1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_IMPORT_NS("LIBIE_ADMINQ"); 42 MODULE_LICENSE("GPL v2"); 43 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 44 45 static int debug = -1; 46 module_param(debug, int, 0644); 47 #ifndef CONFIG_DYNAMIC_DEBUG 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 49 #else 50 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 51 #endif /* !CONFIG_DYNAMIC_DEBUG */ 52 53 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 54 EXPORT_SYMBOL(ice_xdp_locking_key); 55 56 /** 57 * ice_hw_to_dev - Get device pointer from the hardware structure 58 * @hw: pointer to the device HW structure 59 * 60 * Used to access the device pointer from compilation units which can't easily 61 * include the definition of struct ice_pf without leading to circular header 62 * dependencies. 63 */ 64 struct device *ice_hw_to_dev(struct ice_hw *hw) 65 { 66 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 67 68 return &pf->pdev->dev; 69 } 70 71 static struct workqueue_struct *ice_wq; 72 struct workqueue_struct *ice_lag_wq; 73 static const struct net_device_ops ice_netdev_safe_mode_ops; 74 static const struct net_device_ops ice_netdev_ops; 75 76 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 77 78 static void ice_vsi_release_all(struct ice_pf *pf); 79 80 static int ice_rebuild_channels(struct ice_pf *pf); 81 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 82 83 static int 84 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 85 void *cb_priv, enum tc_setup_type type, void *type_data, 86 void *data, 87 void (*cleanup)(struct flow_block_cb *block_cb)); 88 89 bool netif_is_ice(const struct net_device *dev) 90 { 91 return dev && (dev->netdev_ops == &ice_netdev_ops || 92 dev->netdev_ops == &ice_netdev_safe_mode_ops); 93 } 94 95 /** 96 * ice_get_tx_pending - returns number of Tx descriptors not processed 97 * @ring: the ring of descriptors 98 */ 99 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 100 { 101 u16 head, tail; 102 103 head = ring->next_to_clean; 104 tail = ring->next_to_use; 105 106 if (head != tail) 107 return (head < tail) ? 108 tail - head : (tail + ring->count - head); 109 return 0; 110 } 111 112 /** 113 * ice_check_for_hang_subtask - check for and recover hung queues 114 * @pf: pointer to PF struct 115 */ 116 static void ice_check_for_hang_subtask(struct ice_pf *pf) 117 { 118 struct ice_vsi *vsi = NULL; 119 struct ice_hw *hw; 120 unsigned int i; 121 int packets; 122 u32 v; 123 124 ice_for_each_vsi(pf, v) 125 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 126 vsi = pf->vsi[v]; 127 break; 128 } 129 130 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 131 return; 132 133 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 134 return; 135 136 hw = &vsi->back->hw; 137 138 ice_for_each_txq(vsi, i) { 139 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 140 struct ice_ring_stats *ring_stats; 141 142 if (!tx_ring) 143 continue; 144 if (ice_ring_ch_enabled(tx_ring)) 145 continue; 146 147 ring_stats = tx_ring->ring_stats; 148 if (!ring_stats) 149 continue; 150 151 if (tx_ring->desc) { 152 /* If packet counter has not changed the queue is 153 * likely stalled, so force an interrupt for this 154 * queue. 155 * 156 * prev_pkt would be negative if there was no 157 * pending work. 158 */ 159 packets = ring_stats->stats.pkts & INT_MAX; 160 if (ring_stats->tx_stats.prev_pkt == packets) { 161 /* Trigger sw interrupt to revive the queue */ 162 ice_trigger_sw_intr(hw, tx_ring->q_vector); 163 continue; 164 } 165 166 /* Memory barrier between read of packet count and call 167 * to ice_get_tx_pending() 168 */ 169 smp_rmb(); 170 ring_stats->tx_stats.prev_pkt = 171 ice_get_tx_pending(tx_ring) ? packets : -1; 172 } 173 } 174 } 175 176 /** 177 * ice_init_mac_fltr - Set initial MAC filters 178 * @pf: board private structure 179 * 180 * Set initial set of MAC filters for PF VSI; configure filters for permanent 181 * address and broadcast address. If an error is encountered, netdevice will be 182 * unregistered. 183 */ 184 static int ice_init_mac_fltr(struct ice_pf *pf) 185 { 186 struct ice_vsi *vsi; 187 u8 *perm_addr; 188 189 vsi = ice_get_main_vsi(pf); 190 if (!vsi) 191 return -EINVAL; 192 193 perm_addr = vsi->port_info->mac.perm_addr; 194 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 195 } 196 197 /** 198 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 199 * @netdev: the net device on which the sync is happening 200 * @addr: MAC address to sync 201 * 202 * This is a callback function which is called by the in kernel device sync 203 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 204 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 205 * MAC filters from the hardware. 206 */ 207 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 208 { 209 struct ice_netdev_priv *np = netdev_priv(netdev); 210 struct ice_vsi *vsi = np->vsi; 211 212 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 213 ICE_FWD_TO_VSI)) 214 return -EINVAL; 215 216 return 0; 217 } 218 219 /** 220 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 221 * @netdev: the net device on which the unsync is happening 222 * @addr: MAC address to unsync 223 * 224 * This is a callback function which is called by the in kernel device unsync 225 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 226 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 227 * delete the MAC filters from the hardware. 228 */ 229 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 230 { 231 struct ice_netdev_priv *np = netdev_priv(netdev); 232 struct ice_vsi *vsi = np->vsi; 233 234 /* Under some circumstances, we might receive a request to delete our 235 * own device address from our uc list. Because we store the device 236 * address in the VSI's MAC filter list, we need to ignore such 237 * requests and not delete our device address from this list. 238 */ 239 if (ether_addr_equal(addr, netdev->dev_addr)) 240 return 0; 241 242 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 243 ICE_FWD_TO_VSI)) 244 return -EINVAL; 245 246 return 0; 247 } 248 249 /** 250 * ice_vsi_fltr_changed - check if filter state changed 251 * @vsi: VSI to be checked 252 * 253 * returns true if filter state has changed, false otherwise. 254 */ 255 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 256 { 257 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 258 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 259 } 260 261 /** 262 * ice_set_promisc - Enable promiscuous mode for a given PF 263 * @vsi: the VSI being configured 264 * @promisc_m: mask of promiscuous config bits 265 * 266 */ 267 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 268 { 269 int status; 270 271 if (vsi->type != ICE_VSI_PF) 272 return 0; 273 274 if (ice_vsi_has_non_zero_vlans(vsi)) { 275 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 276 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 277 promisc_m); 278 } else { 279 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 280 promisc_m, 0); 281 } 282 if (status && status != -EEXIST) 283 return status; 284 285 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 286 vsi->vsi_num, promisc_m); 287 return 0; 288 } 289 290 /** 291 * ice_clear_promisc - Disable promiscuous mode for a given PF 292 * @vsi: the VSI being configured 293 * @promisc_m: mask of promiscuous config bits 294 * 295 */ 296 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 297 { 298 int status; 299 300 if (vsi->type != ICE_VSI_PF) 301 return 0; 302 303 if (ice_vsi_has_non_zero_vlans(vsi)) { 304 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 305 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 306 promisc_m); 307 } else { 308 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 309 promisc_m, 0); 310 } 311 312 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 313 vsi->vsi_num, promisc_m); 314 return status; 315 } 316 317 /** 318 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 319 * @vsi: ptr to the VSI 320 * 321 * Push any outstanding VSI filter changes through the AdminQ. 322 */ 323 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 324 { 325 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 326 struct device *dev = ice_pf_to_dev(vsi->back); 327 struct net_device *netdev = vsi->netdev; 328 bool promisc_forced_on = false; 329 struct ice_pf *pf = vsi->back; 330 struct ice_hw *hw = &pf->hw; 331 u32 changed_flags = 0; 332 int err; 333 334 if (!vsi->netdev) 335 return -EINVAL; 336 337 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 338 usleep_range(1000, 2000); 339 340 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 341 vsi->current_netdev_flags = vsi->netdev->flags; 342 343 INIT_LIST_HEAD(&vsi->tmp_sync_list); 344 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 345 346 if (ice_vsi_fltr_changed(vsi)) { 347 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 348 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 349 350 /* grab the netdev's addr_list_lock */ 351 netif_addr_lock_bh(netdev); 352 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 355 ice_add_mac_to_unsync_list); 356 /* our temp lists are populated. release lock */ 357 netif_addr_unlock_bh(netdev); 358 } 359 360 /* Remove MAC addresses in the unsync list */ 361 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 362 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 363 if (err) { 364 netdev_err(netdev, "Failed to delete MAC filters\n"); 365 /* if we failed because of alloc failures, just bail */ 366 if (err == -ENOMEM) 367 goto out; 368 } 369 370 /* Add MAC addresses in the sync list */ 371 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 372 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 373 /* If filter is added successfully or already exists, do not go into 374 * 'if' condition and report it as error. Instead continue processing 375 * rest of the function. 376 */ 377 if (err && err != -EEXIST) { 378 netdev_err(netdev, "Failed to add MAC filters\n"); 379 /* If there is no more space for new umac filters, VSI 380 * should go into promiscuous mode. There should be some 381 * space reserved for promiscuous filters. 382 */ 383 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC && 384 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 385 vsi->state)) { 386 promisc_forced_on = true; 387 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 388 vsi->vsi_num); 389 } else { 390 goto out; 391 } 392 } 393 err = 0; 394 /* check for changes in promiscuous modes */ 395 if (changed_flags & IFF_ALLMULTI) { 396 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 397 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } else { 403 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 404 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 405 if (err) { 406 vsi->current_netdev_flags |= IFF_ALLMULTI; 407 goto out_promisc; 408 } 409 } 410 } 411 412 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 413 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 414 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 415 if (vsi->current_netdev_flags & IFF_PROMISC) { 416 /* Apply Rx filter rule to get traffic from wire */ 417 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 418 err = ice_set_dflt_vsi(vsi); 419 if (err && err != -EEXIST) { 420 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 421 err, vsi->vsi_num); 422 vsi->current_netdev_flags &= 423 ~IFF_PROMISC; 424 goto out_promisc; 425 } 426 err = 0; 427 vlan_ops->dis_rx_filtering(vsi); 428 429 /* promiscuous mode implies allmulticast so 430 * that VSIs that are in promiscuous mode are 431 * subscribed to multicast packets coming to 432 * the port 433 */ 434 err = ice_set_promisc(vsi, 435 ICE_MCAST_PROMISC_BITS); 436 if (err) 437 goto out_promisc; 438 } 439 } else { 440 /* Clear Rx filter to remove traffic from wire */ 441 if (ice_is_vsi_dflt_vsi(vsi)) { 442 err = ice_clear_dflt_vsi(vsi); 443 if (err) { 444 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 445 err, vsi->vsi_num); 446 vsi->current_netdev_flags |= 447 IFF_PROMISC; 448 goto out_promisc; 449 } 450 if (vsi->netdev->features & 451 NETIF_F_HW_VLAN_CTAG_FILTER) 452 vlan_ops->ena_rx_filtering(vsi); 453 } 454 455 /* disable allmulti here, but only if allmulti is not 456 * still enabled for the netdev 457 */ 458 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 459 err = ice_clear_promisc(vsi, 460 ICE_MCAST_PROMISC_BITS); 461 if (err) { 462 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 463 err, vsi->vsi_num); 464 } 465 } 466 } 467 } 468 goto exit; 469 470 out_promisc: 471 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 472 goto exit; 473 out: 474 /* if something went wrong then set the changed flag so we try again */ 475 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 476 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 477 exit: 478 clear_bit(ICE_CFG_BUSY, vsi->state); 479 return err; 480 } 481 482 /** 483 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 484 * @pf: board private structure 485 */ 486 static void ice_sync_fltr_subtask(struct ice_pf *pf) 487 { 488 int v; 489 490 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 491 return; 492 493 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 494 495 ice_for_each_vsi(pf, v) 496 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 497 ice_vsi_sync_fltr(pf->vsi[v])) { 498 /* come back and try again later */ 499 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 500 break; 501 } 502 } 503 504 /** 505 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 506 * @pf: the PF 507 * @locked: is the rtnl_lock already held 508 */ 509 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 510 { 511 int node; 512 int v; 513 514 ice_for_each_vsi(pf, v) 515 if (pf->vsi[v]) 516 ice_dis_vsi(pf->vsi[v], locked); 517 518 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 519 pf->pf_agg_node[node].num_vsis = 0; 520 521 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 522 pf->vf_agg_node[node].num_vsis = 0; 523 } 524 525 /** 526 * ice_prepare_for_reset - prep for reset 527 * @pf: board private structure 528 * @reset_type: reset type requested 529 * 530 * Inform or close all dependent features in prep for reset. 531 */ 532 static void 533 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 534 { 535 struct ice_hw *hw = &pf->hw; 536 struct ice_vsi *vsi; 537 struct ice_vf *vf; 538 unsigned int bkt; 539 540 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 541 542 /* already prepared for reset */ 543 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 544 return; 545 546 synchronize_irq(pf->oicr_irq.virq); 547 548 ice_unplug_aux_dev(pf); 549 550 /* Notify VFs of impending reset */ 551 if (ice_check_sq_alive(hw, &hw->mailboxq)) 552 ice_vc_notify_reset(pf); 553 554 /* Disable VFs until reset is completed */ 555 mutex_lock(&pf->vfs.table_lock); 556 ice_for_each_vf(pf, bkt, vf) 557 ice_set_vf_state_dis(vf); 558 mutex_unlock(&pf->vfs.table_lock); 559 560 if (ice_is_eswitch_mode_switchdev(pf)) { 561 rtnl_lock(); 562 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 563 rtnl_unlock(); 564 } 565 566 /* release ADQ specific HW and SW resources */ 567 vsi = ice_get_main_vsi(pf); 568 if (!vsi) 569 goto skip; 570 571 /* to be on safe side, reset orig_rss_size so that normal flow 572 * of deciding rss_size can take precedence 573 */ 574 vsi->orig_rss_size = 0; 575 576 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 577 if (reset_type == ICE_RESET_PFR) { 578 vsi->old_ena_tc = vsi->all_enatc; 579 vsi->old_numtc = vsi->all_numtc; 580 } else { 581 ice_remove_q_channels(vsi, true); 582 583 /* for other reset type, do not support channel rebuild 584 * hence reset needed info 585 */ 586 vsi->old_ena_tc = 0; 587 vsi->all_enatc = 0; 588 vsi->old_numtc = 0; 589 vsi->all_numtc = 0; 590 vsi->req_txq = 0; 591 vsi->req_rxq = 0; 592 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 593 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 594 } 595 } 596 597 if (vsi->netdev) 598 netif_device_detach(vsi->netdev); 599 skip: 600 601 /* clear SW filtering DB */ 602 ice_clear_hw_tbls(hw); 603 /* disable the VSIs and their queues that are not already DOWN */ 604 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 605 ice_pf_dis_all_vsi(pf, false); 606 607 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 608 ice_ptp_prepare_for_reset(pf, reset_type); 609 610 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 611 ice_gnss_exit(pf); 612 613 if (hw->port_info) 614 ice_sched_clear_port(hw->port_info); 615 616 ice_shutdown_all_ctrlq(hw, false); 617 618 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 619 } 620 621 /** 622 * ice_do_reset - Initiate one of many types of resets 623 * @pf: board private structure 624 * @reset_type: reset type requested before this function was called. 625 */ 626 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 627 { 628 struct device *dev = ice_pf_to_dev(pf); 629 struct ice_hw *hw = &pf->hw; 630 631 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 632 633 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 634 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 635 reset_type = ICE_RESET_CORER; 636 } 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) { 722 reset_type = ICE_RESET_PFR; 723 if (pf->lag && pf->lag->bonded) { 724 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 725 reset_type = ICE_RESET_CORER; 726 } 727 } 728 if (test_bit(ICE_CORER_REQ, pf->state)) 729 reset_type = ICE_RESET_CORER; 730 if (test_bit(ICE_GLOBR_REQ, pf->state)) 731 reset_type = ICE_RESET_GLOBR; 732 /* If no valid reset type requested just return */ 733 if (reset_type == ICE_RESET_INVAL) 734 return; 735 736 /* reset if not already down or busy */ 737 if (!test_bit(ICE_DOWN, pf->state) && 738 !test_bit(ICE_CFG_BUSY, pf->state)) { 739 ice_do_reset(pf, reset_type); 740 } 741 } 742 743 /** 744 * ice_print_topo_conflict - print topology conflict message 745 * @vsi: the VSI whose topology status is being checked 746 */ 747 static void ice_print_topo_conflict(struct ice_vsi *vsi) 748 { 749 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 750 case ICE_AQ_LINK_TOPO_CONFLICT: 751 case ICE_AQ_LINK_MEDIA_CONFLICT: 752 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 754 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 755 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 756 break; 757 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 758 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 759 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 760 else 761 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 762 break; 763 default: 764 break; 765 } 766 } 767 768 /** 769 * ice_print_link_msg - print link up or down message 770 * @vsi: the VSI whose link status is being queried 771 * @isup: boolean for if the link is now up or down 772 */ 773 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 774 { 775 struct ice_aqc_get_phy_caps_data *caps; 776 const char *an_advertised; 777 const char *fec_req; 778 const char *speed; 779 const char *fec; 780 const char *fc; 781 const char *an; 782 int status; 783 784 if (!vsi) 785 return; 786 787 if (vsi->current_isup == isup) 788 return; 789 790 vsi->current_isup = isup; 791 792 if (!isup) { 793 netdev_info(vsi->netdev, "NIC Link is Down\n"); 794 return; 795 } 796 797 switch (vsi->port_info->phy.link_info.link_speed) { 798 case ICE_AQ_LINK_SPEED_200GB: 799 speed = "200 G"; 800 break; 801 case ICE_AQ_LINK_SPEED_100GB: 802 speed = "100 G"; 803 break; 804 case ICE_AQ_LINK_SPEED_50GB: 805 speed = "50 G"; 806 break; 807 case ICE_AQ_LINK_SPEED_40GB: 808 speed = "40 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_25GB: 811 speed = "25 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_20GB: 814 speed = "20 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_10GB: 817 speed = "10 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_5GB: 820 speed = "5 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_2500MB: 823 speed = "2.5 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_1000MB: 826 speed = "1 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_100MB: 829 speed = "100 M"; 830 break; 831 default: 832 speed = "Unknown "; 833 break; 834 } 835 836 switch (vsi->port_info->fc.current_mode) { 837 case ICE_FC_FULL: 838 fc = "Rx/Tx"; 839 break; 840 case ICE_FC_TX_PAUSE: 841 fc = "Tx"; 842 break; 843 case ICE_FC_RX_PAUSE: 844 fc = "Rx"; 845 break; 846 case ICE_FC_NONE: 847 fc = "None"; 848 break; 849 default: 850 fc = "Unknown"; 851 break; 852 } 853 854 /* Get FEC mode based on negotiated link info */ 855 switch (vsi->port_info->phy.link_info.fec_info) { 856 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 857 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 858 fec = "RS-FEC"; 859 break; 860 case ICE_AQ_LINK_25G_KR_FEC_EN: 861 fec = "FC-FEC/BASE-R"; 862 break; 863 default: 864 fec = "NONE"; 865 break; 866 } 867 868 /* check if autoneg completed, might be false due to not supported */ 869 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 870 an = "True"; 871 else 872 an = "False"; 873 874 /* Get FEC mode requested based on PHY caps last SW configuration */ 875 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 876 if (!caps) { 877 fec_req = "Unknown"; 878 an_advertised = "Unknown"; 879 goto done; 880 } 881 882 status = ice_aq_get_phy_caps(vsi->port_info, false, 883 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 884 if (status) 885 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 886 887 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 888 889 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 890 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 891 fec_req = "RS-FEC"; 892 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 894 fec_req = "FC-FEC/BASE-R"; 895 else 896 fec_req = "NONE"; 897 898 kfree(caps); 899 900 done: 901 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 902 speed, fec_req, fec, an_advertised, an, fc); 903 ice_print_topo_conflict(vsi); 904 } 905 906 /** 907 * ice_vsi_link_event - update the VSI's netdev 908 * @vsi: the VSI on which the link event occurred 909 * @link_up: whether or not the VSI needs to be set up or down 910 */ 911 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 912 { 913 if (!vsi) 914 return; 915 916 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 917 return; 918 919 if (vsi->type == ICE_VSI_PF) { 920 if (link_up == netif_carrier_ok(vsi->netdev)) 921 return; 922 923 if (link_up) { 924 netif_carrier_on(vsi->netdev); 925 netif_tx_wake_all_queues(vsi->netdev); 926 } else { 927 netif_carrier_off(vsi->netdev); 928 netif_tx_stop_all_queues(vsi->netdev); 929 } 930 } 931 } 932 933 /** 934 * ice_set_dflt_mib - send a default config MIB to the FW 935 * @pf: private PF struct 936 * 937 * This function sends a default configuration MIB to the FW. 938 * 939 * If this function errors out at any point, the driver is still able to 940 * function. The main impact is that LFC may not operate as expected. 941 * Therefore an error state in this function should be treated with a DBG 942 * message and continue on with driver rebuild/reenable. 943 */ 944 static void ice_set_dflt_mib(struct ice_pf *pf) 945 { 946 struct device *dev = ice_pf_to_dev(pf); 947 u8 mib_type, *buf, *lldpmib = NULL; 948 u16 len, typelen, offset = 0; 949 struct ice_lldp_org_tlv *tlv; 950 struct ice_hw *hw = &pf->hw; 951 u32 ouisubtype; 952 953 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 954 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 955 if (!lldpmib) { 956 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 957 __func__); 958 return; 959 } 960 961 /* Add ETS CFG TLV */ 962 tlv = (struct ice_lldp_org_tlv *)lldpmib; 963 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 964 ICE_IEEE_ETS_TLV_LEN); 965 tlv->typelen = htons(typelen); 966 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 967 ICE_IEEE_SUBTYPE_ETS_CFG); 968 tlv->ouisubtype = htonl(ouisubtype); 969 970 buf = tlv->tlvinfo; 971 buf[0] = 0; 972 973 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 974 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 975 * Octets 13 - 20 are TSA values - leave as zeros 976 */ 977 buf[5] = 0x64; 978 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 979 offset += len + 2; 980 tlv = (struct ice_lldp_org_tlv *) 981 ((char *)tlv + sizeof(tlv->typelen) + len); 982 983 /* Add ETS REC TLV */ 984 buf = tlv->tlvinfo; 985 tlv->typelen = htons(typelen); 986 987 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 988 ICE_IEEE_SUBTYPE_ETS_REC); 989 tlv->ouisubtype = htonl(ouisubtype); 990 991 /* First octet of buf is reserved 992 * Octets 1 - 4 map UP to TC - all UPs map to zero 993 * Octets 5 - 12 are BW values - set TC 0 to 100%. 994 * Octets 13 - 20 are TSA value - leave as zeros 995 */ 996 buf[5] = 0x64; 997 offset += len + 2; 998 tlv = (struct ice_lldp_org_tlv *) 999 ((char *)tlv + sizeof(tlv->typelen) + len); 1000 1001 /* Add PFC CFG TLV */ 1002 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1003 ICE_IEEE_PFC_TLV_LEN); 1004 tlv->typelen = htons(typelen); 1005 1006 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1007 ICE_IEEE_SUBTYPE_PFC_CFG); 1008 tlv->ouisubtype = htonl(ouisubtype); 1009 1010 /* Octet 1 left as all zeros - PFC disabled */ 1011 buf[0] = 0x08; 1012 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1013 offset += len + 2; 1014 1015 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1016 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1017 1018 kfree(lldpmib); 1019 } 1020 1021 /** 1022 * ice_check_phy_fw_load - check if PHY FW load failed 1023 * @pf: pointer to PF struct 1024 * @link_cfg_err: bitmap from the link info structure 1025 * 1026 * check if external PHY FW load failed and print an error message if it did 1027 */ 1028 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1029 { 1030 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1031 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1032 return; 1033 } 1034 1035 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1036 return; 1037 1038 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1039 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1040 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1041 } 1042 } 1043 1044 /** 1045 * ice_check_module_power 1046 * @pf: pointer to PF struct 1047 * @link_cfg_err: bitmap from the link info structure 1048 * 1049 * check module power level returned by a previous call to aq_get_link_info 1050 * and print error messages if module power level is not supported 1051 */ 1052 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1053 { 1054 /* if module power level is supported, clear the flag */ 1055 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1056 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1057 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1058 return; 1059 } 1060 1061 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1062 * above block didn't clear this bit, there's nothing to do 1063 */ 1064 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1065 return; 1066 1067 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1068 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1069 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1070 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1071 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1073 } 1074 } 1075 1076 /** 1077 * ice_check_link_cfg_err - check if link configuration failed 1078 * @pf: pointer to the PF struct 1079 * @link_cfg_err: bitmap from the link info structure 1080 * 1081 * print if any link configuration failure happens due to the value in the 1082 * link_cfg_err parameter in the link info structure 1083 */ 1084 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1085 { 1086 ice_check_module_power(pf, link_cfg_err); 1087 ice_check_phy_fw_load(pf, link_cfg_err); 1088 } 1089 1090 /** 1091 * ice_link_event - process the link event 1092 * @pf: PF that the link event is associated with 1093 * @pi: port_info for the port that the link event is associated with 1094 * @link_up: true if the physical link is up and false if it is down 1095 * @link_speed: current link speed received from the link event 1096 * 1097 * Returns 0 on success and negative on failure 1098 */ 1099 static int 1100 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1101 u16 link_speed) 1102 { 1103 struct device *dev = ice_pf_to_dev(pf); 1104 struct ice_phy_info *phy_info; 1105 struct ice_vsi *vsi; 1106 u16 old_link_speed; 1107 bool old_link; 1108 int status; 1109 1110 phy_info = &pi->phy; 1111 phy_info->link_info_old = phy_info->link_info; 1112 1113 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1114 old_link_speed = phy_info->link_info_old.link_speed; 1115 1116 /* update the link info structures and re-enable link events, 1117 * don't bail on failure due to other book keeping needed 1118 */ 1119 status = ice_update_link_info(pi); 1120 if (status) 1121 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1122 pi->lport, status, 1123 libie_aq_str(pi->hw->adminq.sq_last_status)); 1124 1125 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1126 1127 /* Check if the link state is up after updating link info, and treat 1128 * this event as an UP event since the link is actually UP now. 1129 */ 1130 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1131 link_up = true; 1132 1133 vsi = ice_get_main_vsi(pf); 1134 if (!vsi || !vsi->port_info) 1135 return -EINVAL; 1136 1137 /* turn off PHY if media was removed */ 1138 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1139 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1140 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1141 ice_set_link(vsi, false); 1142 } 1143 1144 /* if the old link up/down and speed is the same as the new */ 1145 if (link_up == old_link && link_speed == old_link_speed) 1146 return 0; 1147 1148 if (!link_up && old_link) 1149 pf->link_down_events++; 1150 1151 ice_ptp_link_change(pf, link_up); 1152 1153 if (ice_is_dcb_active(pf)) { 1154 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1155 ice_dcb_rebuild(pf); 1156 } else { 1157 if (link_up) 1158 ice_set_dflt_mib(pf); 1159 } 1160 ice_vsi_link_event(vsi, link_up); 1161 ice_print_link_msg(vsi, link_up); 1162 1163 ice_vc_notify_link_state(pf); 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1170 * @pf: board private structure 1171 */ 1172 static void ice_watchdog_subtask(struct ice_pf *pf) 1173 { 1174 int i; 1175 1176 /* if interface is down do nothing */ 1177 if (test_bit(ICE_DOWN, pf->state) || 1178 test_bit(ICE_CFG_BUSY, pf->state)) 1179 return; 1180 1181 /* make sure we don't do these things too often */ 1182 if (time_before(jiffies, 1183 pf->serv_tmr_prev + pf->serv_tmr_period)) 1184 return; 1185 1186 pf->serv_tmr_prev = jiffies; 1187 1188 /* Update the stats for active netdevs so the network stack 1189 * can look at updated numbers whenever it cares to 1190 */ 1191 ice_update_pf_stats(pf); 1192 ice_for_each_vsi(pf, i) 1193 if (pf->vsi[i] && pf->vsi[i]->netdev) 1194 ice_update_vsi_stats(pf->vsi[i]); 1195 } 1196 1197 /** 1198 * ice_init_link_events - enable/initialize link events 1199 * @pi: pointer to the port_info instance 1200 * 1201 * Returns -EIO on failure, 0 on success 1202 */ 1203 static int ice_init_link_events(struct ice_port_info *pi) 1204 { 1205 u16 mask; 1206 1207 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1208 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1209 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1210 1211 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1212 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1213 pi->lport); 1214 return -EIO; 1215 } 1216 1217 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1218 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1219 pi->lport); 1220 return -EIO; 1221 } 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * ice_handle_link_event - handle link event via ARQ 1228 * @pf: PF that the link event is associated with 1229 * @event: event structure containing link status info 1230 */ 1231 static int 1232 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1233 { 1234 struct ice_aqc_get_link_status_data *link_data; 1235 struct ice_port_info *port_info; 1236 int status; 1237 1238 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1239 port_info = pf->hw.port_info; 1240 if (!port_info) 1241 return -EINVAL; 1242 1243 status = ice_link_event(pf, port_info, 1244 !!(link_data->link_info & ICE_AQ_LINK_UP), 1245 le16_to_cpu(link_data->link_speed)); 1246 if (status) 1247 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1248 status); 1249 1250 return status; 1251 } 1252 1253 /** 1254 * ice_get_fwlog_data - copy the FW log data from ARQ event 1255 * @pf: PF that the FW log event is associated with 1256 * @event: event structure containing FW log data 1257 */ 1258 static void 1259 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1260 { 1261 struct ice_fwlog_data *fwlog; 1262 struct ice_hw *hw = &pf->hw; 1263 1264 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1265 1266 memset(fwlog->data, 0, PAGE_SIZE); 1267 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1268 1269 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1271 1272 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1273 /* the rings are full so bump the head to create room */ 1274 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1275 hw->fwlog_ring.size); 1276 } 1277 } 1278 1279 /** 1280 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1281 * @pf: pointer to the PF private structure 1282 * @task: intermediate helper storage and identifier for waiting 1283 * @opcode: the opcode to wait for 1284 * 1285 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1286 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1287 * 1288 * Calls are separated to allow caller registering for event before sending 1289 * the command, which mitigates a race between registering and FW responding. 1290 * 1291 * To obtain only the descriptor contents, pass an task->event with null 1292 * msg_buf. If the complete data buffer is desired, allocate the 1293 * task->event.msg_buf with enough space ahead of time. 1294 */ 1295 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1296 u16 opcode) 1297 { 1298 INIT_HLIST_NODE(&task->entry); 1299 task->opcode = opcode; 1300 task->state = ICE_AQ_TASK_WAITING; 1301 1302 spin_lock_bh(&pf->aq_wait_lock); 1303 hlist_add_head(&task->entry, &pf->aq_wait_list); 1304 spin_unlock_bh(&pf->aq_wait_lock); 1305 } 1306 1307 /** 1308 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1309 * @pf: pointer to the PF private structure 1310 * @task: ptr prepared by ice_aq_prep_for_event() 1311 * @timeout: how long to wait, in jiffies 1312 * 1313 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1314 * current thread will be put to sleep until the specified event occurs or 1315 * until the given timeout is reached. 1316 * 1317 * Returns: zero on success, or a negative error code on failure. 