1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 /** 1397 * __ice_clean_ctrlq - helper function to clean controlq rings 1398 * @pf: ptr to struct ice_pf 1399 * @q_type: specific Control queue type 1400 */ 1401 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1402 { 1403 struct device *dev = ice_pf_to_dev(pf); 1404 struct ice_rq_event_info event; 1405 struct ice_hw *hw = &pf->hw; 1406 struct ice_ctl_q_info *cq; 1407 u16 pending, i = 0; 1408 const char *qtype; 1409 u32 oldval, val; 1410 1411 /* Do not clean control queue if/when PF reset fails */ 1412 if (test_bit(ICE_RESET_FAILED, pf->state)) 1413 return 0; 1414 1415 switch (q_type) { 1416 case ICE_CTL_Q_ADMIN: 1417 cq = &hw->adminq; 1418 qtype = "Admin"; 1419 break; 1420 case ICE_CTL_Q_SB: 1421 cq = &hw->sbq; 1422 qtype = "Sideband"; 1423 break; 1424 case ICE_CTL_Q_MAILBOX: 1425 cq = &hw->mailboxq; 1426 qtype = "Mailbox"; 1427 /* we are going to try to detect a malicious VF, so set the 1428 * state to begin detection 1429 */ 1430 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1431 break; 1432 default: 1433 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1434 return 0; 1435 } 1436 1437 /* check for error indications - PF_xx_AxQLEN register layout for 1438 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1439 */ 1440 val = rd32(hw, cq->rq.len); 1441 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1442 PF_FW_ARQLEN_ARQCRIT_M)) { 1443 oldval = val; 1444 if (val & PF_FW_ARQLEN_ARQVFE_M) 1445 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1446 qtype); 1447 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1448 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1449 qtype); 1450 } 1451 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1452 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1453 qtype); 1454 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1455 PF_FW_ARQLEN_ARQCRIT_M); 1456 if (oldval != val) 1457 wr32(hw, cq->rq.len, val); 1458 } 1459 1460 val = rd32(hw, cq->sq.len); 1461 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1462 PF_FW_ATQLEN_ATQCRIT_M)) { 1463 oldval = val; 1464 if (val & PF_FW_ATQLEN_ATQVFE_M) 1465 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1466 qtype); 1467 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1468 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1469 qtype); 1470 } 1471 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1472 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1473 qtype); 1474 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1475 PF_FW_ATQLEN_ATQCRIT_M); 1476 if (oldval != val) 1477 wr32(hw, cq->sq.len, val); 1478 } 1479 1480 event.buf_len = cq->rq_buf_size; 1481 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1482 if (!event.msg_buf) 1483 return 0; 1484 1485 do { 1486 u16 opcode; 1487 int ret; 1488 1489 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1490 if (ret == -EALREADY) 1491 break; 1492 if (ret) { 1493 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1494 ret); 1495 break; 1496 } 1497 1498 opcode = le16_to_cpu(event.desc.opcode); 1499 1500 /* Notify any thread that might be waiting for this event */ 1501 ice_aq_check_events(pf, opcode, &event); 1502 1503 switch (opcode) { 1504 case ice_aqc_opc_get_link_status: 1505 if (ice_handle_link_event(pf, &event)) 1506 dev_err(dev, "Could not handle link event\n"); 1507 break; 1508 case ice_aqc_opc_event_lan_overflow: 1509 ice_vf_lan_overflow_event(pf, &event); 1510 break; 1511 case ice_mbx_opc_send_msg_to_pf: 1512 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1513 ice_vc_process_vf_msg(pf, &event); 1514 break; 1515 case ice_aqc_opc_fw_logging: 1516 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1517 break; 1518 case ice_aqc_opc_lldp_set_mib_change: 1519 ice_dcb_process_lldp_set_mib_change(pf, &event); 1520 break; 1521 default: 1522 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1523 qtype, opcode); 1524 break; 1525 } 1526 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1527 1528 kfree(event.msg_buf); 1529 1530 return pending && (i == ICE_DFLT_IRQ_WORK); 1531 } 1532 1533 /** 1534 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1535 * @hw: pointer to hardware info 1536 * @cq: control queue information 1537 * 1538 * returns true if there are pending messages in a queue, false if there aren't 1539 */ 1540 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1541 { 1542 u16 ntu; 1543 1544 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1545 return cq->rq.next_to_clean != ntu; 1546 } 1547 1548 /** 1549 * ice_clean_adminq_subtask - clean the AdminQ rings 1550 * @pf: board private structure 1551 */ 1552 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1553 { 1554 struct ice_hw *hw = &pf->hw; 1555 1556 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1557 return; 1558 1559 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1560 return; 1561 1562 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1563 1564 /* There might be a situation where new messages arrive to a control 1565 * queue between processing the last message and clearing the 1566 * EVENT_PENDING bit. So before exiting, check queue head again (using 1567 * ice_ctrlq_pending) and process new messages if any. 1568 */ 1569 if (ice_ctrlq_pending(hw, &hw->adminq)) 1570 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1571 1572 ice_flush(hw); 1573 } 1574 1575 /** 1576 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1577 * @pf: board private structure 1578 */ 1579 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1580 { 1581 struct ice_hw *hw = &pf->hw; 1582 1583 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1584 return; 1585 1586 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1587 return; 1588 1589 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1590 1591 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1593 1594 ice_flush(hw); 1595 } 1596 1597 /** 1598 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1599 * @pf: board private structure 1600 */ 1601 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1602 { 1603 struct ice_hw *hw = &pf->hw; 1604 1605 /* Nothing to do here if sideband queue is not supported */ 1606 if (!ice_is_sbq_supported(hw)) { 1607 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1608 return; 1609 } 1610 1611 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1612 return; 1613 1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1615 return; 1616 1617 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1618 1619 if (ice_ctrlq_pending(hw, &hw->sbq)) 1620 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1621 1622 ice_flush(hw); 1623 } 1624 1625 /** 1626 * ice_service_task_schedule - schedule the service task to wake up 1627 * @pf: board private structure 1628 * 1629 * If not already scheduled, this puts the task into the work queue. 1630 */ 1631 void ice_service_task_schedule(struct ice_pf *pf) 1632 { 1633 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1634 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1635 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1636 queue_work(ice_wq, &pf->serv_task); 1637 } 1638 1639 /** 1640 * ice_service_task_complete - finish up the service task 1641 * @pf: board private structure 1642 */ 1643 static void ice_service_task_complete(struct ice_pf *pf) 1644 { 1645 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1646 1647 /* force memory (pf->state) to sync before next service task */ 1648 smp_mb__before_atomic(); 1649 clear_bit(ICE_SERVICE_SCHED, pf->state); 1650 } 1651 1652 /** 1653 * ice_service_task_stop - stop service task and cancel works 1654 * @pf: board private structure 1655 * 1656 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1657 * 1 otherwise. 1658 */ 1659 static int ice_service_task_stop(struct ice_pf *pf) 1660 { 1661 int ret; 1662 1663 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1664 1665 if (pf->serv_tmr.function) 1666 del_timer_sync(&pf->serv_tmr); 1667 if (pf->serv_task.func) 1668 cancel_work_sync(&pf->serv_task); 1669 1670 clear_bit(ICE_SERVICE_SCHED, pf->state); 1671 return ret; 1672 } 1673 1674 /** 1675 * ice_service_task_restart - restart service task and schedule works 1676 * @pf: board private structure 1677 * 1678 * This function is needed for suspend and resume works (e.g WoL scenario) 1679 */ 1680 static void ice_service_task_restart(struct ice_pf *pf) 1681 { 1682 clear_bit(ICE_SERVICE_DIS, pf->state); 1683 ice_service_task_schedule(pf); 1684 } 1685 1686 /** 1687 * ice_service_timer - timer callback to schedule service task 1688 * @t: pointer to timer_list 1689 */ 1690 static void ice_service_timer(struct timer_list *t) 1691 { 1692 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1693 1694 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1695 ice_service_task_schedule(pf); 1696 } 1697 1698 /** 1699 * ice_handle_mdd_event - handle malicious driver detect event 1700 * @pf: pointer to the PF structure 1701 * 1702 * Called from service task. OICR interrupt handler indicates MDD event. 1703 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1704 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1705 * disable the queue, the PF can be configured to reset the VF using ethtool 1706 * private flag mdd-auto-reset-vf. 1707 */ 1708 static void ice_handle_mdd_event(struct ice_pf *pf) 1709 { 1710 struct device *dev = ice_pf_to_dev(pf); 1711 struct ice_hw *hw = &pf->hw; 1712 struct ice_vf *vf; 1713 unsigned int bkt; 1714 u32 reg; 1715 1716 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1717 /* Since the VF MDD event logging is rate limited, check if 1718 * there are pending MDD events. 1719 */ 1720 ice_print_vfs_mdd_events(pf); 1721 return; 1722 } 1723 1724 /* find what triggered an MDD event */ 1725 reg = rd32(hw, GL_MDET_TX_PQM); 1726 if (reg & GL_MDET_TX_PQM_VALID_M) { 1727 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1728 GL_MDET_TX_PQM_PF_NUM_S; 1729 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1730 GL_MDET_TX_PQM_VF_NUM_S; 1731 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1732 GL_MDET_TX_PQM_MAL_TYPE_S; 1733 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1734 GL_MDET_TX_PQM_QNUM_S); 1735 1736 if (netif_msg_tx_err(pf)) 1737 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1738 event, queue, pf_num, vf_num); 1739 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1740 } 1741 1742 reg = rd32(hw, GL_MDET_TX_TCLAN); 1743 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1744 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1745 GL_MDET_TX_TCLAN_PF_NUM_S; 1746 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1747 GL_MDET_TX_TCLAN_VF_NUM_S; 1748 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1749 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1750 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1751 GL_MDET_TX_TCLAN_QNUM_S); 1752 1753 if (netif_msg_tx_err(pf)) 1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1755 event, queue, pf_num, vf_num); 1756 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1757 } 1758 1759 reg = rd32(hw, GL_MDET_RX); 1760 if (reg & GL_MDET_RX_VALID_M) { 1761 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1762 GL_MDET_RX_PF_NUM_S; 1763 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1764 GL_MDET_RX_VF_NUM_S; 1765 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1766 GL_MDET_RX_MAL_TYPE_S; 1767 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1768 GL_MDET_RX_QNUM_S); 1769 1770 if (netif_msg_rx_err(pf)) 1771 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1772 event, queue, pf_num, vf_num); 1773 wr32(hw, GL_MDET_RX, 0xffffffff); 1774 } 1775 1776 /* check to see if this PF caused an MDD event */ 1777 reg = rd32(hw, PF_MDET_TX_PQM); 1778 if (reg & PF_MDET_TX_PQM_VALID_M) { 1779 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1780 if (netif_msg_tx_err(pf)) 1781 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1782 } 1783 1784 reg = rd32(hw, PF_MDET_TX_TCLAN); 1785 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1786 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_RX); 1792 if (reg & PF_MDET_RX_VALID_M) { 1793 wr32(hw, PF_MDET_RX, 0xFFFF); 1794 if (netif_msg_rx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1796 } 1797 1798 /* Check to see if one of the VFs caused an MDD event, and then 1799 * increment counters and set print pending 1800 */ 1801 mutex_lock(&pf->vfs.table_lock); 1802 ice_for_each_vf(pf, bkt, vf) { 1803 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1804 if (reg & VP_MDET_TX_PQM_VALID_M) { 1805 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1806 vf->mdd_tx_events.count++; 1807 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1808 if (netif_msg_tx_err(pf)) 1809 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1810 vf->vf_id); 1811 } 1812 1813 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1814 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1815 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1816 vf->mdd_tx_events.count++; 1817 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1818 if (netif_msg_tx_err(pf)) 1819 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1820 vf->vf_id); 1821 } 1822 1823 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1824 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1825 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1826 vf->mdd_tx_events.count++; 1827 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1828 if (netif_msg_tx_err(pf)) 1829 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1830 vf->vf_id); 1831 } 1832 1833 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1834 if (reg & VP_MDET_RX_VALID_M) { 1835 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1836 vf->mdd_rx_events.count++; 1837 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1838 if (netif_msg_rx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1840 vf->vf_id); 1841 1842 /* Since the queue is disabled on VF Rx MDD events, the 1843 * PF can be configured to reset the VF through ethtool 1844 * private flag mdd-auto-reset-vf. 1845 */ 1846 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1847 /* VF MDD event counters will be cleared by 1848 * reset, so print the event prior to reset. 1849 */ 1850 ice_print_vf_rx_mdd_event(vf); 1851 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1852 } 1853 } 1854 } 1855 mutex_unlock(&pf->vfs.table_lock); 1856 1857 ice_print_vfs_mdd_events(pf); 1858 } 1859 1860 /** 1861 * ice_force_phys_link_state - Force the physical link state 1862 * @vsi: VSI to force the physical link state to up/down 1863 * @link_up: true/false indicates to set the physical link to up/down 1864 * 1865 * Force the physical link state by getting the current PHY capabilities from 1866 * hardware and setting the PHY config based on the determined capabilities. If 1867 * link changes a link event will be triggered because both the Enable Automatic 1868 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1869 * 1870 * Returns 0 on success, negative on failure 1871 */ 1872 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1873 { 1874 struct ice_aqc_get_phy_caps_data *pcaps; 1875 struct ice_aqc_set_phy_cfg_data *cfg; 1876 struct ice_port_info *pi; 1877 struct device *dev; 1878 int retcode; 1879 1880 if (!vsi || !vsi->port_info || !vsi->back) 1881 return -EINVAL; 1882 if (vsi->type != ICE_VSI_PF) 1883 return 0; 1884 1885 dev = ice_pf_to_dev(vsi->back); 1886 1887 pi = vsi->port_info; 1888 1889 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1890 if (!pcaps) 1891 return -ENOMEM; 1892 1893 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1894 NULL); 1895 if (retcode) { 1896 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1897 vsi->vsi_num, retcode); 1898 retcode = -EIO; 1899 goto out; 1900 } 1901 1902 /* No change in link */ 1903 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1904 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1905 goto out; 1906 1907 /* Use the current user PHY configuration. The current user PHY 1908 * configuration is initialized during probe from PHY capabilities 1909 * software mode, and updated on set PHY configuration. 1910 */ 1911 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1912 if (!cfg) { 1913 retcode = -ENOMEM; 1914 goto out; 1915 } 1916 1917 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1918 if (link_up) 1919 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1920 else 1921 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1922 1923 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1924 if (retcode) { 1925 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1926 vsi->vsi_num, retcode); 1927 retcode = -EIO; 1928 } 1929 1930 kfree(cfg); 1931 out: 1932 kfree(pcaps); 1933 return retcode; 1934 } 1935 1936 /** 1937 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1938 * @pi: port info structure 1939 * 1940 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1941 */ 1942 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1943 { 1944 struct ice_aqc_get_phy_caps_data *pcaps; 1945 struct ice_pf *pf = pi->hw->back; 1946 int err; 1947 1948 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1949 if (!pcaps) 1950 return -ENOMEM; 1951 1952 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1953 pcaps, NULL); 1954 1955 if (err) { 1956 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1957 goto out; 1958 } 1959 1960 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1961 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1962 1963 out: 1964 kfree(pcaps); 1965 return err; 1966 } 1967 1968 /** 1969 * ice_init_link_dflt_override - Initialize link default override 1970 * @pi: port info structure 1971 * 1972 * Initialize link default override and PHY total port shutdown during probe 1973 */ 1974 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1975 { 1976 struct ice_link_default_override_tlv *ldo; 1977 struct ice_pf *pf = pi->hw->back; 1978 1979 ldo = &pf->link_dflt_override; 1980 if (ice_get_link_default_override(ldo, pi)) 1981 return; 1982 1983 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1984 return; 1985 1986 /* Enable Total Port Shutdown (override/replace link-down-on-close 1987 * ethtool private flag) for ports with Port Disable bit set. 1988 */ 1989 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1990 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1991 } 1992 1993 /** 1994 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1995 * @pi: port info structure 1996 * 1997 * If default override is enabled, initialize the user PHY cfg speed and FEC 1998 * settings using the default override mask from the NVM. 1999 * 2000 * The PHY should only be configured with the default override settings the 2001 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2002 * is used to indicate that the user PHY cfg default override is initialized 2003 * and the PHY has not been configured with the default override settings. The 2004 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2005 * configured. 2006 * 2007 * This function should be called only if the FW doesn't support default 2008 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2009 */ 2010 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2011 { 2012 struct ice_link_default_override_tlv *ldo; 2013 struct ice_aqc_set_phy_cfg_data *cfg; 2014 struct ice_phy_info *phy = &pi->phy; 2015 struct ice_pf *pf = pi->hw->back; 2016 2017 ldo = &pf->link_dflt_override; 2018 2019 /* If link default override is enabled, use to mask NVM PHY capabilities 2020 * for speed and FEC default configuration. 2021 */ 2022 cfg = &phy->curr_user_phy_cfg; 2023 2024 if (ldo->phy_type_low || ldo->phy_type_high) { 2025 cfg->phy_type_low = pf->nvm_phy_type_lo & 2026 cpu_to_le64(ldo->phy_type_low); 2027 cfg->phy_type_high = pf->nvm_phy_type_hi & 2028 cpu_to_le64(ldo->phy_type_high); 2029 } 2030 cfg->link_fec_opt = ldo->fec_options; 2031 phy->curr_user_fec_req = ICE_FEC_AUTO; 2032 2033 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2034 } 2035 2036 /** 2037 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2038 * @pi: port info structure 2039 * 2040 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2041 * mode to default. The PHY defaults are from get PHY capabilities topology 2042 * with media so call when media is first available. An error is returned if 2043 * called when media is not available. The PHY initialization completed state is 2044 * set here. 2045 * 2046 * These configurations are used when setting PHY 2047 * configuration. The user PHY configuration is updated on set PHY 2048 * configuration. Returns 0 on success, negative on failure 2049 */ 2050 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2051 { 2052 struct ice_aqc_get_phy_caps_data *pcaps; 2053 struct ice_phy_info *phy = &pi->phy; 2054 struct ice_pf *pf = pi->hw->back; 2055 int err; 2056 2057 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2058 return -EIO; 2059 2060 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2061 if (!pcaps) 2062 return -ENOMEM; 2063 2064 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2065 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2066 pcaps, NULL); 2067 else 2068 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2069 pcaps, NULL); 2070 if (err) { 2071 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2072 goto err_out; 2073 } 2074 2075 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2076 2077 /* check if lenient mode is supported and enabled */ 2078 if (ice_fw_supports_link_override(pi->hw) && 2079 !(pcaps->module_compliance_enforcement & 2080 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2081 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2082 2083 /* if the FW supports default PHY configuration mode, then the driver 2084 * does not have to apply link override settings. If not, 2085 * initialize user PHY configuration with link override values 2086 */ 2087 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2088 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2089 ice_init_phy_cfg_dflt_override(pi); 2090 goto out; 2091 } 2092 } 2093 2094 /* if link default override is not enabled, set user flow control and 2095 * FEC settings based on what get_phy_caps returned 2096 */ 2097 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2098 pcaps->link_fec_options); 2099 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2100 2101 out: 2102 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2103 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2104 err_out: 2105 kfree(pcaps); 2106 return err; 2107 } 2108 2109 /** 2110 * ice_configure_phy - configure PHY 2111 * @vsi: VSI of PHY 2112 * 2113 * Set the PHY configuration. If the current PHY configuration is the same as 2114 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2115 * configure the based get PHY capabilities for topology with media. 2116 */ 2117 static int ice_configure_phy(struct ice_vsi *vsi) 2118 { 2119 struct device *dev = ice_pf_to_dev(vsi->back); 2120 struct ice_port_info *pi = vsi->port_info; 2121 struct ice_aqc_get_phy_caps_data *pcaps; 2122 struct ice_aqc_set_phy_cfg_data *cfg; 2123 struct ice_phy_info *phy = &pi->phy; 2124 struct ice_pf *pf = vsi->back; 2125 int err; 2126 2127 /* Ensure we have media as we cannot configure a medialess port */ 2128 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2129 return -EPERM; 2130 2131 ice_print_topo_conflict(vsi); 2132 2133 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2134 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2135 return -EPERM; 2136 2137 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2138 return ice_force_phys_link_state(vsi, true); 2139 2140 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2141 if (!pcaps) 2142 return -ENOMEM; 2143 2144 /* Get current PHY config */ 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2146 NULL); 2147 if (err) { 2148 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2149 vsi->vsi_num, err); 2150 goto done; 2151 } 2152 2153 /* If PHY enable link is configured and configuration has not changed, 2154 * there's nothing to do 2155 */ 2156 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2157 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2158 goto done; 2159 2160 /* Use PHY topology as baseline for configuration */ 2161 memset(pcaps, 0, sizeof(*pcaps)); 2162 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2163 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2164 pcaps, NULL); 2165 else 2166 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2167 pcaps, NULL); 2168 if (err) { 2169 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2170 vsi->vsi_num, err); 2171 goto done; 2172 } 2173 2174 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2175 if (!cfg) { 2176 err = -ENOMEM; 2177 goto done; 2178 } 2179 2180 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2181 2182 /* Speed - If default override pending, use curr_user_phy_cfg set in 2183 * ice_init_phy_user_cfg_ldo. 2184 */ 2185 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2186 vsi->back->state)) { 2187 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2188 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2189 } else { 2190 u64 phy_low = 0, phy_high = 0; 2191 2192 ice_update_phy_type(&phy_low, &phy_high, 2193 pi->phy.curr_user_speed_req); 2194 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2195 cfg->phy_type_high = pcaps->phy_type_high & 2196 cpu_to_le64(phy_high); 2197 } 2198 2199 /* Can't provide what was requested; use PHY capabilities */ 2200 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2201 cfg->phy_type_low = pcaps->phy_type_low; 2202 cfg->phy_type_high = pcaps->phy_type_high; 2203 } 2204 2205 /* FEC */ 2206 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2207 2208 /* Can't provide what was requested; use PHY capabilities */ 2209 if (cfg->link_fec_opt != 2210 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2211 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2212 cfg->link_fec_opt = pcaps->link_fec_options; 2213 } 2214 2215 /* Flow Control - always supported; no need to check against 2216 * capabilities 2217 */ 2218 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2219 2220 /* Enable link and link update */ 2221 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2222 2223 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2224 if (err) 2225 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2226 vsi->vsi_num, err); 2227 2228 kfree(cfg); 2229 done: 2230 kfree(pcaps); 2231 return err; 2232 } 2233 2234 /** 2235 * ice_check_media_subtask - Check for media 2236 * @pf: pointer to PF struct 2237 * 2238 * If media is available, then initialize PHY user configuration if it is not 2239 * been, and configure the PHY if the interface is up. 2240 */ 2241 static void ice_check_media_subtask(struct ice_pf *pf) 2242 { 2243 struct ice_port_info *pi; 2244 struct ice_vsi *vsi; 2245 int err; 2246 2247 /* No need to check for media if it's already present */ 2248 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2249 return; 2250 2251 vsi = ice_get_main_vsi(pf); 2252 if (!vsi) 2253 return; 2254 2255 /* Refresh link info and check if media is present */ 2256 pi = vsi->port_info; 2257 err = ice_update_link_info(pi); 2258 if (err) 2259 return; 2260 2261 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2262 2263 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2264 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2265 ice_init_phy_user_cfg(pi); 2266 2267 /* PHY settings are reset on media insertion, reconfigure 2268 * PHY to preserve settings. 2269 */ 2270 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2271 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2272 return; 2273 2274 err = ice_configure_phy(vsi); 2275 if (!err) 2276 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2277 2278 /* A Link Status Event will be generated; the event handler 2279 * will complete bringing the interface up 2280 */ 2281 } 2282 } 2283 2284 /** 2285 * ice_service_task - manage and run subtasks 2286 * @work: pointer to work_struct contained by the PF struct 2287 */ 2288 static void ice_service_task(struct work_struct *work) 2289 { 2290 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2291 unsigned long start_time = jiffies; 2292 2293 /* subtasks */ 2294 2295 /* process reset requests first */ 2296 ice_reset_subtask(pf); 2297 2298 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2299 if (ice_is_reset_in_progress(pf->state) || 2300 test_bit(ICE_SUSPENDED, pf->state) || 2301 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2302 ice_service_task_complete(pf); 2303 return; 2304 } 2305 2306 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2307 struct iidc_event *event; 2308 2309 event = kzalloc(sizeof(*event), GFP_KERNEL); 2310 if (event) { 2311 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2312 /* report the entire OICR value to AUX driver */ 2313 swap(event->reg, pf->oicr_err_reg); 2314 ice_send_event_to_aux(pf, event); 2315 kfree(event); 2316 } 2317 } 2318 2319 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2320 /* Plug aux device per request */ 2321 ice_plug_aux_dev(pf); 2322 2323 /* Mark plugging as done but check whether unplug was 2324 * requested during ice_plug_aux_dev() call 2325 * (e.g. from ice_clear_rdma_cap()) and if so then 2326 * plug aux device. 