1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 25 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 26 static const char ice_driver_string[] = DRV_SUMMARY; 27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 28 29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 30 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 31 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 32 33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 34 MODULE_DESCRIPTION(DRV_SUMMARY); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 37 38 static int debug = -1; 39 module_param(debug, int, 0644); 40 #ifndef CONFIG_DYNAMIC_DEBUG 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 42 #else 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 44 #endif /* !CONFIG_DYNAMIC_DEBUG */ 45 46 static DEFINE_IDA(ice_aux_ida); 47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 48 EXPORT_SYMBOL(ice_xdp_locking_key); 49 50 static struct workqueue_struct *ice_wq; 51 static const struct net_device_ops ice_netdev_safe_mode_ops; 52 static const struct net_device_ops ice_netdev_ops; 53 54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 55 56 static void ice_vsi_release_all(struct ice_pf *pf); 57 58 static int ice_rebuild_channels(struct ice_pf *pf); 59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 60 61 bool netif_is_ice(struct net_device *dev) 62 { 63 return dev && (dev->netdev_ops == &ice_netdev_ops); 64 } 65 66 /** 67 * ice_get_tx_pending - returns number of Tx descriptors not processed 68 * @ring: the ring of descriptors 69 */ 70 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 71 { 72 u16 head, tail; 73 74 head = ring->next_to_clean; 75 tail = ring->next_to_use; 76 77 if (head != tail) 78 return (head < tail) ? 79 tail - head : (tail + ring->count - head); 80 return 0; 81 } 82 83 /** 84 * ice_check_for_hang_subtask - check for and recover hung queues 85 * @pf: pointer to PF struct 86 */ 87 static void ice_check_for_hang_subtask(struct ice_pf *pf) 88 { 89 struct ice_vsi *vsi = NULL; 90 struct ice_hw *hw; 91 unsigned int i; 92 int packets; 93 u32 v; 94 95 ice_for_each_vsi(pf, v) 96 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 97 vsi = pf->vsi[v]; 98 break; 99 } 100 101 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 102 return; 103 104 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 105 return; 106 107 hw = &vsi->back->hw; 108 109 ice_for_each_txq(vsi, i) { 110 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 111 112 if (!tx_ring) 113 continue; 114 if (ice_ring_ch_enabled(tx_ring)) 115 continue; 116 117 if (tx_ring->desc) { 118 /* If packet counter has not changed the queue is 119 * likely stalled, so force an interrupt for this 120 * queue. 121 * 122 * prev_pkt would be negative if there was no 123 * pending work. 124 */ 125 packets = tx_ring->stats.pkts & INT_MAX; 126 if (tx_ring->tx_stats.prev_pkt == packets) { 127 /* Trigger sw interrupt to revive the queue */ 128 ice_trigger_sw_intr(hw, tx_ring->q_vector); 129 continue; 130 } 131 132 /* Memory barrier between read of packet count and call 133 * to ice_get_tx_pending() 134 */ 135 smp_rmb(); 136 tx_ring->tx_stats.prev_pkt = 137 ice_get_tx_pending(tx_ring) ? packets : -1; 138 } 139 } 140 } 141 142 /** 143 * ice_init_mac_fltr - Set initial MAC filters 144 * @pf: board private structure 145 * 146 * Set initial set of MAC filters for PF VSI; configure filters for permanent 147 * address and broadcast address. If an error is encountered, netdevice will be 148 * unregistered. 149 */ 150 static int ice_init_mac_fltr(struct ice_pf *pf) 151 { 152 enum ice_status status; 153 struct ice_vsi *vsi; 154 u8 *perm_addr; 155 156 vsi = ice_get_main_vsi(pf); 157 if (!vsi) 158 return -EINVAL; 159 160 perm_addr = vsi->port_info->mac.perm_addr; 161 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 162 if (status) 163 return -EIO; 164 165 return 0; 166 } 167 168 /** 169 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 170 * @netdev: the net device on which the sync is happening 171 * @addr: MAC address to sync 172 * 173 * This is a callback function which is called by the in kernel device sync 174 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 175 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 176 * MAC filters from the hardware. 177 */ 178 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 179 { 180 struct ice_netdev_priv *np = netdev_priv(netdev); 181 struct ice_vsi *vsi = np->vsi; 182 183 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 184 ICE_FWD_TO_VSI)) 185 return -EINVAL; 186 187 return 0; 188 } 189 190 /** 191 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 192 * @netdev: the net device on which the unsync is happening 193 * @addr: MAC address to unsync 194 * 195 * This is a callback function which is called by the in kernel device unsync 196 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 197 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 198 * delete the MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 /* Under some circumstances, we might receive a request to delete our 206 * own device address from our uc list. Because we store the device 207 * address in the VSI's MAC filter list, we need to ignore such 208 * requests and not delete our device address from this list. 209 */ 210 if (ether_addr_equal(addr, netdev->dev_addr)) 211 return 0; 212 213 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 214 ICE_FWD_TO_VSI)) 215 return -EINVAL; 216 217 return 0; 218 } 219 220 /** 221 * ice_vsi_fltr_changed - check if filter state changed 222 * @vsi: VSI to be checked 223 * 224 * returns true if filter state has changed, false otherwise. 225 */ 226 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 227 { 228 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 229 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 230 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 231 } 232 233 /** 234 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 235 * @vsi: the VSI being configured 236 * @promisc_m: mask of promiscuous config bits 237 * @set_promisc: enable or disable promisc flag request 238 * 239 */ 240 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 241 { 242 struct ice_hw *hw = &vsi->back->hw; 243 enum ice_status status = 0; 244 245 if (vsi->type != ICE_VSI_PF) 246 return 0; 247 248 if (vsi->num_vlan > 1) { 249 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 250 set_promisc); 251 } else { 252 if (set_promisc) 253 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 254 0); 255 else 256 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 257 0); 258 } 259 260 if (status) 261 return -EIO; 262 263 return 0; 264 } 265 266 /** 267 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 268 * @vsi: ptr to the VSI 269 * 270 * Push any outstanding VSI filter changes through the AdminQ. 271 */ 272 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 273 { 274 struct device *dev = ice_pf_to_dev(vsi->back); 275 struct net_device *netdev = vsi->netdev; 276 bool promisc_forced_on = false; 277 struct ice_pf *pf = vsi->back; 278 struct ice_hw *hw = &pf->hw; 279 enum ice_status status = 0; 280 u32 changed_flags = 0; 281 u8 promisc_m; 282 int err = 0; 283 284 if (!vsi->netdev) 285 return -EINVAL; 286 287 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 288 usleep_range(1000, 2000); 289 290 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 291 vsi->current_netdev_flags = vsi->netdev->flags; 292 293 INIT_LIST_HEAD(&vsi->tmp_sync_list); 294 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 295 296 if (ice_vsi_fltr_changed(vsi)) { 297 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 298 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 299 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 300 301 /* grab the netdev's addr_list_lock */ 302 netif_addr_lock_bh(netdev); 303 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 304 ice_add_mac_to_unsync_list); 305 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 306 ice_add_mac_to_unsync_list); 307 /* our temp lists are populated. release lock */ 308 netif_addr_unlock_bh(netdev); 309 } 310 311 /* Remove MAC addresses in the unsync list */ 312 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 313 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 314 if (status) { 315 netdev_err(netdev, "Failed to delete MAC filters\n"); 316 /* if we failed because of alloc failures, just bail */ 317 if (status == ICE_ERR_NO_MEMORY) { 318 err = -ENOMEM; 319 goto out; 320 } 321 } 322 323 /* Add MAC addresses in the sync list */ 324 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 325 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 326 /* If filter is added successfully or already exists, do not go into 327 * 'if' condition and report it as error. Instead continue processing 328 * rest of the function. 329 */ 330 if (status && status != ICE_ERR_ALREADY_EXISTS) { 331 netdev_err(netdev, "Failed to add MAC filters\n"); 332 /* If there is no more space for new umac filters, VSI 333 * should go into promiscuous mode. There should be some 334 * space reserved for promiscuous filters. 335 */ 336 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 337 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 338 vsi->state)) { 339 promisc_forced_on = true; 340 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 341 vsi->vsi_num); 342 } else { 343 err = -EIO; 344 goto out; 345 } 346 } 347 /* check for changes in promiscuous modes */ 348 if (changed_flags & IFF_ALLMULTI) { 349 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 350 if (vsi->num_vlan > 1) 351 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 352 else 353 promisc_m = ICE_MCAST_PROMISC_BITS; 354 355 err = ice_cfg_promisc(vsi, promisc_m, true); 356 if (err) { 357 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 358 vsi->vsi_num); 359 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 360 goto out_promisc; 361 } 362 } else { 363 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 364 if (vsi->num_vlan > 1) 365 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 366 else 367 promisc_m = ICE_MCAST_PROMISC_BITS; 368 369 err = ice_cfg_promisc(vsi, promisc_m, false); 370 if (err) { 371 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 372 vsi->vsi_num); 373 vsi->current_netdev_flags |= IFF_ALLMULTI; 374 goto out_promisc; 375 } 376 } 377 } 378 379 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 380 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 381 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 382 if (vsi->current_netdev_flags & IFF_PROMISC) { 383 /* Apply Rx filter rule to get traffic from wire */ 384 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 385 err = ice_set_dflt_vsi(pf->first_sw, vsi); 386 if (err && err != -EEXIST) { 387 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 388 err, vsi->vsi_num); 389 vsi->current_netdev_flags &= 390 ~IFF_PROMISC; 391 goto out_promisc; 392 } 393 ice_cfg_vlan_pruning(vsi, false, false); 394 } 395 } else { 396 /* Clear Rx filter to remove traffic from wire */ 397 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 398 err = ice_clear_dflt_vsi(pf->first_sw); 399 if (err) { 400 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 401 err, vsi->vsi_num); 402 vsi->current_netdev_flags |= 403 IFF_PROMISC; 404 goto out_promisc; 405 } 406 if (vsi->num_vlan > 1) 407 ice_cfg_vlan_pruning(vsi, true, false); 408 } 409 } 410 } 411 goto exit; 412 413 out_promisc: 414 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 415 goto exit; 416 out: 417 /* if something went wrong then set the changed flag so we try again */ 418 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 419 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 420 exit: 421 clear_bit(ICE_CFG_BUSY, vsi->state); 422 return err; 423 } 424 425 /** 426 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 427 * @pf: board private structure 428 */ 429 static void ice_sync_fltr_subtask(struct ice_pf *pf) 430 { 431 int v; 432 433 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 434 return; 435 436 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 437 438 ice_for_each_vsi(pf, v) 439 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 440 ice_vsi_sync_fltr(pf->vsi[v])) { 441 /* come back and try again later */ 442 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 443 break; 444 } 445 } 446 447 /** 448 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 449 * @pf: the PF 450 * @locked: is the rtnl_lock already held 451 */ 452 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 453 { 454 int node; 455 int v; 456 457 ice_for_each_vsi(pf, v) 458 if (pf->vsi[v]) 459 ice_dis_vsi(pf->vsi[v], locked); 460 461 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 462 pf->pf_agg_node[node].num_vsis = 0; 463 464 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 465 pf->vf_agg_node[node].num_vsis = 0; 466 } 467 468 /** 469 * ice_prepare_for_reset - prep for reset 470 * @pf: board private structure 471 * @reset_type: reset type requested 472 * 473 * Inform or close all dependent features in prep for reset. 474 */ 475 static void 476 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 477 { 478 struct ice_hw *hw = &pf->hw; 479 struct ice_vsi *vsi; 480 unsigned int i; 481 482 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 483 484 /* already prepared for reset */ 485 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 486 return; 487 488 ice_unplug_aux_dev(pf); 489 490 /* Notify VFs of impending reset */ 491 if (ice_check_sq_alive(hw, &hw->mailboxq)) 492 ice_vc_notify_reset(pf); 493 494 /* Disable VFs until reset is completed */ 495 ice_for_each_vf(pf, i) 496 ice_set_vf_state_qs_dis(&pf->vf[i]); 497 498 /* release ADQ specific HW and SW resources */ 499 vsi = ice_get_main_vsi(pf); 500 if (!vsi) 501 goto skip; 502 503 /* to be on safe side, reset orig_rss_size so that normal flow 504 * of deciding rss_size can take precedence 505 */ 506 vsi->orig_rss_size = 0; 507 508 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 509 if (reset_type == ICE_RESET_PFR) { 510 vsi->old_ena_tc = vsi->all_enatc; 511 vsi->old_numtc = vsi->all_numtc; 512 } else { 513 ice_remove_q_channels(vsi, true); 514 515 /* for other reset type, do not support channel rebuild 516 * hence reset needed info 517 */ 518 vsi->old_ena_tc = 0; 519 vsi->all_enatc = 0; 520 vsi->old_numtc = 0; 521 vsi->all_numtc = 0; 522 vsi->req_txq = 0; 523 vsi->req_rxq = 0; 524 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 525 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 526 } 527 } 528 skip: 529 530 /* clear SW filtering DB */ 531 ice_clear_hw_tbls(hw); 532 /* disable the VSIs and their queues that are not already DOWN */ 533 ice_pf_dis_all_vsi(pf, false); 534 535 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 536 ice_ptp_release(pf); 537 538 if (hw->port_info) 539 ice_sched_clear_port(hw->port_info); 540 541 ice_shutdown_all_ctrlq(hw); 542 543 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 544 } 545 546 /** 547 * ice_do_reset - Initiate one of many types of resets 548 * @pf: board private structure 549 * @reset_type: reset type requested before this function was called. 550 */ 551 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 552 { 553 struct device *dev = ice_pf_to_dev(pf); 554 struct ice_hw *hw = &pf->hw; 555 556 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 557 558 ice_prepare_for_reset(pf, reset_type); 559 560 /* trigger the reset */ 561 if (ice_reset(hw, reset_type)) { 562 dev_err(dev, "reset %d failed\n", reset_type); 563 set_bit(ICE_RESET_FAILED, pf->state); 564 clear_bit(ICE_RESET_OICR_RECV, pf->state); 565 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 566 clear_bit(ICE_PFR_REQ, pf->state); 567 clear_bit(ICE_CORER_REQ, pf->state); 568 clear_bit(ICE_GLOBR_REQ, pf->state); 569 wake_up(&pf->reset_wait_queue); 570 return; 571 } 572 573 /* PFR is a bit of a special case because it doesn't result in an OICR 574 * interrupt. So for PFR, rebuild after the reset and clear the reset- 575 * associated state bits. 576 */ 577 if (reset_type == ICE_RESET_PFR) { 578 pf->pfr_count++; 579 ice_rebuild(pf, reset_type); 580 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 581 clear_bit(ICE_PFR_REQ, pf->state); 582 wake_up(&pf->reset_wait_queue); 583 ice_reset_all_vfs(pf, true); 584 } 585 } 586 587 /** 588 * ice_reset_subtask - Set up for resetting the device and driver 589 * @pf: board private structure 590 */ 591 static void ice_reset_subtask(struct ice_pf *pf) 592 { 593 enum ice_reset_req reset_type = ICE_RESET_INVAL; 594 595 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 596 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 597 * of reset is pending and sets bits in pf->state indicating the reset 598 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 599 * prepare for pending reset if not already (for PF software-initiated 600 * global resets the software should already be prepared for it as 601 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 602 * by firmware or software on other PFs, that bit is not set so prepare 603 * for the reset now), poll for reset done, rebuild and return. 604 */ 605 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 606 /* Perform the largest reset requested */ 607 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 608 reset_type = ICE_RESET_CORER; 609 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 610 reset_type = ICE_RESET_GLOBR; 611 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 612 reset_type = ICE_RESET_EMPR; 613 /* return if no valid reset type requested */ 614 if (reset_type == ICE_RESET_INVAL) 615 return; 616 ice_prepare_for_reset(pf, reset_type); 617 618 /* make sure we are ready to rebuild */ 619 if (ice_check_reset(&pf->hw)) { 620 set_bit(ICE_RESET_FAILED, pf->state); 621 } else { 622 /* done with reset. start rebuild */ 623 pf->hw.reset_ongoing = false; 624 ice_rebuild(pf, reset_type); 625 /* clear bit to resume normal operations, but 626 * ICE_NEEDS_RESTART bit is set in case rebuild failed 627 */ 628 clear_bit(ICE_RESET_OICR_RECV, pf->state); 629 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 630 clear_bit(ICE_PFR_REQ, pf->state); 631 clear_bit(ICE_CORER_REQ, pf->state); 632 clear_bit(ICE_GLOBR_REQ, pf->state); 633 wake_up(&pf->reset_wait_queue); 634 ice_reset_all_vfs(pf, true); 635 } 636 637 return; 638 } 639 640 /* No pending resets to finish processing. Check for new resets */ 641 if (test_bit(ICE_PFR_REQ, pf->state)) 642 reset_type = ICE_RESET_PFR; 643 if (test_bit(ICE_CORER_REQ, pf->state)) 644 reset_type = ICE_RESET_CORER; 645 if (test_bit(ICE_GLOBR_REQ, pf->state)) 646 reset_type = ICE_RESET_GLOBR; 647 /* If no valid reset type requested just return */ 648 if (reset_type == ICE_RESET_INVAL) 649 return; 650 651 /* reset if not already down or busy */ 652 if (!test_bit(ICE_DOWN, pf->state) && 653 !test_bit(ICE_CFG_BUSY, pf->state)) { 654 ice_do_reset(pf, reset_type); 655 } 656 } 657 658 /** 659 * ice_print_topo_conflict - print topology conflict message 660 * @vsi: the VSI whose topology status is being checked 661 */ 662 static void ice_print_topo_conflict(struct ice_vsi *vsi) 663 { 664 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 665 case ICE_AQ_LINK_TOPO_CONFLICT: 666 case ICE_AQ_LINK_MEDIA_CONFLICT: 667 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 668 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 669 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 670 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 671 break; 672 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 673 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 674 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 675 else 676 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 677 break; 678 default: 679 break; 680 } 681 } 682 683 /** 684 * ice_print_link_msg - print link up or down message 685 * @vsi: the VSI whose link status is being queried 686 * @isup: boolean for if the link is now up or down 687 */ 688 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 689 { 690 struct ice_aqc_get_phy_caps_data *caps; 691 const char *an_advertised; 692 enum ice_status status; 693 const char *fec_req; 694 const char *speed; 695 const char *fec; 696 const char *fc; 697 const char *an; 698 699 if (!vsi) 700 return; 701 702 if (vsi->current_isup == isup) 703 return; 704 705 vsi->current_isup = isup; 706 707 if (!isup) { 708 netdev_info(vsi->netdev, "NIC Link is Down\n"); 709 return; 710 } 711 712 switch (vsi->port_info->phy.link_info.link_speed) { 713 case ICE_AQ_LINK_SPEED_100GB: 714 speed = "100 G"; 715 break; 716 case ICE_AQ_LINK_SPEED_50GB: 717 speed = "50 G"; 718 break; 719 case ICE_AQ_LINK_SPEED_40GB: 720 speed = "40 G"; 721 break; 722 case ICE_AQ_LINK_SPEED_25GB: 723 speed = "25 G"; 724 break; 725 case ICE_AQ_LINK_SPEED_20GB: 726 speed = "20 G"; 727 break; 728 case ICE_AQ_LINK_SPEED_10GB: 729 speed = "10 G"; 730 break; 731 case ICE_AQ_LINK_SPEED_5GB: 732 speed = "5 G"; 733 break; 734 case ICE_AQ_LINK_SPEED_2500MB: 735 speed = "2.5 G"; 736 break; 737 case ICE_AQ_LINK_SPEED_1000MB: 738 speed = "1 G"; 739 break; 740 case ICE_AQ_LINK_SPEED_100MB: 741 speed = "100 M"; 742 break; 743 default: 744 speed = "Unknown "; 745 break; 746 } 747 748 switch (vsi->port_info->fc.current_mode) { 749 case ICE_FC_FULL: 750 fc = "Rx/Tx"; 751 break; 752 case ICE_FC_TX_PAUSE: 753 fc = "Tx"; 754 break; 755 case ICE_FC_RX_PAUSE: 756 fc = "Rx"; 757 break; 758 case ICE_FC_NONE: 759 fc = "None"; 760 break; 761 default: 762 fc = "Unknown"; 763 break; 764 } 765 766 /* Get FEC mode based on negotiated link info */ 767 switch (vsi->port_info->phy.link_info.fec_info) { 768 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 769 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 770 fec = "RS-FEC"; 771 break; 772 case ICE_AQ_LINK_25G_KR_FEC_EN: 773 fec = "FC-FEC/BASE-R"; 774 break; 775 default: 776 fec = "NONE"; 777 break; 778 } 779 780 /* check if autoneg completed, might be false due to not supported */ 781 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 782 an = "True"; 783 else 784 an = "False"; 785 786 /* Get FEC mode requested based on PHY caps last SW configuration */ 787 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 788 if (!caps) { 789 fec_req = "Unknown"; 790 an_advertised = "Unknown"; 791 goto done; 792 } 793 794 status = ice_aq_get_phy_caps(vsi->port_info, false, 795 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 796 if (status) 797 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 798 799 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 800 801 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 802 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 803 fec_req = "RS-FEC"; 804 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 805 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 806 fec_req = "FC-FEC/BASE-R"; 807 else 808 fec_req = "NONE"; 809 810 kfree(caps); 811 812 done: 813 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 814 speed, fec_req, fec, an_advertised, an, fc); 815 ice_print_topo_conflict(vsi); 816 } 817 818 /** 819 * ice_vsi_link_event - update the VSI's netdev 820 * @vsi: the VSI on which the link event occurred 821 * @link_up: whether or not the VSI needs to be set up or down 822 */ 823 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 824 { 825 if (!vsi) 826 return; 827 828 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 829 return; 830 831 if (vsi->type == ICE_VSI_PF) { 832 if (link_up == netif_carrier_ok(vsi->netdev)) 833 return; 834 835 if (link_up) { 836 netif_carrier_on(vsi->netdev); 837 netif_tx_wake_all_queues(vsi->netdev); 838 } else { 839 netif_carrier_off(vsi->netdev); 840 netif_tx_stop_all_queues(vsi->netdev); 841 } 842 } 843 } 844 845 /** 846 * ice_set_dflt_mib - send a default config MIB to the FW 847 * @pf: private PF struct 848 * 849 * This function sends a default configuration MIB to the FW. 850 * 851 * If this function errors out at any point, the driver is still able to 852 * function. The main impact is that LFC may not operate as expected. 853 * Therefore an error state in this function should be treated with a DBG 854 * message and continue on with driver rebuild/reenable. 855 */ 856 static void ice_set_dflt_mib(struct ice_pf *pf) 857 { 858 struct device *dev = ice_pf_to_dev(pf); 859 u8 mib_type, *buf, *lldpmib = NULL; 860 u16 len, typelen, offset = 0; 861 struct ice_lldp_org_tlv *tlv; 862 struct ice_hw *hw = &pf->hw; 863 u32 ouisubtype; 864 865 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 866 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 867 if (!lldpmib) { 868 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 869 __func__); 870 return; 871 } 872 873 /* Add ETS CFG TLV */ 874 tlv = (struct ice_lldp_org_tlv *)lldpmib; 875 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 876 ICE_IEEE_ETS_TLV_LEN); 877 tlv->typelen = htons(typelen); 878 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 879 ICE_IEEE_SUBTYPE_ETS_CFG); 880 tlv->ouisubtype = htonl(ouisubtype); 881 882 buf = tlv->tlvinfo; 883 buf[0] = 0; 884 885 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 886 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 887 * Octets 13 - 20 are TSA values - leave as zeros 888 */ 889 buf[5] = 0x64; 890 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 891 offset += len + 2; 892 tlv = (struct ice_lldp_org_tlv *) 893 ((char *)tlv + sizeof(tlv->typelen) + len); 894 895 /* Add ETS REC TLV */ 896 buf = tlv->tlvinfo; 897 tlv->typelen = htons(typelen); 898 899 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 900 ICE_IEEE_SUBTYPE_ETS_REC); 901 tlv->ouisubtype = htonl(ouisubtype); 902 903 /* First octet of buf is reserved 904 * Octets 1 - 4 map UP to TC - all UPs map to zero 905 * Octets 5 - 12 are BW values - set TC 0 to 100%. 