1318 */ 1319 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1320 unsigned long timeout) 1321 { 1322 enum ice_aq_task_state *state = &task->state; 1323 struct device *dev = ice_pf_to_dev(pf); 1324 unsigned long start = jiffies; 1325 long ret; 1326 int err; 1327 1328 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1329 *state != ICE_AQ_TASK_WAITING, 1330 timeout); 1331 switch (*state) { 1332 case ICE_AQ_TASK_NOT_PREPARED: 1333 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1334 err = -EINVAL; 1335 break; 1336 case ICE_AQ_TASK_WAITING: 1337 err = ret < 0 ? ret : -ETIMEDOUT; 1338 break; 1339 case ICE_AQ_TASK_CANCELED: 1340 err = ret < 0 ? ret : -ECANCELED; 1341 break; 1342 case ICE_AQ_TASK_COMPLETE: 1343 err = ret < 0 ? ret : 0; 1344 break; 1345 default: 1346 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1347 err = -EINVAL; 1348 break; 1349 } 1350 1351 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1352 jiffies_to_msecs(jiffies - start), 1353 jiffies_to_msecs(timeout), 1354 task->opcode); 1355 1356 spin_lock_bh(&pf->aq_wait_lock); 1357 hlist_del(&task->entry); 1358 spin_unlock_bh(&pf->aq_wait_lock); 1359 1360 return err; 1361 } 1362 1363 /** 1364 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1365 * @pf: pointer to the PF private structure 1366 * @opcode: the opcode of the event 1367 * @event: the event to check 1368 * 1369 * Loops over the current list of pending threads waiting for an AdminQ event. 1370 * For each matching task, copy the contents of the event into the task 1371 * structure and wake up the thread. 1372 * 1373 * If multiple threads wait for the same opcode, they will all be woken up. 1374 * 1375 * Note that event->msg_buf will only be duplicated if the event has a buffer 1376 * with enough space already allocated. Otherwise, only the descriptor and 1377 * message length will be copied. 1378 * 1379 * Returns: true if an event was found, false otherwise 1380 */ 1381 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1382 struct ice_rq_event_info *event) 1383 { 1384 struct ice_rq_event_info *task_ev; 1385 struct ice_aq_task *task; 1386 bool found = false; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1390 if (task->state != ICE_AQ_TASK_WAITING) 1391 continue; 1392 if (task->opcode != opcode) 1393 continue; 1394 1395 task_ev = &task->event; 1396 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1397 task_ev->msg_len = event->msg_len; 1398 1399 /* Only copy the data buffer if a destination was set */ 1400 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1401 memcpy(task_ev->msg_buf, event->msg_buf, 1402 event->buf_len); 1403 task_ev->buf_len = event->buf_len; 1404 } 1405 1406 task->state = ICE_AQ_TASK_COMPLETE; 1407 found = true; 1408 } 1409 spin_unlock_bh(&pf->aq_wait_lock); 1410 1411 if (found) 1412 wake_up(&pf->aq_wait_queue); 1413 } 1414 1415 /** 1416 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1417 * @pf: the PF private structure 1418 * 1419 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1420 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1421 */ 1422 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1423 { 1424 struct ice_aq_task *task; 1425 1426 spin_lock_bh(&pf->aq_wait_lock); 1427 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1428 task->state = ICE_AQ_TASK_CANCELED; 1429 spin_unlock_bh(&pf->aq_wait_lock); 1430 1431 wake_up(&pf->aq_wait_queue); 1432 } 1433 1434 #define ICE_MBX_OVERFLOW_WATERMARK 64 1435 1436 /** 1437 * __ice_clean_ctrlq - helper function to clean controlq rings 1438 * @pf: ptr to struct ice_pf 1439 * @q_type: specific Control queue type 1440 */ 1441 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1442 { 1443 struct device *dev = ice_pf_to_dev(pf); 1444 struct ice_rq_event_info event; 1445 struct ice_hw *hw = &pf->hw; 1446 struct ice_ctl_q_info *cq; 1447 u16 pending, i = 0; 1448 const char *qtype; 1449 u32 oldval, val; 1450 1451 /* Do not clean control queue if/when PF reset fails */ 1452 if (test_bit(ICE_RESET_FAILED, pf->state)) 1453 return 0; 1454 1455 switch (q_type) { 1456 case ICE_CTL_Q_ADMIN: 1457 cq = &hw->adminq; 1458 qtype = "Admin"; 1459 break; 1460 case ICE_CTL_Q_SB: 1461 cq = &hw->sbq; 1462 qtype = "Sideband"; 1463 break; 1464 case ICE_CTL_Q_MAILBOX: 1465 cq = &hw->mailboxq; 1466 qtype = "Mailbox"; 1467 /* we are going to try to detect a malicious VF, so set the 1468 * state to begin detection 1469 */ 1470 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1471 break; 1472 default: 1473 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1474 return 0; 1475 } 1476 1477 /* check for error indications - PF_xx_AxQLEN register layout for 1478 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1479 */ 1480 val = rd32(hw, cq->rq.len); 1481 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1482 PF_FW_ARQLEN_ARQCRIT_M)) { 1483 oldval = val; 1484 if (val & PF_FW_ARQLEN_ARQVFE_M) 1485 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1486 qtype); 1487 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1488 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1489 qtype); 1490 } 1491 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1492 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1493 qtype); 1494 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1495 PF_FW_ARQLEN_ARQCRIT_M); 1496 if (oldval != val) 1497 wr32(hw, cq->rq.len, val); 1498 } 1499 1500 val = rd32(hw, cq->sq.len); 1501 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1502 PF_FW_ATQLEN_ATQCRIT_M)) { 1503 oldval = val; 1504 if (val & PF_FW_ATQLEN_ATQVFE_M) 1505 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1506 qtype); 1507 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1508 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1509 qtype); 1510 } 1511 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1512 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1513 qtype); 1514 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1515 PF_FW_ATQLEN_ATQCRIT_M); 1516 if (oldval != val) 1517 wr32(hw, cq->sq.len, val); 1518 } 1519 1520 event.buf_len = cq->rq_buf_size; 1521 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1522 if (!event.msg_buf) 1523 return 0; 1524 1525 do { 1526 struct ice_mbx_data data = {}; 1527 u16 opcode; 1528 int ret; 1529 1530 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1531 if (ret == -EALREADY) 1532 break; 1533 if (ret) { 1534 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1535 ret); 1536 break; 1537 } 1538 1539 opcode = le16_to_cpu(event.desc.opcode); 1540 1541 /* Notify any thread that might be waiting for this event */ 1542 ice_aq_check_events(pf, opcode, &event); 1543 1544 switch (opcode) { 1545 case ice_aqc_opc_get_link_status: 1546 if (ice_handle_link_event(pf, &event)) 1547 dev_err(dev, "Could not handle link event\n"); 1548 break; 1549 case ice_aqc_opc_event_lan_overflow: 1550 ice_vf_lan_overflow_event(pf, &event); 1551 break; 1552 case ice_mbx_opc_send_msg_to_pf: 1553 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1554 ice_vc_process_vf_msg(pf, &event, NULL); 1555 ice_mbx_vf_dec_trig_e830(hw, &event); 1556 } else { 1557 u16 val = hw->mailboxq.num_rq_entries; 1558 1559 data.max_num_msgs_mbx = val; 1560 val = ICE_MBX_OVERFLOW_WATERMARK; 1561 data.async_watermark_val = val; 1562 data.num_msg_proc = i; 1563 data.num_pending_arq = pending; 1564 1565 ice_vc_process_vf_msg(pf, &event, &data); 1566 } 1567 break; 1568 case ice_aqc_opc_fw_logs_event: 1569 ice_get_fwlog_data(pf, &event); 1570 break; 1571 case ice_aqc_opc_lldp_set_mib_change: 1572 ice_dcb_process_lldp_set_mib_change(pf, &event); 1573 break; 1574 case ice_aqc_opc_get_health_status: 1575 ice_process_health_status_event(pf, &event); 1576 break; 1577 default: 1578 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1579 qtype, opcode); 1580 break; 1581 } 1582 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1583 1584 kfree(event.msg_buf); 1585 1586 return pending && (i == ICE_DFLT_IRQ_WORK); 1587 } 1588 1589 /** 1590 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1591 * @hw: pointer to hardware info 1592 * @cq: control queue information 1593 * 1594 * returns true if there are pending messages in a queue, false if there aren't 1595 */ 1596 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1597 { 1598 u16 ntu; 1599 1600 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1601 return cq->rq.next_to_clean != ntu; 1602 } 1603 1604 /** 1605 * ice_clean_adminq_subtask - clean the AdminQ rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1613 return; 1614 1615 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1616 return; 1617 1618 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1619 1620 /* There might be a situation where new messages arrive to a control 1621 * queue between processing the last message and clearing the 1622 * EVENT_PENDING bit. So before exiting, check queue head again (using 1623 * ice_ctrlq_pending) and process new messages if any. 1624 */ 1625 if (ice_ctrlq_pending(hw, &hw->adminq)) 1626 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1627 1628 ice_flush(hw); 1629 } 1630 1631 /** 1632 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1633 * @pf: board private structure 1634 */ 1635 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1636 { 1637 struct ice_hw *hw = &pf->hw; 1638 1639 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1640 return; 1641 1642 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1643 return; 1644 1645 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1646 1647 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1648 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1649 1650 ice_flush(hw); 1651 } 1652 1653 /** 1654 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1655 * @pf: board private structure 1656 */ 1657 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1658 { 1659 struct ice_hw *hw = &pf->hw; 1660 1661 /* if mac_type is not generic, sideband is not supported 1662 * and there's nothing to do here 1663 */ 1664 if (!ice_is_generic_mac(hw)) { 1665 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1666 return; 1667 } 1668 1669 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1670 return; 1671 1672 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1673 return; 1674 1675 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1676 1677 if (ice_ctrlq_pending(hw, &hw->sbq)) 1678 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1679 1680 ice_flush(hw); 1681 } 1682 1683 /** 1684 * ice_service_task_schedule - schedule the service task to wake up 1685 * @pf: board private structure 1686 * 1687 * If not already scheduled, this puts the task into the work queue. 1688 */ 1689 void ice_service_task_schedule(struct ice_pf *pf) 1690 { 1691 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1692 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1693 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1694 queue_work(ice_wq, &pf->serv_task); 1695 } 1696 1697 /** 1698 * ice_service_task_complete - finish up the service task 1699 * @pf: board private structure 1700 */ 1701 static void ice_service_task_complete(struct ice_pf *pf) 1702 { 1703 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1704 1705 /* force memory (pf->state) to sync before next service task */ 1706 smp_mb__before_atomic(); 1707 clear_bit(ICE_SERVICE_SCHED, pf->state); 1708 } 1709 1710 /** 1711 * ice_service_task_stop - stop service task and cancel works 1712 * @pf: board private structure 1713 * 1714 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1715 * 1 otherwise. 1716 */ 1717 static int ice_service_task_stop(struct ice_pf *pf) 1718 { 1719 int ret; 1720 1721 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1722 1723 if (pf->serv_tmr.function) 1724 timer_delete_sync(&pf->serv_tmr); 1725 if (pf->serv_task.func) 1726 cancel_work_sync(&pf->serv_task); 1727 1728 clear_bit(ICE_SERVICE_SCHED, pf->state); 1729 return ret; 1730 } 1731 1732 /** 1733 * ice_service_task_restart - restart service task and schedule works 1734 * @pf: board private structure 1735 * 1736 * This function is needed for suspend and resume works (e.g WoL scenario) 1737 */ 1738 static void ice_service_task_restart(struct ice_pf *pf) 1739 { 1740 clear_bit(ICE_SERVICE_DIS, pf->state); 1741 ice_service_task_schedule(pf); 1742 } 1743 1744 /** 1745 * ice_service_timer - timer callback to schedule service task 1746 * @t: pointer to timer_list 1747 */ 1748 static void ice_service_timer(struct timer_list *t) 1749 { 1750 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr); 1751 1752 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1753 ice_service_task_schedule(pf); 1754 } 1755 1756 /** 1757 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1758 * @pf: pointer to the PF structure 1759 * @vf: pointer to the VF structure 1760 * @reset_vf_tx: whether Tx MDD has occurred 1761 * @reset_vf_rx: whether Rx MDD has occurred 1762 * 1763 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1764 * automatically reset the VF by enabling the private ethtool flag 1765 * mdd-auto-reset-vf. 1766 */ 1767 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1768 bool reset_vf_tx, bool reset_vf_rx) 1769 { 1770 struct device *dev = ice_pf_to_dev(pf); 1771 1772 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1773 return; 1774 1775 /* VF MDD event counters will be cleared by reset, so print the event 1776 * prior to reset. 1777 */ 1778 if (reset_vf_tx) 1779 ice_print_vf_tx_mdd_event(vf); 1780 1781 if (reset_vf_rx) 1782 ice_print_vf_rx_mdd_event(vf); 1783 1784 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1785 pf->hw.pf_id, vf->vf_id); 1786 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1787 } 1788 1789 /** 1790 * ice_handle_mdd_event - handle malicious driver detect event 1791 * @pf: pointer to the PF structure 1792 * 1793 * Called from service task. OICR interrupt handler indicates MDD event. 1794 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1795 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1796 * disable the queue, the PF can be configured to reset the VF using ethtool 1797 * private flag mdd-auto-reset-vf. 1798 */ 1799 static void ice_handle_mdd_event(struct ice_pf *pf) 1800 { 1801 struct device *dev = ice_pf_to_dev(pf); 1802 struct ice_hw *hw = &pf->hw; 1803 struct ice_vf *vf; 1804 unsigned int bkt; 1805 u32 reg; 1806 1807 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1808 /* Since the VF MDD event logging is rate limited, check if 1809 * there are pending MDD events. 1810 */ 1811 ice_print_vfs_mdd_events(pf); 1812 return; 1813 } 1814 1815 /* find what triggered an MDD event */ 1816 reg = rd32(hw, GL_MDET_TX_PQM); 1817 if (reg & GL_MDET_TX_PQM_VALID_M) { 1818 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1819 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1820 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1821 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1822 1823 if (netif_msg_tx_err(pf)) 1824 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1825 event, queue, pf_num, vf_num); 1826 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1827 event, queue); 1828 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1829 } 1830 1831 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1832 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1833 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1834 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1835 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1836 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1837 1838 if (netif_msg_tx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1840 event, queue, pf_num, vf_num); 1841 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1842 event, queue); 1843 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1844 } 1845 1846 reg = rd32(hw, GL_MDET_RX); 1847 if (reg & GL_MDET_RX_VALID_M) { 1848 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1849 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1850 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1851 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1852 1853 if (netif_msg_rx_err(pf)) 1854 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1855 event, queue, pf_num, vf_num); 1856 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1857 queue); 1858 wr32(hw, GL_MDET_RX, 0xffffffff); 1859 } 1860 1861 /* check to see if this PF caused an MDD event */ 1862 reg = rd32(hw, PF_MDET_TX_PQM); 1863 if (reg & PF_MDET_TX_PQM_VALID_M) { 1864 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1865 if (netif_msg_tx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1867 } 1868 1869 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1870 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1871 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1872 if (netif_msg_tx_err(pf)) 1873 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1874 } 1875 1876 reg = rd32(hw, PF_MDET_RX); 1877 if (reg & PF_MDET_RX_VALID_M) { 1878 wr32(hw, PF_MDET_RX, 0xFFFF); 1879 if (netif_msg_rx_err(pf)) 1880 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1881 } 1882 1883 /* Check to see if one of the VFs caused an MDD event, and then 1884 * increment counters and set print pending 1885 */ 1886 mutex_lock(&pf->vfs.table_lock); 1887 ice_for_each_vf(pf, bkt, vf) { 1888 bool reset_vf_tx = false, reset_vf_rx = false; 1889 1890 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1891 if (reg & VP_MDET_TX_PQM_VALID_M) { 1892 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1893 vf->mdd_tx_events.count++; 1894 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1895 if (netif_msg_tx_err(pf)) 1896 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1897 vf->vf_id); 1898 1899 reset_vf_tx = true; 1900 } 1901 1902 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1903 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1904 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1905 vf->mdd_tx_events.count++; 1906 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1907 if (netif_msg_tx_err(pf)) 1908 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1909 vf->vf_id); 1910 1911 reset_vf_tx = true; 1912 } 1913 1914 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1915 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1916 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1917 vf->mdd_tx_events.count++; 1918 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1919 if (netif_msg_tx_err(pf)) 1920 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1921 vf->vf_id); 1922 1923 reset_vf_tx = true; 1924 } 1925 1926 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1927 if (reg & VP_MDET_RX_VALID_M) { 1928 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1929 vf->mdd_rx_events.count++; 1930 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1931 if (netif_msg_rx_err(pf)) 1932 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1933 vf->vf_id); 1934 1935 reset_vf_rx = true; 1936 } 1937 1938 if (reset_vf_tx || reset_vf_rx) 1939 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1940 reset_vf_rx); 1941 } 1942 mutex_unlock(&pf->vfs.table_lock); 1943 1944 ice_print_vfs_mdd_events(pf); 1945 } 1946 1947 /** 1948 * ice_force_phys_link_state - Force the physical link state 1949 * @vsi: VSI to force the physical link state to up/down 1950 * @link_up: true/false indicates to set the physical link to up/down 1951 * 1952 * Force the physical link state by getting the current PHY capabilities from 1953 * hardware and setting the PHY config based on the determined capabilities. If 1954 * link changes a link event will be triggered because both the Enable Automatic 1955 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1956 * 1957 * Returns 0 on success, negative on failure 1958 */ 1959 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1960 { 1961 struct ice_aqc_get_phy_caps_data *pcaps; 1962 struct ice_aqc_set_phy_cfg_data *cfg; 1963 struct ice_port_info *pi; 1964 struct device *dev; 1965 int retcode; 1966 1967 if (!vsi || !vsi->port_info || !vsi->back) 1968 return -EINVAL; 1969 if (vsi->type != ICE_VSI_PF) 1970 return 0; 1971 1972 dev = ice_pf_to_dev(vsi->back); 1973 1974 pi = vsi->port_info; 1975 1976 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1977 if (!pcaps) 1978 return -ENOMEM; 1979 1980 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1981 NULL); 1982 if (retcode) { 1983 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1984 vsi->vsi_num, retcode); 1985 retcode = -EIO; 1986 goto out; 1987 } 1988 1989 /* No change in link */ 1990 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1991 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1992 goto out; 1993 1994 /* Use the current user PHY configuration. The current user PHY 1995 * configuration is initialized during probe from PHY capabilities 1996 * software mode, and updated on set PHY configuration. 1997 */ 1998 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1999 if (!cfg) { 2000 retcode = -ENOMEM; 2001 goto out; 2002 } 2003 2004 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2005 if (link_up) 2006 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2007 else 2008 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2009 2010 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2011 if (retcode) { 2012 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2013 vsi->vsi_num, retcode); 2014 retcode = -EIO; 2015 } 2016 2017 kfree(cfg); 2018 out: 2019 kfree(pcaps); 2020 return retcode; 2021 } 2022 2023 /** 2024 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2025 * @pi: port info structure 2026 * 2027 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2028 */ 2029 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2030 { 2031 struct ice_aqc_get_phy_caps_data *pcaps; 2032 struct ice_pf *pf = pi->hw->back; 2033 int err; 2034 2035 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2036 if (!pcaps) 2037 return -ENOMEM; 2038 2039 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2040 pcaps, NULL); 2041 2042 if (err) { 2043 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2044 goto out; 2045 } 2046 2047 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2048 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2049 2050 out: 2051 kfree(pcaps); 2052 return err; 2053 } 2054 2055 /** 2056 * ice_init_link_dflt_override - Initialize link default override 2057 * @pi: port info structure 2058 * 2059 * Initialize link default override and PHY total port shutdown during probe 2060 */ 2061 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2062 { 2063 struct ice_link_default_override_tlv *ldo; 2064 struct ice_pf *pf = pi->hw->back; 2065 2066 ldo = &pf->link_dflt_override; 2067 if (ice_get_link_default_override(ldo, pi)) 2068 return; 2069 2070 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2071 return; 2072 2073 /* Enable Total Port Shutdown (override/replace link-down-on-close 2074 * ethtool private flag) for ports with Port Disable bit set. 2075 */ 2076 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2077 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2078 } 2079 2080 /** 2081 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2082 * @pi: port info structure 2083 * 2084 * If default override is enabled, initialize the user PHY cfg speed and FEC 2085 * settings using the default override mask from the NVM. 2086 * 2087 * The PHY should only be configured with the default override settings the 2088 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2089 * is used to indicate that the user PHY cfg default override is initialized 2090 * and the PHY has not been configured with the default override settings. The 2091 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2092 * configured. 2093 * 2094 * This function should be called only if the FW doesn't support default 2095 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2096 */ 2097 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2098 { 2099 struct ice_link_default_override_tlv *ldo; 2100 struct ice_aqc_set_phy_cfg_data *cfg; 2101 struct ice_phy_info *phy = &pi->phy; 2102 struct ice_pf *pf = pi->hw->back; 2103 2104 ldo = &pf->link_dflt_override; 2105 2106 /* If link default override is enabled, use to mask NVM PHY capabilities 2107 * for speed and FEC default configuration. 2108 */ 2109 cfg = &phy->curr_user_phy_cfg; 2110 2111 if (ldo->phy_type_low || ldo->phy_type_high) { 2112 cfg->phy_type_low = pf->nvm_phy_type_lo & 2113 cpu_to_le64(ldo->phy_type_low); 2114 cfg->phy_type_high = pf->nvm_phy_type_hi & 2115 cpu_to_le64(ldo->phy_type_high); 2116 } 2117 cfg->link_fec_opt = ldo->fec_options; 2118 phy->curr_user_fec_req = ICE_FEC_AUTO; 2119 2120 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2121 } 2122 2123 /** 2124 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2125 * @pi: port info structure 2126 * 2127 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2128 * mode to default. The PHY defaults are from get PHY capabilities topology 2129 * with media so call when media is first available. An error is returned if 2130 * called when media is not available. The PHY initialization completed state is 2131 * set here. 2132 * 2133 * These configurations are used when setting PHY 2134 * configuration. The user PHY configuration is updated on set PHY 2135 * configuration. Returns 0 on success, negative on failure 2136 */ 2137 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2138 { 2139 struct ice_aqc_get_phy_caps_data *pcaps; 2140 struct ice_phy_info *phy = &pi->phy; 2141 struct ice_pf *pf = pi->hw->back; 2142 int err; 2143 2144 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2145 return -EIO; 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2153 pcaps, NULL); 2154 else 2155 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2156 pcaps, NULL); 2157 if (err) { 2158 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2159 goto err_out; 2160 } 2161 2162 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2163 2164 /* check if lenient mode is supported and enabled */ 2165 if (ice_fw_supports_link_override(pi->hw) && 2166 !(pcaps->module_compliance_enforcement & 2167 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2168 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2169 2170 /* if the FW supports default PHY configuration mode, then the driver 2171 * does not have to apply link override settings. If not, 2172 * initialize user PHY configuration with link override values 2173 */ 2174 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2175 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2176 ice_init_phy_cfg_dflt_override(pi); 2177 goto out; 2178 } 2179 } 2180 2181 /* if link default override is not enabled, set user flow control and 2182 * FEC settings based on what get_phy_caps returned 2183 */ 2184 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2185 pcaps->link_fec_options); 2186 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2187 2188 out: 2189 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2190 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2191 err_out: 2192 kfree(pcaps); 2193 return err; 2194 } 2195 2196 /** 2197 * ice_configure_phy - configure PHY 2198 * @vsi: VSI of PHY 2199 * 2200 * Set the PHY configuration. If the current PHY configuration is the same as 2201 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2202 * configure the based get PHY capabilities for topology with media. 2203 */ 2204 static int ice_configure_phy(struct ice_vsi *vsi) 2205 { 2206 struct device *dev = ice_pf_to_dev(vsi->back); 2207 struct ice_port_info *pi = vsi->port_info; 2208 struct ice_aqc_get_phy_caps_data *pcaps; 2209 struct ice_aqc_set_phy_cfg_data *cfg; 2210 struct ice_phy_info *phy = &pi->phy; 2211 struct ice_pf *pf = vsi->back; 2212 int err; 2213 2214 /* Ensure we have media as we cannot configure a medialess port */ 2215 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2216 return -ENOMEDIUM; 2217 2218 ice_print_topo_conflict(vsi); 2219 2220 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2221 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2222 return -EPERM; 2223 2224 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2225 return ice_force_phys_link_state(vsi, true); 2226 2227 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2228 if (!pcaps) 2229 return -ENOMEM; 2230 2231 /* Get current PHY config */ 2232 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2233 NULL); 2234 if (err) { 2235 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2236 vsi->vsi_num, err); 2237 goto done; 2238 } 2239 2240 /* If PHY enable link is configured and configuration has not changed, 2241 * there's nothing to do 2242 */ 2243 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2244 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2245 goto done; 2246 2247 /* Use PHY topology as baseline for configuration */ 2248 memset(pcaps, 0, sizeof(*pcaps)); 2249 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2250 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2251 pcaps, NULL); 2252 else 2253 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2254 pcaps, NULL); 2255 if (err) { 2256 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2257 vsi->vsi_num, err); 2258 goto done; 2259 } 2260 2261 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2262 if (!cfg) { 2263 err = -ENOMEM; 2264 goto done; 2265 } 2266 2267 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2268 2269 /* Speed - If default override pending, use curr_user_phy_cfg set in 2270 * ice_init_phy_user_cfg_ldo. 2271 */ 2272 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2273 vsi->back->state)) { 2274 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2275 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2276 } else { 2277 u64 phy_low = 0, phy_high = 0; 2278 2279 ice_update_phy_type(&phy_low, &phy_high, 2280 pi->phy.curr_user_speed_req); 2281 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2282 cfg->phy_type_high = pcaps->phy_type_high & 2283 cpu_to_le64(phy_high); 2284 } 2285 2286 /* Can't provide what was requested; use PHY capabilities */ 2287 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2288 cfg->phy_type_low = pcaps->phy_type_low; 2289 cfg->phy_type_high = pcaps->phy_type_high; 2290 } 2291 2292 /* FEC */ 2293 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2294 2295 /* Can't provide what was requested; use PHY capabilities */ 2296 if (cfg->link_fec_opt != 2297 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2298 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2299 cfg->link_fec_opt = pcaps->link_fec_options; 2300 } 2301 2302 /* Flow Control - always supported; no need to check against 2303 * capabilities 2304 */ 2305 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2306 2307 /* Enable link and link update */ 2308 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2309 2310 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2311 if (err) 2312 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2313 vsi->vsi_num, err); 2314 2315 kfree(cfg); 2316 done: 2317 kfree(pcaps); 2318 return err; 2319 } 2320 2321 /** 2322 * ice_check_media_subtask - Check for media 2323 * @pf: pointer to PF struct 2324 * 2325 * If media is available, then initialize PHY user configuration if it is not 2326 * been, and configure the PHY if the interface is up. 2327 */ 2328 static void ice_check_media_subtask(struct ice_pf *pf) 2329 { 2330 struct ice_port_info *pi; 2331 struct ice_vsi *vsi; 2332 int err; 2333 2334 /* No need to check for media if it's already present */ 2335 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2336 return; 2337 2338 vsi = ice_get_main_vsi(pf); 2339 if (!vsi) 2340 return; 2341 2342 /* Refresh link info and check if media is present */ 2343 pi = vsi->port_info; 2344 err = ice_update_link_info(pi); 2345 if (err) 2346 return; 2347 2348 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2349 2350 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2351 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2352 ice_init_phy_user_cfg(pi); 2353 2354 /* PHY settings are reset on media insertion, reconfigure 2355 * PHY to preserve settings. 