2327 */ 2328 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2329 ice_unplug_aux_dev(pf); 2330 } 2331 2332 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2333 struct iidc_event *event; 2334 2335 event = kzalloc(sizeof(*event), GFP_KERNEL); 2336 if (event) { 2337 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2338 ice_send_event_to_aux(pf, event); 2339 kfree(event); 2340 } 2341 } 2342 2343 ice_clean_adminq_subtask(pf); 2344 ice_check_media_subtask(pf); 2345 ice_check_for_hang_subtask(pf); 2346 ice_sync_fltr_subtask(pf); 2347 ice_handle_mdd_event(pf); 2348 ice_watchdog_subtask(pf); 2349 2350 if (ice_is_safe_mode(pf)) { 2351 ice_service_task_complete(pf); 2352 return; 2353 } 2354 2355 ice_process_vflr_event(pf); 2356 ice_clean_mailboxq_subtask(pf); 2357 ice_clean_sbq_subtask(pf); 2358 ice_sync_arfs_fltrs(pf); 2359 ice_flush_fdir_ctx(pf); 2360 2361 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2362 ice_service_task_complete(pf); 2363 2364 /* If the tasks have taken longer than one service timer period 2365 * or there is more work to be done, reset the service timer to 2366 * schedule the service task now. 2367 */ 2368 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2369 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2370 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2371 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2372 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2373 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2374 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2375 mod_timer(&pf->serv_tmr, jiffies); 2376 } 2377 2378 /** 2379 * ice_set_ctrlq_len - helper function to set controlq length 2380 * @hw: pointer to the HW instance 2381 */ 2382 static void ice_set_ctrlq_len(struct ice_hw *hw) 2383 { 2384 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2385 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2386 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2387 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2388 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2389 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2390 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2391 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2392 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2393 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2394 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2395 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2396 } 2397 2398 /** 2399 * ice_schedule_reset - schedule a reset 2400 * @pf: board private structure 2401 * @reset: reset being requested 2402 */ 2403 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2404 { 2405 struct device *dev = ice_pf_to_dev(pf); 2406 2407 /* bail out if earlier reset has failed */ 2408 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2409 dev_dbg(dev, "earlier reset has failed\n"); 2410 return -EIO; 2411 } 2412 /* bail if reset/recovery already in progress */ 2413 if (ice_is_reset_in_progress(pf->state)) { 2414 dev_dbg(dev, "Reset already in progress\n"); 2415 return -EBUSY; 2416 } 2417 2418 switch (reset) { 2419 case ICE_RESET_PFR: 2420 set_bit(ICE_PFR_REQ, pf->state); 2421 break; 2422 case ICE_RESET_CORER: 2423 set_bit(ICE_CORER_REQ, pf->state); 2424 break; 2425 case ICE_RESET_GLOBR: 2426 set_bit(ICE_GLOBR_REQ, pf->state); 2427 break; 2428 default: 2429 return -EINVAL; 2430 } 2431 2432 ice_service_task_schedule(pf); 2433 return 0; 2434 } 2435 2436 /** 2437 * ice_irq_affinity_notify - Callback for affinity changes 2438 * @notify: context as to what irq was changed 2439 * @mask: the new affinity mask 2440 * 2441 * This is a callback function used by the irq_set_affinity_notifier function 2442 * so that we may register to receive changes to the irq affinity masks. 2443 */ 2444 static void 2445 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2446 const cpumask_t *mask) 2447 { 2448 struct ice_q_vector *q_vector = 2449 container_of(notify, struct ice_q_vector, affinity_notify); 2450 2451 cpumask_copy(&q_vector->affinity_mask, mask); 2452 } 2453 2454 /** 2455 * ice_irq_affinity_release - Callback for affinity notifier release 2456 * @ref: internal core kernel usage 2457 * 2458 * This is a callback function used by the irq_set_affinity_notifier function 2459 * to inform the current notification subscriber that they will no longer 2460 * receive notifications. 2461 */ 2462 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2463 2464 /** 2465 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2466 * @vsi: the VSI being configured 2467 */ 2468 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2469 { 2470 struct ice_hw *hw = &vsi->back->hw; 2471 int i; 2472 2473 ice_for_each_q_vector(vsi, i) 2474 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2475 2476 ice_flush(hw); 2477 return 0; 2478 } 2479 2480 /** 2481 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2482 * @vsi: the VSI being configured 2483 * @basename: name for the vector 2484 */ 2485 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2486 { 2487 int q_vectors = vsi->num_q_vectors; 2488 struct ice_pf *pf = vsi->back; 2489 int base = vsi->base_vector; 2490 struct device *dev; 2491 int rx_int_idx = 0; 2492 int tx_int_idx = 0; 2493 int vector, err; 2494 int irq_num; 2495 2496 dev = ice_pf_to_dev(pf); 2497 for (vector = 0; vector < q_vectors; vector++) { 2498 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2499 2500 irq_num = pf->msix_entries[base + vector].vector; 2501 2502 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2503 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2504 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2505 tx_int_idx++; 2506 } else if (q_vector->rx.rx_ring) { 2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2508 "%s-%s-%d", basename, "rx", rx_int_idx++); 2509 } else if (q_vector->tx.tx_ring) { 2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2511 "%s-%s-%d", basename, "tx", tx_int_idx++); 2512 } else { 2513 /* skip this unused q_vector */ 2514 continue; 2515 } 2516 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2517 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2518 IRQF_SHARED, q_vector->name, 2519 q_vector); 2520 else 2521 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2522 0, q_vector->name, q_vector); 2523 if (err) { 2524 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2525 err); 2526 goto free_q_irqs; 2527 } 2528 2529 /* register for affinity change notifications */ 2530 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2531 struct irq_affinity_notify *affinity_notify; 2532 2533 affinity_notify = &q_vector->affinity_notify; 2534 affinity_notify->notify = ice_irq_affinity_notify; 2535 affinity_notify->release = ice_irq_affinity_release; 2536 irq_set_affinity_notifier(irq_num, affinity_notify); 2537 } 2538 2539 /* assign the mask for this irq */ 2540 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2541 } 2542 2543 err = ice_set_cpu_rx_rmap(vsi); 2544 if (err) { 2545 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2546 vsi->vsi_num, ERR_PTR(err)); 2547 goto free_q_irqs; 2548 } 2549 2550 vsi->irqs_ready = true; 2551 return 0; 2552 2553 free_q_irqs: 2554 while (vector) { 2555 vector--; 2556 irq_num = pf->msix_entries[base + vector].vector; 2557 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2558 irq_set_affinity_notifier(irq_num, NULL); 2559 irq_set_affinity_hint(irq_num, NULL); 2560 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2561 } 2562 return err; 2563 } 2564 2565 /** 2566 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2567 * @vsi: VSI to setup Tx rings used by XDP 2568 * 2569 * Return 0 on success and negative value on error 2570 */ 2571 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2572 { 2573 struct device *dev = ice_pf_to_dev(vsi->back); 2574 struct ice_tx_desc *tx_desc; 2575 int i, j; 2576 2577 ice_for_each_xdp_txq(vsi, i) { 2578 u16 xdp_q_idx = vsi->alloc_txq + i; 2579 struct ice_ring_stats *ring_stats; 2580 struct ice_tx_ring *xdp_ring; 2581 2582 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2583 if (!xdp_ring) 2584 goto free_xdp_rings; 2585 2586 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2587 if (!ring_stats) { 2588 ice_free_tx_ring(xdp_ring); 2589 goto free_xdp_rings; 2590 } 2591 2592 xdp_ring->ring_stats = ring_stats; 2593 xdp_ring->q_index = xdp_q_idx; 2594 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2595 xdp_ring->vsi = vsi; 2596 xdp_ring->netdev = NULL; 2597 xdp_ring->dev = dev; 2598 xdp_ring->count = vsi->num_tx_desc; 2599 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2600 if (ice_setup_tx_ring(xdp_ring)) 2601 goto free_xdp_rings; 2602 ice_set_ring_xdp(xdp_ring); 2603 spin_lock_init(&xdp_ring->tx_lock); 2604 for (j = 0; j < xdp_ring->count; j++) { 2605 tx_desc = ICE_TX_DESC(xdp_ring, j); 2606 tx_desc->cmd_type_offset_bsz = 0; 2607 } 2608 } 2609 2610 return 0; 2611 2612 free_xdp_rings: 2613 for (; i >= 0; i--) { 2614 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2615 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2616 vsi->xdp_rings[i]->ring_stats = NULL; 2617 ice_free_tx_ring(vsi->xdp_rings[i]); 2618 } 2619 } 2620 return -ENOMEM; 2621 } 2622 2623 /** 2624 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2625 * @vsi: VSI to set the bpf prog on 2626 * @prog: the bpf prog pointer 2627 */ 2628 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2629 { 2630 struct bpf_prog *old_prog; 2631 int i; 2632 2633 old_prog = xchg(&vsi->xdp_prog, prog); 2634 if (old_prog) 2635 bpf_prog_put(old_prog); 2636 2637 ice_for_each_rxq(vsi, i) 2638 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2639 } 2640 2641 /** 2642 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2643 * @vsi: VSI to bring up Tx rings used by XDP 2644 * @prog: bpf program that will be assigned to VSI 2645 * 2646 * Return 0 on success and negative value on error 2647 */ 2648 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2649 { 2650 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2651 int xdp_rings_rem = vsi->num_xdp_txq; 2652 struct ice_pf *pf = vsi->back; 2653 struct ice_qs_cfg xdp_qs_cfg = { 2654 .qs_mutex = &pf->avail_q_mutex, 2655 .pf_map = pf->avail_txqs, 2656 .pf_map_size = pf->max_pf_txqs, 2657 .q_count = vsi->num_xdp_txq, 2658 .scatter_count = ICE_MAX_SCATTER_TXQS, 2659 .vsi_map = vsi->txq_map, 2660 .vsi_map_offset = vsi->alloc_txq, 2661 .mapping_mode = ICE_VSI_MAP_CONTIG 2662 }; 2663 struct device *dev; 2664 int i, v_idx; 2665 int status; 2666 2667 dev = ice_pf_to_dev(pf); 2668 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2669 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2670 if (!vsi->xdp_rings) 2671 return -ENOMEM; 2672 2673 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2674 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2675 goto err_map_xdp; 2676 2677 if (static_key_enabled(&ice_xdp_locking_key)) 2678 netdev_warn(vsi->netdev, 2679 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2680 2681 if (ice_xdp_alloc_setup_rings(vsi)) 2682 goto clear_xdp_rings; 2683 2684 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2685 ice_for_each_q_vector(vsi, v_idx) { 2686 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2687 int xdp_rings_per_v, q_id, q_base; 2688 2689 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2690 vsi->num_q_vectors - v_idx); 2691 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2692 2693 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2694 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2695 2696 xdp_ring->q_vector = q_vector; 2697 xdp_ring->next = q_vector->tx.tx_ring; 2698 q_vector->tx.tx_ring = xdp_ring; 2699 } 2700 xdp_rings_rem -= xdp_rings_per_v; 2701 } 2702 2703 ice_for_each_rxq(vsi, i) { 2704 if (static_key_enabled(&ice_xdp_locking_key)) { 2705 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2706 } else { 2707 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2708 struct ice_tx_ring *ring; 2709 2710 ice_for_each_tx_ring(ring, q_vector->tx) { 2711 if (ice_ring_is_xdp(ring)) { 2712 vsi->rx_rings[i]->xdp_ring = ring; 2713 break; 2714 } 2715 } 2716 } 2717 ice_tx_xsk_pool(vsi, i); 2718 } 2719 2720 /* omit the scheduler update if in reset path; XDP queues will be 2721 * taken into account at the end of ice_vsi_rebuild, where 2722 * ice_cfg_vsi_lan is being called 2723 */ 2724 if (ice_is_reset_in_progress(pf->state)) 2725 return 0; 2726 2727 /* tell the Tx scheduler that right now we have 2728 * additional queues 2729 */ 2730 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2731 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2732 2733 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2734 max_txqs); 2735 if (status) { 2736 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2737 status); 2738 goto clear_xdp_rings; 2739 } 2740 2741 /* assign the prog only when it's not already present on VSI; 2742 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2743 * VSI rebuild that happens under ethtool -L can expose us to 2744 * the bpf_prog refcount issues as we would be swapping same 2745 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2746 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2747 * this is not harmful as dev_xdp_install bumps the refcount 2748 * before calling the op exposed by the driver; 2749 */ 2750 if (!ice_is_xdp_ena_vsi(vsi)) 2751 ice_vsi_assign_bpf_prog(vsi, prog); 2752 2753 return 0; 2754 clear_xdp_rings: 2755 ice_for_each_xdp_txq(vsi, i) 2756 if (vsi->xdp_rings[i]) { 2757 kfree_rcu(vsi->xdp_rings[i], rcu); 2758 vsi->xdp_rings[i] = NULL; 2759 } 2760 2761 err_map_xdp: 2762 mutex_lock(&pf->avail_q_mutex); 2763 ice_for_each_xdp_txq(vsi, i) { 2764 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2765 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2766 } 2767 mutex_unlock(&pf->avail_q_mutex); 2768 2769 devm_kfree(dev, vsi->xdp_rings); 2770 return -ENOMEM; 2771 } 2772 2773 /** 2774 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2775 * @vsi: VSI to remove XDP rings 2776 * 2777 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2778 * resources 2779 */ 2780 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2781 { 2782 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2783 struct ice_pf *pf = vsi->back; 2784 int i, v_idx; 2785 2786 /* q_vectors are freed in reset path so there's no point in detaching 2787 * rings; in case of rebuild being triggered not from reset bits 2788 * in pf->state won't be set, so additionally check first q_vector 2789 * against NULL 2790 */ 2791 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2792 goto free_qmap; 2793 2794 ice_for_each_q_vector(vsi, v_idx) { 2795 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2796 struct ice_tx_ring *ring; 2797 2798 ice_for_each_tx_ring(ring, q_vector->tx) 2799 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2800 break; 2801 2802 /* restore the value of last node prior to XDP setup */ 2803 q_vector->tx.tx_ring = ring; 2804 } 2805 2806 free_qmap: 2807 mutex_lock(&pf->avail_q_mutex); 2808 ice_for_each_xdp_txq(vsi, i) { 2809 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2810 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2811 } 2812 mutex_unlock(&pf->avail_q_mutex); 2813 2814 ice_for_each_xdp_txq(vsi, i) 2815 if (vsi->xdp_rings[i]) { 2816 if (vsi->xdp_rings[i]->desc) { 2817 synchronize_rcu(); 2818 ice_free_tx_ring(vsi->xdp_rings[i]); 2819 } 2820 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2821 vsi->xdp_rings[i]->ring_stats = NULL; 2822 kfree_rcu(vsi->xdp_rings[i], rcu); 2823 vsi->xdp_rings[i] = NULL; 2824 } 2825 2826 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2827 vsi->xdp_rings = NULL; 2828 2829 if (static_key_enabled(&ice_xdp_locking_key)) 2830 static_branch_dec(&ice_xdp_locking_key); 2831 2832 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2833 return 0; 2834 2835 ice_vsi_assign_bpf_prog(vsi, NULL); 2836 2837 /* notify Tx scheduler that we destroyed XDP queues and bring 2838 * back the old number of child nodes 2839 */ 2840 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2841 max_txqs[i] = vsi->num_txq; 2842 2843 /* change number of XDP Tx queues to 0 */ 2844 vsi->num_xdp_txq = 0; 2845 2846 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2847 max_txqs); 2848 } 2849 2850 /** 2851 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2852 * @vsi: VSI to schedule napi on 2853 */ 2854 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2855 { 2856 int i; 2857 2858 ice_for_each_rxq(vsi, i) { 2859 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2860 2861 if (rx_ring->xsk_pool) 2862 napi_schedule(&rx_ring->q_vector->napi); 2863 } 2864 } 2865 2866 /** 2867 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2868 * @vsi: VSI to determine the count of XDP Tx qs 2869 * 2870 * returns 0 if Tx qs count is higher than at least half of CPU count, 2871 * -ENOMEM otherwise 2872 */ 2873 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2874 { 2875 u16 avail = ice_get_avail_txq_count(vsi->back); 2876 u16 cpus = num_possible_cpus(); 2877 2878 if (avail < cpus / 2) 2879 return -ENOMEM; 2880 2881 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2882 2883 if (vsi->num_xdp_txq < cpus) 2884 static_branch_inc(&ice_xdp_locking_key); 2885 2886 return 0; 2887 } 2888 2889 /** 2890 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2891 * @vsi: Pointer to VSI structure 2892 */ 2893 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2894 { 2895 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2896 return ICE_RXBUF_1664; 2897 else 2898 return ICE_RXBUF_3072; 2899 } 2900 2901 /** 2902 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2903 * @vsi: VSI to setup XDP for 2904 * @prog: XDP program 2905 * @extack: netlink extended ack 2906 */ 2907 static int 2908 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2909 struct netlink_ext_ack *extack) 2910 { 2911 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2912 bool if_running = netif_running(vsi->netdev); 2913 int ret = 0, xdp_ring_err = 0; 2914 2915 if (prog && !prog->aux->xdp_has_frags) { 2916 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2917 NL_SET_ERR_MSG_MOD(extack, 2918 "MTU is too large for linear frames and XDP prog does not support frags"); 2919 return -EOPNOTSUPP; 2920 } 2921 } 2922 2923 /* need to stop netdev while setting up the program for Rx rings */ 2924 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2925 ret = ice_down(vsi); 2926 if (ret) { 2927 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2928 return ret; 2929 } 2930 } 2931 2932 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2933 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2934 if (xdp_ring_err) { 2935 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2936 } else { 2937 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2938 if (xdp_ring_err) 2939 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2940 } 2941 xdp_features_set_redirect_target(vsi->netdev, true); 2942 /* reallocate Rx queues that are used for zero-copy */ 2943 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2944 if (xdp_ring_err) 2945 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2946 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2947 xdp_features_clear_redirect_target(vsi->netdev); 2948 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2949 if (xdp_ring_err) 2950 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2951 /* reallocate Rx queues that were used for zero-copy */ 2952 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2953 if (xdp_ring_err) 2954 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2955 } else { 2956 /* safe to call even when prog == vsi->xdp_prog as 2957 * dev_xdp_install in net/core/dev.c incremented prog's 2958 * refcount so corresponding bpf_prog_put won't cause 2959 * underflow 2960 */ 2961 ice_vsi_assign_bpf_prog(vsi, prog); 2962 } 2963 2964 if (if_running) 2965 ret = ice_up(vsi); 2966 2967 if (!ret && prog) 2968 ice_vsi_rx_napi_schedule(vsi); 2969 2970 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2971 } 2972 2973 /** 2974 * ice_xdp_safe_mode - XDP handler for safe mode 2975 * @dev: netdevice 2976 * @xdp: XDP command 2977 */ 2978 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2979 struct netdev_bpf *xdp) 2980 { 2981 NL_SET_ERR_MSG_MOD(xdp->extack, 2982 "Please provide working DDP firmware package in order to use XDP\n" 2983 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2984 return -EOPNOTSUPP; 2985 } 2986 2987 /** 2988 * ice_xdp - implements XDP handler 2989 * @dev: netdevice 2990 * @xdp: XDP command 2991 */ 2992 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2993 { 2994 struct ice_netdev_priv *np = netdev_priv(dev); 2995 struct ice_vsi *vsi = np->vsi; 2996 2997 if (vsi->type != ICE_VSI_PF) { 2998 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2999 return -EINVAL; 3000 } 3001 3002 switch (xdp->command) { 3003 case XDP_SETUP_PROG: 3004 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3005 case XDP_SETUP_XSK_POOL: 3006 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3007 xdp->xsk.queue_id); 3008 default: 3009 return -EINVAL; 3010 } 3011 } 3012 3013 /** 3014 * ice_ena_misc_vector - enable the non-queue interrupts 3015 * @pf: board private structure 3016 */ 3017 static void ice_ena_misc_vector(struct ice_pf *pf) 3018 { 3019 struct ice_hw *hw = &pf->hw; 3020 u32 val; 3021 3022 /* Disable anti-spoof detection interrupt to prevent spurious event 3023 * interrupts during a function reset. Anti-spoof functionally is 3024 * still supported. 3025 */ 3026 val = rd32(hw, GL_MDCK_TX_TDPU); 3027 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3028 wr32(hw, GL_MDCK_TX_TDPU, val); 3029 3030 /* clear things first */ 3031 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3032 rd32(hw, PFINT_OICR); /* read to clear */ 3033 3034 val = (PFINT_OICR_ECC_ERR_M | 3035 PFINT_OICR_MAL_DETECT_M | 3036 PFINT_OICR_GRST_M | 3037 PFINT_OICR_PCI_EXCEPTION_M | 3038 PFINT_OICR_VFLR_M | 3039 PFINT_OICR_HMC_ERR_M | 3040 PFINT_OICR_PE_PUSH_M | 3041 PFINT_OICR_PE_CRITERR_M); 3042 3043 wr32(hw, PFINT_OICR_ENA, val); 3044 3045 /* SW_ITR_IDX = 0, but don't change INTENA */ 3046 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3047 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3048 } 3049 3050 /** 3051 * ice_misc_intr - misc interrupt handler 3052 * @irq: interrupt number 3053 * @data: pointer to a q_vector 3054 */ 3055 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3056 { 3057 struct ice_pf *pf = (struct ice_pf *)data; 3058 struct ice_hw *hw = &pf->hw; 3059 irqreturn_t ret = IRQ_NONE; 3060 struct device *dev; 3061 u32 oicr, ena_mask; 3062 3063 dev = ice_pf_to_dev(pf); 3064 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3065 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3066 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3067 3068 oicr = rd32(hw, PFINT_OICR); 3069 ena_mask = rd32(hw, PFINT_OICR_ENA); 3070 3071 if (oicr & PFINT_OICR_SWINT_M) { 3072 ena_mask &= ~PFINT_OICR_SWINT_M; 3073 pf->sw_int_count++; 3074 } 3075 3076 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3077 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3078 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3079 } 3080 if (oicr & PFINT_OICR_VFLR_M) { 3081 /* disable any further VFLR event notifications */ 3082 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3083 u32 reg = rd32(hw, PFINT_OICR_ENA); 3084 3085 reg &= ~PFINT_OICR_VFLR_M; 3086 wr32(hw, PFINT_OICR_ENA, reg); 3087 } else { 3088 ena_mask &= ~PFINT_OICR_VFLR_M; 3089 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3090 } 3091 } 3092 3093 if (oicr & PFINT_OICR_GRST_M) { 3094 u32 reset; 3095 3096 /* we have a reset warning */ 3097 ena_mask &= ~PFINT_OICR_GRST_M; 3098 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3099 GLGEN_RSTAT_RESET_TYPE_S; 3100 3101 if (reset == ICE_RESET_CORER) 3102 pf->corer_count++; 3103 else if (reset == ICE_RESET_GLOBR) 3104 pf->globr_count++; 3105 else if (reset == ICE_RESET_EMPR) 3106 pf->empr_count++; 3107 else 3108 dev_dbg(dev, "Invalid reset type %d\n", reset); 3109 3110 /* If a reset cycle isn't already in progress, we set a bit in 3111 * pf->state so that the service task can start a reset/rebuild. 3112 */ 3113 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3114 if (reset == ICE_RESET_CORER) 3115 set_bit(ICE_CORER_RECV, pf->state); 3116 else if (reset == ICE_RESET_GLOBR) 3117 set_bit(ICE_GLOBR_RECV, pf->state); 3118 else 3119 set_bit(ICE_EMPR_RECV, pf->state); 3120 3121 /* There are couple of different bits at play here. 3122 * hw->reset_ongoing indicates whether the hardware is 3123 * in reset. This is set to true when a reset interrupt 3124 * is received and set back to false after the driver 3125 * has determined that the hardware is out of reset. 3126 * 3127 * ICE_RESET_OICR_RECV in pf->state indicates 3128 * that a post reset rebuild is required before the 3129 * driver is operational again. This is set above. 3130 * 3131 * As this is the start of the reset/rebuild cycle, set 3132 * both to indicate that. 3133 */ 3134 hw->reset_ongoing = true; 3135 } 3136 } 3137 3138 if (oicr & PFINT_OICR_TSYN_TX_M) { 3139 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3140 if (!hw->reset_ongoing) 3141 ret = IRQ_WAKE_THREAD; 3142 } 3143 3144 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3145 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3146 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3147 3148 /* Save EVENTs from GTSYN register */ 3149 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3150 GLTSYN_STAT_EVENT1_M | 3151 GLTSYN_STAT_EVENT2_M); 3152 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3153 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3154 } 3155 3156 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3157 if (oicr & ICE_AUX_CRIT_ERR) { 3158 pf->oicr_err_reg |= oicr; 3159 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3160 ena_mask &= ~ICE_AUX_CRIT_ERR; 3161 } 3162 3163 /* Report any remaining unexpected interrupts */ 3164 oicr &= ena_mask; 3165 if (oicr) { 3166 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3167 /* If a critical error is pending there is no choice but to 3168 * reset the device. 3169 */ 3170 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3171 PFINT_OICR_ECC_ERR_M)) { 3172 set_bit(ICE_PFR_REQ, pf->state); 3173 ice_service_task_schedule(pf); 3174 } 3175 } 3176 if (!ret) 3177 ret = IRQ_HANDLED; 3178 3179 ice_service_task_schedule(pf); 3180 ice_irq_dynamic_ena(hw, NULL, NULL); 3181 3182 return ret; 3183 } 3184 3185 /** 3186 * ice_misc_intr_thread_fn - misc interrupt thread function 3187 * @irq: interrupt number 3188 * @data: pointer to a q_vector 3189 */ 3190 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3191 { 3192 struct ice_pf *pf = data; 3193 3194 if (ice_is_reset_in_progress(pf->state)) 3195 return IRQ_HANDLED; 3196 3197 while (!ice_ptp_process_ts(pf)) 3198 usleep_range(50, 100); 3199 3200 return IRQ_HANDLED; 3201 } 3202 3203 /** 3204 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3205 * @hw: pointer to HW structure 3206 */ 3207 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3208 { 3209 /* disable Admin queue Interrupt causes */ 3210 wr32(hw, PFINT_FW_CTL, 3211 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3212 3213 /* disable Mailbox queue Interrupt causes */ 3214 wr32(hw, PFINT_MBX_CTL, 3215 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3216 3217 wr32(hw, PFINT_SB_CTL, 3218 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3219 3220 /* disable Control queue Interrupt causes */ 3221 wr32(hw, PFINT_OICR_CTL, 3222 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3223 3224 ice_flush(hw); 3225 } 3226 3227 /** 3228 * ice_free_irq_msix_misc - Unroll misc vector setup 3229 * @pf: board private structure 3230 */ 3231 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3232 { 3233 struct ice_hw *hw = &pf->hw; 3234 3235 ice_dis_ctrlq_interrupts(hw); 3236 3237 /* disable OICR interrupt */ 3238 wr32(hw, PFINT_OICR_ENA, 0); 3239 ice_flush(hw); 3240 3241 if (pf->msix_entries) { 3242 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3243 devm_free_irq(ice_pf_to_dev(pf), 3244 pf->msix_entries[pf->oicr_idx].vector, pf); 3245 } 3246 3247 pf->num_avail_sw_msix += 1; 3248 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3249 } 3250 3251 /** 3252 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3253 * @hw: pointer to HW structure 3254 * @reg_idx: HW vector index to associate the control queue interrupts with 3255 */ 3256 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3257 { 3258 u32 val; 3259 3260 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3261 PFINT_OICR_CTL_CAUSE_ENA_M); 3262 wr32(hw, PFINT_OICR_CTL, val); 3263 3264 /* enable Admin queue Interrupt causes */ 3265 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3266 PFINT_FW_CTL_CAUSE_ENA_M); 3267 wr32(hw, PFINT_FW_CTL, val); 3268 3269 /* enable Mailbox queue Interrupt causes */ 3270 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3271 PFINT_MBX_CTL_CAUSE_ENA_M); 3272 wr32(hw, PFINT_MBX_CTL, val); 3273 3274 /* This enables Sideband queue Interrupt causes */ 3275 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3276 PFINT_SB_CTL_CAUSE_ENA_M); 3277 wr32(hw, PFINT_SB_CTL, val); 3278 3279 ice_flush(hw); 3280 } 3281 3282 /** 3283 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3284 * @pf: board private structure 3285 * 3286 * This sets up the handler for MSIX 0, which is used to manage the 3287 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3288 * when in MSI or Legacy interrupt mode. 3289 */ 3290 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3291 { 3292 struct device *dev = ice_pf_to_dev(pf); 3293 struct ice_hw *hw = &pf->hw; 3294 int oicr_idx, err = 0; 3295 3296 if (!pf->int_name[0]) 3297 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3298 dev_driver_string(dev), dev_name(dev)); 3299 3300 /* Do not request IRQ but do enable OICR interrupt since settings are 3301 * lost during reset. Note that this function is called only during 3302 * rebuild path and not while reset is in progress. 