906 * Octets 13 - 20 are TSA value - leave as zeros 907 */ 908 buf[5] = 0x64; 909 offset += len + 2; 910 tlv = (struct ice_lldp_org_tlv *) 911 ((char *)tlv + sizeof(tlv->typelen) + len); 912 913 /* Add PFC CFG TLV */ 914 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 915 ICE_IEEE_PFC_TLV_LEN); 916 tlv->typelen = htons(typelen); 917 918 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 919 ICE_IEEE_SUBTYPE_PFC_CFG); 920 tlv->ouisubtype = htonl(ouisubtype); 921 922 /* Octet 1 left as all zeros - PFC disabled */ 923 buf[0] = 0x08; 924 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 925 offset += len + 2; 926 927 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 928 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 929 930 kfree(lldpmib); 931 } 932 933 /** 934 * ice_check_module_power 935 * @pf: pointer to PF struct 936 * @link_cfg_err: bitmap from the link info structure 937 * 938 * check module power level returned by a previous call to aq_get_link_info 939 * and print error messages if module power level is not supported 940 */ 941 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 942 { 943 /* if module power level is supported, clear the flag */ 944 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 945 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 946 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 947 return; 948 } 949 950 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 951 * above block didn't clear this bit, there's nothing to do 952 */ 953 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 954 return; 955 956 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 957 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 958 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 959 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 960 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 961 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 962 } 963 } 964 965 /** 966 * ice_link_event - process the link event 967 * @pf: PF that the link event is associated with 968 * @pi: port_info for the port that the link event is associated with 969 * @link_up: true if the physical link is up and false if it is down 970 * @link_speed: current link speed received from the link event 971 * 972 * Returns 0 on success and negative on failure 973 */ 974 static int 975 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 976 u16 link_speed) 977 { 978 struct device *dev = ice_pf_to_dev(pf); 979 struct ice_phy_info *phy_info; 980 enum ice_status status; 981 struct ice_vsi *vsi; 982 u16 old_link_speed; 983 bool old_link; 984 985 phy_info = &pi->phy; 986 phy_info->link_info_old = phy_info->link_info; 987 988 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 989 old_link_speed = phy_info->link_info_old.link_speed; 990 991 /* update the link info structures and re-enable link events, 992 * don't bail on failure due to other book keeping needed 993 */ 994 status = ice_update_link_info(pi); 995 if (status) 996 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 997 pi->lport, ice_stat_str(status), 998 ice_aq_str(pi->hw->adminq.sq_last_status)); 999 1000 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 1001 1002 /* Check if the link state is up after updating link info, and treat 1003 * this event as an UP event since the link is actually UP now. 1004 */ 1005 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1006 link_up = true; 1007 1008 vsi = ice_get_main_vsi(pf); 1009 if (!vsi || !vsi->port_info) 1010 return -EINVAL; 1011 1012 /* turn off PHY if media was removed */ 1013 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1014 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1015 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1016 ice_set_link(vsi, false); 1017 } 1018 1019 /* if the old link up/down and speed is the same as the new */ 1020 if (link_up == old_link && link_speed == old_link_speed) 1021 return 0; 1022 1023 if (ice_is_dcb_active(pf)) { 1024 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1025 ice_dcb_rebuild(pf); 1026 } else { 1027 if (link_up) 1028 ice_set_dflt_mib(pf); 1029 } 1030 ice_vsi_link_event(vsi, link_up); 1031 ice_print_link_msg(vsi, link_up); 1032 1033 ice_vc_notify_link_state(pf); 1034 1035 return 0; 1036 } 1037 1038 /** 1039 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1040 * @pf: board private structure 1041 */ 1042 static void ice_watchdog_subtask(struct ice_pf *pf) 1043 { 1044 int i; 1045 1046 /* if interface is down do nothing */ 1047 if (test_bit(ICE_DOWN, pf->state) || 1048 test_bit(ICE_CFG_BUSY, pf->state)) 1049 return; 1050 1051 /* make sure we don't do these things too often */ 1052 if (time_before(jiffies, 1053 pf->serv_tmr_prev + pf->serv_tmr_period)) 1054 return; 1055 1056 pf->serv_tmr_prev = jiffies; 1057 1058 /* Update the stats for active netdevs so the network stack 1059 * can look at updated numbers whenever it cares to 1060 */ 1061 ice_update_pf_stats(pf); 1062 ice_for_each_vsi(pf, i) 1063 if (pf->vsi[i] && pf->vsi[i]->netdev) 1064 ice_update_vsi_stats(pf->vsi[i]); 1065 } 1066 1067 /** 1068 * ice_init_link_events - enable/initialize link events 1069 * @pi: pointer to the port_info instance 1070 * 1071 * Returns -EIO on failure, 0 on success 1072 */ 1073 static int ice_init_link_events(struct ice_port_info *pi) 1074 { 1075 u16 mask; 1076 1077 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1078 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 1079 1080 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1081 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1082 pi->lport); 1083 return -EIO; 1084 } 1085 1086 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1087 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1088 pi->lport); 1089 return -EIO; 1090 } 1091 1092 return 0; 1093 } 1094 1095 /** 1096 * ice_handle_link_event - handle link event via ARQ 1097 * @pf: PF that the link event is associated with 1098 * @event: event structure containing link status info 1099 */ 1100 static int 1101 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1102 { 1103 struct ice_aqc_get_link_status_data *link_data; 1104 struct ice_port_info *port_info; 1105 int status; 1106 1107 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1108 port_info = pf->hw.port_info; 1109 if (!port_info) 1110 return -EINVAL; 1111 1112 status = ice_link_event(pf, port_info, 1113 !!(link_data->link_info & ICE_AQ_LINK_UP), 1114 le16_to_cpu(link_data->link_speed)); 1115 if (status) 1116 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1117 status); 1118 1119 return status; 1120 } 1121 1122 enum ice_aq_task_state { 1123 ICE_AQ_TASK_WAITING = 0, 1124 ICE_AQ_TASK_COMPLETE, 1125 ICE_AQ_TASK_CANCELED, 1126 }; 1127 1128 struct ice_aq_task { 1129 struct hlist_node entry; 1130 1131 u16 opcode; 1132 struct ice_rq_event_info *event; 1133 enum ice_aq_task_state state; 1134 }; 1135 1136 /** 1137 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1138 * @pf: pointer to the PF private structure 1139 * @opcode: the opcode to wait for 1140 * @timeout: how long to wait, in jiffies 1141 * @event: storage for the event info 1142 * 1143 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1144 * current thread will be put to sleep until the specified event occurs or 1145 * until the given timeout is reached. 1146 * 1147 * To obtain only the descriptor contents, pass an event without an allocated 1148 * msg_buf. If the complete data buffer is desired, allocate the 1149 * event->msg_buf with enough space ahead of time. 1150 * 1151 * Returns: zero on success, or a negative error code on failure. 1152 */ 1153 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1154 struct ice_rq_event_info *event) 1155 { 1156 struct device *dev = ice_pf_to_dev(pf); 1157 struct ice_aq_task *task; 1158 unsigned long start; 1159 long ret; 1160 int err; 1161 1162 task = kzalloc(sizeof(*task), GFP_KERNEL); 1163 if (!task) 1164 return -ENOMEM; 1165 1166 INIT_HLIST_NODE(&task->entry); 1167 task->opcode = opcode; 1168 task->event = event; 1169 task->state = ICE_AQ_TASK_WAITING; 1170 1171 spin_lock_bh(&pf->aq_wait_lock); 1172 hlist_add_head(&task->entry, &pf->aq_wait_list); 1173 spin_unlock_bh(&pf->aq_wait_lock); 1174 1175 start = jiffies; 1176 1177 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1178 timeout); 1179 switch (task->state) { 1180 case ICE_AQ_TASK_WAITING: 1181 err = ret < 0 ? ret : -ETIMEDOUT; 1182 break; 1183 case ICE_AQ_TASK_CANCELED: 1184 err = ret < 0 ? ret : -ECANCELED; 1185 break; 1186 case ICE_AQ_TASK_COMPLETE: 1187 err = ret < 0 ? ret : 0; 1188 break; 1189 default: 1190 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1191 err = -EINVAL; 1192 break; 1193 } 1194 1195 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1196 jiffies_to_msecs(jiffies - start), 1197 jiffies_to_msecs(timeout), 1198 opcode); 1199 1200 spin_lock_bh(&pf->aq_wait_lock); 1201 hlist_del(&task->entry); 1202 spin_unlock_bh(&pf->aq_wait_lock); 1203 kfree(task); 1204 1205 return err; 1206 } 1207 1208 /** 1209 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1210 * @pf: pointer to the PF private structure 1211 * @opcode: the opcode of the event 1212 * @event: the event to check 1213 * 1214 * Loops over the current list of pending threads waiting for an AdminQ event. 1215 * For each matching task, copy the contents of the event into the task 1216 * structure and wake up the thread. 1217 * 1218 * If multiple threads wait for the same opcode, they will all be woken up. 1219 * 1220 * Note that event->msg_buf will only be duplicated if the event has a buffer 1221 * with enough space already allocated. Otherwise, only the descriptor and 1222 * message length will be copied. 1223 * 1224 * Returns: true if an event was found, false otherwise 1225 */ 1226 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1227 struct ice_rq_event_info *event) 1228 { 1229 struct ice_aq_task *task; 1230 bool found = false; 1231 1232 spin_lock_bh(&pf->aq_wait_lock); 1233 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1234 if (task->state || task->opcode != opcode) 1235 continue; 1236 1237 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1238 task->event->msg_len = event->msg_len; 1239 1240 /* Only copy the data buffer if a destination was set */ 1241 if (task->event->msg_buf && 1242 task->event->buf_len > event->buf_len) { 1243 memcpy(task->event->msg_buf, event->msg_buf, 1244 event->buf_len); 1245 task->event->buf_len = event->buf_len; 1246 } 1247 1248 task->state = ICE_AQ_TASK_COMPLETE; 1249 found = true; 1250 } 1251 spin_unlock_bh(&pf->aq_wait_lock); 1252 1253 if (found) 1254 wake_up(&pf->aq_wait_queue); 1255 } 1256 1257 /** 1258 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1259 * @pf: the PF private structure 1260 * 1261 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1262 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1263 */ 1264 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1265 { 1266 struct ice_aq_task *task; 1267 1268 spin_lock_bh(&pf->aq_wait_lock); 1269 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1270 task->state = ICE_AQ_TASK_CANCELED; 1271 spin_unlock_bh(&pf->aq_wait_lock); 1272 1273 wake_up(&pf->aq_wait_queue); 1274 } 1275 1276 /** 1277 * __ice_clean_ctrlq - helper function to clean controlq rings 1278 * @pf: ptr to struct ice_pf 1279 * @q_type: specific Control queue type 1280 */ 1281 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1282 { 1283 struct device *dev = ice_pf_to_dev(pf); 1284 struct ice_rq_event_info event; 1285 struct ice_hw *hw = &pf->hw; 1286 struct ice_ctl_q_info *cq; 1287 u16 pending, i = 0; 1288 const char *qtype; 1289 u32 oldval, val; 1290 1291 /* Do not clean control queue if/when PF reset fails */ 1292 if (test_bit(ICE_RESET_FAILED, pf->state)) 1293 return 0; 1294 1295 switch (q_type) { 1296 case ICE_CTL_Q_ADMIN: 1297 cq = &hw->adminq; 1298 qtype = "Admin"; 1299 break; 1300 case ICE_CTL_Q_SB: 1301 cq = &hw->sbq; 1302 qtype = "Sideband"; 1303 break; 1304 case ICE_CTL_Q_MAILBOX: 1305 cq = &hw->mailboxq; 1306 qtype = "Mailbox"; 1307 /* we are going to try to detect a malicious VF, so set the 1308 * state to begin detection 1309 */ 1310 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1311 break; 1312 default: 1313 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1314 return 0; 1315 } 1316 1317 /* check for error indications - PF_xx_AxQLEN register layout for 1318 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1319 */ 1320 val = rd32(hw, cq->rq.len); 1321 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1322 PF_FW_ARQLEN_ARQCRIT_M)) { 1323 oldval = val; 1324 if (val & PF_FW_ARQLEN_ARQVFE_M) 1325 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1326 qtype); 1327 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1328 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1329 qtype); 1330 } 1331 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1332 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1333 qtype); 1334 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1335 PF_FW_ARQLEN_ARQCRIT_M); 1336 if (oldval != val) 1337 wr32(hw, cq->rq.len, val); 1338 } 1339 1340 val = rd32(hw, cq->sq.len); 1341 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1342 PF_FW_ATQLEN_ATQCRIT_M)) { 1343 oldval = val; 1344 if (val & PF_FW_ATQLEN_ATQVFE_M) 1345 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1346 qtype); 1347 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1348 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1349 qtype); 1350 } 1351 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1352 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1353 qtype); 1354 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1355 PF_FW_ATQLEN_ATQCRIT_M); 1356 if (oldval != val) 1357 wr32(hw, cq->sq.len, val); 1358 } 1359 1360 event.buf_len = cq->rq_buf_size; 1361 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1362 if (!event.msg_buf) 1363 return 0; 1364 1365 do { 1366 enum ice_status ret; 1367 u16 opcode; 1368 1369 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1370 if (ret == ICE_ERR_AQ_NO_WORK) 1371 break; 1372 if (ret) { 1373 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1374 ice_stat_str(ret)); 1375 break; 1376 } 1377 1378 opcode = le16_to_cpu(event.desc.opcode); 1379 1380 /* Notify any thread that might be waiting for this event */ 1381 ice_aq_check_events(pf, opcode, &event); 1382 1383 switch (opcode) { 1384 case ice_aqc_opc_get_link_status: 1385 if (ice_handle_link_event(pf, &event)) 1386 dev_err(dev, "Could not handle link event\n"); 1387 break; 1388 case ice_aqc_opc_event_lan_overflow: 1389 ice_vf_lan_overflow_event(pf, &event); 1390 break; 1391 case ice_mbx_opc_send_msg_to_pf: 1392 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1393 ice_vc_process_vf_msg(pf, &event); 1394 break; 1395 case ice_aqc_opc_fw_logging: 1396 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1397 break; 1398 case ice_aqc_opc_lldp_set_mib_change: 1399 ice_dcb_process_lldp_set_mib_change(pf, &event); 1400 break; 1401 default: 1402 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1403 qtype, opcode); 1404 break; 1405 } 1406 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1407 1408 kfree(event.msg_buf); 1409 1410 return pending && (i == ICE_DFLT_IRQ_WORK); 1411 } 1412 1413 /** 1414 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1415 * @hw: pointer to hardware info 1416 * @cq: control queue information 1417 * 1418 * returns true if there are pending messages in a queue, false if there aren't 1419 */ 1420 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1421 { 1422 u16 ntu; 1423 1424 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1425 return cq->rq.next_to_clean != ntu; 1426 } 1427 1428 /** 1429 * ice_clean_adminq_subtask - clean the AdminQ rings 1430 * @pf: board private structure 1431 */ 1432 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1433 { 1434 struct ice_hw *hw = &pf->hw; 1435 1436 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1437 return; 1438 1439 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1440 return; 1441 1442 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1443 1444 /* There might be a situation where new messages arrive to a control 1445 * queue between processing the last message and clearing the 1446 * EVENT_PENDING bit. So before exiting, check queue head again (using 1447 * ice_ctrlq_pending) and process new messages if any. 1448 */ 1449 if (ice_ctrlq_pending(hw, &hw->adminq)) 1450 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1451 1452 ice_flush(hw); 1453 } 1454 1455 /** 1456 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1457 * @pf: board private structure 1458 */ 1459 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1460 { 1461 struct ice_hw *hw = &pf->hw; 1462 1463 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1464 return; 1465 1466 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1467 return; 1468 1469 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1470 1471 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1472 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1473 1474 ice_flush(hw); 1475 } 1476 1477 /** 1478 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1479 * @pf: board private structure 1480 */ 1481 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1482 { 1483 struct ice_hw *hw = &pf->hw; 1484 1485 /* Nothing to do here if sideband queue is not supported */ 1486 if (!ice_is_sbq_supported(hw)) { 1487 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1488 return; 1489 } 1490 1491 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1492 return; 1493 1494 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1495 return; 1496 1497 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1498 1499 if (ice_ctrlq_pending(hw, &hw->sbq)) 1500 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1501 1502 ice_flush(hw); 1503 } 1504 1505 /** 1506 * ice_service_task_schedule - schedule the service task to wake up 1507 * @pf: board private structure 1508 * 1509 * If not already scheduled, this puts the task into the work queue. 1510 */ 1511 void ice_service_task_schedule(struct ice_pf *pf) 1512 { 1513 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1514 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1515 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1516 queue_work(ice_wq, &pf->serv_task); 1517 } 1518 1519 /** 1520 * ice_service_task_complete - finish up the service task 1521 * @pf: board private structure 1522 */ 1523 static void ice_service_task_complete(struct ice_pf *pf) 1524 { 1525 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1526 1527 /* force memory (pf->state) to sync before next service task */ 1528 smp_mb__before_atomic(); 1529 clear_bit(ICE_SERVICE_SCHED, pf->state); 1530 } 1531 1532 /** 1533 * ice_service_task_stop - stop service task and cancel works 1534 * @pf: board private structure 1535 * 1536 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1537 * 1 otherwise. 1538 */ 1539 static int ice_service_task_stop(struct ice_pf *pf) 1540 { 1541 int ret; 1542 1543 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1544 1545 if (pf->serv_tmr.function) 1546 del_timer_sync(&pf->serv_tmr); 1547 if (pf->serv_task.func) 1548 cancel_work_sync(&pf->serv_task); 1549 1550 clear_bit(ICE_SERVICE_SCHED, pf->state); 1551 return ret; 1552 } 1553 1554 /** 1555 * ice_service_task_restart - restart service task and schedule works 1556 * @pf: board private structure 1557 * 1558 * This function is needed for suspend and resume works (e.g WoL scenario) 1559 */ 1560 static void ice_service_task_restart(struct ice_pf *pf) 1561 { 1562 clear_bit(ICE_SERVICE_DIS, pf->state); 1563 ice_service_task_schedule(pf); 1564 } 1565 1566 /** 1567 * ice_service_timer - timer callback to schedule service task 1568 * @t: pointer to timer_list 1569 */ 1570 static void ice_service_timer(struct timer_list *t) 1571 { 1572 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1573 1574 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1575 ice_service_task_schedule(pf); 1576 } 1577 1578 /** 1579 * ice_handle_mdd_event - handle malicious driver detect event 1580 * @pf: pointer to the PF structure 1581 * 1582 * Called from service task. OICR interrupt handler indicates MDD event. 1583 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1584 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1585 * disable the queue, the PF can be configured to reset the VF using ethtool 1586 * private flag mdd-auto-reset-vf. 1587 */ 1588 static void ice_handle_mdd_event(struct ice_pf *pf) 1589 { 1590 struct device *dev = ice_pf_to_dev(pf); 1591 struct ice_hw *hw = &pf->hw; 1592 unsigned int i; 1593 u32 reg; 1594 1595 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1596 /* Since the VF MDD event logging is rate limited, check if 1597 * there are pending MDD events. 1598 */ 1599 ice_print_vfs_mdd_events(pf); 1600 return; 1601 } 1602 1603 /* find what triggered an MDD event */ 1604 reg = rd32(hw, GL_MDET_TX_PQM); 1605 if (reg & GL_MDET_TX_PQM_VALID_M) { 1606 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1607 GL_MDET_TX_PQM_PF_NUM_S; 1608 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1609 GL_MDET_TX_PQM_VF_NUM_S; 1610 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1611 GL_MDET_TX_PQM_MAL_TYPE_S; 1612 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1613 GL_MDET_TX_PQM_QNUM_S); 1614 1615 if (netif_msg_tx_err(pf)) 1616 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1617 event, queue, pf_num, vf_num); 1618 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1619 } 1620 1621 reg = rd32(hw, GL_MDET_TX_TCLAN); 1622 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1623 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1624 GL_MDET_TX_TCLAN_PF_NUM_S; 1625 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1626 GL_MDET_TX_TCLAN_VF_NUM_S; 1627 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1628 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1629 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1630 GL_MDET_TX_TCLAN_QNUM_S); 1631 1632 if (netif_msg_tx_err(pf)) 1633 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1634 event, queue, pf_num, vf_num); 1635 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1636 } 1637 1638 reg = rd32(hw, GL_MDET_RX); 1639 if (reg & GL_MDET_RX_VALID_M) { 1640 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1641 GL_MDET_RX_PF_NUM_S; 1642 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1643 GL_MDET_RX_VF_NUM_S; 1644 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1645 GL_MDET_RX_MAL_TYPE_S; 1646 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1647 GL_MDET_RX_QNUM_S); 1648 1649 if (netif_msg_rx_err(pf)) 1650 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1651 event, queue, pf_num, vf_num); 1652 wr32(hw, GL_MDET_RX, 0xffffffff); 1653 } 1654 1655 /* check to see if this PF caused an MDD event */ 1656 reg = rd32(hw, PF_MDET_TX_PQM); 1657 if (reg & PF_MDET_TX_PQM_VALID_M) { 1658 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1659 if (netif_msg_tx_err(pf)) 1660 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1661 } 1662 1663 reg = rd32(hw, PF_MDET_TX_TCLAN); 1664 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1665 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1666 if (netif_msg_tx_err(pf)) 1667 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1668 } 1669 1670 reg = rd32(hw, PF_MDET_RX); 1671 if (reg & PF_MDET_RX_VALID_M) { 1672 wr32(hw, PF_MDET_RX, 0xFFFF); 1673 if (netif_msg_rx_err(pf)) 1674 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1675 } 1676 1677 /* Check to see if one of the VFs caused an MDD event, and then 1678 * increment counters and set print pending 1679 */ 1680 ice_for_each_vf(pf, i) { 1681 struct ice_vf *vf = &pf->vf[i]; 1682 1683 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1684 if (reg & VP_MDET_TX_PQM_VALID_M) { 1685 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1686 vf->mdd_tx_events.count++; 1687 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1688 if (netif_msg_tx_err(pf)) 1689 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1690 i); 1691 } 1692 1693 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1694 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1695 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1696 vf->mdd_tx_events.count++; 1697 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1698 if (netif_msg_tx_err(pf)) 1699 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1700 i); 1701 } 1702 1703 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1704 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1705 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1706 vf->mdd_tx_events.count++; 1707 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1708 if (netif_msg_tx_err(pf)) 1709 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1710 i); 1711 } 1712 1713 reg = rd32(hw, VP_MDET_RX(i)); 1714 if (reg & VP_MDET_RX_VALID_M) { 1715 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1716 vf->mdd_rx_events.count++; 1717 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1718 if (netif_msg_rx_err(pf)) 1719 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1720 i); 1721 1722 /* Since the queue is disabled on VF Rx MDD events, the 1723 * PF can be configured to reset the VF through ethtool 1724 * private flag mdd-auto-reset-vf. 1725 */ 1726 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1727 /* VF MDD event counters will be cleared by 1728 * reset, so print the event prior to reset. 