2356 */ 2357 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2358 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2359 return; 2360 2361 err = ice_configure_phy(vsi); 2362 if (!err) 2363 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2364 2365 /* A Link Status Event will be generated; the event handler 2366 * will complete bringing the interface up 2367 */ 2368 } 2369 } 2370 2371 static void ice_service_task_recovery_mode(struct work_struct *work) 2372 { 2373 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2374 2375 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2376 ice_clean_adminq_subtask(pf); 2377 2378 ice_service_task_complete(pf); 2379 2380 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2381 } 2382 2383 /** 2384 * ice_service_task - manage and run subtasks 2385 * @work: pointer to work_struct contained by the PF struct 2386 */ 2387 static void ice_service_task(struct work_struct *work) 2388 { 2389 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2390 unsigned long start_time = jiffies; 2391 2392 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2393 ice_report_tx_hang(pf); 2394 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2395 } 2396 2397 ice_reset_subtask(pf); 2398 2399 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2400 if (ice_is_reset_in_progress(pf->state) || 2401 test_bit(ICE_SUSPENDED, pf->state) || 2402 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2403 ice_service_task_complete(pf); 2404 return; 2405 } 2406 2407 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2408 struct iidc_rdma_event *event; 2409 2410 event = kzalloc(sizeof(*event), GFP_KERNEL); 2411 if (event) { 2412 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type); 2413 /* report the entire OICR value to AUX driver */ 2414 swap(event->reg, pf->oicr_err_reg); 2415 ice_send_event_to_aux(pf, event); 2416 kfree(event); 2417 } 2418 } 2419 2420 /* unplug aux dev per request, if an unplug request came in 2421 * while processing a plug request, this will handle it 2422 */ 2423 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2424 ice_unplug_aux_dev(pf); 2425 2426 /* Plug aux device per request */ 2427 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2428 ice_plug_aux_dev(pf); 2429 2430 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2431 struct iidc_rdma_event *event; 2432 2433 event = kzalloc(sizeof(*event), GFP_KERNEL); 2434 if (event) { 2435 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type); 2436 ice_send_event_to_aux(pf, event); 2437 kfree(event); 2438 } 2439 } 2440 2441 ice_clean_adminq_subtask(pf); 2442 ice_check_media_subtask(pf); 2443 ice_check_for_hang_subtask(pf); 2444 ice_sync_fltr_subtask(pf); 2445 ice_handle_mdd_event(pf); 2446 ice_watchdog_subtask(pf); 2447 2448 if (ice_is_safe_mode(pf)) { 2449 ice_service_task_complete(pf); 2450 return; 2451 } 2452 2453 ice_process_vflr_event(pf); 2454 ice_clean_mailboxq_subtask(pf); 2455 ice_clean_sbq_subtask(pf); 2456 ice_sync_arfs_fltrs(pf); 2457 ice_flush_fdir_ctx(pf); 2458 2459 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2460 ice_service_task_complete(pf); 2461 2462 /* If the tasks have taken longer than one service timer period 2463 * or there is more work to be done, reset the service timer to 2464 * schedule the service task now. 2465 */ 2466 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2467 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2468 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2469 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2470 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2471 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2472 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2473 mod_timer(&pf->serv_tmr, jiffies); 2474 } 2475 2476 /** 2477 * ice_set_ctrlq_len - helper function to set controlq length 2478 * @hw: pointer to the HW instance 2479 */ 2480 static void ice_set_ctrlq_len(struct ice_hw *hw) 2481 { 2482 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2483 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2484 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2485 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2486 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2487 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2488 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2489 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2490 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2491 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2492 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2493 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2494 } 2495 2496 /** 2497 * ice_schedule_reset - schedule a reset 2498 * @pf: board private structure 2499 * @reset: reset being requested 2500 */ 2501 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2502 { 2503 struct device *dev = ice_pf_to_dev(pf); 2504 2505 /* bail out if earlier reset has failed */ 2506 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2507 dev_dbg(dev, "earlier reset has failed\n"); 2508 return -EIO; 2509 } 2510 /* bail if reset/recovery already in progress */ 2511 if (ice_is_reset_in_progress(pf->state)) { 2512 dev_dbg(dev, "Reset already in progress\n"); 2513 return -EBUSY; 2514 } 2515 2516 switch (reset) { 2517 case ICE_RESET_PFR: 2518 set_bit(ICE_PFR_REQ, pf->state); 2519 break; 2520 case ICE_RESET_CORER: 2521 set_bit(ICE_CORER_REQ, pf->state); 2522 break; 2523 case ICE_RESET_GLOBR: 2524 set_bit(ICE_GLOBR_REQ, pf->state); 2525 break; 2526 default: 2527 return -EINVAL; 2528 } 2529 2530 ice_service_task_schedule(pf); 2531 return 0; 2532 } 2533 2534 /** 2535 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2536 * @vsi: the VSI being configured 2537 */ 2538 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2539 { 2540 struct ice_hw *hw = &vsi->back->hw; 2541 int i; 2542 2543 ice_for_each_q_vector(vsi, i) 2544 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2545 2546 ice_flush(hw); 2547 return 0; 2548 } 2549 2550 /** 2551 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2552 * @vsi: the VSI being configured 2553 * @basename: name for the vector 2554 */ 2555 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2556 { 2557 int q_vectors = vsi->num_q_vectors; 2558 struct ice_pf *pf = vsi->back; 2559 struct device *dev; 2560 int rx_int_idx = 0; 2561 int tx_int_idx = 0; 2562 int vector, err; 2563 int irq_num; 2564 2565 dev = ice_pf_to_dev(pf); 2566 for (vector = 0; vector < q_vectors; vector++) { 2567 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2568 2569 irq_num = q_vector->irq.virq; 2570 2571 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2574 tx_int_idx++; 2575 } else if (q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "rx", rx_int_idx++); 2578 } else if (q_vector->tx.tx_ring) { 2579 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2580 "%s-%s-%d", basename, "tx", tx_int_idx++); 2581 } else { 2582 /* skip this unused q_vector */ 2583 continue; 2584 } 2585 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2587 IRQF_SHARED, q_vector->name, 2588 q_vector); 2589 else 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 0, q_vector->name, q_vector); 2592 if (err) { 2593 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2594 err); 2595 goto free_q_irqs; 2596 } 2597 } 2598 2599 err = ice_set_cpu_rx_rmap(vsi); 2600 if (err) { 2601 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2602 vsi->vsi_num, ERR_PTR(err)); 2603 goto free_q_irqs; 2604 } 2605 2606 vsi->irqs_ready = true; 2607 return 0; 2608 2609 free_q_irqs: 2610 while (vector--) { 2611 irq_num = vsi->q_vectors[vector]->irq.virq; 2612 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2613 } 2614 return err; 2615 } 2616 2617 /** 2618 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2619 * @vsi: VSI to setup Tx rings used by XDP 2620 * 2621 * Return 0 on success and negative value on error 2622 */ 2623 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2624 { 2625 struct device *dev = ice_pf_to_dev(vsi->back); 2626 struct ice_tx_desc *tx_desc; 2627 int i, j; 2628 2629 ice_for_each_xdp_txq(vsi, i) { 2630 u16 xdp_q_idx = vsi->alloc_txq + i; 2631 struct ice_ring_stats *ring_stats; 2632 struct ice_tx_ring *xdp_ring; 2633 2634 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2635 if (!xdp_ring) 2636 goto free_xdp_rings; 2637 2638 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2639 if (!ring_stats) { 2640 ice_free_tx_ring(xdp_ring); 2641 goto free_xdp_rings; 2642 } 2643 2644 xdp_ring->ring_stats = ring_stats; 2645 xdp_ring->q_index = xdp_q_idx; 2646 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2647 xdp_ring->vsi = vsi; 2648 xdp_ring->netdev = NULL; 2649 xdp_ring->dev = dev; 2650 xdp_ring->count = vsi->num_tx_desc; 2651 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2652 if (ice_setup_tx_ring(xdp_ring)) 2653 goto free_xdp_rings; 2654 ice_set_ring_xdp(xdp_ring); 2655 spin_lock_init(&xdp_ring->tx_lock); 2656 for (j = 0; j < xdp_ring->count; j++) { 2657 tx_desc = ICE_TX_DESC(xdp_ring, j); 2658 tx_desc->cmd_type_offset_bsz = 0; 2659 } 2660 } 2661 2662 return 0; 2663 2664 free_xdp_rings: 2665 for (; i >= 0; i--) { 2666 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2667 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2668 vsi->xdp_rings[i]->ring_stats = NULL; 2669 ice_free_tx_ring(vsi->xdp_rings[i]); 2670 } 2671 } 2672 return -ENOMEM; 2673 } 2674 2675 /** 2676 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2677 * @vsi: VSI to set the bpf prog on 2678 * @prog: the bpf prog pointer 2679 */ 2680 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2681 { 2682 struct bpf_prog *old_prog; 2683 int i; 2684 2685 old_prog = xchg(&vsi->xdp_prog, prog); 2686 ice_for_each_rxq(vsi, i) 2687 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2688 2689 if (old_prog) 2690 bpf_prog_put(old_prog); 2691 } 2692 2693 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2694 { 2695 struct ice_q_vector *q_vector; 2696 struct ice_tx_ring *ring; 2697 2698 if (static_key_enabled(&ice_xdp_locking_key)) 2699 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2700 2701 q_vector = vsi->rx_rings[qid]->q_vector; 2702 ice_for_each_tx_ring(ring, q_vector->tx) 2703 if (ice_ring_is_xdp(ring)) 2704 return ring; 2705 2706 return NULL; 2707 } 2708 2709 /** 2710 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2711 * @vsi: the VSI with XDP rings being configured 2712 * 2713 * Map XDP rings to interrupt vectors and perform the configuration steps 2714 * dependent on the mapping. 2715 */ 2716 void ice_map_xdp_rings(struct ice_vsi *vsi) 2717 { 2718 int xdp_rings_rem = vsi->num_xdp_txq; 2719 int v_idx, q_idx; 2720 2721 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2722 ice_for_each_q_vector(vsi, v_idx) { 2723 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2724 int xdp_rings_per_v, q_id, q_base; 2725 2726 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2727 vsi->num_q_vectors - v_idx); 2728 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2729 2730 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2731 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2732 2733 xdp_ring->q_vector = q_vector; 2734 xdp_ring->next = q_vector->tx.tx_ring; 2735 q_vector->tx.tx_ring = xdp_ring; 2736 } 2737 xdp_rings_rem -= xdp_rings_per_v; 2738 } 2739 2740 ice_for_each_rxq(vsi, q_idx) { 2741 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2742 q_idx); 2743 ice_tx_xsk_pool(vsi, q_idx); 2744 } 2745 } 2746 2747 /** 2748 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors 2749 * @vsi: the VSI with XDP rings being unmapped 2750 */ 2751 static void ice_unmap_xdp_rings(struct ice_vsi *vsi) 2752 { 2753 int v_idx; 2754 2755 ice_for_each_q_vector(vsi, v_idx) { 2756 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2757 struct ice_tx_ring *ring; 2758 2759 ice_for_each_tx_ring(ring, q_vector->tx) 2760 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2761 break; 2762 2763 /* restore the value of last node prior to XDP setup */ 2764 q_vector->tx.tx_ring = ring; 2765 } 2766 } 2767 2768 /** 2769 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2770 * @vsi: VSI to bring up Tx rings used by XDP 2771 * @prog: bpf program that will be assigned to VSI 2772 * @cfg_type: create from scratch or restore the existing configuration 2773 * 2774 * Return 0 on success and negative value on error 2775 */ 2776 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2777 enum ice_xdp_cfg cfg_type) 2778 { 2779 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2780 struct ice_pf *pf = vsi->back; 2781 struct ice_qs_cfg xdp_qs_cfg = { 2782 .qs_mutex = &pf->avail_q_mutex, 2783 .pf_map = pf->avail_txqs, 2784 .pf_map_size = pf->max_pf_txqs, 2785 .q_count = vsi->num_xdp_txq, 2786 .scatter_count = ICE_MAX_SCATTER_TXQS, 2787 .vsi_map = vsi->txq_map, 2788 .vsi_map_offset = vsi->alloc_txq, 2789 .mapping_mode = ICE_VSI_MAP_CONTIG 2790 }; 2791 struct device *dev; 2792 int status, i; 2793 2794 dev = ice_pf_to_dev(pf); 2795 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2796 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2797 if (!vsi->xdp_rings) 2798 return -ENOMEM; 2799 2800 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2801 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2802 goto err_map_xdp; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 netdev_warn(vsi->netdev, 2806 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2807 2808 if (ice_xdp_alloc_setup_rings(vsi)) 2809 goto clear_xdp_rings; 2810 2811 /* omit the scheduler update if in reset path; XDP queues will be 2812 * taken into account at the end of ice_vsi_rebuild, where 2813 * ice_cfg_vsi_lan is being called 2814 */ 2815 if (cfg_type == ICE_XDP_CFG_PART) 2816 return 0; 2817 2818 ice_map_xdp_rings(vsi); 2819 2820 /* tell the Tx scheduler that right now we have 2821 * additional queues 2822 */ 2823 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2824 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2825 2826 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2827 max_txqs); 2828 if (status) { 2829 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2830 status); 2831 goto unmap_xdp_rings; 2832 } 2833 2834 /* assign the prog only when it's not already present on VSI; 2835 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2836 * VSI rebuild that happens under ethtool -L can expose us to 2837 * the bpf_prog refcount issues as we would be swapping same 2838 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2839 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2840 * this is not harmful as dev_xdp_install bumps the refcount 2841 * before calling the op exposed by the driver; 2842 */ 2843 if (!ice_is_xdp_ena_vsi(vsi)) 2844 ice_vsi_assign_bpf_prog(vsi, prog); 2845 2846 return 0; 2847 unmap_xdp_rings: 2848 ice_unmap_xdp_rings(vsi); 2849 clear_xdp_rings: 2850 ice_for_each_xdp_txq(vsi, i) 2851 if (vsi->xdp_rings[i]) { 2852 kfree_rcu(vsi->xdp_rings[i], rcu); 2853 vsi->xdp_rings[i] = NULL; 2854 } 2855 2856 err_map_xdp: 2857 mutex_lock(&pf->avail_q_mutex); 2858 ice_for_each_xdp_txq(vsi, i) { 2859 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2860 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2861 } 2862 mutex_unlock(&pf->avail_q_mutex); 2863 2864 devm_kfree(dev, vsi->xdp_rings); 2865 vsi->xdp_rings = NULL; 2866 2867 return -ENOMEM; 2868 } 2869 2870 /** 2871 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2872 * @vsi: VSI to remove XDP rings 2873 * @cfg_type: disable XDP permanently or allow it to be restored later 2874 * 2875 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2876 * resources 2877 */ 2878 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2879 { 2880 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2881 struct ice_pf *pf = vsi->back; 2882 int i; 2883 2884 /* q_vectors are freed in reset path so there's no point in detaching 2885 * rings 2886 */ 2887 if (cfg_type == ICE_XDP_CFG_PART) 2888 goto free_qmap; 2889 2890 ice_unmap_xdp_rings(vsi); 2891 2892 free_qmap: 2893 mutex_lock(&pf->avail_q_mutex); 2894 ice_for_each_xdp_txq(vsi, i) { 2895 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2896 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2897 } 2898 mutex_unlock(&pf->avail_q_mutex); 2899 2900 ice_for_each_xdp_txq(vsi, i) 2901 if (vsi->xdp_rings[i]) { 2902 if (vsi->xdp_rings[i]->desc) { 2903 synchronize_rcu(); 2904 ice_free_tx_ring(vsi->xdp_rings[i]); 2905 } 2906 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2907 vsi->xdp_rings[i]->ring_stats = NULL; 2908 kfree_rcu(vsi->xdp_rings[i], rcu); 2909 vsi->xdp_rings[i] = NULL; 2910 } 2911 2912 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2913 vsi->xdp_rings = NULL; 2914 2915 if (static_key_enabled(&ice_xdp_locking_key)) 2916 static_branch_dec(&ice_xdp_locking_key); 2917 2918 if (cfg_type == ICE_XDP_CFG_PART) 2919 return 0; 2920 2921 ice_vsi_assign_bpf_prog(vsi, NULL); 2922 2923 /* notify Tx scheduler that we destroyed XDP queues and bring 2924 * back the old number of child nodes 2925 */ 2926 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2927 max_txqs[i] = vsi->num_txq; 2928 2929 /* change number of XDP Tx queues to 0 */ 2930 vsi->num_xdp_txq = 0; 2931 2932 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2933 max_txqs); 2934 } 2935 2936 /** 2937 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2938 * @vsi: VSI to schedule napi on 2939 */ 2940 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2941 { 2942 int i; 2943 2944 ice_for_each_rxq(vsi, i) { 2945 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2946 2947 if (READ_ONCE(rx_ring->xsk_pool)) 2948 napi_schedule(&rx_ring->q_vector->napi); 2949 } 2950 } 2951 2952 /** 2953 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2954 * @vsi: VSI to determine the count of XDP Tx qs 2955 * 2956 * returns 0 if Tx qs count is higher than at least half of CPU count, 2957 * -ENOMEM otherwise 2958 */ 2959 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2960 { 2961 u16 avail = ice_get_avail_txq_count(vsi->back); 2962 u16 cpus = num_possible_cpus(); 2963 2964 if (avail < cpus / 2) 2965 return -ENOMEM; 2966 2967 if (vsi->type == ICE_VSI_SF) 2968 avail = vsi->alloc_txq; 2969 2970 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2971 2972 if (vsi->num_xdp_txq < cpus) 2973 static_branch_inc(&ice_xdp_locking_key); 2974 2975 return 0; 2976 } 2977 2978 /** 2979 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2980 * @vsi: Pointer to VSI structure 2981 */ 2982 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2983 { 2984 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2985 return ICE_RXBUF_1664; 2986 else 2987 return ICE_RXBUF_3072; 2988 } 2989 2990 /** 2991 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2992 * @vsi: VSI to setup XDP for 2993 * @prog: XDP program 2994 * @extack: netlink extended ack 2995 */ 2996 static int 2997 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2998 struct netlink_ext_ack *extack) 2999 { 3000 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3001 int ret = 0, xdp_ring_err = 0; 3002 bool if_running; 3003 3004 if (prog && !prog->aux->xdp_has_frags) { 3005 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3006 NL_SET_ERR_MSG_MOD(extack, 3007 "MTU is too large for linear frames and XDP prog does not support frags"); 3008 return -EOPNOTSUPP; 3009 } 3010 } 3011 3012 /* hot swap progs and avoid toggling link */ 3013 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3014 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3015 ice_vsi_assign_bpf_prog(vsi, prog); 3016 return 0; 3017 } 3018 3019 if_running = netif_running(vsi->netdev) && 3020 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3021 3022 /* need to stop netdev while setting up the program for Rx rings */ 3023 if (if_running) { 3024 ret = ice_down(vsi); 3025 if (ret) { 3026 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3027 return ret; 3028 } 3029 } 3030 3031 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3032 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3033 if (xdp_ring_err) { 3034 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3035 goto resume_if; 3036 } else { 3037 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3038 ICE_XDP_CFG_FULL); 3039 if (xdp_ring_err) { 3040 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3041 goto resume_if; 3042 } 3043 } 3044 xdp_features_set_redirect_target(vsi->netdev, true); 3045 /* reallocate Rx queues that are used for zero-copy */ 3046 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3047 if (xdp_ring_err) 3048 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3049 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3050 xdp_features_clear_redirect_target(vsi->netdev); 3051 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3052 if (xdp_ring_err) 3053 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3054 /* reallocate Rx queues that were used for zero-copy */ 3055 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3056 if (xdp_ring_err) 3057 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3058 } 3059 3060 resume_if: 3061 if (if_running) 3062 ret = ice_up(vsi); 3063 3064 if (!ret && prog) 3065 ice_vsi_rx_napi_schedule(vsi); 3066 3067 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3068 } 3069 3070 /** 3071 * ice_xdp_safe_mode - XDP handler for safe mode 3072 * @dev: netdevice 3073 * @xdp: XDP command 3074 */ 3075 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3076 struct netdev_bpf *xdp) 3077 { 3078 NL_SET_ERR_MSG_MOD(xdp->extack, 3079 "Please provide working DDP firmware package in order to use XDP\n" 3080 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3081 return -EOPNOTSUPP; 3082 } 3083 3084 /** 3085 * ice_xdp - implements XDP handler 3086 * @dev: netdevice 3087 * @xdp: XDP command 3088 */ 3089 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3090 { 3091 struct ice_netdev_priv *np = netdev_priv(dev); 3092 struct ice_vsi *vsi = np->vsi; 3093 int ret; 3094 3095 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3096 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3097 return -EINVAL; 3098 } 3099 3100 mutex_lock(&vsi->xdp_state_lock); 3101 3102 switch (xdp->command) { 3103 case XDP_SETUP_PROG: 3104 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3105 break; 3106 case XDP_SETUP_XSK_POOL: 3107 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3108 break; 3109 default: 3110 ret = -EINVAL; 3111 } 3112 3113 mutex_unlock(&vsi->xdp_state_lock); 3114 return ret; 3115 } 3116 3117 /** 3118 * ice_ena_misc_vector - enable the non-queue interrupts 3119 * @pf: board private structure 3120 */ 3121 static void ice_ena_misc_vector(struct ice_pf *pf) 3122 { 3123 struct ice_hw *hw = &pf->hw; 3124 u32 pf_intr_start_offset; 3125 u32 val; 3126 3127 /* Disable anti-spoof detection interrupt to prevent spurious event 3128 * interrupts during a function reset. Anti-spoof functionally is 3129 * still supported. 3130 */ 3131 val = rd32(hw, GL_MDCK_TX_TDPU); 3132 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3133 wr32(hw, GL_MDCK_TX_TDPU, val); 3134 3135 /* clear things first */ 3136 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3137 rd32(hw, PFINT_OICR); /* read to clear */ 3138 3139 val = (PFINT_OICR_ECC_ERR_M | 3140 PFINT_OICR_MAL_DETECT_M | 3141 PFINT_OICR_GRST_M | 3142 PFINT_OICR_PCI_EXCEPTION_M | 3143 PFINT_OICR_VFLR_M | 3144 PFINT_OICR_HMC_ERR_M | 3145 PFINT_OICR_PE_PUSH_M | 3146 PFINT_OICR_PE_CRITERR_M); 3147 3148 wr32(hw, PFINT_OICR_ENA, val); 3149 3150 /* SW_ITR_IDX = 0, but don't change INTENA */ 3151 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3152 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3153 3154 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3155 return; 3156 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3157 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3158 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3159 } 3160 3161 /** 3162 * ice_ll_ts_intr - ll_ts interrupt handler 3163 * @irq: interrupt number 3164 * @data: pointer to a q_vector 3165 */ 3166 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3167 { 3168 struct ice_pf *pf = data; 3169 u32 pf_intr_start_offset; 3170 struct ice_ptp_tx *tx; 3171 unsigned long flags; 3172 struct ice_hw *hw; 3173 u32 val; 3174 u8 idx; 3175 3176 hw = &pf->hw; 3177 tx = &pf->ptp.port.tx; 3178 spin_lock_irqsave(&tx->lock, flags); 3179 if (tx->init) { 3180 ice_ptp_complete_tx_single_tstamp(tx); 3181 3182 idx = find_next_bit_wrap(tx->in_use, tx->len, 3183 tx->last_ll_ts_idx_read + 1); 3184 if (idx != tx->len) 3185 ice_ptp_req_tx_single_tstamp(tx, idx); 3186 } 3187 spin_unlock_irqrestore(&tx->lock, flags); 3188 3189 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3190 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3191 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3192 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3193 val); 3194 3195 return IRQ_HANDLED; 3196 } 3197 3198 /** 3199 * ice_misc_intr - misc interrupt handler 3200 * @irq: interrupt number 3201 * @data: pointer to a q_vector 3202 */ 3203 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3204 { 3205 struct ice_pf *pf = (struct ice_pf *)data; 3206 irqreturn_t ret = IRQ_HANDLED; 3207 struct ice_hw *hw = &pf->hw; 3208 struct device *dev; 3209 u32 oicr, ena_mask; 3210 3211 dev = ice_pf_to_dev(pf); 3212 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3213 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3214 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3215 3216 oicr = rd32(hw, PFINT_OICR); 3217 ena_mask = rd32(hw, PFINT_OICR_ENA); 3218 3219 if (oicr & PFINT_OICR_SWINT_M) { 3220 ena_mask &= ~PFINT_OICR_SWINT_M; 3221 pf->sw_int_count++; 3222 } 3223 3224 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3225 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3226 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3227 } 3228 if (oicr & PFINT_OICR_VFLR_M) { 3229 /* disable any further VFLR event notifications */ 3230 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3231 u32 reg = rd32(hw, PFINT_OICR_ENA); 3232 3233 reg &= ~PFINT_OICR_VFLR_M; 3234 wr32(hw, PFINT_OICR_ENA, reg); 3235 } else { 3236 ena_mask &= ~PFINT_OICR_VFLR_M; 3237 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3238 } 3239 } 3240 3241 if (oicr & PFINT_OICR_GRST_M) { 3242 u32 reset; 3243 3244 /* we have a reset warning */ 3245 ena_mask &= ~PFINT_OICR_GRST_M; 3246 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3247 rd32(hw, GLGEN_RSTAT)); 3248 3249 if (reset == ICE_RESET_CORER) 3250 pf->corer_count++; 3251 else if (reset == ICE_RESET_GLOBR) 3252 pf->globr_count++; 3253 else if (reset == ICE_RESET_EMPR) 3254 pf->empr_count++; 3255 else 3256 dev_dbg(dev, "Invalid reset type %d\n", reset); 3257 3258 /* If a reset cycle isn't already in progress, we set a bit in 3259 * pf->state so that the service task can start a reset/rebuild. 3260 */ 3261 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3262 if (reset == ICE_RESET_CORER) 3263 set_bit(ICE_CORER_RECV, pf->state); 3264 else if (reset == ICE_RESET_GLOBR) 3265 set_bit(ICE_GLOBR_RECV, pf->state); 3266 else 3267 set_bit(ICE_EMPR_RECV, pf->state); 3268 3269 /* There are couple of different bits at play here. 3270 * hw->reset_ongoing indicates whether the hardware is 3271 * in reset. This is set to true when a reset interrupt 3272 * is received and set back to false after the driver 3273 * has determined that the hardware is out of reset. 3274 * 3275 * ICE_RESET_OICR_RECV in pf->state indicates 3276 * that a post reset rebuild is required before the 3277 * driver is operational again. This is set above. 3278 * 3279 * As this is the start of the reset/rebuild cycle, set 3280 * both to indicate that. 3281 */ 3282 hw->reset_ongoing = true; 3283 } 3284 } 3285 3286 if (oicr & PFINT_OICR_TSYN_TX_M) { 3287 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3288 3289 ret = ice_ptp_ts_irq(pf); 3290 } 3291 3292 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3293 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3294 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3295 3296 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3297 3298 if (ice_pf_src_tmr_owned(pf)) { 3299 /* Save EVENTs from GLTSYN register */ 3300 pf->ptp.ext_ts_irq |= gltsyn_stat & 3301 (GLTSYN_STAT_EVENT0_M | 3302 GLTSYN_STAT_EVENT1_M | 3303 GLTSYN_STAT_EVENT2_M); 3304 3305 ice_ptp_extts_event(pf); 3306 } 3307 } 3308 3309 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3310 if (oicr & ICE_AUX_CRIT_ERR) { 3311 pf->oicr_err_reg |= oicr; 3312 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3313 ena_mask &= ~ICE_AUX_CRIT_ERR; 3314 } 3315 3316 /* Report any remaining unexpected interrupts */ 3317 oicr &= ena_mask; 3318 if (oicr) { 3319 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3320 /* If a critical error is pending there is no choice but to 3321 * reset the device. 3322 */ 3323 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3324 PFINT_OICR_ECC_ERR_M)) { 3325 set_bit(ICE_PFR_REQ, pf->state); 3326 } 3327 } 3328 ice_service_task_schedule(pf); 3329 if (ret == IRQ_HANDLED) 3330 ice_irq_dynamic_ena(hw, NULL, NULL); 3331 3332 return ret; 3333 } 3334 3335 /** 3336 * ice_misc_intr_thread_fn - misc interrupt thread function 3337 * @irq: interrupt number 3338 * @data: pointer to a q_vector 3339 */ 3340 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3341 { 3342 struct ice_pf *pf = data; 3343 struct ice_hw *hw; 3344 3345 hw = &pf->hw; 3346 3347 if (ice_is_reset_in_progress(pf->state)) 3348 goto skip_irq; 3349 3350 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3351 /* Process outstanding Tx timestamps. If there is more work, 3352 * re-arm the interrupt to trigger again. 3353 */ 3354 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3355 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3356 ice_flush(hw); 3357 } 3358 } 3359 3360 skip_irq: 3361 ice_irq_dynamic_ena(hw, NULL, NULL); 3362 3363 return IRQ_HANDLED; 3364 } 3365 3366 /** 3367 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3368 * @hw: pointer to HW structure 3369 */ 3370 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3371 { 3372 /* disable Admin queue Interrupt causes */ 3373 wr32(hw, PFINT_FW_CTL, 3374 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3375 3376 /* disable Mailbox queue Interrupt causes */ 3377 wr32(hw, PFINT_MBX_CTL, 3378 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3379 3380 wr32(hw, PFINT_SB_CTL, 3381 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3382 3383 /* disable Control queue Interrupt causes */ 3384 wr32(hw, PFINT_OICR_CTL, 3385 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3386 3387 ice_flush(hw); 3388 } 3389 3390 /** 3391 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3392 * @pf: board private structure 3393 */ 3394 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3395 { 3396 int irq_num = pf->ll_ts_irq.virq; 3397 3398 synchronize_irq(irq_num); 3399 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3400 3401 ice_free_irq(pf, pf->ll_ts_irq); 3402 } 3403 3404 /** 3405 * ice_free_irq_msix_misc - Unroll misc vector setup 3406 * @pf: board private structure 3407 */ 3408 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3409 { 3410 int misc_irq_num = pf->oicr_irq.virq; 3411 struct ice_hw *hw = &pf->hw; 3412 3413 ice_dis_ctrlq_interrupts(hw); 3414 3415 /* disable OICR interrupt */ 3416 wr32(hw, PFINT_OICR_ENA, 0); 3417 ice_flush(hw); 3418 3419 synchronize_irq(misc_irq_num); 3420 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3421 3422 ice_free_irq(pf, pf->oicr_irq); 3423 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3424 ice_free_irq_msix_ll_ts(pf); 3425 } 3426 3427 /** 3428 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3429 * @hw: pointer to HW structure 3430 * @reg_idx: HW vector index to associate the control queue interrupts with 3431 */ 3432 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3433 { 3434 u32 val; 3435 3436 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3437 PFINT_OICR_CTL_CAUSE_ENA_M); 3438 wr32(hw, PFINT_OICR_CTL, val); 3439 3440 /* enable Admin queue Interrupt causes */ 3441 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3442 PFINT_FW_CTL_CAUSE_ENA_M); 3443 wr32(hw, PFINT_FW_CTL, val); 3444 3445 /* enable Mailbox queue Interrupt causes */ 3446 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3447 PFINT_MBX_CTL_CAUSE_ENA_M); 3448 wr32(hw, PFINT_MBX_CTL, val); 3449 3450 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3451 /* enable Sideband queue Interrupt causes */ 3452 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3453 PFINT_SB_CTL_CAUSE_ENA_M); 3454 wr32(hw, PFINT_SB_CTL, val); 3455 } 3456 3457 ice_flush(hw); 3458 } 3459 3460 /** 3461 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3462 * @pf: board private structure 3463 * 3464 * This sets up the handler for MSIX 0, which is used to manage the 3465 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3466 * when in MSI or Legacy interrupt mode. 3467 */ 3468 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3469 { 3470 struct device *dev = ice_pf_to_dev(pf); 3471 struct ice_hw *hw = &pf->hw; 3472 u32 pf_intr_start_offset; 3473 struct msi_map irq; 3474 int err = 0; 3475 3476 if (!pf->int_name[0]) 3477 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3478 dev_driver_string(dev), dev_name(dev)); 3479 3480 if (!pf->int_name_ll_ts[0]) 3481 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3482 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3483 /* Do not request IRQ but do enable OICR interrupt since settings are 3484 * lost during reset. Note that this function is called only during 3485 * rebuild path and not while reset is in progress. 3486 */ 3487 if (ice_is_reset_in_progress(pf->state)) 3488 goto skip_req_irq; 3489 3490 /* reserve one vector in irq_tracker for misc interrupts */ 3491 irq = ice_alloc_irq(pf, false); 3492 if (irq.index < 0) 3493 return irq.index; 3494 3495 pf->oicr_irq = irq; 3496 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3497 ice_misc_intr_thread_fn, 0, 3498 pf->int_name, pf); 3499 if (err) { 3500 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3501 pf->int_name, err); 3502 ice_free_irq(pf, pf->oicr_irq); 3503 return err; 3504 } 3505 3506 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3507 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3508 goto skip_req_irq; 3509 3510 irq = ice_alloc_irq(pf, false); 3511 if (irq.index < 0) 3512 return irq.index; 3513 3514 pf->ll_ts_irq = irq; 3515 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3516 pf->int_name_ll_ts, pf); 3517 if (err) { 3518 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3519 pf->int_name_ll_ts, err); 3520 ice_free_irq(pf, pf->ll_ts_irq); 3521 return err; 3522 } 3523 3524 skip_req_irq: 3525 ice_ena_misc_vector(pf); 3526 3527 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3528 /* This enables LL TS interrupt */ 3529 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3530 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3531 wr32(hw, PFINT_SB_CTL, 3532 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3533 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3534 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3535 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3536 3537 ice_flush(hw); 3538 ice_irq_dynamic_ena(hw, NULL, NULL); 3539 3540 return 0; 3541 } 3542 3543 /** 3544 * ice_set_ops - set netdev and ethtools ops for the given netdev 3545 * @vsi: the VSI associated with the new netdev 3546 */ 3547 static void ice_set_ops(struct ice_vsi *vsi) 3548 { 3549 struct net_device *netdev = vsi->netdev; 3550 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3551 3552 if (ice_is_safe_mode(pf)) { 3553 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3554 ice_set_ethtool_safe_mode_ops(netdev); 3555 return; 3556 } 3557 3558 netdev->netdev_ops = &ice_netdev_ops; 3559 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3560 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3561 ice_set_ethtool_ops(netdev); 3562 3563 if (vsi->type != ICE_VSI_PF) 3564 return; 3565 3566 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3567 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3568 NETDEV_XDP_ACT_RX_SG; 3569 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3570 } 3571 3572 /** 3573 * ice_set_netdev_features - set features for the given netdev 3574 * @netdev: netdev instance 3575 */ 3576 void ice_set_netdev_features(struct net_device *netdev) 3577 { 3578 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3579 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3580 netdev_features_t csumo_features; 3581 netdev_features_t vlano_features; 3582 netdev_features_t dflt_features; 3583 netdev_features_t tso_features; 3584 3585 if (ice_is_safe_mode(pf)) { 3586 /* safe mode */ 3587 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3588 netdev->hw_features = netdev->features; 3589 return; 3590 } 3591 3592 dflt_features = NETIF_F_SG | 3593 NETIF_F_HIGHDMA | 3594 NETIF_F_NTUPLE | 3595 NETIF_F_RXHASH; 3596 3597 csumo_features = NETIF_F_RXCSUM | 3598 NETIF_F_IP_CSUM | 3599 NETIF_F_SCTP_CRC | 3600 NETIF_F_IPV6_CSUM; 3601 3602 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3603 NETIF_F_HW_VLAN_CTAG_TX | 3604 NETIF_F_HW_VLAN_CTAG_RX; 3605 3606 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3607 if (is_dvm_ena) 3608 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3609 3610 tso_features = NETIF_F_TSO | 3611 NETIF_F_TSO_ECN | 3612 NETIF_F_TSO6 | 3613 NETIF_F_GSO_GRE | 3614 NETIF_F_GSO_UDP_TUNNEL | 3615 NETIF_F_GSO_GRE_CSUM | 3616 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3617 NETIF_F_GSO_PARTIAL | 3618 NETIF_F_GSO_IPXIP4 | 3619 NETIF_F_GSO_IPXIP6 | 3620 NETIF_F_GSO_UDP_L4; 3621 3622 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3623 NETIF_F_GSO_GRE_CSUM; 3624 /* set features that user can change */ 3625 netdev->hw_features = dflt_features | csumo_features | 3626 vlano_features | tso_features; 3627 3628 /* add support for HW_CSUM on packets with MPLS header */ 3629 netdev->mpls_features = NETIF_F_HW_CSUM | 3630 NETIF_F_TSO | 3631 NETIF_F_TSO6; 3632 3633 /* enable features */ 3634 netdev->features |= netdev->hw_features; 3635 3636 netdev->hw_features |= NETIF_F_HW_TC; 3637 netdev->hw_features |= NETIF_F_LOOPBACK; 3638 3639 /* encap and VLAN devices inherit default, csumo and tso features */ 3640 netdev->hw_enc_features |= dflt_features | csumo_features | 3641 tso_features; 3642 netdev->vlan_features |= dflt_features | csumo_features | 3643 tso_features; 3644 3645 /* advertise support but don't enable by default since only one type of 3646 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3647 * type turns on the other has to be turned off. This is enforced by the 3648 * ice_fix_features() ndo callback. 