3303 */ 3304 if (ice_is_reset_in_progress(pf->state)) 3305 goto skip_req_irq; 3306 3307 /* reserve one vector in irq_tracker for misc interrupts */ 3308 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3309 if (oicr_idx < 0) 3310 return oicr_idx; 3311 3312 pf->num_avail_sw_msix -= 1; 3313 pf->oicr_idx = (u16)oicr_idx; 3314 3315 err = devm_request_threaded_irq(dev, 3316 pf->msix_entries[pf->oicr_idx].vector, 3317 ice_misc_intr, ice_misc_intr_thread_fn, 3318 0, pf->int_name, pf); 3319 if (err) { 3320 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3321 pf->int_name, err); 3322 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3323 pf->num_avail_sw_msix += 1; 3324 return err; 3325 } 3326 3327 skip_req_irq: 3328 ice_ena_misc_vector(pf); 3329 3330 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3331 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3332 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3333 3334 ice_flush(hw); 3335 ice_irq_dynamic_ena(hw, NULL, NULL); 3336 3337 return 0; 3338 } 3339 3340 /** 3341 * ice_napi_add - register NAPI handler for the VSI 3342 * @vsi: VSI for which NAPI handler is to be registered 3343 * 3344 * This function is only called in the driver's load path. Registering the NAPI 3345 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3346 * reset/rebuild, etc.) 3347 */ 3348 static void ice_napi_add(struct ice_vsi *vsi) 3349 { 3350 int v_idx; 3351 3352 if (!vsi->netdev) 3353 return; 3354 3355 ice_for_each_q_vector(vsi, v_idx) 3356 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3357 ice_napi_poll); 3358 } 3359 3360 /** 3361 * ice_set_ops - set netdev and ethtools ops for the given netdev 3362 * @vsi: the VSI associated with the new netdev 3363 */ 3364 static void ice_set_ops(struct ice_vsi *vsi) 3365 { 3366 struct net_device *netdev = vsi->netdev; 3367 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3368 3369 if (ice_is_safe_mode(pf)) { 3370 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3371 ice_set_ethtool_safe_mode_ops(netdev); 3372 return; 3373 } 3374 3375 netdev->netdev_ops = &ice_netdev_ops; 3376 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3377 ice_set_ethtool_ops(netdev); 3378 3379 if (vsi->type != ICE_VSI_PF) 3380 return; 3381 3382 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3383 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3384 NETDEV_XDP_ACT_RX_SG; 3385 } 3386 3387 /** 3388 * ice_set_netdev_features - set features for the given netdev 3389 * @netdev: netdev instance 3390 */ 3391 static void ice_set_netdev_features(struct net_device *netdev) 3392 { 3393 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3394 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3395 netdev_features_t csumo_features; 3396 netdev_features_t vlano_features; 3397 netdev_features_t dflt_features; 3398 netdev_features_t tso_features; 3399 3400 if (ice_is_safe_mode(pf)) { 3401 /* safe mode */ 3402 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3403 netdev->hw_features = netdev->features; 3404 return; 3405 } 3406 3407 dflt_features = NETIF_F_SG | 3408 NETIF_F_HIGHDMA | 3409 NETIF_F_NTUPLE | 3410 NETIF_F_RXHASH; 3411 3412 csumo_features = NETIF_F_RXCSUM | 3413 NETIF_F_IP_CSUM | 3414 NETIF_F_SCTP_CRC | 3415 NETIF_F_IPV6_CSUM; 3416 3417 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3418 NETIF_F_HW_VLAN_CTAG_TX | 3419 NETIF_F_HW_VLAN_CTAG_RX; 3420 3421 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3422 if (is_dvm_ena) 3423 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3424 3425 tso_features = NETIF_F_TSO | 3426 NETIF_F_TSO_ECN | 3427 NETIF_F_TSO6 | 3428 NETIF_F_GSO_GRE | 3429 NETIF_F_GSO_UDP_TUNNEL | 3430 NETIF_F_GSO_GRE_CSUM | 3431 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3432 NETIF_F_GSO_PARTIAL | 3433 NETIF_F_GSO_IPXIP4 | 3434 NETIF_F_GSO_IPXIP6 | 3435 NETIF_F_GSO_UDP_L4; 3436 3437 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3438 NETIF_F_GSO_GRE_CSUM; 3439 /* set features that user can change */ 3440 netdev->hw_features = dflt_features | csumo_features | 3441 vlano_features | tso_features; 3442 3443 /* add support for HW_CSUM on packets with MPLS header */ 3444 netdev->mpls_features = NETIF_F_HW_CSUM | 3445 NETIF_F_TSO | 3446 NETIF_F_TSO6; 3447 3448 /* enable features */ 3449 netdev->features |= netdev->hw_features; 3450 3451 netdev->hw_features |= NETIF_F_HW_TC; 3452 netdev->hw_features |= NETIF_F_LOOPBACK; 3453 3454 /* encap and VLAN devices inherit default, csumo and tso features */ 3455 netdev->hw_enc_features |= dflt_features | csumo_features | 3456 tso_features; 3457 netdev->vlan_features |= dflt_features | csumo_features | 3458 tso_features; 3459 3460 /* advertise support but don't enable by default since only one type of 3461 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3462 * type turns on the other has to be turned off. This is enforced by the 3463 * ice_fix_features() ndo callback. 3464 */ 3465 if (is_dvm_ena) 3466 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3467 NETIF_F_HW_VLAN_STAG_TX; 3468 3469 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3470 * be changed at runtime 3471 */ 3472 netdev->hw_features |= NETIF_F_RXFCS; 3473 3474 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3475 } 3476 3477 /** 3478 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3479 * @lut: Lookup table 3480 * @rss_table_size: Lookup table size 3481 * @rss_size: Range of queue number for hashing 3482 */ 3483 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3484 { 3485 u16 i; 3486 3487 for (i = 0; i < rss_table_size; i++) 3488 lut[i] = i % rss_size; 3489 } 3490 3491 /** 3492 * ice_pf_vsi_setup - Set up a PF VSI 3493 * @pf: board private structure 3494 * @pi: pointer to the port_info instance 3495 * 3496 * Returns pointer to the successfully allocated VSI software struct 3497 * on success, otherwise returns NULL on failure. 3498 */ 3499 static struct ice_vsi * 3500 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3501 { 3502 struct ice_vsi_cfg_params params = {}; 3503 3504 params.type = ICE_VSI_PF; 3505 params.pi = pi; 3506 params.flags = ICE_VSI_FLAG_INIT; 3507 3508 return ice_vsi_setup(pf, ¶ms); 3509 } 3510 3511 static struct ice_vsi * 3512 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3513 struct ice_channel *ch) 3514 { 3515 struct ice_vsi_cfg_params params = {}; 3516 3517 params.type = ICE_VSI_CHNL; 3518 params.pi = pi; 3519 params.ch = ch; 3520 params.flags = ICE_VSI_FLAG_INIT; 3521 3522 return ice_vsi_setup(pf, ¶ms); 3523 } 3524 3525 /** 3526 * ice_ctrl_vsi_setup - Set up a control VSI 3527 * @pf: board private structure 3528 * @pi: pointer to the port_info instance 3529 * 3530 * Returns pointer to the successfully allocated VSI software struct 3531 * on success, otherwise returns NULL on failure. 3532 */ 3533 static struct ice_vsi * 3534 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3535 { 3536 struct ice_vsi_cfg_params params = {}; 3537 3538 params.type = ICE_VSI_CTRL; 3539 params.pi = pi; 3540 params.flags = ICE_VSI_FLAG_INIT; 3541 3542 return ice_vsi_setup(pf, ¶ms); 3543 } 3544 3545 /** 3546 * ice_lb_vsi_setup - Set up a loopback VSI 3547 * @pf: board private structure 3548 * @pi: pointer to the port_info instance 3549 * 3550 * Returns pointer to the successfully allocated VSI software struct 3551 * on success, otherwise returns NULL on failure. 3552 */ 3553 struct ice_vsi * 3554 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3555 { 3556 struct ice_vsi_cfg_params params = {}; 3557 3558 params.type = ICE_VSI_LB; 3559 params.pi = pi; 3560 params.flags = ICE_VSI_FLAG_INIT; 3561 3562 return ice_vsi_setup(pf, ¶ms); 3563 } 3564 3565 /** 3566 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3567 * @netdev: network interface to be adjusted 3568 * @proto: VLAN TPID 3569 * @vid: VLAN ID to be added 3570 * 3571 * net_device_ops implementation for adding VLAN IDs 3572 */ 3573 static int 3574 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3575 { 3576 struct ice_netdev_priv *np = netdev_priv(netdev); 3577 struct ice_vsi_vlan_ops *vlan_ops; 3578 struct ice_vsi *vsi = np->vsi; 3579 struct ice_vlan vlan; 3580 int ret; 3581 3582 /* VLAN 0 is added by default during load/reset */ 3583 if (!vid) 3584 return 0; 3585 3586 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3587 usleep_range(1000, 2000); 3588 3589 /* Add multicast promisc rule for the VLAN ID to be added if 3590 * all-multicast is currently enabled. 3591 */ 3592 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3593 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3594 ICE_MCAST_VLAN_PROMISC_BITS, 3595 vid); 3596 if (ret) 3597 goto finish; 3598 } 3599 3600 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3601 3602 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3603 * packets aren't pruned by the device's internal switch on Rx 3604 */ 3605 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3606 ret = vlan_ops->add_vlan(vsi, &vlan); 3607 if (ret) 3608 goto finish; 3609 3610 /* If all-multicast is currently enabled and this VLAN ID is only one 3611 * besides VLAN-0 we have to update look-up type of multicast promisc 3612 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3613 */ 3614 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3615 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3616 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3617 ICE_MCAST_PROMISC_BITS, 0); 3618 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3619 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3620 } 3621 3622 finish: 3623 clear_bit(ICE_CFG_BUSY, vsi->state); 3624 3625 return ret; 3626 } 3627 3628 /** 3629 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3630 * @netdev: network interface to be adjusted 3631 * @proto: VLAN TPID 3632 * @vid: VLAN ID to be removed 3633 * 3634 * net_device_ops implementation for removing VLAN IDs 3635 */ 3636 static int 3637 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3638 { 3639 struct ice_netdev_priv *np = netdev_priv(netdev); 3640 struct ice_vsi_vlan_ops *vlan_ops; 3641 struct ice_vsi *vsi = np->vsi; 3642 struct ice_vlan vlan; 3643 int ret; 3644 3645 /* don't allow removal of VLAN 0 */ 3646 if (!vid) 3647 return 0; 3648 3649 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3650 usleep_range(1000, 2000); 3651 3652 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3653 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3654 if (ret) { 3655 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3656 vsi->vsi_num); 3657 vsi->current_netdev_flags |= IFF_ALLMULTI; 3658 } 3659 3660 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3661 3662 /* Make sure VLAN delete is successful before updating VLAN 3663 * information 3664 */ 3665 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3666 ret = vlan_ops->del_vlan(vsi, &vlan); 3667 if (ret) 3668 goto finish; 3669 3670 /* Remove multicast promisc rule for the removed VLAN ID if 3671 * all-multicast is enabled. 3672 */ 3673 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3674 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3675 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3676 3677 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3678 /* Update look-up type of multicast promisc rule for VLAN 0 3679 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3680 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3681 */ 3682 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3683 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3684 ICE_MCAST_VLAN_PROMISC_BITS, 3685 0); 3686 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3687 ICE_MCAST_PROMISC_BITS, 0); 3688 } 3689 } 3690 3691 finish: 3692 clear_bit(ICE_CFG_BUSY, vsi->state); 3693 3694 return ret; 3695 } 3696 3697 /** 3698 * ice_rep_indr_tc_block_unbind 3699 * @cb_priv: indirection block private data 3700 */ 3701 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3702 { 3703 struct ice_indr_block_priv *indr_priv = cb_priv; 3704 3705 list_del(&indr_priv->list); 3706 kfree(indr_priv); 3707 } 3708 3709 /** 3710 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3711 * @vsi: VSI struct which has the netdev 3712 */ 3713 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3714 { 3715 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3716 3717 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3718 ice_rep_indr_tc_block_unbind); 3719 } 3720 3721 /** 3722 * ice_tc_indir_block_register - Register TC indirect block notifications 3723 * @vsi: VSI struct which has the netdev 3724 * 3725 * Returns 0 on success, negative value on failure 3726 */ 3727 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3728 { 3729 struct ice_netdev_priv *np; 3730 3731 if (!vsi || !vsi->netdev) 3732 return -EINVAL; 3733 3734 np = netdev_priv(vsi->netdev); 3735 3736 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3737 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3738 } 3739 3740 /** 3741 * ice_get_avail_q_count - Get count of queues in use 3742 * @pf_qmap: bitmap to get queue use count from 3743 * @lock: pointer to a mutex that protects access to pf_qmap 3744 * @size: size of the bitmap 3745 */ 3746 static u16 3747 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3748 { 3749 unsigned long bit; 3750 u16 count = 0; 3751 3752 mutex_lock(lock); 3753 for_each_clear_bit(bit, pf_qmap, size) 3754 count++; 3755 mutex_unlock(lock); 3756 3757 return count; 3758 } 3759 3760 /** 3761 * ice_get_avail_txq_count - Get count of Tx queues in use 3762 * @pf: pointer to an ice_pf instance 3763 */ 3764 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3765 { 3766 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3767 pf->max_pf_txqs); 3768 } 3769 3770 /** 3771 * ice_get_avail_rxq_count - Get count of Rx queues in use 3772 * @pf: pointer to an ice_pf instance 3773 */ 3774 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3775 { 3776 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3777 pf->max_pf_rxqs); 3778 } 3779 3780 /** 3781 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3782 * @pf: board private structure to initialize 3783 */ 3784 static void ice_deinit_pf(struct ice_pf *pf) 3785 { 3786 ice_service_task_stop(pf); 3787 mutex_destroy(&pf->adev_mutex); 3788 mutex_destroy(&pf->sw_mutex); 3789 mutex_destroy(&pf->tc_mutex); 3790 mutex_destroy(&pf->avail_q_mutex); 3791 mutex_destroy(&pf->vfs.table_lock); 3792 3793 if (pf->avail_txqs) { 3794 bitmap_free(pf->avail_txqs); 3795 pf->avail_txqs = NULL; 3796 } 3797 3798 if (pf->avail_rxqs) { 3799 bitmap_free(pf->avail_rxqs); 3800 pf->avail_rxqs = NULL; 3801 } 3802 3803 if (pf->ptp.clock) 3804 ptp_clock_unregister(pf->ptp.clock); 3805 } 3806 3807 /** 3808 * ice_set_pf_caps - set PFs capability flags 3809 * @pf: pointer to the PF instance 3810 */ 3811 static void ice_set_pf_caps(struct ice_pf *pf) 3812 { 3813 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3814 3815 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3816 if (func_caps->common_cap.rdma) 3817 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3818 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3819 if (func_caps->common_cap.dcb) 3820 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3821 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3822 if (func_caps->common_cap.sr_iov_1_1) { 3823 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3824 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3825 ICE_MAX_SRIOV_VFS); 3826 } 3827 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3828 if (func_caps->common_cap.rss_table_size) 3829 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3830 3831 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3832 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3833 u16 unused; 3834 3835 /* ctrl_vsi_idx will be set to a valid value when flow director 3836 * is setup by ice_init_fdir 3837 */ 3838 pf->ctrl_vsi_idx = ICE_NO_VSI; 3839 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3840 /* force guaranteed filter pool for PF */ 3841 ice_alloc_fd_guar_item(&pf->hw, &unused, 3842 func_caps->fd_fltr_guar); 3843 /* force shared filter pool for PF */ 3844 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3845 func_caps->fd_fltr_best_effort); 3846 } 3847 3848 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3849 if (func_caps->common_cap.ieee_1588) 3850 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3851 3852 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3853 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3854 } 3855 3856 /** 3857 * ice_init_pf - Initialize general software structures (struct ice_pf) 3858 * @pf: board private structure to initialize 3859 */ 3860 static int ice_init_pf(struct ice_pf *pf) 3861 { 3862 ice_set_pf_caps(pf); 3863 3864 mutex_init(&pf->sw_mutex); 3865 mutex_init(&pf->tc_mutex); 3866 mutex_init(&pf->adev_mutex); 3867 3868 INIT_HLIST_HEAD(&pf->aq_wait_list); 3869 spin_lock_init(&pf->aq_wait_lock); 3870 init_waitqueue_head(&pf->aq_wait_queue); 3871 3872 init_waitqueue_head(&pf->reset_wait_queue); 3873 3874 /* setup service timer and periodic service task */ 3875 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3876 pf->serv_tmr_period = HZ; 3877 INIT_WORK(&pf->serv_task, ice_service_task); 3878 clear_bit(ICE_SERVICE_SCHED, pf->state); 3879 3880 mutex_init(&pf->avail_q_mutex); 3881 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3882 if (!pf->avail_txqs) 3883 return -ENOMEM; 3884 3885 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3886 if (!pf->avail_rxqs) { 3887 bitmap_free(pf->avail_txqs); 3888 pf->avail_txqs = NULL; 3889 return -ENOMEM; 3890 } 3891 3892 mutex_init(&pf->vfs.table_lock); 3893 hash_init(pf->vfs.table); 3894 3895 return 0; 3896 } 3897 3898 /** 3899 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3900 * @pf: board private structure 3901 * @v_remain: number of remaining MSI-X vectors to be distributed 3902 * 3903 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3904 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3905 * remaining vectors. 3906 */ 3907 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3908 { 3909 int v_rdma; 3910 3911 if (!ice_is_rdma_ena(pf)) { 3912 pf->num_lan_msix = v_remain; 3913 return; 3914 } 3915 3916 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3917 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3918 3919 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3920 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3921 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3922 3923 pf->num_rdma_msix = 0; 3924 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3925 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3926 (v_remain - v_rdma < v_rdma)) { 3927 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3928 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3929 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3930 } else { 3931 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3932 */ 3933 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3934 ICE_RDMA_NUM_AEQ_MSIX; 3935 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3936 } 3937 } 3938 3939 /** 3940 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3941 * @pf: board private structure 3942 * 3943 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3944 * device usage if there are not enough vectors. Return the number of vectors 3945 * reserved or negative on failure. 3946 */ 3947 static int ice_ena_msix_range(struct ice_pf *pf) 3948 { 3949 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 3950 struct device *dev = ice_pf_to_dev(pf); 3951 int err, i; 3952 3953 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 3954 num_cpus = num_online_cpus(); 3955 3956 /* LAN miscellaneous handler */ 3957 v_other = ICE_MIN_LAN_OICR_MSIX; 3958 3959 /* Flow Director */ 3960 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 3961 v_other += ICE_FDIR_MSIX; 3962 3963 /* switchdev */ 3964 v_other += ICE_ESWITCH_MSIX; 3965 3966 v_wanted = v_other; 3967 3968 /* LAN traffic */ 3969 pf->num_lan_msix = num_cpus; 3970 v_wanted += pf->num_lan_msix; 3971 3972 /* RDMA auxiliary driver */ 3973 if (ice_is_rdma_ena(pf)) { 3974 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3975 v_wanted += pf->num_rdma_msix; 3976 } 3977 3978 if (v_wanted > hw_num_msix) { 3979 int v_remain; 3980 3981 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 3982 v_wanted, hw_num_msix); 3983 3984 if (hw_num_msix < ICE_MIN_MSIX) { 3985 err = -ERANGE; 3986 goto exit_err; 3987 } 3988 3989 v_remain = hw_num_msix - v_other; 3990 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 3991 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 3992 v_remain = ICE_MIN_LAN_TXRX_MSIX; 3993 } 3994 3995 ice_reduce_msix_usage(pf, v_remain); 3996 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 3997 3998 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 3999 pf->num_lan_msix); 4000 if (ice_is_rdma_ena(pf)) 4001 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4002 pf->num_rdma_msix); 4003 } 4004 4005 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4006 sizeof(*pf->msix_entries), GFP_KERNEL); 4007 if (!pf->msix_entries) { 4008 err = -ENOMEM; 4009 goto exit_err; 4010 } 4011 4012 for (i = 0; i < v_wanted; i++) 4013 pf->msix_entries[i].entry = i; 4014 4015 /* actually reserve the vectors */ 4016 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4017 ICE_MIN_MSIX, v_wanted); 4018 if (v_actual < 0) { 4019 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4020 err = v_actual; 4021 goto msix_err; 4022 } 4023 4024 if (v_actual < v_wanted) { 4025 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4026 v_wanted, v_actual); 4027 4028 if (v_actual < ICE_MIN_MSIX) { 4029 /* error if we can't get minimum vectors */ 4030 pci_disable_msix(pf->pdev); 4031 err = -ERANGE; 4032 goto msix_err; 4033 } else { 4034 int v_remain = v_actual - v_other; 4035 4036 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4037 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4038 4039 ice_reduce_msix_usage(pf, v_remain); 4040 4041 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4042 pf->num_lan_msix); 4043 4044 if (ice_is_rdma_ena(pf)) 4045 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4046 pf->num_rdma_msix); 4047 } 4048 } 4049 4050 return v_actual; 4051 4052 msix_err: 4053 devm_kfree(dev, pf->msix_entries); 4054 4055 exit_err: 4056 pf->num_rdma_msix = 0; 4057 pf->num_lan_msix = 0; 4058 return err; 4059 } 4060 4061 /** 4062 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4063 * @pf: board private structure 4064 */ 4065 static void ice_dis_msix(struct ice_pf *pf) 4066 { 4067 pci_disable_msix(pf->pdev); 4068 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4069 pf->msix_entries = NULL; 4070 } 4071 4072 /** 4073 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4074 * @pf: board private structure 4075 */ 4076 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4077 { 4078 ice_dis_msix(pf); 4079 4080 if (pf->irq_tracker) { 4081 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4082 pf->irq_tracker = NULL; 4083 } 4084 } 4085 4086 /** 4087 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4088 * @pf: board private structure to initialize 4089 */ 4090 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4091 { 4092 int vectors; 4093 4094 vectors = ice_ena_msix_range(pf); 4095 4096 if (vectors < 0) 4097 return vectors; 4098 4099 /* set up vector assignment tracking */ 4100 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4101 struct_size(pf->irq_tracker, list, vectors), 4102 GFP_KERNEL); 4103 if (!pf->irq_tracker) { 4104 ice_dis_msix(pf); 4105 return -ENOMEM; 4106 } 4107 4108 /* populate SW interrupts pool with number of OS granted IRQs. */ 4109 pf->num_avail_sw_msix = (u16)vectors; 4110 pf->irq_tracker->num_entries = (u16)vectors; 4111 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4112 4113 return 0; 4114 } 4115 4116 /** 4117 * ice_is_wol_supported - check if WoL is supported 4118 * @hw: pointer to hardware info 4119 * 4120 * Check if WoL is supported based on the HW configuration. 4121 * Returns true if NVM supports and enables WoL for this port, false otherwise 4122 */ 4123 bool ice_is_wol_supported(struct ice_hw *hw) 4124 { 4125 u16 wol_ctrl; 4126 4127 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4128 * word) indicates WoL is not supported on the corresponding PF ID. 4129 */ 4130 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4131 return false; 4132 4133 return !(BIT(hw->port_info->lport) & wol_ctrl); 4134 } 4135 4136 /** 4137 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4138 * @vsi: VSI being changed 4139 * @new_rx: new number of Rx queues 4140 * @new_tx: new number of Tx queues 4141 * @locked: is adev device_lock held 4142 * 4143 * Only change the number of queues if new_tx, or new_rx is non-0. 4144 * 4145 * Returns 0 on success. 4146 */ 4147 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4148 { 4149 struct ice_pf *pf = vsi->back; 4150 int err = 0, timeout = 50; 4151 4152 if (!new_rx && !new_tx) 4153 return -EINVAL; 4154 4155 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4156 timeout--; 4157 if (!timeout) 4158 return -EBUSY; 4159 usleep_range(1000, 2000); 4160 } 4161 4162 if (new_tx) 4163 vsi->req_txq = (u16)new_tx; 4164 if (new_rx) 4165 vsi->req_rxq = (u16)new_rx; 4166 4167 /* set for the next time the netdev is started */ 4168 if (!netif_running(vsi->netdev)) { 4169 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4170 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4171 goto done; 4172 } 4173 4174 ice_vsi_close(vsi); 4175 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4176 ice_pf_dcb_recfg(pf, locked); 4177 ice_vsi_open(vsi); 4178 done: 4179 clear_bit(ICE_CFG_BUSY, pf->state); 4180 return err; 4181 } 4182 4183 /** 4184 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4185 * @pf: PF to configure 4186 * 4187 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4188 * VSI can still Tx/Rx VLAN tagged packets. 4189 */ 4190 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4191 { 4192 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4193 struct ice_vsi_ctx *ctxt; 4194 struct ice_hw *hw; 4195 int status; 4196 4197 if (!vsi) 4198 return; 4199 4200 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4201 if (!ctxt) 4202 return; 4203 4204 hw = &pf->hw; 4205 ctxt->info = vsi->info; 4206 4207 ctxt->info.valid_sections = 4208 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4209 ICE_AQ_VSI_PROP_SECURITY_VALID | 4210 ICE_AQ_VSI_PROP_SW_VALID); 4211 4212 /* disable VLAN anti-spoof */ 4213 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4214 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4215 4216 /* disable VLAN pruning and keep all other settings */ 4217 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4218 4219 /* allow all VLANs on Tx and don't strip on Rx */ 4220 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4221 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4222 4223 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4224 if (status) { 4225 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4226 status, ice_aq_str(hw->adminq.sq_last_status)); 4227 } else { 4228 vsi->info.sec_flags = ctxt->info.sec_flags; 4229 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4230 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4231 } 4232 4233 kfree(ctxt); 4234 } 4235 4236 /** 4237 * ice_log_pkg_init - log result of DDP package load 4238 * @hw: pointer to hardware info 4239 * @state: state of package load 4240 */ 4241 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4242 { 4243 struct ice_pf *pf = hw->back; 4244 struct device *dev; 4245 4246 dev = ice_pf_to_dev(pf); 4247 4248 switch (state) { 4249 case ICE_DDP_PKG_SUCCESS: 4250 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4251 hw->active_pkg_name, 4252 hw->active_pkg_ver.major, 4253 hw->active_pkg_ver.minor, 4254 hw->active_pkg_ver.update, 4255 hw->active_pkg_ver.draft); 4256 break; 4257 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4258 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4259 hw->active_pkg_name, 4260 hw->active_pkg_ver.major, 4261 hw->active_pkg_ver.minor, 4262 hw->active_pkg_ver.update, 4263 hw->active_pkg_ver.draft); 4264 break; 4265 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4266 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4267 hw->active_pkg_name, 4268 hw->active_pkg_ver.major, 4269 hw->active_pkg_ver.minor, 4270 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4271 break; 4272 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4273 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4274 hw->active_pkg_name, 4275 hw->active_pkg_ver.major, 4276 hw->active_pkg_ver.minor, 4277 hw->active_pkg_ver.update, 4278 hw->active_pkg_ver.draft, 4279 hw->pkg_name, 4280 hw->pkg_ver.major, 4281 hw->pkg_ver.minor, 4282 hw->pkg_ver.update, 4283 hw->pkg_ver.draft); 4284 break; 4285 case ICE_DDP_PKG_FW_MISMATCH: 4286 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4287 break; 4288 case ICE_DDP_PKG_INVALID_FILE: 4289 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4290 break; 4291 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4292 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4293 break; 4294 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4295 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4296 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4297 break; 4298 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4299 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4300 break; 4301 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4302 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4303 break; 4304 case ICE_DDP_PKG_LOAD_ERROR: 4305 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4306 /* poll for reset to complete */ 4307 if (ice_check_reset(hw)) 4308 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4309 break; 4310 case ICE_DDP_PKG_ERR: 4311 default: 4312 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4313 break; 4314 } 4315 } 4316 4317 /** 4318 * ice_load_pkg - load/reload the DDP Package file 4319 * @firmware: firmware structure when firmware requested or NULL for reload 4320 * @pf: pointer to the PF instance 4321 * 4322 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4323 * initialize HW tables. 