1729 */ 1730 ice_print_vf_rx_mdd_event(vf); 1731 ice_reset_vf(&pf->vf[i], false); 1732 } 1733 } 1734 } 1735 1736 ice_print_vfs_mdd_events(pf); 1737 } 1738 1739 /** 1740 * ice_force_phys_link_state - Force the physical link state 1741 * @vsi: VSI to force the physical link state to up/down 1742 * @link_up: true/false indicates to set the physical link to up/down 1743 * 1744 * Force the physical link state by getting the current PHY capabilities from 1745 * hardware and setting the PHY config based on the determined capabilities. If 1746 * link changes a link event will be triggered because both the Enable Automatic 1747 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1748 * 1749 * Returns 0 on success, negative on failure 1750 */ 1751 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1752 { 1753 struct ice_aqc_get_phy_caps_data *pcaps; 1754 struct ice_aqc_set_phy_cfg_data *cfg; 1755 struct ice_port_info *pi; 1756 struct device *dev; 1757 int retcode; 1758 1759 if (!vsi || !vsi->port_info || !vsi->back) 1760 return -EINVAL; 1761 if (vsi->type != ICE_VSI_PF) 1762 return 0; 1763 1764 dev = ice_pf_to_dev(vsi->back); 1765 1766 pi = vsi->port_info; 1767 1768 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1769 if (!pcaps) 1770 return -ENOMEM; 1771 1772 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1773 NULL); 1774 if (retcode) { 1775 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1776 vsi->vsi_num, retcode); 1777 retcode = -EIO; 1778 goto out; 1779 } 1780 1781 /* No change in link */ 1782 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1783 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1784 goto out; 1785 1786 /* Use the current user PHY configuration. The current user PHY 1787 * configuration is initialized during probe from PHY capabilities 1788 * software mode, and updated on set PHY configuration. 1789 */ 1790 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1791 if (!cfg) { 1792 retcode = -ENOMEM; 1793 goto out; 1794 } 1795 1796 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1797 if (link_up) 1798 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1799 else 1800 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1801 1802 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1803 if (retcode) { 1804 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1805 vsi->vsi_num, retcode); 1806 retcode = -EIO; 1807 } 1808 1809 kfree(cfg); 1810 out: 1811 kfree(pcaps); 1812 return retcode; 1813 } 1814 1815 /** 1816 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1817 * @pi: port info structure 1818 * 1819 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1820 */ 1821 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1822 { 1823 struct ice_aqc_get_phy_caps_data *pcaps; 1824 struct ice_pf *pf = pi->hw->back; 1825 enum ice_status status; 1826 int err = 0; 1827 1828 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1829 if (!pcaps) 1830 return -ENOMEM; 1831 1832 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1833 NULL); 1834 1835 if (status) { 1836 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1837 err = -EIO; 1838 goto out; 1839 } 1840 1841 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1842 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1843 1844 out: 1845 kfree(pcaps); 1846 return err; 1847 } 1848 1849 /** 1850 * ice_init_link_dflt_override - Initialize link default override 1851 * @pi: port info structure 1852 * 1853 * Initialize link default override and PHY total port shutdown during probe 1854 */ 1855 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1856 { 1857 struct ice_link_default_override_tlv *ldo; 1858 struct ice_pf *pf = pi->hw->back; 1859 1860 ldo = &pf->link_dflt_override; 1861 if (ice_get_link_default_override(ldo, pi)) 1862 return; 1863 1864 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1865 return; 1866 1867 /* Enable Total Port Shutdown (override/replace link-down-on-close 1868 * ethtool private flag) for ports with Port Disable bit set. 1869 */ 1870 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1871 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1872 } 1873 1874 /** 1875 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1876 * @pi: port info structure 1877 * 1878 * If default override is enabled, initialize the user PHY cfg speed and FEC 1879 * settings using the default override mask from the NVM. 1880 * 1881 * The PHY should only be configured with the default override settings the 1882 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1883 * is used to indicate that the user PHY cfg default override is initialized 1884 * and the PHY has not been configured with the default override settings. The 1885 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1886 * configured. 1887 * 1888 * This function should be called only if the FW doesn't support default 1889 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1890 */ 1891 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1892 { 1893 struct ice_link_default_override_tlv *ldo; 1894 struct ice_aqc_set_phy_cfg_data *cfg; 1895 struct ice_phy_info *phy = &pi->phy; 1896 struct ice_pf *pf = pi->hw->back; 1897 1898 ldo = &pf->link_dflt_override; 1899 1900 /* If link default override is enabled, use to mask NVM PHY capabilities 1901 * for speed and FEC default configuration. 1902 */ 1903 cfg = &phy->curr_user_phy_cfg; 1904 1905 if (ldo->phy_type_low || ldo->phy_type_high) { 1906 cfg->phy_type_low = pf->nvm_phy_type_lo & 1907 cpu_to_le64(ldo->phy_type_low); 1908 cfg->phy_type_high = pf->nvm_phy_type_hi & 1909 cpu_to_le64(ldo->phy_type_high); 1910 } 1911 cfg->link_fec_opt = ldo->fec_options; 1912 phy->curr_user_fec_req = ICE_FEC_AUTO; 1913 1914 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1915 } 1916 1917 /** 1918 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1919 * @pi: port info structure 1920 * 1921 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1922 * mode to default. The PHY defaults are from get PHY capabilities topology 1923 * with media so call when media is first available. An error is returned if 1924 * called when media is not available. The PHY initialization completed state is 1925 * set here. 1926 * 1927 * These configurations are used when setting PHY 1928 * configuration. The user PHY configuration is updated on set PHY 1929 * configuration. Returns 0 on success, negative on failure 1930 */ 1931 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1932 { 1933 struct ice_aqc_get_phy_caps_data *pcaps; 1934 struct ice_phy_info *phy = &pi->phy; 1935 struct ice_pf *pf = pi->hw->back; 1936 enum ice_status status; 1937 int err = 0; 1938 1939 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1940 return -EIO; 1941 1942 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1943 if (!pcaps) 1944 return -ENOMEM; 1945 1946 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1947 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1948 pcaps, NULL); 1949 else 1950 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1951 pcaps, NULL); 1952 if (status) { 1953 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1954 err = -EIO; 1955 goto err_out; 1956 } 1957 1958 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1959 1960 /* check if lenient mode is supported and enabled */ 1961 if (ice_fw_supports_link_override(pi->hw) && 1962 !(pcaps->module_compliance_enforcement & 1963 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1964 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1965 1966 /* if the FW supports default PHY configuration mode, then the driver 1967 * does not have to apply link override settings. If not, 1968 * initialize user PHY configuration with link override values 1969 */ 1970 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 1971 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 1972 ice_init_phy_cfg_dflt_override(pi); 1973 goto out; 1974 } 1975 } 1976 1977 /* if link default override is not enabled, set user flow control and 1978 * FEC settings based on what get_phy_caps returned 1979 */ 1980 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1981 pcaps->link_fec_options); 1982 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1983 1984 out: 1985 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1986 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 1987 err_out: 1988 kfree(pcaps); 1989 return err; 1990 } 1991 1992 /** 1993 * ice_configure_phy - configure PHY 1994 * @vsi: VSI of PHY 1995 * 1996 * Set the PHY configuration. If the current PHY configuration is the same as 1997 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1998 * configure the based get PHY capabilities for topology with media. 1999 */ 2000 static int ice_configure_phy(struct ice_vsi *vsi) 2001 { 2002 struct device *dev = ice_pf_to_dev(vsi->back); 2003 struct ice_port_info *pi = vsi->port_info; 2004 struct ice_aqc_get_phy_caps_data *pcaps; 2005 struct ice_aqc_set_phy_cfg_data *cfg; 2006 struct ice_phy_info *phy = &pi->phy; 2007 struct ice_pf *pf = vsi->back; 2008 enum ice_status status; 2009 int err = 0; 2010 2011 /* Ensure we have media as we cannot configure a medialess port */ 2012 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2013 return -EPERM; 2014 2015 ice_print_topo_conflict(vsi); 2016 2017 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2018 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2019 return -EPERM; 2020 2021 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2022 return ice_force_phys_link_state(vsi, true); 2023 2024 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2025 if (!pcaps) 2026 return -ENOMEM; 2027 2028 /* Get current PHY config */ 2029 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2030 NULL); 2031 if (status) { 2032 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 2033 vsi->vsi_num, ice_stat_str(status)); 2034 err = -EIO; 2035 goto done; 2036 } 2037 2038 /* If PHY enable link is configured and configuration has not changed, 2039 * there's nothing to do 2040 */ 2041 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2042 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2043 goto done; 2044 2045 /* Use PHY topology as baseline for configuration */ 2046 memset(pcaps, 0, sizeof(*pcaps)); 2047 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2048 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2049 pcaps, NULL); 2050 else 2051 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2052 pcaps, NULL); 2053 if (status) { 2054 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 2055 vsi->vsi_num, ice_stat_str(status)); 2056 err = -EIO; 2057 goto done; 2058 } 2059 2060 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2061 if (!cfg) { 2062 err = -ENOMEM; 2063 goto done; 2064 } 2065 2066 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2067 2068 /* Speed - If default override pending, use curr_user_phy_cfg set in 2069 * ice_init_phy_user_cfg_ldo. 2070 */ 2071 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2072 vsi->back->state)) { 2073 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2074 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2075 } else { 2076 u64 phy_low = 0, phy_high = 0; 2077 2078 ice_update_phy_type(&phy_low, &phy_high, 2079 pi->phy.curr_user_speed_req); 2080 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2081 cfg->phy_type_high = pcaps->phy_type_high & 2082 cpu_to_le64(phy_high); 2083 } 2084 2085 /* Can't provide what was requested; use PHY capabilities */ 2086 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2087 cfg->phy_type_low = pcaps->phy_type_low; 2088 cfg->phy_type_high = pcaps->phy_type_high; 2089 } 2090 2091 /* FEC */ 2092 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2093 2094 /* Can't provide what was requested; use PHY capabilities */ 2095 if (cfg->link_fec_opt != 2096 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2097 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2098 cfg->link_fec_opt = pcaps->link_fec_options; 2099 } 2100 2101 /* Flow Control - always supported; no need to check against 2102 * capabilities 2103 */ 2104 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2105 2106 /* Enable link and link update */ 2107 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2108 2109 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2110 if (status) { 2111 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 2112 vsi->vsi_num, ice_stat_str(status)); 2113 err = -EIO; 2114 } 2115 2116 kfree(cfg); 2117 done: 2118 kfree(pcaps); 2119 return err; 2120 } 2121 2122 /** 2123 * ice_check_media_subtask - Check for media 2124 * @pf: pointer to PF struct 2125 * 2126 * If media is available, then initialize PHY user configuration if it is not 2127 * been, and configure the PHY if the interface is up. 2128 */ 2129 static void ice_check_media_subtask(struct ice_pf *pf) 2130 { 2131 struct ice_port_info *pi; 2132 struct ice_vsi *vsi; 2133 int err; 2134 2135 /* No need to check for media if it's already present */ 2136 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2137 return; 2138 2139 vsi = ice_get_main_vsi(pf); 2140 if (!vsi) 2141 return; 2142 2143 /* Refresh link info and check if media is present */ 2144 pi = vsi->port_info; 2145 err = ice_update_link_info(pi); 2146 if (err) 2147 return; 2148 2149 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 2150 2151 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2152 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2153 ice_init_phy_user_cfg(pi); 2154 2155 /* PHY settings are reset on media insertion, reconfigure 2156 * PHY to preserve settings. 2157 */ 2158 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2159 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2160 return; 2161 2162 err = ice_configure_phy(vsi); 2163 if (!err) 2164 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2165 2166 /* A Link Status Event will be generated; the event handler 2167 * will complete bringing the interface up 2168 */ 2169 } 2170 } 2171 2172 /** 2173 * ice_service_task - manage and run subtasks 2174 * @work: pointer to work_struct contained by the PF struct 2175 */ 2176 static void ice_service_task(struct work_struct *work) 2177 { 2178 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2179 unsigned long start_time = jiffies; 2180 2181 /* subtasks */ 2182 2183 /* process reset requests first */ 2184 ice_reset_subtask(pf); 2185 2186 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2187 if (ice_is_reset_in_progress(pf->state) || 2188 test_bit(ICE_SUSPENDED, pf->state) || 2189 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2190 ice_service_task_complete(pf); 2191 return; 2192 } 2193 2194 ice_clean_adminq_subtask(pf); 2195 ice_check_media_subtask(pf); 2196 ice_check_for_hang_subtask(pf); 2197 ice_sync_fltr_subtask(pf); 2198 ice_handle_mdd_event(pf); 2199 ice_watchdog_subtask(pf); 2200 2201 if (ice_is_safe_mode(pf)) { 2202 ice_service_task_complete(pf); 2203 return; 2204 } 2205 2206 ice_process_vflr_event(pf); 2207 ice_clean_mailboxq_subtask(pf); 2208 ice_clean_sbq_subtask(pf); 2209 ice_sync_arfs_fltrs(pf); 2210 ice_flush_fdir_ctx(pf); 2211 2212 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2213 ice_service_task_complete(pf); 2214 2215 /* If the tasks have taken longer than one service timer period 2216 * or there is more work to be done, reset the service timer to 2217 * schedule the service task now. 2218 */ 2219 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2220 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2221 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2222 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2223 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2224 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2225 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2226 mod_timer(&pf->serv_tmr, jiffies); 2227 } 2228 2229 /** 2230 * ice_set_ctrlq_len - helper function to set controlq length 2231 * @hw: pointer to the HW instance 2232 */ 2233 static void ice_set_ctrlq_len(struct ice_hw *hw) 2234 { 2235 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2236 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2237 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2238 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2239 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2240 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2241 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2242 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2243 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2244 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2245 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2246 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2247 } 2248 2249 /** 2250 * ice_schedule_reset - schedule a reset 2251 * @pf: board private structure 2252 * @reset: reset being requested 2253 */ 2254 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2255 { 2256 struct device *dev = ice_pf_to_dev(pf); 2257 2258 /* bail out if earlier reset has failed */ 2259 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2260 dev_dbg(dev, "earlier reset has failed\n"); 2261 return -EIO; 2262 } 2263 /* bail if reset/recovery already in progress */ 2264 if (ice_is_reset_in_progress(pf->state)) { 2265 dev_dbg(dev, "Reset already in progress\n"); 2266 return -EBUSY; 2267 } 2268 2269 ice_unplug_aux_dev(pf); 2270 2271 switch (reset) { 2272 case ICE_RESET_PFR: 2273 set_bit(ICE_PFR_REQ, pf->state); 2274 break; 2275 case ICE_RESET_CORER: 2276 set_bit(ICE_CORER_REQ, pf->state); 2277 break; 2278 case ICE_RESET_GLOBR: 2279 set_bit(ICE_GLOBR_REQ, pf->state); 2280 break; 2281 default: 2282 return -EINVAL; 2283 } 2284 2285 ice_service_task_schedule(pf); 2286 return 0; 2287 } 2288 2289 /** 2290 * ice_irq_affinity_notify - Callback for affinity changes 2291 * @notify: context as to what irq was changed 2292 * @mask: the new affinity mask 2293 * 2294 * This is a callback function used by the irq_set_affinity_notifier function 2295 * so that we may register to receive changes to the irq affinity masks. 2296 */ 2297 static void 2298 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2299 const cpumask_t *mask) 2300 { 2301 struct ice_q_vector *q_vector = 2302 container_of(notify, struct ice_q_vector, affinity_notify); 2303 2304 cpumask_copy(&q_vector->affinity_mask, mask); 2305 } 2306 2307 /** 2308 * ice_irq_affinity_release - Callback for affinity notifier release 2309 * @ref: internal core kernel usage 2310 * 2311 * This is a callback function used by the irq_set_affinity_notifier function 2312 * to inform the current notification subscriber that they will no longer 2313 * receive notifications. 2314 */ 2315 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2316 2317 /** 2318 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2319 * @vsi: the VSI being configured 2320 */ 2321 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2322 { 2323 struct ice_hw *hw = &vsi->back->hw; 2324 int i; 2325 2326 ice_for_each_q_vector(vsi, i) 2327 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2328 2329 ice_flush(hw); 2330 return 0; 2331 } 2332 2333 /** 2334 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2335 * @vsi: the VSI being configured 2336 * @basename: name for the vector 2337 */ 2338 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2339 { 2340 int q_vectors = vsi->num_q_vectors; 2341 struct ice_pf *pf = vsi->back; 2342 int base = vsi->base_vector; 2343 struct device *dev; 2344 int rx_int_idx = 0; 2345 int tx_int_idx = 0; 2346 int vector, err; 2347 int irq_num; 2348 2349 dev = ice_pf_to_dev(pf); 2350 for (vector = 0; vector < q_vectors; vector++) { 2351 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2352 2353 irq_num = pf->msix_entries[base + vector].vector; 2354 2355 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2356 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2357 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2358 tx_int_idx++; 2359 } else if (q_vector->rx.rx_ring) { 2360 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2361 "%s-%s-%d", basename, "rx", rx_int_idx++); 2362 } else if (q_vector->tx.tx_ring) { 2363 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2364 "%s-%s-%d", basename, "tx", tx_int_idx++); 2365 } else { 2366 /* skip this unused q_vector */ 2367 continue; 2368 } 2369 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2370 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2371 IRQF_SHARED, q_vector->name, 2372 q_vector); 2373 else 2374 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2375 0, q_vector->name, q_vector); 2376 if (err) { 2377 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2378 err); 2379 goto free_q_irqs; 2380 } 2381 2382 /* register for affinity change notifications */ 2383 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2384 struct irq_affinity_notify *affinity_notify; 2385 2386 affinity_notify = &q_vector->affinity_notify; 2387 affinity_notify->notify = ice_irq_affinity_notify; 2388 affinity_notify->release = ice_irq_affinity_release; 2389 irq_set_affinity_notifier(irq_num, affinity_notify); 2390 } 2391 2392 /* assign the mask for this irq */ 2393 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2394 } 2395 2396 vsi->irqs_ready = true; 2397 return 0; 2398 2399 free_q_irqs: 2400 while (vector) { 2401 vector--; 2402 irq_num = pf->msix_entries[base + vector].vector; 2403 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2404 irq_set_affinity_notifier(irq_num, NULL); 2405 irq_set_affinity_hint(irq_num, NULL); 2406 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2407 } 2408 return err; 2409 } 2410 2411 /** 2412 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2413 * @vsi: VSI to setup Tx rings used by XDP 2414 * 2415 * Return 0 on success and negative value on error 2416 */ 2417 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2418 { 2419 struct device *dev = ice_pf_to_dev(vsi->back); 2420 struct ice_tx_desc *tx_desc; 2421 int i, j; 2422 2423 ice_for_each_xdp_txq(vsi, i) { 2424 u16 xdp_q_idx = vsi->alloc_txq + i; 2425 struct ice_tx_ring *xdp_ring; 2426 2427 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2428 2429 if (!xdp_ring) 2430 goto free_xdp_rings; 2431 2432 xdp_ring->q_index = xdp_q_idx; 2433 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2434 xdp_ring->vsi = vsi; 2435 xdp_ring->netdev = NULL; 2436 xdp_ring->next_dd = ICE_TX_THRESH - 1; 2437 xdp_ring->next_rs = ICE_TX_THRESH - 1; 2438 xdp_ring->dev = dev; 2439 xdp_ring->count = vsi->num_tx_desc; 2440 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2441 if (ice_setup_tx_ring(xdp_ring)) 2442 goto free_xdp_rings; 2443 ice_set_ring_xdp(xdp_ring); 2444 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2445 spin_lock_init(&xdp_ring->tx_lock); 2446 for (j = 0; j < xdp_ring->count; j++) { 2447 tx_desc = ICE_TX_DESC(xdp_ring, j); 2448 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2449 } 2450 } 2451 2452 ice_for_each_rxq(vsi, i) { 2453 if (static_key_enabled(&ice_xdp_locking_key)) 2454 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2455 else 2456 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2457 } 2458 2459 return 0; 2460 2461 free_xdp_rings: 2462 for (; i >= 0; i--) 2463 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2464 ice_free_tx_ring(vsi->xdp_rings[i]); 2465 return -ENOMEM; 2466 } 2467 2468 /** 2469 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2470 * @vsi: VSI to set the bpf prog on 2471 * @prog: the bpf prog pointer 2472 */ 2473 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2474 { 2475 struct bpf_prog *old_prog; 2476 int i; 2477 2478 old_prog = xchg(&vsi->xdp_prog, prog); 2479 if (old_prog) 2480 bpf_prog_put(old_prog); 2481 2482 ice_for_each_rxq(vsi, i) 2483 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2484 } 2485 2486 /** 2487 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2488 * @vsi: VSI to bring up Tx rings used by XDP 2489 * @prog: bpf program that will be assigned to VSI 2490 * 2491 * Return 0 on success and negative value on error 2492 */ 2493 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2494 { 2495 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2496 int xdp_rings_rem = vsi->num_xdp_txq; 2497 struct ice_pf *pf = vsi->back; 2498 struct ice_qs_cfg xdp_qs_cfg = { 2499 .qs_mutex = &pf->avail_q_mutex, 2500 .pf_map = pf->avail_txqs, 2501 .pf_map_size = pf->max_pf_txqs, 2502 .q_count = vsi->num_xdp_txq, 2503 .scatter_count = ICE_MAX_SCATTER_TXQS, 2504 .vsi_map = vsi->txq_map, 2505 .vsi_map_offset = vsi->alloc_txq, 2506 .mapping_mode = ICE_VSI_MAP_CONTIG 2507 }; 2508 enum ice_status status; 2509 struct device *dev; 2510 int i, v_idx; 