6444 u64 pkts = 0, bytes = 0; 6445 6446 ring = READ_ONCE(rings[i]); 6447 if (!ring || !ring->ring_stats) 6448 continue; 6449 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6450 ring->ring_stats->stats, &pkts, 6451 &bytes); 6452 vsi_stats->tx_packets += pkts; 6453 vsi_stats->tx_bytes += bytes; 6454 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6455 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6456 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6457 } 6458 } 6459 6460 /** 6461 * ice_update_vsi_ring_stats - Update VSI stats counters 6462 * @vsi: the VSI to be updated 6463 */ 6464 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6465 { 6466 struct rtnl_link_stats64 *net_stats, *stats_prev; 6467 struct rtnl_link_stats64 *vsi_stats; 6468 u64 pkts, bytes; 6469 int i; 6470 6471 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6472 if (!vsi_stats) 6473 return; 6474 6475 /* reset non-netdev (extended) stats */ 6476 vsi->tx_restart = 0; 6477 vsi->tx_busy = 0; 6478 vsi->tx_linearize = 0; 6479 vsi->rx_buf_failed = 0; 6480 vsi->rx_page_failed = 0; 6481 6482 rcu_read_lock(); 6483 6484 /* update Tx rings counters */ 6485 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6486 vsi->num_txq); 6487 6488 /* update Rx rings counters */ 6489 ice_for_each_rxq(vsi, i) { 6490 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6491 struct ice_ring_stats *ring_stats; 6492 6493 ring_stats = ring->ring_stats; 6494 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6495 ring_stats->stats, &pkts, 6496 &bytes); 6497 vsi_stats->rx_packets += pkts; 6498 vsi_stats->rx_bytes += bytes; 6499 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6500 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6501 } 6502 6503 /* update XDP Tx rings counters */ 6504 if (ice_is_xdp_ena_vsi(vsi)) 6505 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6506 vsi->num_xdp_txq); 6507 6508 rcu_read_unlock(); 6509 6510 net_stats = &vsi->net_stats; 6511 stats_prev = &vsi->net_stats_prev; 6512 6513 /* clear prev counters after reset */ 6514 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6515 vsi_stats->rx_packets < stats_prev->rx_packets) { 6516 stats_prev->tx_packets = 0; 6517 stats_prev->tx_bytes = 0; 6518 stats_prev->rx_packets = 0; 6519 stats_prev->rx_bytes = 0; 6520 } 6521 6522 /* update netdev counters */ 6523 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6524 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6525 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6526 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6527 6528 stats_prev->tx_packets = vsi_stats->tx_packets; 6529 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6530 stats_prev->rx_packets = vsi_stats->rx_packets; 6531 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6532 6533 kfree(vsi_stats); 6534 } 6535 6536 /** 6537 * ice_update_vsi_stats - Update VSI stats counters 6538 * @vsi: the VSI to be updated 6539 */ 6540 void ice_update_vsi_stats(struct ice_vsi *vsi) 6541 { 6542 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6543 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6544 struct ice_pf *pf = vsi->back; 6545 6546 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6547 test_bit(ICE_CFG_BUSY, pf->state)) 6548 return; 6549 6550 /* get stats as recorded by Tx/Rx rings */ 6551 ice_update_vsi_ring_stats(vsi); 6552 6553 /* get VSI stats as recorded by the hardware */ 6554 ice_update_eth_stats(vsi); 6555 6556 cur_ns->tx_errors = cur_es->tx_errors; 6557 cur_ns->rx_dropped = cur_es->rx_discards; 6558 cur_ns->tx_dropped = cur_es->tx_discards; 6559 cur_ns->multicast = cur_es->rx_multicast; 6560 6561 /* update some more netdev stats if this is main VSI */ 6562 if (vsi->type == ICE_VSI_PF) { 6563 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6564 cur_ns->rx_errors = pf->stats.crc_errors + 6565 pf->stats.illegal_bytes + 6566 pf->stats.rx_len_errors + 6567 pf->stats.rx_undersize + 6568 pf->hw_csum_rx_error + 6569 pf->stats.rx_jabber + 6570 pf->stats.rx_fragments + 6571 pf->stats.rx_oversize; 6572 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6573 /* record drops from the port level */ 6574 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6575 } 6576 } 6577 6578 /** 6579 * ice_update_pf_stats - Update PF port stats counters 6580 * @pf: PF whose stats needs to be updated 6581 */ 6582 void ice_update_pf_stats(struct ice_pf *pf) 6583 { 6584 struct ice_hw_port_stats *prev_ps, *cur_ps; 6585 struct ice_hw *hw = &pf->hw; 6586 u16 fd_ctr_base; 6587 u8 port; 6588 6589 port = hw->port_info->lport; 6590 prev_ps = &pf->stats_prev; 6591 cur_ps = &pf->stats; 6592 6593 if (ice_is_reset_in_progress(pf->state)) 6594 pf->stat_prev_loaded = false; 6595 6596 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6597 &prev_ps->eth.rx_bytes, 6598 &cur_ps->eth.rx_bytes); 6599 6600 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6601 &prev_ps->eth.rx_unicast, 6602 &cur_ps->eth.rx_unicast); 6603 6604 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6605 &prev_ps->eth.rx_multicast, 6606 &cur_ps->eth.rx_multicast); 6607 6608 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6609 &prev_ps->eth.rx_broadcast, 6610 &cur_ps->eth.rx_broadcast); 6611 6612 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6613 &prev_ps->eth.rx_discards, 6614 &cur_ps->eth.rx_discards); 6615 6616 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6617 &prev_ps->eth.tx_bytes, 6618 &cur_ps->eth.tx_bytes); 6619 6620 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6621 &prev_ps->eth.tx_unicast, 6622 &cur_ps->eth.tx_unicast); 6623 6624 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6625 &prev_ps->eth.tx_multicast, 6626 &cur_ps->eth.tx_multicast); 6627 6628 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6629 &prev_ps->eth.tx_broadcast, 6630 &cur_ps->eth.tx_broadcast); 6631 6632 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6633 &prev_ps->tx_dropped_link_down, 6634 &cur_ps->tx_dropped_link_down); 6635 6636 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6637 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6638 6639 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6640 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6641 6642 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6643 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6644 6645 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6646 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6647 6648 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6649 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6650 6651 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6652 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6653 6654 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6655 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6656 6657 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6658 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6659 6660 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6661 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6662 6663 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6664 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6665 6666 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6667 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6668 6669 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6670 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6671 6672 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6673 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6674 6675 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6676 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6677 6678 fd_ctr_base = hw->fd_ctr_base; 6679 6680 ice_stat_update40(hw, 6681 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6682 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6683 &cur_ps->fd_sb_match); 6684 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6685 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6686 6687 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6688 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6689 6690 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6691 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6692 6693 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6694 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6695 6696 ice_update_dcb_stats(pf); 6697 6698 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6699 &prev_ps->crc_errors, &cur_ps->crc_errors); 6700 6701 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6702 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6703 6704 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6705 &prev_ps->mac_local_faults, 6706 &cur_ps->mac_local_faults); 6707 6708 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6709 &prev_ps->mac_remote_faults, 6710 &cur_ps->mac_remote_faults); 6711 6712 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6713 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6714 6715 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6716 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6717 6718 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6719 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6720 6721 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6722 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6723 6724 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6725 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6726 6727 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6728 6729 pf->stat_prev_loaded = true; 6730 } 6731 6732 /** 6733 * ice_get_stats64 - get statistics for network device structure 6734 * @netdev: network interface device structure 6735 * @stats: main device statistics structure 6736 */ 6737 static 6738 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6739 { 6740 struct ice_netdev_priv *np = netdev_priv(netdev); 6741 struct rtnl_link_stats64 *vsi_stats; 6742 struct ice_vsi *vsi = np->vsi; 6743 6744 vsi_stats = &vsi->net_stats; 6745 6746 if (!vsi->num_txq || !vsi->num_rxq) 6747 return; 6748 6749 /* netdev packet/byte stats come from ring counter. These are obtained 6750 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6751 * But, only call the update routine and read the registers if VSI is 6752 * not down. 6753 */ 6754 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6755 ice_update_vsi_ring_stats(vsi); 6756 stats->tx_packets = vsi_stats->tx_packets; 6757 stats->tx_bytes = vsi_stats->tx_bytes; 6758 stats->rx_packets = vsi_stats->rx_packets; 6759 stats->rx_bytes = vsi_stats->rx_bytes; 6760 6761 /* The rest of the stats can be read from the hardware but instead we 6762 * just return values that the watchdog task has already obtained from 6763 * the hardware. 