4324 */ 4325 static void 4326 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4327 { 4328 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4329 struct device *dev = ice_pf_to_dev(pf); 4330 struct ice_hw *hw = &pf->hw; 4331 4332 /* Load DDP Package */ 4333 if (firmware && !hw->pkg_copy) { 4334 state = ice_copy_and_init_pkg(hw, firmware->data, 4335 firmware->size); 4336 ice_log_pkg_init(hw, state); 4337 } else if (!firmware && hw->pkg_copy) { 4338 /* Reload package during rebuild after CORER/GLOBR reset */ 4339 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4340 ice_log_pkg_init(hw, state); 4341 } else { 4342 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4343 } 4344 4345 if (!ice_is_init_pkg_successful(state)) { 4346 /* Safe Mode */ 4347 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4348 return; 4349 } 4350 4351 /* Successful download package is the precondition for advanced 4352 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4353 */ 4354 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4355 } 4356 4357 /** 4358 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4359 * @pf: pointer to the PF structure 4360 * 4361 * There is no error returned here because the driver should be able to handle 4362 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4363 * specifically with Tx. 4364 */ 4365 static void ice_verify_cacheline_size(struct ice_pf *pf) 4366 { 4367 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4368 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4369 ICE_CACHE_LINE_BYTES); 4370 } 4371 4372 /** 4373 * ice_send_version - update firmware with driver version 4374 * @pf: PF struct 4375 * 4376 * Returns 0 on success, else error code 4377 */ 4378 static int ice_send_version(struct ice_pf *pf) 4379 { 4380 struct ice_driver_ver dv; 4381 4382 dv.major_ver = 0xff; 4383 dv.minor_ver = 0xff; 4384 dv.build_ver = 0xff; 4385 dv.subbuild_ver = 0; 4386 strscpy((char *)dv.driver_string, UTS_RELEASE, 4387 sizeof(dv.driver_string)); 4388 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4389 } 4390 4391 /** 4392 * ice_init_fdir - Initialize flow director VSI and configuration 4393 * @pf: pointer to the PF instance 4394 * 4395 * returns 0 on success, negative on error 4396 */ 4397 static int ice_init_fdir(struct ice_pf *pf) 4398 { 4399 struct device *dev = ice_pf_to_dev(pf); 4400 struct ice_vsi *ctrl_vsi; 4401 int err; 4402 4403 /* Side Band Flow Director needs to have a control VSI. 4404 * Allocate it and store it in the PF. 4405 */ 4406 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4407 if (!ctrl_vsi) { 4408 dev_dbg(dev, "could not create control VSI\n"); 4409 return -ENOMEM; 4410 } 4411 4412 err = ice_vsi_open_ctrl(ctrl_vsi); 4413 if (err) { 4414 dev_dbg(dev, "could not open control VSI\n"); 4415 goto err_vsi_open; 4416 } 4417 4418 mutex_init(&pf->hw.fdir_fltr_lock); 4419 4420 err = ice_fdir_create_dflt_rules(pf); 4421 if (err) 4422 goto err_fdir_rule; 4423 4424 return 0; 4425 4426 err_fdir_rule: 4427 ice_fdir_release_flows(&pf->hw); 4428 ice_vsi_close(ctrl_vsi); 4429 err_vsi_open: 4430 ice_vsi_release(ctrl_vsi); 4431 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4432 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4433 pf->ctrl_vsi_idx = ICE_NO_VSI; 4434 } 4435 return err; 4436 } 4437 4438 static void ice_deinit_fdir(struct ice_pf *pf) 4439 { 4440 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4441 4442 if (!vsi) 4443 return; 4444 4445 ice_vsi_manage_fdir(vsi, false); 4446 ice_vsi_release(vsi); 4447 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4448 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4449 pf->ctrl_vsi_idx = ICE_NO_VSI; 4450 } 4451 4452 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4453 } 4454 4455 /** 4456 * ice_get_opt_fw_name - return optional firmware file name or NULL 4457 * @pf: pointer to the PF instance 4458 */ 4459 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4460 { 4461 /* Optional firmware name same as default with additional dash 4462 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4463 */ 4464 struct pci_dev *pdev = pf->pdev; 4465 char *opt_fw_filename; 4466 u64 dsn; 4467 4468 /* Determine the name of the optional file using the DSN (two 4469 * dwords following the start of the DSN Capability). 4470 */ 4471 dsn = pci_get_dsn(pdev); 4472 if (!dsn) 4473 return NULL; 4474 4475 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4476 if (!opt_fw_filename) 4477 return NULL; 4478 4479 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4480 ICE_DDP_PKG_PATH, dsn); 4481 4482 return opt_fw_filename; 4483 } 4484 4485 /** 4486 * ice_request_fw - Device initialization routine 4487 * @pf: pointer to the PF instance 4488 */ 4489 static void ice_request_fw(struct ice_pf *pf) 4490 { 4491 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4492 const struct firmware *firmware = NULL; 4493 struct device *dev = ice_pf_to_dev(pf); 4494 int err = 0; 4495 4496 /* optional device-specific DDP (if present) overrides the default DDP 4497 * package file. kernel logs a debug message if the file doesn't exist, 4498 * and warning messages for other errors. 4499 */ 4500 if (opt_fw_filename) { 4501 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4502 if (err) { 4503 kfree(opt_fw_filename); 4504 goto dflt_pkg_load; 4505 } 4506 4507 /* request for firmware was successful. Download to device */ 4508 ice_load_pkg(firmware, pf); 4509 kfree(opt_fw_filename); 4510 release_firmware(firmware); 4511 return; 4512 } 4513 4514 dflt_pkg_load: 4515 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4516 if (err) { 4517 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4518 return; 4519 } 4520 4521 /* request for firmware was successful. Download to device */ 4522 ice_load_pkg(firmware, pf); 4523 release_firmware(firmware); 4524 } 4525 4526 /** 4527 * ice_print_wake_reason - show the wake up cause in the log 4528 * @pf: pointer to the PF struct 4529 */ 4530 static void ice_print_wake_reason(struct ice_pf *pf) 4531 { 4532 u32 wus = pf->wakeup_reason; 4533 const char *wake_str; 4534 4535 /* if no wake event, nothing to print */ 4536 if (!wus) 4537 return; 4538 4539 if (wus & PFPM_WUS_LNKC_M) 4540 wake_str = "Link\n"; 4541 else if (wus & PFPM_WUS_MAG_M) 4542 wake_str = "Magic Packet\n"; 4543 else if (wus & PFPM_WUS_MNG_M) 4544 wake_str = "Management\n"; 4545 else if (wus & PFPM_WUS_FW_RST_WK_M) 4546 wake_str = "Firmware Reset\n"; 4547 else 4548 wake_str = "Unknown\n"; 4549 4550 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4551 } 4552 4553 /** 4554 * ice_register_netdev - register netdev 4555 * @vsi: pointer to the VSI struct 4556 */ 4557 static int ice_register_netdev(struct ice_vsi *vsi) 4558 { 4559 int err; 4560 4561 if (!vsi || !vsi->netdev) 4562 return -EIO; 4563 4564 err = register_netdev(vsi->netdev); 4565 if (err) 4566 return err; 4567 4568 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4569 netif_carrier_off(vsi->netdev); 4570 netif_tx_stop_all_queues(vsi->netdev); 4571 4572 return 0; 4573 } 4574 4575 static void ice_unregister_netdev(struct ice_vsi *vsi) 4576 { 4577 if (!vsi || !vsi->netdev) 4578 return; 4579 4580 unregister_netdev(vsi->netdev); 4581 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4582 } 4583 4584 /** 4585 * ice_cfg_netdev - Allocate, configure and register a netdev 4586 * @vsi: the VSI associated with the new netdev 4587 * 4588 * Returns 0 on success, negative value on failure 4589 */ 4590 static int ice_cfg_netdev(struct ice_vsi *vsi) 4591 { 4592 struct ice_netdev_priv *np; 4593 struct net_device *netdev; 4594 u8 mac_addr[ETH_ALEN]; 4595 4596 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4597 vsi->alloc_rxq); 4598 if (!netdev) 4599 return -ENOMEM; 4600 4601 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4602 vsi->netdev = netdev; 4603 np = netdev_priv(netdev); 4604 np->vsi = vsi; 4605 4606 ice_set_netdev_features(netdev); 4607 ice_set_ops(vsi); 4608 4609 if (vsi->type == ICE_VSI_PF) { 4610 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4611 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4612 eth_hw_addr_set(netdev, mac_addr); 4613 } 4614 4615 netdev->priv_flags |= IFF_UNICAST_FLT; 4616 4617 /* Setup netdev TC information */ 4618 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4619 4620 netdev->max_mtu = ICE_MAX_MTU; 4621 4622 return 0; 4623 } 4624 4625 static void ice_decfg_netdev(struct ice_vsi *vsi) 4626 { 4627 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4628 free_netdev(vsi->netdev); 4629 vsi->netdev = NULL; 4630 } 4631 4632 static int ice_start_eth(struct ice_vsi *vsi) 4633 { 4634 int err; 4635 4636 err = ice_init_mac_fltr(vsi->back); 4637 if (err) 4638 return err; 4639 4640 rtnl_lock(); 4641 err = ice_vsi_open(vsi); 4642 rtnl_unlock(); 4643 4644 return err; 4645 } 4646 4647 static int ice_init_eth(struct ice_pf *pf) 4648 { 4649 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4650 int err; 4651 4652 if (!vsi) 4653 return -EINVAL; 4654 4655 /* init channel list */ 4656 INIT_LIST_HEAD(&vsi->ch_list); 4657 4658 err = ice_cfg_netdev(vsi); 4659 if (err) 4660 return err; 4661 /* Setup DCB netlink interface */ 4662 ice_dcbnl_setup(vsi); 4663 4664 err = ice_init_mac_fltr(pf); 4665 if (err) 4666 goto err_init_mac_fltr; 4667 4668 err = ice_devlink_create_pf_port(pf); 4669 if (err) 4670 goto err_devlink_create_pf_port; 4671 4672 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4673 4674 err = ice_register_netdev(vsi); 4675 if (err) 4676 goto err_register_netdev; 4677 4678 err = ice_tc_indir_block_register(vsi); 4679 if (err) 4680 goto err_tc_indir_block_register; 4681 4682 ice_napi_add(vsi); 4683 4684 return 0; 4685 4686 err_tc_indir_block_register: 4687 ice_unregister_netdev(vsi); 4688 err_register_netdev: 4689 ice_devlink_destroy_pf_port(pf); 4690 err_devlink_create_pf_port: 4691 err_init_mac_fltr: 4692 ice_decfg_netdev(vsi); 4693 return err; 4694 } 4695 4696 static void ice_deinit_eth(struct ice_pf *pf) 4697 { 4698 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4699 4700 if (!vsi) 4701 return; 4702 4703 ice_vsi_close(vsi); 4704 ice_unregister_netdev(vsi); 4705 ice_devlink_destroy_pf_port(pf); 4706 ice_tc_indir_block_unregister(vsi); 4707 ice_decfg_netdev(vsi); 4708 } 4709 4710 static int ice_init_dev(struct ice_pf *pf) 4711 { 4712 struct device *dev = ice_pf_to_dev(pf); 4713 struct ice_hw *hw = &pf->hw; 4714 int err; 4715 4716 err = ice_init_hw(hw); 4717 if (err) { 4718 dev_err(dev, "ice_init_hw failed: %d\n", err); 4719 return err; 4720 } 4721 4722 ice_init_feature_support(pf); 4723 4724 ice_request_fw(pf); 4725 4726 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4727 * set in pf->state, which will cause ice_is_safe_mode to return 4728 * true 4729 */ 4730 if (ice_is_safe_mode(pf)) { 4731 /* we already got function/device capabilities but these don't 4732 * reflect what the driver needs to do in safe mode. Instead of 4733 * adding conditional logic everywhere to ignore these 4734 * device/function capabilities, override them. 4735 */ 4736 ice_set_safe_mode_caps(hw); 4737 } 4738 4739 err = ice_init_pf(pf); 4740 if (err) { 4741 dev_err(dev, "ice_init_pf failed: %d\n", err); 4742 goto err_init_pf; 4743 } 4744 4745 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4746 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4747 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4748 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4749 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4750 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4751 pf->hw.tnl.valid_count[TNL_VXLAN]; 4752 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4753 UDP_TUNNEL_TYPE_VXLAN; 4754 } 4755 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4756 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4757 pf->hw.tnl.valid_count[TNL_GENEVE]; 4758 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4759 UDP_TUNNEL_TYPE_GENEVE; 4760 } 4761 4762 err = ice_init_interrupt_scheme(pf); 4763 if (err) { 4764 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4765 err = -EIO; 4766 goto err_init_interrupt_scheme; 4767 } 4768 4769 /* In case of MSIX we are going to setup the misc vector right here 4770 * to handle admin queue events etc. In case of legacy and MSI 4771 * the misc functionality and queue processing is combined in 4772 * the same vector and that gets setup at open. 4773 */ 4774 err = ice_req_irq_msix_misc(pf); 4775 if (err) { 4776 dev_err(dev, "setup of misc vector failed: %d\n", err); 4777 goto err_req_irq_msix_misc; 4778 } 4779 4780 return 0; 4781 4782 err_req_irq_msix_misc: 4783 ice_clear_interrupt_scheme(pf); 4784 err_init_interrupt_scheme: 4785 ice_deinit_pf(pf); 4786 err_init_pf: 4787 ice_deinit_hw(hw); 4788 return err; 4789 } 4790 4791 static void ice_deinit_dev(struct ice_pf *pf) 4792 { 4793 ice_free_irq_msix_misc(pf); 4794 ice_clear_interrupt_scheme(pf); 4795 ice_deinit_pf(pf); 4796 ice_deinit_hw(&pf->hw); 4797 } 4798 4799 static void ice_init_features(struct ice_pf *pf) 4800 { 4801 struct device *dev = ice_pf_to_dev(pf); 4802 4803 if (ice_is_safe_mode(pf)) 4804 return; 4805 4806 /* initialize DDP driven features */ 4807 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4808 ice_ptp_init(pf); 4809 4810 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4811 ice_gnss_init(pf); 4812 4813 /* Note: Flow director init failure is non-fatal to load */ 4814 if (ice_init_fdir(pf)) 4815 dev_err(dev, "could not initialize flow director\n"); 4816 4817 /* Note: DCB init failure is non-fatal to load */ 4818 if (ice_init_pf_dcb(pf, false)) { 4819 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4820 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4821 } else { 4822 ice_cfg_lldp_mib_change(&pf->hw, true); 4823 } 4824 4825 if (ice_init_lag(pf)) 4826 dev_warn(dev, "Failed to init link aggregation support\n"); 4827 } 4828 4829 static void ice_deinit_features(struct ice_pf *pf) 4830 { 4831 ice_deinit_lag(pf); 4832 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4833 ice_cfg_lldp_mib_change(&pf->hw, false); 4834 ice_deinit_fdir(pf); 4835 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4836 ice_gnss_exit(pf); 4837 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4838 ice_ptp_release(pf); 4839 } 4840 4841 static void ice_init_wakeup(struct ice_pf *pf) 4842 { 4843 /* Save wakeup reason register for later use */ 4844 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4845 4846 /* check for a power management event */ 4847 ice_print_wake_reason(pf); 4848 4849 /* clear wake status, all bits */ 4850 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4851 4852 /* Disable WoL at init, wait for user to enable */ 4853 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4854 } 4855 4856 static int ice_init_link(struct ice_pf *pf) 4857 { 4858 struct device *dev = ice_pf_to_dev(pf); 4859 int err; 4860 4861 err = ice_init_link_events(pf->hw.port_info); 4862 if (err) { 4863 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4864 return err; 4865 } 4866 4867 /* not a fatal error if this fails */ 4868 err = ice_init_nvm_phy_type(pf->hw.port_info); 4869 if (err) 4870 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4871 4872 /* not a fatal error if this fails */ 4873 err = ice_update_link_info(pf->hw.port_info); 4874 if (err) 4875 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4876 4877 ice_init_link_dflt_override(pf->hw.port_info); 4878 4879 ice_check_link_cfg_err(pf, 4880 pf->hw.port_info->phy.link_info.link_cfg_err); 4881 4882 /* if media available, initialize PHY settings */ 4883 if (pf->hw.port_info->phy.link_info.link_info & 4884 ICE_AQ_MEDIA_AVAILABLE) { 4885 /* not a fatal error if this fails */ 4886 err = ice_init_phy_user_cfg(pf->hw.port_info); 4887 if (err) 4888 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4889 4890 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4891 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4892 4893 if (vsi) 4894 ice_configure_phy(vsi); 4895 } 4896 } else { 4897 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4898 } 4899 4900 return err; 4901 } 4902 4903 static int ice_init_pf_sw(struct ice_pf *pf) 4904 { 4905 bool dvm = ice_is_dvm_ena(&pf->hw); 4906 struct ice_vsi *vsi; 4907 int err; 4908 4909 /* create switch struct for the switch element created by FW on boot */ 4910 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4911 if (!pf->first_sw) 4912 return -ENOMEM; 4913 4914 if (pf->hw.evb_veb) 4915 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4916 else 4917 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4918 4919 pf->first_sw->pf = pf; 4920 4921 /* record the sw_id available for later use */ 4922 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4923 4924 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4925 if (err) 4926 goto err_aq_set_port_params; 4927 4928 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4929 if (!vsi) { 4930 err = -ENOMEM; 4931 goto err_pf_vsi_setup; 4932 } 4933 4934 return 0; 4935 4936 err_pf_vsi_setup: 4937 err_aq_set_port_params: 4938 kfree(pf->first_sw); 4939 return err; 4940 } 4941 4942 static void ice_deinit_pf_sw(struct ice_pf *pf) 4943 { 4944 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4945 4946 if (!vsi) 4947 return; 4948 4949 ice_vsi_release(vsi); 4950 kfree(pf->first_sw); 4951 } 4952 4953 static int ice_alloc_vsis(struct ice_pf *pf) 4954 { 4955 struct device *dev = ice_pf_to_dev(pf); 4956 4957 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4958 if (!pf->num_alloc_vsi) 4959 return -EIO; 4960 4961 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4962 dev_warn(dev, 4963 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4964 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4965 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4966 } 4967 4968 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4969 GFP_KERNEL); 4970 if (!pf->vsi) 4971 return -ENOMEM; 4972 4973 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4974 sizeof(*pf->vsi_stats), GFP_KERNEL); 4975 if (!pf->vsi_stats) { 4976 devm_kfree(dev, pf->vsi); 4977 return -ENOMEM; 4978 } 4979 4980 return 0; 4981 } 4982 4983 static void ice_dealloc_vsis(struct ice_pf *pf) 4984 { 4985 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4986 pf->vsi_stats = NULL; 4987 4988 pf->num_alloc_vsi = 0; 4989 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4990 pf->vsi = NULL; 4991 } 4992 4993 static int ice_init_devlink(struct ice_pf *pf) 4994 { 4995 int err; 4996 4997 err = ice_devlink_register_params(pf); 4998 if (err) 4999 return err; 5000 5001 ice_devlink_init_regions(pf); 5002 ice_devlink_register(pf); 5003 5004 return 0; 5005 } 5006 5007 static void ice_deinit_devlink(struct ice_pf *pf) 5008 { 5009 ice_devlink_unregister(pf); 5010 ice_devlink_destroy_regions(pf); 5011 ice_devlink_unregister_params(pf); 5012 } 5013 5014 static int ice_init(struct ice_pf *pf) 5015 { 5016 int err; 5017 5018 err = ice_init_dev(pf); 5019 if (err) 5020 return err; 5021 5022 err = ice_alloc_vsis(pf); 5023 if (err) 5024 goto err_alloc_vsis; 5025 5026 err = ice_init_pf_sw(pf); 5027 if (err) 5028 goto err_init_pf_sw; 5029 5030 ice_init_wakeup(pf); 5031 5032 err = ice_init_link(pf); 5033 if (err) 5034 goto err_init_link; 5035 5036 err = ice_send_version(pf); 5037 if (err) 5038 goto err_init_link; 5039 5040 ice_verify_cacheline_size(pf); 5041 5042 if (ice_is_safe_mode(pf)) 5043 ice_set_safe_mode_vlan_cfg(pf); 5044 else 5045 /* print PCI link speed and width */ 5046 pcie_print_link_status(pf->pdev); 5047 5048 /* ready to go, so clear down state bit */ 5049 clear_bit(ICE_DOWN, pf->state); 5050 clear_bit(ICE_SERVICE_DIS, pf->state); 5051 5052 /* since everything is good, start the service timer */ 5053 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5054 5055 return 0; 5056 5057 err_init_link: 5058 ice_deinit_pf_sw(pf); 5059 err_init_pf_sw: 5060 ice_dealloc_vsis(pf); 5061 err_alloc_vsis: 5062 ice_deinit_dev(pf); 5063 return err; 5064 } 5065 5066 static void ice_deinit(struct ice_pf *pf) 5067 { 5068 set_bit(ICE_SERVICE_DIS, pf->state); 5069 set_bit(ICE_DOWN, pf->state); 5070 5071 ice_deinit_pf_sw(pf); 5072 ice_dealloc_vsis(pf); 5073 ice_deinit_dev(pf); 5074 } 5075 5076 /** 5077 * ice_load - load pf by init hw and starting VSI 5078 * @pf: pointer to the pf instance 5079 */ 5080 int ice_load(struct ice_pf *pf) 5081 { 5082 struct ice_vsi_cfg_params params = {}; 5083 struct ice_vsi *vsi; 5084 int err; 5085 5086 err = ice_reset(&pf->hw, ICE_RESET_PFR); 5087 if (err) 5088 return err; 5089 5090 err = ice_init_dev(pf); 5091 if (err) 5092 return err; 5093 5094 vsi = ice_get_main_vsi(pf); 5095 5096 params = ice_vsi_to_params(vsi); 5097 params.flags = ICE_VSI_FLAG_INIT; 5098 5099 err = ice_vsi_cfg(vsi, ¶ms); 5100 if (err) 5101 goto err_vsi_cfg; 5102 5103 err = ice_start_eth(ice_get_main_vsi(pf)); 5104 if (err) 5105 goto err_start_eth; 5106 5107 err = ice_init_rdma(pf); 5108 if (err) 5109 goto err_init_rdma; 5110 5111 ice_init_features(pf); 5112 ice_service_task_restart(pf); 5113 5114 clear_bit(ICE_DOWN, pf->state); 5115 5116 return 0; 5117 5118 err_init_rdma: 5119 ice_vsi_close(ice_get_main_vsi(pf)); 5120 err_start_eth: 5121 ice_vsi_decfg(ice_get_main_vsi(pf)); 5122 err_vsi_cfg: 5123 ice_deinit_dev(pf); 5124 return err; 5125 } 5126 5127 /** 5128 * ice_unload - unload pf by stopping VSI and deinit hw 5129 * @pf: pointer to the pf instance 5130 */ 5131 void ice_unload(struct ice_pf *pf) 5132 { 5133 ice_deinit_features(pf); 5134 ice_deinit_rdma(pf); 5135 ice_vsi_close(ice_get_main_vsi(pf)); 5136 ice_vsi_decfg(ice_get_main_vsi(pf)); 5137 ice_deinit_dev(pf); 5138 } 5139 5140 /** 5141 * ice_probe - Device initialization routine 5142 * @pdev: PCI device information struct 5143 * @ent: entry in ice_pci_tbl 5144 * 5145 * Returns 0 on success, negative on failure 5146 */ 5147 static int 5148 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5149 { 5150 struct device *dev = &pdev->dev; 5151 struct ice_pf *pf; 5152 struct ice_hw *hw; 5153 int err; 5154 5155 if (pdev->is_virtfn) { 5156 dev_err(dev, "can't probe a virtual function\n"); 5157 return -EINVAL; 5158 } 5159 5160 /* this driver uses devres, see 5161 * Documentation/driver-api/driver-model/devres.rst 5162 */ 5163 err = pcim_enable_device(pdev); 5164 if (err) 5165 return err; 5166 5167 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5168 if (err) { 5169 dev_err(dev, "BAR0 I/O map error %d\n", err); 5170 return err; 5171 } 5172 5173 pf = ice_allocate_pf(dev); 5174 if (!pf) 5175 return -ENOMEM; 5176 5177 /* initialize Auxiliary index to invalid value */ 5178 pf->aux_idx = -1; 5179 5180 /* set up for high or low DMA */ 5181 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5182 if (err) { 5183 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5184 return err; 5185 } 5186 5187 pci_set_master(pdev); 5188 5189 pf->pdev = pdev; 5190 pci_set_drvdata(pdev, pf); 5191 set_bit(ICE_DOWN, pf->state); 5192 /* Disable service task until DOWN bit is cleared */ 5193 set_bit(ICE_SERVICE_DIS, pf->state); 5194 5195 hw = &pf->hw; 5196 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5197 pci_save_state(pdev); 5198 5199 hw->back = pf; 5200 hw->port_info = NULL; 5201 hw->vendor_id = pdev->vendor; 5202 hw->device_id = pdev->device; 5203 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5204 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5205 hw->subsystem_device_id = pdev->subsystem_device; 5206 hw->bus.device = PCI_SLOT(pdev->devfn); 5207 hw->bus.func = PCI_FUNC(pdev->devfn); 5208 ice_set_ctrlq_len(hw); 5209 5210 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5211 5212 #ifndef CONFIG_DYNAMIC_DEBUG 5213 if (debug < -1) 5214 hw->debug_mask = debug; 5215 #endif 5216 5217 err = ice_init(pf); 5218 if (err) 5219 goto err_init; 5220 5221 err = ice_init_eth(pf); 5222 if (err) 5223 goto err_init_eth; 5224 5225 err = ice_init_rdma(pf); 5226 if (err) 5227 goto err_init_rdma; 5228 5229 err = ice_init_devlink(pf); 5230 if (err) 5231 goto err_init_devlink; 5232 5233 ice_init_features(pf); 5234 5235 return 0; 5236 5237 err_init_devlink: 5238 ice_deinit_rdma(pf); 5239 err_init_rdma: 5240 ice_deinit_eth(pf); 5241 err_init_eth: 5242 ice_deinit(pf); 5243 err_init: 5244 pci_disable_device(pdev); 5245 return err; 5246 } 5247 5248 /** 5249 * ice_set_wake - enable or disable Wake on LAN 5250 * @pf: pointer to the PF struct 5251 * 5252 * Simple helper for WoL control 5253 */ 5254 static void ice_set_wake(struct ice_pf *pf) 5255 { 5256 struct ice_hw *hw = &pf->hw; 5257 bool wol = pf->wol_ena; 5258 5259 /* clear wake state, otherwise new wake events won't fire */ 5260 wr32(hw, PFPM_WUS, U32_MAX); 5261 5262 /* enable / disable APM wake up, no RMW needed */ 5263 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5264 5265 /* set magic packet filter enabled */ 5266 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5267 } 5268 5269 /** 5270 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5271 * @pf: pointer to the PF struct 5272 * 5273 * Issue firmware command to enable multicast magic wake, making 5274 * sure that any locally administered address (LAA) is used for 5275 * wake, and that PF reset doesn't undo the LAA. 5276 */ 5277 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5278 { 5279 struct device *dev = ice_pf_to_dev(pf); 5280 struct ice_hw *hw = &pf->hw; 5281 u8 mac_addr[ETH_ALEN]; 5282 struct ice_vsi *vsi; 5283 int status; 5284 u8 flags; 5285 5286 if (!pf->wol_ena) 5287 return; 5288 5289 vsi = ice_get_main_vsi(pf); 5290 if (!vsi) 5291 return; 5292 5293 /* Get current MAC address in case it's an LAA */ 5294 if (vsi->netdev) 5295 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5296 else 5297 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5298 5299 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5300 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5301 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5302 5303 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5304 if (status) 5305 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5306 status, ice_aq_str(hw->adminq.sq_last_status)); 5307 } 5308 5309 /** 5310 * ice_remove - Device removal routine 5311 * @pdev: PCI device information struct 5312 */ 5313 static void ice_remove(struct pci_dev *pdev) 5314 { 5315 struct ice_pf *pf = pci_get_drvdata(pdev); 5316 int i; 5317 5318 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5319 if (!ice_is_reset_in_progress(pf->state)) 5320 break; 5321 msleep(100); 5322 } 5323 5324 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5325 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5326 ice_free_vfs(pf); 5327 } 5328 5329 ice_service_task_stop(pf); 5330 ice_aq_cancel_waiting_tasks(pf); 5331 set_bit(ICE_DOWN, pf->state); 5332 5333 if (!ice_is_safe_mode(pf)) 5334 ice_remove_arfs(pf); 5335 ice_deinit_features(pf); 5336 ice_deinit_devlink(pf); 5337 ice_deinit_rdma(pf); 5338 ice_deinit_eth(pf); 5339 ice_deinit(pf); 5340 5341 ice_vsi_release_all(pf); 5342 5343 ice_setup_mc_magic_wake(pf); 5344 ice_set_wake(pf); 5345 5346 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5347 * do it via ice_schedule_reset() since there is no need to rebuild 5348 * and the service task is already stopped. 