2511 2512 dev = ice_pf_to_dev(pf); 2513 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2514 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2515 if (!vsi->xdp_rings) 2516 return -ENOMEM; 2517 2518 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2519 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2520 goto err_map_xdp; 2521 2522 if (static_key_enabled(&ice_xdp_locking_key)) 2523 netdev_warn(vsi->netdev, 2524 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2525 2526 if (ice_xdp_alloc_setup_rings(vsi)) 2527 goto clear_xdp_rings; 2528 2529 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2530 ice_for_each_q_vector(vsi, v_idx) { 2531 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2532 int xdp_rings_per_v, q_id, q_base; 2533 2534 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2535 vsi->num_q_vectors - v_idx); 2536 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2537 2538 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2539 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2540 2541 xdp_ring->q_vector = q_vector; 2542 xdp_ring->next = q_vector->tx.tx_ring; 2543 q_vector->tx.tx_ring = xdp_ring; 2544 } 2545 xdp_rings_rem -= xdp_rings_per_v; 2546 } 2547 2548 /* omit the scheduler update if in reset path; XDP queues will be 2549 * taken into account at the end of ice_vsi_rebuild, where 2550 * ice_cfg_vsi_lan is being called 2551 */ 2552 if (ice_is_reset_in_progress(pf->state)) 2553 return 0; 2554 2555 /* tell the Tx scheduler that right now we have 2556 * additional queues 2557 */ 2558 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2559 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2560 2561 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2562 max_txqs); 2563 if (status) { 2564 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2565 ice_stat_str(status)); 2566 goto clear_xdp_rings; 2567 } 2568 ice_vsi_assign_bpf_prog(vsi, prog); 2569 2570 return 0; 2571 clear_xdp_rings: 2572 ice_for_each_xdp_txq(vsi, i) 2573 if (vsi->xdp_rings[i]) { 2574 kfree_rcu(vsi->xdp_rings[i], rcu); 2575 vsi->xdp_rings[i] = NULL; 2576 } 2577 2578 err_map_xdp: 2579 mutex_lock(&pf->avail_q_mutex); 2580 ice_for_each_xdp_txq(vsi, i) { 2581 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2582 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2583 } 2584 mutex_unlock(&pf->avail_q_mutex); 2585 2586 devm_kfree(dev, vsi->xdp_rings); 2587 return -ENOMEM; 2588 } 2589 2590 /** 2591 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2592 * @vsi: VSI to remove XDP rings 2593 * 2594 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2595 * resources 2596 */ 2597 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2598 { 2599 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2600 struct ice_pf *pf = vsi->back; 2601 int i, v_idx; 2602 2603 /* q_vectors are freed in reset path so there's no point in detaching 2604 * rings; in case of rebuild being triggered not from reset bits 2605 * in pf->state won't be set, so additionally check first q_vector 2606 * against NULL 2607 */ 2608 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2609 goto free_qmap; 2610 2611 ice_for_each_q_vector(vsi, v_idx) { 2612 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2613 struct ice_tx_ring *ring; 2614 2615 ice_for_each_tx_ring(ring, q_vector->tx) 2616 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2617 break; 2618 2619 /* restore the value of last node prior to XDP setup */ 2620 q_vector->tx.tx_ring = ring; 2621 } 2622 2623 free_qmap: 2624 mutex_lock(&pf->avail_q_mutex); 2625 ice_for_each_xdp_txq(vsi, i) { 2626 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2627 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2628 } 2629 mutex_unlock(&pf->avail_q_mutex); 2630 2631 ice_for_each_xdp_txq(vsi, i) 2632 if (vsi->xdp_rings[i]) { 2633 if (vsi->xdp_rings[i]->desc) 2634 ice_free_tx_ring(vsi->xdp_rings[i]); 2635 kfree_rcu(vsi->xdp_rings[i], rcu); 2636 vsi->xdp_rings[i] = NULL; 2637 } 2638 2639 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2640 vsi->xdp_rings = NULL; 2641 2642 if (static_key_enabled(&ice_xdp_locking_key)) 2643 static_branch_dec(&ice_xdp_locking_key); 2644 2645 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2646 return 0; 2647 2648 ice_vsi_assign_bpf_prog(vsi, NULL); 2649 2650 /* notify Tx scheduler that we destroyed XDP queues and bring 2651 * back the old number of child nodes 2652 */ 2653 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2654 max_txqs[i] = vsi->num_txq; 2655 2656 /* change number of XDP Tx queues to 0 */ 2657 vsi->num_xdp_txq = 0; 2658 2659 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2660 max_txqs); 2661 } 2662 2663 /** 2664 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2665 * @vsi: VSI to schedule napi on 2666 */ 2667 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2668 { 2669 int i; 2670 2671 ice_for_each_rxq(vsi, i) { 2672 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2673 2674 if (rx_ring->xsk_pool) 2675 napi_schedule(&rx_ring->q_vector->napi); 2676 } 2677 } 2678 2679 /** 2680 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2681 * @vsi: VSI to determine the count of XDP Tx qs 2682 * 2683 * returns 0 if Tx qs count is higher than at least half of CPU count, 2684 * -ENOMEM otherwise 2685 */ 2686 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2687 { 2688 u16 avail = ice_get_avail_txq_count(vsi->back); 2689 u16 cpus = num_possible_cpus(); 2690 2691 if (avail < cpus / 2) 2692 return -ENOMEM; 2693 2694 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2695 2696 if (vsi->num_xdp_txq < cpus) 2697 static_branch_inc(&ice_xdp_locking_key); 2698 2699 return 0; 2700 } 2701 2702 /** 2703 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2704 * @vsi: VSI to setup XDP for 2705 * @prog: XDP program 2706 * @extack: netlink extended ack 2707 */ 2708 static int 2709 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2710 struct netlink_ext_ack *extack) 2711 { 2712 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2713 bool if_running = netif_running(vsi->netdev); 2714 int ret = 0, xdp_ring_err = 0; 2715 2716 if (frame_size > vsi->rx_buf_len) { 2717 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2718 return -EOPNOTSUPP; 2719 } 2720 2721 /* need to stop netdev while setting up the program for Rx rings */ 2722 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2723 ret = ice_down(vsi); 2724 if (ret) { 2725 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2726 return ret; 2727 } 2728 } 2729 2730 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2731 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2732 if (xdp_ring_err) { 2733 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2734 } else { 2735 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2736 if (xdp_ring_err) 2737 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2738 } 2739 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2740 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2741 if (xdp_ring_err) 2742 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2743 } else { 2744 ice_vsi_assign_bpf_prog(vsi, prog); 2745 } 2746 2747 if (if_running) 2748 ret = ice_up(vsi); 2749 2750 if (!ret && prog) 2751 ice_vsi_rx_napi_schedule(vsi); 2752 2753 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2754 } 2755 2756 /** 2757 * ice_xdp_safe_mode - XDP handler for safe mode 2758 * @dev: netdevice 2759 * @xdp: XDP command 2760 */ 2761 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2762 struct netdev_bpf *xdp) 2763 { 2764 NL_SET_ERR_MSG_MOD(xdp->extack, 2765 "Please provide working DDP firmware package in order to use XDP\n" 2766 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2767 return -EOPNOTSUPP; 2768 } 2769 2770 /** 2771 * ice_xdp - implements XDP handler 2772 * @dev: netdevice 2773 * @xdp: XDP command 2774 */ 2775 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2776 { 2777 struct ice_netdev_priv *np = netdev_priv(dev); 2778 struct ice_vsi *vsi = np->vsi; 2779 2780 if (vsi->type != ICE_VSI_PF) { 2781 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2782 return -EINVAL; 2783 } 2784 2785 switch (xdp->command) { 2786 case XDP_SETUP_PROG: 2787 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2788 case XDP_SETUP_XSK_POOL: 2789 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2790 xdp->xsk.queue_id); 2791 default: 2792 return -EINVAL; 2793 } 2794 } 2795 2796 /** 2797 * ice_ena_misc_vector - enable the non-queue interrupts 2798 * @pf: board private structure 2799 */ 2800 static void ice_ena_misc_vector(struct ice_pf *pf) 2801 { 2802 struct ice_hw *hw = &pf->hw; 2803 u32 val; 2804 2805 /* Disable anti-spoof detection interrupt to prevent spurious event 2806 * interrupts during a function reset. Anti-spoof functionally is 2807 * still supported. 2808 */ 2809 val = rd32(hw, GL_MDCK_TX_TDPU); 2810 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2811 wr32(hw, GL_MDCK_TX_TDPU, val); 2812 2813 /* clear things first */ 2814 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2815 rd32(hw, PFINT_OICR); /* read to clear */ 2816 2817 val = (PFINT_OICR_ECC_ERR_M | 2818 PFINT_OICR_MAL_DETECT_M | 2819 PFINT_OICR_GRST_M | 2820 PFINT_OICR_PCI_EXCEPTION_M | 2821 PFINT_OICR_VFLR_M | 2822 PFINT_OICR_HMC_ERR_M | 2823 PFINT_OICR_PE_PUSH_M | 2824 PFINT_OICR_PE_CRITERR_M); 2825 2826 wr32(hw, PFINT_OICR_ENA, val); 2827 2828 /* SW_ITR_IDX = 0, but don't change INTENA */ 2829 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2830 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2831 } 2832 2833 /** 2834 * ice_misc_intr - misc interrupt handler 2835 * @irq: interrupt number 2836 * @data: pointer to a q_vector 2837 */ 2838 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2839 { 2840 struct ice_pf *pf = (struct ice_pf *)data; 2841 struct ice_hw *hw = &pf->hw; 2842 irqreturn_t ret = IRQ_NONE; 2843 struct device *dev; 2844 u32 oicr, ena_mask; 2845 2846 dev = ice_pf_to_dev(pf); 2847 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2848 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2849 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2850 2851 oicr = rd32(hw, PFINT_OICR); 2852 ena_mask = rd32(hw, PFINT_OICR_ENA); 2853 2854 if (oicr & PFINT_OICR_SWINT_M) { 2855 ena_mask &= ~PFINT_OICR_SWINT_M; 2856 pf->sw_int_count++; 2857 } 2858 2859 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2860 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2861 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2862 } 2863 if (oicr & PFINT_OICR_VFLR_M) { 2864 /* disable any further VFLR event notifications */ 2865 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2866 u32 reg = rd32(hw, PFINT_OICR_ENA); 2867 2868 reg &= ~PFINT_OICR_VFLR_M; 2869 wr32(hw, PFINT_OICR_ENA, reg); 2870 } else { 2871 ena_mask &= ~PFINT_OICR_VFLR_M; 2872 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2873 } 2874 } 2875 2876 if (oicr & PFINT_OICR_GRST_M) { 2877 u32 reset; 2878 2879 /* we have a reset warning */ 2880 ena_mask &= ~PFINT_OICR_GRST_M; 2881 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2882 GLGEN_RSTAT_RESET_TYPE_S; 2883 2884 if (reset == ICE_RESET_CORER) 2885 pf->corer_count++; 2886 else if (reset == ICE_RESET_GLOBR) 2887 pf->globr_count++; 2888 else if (reset == ICE_RESET_EMPR) 2889 pf->empr_count++; 2890 else 2891 dev_dbg(dev, "Invalid reset type %d\n", reset); 2892 2893 /* If a reset cycle isn't already in progress, we set a bit in 2894 * pf->state so that the service task can start a reset/rebuild. 2895 */ 2896 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2897 if (reset == ICE_RESET_CORER) 2898 set_bit(ICE_CORER_RECV, pf->state); 2899 else if (reset == ICE_RESET_GLOBR) 2900 set_bit(ICE_GLOBR_RECV, pf->state); 2901 else 2902 set_bit(ICE_EMPR_RECV, pf->state); 2903 2904 /* There are couple of different bits at play here. 2905 * hw->reset_ongoing indicates whether the hardware is 2906 * in reset. This is set to true when a reset interrupt 2907 * is received and set back to false after the driver 2908 * has determined that the hardware is out of reset. 2909 * 2910 * ICE_RESET_OICR_RECV in pf->state indicates 2911 * that a post reset rebuild is required before the 2912 * driver is operational again. This is set above. 2913 * 2914 * As this is the start of the reset/rebuild cycle, set 2915 * both to indicate that. 2916 */ 2917 hw->reset_ongoing = true; 2918 } 2919 } 2920 2921 if (oicr & PFINT_OICR_TSYN_TX_M) { 2922 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 2923 ice_ptp_process_ts(pf); 2924 } 2925 2926 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 2927 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2928 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 2929 2930 /* Save EVENTs from GTSYN register */ 2931 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 2932 GLTSYN_STAT_EVENT1_M | 2933 GLTSYN_STAT_EVENT2_M); 2934 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 2935 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 2936 } 2937 2938 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 2939 if (oicr & ICE_AUX_CRIT_ERR) { 2940 struct iidc_event *event; 2941 2942 ena_mask &= ~ICE_AUX_CRIT_ERR; 2943 event = kzalloc(sizeof(*event), GFP_KERNEL); 2944 if (event) { 2945 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2946 /* report the entire OICR value to AUX driver */ 2947 event->reg = oicr; 2948 ice_send_event_to_aux(pf, event); 2949 kfree(event); 2950 } 2951 } 2952 2953 /* Report any remaining unexpected interrupts */ 2954 oicr &= ena_mask; 2955 if (oicr) { 2956 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2957 /* If a critical error is pending there is no choice but to 2958 * reset the device. 2959 */ 2960 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 2961 PFINT_OICR_ECC_ERR_M)) { 2962 set_bit(ICE_PFR_REQ, pf->state); 2963 ice_service_task_schedule(pf); 2964 } 2965 } 2966 ret = IRQ_HANDLED; 2967 2968 ice_service_task_schedule(pf); 2969 ice_irq_dynamic_ena(hw, NULL, NULL); 2970 2971 return ret; 2972 } 2973 2974 /** 2975 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2976 * @hw: pointer to HW structure 2977 */ 2978 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2979 { 2980 /* disable Admin queue Interrupt causes */ 2981 wr32(hw, PFINT_FW_CTL, 2982 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2983 2984 /* disable Mailbox queue Interrupt causes */ 2985 wr32(hw, PFINT_MBX_CTL, 2986 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2987 2988 wr32(hw, PFINT_SB_CTL, 2989 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 2990 2991 /* disable Control queue Interrupt causes */ 2992 wr32(hw, PFINT_OICR_CTL, 2993 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2994 2995 ice_flush(hw); 2996 } 2997 2998 /** 2999 * ice_free_irq_msix_misc - Unroll misc vector setup 3000 * @pf: board private structure 3001 */ 3002 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3003 { 3004 struct ice_hw *hw = &pf->hw; 3005 3006 ice_dis_ctrlq_interrupts(hw); 3007 3008 /* disable OICR interrupt */ 3009 wr32(hw, PFINT_OICR_ENA, 0); 3010 ice_flush(hw); 3011 3012 if (pf->msix_entries) { 3013 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3014 devm_free_irq(ice_pf_to_dev(pf), 3015 pf->msix_entries[pf->oicr_idx].vector, pf); 3016 } 3017 3018 pf->num_avail_sw_msix += 1; 3019 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3020 } 3021 3022 /** 3023 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3024 * @hw: pointer to HW structure 3025 * @reg_idx: HW vector index to associate the control queue interrupts with 3026 */ 3027 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3028 { 3029 u32 val; 3030 3031 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3032 PFINT_OICR_CTL_CAUSE_ENA_M); 3033 wr32(hw, PFINT_OICR_CTL, val); 3034 3035 /* enable Admin queue Interrupt causes */ 3036 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3037 PFINT_FW_CTL_CAUSE_ENA_M); 3038 wr32(hw, PFINT_FW_CTL, val); 3039 3040 /* enable Mailbox queue Interrupt causes */ 3041 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3042 PFINT_MBX_CTL_CAUSE_ENA_M); 3043 wr32(hw, PFINT_MBX_CTL, val); 3044 3045 /* This enables Sideband queue Interrupt causes */ 3046 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3047 PFINT_SB_CTL_CAUSE_ENA_M); 3048 wr32(hw, PFINT_SB_CTL, val); 3049 3050 ice_flush(hw); 3051 } 3052 3053 /** 3054 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3055 * @pf: board private structure 3056 * 3057 * This sets up the handler for MSIX 0, which is used to manage the 3058 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3059 * when in MSI or Legacy interrupt mode. 3060 */ 3061 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3062 { 3063 struct device *dev = ice_pf_to_dev(pf); 3064 struct ice_hw *hw = &pf->hw; 3065 int oicr_idx, err = 0; 3066 3067 if (!pf->int_name[0]) 3068 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3069 dev_driver_string(dev), dev_name(dev)); 3070 3071 /* Do not request IRQ but do enable OICR interrupt since settings are 3072 * lost during reset. Note that this function is called only during 3073 * rebuild path and not while reset is in progress. 3074 */ 3075 if (ice_is_reset_in_progress(pf->state)) 3076 goto skip_req_irq; 3077 3078 /* reserve one vector in irq_tracker for misc interrupts */ 3079 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3080 if (oicr_idx < 0) 3081 return oicr_idx; 3082 3083 pf->num_avail_sw_msix -= 1; 3084 pf->oicr_idx = (u16)oicr_idx; 3085 3086 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3087 ice_misc_intr, 0, pf->int_name, pf); 3088 if (err) { 3089 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3090 pf->int_name, err); 3091 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3092 pf->num_avail_sw_msix += 1; 3093 return err; 3094 } 3095 3096 skip_req_irq: 3097 ice_ena_misc_vector(pf); 3098 3099 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3100 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3101 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3102 3103 ice_flush(hw); 3104 ice_irq_dynamic_ena(hw, NULL, NULL); 3105 3106 return 0; 3107 } 3108 3109 /** 3110 * ice_napi_add - register NAPI handler for the VSI 3111 * @vsi: VSI for which NAPI handler is to be registered 3112 * 3113 * This function is only called in the driver's load path. Registering the NAPI 3114 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3115 * reset/rebuild, etc.) 3116 */ 3117 static void ice_napi_add(struct ice_vsi *vsi) 3118 { 3119 int v_idx; 3120 3121 if (!vsi->netdev) 3122 return; 3123 3124 ice_for_each_q_vector(vsi, v_idx) 3125 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3126 ice_napi_poll, NAPI_POLL_WEIGHT); 3127 } 3128 3129 /** 3130 * ice_set_ops - set netdev and ethtools ops for the given netdev 3131 * @netdev: netdev instance 3132 */ 3133 static void ice_set_ops(struct net_device *netdev) 3134 { 3135 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3136 3137 if (ice_is_safe_mode(pf)) { 3138 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3139 ice_set_ethtool_safe_mode_ops(netdev); 3140 return; 3141 } 3142 3143 netdev->netdev_ops = &ice_netdev_ops; 3144 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3145 ice_set_ethtool_ops(netdev); 3146 } 3147 3148 /** 3149 * ice_set_netdev_features - set features for the given netdev 3150 * @netdev: netdev instance 3151 */ 3152 static void ice_set_netdev_features(struct net_device *netdev) 3153 { 3154 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3155 netdev_features_t csumo_features; 3156 netdev_features_t vlano_features; 3157 netdev_features_t dflt_features; 3158 netdev_features_t tso_features; 3159 3160 if (ice_is_safe_mode(pf)) { 3161 /* safe mode */ 3162 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3163 netdev->hw_features = netdev->features; 3164 return; 3165 } 3166 3167 dflt_features = NETIF_F_SG | 3168 NETIF_F_HIGHDMA | 3169 NETIF_F_NTUPLE | 3170 NETIF_F_RXHASH; 3171 3172 csumo_features = NETIF_F_RXCSUM | 3173 NETIF_F_IP_CSUM | 3174 NETIF_F_SCTP_CRC | 3175 NETIF_F_IPV6_CSUM; 3176 3177 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3178 NETIF_F_HW_VLAN_CTAG_TX | 3179 NETIF_F_HW_VLAN_CTAG_RX; 3180 3181 tso_features = NETIF_F_TSO | 3182 NETIF_F_TSO_ECN | 3183 NETIF_F_TSO6 | 3184 NETIF_F_GSO_GRE | 3185 NETIF_F_GSO_UDP_TUNNEL | 3186 NETIF_F_GSO_GRE_CSUM | 3187 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3188 NETIF_F_GSO_PARTIAL | 3189 NETIF_F_GSO_IPXIP4 | 3190 NETIF_F_GSO_IPXIP6 | 3191 NETIF_F_GSO_UDP_L4; 3192 3193 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3194 NETIF_F_GSO_GRE_CSUM; 3195 /* set features that user can change */ 3196 netdev->hw_features = dflt_features | csumo_features | 3197 vlano_features | tso_features; 3198 3199 /* add support for HW_CSUM on packets with MPLS header */ 3200 netdev->mpls_features = NETIF_F_HW_CSUM; 3201 3202 /* enable features */ 3203 netdev->features |= netdev->hw_features; 3204 3205 netdev->hw_features |= NETIF_F_HW_TC; 3206 3207 /* encap and VLAN devices inherit default, csumo and tso features */ 3208 netdev->hw_enc_features |= dflt_features | csumo_features | 3209 tso_features; 3210 netdev->vlan_features |= dflt_features | csumo_features | 3211 tso_features; 3212 } 3213 3214 /** 3215 * ice_cfg_netdev - Allocate, configure and register a netdev 3216 * @vsi: the VSI associated with the new netdev 3217 * 3218 * Returns 0 on success, negative value on failure 3219 */ 3220 static int ice_cfg_netdev(struct ice_vsi *vsi) 3221 { 3222 struct ice_netdev_priv *np; 3223 struct net_device *netdev; 3224 u8 mac_addr[ETH_ALEN]; 3225 3226 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3227 vsi->alloc_rxq); 3228 if (!netdev) 3229 return -ENOMEM; 3230 3231 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3232 vsi->netdev = netdev; 3233 np = netdev_priv(netdev); 3234 np->vsi = vsi; 3235 3236 ice_set_netdev_features(netdev); 3237 3238 ice_set_ops(netdev); 3239 3240 if (vsi->type == ICE_VSI_PF) { 3241 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3242 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3243 eth_hw_addr_set(netdev, mac_addr); 3244 ether_addr_copy(netdev->perm_addr, mac_addr); 3245 } 3246 3247 netdev->priv_flags |= IFF_UNICAST_FLT; 3248 3249 /* Setup netdev TC information */ 3250 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3251 3252 /* setup watchdog timeout value to be 5 second */ 3253 netdev->watchdog_timeo = 5 * HZ; 3254 3255 netdev->min_mtu = ETH_MIN_MTU; 3256 netdev->max_mtu = ICE_MAX_MTU; 3257 3258 return 0; 3259 } 3260 3261 /** 3262 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3263 * @lut: Lookup table 3264 * @rss_table_size: Lookup table size 3265 * @rss_size: Range of queue number for hashing 3266 */ 3267 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3268 { 3269 u16 i; 3270 3271 for (i = 0; i < rss_table_size; i++) 3272 lut[i] = i % rss_size; 3273 } 3274 3275 /** 3276 * ice_pf_vsi_setup - Set up a PF VSI 3277 * @pf: board private structure 3278 * @pi: pointer to the port_info instance 3279 * 3280 * Returns pointer to the successfully allocated VSI software struct 3281 * on success, otherwise returns NULL on failure. 3282 */ 3283 static struct ice_vsi * 3284 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3285 { 3286 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3287 } 3288 3289 static struct ice_vsi * 3290 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3291 struct ice_channel *ch) 3292 { 3293 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3294 } 3295 3296 /** 3297 * ice_ctrl_vsi_setup - Set up a control VSI 3298 * @pf: board private structure 3299 * @pi: pointer to the port_info instance 3300 * 3301 * Returns pointer to the successfully allocated VSI software struct 3302 * on success, otherwise returns NULL on failure. 3303 */ 3304 static struct ice_vsi * 3305 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3306 { 3307 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3308 } 3309 3310 /** 3311 * ice_lb_vsi_setup - Set up a loopback VSI 3312 * @pf: board private structure 3313 * @pi: pointer to the port_info instance 3314 * 3315 * Returns pointer to the successfully allocated VSI software struct 3316 * on success, otherwise returns NULL on failure. 