6764 */ 6765 stats->multicast = vsi_stats->multicast; 6766 stats->tx_errors = vsi_stats->tx_errors; 6767 stats->tx_dropped = vsi_stats->tx_dropped; 6768 stats->rx_errors = vsi_stats->rx_errors; 6769 stats->rx_dropped = vsi_stats->rx_dropped; 6770 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6771 stats->rx_length_errors = vsi_stats->rx_length_errors; 6772 } 6773 6774 /** 6775 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6776 * @vsi: VSI having NAPI disabled 6777 */ 6778 static void ice_napi_disable_all(struct ice_vsi *vsi) 6779 { 6780 int q_idx; 6781 6782 if (!vsi->netdev) 6783 return; 6784 6785 ice_for_each_q_vector(vsi, q_idx) { 6786 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6787 6788 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6789 napi_disable(&q_vector->napi); 6790 6791 cancel_work_sync(&q_vector->tx.dim.work); 6792 cancel_work_sync(&q_vector->rx.dim.work); 6793 } 6794 } 6795 6796 /** 6797 * ice_down - Shutdown the connection 6798 * @vsi: The VSI being stopped 6799 * 6800 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6801 */ 6802 int ice_down(struct ice_vsi *vsi) 6803 { 6804 int i, tx_err, rx_err, vlan_err = 0; 6805 6806 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6807 6808 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6809 vlan_err = ice_vsi_del_vlan_zero(vsi); 6810 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6811 netif_carrier_off(vsi->netdev); 6812 netif_tx_disable(vsi->netdev); 6813 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6814 ice_eswitch_stop_all_tx_queues(vsi->back); 6815 } 6816 6817 ice_vsi_dis_irq(vsi); 6818 6819 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6820 if (tx_err) 6821 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6822 vsi->vsi_num, tx_err); 6823 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6824 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6825 if (tx_err) 6826 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6827 vsi->vsi_num, tx_err); 6828 } 6829 6830 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6831 if (rx_err) 6832 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6833 vsi->vsi_num, rx_err); 6834 6835 ice_napi_disable_all(vsi); 6836 6837 ice_for_each_txq(vsi, i) 6838 ice_clean_tx_ring(vsi->tx_rings[i]); 6839 6840 ice_for_each_rxq(vsi, i) 6841 ice_clean_rx_ring(vsi->rx_rings[i]); 6842 6843 if (tx_err || rx_err || vlan_err) { 6844 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6845 vsi->vsi_num, vsi->vsw->sw_id); 6846 return -EIO; 6847 } 6848 6849 return 0; 6850 } 6851 6852 /** 6853 * ice_down_up - shutdown the VSI connection and bring it up 6854 * @vsi: the VSI to be reconnected 6855 */ 6856 int ice_down_up(struct ice_vsi *vsi) 6857 { 6858 int ret; 6859 6860 /* if DOWN already set, nothing to do */ 6861 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6862 return 0; 6863 6864 ret = ice_down(vsi); 6865 if (ret) 6866 return ret; 6867 6868 ret = ice_up(vsi); 6869 if (ret) { 6870 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6871 return ret; 6872 } 6873 6874 return 0; 6875 } 6876 6877 /** 6878 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6879 * @vsi: VSI having resources allocated 6880 * 6881 * Return 0 on success, negative on failure 6882 */ 6883 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6884 { 6885 int i, err = 0; 6886 6887 if (!vsi->num_txq) { 6888 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6889 vsi->vsi_num); 6890 return -EINVAL; 6891 } 6892 6893 ice_for_each_txq(vsi, i) { 6894 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6895 6896 if (!ring) 6897 return -EINVAL; 6898 6899 if (vsi->netdev) 6900 ring->netdev = vsi->netdev; 6901 err = ice_setup_tx_ring(ring); 6902 if (err) 6903 break; 6904 } 6905 6906 return err; 6907 } 6908 6909 /** 6910 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6911 * @vsi: VSI having resources allocated 6912 * 6913 * Return 0 on success, negative on failure 6914 */ 6915 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6916 { 6917 int i, err = 0; 6918 6919 if (!vsi->num_rxq) { 6920 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6921 vsi->vsi_num); 6922 return -EINVAL; 6923 } 6924 6925 ice_for_each_rxq(vsi, i) { 6926 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6927 6928 if (!ring) 6929 return -EINVAL; 6930 6931 if (vsi->netdev) 6932 ring->netdev = vsi->netdev; 6933 err = ice_setup_rx_ring(ring); 6934 if (err) 6935 break; 6936 } 6937 6938 return err; 6939 } 6940 6941 /** 6942 * ice_vsi_open_ctrl - open control VSI for use 6943 * @vsi: the VSI to open 6944 * 6945 * Initialization of the Control VSI 6946 * 6947 * Returns 0 on success, negative value on error 6948 */ 6949 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6950 { 6951 char int_name[ICE_INT_NAME_STR_LEN]; 6952 struct ice_pf *pf = vsi->back; 6953 struct device *dev; 6954 int err; 6955 6956 dev = ice_pf_to_dev(pf); 6957 /* allocate descriptors */ 6958 err = ice_vsi_setup_tx_rings(vsi); 6959 if (err) 6960 goto err_setup_tx; 6961 6962 err = ice_vsi_setup_rx_rings(vsi); 6963 if (err) 6964 goto err_setup_rx; 6965 6966 err = ice_vsi_cfg(vsi); 6967 if (err) 6968 goto err_setup_rx; 6969 6970 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6971 dev_driver_string(dev), dev_name(dev)); 6972 err = ice_vsi_req_irq_msix(vsi, int_name); 6973 if (err) 6974 goto err_setup_rx; 6975 6976 ice_vsi_cfg_msix(vsi); 6977 6978 err = ice_vsi_start_all_rx_rings(vsi); 6979 if (err) 6980 goto err_up_complete; 6981 6982 clear_bit(ICE_VSI_DOWN, vsi->state); 6983 ice_vsi_ena_irq(vsi); 6984 6985 return 0; 6986 6987 err_up_complete: 6988 ice_down(vsi); 6989 err_setup_rx: 6990 ice_vsi_free_rx_rings(vsi); 6991 err_setup_tx: 6992 ice_vsi_free_tx_rings(vsi); 6993 6994 return err; 6995 } 6996 6997 /** 6998 * ice_vsi_open - Called when a network interface is made active 6999 * @vsi: the VSI to open 7000 * 7001 * Initialization of the VSI 7002 * 7003 * Returns 0 on success, negative value on error 7004 */ 7005 int ice_vsi_open(struct ice_vsi *vsi) 7006 { 7007 char int_name[ICE_INT_NAME_STR_LEN]; 7008 struct ice_pf *pf = vsi->back; 7009 int err; 7010 7011 /* allocate descriptors */ 7012 err = ice_vsi_setup_tx_rings(vsi); 7013 if (err) 7014 goto err_setup_tx; 7015 7016 err = ice_vsi_setup_rx_rings(vsi); 7017 if (err) 7018 goto err_setup_rx; 7019 7020 err = ice_vsi_cfg(vsi); 7021 if (err) 7022 goto err_setup_rx; 7023 7024 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7025 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7026 err = ice_vsi_req_irq_msix(vsi, int_name); 7027 if (err) 7028 goto err_setup_rx; 7029 7030 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7031 7032 if (vsi->type == ICE_VSI_PF) { 7033 /* Notify the stack of the actual queue counts. */ 7034 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7035 if (err) 7036 goto err_set_qs; 7037 7038 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7039 if (err) 7040 goto err_set_qs; 7041 } 7042 7043 err = ice_up_complete(vsi); 7044 if (err) 7045 goto err_up_complete; 7046 7047 return 0; 7048 7049 err_up_complete: 7050 ice_down(vsi); 7051 err_set_qs: 7052 ice_vsi_free_irq(vsi); 7053 err_setup_rx: 7054 ice_vsi_free_rx_rings(vsi); 7055 err_setup_tx: 7056 ice_vsi_free_tx_rings(vsi); 7057 7058 return err; 7059 } 7060 7061 /** 7062 * ice_vsi_release_all - Delete all VSIs 7063 * @pf: PF from which all VSIs are being removed 7064 */ 7065 static void ice_vsi_release_all(struct ice_pf *pf) 7066 { 7067 int err, i; 7068 7069 if (!pf->vsi) 7070 return; 7071 7072 ice_for_each_vsi(pf, i) { 7073 if (!pf->vsi[i]) 7074 continue; 7075 7076 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7077 continue; 7078 7079 err = ice_vsi_release(pf->vsi[i]); 7080 if (err) 7081 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7082 i, err, pf->vsi[i]->vsi_num); 7083 } 7084 } 7085 7086 /** 7087 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7088 * @pf: pointer to the PF instance 7089 * @type: VSI type to rebuild 7090 * 7091 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7092 */ 7093 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7094 { 7095 struct device *dev = ice_pf_to_dev(pf); 7096 int i, err; 7097 7098 ice_for_each_vsi(pf, i) { 7099 struct ice_vsi *vsi = pf->vsi[i]; 7100 7101 if (!vsi || vsi->type != type) 7102 continue; 7103 7104 /* rebuild the VSI */ 7105 err = ice_vsi_rebuild(vsi, true); 7106 if (err) { 7107 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7108 err, vsi->idx, ice_vsi_type_str(type)); 7109 return err; 7110 } 7111 7112 /* replay filters for the VSI */ 7113 err = ice_replay_vsi(&pf->hw, vsi->idx); 7114 if (err) { 7115 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7116 err, vsi->idx, ice_vsi_type_str(type)); 7117 return err; 7118 } 7119 7120 /* Re-map HW VSI number, using VSI handle that has been 7121 * previously validated in ice_replay_vsi() call above 7122 */ 7123 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7124 7125 /* enable the VSI */ 7126 err = ice_ena_vsi(vsi, false); 7127 if (err) { 7128 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7129 err, vsi->idx, ice_vsi_type_str(type)); 7130 return err; 7131 } 7132 7133 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7134 ice_vsi_type_str(type)); 7135 } 7136 7137 return 0; 7138 } 7139 7140 /** 7141 * ice_update_pf_netdev_link - Update PF netdev link status 7142 * @pf: pointer to the PF instance 7143 */ 7144 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7145 { 7146 bool link_up; 7147 int i; 7148 7149 ice_for_each_vsi(pf, i) { 7150 struct ice_vsi *vsi = pf->vsi[i]; 7151 7152 if (!vsi || vsi->type != ICE_VSI_PF) 7153 return; 7154 7155 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7156 if (link_up) { 7157 netif_carrier_on(pf->vsi[i]->netdev); 7158 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7159 } else { 7160 netif_carrier_off(pf->vsi[i]->netdev); 7161 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7162 } 7163 } 7164 } 7165 7166 /** 7167 * ice_rebuild - rebuild after reset 7168 * @pf: PF to rebuild 7169 * @reset_type: type of reset 7170 * 7171 * Do not rebuild VF VSI in this flow because that is already handled via 7172 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7173 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7174 * to reset/rebuild all the VF VSI twice. 