5349 */ 5350 ice_reset(&pf->hw, ICE_RESET_PFR); 5351 pci_wait_for_pending_transaction(pdev); 5352 pci_disable_device(pdev); 5353 } 5354 5355 /** 5356 * ice_shutdown - PCI callback for shutting down device 5357 * @pdev: PCI device information struct 5358 */ 5359 static void ice_shutdown(struct pci_dev *pdev) 5360 { 5361 struct ice_pf *pf = pci_get_drvdata(pdev); 5362 5363 ice_remove(pdev); 5364 5365 if (system_state == SYSTEM_POWER_OFF) { 5366 pci_wake_from_d3(pdev, pf->wol_ena); 5367 pci_set_power_state(pdev, PCI_D3hot); 5368 } 5369 } 5370 5371 #ifdef CONFIG_PM 5372 /** 5373 * ice_prepare_for_shutdown - prep for PCI shutdown 5374 * @pf: board private structure 5375 * 5376 * Inform or close all dependent features in prep for PCI device shutdown 5377 */ 5378 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5379 { 5380 struct ice_hw *hw = &pf->hw; 5381 u32 v; 5382 5383 /* Notify VFs of impending reset */ 5384 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5385 ice_vc_notify_reset(pf); 5386 5387 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5388 5389 /* disable the VSIs and their queues that are not already DOWN */ 5390 ice_pf_dis_all_vsi(pf, false); 5391 5392 ice_for_each_vsi(pf, v) 5393 if (pf->vsi[v]) 5394 pf->vsi[v]->vsi_num = 0; 5395 5396 ice_shutdown_all_ctrlq(hw); 5397 } 5398 5399 /** 5400 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5401 * @pf: board private structure to reinitialize 5402 * 5403 * This routine reinitialize interrupt scheme that was cleared during 5404 * power management suspend callback. 5405 * 5406 * This should be called during resume routine to re-allocate the q_vectors 5407 * and reacquire interrupts. 5408 */ 5409 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5410 { 5411 struct device *dev = ice_pf_to_dev(pf); 5412 int ret, v; 5413 5414 /* Since we clear MSIX flag during suspend, we need to 5415 * set it back during resume... 5416 */ 5417 5418 ret = ice_init_interrupt_scheme(pf); 5419 if (ret) { 5420 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5421 return ret; 5422 } 5423 5424 /* Remap vectors and rings, after successful re-init interrupts */ 5425 ice_for_each_vsi(pf, v) { 5426 if (!pf->vsi[v]) 5427 continue; 5428 5429 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5430 if (ret) 5431 goto err_reinit; 5432 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5433 } 5434 5435 ret = ice_req_irq_msix_misc(pf); 5436 if (ret) { 5437 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5438 ret); 5439 goto err_reinit; 5440 } 5441 5442 return 0; 5443 5444 err_reinit: 5445 while (v--) 5446 if (pf->vsi[v]) 5447 ice_vsi_free_q_vectors(pf->vsi[v]); 5448 5449 return ret; 5450 } 5451 5452 /** 5453 * ice_suspend 5454 * @dev: generic device information structure 5455 * 5456 * Power Management callback to quiesce the device and prepare 5457 * for D3 transition. 5458 */ 5459 static int __maybe_unused ice_suspend(struct device *dev) 5460 { 5461 struct pci_dev *pdev = to_pci_dev(dev); 5462 struct ice_pf *pf; 5463 int disabled, v; 5464 5465 pf = pci_get_drvdata(pdev); 5466 5467 if (!ice_pf_state_is_nominal(pf)) { 5468 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5469 return -EBUSY; 5470 } 5471 5472 /* Stop watchdog tasks until resume completion. 5473 * Even though it is most likely that the service task is 5474 * disabled if the device is suspended or down, the service task's 5475 * state is controlled by a different state bit, and we should 5476 * store and honor whatever state that bit is in at this point. 5477 */ 5478 disabled = ice_service_task_stop(pf); 5479 5480 ice_unplug_aux_dev(pf); 5481 5482 /* Already suspended?, then there is nothing to do */ 5483 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5484 if (!disabled) 5485 ice_service_task_restart(pf); 5486 return 0; 5487 } 5488 5489 if (test_bit(ICE_DOWN, pf->state) || 5490 ice_is_reset_in_progress(pf->state)) { 5491 dev_err(dev, "can't suspend device in reset or already down\n"); 5492 if (!disabled) 5493 ice_service_task_restart(pf); 5494 return 0; 5495 } 5496 5497 ice_setup_mc_magic_wake(pf); 5498 5499 ice_prepare_for_shutdown(pf); 5500 5501 ice_set_wake(pf); 5502 5503 /* Free vectors, clear the interrupt scheme and release IRQs 5504 * for proper hibernation, especially with large number of CPUs. 5505 * Otherwise hibernation might fail when mapping all the vectors back 5506 * to CPU0. 5507 */ 5508 ice_free_irq_msix_misc(pf); 5509 ice_for_each_vsi(pf, v) { 5510 if (!pf->vsi[v]) 5511 continue; 5512 ice_vsi_free_q_vectors(pf->vsi[v]); 5513 } 5514 ice_clear_interrupt_scheme(pf); 5515 5516 pci_save_state(pdev); 5517 pci_wake_from_d3(pdev, pf->wol_ena); 5518 pci_set_power_state(pdev, PCI_D3hot); 5519 return 0; 5520 } 5521 5522 /** 5523 * ice_resume - PM callback for waking up from D3 5524 * @dev: generic device information structure 5525 */ 5526 static int __maybe_unused ice_resume(struct device *dev) 5527 { 5528 struct pci_dev *pdev = to_pci_dev(dev); 5529 enum ice_reset_req reset_type; 5530 struct ice_pf *pf; 5531 struct ice_hw *hw; 5532 int ret; 5533 5534 pci_set_power_state(pdev, PCI_D0); 5535 pci_restore_state(pdev); 5536 pci_save_state(pdev); 5537 5538 if (!pci_device_is_present(pdev)) 5539 return -ENODEV; 5540 5541 ret = pci_enable_device_mem(pdev); 5542 if (ret) { 5543 dev_err(dev, "Cannot enable device after suspend\n"); 5544 return ret; 5545 } 5546 5547 pf = pci_get_drvdata(pdev); 5548 hw = &pf->hw; 5549 5550 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5551 ice_print_wake_reason(pf); 5552 5553 /* We cleared the interrupt scheme when we suspended, so we need to 5554 * restore it now to resume device functionality. 5555 */ 5556 ret = ice_reinit_interrupt_scheme(pf); 5557 if (ret) 5558 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5559 5560 clear_bit(ICE_DOWN, pf->state); 5561 /* Now perform PF reset and rebuild */ 5562 reset_type = ICE_RESET_PFR; 5563 /* re-enable service task for reset, but allow reset to schedule it */ 5564 clear_bit(ICE_SERVICE_DIS, pf->state); 5565 5566 if (ice_schedule_reset(pf, reset_type)) 5567 dev_err(dev, "Reset during resume failed.\n"); 5568 5569 clear_bit(ICE_SUSPENDED, pf->state); 5570 ice_service_task_restart(pf); 5571 5572 /* Restart the service task */ 5573 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5574 5575 return 0; 5576 } 5577 #endif /* CONFIG_PM */ 5578 5579 /** 5580 * ice_pci_err_detected - warning that PCI error has been detected 5581 * @pdev: PCI device information struct 5582 * @err: the type of PCI error 5583 * 5584 * Called to warn that something happened on the PCI bus and the error handling 5585 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5586 */ 5587 static pci_ers_result_t 5588 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5589 { 5590 struct ice_pf *pf = pci_get_drvdata(pdev); 5591 5592 if (!pf) { 5593 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5594 __func__, err); 5595 return PCI_ERS_RESULT_DISCONNECT; 5596 } 5597 5598 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5599 ice_service_task_stop(pf); 5600 5601 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5602 set_bit(ICE_PFR_REQ, pf->state); 5603 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5604 } 5605 } 5606 5607 return PCI_ERS_RESULT_NEED_RESET; 5608 } 5609 5610 /** 5611 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5612 * @pdev: PCI device information struct 5613 * 5614 * Called to determine if the driver can recover from the PCI slot reset by 5615 * using a register read to determine if the device is recoverable. 5616 */ 5617 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5618 { 5619 struct ice_pf *pf = pci_get_drvdata(pdev); 5620 pci_ers_result_t result; 5621 int err; 5622 u32 reg; 5623 5624 err = pci_enable_device_mem(pdev); 5625 if (err) { 5626 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5627 err); 5628 result = PCI_ERS_RESULT_DISCONNECT; 5629 } else { 5630 pci_set_master(pdev); 5631 pci_restore_state(pdev); 5632 pci_save_state(pdev); 5633 pci_wake_from_d3(pdev, false); 5634 5635 /* Check for life */ 5636 reg = rd32(&pf->hw, GLGEN_RTRIG); 5637 if (!reg) 5638 result = PCI_ERS_RESULT_RECOVERED; 5639 else 5640 result = PCI_ERS_RESULT_DISCONNECT; 5641 } 5642 5643 return result; 5644 } 5645 5646 /** 5647 * ice_pci_err_resume - restart operations after PCI error recovery 5648 * @pdev: PCI device information struct 5649 * 5650 * Called to allow the driver to bring things back up after PCI error and/or 5651 * reset recovery have finished 5652 */ 5653 static void ice_pci_err_resume(struct pci_dev *pdev) 5654 { 5655 struct ice_pf *pf = pci_get_drvdata(pdev); 5656 5657 if (!pf) { 5658 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5659 __func__); 5660 return; 5661 } 5662 5663 if (test_bit(ICE_SUSPENDED, pf->state)) { 5664 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5665 __func__); 5666 return; 5667 } 5668 5669 ice_restore_all_vfs_msi_state(pdev); 5670 5671 ice_do_reset(pf, ICE_RESET_PFR); 5672 ice_service_task_restart(pf); 5673 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5674 } 5675 5676 /** 5677 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5678 * @pdev: PCI device information struct 5679 */ 5680 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5681 { 5682 struct ice_pf *pf = pci_get_drvdata(pdev); 5683 5684 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5685 ice_service_task_stop(pf); 5686 5687 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5688 set_bit(ICE_PFR_REQ, pf->state); 5689 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5690 } 5691 } 5692 } 5693 5694 /** 5695 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5696 * @pdev: PCI device information struct 5697 */ 5698 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5699 { 5700 ice_pci_err_resume(pdev); 5701 } 5702 5703 /* ice_pci_tbl - PCI Device ID Table 5704 * 5705 * Wildcard entries (PCI_ANY_ID) should come last 5706 * Last entry must be all 0s 5707 * 5708 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5709 * Class, Class Mask, private data (not used) } 5710 */ 5711 static const struct pci_device_id ice_pci_tbl[] = { 5712 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5713 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5714 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5715 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5716 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5717 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5718 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5719 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5738 /* required last entry */ 5739 { 0, } 5740 }; 5741 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5742 5743 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5744 5745 static const struct pci_error_handlers ice_pci_err_handler = { 5746 .error_detected = ice_pci_err_detected, 5747 .slot_reset = ice_pci_err_slot_reset, 5748 .reset_prepare = ice_pci_err_reset_prepare, 5749 .reset_done = ice_pci_err_reset_done, 5750 .resume = ice_pci_err_resume 5751 }; 5752 5753 static struct pci_driver ice_driver = { 5754 .name = KBUILD_MODNAME, 5755 .id_table = ice_pci_tbl, 5756 .probe = ice_probe, 5757 .remove = ice_remove, 5758 #ifdef CONFIG_PM 5759 .driver.pm = &ice_pm_ops, 5760 #endif /* CONFIG_PM */ 5761 .shutdown = ice_shutdown, 5762 .sriov_configure = ice_sriov_configure, 5763 .err_handler = &ice_pci_err_handler 5764 }; 5765 5766 /** 5767 * ice_module_init - Driver registration routine 5768 * 5769 * ice_module_init is the first routine called when the driver is 5770 * loaded. All it does is register with the PCI subsystem. 5771 */ 5772 static int __init ice_module_init(void) 5773 { 5774 int status; 5775 5776 pr_info("%s\n", ice_driver_string); 5777 pr_info("%s\n", ice_copyright); 5778 5779 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5780 if (!ice_wq) { 5781 pr_err("Failed to create workqueue\n"); 5782 return -ENOMEM; 5783 } 5784 5785 status = pci_register_driver(&ice_driver); 5786 if (status) { 5787 pr_err("failed to register PCI driver, err %d\n", status); 5788 destroy_workqueue(ice_wq); 5789 } 5790 5791 return status; 5792 } 5793 module_init(ice_module_init); 5794 5795 /** 5796 * ice_module_exit - Driver exit cleanup routine 5797 * 5798 * ice_module_exit is called just before the driver is removed 5799 * from memory. 5800 */ 5801 static void __exit ice_module_exit(void) 5802 { 5803 pci_unregister_driver(&ice_driver); 5804 destroy_workqueue(ice_wq); 5805 pr_info("module unloaded\n"); 5806 } 5807 module_exit(ice_module_exit); 5808 5809 /** 5810 * ice_set_mac_address - NDO callback to set MAC address 5811 * @netdev: network interface device structure 5812 * @pi: pointer to an address structure 5813 * 5814 * Returns 0 on success, negative on failure 5815 */ 5816 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5817 { 5818 struct ice_netdev_priv *np = netdev_priv(netdev); 5819 struct ice_vsi *vsi = np->vsi; 5820 struct ice_pf *pf = vsi->back; 5821 struct ice_hw *hw = &pf->hw; 5822 struct sockaddr *addr = pi; 5823 u8 old_mac[ETH_ALEN]; 5824 u8 flags = 0; 5825 u8 *mac; 5826 int err; 5827 5828 mac = (u8 *)addr->sa_data; 5829 5830 if (!is_valid_ether_addr(mac)) 5831 return -EADDRNOTAVAIL; 5832 5833 if (ether_addr_equal(netdev->dev_addr, mac)) { 5834 netdev_dbg(netdev, "already using mac %pM\n", mac); 5835 return 0; 5836 } 5837 5838 if (test_bit(ICE_DOWN, pf->state) || 5839 ice_is_reset_in_progress(pf->state)) { 5840 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5841 mac); 5842 return -EBUSY; 5843 } 5844 5845 if (ice_chnl_dmac_fltr_cnt(pf)) { 5846 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5847 mac); 5848 return -EAGAIN; 5849 } 5850 5851 netif_addr_lock_bh(netdev); 5852 ether_addr_copy(old_mac, netdev->dev_addr); 5853 /* change the netdev's MAC address */ 5854 eth_hw_addr_set(netdev, mac); 5855 netif_addr_unlock_bh(netdev); 5856 5857 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5858 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5859 if (err && err != -ENOENT) { 5860 err = -EADDRNOTAVAIL; 5861 goto err_update_filters; 5862 } 5863 5864 /* Add filter for new MAC. If filter exists, return success */ 5865 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5866 if (err == -EEXIST) { 5867 /* Although this MAC filter is already present in hardware it's 5868 * possible in some cases (e.g. bonding) that dev_addr was 5869 * modified outside of the driver and needs to be restored back 5870 * to this value. 5871 */ 5872 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5873 5874 return 0; 5875 } else if (err) { 5876 /* error if the new filter addition failed */ 5877 err = -EADDRNOTAVAIL; 5878 } 5879 5880 err_update_filters: 5881 if (err) { 5882 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5883 mac); 5884 netif_addr_lock_bh(netdev); 5885 eth_hw_addr_set(netdev, old_mac); 5886 netif_addr_unlock_bh(netdev); 5887 return err; 5888 } 5889 5890 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5891 netdev->dev_addr); 5892 5893 /* write new MAC address to the firmware */ 5894 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5895 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5896 if (err) { 5897 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5898 mac, err); 5899 } 5900 return 0; 5901 } 5902 5903 /** 5904 * ice_set_rx_mode - NDO callback to set the netdev filters 5905 * @netdev: network interface device structure 5906 */ 5907 static void ice_set_rx_mode(struct net_device *netdev) 5908 { 5909 struct ice_netdev_priv *np = netdev_priv(netdev); 5910 struct ice_vsi *vsi = np->vsi; 5911 5912 if (!vsi) 5913 return; 5914 5915 /* Set the flags to synchronize filters 5916 * ndo_set_rx_mode may be triggered even without a change in netdev 5917 * flags 5918 */ 5919 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5920 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5921 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5922 5923 /* schedule our worker thread which will take care of 5924 * applying the new filter changes 5925 */ 5926 ice_service_task_schedule(vsi->back); 5927 } 5928 5929 /** 5930 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5931 * @netdev: network interface device structure 5932 * @queue_index: Queue ID 5933 * @maxrate: maximum bandwidth in Mbps 5934 */ 5935 static int 5936 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5937 { 5938 struct ice_netdev_priv *np = netdev_priv(netdev); 5939 struct ice_vsi *vsi = np->vsi; 5940 u16 q_handle; 5941 int status; 5942 u8 tc; 5943 5944 /* Validate maxrate requested is within permitted range */ 5945 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5946 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5947 maxrate, queue_index); 5948 return -EINVAL; 5949 } 5950 5951 q_handle = vsi->tx_rings[queue_index]->q_handle; 5952 tc = ice_dcb_get_tc(vsi, queue_index); 5953 5954 /* Set BW back to default, when user set maxrate to 0 */ 5955 if (!maxrate) 5956 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5957 q_handle, ICE_MAX_BW); 5958 else 5959 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5960 q_handle, ICE_MAX_BW, maxrate * 1000); 5961 if (status) 5962 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5963 status); 5964 5965 return status; 5966 } 5967 5968 /** 5969 * ice_fdb_add - add an entry to the hardware database 5970 * @ndm: the input from the stack 5971 * @tb: pointer to array of nladdr (unused) 5972 * @dev: the net device pointer 5973 * @addr: the MAC address entry being added 5974 * @vid: VLAN ID 5975 * @flags: instructions from stack about fdb operation 5976 * @extack: netlink extended ack 5977 */ 5978 static int 5979 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5980 struct net_device *dev, const unsigned char *addr, u16 vid, 5981 u16 flags, struct netlink_ext_ack __always_unused *extack) 5982 { 5983 int err; 5984 5985 if (vid) { 5986 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5987 return -EINVAL; 5988 } 5989 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5990 netdev_err(dev, "FDB only supports static addresses\n"); 5991 return -EINVAL; 5992 } 5993 5994 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5995 err = dev_uc_add_excl(dev, addr); 5996 else if (is_multicast_ether_addr(addr)) 5997 err = dev_mc_add_excl(dev, addr); 5998 else 5999 err = -EINVAL; 6000 6001 /* Only return duplicate errors if NLM_F_EXCL is set */ 6002 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6003 err = 0; 6004 6005 return err; 6006 } 6007 6008 /** 6009 * ice_fdb_del - delete an entry from the hardware database 6010 * @ndm: the input from the stack 6011 * @tb: pointer to array of nladdr (unused) 6012 * @dev: the net device pointer 6013 * @addr: the MAC address entry being added 6014 * @vid: VLAN ID 6015 * @extack: netlink extended ack 6016 */ 6017 static int 6018 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6019 struct net_device *dev, const unsigned char *addr, 6020 __always_unused u16 vid, struct netlink_ext_ack *extack) 6021 { 6022 int err; 6023 6024 if (ndm->ndm_state & NUD_PERMANENT) { 6025 netdev_err(dev, "FDB only supports static addresses\n"); 6026 return -EINVAL; 6027 } 6028 6029 if (is_unicast_ether_addr(addr)) 6030 err = dev_uc_del(dev, addr); 6031 else if (is_multicast_ether_addr(addr)) 6032 err = dev_mc_del(dev, addr); 6033 else 6034 err = -EINVAL; 6035 6036 return err; 6037 } 6038 6039 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6040 NETIF_F_HW_VLAN_CTAG_TX | \ 6041 NETIF_F_HW_VLAN_STAG_RX | \ 6042 NETIF_F_HW_VLAN_STAG_TX) 6043 6044 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6045 NETIF_F_HW_VLAN_STAG_RX) 6046 6047 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6048 NETIF_F_HW_VLAN_STAG_FILTER) 6049 6050 /** 6051 * ice_fix_features - fix the netdev features flags based on device limitations 6052 * @netdev: ptr to the netdev that flags are being fixed on 6053 * @features: features that need to be checked and possibly fixed 6054 * 6055 * Make sure any fixups are made to features in this callback. This enables the 6056 * driver to not have to check unsupported configurations throughout the driver 6057 * because that's the responsiblity of this callback. 6058 * 6059 * Single VLAN Mode (SVM) Supported Features: 6060 * NETIF_F_HW_VLAN_CTAG_FILTER 6061 * NETIF_F_HW_VLAN_CTAG_RX 6062 * NETIF_F_HW_VLAN_CTAG_TX 6063 * 6064 * Double VLAN Mode (DVM) Supported Features: 6065 * NETIF_F_HW_VLAN_CTAG_FILTER 6066 * NETIF_F_HW_VLAN_CTAG_RX 6067 * NETIF_F_HW_VLAN_CTAG_TX 6068 * 6069 * NETIF_F_HW_VLAN_STAG_FILTER 6070 * NETIF_HW_VLAN_STAG_RX 6071 * NETIF_HW_VLAN_STAG_TX 6072 * 6073 * Features that need fixing: 6074 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6075 * These are mutually exlusive as the VSI context cannot support multiple 6076 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6077 * is not done, then default to clearing the requested STAG offload 6078 * settings. 6079 * 6080 * All supported filtering has to be enabled or disabled together. For 6081 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6082 * together. If this is not done, then default to VLAN filtering disabled. 6083 * These are mutually exclusive as there is currently no way to 6084 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6085 * prune rules. 6086 */ 6087 static netdev_features_t 6088 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6089 { 6090 struct ice_netdev_priv *np = netdev_priv(netdev); 6091 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6092 bool cur_ctag, cur_stag, req_ctag, req_stag; 6093 6094 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6095 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6096 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6097 6098 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6099 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6100 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6101 6102 if (req_vlan_fltr != cur_vlan_fltr) { 6103 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6104 if (req_ctag && req_stag) { 6105 features |= NETIF_VLAN_FILTERING_FEATURES; 6106 } else if (!req_ctag && !req_stag) { 6107 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6108 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6109 (!cur_stag && req_stag && !cur_ctag)) { 6110 features |= NETIF_VLAN_FILTERING_FEATURES; 6111 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6112 } else if ((cur_ctag && !req_ctag && cur_stag) || 6113 (cur_stag && !req_stag && cur_ctag)) { 6114 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6115 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6116 } 6117 } else { 6118 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6119 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6120 6121 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6122 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6123 } 6124 } 6125 6126 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6127 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6128 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6129 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6130 NETIF_F_HW_VLAN_STAG_TX); 6131 } 6132 6133 if (!(netdev->features & NETIF_F_RXFCS) && 6134 (features & NETIF_F_RXFCS) && 6135 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6136 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6137 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6138 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6139 } 6140 6141 return features; 6142 } 6143 6144 /** 6145 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6146 * @vsi: PF's VSI 6147 * @features: features used to determine VLAN offload settings 6148 * 6149 * First, determine the vlan_ethertype based on the VLAN offload bits in 6150 * features. Then determine if stripping and insertion should be enabled or 6151 * disabled. Finally enable or disable VLAN stripping and insertion. 6152 */ 6153 static int 6154 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6155 { 6156 bool enable_stripping = true, enable_insertion = true; 6157 struct ice_vsi_vlan_ops *vlan_ops; 6158 int strip_err = 0, insert_err = 0; 6159 u16 vlan_ethertype = 0; 6160 6161 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6162 6163 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6164 vlan_ethertype = ETH_P_8021AD; 6165 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6166 vlan_ethertype = ETH_P_8021Q; 6167 6168 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6169 enable_stripping = false; 6170 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6171 enable_insertion = false; 6172 6173 if (enable_stripping) 6174 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6175 else 6176 strip_err = vlan_ops->dis_stripping(vsi); 6177 6178 if (enable_insertion) 6179 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6180 else 6181 insert_err = vlan_ops->dis_insertion(vsi); 6182 6183 if (strip_err || insert_err) 6184 return -EIO; 6185 6186 return 0; 6187 } 6188 6189 /** 6190 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6191 * @vsi: PF's VSI 6192 * @features: features used to determine VLAN filtering settings 6193 * 6194 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6195 * features. 6196 */ 6197 static int 6198 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6199 { 6200 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6201 int err = 0; 6202 6203 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6204 * if either bit is set 6205 */ 6206 if (features & 6207 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6208 err = vlan_ops->ena_rx_filtering(vsi); 6209 else 6210 err = vlan_ops->dis_rx_filtering(vsi); 6211 6212 return err; 6213 } 6214 6215 /** 6216 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6217 * @netdev: ptr to the netdev being adjusted 6218 * @features: the feature set that the stack is suggesting 6219 * 6220 * Only update VLAN settings if the requested_vlan_features are different than 6221 * the current_vlan_features. 6222 */ 6223 static int 6224 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6225 { 6226 netdev_features_t current_vlan_features, requested_vlan_features; 6227 struct ice_netdev_priv *np = netdev_priv(netdev); 6228 struct ice_vsi *vsi = np->vsi; 6229 int err; 6230 6231 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6232 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6233 if (current_vlan_features ^ requested_vlan_features) { 6234 if ((features & NETIF_F_RXFCS) && 6235 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6236 dev_err(ice_pf_to_dev(vsi->back), 6237 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6238 return -EIO; 6239 } 6240 6241 err = ice_set_vlan_offload_features(vsi, features); 6242 if (err) 6243 return err; 6244 } 6245 6246 current_vlan_features = netdev->features & 6247 NETIF_VLAN_FILTERING_FEATURES; 6248 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6249 if (current_vlan_features ^ requested_vlan_features) { 6250 err = ice_set_vlan_filtering_features(vsi, features); 6251 if (err) 6252 return err; 6253 } 6254 6255 return 0; 6256 } 6257 6258 /** 6259 * ice_set_loopback - turn on/off loopback mode on underlying PF 6260 * @vsi: ptr to VSI 6261 * @ena: flag to indicate the on/off setting 6262 */ 6263 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6264 { 6265 bool if_running = netif_running(vsi->netdev); 6266 int ret; 6267 6268 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6269 ret = ice_down(vsi); 6270 if (ret) { 6271 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6272 return ret; 6273 } 6274 } 6275 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6276 if (ret) 6277 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6278 if (if_running) 6279 ret = ice_up(vsi); 6280 6281 return ret; 6282 } 6283 6284 /** 6285 * ice_set_features - set the netdev feature flags 6286 * @netdev: ptr to the netdev being adjusted 6287 * @features: the feature set that the stack is suggesting 6288 */ 6289 static int 6290 ice_set_features(struct net_device *netdev, netdev_features_t features) 6291 { 6292 netdev_features_t changed = netdev->features ^ features; 6293 struct ice_netdev_priv *np = netdev_priv(netdev); 6294 struct ice_vsi *vsi = np->vsi; 6295 struct ice_pf *pf = vsi->back; 6296 int ret = 0; 6297 6298 /* Don't set any netdev advanced features with device in Safe Mode */ 6299 if (ice_is_safe_mode(pf)) { 6300 dev_err(ice_pf_to_dev(pf), 6301 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6302 return ret; 6303 } 6304 6305 /* Do not change setting during reset */ 6306 if (ice_is_reset_in_progress(pf->state)) { 6307 dev_err(ice_pf_to_dev(pf), 6308 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6309 return -EBUSY; 6310 } 6311 6312 /* Multiple features can be changed in one call so keep features in 6313 * separate if/else statements to guarantee each feature is checked 6314 */ 6315 if (changed & NETIF_F_RXHASH) 6316 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6317 6318 ret = ice_set_vlan_features(netdev, features); 6319 if (ret) 6320 return ret; 6321 6322 /* Turn on receive of FCS aka CRC, and after setting this 6323 * flag the packet data will have the 4 byte CRC appended 6324 */ 6325 if (changed & NETIF_F_RXFCS) { 6326 if ((features & NETIF_F_RXFCS) && 6327 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6328 dev_err(ice_pf_to_dev(vsi->back), 6329 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6330 return -EIO; 6331 } 6332 6333 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6334 ret = ice_down_up(vsi); 6335 if (ret) 6336 return ret; 6337 } 6338 6339 if (changed & NETIF_F_NTUPLE) { 6340 bool ena = !!(features & NETIF_F_NTUPLE); 6341 6342 ice_vsi_manage_fdir(vsi, ena); 6343 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6344 } 6345 6346 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6347 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6348 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6349 return -EACCES; 6350 } 6351 6352 if (changed & NETIF_F_HW_TC) { 6353 bool ena = !!