3317 */ 3318 struct ice_vsi * 3319 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3320 { 3321 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3322 } 3323 3324 /** 3325 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3326 * @netdev: network interface to be adjusted 3327 * @proto: unused protocol 3328 * @vid: VLAN ID to be added 3329 * 3330 * net_device_ops implementation for adding VLAN IDs 3331 */ 3332 static int 3333 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3334 u16 vid) 3335 { 3336 struct ice_netdev_priv *np = netdev_priv(netdev); 3337 struct ice_vsi *vsi = np->vsi; 3338 int ret; 3339 3340 /* VLAN 0 is added by default during load/reset */ 3341 if (!vid) 3342 return 0; 3343 3344 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3345 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3346 ret = ice_cfg_vlan_pruning(vsi, true, false); 3347 if (ret) 3348 return ret; 3349 } 3350 3351 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3352 * packets aren't pruned by the device's internal switch on Rx 3353 */ 3354 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3355 if (!ret) 3356 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3357 3358 return ret; 3359 } 3360 3361 /** 3362 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3363 * @netdev: network interface to be adjusted 3364 * @proto: unused protocol 3365 * @vid: VLAN ID to be removed 3366 * 3367 * net_device_ops implementation for removing VLAN IDs 3368 */ 3369 static int 3370 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3371 u16 vid) 3372 { 3373 struct ice_netdev_priv *np = netdev_priv(netdev); 3374 struct ice_vsi *vsi = np->vsi; 3375 int ret; 3376 3377 /* don't allow removal of VLAN 0 */ 3378 if (!vid) 3379 return 0; 3380 3381 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3382 * information 3383 */ 3384 ret = ice_vsi_kill_vlan(vsi, vid); 3385 if (ret) 3386 return ret; 3387 3388 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3389 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3390 ret = ice_cfg_vlan_pruning(vsi, false, false); 3391 3392 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3393 return ret; 3394 } 3395 3396 /** 3397 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3398 * @pf: board private structure 3399 * 3400 * Returns 0 on success, negative value on failure 3401 */ 3402 static int ice_setup_pf_sw(struct ice_pf *pf) 3403 { 3404 struct ice_vsi *vsi; 3405 int status = 0; 3406 3407 if (ice_is_reset_in_progress(pf->state)) 3408 return -EBUSY; 3409 3410 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3411 if (!vsi) 3412 return -ENOMEM; 3413 3414 /* init channel list */ 3415 INIT_LIST_HEAD(&vsi->ch_list); 3416 3417 status = ice_cfg_netdev(vsi); 3418 if (status) { 3419 status = -ENODEV; 3420 goto unroll_vsi_setup; 3421 } 3422 /* netdev has to be configured before setting frame size */ 3423 ice_vsi_cfg_frame_size(vsi); 3424 3425 /* Setup DCB netlink interface */ 3426 ice_dcbnl_setup(vsi); 3427 3428 /* registering the NAPI handler requires both the queues and 3429 * netdev to be created, which are done in ice_pf_vsi_setup() 3430 * and ice_cfg_netdev() respectively 3431 */ 3432 ice_napi_add(vsi); 3433 3434 status = ice_set_cpu_rx_rmap(vsi); 3435 if (status) { 3436 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3437 vsi->vsi_num, status); 3438 status = -EINVAL; 3439 goto unroll_napi_add; 3440 } 3441 status = ice_init_mac_fltr(pf); 3442 if (status) 3443 goto free_cpu_rx_map; 3444 3445 return status; 3446 3447 free_cpu_rx_map: 3448 ice_free_cpu_rx_rmap(vsi); 3449 3450 unroll_napi_add: 3451 if (vsi) { 3452 ice_napi_del(vsi); 3453 if (vsi->netdev) { 3454 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3455 free_netdev(vsi->netdev); 3456 vsi->netdev = NULL; 3457 } 3458 } 3459 3460 unroll_vsi_setup: 3461 ice_vsi_release(vsi); 3462 return status; 3463 } 3464 3465 /** 3466 * ice_get_avail_q_count - Get count of queues in use 3467 * @pf_qmap: bitmap to get queue use count from 3468 * @lock: pointer to a mutex that protects access to pf_qmap 3469 * @size: size of the bitmap 3470 */ 3471 static u16 3472 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3473 { 3474 unsigned long bit; 3475 u16 count = 0; 3476 3477 mutex_lock(lock); 3478 for_each_clear_bit(bit, pf_qmap, size) 3479 count++; 3480 mutex_unlock(lock); 3481 3482 return count; 3483 } 3484 3485 /** 3486 * ice_get_avail_txq_count - Get count of Tx queues in use 3487 * @pf: pointer to an ice_pf instance 3488 */ 3489 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3490 { 3491 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3492 pf->max_pf_txqs); 3493 } 3494 3495 /** 3496 * ice_get_avail_rxq_count - Get count of Rx queues in use 3497 * @pf: pointer to an ice_pf instance 3498 */ 3499 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3500 { 3501 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3502 pf->max_pf_rxqs); 3503 } 3504 3505 /** 3506 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3507 * @pf: board private structure to initialize 3508 */ 3509 static void ice_deinit_pf(struct ice_pf *pf) 3510 { 3511 ice_service_task_stop(pf); 3512 mutex_destroy(&pf->sw_mutex); 3513 mutex_destroy(&pf->tc_mutex); 3514 mutex_destroy(&pf->avail_q_mutex); 3515 3516 if (pf->avail_txqs) { 3517 bitmap_free(pf->avail_txqs); 3518 pf->avail_txqs = NULL; 3519 } 3520 3521 if (pf->avail_rxqs) { 3522 bitmap_free(pf->avail_rxqs); 3523 pf->avail_rxqs = NULL; 3524 } 3525 3526 if (pf->ptp.clock) 3527 ptp_clock_unregister(pf->ptp.clock); 3528 } 3529 3530 /** 3531 * ice_set_pf_caps - set PFs capability flags 3532 * @pf: pointer to the PF instance 3533 */ 3534 static void ice_set_pf_caps(struct ice_pf *pf) 3535 { 3536 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3537 3538 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3539 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3540 if (func_caps->common_cap.rdma) { 3541 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3542 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3543 } 3544 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3545 if (func_caps->common_cap.dcb) 3546 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3547 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3548 if (func_caps->common_cap.sr_iov_1_1) { 3549 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3550 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3551 ICE_MAX_VF_COUNT); 3552 } 3553 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3554 if (func_caps->common_cap.rss_table_size) 3555 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3556 3557 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3558 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3559 u16 unused; 3560 3561 /* ctrl_vsi_idx will be set to a valid value when flow director 3562 * is setup by ice_init_fdir 3563 */ 3564 pf->ctrl_vsi_idx = ICE_NO_VSI; 3565 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3566 /* force guaranteed filter pool for PF */ 3567 ice_alloc_fd_guar_item(&pf->hw, &unused, 3568 func_caps->fd_fltr_guar); 3569 /* force shared filter pool for PF */ 3570 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3571 func_caps->fd_fltr_best_effort); 3572 } 3573 3574 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3575 if (func_caps->common_cap.ieee_1588) 3576 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3577 3578 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3579 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3580 } 3581 3582 /** 3583 * ice_init_pf - Initialize general software structures (struct ice_pf) 3584 * @pf: board private structure to initialize 3585 */ 3586 static int ice_init_pf(struct ice_pf *pf) 3587 { 3588 ice_set_pf_caps(pf); 3589 3590 mutex_init(&pf->sw_mutex); 3591 mutex_init(&pf->tc_mutex); 3592 3593 INIT_HLIST_HEAD(&pf->aq_wait_list); 3594 spin_lock_init(&pf->aq_wait_lock); 3595 init_waitqueue_head(&pf->aq_wait_queue); 3596 3597 init_waitqueue_head(&pf->reset_wait_queue); 3598 3599 /* setup service timer and periodic service task */ 3600 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3601 pf->serv_tmr_period = HZ; 3602 INIT_WORK(&pf->serv_task, ice_service_task); 3603 clear_bit(ICE_SERVICE_SCHED, pf->state); 3604 3605 mutex_init(&pf->avail_q_mutex); 3606 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3607 if (!pf->avail_txqs) 3608 return -ENOMEM; 3609 3610 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3611 if (!pf->avail_rxqs) { 3612 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3613 pf->avail_txqs = NULL; 3614 return -ENOMEM; 3615 } 3616 3617 return 0; 3618 } 3619 3620 /** 3621 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3622 * @pf: board private structure 3623 * 3624 * compute the number of MSIX vectors required (v_budget) and request from 3625 * the OS. Return the number of vectors reserved or negative on failure 3626 */ 3627 static int ice_ena_msix_range(struct ice_pf *pf) 3628 { 3629 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3630 struct device *dev = ice_pf_to_dev(pf); 3631 int needed, err, i; 3632 3633 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3634 num_cpus = num_online_cpus(); 3635 3636 /* reserve for LAN miscellaneous handler */ 3637 needed = ICE_MIN_LAN_OICR_MSIX; 3638 if (v_left < needed) 3639 goto no_hw_vecs_left_err; 3640 v_budget += needed; 3641 v_left -= needed; 3642 3643 /* reserve for flow director */ 3644 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3645 needed = ICE_FDIR_MSIX; 3646 if (v_left < needed) 3647 goto no_hw_vecs_left_err; 3648 v_budget += needed; 3649 v_left -= needed; 3650 } 3651 3652 /* reserve for switchdev */ 3653 needed = ICE_ESWITCH_MSIX; 3654 if (v_left < needed) 3655 goto no_hw_vecs_left_err; 3656 v_budget += needed; 3657 v_left -= needed; 3658 3659 /* total used for non-traffic vectors */ 3660 v_other = v_budget; 3661 3662 /* reserve vectors for LAN traffic */ 3663 needed = num_cpus; 3664 if (v_left < needed) 3665 goto no_hw_vecs_left_err; 3666 pf->num_lan_msix = needed; 3667 v_budget += needed; 3668 v_left -= needed; 3669 3670 /* reserve vectors for RDMA auxiliary driver */ 3671 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3672 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3673 if (v_left < needed) 3674 goto no_hw_vecs_left_err; 3675 pf->num_rdma_msix = needed; 3676 v_budget += needed; 3677 v_left -= needed; 3678 } 3679 3680 pf->msix_entries = devm_kcalloc(dev, v_budget, 3681 sizeof(*pf->msix_entries), GFP_KERNEL); 3682 if (!pf->msix_entries) { 3683 err = -ENOMEM; 3684 goto exit_err; 3685 } 3686 3687 for (i = 0; i < v_budget; i++) 3688 pf->msix_entries[i].entry = i; 3689 3690 /* actually reserve the vectors */ 3691 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3692 ICE_MIN_MSIX, v_budget); 3693 if (v_actual < 0) { 3694 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3695 err = v_actual; 3696 goto msix_err; 3697 } 3698 3699 if (v_actual < v_budget) { 3700 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3701 v_budget, v_actual); 3702 3703 if (v_actual < ICE_MIN_MSIX) { 3704 /* error if we can't get minimum vectors */ 3705 pci_disable_msix(pf->pdev); 3706 err = -ERANGE; 3707 goto msix_err; 3708 } else { 3709 int v_remain = v_actual - v_other; 3710 int v_rdma = 0, v_min_rdma = 0; 3711 3712 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3713 /* Need at least 1 interrupt in addition to 3714 * AEQ MSIX 3715 */ 3716 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3717 v_min_rdma = ICE_MIN_RDMA_MSIX; 3718 } 3719 3720 if (v_actual == ICE_MIN_MSIX || 3721 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3722 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3723 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3724 3725 pf->num_rdma_msix = 0; 3726 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3727 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3728 (v_remain - v_rdma < v_rdma)) { 3729 /* Support minimum RDMA and give remaining 3730 * vectors to LAN MSIX 3731 */ 3732 pf->num_rdma_msix = v_min_rdma; 3733 pf->num_lan_msix = v_remain - v_min_rdma; 3734 } else { 3735 /* Split remaining MSIX with RDMA after 3736 * accounting for AEQ MSIX 3737 */ 3738 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3739 ICE_RDMA_NUM_AEQ_MSIX; 3740 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3741 } 3742 3743 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3744 pf->num_lan_msix); 3745 3746 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3747 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3748 pf->num_rdma_msix); 3749 } 3750 } 3751 3752 return v_actual; 3753 3754 msix_err: 3755 devm_kfree(dev, pf->msix_entries); 3756 goto exit_err; 3757 3758 no_hw_vecs_left_err: 3759 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3760 needed, v_left); 3761 err = -ERANGE; 3762 exit_err: 3763 pf->num_rdma_msix = 0; 3764 pf->num_lan_msix = 0; 3765 return err; 3766 } 3767 3768 /** 3769 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3770 * @pf: board private structure 3771 */ 3772 static void ice_dis_msix(struct ice_pf *pf) 3773 { 3774 pci_disable_msix(pf->pdev); 3775 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3776 pf->msix_entries = NULL; 3777 } 3778 3779 /** 3780 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3781 * @pf: board private structure 3782 */ 3783 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3784 { 3785 ice_dis_msix(pf); 3786 3787 if (pf->irq_tracker) { 3788 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3789 pf->irq_tracker = NULL; 3790 } 3791 } 3792 3793 /** 3794 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3795 * @pf: board private structure to initialize 3796 */ 3797 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3798 { 3799 int vectors; 3800 3801 vectors = ice_ena_msix_range(pf); 3802 3803 if (vectors < 0) 3804 return vectors; 3805 3806 /* set up vector assignment tracking */ 3807 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3808 struct_size(pf->irq_tracker, list, vectors), 3809 GFP_KERNEL); 3810 if (!pf->irq_tracker) { 3811 ice_dis_msix(pf); 3812 return -ENOMEM; 3813 } 3814 3815 /* populate SW interrupts pool with number of OS granted IRQs. */ 3816 pf->num_avail_sw_msix = (u16)vectors; 3817 pf->irq_tracker->num_entries = (u16)vectors; 3818 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3819 3820 return 0; 3821 } 3822 3823 /** 3824 * ice_is_wol_supported - check if WoL is supported 3825 * @hw: pointer to hardware info 3826 * 3827 * Check if WoL is supported based on the HW configuration. 3828 * Returns true if NVM supports and enables WoL for this port, false otherwise 3829 */ 3830 bool ice_is_wol_supported(struct ice_hw *hw) 3831 { 3832 u16 wol_ctrl; 3833 3834 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3835 * word) indicates WoL is not supported on the corresponding PF ID. 3836 */ 3837 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3838 return false; 3839 3840 return !(BIT(hw->port_info->lport) & wol_ctrl); 3841 } 3842 3843 /** 3844 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3845 * @vsi: VSI being changed 3846 * @new_rx: new number of Rx queues 3847 * @new_tx: new number of Tx queues 3848 * 3849 * Only change the number of queues if new_tx, or new_rx is non-0. 3850 * 3851 * Returns 0 on success. 3852 */ 3853 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3854 { 3855 struct ice_pf *pf = vsi->back; 3856 int err = 0, timeout = 50; 3857 3858 if (!new_rx && !new_tx) 3859 return -EINVAL; 3860 3861 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3862 timeout--; 3863 if (!timeout) 3864 return -EBUSY; 3865 usleep_range(1000, 2000); 3866 } 3867 3868 if (new_tx) 3869 vsi->req_txq = (u16)new_tx; 3870 if (new_rx) 3871 vsi->req_rxq = (u16)new_rx; 3872 3873 /* set for the next time the netdev is started */ 3874 if (!netif_running(vsi->netdev)) { 3875 ice_vsi_rebuild(vsi, false); 3876 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3877 goto done; 3878 } 3879 3880 ice_vsi_close(vsi); 3881 ice_vsi_rebuild(vsi, false); 3882 ice_pf_dcb_recfg(pf); 3883 ice_vsi_open(vsi); 3884 done: 3885 clear_bit(ICE_CFG_BUSY, pf->state); 3886 return err; 3887 } 3888 3889 /** 3890 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3891 * @pf: PF to configure 3892 * 3893 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3894 * VSI can still Tx/Rx VLAN tagged packets. 3895 */ 3896 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3897 { 3898 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3899 struct ice_vsi_ctx *ctxt; 3900 enum ice_status status; 3901 struct ice_hw *hw; 3902 3903 if (!vsi) 3904 return; 3905 3906 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3907 if (!ctxt) 3908 return; 3909 3910 hw = &pf->hw; 3911 ctxt->info = vsi->info; 3912 3913 ctxt->info.valid_sections = 3914 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3915 ICE_AQ_VSI_PROP_SECURITY_VALID | 3916 ICE_AQ_VSI_PROP_SW_VALID); 3917 3918 /* disable VLAN anti-spoof */ 3919 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3920 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3921 3922 /* disable VLAN pruning and keep all other settings */ 3923 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3924 3925 /* allow all VLANs on Tx and don't strip on Rx */ 3926 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3927 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3928 3929 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3930 if (status) { 3931 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3932 ice_stat_str(status), 3933 ice_aq_str(hw->adminq.sq_last_status)); 3934 } else { 3935 vsi->info.sec_flags = ctxt->info.sec_flags; 3936 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3937 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3938 } 3939 3940 kfree(ctxt); 3941 } 3942 3943 /** 3944 * ice_log_pkg_init - log result of DDP package load 3945 * @hw: pointer to hardware info 3946 * @status: status of package load 3947 */ 3948 static void 3949 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3950 { 3951 struct ice_pf *pf = (struct ice_pf *)hw->back; 3952 struct device *dev = ice_pf_to_dev(pf); 3953 3954 switch (*status) { 3955 case ICE_SUCCESS: 3956 /* The package download AdminQ command returned success because 3957 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3958 * already a package loaded on the device. 3959 */ 3960 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3961 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3962 hw->pkg_ver.update == hw->active_pkg_ver.update && 3963 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3964 !memcmp(hw->pkg_name, hw->active_pkg_name, 3965 sizeof(hw->pkg_name))) { 3966 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3967 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3968 hw->active_pkg_name, 3969 hw->active_pkg_ver.major, 3970 hw->active_pkg_ver.minor, 3971 hw->active_pkg_ver.update, 3972 hw->active_pkg_ver.draft); 3973 else 3974 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3975 hw->active_pkg_name, 3976 hw->active_pkg_ver.major, 3977 hw->active_pkg_ver.minor, 3978 hw->active_pkg_ver.update, 3979 hw->active_pkg_ver.draft); 3980 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3981 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3982 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3983 hw->active_pkg_name, 3984 hw->active_pkg_ver.major, 3985 hw->active_pkg_ver.minor, 3986 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3987 *status = ICE_ERR_NOT_SUPPORTED; 3988 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3989 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3990 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3991 hw->active_pkg_name, 3992 hw->active_pkg_ver.major, 3993 hw->active_pkg_ver.minor, 3994 hw->active_pkg_ver.update, 3995 hw->active_pkg_ver.draft, 3996 hw->pkg_name, 3997 hw->pkg_ver.major, 3998 hw->pkg_ver.minor, 3999 hw->pkg_ver.update, 4000 hw->pkg_ver.draft); 4001 } else { 4002 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 4003 *status = ICE_ERR_NOT_SUPPORTED; 4004 } 4005 break; 4006 case ICE_ERR_FW_DDP_MISMATCH: 4007 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4008 break; 4009 case ICE_ERR_BUF_TOO_SHORT: 4010 case ICE_ERR_CFG: 4011 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4012 break; 4013 case ICE_ERR_NOT_SUPPORTED: 4014 /* Package File version not supported */ 4015 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 4016 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 4017 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 4018 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4019 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 4020 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 4021 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 4022 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4023 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4024 break; 4025 case ICE_ERR_AQ_ERROR: 4026 switch (hw->pkg_dwnld_status) { 4027 case ICE_AQ_RC_ENOSEC: 4028 case ICE_AQ_RC_EBADSIG: 4029 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4030 return; 4031 case ICE_AQ_RC_ESVN: 4032 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4033 return; 4034 case ICE_AQ_RC_EBADMAN: 4035 case ICE_AQ_RC_EBADBUF: 4036 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4037 /* poll for reset to complete */ 4038 if (ice_check_reset(hw)) 4039 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4040 return; 4041 default: 4042 break; 4043 } 4044 fallthrough; 4045 default: 4046 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 4047 *status); 4048 break; 4049 } 4050 } 4051 4052 /** 4053 * ice_load_pkg - load/reload the DDP Package file 4054 * @firmware: firmware structure when firmware requested or NULL for reload 4055 * @pf: pointer to the PF instance 4056 * 4057 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4058 * initialize HW tables. 4059 */ 4060 static void 4061 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4062 { 4063 enum ice_status status = ICE_ERR_PARAM; 4064 struct device *dev = ice_pf_to_dev(pf); 4065 struct ice_hw *hw = &pf->hw; 4066 4067 /* Load DDP Package */ 4068 if (firmware && !hw->pkg_copy) { 4069 status = ice_copy_and_init_pkg(hw, firmware->data, 4070 firmware->size); 4071 ice_log_pkg_init(hw, &status); 4072 } else if (!firmware && hw->pkg_copy) { 4073 /* Reload package during rebuild after CORER/GLOBR reset */ 4074 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4075 ice_log_pkg_init(hw, &status); 4076 } else { 4077 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4078 } 4079 4080 if (status) { 4081 /* Safe Mode */ 4082 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4083 return; 4084 } 4085 4086 /* Successful download package is the precondition for advanced 4087 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4088 */ 4089 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4090 } 4091 4092 /** 4093 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4094 * @pf: pointer to the PF structure 4095 * 4096 * There is no error returned here because the driver should be able to handle 4097 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4098 * specifically with Tx. 4099 */ 4100 static void ice_verify_cacheline_size(struct ice_pf *pf) 4101 { 4102 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4103 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4104 ICE_CACHE_LINE_BYTES); 4105 } 4106 4107 /** 4108 * ice_send_version - update firmware with driver version 4109 * @pf: PF struct 4110 * 4111 * Returns ICE_SUCCESS on success, else error code 4112 */ 4113 static enum ice_status ice_send_version(struct ice_pf *pf) 4114 { 4115 struct ice_driver_ver dv; 4116 4117 dv.major_ver = 0xff; 4118 dv.minor_ver = 0xff; 4119 dv.build_ver = 0xff; 4120 dv.subbuild_ver = 0; 4121 strscpy((char *)dv.driver_string, UTS_RELEASE, 4122 sizeof(dv.driver_string)); 4123 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4124 } 4125 4126 /** 4127 * ice_init_fdir - Initialize flow director VSI and configuration 4128 * @pf: pointer to the PF instance 4129 * 4130 * returns 0 on success, negative on error 4131 */ 4132 static int ice_init_fdir(struct ice_pf *pf) 4133 { 4134 struct device *dev = ice_pf_to_dev(pf); 4135 struct ice_vsi *ctrl_vsi; 4136 int err; 4137 4138 /* Side Band Flow Director needs to have a control VSI. 4139 * Allocate it and store it in the PF. 4140 */ 4141 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4142 if (!ctrl_vsi) { 4143 dev_dbg(dev, "could not create control VSI\n"); 4144 return -ENOMEM; 4145 } 4146 4147 err = ice_vsi_open_ctrl(ctrl_vsi); 4148 if (err) { 4149 dev_dbg(dev, "could not open control VSI\n"); 4150 goto err_vsi_open; 4151 } 4152 4153 mutex_init(&pf->hw.fdir_fltr_lock); 4154 4155 err = ice_fdir_create_dflt_rules(pf); 4156 if (err) 4157 goto err_fdir_rule; 4158 4159 return 0; 4160 4161 err_fdir_rule: 4162 ice_fdir_release_flows(&pf->hw); 4163 ice_vsi_close(ctrl_vsi); 4164 err_vsi_open: 4165 ice_vsi_release(ctrl_vsi); 4166 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4167 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4168 pf->ctrl_vsi_idx = ICE_NO_VSI; 4169 } 4170 return err; 4171 } 4172 4173 /** 4174 * ice_get_opt_fw_name - return optional firmware file name or NULL 4175 * @pf: pointer to the PF instance 4176 */ 4177 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4178 { 4179 /* Optional firmware name same as default with additional dash 4180 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4181 */ 4182 struct pci_dev *pdev = pf->pdev; 4183 char *opt_fw_filename; 4184 u64 dsn; 4185 4186 /* Determine the name of the optional file using the DSN (two 4187 * dwords following the start of the DSN Capability). 4188 */ 4189 dsn = pci_get_dsn(pdev); 4190 if (!dsn) 4191 return NULL; 4192 4193 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4194 if (!opt_fw_filename) 4195 return NULL; 4196 4197 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4198 ICE_DDP_PKG_PATH, dsn); 4199 4200 return opt_fw_filename; 4201 } 4202 4203 /** 4204 * ice_request_fw - Device initialization routine 4205 * @pf: pointer to the PF instance 4206 */ 4207 static void ice_request_fw(struct ice_pf *pf) 4208 { 4209 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4210 const struct firmware *firmware = NULL; 4211 struct device *dev = ice_pf_to_dev(pf); 4212 int err = 0; 4213 4214 /* optional device-specific DDP (if present) overrides the default DDP 4215 * package file. kernel logs a debug message if the file doesn't exist, 4216 * and warning messages for other errors. 