7175 */ 7176 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7177 { 7178 struct device *dev = ice_pf_to_dev(pf); 7179 struct ice_hw *hw = &pf->hw; 7180 bool dvm; 7181 int err; 7182 7183 if (test_bit(ICE_DOWN, pf->state)) 7184 goto clear_recovery; 7185 7186 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7187 7188 #define ICE_EMP_RESET_SLEEP_MS 5000 7189 if (reset_type == ICE_RESET_EMPR) { 7190 /* If an EMP reset has occurred, any previously pending flash 7191 * update will have completed. We no longer know whether or 7192 * not the NVM update EMP reset is restricted. 7193 */ 7194 pf->fw_emp_reset_disabled = false; 7195 7196 msleep(ICE_EMP_RESET_SLEEP_MS); 7197 } 7198 7199 err = ice_init_all_ctrlq(hw); 7200 if (err) { 7201 dev_err(dev, "control queues init failed %d\n", err); 7202 goto err_init_ctrlq; 7203 } 7204 7205 /* if DDP was previously loaded successfully */ 7206 if (!ice_is_safe_mode(pf)) { 7207 /* reload the SW DB of filter tables */ 7208 if (reset_type == ICE_RESET_PFR) 7209 ice_fill_blk_tbls(hw); 7210 else 7211 /* Reload DDP Package after CORER/GLOBR reset */ 7212 ice_load_pkg(NULL, pf); 7213 } 7214 7215 err = ice_clear_pf_cfg(hw); 7216 if (err) { 7217 dev_err(dev, "clear PF configuration failed %d\n", err); 7218 goto err_init_ctrlq; 7219 } 7220 7221 ice_clear_pxe_mode(hw); 7222 7223 err = ice_init_nvm(hw); 7224 if (err) { 7225 dev_err(dev, "ice_init_nvm failed %d\n", err); 7226 goto err_init_ctrlq; 7227 } 7228 7229 err = ice_get_caps(hw); 7230 if (err) { 7231 dev_err(dev, "ice_get_caps failed %d\n", err); 7232 goto err_init_ctrlq; 7233 } 7234 7235 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7236 if (err) { 7237 dev_err(dev, "set_mac_cfg failed %d\n", err); 7238 goto err_init_ctrlq; 7239 } 7240 7241 dvm = ice_is_dvm_ena(hw); 7242 7243 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7244 if (err) 7245 goto err_init_ctrlq; 7246 7247 err = ice_sched_init_port(hw->port_info); 7248 if (err) 7249 goto err_sched_init_port; 7250 7251 /* start misc vector */ 7252 err = ice_req_irq_msix_misc(pf); 7253 if (err) { 7254 dev_err(dev, "misc vector setup failed: %d\n", err); 7255 goto err_sched_init_port; 7256 } 7257 7258 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7259 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7260 if (!rd32(hw, PFQF_FD_SIZE)) { 7261 u16 unused, guar, b_effort; 7262 7263 guar = hw->func_caps.fd_fltr_guar; 7264 b_effort = hw->func_caps.fd_fltr_best_effort; 7265 7266 /* force guaranteed filter pool for PF */ 7267 ice_alloc_fd_guar_item(hw, &unused, guar); 7268 /* force shared filter pool for PF */ 7269 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7270 } 7271 } 7272 7273 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7274 ice_dcb_rebuild(pf); 7275 7276 /* If the PF previously had enabled PTP, PTP init needs to happen before 7277 * the VSI rebuild. If not, this causes the PTP link status events to 7278 * fail. 7279 */ 7280 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7281 ice_ptp_reset(pf); 7282 7283 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7284 ice_gnss_init(pf); 7285 7286 /* rebuild PF VSI */ 7287 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7288 if (err) { 7289 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7290 goto err_vsi_rebuild; 7291 } 7292 7293 /* configure PTP timestamping after VSI rebuild */ 7294 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7295 ice_ptp_cfg_timestamp(pf, false); 7296 7297 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7298 if (err) { 7299 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7300 goto err_vsi_rebuild; 7301 } 7302 7303 if (reset_type == ICE_RESET_PFR) { 7304 err = ice_rebuild_channels(pf); 7305 if (err) { 7306 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7307 err); 7308 goto err_vsi_rebuild; 7309 } 7310 } 7311 7312 /* If Flow Director is active */ 7313 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7314 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7315 if (err) { 7316 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7317 goto err_vsi_rebuild; 7318 } 7319 7320 /* replay HW Flow Director recipes */ 7321 if (hw->fdir_prof) 7322 ice_fdir_replay_flows(hw); 7323 7324 /* replay Flow Director filters */ 7325 ice_fdir_replay_fltrs(pf); 7326 7327 ice_rebuild_arfs(pf); 7328 } 7329 7330 ice_update_pf_netdev_link(pf); 7331 7332 /* tell the firmware we are up */ 7333 err = ice_send_version(pf); 7334 if (err) { 7335 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7336 err); 7337 goto err_vsi_rebuild; 7338 } 7339 7340 ice_replay_post(hw); 7341 7342 /* if we get here, reset flow is successful */ 7343 clear_bit(ICE_RESET_FAILED, pf->state); 7344 7345 ice_plug_aux_dev(pf); 7346 return; 7347 7348 err_vsi_rebuild: 7349 err_sched_init_port: 7350 ice_sched_cleanup_all(hw); 7351 err_init_ctrlq: 7352 ice_shutdown_all_ctrlq(hw); 7353 set_bit(ICE_RESET_FAILED, pf->state); 7354 clear_recovery: 7355 /* set this bit in PF state to control service task scheduling */ 7356 set_bit(ICE_NEEDS_RESTART, pf->state); 7357 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7358 } 7359 7360 /** 7361 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7362 * @vsi: Pointer to VSI structure 7363 */ 7364 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7365 { 7366 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7367 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7368 else 7369 return ICE_RXBUF_3072; 7370 } 7371 7372 /** 7373 * ice_change_mtu - NDO callback to change the MTU 7374 * @netdev: network interface device structure 7375 * @new_mtu: new value for maximum frame size 7376 * 7377 * Returns 0 on success, negative on failure 7378 */ 7379 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7380 { 7381 struct ice_netdev_priv *np = netdev_priv(netdev); 7382 struct ice_vsi *vsi = np->vsi; 7383 struct ice_pf *pf = vsi->back; 7384 u8 count = 0; 7385 int err = 0; 7386 7387 if (new_mtu == (int)netdev->mtu) { 7388 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7389 return 0; 7390 } 7391 7392 if (ice_is_xdp_ena_vsi(vsi)) { 7393 int frame_size = ice_max_xdp_frame_size(vsi); 7394 7395 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7396 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7397 frame_size - ICE_ETH_PKT_HDR_PAD); 7398 return -EINVAL; 7399 } 7400 } 7401 7402 /* if a reset is in progress, wait for some time for it to complete */ 7403 do { 7404 if (ice_is_reset_in_progress(pf->state)) { 7405 count++; 7406 usleep_range(1000, 2000); 7407 } else { 7408 break; 7409 } 7410 7411 } while (count < 100); 7412 7413 if (count == 100) { 7414 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7415 return -EBUSY; 7416 } 7417 7418 netdev->mtu = (unsigned int)new_mtu; 7419 7420 /* if VSI is up, bring it down and then back up */ 7421 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7422 err = ice_down(vsi); 7423 if (err) { 7424 netdev_err(netdev, "change MTU if_down err %d\n", err); 7425 return err; 7426 } 7427 7428 err = ice_up(vsi); 7429 if (err) { 7430 netdev_err(netdev, "change MTU if_up err %d\n", err); 7431 return err; 7432 } 7433 } 7434 7435 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7436 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7437 7438 return err; 7439 } 7440 7441 /** 7442 * ice_eth_ioctl - Access the hwtstamp interface 7443 * @netdev: network interface device structure 7444 * @ifr: interface request data 7445 * @cmd: ioctl command 7446 */ 7447 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7448 { 7449 struct ice_netdev_priv *np = netdev_priv(netdev); 7450 struct ice_pf *pf = np->vsi->back; 7451 7452 switch (cmd) { 7453 case SIOCGHWTSTAMP: 7454 return ice_ptp_get_ts_config(pf, ifr); 7455 case SIOCSHWTSTAMP: 7456 return ice_ptp_set_ts_config(pf, ifr); 7457 default: 7458 return -EOPNOTSUPP; 7459 } 7460 } 7461 7462 /** 7463 * ice_aq_str - convert AQ err code to a string 7464 * @aq_err: the AQ error code to convert 7465 */ 7466 const char *ice_aq_str(enum ice_aq_err aq_err) 7467 { 7468 switch (aq_err) { 7469 case ICE_AQ_RC_OK: 7470 return "OK"; 7471 case ICE_AQ_RC_EPERM: 7472 return "ICE_AQ_RC_EPERM"; 7473 case ICE_AQ_RC_ENOENT: 7474 return "ICE_AQ_RC_ENOENT"; 7475 case ICE_AQ_RC_ENOMEM: 7476 return "ICE_AQ_RC_ENOMEM"; 7477 case ICE_AQ_RC_EBUSY: 7478 return "ICE_AQ_RC_EBUSY"; 7479 case ICE_AQ_RC_EEXIST: 7480 return "ICE_AQ_RC_EEXIST"; 7481 case ICE_AQ_RC_EINVAL: 7482 return "ICE_AQ_RC_EINVAL"; 7483 case ICE_AQ_RC_ENOSPC: 7484 return "ICE_AQ_RC_ENOSPC"; 7485 case ICE_AQ_RC_ENOSYS: 7486 return "ICE_AQ_RC_ENOSYS"; 7487 case ICE_AQ_RC_EMODE: 7488 return "ICE_AQ_RC_EMODE"; 7489 case ICE_AQ_RC_ENOSEC: 7490 return "ICE_AQ_RC_ENOSEC"; 7491 case