(features & NETIF_F_HW_TC); 6354 6355 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6356 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6357 } 6358 6359 if (changed & NETIF_F_LOOPBACK) 6360 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6361 6362 return ret; 6363 } 6364 6365 /** 6366 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6367 * @vsi: VSI to setup VLAN properties for 6368 */ 6369 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6370 { 6371 int err; 6372 6373 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6374 if (err) 6375 return err; 6376 6377 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6378 if (err) 6379 return err; 6380 6381 return ice_vsi_add_vlan_zero(vsi); 6382 } 6383 6384 /** 6385 * ice_vsi_cfg_lan - Setup the VSI lan related config 6386 * @vsi: the VSI being configured 6387 * 6388 * Return 0 on success and negative value on error 6389 */ 6390 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6391 { 6392 int err; 6393 6394 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6395 ice_set_rx_mode(vsi->netdev); 6396 6397 err = ice_vsi_vlan_setup(vsi); 6398 if (err) 6399 return err; 6400 } 6401 ice_vsi_cfg_dcb_rings(vsi); 6402 6403 err = ice_vsi_cfg_lan_txqs(vsi); 6404 if (!err && ice_is_xdp_ena_vsi(vsi)) 6405 err = ice_vsi_cfg_xdp_txqs(vsi); 6406 if (!err) 6407 err = ice_vsi_cfg_rxqs(vsi); 6408 6409 return err; 6410 } 6411 6412 /* THEORY OF MODERATION: 6413 * The ice driver hardware works differently than the hardware that DIMLIB was 6414 * originally made for. ice hardware doesn't have packet count limits that 6415 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6416 * which is hard-coded to a limit of 250,000 ints/second. 6417 * If not using dynamic moderation, the INTRL value can be modified 6418 * by ethtool rx-usecs-high. 6419 */ 6420 struct ice_dim { 6421 /* the throttle rate for interrupts, basically worst case delay before 6422 * an initial interrupt fires, value is stored in microseconds. 6423 */ 6424 u16 itr; 6425 }; 6426 6427 /* Make a different profile for Rx that doesn't allow quite so aggressive 6428 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6429 * second. 6430 */ 6431 static const struct ice_dim rx_profile[] = { 6432 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6433 {8}, /* 125,000 ints/s */ 6434 {16}, /* 62,500 ints/s */ 6435 {62}, /* 16,129 ints/s */ 6436 {126} /* 7,936 ints/s */ 6437 }; 6438 6439 /* The transmit profile, which has the same sorts of values 6440 * as the previous struct 6441 */ 6442 static const struct ice_dim tx_profile[] = { 6443 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6444 {8}, /* 125,000 ints/s */ 6445 {40}, /* 16,125 ints/s */ 6446 {128}, /* 7,812 ints/s */ 6447 {256} /* 3,906 ints/s */ 6448 }; 6449 6450 static void ice_tx_dim_work(struct work_struct *work) 6451 { 6452 struct ice_ring_container *rc; 6453 struct dim *dim; 6454 u16 itr; 6455 6456 dim = container_of(work, struct dim, work); 6457 rc = (struct ice_ring_container *)dim->priv; 6458 6459 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6460 6461 /* look up the values in our local table */ 6462 itr = tx_profile[dim->profile_ix].itr; 6463 6464 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6465 ice_write_itr(rc, itr); 6466 6467 dim->state = DIM_START_MEASURE; 6468 } 6469 6470 static void ice_rx_dim_work(struct work_struct *work) 6471 { 6472 struct ice_ring_container *rc; 6473 struct dim *dim; 6474 u16 itr; 6475 6476 dim = container_of(work, struct dim, work); 6477 rc = (struct ice_ring_container *)dim->priv; 6478 6479 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6480 6481 /* look up the values in our local table */ 6482 itr = rx_profile[dim->profile_ix].itr; 6483 6484 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6485 ice_write_itr(rc, itr); 6486 6487 dim->state = DIM_START_MEASURE; 6488 } 6489 6490 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6491 6492 /** 6493 * ice_init_moderation - set up interrupt moderation 6494 * @q_vector: the vector containing rings to be configured 6495 * 6496 * Set up interrupt moderation registers, with the intent to do the right thing 6497 * when called from reset or from probe, and whether or not dynamic moderation 6498 * is enabled or not. Take special care to write all the registers in both 6499 * dynamic moderation mode or not in order to make sure hardware is in a known 6500 * state. 6501 */ 6502 static void ice_init_moderation(struct ice_q_vector *q_vector) 6503 { 6504 struct ice_ring_container *rc; 6505 bool tx_dynamic, rx_dynamic; 6506 6507 rc = &q_vector->tx; 6508 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6509 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6510 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6511 rc->dim.priv = rc; 6512 tx_dynamic = ITR_IS_DYNAMIC(rc); 6513 6514 /* set the initial TX ITR to match the above */ 6515 ice_write_itr(rc, tx_dynamic ? 6516 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6517 6518 rc = &q_vector->rx; 6519 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6520 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6521 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6522 rc->dim.priv = rc; 6523 rx_dynamic = ITR_IS_DYNAMIC(rc); 6524 6525 /* set the initial RX ITR to match the above */ 6526 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6527 rc->itr_setting); 6528 6529 ice_set_q_vector_intrl(q_vector); 6530 } 6531 6532 /** 6533 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6534 * @vsi: the VSI being configured 6535 */ 6536 static void ice_napi_enable_all(struct ice_vsi *vsi) 6537 { 6538 int q_idx; 6539 6540 if (!vsi->netdev) 6541 return; 6542 6543 ice_for_each_q_vector(vsi, q_idx) { 6544 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6545 6546 ice_init_moderation(q_vector); 6547 6548 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6549 napi_enable(&q_vector->napi); 6550 } 6551 } 6552 6553 /** 6554 * ice_up_complete - Finish the last steps of bringing up a connection 6555 * @vsi: The VSI being configured 6556 * 6557 * Return 0 on success and negative value on error 6558 */ 6559 static int ice_up_complete(struct ice_vsi *vsi) 6560 { 6561 struct ice_pf *pf = vsi->back; 6562 int err; 6563 6564 ice_vsi_cfg_msix(vsi); 6565 6566 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6567 * Tx queue group list was configured and the context bits were 6568 * programmed using ice_vsi_cfg_txqs 6569 */ 6570 err = ice_vsi_start_all_rx_rings(vsi); 6571 if (err) 6572 return err; 6573 6574 clear_bit(ICE_VSI_DOWN, vsi->state); 6575 ice_napi_enable_all(vsi); 6576 ice_vsi_ena_irq(vsi); 6577 6578 if (vsi->port_info && 6579 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6580 vsi->netdev && vsi->type == ICE_VSI_PF) { 6581 ice_print_link_msg(vsi, true); 6582 netif_tx_start_all_queues(vsi->netdev); 6583 netif_carrier_on(vsi->netdev); 6584 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6585 } 6586 6587 /* Perform an initial read of the statistics registers now to 6588 * set the baseline so counters are ready when interface is up 6589 */ 6590 ice_update_eth_stats(vsi); 6591 6592 if (vsi->type == ICE_VSI_PF) 6593 ice_service_task_schedule(pf); 6594 6595 return 0; 6596 } 6597 6598 /** 6599 * ice_up - Bring the connection back up after being down 6600 * @vsi: VSI being configured 6601 */ 6602 int ice_up(struct ice_vsi *vsi) 6603 { 6604 int err; 6605 6606 err = ice_vsi_cfg_lan(vsi); 6607 if (!err) 6608 err = ice_up_complete(vsi); 6609 6610 return err; 6611 } 6612 6613 /** 6614 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6615 * @syncp: pointer to u64_stats_sync 6616 * @stats: stats that pkts and bytes count will be taken from 6617 * @pkts: packets stats counter 6618 * @bytes: bytes stats counter 6619 * 6620 * This function fetches stats from the ring considering the atomic operations 6621 * that needs to be performed to read u64 values in 32 bit machine. 6622 */ 6623 void 6624 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6625 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6626 { 6627 unsigned int start; 6628 6629 do { 6630 start = u64_stats_fetch_begin(syncp); 6631 *pkts = stats.pkts; 6632 *bytes = stats.bytes; 6633 } while (u64_stats_fetch_retry(syncp, start)); 6634 } 6635 6636 /** 6637 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6638 * @vsi: the VSI to be updated 6639 * @vsi_stats: the stats struct to be updated 6640 * @rings: rings to work on 6641 * @count: number of rings 6642 */ 6643 static void 6644 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6645 struct rtnl_link_stats64 *vsi_stats, 6646 struct ice_tx_ring **rings, u16 count) 6647 { 6648 u16 i; 6649 6650 for (i = 0; i < count; i++) { 6651 struct ice_tx_ring *ring; 6652 u64 pkts = 0, bytes = 0; 6653 6654 ring = READ_ONCE(rings[i]); 6655 if (!ring || !ring->ring_stats) 6656 continue; 6657 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6658 ring->ring_stats->stats, &pkts, 6659 &bytes); 6660 vsi_stats->tx_packets += pkts; 6661 vsi_stats->tx_bytes += bytes; 6662 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6663 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6664 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6665 } 6666 } 6667 6668 /** 6669 * ice_update_vsi_ring_stats - Update VSI stats counters 6670 * @vsi: the VSI to be updated 6671 */ 6672 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6673 { 6674 struct rtnl_link_stats64 *net_stats, *stats_prev; 6675 struct rtnl_link_stats64 *vsi_stats; 6676 u64 pkts, bytes; 6677 int i; 6678 6679 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6680 if (!vsi_stats) 6681 return; 6682 6683 /* reset non-netdev (extended) stats */ 6684 vsi->tx_restart = 0; 6685 vsi->tx_busy = 0; 6686 vsi->tx_linearize = 0; 6687 vsi->rx_buf_failed = 0; 6688 vsi->rx_page_failed = 0; 6689 6690 rcu_read_lock(); 6691 6692 /* update Tx rings counters */ 6693 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6694 vsi->num_txq); 6695 6696 /* update Rx rings counters */ 6697 ice_for_each_rxq(vsi, i) { 6698 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6699 struct ice_ring_stats *ring_stats; 6700 6701 ring_stats = ring->ring_stats; 6702 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6703 ring_stats->stats, &pkts, 6704 &bytes); 6705 vsi_stats->rx_packets += pkts; 6706 vsi_stats->rx_bytes += bytes; 6707 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6708 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6709 } 6710 6711 /* update XDP Tx rings counters */ 6712 if (ice_is_xdp_ena_vsi(vsi)) 6713 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6714 vsi->num_xdp_txq); 6715 6716 rcu_read_unlock(); 6717 6718 net_stats = &vsi->net_stats; 6719 stats_prev = &vsi->net_stats_prev; 6720 6721 /* clear prev counters after reset */ 6722 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6723 vsi_stats->rx_packets < stats_prev->rx_packets) { 6724 stats_prev->tx_packets = 0; 6725 stats_prev->tx_bytes = 0; 6726 stats_prev->rx_packets = 0; 6727 stats_prev->rx_bytes = 0; 6728 } 6729 6730 /* update netdev counters */ 6731 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6732 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6733 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6734 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6735 6736 stats_prev->tx_packets = vsi_stats->tx_packets; 6737 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6738 stats_prev->rx_packets = vsi_stats->rx_packets; 6739 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6740 6741 kfree(vsi_stats); 6742 } 6743 6744 /** 6745 * ice_update_vsi_stats - Update VSI stats counters 6746 * @vsi: the VSI to be updated 6747 */ 6748 void ice_update_vsi_stats(struct ice_vsi *vsi) 6749 { 6750 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6751 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6752 struct ice_pf *pf = vsi->back; 6753 6754 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6755 test_bit(ICE_CFG_BUSY, pf->state)) 6756 return; 6757 6758 /* get stats as recorded by Tx/Rx rings */ 6759 ice_update_vsi_ring_stats(vsi); 6760 6761 /* get VSI stats as recorded by the hardware */ 6762 ice_update_eth_stats(vsi); 6763 6764 cur_ns->tx_errors = cur_es->tx_errors; 6765 cur_ns->rx_dropped = cur_es->rx_discards; 6766 cur_ns->tx_dropped = cur_es->tx_discards; 6767 cur_ns->multicast = cur_es->rx_multicast; 6768 6769 /* update some more netdev stats if this is main VSI */ 6770 if (vsi->type == ICE_VSI_PF) { 6771 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6772 cur_ns->rx_errors = pf->stats.crc_errors + 6773 pf->stats.illegal_bytes + 6774 pf->stats.rx_len_errors + 6775 pf->stats.rx_undersize + 6776 pf->hw_csum_rx_error + 6777 pf->stats.rx_jabber + 6778 pf->stats.rx_fragments + 6779 pf->stats.rx_oversize; 6780 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6781 /* record drops from the port level */ 6782 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6783 } 6784 } 6785 6786 /** 6787 * ice_update_pf_stats - Update PF port stats counters 6788 * @pf: PF whose stats needs to be updated 6789 */ 6790 void ice_update_pf_stats(struct ice_pf *pf) 6791 { 6792 struct ice_hw_port_stats *prev_ps, *cur_ps; 6793 struct ice_hw *hw = &pf->hw; 6794 u16 fd_ctr_base; 6795 u8 port; 6796 6797 port = hw->port_info->lport; 6798 prev_ps = &pf->stats_prev; 6799 cur_ps = &pf->stats; 6800 6801 if (ice_is_reset_in_progress(pf->state)) 6802 pf->stat_prev_loaded = false; 6803 6804 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6805 &prev_ps->eth.rx_bytes, 6806 &cur_ps->eth.rx_bytes); 6807 6808 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6809 &prev_ps->eth.rx_unicast, 6810 &cur_ps->eth.rx_unicast); 6811 6812 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6813 &prev_ps->eth.rx_multicast, 6814 &cur_ps->eth.rx_multicast); 6815 6816 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6817 &prev_ps->eth.rx_broadcast, 6818 &cur_ps->eth.rx_broadcast); 6819 6820 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6821 &prev_ps->eth.rx_discards, 6822 &cur_ps->eth.rx_discards); 6823 6824 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6825 &prev_ps->eth.tx_bytes, 6826 &cur_ps->eth.tx_bytes); 6827 6828 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6829 &prev_ps->eth.tx_unicast, 6830 &cur_ps->eth.tx_unicast); 6831 6832 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6833 &prev_ps->eth.tx_multicast, 6834 &cur_ps->eth.tx_multicast); 6835 6836 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6837 &prev_ps->eth.tx_broadcast, 6838 &cur_ps->eth.tx_broadcast); 6839 6840 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6841 &prev_ps->tx_dropped_link_down, 6842 &cur_ps->tx_dropped_link_down); 6843 6844 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6845 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6846 6847 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6848 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6849 6850 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6851 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6852 6853 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6854 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6855 6856 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6857 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6858 6859 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6860 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6861 6862 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6863 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6864 6865 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6866 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6867 6868 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6869 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6870 6871 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6872 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6873 6874 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6875 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6876 6877 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6878 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6879 6880 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6881 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6882 6883 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6884 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6885 6886 fd_ctr_base = hw->fd_ctr_base; 6887 6888 ice_stat_update40(hw, 6889 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6890 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6891 &cur_ps->fd_sb_match); 6892 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6893 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6894 6895 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6896 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6897 6898 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6899 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6900 6901 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6902 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6903 6904 ice_update_dcb_stats(pf); 6905 6906 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6907 &prev_ps->crc_errors, &cur_ps->crc_errors); 6908 6909 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6910 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6911 6912 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6913 &prev_ps->mac_local_faults, 6914 &cur_ps->mac_local_faults); 6915 6916 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6917 &prev_ps->mac_remote_faults, 6918 &cur_ps->mac_remote_faults); 6919 6920 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6921 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6922 6923 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6924 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6925 6926 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6927 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6928 6929 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6930 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6931 6932 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6933 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6934 6935 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6936 6937 pf->stat_prev_loaded = true; 6938 } 6939 6940 /** 6941 * ice_get_stats64 - get statistics for network device structure 6942 * @netdev: network interface device structure 6943 * @stats: main device statistics structure 6944 */ 6945 static 6946 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6947 { 6948 struct ice_netdev_priv *np = netdev_priv(netdev); 6949 struct rtnl_link_stats64 *vsi_stats; 6950 struct ice_vsi *vsi = np->vsi; 6951 6952 vsi_stats = &vsi->net_stats; 6953 6954 if (!vsi->num_txq || !vsi->num_rxq) 6955 return; 6956 6957 /* netdev packet/byte stats come from ring counter. These are obtained 6958 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6959 * But, only call the update routine and read the registers if VSI is 6960 * not down. 6961 */ 6962 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6963 ice_update_vsi_ring_stats(vsi); 6964 stats->tx_packets = vsi_stats->tx_packets; 6965 stats->tx_bytes = vsi_stats->tx_bytes; 6966 stats->rx_packets = vsi_stats->rx_packets; 6967 stats->rx_bytes = vsi_stats->rx_bytes; 6968 6969 /* The rest of the stats can be read from the hardware but instead we 6970 * just return values that the watchdog task has already obtained from 6971 * the hardware. 6972 */ 6973 stats->multicast = vsi_stats->multicast; 6974 stats->tx_errors = vsi_stats->tx_errors; 6975 stats->tx_dropped = vsi_stats->tx_dropped; 6976 stats->rx_errors = vsi_stats->rx_errors; 6977 stats->rx_dropped = vsi_stats->rx_dropped; 6978 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6979 stats->rx_length_errors = vsi_stats->rx_length_errors; 6980 } 6981 6982 /** 6983 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6984 * @vsi: VSI having NAPI disabled 6985 */ 6986 static void ice_napi_disable_all(struct ice_vsi *vsi) 6987 { 6988 int q_idx; 6989 6990 if (!vsi->netdev) 6991 return; 6992 6993 ice_for_each_q_vector(vsi, q_idx) { 6994 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6995 6996 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6997 napi_disable(&q_vector->napi); 6998 6999 cancel_work_sync(&q_vector->tx.dim.work); 7000 cancel_work_sync(&q_vector->rx.dim.work); 7001 } 7002 } 7003 7004 /** 7005 * ice_down - Shutdown the connection 7006 * @vsi: The VSI being stopped 7007 * 7008 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7009 */ 7010 int ice_down(struct ice_vsi *vsi) 7011 { 7012 int i, tx_err, rx_err, vlan_err = 0; 7013 7014 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7015 7016 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 7017 vlan_err = ice_vsi_del_vlan_zero(vsi); 7018 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7019 netif_carrier_off(vsi->netdev); 7020 netif_tx_disable(vsi->netdev); 7021 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 7022 ice_eswitch_stop_all_tx_queues(vsi->back); 7023 } 7024 7025 ice_vsi_dis_irq(vsi); 7026 7027 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7028 if (tx_err) 7029 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7030 vsi->vsi_num, tx_err); 7031 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7032 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7033 if (tx_err) 7034 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7035 vsi->vsi_num, tx_err); 7036 } 7037 7038 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7039 if (rx_err) 7040 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7041 vsi->vsi_num, rx_err); 7042 7043 ice_napi_disable_all(vsi); 7044 7045 ice_for_each_txq(vsi, i) 7046 ice_clean_tx_ring(vsi->tx_rings[i]); 7047 7048 ice_for_each_rxq(vsi, i) 7049 ice_clean_rx_ring(vsi->rx_rings[i]); 7050 7051 if (tx_err || rx_err || vlan_err) { 7052 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7053 vsi->vsi_num, vsi->vsw->sw_id); 7054 return -EIO; 7055 } 7056 7057 return 0; 7058 } 7059 7060 /** 7061 * ice_down_up - shutdown the VSI connection and bring it up 7062 * @vsi: the VSI to be reconnected 7063 */ 7064 int ice_down_up(struct ice_vsi *vsi) 7065 { 7066 int ret; 7067 7068 /* if DOWN already set, nothing to do */ 7069 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7070 return 0; 7071 7072 ret = ice_down(vsi); 7073 if (ret) 7074 return ret; 7075 7076 ret = ice_up(vsi); 7077 if (ret) { 7078 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7079 return ret; 7080 } 7081 7082 return 0; 7083 } 7084 7085 /** 7086 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7087 * @vsi: VSI having resources allocated 7088 * 7089 * Return 0 on success, negative on failure 7090 */ 7091 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7092 { 7093 int i, err = 0; 7094 7095 if (!vsi->num_txq) { 7096 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7097 vsi->vsi_num); 7098 return -EINVAL; 7099 } 7100 7101 ice_for_each_txq(vsi, i) { 7102 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7103 7104 if (!ring) 7105 return -EINVAL; 7106 7107 if (vsi->netdev) 7108 ring->netdev = vsi->netdev; 7109 err = ice_setup_tx_ring(ring); 7110 if (err) 7111 break; 7112 } 7113 7114 return err; 7115 } 7116 7117 /** 7118 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7119 * @vsi: VSI having resources allocated 7120 * 7121 * Return 0 on success, negative on failure 7122 */ 7123 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7124 { 7125 int i, err = 0; 7126 7127 if (!vsi->num_rxq) { 7128 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7129 vsi->vsi_num); 7130 return -EINVAL; 7131 } 7132 7133 ice_for_each_rxq(vsi, i) { 7134 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7135 7136 if (!ring) 7137 return -EINVAL; 7138 7139 if (vsi->netdev) 7140 ring->netdev = vsi->netdev; 7141 err = ice_setup_rx_ring(ring); 7142 if (err) 7143 break; 7144 } 7145 7146 return err; 7147 } 7148 7149 /** 7150 * ice_vsi_open_ctrl - open control VSI for use 7151 * @vsi: the VSI to open 7152 * 7153 * Initialization of the Control VSI 7154 * 7155 * Returns 0 on success, negative value on error 7156 */ 7157 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7158 { 7159 char int_name[ICE_INT_NAME_STR_LEN]; 7160 struct ice_pf *pf = vsi->back; 7161 struct device *dev; 7162 int err; 7163 7164 dev = ice_pf_to_dev(pf); 7165 /* allocate descriptors */ 7166 err = ice_vsi_setup_tx_rings(vsi); 7167 if (err) 7168 goto err_setup_tx; 7169 7170 err = ice_vsi_setup_rx_rings(vsi); 7171 if (err) 7172 goto err_setup_rx; 7173 7174 err = ice_vsi_cfg_lan(vsi); 7175 if (err) 7176 goto err_setup_rx; 7177 7178 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7179 dev_driver_string(dev), dev_name(dev)); 7180 err = ice_vsi_req_irq_msix(vsi, int_name); 7181 if (err) 7182 goto err_setup_rx; 7183 7184 ice_vsi_cfg_msix(vsi); 7185 7186 err = ice_vsi_start_all_rx_rings(vsi); 7187 if (err) 7188 goto err_up_complete; 7189 7190 clear_bit(ICE_VSI_DOWN, vsi->state); 7191 ice_vsi_ena_irq(vsi); 7192 7193 return 0; 7194 7195 err_up_complete: 7196 ice_down(vsi); 7197 err_setup_rx: 7198 ice_vsi_free_rx_rings(vsi); 7199 err_setup_tx: 7200 ice_vsi_free_tx_rings(vsi); 7201 7202 return err; 7203 } 7204 7205 /** 7206 * ice_vsi_open - Called when a network interface is made active 7207 * @vsi: the VSI to open 7208 * 7209 * Initialization of the VSI 7210 * 7211 * Returns 0 on success, negative value on error 7212 */ 7213 int ice_vsi_open(struct ice_vsi *vsi) 7214 { 7215 char int_name[ICE_INT_NAME_STR_LEN]; 7216 struct ice_pf *pf = vsi->back; 7217 int err; 7218 7219 /* allocate descriptors */ 7220 err = ice_vsi_setup_tx_rings(vsi); 7221 if (err) 7222 goto err_setup_tx; 7223 7224 err = ice_vsi_setup_rx_rings(vsi); 7225 if (err) 7226 goto err_setup_rx; 7227 7228 err = ice_vsi_cfg_lan(vsi); 7229 if (err) 7230 goto err_setup_rx; 7231 7232 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7233 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7234 err = ice_vsi_req_irq_msix(vsi, int_name); 7235 if (err) 7236 goto err_setup_rx; 7237 7238 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7239 7240 if (vsi->type == ICE_VSI_PF) { 7241 /* Notify the stack of the actual queue counts. */ 7242 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7243 if (err) 7244 goto err_set_qs; 7245 7246 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7247 if (err) 7248 goto err_set_qs; 7249 } 7250 7251 err = ice_up_complete(vsi); 7252 if (err) 7253 goto err_up_complete; 7254 7255 return 0; 7256 7257 err_up_complete: 7258 ice_down(vsi); 7259 err_set_qs: 7260 ice_vsi_free_irq(vsi); 7261 err_setup_rx: 7262 ice_vsi_free_rx_rings(vsi); 7263 err_setup_tx: 7264 ice_vsi_free_tx_rings(vsi); 7265 7266 return err; 7267 } 7268 7269 /** 7270 * ice_vsi_release_all - Delete all VSIs 7271 * @pf: PF from which all VSIs are being removed 7272 */ 7273 static void ice_vsi_release_all(struct ice_pf *pf) 7274 { 7275 int err, i; 7276 7277 if (!pf->vsi) 7278 return; 7279 7280 ice_for_each_vsi(pf, i) { 7281 if (!pf->vsi[i]) 7282 continue; 7283 7284 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7285 continue; 7286 7287 err = ice_vsi_release(pf->vsi[i]); 7288 if (err) 7289 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7290 i, err, pf->vsi[i]->vsi_num); 7291 } 7292 } 7293 7294 /** 7295 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7296 * @pf: pointer to the PF instance 7297 * @type: VSI type to rebuild 7298 * 7299 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7300 */ 7301 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7302 { 7303 struct device *dev = ice_pf_to_dev(pf); 7304 int i, err; 7305 7306 ice_for_each_vsi(pf, i) { 7307 struct ice_vsi *vsi = pf->vsi[i]; 7308 7309 if (!vsi || vsi->type != type) 7310 continue; 7311 7312 /* rebuild the VSI */ 7313 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7314 if (err) { 7315 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7316 err, vsi->idx, ice_vsi_type_str(type)); 7317 return err; 7318 } 7319 7320 /* replay filters for the VSI */ 7321 err = ice_replay_vsi(&pf->hw, vsi->idx); 7322 if (err) { 7323 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7324 err, vsi->idx, ice_vsi_type_str(type)); 7325 return err; 7326 } 7327 7328 /* Re-map HW VSI number, using VSI handle that has been 7329 * previously validated in ice_replay_vsi() call above 7330 */ 7331 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7332 7333 /* enable the VSI */ 7334 err = ice_ena_vsi(vsi, false); 7335 if (err) { 7336 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7337 err, vsi->idx, ice_vsi_type_str(type)); 7338 return err; 7339 } 7340 7341 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7342 ice_vsi_type_str(type)); 7343 } 7344 7345 return 0; 7346 } 7347 7348 /** 7349 * ice_update_pf_netdev_link - Update PF netdev link status 7350 * @pf: pointer to the PF instance 7351 */ 7352 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7353 { 7354 bool link_up; 7355 int i; 7356 7357 ice_for_each_vsi(pf, i) { 7358 struct ice_vsi *vsi = pf->vsi[i]; 7359 7360 if (!vsi || vsi->type != ICE_VSI_PF) 7361 return; 7362 7363 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7364 if (link_up) { 7365 netif_carrier_on(pf->vsi[i]->netdev); 7366 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7367 } else { 7368 netif_carrier_off(pf->vsi[i]->netdev); 7369 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7370 } 7371 } 7372 } 7373 7374 /** 7375 * ice_rebuild - rebuild after reset 7376 * @pf: PF to rebuild 7377 * @reset_type: type of reset 7378 * 7379 * Do not rebuild VF VSI in this flow because that is already handled via 7380 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7381 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7382 * to reset/rebuild all the VF VSI twice. 