3649 */ 3650 if (is_dvm_ena) 3651 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3652 NETIF_F_HW_VLAN_STAG_TX; 3653 3654 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3655 * be changed at runtime 3656 */ 3657 netdev->hw_features |= NETIF_F_RXFCS; 3658 3659 /* Allow core to manage IRQs affinity */ 3660 netif_set_affinity_auto(netdev); 3661 3662 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3663 * ndo callback. 3664 */ 3665 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3666 netdev->hw_features |= NETIF_F_HW_CSUM; 3667 3668 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3669 } 3670 3671 /** 3672 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3673 * @lut: Lookup table 3674 * @rss_table_size: Lookup table size 3675 * @rss_size: Range of queue number for hashing 3676 */ 3677 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3678 { 3679 u16 i; 3680 3681 for (i = 0; i < rss_table_size; i++) 3682 lut[i] = i % rss_size; 3683 } 3684 3685 /** 3686 * ice_pf_vsi_setup - Set up a PF VSI 3687 * @pf: board private structure 3688 * @pi: pointer to the port_info instance 3689 * 3690 * Returns pointer to the successfully allocated VSI software struct 3691 * on success, otherwise returns NULL on failure. 3692 */ 3693 static struct ice_vsi * 3694 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3695 { 3696 struct ice_vsi_cfg_params params = {}; 3697 3698 params.type = ICE_VSI_PF; 3699 params.port_info = pi; 3700 params.flags = ICE_VSI_FLAG_INIT; 3701 3702 return ice_vsi_setup(pf, ¶ms); 3703 } 3704 3705 static struct ice_vsi * 3706 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3707 struct ice_channel *ch) 3708 { 3709 struct ice_vsi_cfg_params params = {}; 3710 3711 params.type = ICE_VSI_CHNL; 3712 params.port_info = pi; 3713 params.ch = ch; 3714 params.flags = ICE_VSI_FLAG_INIT; 3715 3716 return ice_vsi_setup(pf, ¶ms); 3717 } 3718 3719 /** 3720 * ice_ctrl_vsi_setup - Set up a control VSI 3721 * @pf: board private structure 3722 * @pi: pointer to the port_info instance 3723 * 3724 * Returns pointer to the successfully allocated VSI software struct 3725 * on success, otherwise returns NULL on failure. 3726 */ 3727 static struct ice_vsi * 3728 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3729 { 3730 struct ice_vsi_cfg_params params = {}; 3731 3732 params.type = ICE_VSI_CTRL; 3733 params.port_info = pi; 3734 params.flags = ICE_VSI_FLAG_INIT; 3735 3736 return ice_vsi_setup(pf, ¶ms); 3737 } 3738 3739 /** 3740 * ice_lb_vsi_setup - Set up a loopback VSI 3741 * @pf: board private structure 3742 * @pi: pointer to the port_info instance 3743 * 3744 * Returns pointer to the successfully allocated VSI software struct 3745 * on success, otherwise returns NULL on failure. 3746 */ 3747 struct ice_vsi * 3748 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3749 { 3750 struct ice_vsi_cfg_params params = {}; 3751 3752 params.type = ICE_VSI_LB; 3753 params.port_info = pi; 3754 params.flags = ICE_VSI_FLAG_INIT; 3755 3756 return ice_vsi_setup(pf, ¶ms); 3757 } 3758 3759 /** 3760 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3761 * @netdev: network interface to be adjusted 3762 * @proto: VLAN TPID 3763 * @vid: VLAN ID to be added 3764 * 3765 * net_device_ops implementation for adding VLAN IDs 3766 */ 3767 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3768 { 3769 struct ice_netdev_priv *np = netdev_priv(netdev); 3770 struct ice_vsi_vlan_ops *vlan_ops; 3771 struct ice_vsi *vsi = np->vsi; 3772 struct ice_vlan vlan; 3773 int ret; 3774 3775 /* VLAN 0 is added by default during load/reset */ 3776 if (!vid) 3777 return 0; 3778 3779 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3780 usleep_range(1000, 2000); 3781 3782 /* Add multicast promisc rule for the VLAN ID to be added if 3783 * all-multicast is currently enabled. 3784 */ 3785 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3786 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3787 ICE_MCAST_VLAN_PROMISC_BITS, 3788 vid); 3789 if (ret) 3790 goto finish; 3791 } 3792 3793 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3794 3795 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3796 * packets aren't pruned by the device's internal switch on Rx 3797 */ 3798 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3799 ret = vlan_ops->add_vlan(vsi, &vlan); 3800 if (ret) 3801 goto finish; 3802 3803 /* If all-multicast is currently enabled and this VLAN ID is only one 3804 * besides VLAN-0 we have to update look-up type of multicast promisc 3805 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3806 */ 3807 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3808 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3809 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3810 ICE_MCAST_PROMISC_BITS, 0); 3811 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3812 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3813 } 3814 3815 finish: 3816 clear_bit(ICE_CFG_BUSY, vsi->state); 3817 3818 return ret; 3819 } 3820 3821 /** 3822 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3823 * @netdev: network interface to be adjusted 3824 * @proto: VLAN TPID 3825 * @vid: VLAN ID to be removed 3826 * 3827 * net_device_ops implementation for removing VLAN IDs 3828 */ 3829 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3830 { 3831 struct ice_netdev_priv *np = netdev_priv(netdev); 3832 struct ice_vsi_vlan_ops *vlan_ops; 3833 struct ice_vsi *vsi = np->vsi; 3834 struct ice_vlan vlan; 3835 int ret; 3836 3837 /* don't allow removal of VLAN 0 */ 3838 if (!vid) 3839 return 0; 3840 3841 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3842 usleep_range(1000, 2000); 3843 3844 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3845 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3846 if (ret) { 3847 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3848 vsi->vsi_num); 3849 vsi->current_netdev_flags |= IFF_ALLMULTI; 3850 } 3851 3852 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3853 3854 /* Make sure VLAN delete is successful before updating VLAN 3855 * information 3856 */ 3857 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3858 ret = vlan_ops->del_vlan(vsi, &vlan); 3859 if (ret) 3860 goto finish; 3861 3862 /* Remove multicast promisc rule for the removed VLAN ID if 3863 * all-multicast is enabled. 3864 */ 3865 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3866 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3867 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3868 3869 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3870 /* Update look-up type of multicast promisc rule for VLAN 0 3871 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3872 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3873 */ 3874 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3875 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3876 ICE_MCAST_VLAN_PROMISC_BITS, 3877 0); 3878 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3879 ICE_MCAST_PROMISC_BITS, 0); 3880 } 3881 } 3882 3883 finish: 3884 clear_bit(ICE_CFG_BUSY, vsi->state); 3885 3886 return ret; 3887 } 3888 3889 /** 3890 * ice_rep_indr_tc_block_unbind 3891 * @cb_priv: indirection block private data 3892 */ 3893 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3894 { 3895 struct ice_indr_block_priv *indr_priv = cb_priv; 3896 3897 list_del(&indr_priv->list); 3898 kfree(indr_priv); 3899 } 3900 3901 /** 3902 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3903 * @vsi: VSI struct which has the netdev 3904 */ 3905 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3906 { 3907 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3908 3909 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3910 ice_rep_indr_tc_block_unbind); 3911 } 3912 3913 /** 3914 * ice_tc_indir_block_register - Register TC indirect block notifications 3915 * @vsi: VSI struct which has the netdev 3916 * 3917 * Returns 0 on success, negative value on failure 3918 */ 3919 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3920 { 3921 struct ice_netdev_priv *np; 3922 3923 if (!vsi || !vsi->netdev) 3924 return -EINVAL; 3925 3926 np = netdev_priv(vsi->netdev); 3927 3928 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3929 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3930 } 3931 3932 /** 3933 * ice_get_avail_q_count - Get count of queues in use 3934 * @pf_qmap: bitmap to get queue use count from 3935 * @lock: pointer to a mutex that protects access to pf_qmap 3936 * @size: size of the bitmap 3937 */ 3938 static u16 3939 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3940 { 3941 unsigned long bit; 3942 u16 count = 0; 3943 3944 mutex_lock(lock); 3945 for_each_clear_bit(bit, pf_qmap, size) 3946 count++; 3947 mutex_unlock(lock); 3948 3949 return count; 3950 } 3951 3952 /** 3953 * ice_get_avail_txq_count - Get count of Tx queues in use 3954 * @pf: pointer to an ice_pf instance 3955 */ 3956 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3957 { 3958 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3959 pf->max_pf_txqs); 3960 } 3961 3962 /** 3963 * ice_get_avail_rxq_count - Get count of Rx queues in use 3964 * @pf: pointer to an ice_pf instance 3965 */ 3966 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3967 { 3968 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3969 pf->max_pf_rxqs); 3970 } 3971 3972 /** 3973 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3974 * @pf: board private structure to initialize 3975 */ 3976 static void ice_deinit_pf(struct ice_pf *pf) 3977 { 3978 ice_service_task_stop(pf); 3979 mutex_destroy(&pf->lag_mutex); 3980 mutex_destroy(&pf->adev_mutex); 3981 mutex_destroy(&pf->sw_mutex); 3982 mutex_destroy(&pf->tc_mutex); 3983 mutex_destroy(&pf->avail_q_mutex); 3984 mutex_destroy(&pf->vfs.table_lock); 3985 3986 if (pf->avail_txqs) { 3987 bitmap_free(pf->avail_txqs); 3988 pf->avail_txqs = NULL; 3989 } 3990 3991 if (pf->avail_rxqs) { 3992 bitmap_free(pf->avail_rxqs); 3993 pf->avail_rxqs = NULL; 3994 } 3995 3996 if (pf->ptp.clock) 3997 ptp_clock_unregister(pf->ptp.clock); 3998 3999 xa_destroy(&pf->dyn_ports); 4000 xa_destroy(&pf->sf_nums); 4001 } 4002 4003 /** 4004 * ice_set_pf_caps - set PFs capability flags 4005 * @pf: pointer to the PF instance 4006 */ 4007 static void ice_set_pf_caps(struct ice_pf *pf) 4008 { 4009 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4010 4011 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4012 if (func_caps->common_cap.rdma) 4013 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4014 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4015 if (func_caps->common_cap.dcb) 4016 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4017 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4018 if (func_caps->common_cap.sr_iov_1_1) { 4019 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4020 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4021 ICE_MAX_SRIOV_VFS); 4022 } 4023 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4024 if (func_caps->common_cap.rss_table_size) 4025 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4026 4027 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4028 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4029 u16 unused; 4030 4031 /* ctrl_vsi_idx will be set to a valid value when flow director 4032 * is setup by ice_init_fdir 4033 */ 4034 pf->ctrl_vsi_idx = ICE_NO_VSI; 4035 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4036 /* force guaranteed filter pool for PF */ 4037 ice_alloc_fd_guar_item(&pf->hw, &unused, 4038 func_caps->fd_fltr_guar); 4039 /* force shared filter pool for PF */ 4040 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4041 func_caps->fd_fltr_best_effort); 4042 } 4043 4044 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4045 if (func_caps->common_cap.ieee_1588) 4046 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4047 4048 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4049 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4050 } 4051 4052 /** 4053 * ice_init_pf - Initialize general software structures (struct ice_pf) 4054 * @pf: board private structure to initialize 4055 */ 4056 static int ice_init_pf(struct ice_pf *pf) 4057 { 4058 ice_set_pf_caps(pf); 4059 4060 mutex_init(&pf->sw_mutex); 4061 mutex_init(&pf->tc_mutex); 4062 mutex_init(&pf->adev_mutex); 4063 mutex_init(&pf->lag_mutex); 4064 4065 INIT_HLIST_HEAD(&pf->aq_wait_list); 4066 spin_lock_init(&pf->aq_wait_lock); 4067 init_waitqueue_head(&pf->aq_wait_queue); 4068 4069 init_waitqueue_head(&pf->reset_wait_queue); 4070 4071 /* setup service timer and periodic service task */ 4072 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4073 pf->serv_tmr_period = HZ; 4074 INIT_WORK(&pf->serv_task, ice_service_task); 4075 clear_bit(ICE_SERVICE_SCHED, pf->state); 4076 4077 mutex_init(&pf->avail_q_mutex); 4078 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4079 if (!pf->avail_txqs) 4080 return -ENOMEM; 4081 4082 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4083 if (!pf->avail_rxqs) { 4084 bitmap_free(pf->avail_txqs); 4085 pf->avail_txqs = NULL; 4086 return -ENOMEM; 4087 } 4088 4089 mutex_init(&pf->vfs.table_lock); 4090 hash_init(pf->vfs.table); 4091 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4092 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4093 ICE_MBX_OVERFLOW_WATERMARK); 4094 else 4095 ice_mbx_init_snapshot(&pf->hw); 4096 4097 xa_init(&pf->dyn_ports); 4098 xa_init(&pf->sf_nums); 4099 4100 return 0; 4101 } 4102 4103 /** 4104 * ice_is_wol_supported - check if WoL is supported 4105 * @hw: pointer to hardware info 4106 * 4107 * Check if WoL is supported based on the HW configuration. 4108 * Returns true if NVM supports and enables WoL for this port, false otherwise 4109 */ 4110 bool ice_is_wol_supported(struct ice_hw *hw) 4111 { 4112 u16 wol_ctrl; 4113 4114 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4115 * word) indicates WoL is not supported on the corresponding PF ID. 4116 */ 4117 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4118 return false; 4119 4120 return !(BIT(hw->port_info->lport) & wol_ctrl); 4121 } 4122 4123 /** 4124 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4125 * @vsi: VSI being changed 4126 * @new_rx: new number of Rx queues 4127 * @new_tx: new number of Tx queues 4128 * @locked: is adev device_lock held 4129 * 4130 * Only change the number of queues if new_tx, or new_rx is non-0. 4131 * 4132 * Returns 0 on success. 4133 */ 4134 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4135 { 4136 struct ice_pf *pf = vsi->back; 4137 int i, err = 0, timeout = 50; 4138 4139 if (!new_rx && !new_tx) 4140 return -EINVAL; 4141 4142 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4143 timeout--; 4144 if (!timeout) 4145 return -EBUSY; 4146 usleep_range(1000, 2000); 4147 } 4148 4149 if (new_tx) 4150 vsi->req_txq = (u16)new_tx; 4151 if (new_rx) 4152 vsi->req_rxq = (u16)new_rx; 4153 4154 /* set for the next time the netdev is started */ 4155 if (!netif_running(vsi->netdev)) { 4156 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4157 if (err) 4158 goto rebuild_err; 4159 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4160 goto done; 4161 } 4162 4163 ice_vsi_close(vsi); 4164 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4165 if (err) 4166 goto rebuild_err; 4167 4168 ice_for_each_traffic_class(i) { 4169 if (vsi->tc_cfg.ena_tc & BIT(i)) 4170 netdev_set_tc_queue(vsi->netdev, 4171 vsi->tc_cfg.tc_info[i].netdev_tc, 4172 vsi->tc_cfg.tc_info[i].qcount_tx, 4173 vsi->tc_cfg.tc_info[i].qoffset); 4174 } 4175 ice_pf_dcb_recfg(pf, locked); 4176 ice_vsi_open(vsi); 4177 goto done; 4178 4179 rebuild_err: 4180 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4181 err); 4182 done: 4183 clear_bit(ICE_CFG_BUSY, pf->state); 4184 return err; 4185 } 4186 4187 /** 4188 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4189 * @pf: PF to configure 4190 * 4191 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4192 * VSI can still Tx/Rx VLAN tagged packets. 4193 */ 4194 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4195 { 4196 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4197 struct ice_vsi_ctx *ctxt; 4198 struct ice_hw *hw; 4199 int status; 4200 4201 if (!vsi) 4202 return; 4203 4204 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4205 if (!ctxt) 4206 return; 4207 4208 hw = &pf->hw; 4209 ctxt->info = vsi->info; 4210 4211 ctxt->info.valid_sections = 4212 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4213 ICE_AQ_VSI_PROP_SECURITY_VALID | 4214 ICE_AQ_VSI_PROP_SW_VALID); 4215 4216 /* disable VLAN anti-spoof */ 4217 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4218 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4219 4220 /* disable VLAN pruning and keep all other settings */ 4221 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4222 4223 /* allow all VLANs on Tx and don't strip on Rx */ 4224 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4225 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4226 4227 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4228 if (status) { 4229 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4230 status, libie_aq_str(hw->adminq.sq_last_status)); 4231 } else { 4232 vsi->info.sec_flags = ctxt->info.sec_flags; 4233 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4234 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4235 } 4236 4237 kfree(ctxt); 4238 } 4239 4240 /** 4241 * ice_log_pkg_init - log result of DDP package load 4242 * @hw: pointer to hardware info 4243 * @state: state of package load 4244 */ 4245 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4246 { 4247 struct ice_pf *pf = hw->back; 4248 struct device *dev; 4249 4250 dev = ice_pf_to_dev(pf); 4251 4252 switch (state) { 4253 case ICE_DDP_PKG_SUCCESS: 4254 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4255 hw->active_pkg_name, 4256 hw->active_pkg_ver.major, 4257 hw->active_pkg_ver.minor, 4258 hw->active_pkg_ver.update, 4259 hw->active_pkg_ver.draft); 4260 break; 4261 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4262 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4263 hw->active_pkg_name, 4264 hw->active_pkg_ver.major, 4265 hw->active_pkg_ver.minor, 4266 hw->active_pkg_ver.update, 4267 hw->active_pkg_ver.draft); 4268 break; 4269 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4270 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4271 hw->active_pkg_name, 4272 hw->active_pkg_ver.major, 4273 hw->active_pkg_ver.minor, 4274 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4275 break; 4276 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4277 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4278 hw->active_pkg_name, 4279 hw->active_pkg_ver.major, 4280 hw->active_pkg_ver.minor, 4281 hw->active_pkg_ver.update, 4282 hw->active_pkg_ver.draft, 4283 hw->pkg_name, 4284 hw->pkg_ver.major, 4285 hw->pkg_ver.minor, 4286 hw->pkg_ver.update, 4287 hw->pkg_ver.draft); 4288 break; 4289 case ICE_DDP_PKG_FW_MISMATCH: 4290 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4291 break; 4292 case ICE_DDP_PKG_INVALID_FILE: 4293 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4294 break; 4295 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4296 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4297 break; 4298 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4299 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4300 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4301 break; 4302 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4303 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4304 break; 4305 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4306 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4307 break; 4308 case ICE_DDP_PKG_LOAD_ERROR: 4309 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4310 /* poll for reset to complete */ 4311 if (ice_check_reset(hw)) 4312 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4313 break; 4314 case ICE_DDP_PKG_ERR: 4315 default: 4316 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4317 break; 4318 } 4319 } 4320 4321 /** 4322 * ice_load_pkg - load/reload the DDP Package file 4323 * @firmware: firmware structure when firmware requested or NULL for reload 4324 * @pf: pointer to the PF instance 4325 * 4326 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4327 * initialize HW tables. 4328 */ 4329 static void 4330 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4331 { 4332 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4333 struct device *dev = ice_pf_to_dev(pf); 4334 struct ice_hw *hw = &pf->hw; 4335 4336 /* Load DDP Package */ 4337 if (firmware && !hw->pkg_copy) { 4338 state = ice_copy_and_init_pkg(hw, firmware->data, 4339 firmware->size); 4340 ice_log_pkg_init(hw, state); 4341 } else if (!firmware && hw->pkg_copy) { 4342 /* Reload package during rebuild after CORER/GLOBR reset */ 4343 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4344 ice_log_pkg_init(hw, state); 4345 } else { 4346 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4347 } 4348 4349 if (!ice_is_init_pkg_successful(state)) { 4350 /* Safe Mode */ 4351 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4352 return; 4353 } 4354 4355 /* Successful download package is the precondition for advanced 4356 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4357 */ 4358 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4359 } 4360 4361 /** 4362 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4363 * @pf: pointer to the PF structure 4364 * 4365 * There is no error returned here because the driver should be able to handle 4366 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4367 * specifically with Tx. 4368 */ 4369 static void ice_verify_cacheline_size(struct ice_pf *pf) 4370 { 4371 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4372 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4373 ICE_CACHE_LINE_BYTES); 4374 } 4375 4376 /** 4377 * ice_send_version - update firmware with driver version 4378 * @pf: PF struct 4379 * 4380 * Returns 0 on success, else error code 4381 */ 4382 static int ice_send_version(struct ice_pf *pf) 4383 { 4384 struct ice_driver_ver dv; 4385 4386 dv.major_ver = 0xff; 4387 dv.minor_ver = 0xff; 4388 dv.build_ver = 0xff; 4389 dv.subbuild_ver = 0; 4390 strscpy((char *)dv.driver_string, UTS_RELEASE, 4391 sizeof(dv.driver_string)); 4392 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4393 } 4394 4395 /** 4396 * ice_init_fdir - Initialize flow director VSI and configuration 4397 * @pf: pointer to the PF instance 4398 * 4399 * returns 0 on success, negative on error 4400 */ 4401 static int ice_init_fdir(struct ice_pf *pf) 4402 { 4403 struct device *dev = ice_pf_to_dev(pf); 4404 struct ice_vsi *ctrl_vsi; 4405 int err; 4406 4407 /* Side Band Flow Director needs to have a control VSI. 4408 * Allocate it and store it in the PF. 4409 */ 4410 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4411 if (!ctrl_vsi) { 4412 dev_dbg(dev, "could not create control VSI\n"); 4413 return -ENOMEM; 4414 } 4415 4416 err = ice_vsi_open_ctrl(ctrl_vsi); 4417 if (err) { 4418 dev_dbg(dev, "could not open control VSI\n"); 4419 goto err_vsi_open; 4420 } 4421 4422 mutex_init(&pf->hw.fdir_fltr_lock); 4423 4424 err = ice_fdir_create_dflt_rules(pf); 4425 if (err) 4426 goto err_fdir_rule; 4427 4428 return 0; 4429 4430 err_fdir_rule: 4431 ice_fdir_release_flows(&pf->hw); 4432 ice_vsi_close(ctrl_vsi); 4433 err_vsi_open: 4434 ice_vsi_release(ctrl_vsi); 4435 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4436 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4437 pf->ctrl_vsi_idx = ICE_NO_VSI; 4438 } 4439 return err; 4440 } 4441 4442 static void ice_deinit_fdir(struct ice_pf *pf) 4443 { 4444 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4445 4446 if (!vsi) 4447 return; 4448 4449 ice_vsi_manage_fdir(vsi, false); 4450 ice_vsi_release(vsi); 4451 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4452 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4453 pf->ctrl_vsi_idx = ICE_NO_VSI; 4454 } 4455 4456 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4457 } 4458 4459 /** 4460 * ice_get_opt_fw_name - return optional firmware file name or NULL 4461 * @pf: pointer to the PF instance 4462 */ 4463 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4464 { 4465 /* Optional firmware name same as default with additional dash 4466 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4467 */ 4468 struct pci_dev *pdev = pf->pdev; 4469 char *opt_fw_filename; 4470 u64 dsn; 4471 4472 /* Determine the name of the optional file using the DSN (two 4473 * dwords following the start of the DSN Capability). 4474 */ 4475 dsn = pci_get_dsn(pdev); 4476 if (!dsn) 4477 return NULL; 4478 4479 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4480 if (!opt_fw_filename) 4481 return NULL; 4482 4483 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4484 ICE_DDP_PKG_PATH, dsn); 4485 4486 return opt_fw_filename; 4487 } 4488 4489 /** 4490 * ice_request_fw - Device initialization routine 4491 * @pf: pointer to the PF instance 4492 * @firmware: double pointer to firmware struct 4493 * 4494 * Return: zero when successful, negative values otherwise. 4495 */ 4496 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4497 { 4498 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4499 struct device *dev = ice_pf_to_dev(pf); 4500 int err = 0; 4501 4502 /* optional device-specific DDP (if present) overrides the default DDP 4503 * package file. kernel logs a debug message if the file doesn't exist, 4504 * and warning messages for other errors. 4505 */ 4506 if (opt_fw_filename) { 4507 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4508 kfree(opt_fw_filename); 4509 if (!err) 4510 return err; 4511 } 4512 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4513 if (err) 4514 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4515 4516 return err; 4517 } 4518 4519 /** 4520 * ice_init_tx_topology - performs Tx topology initialization 4521 * @hw: pointer to the hardware structure 4522 * @firmware: pointer to firmware structure 4523 * 4524 * Return: zero when init was successful, negative values otherwise. 4525 */ 4526 static int 4527 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4528 { 4529 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4530 struct ice_pf *pf = hw->back; 4531 struct device *dev; 4532 int err; 4533 4534 dev = ice_pf_to_dev(pf); 4535 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4536 if (!err) { 4537 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4538 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4539 else 4540 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4541 return 0; 4542 } else if (err == -ENODEV) { 4543 /* If we failed to re-initialize the device, we can no longer 4544 * continue loading. 4545 */ 4546 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n"); 4547 return err; 4548 } else if (err == -EIO) { 4549 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4550 return 0; 4551 } else if (err == -EEXIST) { 4552 return 0; 4553 } 4554 4555 /* Do not treat this as a fatal error. */ 4556 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n", 4557 ERR_PTR(err)); 4558 return 0; 4559 } 4560 4561 /** 4562 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4563 * @hw: pointer to the hardware structure 4564 * @pf: pointer to pf structure 4565 * 4566 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4567 * formats the PF hardware supports. The exact list of supported RXDIDs 4568 * depends on the loaded DDP package. The IDs can be determined by reading the 4569 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4570 * 4571 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4572 * in the DDP package. The 16-byte legacy descriptor is never supported by 4573 * VFs. 4574 */ 4575 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4576 { 4577 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4578 4579 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4580 u32 regval; 4581 4582 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4583 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4584 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4585 pf->supported_rxdids |= BIT(i); 4586 } 4587 } 4588 4589 /** 4590 * ice_init_ddp_config - DDP related configuration 4591 * @hw: pointer to the hardware structure 4592 * @pf: pointer to pf structure 4593 * 4594 * This function loads DDP file from the disk, then initializes Tx 4595 * topology. At the end DDP package is loaded on the card. 4596 * 4597 * Return: zero when init was successful, negative values otherwise. 4598 */ 4599 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4600 { 4601 struct device *dev = ice_pf_to_dev(pf); 4602 const struct firmware *firmware = NULL; 4603 int err; 4604 4605 err = ice_request_fw(pf, &firmware); 4606 if (err) { 4607 dev_err(dev, "Fail during requesting FW: %d\n", err); 4608 return err; 4609 } 4610 4611 err = ice_init_tx_topology(hw, firmware); 4612 if (err) { 4613 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4614 err); 4615 release_firmware(firmware); 4616 return err; 4617 } 4618 4619 /* Download firmware to device */ 4620 ice_load_pkg(firmware, pf); 4621 release_firmware(firmware); 4622 4623 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4624 ice_init_supported_rxdids(hw, pf); 4625 4626 return 0; 4627 } 4628 4629 /** 4630 * ice_print_wake_reason - show the wake up cause in the log 4631 * @pf: pointer to the PF struct 4632 */ 4633 static void ice_print_wake_reason(struct ice_pf *pf) 4634 { 4635 u32 wus = pf->wakeup_reason; 4636 const char *wake_str; 4637 4638 /* if no wake event, nothing to print */ 4639 if (!wus) 4640 return; 4641 4642 if (wus & PFPM_WUS_LNKC_M) 4643 wake_str = "Link\n"; 4644 else if (wus & PFPM_WUS_MAG_M) 4645 wake_str = "Magic Packet\n"; 4646 else if (wus & PFPM_WUS_MNG_M) 4647 wake_str = "Management\n"; 4648 else if (wus & PFPM_WUS_FW_RST_WK_M) 4649 wake_str = "Firmware Reset\n"; 4650 else 4651 wake_str = "Unknown\n"; 4652 4653 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4654 } 4655 4656 /** 4657 * ice_pf_fwlog_update_module - update 1 module 4658 * @pf: pointer to the PF struct 4659 * @log_level: log_level to use for the @module 4660 * @module: module to update 4661 */ 4662 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4663 { 4664 struct ice_hw *hw = &pf->hw; 4665 4666 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4667 } 4668 4669 /** 4670 * ice_register_netdev - register netdev 4671 * @vsi: pointer to the VSI struct 4672 */ 4673 static int ice_register_netdev(struct ice_vsi *vsi) 4674 { 4675 int err; 4676 4677 if (!vsi || !vsi->netdev) 4678 return -EIO; 4679 4680 err = register_netdev(vsi->netdev); 4681 if (err) 4682 return err; 4683 4684 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4685 netif_carrier_off(vsi->netdev); 4686 netif_tx_stop_all_queues(vsi->netdev); 4687 4688 return 0; 4689 } 4690 4691 static void ice_unregister_netdev(struct ice_vsi *vsi) 4692 { 4693 if (!vsi || !vsi->netdev) 4694 return; 4695 4696 unregister_netdev(vsi->netdev); 4697 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4698 } 4699 4700 /** 4701 * ice_cfg_netdev - Allocate, configure and register a netdev 4702 * @vsi: the VSI associated with the new netdev 4703 * 4704 * Returns 0 on success, negative value on failure 4705 */ 4706 static int ice_cfg_netdev(struct ice_vsi *vsi) 4707 { 4708 struct ice_netdev_priv *np; 4709 struct net_device *netdev; 4710 u8 mac_addr[ETH_ALEN]; 4711 4712 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4713 vsi->alloc_rxq); 4714 if (!netdev) 4715 return -ENOMEM; 4716 4717 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4718 vsi->netdev = netdev; 4719 np = netdev_priv(netdev); 4720 np->vsi = vsi; 4721 4722 ice_set_netdev_features(netdev); 4723 ice_set_ops(vsi); 4724 4725 if (vsi->type == ICE_VSI_PF) { 4726 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4727 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4728 eth_hw_addr_set(netdev, mac_addr); 4729 } 4730 4731 netdev->priv_flags |= IFF_UNICAST_FLT; 4732 4733 /* Setup netdev TC information */ 4734 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4735 4736 netdev->max_mtu = ICE_MAX_MTU; 4737 4738 return 0; 4739 } 4740 4741 static void ice_decfg_netdev(struct ice_vsi *vsi) 4742 { 4743 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4744 free_netdev(vsi->netdev); 4745 vsi->netdev = NULL; 4746 } 4747 4748 int ice_init_dev(struct ice_pf *pf) 4749 { 4750 struct device *dev = ice_pf_to_dev(pf); 4751 struct ice_hw *hw = &pf->hw; 4752 int err; 4753 4754 ice_init_feature_support(pf); 4755 4756 err = ice_init_ddp_config(hw, pf); 4757 4758 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4759 * set in pf->state, which will cause ice_is_safe_mode to return 4760 * true 4761 */ 4762 if (err || ice_is_safe_mode(pf)) { 4763 /* we already got function/device capabilities but these don't 4764 * reflect what the driver needs to do in safe mode. Instead of 4765 * adding conditional logic everywhere to ignore these 4766 * device/function capabilities, override them. 4767 */ 4768 ice_set_safe_mode_caps(hw); 4769 } 4770 4771 err = ice_init_pf(pf); 4772 if (err) { 4773 dev_err(dev, "ice_init_pf failed: %d\n", err); 4774 return err; 4775 } 4776 4777 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4778 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4779 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4780 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4781 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4782 pf->hw.tnl.valid_count[TNL_VXLAN]; 4783 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4784 UDP_TUNNEL_TYPE_VXLAN; 4785 } 4786 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4787 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4788 pf->hw.tnl.valid_count[TNL_GENEVE]; 4789 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4790 UDP_TUNNEL_TYPE_GENEVE; 4791 } 4792 4793 err = ice_init_interrupt_scheme(pf); 4794 if (err) { 4795 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4796 err = -EIO; 4797 goto unroll_pf_init; 4798 } 4799 4800 /* In case of MSIX we are going to setup the misc vector right here 4801 * to handle admin queue events etc. In case of legacy and MSI 4802 * the misc functionality and queue processing is combined in 4803 * the same vector and that gets setup at open. 4804 */ 4805 err = ice_req_irq_msix_misc(pf); 4806 if (err) { 4807 dev_err(dev, "setup of misc vector failed: %d\n", err); 4808 goto unroll_irq_scheme_init; 4809 } 4810 4811 return 0; 4812 4813 unroll_irq_scheme_init: 4814 ice_clear_interrupt_scheme(pf); 4815 unroll_pf_init: 4816 ice_deinit_pf(pf); 4817 return err; 4818 } 4819 4820 void ice_deinit_dev(struct ice_pf *pf) 4821 { 4822 ice_free_irq_msix_misc(pf); 4823 ice_deinit_pf(pf); 4824 ice_deinit_hw(&pf->hw); 4825 4826 /* Service task is already stopped, so call reset directly. */ 4827 ice_reset(&pf->hw, ICE_RESET_PFR); 4828 pci_wait_for_pending_transaction(pf->pdev); 4829 ice_clear_interrupt_scheme(pf); 4830 } 4831 4832 static void ice_init_features(struct ice_pf *pf) 4833 { 4834 struct device *dev = ice_pf_to_dev(pf); 4835 4836 if (ice_is_safe_mode(pf)) 4837 return; 4838 4839 /* initialize