ICE_AQ_RC_EBADSIG: 7492 return "ICE_AQ_RC_EBADSIG"; 7493 case ICE_AQ_RC_ESVN: 7494 return "ICE_AQ_RC_ESVN"; 7495 case ICE_AQ_RC_EBADMAN: 7496 return "ICE_AQ_RC_EBADMAN"; 7497 case ICE_AQ_RC_EBADBUF: 7498 return "ICE_AQ_RC_EBADBUF"; 7499 } 7500 7501 return "ICE_AQ_RC_UNKNOWN"; 7502 } 7503 7504 /** 7505 * ice_set_rss_lut - Set RSS LUT 7506 * @vsi: Pointer to VSI structure 7507 * @lut: Lookup table 7508 * @lut_size: Lookup table size 7509 * 7510 * Returns 0 on success, negative on failure 7511 */ 7512 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7513 { 7514 struct ice_aq_get_set_rss_lut_params params = {}; 7515 struct ice_hw *hw = &vsi->back->hw; 7516 int status; 7517 7518 if (!lut) 7519 return -EINVAL; 7520 7521 params.vsi_handle = vsi->idx; 7522 params.lut_size = lut_size; 7523 params.lut_type = vsi->rss_lut_type; 7524 params.lut = lut; 7525 7526 status = ice_aq_set_rss_lut(hw, ¶ms); 7527 if (status) 7528 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7529 status, ice_aq_str(hw->adminq.sq_last_status)); 7530 7531 return status; 7532 } 7533 7534 /** 7535 * ice_set_rss_key - Set RSS key 7536 * @vsi: Pointer to the VSI structure 7537 * @seed: RSS hash seed 7538 * 7539 * Returns 0 on success, negative on failure 7540 */ 7541 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7542 { 7543 struct ice_hw *hw = &vsi->back->hw; 7544 int status; 7545 7546 if (!seed) 7547 return -EINVAL; 7548 7549 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7550 if (status) 7551 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7552 status, ice_aq_str(hw->adminq.sq_last_status)); 7553 7554 return status; 7555 } 7556 7557 /** 7558 * ice_get_rss_lut - Get RSS LUT 7559 * @vsi: Pointer to VSI structure 7560 * @lut: Buffer to store the lookup table entries 7561 * @lut_size: Size of buffer to store the lookup table entries 7562 * 7563 * Returns 0 on success, negative on failure 7564 */ 7565 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7566 { 7567 struct ice_aq_get_set_rss_lut_params params = {}; 7568 struct ice_hw *hw = &vsi->back->hw; 7569 int status; 7570 7571 if (!lut) 7572 return -EINVAL; 7573 7574 params.vsi_handle = vsi->idx; 7575 params.lut_size = lut_size; 7576 params.lut_type = vsi->rss_lut_type; 7577 params.lut = lut; 7578 7579 status = ice_aq_get_rss_lut(hw, ¶ms); 7580 if (status) 7581 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7582 status, ice_aq_str(hw->adminq.sq_last_status)); 7583 7584 return status; 7585 } 7586 7587 /** 7588 * ice_get_rss_key - Get RSS key 7589 * @vsi: Pointer to VSI structure 7590 * @seed: Buffer to store the key in 7591 * 7592 * Returns 0 on success, negative on failure 7593 */ 7594 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7595 { 7596 struct ice_hw *hw = &vsi->back->hw; 7597 int status; 7598 7599 if (!seed) 7600 return -EINVAL; 7601 7602 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7603 if (status) 7604 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7605 status, ice_aq_str(hw->adminq.sq_last_status)); 7606 7607 return status; 7608 } 7609 7610 /** 7611 * ice_bridge_getlink - Get the hardware bridge mode 7612 * @skb: skb buff 7613 * @pid: process ID 7614 * @seq: RTNL message seq 7615 * @dev: the netdev being configured 7616 * @filter_mask: filter mask passed in 7617 * @nlflags: netlink flags passed in 7618 * 7619 * Return the bridge mode (VEB/VEPA) 7620 */ 7621 static int 7622 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7623 struct net_device *dev, u32 filter_mask, int nlflags) 7624 { 7625 struct ice_netdev_priv *np = netdev_priv(dev); 7626 struct ice_vsi *vsi = np->vsi; 7627 struct ice_pf *pf = vsi->back; 7628 u16 bmode; 7629 7630 bmode = pf->first_sw->bridge_mode; 7631 7632 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7633 filter_mask, NULL); 7634 } 7635 7636 /** 7637 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7638 * @vsi: Pointer to VSI structure 7639 * @bmode: Hardware bridge mode (VEB/VEPA) 7640 * 7641 * Returns 0 on success, negative on failure 7642 */ 7643 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7644 { 7645 struct ice_aqc_vsi_props *vsi_props; 7646 struct ice_hw *hw = &vsi->back->hw; 7647 struct ice_vsi_ctx *ctxt; 7648 int ret; 7649 7650 vsi_props = &vsi->info; 7651 7652 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7653 if (!ctxt) 7654 return -ENOMEM; 7655 7656 ctxt->info = vsi->info; 7657 7658 if (bmode == BRIDGE_MODE_VEB) 7659 /* change from VEPA to VEB mode */ 7660 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7661 else 7662 /* change from VEB to VEPA mode */ 7663 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7664 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7665 7666 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7667 if (ret) { 7668 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7669 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7670 goto out; 7671 } 7672 /* Update sw flags for book keeping */ 7673 vsi_props->sw_flags = ctxt->info.sw_flags; 7674 7675 out: 7676 kfree(ctxt); 7677 return ret; 7678 } 7679 7680 /** 7681 * ice_bridge_setlink - Set the hardware bridge mode 7682 * @dev: the netdev being configured 7683 * @nlh: RTNL message 7684 * @flags: bridge setlink flags 7685 * @extack: netlink extended ack 7686 * 7687 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7688 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7689 * not already set for all VSIs connected to this switch. And also update the 7690 * unicast switch filter rules for the corresponding switch of the netdev. 7691 */ 7692 static int 7693 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7694 u16 __always_unused flags, 7695 struct netlink_ext_ack __always_unused *extack) 7696 { 7697 struct ice_netdev_priv *np = netdev_priv(dev); 7698 struct ice_pf *pf = np->vsi->back; 7699 struct nlattr *attr, *br_spec; 7700 struct ice_hw *hw = &pf->hw; 7701 struct ice_sw *pf_sw; 7702 int rem, v, err = 0; 7703 7704 pf_sw = pf->first_sw; 7705 /* find the attribute in the netlink message */ 7706 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7707 7708 nla_for_each_nested(attr, br_spec, rem) { 7709 __u16 mode; 7710 7711 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7712 continue; 7713 mode = nla_get_u16(attr); 7714 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7715 return -EINVAL; 7716 /* Continue if bridge mode is not being flipped */ 7717 if (mode == pf_sw->bridge_mode) 7718 continue; 7719 /* Iterates through the PF VSI list and update the loopback 7720 * mode of the VSI 7721 */ 7722 ice_for_each_vsi(pf, v) { 7723 if (!pf->vsi[v]) 7724 continue; 7725 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7726 if (err) 7727 return err; 7728 } 7729 7730 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7731 /* Update the unicast switch filter rules for the corresponding 7732 * switch of the netdev 7733 */ 7734 err = ice_update_sw_rule_bridge_mode(hw); 7735 if (err) { 7736 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7737 mode, err, 7738 ice_aq_str(hw->adminq.sq_last_status)); 7739 /* revert hw->evb_veb */ 7740 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7741 return err; 7742 } 7743 7744 pf_sw->bridge_mode = mode; 7745 } 7746 7747 return 0; 7748 } 7749 7750 /** 7751 * ice_tx_timeout - Respond to a Tx Hang 7752 * @netdev: network interface device structure 7753 * @txqueue: Tx queue 7754 */ 7755 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7756 { 7757 struct ice_netdev_priv *np = netdev_priv(netdev); 7758 struct ice_tx_ring *tx_ring = NULL; 7759 struct ice_vsi *vsi = np->vsi; 7760 struct ice_pf *pf = vsi->back; 7761 u32 i; 7762 7763 pf->tx_timeout_count++; 7764 7765 /* Check if PFC is enabled for the TC to which the queue belongs 7766 * to. If yes then Tx timeout is not caused by a hung queue, no 7767 * need to reset and rebuild 7768 */ 7769 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7770 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7771 txqueue); 7772 return; 7773 } 7774 7775 /* now that we have an index, find the tx_ring struct */ 7776 ice_for_each_txq(vsi, i) 7777 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7778 if (txqueue == vsi->tx_rings[i]->q_index) { 7779 tx_ring = vsi->tx_rings[i]; 7780 break; 7781 } 7782 7783 /* Reset recovery level if enough time has elapsed after last timeout. 7784 * Also ensure no new reset action happens before next timeout period. 7785 */ 7786 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7787 pf->tx_timeout_recovery_level = 1; 7788 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7789 netdev->watchdog_timeo))) 7790 return; 7791 7792 if (tx_ring) { 7793 struct ice_hw *hw = &pf->hw; 7794 u32 head, val = 0; 7795 7796 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7797 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7798 /* Read interrupt register */ 7799 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7800 7801 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7802 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7803 head, tx_ring->next_to_use, val); 7804 } 7805 7806 pf->tx_timeout_last_recovery = jiffies; 7807 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7808 pf->tx_timeout_recovery_level, txqueue); 7809 7810 switch (pf->tx_timeout_recovery_level) { 7811 case 1: 7812 set_bit(ICE_PFR_REQ, pf->state); 7813 break; 7814 case 2: 7815 set_bit(ICE_CORER_REQ, pf->state); 7816 break; 7817 case 3: 7818 set_bit(ICE_GLOBR_REQ, pf->state); 7819 break; 7820 default: 7821 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7822 set_bit(ICE_DOWN, pf->state); 7823 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7824 set_bit(ICE_SERVICE_DIS, pf->state); 7825 break; 7826 } 7827 7828 ice_service_task_schedule(pf); 7829 pf->tx_timeout_recovery_level++; 7830 } 7831 7832 /** 7833 * ice_setup_tc_cls_flower - flower classifier offloads 7834 * @np: net device to configure 7835 * @filter_dev: device on which filter is added 