7383 */ 7384 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7385 { 7386 struct device *dev = ice_pf_to_dev(pf); 7387 struct ice_hw *hw = &pf->hw; 7388 bool dvm; 7389 int err; 7390 7391 if (test_bit(ICE_DOWN, pf->state)) 7392 goto clear_recovery; 7393 7394 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7395 7396 #define ICE_EMP_RESET_SLEEP_MS 5000 7397 if (reset_type == ICE_RESET_EMPR) { 7398 /* If an EMP reset has occurred, any previously pending flash 7399 * update will have completed. We no longer know whether or 7400 * not the NVM update EMP reset is restricted. 7401 */ 7402 pf->fw_emp_reset_disabled = false; 7403 7404 msleep(ICE_EMP_RESET_SLEEP_MS); 7405 } 7406 7407 err = ice_init_all_ctrlq(hw); 7408 if (err) { 7409 dev_err(dev, "control queues init failed %d\n", err); 7410 goto err_init_ctrlq; 7411 } 7412 7413 /* if DDP was previously loaded successfully */ 7414 if (!ice_is_safe_mode(pf)) { 7415 /* reload the SW DB of filter tables */ 7416 if (reset_type == ICE_RESET_PFR) 7417 ice_fill_blk_tbls(hw); 7418 else 7419 /* Reload DDP Package after CORER/GLOBR reset */ 7420 ice_load_pkg(NULL, pf); 7421 } 7422 7423 err = ice_clear_pf_cfg(hw); 7424 if (err) { 7425 dev_err(dev, "clear PF configuration failed %d\n", err); 7426 goto err_init_ctrlq; 7427 } 7428 7429 ice_clear_pxe_mode(hw); 7430 7431 err = ice_init_nvm(hw); 7432 if (err) { 7433 dev_err(dev, "ice_init_nvm failed %d\n", err); 7434 goto err_init_ctrlq; 7435 } 7436 7437 err = ice_get_caps(hw); 7438 if (err) { 7439 dev_err(dev, "ice_get_caps failed %d\n", err); 7440 goto err_init_ctrlq; 7441 } 7442 7443 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7444 if (err) { 7445 dev_err(dev, "set_mac_cfg failed %d\n", err); 7446 goto err_init_ctrlq; 7447 } 7448 7449 dvm = ice_is_dvm_ena(hw); 7450 7451 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7452 if (err) 7453 goto err_init_ctrlq; 7454 7455 err = ice_sched_init_port(hw->port_info); 7456 if (err) 7457 goto err_sched_init_port; 7458 7459 /* start misc vector */ 7460 err = ice_req_irq_msix_misc(pf); 7461 if (err) { 7462 dev_err(dev, "misc vector setup failed: %d\n", err); 7463 goto err_sched_init_port; 7464 } 7465 7466 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7467 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7468 if (!rd32(hw, PFQF_FD_SIZE)) { 7469 u16 unused, guar, b_effort; 7470 7471 guar = hw->func_caps.fd_fltr_guar; 7472 b_effort = hw->func_caps.fd_fltr_best_effort; 7473 7474 /* force guaranteed filter pool for PF */ 7475 ice_alloc_fd_guar_item(hw, &unused, guar); 7476 /* force shared filter pool for PF */ 7477 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7478 } 7479 } 7480 7481 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7482 ice_dcb_rebuild(pf); 7483 7484 /* If the PF previously had enabled PTP, PTP init needs to happen before 7485 * the VSI rebuild. If not, this causes the PTP link status events to 7486 * fail. 7487 */ 7488 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7489 ice_ptp_reset(pf); 7490 7491 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7492 ice_gnss_init(pf); 7493 7494 /* rebuild PF VSI */ 7495 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7496 if (err) { 7497 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7498 goto err_vsi_rebuild; 7499 } 7500 7501 /* configure PTP timestamping after VSI rebuild */ 7502 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7503 ice_ptp_cfg_timestamp(pf, false); 7504 7505 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7506 if (err) { 7507 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7508 goto err_vsi_rebuild; 7509 } 7510 7511 if (reset_type == ICE_RESET_PFR) { 7512 err = ice_rebuild_channels(pf); 7513 if (err) { 7514 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7515 err); 7516 goto err_vsi_rebuild; 7517 } 7518 } 7519 7520 /* If Flow Director is active */ 7521 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7522 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7523 if (err) { 7524 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7525 goto err_vsi_rebuild; 7526 } 7527 7528 /* replay HW Flow Director recipes */ 7529 if (hw->fdir_prof) 7530 ice_fdir_replay_flows(hw); 7531 7532 /* replay Flow Director filters */ 7533 ice_fdir_replay_fltrs(pf); 7534 7535 ice_rebuild_arfs(pf); 7536 } 7537 7538 ice_update_pf_netdev_link(pf); 7539 7540 /* tell the firmware we are up */ 7541 err = ice_send_version(pf); 7542 if (err) { 7543 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7544 err); 7545 goto err_vsi_rebuild; 7546 } 7547 7548 ice_replay_post(hw); 7549 7550 /* if we get here, reset flow is successful */ 7551 clear_bit(ICE_RESET_FAILED, pf->state); 7552 7553 ice_plug_aux_dev(pf); 7554 return; 7555 7556 err_vsi_rebuild: 7557 err_sched_init_port: 7558 ice_sched_cleanup_all(hw); 7559 err_init_ctrlq: 7560 ice_shutdown_all_ctrlq(hw); 7561 set_bit(ICE_RESET_FAILED, pf->state); 7562 clear_recovery: 7563 /* set this bit in PF state to control service task scheduling */ 7564 set_bit(ICE_NEEDS_RESTART, pf->state); 7565 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7566 } 7567 7568 /** 7569 * ice_change_mtu - NDO callback to change the MTU 7570 * @netdev: network interface device structure 7571 * @new_mtu: new value for maximum frame size 7572 * 7573 * Returns 0 on success, negative on failure 7574 */ 7575 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7576 { 7577 struct ice_netdev_priv *np = netdev_priv(netdev); 7578 struct ice_vsi *vsi = np->vsi; 7579 struct ice_pf *pf = vsi->back; 7580 struct bpf_prog *prog; 7581 u8 count = 0; 7582 int err = 0; 7583 7584 if (new_mtu == (int)netdev->mtu) { 7585 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7586 return 0; 7587 } 7588 7589 prog = vsi->xdp_prog; 7590 if (prog && !prog->aux->xdp_has_frags) { 7591 int frame_size = ice_max_xdp_frame_size(vsi); 7592 7593 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7594 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7595 frame_size - ICE_ETH_PKT_HDR_PAD); 7596 return -EINVAL; 7597 } 7598 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7599 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7600 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7601 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7602 return -EINVAL; 7603 } 7604 } 7605 7606 /* if a reset is in progress, wait for some time for it to complete */ 7607 do { 7608 if (ice_is_reset_in_progress(pf->state)) { 7609 count++; 7610 usleep_range(1000, 2000); 7611 } else { 7612 break; 7613 } 7614 7615 } while (count < 100); 7616 7617 if (count == 100) { 7618 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7619 return -EBUSY; 7620 } 7621 7622 netdev->mtu = (unsigned int)new_mtu; 7623 7624 /* if VSI is up, bring it down and then back up */ 7625 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7626 err = ice_down(vsi); 7627 if (err) { 7628 netdev_err(netdev, "change MTU if_down err %d\n", err); 7629 return err; 7630 } 7631 7632 err = ice_up(vsi); 7633 if (err) { 7634 netdev_err(netdev, "change MTU if_up err %d\n", err); 7635 return err; 7636 } 7637 } 7638 7639 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7640 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7641 7642 return err; 7643 } 7644 7645 /** 7646 * ice_eth_ioctl - Access the hwtstamp interface 7647 * @netdev: network interface device structure 7648 * @ifr: interface request data 7649 * @cmd: ioctl command 7650 */ 7651 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7652 { 7653 struct ice_netdev_priv *np = netdev_priv(netdev); 7654 struct ice_pf *pf = np->vsi->back; 7655 7656 switch (cmd) { 7657 case SIOCGHWTSTAMP: 7658 return ice_ptp_get_ts_config(pf, ifr); 7659 case SIOCSHWTSTAMP: 7660 return ice_ptp_set_ts_config(pf, ifr); 7661 default: 7662 return -EOPNOTSUPP; 7663 } 7664 } 7665 7666 /** 7667 * ice_aq_str - convert AQ err code to a string 7668 * @aq_err: the AQ error code to convert 7669 */ 7670 const char *ice_aq_str(enum ice_aq_err aq_err) 7671 { 7672 switch (aq_err) { 7673 case ICE_AQ_RC_OK: 7674 return "OK"; 7675 case ICE_AQ_RC_EPERM: 7676 return "ICE_AQ_RC_EPERM"; 7677 case ICE_AQ_RC_ENOENT: 7678 return "ICE_AQ_RC_ENOENT"; 7679 case ICE_AQ_RC_ENOMEM: 7680 return "ICE_AQ_RC_ENOMEM"; 7681 case ICE_AQ_RC_EBUSY: 7682 return "ICE_AQ_RC_EBUSY"; 7683 case ICE_AQ_RC_EEXIST: 7684 return "ICE_AQ_RC_EEXIST"; 7685 case ICE_AQ_RC_EINVAL: 7686 return "ICE_AQ_RC_EINVAL"; 7687 case ICE_AQ_RC_ENOSPC: 7688 return "ICE_AQ_RC_ENOSPC"; 7689 case ICE_AQ_RC_ENOSYS: 7690 return "ICE_AQ_RC_ENOSYS"; 7691 case ICE_AQ_RC_EMODE: 7692 return "ICE_AQ_RC_EMODE"; 7693 case ICE_AQ_RC_ENOSEC: 7694 return "ICE_AQ_RC_ENOSEC"; 7695 case ICE_AQ_RC_EBADSIG: 7696 return "ICE_AQ_RC_EBADSIG"; 7697 case ICE_AQ_RC_ESVN: 7698 return "ICE_AQ_RC_ESVN"; 7699 case ICE_AQ_RC_EBADMAN: 7700 return "ICE_AQ_RC_EBADMAN"; 7701 case ICE_AQ_RC_EBADBUF: 7702 return "ICE_AQ_RC_EBADBUF"; 7703 } 7704 7705 return "ICE_AQ_RC_UNKNOWN"; 7706 } 7707 7708 /** 7709 * ice_set_rss_lut - Set RSS LUT 7710 * @vsi: Pointer to VSI structure 7711 * @lut: Lookup table 7712 * @lut_size: Lookup table size 7713 * 7714 * Returns 0 on success, negative on failure 7715 */ 7716 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7717 { 7718 struct ice_aq_get_set_rss_lut_params params = {}; 7719 struct ice_hw *hw = &vsi->back->hw; 7720 int status; 7721 7722 if (!lut) 7723 return -EINVAL; 7724 7725 params.vsi_handle = vsi->idx; 7726 params.lut_size = lut_size; 7727 params.lut_type = vsi->rss_lut_type; 7728 params.lut = lut; 7729 7730 status = ice_aq_set_rss_lut(hw, ¶ms); 7731 if (status) 7732 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7733 status, ice_aq_str(hw->adminq.sq_last_status)); 7734 7735 return status; 7736 } 7737 7738 /** 7739 * ice_set_rss_key - Set RSS key 7740 * @vsi: Pointer to the VSI structure 7741 * @seed: RSS hash seed 7742 * 7743 * Returns 0 on success, negative on failure 7744 */ 7745 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7746 { 7747 struct ice_hw *hw = &vsi->back->hw; 7748 int status; 7749 7750 if (!seed) 7751 return -EINVAL; 7752 7753 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7754 if (status) 7755 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7756 status, ice_aq_str(hw->adminq.sq_last_status)); 7757 7758 return status; 7759 } 7760 7761 /** 7762 * ice_get_rss_lut - Get RSS LUT 7763 * @vsi: Pointer to VSI structure 7764 * @lut: Buffer to store the lookup table entries 7765 * @lut_size: Size of buffer to store the lookup table entries 7766 * 7767 * Returns 0 on success, negative on failure 7768 */ 7769 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7770 { 7771 struct ice_aq_get_set_rss_lut_params params = {}; 7772 struct ice_hw *hw = &vsi->back->hw; 7773 int status; 7774 7775 if (!lut) 7776 return -EINVAL; 7777 7778 params.vsi_handle = vsi->idx; 7779 params.lut_size = lut_size; 7780 params.lut_type = vsi->rss_lut_type; 7781 params.lut = lut; 7782 7783 status = ice_aq_get_rss_lut(hw, ¶ms); 7784 if (status) 7785 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7786 status, ice_aq_str(hw->adminq.sq_last_status)); 7787 7788 return status; 7789 } 7790 7791 /** 7792 * ice_get_rss_key - Get RSS key 7793 * @vsi: Pointer to VSI structure 7794 * @seed: Buffer to store the key in 7795 * 7796 * Returns 0 on success, negative on failure 7797 */ 7798 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7799 { 7800 struct ice_hw *hw = &vsi->back->hw; 7801 int status; 7802 7803 if (!seed) 7804 return -EINVAL; 7805 7806 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7807 if (status) 7808 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7809 status, ice_aq_str(hw->adminq.sq_last_status)); 7810 7811 return status; 7812 } 7813 7814 /** 7815 * ice_bridge_getlink - Get the hardware bridge mode 7816 * @skb: skb buff 7817 * @pid: process ID 7818 * @seq: RTNL message seq 7819 * @dev: the netdev being configured 7820 * @filter_mask: filter mask passed in 7821 * @nlflags: netlink flags passed in 7822 * 7823 * Return the bridge mode (VEB/VEPA) 7824 */ 7825 static int 7826 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7827 struct net_device *dev, u32 filter_mask, int nlflags) 7828 { 7829 struct ice_netdev_priv *np = netdev_priv(dev); 7830 struct ice_vsi *vsi = np->vsi; 7831 struct ice_pf *pf = vsi->back; 7832 u16 bmode; 7833 7834 bmode = pf->first_sw->bridge_mode; 7835 7836 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7837 filter_mask, NULL); 7838 } 7839 7840 /** 7841 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7842 * @vsi: Pointer to VSI structure 7843 * @bmode: Hardware bridge mode (VEB/VEPA) 7844 * 7845 * Returns 0 on success, negative on failure 7846 */ 7847 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7848 { 7849 struct ice_aqc_vsi_props *vsi_props; 7850 struct ice_hw *hw = &vsi->back->hw; 7851 struct ice_vsi_ctx *ctxt; 7852 int ret; 7853 7854 vsi_props = &vsi->info; 7855 7856 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7857 if (!ctxt) 7858 return -ENOMEM; 7859 7860 ctxt->info = vsi->info; 7861 7862 if (bmode == BRIDGE_MODE_VEB) 7863 /* change from VEPA to VEB mode */ 7864 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7865 else 7866 /* change from VEB to VEPA mode */ 7867 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7868 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7869 7870 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7871 if (ret) { 7872 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7873 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7874 goto out; 7875 } 7876 /* Update sw flags for book keeping */ 7877 vsi_props->sw_flags = ctxt->info.sw_flags; 7878 7879 out: 7880 kfree(ctxt); 7881 return ret; 7882 } 7883 7884 /** 7885 * ice_bridge_setlink - Set the hardware bridge mode 7886 * @dev: the netdev being configured 7887 * @nlh: RTNL message 7888 * @flags: bridge setlink flags 7889 * @extack: netlink extended ack 7890 * 7891 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7892 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7893 * not already set for all VSIs connected to this switch. And also update the 7894 * unicast switch filter rules for the corresponding switch of the netdev. 7895 */ 7896 static int 7897 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7898 u16 __always_unused flags, 7899 struct netlink_ext_ack __always_unused *extack) 7900 { 7901 struct ice_netdev_priv *np = netdev_priv(dev); 7902 struct ice_pf *pf = np->vsi->back; 7903 struct nlattr *attr, *br_spec; 7904 struct ice_hw *hw = &pf->hw; 7905 struct ice_sw *pf_sw; 7906 int rem, v, err = 0; 7907 7908 pf_sw = pf->first_sw; 7909 /* find the attribute in the netlink message */ 7910 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7911 7912 nla_for_each_nested(attr, br_spec, rem) { 7913 __u16 mode; 7914 7915 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7916 continue; 7917 mode = nla_get_u16(attr); 7918 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7919 return -EINVAL; 7920 /* Continue if bridge mode is not being flipped */ 7921 if (mode == pf_sw->bridge_mode) 7922 continue; 7923 /* Iterates through the PF VSI list and update the loopback 7924 * mode of the VSI 7925 */ 7926 ice_for_each_vsi(pf, v) { 7927 if (!pf->vsi[v]) 7928 continue; 7929 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7930 if (err) 7931 return err; 7932 } 7933 7934 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7935 /* Update the unicast switch filter rules for the corresponding 7936 * switch of the netdev 7937 */ 7938 err = ice_update_sw_rule_bridge_mode(hw); 7939 if (err) { 7940 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7941 mode, err, 7942 ice_aq_str(hw->adminq.sq_last_status)); 7943 /* revert hw->evb_veb */ 7944 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7945 return err; 7946 } 7947 7948 pf_sw->bridge_mode = mode; 7949 } 7950 7951 return 0; 7952 } 7953 7954 /** 7955 * ice_tx_timeout - Respond to a Tx Hang 7956 * @netdev: network interface device structure 7957 * @txqueue: Tx queue 7958 */ 7959 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7960 { 7961 struct ice_netdev_priv *np = netdev_priv(netdev); 7962 struct ice_tx_ring *tx_ring = NULL; 7963 struct ice_vsi *vsi = np->vsi; 7964 struct ice_pf *pf = vsi->back; 7965 u32 i; 7966 7967 pf->tx_timeout_count++; 7968 7969 /* Check if PFC is enabled for the TC to which the queue belongs 7970 * to. If yes then Tx timeout is not caused by a hung queue, no 7971 * need to reset and rebuild 7972 */ 7973 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7974 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7975 txqueue); 7976 return; 7977 } 7978 7979 /* now that we have an index, find the tx_ring struct */ 7980 ice_for_each_txq(vsi, i) 7981 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7982 if (txqueue == vsi->tx_rings[i]->q_index) { 7983 tx_ring = vsi->tx_rings[i]; 7984 break; 7985 } 7986 7987 /* Reset recovery level if enough time has elapsed after last timeout. 7988 * Also ensure no new reset action happens before next timeout period. 7989 */ 7990 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7991 pf->tx_timeout_recovery_level = 1; 7992 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7993 netdev->watchdog_timeo))) 7994 return; 7995 7996 if (tx_ring) { 7997 struct ice_hw *hw = &pf->hw; 7998 u32 head, val = 0; 7999 8000 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 8001 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 8002 /* Read interrupt register */ 8003 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8004 8005 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8006 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8007 head, tx_ring->next_to_use, val); 8008 } 8009 8010 pf->tx_timeout_last_recovery = jiffies; 8011 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8012 pf->tx_timeout_recovery_level, txqueue); 8013 8014 switch (pf->tx_timeout_recovery_level) { 8015 case 1: 8016 set_bit(ICE_PFR_REQ, pf->state); 8017 break; 8018 case 2: 8019 set_bit(ICE_CORER_REQ, pf->state); 8020 break; 8021 case 3: 8022 set_bit(ICE_GLOBR_REQ, pf->state); 8023 break; 8024 default: 8025 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8026 set_bit(ICE_DOWN, pf->state); 8027 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8028 set_bit(ICE_SERVICE_DIS, pf->state); 8029 break; 8030 } 8031 8032 ice_service_task_schedule(pf); 8033 pf->tx_timeout_recovery_level++; 8034 } 8035 8036 /** 8037 * ice_setup_tc_cls_flower - flower classifier offloads 8038 * @np: net device to configure 8039 * @filter_dev: device on which filter is added 8040 * @cls_flower: offload data 8041 */ 8042 static int 8043 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8044 struct net_device *filter_dev, 8045 struct flow_cls_offload *cls_flower) 8046 { 8047 struct ice_vsi *vsi = np->vsi; 8048 8049 if (cls_flower->common.chain_index) 8050 return -EOPNOTSUPP; 8051 8052 switch (cls_flower->command) { 8053 case FLOW_CLS_REPLACE: 8054 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8055 case FLOW_CLS_DESTROY: 8056 return ice_del_cls_flower(vsi, cls_flower); 8057 default: 8058 return -EINVAL; 8059 } 8060 } 8061 8062 /** 8063 * ice_setup_tc_block_cb - callback handler registered for TC block 8064 * @type: TC SETUP type 8065 * @type_data: TC flower offload data that contains user input 8066 * @cb_priv: netdev private data 8067 */ 8068 static int 8069 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8070 { 8071 struct ice_netdev_priv *np = cb_priv; 8072 8073 switch (type) { 8074 case TC_SETUP_CLSFLOWER: 8075 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8076 type_data); 8077 default: 8078 return -EOPNOTSUPP; 8079 } 8080 } 8081 8082 /** 8083 * ice_validate_mqprio_qopt - Validate TCF input parameters 8084 * @vsi: Pointer to VSI 8085 * @mqprio_qopt: input parameters for mqprio queue configuration 8086 * 8087 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8088 * needed), and make sure user doesn't specify qcount and BW rate limit 8089 * for TCs, which are more than "num_tc" 8090 */ 8091 static int 8092 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8093 struct tc_mqprio_qopt_offload *mqprio_qopt) 8094 { 8095 u64 sum_max_rate = 0, sum_min_rate = 0; 8096 int non_power_of_2_qcount = 0; 8097 struct ice_pf *pf = vsi->back; 8098 int max_rss_q_cnt = 0; 8099 struct device *dev; 8100 int i, speed; 8101 u8 num_tc; 8102 8103 if (vsi->type != ICE_VSI_PF) 8104 return -EINVAL; 8105 8106 if (mqprio_qopt->qopt.offset[0] != 0 || 8107 mqprio_qopt->qopt.num_tc < 1 || 8108 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8109 return -EINVAL; 8110 8111 dev = ice_pf_to_dev(pf); 8112 vsi->ch_rss_size = 0; 8113 num_tc = mqprio_qopt->qopt.num_tc; 8114 8115 for (i = 0; num_tc; i++) { 8116 int qcount = mqprio_qopt->qopt.count[i]; 8117 u64 max_rate, min_rate, rem; 8118 8119 if (!qcount) 8120 return -EINVAL; 8121 8122 if (is_power_of_2(qcount)) { 8123 if (non_power_of_2_qcount && 8124 qcount > non_power_of_2_qcount) { 8125 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8126 qcount, non_power_of_2_qcount); 8127 return -EINVAL; 8128 } 8129 if (qcount > max_rss_q_cnt) 8130 max_rss_q_cnt = qcount; 8131 } else { 8132 if (non_power_of_2_qcount && 8133 qcount != non_power_of_2_qcount) { 8134 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8135 qcount, non_power_of_2_qcount); 8136 return -EINVAL; 8137 } 8138 if (qcount < max_rss_q_cnt) { 8139 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8140 qcount, max_rss_q_cnt); 8141 return -EINVAL; 8142 } 8143 max_rss_q_cnt = qcount; 8144 non_power_of_2_qcount = qcount; 8145 } 8146 8147 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8148 * converts the bandwidth rate limit into Bytes/s when 8149 * passing it down to the driver. So convert input bandwidth 8150 * from Bytes/s to Kbps 8151 */ 8152 max_rate = mqprio_qopt->max_rate[i]; 8153 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8154 sum_max_rate += max_rate; 8155 8156 /* min_rate is minimum guaranteed rate and it can't be zero */ 8157 min_rate = mqprio_qopt->min_rate[i]; 8158 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8159 sum_min_rate += min_rate; 8160 8161 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8162 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8163 min_rate, ICE_MIN_BW_LIMIT); 8164 return -EINVAL; 8165 } 8166 8167 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8168 if (rem) { 8169 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8170 i, ICE_MIN_BW_LIMIT); 8171 return -EINVAL; 8172 } 8173 8174 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8175 if (rem) { 8176 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8177 i, ICE_MIN_BW_LIMIT); 8178 return -EINVAL; 8179 } 8180 8181 /* min_rate can't be more than max_rate, except when max_rate 8182 * is zero (implies max_rate sought is max line rate). In such 8183 * a case min_rate can be more than max. 8184 */ 8185 if (max_rate && min_rate > max_rate) { 8186 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8187 min_rate, max_rate); 8188 return -EINVAL; 8189 } 8190 8191 if (i >= mqprio_qopt->qopt.num_tc - 1) 8192 break; 8193 if (mqprio_qopt->qopt.offset[i + 1] != 8194 (mqprio_qopt->qopt.offset[i] + qcount)) 8195 return -EINVAL; 8196 } 8197 if (vsi->num_rxq < 8198 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8199 return -EINVAL; 8200 if (vsi->num_txq < 8201 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8202 return -EINVAL; 8203 8204 speed = ice_get_link_speed_kbps(vsi); 8205 if (sum_max_rate && sum_max_rate > (u64)speed) { 8206 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 8207 sum_max_rate, speed); 8208 return -EINVAL; 8209 } 8210 if (sum_min_rate && sum_min_rate > (u64)speed) { 8211 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8212 sum_min_rate, speed); 8213 return -EINVAL; 8214 } 8215 8216 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8217 vsi->ch_rss_size = max_rss_q_cnt; 8218 8219 return 0; 8220 } 8221 8222 /** 8223 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8224 * @pf: ptr to PF device 8225 * @vsi: ptr to VSI 8226 */ 8227 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8228 { 8229 struct device *dev = ice_pf_to_dev(pf); 8230 bool added = false; 8231 struct ice_hw *hw; 8232 int flow; 8233 8234 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8235 return -EINVAL; 8236 8237 hw = &pf->hw; 8238 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8239 struct ice_fd_hw_prof *prof; 8240 int tun, status; 8241 u64 entry_h; 8242 8243 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8244 hw->fdir_prof[flow]->cnt)) 8245 continue; 8246 8247 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8248 enum ice_flow_priority prio; 8249 u64 prof_id; 8250 8251 /* add this VSI to FDir profile for this flow */ 8252 prio = ICE_FLOW_PRIO_NORMAL; 8253 prof = hw->fdir_prof[flow]; 8254 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8255 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8256 prof->vsi_h[0], vsi->idx, 8257 prio, prof->fdir_seg[tun], 8258 &entry_h); 8259 if (status) { 8260 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8261 vsi->idx, flow); 8262 continue; 8263 } 8264 8265 prof->entry_h[prof->cnt][tun] = entry_h; 8266 } 8267 8268 /* store VSI for filter replay and delete */ 8269 prof->vsi_h[prof->cnt] = vsi->idx; 8270 prof->cnt++; 8271 8272 added = true; 8273 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8274 flow); 8275 } 8276 8277 if (!added) 8278 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8279 8280 return 0; 8281 } 8282 8283 /** 8284 * ice_add_channel - add a channel by adding VSI 8285 * @pf: ptr to PF device 8286 * @sw_id: underlying HW switching element ID 8287 * @ch: ptr to channel structure 8288 * 8289 * Add a channel (VSI) using add_vsi and queue_map 8290 */ 8291 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8292 { 8293 struct device *dev = ice_pf_to_dev(pf); 8294 struct ice_vsi *vsi; 8295 8296 if (ch->type != ICE_VSI_CHNL) { 8297 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8298 return -EINVAL; 8299 } 8300 8301 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8302 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8303 dev_err(dev, "create chnl VSI failure\n"); 8304 return -EINVAL; 8305 } 8306 8307 ice_add_vsi_to_fdir(pf, vsi); 8308 8309 ch->sw_id = sw_id; 8310 ch->vsi_num = vsi->vsi_num; 8311 ch->info.mapping_flags = vsi->info.mapping_flags; 8312 ch->ch_vsi = vsi; 8313 /* set the back pointer of channel for newly created VSI */ 8314 vsi->ch = ch; 8315 8316 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8317 sizeof(vsi->info.q_mapping)); 8318 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8319 sizeof(vsi->info.tc_mapping)); 8320 8321 return 0; 8322 } 8323 8324 /** 8325 * ice_chnl_cfg_res 8326 * @vsi: the VSI being setup 8327 * @ch: ptr to channel structure 8328 * 8329 * Configure channel specific resources such as rings, vector. 