DDP driven features */ 4840 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4841 ice_ptp_init(pf); 4842 4843 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4844 ice_gnss_init(pf); 4845 4846 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4847 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4848 ice_dpll_init(pf); 4849 4850 /* Note: Flow director init failure is non-fatal to load */ 4851 if (ice_init_fdir(pf)) 4852 dev_err(dev, "could not initialize flow director\n"); 4853 4854 /* Note: DCB init failure is non-fatal to load */ 4855 if (ice_init_pf_dcb(pf, false)) { 4856 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4857 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4858 } else { 4859 ice_cfg_lldp_mib_change(&pf->hw, true); 4860 } 4861 4862 if (ice_init_lag(pf)) 4863 dev_warn(dev, "Failed to init link aggregation support\n"); 4864 4865 ice_hwmon_init(pf); 4866 } 4867 4868 static void ice_deinit_features(struct ice_pf *pf) 4869 { 4870 if (ice_is_safe_mode(pf)) 4871 return; 4872 4873 ice_deinit_lag(pf); 4874 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4875 ice_cfg_lldp_mib_change(&pf->hw, false); 4876 ice_deinit_fdir(pf); 4877 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4878 ice_gnss_exit(pf); 4879 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4880 ice_ptp_release(pf); 4881 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4882 ice_dpll_deinit(pf); 4883 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4884 xa_destroy(&pf->eswitch.reprs); 4885 } 4886 4887 static void ice_init_wakeup(struct ice_pf *pf) 4888 { 4889 /* Save wakeup reason register for later use */ 4890 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4891 4892 /* check for a power management event */ 4893 ice_print_wake_reason(pf); 4894 4895 /* clear wake status, all bits */ 4896 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4897 4898 /* Disable WoL at init, wait for user to enable */ 4899 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4900 } 4901 4902 static int ice_init_link(struct ice_pf *pf) 4903 { 4904 struct device *dev = ice_pf_to_dev(pf); 4905 int err; 4906 4907 err = ice_init_link_events(pf->hw.port_info); 4908 if (err) { 4909 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4910 return err; 4911 } 4912 4913 /* not a fatal error if this fails */ 4914 err = ice_init_nvm_phy_type(pf->hw.port_info); 4915 if (err) 4916 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4917 4918 /* not a fatal error if this fails */ 4919 err = ice_update_link_info(pf->hw.port_info); 4920 if (err) 4921 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4922 4923 ice_init_link_dflt_override(pf->hw.port_info); 4924 4925 ice_check_link_cfg_err(pf, 4926 pf->hw.port_info->phy.link_info.link_cfg_err); 4927 4928 /* if media available, initialize PHY settings */ 4929 if (pf->hw.port_info->phy.link_info.link_info & 4930 ICE_AQ_MEDIA_AVAILABLE) { 4931 /* not a fatal error if this fails */ 4932 err = ice_init_phy_user_cfg(pf->hw.port_info); 4933 if (err) 4934 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4935 4936 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4937 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4938 4939 if (vsi) 4940 ice_configure_phy(vsi); 4941 } 4942 } else { 4943 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4944 } 4945 4946 return err; 4947 } 4948 4949 static int ice_init_pf_sw(struct ice_pf *pf) 4950 { 4951 bool dvm = ice_is_dvm_ena(&pf->hw); 4952 struct ice_vsi *vsi; 4953 int err; 4954 4955 /* create switch struct for the switch element created by FW on boot */ 4956 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4957 if (!pf->first_sw) 4958 return -ENOMEM; 4959 4960 if (pf->hw.evb_veb) 4961 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4962 else 4963 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4964 4965 pf->first_sw->pf = pf; 4966 4967 /* record the sw_id available for later use */ 4968 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4969 4970 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4971 if (err) 4972 goto err_aq_set_port_params; 4973 4974 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4975 if (!vsi) { 4976 err = -ENOMEM; 4977 goto err_pf_vsi_setup; 4978 } 4979 4980 return 0; 4981 4982 err_pf_vsi_setup: 4983 err_aq_set_port_params: 4984 kfree(pf->first_sw); 4985 return err; 4986 } 4987 4988 static void ice_deinit_pf_sw(struct ice_pf *pf) 4989 { 4990 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4991 4992 if (!vsi) 4993 return; 4994 4995 ice_vsi_release(vsi); 4996 kfree(pf->first_sw); 4997 } 4998 4999 static int ice_alloc_vsis(struct ice_pf *pf) 5000 { 5001 struct device *dev = ice_pf_to_dev(pf); 5002 5003 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5004 if (!pf->num_alloc_vsi) 5005 return -EIO; 5006 5007 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5008 dev_warn(dev, 5009 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5010 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5011 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5012 } 5013 5014 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5015 GFP_KERNEL); 5016 if (!pf->vsi) 5017 return -ENOMEM; 5018 5019 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5020 sizeof(*pf->vsi_stats), GFP_KERNEL); 5021 if (!pf->vsi_stats) { 5022 devm_kfree(dev, pf->vsi); 5023 return -ENOMEM; 5024 } 5025 5026 return 0; 5027 } 5028 5029 static void ice_dealloc_vsis(struct ice_pf *pf) 5030 { 5031 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5032 pf->vsi_stats = NULL; 5033 5034 pf->num_alloc_vsi = 0; 5035 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5036 pf->vsi = NULL; 5037 } 5038 5039 static int ice_init_devlink(struct ice_pf *pf) 5040 { 5041 int err; 5042 5043 err = ice_devlink_register_params(pf); 5044 if (err) 5045 return err; 5046 5047 ice_devlink_init_regions(pf); 5048 ice_devlink_register(pf); 5049 ice_health_init(pf); 5050 5051 return 0; 5052 } 5053 5054 static void ice_deinit_devlink(struct ice_pf *pf) 5055 { 5056 ice_health_deinit(pf); 5057 ice_devlink_unregister(pf); 5058 ice_devlink_destroy_regions(pf); 5059 ice_devlink_unregister_params(pf); 5060 } 5061 5062 static int ice_init(struct ice_pf *pf) 5063 { 5064 int err; 5065 5066 err = ice_init_dev(pf); 5067 if (err) 5068 return err; 5069 5070 if (pf->hw.mac_type == ICE_MAC_E830) { 5071 err = pci_enable_ptm(pf->pdev, NULL); 5072 if (err) 5073 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5074 } 5075 5076 err = ice_alloc_vsis(pf); 5077 if (err) 5078 goto err_alloc_vsis; 5079 5080 err = ice_init_pf_sw(pf); 5081 if (err) 5082 goto err_init_pf_sw; 5083 5084 ice_init_wakeup(pf); 5085 5086 err = ice_init_link(pf); 5087 if (err) 5088 goto err_init_link; 5089 5090 err = ice_send_version(pf); 5091 if (err) 5092 goto err_init_link; 5093 5094 ice_verify_cacheline_size(pf); 5095 5096 if (ice_is_safe_mode(pf)) 5097 ice_set_safe_mode_vlan_cfg(pf); 5098 else 5099 /* print PCI link speed and width */ 5100 pcie_print_link_status(pf->pdev); 5101 5102 /* ready to go, so clear down state bit */ 5103 clear_bit(ICE_DOWN, pf->state); 5104 clear_bit(ICE_SERVICE_DIS, pf->state); 5105 5106 /* since everything is good, start the service timer */ 5107 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5108 5109 return 0; 5110 5111 err_init_link: 5112 ice_deinit_pf_sw(pf); 5113 err_init_pf_sw: 5114 ice_dealloc_vsis(pf); 5115 err_alloc_vsis: 5116 ice_deinit_dev(pf); 5117 return err; 5118 } 5119 5120 static void ice_deinit(struct ice_pf *pf) 5121 { 5122 set_bit(ICE_SERVICE_DIS, pf->state); 5123 set_bit(ICE_DOWN, pf->state); 5124 5125 ice_deinit_pf_sw(pf); 5126 ice_dealloc_vsis(pf); 5127 ice_deinit_dev(pf); 5128 } 5129 5130 /** 5131 * ice_load - load pf by init hw and starting VSI 5132 * @pf: pointer to the pf instance 5133 * 5134 * This function has to be called under devl_lock. 5135 */ 5136 int ice_load(struct ice_pf *pf) 5137 { 5138 struct ice_vsi *vsi; 5139 int err; 5140 5141 devl_assert_locked(priv_to_devlink(pf)); 5142 5143 vsi = ice_get_main_vsi(pf); 5144 5145 /* init channel list */ 5146 INIT_LIST_HEAD(&vsi->ch_list); 5147 5148 err = ice_cfg_netdev(vsi); 5149 if (err) 5150 return err; 5151 5152 /* Setup DCB netlink interface */ 5153 ice_dcbnl_setup(vsi); 5154 5155 err = ice_init_mac_fltr(pf); 5156 if (err) 5157 goto err_init_mac_fltr; 5158 5159 err = ice_devlink_create_pf_port(pf); 5160 if (err) 5161 goto err_devlink_create_pf_port; 5162 5163 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5164 5165 err = ice_register_netdev(vsi); 5166 if (err) 5167 goto err_register_netdev; 5168 5169 err = ice_tc_indir_block_register(vsi); 5170 if (err) 5171 goto err_tc_indir_block_register; 5172 5173 ice_napi_add(vsi); 5174 5175 ice_init_features(pf); 5176 5177 err = ice_init_rdma(pf); 5178 if (err) 5179 goto err_init_rdma; 5180 5181 ice_service_task_restart(pf); 5182 5183 clear_bit(ICE_DOWN, pf->state); 5184 5185 return 0; 5186 5187 err_init_rdma: 5188 ice_deinit_features(pf); 5189 ice_tc_indir_block_unregister(vsi); 5190 err_tc_indir_block_register: 5191 ice_unregister_netdev(vsi); 5192 err_register_netdev: 5193 ice_devlink_destroy_pf_port(pf); 5194 err_devlink_create_pf_port: 5195 err_init_mac_fltr: 5196 ice_decfg_netdev(vsi); 5197 return err; 5198 } 5199 5200 /** 5201 * ice_unload - unload pf by stopping VSI and deinit hw 5202 * @pf: pointer to the pf instance 5203 * 5204 * This function has to be called under devl_lock. 5205 */ 5206 void ice_unload(struct ice_pf *pf) 5207 { 5208 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5209 5210 devl_assert_locked(priv_to_devlink(pf)); 5211 5212 ice_deinit_rdma(pf); 5213 ice_deinit_features(pf); 5214 ice_tc_indir_block_unregister(vsi); 5215 ice_unregister_netdev(vsi); 5216 ice_devlink_destroy_pf_port(pf); 5217 ice_decfg_netdev(vsi); 5218 } 5219 5220 static int ice_probe_recovery_mode(struct ice_pf *pf) 5221 { 5222 struct device *dev = ice_pf_to_dev(pf); 5223 int err; 5224 5225 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5226 5227 INIT_HLIST_HEAD(&pf->aq_wait_list); 5228 spin_lock_init(&pf->aq_wait_lock); 5229 init_waitqueue_head(&pf->aq_wait_queue); 5230 5231 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5232 pf->serv_tmr_period = HZ; 5233 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5234 clear_bit(ICE_SERVICE_SCHED, pf->state); 5235 err = ice_create_all_ctrlq(&pf->hw); 5236 if (err) 5237 return err; 5238 5239 scoped_guard(devl, priv_to_devlink(pf)) { 5240 err = ice_init_devlink(pf); 5241 if (err) 5242 return err; 5243 } 5244 5245 ice_service_task_restart(pf); 5246 5247 return 0; 5248 } 5249 5250 /** 5251 * ice_probe - Device initialization routine 5252 * @pdev: PCI device information struct 5253 * @ent: entry in ice_pci_tbl 5254 * 5255 * Returns 0 on success, negative on failure 5256 */ 5257 static int 5258 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5259 { 5260 struct device *dev = &pdev->dev; 5261 struct ice_adapter *adapter; 5262 struct ice_pf *pf; 5263 struct ice_hw *hw; 5264 int err; 5265 5266 if (pdev->is_virtfn) { 5267 dev_err(dev, "can't probe a virtual function\n"); 5268 return -EINVAL; 5269 } 5270 5271 /* when under a kdump kernel initiate a reset before enabling the 5272 * device in order to clear out any pending DMA transactions. These 5273 * transactions can cause some systems to machine check when doing 5274 * the pcim_enable_device() below. 5275 */ 5276 if (is_kdump_kernel()) { 5277 pci_save_state(pdev); 5278 pci_clear_master(pdev); 5279 err = pcie_flr(pdev); 5280 if (err) 5281 return err; 5282 pci_restore_state(pdev); 5283 } 5284 5285 /* this driver uses devres, see 5286 * Documentation/driver-api/driver-model/devres.rst 5287 */ 5288 err = pcim_enable_device(pdev); 5289 if (err) 5290 return err; 5291 5292 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5293 if (err) { 5294 dev_err(dev, "BAR0 I/O map error %d\n", err); 5295 return err; 5296 } 5297 5298 pf = ice_allocate_pf(dev); 5299 if (!pf) 5300 return -ENOMEM; 5301 5302 /* initialize Auxiliary index to invalid value */ 5303 pf->aux_idx = -1; 5304 5305 /* set up for high or low DMA */ 5306 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5307 if (err) { 5308 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5309 return err; 5310 } 5311 5312 pci_set_master(pdev); 5313 pf->pdev = pdev; 5314 pci_set_drvdata(pdev, pf); 5315 set_bit(ICE_DOWN, pf->state); 5316 /* Disable service task until DOWN bit is cleared */ 5317 set_bit(ICE_SERVICE_DIS, pf->state); 5318 5319 hw = &pf->hw; 5320 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5321 pci_save_state(pdev); 5322 5323 hw->back = pf; 5324 hw->port_info = NULL; 5325 hw->vendor_id = pdev->vendor; 5326 hw->device_id = pdev->device; 5327 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5328 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5329 hw->subsystem_device_id = pdev->subsystem_device; 5330 hw->bus.device = PCI_SLOT(pdev->devfn); 5331 hw->bus.func = PCI_FUNC(pdev->devfn); 5332 ice_set_ctrlq_len(hw); 5333 5334 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5335 5336 #ifndef CONFIG_DYNAMIC_DEBUG 5337 if (debug < -1) 5338 hw->debug_mask = debug; 5339 #endif 5340 5341 if (ice_is_recovery_mode(hw)) 5342 return ice_probe_recovery_mode(pf); 5343 5344 err = ice_init_hw(hw); 5345 if (err) { 5346 dev_err(dev, "ice_init_hw failed: %d\n", err); 5347 return err; 5348 } 5349 5350 adapter = ice_adapter_get(pdev); 5351 if (IS_ERR(adapter)) { 5352 err = PTR_ERR(adapter); 5353 goto unroll_hw_init; 5354 } 5355 pf->adapter = adapter; 5356 5357 err = ice_init(pf); 5358 if (err) 5359 goto unroll_adapter; 5360 5361 devl_lock(priv_to_devlink(pf)); 5362 err = ice_load(pf); 5363 if (err) 5364 goto unroll_init; 5365 5366 err = ice_init_devlink(pf); 5367 if (err) 5368 goto unroll_load; 5369 devl_unlock(priv_to_devlink(pf)); 5370 5371 return 0; 5372 5373 unroll_load: 5374 ice_unload(pf); 5375 unroll_init: 5376 devl_unlock(priv_to_devlink(pf)); 5377 ice_deinit(pf); 5378 unroll_adapter: 5379 ice_adapter_put(pdev); 5380 unroll_hw_init: 5381 ice_deinit_hw(hw); 5382 return err; 5383 } 5384 5385 /** 5386 * ice_set_wake - enable or disable Wake on LAN 5387 * @pf: pointer to the PF struct 5388 * 5389 * Simple helper for WoL control 5390 */ 5391 static void ice_set_wake(struct ice_pf *pf) 5392 { 5393 struct ice_hw *hw = &pf->hw; 5394 bool wol = pf->wol_ena; 5395 5396 /* clear wake state, otherwise new wake events won't fire */ 5397 wr32(hw, PFPM_WUS, U32_MAX); 5398 5399 /* enable / disable APM wake up, no RMW needed */ 5400 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5401 5402 /* set magic packet filter enabled */ 5403 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5404 } 5405 5406 /** 5407 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5408 * @pf: pointer to the PF struct 5409 * 5410 * Issue firmware command to enable multicast magic wake, making 5411 * sure that any locally administered address (LAA) is used for 5412 * wake, and that PF reset doesn't undo the LAA. 5413 */ 5414 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5415 { 5416 struct device *dev = ice_pf_to_dev(pf); 5417 struct ice_hw *hw = &pf->hw; 5418 u8 mac_addr[ETH_ALEN]; 5419 struct ice_vsi *vsi; 5420 int status; 5421 u8 flags; 5422 5423 if (!pf->wol_ena) 5424 return; 5425 5426 vsi = ice_get_main_vsi(pf); 5427 if (!vsi) 5428 return; 5429 5430 /* Get current MAC address in case it's an LAA */ 5431 if (vsi->netdev) 5432 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5433 else 5434 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5435 5436 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5437 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5438 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5439 5440 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5441 if (status) 5442 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5443 status, libie_aq_str(hw->adminq.sq_last_status)); 5444 } 5445 5446 /** 5447 * ice_remove - Device removal routine 5448 * @pdev: PCI device information struct 5449 */ 5450 static void ice_remove(struct pci_dev *pdev) 5451 { 5452 struct ice_pf *pf = pci_get_drvdata(pdev); 5453 int i; 5454 5455 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5456 if (!ice_is_reset_in_progress(pf->state)) 5457 break; 5458 msleep(100); 5459 } 5460 5461 if (ice_is_recovery_mode(&pf->hw)) { 5462 ice_service_task_stop(pf); 5463 scoped_guard(devl, priv_to_devlink(pf)) { 5464 ice_deinit_devlink(pf); 5465 } 5466 return; 5467 } 5468 5469 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5470 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5471 ice_free_vfs(pf); 5472 } 5473 5474 ice_hwmon_exit(pf); 5475 5476 ice_service_task_stop(pf); 5477 ice_aq_cancel_waiting_tasks(pf); 5478 set_bit(ICE_DOWN, pf->state); 5479 5480 if (!ice_is_safe_mode(pf)) 5481 ice_remove_arfs(pf); 5482 5483 devl_lock(priv_to_devlink(pf)); 5484 ice_dealloc_all_dynamic_ports(pf); 5485 ice_deinit_devlink(pf); 5486 5487 ice_unload(pf); 5488 devl_unlock(priv_to_devlink(pf)); 5489 5490 ice_deinit(pf); 5491 ice_vsi_release_all(pf); 5492 5493 ice_setup_mc_magic_wake(pf); 5494 ice_set_wake(pf); 5495 5496 ice_adapter_put(pdev); 5497 } 5498 5499 /** 5500 * ice_shutdown - PCI callback for shutting down device 5501 * @pdev: PCI device information struct 5502 */ 5503 static void ice_shutdown(struct pci_dev *pdev) 5504 { 5505 struct ice_pf *pf = pci_get_drvdata(pdev); 5506 5507 ice_remove(pdev); 5508 5509 if (system_state == SYSTEM_POWER_OFF) { 5510 pci_wake_from_d3(pdev, pf->wol_ena); 5511 pci_set_power_state(pdev, PCI_D3hot); 5512 } 5513 } 5514 5515 /** 5516 * ice_prepare_for_shutdown - prep for PCI shutdown 5517 * @pf: board private structure 5518 * 5519 * Inform or close all dependent features in prep for PCI device shutdown 5520 */ 5521 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5522 { 5523 struct ice_hw *hw = &pf->hw; 5524 u32 v; 5525 5526 /* Notify VFs of impending reset */ 5527 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5528 ice_vc_notify_reset(pf); 5529 5530 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5531 5532 /* disable the VSIs and their queues that are not already DOWN */ 5533 ice_pf_dis_all_vsi(pf, false); 5534 5535 ice_for_each_vsi(pf, v) 5536 if (pf->vsi[v]) 5537 pf->vsi[v]->vsi_num = 0; 5538 5539 ice_shutdown_all_ctrlq(hw, true); 5540 } 5541 5542 /** 5543 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5544 * @pf: board private structure to reinitialize 5545 * 5546 * This routine reinitialize interrupt scheme that was cleared during 5547 * power management suspend callback. 5548 * 5549 * This should be called during resume routine to re-allocate the q_vectors 5550 * and reacquire interrupts. 5551 */ 5552 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5553 { 5554 struct device *dev = ice_pf_to_dev(pf); 5555 int ret, v; 5556 5557 /* Since we clear MSIX flag during suspend, we need to 5558 * set it back during resume... 5559 */ 5560 5561 ret = ice_init_interrupt_scheme(pf); 5562 if (ret) { 5563 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5564 return ret; 5565 } 5566 5567 /* Remap vectors and rings, after successful re-init interrupts */ 5568 ice_for_each_vsi(pf, v) { 5569 if (!pf->vsi[v]) 5570 continue; 5571 5572 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5573 if (ret) 5574 goto err_reinit; 5575 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5576 rtnl_lock(); 5577 ice_vsi_set_napi_queues(pf->vsi[v]); 5578 rtnl_unlock(); 5579 } 5580 5581 ret = ice_req_irq_msix_misc(pf); 5582 if (ret) { 5583 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5584 ret); 5585 goto err_reinit; 5586 } 5587 5588 return 0; 5589 5590 err_reinit: 5591 while (v--) 5592 if (pf->vsi[v]) { 5593 rtnl_lock(); 5594 ice_vsi_clear_napi_queues(pf->vsi[v]); 5595 rtnl_unlock(); 5596 ice_vsi_free_q_vectors(pf->vsi[v]); 5597 } 5598 5599 return ret; 5600 } 5601 5602 /** 5603 * ice_suspend 5604 * @dev: generic device information structure 5605 * 5606 * Power Management callback to quiesce the device and prepare 5607 * for D3 transition. 5608 */ 5609 static int ice_suspend(struct device *dev) 5610 { 5611 struct pci_dev *pdev = to_pci_dev(dev); 5612 struct ice_pf *pf; 5613 int disabled, v; 5614 5615 pf = pci_get_drvdata(pdev); 5616 5617 if (!ice_pf_state_is_nominal(pf)) { 5618 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5619 return -EBUSY; 5620 } 5621 5622 /* Stop watchdog tasks until resume completion. 5623 * Even though it is most likely that the service task is 5624 * disabled if the device is suspended or down, the service task's 5625 * state is controlled by a different state bit, and we should 5626 * store and honor whatever state that bit is in at this point. 5627 */ 5628 disabled = ice_service_task_stop(pf); 5629 5630 ice_deinit_rdma(pf); 5631 5632 /* Already suspended?, then there is nothing to do */ 5633 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5634 if (!disabled) 5635 ice_service_task_restart(pf); 5636 return 0; 5637 } 5638 5639 if (test_bit(ICE_DOWN, pf->state) || 5640 ice_is_reset_in_progress(pf->state)) { 5641 dev_err(dev, "can't suspend device in reset or already down\n"); 5642 if (!disabled) 5643 ice_service_task_restart(pf); 5644 return 0; 5645 } 5646 5647 ice_setup_mc_magic_wake(pf); 5648 5649 ice_prepare_for_shutdown(pf); 5650 5651 ice_set_wake(pf); 5652 5653 /* Free vectors, clear the interrupt scheme and release IRQs 5654 * for proper hibernation, especially with large number of CPUs. 5655 * Otherwise hibernation might fail when mapping all the vectors back 5656 * to CPU0. 5657 */ 5658 ice_free_irq_msix_misc(pf); 5659 ice_for_each_vsi(pf, v) { 5660 if (!pf->vsi[v]) 5661 continue; 5662 rtnl_lock(); 5663 ice_vsi_clear_napi_queues(pf->vsi[v]); 5664 rtnl_unlock(); 5665 ice_vsi_free_q_vectors(pf->vsi[v]); 5666 } 5667 ice_clear_interrupt_scheme(pf); 5668 5669 pci_save_state(pdev); 5670 pci_wake_from_d3(pdev, pf->wol_ena); 5671 pci_set_power_state(pdev, PCI_D3hot); 5672 return 0; 5673 } 5674 5675 /** 5676 * ice_resume - PM callback for waking up from D3 5677 * @dev: generic device information structure 5678 */ 5679 static int ice_resume(struct device *dev) 5680 { 5681 struct pci_dev *pdev = to_pci_dev(dev); 5682 enum ice_reset_req reset_type; 5683 struct ice_pf *pf; 5684 struct ice_hw *hw; 5685 int ret; 5686 5687 pci_set_power_state(pdev, PCI_D0); 5688 pci_restore_state(pdev); 5689 pci_save_state(pdev); 5690 5691 if (!pci_device_is_present(pdev)) 5692 return -ENODEV; 5693 5694 ret = pci_enable_device_mem(pdev); 5695 if (ret) { 5696 dev_err(dev, "Cannot enable device after suspend\n"); 5697 return ret; 5698 } 5699 5700 pf = pci_get_drvdata(pdev); 5701 hw = &pf->hw; 5702 5703 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5704 ice_print_wake_reason(pf); 5705 5706 /* We cleared the interrupt scheme when we suspended, so we need to 5707 * restore it now to resume device functionality. 5708 */ 5709 ret = ice_reinit_interrupt_scheme(pf); 5710 if (ret) 5711 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5712 5713 ret = ice_init_rdma(pf); 5714 if (ret) 5715 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5716 ret); 5717 5718 clear_bit(ICE_DOWN, pf->state); 5719 /* Now perform PF reset and rebuild */ 5720 reset_type = ICE_RESET_PFR; 5721 /* re-enable service task for reset, but allow reset to schedule it */ 5722 clear_bit(ICE_SERVICE_DIS, pf->state); 5723 5724 if (ice_schedule_reset(pf, reset_type)) 5725 dev_err(dev, "Reset during resume failed.\n"); 5726 5727 clear_bit(ICE_SUSPENDED, pf->state); 5728 ice_service_task_restart(pf); 5729 5730 /* Restart the service task */ 5731 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5732 5733 return 0; 5734 } 5735 5736 /** 5737 * ice_pci_err_detected - warning that PCI error has been detected 5738 * @pdev: PCI device information struct 5739 * @err: the type of PCI error 5740 * 5741 * Called to warn that something happened on the PCI bus and the error handling 5742 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5743 */ 5744 static pci_ers_result_t 5745 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5746 { 5747 struct ice_pf *pf = pci_get_drvdata(pdev); 5748 5749 if (!pf) { 5750 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5751 __func__, err); 5752 return PCI_ERS_RESULT_DISCONNECT; 5753 } 5754 5755 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5756 ice_service_task_stop(pf); 5757 5758 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5759 set_bit(ICE_PFR_REQ, pf->state); 5760 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5761 } 5762 } 5763 5764 return PCI_ERS_RESULT_NEED_RESET; 5765 } 5766 5767 /** 5768 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5769 * @pdev: PCI device information struct 5770 * 5771 * Called to determine if the driver can recover from the PCI slot reset by 5772 * using a register read to determine if the device is recoverable. 5773 */ 5774 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5775 { 5776 struct ice_pf *pf = pci_get_drvdata(pdev); 5777 pci_ers_result_t result; 5778 int err; 5779 u32 reg; 5780 5781 err = pci_enable_device_mem(pdev); 5782 if (err) { 5783 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5784 err); 5785 result = PCI_ERS_RESULT_DISCONNECT; 5786 } else { 5787 pci_set_master(pdev); 5788 pci_restore_state(pdev); 5789 pci_save_state(pdev); 5790 pci_wake_from_d3(pdev, false); 5791 5792 /* Check for life */ 5793 reg = rd32(&pf->hw, GLGEN_RTRIG); 5794 if (!reg) 5795 result = PCI_ERS_RESULT_RECOVERED; 5796 else 5797 result = PCI_ERS_RESULT_DISCONNECT; 5798 } 5799 5800 return result; 5801 } 5802 5803 /** 5804 * ice_pci_err_resume - restart operations after PCI error recovery 5805 * @pdev: PCI device information struct 5806 * 5807 * Called to allow the driver to bring things back up after PCI error and/or 5808 * reset recovery have finished 5809 */ 5810 static void ice_pci_err_resume(struct pci_dev *pdev) 5811 { 5812 struct ice_pf *pf = pci_get_drvdata(pdev); 5813 5814 if (!pf) { 5815 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5816 __func__); 5817 return; 5818 } 5819 5820 if (test_bit(ICE_SUSPENDED, pf->state)) { 5821 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5822 __func__); 5823 return; 5824 } 5825 5826 ice_restore_all_vfs_msi_state(pf); 5827 5828 ice_do_reset(pf, ICE_RESET_PFR); 5829 ice_service_task_restart(pf); 5830 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5831 } 5832 5833 /** 5834 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5835 * @pdev: PCI device information struct 5836 */ 5837 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5838 { 5839 struct ice_pf *pf = pci_get_drvdata(pdev); 5840 5841 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5842 ice_service_task_stop(pf); 5843 5844 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5845 set_bit(ICE_PFR_REQ, pf->state); 5846 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5847 } 5848 } 5849 } 5850 5851 /** 5852 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5853 * @pdev: PCI device information struct 5854 */ 5855 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5856 { 5857 ice_pci_err_resume(pdev); 5858 } 5859 5860 /* ice_pci_tbl - PCI Device ID Table 5861 * 5862 * Wildcard entries (PCI_ANY_ID) should come last 5863 * Last entry must be all 0s 5864 * 5865 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5866 * Class, Class Mask, private data (not used) } 5867 */ 5868 static const struct pci_device_id ice_pci_tbl[] = { 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5898 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5899 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5900 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5901 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5902 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5903 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5904 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5905 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5906 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5907 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5908 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5909 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), }, 5910 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), }, 5911 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), }, 5912 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), }, 5913 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), }, 5914 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), }, 5915 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), }, 5916 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), }, 5917 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), }, 5918 /* required last entry */ 5919 {} 5920 }; 5921 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5922 5923 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5924 5925 static const struct pci_error_handlers ice_pci_err_handler = { 5926 .error_detected = ice_pci_err_detected, 5927 .slot_reset = ice_pci_err_slot_reset, 5928 .reset_prepare = ice_pci_err_reset_prepare, 5929 .reset_done = ice_pci_err_reset_done, 5930 .resume = ice_pci_err_resume 5931 }; 5932 5933 static struct pci_driver ice_driver = { 5934 .name = KBUILD_MODNAME, 5935 .id_table = ice_pci_tbl, 5936 .probe = ice_probe, 5937 .remove = ice_remove, 5938 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5939 .shutdown = ice_shutdown, 5940 .sriov_configure = ice_sriov_configure, 5941 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5942 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5943 .err_handler = &ice_pci_err_handler 5944 }; 5945 5946 /** 5947 * ice_module_init - Driver registration routine 5948 * 5949 * ice_module_init is the first routine called when the driver is 5950 * loaded. All it does is register with the PCI subsystem. 5951 */ 5952 static int __init ice_module_init(void) 5953 { 5954 int status = -ENOMEM; 5955 5956 pr_info("%s\n", ice_driver_string); 5957 pr_info("%s\n", ice_copyright); 5958 5959 ice_adv_lnk_speed_maps_init(); 5960 5961 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5962 if (!ice_wq) { 5963 pr_err("Failed to create workqueue\n"); 5964 return status; 5965 } 5966 5967 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5968 if (!ice_lag_wq) { 5969 pr_err("Failed to create LAG workqueue\n"); 5970 goto err_dest_wq; 5971 } 5972 5973 ice_debugfs_init(); 5974 5975 status = pci_register_driver(&ice_driver); 5976 if (status) { 5977 pr_err("failed to register PCI driver, err %d\n", status); 5978 goto err_dest_lag_wq; 5979 } 5980 5981 status = ice_sf_driver_register(); 5982 if (status) { 5983 pr_err("Failed to register SF driver, err %d\n", status); 5984 goto err_sf_driver; 5985 } 5986 5987 return 0; 5988 5989 err_sf_driver: 5990 pci_unregister_driver(&ice_driver); 5991 err_dest_lag_wq: 5992 destroy_workqueue(ice_lag_wq); 5993 ice_debugfs_exit(); 5994 err_dest_wq: 5995 destroy_workqueue(ice_wq); 5996 return status; 5997 } 5998 module_init(ice_module_init); 5999 6000 /** 6001 * ice_module_exit - Driver exit cleanup routine 6002 * 6003 * ice_module_exit is called just before the driver is removed 6004 * from memory. 6005 */ 6006 static void __exit ice_module_exit(void) 6007 { 6008 ice_sf_driver_unregister(); 6009 pci_unregister_driver(&ice_driver); 6010 ice_debugfs_exit(); 6011 destroy_workqueue(ice_wq); 6012 destroy_workqueue(ice_lag_wq); 6013 pr_info("module unloaded\n"); 6014 } 6015 module_exit(ice_module_exit); 6016 6017 /** 6018 * ice_set_mac_address - NDO callback to set MAC address 6019 * @netdev: network interface device structure 6020 * @pi: pointer to an address structure 6021 * 6022 * Returns 0 on success, negative on failure 6023 */ 6024 static int ice_set_mac_address(struct net_device *netdev, void *pi) 6025 { 6026 struct ice_netdev_priv *np = netdev_priv(netdev); 6027 struct ice_vsi *vsi = np->vsi; 6028 struct ice_pf *pf = vsi->back; 6029 struct ice_hw *hw = &pf->hw; 6030 struct sockaddr *addr = pi; 6031 u8 old_mac[ETH_ALEN]; 6032 u8 flags = 0; 6033 u8 *mac; 6034 int err; 6035 6036 mac = (u8 *)addr->sa_data; 6037 6038 if (!is_valid_ether_addr(mac)) 6039 return -EADDRNOTAVAIL; 6040 6041 if (test_bit(ICE_DOWN, pf->state) || 6042 ice_is_reset_in_progress(pf->state)) { 6043 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6044 mac); 6045 return -EBUSY; 6046 } 6047 6048 if (ice_chnl_dmac_fltr_cnt(pf)) { 6049 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6050 mac); 6051 return -EAGAIN; 6052 } 6053 6054 netif_addr_lock_bh(netdev); 6055 ether_addr_copy(old_mac, netdev->dev_addr); 6056 /* change the netdev's MAC address */ 6057 eth_hw_addr_set(netdev, mac); 6058 netif_addr_unlock_bh(netdev); 6059 6060 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6061 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6062 if (err && err != -ENOENT) { 6063 err = -EADDRNOTAVAIL; 6064 goto err_update_filters; 6065 } 6066 6067 /* Add filter for new MAC. If filter exists, return success */ 6068 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6069 if (err == -EEXIST) { 6070 /* Although this MAC filter is already present in hardware it's 6071 * possible in some cases (e.g. bonding) that dev_addr was 6072 * modified outside of the driver and needs to be restored back 6073 * to this value. 