7836 * @cls_flower: offload data 7837 */ 7838 static int 7839 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7840 struct net_device *filter_dev, 7841 struct flow_cls_offload *cls_flower) 7842 { 7843 struct ice_vsi *vsi = np->vsi; 7844 7845 if (cls_flower->common.chain_index) 7846 return -EOPNOTSUPP; 7847 7848 switch (cls_flower->command) { 7849 case FLOW_CLS_REPLACE: 7850 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7851 case FLOW_CLS_DESTROY: 7852 return ice_del_cls_flower(vsi, cls_flower); 7853 default: 7854 return -EINVAL; 7855 } 7856 } 7857 7858 /** 7859 * ice_setup_tc_block_cb - callback handler registered for TC block 7860 * @type: TC SETUP type 7861 * @type_data: TC flower offload data that contains user input 7862 * @cb_priv: netdev private data 7863 */ 7864 static int 7865 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7866 { 7867 struct ice_netdev_priv *np = cb_priv; 7868 7869 switch (type) { 7870 case TC_SETUP_CLSFLOWER: 7871 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7872 type_data); 7873 default: 7874 return -EOPNOTSUPP; 7875 } 7876 } 7877 7878 /** 7879 * ice_validate_mqprio_qopt - Validate TCF input parameters 7880 * @vsi: Pointer to VSI 7881 * @mqprio_qopt: input parameters for mqprio queue configuration 7882 * 7883 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7884 * needed), and make sure user doesn't specify qcount and BW rate limit 7885 * for TCs, which are more than "num_tc" 7886 */ 7887 static int 7888 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7889 struct tc_mqprio_qopt_offload *mqprio_qopt) 7890 { 7891 u64 sum_max_rate = 0, sum_min_rate = 0; 7892 int non_power_of_2_qcount = 0; 7893 struct ice_pf *pf = vsi->back; 7894 int max_rss_q_cnt = 0; 7895 struct device *dev; 7896 int i, speed; 7897 u8 num_tc; 7898 7899 if (vsi->type != ICE_VSI_PF) 7900 return -EINVAL; 7901 7902 if (mqprio_qopt->qopt.offset[0] != 0 || 7903 mqprio_qopt->qopt.num_tc < 1 || 7904 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7905 return -EINVAL; 7906 7907 dev = ice_pf_to_dev(pf); 7908 vsi->ch_rss_size = 0; 7909 num_tc = mqprio_qopt->qopt.num_tc; 7910 7911 for (i = 0; num_tc; i++) { 7912 int qcount = mqprio_qopt->qopt.count[i]; 7913 u64 max_rate, min_rate, rem; 7914 7915 if (!qcount) 7916 return -EINVAL; 7917 7918 if (is_power_of_2(qcount)) { 7919 if (non_power_of_2_qcount && 7920 qcount > non_power_of_2_qcount) { 7921 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7922 qcount, non_power_of_2_qcount); 7923 return -EINVAL; 7924 } 7925 if (qcount > max_rss_q_cnt) 7926 max_rss_q_cnt = qcount; 7927 } else { 7928 if (non_power_of_2_qcount && 7929 qcount != non_power_of_2_qcount) { 7930 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7931 qcount, non_power_of_2_qcount); 7932 return -EINVAL; 7933 } 7934 if (qcount < max_rss_q_cnt) { 7935 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7936 qcount, max_rss_q_cnt); 7937 return -EINVAL; 7938 } 7939 max_rss_q_cnt = qcount; 7940 non_power_of_2_qcount = qcount; 7941 } 7942 7943 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7944 * converts the bandwidth rate limit into Bytes/s when 7945 * passing it down to the driver. So convert input bandwidth 7946 * from Bytes/s to Kbps 7947 */ 7948 max_rate = mqprio_qopt->max_rate[i]; 7949 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7950 sum_max_rate += max_rate; 7951 7952 /* min_rate is minimum guaranteed rate and it can't be zero */ 7953 min_rate = mqprio_qopt->min_rate[i]; 7954 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7955 sum_min_rate += min_rate; 7956 7957 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7958 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7959 min_rate, ICE_MIN_BW_LIMIT); 7960 return -EINVAL; 7961 } 7962 7963 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7964 if (rem) { 7965 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7966 i, ICE_MIN_BW_LIMIT); 7967 return -EINVAL; 7968 } 7969 7970 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7971 if (rem) { 7972 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7973 i, ICE_MIN_BW_LIMIT); 7974 return -EINVAL; 7975 } 7976 7977 /* min_rate can't be more than max_rate, except when max_rate 7978 * is zero (implies max_rate sought is max line rate). In such 7979 * a case min_rate can be more than max. 7980 */ 7981 if (max_rate && min_rate > max_rate) { 7982 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7983 min_rate, max_rate); 7984 return -EINVAL; 7985 } 7986 7987 if (i >= mqprio_qopt->qopt.num_tc - 1) 7988 break; 7989 if (mqprio_qopt->qopt.offset[i + 1] != 7990 (mqprio_qopt->qopt.offset[i] + qcount)) 7991 return -EINVAL; 7992 } 7993 if (vsi->num_rxq < 7994 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7995 return -EINVAL; 7996 if (vsi->num_txq < 7997 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7998 return -EINVAL; 7999 8000 speed = ice_get_link_speed_kbps(vsi); 8001 if (sum_max_rate && sum_max_rate > (u64)speed) { 8002 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 8003 sum_max_rate, speed); 8004 return -EINVAL; 8005 } 8006 if (sum_min_rate && sum_min_rate > (u64)speed) { 8007 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8008 sum_min_rate, speed); 8009 return -EINVAL; 8010 } 8011 8012 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8013 vsi->ch_rss_size = max_rss_q_cnt; 8014 8015 return 0; 8016 } 8017 8018 /** 8019 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8020 * @pf: ptr to PF device 8021 * @vsi: ptr to VSI 8022 */ 8023 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8024 { 8025 struct device *dev = ice_pf_to_dev(pf); 8026 bool added = false; 8027 struct ice_hw *hw; 8028 int flow; 8029 8030 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8031 return -EINVAL; 8032 8033 hw = &pf->hw; 8034 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8035 struct ice_fd_hw_prof *prof; 8036 int tun, status; 8037 u64 entry_h; 8038 8039 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8040 hw->fdir_prof[flow]->cnt)) 8041 continue; 8042 8043 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8044 enum ice_flow_priority prio; 8045 u64 prof_id; 8046 8047 /* add this VSI to FDir profile for this flow */ 8048 prio = ICE_FLOW_PRIO_NORMAL; 8049 prof = hw->fdir_prof[flow]; 8050 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8051 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8052 prof->vsi_h[0], vsi->idx, 8053 prio, prof->fdir_seg[tun], 8054 &entry_h); 8055 if (status) { 8056 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8057 vsi->idx, flow); 8058 continue; 8059 } 8060 8061 prof->entry_h[prof->cnt][tun] = entry_h; 8062 } 8063 8064 /* store VSI for filter replay and delete */ 8065 prof->vsi_h[prof->cnt] = vsi->idx; 8066 prof->cnt++; 8067 8068 added = true; 8069 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8070 flow); 8071 } 8072 8073 if (!added) 8074 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8075 8076 return 0; 8077 } 8078 8079 /** 8080 * ice_add_channel - add a channel by adding VSI 8081 * @pf: ptr to PF device 8082 * @sw_id: underlying HW switching element ID 8083 * @ch: ptr to channel structure 8084 * 8085 * Add a channel (VSI) using add_vsi and queue_map 8086 */ 8087 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8088 { 8089 struct device *dev = ice_pf_to_dev(pf); 8090 struct ice_vsi *vsi; 8091 8092 if (ch->type != ICE_VSI_CHNL) { 8093 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8094 return -EINVAL; 8095 } 8096 8097 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8098 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8099 dev_err(dev, "create chnl VSI failure\n"); 8100 return -EINVAL; 8101 } 8102 8103 ice_add_vsi_to_fdir(pf, vsi); 8104 8105 ch->sw_id = sw_id; 8106 ch->vsi_num = vsi->vsi_num; 8107 ch->info.mapping_flags = vsi->info.mapping_flags; 8108 ch->ch_vsi = vsi; 8109 /* set the back pointer of channel for newly created VSI */ 8110 vsi->ch = ch; 8111 8112 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8113 sizeof(vsi->info.q_mapping)); 8114 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8115 sizeof(vsi->info.tc_mapping)); 8116 8117 return 0; 8118 } 8119 8120 /** 8121 * ice_chnl_cfg_res 8122 * @vsi: the VSI being setup 8123 * @ch: ptr to channel structure 8124 * 8125 * Configure channel specific resources such as rings, vector. 8126 */ 8127 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8128 { 8129 int i; 8130 8131 for (i = 0; i < ch->num_txq; i++) { 8132 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8133 struct ice_ring_container *rc; 8134 struct ice_tx_ring *tx_ring; 8135 struct ice_rx_ring *rx_ring; 8136 8137 tx_ring = vsi->tx_rings[ch->base_q + i]; 8138 rx_ring = vsi->rx_rings[ch->base_q + i]; 8139 if (!tx_ring || !rx_ring) 8140 continue; 8141 8142 /* setup ring being channel enabled */ 8143 tx_ring->ch = ch; 8144 rx_ring->ch = ch; 8145 8146 /* following code block sets up vector specific attributes */ 8147 tx_q_vector = tx_ring->q_vector; 8148 rx_q_vector = rx_ring->q_vector; 8149 if (!tx_q_vector && !rx_q_vector) 8150 continue; 8151 8152 if (tx_q_vector) { 8153 tx_q_vector->ch = ch; 8154 /* setup Tx and Rx ITR setting if DIM is off */ 8155 rc = &tx_q_vector->tx; 8156 if (!ITR_IS_DYNAMIC(rc)) 8157 ice_write_itr(rc, rc->itr_setting); 8158 } 8159 if (rx_q_vector) { 8160 rx_q_vector->ch = ch; 8161 /* setup Tx and Rx ITR setting if DIM is off */ 8162 rc = &rx_q_vector->rx; 8163 if (!ITR_IS_DYNAMIC(rc)) 8164 ice_write_itr(rc, rc->itr_setting); 8165 } 8166 } 8167 8168 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8169 * GLINT_ITR register would have written to perform in-context 8170 * update, hence perform flush 8171 */ 8172 if (ch->num_txq || ch->num_rxq) 8173 ice_flush(&vsi->back->hw); 8174 } 8175 8176 /** 8177 * ice_cfg_chnl_all_res - configure channel resources 8178 * @vsi: pte to main_vsi 8179 * @ch: ptr to channel structure 8180 * 8181 * This function configures