8330 */ 8331 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8332 { 8333 int i; 8334 8335 for (i = 0; i < ch->num_txq; i++) { 8336 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8337 struct ice_ring_container *rc; 8338 struct ice_tx_ring *tx_ring; 8339 struct ice_rx_ring *rx_ring; 8340 8341 tx_ring = vsi->tx_rings[ch->base_q + i]; 8342 rx_ring = vsi->rx_rings[ch->base_q + i]; 8343 if (!tx_ring || !rx_ring) 8344 continue; 8345 8346 /* setup ring being channel enabled */ 8347 tx_ring->ch = ch; 8348 rx_ring->ch = ch; 8349 8350 /* following code block sets up vector specific attributes */ 8351 tx_q_vector = tx_ring->q_vector; 8352 rx_q_vector = rx_ring->q_vector; 8353 if (!tx_q_vector && !rx_q_vector) 8354 continue; 8355 8356 if (tx_q_vector) { 8357 tx_q_vector->ch = ch; 8358 /* setup Tx and Rx ITR setting if DIM is off */ 8359 rc = &tx_q_vector->tx; 8360 if (!ITR_IS_DYNAMIC(rc)) 8361 ice_write_itr(rc, rc->itr_setting); 8362 } 8363 if (rx_q_vector) { 8364 rx_q_vector->ch = ch; 8365 /* setup Tx and Rx ITR setting if DIM is off */ 8366 rc = &rx_q_vector->rx; 8367 if (!ITR_IS_DYNAMIC(rc)) 8368 ice_write_itr(rc, rc->itr_setting); 8369 } 8370 } 8371 8372 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8373 * GLINT_ITR register would have written to perform in-context 8374 * update, hence perform flush 8375 */ 8376 if (ch->num_txq || ch->num_rxq) 8377 ice_flush(&vsi->back->hw); 8378 } 8379 8380 /** 8381 * ice_cfg_chnl_all_res - configure channel resources 8382 * @vsi: pte to main_vsi 8383 * @ch: ptr to channel structure 8384 * 8385 * This function configures channel specific resources such as flow-director 8386 * counter index, and other resources such as queues, vectors, ITR settings 8387 */ 8388 static void 8389 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8390 { 8391 /* configure channel (aka ADQ) resources such as queues, vectors, 8392 * ITR settings for channel specific vectors and anything else 8393 */ 8394 ice_chnl_cfg_res(vsi, ch); 8395 } 8396 8397 /** 8398 * ice_setup_hw_channel - setup new channel 8399 * @pf: ptr to PF device 8400 * @vsi: the VSI being setup 8401 * @ch: ptr to channel structure 8402 * @sw_id: underlying HW switching element ID 8403 * @type: type of channel to be created (VMDq2/VF) 8404 * 8405 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8406 * and configures Tx rings accordingly 8407 */ 8408 static int 8409 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8410 struct ice_channel *ch, u16 sw_id, u8 type) 8411 { 8412 struct device *dev = ice_pf_to_dev(pf); 8413 int ret; 8414 8415 ch->base_q = vsi->next_base_q; 8416 ch->type = type; 8417 8418 ret = ice_add_channel(pf, sw_id, ch); 8419 if (ret) { 8420 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8421 return ret; 8422 } 8423 8424 /* configure/setup ADQ specific resources */ 8425 ice_cfg_chnl_all_res(vsi, ch); 8426 8427 /* make sure to update the next_base_q so that subsequent channel's 8428 * (aka ADQ) VSI queue map is correct 8429 */ 8430 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8431 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8432 ch->num_rxq); 8433 8434 return 0; 8435 } 8436 8437 /** 8438 * ice_setup_channel - setup new channel using uplink element 8439 * @pf: ptr to PF device 8440 * @vsi: the VSI being setup 8441 * @ch: ptr to channel structure 8442 * 8443 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8444 * and uplink switching element 8445 */ 8446 static bool 8447 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8448 struct ice_channel *ch) 8449 { 8450 struct device *dev = ice_pf_to_dev(pf); 8451 u16 sw_id; 8452 int ret; 8453 8454 if (vsi->type != ICE_VSI_PF) { 8455 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8456 return false; 8457 } 8458 8459 sw_id = pf->first_sw->sw_id; 8460 8461 /* create channel (VSI) */ 8462 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8463 if (ret) { 8464 dev_err(dev, "failed to setup hw_channel\n"); 8465 return false; 8466 } 8467 dev_dbg(dev, "successfully created channel()\n"); 8468 8469 return ch->ch_vsi ? true : false; 8470 } 8471 8472 /** 8473 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8474 * @vsi: VSI to be configured 8475 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8476 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8477 */ 8478 static int 8479 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8480 { 8481 int err; 8482 8483 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8484 if (err) 8485 return err; 8486 8487 return ice_set_max_bw_limit(vsi, max_tx_rate); 8488 } 8489 8490 /** 8491 * ice_create_q_channel - function to create channel 8492 * @vsi: VSI to be configured 8493 * @ch: ptr to channel (it contains channel specific params) 8494 * 8495 * This function creates channel (VSI) using num_queues specified by user, 8496 * reconfigs RSS if needed. 8497 */ 8498 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8499 { 8500 struct ice_pf *pf = vsi->back; 8501 struct device *dev; 8502 8503 if (!ch) 8504 return -EINVAL; 8505 8506 dev = ice_pf_to_dev(pf); 8507 if (!ch->num_txq || !ch->num_rxq) { 8508 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8509 return -EINVAL; 8510 } 8511 8512 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8513 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8514 vsi->cnt_q_avail, ch->num_txq); 8515 return -EINVAL; 8516 } 8517 8518 if (!ice_setup_channel(pf, vsi, ch)) { 8519 dev_info(dev, "Failed to setup channel\n"); 8520 return -EINVAL; 8521 } 8522 /* configure BW rate limit */ 8523 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8524 int ret; 8525 8526 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8527 ch->min_tx_rate); 8528 if (ret) 8529 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8530 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8531 else 8532 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8533 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8534 } 8535 8536 vsi->cnt_q_avail -= ch->num_txq; 8537 8538 return 0; 8539 } 8540 8541 /** 8542 * ice_rem_all_chnl_fltrs - removes all channel filters 8543 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8544 * 8545 * Remove all advanced switch filters only if they are channel specific 8546 * tc-flower based filter 8547 */ 8548 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8549 { 8550 struct ice_tc_flower_fltr *fltr; 8551 struct hlist_node *node; 8552 8553 /* to remove all channel filters, iterate an ordered list of filters */ 8554 hlist_for_each_entry_safe(fltr, node, 8555 &pf->tc_flower_fltr_list, 8556 tc_flower_node) { 8557 struct ice_rule_query_data rule; 8558 int status; 8559 8560 /* for now process only channel specific filters */ 8561 if (!ice_is_chnl_fltr(fltr)) 8562 continue; 8563 8564 rule.rid = fltr->rid; 8565 rule.rule_id = fltr->rule_id; 8566 rule.vsi_handle = fltr->dest_vsi_handle; 8567 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8568 if (status) { 8569 if (status == -ENOENT) 8570 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8571 rule.rule_id); 8572 else 8573 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8574 status); 8575 } else if (fltr->dest_vsi) { 8576 /* update advanced switch filter count */ 8577 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8578 u32 flags = fltr->flags; 8579 8580 fltr->dest_vsi->num_chnl_fltr--; 8581 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8582 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8583 pf->num_dmac_chnl_fltrs--; 8584 } 8585 } 8586 8587 hlist_del(&fltr->tc_flower_node); 8588 kfree(fltr); 8589 } 8590 } 8591 8592 /** 8593 * ice_remove_q_channels - Remove queue channels for the TCs 8594 * @vsi: VSI to be configured 8595 * @rem_fltr: delete advanced switch filter or not 8596 * 8597 * Remove queue channels for the TCs 8598 */ 8599 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8600 { 8601 struct ice_channel *ch, *ch_tmp; 8602 struct ice_pf *pf = vsi->back; 8603 int i; 8604 8605 /* remove all tc-flower based filter if they are channel filters only */ 8606 if (rem_fltr) 8607 ice_rem_all_chnl_fltrs(pf); 8608 8609 /* remove ntuple filters since queue configuration is being changed */ 8610 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8611 struct ice_hw *hw = &pf->hw; 8612 8613 mutex_lock(&hw->fdir_fltr_lock); 8614 ice_fdir_del_all_fltrs(vsi); 8615 mutex_unlock(&hw->fdir_fltr_lock); 8616 } 8617 8618 /* perform cleanup for channels if they exist */ 8619 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8620 struct ice_vsi *ch_vsi; 8621 8622 list_del(&ch->list); 8623 ch_vsi = ch->ch_vsi; 8624 if (!ch_vsi) { 8625 kfree(ch); 8626 continue; 8627 } 8628 8629 /* Reset queue contexts */ 8630 for (i = 0; i < ch->num_rxq; i++) { 8631 struct ice_tx_ring *tx_ring; 8632 struct ice_rx_ring *rx_ring; 8633 8634 tx_ring = vsi->tx_rings[ch->base_q + i]; 8635 rx_ring = vsi->rx_rings[ch->base_q + i]; 8636 if (tx_ring) { 8637 tx_ring->ch = NULL; 8638 if (tx_ring->q_vector) 8639 tx_ring->q_vector->ch = NULL; 8640 } 8641 if (rx_ring) { 8642 rx_ring->ch = NULL; 8643 if (rx_ring->q_vector) 8644 rx_ring->q_vector->ch = NULL; 8645 } 8646 } 8647 8648 /* Release FD resources for the channel VSI */ 8649 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8650 8651 /* clear the VSI from scheduler tree */ 8652 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8653 8654 /* Delete VSI from FW, PF and HW VSI arrays */ 8655 ice_vsi_delete(ch->ch_vsi); 8656 8657 /* free the channel */ 8658 kfree(ch); 8659 } 8660 8661 /* clear the channel VSI map which is stored in main VSI */ 8662 ice_for_each_chnl_tc(i) 8663 vsi->tc_map_vsi[i] = NULL; 8664 8665 /* reset main VSI's all TC information */ 8666 vsi->all_enatc = 0; 8667 vsi->all_numtc = 0; 8668 } 8669 8670 /** 8671 * ice_rebuild_channels - rebuild channel 8672 * @pf: ptr to PF 8673 * 8674 * Recreate channel VSIs and replay filters 8675 */ 8676 static int ice_rebuild_channels(struct ice_pf *pf) 8677 { 8678 struct device *dev = ice_pf_to_dev(pf); 8679 struct ice_vsi *main_vsi; 8680 bool rem_adv_fltr = true; 8681 struct ice_channel *ch; 8682 struct ice_vsi *vsi; 8683 int tc_idx = 1; 8684 int i, err; 8685 8686 main_vsi = ice_get_main_vsi(pf); 8687 if (!main_vsi) 8688 return 0; 8689 8690 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8691 main_vsi->old_numtc == 1) 8692 return 0; /* nothing to be done */ 8693 8694 /* reconfigure main VSI based on old value of TC and cached values 8695 * for MQPRIO opts 8696 */ 8697 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8698 if (err) { 8699 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8700 main_vsi->old_ena_tc, main_vsi->vsi_num); 8701 return err; 8702 } 8703 8704 /* rebuild ADQ VSIs */ 8705 ice_for_each_vsi(pf, i) { 8706 enum ice_vsi_type type; 8707 8708 vsi = pf->vsi[i]; 8709 if (!vsi || vsi->type != ICE_VSI_CHNL) 8710 continue; 8711 8712 type = vsi->type; 8713 8714 /* rebuild ADQ VSI */ 8715 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8716 if (err) { 8717 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8718 ice_vsi_type_str(type), vsi->idx, err); 8719 goto cleanup; 8720 } 8721 8722 /* Re-map HW VSI number, using VSI handle that has been 8723 * previously validated in ice_replay_vsi() call above 8724 */ 8725 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8726 8727 /* replay filters for the VSI */ 8728 err = ice_replay_vsi(&pf->hw, vsi->idx); 8729 if (err) { 8730 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8731 ice_vsi_type_str(type), err, vsi->idx); 8732 rem_adv_fltr = false; 8733 goto cleanup; 8734 } 8735 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8736 ice_vsi_type_str(type), vsi->idx); 8737 8738 /* store ADQ VSI at correct TC index in main VSI's 8739 * map of TC to VSI 8740 */ 8741 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8742 } 8743 8744 /* ADQ VSI(s) has been rebuilt successfully, so setup 8745 * channel for main VSI's Tx and Rx rings 8746 */ 8747 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8748 struct ice_vsi *ch_vsi; 8749 8750 ch_vsi = ch->ch_vsi; 8751 if (!ch_vsi) 8752 continue; 8753 8754 /* reconfig channel resources */ 8755 ice_cfg_chnl_all_res(main_vsi, ch); 8756 8757 /* replay BW rate limit if it is non-zero */ 8758 if (!ch->max_tx_rate && !ch->min_tx_rate) 8759 continue; 8760 8761 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8762 ch->min_tx_rate); 8763 if (err) 8764 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8765 err, ch->max_tx_rate, ch->min_tx_rate, 8766 ch_vsi->vsi_num); 8767 else 8768 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8769 ch->max_tx_rate, ch->min_tx_rate, 8770 ch_vsi->vsi_num); 8771 } 8772 8773 /* reconfig RSS for main VSI */ 8774 if (main_vsi->ch_rss_size) 8775 ice_vsi_cfg_rss_lut_key(main_vsi); 8776 8777 return 0; 8778 8779 cleanup: 8780 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8781 return err; 8782 } 8783 8784 /** 8785 * ice_create_q_channels - Add queue channel for the given TCs 8786 * @vsi: VSI to be configured 8787 * 8788 * Configures queue channel mapping to the given TCs 8789 */ 8790 static int ice_create_q_channels(struct ice_vsi *vsi) 8791 { 8792 struct ice_pf *pf = vsi->back; 8793 struct ice_channel *ch; 8794 int ret = 0, i; 8795 8796 ice_for_each_chnl_tc(i) { 8797 if (!(vsi->all_enatc & BIT(i))) 8798 continue; 8799 8800 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8801 if (!ch) { 8802 ret = -ENOMEM; 8803 goto err_free; 8804 } 8805 INIT_LIST_HEAD(&ch->list); 8806 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8807 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8808 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8809 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8810 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8811 8812 /* convert to Kbits/s */ 8813 if (ch->max_tx_rate) 8814 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8815 ICE_BW_KBPS_DIVISOR); 8816 if (ch->min_tx_rate) 8817 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8818 ICE_BW_KBPS_DIVISOR); 8819 8820 ret = ice_create_q_channel(vsi, ch); 8821 if (ret) { 8822 dev_err(ice_pf_to_dev(pf), 8823 "failed creating channel TC:%d\n", i); 8824 kfree(ch); 8825 goto err_free; 8826 } 8827 list_add_tail(&ch->list, &vsi->ch_list); 8828 vsi->tc_map_vsi[i] = ch->ch_vsi; 8829 dev_dbg(ice_pf_to_dev(pf), 8830 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8831 } 8832 return 0; 8833 8834 err_free: 8835 ice_remove_q_channels(vsi, false); 8836 8837 return ret; 8838 } 8839 8840 /** 8841 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8842 * @netdev: net device to configure 8843 * @type_data: TC offload data 8844 */ 8845 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8846 { 8847 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8848 struct ice_netdev_priv *np = netdev_priv(netdev); 8849 struct ice_vsi *vsi = np->vsi; 8850 struct ice_pf *pf = vsi->back; 8851 u16 mode, ena_tc_qdisc = 0; 8852 int cur_txq, cur_rxq; 8853 u8 hw = 0, num_tcf; 8854 struct device *dev; 8855 int ret, i; 8856 8857 dev = ice_pf_to_dev(pf); 8858 num_tcf = mqprio_qopt->qopt.num_tc; 8859 hw = mqprio_qopt->qopt.hw; 8860 mode = mqprio_qopt->mode; 8861 if (!hw) { 8862 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8863 vsi->ch_rss_size = 0; 8864 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8865 goto config_tcf; 8866 } 8867 8868 /* Generate queue region map for number of TCF requested */ 8869 for (i = 0; i < num_tcf; i++) 8870 ena_tc_qdisc |= BIT(i); 8871 8872 switch (mode) { 8873 case TC_MQPRIO_MODE_CHANNEL: 8874 8875 if (pf->hw.port_info->is_custom_tx_enabled) { 8876 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8877 return -EBUSY; 8878 } 8879 ice_tear_down_devlink_rate_tree(pf); 8880 8881 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8882 if (ret) { 8883 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8884 ret); 8885 return ret; 8886 } 8887 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8888 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8889 /* don't assume state of hw_tc_offload during driver load 8890 * and set the flag for TC flower filter if hw_tc_offload 8891 * already ON 8892 */ 8893 if (vsi->netdev->features & NETIF_F_HW_TC) 8894 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8895 break; 8896 default: 8897 return -EINVAL; 8898 } 8899 8900 config_tcf: 8901 8902 /* Requesting same TCF configuration as already enabled */ 8903 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8904 mode != TC_MQPRIO_MODE_CHANNEL) 8905 return 0; 8906 8907 /* Pause VSI queues */ 8908 ice_dis_vsi(vsi, true); 8909 8910 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8911 ice_remove_q_channels(vsi, true); 8912 8913 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8914 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8915 num_online_cpus()); 8916 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8917 num_online_cpus()); 8918 } else { 8919 /* logic to rebuild VSI, same like ethtool -L */ 8920 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8921 8922 for (i = 0; i < num_tcf; i++) { 8923 if (!(ena_tc_qdisc & BIT(i))) 8924 continue; 8925 8926 offset = vsi->mqprio_qopt.qopt.offset[i]; 8927 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8928 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8929 } 8930 vsi->req_txq = offset + qcount_tx; 8931 vsi->req_rxq = offset + qcount_rx; 8932 8933 /* store away original rss_size info, so that it gets reused 8934 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8935 * determine, what should be the rss_sizefor main VSI 8936 */ 8937 vsi->orig_rss_size = vsi->rss_size; 8938 } 8939 8940 /* save current values of Tx and Rx queues before calling VSI rebuild 8941 * for fallback option 8942 */ 8943 cur_txq = vsi->num_txq; 8944 cur_rxq = vsi->num_rxq; 8945 8946 /* proceed with rebuild main VSI using correct number of queues */ 8947 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8948 if (ret) { 8949 /* fallback to current number of queues */ 8950 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8951 vsi->req_txq = cur_txq; 8952 vsi->req_rxq = cur_rxq; 8953 clear_bit(ICE_RESET_FAILED, pf->state); 8954 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8955 dev_err(dev, "Rebuild of main VSI failed again\n"); 8956 return ret; 8957 } 8958 } 8959 8960 vsi->all_numtc = num_tcf; 8961 vsi->all_enatc = ena_tc_qdisc; 8962 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8963 if (ret) { 8964 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8965 vsi->vsi_num); 8966 goto exit; 8967 } 8968 8969 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8970 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8971 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8972 8973 /* set TC0 rate limit if specified */ 8974 if (max_tx_rate || min_tx_rate) { 8975 /* convert to Kbits/s */ 8976 if (max_tx_rate) 8977 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8978 if (min_tx_rate) 8979 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8980 8981 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8982 if (!ret) { 8983 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8984 max_tx_rate, min_tx_rate, vsi->vsi_num); 8985 } else { 8986 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8987 max_tx_rate, min_tx_rate, vsi->vsi_num); 8988 goto exit; 8989 } 8990 } 8991 ret = ice_create_q_channels(vsi); 8992 if (ret) { 8993 netdev_err(netdev, "failed configuring queue channels\n"); 8994 goto exit; 8995 } else { 8996 netdev_dbg(netdev, "successfully configured channels\n"); 8997 } 8998 } 8999 9000 if (vsi->ch_rss_size) 9001 ice_vsi_cfg_rss_lut_key(vsi); 9002 9003 exit: 9004 /* if error, reset the all_numtc and all_enatc */ 9005 if (ret) { 9006 vsi->all_numtc = 0; 9007 vsi->all_enatc = 0; 9008 } 9009 /* resume VSI */ 9010 ice_ena_vsi(vsi, true); 9011 9012 return ret; 9013 } 9014 9015 static LIST_HEAD(ice_block_cb_list); 9016 9017 static int 9018 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9019 void *type_data) 9020 { 9021 struct ice_netdev_priv *np = netdev_priv(netdev); 9022 struct ice_pf *pf = np->vsi->back; 9023 int err; 9024 9025 switch (type) { 9026 case TC_SETUP_BLOCK: 9027 return flow_block_cb_setup_simple(type_data, 9028 &ice_block_cb_list, 9029 ice_setup_tc_block_cb, 9030 np, np, true); 9031 case TC_SETUP_QDISC_MQPRIO: 9032 /* setup traffic classifier for receive side */ 9033 mutex_lock(&pf->tc_mutex); 9034 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9035 mutex_unlock(&pf->tc_mutex); 9036 return err; 9037 default: 9038 return -EOPNOTSUPP; 9039 } 9040 return -EOPNOTSUPP; 9041 } 9042 9043 static struct ice_indr_block_priv * 9044 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9045 struct net_device *netdev) 9046 { 9047 struct ice_indr_block_priv *cb_priv; 9048 9049 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9050 if (!cb_priv->netdev) 9051 return NULL; 9052 if (cb_priv->netdev == netdev) 9053 return cb_priv; 9054 } 9055 return NULL; 9056 } 9057 9058 static int 9059 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9060 void *indr_priv) 9061 { 9062 struct ice_indr_block_priv *priv = indr_priv; 9063 struct ice_netdev_priv *np = priv->np; 9064 9065 switch (type) { 9066 case TC_SETUP_CLSFLOWER: 9067 return ice_setup_tc_cls_flower(np, priv->netdev, 9068 (struct flow_cls_offload *) 9069 type_data); 9070 default: 9071 return -EOPNOTSUPP; 9072 } 9073 } 9074 9075 static int 9076 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9077 struct ice_netdev_priv *np, 9078 struct flow_block_offload *f, void *data, 9079 void (*cleanup)(struct flow_block_cb *block_cb)) 9080 { 9081 struct ice_indr_block_priv *indr_priv; 9082 struct flow_block_cb *block_cb; 9083 9084 if (!ice_is_tunnel_supported(netdev) && 9085 !(is_vlan_dev(netdev) && 9086 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9087 return -EOPNOTSUPP; 9088 9089 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9090 return -EOPNOTSUPP; 9091 9092 switch (f->command) { 9093 case FLOW_BLOCK_BIND: 9094 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9095 if (indr_priv) 9096 return -EEXIST; 9097 9098 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9099 if (!indr_priv) 9100 return -ENOMEM; 9101 9102 indr_priv->netdev = netdev; 9103 indr_priv->np = np; 9104 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9105 9106 block_cb = 9107 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9108 indr_priv, indr_priv, 9109 ice_rep_indr_tc_block_unbind, 9110 f, netdev, sch, data, np, 9111 cleanup); 9112 9113 if (IS_ERR(block_cb)) { 9114 list_del(&indr_priv->list); 9115 kfree(indr_priv); 9116 return PTR_ERR(block_cb); 9117 } 9118 flow_block_cb_add(block_cb, f); 9119 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9120 break; 9121 case FLOW_BLOCK_UNBIND: 9122 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9123 if (!indr_priv) 9124 return -ENOENT; 9125 9126 block_cb = flow_block_cb_lookup(f->block, 9127 ice_indr_setup_block_cb, 9128 indr_priv); 9129 if (!block_cb) 9130 return -ENOENT; 9131 9132 flow_indr_block_cb_remove(block_cb, f); 9133 9134 list_del(&block_cb->driver_list); 9135 break; 9136 default: 9137 return -EOPNOTSUPP; 9138 } 9139 return 0; 9140 } 9141 9142 static int 9143 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9144 void *cb_priv, enum tc_setup_type type, void *type_data, 9145 void *data, 9146 void (*cleanup)(struct flow_block_cb *block_cb)) 9147 { 9148 switch (type) { 9149 case TC_SETUP_BLOCK: 9150 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9151 data, cleanup); 9152 9153 default: 9154 return -EOPNOTSUPP; 9155 } 9156 } 9157 9158 /** 9159 * ice_open - Called when a network interface becomes active 9160 * @netdev: network interface device structure 9161 * 9162 * The open entry point is called when a network interface is made 9163 * active by the system (IFF_UP). At this point all resources needed 9164 * for transmit and receive operations are allocated, the interrupt 9165 * handler is registered with the OS, the netdev watchdog is enabled, 9166 * and the stack is notified that the interface is ready. 9167 * 9168 * Returns 0 on success, negative value on failure 9169 */ 9170 int ice_open(struct net_device *netdev) 9171 { 9172 struct ice_netdev_priv *np = netdev_priv(netdev); 9173 struct ice_pf *pf = np->vsi->back; 9174 9175 if (ice_is_reset_in_progress(pf->state)) { 9176 netdev_err(netdev, "can't open net device while reset is in progress"); 9177 return -EBUSY; 9178 } 9179 9180 return ice_open_internal(netdev); 9181 } 9182 9183 /** 9184 * ice_open_internal - Called when a network interface becomes active 9185 * @netdev: network interface device structure 9186 * 9187 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9188 * handling routine 9189 * 9190 * Returns 0 on success, negative value on failure 9191 */ 9192 int ice_open_internal(struct net_device *netdev) 9193 { 9194 struct ice_netdev_priv *np = netdev_priv(netdev); 9195 struct ice_vsi *vsi = np->vsi; 9196 struct ice_pf *pf = vsi->back; 9197 struct ice_port_info *pi; 9198 int err; 9199 9200 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9201 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9202 return -EIO; 9203 } 9204 9205 netif_carrier_off(netdev); 9206 9207 pi = vsi->port_info; 9208 err = ice_update_link_info(pi); 9209 if (err) { 9210 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9211 return err; 9212 } 9213 9214 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9215 9216 /* Set PHY if there is media, otherwise, turn off PHY */ 9217 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9218 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9219 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9220 err = ice_init_phy_user_cfg(pi); 9221 if (err) { 9222 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9223 err); 9224 return err; 9225 } 9226 } 9227 9228 err = ice_configure_phy(vsi); 9229 if (err) { 9230 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9231 err); 9232 return err; 9233 } 9234 } else { 9235 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9236 ice_set_link(vsi, false); 9237 } 9238 9239 err = ice_vsi_open(vsi); 9240 if (err) 9241 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9242 vsi->vsi_num, vsi->vsw->sw_id); 9243 9244 /* Update existing tunnels information */ 9245 udp_tunnel_get_rx_info(netdev); 9246 9247 return err; 9248 } 9249 9250 /** 9251 * ice_stop - Disables a network interface 9252 * @netdev: network interface device structure 9253 * 9254 * The stop entry point is called when an interface is de-activated by the OS, 9255 * and the netdevice enters the DOWN state. The hardware is still under the 9256 * driver's control, but the netdev interface is disabled. 9257 * 9258 * Returns success only - not allowed to fail 9259 */ 9260 int ice_stop(struct net_device *netdev) 9261 { 9262 struct ice_netdev_priv *np = netdev_priv(netdev); 9263 struct ice_vsi *vsi = np->vsi; 9264 struct ice_pf *pf = vsi->back; 9265 9266 if (ice_is_reset_in_progress(pf->state)) { 9267 netdev_err(netdev, "can't stop net device while reset is in progress"); 9268 return -EBUSY; 9269 } 9270 9271 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9272 int link_err = ice_force_phys_link_state(vsi, false); 9273 9274 if (link_err) { 9275 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9276 vsi->vsi_num, link_err); 9277 return -EIO; 9278 } 9279 } 9280 9281 ice_vsi_close(vsi); 9282 9283 return 0; 9284 } 9285 9286 /** 9287 * ice_features_check - Validate encapsulated packet conforms to limits 9288 * @skb: skb buffer 9289 * @netdev: This port's netdev 9290 * @features: Offload features that the stack believes apply 9291 */ 9292 static netdev_features_t 9293 ice_features_check(struct sk_buff *skb, 9294 struct net_device __always_unused *netdev, 9295 netdev_features_t features) 9296 { 9297 bool gso = skb_is_gso(skb); 9298 size_t len; 9299 9300 /* No point in doing any of this if neither checksum nor GSO are 9301 * being requested for this frame. We can rule out both by just 9302 * checking for CHECKSUM_PARTIAL 9303 */ 9304 if (skb->ip_summed != CHECKSUM_PARTIAL) 9305 return features; 9306 9307 /* We cannot support GSO if the MSS is going to be less than 9308 * 64 bytes. If it is then we need to drop support for GSO. 9309 */ 9310 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9311 features &= ~NETIF_F_GSO_MASK; 9312 9313 len = skb_network_offset(skb); 9314 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9315 goto out_rm_features; 9316 9317 len = skb_network_header_len(skb); 9318 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9319 goto out_rm_features; 9320 9321 if (skb->encapsulation) { 9322 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9323 * the case of IPIP frames, the transport header pointer is 9324 * after the inner header! So check to make sure that this 9325 * is a GRE or UDP_TUNNEL frame before doing that math. 9326 */ 9327 if (gso && (skb_shinfo(skb)->gso_type & 9328 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9329 len = skb_inner_network_header(skb) - 9330 skb_transport_header(skb); 9331 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9332 goto out_rm_features; 9333 } 9334 9335 len = skb_inner_network_header_len(skb); 9336 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9337 goto out_rm_features; 9338 } 9339 9340 return features; 9341 out_rm_features: 9342 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9343 } 9344 9345 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9346 .ndo_open = ice_open, 9347 .ndo_stop = ice_stop, 9348 .ndo_start_xmit = ice_start_xmit, 9349 .ndo_set_mac_address = ice_set_mac_address, 9350 .ndo_validate_addr = eth_validate_addr, 9351 .ndo_change_mtu = ice_change_mtu, 9352 .ndo_get_stats64 = ice_get_stats64, 9353 .ndo_tx_timeout = ice_tx_timeout, 9354 .ndo_bpf = ice_xdp_safe_mode, 9355 }; 9356 9357 static const struct net_device_ops ice_netdev_ops = { 9358 .ndo_open = ice_open, 9359 .ndo_stop = ice_stop, 9360 .ndo_start_xmit = ice_start_xmit, 9361 .ndo_select_queue = ice_select_queue, 9362 .ndo_features_check = ice_features_check, 9363 .ndo_fix_features = ice_fix_features, 9364 .ndo_set_rx_mode = ice_set_rx_mode, 9365 .ndo_set_mac_address = ice_set_mac_address, 9366 .ndo_validate_addr = eth_validate_addr, 9367 .ndo_change_mtu = ice_change_mtu, 9368 .ndo_get_stats64 = ice_get_stats64, 9369 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9370 .ndo_eth_ioctl = ice_eth_ioctl, 9371 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9372 .ndo_set_vf_mac = ice_set_vf_mac, 9373 .ndo_get_vf_config = ice_get_vf_cfg, 9374 .ndo_set_vf_trust = ice_set_vf_trust, 9375 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9376 .ndo_set_vf_link_state = ice_set_vf_link_state, 9377 .ndo_get_vf_stats = ice_get_vf_stats, 9378 .ndo_set_vf_rate = ice_set_vf_bw, 9379 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9380 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9381 .ndo_setup_tc = ice_setup_tc, 9382 .ndo_set_features = ice_set_features, 9383 .ndo_bridge_getlink = ice_bridge_getlink, 9384 .ndo_bridge_setlink = ice_bridge_setlink, 9385 .ndo_fdb_add = ice_fdb_add, 9386 .ndo_fdb_del = ice_fdb_del, 9387 #ifdef CONFIG_RFS_ACCEL 9388 .ndo_rx_flow_steer = ice_rx_flow_steer, 9389 #endif 9390 .ndo_tx_timeout = ice_tx_timeout, 9391 .ndo_bpf = ice_xdp, 9392 .ndo_xdp_xmit = ice_xdp_xmit, 9393 .ndo_xsk_wakeup = ice_xsk_wakeup, 9394 }; 9395