6074 */ 6075 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6076 6077 return 0; 6078 } else if (err) { 6079 /* error if the new filter addition failed */ 6080 err = -EADDRNOTAVAIL; 6081 } 6082 6083 err_update_filters: 6084 if (err) { 6085 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6086 mac); 6087 netif_addr_lock_bh(netdev); 6088 eth_hw_addr_set(netdev, old_mac); 6089 netif_addr_unlock_bh(netdev); 6090 return err; 6091 } 6092 6093 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6094 netdev->dev_addr); 6095 6096 /* write new MAC address to the firmware */ 6097 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6098 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6099 if (err) { 6100 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6101 mac, err); 6102 } 6103 return 0; 6104 } 6105 6106 /** 6107 * ice_set_rx_mode - NDO callback to set the netdev filters 6108 * @netdev: network interface device structure 6109 */ 6110 static void ice_set_rx_mode(struct net_device *netdev) 6111 { 6112 struct ice_netdev_priv *np = netdev_priv(netdev); 6113 struct ice_vsi *vsi = np->vsi; 6114 6115 if (!vsi || ice_is_switchdev_running(vsi->back)) 6116 return; 6117 6118 /* Set the flags to synchronize filters 6119 * ndo_set_rx_mode may be triggered even without a change in netdev 6120 * flags 6121 */ 6122 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6123 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6124 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6125 6126 /* schedule our worker thread which will take care of 6127 * applying the new filter changes 6128 */ 6129 ice_service_task_schedule(vsi->back); 6130 } 6131 6132 /** 6133 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6134 * @netdev: network interface device structure 6135 * @queue_index: Queue ID 6136 * @maxrate: maximum bandwidth in Mbps 6137 */ 6138 static int 6139 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6140 { 6141 struct ice_netdev_priv *np = netdev_priv(netdev); 6142 struct ice_vsi *vsi = np->vsi; 6143 u16 q_handle; 6144 int status; 6145 u8 tc; 6146 6147 /* Validate maxrate requested is within permitted range */ 6148 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6149 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6150 maxrate, queue_index); 6151 return -EINVAL; 6152 } 6153 6154 q_handle = vsi->tx_rings[queue_index]->q_handle; 6155 tc = ice_dcb_get_tc(vsi, queue_index); 6156 6157 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6158 if (!vsi) { 6159 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6160 queue_index); 6161 return -EINVAL; 6162 } 6163 6164 /* Set BW back to default, when user set maxrate to 0 */ 6165 if (!maxrate) 6166 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6167 q_handle, ICE_MAX_BW); 6168 else 6169 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6170 q_handle, ICE_MAX_BW, maxrate * 1000); 6171 if (status) 6172 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6173 status); 6174 6175 return status; 6176 } 6177 6178 /** 6179 * ice_fdb_add - add an entry to the hardware database 6180 * @ndm: the input from the stack 6181 * @tb: pointer to array of nladdr (unused) 6182 * @dev: the net device pointer 6183 * @addr: the MAC address entry being added 6184 * @vid: VLAN ID 6185 * @flags: instructions from stack about fdb operation 6186 * @notified: whether notification was emitted 6187 * @extack: netlink extended ack 6188 */ 6189 static int 6190 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6191 struct net_device *dev, const unsigned char *addr, u16 vid, 6192 u16 flags, bool *notified, 6193 struct netlink_ext_ack __always_unused *extack) 6194 { 6195 int err; 6196 6197 if (vid) { 6198 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6199 return -EINVAL; 6200 } 6201 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6202 netdev_err(dev, "FDB only supports static addresses\n"); 6203 return -EINVAL; 6204 } 6205 6206 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6207 err = dev_uc_add_excl(dev, addr); 6208 else if (is_multicast_ether_addr(addr)) 6209 err = dev_mc_add_excl(dev, addr); 6210 else 6211 err = -EINVAL; 6212 6213 /* Only return duplicate errors if NLM_F_EXCL is set */ 6214 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6215 err = 0; 6216 6217 return err; 6218 } 6219 6220 /** 6221 * ice_fdb_del - delete an entry from the hardware database 6222 * @ndm: the input from the stack 6223 * @tb: pointer to array of nladdr (unused) 6224 * @dev: the net device pointer 6225 * @addr: the MAC address entry being added 6226 * @vid: VLAN ID 6227 * @notified: whether notification was emitted 6228 * @extack: netlink extended ack 6229 */ 6230 static int 6231 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6232 struct net_device *dev, const unsigned char *addr, 6233 __always_unused u16 vid, bool *notified, 6234 struct netlink_ext_ack *extack) 6235 { 6236 int err; 6237 6238 if (ndm->ndm_state & NUD_PERMANENT) { 6239 netdev_err(dev, "FDB only supports static addresses\n"); 6240 return -EINVAL; 6241 } 6242 6243 if (is_unicast_ether_addr(addr)) 6244 err = dev_uc_del(dev, addr); 6245 else if (is_multicast_ether_addr(addr)) 6246 err = dev_mc_del(dev, addr); 6247 else 6248 err = -EINVAL; 6249 6250 return err; 6251 } 6252 6253 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6254 NETIF_F_HW_VLAN_CTAG_TX | \ 6255 NETIF_F_HW_VLAN_STAG_RX | \ 6256 NETIF_F_HW_VLAN_STAG_TX) 6257 6258 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6259 NETIF_F_HW_VLAN_STAG_RX) 6260 6261 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6262 NETIF_F_HW_VLAN_STAG_FILTER) 6263 6264 /** 6265 * ice_fix_features - fix the netdev features flags based on device limitations 6266 * @netdev: ptr to the netdev that flags are being fixed on 6267 * @features: features that need to be checked and possibly fixed 6268 * 6269 * Make sure any fixups are made to features in this callback. This enables the 6270 * driver to not have to check unsupported configurations throughout the driver 6271 * because that's the responsiblity of this callback. 6272 * 6273 * Single VLAN Mode (SVM) Supported Features: 6274 * NETIF_F_HW_VLAN_CTAG_FILTER 6275 * NETIF_F_HW_VLAN_CTAG_RX 6276 * NETIF_F_HW_VLAN_CTAG_TX 6277 * 6278 * Double VLAN Mode (DVM) Supported Features: 6279 * NETIF_F_HW_VLAN_CTAG_FILTER 6280 * NETIF_F_HW_VLAN_CTAG_RX 6281 * NETIF_F_HW_VLAN_CTAG_TX 6282 * 6283 * NETIF_F_HW_VLAN_STAG_FILTER 6284 * NETIF_HW_VLAN_STAG_RX 6285 * NETIF_HW_VLAN_STAG_TX 6286 * 6287 * Features that need fixing: 6288 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6289 * These are mutually exlusive as the VSI context cannot support multiple 6290 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6291 * is not done, then default to clearing the requested STAG offload 6292 * settings. 6293 * 6294 * All supported filtering has to be enabled or disabled together. For 6295 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6296 * together. If this is not done, then default to VLAN filtering disabled. 6297 * These are mutually exclusive as there is currently no way to 6298 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6299 * prune rules. 6300 */ 6301 static netdev_features_t 6302 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6303 { 6304 struct ice_netdev_priv *np = netdev_priv(netdev); 6305 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6306 bool cur_ctag, cur_stag, req_ctag, req_stag; 6307 6308 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6309 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6310 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6311 6312 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6313 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6314 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6315 6316 if (req_vlan_fltr != cur_vlan_fltr) { 6317 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6318 if (req_ctag && req_stag) { 6319 features |= NETIF_VLAN_FILTERING_FEATURES; 6320 } else if (!req_ctag && !req_stag) { 6321 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6322 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6323 (!cur_stag && req_stag && !cur_ctag)) { 6324 features |= NETIF_VLAN_FILTERING_FEATURES; 6325 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6326 } else if ((cur_ctag && !req_ctag && cur_stag) || 6327 (cur_stag && !req_stag && cur_ctag)) { 6328 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6329 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6330 } 6331 } else { 6332 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6333 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6334 6335 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6336 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6337 } 6338 } 6339 6340 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6341 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6342 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6343 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6344 NETIF_F_HW_VLAN_STAG_TX); 6345 } 6346 6347 if (!(netdev->features & NETIF_F_RXFCS) && 6348 (features & NETIF_F_RXFCS) && 6349 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6350 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6351 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6352 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6353 } 6354 6355 return features; 6356 } 6357 6358 /** 6359 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6360 * @vsi: PF's VSI 6361 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6362 * 6363 * Store current stripped VLAN proto in ring packet context, 6364 * so it can be accessed more efficiently by packet processing code. 6365 */ 6366 static void 6367 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6368 { 6369 u16 i; 6370 6371 ice_for_each_alloc_rxq(vsi, i) 6372 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6373 } 6374 6375 /** 6376 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6377 * @vsi: PF's VSI 6378 * @features: features used to determine VLAN offload settings 6379 * 6380 * First, determine the vlan_ethertype based on the VLAN offload bits in 6381 * features. Then determine if stripping and insertion should be enabled or 6382 * disabled. Finally enable or disable VLAN stripping and insertion. 6383 */ 6384 static int 6385 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6386 { 6387 bool enable_stripping = true, enable_insertion = true; 6388 struct ice_vsi_vlan_ops *vlan_ops; 6389 int strip_err = 0, insert_err = 0; 6390 u16 vlan_ethertype = 0; 6391 6392 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6393 6394 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6395 vlan_ethertype = ETH_P_8021AD; 6396 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6397 vlan_ethertype = ETH_P_8021Q; 6398 6399 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6400 enable_stripping = false; 6401 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6402 enable_insertion = false; 6403 6404 if (enable_stripping) 6405 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6406 else 6407 strip_err = vlan_ops->dis_stripping(vsi); 6408 6409 if (enable_insertion) 6410 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6411 else 6412 insert_err = vlan_ops->dis_insertion(vsi); 6413 6414 if (strip_err || insert_err) 6415 return -EIO; 6416 6417 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6418 htons(vlan_ethertype) : 0); 6419 6420 return 0; 6421 } 6422 6423 /** 6424 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6425 * @vsi: PF's VSI 6426 * @features: features used to determine VLAN filtering settings 6427 * 6428 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6429 * features. 6430 */ 6431 static int 6432 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6433 { 6434 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6435 int err = 0; 6436 6437 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6438 * if either bit is set. In switchdev mode Rx filtering should never be 6439 * enabled. 6440 */ 6441 if ((features & 6442 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6443 !ice_is_eswitch_mode_switchdev(vsi->back)) 6444 err = vlan_ops->ena_rx_filtering(vsi); 6445 else 6446 err = vlan_ops->dis_rx_filtering(vsi); 6447 6448 return err; 6449 } 6450 6451 /** 6452 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6453 * @netdev: ptr to the netdev being adjusted 6454 * @features: the feature set that the stack is suggesting 6455 * 6456 * Only update VLAN settings if the requested_vlan_features are different than 6457 * the current_vlan_features. 6458 */ 6459 static int 6460 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6461 { 6462 netdev_features_t current_vlan_features, requested_vlan_features; 6463 struct ice_netdev_priv *np = netdev_priv(netdev); 6464 struct ice_vsi *vsi = np->vsi; 6465 int err; 6466 6467 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6468 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6469 if (current_vlan_features ^ requested_vlan_features) { 6470 if ((features & NETIF_F_RXFCS) && 6471 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6472 dev_err(ice_pf_to_dev(vsi->back), 6473 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6474 return -EIO; 6475 } 6476 6477 err = ice_set_vlan_offload_features(vsi, features); 6478 if (err) 6479 return err; 6480 } 6481 6482 current_vlan_features = netdev->features & 6483 NETIF_VLAN_FILTERING_FEATURES; 6484 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6485 if (current_vlan_features ^ requested_vlan_features) { 6486 err = ice_set_vlan_filtering_features(vsi, features); 6487 if (err) 6488 return err; 6489 } 6490 6491 return 0; 6492 } 6493 6494 /** 6495 * ice_set_loopback - turn on/off loopback mode on underlying PF 6496 * @vsi: ptr to VSI 6497 * @ena: flag to indicate the on/off setting 6498 */ 6499 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6500 { 6501 bool if_running = netif_running(vsi->netdev); 6502 int ret; 6503 6504 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6505 ret = ice_down(vsi); 6506 if (ret) { 6507 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6508 return ret; 6509 } 6510 } 6511 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6512 if (ret) 6513 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6514 if (if_running) 6515 ret = ice_up(vsi); 6516 6517 return ret; 6518 } 6519 6520 /** 6521 * ice_set_features - set the netdev feature flags 6522 * @netdev: ptr to the netdev being adjusted 6523 * @features: the feature set that the stack is suggesting 6524 */ 6525 static int 6526 ice_set_features(struct net_device *netdev, netdev_features_t features) 6527 { 6528 netdev_features_t changed = netdev->features ^ features; 6529 struct ice_netdev_priv *np = netdev_priv(netdev); 6530 struct ice_vsi *vsi = np->vsi; 6531 struct ice_pf *pf = vsi->back; 6532 int ret = 0; 6533 6534 /* Don't set any netdev advanced features with device in Safe Mode */ 6535 if (ice_is_safe_mode(pf)) { 6536 dev_err(ice_pf_to_dev(pf), 6537 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6538 return ret; 6539 } 6540 6541 /* Do not change setting during reset */ 6542 if (ice_is_reset_in_progress(pf->state)) { 6543 dev_err(ice_pf_to_dev(pf), 6544 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6545 return -EBUSY; 6546 } 6547 6548 /* Multiple features can be changed in one call so keep features in 6549 * separate if/else statements to guarantee each feature is checked 6550 */ 6551 if (changed & NETIF_F_RXHASH) 6552 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6553 6554 ret = ice_set_vlan_features(netdev, features); 6555 if (ret) 6556 return ret; 6557 6558 /* Turn on receive of FCS aka CRC, and after setting this 6559 * flag the packet data will have the 4 byte CRC appended 6560 */ 6561 if (changed & NETIF_F_RXFCS) { 6562 if ((features & NETIF_F_RXFCS) && 6563 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6564 dev_err(ice_pf_to_dev(vsi->back), 6565 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6566 return -EIO; 6567 } 6568 6569 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6570 ret = ice_down_up(vsi); 6571 if (ret) 6572 return ret; 6573 } 6574 6575 if (changed & NETIF_F_NTUPLE) { 6576 bool ena = !!(features & NETIF_F_NTUPLE); 6577 6578 ice_vsi_manage_fdir(vsi, ena); 6579 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6580 } 6581 6582 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6583 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6584 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6585 return -EACCES; 6586 } 6587 6588 if (changed & NETIF_F_HW_TC) { 6589 bool ena = !!(features & NETIF_F_HW_TC); 6590 6591 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6592 } 6593 6594 if (changed & NETIF_F_LOOPBACK) 6595 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6596 6597 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6598 * (NETIF_F_HW_CSUM) is not supported. 6599 */ 6600 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6601 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6602 if (netdev->features & NETIF_F_HW_CSUM) 6603 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6604 else 6605 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6606 return -EIO; 6607 } 6608 6609 return ret; 6610 } 6611 6612 /** 6613 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6614 * @vsi: VSI to setup VLAN properties for 6615 */ 6616 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6617 { 6618 int err; 6619 6620 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6621 if (err) 6622 return err; 6623 6624 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6625 if (err) 6626 return err; 6627 6628 return ice_vsi_add_vlan_zero(vsi); 6629 } 6630 6631 /** 6632 * ice_vsi_cfg_lan - Setup the VSI lan related config 6633 * @vsi: the VSI being configured 6634 * 6635 * Return 0 on success and negative value on error 6636 */ 6637 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6638 { 6639 int err; 6640 6641 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6642 ice_set_rx_mode(vsi->netdev); 6643 6644 err = ice_vsi_vlan_setup(vsi); 6645 if (err) 6646 return err; 6647 } 6648 ice_vsi_cfg_dcb_rings(vsi); 6649 6650 err = ice_vsi_cfg_lan_txqs(vsi); 6651 if (!err && ice_is_xdp_ena_vsi(vsi)) 6652 err = ice_vsi_cfg_xdp_txqs(vsi); 6653 if (!err) 6654 err = ice_vsi_cfg_rxqs(vsi); 6655 6656 return err; 6657 } 6658 6659 /* THEORY OF MODERATION: 6660 * The ice driver hardware works differently than the hardware that DIMLIB was 6661 * originally made for. ice hardware doesn't have packet count limits that 6662 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6663 * which is hard-coded to a limit of 250,000 ints/second. 6664 * If not using dynamic moderation, the INTRL value can be modified 6665 * by ethtool rx-usecs-high. 6666 */ 6667 struct ice_dim { 6668 /* the throttle rate for interrupts, basically worst case delay before 6669 * an initial interrupt fires, value is stored in microseconds. 6670 */ 6671 u16 itr; 6672 }; 6673 6674 /* Make a different profile for Rx that doesn't allow quite so aggressive 6675 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6676 * second. 6677 */ 6678 static const struct ice_dim rx_profile[] = { 6679 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6680 {8}, /* 125,000 ints/s */ 6681 {16}, /* 62,500 ints/s */ 6682 {62}, /* 16,129 ints/s */ 6683 {126} /* 7,936 ints/s */ 6684 }; 6685 6686 /* The transmit profile, which has the same sorts of values 6687 * as the previous struct 6688 */ 6689 static const struct ice_dim tx_profile[] = { 6690 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6691 {8}, /* 125,000 ints/s */ 6692 {40}, /* 16,125 ints/s */ 6693 {128}, /* 7,812 ints/s */ 6694 {256} /* 3,906 ints/s */ 6695 }; 6696 6697 static void ice_tx_dim_work(struct work_struct *work) 6698 { 6699 struct ice_ring_container *rc; 6700 struct dim *dim; 6701 u16 itr; 6702 6703 dim = container_of(work, struct dim, work); 6704 rc = dim->priv; 6705 6706 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6707 6708 /* look up the values in our local table */ 6709 itr = tx_profile[dim->profile_ix].itr; 6710 6711 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6712 ice_write_itr(rc, itr); 6713 6714 dim->state = DIM_START_MEASURE; 6715 } 6716 6717 static void ice_rx_dim_work(struct work_struct *work) 6718 { 6719 struct ice_ring_container *rc; 6720 struct dim *dim; 6721 u16 itr; 6722 6723 dim = container_of(work, struct dim, work); 6724 rc = dim->priv; 6725 6726 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6727 6728 /* look up the values in our local table */ 6729 itr = rx_profile[dim->profile_ix].itr; 6730 6731 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6732 ice_write_itr(rc, itr); 6733 6734 dim->state = DIM_START_MEASURE; 6735 } 6736 6737 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6738 6739 /** 6740 * ice_init_moderation - set up interrupt moderation 6741 * @q_vector: the vector containing rings to be configured 6742 * 6743 * Set up interrupt moderation registers, with the intent to do the right thing 6744 * when called from reset or from probe, and whether or not dynamic moderation 6745 * is enabled or not. Take special care to write all the registers in both 6746 * dynamic moderation mode or not in order to make sure hardware is in a known 6747 * state. 6748 */ 6749 static void ice_init_moderation(struct ice_q_vector *q_vector) 6750 { 6751 struct ice_ring_container *rc; 6752 bool tx_dynamic, rx_dynamic; 6753 6754 rc = &q_vector->tx; 6755 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6756 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6757 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6758 rc->dim.priv = rc; 6759 tx_dynamic = ITR_IS_DYNAMIC(rc); 6760 6761 /* set the initial TX ITR to match the above */ 6762 ice_write_itr(rc, tx_dynamic ? 6763 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6764 6765 rc = &q_vector->rx; 6766 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6767 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6768 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6769 rc->dim.priv = rc; 6770 rx_dynamic = ITR_IS_DYNAMIC(rc); 6771 6772 /* set the initial RX ITR to match the above */ 6773 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6774 rc->itr_setting); 6775 6776 ice_set_q_vector_intrl(q_vector); 6777 } 6778 6779 /** 6780 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6781 * @vsi: the VSI being configured 6782 */ 6783 static void ice_napi_enable_all(struct ice_vsi *vsi) 6784 { 6785 int q_idx; 6786 6787 if (!vsi->netdev) 6788 return; 6789 6790 ice_for_each_q_vector(vsi, q_idx) { 6791 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6792 6793 ice_init_moderation(q_vector); 6794 6795 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6796 napi_enable(&q_vector->napi); 6797 } 6798 } 6799 6800 /** 6801 * ice_up_complete - Finish the last steps of bringing up a connection 6802 * @vsi: The VSI being configured 6803 * 6804 * Return 0 on success and negative value on error 6805 */ 6806 static int ice_up_complete(struct ice_vsi *vsi) 6807 { 6808 struct ice_pf *pf = vsi->back; 6809 int err; 6810 6811 ice_vsi_cfg_msix(vsi); 6812 6813 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6814 * Tx queue group list was configured and the context bits were 6815 * programmed using ice_vsi_cfg_txqs 6816 */ 6817 err = ice_vsi_start_all_rx_rings(vsi); 6818 if (err) 6819 return err; 6820 6821 clear_bit(ICE_VSI_DOWN, vsi->state); 6822 ice_napi_enable_all(vsi); 6823 ice_vsi_ena_irq(vsi); 6824 6825 if (vsi->port_info && 6826 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6827 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6828 vsi->type == ICE_VSI_SF)))) { 6829 ice_print_link_msg(vsi, true); 6830 netif_tx_start_all_queues(vsi->netdev); 6831 netif_carrier_on(vsi->netdev); 6832 ice_ptp_link_change(pf, true); 6833 } 6834 6835 /* Perform an initial read of the statistics registers now to 6836 * set the baseline so counters are ready when interface is up 6837 */ 6838 ice_update_eth_stats(vsi); 6839 6840 if (vsi->type == ICE_VSI_PF) 6841 ice_service_task_schedule(pf); 6842 6843 return 0; 6844 } 6845 6846 /** 6847 * ice_up - Bring the connection back up after being down 6848 * @vsi: VSI being configured 6849 */ 6850 int ice_up(struct ice_vsi *vsi) 6851 { 6852 int err; 6853 6854 err = ice_vsi_cfg_lan(vsi); 6855 if (!err) 6856 err = ice_up_complete(vsi); 6857 6858 return err; 6859 } 6860 6861 /** 6862 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6863 * @syncp: pointer to u64_stats_sync 6864 * @stats: stats that pkts and bytes count will be taken from 6865 * @pkts: packets stats counter 6866 * @bytes: bytes stats counter 6867 * 6868 * This function fetches stats from the ring considering the atomic operations 6869 * that needs to be performed to read u64 values in 32 bit machine. 6870 */ 6871 void 6872 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6873 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6874 { 6875 unsigned int start; 6876 6877 do { 6878 start = u64_stats_fetch_begin(syncp); 6879 *pkts = stats.pkts; 6880 *bytes = stats.bytes; 6881 } while (u64_stats_fetch_retry(syncp, start)); 6882 } 6883 6884 /** 6885 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6886 * @vsi: the VSI to be updated 6887 * @vsi_stats: the stats struct to be updated 6888 * @rings: rings to work on 6889 * @count: number of rings 6890 */ 6891 static void 6892 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6893 struct rtnl_link_stats64 *vsi_stats, 6894 struct ice_tx_ring **rings, u16 count) 6895 { 6896 u16 i; 6897 6898 for (i = 0; i < count; i++) { 6899 struct ice_tx_ring *ring; 6900 u64 pkts = 0, bytes = 0; 6901 6902 ring = READ_ONCE(rings[i]); 6903 if (!ring || !ring->ring_stats) 6904 continue; 6905 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6906 ring->ring_stats->stats, &pkts, 6907 &bytes); 6908 vsi_stats->tx_packets += pkts; 6909 vsi_stats->tx_bytes += bytes; 6910 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6911 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6912 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6913 } 6914 } 6915 6916 /** 6917 * ice_update_vsi_ring_stats - Update VSI stats counters 6918 * @vsi: the VSI to be updated 6919 */ 6920 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6921 { 6922 struct rtnl_link_stats64 *net_stats, *stats_prev; 6923 struct rtnl_link_stats64 *vsi_stats; 6924 struct ice_pf *pf = vsi->back; 6925 u64 pkts, bytes; 6926 int i; 6927 6928 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6929 if (!vsi_stats) 6930 return; 6931 6932 /* reset non-netdev (extended) stats */ 6933 vsi->tx_restart = 0; 6934 vsi->tx_busy = 0; 6935 vsi->tx_linearize = 0; 6936 vsi->rx_buf_failed = 0; 6937 vsi->rx_page_failed = 0; 6938 6939 rcu_read_lock(); 6940 6941 /* update Tx rings counters */ 6942 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6943 vsi->num_txq); 6944 6945 /* update Rx rings counters */ 6946 ice_for_each_rxq(vsi, i) { 6947 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6948 struct ice_ring_stats *ring_stats; 6949 6950 ring_stats = ring->ring_stats; 6951 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6952 ring_stats->stats, &pkts, 6953 &bytes); 6954 vsi_stats->rx_packets += pkts; 6955 vsi_stats->rx_bytes += bytes; 6956 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6957 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6958 } 6959 6960 /* update XDP Tx rings counters */ 6961 if (ice_is_xdp_ena_vsi(vsi)) 6962 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6963 vsi->num_xdp_txq); 6964 6965 rcu_read_unlock(); 6966 6967 net_stats = &vsi->net_stats; 6968 stats_prev = &vsi->net_stats_prev; 6969 6970 /* Update netdev counters, but keep in mind that values could start at 6971 * random value after PF reset. And as we increase the reported stat by 6972 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6973 * let's skip this round. 6974 */ 6975 if (likely(pf->stat_prev_loaded)) { 6976 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6977 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6978 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6979 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6980 } 6981 6982 stats_prev->tx_packets = vsi_stats->tx_packets; 6983 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6984 stats_prev->rx_packets = vsi_stats->rx_packets; 6985 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6986 6987 kfree(vsi_stats); 6988 } 6989 6990 /** 6991 * ice_update_vsi_stats - Update VSI stats counters 6992 * @vsi: the VSI to be updated 6993 */ 6994 void ice_update_vsi_stats(struct ice_vsi *vsi) 6995 { 6996 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6997 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6998 struct ice_pf *pf = vsi->back; 6999 7000 if (test_bit(ICE_VSI_DOWN, vsi->state) || 7001 test_bit(ICE_CFG_BUSY, pf->state)) 7002 return; 7003 7004 /* get stats as recorded by Tx/Rx rings */ 7005 ice_update_vsi_ring_stats(vsi); 7006 7007 /* get VSI stats as recorded by the hardware */ 7008 ice_update_eth_stats(vsi); 7009 7010 cur_ns->tx_errors = cur_es->tx_errors; 7011 cur_ns->rx_dropped = cur_es->rx_discards; 7012 cur_ns->tx_dropped = cur_es->tx_discards; 7013 cur_ns->multicast = cur_es->rx_multicast; 7014 7015 /* update some more netdev stats if this is main VSI */ 7016 if (vsi->type == ICE_VSI_PF) { 7017 cur_ns->rx_crc_errors = pf->stats.crc_errors; 7018 cur_ns->rx_errors = pf->stats.crc_errors + 7019 pf->stats.illegal_bytes + 7020 pf->stats.rx_undersize + 7021 pf->hw_csum_rx_error + 7022 pf->stats.rx_jabber + 7023 pf->stats.rx_fragments + 7024 pf->stats.rx_oversize; 7025 /* record drops from the port level */ 7026 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 7027 } 7028 } 7029 7030 /** 7031 * ice_update_pf_stats - Update PF port stats counters 7032 * @pf: PF whose stats needs to be updated 7033 */ 7034 void ice_update_pf_stats(struct ice_pf *pf) 7035 { 7036 struct ice_hw_port_stats *prev_ps, *cur_ps; 7037 struct ice_hw *hw = &pf->hw; 7038 u16 fd_ctr_base; 7039 u8 port; 7040 7041 port = hw->port_info->lport; 7042 prev_ps = &pf->stats_prev; 7043 cur_ps = &pf->stats; 7044 7045 if (ice_is_reset_in_progress(pf->state)) 7046 pf->stat_prev_loaded = false; 7047 7048 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7049 &prev_ps->eth.rx_bytes, 7050 &cur_ps->eth.rx_bytes); 7051 7052 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7053 &prev_ps->eth.rx_unicast, 7054 &cur_ps->eth.rx_unicast); 7055 7056 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7057 &prev_ps->eth.rx_multicast, 7058 &cur_ps->eth.rx_multicast); 7059 7060 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7061 &prev_ps->eth.rx_broadcast, 7062 &cur_ps->eth.rx_broadcast); 7063 7064 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7065 &prev_ps->eth.rx_discards, 7066 &cur_ps->eth.rx_discards); 7067 7068 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7069 &prev_ps->eth.tx_bytes, 7070 &cur_ps->eth.tx_bytes); 7071 7072 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7073 &prev_ps->eth.tx_unicast, 7074 &cur_ps->eth.tx_unicast); 7075 7076 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7077 &prev_ps->eth.tx_multicast, 7078 &cur_ps->eth.tx_multicast); 7079 7080 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7081 &prev_ps->eth.tx_broadcast, 7082 &cur_ps->eth.tx_broadcast); 7083 7084 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7085 &prev_ps->tx_dropped_link_down, 7086 &cur_ps->tx_dropped_link_down); 7087 7088 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7089 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7090 7091 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7092 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7093 7094 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7095 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7096 7097 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7098 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7099 7100 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7101 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7102 7103 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7104 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7105 7106 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7107 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7108 7109 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7110 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7111 7112 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7113 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7114 7115 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7116 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7117 7118 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7119 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7120 7121 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7122 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7123 7124 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7125 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7126 7127 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7128 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7129 7130 fd_ctr_base = hw->fd_ctr_base; 7131 7132 ice_stat_update40(hw, 7133 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7134 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7135 &cur_ps->fd_sb_match); 7136 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7137 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7138 7139 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7140 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7141 7142 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7143 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7144 7145 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7146 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7147 7148 ice_update_dcb_stats(pf); 7149 7150 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7151 &prev_ps->crc_errors, &cur_ps->crc_errors); 7152 7153 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7154 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7155 7156 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7157 &prev_ps->mac_local_faults, 7158 &cur_ps->mac_local_faults); 7159 7160 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7161 &prev_ps->mac_remote_faults, 7162 &cur_ps->mac_remote_faults); 7163 7164 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7165 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7166 7167 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7168 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7169 7170 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7171 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7172 7173 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7174 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7175 7176 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7177 7178 pf->stat_prev_loaded = true; 7179 } 7180 7181 /** 7182 * ice_get_stats64 - get statistics for network device structure 7183 * @netdev: network interface device structure 7184 * @stats: main device statistics structure 7185 */ 7186 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7187 { 7188 struct ice_netdev_priv *np = netdev_priv(netdev); 7189 struct rtnl_link_stats64 *vsi_stats; 7190 struct ice_vsi *vsi = np->vsi; 7191 7192 vsi_stats = &vsi->net_stats; 7193 7194 if (!vsi->num_txq || !vsi->num_rxq) 7195 return; 7196 7197 /* netdev packet/byte stats come from ring counter. These are obtained 7198 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7199 * But, only call the update routine and read the registers if VSI is 7200 * not down. 7201 */ 7202 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7203 ice_update_vsi_ring_stats(vsi); 7204 stats->tx_packets = vsi_stats->tx_packets; 7205 stats->tx_bytes = vsi_stats->tx_bytes; 7206 stats->rx_packets = vsi_stats->rx_packets; 7207 stats->rx_bytes = vsi_stats->rx_bytes; 7208 7209 /* The rest of the stats can be read from the hardware but instead we 7210 * just return values that the watchdog task has already obtained from 7211 * the hardware. 