channel specific resources such as flow-director 8182 * counter index, and other resources such as queues, vectors, ITR settings 8183 */ 8184 static void 8185 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8186 { 8187 /* configure channel (aka ADQ) resources such as queues, vectors, 8188 * ITR settings for channel specific vectors and anything else 8189 */ 8190 ice_chnl_cfg_res(vsi, ch); 8191 } 8192 8193 /** 8194 * ice_setup_hw_channel - setup new channel 8195 * @pf: ptr to PF device 8196 * @vsi: the VSI being setup 8197 * @ch: ptr to channel structure 8198 * @sw_id: underlying HW switching element ID 8199 * @type: type of channel to be created (VMDq2/VF) 8200 * 8201 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8202 * and configures Tx rings accordingly 8203 */ 8204 static int 8205 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8206 struct ice_channel *ch, u16 sw_id, u8 type) 8207 { 8208 struct device *dev = ice_pf_to_dev(pf); 8209 int ret; 8210 8211 ch->base_q = vsi->next_base_q; 8212 ch->type = type; 8213 8214 ret = ice_add_channel(pf, sw_id, ch); 8215 if (ret) { 8216 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8217 return ret; 8218 } 8219 8220 /* configure/setup ADQ specific resources */ 8221 ice_cfg_chnl_all_res(vsi, ch); 8222 8223 /* make sure to update the next_base_q so that subsequent channel's 8224 * (aka ADQ) VSI queue map is correct 8225 */ 8226 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8227 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8228 ch->num_rxq); 8229 8230 return 0; 8231 } 8232 8233 /** 8234 * ice_setup_channel - setup new channel using uplink element 8235 * @pf: ptr to PF device 8236 * @vsi: the VSI being setup 8237 * @ch: ptr to channel structure 8238 * 8239 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8240 * and uplink switching element 8241 */ 8242 static bool 8243 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8244 struct ice_channel *ch) 8245 { 8246 struct device *dev = ice_pf_to_dev(pf); 8247 u16 sw_id; 8248 int ret; 8249 8250 if (vsi->type != ICE_VSI_PF) { 8251 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8252 return false; 8253 } 8254 8255 sw_id = pf->first_sw->sw_id; 8256 8257 /* create channel (VSI) */ 8258 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8259 if (ret) { 8260 dev_err(dev, "failed to setup hw_channel\n"); 8261 return false; 8262 } 8263 dev_dbg(dev, "successfully created channel()\n"); 8264 8265 return ch->ch_vsi ? true : false; 8266 } 8267 8268 /** 8269 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8270 * @vsi: VSI to be configured 8271 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8272 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8273 */ 8274 static int 8275 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8276 { 8277 int err; 8278 8279 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8280 if (err) 8281 return err; 8282 8283 return ice_set_max_bw_limit(vsi, max_tx_rate); 8284 } 8285 8286 /** 8287 * ice_create_q_channel - function to create channel 8288 * @vsi: VSI to be configured 8289 * @ch: ptr to channel (it contains channel specific params) 8290 * 8291 * This function creates channel (VSI) using num_queues specified by user, 8292 * reconfigs RSS if needed. 8293 */ 8294 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8295 { 8296 struct ice_pf *pf = vsi->back; 8297 struct device *dev; 8298 8299 if (!ch) 8300 return -EINVAL; 8301 8302 dev = ice_pf_to_dev(pf); 8303 if (!ch->num_txq || !ch->num_rxq) { 8304 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8305 return -EINVAL; 8306 } 8307 8308 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8309 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8310 vsi->cnt_q_avail, ch->num_txq); 8311 return -EINVAL; 8312 } 8313 8314 if (!ice_setup_channel(pf, vsi, ch)) { 8315 dev_info(dev, "Failed to setup channel\n"); 8316 return -EINVAL; 8317 } 8318 /* configure BW rate limit */ 8319 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8320 int ret; 8321 8322 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8323 ch->min_tx_rate); 8324 if (ret) 8325 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8326 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8327 else 8328 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8329 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8330 } 8331 8332 vsi->cnt_q_avail -= ch->num_txq; 8333 8334 return 0; 8335 } 8336 8337 /** 8338 * ice_rem_all_chnl_fltrs - removes all channel filters 8339 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8340 * 8341 * Remove all advanced switch filters only if they are channel specific 8342 * tc-flower based filter 8343 */ 8344 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8345 { 8346 struct ice_tc_flower_fltr *fltr; 8347 struct hlist_node *node; 8348 8349 /* to remove all channel filters, iterate an ordered list of filters */ 8350 hlist_for_each_entry_safe(fltr, node, 8351 &pf->tc_flower_fltr_list, 8352 tc_flower_node) { 8353 struct ice_rule_query_data rule; 8354 int status; 8355 8356 /* for now process only channel specific filters */ 8357 if (!ice_is_chnl_fltr(fltr)) 8358 continue; 8359 8360 rule.rid = fltr->rid; 8361 rule.rule_id = fltr->rule_id; 8362 rule.vsi_handle = fltr->dest_vsi_handle; 8363 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8364 if (status) { 8365 if (status == -ENOENT) 8366 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8367 rule.rule_id); 8368 else 8369 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8370 status); 8371 } else if (fltr->dest_vsi) { 8372 /* update advanced switch filter count */ 8373 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8374 u32 flags = fltr->flags; 8375 8376 fltr->dest_vsi->num_chnl_fltr--; 8377 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8378 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8379 pf->num_dmac_chnl_fltrs--; 8380 } 8381 } 8382 8383 hlist_del(&fltr->tc_flower_node); 8384 kfree(fltr); 8385 } 8386 } 8387 8388 /** 8389 * ice_remove_q_channels - Remove queue channels for the TCs 8390 * @vsi: VSI to be configured 8391 * @rem_fltr: delete advanced switch filter or not 8392 * 8393 * Remove queue channels for the TCs 8394 */ 8395 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8396 { 8397 struct ice_channel *ch, *ch_tmp; 8398 struct ice_pf *pf = vsi->back; 8399 int i; 8400 8401 /* remove all tc-flower based filter if they are channel filters only */ 8402 if (rem_fltr) 8403 ice_rem_all_chnl_fltrs(pf); 8404 8405 /* remove ntuple filters since queue configuration is being changed */ 8406 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8407 struct ice_hw *hw = &pf->hw; 8408 8409 mutex_lock(&hw->fdir_fltr_lock); 8410 ice_fdir_del_all_fltrs(vsi); 8411 mutex_unlock(&hw->fdir_fltr_lock); 8412 } 8413 8414 /* perform cleanup for channels if they exist */ 8415 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8416 struct ice_vsi *ch_vsi; 8417 8418 list_del(&ch->list); 8419 ch_vsi = ch->ch_vsi; 8420 if (!ch_vsi) { 8421 kfree(ch); 8422 continue; 8423 } 8424 8425 /* Reset queue contexts */ 8426 for (i = 0; i < ch->num_rxq; i++) { 8427 struct ice_tx_ring *tx_ring; 8428 struct ice_rx_ring *rx_ring; 8429 8430 tx_ring = vsi->tx_rings[ch->base_q + i]; 8431 rx_ring = vsi->rx_rings[ch->base_q + i]; 8432 if (tx_ring) { 8433 tx_ring->ch = NULL; 8434 if (tx_ring->q_vector) 8435 tx_ring->q_vector->ch = NULL; 8436 } 8437 if (rx_ring) { 8438 rx_ring->ch = NULL; 8439 if (rx_ring->q_vector) 8440 rx_ring->q_vector->ch = NULL; 8441 } 8442 } 8443 8444 /* Release FD resources for the channel VSI */ 8445 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8446 8447 /* clear the VSI from scheduler tree */ 8448 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8449 8450 /* Delete VSI from FW */ 8451 ice_vsi_delete(ch->ch_vsi); 8452 8453 /* Delete VSI from PF and HW VSI arrays */ 8454 ice_vsi_clear(ch->ch_vsi); 8455 8456 /* free the channel */ 8457 kfree(ch); 8458 } 8459 8460 /* clear the channel VSI map which is stored in main VSI */ 8461 ice_for_each_chnl_tc(i) 8462 vsi->tc_map_vsi[i] = NULL; 8463 8464 /* reset main VSI's all TC information */ 8465 vsi->all_enatc = 0; 8466 vsi->all_numtc = 0; 8467 } 8468 8469 /** 8470 * ice_rebuild_channels - rebuild channel 8471 * @pf: ptr to PF 8472 * 8473 * Recreate channel VSIs and replay filters 8474 */ 8475 static int ice_rebuild_channels(struct ice_pf *pf) 8476 { 8477 struct device *dev = ice_pf_to_dev(pf); 8478 struct ice_vsi *main_vsi; 8479 bool rem_adv_fltr = true; 8480 struct ice_channel *ch; 8481 struct ice_vsi *vsi; 8482 int tc_idx = 1; 8483 int i, err; 8484 8485 main_vsi = ice_get_main_vsi(pf); 8486 if (!main_vsi) 8487 return 0; 8488 8489 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8490 main_vsi->old_numtc == 1) 8491 return 0; /* nothing to be done */ 8492 8493 /* reconfigure main VSI based on old value of TC and cached values 8494 * for MQPRIO opts 8495 */ 8496 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8497 if (err) { 8498 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8499 main_vsi->old_ena_tc, main_vsi->vsi_num); 8500 return err; 8501 } 8502 8503 /* rebuild ADQ VSIs */ 8504 ice_for_each_vsi(pf, i) { 8505 enum ice_vsi_type type; 8506 8507 vsi = pf->vsi[i]; 8508 if (!vsi || vsi->type != ICE_VSI_CHNL) 8509 continue; 8510 8511 type = vsi->type; 8512 8513 /* rebuild ADQ VSI */ 8514 err = ice_vsi_rebuild(vsi, true); 8515 if (err) { 8516 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8517 ice_vsi_type_str(type), vsi->idx, err); 8518 goto cleanup; 8519 } 8520 8521 /* Re-map HW VSI number, using VSI handle that has been 8522 * previously validated in ice_replay_vsi() call above 8523 */ 8524 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8525 8526 /* replay filters for the VSI */ 8527 err = ice_replay_vsi(&pf->hw, vsi->idx); 8528 if (err) { 8529 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8530 