4217 */ 4218 if (opt_fw_filename) { 4219 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4220 if (err) { 4221 kfree(opt_fw_filename); 4222 goto dflt_pkg_load; 4223 } 4224 4225 /* request for firmware was successful. Download to device */ 4226 ice_load_pkg(firmware, pf); 4227 kfree(opt_fw_filename); 4228 release_firmware(firmware); 4229 return; 4230 } 4231 4232 dflt_pkg_load: 4233 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4234 if (err) { 4235 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4236 return; 4237 } 4238 4239 /* request for firmware was successful. Download to device */ 4240 ice_load_pkg(firmware, pf); 4241 release_firmware(firmware); 4242 } 4243 4244 /** 4245 * ice_print_wake_reason - show the wake up cause in the log 4246 * @pf: pointer to the PF struct 4247 */ 4248 static void ice_print_wake_reason(struct ice_pf *pf) 4249 { 4250 u32 wus = pf->wakeup_reason; 4251 const char *wake_str; 4252 4253 /* if no wake event, nothing to print */ 4254 if (!wus) 4255 return; 4256 4257 if (wus & PFPM_WUS_LNKC_M) 4258 wake_str = "Link\n"; 4259 else if (wus & PFPM_WUS_MAG_M) 4260 wake_str = "Magic Packet\n"; 4261 else if (wus & PFPM_WUS_MNG_M) 4262 wake_str = "Management\n"; 4263 else if (wus & PFPM_WUS_FW_RST_WK_M) 4264 wake_str = "Firmware Reset\n"; 4265 else 4266 wake_str = "Unknown\n"; 4267 4268 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4269 } 4270 4271 /** 4272 * ice_register_netdev - register netdev and devlink port 4273 * @pf: pointer to the PF struct 4274 */ 4275 static int ice_register_netdev(struct ice_pf *pf) 4276 { 4277 struct ice_vsi *vsi; 4278 int err = 0; 4279 4280 vsi = ice_get_main_vsi(pf); 4281 if (!vsi || !vsi->netdev) 4282 return -EIO; 4283 4284 err = register_netdev(vsi->netdev); 4285 if (err) 4286 goto err_register_netdev; 4287 4288 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4289 netif_carrier_off(vsi->netdev); 4290 netif_tx_stop_all_queues(vsi->netdev); 4291 err = ice_devlink_create_pf_port(pf); 4292 if (err) 4293 goto err_devlink_create; 4294 4295 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4296 4297 return 0; 4298 err_devlink_create: 4299 unregister_netdev(vsi->netdev); 4300 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4301 err_register_netdev: 4302 free_netdev(vsi->netdev); 4303 vsi->netdev = NULL; 4304 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4305 return err; 4306 } 4307 4308 /** 4309 * ice_probe - Device initialization routine 4310 * @pdev: PCI device information struct 4311 * @ent: entry in ice_pci_tbl 4312 * 4313 * Returns 0 on success, negative on failure 4314 */ 4315 static int 4316 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4317 { 4318 struct device *dev = &pdev->dev; 4319 struct ice_pf *pf; 4320 struct ice_hw *hw; 4321 int i, err; 4322 4323 if (pdev->is_virtfn) { 4324 dev_err(dev, "can't probe a virtual function\n"); 4325 return -EINVAL; 4326 } 4327 4328 /* this driver uses devres, see 4329 * Documentation/driver-api/driver-model/devres.rst 4330 */ 4331 err = pcim_enable_device(pdev); 4332 if (err) 4333 return err; 4334 4335 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4336 if (err) { 4337 dev_err(dev, "BAR0 I/O map error %d\n", err); 4338 return err; 4339 } 4340 4341 pf = ice_allocate_pf(dev); 4342 if (!pf) 4343 return -ENOMEM; 4344 4345 /* initialize Auxiliary index to invalid value */ 4346 pf->aux_idx = -1; 4347 4348 /* set up for high or low DMA */ 4349 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4350 if (err) 4351 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4352 if (err) { 4353 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4354 return err; 4355 } 4356 4357 pci_enable_pcie_error_reporting(pdev); 4358 pci_set_master(pdev); 4359 4360 pf->pdev = pdev; 4361 pci_set_drvdata(pdev, pf); 4362 set_bit(ICE_DOWN, pf->state); 4363 /* Disable service task until DOWN bit is cleared */ 4364 set_bit(ICE_SERVICE_DIS, pf->state); 4365 4366 hw = &pf->hw; 4367 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4368 pci_save_state(pdev); 4369 4370 hw->back = pf; 4371 hw->vendor_id = pdev->vendor; 4372 hw->device_id = pdev->device; 4373 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4374 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4375 hw->subsystem_device_id = pdev->subsystem_device; 4376 hw->bus.device = PCI_SLOT(pdev->devfn); 4377 hw->bus.func = PCI_FUNC(pdev->devfn); 4378 ice_set_ctrlq_len(hw); 4379 4380 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4381 4382 #ifndef CONFIG_DYNAMIC_DEBUG 4383 if (debug < -1) 4384 hw->debug_mask = debug; 4385 #endif 4386 4387 err = ice_init_hw(hw); 4388 if (err) { 4389 dev_err(dev, "ice_init_hw failed: %d\n", err); 4390 err = -EIO; 4391 goto err_exit_unroll; 4392 } 4393 4394 ice_init_feature_support(pf); 4395 4396 ice_request_fw(pf); 4397 4398 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4399 * set in pf->state, which will cause ice_is_safe_mode to return 4400 * true 4401 */ 4402 if (ice_is_safe_mode(pf)) { 4403 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4404 /* we already got function/device capabilities but these don't 4405 * reflect what the driver needs to do in safe mode. Instead of 4406 * adding conditional logic everywhere to ignore these 4407 * device/function capabilities, override them. 4408 */ 4409 ice_set_safe_mode_caps(hw); 4410 } 4411 4412 err = ice_init_pf(pf); 4413 if (err) { 4414 dev_err(dev, "ice_init_pf failed: %d\n", err); 4415 goto err_init_pf_unroll; 4416 } 4417 4418 ice_devlink_init_regions(pf); 4419 4420 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4421 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4422 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4423 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4424 i = 0; 4425 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4426 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4427 pf->hw.tnl.valid_count[TNL_VXLAN]; 4428 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4429 UDP_TUNNEL_TYPE_VXLAN; 4430 i++; 4431 } 4432 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4433 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4434 pf->hw.tnl.valid_count[TNL_GENEVE]; 4435 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4436 UDP_TUNNEL_TYPE_GENEVE; 4437 i++; 4438 } 4439 4440 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4441 if (!pf->num_alloc_vsi) { 4442 err = -EIO; 4443 goto err_init_pf_unroll; 4444 } 4445 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4446 dev_warn(&pf->pdev->dev, 4447 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4448 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4449 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4450 } 4451 4452 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4453 GFP_KERNEL); 4454 if (!pf->vsi) { 4455 err = -ENOMEM; 4456 goto err_init_pf_unroll; 4457 } 4458 4459 err = ice_init_interrupt_scheme(pf); 4460 if (err) { 4461 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4462 err = -EIO; 4463 goto err_init_vsi_unroll; 4464 } 4465 4466 /* In case of MSIX we are going to setup the misc vector right here 4467 * to handle admin queue events etc. In case of legacy and MSI 4468 * the misc functionality and queue processing is combined in 4469 * the same vector and that gets setup at open. 4470 */ 4471 err = ice_req_irq_msix_misc(pf); 4472 if (err) { 4473 dev_err(dev, "setup of misc vector failed: %d\n", err); 4474 goto err_init_interrupt_unroll; 4475 } 4476 4477 /* create switch struct for the switch element created by FW on boot */ 4478 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4479 if (!pf->first_sw) { 4480 err = -ENOMEM; 4481 goto err_msix_misc_unroll; 4482 } 4483 4484 if (hw->evb_veb) 4485 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4486 else 4487 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4488 4489 pf->first_sw->pf = pf; 4490 4491 /* record the sw_id available for later use */ 4492 pf->first_sw->sw_id = hw->port_info->sw_id; 4493 4494 err = ice_setup_pf_sw(pf); 4495 if (err) { 4496 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4497 goto err_alloc_sw_unroll; 4498 } 4499 4500 clear_bit(ICE_SERVICE_DIS, pf->state); 4501 4502 /* tell the firmware we are up */ 4503 err = ice_send_version(pf); 4504 if (err) { 4505 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4506 UTS_RELEASE, err); 4507 goto err_send_version_unroll; 4508 } 4509 4510 /* since everything is good, start the service timer */ 4511 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4512 4513 err = ice_init_link_events(pf->hw.port_info); 4514 if (err) { 4515 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4516 goto err_send_version_unroll; 4517 } 4518 4519 /* not a fatal error if this fails */ 4520 err = ice_init_nvm_phy_type(pf->hw.port_info); 4521 if (err) 4522 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4523 4524 /* not a fatal error if this fails */ 4525 err = ice_update_link_info(pf->hw.port_info); 4526 if (err) 4527 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4528 4529 ice_init_link_dflt_override(pf->hw.port_info); 4530 4531 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err); 4532 4533 /* if media available, initialize PHY settings */ 4534 if (pf->hw.port_info->phy.link_info.link_info & 4535 ICE_AQ_MEDIA_AVAILABLE) { 4536 /* not a fatal error if this fails */ 4537 err = ice_init_phy_user_cfg(pf->hw.port_info); 4538 if (err) 4539 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4540 4541 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4542 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4543 4544 if (vsi) 4545 ice_configure_phy(vsi); 4546 } 4547 } else { 4548 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4549 } 4550 4551 ice_verify_cacheline_size(pf); 4552 4553 /* Save wakeup reason register for later use */ 4554 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4555 4556 /* check for a power management event */ 4557 ice_print_wake_reason(pf); 4558 4559 /* clear wake status, all bits */ 4560 wr32(hw, PFPM_WUS, U32_MAX); 4561 4562 /* Disable WoL at init, wait for user to enable */ 4563 device_set_wakeup_enable(dev, false); 4564 4565 if (ice_is_safe_mode(pf)) { 4566 ice_set_safe_mode_vlan_cfg(pf); 4567 goto probe_done; 4568 } 4569 4570 /* initialize DDP driven features */ 4571 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4572 ice_ptp_init(pf); 4573 4574 /* Note: Flow director init failure is non-fatal to load */ 4575 if (ice_init_fdir(pf)) 4576 dev_err(dev, "could not initialize flow director\n"); 4577 4578 /* Note: DCB init failure is non-fatal to load */ 4579 if (ice_init_pf_dcb(pf, false)) { 4580 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4581 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4582 } else { 4583 ice_cfg_lldp_mib_change(&pf->hw, true); 4584 } 4585 4586 if (ice_init_lag(pf)) 4587 dev_warn(dev, "Failed to init link aggregation support\n"); 4588 4589 /* print PCI link speed and width */ 4590 pcie_print_link_status(pf->pdev); 4591 4592 probe_done: 4593 err = ice_register_netdev(pf); 4594 if (err) 4595 goto err_netdev_reg; 4596 4597 /* ready to go, so clear down state bit */ 4598 clear_bit(ICE_DOWN, pf->state); 4599 if (ice_is_aux_ena(pf)) { 4600 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4601 if (pf->aux_idx < 0) { 4602 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4603 err = -ENOMEM; 4604 goto err_netdev_reg; 4605 } 4606 4607 err = ice_init_rdma(pf); 4608 if (err) { 4609 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4610 err = -EIO; 4611 goto err_init_aux_unroll; 4612 } 4613 } else { 4614 dev_warn(dev, "RDMA is not supported on this device\n"); 4615 } 4616 4617 ice_devlink_register(pf); 4618 return 0; 4619 4620 err_init_aux_unroll: 4621 pf->adev = NULL; 4622 ida_free(&ice_aux_ida, pf->aux_idx); 4623 err_netdev_reg: 4624 err_send_version_unroll: 4625 ice_vsi_release_all(pf); 4626 err_alloc_sw_unroll: 4627 set_bit(ICE_SERVICE_DIS, pf->state); 4628 set_bit(ICE_DOWN, pf->state); 4629 devm_kfree(dev, pf->first_sw); 4630 err_msix_misc_unroll: 4631 ice_free_irq_msix_misc(pf); 4632 err_init_interrupt_unroll: 4633 ice_clear_interrupt_scheme(pf); 4634 err_init_vsi_unroll: 4635 devm_kfree(dev, pf->vsi); 4636 err_init_pf_unroll: 4637 ice_deinit_pf(pf); 4638 ice_devlink_destroy_regions(pf); 4639 ice_deinit_hw(hw); 4640 err_exit_unroll: 4641 pci_disable_pcie_error_reporting(pdev); 4642 pci_disable_device(pdev); 4643 return err; 4644 } 4645 4646 /** 4647 * ice_set_wake - enable or disable Wake on LAN 4648 * @pf: pointer to the PF struct 4649 * 4650 * Simple helper for WoL control 4651 */ 4652 static void ice_set_wake(struct ice_pf *pf) 4653 { 4654 struct ice_hw *hw = &pf->hw; 4655 bool wol = pf->wol_ena; 4656 4657 /* clear wake state, otherwise new wake events won't fire */ 4658 wr32(hw, PFPM_WUS, U32_MAX); 4659 4660 /* enable / disable APM wake up, no RMW needed */ 4661 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4662 4663 /* set magic packet filter enabled */ 4664 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4665 } 4666 4667 /** 4668 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4669 * @pf: pointer to the PF struct 4670 * 4671 * Issue firmware command to enable multicast magic wake, making 4672 * sure that any locally administered address (LAA) is used for 4673 * wake, and that PF reset doesn't undo the LAA. 4674 */ 4675 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4676 { 4677 struct device *dev = ice_pf_to_dev(pf); 4678 struct ice_hw *hw = &pf->hw; 4679 enum ice_status status; 4680 u8 mac_addr[ETH_ALEN]; 4681 struct ice_vsi *vsi; 4682 u8 flags; 4683 4684 if (!pf->wol_ena) 4685 return; 4686 4687 vsi = ice_get_main_vsi(pf); 4688 if (!vsi) 4689 return; 4690 4691 /* Get current MAC address in case it's an LAA */ 4692 if (vsi->netdev) 4693 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4694 else 4695 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4696 4697 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4698 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4699 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4700 4701 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4702 if (status) 4703 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4704 ice_stat_str(status), 4705 ice_aq_str(hw->adminq.sq_last_status)); 4706 } 4707 4708 /** 4709 * ice_remove - Device removal routine 4710 * @pdev: PCI device information struct 4711 */ 4712 static void ice_remove(struct pci_dev *pdev) 4713 { 4714 struct ice_pf *pf = pci_get_drvdata(pdev); 4715 int i; 4716 4717 ice_devlink_unregister(pf); 4718 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4719 if (!ice_is_reset_in_progress(pf->state)) 4720 break; 4721 msleep(100); 4722 } 4723 4724 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4725 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4726 ice_free_vfs(pf); 4727 } 4728 4729 ice_service_task_stop(pf); 4730 4731 ice_aq_cancel_waiting_tasks(pf); 4732 ice_unplug_aux_dev(pf); 4733 if (pf->aux_idx >= 0) 4734 ida_free(&ice_aux_ida, pf->aux_idx); 4735 set_bit(ICE_DOWN, pf->state); 4736 4737 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4738 ice_deinit_lag(pf); 4739 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4740 ice_ptp_release(pf); 4741 if (!ice_is_safe_mode(pf)) 4742 ice_remove_arfs(pf); 4743 ice_setup_mc_magic_wake(pf); 4744 ice_vsi_release_all(pf); 4745 ice_set_wake(pf); 4746 ice_free_irq_msix_misc(pf); 4747 ice_for_each_vsi(pf, i) { 4748 if (!pf->vsi[i]) 4749 continue; 4750 ice_vsi_free_q_vectors(pf->vsi[i]); 4751 } 4752 ice_deinit_pf(pf); 4753 ice_devlink_destroy_regions(pf); 4754 ice_deinit_hw(&pf->hw); 4755 4756 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4757 * do it via ice_schedule_reset() since there is no need to rebuild 4758 * and the service task is already stopped. 4759 */ 4760 ice_reset(&pf->hw, ICE_RESET_PFR); 4761 pci_wait_for_pending_transaction(pdev); 4762 ice_clear_interrupt_scheme(pf); 4763 pci_disable_pcie_error_reporting(pdev); 4764 pci_disable_device(pdev); 4765 } 4766 4767 /** 4768 * ice_shutdown - PCI callback for shutting down device 4769 * @pdev: PCI device information struct 4770 */ 4771 static void ice_shutdown(struct pci_dev *pdev) 4772 { 4773 struct ice_pf *pf = pci_get_drvdata(pdev); 4774 4775 ice_remove(pdev); 4776 4777 if (system_state == SYSTEM_POWER_OFF) { 4778 pci_wake_from_d3(pdev, pf->wol_ena); 4779 pci_set_power_state(pdev, PCI_D3hot); 4780 } 4781 } 4782 4783 #ifdef CONFIG_PM 4784 /** 4785 * ice_prepare_for_shutdown - prep for PCI shutdown 4786 * @pf: board private structure 4787 * 4788 * Inform or close all dependent features in prep for PCI device shutdown 4789 */ 4790 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4791 { 4792 struct ice_hw *hw = &pf->hw; 4793 u32 v; 4794 4795 /* Notify VFs of impending reset */ 4796 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4797 ice_vc_notify_reset(pf); 4798 4799 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4800 4801 /* disable the VSIs and their queues that are not already DOWN */ 4802 ice_pf_dis_all_vsi(pf, false); 4803 4804 ice_for_each_vsi(pf, v) 4805 if (pf->vsi[v]) 4806 pf->vsi[v]->vsi_num = 0; 4807 4808 ice_shutdown_all_ctrlq(hw); 4809 } 4810 4811 /** 4812 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4813 * @pf: board private structure to reinitialize 4814 * 4815 * This routine reinitialize interrupt scheme that was cleared during 4816 * power management suspend callback. 4817 * 4818 * This should be called during resume routine to re-allocate the q_vectors 4819 * and reacquire interrupts. 4820 */ 4821 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4822 { 4823 struct device *dev = ice_pf_to_dev(pf); 4824 int ret, v; 4825 4826 /* Since we clear MSIX flag during suspend, we need to 4827 * set it back during resume... 4828 */ 4829 4830 ret = ice_init_interrupt_scheme(pf); 4831 if (ret) { 4832 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4833 return ret; 4834 } 4835 4836 /* Remap vectors and rings, after successful re-init interrupts */ 4837 ice_for_each_vsi(pf, v) { 4838 if (!pf->vsi[v]) 4839 continue; 4840 4841 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4842 if (ret) 4843 goto err_reinit; 4844 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4845 } 4846 4847 ret = ice_req_irq_msix_misc(pf); 4848 if (ret) { 4849 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4850 ret); 4851 goto err_reinit; 4852 } 4853 4854 return 0; 4855 4856 err_reinit: 4857 while (v--) 4858 if (pf->vsi[v]) 4859 ice_vsi_free_q_vectors(pf->vsi[v]); 4860 4861 return ret; 4862 } 4863 4864 /** 4865 * ice_suspend 4866 * @dev: generic device information structure 4867 * 4868 * Power Management callback to quiesce the device and prepare 4869 * for D3 transition. 4870 */ 4871 static int __maybe_unused ice_suspend(struct device *dev) 4872 { 4873 struct pci_dev *pdev = to_pci_dev(dev); 4874 struct ice_pf *pf; 4875 int disabled, v; 4876 4877 pf = pci_get_drvdata(pdev); 4878 4879 if (!ice_pf_state_is_nominal(pf)) { 4880 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4881 return -EBUSY; 4882 } 4883 4884 /* Stop watchdog tasks until resume completion. 4885 * Even though it is most likely that the service task is 4886 * disabled if the device is suspended or down, the service task's 4887 * state is controlled by a different state bit, and we should 4888 * store and honor whatever state that bit is in at this point. 4889 */ 4890 disabled = ice_service_task_stop(pf); 4891 4892 ice_unplug_aux_dev(pf); 4893 4894 /* Already suspended?, then there is nothing to do */ 4895 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4896 if (!disabled) 4897 ice_service_task_restart(pf); 4898 return 0; 4899 } 4900 4901 if (test_bit(ICE_DOWN, pf->state) || 4902 ice_is_reset_in_progress(pf->state)) { 4903 dev_err(dev, "can't suspend device in reset or already down\n"); 4904 if (!disabled) 4905 ice_service_task_restart(pf); 4906 return 0; 4907 } 4908 4909 ice_setup_mc_magic_wake(pf); 4910 4911 ice_prepare_for_shutdown(pf); 4912 4913 ice_set_wake(pf); 4914 4915 /* Free vectors, clear the interrupt scheme and release IRQs 4916 * for proper hibernation, especially with large number of CPUs. 4917 * Otherwise hibernation might fail when mapping all the vectors back 4918 * to CPU0. 4919 */ 4920 ice_free_irq_msix_misc(pf); 4921 ice_for_each_vsi(pf, v) { 4922 if (!pf->vsi[v]) 4923 continue; 4924 ice_vsi_free_q_vectors(pf->vsi[v]); 4925 } 4926 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4927 ice_clear_interrupt_scheme(pf); 4928 4929 pci_save_state(pdev); 4930 pci_wake_from_d3(pdev, pf->wol_ena); 4931 pci_set_power_state(pdev, PCI_D3hot); 4932 return 0; 4933 } 4934 4935 /** 4936 * ice_resume - PM callback for waking up from D3 4937 * @dev: generic device information structure 4938 */ 4939 static int __maybe_unused ice_resume(struct device *dev) 4940 { 4941 struct pci_dev *pdev = to_pci_dev(dev); 4942 enum ice_reset_req reset_type; 4943 struct ice_pf *pf; 4944 struct ice_hw *hw; 4945 int ret; 4946 4947 pci_set_power_state(pdev, PCI_D0); 4948 pci_restore_state(pdev); 4949 pci_save_state(pdev); 4950 4951 if (!pci_device_is_present(pdev)) 4952 return -ENODEV; 4953 4954 ret = pci_enable_device_mem(pdev); 4955 if (ret) { 4956 dev_err(dev, "Cannot enable device after suspend\n"); 4957 return ret; 4958 } 4959 4960 pf = pci_get_drvdata(pdev); 4961 hw = &pf->hw; 4962 4963 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4964 ice_print_wake_reason(pf); 4965 4966 /* We cleared the interrupt scheme when we suspended, so we need to 4967 * restore it now to resume device functionality. 4968 */ 4969 ret = ice_reinit_interrupt_scheme(pf); 4970 if (ret) 4971 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4972 4973 clear_bit(ICE_DOWN, pf->state); 4974 /* Now perform PF reset and rebuild */ 4975 reset_type = ICE_RESET_PFR; 4976 /* re-enable service task for reset, but allow reset to schedule it */ 4977 clear_bit(ICE_SERVICE_DIS, pf->state); 4978 4979 if (ice_schedule_reset(pf, reset_type)) 4980 dev_err(dev, "Reset during resume failed.\n"); 4981 4982 clear_bit(ICE_SUSPENDED, pf->state); 4983 ice_service_task_restart(pf); 4984 4985 /* Restart the service task */ 4986 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4987 4988 return 0; 4989 } 4990 #endif /* CONFIG_PM */ 4991 4992 /** 4993 * ice_pci_err_detected - warning that PCI error has been detected 4994 * @pdev: PCI device information struct 4995 * @err: the type of PCI error 4996 * 4997 * Called to warn that something happened on the PCI bus and the error handling 4998 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4999 */ 5000 static pci_ers_result_t 5001 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5002 { 5003 struct ice_pf *pf = pci_get_drvdata(pdev); 5004 5005 if (!pf) { 5006 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5007 __func__, err); 5008 return PCI_ERS_RESULT_DISCONNECT; 5009 } 5010 5011 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5012 ice_service_task_stop(pf); 5013 5014 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5015 set_bit(ICE_PFR_REQ, pf->state); 5016 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5017 } 5018 } 5019 5020 return PCI_ERS_RESULT_NEED_RESET; 5021 } 5022 5023 /** 5024 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5025 * @pdev: PCI device information struct 5026 * 5027 * Called to determine if the driver can recover from the PCI slot reset by 5028 * using a register read to determine if the device is recoverable. 