7212 */ 7213 stats->multicast = vsi_stats->multicast; 7214 stats->tx_errors = vsi_stats->tx_errors; 7215 stats->tx_dropped = vsi_stats->tx_dropped; 7216 stats->rx_errors = vsi_stats->rx_errors; 7217 stats->rx_dropped = vsi_stats->rx_dropped; 7218 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7219 stats->rx_length_errors = vsi_stats->rx_length_errors; 7220 } 7221 7222 /** 7223 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7224 * @vsi: VSI having NAPI disabled 7225 */ 7226 static void ice_napi_disable_all(struct ice_vsi *vsi) 7227 { 7228 int q_idx; 7229 7230 if (!vsi->netdev) 7231 return; 7232 7233 ice_for_each_q_vector(vsi, q_idx) { 7234 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7235 7236 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7237 napi_disable(&q_vector->napi); 7238 7239 cancel_work_sync(&q_vector->tx.dim.work); 7240 cancel_work_sync(&q_vector->rx.dim.work); 7241 } 7242 } 7243 7244 /** 7245 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7246 * @vsi: the VSI being un-configured 7247 */ 7248 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7249 { 7250 struct ice_pf *pf = vsi->back; 7251 struct ice_hw *hw = &pf->hw; 7252 u32 val; 7253 int i; 7254 7255 /* disable interrupt causation from each Rx queue; Tx queues are 7256 * handled in ice_vsi_stop_tx_ring() 7257 */ 7258 if (vsi->rx_rings) { 7259 ice_for_each_rxq(vsi, i) { 7260 if (vsi->rx_rings[i]) { 7261 u16 reg; 7262 7263 reg = vsi->rx_rings[i]->reg_idx; 7264 val = rd32(hw, QINT_RQCTL(reg)); 7265 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7266 wr32(hw, QINT_RQCTL(reg), val); 7267 } 7268 } 7269 } 7270 7271 /* disable each interrupt */ 7272 ice_for_each_q_vector(vsi, i) { 7273 if (!vsi->q_vectors[i]) 7274 continue; 7275 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7276 } 7277 7278 ice_flush(hw); 7279 7280 /* don't call synchronize_irq() for VF's from the host */ 7281 if (vsi->type == ICE_VSI_VF) 7282 return; 7283 7284 ice_for_each_q_vector(vsi, i) 7285 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7286 } 7287 7288 /** 7289 * ice_down - Shutdown the connection 7290 * @vsi: The VSI being stopped 7291 * 7292 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7293 */ 7294 int ice_down(struct ice_vsi *vsi) 7295 { 7296 int i, tx_err, rx_err, vlan_err = 0; 7297 7298 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7299 7300 if (vsi->netdev) { 7301 vlan_err = ice_vsi_del_vlan_zero(vsi); 7302 ice_ptp_link_change(vsi->back, false); 7303 netif_carrier_off(vsi->netdev); 7304 netif_tx_disable(vsi->netdev); 7305 } 7306 7307 ice_vsi_dis_irq(vsi); 7308 7309 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7310 if (tx_err) 7311 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7312 vsi->vsi_num, tx_err); 7313 if (!tx_err && vsi->xdp_rings) { 7314 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7315 if (tx_err) 7316 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7317 vsi->vsi_num, tx_err); 7318 } 7319 7320 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7321 if (rx_err) 7322 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7323 vsi->vsi_num, rx_err); 7324 7325 ice_napi_disable_all(vsi); 7326 7327 ice_for_each_txq(vsi, i) 7328 ice_clean_tx_ring(vsi->tx_rings[i]); 7329 7330 if (vsi->xdp_rings) 7331 ice_for_each_xdp_txq(vsi, i) 7332 ice_clean_tx_ring(vsi->xdp_rings[i]); 7333 7334 ice_for_each_rxq(vsi, i) 7335 ice_clean_rx_ring(vsi->rx_rings[i]); 7336 7337 if (tx_err || rx_err || vlan_err) { 7338 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7339 vsi->vsi_num, vsi->vsw->sw_id); 7340 return -EIO; 7341 } 7342 7343 return 0; 7344 } 7345 7346 /** 7347 * ice_down_up - shutdown the VSI connection and bring it up 7348 * @vsi: the VSI to be reconnected 7349 */ 7350 int ice_down_up(struct ice_vsi *vsi) 7351 { 7352 int ret; 7353 7354 /* if DOWN already set, nothing to do */ 7355 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7356 return 0; 7357 7358 ret = ice_down(vsi); 7359 if (ret) 7360 return ret; 7361 7362 ret = ice_up(vsi); 7363 if (ret) { 7364 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7365 return ret; 7366 } 7367 7368 return 0; 7369 } 7370 7371 /** 7372 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7373 * @vsi: VSI having resources allocated 7374 * 7375 * Return 0 on success, negative on failure 7376 */ 7377 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7378 { 7379 int i, err = 0; 7380 7381 if (!vsi->num_txq) { 7382 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7383 vsi->vsi_num); 7384 return -EINVAL; 7385 } 7386 7387 ice_for_each_txq(vsi, i) { 7388 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7389 7390 if (!ring) 7391 return -EINVAL; 7392 7393 if (vsi->netdev) 7394 ring->netdev = vsi->netdev; 7395 err = ice_setup_tx_ring(ring); 7396 if (err) 7397 break; 7398 } 7399 7400 return err; 7401 } 7402 7403 /** 7404 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7405 * @vsi: VSI having resources allocated 7406 * 7407 * Return 0 on success, negative on failure 7408 */ 7409 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7410 { 7411 int i, err = 0; 7412 7413 if (!vsi->num_rxq) { 7414 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7415 vsi->vsi_num); 7416 return -EINVAL; 7417 } 7418 7419 ice_for_each_rxq(vsi, i) { 7420 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7421 7422 if (!ring) 7423 return -EINVAL; 7424 7425 if (vsi->netdev) 7426 ring->netdev = vsi->netdev; 7427 err = ice_setup_rx_ring(ring); 7428 if (err) 7429 break; 7430 } 7431 7432 return err; 7433 } 7434 7435 /** 7436 * ice_vsi_open_ctrl - open control VSI for use 7437 * @vsi: the VSI to open 7438 * 7439 * Initialization of the Control VSI 7440 * 7441 * Returns 0 on success, negative value on error 7442 */ 7443 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7444 { 7445 char int_name[ICE_INT_NAME_STR_LEN]; 7446 struct ice_pf *pf = vsi->back; 7447 struct device *dev; 7448 int err; 7449 7450 dev = ice_pf_to_dev(pf); 7451 /* allocate descriptors */ 7452 err = ice_vsi_setup_tx_rings(vsi); 7453 if (err) 7454 goto err_setup_tx; 7455 7456 err = ice_vsi_setup_rx_rings(vsi); 7457 if (err) 7458 goto err_setup_rx; 7459 7460 err = ice_vsi_cfg_lan(vsi); 7461 if (err) 7462 goto err_setup_rx; 7463 7464 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7465 dev_driver_string(dev), dev_name(dev)); 7466 err = ice_vsi_req_irq_msix(vsi, int_name); 7467 if (err) 7468 goto err_setup_rx; 7469 7470 ice_vsi_cfg_msix(vsi); 7471 7472 err = ice_vsi_start_all_rx_rings(vsi); 7473 if (err) 7474 goto err_up_complete; 7475 7476 clear_bit(ICE_VSI_DOWN, vsi->state); 7477 ice_vsi_ena_irq(vsi); 7478 7479 return 0; 7480 7481 err_up_complete: 7482 ice_down(vsi); 7483 err_setup_rx: 7484 ice_vsi_free_rx_rings(vsi); 7485 err_setup_tx: 7486 ice_vsi_free_tx_rings(vsi); 7487 7488 return err; 7489 } 7490 7491 /** 7492 * ice_vsi_open - Called when a network interface is made active 7493 * @vsi: the VSI to open 7494 * 7495 * Initialization of the VSI 7496 * 7497 * Returns 0 on success, negative value on error 7498 */ 7499 int ice_vsi_open(struct ice_vsi *vsi) 7500 { 7501 char int_name[ICE_INT_NAME_STR_LEN]; 7502 struct ice_pf *pf = vsi->back; 7503 int err; 7504 7505 /* allocate descriptors */ 7506 err = ice_vsi_setup_tx_rings(vsi); 7507 if (err) 7508 goto err_setup_tx; 7509 7510 err = ice_vsi_setup_rx_rings(vsi); 7511 if (err) 7512 goto err_setup_rx; 7513 7514 err = ice_vsi_cfg_lan(vsi); 7515 if (err) 7516 goto err_setup_rx; 7517 7518 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7519 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7520 err = ice_vsi_req_irq_msix(vsi, int_name); 7521 if (err) 7522 goto err_setup_rx; 7523 7524 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7525 7526 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7527 /* Notify the stack of the actual queue counts. */ 7528 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7529 if (err) 7530 goto err_set_qs; 7531 7532 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7533 if (err) 7534 goto err_set_qs; 7535 7536 ice_vsi_set_napi_queues(vsi); 7537 } 7538 7539 err = ice_up_complete(vsi); 7540 if (err) 7541 goto err_up_complete; 7542 7543 return 0; 7544 7545 err_up_complete: 7546 ice_down(vsi); 7547 err_set_qs: 7548 ice_vsi_free_irq(vsi); 7549 err_setup_rx: 7550 ice_vsi_free_rx_rings(vsi); 7551 err_setup_tx: 7552 ice_vsi_free_tx_rings(vsi); 7553 7554 return err; 7555 } 7556 7557 /** 7558 * ice_vsi_release_all - Delete all VSIs 7559 * @pf: PF from which all VSIs are being removed 7560 */ 7561 static void ice_vsi_release_all(struct ice_pf *pf) 7562 { 7563 int err, i; 7564 7565 if (!pf->vsi) 7566 return; 7567 7568 ice_for_each_vsi(pf, i) { 7569 if (!pf->vsi[i]) 7570 continue; 7571 7572 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7573 continue; 7574 7575 err = ice_vsi_release(pf->vsi[i]); 7576 if (err) 7577 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7578 i, err, pf->vsi[i]->vsi_num); 7579 } 7580 } 7581 7582 /** 7583 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7584 * @pf: pointer to the PF instance 7585 * @type: VSI type to rebuild 7586 * 7587 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7588 */ 7589 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7590 { 7591 struct device *dev = ice_pf_to_dev(pf); 7592 int i, err; 7593 7594 ice_for_each_vsi(pf, i) { 7595 struct ice_vsi *vsi = pf->vsi[i]; 7596 7597 if (!vsi || vsi->type != type) 7598 continue; 7599 7600 /* rebuild the VSI */ 7601 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7602 if (err) { 7603 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7604 err, vsi->idx, ice_vsi_type_str(type)); 7605 return err; 7606 } 7607 7608 /* replay filters for the VSI */ 7609 err = ice_replay_vsi(&pf->hw, vsi->idx); 7610 if (err) { 7611 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7612 err, vsi->idx, ice_vsi_type_str(type)); 7613 return err; 7614 } 7615 7616 /* Re-map HW VSI number, using VSI handle that has been 7617 * previously validated in ice_replay_vsi() call above 7618 */ 7619 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7620 7621 /* enable the VSI */ 7622 err = ice_ena_vsi(vsi, false); 7623 if (err) { 7624 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7625 err, vsi->idx, ice_vsi_type_str(type)); 7626 return err; 7627 } 7628 7629 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7630 ice_vsi_type_str(type)); 7631 } 7632 7633 return 0; 7634 } 7635 7636 /** 7637 * ice_update_pf_netdev_link - Update PF netdev link status 7638 * @pf: pointer to the PF instance 7639 */ 7640 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7641 { 7642 bool link_up; 7643 int i; 7644 7645 ice_for_each_vsi(pf, i) { 7646 struct ice_vsi *vsi = pf->vsi[i]; 7647 7648 if (!vsi || vsi->type != ICE_VSI_PF) 7649 return; 7650 7651 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7652 if (link_up) { 7653 netif_carrier_on(pf->vsi[i]->netdev); 7654 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7655 } else { 7656 netif_carrier_off(pf->vsi[i]->netdev); 7657 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7658 } 7659 } 7660 } 7661 7662 /** 7663 * ice_rebuild - rebuild after reset 7664 * @pf: PF to rebuild 7665 * @reset_type: type of reset 7666 * 7667 * Do not rebuild VF VSI in this flow because that is already handled via 7668 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7669 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7670 * to reset/rebuild all the VF VSI twice. 7671 */ 7672 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7673 { 7674 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7675 struct device *dev = ice_pf_to_dev(pf); 7676 struct ice_hw *hw = &pf->hw; 7677 bool dvm; 7678 int err; 7679 7680 if (test_bit(ICE_DOWN, pf->state)) 7681 goto clear_recovery; 7682 7683 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7684 7685 #define ICE_EMP_RESET_SLEEP_MS 5000 7686 if (reset_type == ICE_RESET_EMPR) { 7687 /* If an EMP reset has occurred, any previously pending flash 7688 * update will have completed. We no longer know whether or 7689 * not the NVM update EMP reset is restricted. 7690 */ 7691 pf->fw_emp_reset_disabled = false; 7692 7693 msleep(ICE_EMP_RESET_SLEEP_MS); 7694 } 7695 7696 err = ice_init_all_ctrlq(hw); 7697 if (err) { 7698 dev_err(dev, "control queues init failed %d\n", err); 7699 goto err_init_ctrlq; 7700 } 7701 7702 /* if DDP was previously loaded successfully */ 7703 if (!ice_is_safe_mode(pf)) { 7704 /* reload the SW DB of filter tables */ 7705 if (reset_type == ICE_RESET_PFR) 7706 ice_fill_blk_tbls(hw); 7707 else 7708 /* Reload DDP Package after CORER/GLOBR reset */ 7709 ice_load_pkg(NULL, pf); 7710 } 7711 7712 err = ice_clear_pf_cfg(hw); 7713 if (err) { 7714 dev_err(dev, "clear PF configuration failed %d\n", err); 7715 goto err_init_ctrlq; 7716 } 7717 7718 ice_clear_pxe_mode(hw); 7719 7720 err = ice_init_nvm(hw); 7721 if (err) { 7722 dev_err(dev, "ice_init_nvm failed %d\n", err); 7723 goto err_init_ctrlq; 7724 } 7725 7726 err = ice_get_caps(hw); 7727 if (err) { 7728 dev_err(dev, "ice_get_caps failed %d\n", err); 7729 goto err_init_ctrlq; 7730 } 7731 7732 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7733 if (err) { 7734 dev_err(dev, "set_mac_cfg failed %d\n", err); 7735 goto err_init_ctrlq; 7736 } 7737 7738 dvm = ice_is_dvm_ena(hw); 7739 7740 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7741 if (err) 7742 goto err_init_ctrlq; 7743 7744 err = ice_sched_init_port(hw->port_info); 7745 if (err) 7746 goto err_sched_init_port; 7747 7748 /* start misc vector */ 7749 err = ice_req_irq_msix_misc(pf); 7750 if (err) { 7751 dev_err(dev, "misc vector setup failed: %d\n", err); 7752 goto err_sched_init_port; 7753 } 7754 7755 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7756 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7757 if (!rd32(hw, PFQF_FD_SIZE)) { 7758 u16 unused, guar, b_effort; 7759 7760 guar = hw->func_caps.fd_fltr_guar; 7761 b_effort = hw->func_caps.fd_fltr_best_effort; 7762 7763 /* force guaranteed filter pool for PF */ 7764 ice_alloc_fd_guar_item(hw, &unused, guar); 7765 /* force shared filter pool for PF */ 7766 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7767 } 7768 } 7769 7770 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7771 ice_dcb_rebuild(pf); 7772 7773 /* If the PF previously had enabled PTP, PTP init needs to happen before 7774 * the VSI rebuild. If not, this causes the PTP link status events to 7775 * fail. 7776 */ 7777 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7778 ice_ptp_rebuild(pf, reset_type); 7779 7780 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7781 ice_gnss_init(pf); 7782 7783 /* rebuild PF VSI */ 7784 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7785 if (err) { 7786 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7787 goto err_vsi_rebuild; 7788 } 7789 7790 if (reset_type == ICE_RESET_PFR) { 7791 err = ice_rebuild_channels(pf); 7792 if (err) { 7793 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7794 err); 7795 goto err_vsi_rebuild; 7796 } 7797 } 7798 7799 /* If Flow Director is active */ 7800 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7801 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7802 if (err) { 7803 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7804 goto err_vsi_rebuild; 7805 } 7806 7807 /* replay HW Flow Director recipes */ 7808 if (hw->fdir_prof) 7809 ice_fdir_replay_flows(hw); 7810 7811 /* replay Flow Director filters */ 7812 ice_fdir_replay_fltrs(pf); 7813 7814 ice_rebuild_arfs(pf); 7815 } 7816 7817 if (vsi && vsi->netdev) 7818 netif_device_attach(vsi->netdev); 7819 7820 ice_update_pf_netdev_link(pf); 7821 7822 /* tell the firmware we are up */ 7823 err = ice_send_version(pf); 7824 if (err) { 7825 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7826 err); 7827 goto err_vsi_rebuild; 7828 } 7829 7830 ice_replay_post(hw); 7831 7832 /* if we get here, reset flow is successful */ 7833 clear_bit(ICE_RESET_FAILED, pf->state); 7834 7835 ice_health_clear(pf); 7836 7837 ice_plug_aux_dev(pf); 7838 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7839 ice_lag_rebuild(pf); 7840 7841 /* Restore timestamp mode settings after VSI rebuild */ 7842 ice_ptp_restore_timestamp_mode(pf); 7843 return; 7844 7845 err_vsi_rebuild: 7846 err_sched_init_port: 7847 ice_sched_cleanup_all(hw); 7848 err_init_ctrlq: 7849 ice_shutdown_all_ctrlq(hw, false); 7850 set_bit(ICE_RESET_FAILED, pf->state); 7851 clear_recovery: 7852 /* set this bit in PF state to control service task scheduling */ 7853 set_bit(ICE_NEEDS_RESTART, pf->state); 7854 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7855 } 7856 7857 /** 7858 * ice_change_mtu - NDO callback to change the MTU 7859 * @netdev: network interface device structure 7860 * @new_mtu: new value for maximum frame size 7861 * 7862 * Returns 0 on success, negative on failure 7863 */ 7864 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7865 { 7866 struct ice_netdev_priv *np = netdev_priv(netdev); 7867 struct ice_vsi *vsi = np->vsi; 7868 struct ice_pf *pf = vsi->back; 7869 struct bpf_prog *prog; 7870 u8 count = 0; 7871 int err = 0; 7872 7873 if (new_mtu == (int)netdev->mtu) { 7874 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7875 return 0; 7876 } 7877 7878 prog = vsi->xdp_prog; 7879 if (prog && !prog->aux->xdp_has_frags) { 7880 int frame_size = ice_max_xdp_frame_size(vsi); 7881 7882 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7883 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7884 frame_size - ICE_ETH_PKT_HDR_PAD); 7885 return -EINVAL; 7886 } 7887 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7888 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7889 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7890 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7891 return -EINVAL; 7892 } 7893 } 7894 7895 /* if a reset is in progress, wait for some time for it to complete */ 7896 do { 7897 if (ice_is_reset_in_progress(pf->state)) { 7898 count++; 7899 usleep_range(1000, 2000); 7900 } else { 7901 break; 7902 } 7903 7904 } while (count < 100); 7905 7906 if (count == 100) { 7907 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7908 return -EBUSY; 7909 } 7910 7911 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7912 err = ice_down_up(vsi); 7913 if (err) 7914 return err; 7915 7916 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7917 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7918 7919 return err; 7920 } 7921 7922 /** 7923 * ice_set_rss_lut - Set RSS LUT 7924 * @vsi: Pointer to VSI structure 7925 * @lut: Lookup table 7926 * @lut_size: Lookup table size 7927 * 7928 * Returns 0 on success, negative on failure 7929 */ 7930 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7931 { 7932 struct ice_aq_get_set_rss_lut_params params = {}; 7933 struct ice_hw *hw = &vsi->back->hw; 7934 int status; 7935 7936 if (!lut) 7937 return -EINVAL; 7938 7939 params.vsi_handle = vsi->idx; 7940 params.lut_size = lut_size; 7941 params.lut_type = vsi->rss_lut_type; 7942 params.lut = lut; 7943 7944 status = ice_aq_set_rss_lut(hw, ¶ms); 7945 if (status) 7946 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7947 status, libie_aq_str(hw->adminq.sq_last_status)); 7948 7949 return status; 7950 } 7951 7952 /** 7953 * ice_set_rss_key - Set RSS key 7954 * @vsi: Pointer to the VSI structure 7955 * @seed: RSS hash seed 7956 * 7957 * Returns 0 on success, negative on failure 7958 */ 7959 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7960 { 7961 struct ice_hw *hw = &vsi->back->hw; 7962 int status; 7963 7964 if (!seed) 7965 return -EINVAL; 7966 7967 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7968 if (status) 7969 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7970 status, libie_aq_str(hw->adminq.sq_last_status)); 7971 7972 return status; 7973 } 7974 7975 /** 7976 * ice_get_rss_lut - Get RSS LUT 7977 * @vsi: Pointer to VSI structure 7978 * @lut: Buffer to store the lookup table entries 7979 * @lut_size: Size of buffer to store the lookup table entries 7980 * 7981 * Returns 0 on success, negative on failure 7982 */ 7983 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7984 { 7985 struct ice_aq_get_set_rss_lut_params params = {}; 7986 struct ice_hw *hw = &vsi->back->hw; 7987 int status; 7988 7989 if (!lut) 7990 return -EINVAL; 7991 7992 params.vsi_handle = vsi->idx; 7993 params.lut_size = lut_size; 7994 params.lut_type = vsi->rss_lut_type; 7995 params.lut = lut; 7996 7997 status = ice_aq_get_rss_lut(hw, ¶ms); 7998 if (status) 7999 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 8000 status, libie_aq_str(hw->adminq.sq_last_status)); 8001 8002 return status; 8003 } 8004 8005 /** 8006 * ice_get_rss_key - Get RSS key 8007 * @vsi: Pointer to VSI structure 8008 * @seed: Buffer to store the key in 8009 * 8010 * Returns 0 on success, negative on failure 8011 */ 8012 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8013 { 8014 struct ice_hw *hw = &vsi->back->hw; 8015 int status; 8016 8017 if (!seed) 8018 return -EINVAL; 8019 8020 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8021 if (status) 8022 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8023 status, libie_aq_str(hw->adminq.sq_last_status)); 8024 8025 return status; 8026 } 8027 8028 /** 8029 * ice_set_rss_hfunc - Set RSS HASH function 8030 * @vsi: Pointer to VSI structure 8031 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8032 * 8033 * Returns 0 on success, negative on failure 8034 */ 8035 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8036 { 8037 struct ice_hw *hw = &vsi->back->hw; 8038 struct ice_vsi_ctx *ctx; 8039 bool symm; 8040 int err; 8041 8042 if (hfunc == vsi->rss_hfunc) 8043 return 0; 8044 8045 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8046 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8047 return -EOPNOTSUPP; 8048 8049 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8050 if (!ctx) 8051 return -ENOMEM; 8052 8053 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8054 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8055 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8056 ctx->info.q_opt_rss |= 8057 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8058 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8059 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8060 8061 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8062 if (err) { 8063 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8064 vsi->vsi_num, err); 8065 } else { 8066 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8067 vsi->rss_hfunc = hfunc; 8068 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8069 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8070 "Symmetric " : ""); 8071 } 8072 kfree(ctx); 8073 if (err) 8074 return err; 8075 8076 /* Fix the symmetry setting for all existing RSS configurations */ 8077 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8078 return ice_set_rss_cfg_symm(hw, vsi, symm); 8079 } 8080 8081 /** 8082 * ice_bridge_getlink - Get the hardware bridge mode 8083 * @skb: skb buff 8084 * @pid: process ID 8085 * @seq: RTNL message seq 8086 * @dev: the netdev being configured 8087 * @filter_mask: filter mask passed in 8088 * @nlflags: netlink flags passed in 8089 * 8090 * Return the bridge mode (VEB/VEPA) 8091 */ 8092 static int 8093 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8094 struct net_device *dev, u32 filter_mask, int nlflags) 8095 { 8096 struct ice_netdev_priv *np = netdev_priv(dev); 8097 struct ice_vsi *vsi = np->vsi; 8098 struct ice_pf *pf = vsi->back; 8099 u16 bmode; 8100 8101 bmode = pf->first_sw->bridge_mode; 8102 8103 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8104 filter_mask, NULL); 8105 } 8106 8107 /** 8108 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8109 * @vsi: Pointer to VSI structure 8110 * @bmode: Hardware bridge mode (VEB/VEPA) 8111 * 8112 * Returns 0 on success, negative on failure 8113 */ 8114 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8115 { 8116 struct ice_aqc_vsi_props *vsi_props; 8117 struct ice_hw *hw = &vsi->back->hw; 8118 struct ice_vsi_ctx *ctxt; 8119 int ret; 8120 8121 vsi_props = &vsi->info; 8122 8123 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8124 if (!ctxt) 8125 return -ENOMEM; 8126 8127 ctxt->info = vsi->info; 8128 8129 if (bmode == BRIDGE_MODE_VEB) 8130 /* change from VEPA to VEB mode */ 8131 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8132 else 8133 /* change from VEB to VEPA mode */ 8134 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8135 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8136 8137 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8138 if (ret) { 8139 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8140 bmode, ret, libie_aq_str(hw->adminq.sq_last_status)); 8141 goto out; 8142 } 8143 /* Update sw flags for book keeping */ 8144 vsi_props->sw_flags = ctxt->info.sw_flags; 8145 8146 out: 8147 kfree(ctxt); 8148 return ret; 8149 } 8150 8151 /** 8152 * ice_bridge_setlink - Set the hardware bridge mode 8153 * @dev: the netdev being configured 8154 * @nlh: RTNL message 8155 * @flags: bridge setlink flags 8156 * @extack: netlink extended ack 8157 * 8158 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8159 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8160 * not already set for all VSIs connected to this switch. And also update the 8161 * unicast switch filter rules for the corresponding switch of the netdev. 8162 */ 8163 static int 8164 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8165 u16 __always_unused flags, 8166 struct netlink_ext_ack __always_unused *extack) 8167 { 8168 struct ice_netdev_priv *np = netdev_priv(dev); 8169 struct ice_pf *pf = np->vsi->back; 8170 struct nlattr *attr, *br_spec; 8171 struct ice_hw *hw = &pf->hw; 8172 struct ice_sw *pf_sw; 8173 int rem, v, err = 0; 8174 8175 pf_sw = pf->first_sw; 8176 /* find the attribute in the netlink message */ 8177 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8178 if (!br_spec) 8179 return -EINVAL; 8180 8181 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8182 __u16 mode = nla_get_u16(attr); 8183 8184 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8185 return -EINVAL; 8186 /* Continue if bridge mode is not being flipped */ 8187 if (mode == pf_sw->bridge_mode) 8188 continue; 8189 /* Iterates through the PF VSI list and update the loopback 8190 * mode of the VSI 8191 */ 8192 ice_for_each_vsi(pf, v) { 8193 if (!pf->vsi[v]) 8194 continue; 8195 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8196 if (err) 8197 return err; 8198 } 8199 8200 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8201 /* Update the unicast switch filter rules for the corresponding 8202 * switch of the netdev 8203 */ 8204 err = ice_update_sw_rule_bridge_mode(hw); 8205 if (err) { 8206 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8207 mode, err, 8208 libie_aq_str(hw->adminq.sq_last_status)); 8209 /* revert hw->evb_veb */ 8210 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8211 return err; 8212 } 8213 8214 pf_sw->bridge_mode = mode; 8215 } 8216 8217 return 0; 8218 } 8219 8220 /** 8221 * ice_tx_timeout - Respond to a Tx Hang 8222 * @netdev: network interface device structure 8223 * @txqueue: Tx queue 8224 */ 8225 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8226 { 8227 struct ice_netdev_priv *np = netdev_priv(netdev); 8228 struct ice_tx_ring *tx_ring = NULL; 8229 struct ice_vsi *vsi = np->vsi; 8230 struct ice_pf *pf = vsi->back; 8231 u32 i; 8232 8233 pf->tx_timeout_count++; 8234 8235 /* Check if PFC is enabled for the TC to which the queue belongs 8236 * to. If yes then Tx timeout is not caused by a hung queue, no 8237 * need to reset and rebuild 8238 */ 8239 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8240 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8241 txqueue); 8242 return; 8243 } 8244 8245 /* now that we have an index, find the tx_ring struct */ 8246 ice_for_each_txq(vsi, i) 8247 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8248 if (txqueue == vsi->tx_rings[i]->q_index) { 8249 tx_ring = vsi->tx_rings[i]; 8250 break; 8251 } 8252 8253 /* Reset recovery level if enough time has elapsed after last timeout. 8254 * Also ensure no new reset action happens before next timeout period. 8255 */ 8256 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8257 pf->tx_timeout_recovery_level = 1; 8258 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8259 netdev->watchdog_timeo))) 8260 return; 8261 8262 if (tx_ring) { 8263 struct ice_hw *hw = &pf->hw; 8264 u32 head, intr = 0; 8265 8266 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8267 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8268 /* Read interrupt register */ 8269 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8270 8271 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8272 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8273 head, tx_ring->next_to_use, intr); 8274 8275 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8276 } 8277 8278 pf->tx_timeout_last_recovery = jiffies; 8279 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8280 pf->tx_timeout_recovery_level, txqueue); 8281 8282 switch (pf->tx_timeout_recovery_level) { 8283 case 1: 8284 set_bit(ICE_PFR_REQ, pf->state); 8285 break; 8286 case 2: 8287 set_bit(ICE_CORER_REQ, pf->state); 8288 break; 8289 case 3: 8290 set_bit(ICE_GLOBR_REQ, pf->state); 8291 break; 8292 default: 8293 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8294 set_bit(ICE_DOWN, pf->state); 8295 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8296 set_bit(ICE_SERVICE_DIS, pf->state); 8297 break; 8298 } 8299 8300 ice_service_task_schedule(pf); 8301 pf->tx_timeout_recovery_level++; 8302 } 8303 8304 /** 8305 * ice_setup_tc_cls_flower - flower classifier offloads 8306 * @np: net device to configure 8307 * @filter_dev: device on which filter is added 8308 * @cls_flower: offload data 8309 * @ingress: if the rule is added to an ingress block 8310 * 8311 * Return: 0 if the flower was successfully added or deleted, 8312 * negative error code otherwise. 8313 */ 8314 static int 8315 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8316 struct net_device *filter_dev, 8317 struct flow_cls_offload *cls_flower, 8318 bool ingress) 8319 { 8320 struct ice_vsi *vsi = np->vsi; 8321 8322 if (cls_flower->common.chain_index) 8323 return -EOPNOTSUPP; 8324 8325 switch (cls_flower->command) { 8326 case FLOW_CLS_REPLACE: 8327 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress); 8328 case FLOW_CLS_DESTROY: 8329 return ice_del_cls_flower(vsi, cls_flower); 8330 default: 8331 return -EINVAL; 8332 } 8333 } 8334 8335 /** 8336 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block 8337 * @type: TC SETUP type 8338 * @type_data: TC flower offload data that contains user input 8339 * @cb_priv: netdev private data 8340 * 8341 * Return: 0 if the setup was successful, negative error code otherwise. 8342 */ 8343 static int 8344 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data, 8345 void *cb_priv) 8346 { 8347 struct ice_netdev_priv *np = cb_priv; 8348 8349 switch (type) { 8350 case TC_SETUP_CLSFLOWER: 8351 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8352 type_data, true); 8353 default: 8354 return -EOPNOTSUPP; 8355 } 8356 } 8357 8358 /** 8359 * ice_setup_tc_block_cb_egress - callback handler for egress TC block 8360 * @type: TC SETUP type 8361 * @type_data: TC flower offload data that contains user input 8362 * @cb_priv: netdev private data 8363 * 8364 * Return: 0 if the setup was successful, negative error code otherwise. 8365 */ 8366 static int 8367 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data, 8368 void *cb_priv) 8369 { 8370 struct ice_netdev_priv *np = cb_priv; 8371 8372 switch (type) { 8373 case TC_SETUP_CLSFLOWER: 8374 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8375 type_data, false); 8376 default: 8377 return -EOPNOTSUPP; 8378 } 8379 } 8380 8381 /** 8382 * ice_validate_mqprio_qopt - Validate TCF input parameters 8383 * @vsi: Pointer to VSI 8384 * @mqprio_qopt: input parameters for mqprio queue configuration 8385 * 8386 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8387 * needed), and make sure user doesn't specify qcount and BW rate limit 8388 * for TCs, which are more than "num_tc" 8389 */ 8390 static int 8391 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8392 struct tc_mqprio_qopt_offload *mqprio_qopt) 8393 { 8394 int non_power_of_2_qcount = 0; 8395 struct ice_pf *pf = vsi->back; 8396 int max_rss_q_cnt = 0; 8397 u64 sum_min_rate = 0; 8398 struct device *dev; 8399 int i, speed; 8400 u8 num_tc; 8401 8402 if (vsi->type != ICE_VSI_PF) 8403 return -EINVAL; 8404 8405 if (mqprio_qopt->qopt.offset[0] != 0 || 8406 mqprio_qopt->qopt.num_tc < 1 || 8407 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8408 return -EINVAL; 8409 8410 dev = ice_pf_to_dev(pf); 8411 vsi->ch_rss_size = 0; 8412 num_tc = mqprio_qopt->qopt.num_tc; 8413 speed = ice_get_link_speed_kbps(vsi); 8414 8415 for (i = 0; num_tc; i++) { 8416 int qcount = mqprio_qopt->qopt.count[i]; 8417 u64 max_rate, min_rate, rem; 8418 8419 if (!qcount) 8420 return -EINVAL; 8421 8422 if (is_power_of_2(qcount)) { 8423 if (non_power_of_2_qcount && 8424 qcount > non_power_of_2_qcount) { 8425 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8426 qcount, non_power_of_2_qcount); 8427 return -EINVAL; 8428 } 8429 if (qcount > max_rss_q_cnt) 8430 max_rss_q_cnt = qcount; 8431 } else { 8432 if (non_power_of_2_qcount && 8433 qcount != non_power_of_2_qcount) { 8434 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8435 qcount, non_power_of_2_qcount); 8436 return -EINVAL; 8437 } 8438 if (qcount < max_rss_q_cnt) { 8439 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8440 qcount, max_rss_q_cnt); 8441 return -EINVAL; 8442 } 8443 max_rss_q_cnt = qcount; 8444 non_power_of_2_qcount = qcount; 8445 } 8446 8447 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8448 * converts the bandwidth rate limit into Bytes/s when 8449 * passing it down to the driver. So convert input bandwidth 8450 * from Bytes/s to Kbps 8451 */ 8452 max_rate = mqprio_qopt->max_rate[i]; 8453 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8454 8455 /* min_rate is minimum guaranteed rate and it can't be zero */ 8456 min_rate = mqprio_qopt->min_rate[i]; 8457 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8458 sum_min_rate += min_rate; 8459 8460 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8461 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8462 min_rate, ICE_MIN_BW_LIMIT); 8463 return -EINVAL; 8464 } 8465 8466 if (max_rate && max_rate > speed) { 8467 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8468 i, max_rate, speed); 8469 return -EINVAL; 8470 } 8471 8472 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8473 if (rem) { 8474 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8475 i, ICE_MIN_BW_LIMIT); 8476 return -EINVAL; 8477 } 8478 8479 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8480 if (rem) { 8481 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8482 i, ICE_MIN_BW_LIMIT); 8483 return -EINVAL; 8484 } 8485 8486 /* min_rate can't be more than max_rate, except when max_rate 8487 * is zero (implies max_rate sought is max line rate). In such 8488 * a case min_rate can be more than max. 8489 */ 8490 if (max_rate && min_rate > max_rate) { 8491 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8492 min_rate, max_rate); 8493 return -EINVAL; 8494 } 8495 8496 if (i >= mqprio_qopt->qopt.num_tc - 1) 8497 break; 8498 if (mqprio_qopt->qopt.offset[i + 1] != 8499 (mqprio_qopt->qopt.offset[i] + qcount)) 8500 return -EINVAL; 8501 } 8502 if (vsi->num_rxq < 8503 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8504 return -EINVAL; 8505 if (vsi->num_txq < 8506 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8507 return -EINVAL; 8508 8509 if (sum_min_rate && sum_min_rate > (u64)speed) { 8510 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8511 sum_min_rate, speed); 8512 return -EINVAL; 8513 } 8514 8515 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8516 vsi->ch_rss_size = max_rss_q_cnt; 8517 8518 return 0; 8519 } 8520 8521 /** 8522 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8523 * @pf: ptr to PF device 8524 * @vsi: ptr to VSI 8525 */ 8526 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8527 { 8528 struct device *dev = ice_pf_to_dev(pf); 8529 bool added = false; 8530 struct ice_hw *hw; 8531 int flow; 8532 8533 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8534 return -EINVAL; 8535 8536 hw = &pf->hw; 8537 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8538 struct ice_fd_hw_prof *prof; 8539 int tun, status; 8540 u64 entry_h; 8541 8542 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8543 hw->fdir_prof[flow]->cnt)) 8544 continue; 8545 8546 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8547 enum ice_flow_priority prio; 8548 8549 /* add this VSI to FDir profile for this flow */ 8550 prio = ICE_FLOW_PRIO_NORMAL; 8551 prof = hw->fdir_prof[flow]; 8552 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8553 prof->prof_id[tun], 8554 prof->vsi_h[0], vsi->idx, 8555 prio, prof->fdir_seg[tun], 8556 &entry_h); 8557 if (status) { 8558 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8559 vsi->idx, flow); 8560 continue; 8561 } 8562 8563 prof->entry_h[prof->cnt][tun] = entry_h; 8564 } 8565 8566 /* store VSI for filter replay and delete */ 8567 prof->vsi_h[prof->cnt] = vsi->idx; 8568 prof->cnt++; 8569 8570 added = true; 8571 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8572 flow); 8573 } 8574 8575 if (!added) 8576 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8577 8578 return 0; 8579 } 8580 8581 /** 8582 * ice_add_channel - add a channel by adding VSI 8583 * @pf: ptr to PF device 8584 * @sw_id: underlying HW switching element ID 8585 * @ch: ptr to channel structure 8586 * 8587 * Add a channel (VSI) using add_vsi and queue_map 8588 */ 8589 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8590 { 8591 struct device *dev = ice_pf_to_dev(pf); 8592 struct ice_vsi *vsi; 8593 8594 if (ch->type != ICE_VSI_CHNL) { 8595 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8596 return -EINVAL; 8597 } 8598 8599 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8600 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8601 dev_err(dev, "create chnl VSI failure\n"); 8602 return -EINVAL; 8603 } 8604 8605 ice_add_vsi_to_fdir(pf, vsi); 8606 8607 ch->sw_id = sw_id; 8608 ch->vsi_num = vsi->vsi_num; 8609 ch->info.mapping_flags = vsi->info.mapping_flags; 8610 ch->ch_vsi = vsi; 8611 /* set the back pointer of channel for newly created VSI */ 8612 vsi->ch = ch; 8613 8614 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8615 sizeof(vsi->info.q_mapping)); 8616 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8617 sizeof(vsi->info.tc_mapping)); 8618 8619 return 0; 8620 } 8621 8622 /** 8623 * ice_chnl_cfg_res 8624 * @vsi: the VSI being setup 8625 * @ch: ptr to channel structure 8626 * 8627 * Configure channel specific resources such as rings, vector. 