ice_vsi_type_str(type), err, vsi->idx); 8531 rem_adv_fltr = false; 8532 goto cleanup; 8533 } 8534 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8535 ice_vsi_type_str(type), vsi->idx); 8536 8537 /* store ADQ VSI at correct TC index in main VSI's 8538 * map of TC to VSI 8539 */ 8540 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8541 } 8542 8543 /* ADQ VSI(s) has been rebuilt successfully, so setup 8544 * channel for main VSI's Tx and Rx rings 8545 */ 8546 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8547 struct ice_vsi *ch_vsi; 8548 8549 ch_vsi = ch->ch_vsi; 8550 if (!ch_vsi) 8551 continue; 8552 8553 /* reconfig channel resources */ 8554 ice_cfg_chnl_all_res(main_vsi, ch); 8555 8556 /* replay BW rate limit if it is non-zero */ 8557 if (!ch->max_tx_rate && !ch->min_tx_rate) 8558 continue; 8559 8560 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8561 ch->min_tx_rate); 8562 if (err) 8563 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8564 err, ch->max_tx_rate, ch->min_tx_rate, 8565 ch_vsi->vsi_num); 8566 else 8567 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8568 ch->max_tx_rate, ch->min_tx_rate, 8569 ch_vsi->vsi_num); 8570 } 8571 8572 /* reconfig RSS for main VSI */ 8573 if (main_vsi->ch_rss_size) 8574 ice_vsi_cfg_rss_lut_key(main_vsi); 8575 8576 return 0; 8577 8578 cleanup: 8579 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8580 return err; 8581 } 8582 8583 /** 8584 * ice_create_q_channels - Add queue channel for the given TCs 8585 * @vsi: VSI to be configured 8586 * 8587 * Configures queue channel mapping to the given TCs 8588 */ 8589 static int ice_create_q_channels(struct ice_vsi *vsi) 8590 { 8591 struct ice_pf *pf = vsi->back; 8592 struct ice_channel *ch; 8593 int ret = 0, i; 8594 8595 ice_for_each_chnl_tc(i) { 8596 if (!(vsi->all_enatc & BIT(i))) 8597 continue; 8598 8599 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8600 if (!ch) { 8601 ret = -ENOMEM; 8602 goto err_free; 8603 } 8604 INIT_LIST_HEAD(&ch->list); 8605 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8606 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8607 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8608 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8609 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8610 8611 /* convert to Kbits/s */ 8612 if (ch->max_tx_rate) 8613 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8614 ICE_BW_KBPS_DIVISOR); 8615 if (ch->min_tx_rate) 8616 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8617 ICE_BW_KBPS_DIVISOR); 8618 8619 ret = ice_create_q_channel(vsi, ch); 8620 if (ret) { 8621 dev_err(ice_pf_to_dev(pf), 8622 "failed creating channel TC:%d\n", i); 8623 kfree(ch); 8624 goto err_free; 8625 } 8626 list_add_tail(&ch->list, &vsi->ch_list); 8627 vsi->tc_map_vsi[i] = ch->ch_vsi; 8628 dev_dbg(ice_pf_to_dev(pf), 8629 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8630 } 8631 return 0; 8632 8633 err_free: 8634 ice_remove_q_channels(vsi, false); 8635 8636 return ret; 8637 } 8638 8639 /** 8640 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8641 * @netdev: net device to configure 8642 * @type_data: TC offload data 8643 */ 8644 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8645 { 8646 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8647 struct ice_netdev_priv *np = netdev_priv(netdev); 8648 struct ice_vsi *vsi = np->vsi; 8649 struct ice_pf *pf = vsi->back; 8650 u16 mode, ena_tc_qdisc = 0; 8651 int cur_txq, cur_rxq; 8652 u8 hw = 0, num_tcf; 8653 struct device *dev; 8654 int ret, i; 8655 8656 dev = ice_pf_to_dev(pf); 8657 num_tcf = mqprio_qopt->qopt.num_tc; 8658 hw = mqprio_qopt->qopt.hw; 8659 mode = mqprio_qopt->mode; 8660 if (!hw) { 8661 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8662 vsi->ch_rss_size = 0; 8663 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8664 goto config_tcf; 8665 } 8666 8667 /* Generate queue region map for number of TCF requested */ 8668 for (i = 0; i < num_tcf; i++) 8669 ena_tc_qdisc |= BIT(i); 8670 8671 switch (mode) { 8672 case TC_MQPRIO_MODE_CHANNEL: 8673 8674 if (pf->hw.port_info->is_custom_tx_enabled) { 8675 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8676 return -EBUSY; 8677 } 8678 ice_tear_down_devlink_rate_tree(pf); 8679 8680 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8681 if (ret) { 8682 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8683 ret); 8684 return ret; 8685 } 8686 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8687 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8688 /* don't assume state of hw_tc_offload during driver load 8689 * and set the flag for TC flower filter if hw_tc_offload 8690 * already ON 8691 */ 8692 if (vsi->netdev->features & NETIF_F_HW_TC) 8693 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8694 break; 8695 default: 8696 return -EINVAL; 8697 } 8698 8699 config_tcf: 8700 8701 /* Requesting same TCF configuration as already enabled */ 8702 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8703 mode != TC_MQPRIO_MODE_CHANNEL) 8704 return 0; 8705 8706 /* Pause VSI queues */ 8707 ice_dis_vsi(vsi, true); 8708 8709 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8710 ice_remove_q_channels(vsi, true); 8711 8712 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8713 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8714 num_online_cpus()); 8715 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8716 num_online_cpus()); 8717 } else { 8718 /* logic to rebuild VSI, same like ethtool -L */ 8719 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8720 8721 for (i = 0; i < num_tcf; i++) { 8722 if (!(ena_tc_qdisc & BIT(i))) 8723 continue; 8724 8725 offset = vsi->mqprio_qopt.qopt.offset[i]; 8726 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8727 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8728 } 8729 vsi->req_txq = offset + qcount_tx; 8730 vsi->req_rxq = offset + qcount_rx; 8731 8732 /* store away original rss_size info, so that it gets reused 8733 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8734 * determine, what should be the rss_sizefor main VSI 8735 */ 8736 vsi->orig_rss_size = vsi->rss_size; 8737 } 8738 8739 /* save current values of Tx and Rx queues before calling VSI rebuild 8740 * for fallback option 8741 */ 8742 cur_txq = vsi->num_txq; 8743 cur_rxq = vsi->num_rxq; 8744 8745 /* proceed with rebuild main VSI using correct number of queues */ 8746 ret = ice_vsi_rebuild(vsi, false); 8747 if (ret) { 8748 /* fallback to current number of queues */ 8749 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8750 vsi->req_txq = cur_txq; 8751 vsi->req_rxq = cur_rxq; 8752 clear_bit(ICE_RESET_FAILED, pf->state); 8753 if (ice_vsi_rebuild(vsi, false)) { 8754 dev_err(dev, "Rebuild of main VSI failed again\n"); 8755 return ret; 8756 } 8757 } 8758 8759 vsi->all_numtc = num_tcf; 8760 vsi->all_enatc = ena_tc_qdisc; 8761 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8762 if (ret) { 8763 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8764 vsi->vsi_num); 8765 goto exit; 8766 } 8767 8768 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8769 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8770 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8771 8772 /* set TC0 rate limit if specified */ 8773 if (max_tx_rate || min_tx_rate) { 8774 /* convert to Kbits/s */ 8775 if (max_tx_rate) 8776 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8777 if (min_tx_rate) 8778 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8779 8780 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8781 if (!ret) { 8782 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8783 max_tx_rate, min_tx_rate, vsi->vsi_num); 8784 } else { 8785 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8786 max_tx_rate, min_tx_rate, vsi->vsi_num); 8787 goto exit; 8788 } 8789 } 8790 ret = ice_create_q_channels(vsi); 8791 if (ret) { 8792 netdev_err(netdev, "failed configuring queue channels\n"); 8793 goto exit; 8794 } else { 8795 netdev_dbg(netdev, "successfully configured channels\n"); 8796 } 8797 } 8798 8799 if (vsi->ch_rss_size) 8800 ice_vsi_cfg_rss_lut_key(vsi); 8801 8802 exit: 8803 /* if error, reset the all_numtc and all_enatc */ 8804 if (ret) { 8805 vsi->all_numtc = 0; 8806 vsi->all_enatc = 0; 8807 } 8808 /* resume VSI */ 8809 ice_ena_vsi(vsi, true); 8810 8811 return ret; 8812 } 8813 8814 static LIST_HEAD(ice_block_cb_list); 8815 8816 static int 8817 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8818 void *type_data) 8819 { 8820 struct ice_netdev_priv *np = netdev_priv(netdev); 8821 struct ice_pf *pf = np->vsi->back; 8822 int err; 8823 8824 switch (type) { 8825 case TC_SETUP_BLOCK: 8826 return flow_block_cb_setup_simple(type_data, 8827 &ice_block_cb_list, 8828 ice_setup_tc_block_cb, 8829 np, np, true); 8830 case TC_SETUP_QDISC_MQPRIO: 8831 /* setup traffic classifier for receive side */ 8832 mutex_lock(&pf->tc_mutex); 8833 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8834 mutex_unlock(&pf->tc_mutex); 8835 return err; 8836 default: 8837 return -EOPNOTSUPP; 8838 } 8839 return -EOPNOTSUPP; 8840 } 8841 8842 static struct ice_indr_block_priv * 8843 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8844 struct net_device *netdev) 8845 { 8846 struct ice_indr_block_priv *cb_priv; 8847 8848 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8849 if (!cb_priv->netdev) 8850 return NULL; 8851 if (cb_priv->netdev == netdev) 8852 return cb_priv; 8853 } 8854 return NULL; 8855 } 8856 8857 static int 8858 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8859 void *indr_priv) 8860 { 8861 struct ice_indr_block_priv *priv = indr_priv; 8862 struct ice_netdev_priv *np = priv->np; 8863 8864 switch (type) { 8865 case TC_SETUP_CLSFLOWER: 8866 return ice_setup_tc_cls_flower(np, priv->netdev, 8867 (struct flow_cls_offload *) 8868 type_data); 8869 default: 8870 return -EOPNOTSUPP; 8871 } 8872 } 8873 8874 static int 8875 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8876 struct ice_netdev_priv *np, 8877 struct flow_block_offload *f, void *data, 8878 void (*cleanup)(struct flow_block_cb *block_cb)) 8879 { 8880 struct ice_indr_block_priv *indr_priv; 8881 struct flow_block_cb *block_cb; 8882 8883 if (!ice_is_tunnel_supported(netdev) && 8884 !