8628 */ 8629 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8630 { 8631 int i; 8632 8633 for (i = 0; i < ch->num_txq; i++) { 8634 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8635 struct ice_ring_container *rc; 8636 struct ice_tx_ring *tx_ring; 8637 struct ice_rx_ring *rx_ring; 8638 8639 tx_ring = vsi->tx_rings[ch->base_q + i]; 8640 rx_ring = vsi->rx_rings[ch->base_q + i]; 8641 if (!tx_ring || !rx_ring) 8642 continue; 8643 8644 /* setup ring being channel enabled */ 8645 tx_ring->ch = ch; 8646 rx_ring->ch = ch; 8647 8648 /* following code block sets up vector specific attributes */ 8649 tx_q_vector = tx_ring->q_vector; 8650 rx_q_vector = rx_ring->q_vector; 8651 if (!tx_q_vector && !rx_q_vector) 8652 continue; 8653 8654 if (tx_q_vector) { 8655 tx_q_vector->ch = ch; 8656 /* setup Tx and Rx ITR setting if DIM is off */ 8657 rc = &tx_q_vector->tx; 8658 if (!ITR_IS_DYNAMIC(rc)) 8659 ice_write_itr(rc, rc->itr_setting); 8660 } 8661 if (rx_q_vector) { 8662 rx_q_vector->ch = ch; 8663 /* setup Tx and Rx ITR setting if DIM is off */ 8664 rc = &rx_q_vector->rx; 8665 if (!ITR_IS_DYNAMIC(rc)) 8666 ice_write_itr(rc, rc->itr_setting); 8667 } 8668 } 8669 8670 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8671 * GLINT_ITR register would have written to perform in-context 8672 * update, hence perform flush 8673 */ 8674 if (ch->num_txq || ch->num_rxq) 8675 ice_flush(&vsi->back->hw); 8676 } 8677 8678 /** 8679 * ice_cfg_chnl_all_res - configure channel resources 8680 * @vsi: pte to main_vsi 8681 * @ch: ptr to channel structure 8682 * 8683 * This function configures channel specific resources such as flow-director 8684 * counter index, and other resources such as queues, vectors, ITR settings 8685 */ 8686 static void 8687 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8688 { 8689 /* configure channel (aka ADQ) resources such as queues, vectors, 8690 * ITR settings for channel specific vectors and anything else 8691 */ 8692 ice_chnl_cfg_res(vsi, ch); 8693 } 8694 8695 /** 8696 * ice_setup_hw_channel - setup new channel 8697 * @pf: ptr to PF device 8698 * @vsi: the VSI being setup 8699 * @ch: ptr to channel structure 8700 * @sw_id: underlying HW switching element ID 8701 * @type: type of channel to be created (VMDq2/VF) 8702 * 8703 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8704 * and configures Tx rings accordingly 8705 */ 8706 static int 8707 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8708 struct ice_channel *ch, u16 sw_id, u8 type) 8709 { 8710 struct device *dev = ice_pf_to_dev(pf); 8711 int ret; 8712 8713 ch->base_q = vsi->next_base_q; 8714 ch->type = type; 8715 8716 ret = ice_add_channel(pf, sw_id, ch); 8717 if (ret) { 8718 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8719 return ret; 8720 } 8721 8722 /* configure/setup ADQ specific resources */ 8723 ice_cfg_chnl_all_res(vsi, ch); 8724 8725 /* make sure to update the next_base_q so that subsequent channel's 8726 * (aka ADQ) VSI queue map is correct 8727 */ 8728 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8729 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8730 ch->num_rxq); 8731 8732 return 0; 8733 } 8734 8735 /** 8736 * ice_setup_channel - setup new channel using uplink element 8737 * @pf: ptr to PF device 8738 * @vsi: the VSI being setup 8739 * @ch: ptr to channel structure 8740 * 8741 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8742 * and uplink switching element 8743 */ 8744 static bool 8745 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8746 struct ice_channel *ch) 8747 { 8748 struct device *dev = ice_pf_to_dev(pf); 8749 u16 sw_id; 8750 int ret; 8751 8752 if (vsi->type != ICE_VSI_PF) { 8753 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8754 return false; 8755 } 8756 8757 sw_id = pf->first_sw->sw_id; 8758 8759 /* create channel (VSI) */ 8760 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8761 if (ret) { 8762 dev_err(dev, "failed to setup hw_channel\n"); 8763 return false; 8764 } 8765 dev_dbg(dev, "successfully created channel()\n"); 8766 8767 return ch->ch_vsi ? true : false; 8768 } 8769 8770 /** 8771 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8772 * @vsi: VSI to be configured 8773 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8774 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8775 */ 8776 static int 8777 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8778 { 8779 int err; 8780 8781 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8782 if (err) 8783 return err; 8784 8785 return ice_set_max_bw_limit(vsi, max_tx_rate); 8786 } 8787 8788 /** 8789 * ice_create_q_channel - function to create channel 8790 * @vsi: VSI to be configured 8791 * @ch: ptr to channel (it contains channel specific params) 8792 * 8793 * This function creates channel (VSI) using num_queues specified by user, 8794 * reconfigs RSS if needed. 8795 */ 8796 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8797 { 8798 struct ice_pf *pf = vsi->back; 8799 struct device *dev; 8800 8801 if (!ch) 8802 return -EINVAL; 8803 8804 dev = ice_pf_to_dev(pf); 8805 if (!ch->num_txq || !ch->num_rxq) { 8806 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8807 return -EINVAL; 8808 } 8809 8810 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8811 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8812 vsi->cnt_q_avail, ch->num_txq); 8813 return -EINVAL; 8814 } 8815 8816 if (!ice_setup_channel(pf, vsi, ch)) { 8817 dev_info(dev, "Failed to setup channel\n"); 8818 return -EINVAL; 8819 } 8820 /* configure BW rate limit */ 8821 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8822 int ret; 8823 8824 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8825 ch->min_tx_rate); 8826 if (ret) 8827 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8828 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8829 else 8830 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8831 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8832 } 8833 8834 vsi->cnt_q_avail -= ch->num_txq; 8835 8836 return 0; 8837 } 8838 8839 /** 8840 * ice_rem_all_chnl_fltrs - removes all channel filters 8841 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8842 * 8843 * Remove all advanced switch filters only if they are channel specific 8844 * tc-flower based filter 8845 */ 8846 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8847 { 8848 struct ice_tc_flower_fltr *fltr; 8849 struct hlist_node *node; 8850 8851 /* to remove all channel filters, iterate an ordered list of filters */ 8852 hlist_for_each_entry_safe(fltr, node, 8853 &pf->tc_flower_fltr_list, 8854 tc_flower_node) { 8855 struct ice_rule_query_data rule; 8856 int status; 8857 8858 /* for now process only channel specific filters */ 8859 if (!ice_is_chnl_fltr(fltr)) 8860 continue; 8861 8862 rule.rid = fltr->rid; 8863 rule.rule_id = fltr->rule_id; 8864 rule.vsi_handle = fltr->dest_vsi_handle; 8865 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8866 if (status) { 8867 if (status == -ENOENT) 8868 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8869 rule.rule_id); 8870 else 8871 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8872 status); 8873 } else if (fltr->dest_vsi) { 8874 /* update advanced switch filter count */ 8875 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8876 u32 flags = fltr->flags; 8877 8878 fltr->dest_vsi->num_chnl_fltr--; 8879 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8880 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8881 pf->num_dmac_chnl_fltrs--; 8882 } 8883 } 8884 8885 hlist_del(&fltr->tc_flower_node); 8886 kfree(fltr); 8887 } 8888 } 8889 8890 /** 8891 * ice_remove_q_channels - Remove queue channels for the TCs 8892 * @vsi: VSI to be configured 8893 * @rem_fltr: delete advanced switch filter or not 8894 * 8895 * Remove queue channels for the TCs 8896 */ 8897 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8898 { 8899 struct ice_channel *ch, *ch_tmp; 8900 struct ice_pf *pf = vsi->back; 8901 int i; 8902 8903 /* remove all tc-flower based filter if they are channel filters only */ 8904 if (rem_fltr) 8905 ice_rem_all_chnl_fltrs(pf); 8906 8907 /* remove ntuple filters since queue configuration is being changed */ 8908 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8909 struct ice_hw *hw = &pf->hw; 8910 8911 mutex_lock(&hw->fdir_fltr_lock); 8912 ice_fdir_del_all_fltrs(vsi); 8913 mutex_unlock(&hw->fdir_fltr_lock); 8914 } 8915 8916 /* perform cleanup for channels if they exist */ 8917 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8918 struct ice_vsi *ch_vsi; 8919 8920 list_del(&ch->list); 8921 ch_vsi = ch->ch_vsi; 8922 if (!ch_vsi) { 8923 kfree(ch); 8924 continue; 8925 } 8926 8927 /* Reset queue contexts */ 8928 for (i = 0; i < ch->num_rxq; i++) { 8929 struct ice_tx_ring *tx_ring; 8930 struct ice_rx_ring *rx_ring; 8931 8932 tx_ring = vsi->tx_rings[ch->base_q + i]; 8933 rx_ring = vsi->rx_rings[ch->base_q + i]; 8934 if (tx_ring) { 8935 tx_ring->ch = NULL; 8936 if (tx_ring->q_vector) 8937 tx_ring->q_vector->ch = NULL; 8938 } 8939 if (rx_ring) { 8940 rx_ring->ch = NULL; 8941 if (rx_ring->q_vector) 8942 rx_ring->q_vector->ch = NULL; 8943 } 8944 } 8945 8946 /* Release FD resources for the channel VSI */ 8947 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8948 8949 /* clear the VSI from scheduler tree */ 8950 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8951 8952 /* Delete VSI from FW, PF and HW VSI arrays */ 8953 ice_vsi_delete(ch->ch_vsi); 8954 8955 /* free the channel */ 8956 kfree(ch); 8957 } 8958 8959 /* clear the channel VSI map which is stored in main VSI */ 8960 ice_for_each_chnl_tc(i) 8961 vsi->tc_map_vsi[i] = NULL; 8962 8963 /* reset main VSI's all TC information */ 8964 vsi->all_enatc = 0; 8965 vsi->all_numtc = 0; 8966 } 8967 8968 /** 8969 * ice_rebuild_channels - rebuild channel 8970 * @pf: ptr to PF 8971 * 8972 * Recreate channel VSIs and replay filters 8973 */ 8974 static int ice_rebuild_channels(struct ice_pf *pf) 8975 { 8976 struct device *dev = ice_pf_to_dev(pf); 8977 struct ice_vsi *main_vsi; 8978 bool rem_adv_fltr = true; 8979 struct ice_channel *ch; 8980 struct ice_vsi *vsi; 8981 int tc_idx = 1; 8982 int i, err; 8983 8984 main_vsi = ice_get_main_vsi(pf); 8985 if (!main_vsi) 8986 return 0; 8987 8988 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8989 main_vsi->old_numtc == 1) 8990 return 0; /* nothing to be done */ 8991 8992 /* reconfigure main VSI based on old value of TC and cached values 8993 * for MQPRIO opts 8994 */ 8995 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8996 if (err) { 8997 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8998 main_vsi->old_ena_tc, main_vsi->vsi_num); 8999 return err; 9000 } 9001 9002 /* rebuild ADQ VSIs */ 9003 ice_for_each_vsi(pf, i) { 9004 enum ice_vsi_type type; 9005 9006 vsi = pf->vsi[i]; 9007 if (!vsi || vsi->type != ICE_VSI_CHNL) 9008 continue; 9009 9010 type = vsi->type; 9011 9012 /* rebuild ADQ VSI */ 9013 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 9014 if (err) { 9015 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 9016 ice_vsi_type_str(type), vsi->idx, err); 9017 goto cleanup; 9018 } 9019 9020 /* Re-map HW VSI number, using VSI handle that has been 9021 * previously validated in ice_replay_vsi() call above 9022 */ 9023 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9024 9025 /* replay filters for the VSI */ 9026 err = ice_replay_vsi(&pf->hw, vsi->idx); 9027 if (err) { 9028 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9029 ice_vsi_type_str(type), err, vsi->idx); 9030 rem_adv_fltr = false; 9031 goto cleanup; 9032 } 9033 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9034 ice_vsi_type_str(type), vsi->idx); 9035 9036 /* store ADQ VSI at correct TC index in main VSI's 9037 * map of TC to VSI 9038 */ 9039 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9040 } 9041 9042 /* ADQ VSI(s) has been rebuilt successfully, so setup 9043 * channel for main VSI's Tx and Rx rings 9044 */ 9045 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9046 struct ice_vsi *ch_vsi; 9047 9048 ch_vsi = ch->ch_vsi; 9049 if (!ch_vsi) 9050 continue; 9051 9052 /* reconfig channel resources */ 9053 ice_cfg_chnl_all_res(main_vsi, ch); 9054 9055 /* replay BW rate limit if it is non-zero */ 9056 if (!ch->max_tx_rate && !ch->min_tx_rate) 9057 continue; 9058 9059 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9060 ch->min_tx_rate); 9061 if (err) 9062 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9063 err, ch->max_tx_rate, ch->min_tx_rate, 9064 ch_vsi->vsi_num); 9065 else 9066 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9067 ch->max_tx_rate, ch->min_tx_rate, 9068 ch_vsi->vsi_num); 9069 } 9070 9071 /* reconfig RSS for main VSI */ 9072 if (main_vsi->ch_rss_size) 9073 ice_vsi_cfg_rss_lut_key(main_vsi); 9074 9075 return 0; 9076 9077 cleanup: 9078 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9079 return err; 9080 } 9081 9082 /** 9083 * ice_create_q_channels - Add queue channel for the given TCs 9084 * @vsi: VSI to be configured 9085 * 9086 * Configures queue channel mapping to the given TCs 9087 */ 9088 static int ice_create_q_channels(struct ice_vsi *vsi) 9089 { 9090 struct ice_pf *pf = vsi->back; 9091 struct ice_channel *ch; 9092 int ret = 0, i; 9093 9094 ice_for_each_chnl_tc(i) { 9095 if (!(vsi->all_enatc & BIT(i))) 9096 continue; 9097 9098 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9099 if (!ch) { 9100 ret = -ENOMEM; 9101 goto err_free; 9102 } 9103 INIT_LIST_HEAD(&ch->list); 9104 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9105 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9106 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9107 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9108 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9109 9110 /* convert to Kbits/s */ 9111 if (ch->max_tx_rate) 9112 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9113 ICE_BW_KBPS_DIVISOR); 9114 if (ch->min_tx_rate) 9115 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9116 ICE_BW_KBPS_DIVISOR); 9117 9118 ret = ice_create_q_channel(vsi, ch); 9119 if (ret) { 9120 dev_err(ice_pf_to_dev(pf), 9121 "failed creating channel TC:%d\n", i); 9122 kfree(ch); 9123 goto err_free; 9124 } 9125 list_add_tail(&ch->list, &vsi->ch_list); 9126 vsi->tc_map_vsi[i] = ch->ch_vsi; 9127 dev_dbg(ice_pf_to_dev(pf), 9128 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9129 } 9130 return 0; 9131 9132 err_free: 9133 ice_remove_q_channels(vsi, false); 9134 9135 return ret; 9136 } 9137 9138 /** 9139 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9140 * @netdev: net device to configure 9141 * @type_data: TC offload data 9142 */ 9143 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9144 { 9145 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9146 struct ice_netdev_priv *np = netdev_priv(netdev); 9147 struct ice_vsi *vsi = np->vsi; 9148 struct ice_pf *pf = vsi->back; 9149 u16 mode, ena_tc_qdisc = 0; 9150 int cur_txq, cur_rxq; 9151 u8 hw = 0, num_tcf; 9152 struct device *dev; 9153 int ret, i; 9154 9155 dev = ice_pf_to_dev(pf); 9156 num_tcf = mqprio_qopt->qopt.num_tc; 9157 hw = mqprio_qopt->qopt.hw; 9158 mode = mqprio_qopt->mode; 9159 if (!hw) { 9160 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9161 vsi->ch_rss_size = 0; 9162 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9163 goto config_tcf; 9164 } 9165 9166 /* Generate queue region map for number of TCF requested */ 9167 for (i = 0; i < num_tcf; i++) 9168 ena_tc_qdisc |= BIT(i); 9169 9170 switch (mode) { 9171 case TC_MQPRIO_MODE_CHANNEL: 9172 9173 if (pf->hw.port_info->is_custom_tx_enabled) { 9174 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9175 return -EBUSY; 9176 } 9177 ice_tear_down_devlink_rate_tree(pf); 9178 9179 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9180 if (ret) { 9181 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9182 ret); 9183 return ret; 9184 } 9185 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9186 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9187 /* don't assume state of hw_tc_offload during driver load 9188 * and set the flag for TC flower filter if hw_tc_offload 9189 * already ON 9190 */ 9191 if (vsi->netdev->features & NETIF_F_HW_TC) 9192 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9193 break; 9194 default: 9195 return -EINVAL; 9196 } 9197 9198 config_tcf: 9199 9200 /* Requesting same TCF configuration as already enabled */ 9201 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9202 mode != TC_MQPRIO_MODE_CHANNEL) 9203 return 0; 9204 9205 /* Pause VSI queues */ 9206 ice_dis_vsi(vsi, true); 9207 9208 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9209 ice_remove_q_channels(vsi, true); 9210 9211 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9212 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9213 num_online_cpus()); 9214 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9215 num_online_cpus()); 9216 } else { 9217 /* logic to rebuild VSI, same like ethtool -L */ 9218 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9219 9220 for (i = 0; i < num_tcf; i++) { 9221 if (!(ena_tc_qdisc & BIT(i))) 9222 continue; 9223 9224 offset = vsi->mqprio_qopt.qopt.offset[i]; 9225 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9226 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9227 } 9228 vsi->req_txq = offset + qcount_tx; 9229 vsi->req_rxq = offset + qcount_rx; 9230 9231 /* store away original rss_size info, so that it gets reused 9232 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9233 * determine, what should be the rss_sizefor main VSI 9234 */ 9235 vsi->orig_rss_size = vsi->rss_size; 9236 } 9237 9238 /* save current values of Tx and Rx queues before calling VSI rebuild 9239 * for fallback option 9240 */ 9241 cur_txq = vsi->num_txq; 9242 cur_rxq = vsi->num_rxq; 9243 9244 /* proceed with rebuild main VSI using correct number of queues */ 9245 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9246 if (ret) { 9247 /* fallback to current number of queues */ 9248 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9249 vsi->req_txq = cur_txq; 9250 vsi->req_rxq = cur_rxq; 9251 clear_bit(ICE_RESET_FAILED, pf->state); 9252 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9253 dev_err(dev, "Rebuild of main VSI failed again\n"); 9254 return ret; 9255 } 9256 } 9257 9258 vsi->all_numtc = num_tcf; 9259 vsi->all_enatc = ena_tc_qdisc; 9260 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9261 if (ret) { 9262 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9263 vsi->vsi_num); 9264 goto exit; 9265 } 9266 9267 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9268 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9269 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9270 9271 /* set TC0 rate limit if specified */ 9272 if (max_tx_rate || min_tx_rate) { 9273 /* convert to Kbits/s */ 9274 if (max_tx_rate) 9275 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9276 if (min_tx_rate) 9277 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9278 9279 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9280 if (!ret) { 9281 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9282 max_tx_rate, min_tx_rate, vsi->vsi_num); 9283 } else { 9284 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9285 max_tx_rate, min_tx_rate, vsi->vsi_num); 9286 goto exit; 9287 } 9288 } 9289 ret = ice_create_q_channels(vsi); 9290 if (ret) { 9291 netdev_err(netdev, "failed configuring queue channels\n"); 9292 goto exit; 9293 } else { 9294 netdev_dbg(netdev, "successfully configured channels\n"); 9295 } 9296 } 9297 9298 if (vsi->ch_rss_size) 9299 ice_vsi_cfg_rss_lut_key(vsi); 9300 9301 exit: 9302 /* if error, reset the all_numtc and all_enatc */ 9303 if (ret) { 9304 vsi->all_numtc = 0; 9305 vsi->all_enatc = 0; 9306 } 9307 /* resume VSI */ 9308 ice_ena_vsi(vsi, true); 9309 9310 return ret; 9311 } 9312 9313 static LIST_HEAD(ice_block_cb_list); 9314 9315 static int 9316 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9317 void *type_data) 9318 { 9319 struct ice_netdev_priv *np = netdev_priv(netdev); 9320 enum flow_block_binder_type binder_type; 9321 struct iidc_rdma_core_dev_info *cdev; 9322 struct ice_pf *pf = np->vsi->back; 9323 flow_setup_cb_t *flower_handler; 9324 bool locked = false; 9325 int err; 9326 9327 switch (type) { 9328 case TC_SETUP_BLOCK: 9329 binder_type = 9330 ((struct flow_block_offload *)type_data)->binder_type; 9331 9332 switch (binder_type) { 9333 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS: 9334 flower_handler = ice_setup_tc_block_cb_ingress; 9335 break; 9336 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS: 9337 flower_handler = ice_setup_tc_block_cb_egress; 9338 break; 9339 default: 9340 return -EOPNOTSUPP; 9341 } 9342 9343 return flow_block_cb_setup_simple(type_data, 9344 &ice_block_cb_list, 9345 flower_handler, 9346 np, np, false); 9347 case TC_SETUP_QDISC_MQPRIO: 9348 if (ice_is_eswitch_mode_switchdev(pf)) { 9349 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9350 return -EOPNOTSUPP; 9351 } 9352 9353 cdev = pf->cdev_info; 9354 if (cdev && cdev->adev) { 9355 mutex_lock(&pf->adev_mutex); 9356 device_lock(&cdev->adev->dev); 9357 locked = true; 9358 if (cdev->adev->dev.driver) { 9359 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9360 err = -EBUSY; 9361 goto adev_unlock; 9362 } 9363 } 9364 9365 /* setup traffic classifier for receive side */ 9366 mutex_lock(&pf->tc_mutex); 9367 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9368 mutex_unlock(&pf->tc_mutex); 9369 9370 adev_unlock: 9371 if (locked) { 9372 device_unlock(&cdev->adev->dev); 9373 mutex_unlock(&pf->adev_mutex); 9374 } 9375 return err; 9376 default: 9377 return -EOPNOTSUPP; 9378 } 9379 return -EOPNOTSUPP; 9380 } 9381 9382 static struct ice_indr_block_priv * 9383 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9384 struct net_device *netdev) 9385 { 9386 struct ice_indr_block_priv *cb_priv; 9387 9388 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9389 if (!cb_priv->netdev) 9390 return NULL; 9391 if (cb_priv->netdev == netdev) 9392 return cb_priv; 9393 } 9394 return NULL; 9395 } 9396 9397 static int 9398 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9399 void *indr_priv) 9400 { 9401 struct ice_indr_block_priv *priv = indr_priv; 9402 struct ice_netdev_priv *np = priv->np; 9403 9404 switch (type) { 9405 case TC_SETUP_CLSFLOWER: 9406 return ice_setup_tc_cls_flower(np, priv->netdev, 9407 (struct flow_cls_offload *) 9408 type_data, false); 9409 default: 9410 return -EOPNOTSUPP; 9411 } 9412 } 9413 9414 static int 9415 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9416 struct ice_netdev_priv *np, 9417 struct flow_block_offload *f, void *data, 9418 void (*cleanup)(struct flow_block_cb *block_cb)) 9419 { 9420 struct ice_indr_block_priv *indr_priv; 9421 struct flow_block_cb *block_cb; 9422 9423 if (!ice_is_tunnel_supported(netdev) && 9424 !(is_vlan_dev(netdev) && 9425 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9426 return -EOPNOTSUPP; 9427 9428 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9429 return -EOPNOTSUPP; 9430 9431 switch (f->command) { 9432 case FLOW_BLOCK_BIND: 9433 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9434 if (indr_priv) 9435 return -EEXIST; 9436 9437 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9438 if (!indr_priv) 9439 return -ENOMEM; 9440 9441 indr_priv->netdev = netdev; 9442 indr_priv->np = np; 9443 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9444 9445 block_cb = 9446 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9447 indr_priv, indr_priv, 9448 ice_rep_indr_tc_block_unbind, 9449 f, netdev, sch, data, np, 9450 cleanup); 9451 9452 if (IS_ERR(block_cb)) { 9453 list_del(&indr_priv->list); 9454 kfree(indr_priv); 9455 return PTR_ERR(block_cb); 9456 } 9457 flow_block_cb_add(block_cb, f); 9458 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9459 break; 9460 case FLOW_BLOCK_UNBIND: 9461 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9462 if (!indr_priv) 9463 return -ENOENT; 9464 9465 block_cb = flow_block_cb_lookup(f->block, 9466 ice_indr_setup_block_cb, 9467 indr_priv); 9468 if (!block_cb) 9469 return -ENOENT; 9470 9471 flow_indr_block_cb_remove(block_cb, f); 9472 9473 list_del(&block_cb->driver_list); 9474 break; 9475 default: 9476 return -EOPNOTSUPP; 9477 } 9478 return 0; 9479 } 9480 9481 static int 9482 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9483 void *cb_priv, enum tc_setup_type type, void *type_data, 9484 void *data, 9485 void (*cleanup)(struct flow_block_cb *block_cb)) 9486 { 9487 switch (type) { 9488 case TC_SETUP_BLOCK: 9489 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9490 data, cleanup); 9491 9492 default: 9493 return -EOPNOTSUPP; 9494 } 9495 } 9496 9497 /** 9498 * ice_open - Called when a network interface becomes active 9499 * @netdev: network interface device structure 9500 * 9501 * The open entry point is called when a network interface is made 9502 * active by the system (IFF_UP). At this point all resources needed 9503 * for transmit and receive operations are allocated, the interrupt 9504 * handler is registered with the OS, the netdev watchdog is enabled, 9505 * and the stack is notified that the interface is ready. 9506 * 9507 * Returns 0 on success, negative value on failure 9508 */ 9509 int ice_open(struct net_device *netdev) 9510 { 9511 struct ice_netdev_priv *np = netdev_priv(netdev); 9512 struct ice_pf *pf = np->vsi->back; 9513 9514 if (ice_is_reset_in_progress(pf->state)) { 9515 netdev_err(netdev, "can't open net device while reset is in progress"); 9516 return -EBUSY; 9517 } 9518 9519 return ice_open_internal(netdev); 9520 } 9521 9522 /** 9523 * ice_open_internal - Called when a network interface becomes active 9524 * @netdev: network interface device structure 9525 * 9526 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9527 * handling routine 9528 * 9529 * Returns 0 on success, negative value on failure 9530 */ 9531 int ice_open_internal(struct net_device *netdev) 9532 { 9533 struct ice_netdev_priv *np = netdev_priv(netdev); 9534 struct ice_vsi *vsi = np->vsi; 9535 struct ice_pf *pf = vsi->back; 9536 struct ice_port_info *pi; 9537 int err; 9538 9539 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9540 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9541 return -EIO; 9542 } 9543 9544 netif_carrier_off(netdev); 9545 9546 pi = vsi->port_info; 9547 err = ice_update_link_info(pi); 9548 if (err) { 9549 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9550 return err; 9551 } 9552 9553 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9554 9555 /* Set PHY if there is media, otherwise, turn off PHY */ 9556 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9557 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9558 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9559 err = ice_init_phy_user_cfg(pi); 9560 if (err) { 9561 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9562 err); 9563 return err; 9564 } 9565 } 9566 9567 err = ice_configure_phy(vsi); 9568 if (err) { 9569 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9570 err); 9571 return err; 9572 } 9573 } else { 9574 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9575 ice_set_link(vsi, false); 9576 } 9577 9578 err = ice_vsi_open(vsi); 9579 if (err) 9580 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9581 vsi->vsi_num, vsi->vsw->sw_id); 9582 9583 /* Update existing tunnels information */ 9584 udp_tunnel_get_rx_info(netdev); 9585 9586 return err; 9587 } 9588 9589 /** 9590 * ice_stop - Disables a network interface 9591 * @netdev: network interface device structure 9592 * 9593 * The stop entry point is called when an interface is de-activated by the OS, 9594 * and the netdevice enters the DOWN state. The hardware is still under the 9595 * driver's control, but the netdev interface is disabled. 9596 * 9597 * Returns success only - not allowed to fail 9598 */ 9599 int ice_stop(struct net_device *netdev) 9600 { 9601 struct ice_netdev_priv *np = netdev_priv(netdev); 9602 struct ice_vsi *vsi = np->vsi; 9603 struct ice_pf *pf = vsi->back; 9604 9605 if (ice_is_reset_in_progress(pf->state)) { 9606 netdev_err(netdev, "can't stop net device while reset is in progress"); 9607 return -EBUSY; 9608 } 9609 9610 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9611 int link_err = ice_force_phys_link_state(vsi, false); 9612 9613 if (link_err) { 9614 if (link_err == -ENOMEDIUM) 9615 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9616 vsi->vsi_num); 9617 else 9618 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9619 vsi->vsi_num, link_err); 9620 9621 ice_vsi_close(vsi); 9622 return -EIO; 9623 } 9624 } 9625 9626 ice_vsi_close(vsi); 9627 9628 return 0; 9629 } 9630 9631 /** 9632 * ice_features_check - Validate encapsulated packet conforms to limits 9633 * @skb: skb buffer 9634 * @netdev: This port's netdev 9635 * @features: Offload features that the stack believes apply 9636 */ 9637 static netdev_features_t 9638 ice_features_check(struct sk_buff *skb, 9639 struct net_device __always_unused *netdev, 9640 netdev_features_t features) 9641 { 9642 bool gso = skb_is_gso(skb); 9643 size_t len; 9644 9645 /* No point in doing any of this if neither checksum nor GSO are 9646 * being requested for this frame. We can rule out both by just 9647 * checking for CHECKSUM_PARTIAL 9648 */ 9649 if (skb->ip_summed != CHECKSUM_PARTIAL) 9650 return features; 9651 9652 /* We cannot support GSO if the MSS is going to be less than 9653 * 64 bytes. If it is then we need to drop support for GSO. 9654 */ 9655 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9656 features &= ~NETIF_F_GSO_MASK; 9657 9658 len = skb_network_offset(skb); 9659 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9660 goto out_rm_features; 9661 9662 len = skb_network_header_len(skb); 9663 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9664 goto out_rm_features; 9665 9666 if (skb->encapsulation) { 9667 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9668 * the case of IPIP frames, the transport header pointer is 9669 * after the inner header! So check to make sure that this 9670 * is a GRE or UDP_TUNNEL frame before doing that math. 9671 */ 9672 if (gso && (skb_shinfo(skb)->gso_type & 9673 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9674 len = skb_inner_network_header(skb) - 9675 skb_transport_header(skb); 9676 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9677 goto out_rm_features; 9678 } 9679 9680 len = skb_inner_network_header_len(skb); 9681 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9682 goto out_rm_features; 9683 } 9684 9685 return features; 9686 out_rm_features: 9687 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9688 } 9689 9690 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9691 .ndo_open = ice_open, 9692 .ndo_stop = ice_stop, 9693 .ndo_start_xmit = ice_start_xmit, 9694 .ndo_set_mac_address = ice_set_mac_address, 9695 .ndo_validate_addr = eth_validate_addr, 9696 .ndo_change_mtu = ice_change_mtu, 9697 .ndo_get_stats64 = ice_get_stats64, 9698 .ndo_tx_timeout = ice_tx_timeout, 9699 .ndo_bpf = ice_xdp_safe_mode, 9700 }; 9701 9702 static const struct net_device_ops ice_netdev_ops = { 9703 .ndo_open = ice_open, 9704 .ndo_stop = ice_stop, 9705 .ndo_start_xmit = ice_start_xmit, 9706 .ndo_select_queue = ice_select_queue, 9707 .ndo_features_check = ice_features_check, 9708 .ndo_fix_features = ice_fix_features, 9709 .ndo_set_rx_mode = ice_set_rx_mode, 9710 .ndo_set_mac_address = ice_set_mac_address, 9711 .ndo_validate_addr = eth_validate_addr, 9712 .ndo_change_mtu = ice_change_mtu, 9713 .ndo_get_stats64 = ice_get_stats64, 9714 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9715 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9716 .ndo_set_vf_mac = ice_set_vf_mac, 9717 .ndo_get_vf_config = ice_get_vf_cfg, 9718 .ndo_set_vf_trust = ice_set_vf_trust, 9719 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9720 .ndo_set_vf_link_state = ice_set_vf_link_state, 9721 .ndo_get_vf_stats = ice_get_vf_stats, 9722 .ndo_set_vf_rate = ice_set_vf_bw, 9723 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9724 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9725 .ndo_setup_tc = ice_setup_tc, 9726 .ndo_set_features = ice_set_features, 9727 .ndo_bridge_getlink = ice_bridge_getlink, 9728 .ndo_bridge_setlink = ice_bridge_setlink, 9729 .ndo_fdb_add = ice_fdb_add, 9730 .ndo_fdb_del = ice_fdb_del, 9731 #ifdef CONFIG_RFS_ACCEL 9732 .ndo_rx_flow_steer = ice_rx_flow_steer, 9733 #endif 9734 .ndo_tx_timeout = ice_tx_timeout, 9735 .ndo_bpf = ice_xdp, 9736 .ndo_xdp_xmit = ice_xdp_xmit, 9737 .ndo_xsk_wakeup = ice_xsk_wakeup, 9738 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get, 9739 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set, 9740 }; 9741