(is_vlan_dev(netdev) && 8885 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8886 return -EOPNOTSUPP; 8887 8888 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8889 return -EOPNOTSUPP; 8890 8891 switch (f->command) { 8892 case FLOW_BLOCK_BIND: 8893 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8894 if (indr_priv) 8895 return -EEXIST; 8896 8897 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8898 if (!indr_priv) 8899 return -ENOMEM; 8900 8901 indr_priv->netdev = netdev; 8902 indr_priv->np = np; 8903 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8904 8905 block_cb = 8906 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8907 indr_priv, indr_priv, 8908 ice_rep_indr_tc_block_unbind, 8909 f, netdev, sch, data, np, 8910 cleanup); 8911 8912 if (IS_ERR(block_cb)) { 8913 list_del(&indr_priv->list); 8914 kfree(indr_priv); 8915 return PTR_ERR(block_cb); 8916 } 8917 flow_block_cb_add(block_cb, f); 8918 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8919 break; 8920 case FLOW_BLOCK_UNBIND: 8921 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8922 if (!indr_priv) 8923 return -ENOENT; 8924 8925 block_cb = flow_block_cb_lookup(f->block, 8926 ice_indr_setup_block_cb, 8927 indr_priv); 8928 if (!block_cb) 8929 return -ENOENT; 8930 8931 flow_indr_block_cb_remove(block_cb, f); 8932 8933 list_del(&block_cb->driver_list); 8934 break; 8935 default: 8936 return -EOPNOTSUPP; 8937 } 8938 return 0; 8939 } 8940 8941 static int 8942 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8943 void *cb_priv, enum tc_setup_type type, void *type_data, 8944 void *data, 8945 void (*cleanup)(struct flow_block_cb *block_cb)) 8946 { 8947 switch (type) { 8948 case TC_SETUP_BLOCK: 8949 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8950 data, cleanup); 8951 8952 default: 8953 return -EOPNOTSUPP; 8954 } 8955 } 8956 8957 /** 8958 * ice_open - Called when a network interface becomes active 8959 * @netdev: network interface device structure 8960 * 8961 * The open entry point is called when a network interface is made 8962 * active by the system (IFF_UP). At this point all resources needed 8963 * for transmit and receive operations are allocated, the interrupt 8964 * handler is registered with the OS, the netdev watchdog is enabled, 8965 * and the stack is notified that the interface is ready. 8966 * 8967 * Returns 0 on success, negative value on failure 8968 */ 8969 int ice_open(struct net_device *netdev) 8970 { 8971 struct ice_netdev_priv *np = netdev_priv(netdev); 8972 struct ice_pf *pf = np->vsi->back; 8973 8974 if (ice_is_reset_in_progress(pf->state)) { 8975 netdev_err(netdev, "can't open net device while reset is in progress"); 8976 return -EBUSY; 8977 } 8978 8979 return ice_open_internal(netdev); 8980 } 8981 8982 /** 8983 * ice_open_internal - Called when a network interface becomes active 8984 * @netdev: network interface device structure 8985 * 8986 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8987 * handling routine 8988 * 8989 * Returns 0 on success, negative value on failure 8990 */ 8991 int ice_open_internal(struct net_device *netdev) 8992 { 8993 struct ice_netdev_priv *np = netdev_priv(netdev); 8994 struct ice_vsi *vsi = np->vsi; 8995 struct ice_pf *pf = vsi->back; 8996 struct ice_port_info *pi; 8997 int err; 8998 8999 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9000 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9001 return -EIO; 9002 } 9003 9004 netif_carrier_off(netdev); 9005 9006 pi = vsi->port_info; 9007 err = ice_update_link_info(pi); 9008 if (err) { 9009 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9010 return err; 9011 } 9012 9013 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9014 9015 /* Set PHY if there is media, otherwise, turn off PHY */ 9016 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9017 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9018 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9019 err = ice_init_phy_user_cfg(pi); 9020 if (err) { 9021 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9022 err); 9023 return err; 9024 } 9025 } 9026 9027 err = ice_configure_phy(vsi); 9028 if (err) { 9029 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9030 err); 9031 return err; 9032 } 9033 } else { 9034 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9035 ice_set_link(vsi, false); 9036 } 9037 9038 err = ice_vsi_open(vsi); 9039 if (err) 9040 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9041 vsi->vsi_num, vsi->vsw->sw_id); 9042 9043 /* Update existing tunnels information */ 9044 udp_tunnel_get_rx_info(netdev); 9045 9046 return err; 9047 } 9048 9049 /** 9050 * ice_stop - Disables a network interface 9051 * @netdev: network interface device structure 9052 * 9053 * The stop entry point is called when an interface is de-activated by the OS, 9054 * and the netdevice enters the DOWN state. The hardware is still under the 9055 * driver's control, but the netdev interface is disabled. 9056 * 9057 * Returns success only - not allowed to fail 9058 */ 9059 int ice_stop(struct net_device *netdev) 9060 { 9061 struct ice_netdev_priv *np = netdev_priv(netdev); 9062 struct ice_vsi *vsi = np->vsi; 9063 struct ice_pf *pf = vsi->back; 9064 9065 if (ice_is_reset_in_progress(pf->state)) { 9066 netdev_err(netdev, "can't stop net device while reset is in progress"); 9067 return -EBUSY; 9068 } 9069 9070 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9071 int link_err = ice_force_phys_link_state(vsi, false); 9072 9073 if (link_err) { 9074 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9075 vsi->vsi_num, link_err); 9076 return -EIO; 9077 } 9078 } 9079 9080 ice_vsi_close(vsi); 9081 9082 return 0; 9083 } 9084 9085 /** 9086 * ice_features_check - Validate encapsulated packet conforms to limits 9087 * @skb: skb buffer 9088 * @netdev: This port's netdev 9089 * @features: Offload features that the stack believes apply 9090 */ 9091 static netdev_features_t 9092 ice_features_check(struct sk_buff *skb, 9093 struct net_device __always_unused *netdev, 9094 netdev_features_t features) 9095 { 9096 bool gso = skb_is_gso(skb); 9097 size_t len; 9098 9099 /* No point in doing any of this if neither checksum nor GSO are 9100 * being requested for this frame. We can rule out both by just 9101 * checking for CHECKSUM_PARTIAL 9102 */ 9103 if (skb->ip_summed != CHECKSUM_PARTIAL) 9104 return features; 9105 9106 /* We cannot support GSO if the MSS is going to be less than 9107 * 64 bytes. If it is then we need to drop support for GSO. 9108 */ 9109 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9110 features &= ~NETIF_F_GSO_MASK; 9111 9112 len = skb_network_offset(skb); 9113 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9114 goto out_rm_features; 9115 9116 len = skb_network_header_len(skb); 9117 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9118 goto out_rm_features; 9119 9120 if (skb->encapsulation) { 9121 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9122 * the case of IPIP frames, the transport header pointer is 9123 * after the inner header! So check to make sure that this 9124 * is a GRE or UDP_TUNNEL frame before doing that math. 9125 */ 9126 if (gso && (skb_shinfo(skb)->gso_type & 9127 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9128 len = skb_inner_network_header(skb) - 9129 skb_transport_header(skb); 9130 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9131 goto out_rm_features; 9132 } 9133 9134 len = skb_inner_network_header_len(skb); 9135 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9136 goto out_rm_features; 9137 } 9138 9139 return features; 9140 out_rm_features: 9141 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9142 } 9143 9144 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9145 .ndo_open = ice_open, 9146 .ndo_stop = ice_stop, 9147 .ndo_start_xmit = ice_start_xmit, 9148 .ndo_set_mac_address = ice_set_mac_address, 9149 .ndo_validate_addr = eth_validate_addr, 9150 .ndo_change_mtu = ice_change_mtu, 9151 .ndo_get_stats64 = ice_get_stats64, 9152 .ndo_tx_timeout = ice_tx_timeout, 9153 .ndo_bpf = ice_xdp_safe_mode, 9154 }; 9155 9156 static const struct net_device_ops ice_netdev_ops = { 9157 .ndo_open = ice_open, 9158 .ndo_stop = ice_stop, 9159 .ndo_start_xmit = ice_start_xmit, 9160 .ndo_select_queue = ice_select_queue, 9161 .ndo_features_check = ice_features_check, 9162 .ndo_fix_features = ice_fix_features, 9163 .ndo_set_rx_mode = ice_set_rx_mode, 9164 .ndo_set_mac_address = ice_set_mac_address, 9165 .ndo_validate_addr = eth_validate_addr, 9166 .ndo_change_mtu = ice_change_mtu, 9167 .ndo_get_stats64 = ice_get_stats64, 9168 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9169 .ndo_eth_ioctl = ice_eth_ioctl, 9170 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9171 .ndo_set_vf_mac = ice_set_vf_mac, 9172 .ndo_get_vf_config = ice_get_vf_cfg, 9173 .ndo_set_vf_trust = ice_set_vf_trust, 9174 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9175 .ndo_set_vf_link_state = ice_set_vf_link_state, 9176 .ndo_get_vf_stats = ice_get_vf_stats, 9177 .ndo_set_vf_rate = ice_set_vf_bw, 9178 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9179 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9180 .ndo_setup_tc = ice_setup_tc, 9181 .ndo_set_features = ice_set_features, 9182 .ndo_bridge_getlink = ice_bridge_getlink, 9183 .ndo_bridge_setlink = ice_bridge_setlink, 9184 .ndo_fdb_add = ice_fdb_add, 9185 .ndo_fdb_del = ice_fdb_del, 9186 #ifdef CONFIG_RFS_ACCEL 9187 .ndo_rx_flow_steer = ice_rx_flow_steer, 9188 #endif 9189 .ndo_tx_timeout = ice_tx_timeout, 9190 .ndo_bpf = ice_xdp, 9191 .ndo_xdp_xmit = ice_xdp_xmit, 9192 .ndo_xsk_wakeup = ice_xsk_wakeup, 9193 }; 9194