5029 */ 5030 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5031 { 5032 struct ice_pf *pf = pci_get_drvdata(pdev); 5033 pci_ers_result_t result; 5034 int err; 5035 u32 reg; 5036 5037 err = pci_enable_device_mem(pdev); 5038 if (err) { 5039 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5040 err); 5041 result = PCI_ERS_RESULT_DISCONNECT; 5042 } else { 5043 pci_set_master(pdev); 5044 pci_restore_state(pdev); 5045 pci_save_state(pdev); 5046 pci_wake_from_d3(pdev, false); 5047 5048 /* Check for life */ 5049 reg = rd32(&pf->hw, GLGEN_RTRIG); 5050 if (!reg) 5051 result = PCI_ERS_RESULT_RECOVERED; 5052 else 5053 result = PCI_ERS_RESULT_DISCONNECT; 5054 } 5055 5056 err = pci_aer_clear_nonfatal_status(pdev); 5057 if (err) 5058 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5059 err); 5060 /* non-fatal, continue */ 5061 5062 return result; 5063 } 5064 5065 /** 5066 * ice_pci_err_resume - restart operations after PCI error recovery 5067 * @pdev: PCI device information struct 5068 * 5069 * Called to allow the driver to bring things back up after PCI error and/or 5070 * reset recovery have finished 5071 */ 5072 static void ice_pci_err_resume(struct pci_dev *pdev) 5073 { 5074 struct ice_pf *pf = pci_get_drvdata(pdev); 5075 5076 if (!pf) { 5077 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5078 __func__); 5079 return; 5080 } 5081 5082 if (test_bit(ICE_SUSPENDED, pf->state)) { 5083 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5084 __func__); 5085 return; 5086 } 5087 5088 ice_restore_all_vfs_msi_state(pdev); 5089 5090 ice_do_reset(pf, ICE_RESET_PFR); 5091 ice_service_task_restart(pf); 5092 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5093 } 5094 5095 /** 5096 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5097 * @pdev: PCI device information struct 5098 */ 5099 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5100 { 5101 struct ice_pf *pf = pci_get_drvdata(pdev); 5102 5103 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5104 ice_service_task_stop(pf); 5105 5106 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5107 set_bit(ICE_PFR_REQ, pf->state); 5108 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5109 } 5110 } 5111 } 5112 5113 /** 5114 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5115 * @pdev: PCI device information struct 5116 */ 5117 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5118 { 5119 ice_pci_err_resume(pdev); 5120 } 5121 5122 /* ice_pci_tbl - PCI Device ID Table 5123 * 5124 * Wildcard entries (PCI_ANY_ID) should come last 5125 * Last entry must be all 0s 5126 * 5127 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5128 * Class, Class Mask, private data (not used) } 5129 */ 5130 static const struct pci_device_id ice_pci_tbl[] = { 5131 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5132 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5133 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5134 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5135 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5136 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5137 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5138 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5139 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5140 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5141 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5142 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5143 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5144 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5145 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5146 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5147 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5148 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5149 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5150 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5151 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5152 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5153 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5154 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5155 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5156 /* required last entry */ 5157 { 0, } 5158 }; 5159 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5160 5161 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5162 5163 static const struct pci_error_handlers ice_pci_err_handler = { 5164 .error_detected = ice_pci_err_detected, 5165 .slot_reset = ice_pci_err_slot_reset, 5166 .reset_prepare = ice_pci_err_reset_prepare, 5167 .reset_done = ice_pci_err_reset_done, 5168 .resume = ice_pci_err_resume 5169 }; 5170 5171 static struct pci_driver ice_driver = { 5172 .name = KBUILD_MODNAME, 5173 .id_table = ice_pci_tbl, 5174 .probe = ice_probe, 5175 .remove = ice_remove, 5176 #ifdef CONFIG_PM 5177 .driver.pm = &ice_pm_ops, 5178 #endif /* CONFIG_PM */ 5179 .shutdown = ice_shutdown, 5180 .sriov_configure = ice_sriov_configure, 5181 .err_handler = &ice_pci_err_handler 5182 }; 5183 5184 /** 5185 * ice_module_init - Driver registration routine 5186 * 5187 * ice_module_init is the first routine called when the driver is 5188 * loaded. All it does is register with the PCI subsystem. 5189 */ 5190 static int __init ice_module_init(void) 5191 { 5192 int status; 5193 5194 pr_info("%s\n", ice_driver_string); 5195 pr_info("%s\n", ice_copyright); 5196 5197 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5198 if (!ice_wq) { 5199 pr_err("Failed to create workqueue\n"); 5200 return -ENOMEM; 5201 } 5202 5203 status = pci_register_driver(&ice_driver); 5204 if (status) { 5205 pr_err("failed to register PCI driver, err %d\n", status); 5206 destroy_workqueue(ice_wq); 5207 } 5208 5209 return status; 5210 } 5211 module_init(ice_module_init); 5212 5213 /** 5214 * ice_module_exit - Driver exit cleanup routine 5215 * 5216 * ice_module_exit is called just before the driver is removed 5217 * from memory. 5218 */ 5219 static void __exit ice_module_exit(void) 5220 { 5221 pci_unregister_driver(&ice_driver); 5222 destroy_workqueue(ice_wq); 5223 pr_info("module unloaded\n"); 5224 } 5225 module_exit(ice_module_exit); 5226 5227 /** 5228 * ice_set_mac_address - NDO callback to set MAC address 5229 * @netdev: network interface device structure 5230 * @pi: pointer to an address structure 5231 * 5232 * Returns 0 on success, negative on failure 5233 */ 5234 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5235 { 5236 struct ice_netdev_priv *np = netdev_priv(netdev); 5237 struct ice_vsi *vsi = np->vsi; 5238 struct ice_pf *pf = vsi->back; 5239 struct ice_hw *hw = &pf->hw; 5240 struct sockaddr *addr = pi; 5241 enum ice_status status; 5242 u8 old_mac[ETH_ALEN]; 5243 u8 flags = 0; 5244 int err = 0; 5245 u8 *mac; 5246 5247 mac = (u8 *)addr->sa_data; 5248 5249 if (!is_valid_ether_addr(mac)) 5250 return -EADDRNOTAVAIL; 5251 5252 if (ether_addr_equal(netdev->dev_addr, mac)) { 5253 netdev_dbg(netdev, "already using mac %pM\n", mac); 5254 return 0; 5255 } 5256 5257 if (test_bit(ICE_DOWN, pf->state) || 5258 ice_is_reset_in_progress(pf->state)) { 5259 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5260 mac); 5261 return -EBUSY; 5262 } 5263 5264 if (ice_chnl_dmac_fltr_cnt(pf)) { 5265 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5266 mac); 5267 return -EAGAIN; 5268 } 5269 5270 netif_addr_lock_bh(netdev); 5271 ether_addr_copy(old_mac, netdev->dev_addr); 5272 /* change the netdev's MAC address */ 5273 eth_hw_addr_set(netdev, mac); 5274 netif_addr_unlock_bh(netdev); 5275 5276 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5277 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5278 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 5279 err = -EADDRNOTAVAIL; 5280 goto err_update_filters; 5281 } 5282 5283 /* Add filter for new MAC. If filter exists, return success */ 5284 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5285 if (status == ICE_ERR_ALREADY_EXISTS) 5286 /* Although this MAC filter is already present in hardware it's 5287 * possible in some cases (e.g. bonding) that dev_addr was 5288 * modified outside of the driver and needs to be restored back 5289 * to this value. 5290 */ 5291 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5292 else if (status) 5293 /* error if the new filter addition failed */ 5294 err = -EADDRNOTAVAIL; 5295 5296 err_update_filters: 5297 if (err) { 5298 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5299 mac); 5300 netif_addr_lock_bh(netdev); 5301 eth_hw_addr_set(netdev, old_mac); 5302 netif_addr_unlock_bh(netdev); 5303 return err; 5304 } 5305 5306 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5307 netdev->dev_addr); 5308 5309 /* write new MAC address to the firmware */ 5310 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5311 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5312 if (status) { 5313 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 5314 mac, ice_stat_str(status)); 5315 } 5316 return 0; 5317 } 5318 5319 /** 5320 * ice_set_rx_mode - NDO callback to set the netdev filters 5321 * @netdev: network interface device structure 5322 */ 5323 static void ice_set_rx_mode(struct net_device *netdev) 5324 { 5325 struct ice_netdev_priv *np = netdev_priv(netdev); 5326 struct ice_vsi *vsi = np->vsi; 5327 5328 if (!vsi) 5329 return; 5330 5331 /* Set the flags to synchronize filters 5332 * ndo_set_rx_mode may be triggered even without a change in netdev 5333 * flags 5334 */ 5335 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5336 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5337 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5338 5339 /* schedule our worker thread which will take care of 5340 * applying the new filter changes 5341 */ 5342 ice_service_task_schedule(vsi->back); 5343 } 5344 5345 /** 5346 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5347 * @netdev: network interface device structure 5348 * @queue_index: Queue ID 5349 * @maxrate: maximum bandwidth in Mbps 5350 */ 5351 static int 5352 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5353 { 5354 struct ice_netdev_priv *np = netdev_priv(netdev); 5355 struct ice_vsi *vsi = np->vsi; 5356 enum ice_status status; 5357 u16 q_handle; 5358 u8 tc; 5359 5360 /* Validate maxrate requested is within permitted range */ 5361 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5362 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5363 maxrate, queue_index); 5364 return -EINVAL; 5365 } 5366 5367 q_handle = vsi->tx_rings[queue_index]->q_handle; 5368 tc = ice_dcb_get_tc(vsi, queue_index); 5369 5370 /* Set BW back to default, when user set maxrate to 0 */ 5371 if (!maxrate) 5372 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5373 q_handle, ICE_MAX_BW); 5374 else 5375 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5376 q_handle, ICE_MAX_BW, maxrate * 1000); 5377 if (status) { 5378 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5379 ice_stat_str(status)); 5380 return -EIO; 5381 } 5382 5383 return 0; 5384 } 5385 5386 /** 5387 * ice_fdb_add - add an entry to the hardware database 5388 * @ndm: the input from the stack 5389 * @tb: pointer to array of nladdr (unused) 5390 * @dev: the net device pointer 5391 * @addr: the MAC address entry being added 5392 * @vid: VLAN ID 5393 * @flags: instructions from stack about fdb operation 5394 * @extack: netlink extended ack 5395 */ 5396 static int 5397 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5398 struct net_device *dev, const unsigned char *addr, u16 vid, 5399 u16 flags, struct netlink_ext_ack __always_unused *extack) 5400 { 5401 int err; 5402 5403 if (vid) { 5404 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5405 return -EINVAL; 5406 } 5407 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5408 netdev_err(dev, "FDB only supports static addresses\n"); 5409 return -EINVAL; 5410 } 5411 5412 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5413 err = dev_uc_add_excl(dev, addr); 5414 else if (is_multicast_ether_addr(addr)) 5415 err = dev_mc_add_excl(dev, addr); 5416 else 5417 err = -EINVAL; 5418 5419 /* Only return duplicate errors if NLM_F_EXCL is set */ 5420 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5421 err = 0; 5422 5423 return err; 5424 } 5425 5426 /** 5427 * ice_fdb_del - delete an entry from the hardware database 5428 * @ndm: the input from the stack 5429 * @tb: pointer to array of nladdr (unused) 5430 * @dev: the net device pointer 5431 * @addr: the MAC address entry being added 5432 * @vid: VLAN ID 5433 */ 5434 static int 5435 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5436 struct net_device *dev, const unsigned char *addr, 5437 __always_unused u16 vid) 5438 { 5439 int err; 5440 5441 if (ndm->ndm_state & NUD_PERMANENT) { 5442 netdev_err(dev, "FDB only supports static addresses\n"); 5443 return -EINVAL; 5444 } 5445 5446 if (is_unicast_ether_addr(addr)) 5447 err = dev_uc_del(dev, addr); 5448 else if (is_multicast_ether_addr(addr)) 5449 err = dev_mc_del(dev, addr); 5450 else 5451 err = -EINVAL; 5452 5453 return err; 5454 } 5455 5456 /** 5457 * ice_set_features - set the netdev feature flags 5458 * @netdev: ptr to the netdev being adjusted 5459 * @features: the feature set that the stack is suggesting 5460 */ 5461 static int 5462 ice_set_features(struct net_device *netdev, netdev_features_t features) 5463 { 5464 struct ice_netdev_priv *np = netdev_priv(netdev); 5465 struct ice_vsi *vsi = np->vsi; 5466 struct ice_pf *pf = vsi->back; 5467 int ret = 0; 5468 5469 /* Don't set any netdev advanced features with device in Safe Mode */ 5470 if (ice_is_safe_mode(vsi->back)) { 5471 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5472 return ret; 5473 } 5474 5475 /* Do not change setting during reset */ 5476 if (ice_is_reset_in_progress(pf->state)) { 5477 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5478 return -EBUSY; 5479 } 5480 5481 /* Multiple features can be changed in one call so keep features in 5482 * separate if/else statements to guarantee each feature is checked 5483 */ 5484 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5485 ice_vsi_manage_rss_lut(vsi, true); 5486 else if (!(features & NETIF_F_RXHASH) && 5487 netdev->features & NETIF_F_RXHASH) 5488 ice_vsi_manage_rss_lut(vsi, false); 5489 5490 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5491 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5492 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5493 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5494 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5495 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5496 5497 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5498 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5499 ret = ice_vsi_manage_vlan_insertion(vsi); 5500 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5501 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5502 ret = ice_vsi_manage_vlan_insertion(vsi); 5503 5504 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5505 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5506 ret = ice_cfg_vlan_pruning(vsi, true, false); 5507 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5508 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5509 ret = ice_cfg_vlan_pruning(vsi, false, false); 5510 5511 if ((features & NETIF_F_NTUPLE) && 5512 !(netdev->features & NETIF_F_NTUPLE)) { 5513 ice_vsi_manage_fdir(vsi, true); 5514 ice_init_arfs(vsi); 5515 } else if (!(features & NETIF_F_NTUPLE) && 5516 (netdev->features & NETIF_F_NTUPLE)) { 5517 ice_vsi_manage_fdir(vsi, false); 5518 ice_clear_arfs(vsi); 5519 } 5520 5521 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5522 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5523 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5524 return -EACCES; 5525 } 5526 5527 if ((features & NETIF_F_HW_TC) && 5528 !(netdev->features & NETIF_F_HW_TC)) 5529 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5530 else 5531 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5532 5533 return ret; 5534 } 5535 5536 /** 5537 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5538 * @vsi: VSI to setup VLAN properties for 5539 */ 5540 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5541 { 5542 int ret = 0; 5543 5544 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5545 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5546 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5547 ret = ice_vsi_manage_vlan_insertion(vsi); 5548 5549 return ret; 5550 } 5551 5552 /** 5553 * ice_vsi_cfg - Setup the VSI 5554 * @vsi: the VSI being configured 5555 * 5556 * Return 0 on success and negative value on error 5557 */ 5558 int ice_vsi_cfg(struct ice_vsi *vsi) 5559 { 5560 int err; 5561 5562 if (vsi->netdev) { 5563 ice_set_rx_mode(vsi->netdev); 5564 5565 err = ice_vsi_vlan_setup(vsi); 5566 5567 if (err) 5568 return err; 5569 } 5570 ice_vsi_cfg_dcb_rings(vsi); 5571 5572 err = ice_vsi_cfg_lan_txqs(vsi); 5573 if (!err && ice_is_xdp_ena_vsi(vsi)) 5574 err = ice_vsi_cfg_xdp_txqs(vsi); 5575 if (!err) 5576 err = ice_vsi_cfg_rxqs(vsi); 5577 5578 return err; 5579 } 5580 5581 /* THEORY OF MODERATION: 5582 * The ice driver hardware works differently than the hardware that DIMLIB was 5583 * originally made for. ice hardware doesn't have packet count limits that 5584 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5585 * which is hard-coded to a limit of 250,000 ints/second. 5586 * If not using dynamic moderation, the INTRL value can be modified 5587 * by ethtool rx-usecs-high. 5588 */ 5589 struct ice_dim { 5590 /* the throttle rate for interrupts, basically worst case delay before 5591 * an initial interrupt fires, value is stored in microseconds. 5592 */ 5593 u16 itr; 5594 }; 5595 5596 /* Make a different profile for Rx that doesn't allow quite so aggressive 5597 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5598 * second. 5599 */ 5600 static const struct ice_dim rx_profile[] = { 5601 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5602 {8}, /* 125,000 ints/s */ 5603 {16}, /* 62,500 ints/s */ 5604 {62}, /* 16,129 ints/s */ 5605 {126} /* 7,936 ints/s */ 5606 }; 5607 5608 /* The transmit profile, which has the same sorts of values 5609 * as the previous struct 5610 */ 5611 static const struct ice_dim tx_profile[] = { 5612 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5613 {8}, /* 125,000 ints/s */ 5614 {40}, /* 16,125 ints/s */ 5615 {128}, /* 7,812 ints/s */ 5616 {256} /* 3,906 ints/s */ 5617 }; 5618 5619 static void ice_tx_dim_work(struct work_struct *work) 5620 { 5621 struct ice_ring_container *rc; 5622 struct dim *dim; 5623 u16 itr; 5624 5625 dim = container_of(work, struct dim, work); 5626 rc = (struct ice_ring_container *)dim->priv; 5627 5628 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5629 5630 /* look up the values in our local table */ 5631 itr = tx_profile[dim->profile_ix].itr; 5632 5633 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5634 ice_write_itr(rc, itr); 5635 5636 dim->state = DIM_START_MEASURE; 5637 } 5638 5639 static void ice_rx_dim_work(struct work_struct *work) 5640 { 5641 struct ice_ring_container *rc; 5642 struct dim *dim; 5643 u16 itr; 5644 5645 dim = container_of(work, struct dim, work); 5646 rc = (struct ice_ring_container *)dim->priv; 5647 5648 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5649 5650 /* look up the values in our local table */ 5651 itr = rx_profile[dim->profile_ix].itr; 5652 5653 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5654 ice_write_itr(rc, itr); 5655 5656 dim->state = DIM_START_MEASURE; 5657 } 5658 5659 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5660 5661 /** 5662 * ice_init_moderation - set up interrupt moderation 5663 * @q_vector: the vector containing rings to be configured 5664 * 5665 * Set up interrupt moderation registers, with the intent to do the right thing 5666 * when called from reset or from probe, and whether or not dynamic moderation 5667 * is enabled or not. Take special care to write all the registers in both 5668 * dynamic moderation mode or not in order to make sure hardware is in a known 5669 * state. 5670 */ 5671 static void ice_init_moderation(struct ice_q_vector *q_vector) 5672 { 5673 struct ice_ring_container *rc; 5674 bool tx_dynamic, rx_dynamic; 5675 5676 rc = &q_vector->tx; 5677 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5678 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5679 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5680 rc->dim.priv = rc; 5681 tx_dynamic = ITR_IS_DYNAMIC(rc); 5682 5683 /* set the initial TX ITR to match the above */ 5684 ice_write_itr(rc, tx_dynamic ? 5685 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5686 5687 rc = &q_vector->rx; 5688 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5689 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5690 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5691 rc->dim.priv = rc; 5692 rx_dynamic = ITR_IS_DYNAMIC(rc); 5693 5694 /* set the initial RX ITR to match the above */ 5695 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 5696 rc->itr_setting); 5697 5698 ice_set_q_vector_intrl(q_vector); 5699 } 5700 5701 /** 5702 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5703 * @vsi: the VSI being configured 5704 */ 5705 static void ice_napi_enable_all(struct ice_vsi *vsi) 5706 { 5707 int q_idx; 5708 5709 if (!vsi->netdev) 5710 return; 5711 5712 ice_for_each_q_vector(vsi, q_idx) { 5713 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5714 5715 ice_init_moderation(q_vector); 5716 5717 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 5718 napi_enable(&q_vector->napi); 5719 } 5720 } 5721 5722 /** 5723 * ice_up_complete - Finish the last steps of bringing up a connection 5724 * @vsi: The VSI being configured 5725 * 5726 * Return 0 on success and negative value on error 5727 */ 5728 static int ice_up_complete(struct ice_vsi *vsi) 5729 { 5730 struct ice_pf *pf = vsi->back; 5731 int err; 5732 5733 ice_vsi_cfg_msix(vsi); 5734 5735 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5736 * Tx queue group list was configured and the context bits were 5737 * programmed using ice_vsi_cfg_txqs 5738 */ 5739 err = ice_vsi_start_all_rx_rings(vsi); 5740 if (err) 5741 return err; 5742 5743 clear_bit(ICE_VSI_DOWN, vsi->state); 5744 ice_napi_enable_all(vsi); 5745 ice_vsi_ena_irq(vsi); 5746 5747 if (vsi->port_info && 5748 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5749 vsi->netdev) { 5750 ice_print_link_msg(vsi, true); 5751 netif_tx_start_all_queues(vsi->netdev); 5752 netif_carrier_on(vsi->netdev); 5753 } 5754 5755 ice_service_task_schedule(pf); 5756 5757 return 0; 5758 } 5759 5760 /** 5761 * ice_up - Bring the connection back up after being down 5762 * @vsi: VSI being configured 5763 */ 5764 int ice_up(struct ice_vsi *vsi) 5765 { 5766 int err; 5767 5768 err = ice_vsi_cfg(vsi); 5769 if (!err) 5770 err = ice_up_complete(vsi); 5771 5772 return err; 5773 } 5774 5775 /** 5776 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5777 * @syncp: pointer to u64_stats_sync 5778 * @stats: stats that pkts and bytes count will be taken from 5779 * @pkts: packets stats counter 5780 * @bytes: bytes stats counter 5781 * 5782 * This function fetches stats from the ring considering the atomic operations 5783 * that needs to be performed to read u64 values in 32 bit machine. 5784 */ 5785 static void 5786 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 5787 u64 *pkts, u64 *bytes) 5788 { 5789 unsigned int start; 5790 5791 do { 5792 start = u64_stats_fetch_begin_irq(syncp); 5793 *pkts = stats.pkts; 5794 *bytes = stats.bytes; 5795 } while (u64_stats_fetch_retry_irq(syncp, start)); 5796 } 5797 5798 /** 5799 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5800 * @vsi: the VSI to be updated 5801 * @rings: rings to work on 5802 * @count: number of rings 5803 */ 5804 static void 5805 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_tx_ring **rings, 5806 u16 count) 5807 { 5808 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5809 u16 i; 5810 5811 for (i = 0; i < count; i++) { 5812 struct ice_tx_ring *ring; 5813 u64 pkts = 0, bytes = 0; 5814 5815 ring = READ_ONCE(rings[i]); 5816 if (ring) 5817 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5818 vsi_stats->tx_packets += pkts; 5819 vsi_stats->tx_bytes += bytes; 5820 vsi->tx_restart += ring->tx_stats.restart_q; 5821 vsi->tx_busy += ring->tx_stats.tx_busy; 5822 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5823 } 5824 } 5825 5826 /** 5827 * ice_update_vsi_ring_stats - Update VSI stats counters 5828 * @vsi: the VSI to be updated 5829 */ 5830 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5831 { 5832 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5833 u64 pkts, bytes; 5834 int i; 5835 5836 /* reset netdev stats */ 5837 vsi_stats->tx_packets = 0; 5838 vsi_stats->tx_bytes = 0; 5839 vsi_stats->rx_packets = 0; 5840 vsi_stats->rx_bytes = 0; 5841 5842 /* reset non-netdev (extended) stats */ 5843 vsi->tx_restart = 0; 5844 vsi->tx_busy = 0; 5845 vsi->tx_linearize = 0; 5846 vsi->rx_buf_failed = 0; 5847 vsi->rx_page_failed = 0; 5848 5849 rcu_read_lock(); 5850 5851 /* update Tx rings counters */ 5852 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5853 5854 /* update Rx rings counters */ 5855 ice_for_each_rxq(vsi, i) { 5856 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5857 5858 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5859 vsi_stats->rx_packets += pkts; 5860 vsi_stats->rx_bytes += bytes; 5861 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5862 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5863 } 5864 5865 /* update XDP Tx rings counters */ 5866 if (ice_is_xdp_ena_vsi(vsi)) 5867 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5868 vsi->num_xdp_txq); 5869 5870 rcu_read_unlock(); 5871 } 5872 5873 /** 5874 * ice_update_vsi_stats - Update VSI stats counters 5875 * @vsi: the VSI to be updated 5876 */ 5877 void ice_update_vsi_stats(struct ice_vsi *vsi) 5878 { 5879 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5880 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5881 struct ice_pf *pf = vsi->back; 5882 5883 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5884 test_bit(ICE_CFG_BUSY, pf->state)) 5885 return; 5886 5887 /* get stats as recorded by Tx/Rx rings */ 5888 ice_update_vsi_ring_stats(vsi); 5889 5890 /* get VSI stats as recorded by the hardware */ 5891 ice_update_eth_stats(vsi); 5892 5893 cur_ns->tx_errors = cur_es->tx_errors; 5894 cur_ns->rx_dropped = cur_es->rx_discards; 5895 cur_ns->tx_dropped = cur_es->tx_discards; 5896 cur_ns->multicast = cur_es->rx_multicast; 5897 5898 /* update some more netdev stats if this is main VSI */ 5899 if (vsi->type == ICE_VSI_PF) { 5900 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5901 cur_ns->rx_errors = pf->stats.crc_errors + 5902 pf->stats.illegal_bytes + 5903 pf->stats.rx_len_errors + 5904 pf->stats.rx_undersize + 5905 pf->hw_csum_rx_error + 5906 pf->stats.rx_jabber + 5907 pf->stats.rx_fragments + 5908 pf->stats.rx_oversize; 5909 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5910 /* record drops from the port level */ 5911 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5912 } 5913 } 5914 5915 /** 5916 * ice_update_pf_stats - Update PF port stats counters 5917 * @pf: PF whose stats needs to be updated 5918 */ 5919 void ice_update_pf_stats(struct ice_pf *pf) 5920 { 5921 struct ice_hw_port_stats *prev_ps, *cur_ps; 5922 struct ice_hw *hw = &pf->hw; 5923 u16 fd_ctr_base; 5924 u8 port; 5925 5926 port = hw->port_info->lport; 5927 prev_ps = &pf->stats_prev; 5928 cur_ps = &pf->stats; 5929 5930 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5931 &prev_ps->eth.rx_bytes, 5932 &cur_ps->eth.rx_bytes); 5933 5934 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5935 &prev_ps->eth.rx_unicast, 5936 &cur_ps->eth.rx_unicast); 5937 5938 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5939 &prev_ps->eth.rx_multicast, 5940 &cur_ps->eth.rx_multicast); 5941 5942 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5943 &prev_ps->eth.rx_broadcast, 5944 &cur_ps->eth.rx_broadcast); 5945 5946 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5947 &prev_ps->eth.rx_discards, 5948 &cur_ps->eth.rx_discards); 5949 5950 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5951 &prev_ps->eth.tx_bytes, 5952 &cur_ps->eth.tx_bytes); 5953 5954 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5955 &prev_ps->eth.tx_unicast, 5956 &cur_ps->eth.tx_unicast); 5957 5958 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5959 &prev_ps->eth.tx_multicast, 5960 &cur_ps->eth.tx_multicast); 5961 5962 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5963 &prev_ps->eth.tx_broadcast, 5964 &cur_ps->eth.tx_broadcast); 5965 5966 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5967 &prev_ps->tx_dropped_link_down, 5968 &cur_ps->tx_dropped_link_down); 5969 5970 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5971 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5972 5973 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5974 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5975 5976 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5977 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5978 5979 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5980 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5981 5982 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5983 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5984 5985 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5986 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5987 5988 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5989 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5990 5991 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5992 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5993 5994 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5995 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5996 5997 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5998 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5999 6000 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6001 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6002 6003 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6004 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6005 6006 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6007 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6008 6009 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6010 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6011 6012 fd_ctr_base = hw->fd_ctr_base; 6013 6014 ice_stat_update40(hw, 6015 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6016 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6017 &cur_ps->fd_sb_match); 6018 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6019 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6020 6021 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6022 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6023 6024 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6025 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6026 6027 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6028 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6029 6030 ice_update_dcb_stats(pf); 6031 6032 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6033 &prev_ps->crc_errors, &cur_ps->crc_errors); 6034 6035 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6036 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6037 6038 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6039 &prev_ps->mac_local_faults, 6040 &cur_ps->mac_local_faults); 6041 6042 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6043 &prev_ps->mac_remote_faults, 6044 &cur_ps->mac_remote_faults); 6045 6046 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6047 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6048 6049 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6050 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6051 6052 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6053 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6054 6055 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6056 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6057 6058 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6059 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6060 6061 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6062 6063 pf->stat_prev_loaded = true; 6064 } 6065 6066 /** 6067 * ice_get_stats64 - get statistics for network device structure 6068 * @netdev: network interface device structure 6069 * @stats: main device statistics structure 6070 */ 6071 static 6072 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6073 { 6074 struct ice_netdev_priv *np = netdev_priv(netdev); 6075 struct rtnl_link_stats64 *vsi_stats; 6076 struct ice_vsi *vsi = np->vsi; 6077 6078 vsi_stats = &vsi->net_stats; 6079 6080 if (!vsi->num_txq || !vsi->num_rxq) 6081 return; 6082 6083 /* netdev packet/byte stats come from ring counter. These are obtained 6084 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6085 * But, only call the update routine and read the registers if VSI is 6086 * not down. 6087 */ 6088 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6089 ice_update_vsi_ring_stats(vsi); 6090 stats->tx_packets = vsi_stats->tx_packets; 6091 stats->tx_bytes = vsi_stats->tx_bytes; 6092 stats->rx_packets = vsi_stats->rx_packets; 6093 stats->rx_bytes = vsi_stats->rx_bytes; 6094 6095 /* The rest of the stats can be read from the hardware but instead we 6096 * just return values that the watchdog task has already obtained from 6097 * the hardware. 6098 */ 6099 stats->multicast = vsi_stats->multicast; 6100 stats->tx_errors = vsi_stats->tx_errors; 6101 stats->tx_dropped = vsi_stats->tx_dropped; 6102 stats->rx_errors = vsi_stats->rx_errors; 6103 stats->rx_dropped = vsi_stats->rx_dropped; 6104 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6105 stats->rx_length_errors = vsi_stats->rx_length_errors; 6106 } 6107 6108 /** 6109 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6110 * @vsi: VSI having NAPI disabled 6111 */ 6112 static void ice_napi_disable_all(struct ice_vsi *vsi) 6113 { 6114 int q_idx; 6115 6116 if (!vsi->netdev) 6117 return; 6118 6119 ice_for_each_q_vector(vsi, q_idx) { 6120 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6121 6122 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6123 napi_disable(&q_vector->napi); 6124 6125 cancel_work_sync(&q_vector->tx.dim.work); 6126 cancel_work_sync(&q_vector->rx.dim.work); 6127 } 6128 } 6129 6130 /** 6131 * ice_down - Shutdown the connection 6132 * @vsi: The VSI being stopped 6133 */ 6134 int ice_down(struct ice_vsi *vsi) 6135 { 6136 int i, tx_err, rx_err, link_err = 0; 6137 6138 /* Caller of this function is expected to set the 6139 * vsi->state ICE_DOWN bit 6140 */ 6141 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6142 netif_carrier_off(vsi->netdev); 6143 netif_tx_disable(vsi->netdev); 6144 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6145 ice_eswitch_stop_all_tx_queues(vsi->back); 6146 } 6147 6148 ice_vsi_dis_irq(vsi); 6149 6150 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6151 if (tx_err) 6152 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6153 vsi->vsi_num, tx_err); 6154 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6155 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6156 if (tx_err) 6157 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6158 vsi->vsi_num, tx_err); 6159 } 6160 6161 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6162 if (rx_err) 6163 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6164 vsi->vsi_num, rx_err); 6165 6166 ice_napi_disable_all(vsi); 6167 6168 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6169 link_err = ice_force_phys_link_state(vsi, false); 6170 if (link_err) 6171 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6172 vsi->vsi_num, link_err); 6173 } 6174 6175 ice_for_each_txq(vsi, i) 6176 ice_clean_tx_ring(vsi->tx_rings[i]); 6177 6178 ice_for_each_rxq(vsi, i) 6179 ice_clean_rx_ring(vsi->rx_rings[i]); 6180 6181 if (tx_err || rx_err || link_err) { 6182 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6183 vsi->vsi_num, vsi->vsw->sw_id); 6184 return -EIO; 6185 } 6186 6187 return 0; 6188 } 6189 6190 /** 6191 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6192 * @vsi: VSI having resources allocated 6193 * 6194 * Return 0 on success, negative on failure 6195 */ 6196 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6197 { 6198 int i, err = 0; 6199 6200 if (!vsi->num_txq) { 6201 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6202 vsi->vsi_num); 6203 return -EINVAL; 6204 } 6205 6206 ice_for_each_txq(vsi, i) { 6207 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6208 6209 if (!ring) 6210 return -EINVAL; 6211 6212 if (vsi->netdev) 6213 ring->netdev = vsi->netdev; 6214 err = ice_setup_tx_ring(ring); 6215 if (err) 6216 break; 6217 } 6218 6219 return err; 6220 } 6221 6222 /** 6223 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6224 * @vsi: VSI having resources allocated 6225 * 6226 * Return 0 on success, negative on failure 6227 */ 6228 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6229 { 6230 int i, err = 0; 6231 6232 if (!vsi->num_rxq) { 6233 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6234 vsi->vsi_num); 6235 return -EINVAL; 6236 } 6237 6238 ice_for_each_rxq(vsi, i) { 6239 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6240 6241 if (!ring) 6242 return -EINVAL; 6243 6244 if (vsi->netdev) 6245 ring->netdev = vsi->netdev; 6246 err = ice_setup_rx_ring(ring); 6247 if (err) 6248 break; 6249 } 6250 6251 return err; 6252 } 6253 6254 /** 6255 * ice_vsi_open_ctrl - open control VSI for use 6256 * @vsi: the VSI to open 6257 * 6258 * Initialization of the Control VSI 6259 * 6260 * Returns 0 on success, negative value on error 6261 */ 6262 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6263 { 6264 char int_name[ICE_INT_NAME_STR_LEN]; 6265 struct ice_pf *pf = vsi->back; 6266 struct device *dev; 6267 int err; 6268 6269 dev = ice_pf_to_dev(pf); 6270 /* allocate descriptors */ 6271 err = ice_vsi_setup_tx_rings(vsi); 6272 if (err) 6273 goto err_setup_tx; 6274 6275 err = ice_vsi_setup_rx_rings(vsi); 6276 if (err) 6277 goto err_setup_rx; 6278 6279 err = ice_vsi_cfg(vsi); 6280 if (err) 6281 goto err_setup_rx; 6282 6283 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6284 dev_driver_string(dev), dev_name(dev)); 6285 err = ice_vsi_req_irq_msix(vsi, int_name); 6286 if (err) 6287 goto err_setup_rx; 6288 6289 ice_vsi_cfg_msix(vsi); 6290 6291 err = ice_vsi_start_all_rx_rings(vsi); 6292 if (err) 6293 goto err_up_complete; 6294 6295 clear_bit(ICE_VSI_DOWN, vsi->state); 6296 ice_vsi_ena_irq(vsi); 6297 6298 return 0; 6299 6300 err_up_complete: 6301 ice_down(vsi); 6302 err_setup_rx: 6303 ice_vsi_free_rx_rings(vsi); 6304 err_setup_tx: 6305 ice_vsi_free_tx_rings(vsi); 6306 6307 return err; 6308 } 6309 6310 /** 6311 * ice_vsi_open - Called when a network interface is made active 6312 * @vsi: the VSI to open 6313 * 6314 * Initialization of the VSI 6315 * 6316 * Returns 0 on success, negative value on error 6317 */ 6318 int ice_vsi_open(struct ice_vsi *vsi) 6319 { 6320 char int_name[ICE_INT_NAME_STR_LEN]; 6321 struct ice_pf *pf = vsi->back; 6322 int err; 6323 6324 /* allocate descriptors */ 6325 err = ice_vsi_setup_tx_rings(vsi); 6326 if (err) 6327 goto err_setup_tx; 6328 6329 err = ice_vsi_setup_rx_rings(vsi); 6330 if (err) 6331 goto err_setup_rx; 6332 6333 err = ice_vsi_cfg(vsi); 6334 if (err) 6335 goto err_setup_rx; 6336 6337 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6338 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6339 err = ice_vsi_req_irq_msix(vsi, int_name); 6340 if (err) 6341 goto err_setup_rx; 6342 6343 if (vsi->type == ICE_VSI_PF) { 6344 /* Notify the stack of the actual queue counts. */ 6345 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6346 if (err) 6347 goto err_set_qs; 6348 6349 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6350 if (err) 6351 goto err_set_qs; 6352 } 6353 6354 err = ice_up_complete(vsi); 6355 if (err) 6356 goto err_up_complete; 6357 6358 return 0; 6359 6360 err_up_complete: 6361 ice_down(vsi); 6362 err_set_qs: 6363 ice_vsi_free_irq(vsi); 6364 err_setup_rx: 6365 ice_vsi_free_rx_rings(vsi); 6366 err_setup_tx: 6367 ice_vsi_free_tx_rings(vsi); 6368 6369 return err; 6370 } 6371 6372 /** 6373 * ice_vsi_release_all - Delete all VSIs 6374 * @pf: PF from which all VSIs are being removed 6375 */ 6376 static void ice_vsi_release_all(struct ice_pf *pf) 6377 { 6378 int err, i; 6379 6380 if (!pf->vsi) 6381 return; 6382 6383 ice_for_each_vsi(pf, i) { 6384 if (!pf->vsi[i]) 6385 continue; 6386 6387 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6388 continue; 6389 6390 err = ice_vsi_release(pf->vsi[i]); 6391 if (err) 6392 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6393 i, err, pf->vsi[i]->vsi_num); 6394 } 6395 } 6396 6397 /** 6398 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6399 * @pf: pointer to the PF instance 6400 * @type: VSI type to rebuild 6401 * 6402 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6403 */ 6404 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6405 { 6406 struct device *dev = ice_pf_to_dev(pf); 6407 enum ice_status status; 6408 int i, err; 6409 6410 ice_for_each_vsi(pf, i) { 6411 struct ice_vsi *vsi = pf->vsi[i]; 6412 6413 if (!vsi || vsi->type != type) 6414 continue; 6415 6416 /* rebuild the VSI */ 6417 err = ice_vsi_rebuild(vsi, true); 6418 if (err) { 6419 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6420 err, vsi->idx, ice_vsi_type_str(type)); 6421 return err; 6422 } 6423 6424 /* replay filters for the VSI */ 6425 status = ice_replay_vsi(&pf->hw, vsi->idx); 6426 if (status) { 6427 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6428 ice_stat_str(status), vsi->idx, 6429 ice_vsi_type_str(type)); 6430 return -EIO; 6431 } 6432 6433 /* Re-map HW VSI number, using VSI handle that has been 6434 * previously validated in ice_replay_vsi() call above 6435 */ 6436 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6437 6438 /* enable the VSI */ 6439 err = ice_ena_vsi(vsi, false); 6440 if (err) { 6441 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6442 err, vsi->idx, ice_vsi_type_str(type)); 6443 return err; 6444 } 6445 6446 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6447 ice_vsi_type_str(type)); 6448 } 6449 6450 return 0; 6451 } 6452 6453 /** 6454 * ice_update_pf_netdev_link - Update PF netdev link status 6455 * @pf: pointer to the PF instance 6456 */ 6457 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6458 { 6459 bool link_up; 6460 int i; 6461 6462 ice_for_each_vsi(pf, i) { 6463 struct ice_vsi *vsi = pf->vsi[i]; 6464 6465 if (!vsi || vsi->type != ICE_VSI_PF) 6466 return; 6467 6468 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6469 if (link_up) { 6470 netif_carrier_on(pf->vsi[i]->netdev); 6471 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6472 } else { 6473 netif_carrier_off(pf->vsi[i]->netdev); 6474 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6475 } 6476 } 6477 } 6478 6479 /** 6480 * ice_rebuild - rebuild after reset 6481 * @pf: PF to rebuild 6482 * @reset_type: type of reset 6483 * 6484 * Do not rebuild VF VSI in this flow because that is already handled via 6485 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6486 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6487 * to reset/rebuild all the VF VSI twice. 6488 */ 6489 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6490 { 6491 struct device *dev = ice_pf_to_dev(pf); 6492 struct ice_hw *hw = &pf->hw; 6493 enum ice_status ret; 6494 int err; 6495 6496 if (test_bit(ICE_DOWN, pf->state)) 6497 goto clear_recovery; 6498 6499 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6500 6501 ret = ice_init_all_ctrlq(hw); 6502 if (ret) { 6503 dev_err(dev, "control queues init failed %s\n", 6504 ice_stat_str(ret)); 6505 goto err_init_ctrlq; 6506 } 6507 6508 /* if DDP was previously loaded successfully */ 6509 if (!ice_is_safe_mode(pf)) { 6510 /* reload the SW DB of filter tables */ 6511 if (reset_type == ICE_RESET_PFR) 6512 ice_fill_blk_tbls(hw); 6513 else 6514 /* Reload DDP Package after CORER/GLOBR reset */ 6515 ice_load_pkg(NULL, pf); 6516 } 6517 6518 ret = ice_clear_pf_cfg(hw); 6519 if (ret) { 6520 dev_err(dev, "clear PF configuration failed %s\n", 6521 ice_stat_str(ret)); 6522 goto err_init_ctrlq; 6523 } 6524 6525 if (pf->first_sw->dflt_vsi_ena) 6526 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6527 /* clear the default VSI configuration if it exists */ 6528 pf->first_sw->dflt_vsi = NULL; 6529 pf->first_sw->dflt_vsi_ena = false; 6530 6531 ice_clear_pxe_mode(hw); 6532 6533 ret = ice_init_nvm(hw); 6534 if (ret) { 6535 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret)); 6536 goto err_init_ctrlq; 6537 } 6538 6539 ret = ice_get_caps(hw); 6540 if (ret) { 6541 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6542 goto err_init_ctrlq; 6543 } 6544 6545 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6546 if (ret) { 6547 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6548 goto err_init_ctrlq; 6549 } 6550 6551 err = ice_sched_init_port(hw->port_info); 6552 if (err) 6553 goto err_sched_init_port; 6554 6555 /* start misc vector */ 6556 err = ice_req_irq_msix_misc(pf); 6557 if (err) { 6558 dev_err(dev, "misc vector setup failed: %d\n", err); 6559 goto err_sched_init_port; 6560 } 6561 6562 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6563 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6564 if (!rd32(hw, PFQF_FD_SIZE)) { 6565 u16 unused, guar, b_effort; 6566 6567 guar = hw->func_caps.fd_fltr_guar; 6568 b_effort = hw->func_caps.fd_fltr_best_effort; 6569 6570 /* force guaranteed filter pool for PF */ 6571 ice_alloc_fd_guar_item(hw, &unused, guar); 6572 /* force shared filter pool for PF */ 6573 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6574 } 6575 } 6576 6577 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6578 ice_dcb_rebuild(pf); 6579 6580 /* If the PF previously had enabled PTP, PTP init needs to happen before 6581 * the VSI rebuild. If not, this causes the PTP link status events to 6582 * fail. 6583 */ 6584 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6585 ice_ptp_init(pf); 6586 6587 /* rebuild PF VSI */ 6588 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6589 if (err) { 6590 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6591 goto err_vsi_rebuild; 6592 } 6593 6594 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6595 if (err) { 6596 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6597 goto err_vsi_rebuild; 6598 } 6599 6600 if (reset_type == ICE_RESET_PFR) { 6601 err = ice_rebuild_channels(pf); 6602 if (err) { 6603 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6604 err); 6605 goto err_vsi_rebuild; 6606 } 6607 } 6608 6609 /* If Flow Director is active */ 6610 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6611 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6612 if (err) { 6613 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6614 goto err_vsi_rebuild; 6615 } 6616 6617 /* replay HW Flow Director recipes */ 6618 if (hw->fdir_prof) 6619 ice_fdir_replay_flows(hw); 6620 6621 /* replay Flow Director filters */ 6622 ice_fdir_replay_fltrs(pf); 6623 6624 ice_rebuild_arfs(pf); 6625 } 6626 6627 ice_update_pf_netdev_link(pf); 6628 6629 /* tell the firmware we are up */ 6630 ret = ice_send_version(pf); 6631 if (ret) { 6632 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6633 ice_stat_str(ret)); 6634 goto err_vsi_rebuild; 6635 } 6636 6637 ice_replay_post(hw); 6638 6639 /* if we get here, reset flow is successful */ 6640 clear_bit(ICE_RESET_FAILED, pf->state); 6641 6642 ice_plug_aux_dev(pf); 6643 return; 6644 6645 err_vsi_rebuild: 6646 err_sched_init_port: 6647 ice_sched_cleanup_all(hw); 6648 err_init_ctrlq: 6649 ice_shutdown_all_ctrlq(hw); 6650 set_bit(ICE_RESET_FAILED, pf->state); 6651 clear_recovery: 6652 /* set this bit in PF state to control service task scheduling */ 6653 set_bit(ICE_NEEDS_RESTART, pf->state); 6654 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6655 } 6656 6657 /** 6658 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6659 * @vsi: Pointer to VSI structure 6660 */ 6661 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6662 { 6663 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6664 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6665 else 6666 return ICE_RXBUF_3072; 6667 } 6668 6669 /** 6670 * ice_change_mtu - NDO callback to change the MTU 6671 * @netdev: network interface device structure 6672 * @new_mtu: new value for maximum frame size 6673 * 6674 * Returns 0 on success, negative on failure 6675 */ 6676 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6677 { 6678 struct ice_netdev_priv *np = netdev_priv(netdev); 6679 struct ice_vsi *vsi = np->vsi; 6680 struct ice_pf *pf = vsi->back; 6681 struct iidc_event *event; 6682 u8 count = 0; 6683 int err = 0; 6684 6685 if (new_mtu == (int)netdev->mtu) { 6686 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6687 return 0; 6688 } 6689 6690 if (ice_is_xdp_ena_vsi(vsi)) { 6691 int frame_size = ice_max_xdp_frame_size(vsi); 6692 6693 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6694 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6695 frame_size - ICE_ETH_PKT_HDR_PAD); 6696 return -EINVAL; 6697 } 6698 } 6699 6700 /* if a reset is in progress, wait for some time for it to complete */ 6701 do { 6702 if (ice_is_reset_in_progress(pf->state)) { 6703 count++; 6704 usleep_range(1000, 2000); 6705 } else { 6706 break; 6707 } 6708 6709 } while (count < 100); 6710 6711 if (count == 100) { 6712 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6713 return -EBUSY; 6714 } 6715 6716 event = kzalloc(sizeof(*event), GFP_KERNEL); 6717 if (!event) 6718 return -ENOMEM; 6719 6720 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6721 ice_send_event_to_aux(pf, event); 6722 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6723 6724 netdev->mtu = (unsigned int)new_mtu; 6725 6726 /* if VSI is up, bring it down and then back up */ 6727 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6728 err = ice_down(vsi); 6729 if (err) { 6730 netdev_err(netdev, "change MTU if_down err %d\n", err); 6731 goto event_after; 6732 } 6733 6734 err = ice_up(vsi); 6735 if (err) { 6736 netdev_err(netdev, "change MTU if_up err %d\n", err); 6737 goto event_after; 6738 } 6739 } 6740 6741 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6742 event_after: 6743 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6744 ice_send_event_to_aux(pf, event); 6745 kfree(event); 6746 6747 return err; 6748 } 6749 6750 /** 6751 * ice_eth_ioctl - Access the hwtstamp interface 6752 * @netdev: network interface device structure 6753 * @ifr: interface request data 6754 * @cmd: ioctl command 6755 */ 6756 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6757 { 6758 struct ice_netdev_priv *np = netdev_priv(netdev); 6759 struct ice_pf *pf = np->vsi->back; 6760 6761 switch (cmd) { 6762 case SIOCGHWTSTAMP: 6763 return ice_ptp_get_ts_config(pf, ifr); 6764 case SIOCSHWTSTAMP: 6765 return ice_ptp_set_ts_config(pf, ifr); 6766 default: 6767 return -EOPNOTSUPP; 6768 } 6769 } 6770 6771 /** 6772 * ice_aq_str - convert AQ err code to a string 6773 * @aq_err: the AQ error code to convert 6774 */ 6775 const char *ice_aq_str(enum ice_aq_err aq_err) 6776 { 6777 switch (aq_err) { 6778 case ICE_AQ_RC_OK: 6779 return "OK"; 6780 case ICE_AQ_RC_EPERM: 6781 return "ICE_AQ_RC_EPERM"; 6782 case ICE_AQ_RC_ENOENT: 6783 return "ICE_AQ_RC_ENOENT"; 6784 case ICE_AQ_RC_ENOMEM: 6785 return "ICE_AQ_RC_ENOMEM"; 6786 case ICE_AQ_RC_EBUSY: 6787 return "ICE_AQ_RC_EBUSY"; 6788 case ICE_AQ_RC_EEXIST: 6789 return "ICE_AQ_RC_EEXIST"; 6790 case ICE_AQ_RC_EINVAL: 6791 return "ICE_AQ_RC_EINVAL"; 6792 case ICE_AQ_RC_ENOSPC: 6793 return "ICE_AQ_RC_ENOSPC"; 6794 case ICE_AQ_RC_ENOSYS: 6795 return "ICE_AQ_RC_ENOSYS"; 6796 case ICE_AQ_RC_EMODE: 6797 return "ICE_AQ_RC_EMODE"; 6798 case ICE_AQ_RC_ENOSEC: 6799 return "ICE_AQ_RC_ENOSEC"; 6800 case ICE_AQ_RC_EBADSIG: 6801 return "ICE_AQ_RC_EBADSIG"; 6802 case ICE_AQ_RC_ESVN: 6803 return "ICE_AQ_RC_ESVN"; 6804 case ICE_AQ_RC_EBADMAN: 6805 return "ICE_AQ_RC_EBADMAN"; 6806 case ICE_AQ_RC_EBADBUF: 6807 return "ICE_AQ_RC_EBADBUF"; 6808 } 6809 6810 return "ICE_AQ_RC_UNKNOWN"; 6811 } 6812 6813 /** 6814 * ice_stat_str - convert status err code to a string 6815 * @stat_err: the status error code to convert 6816 */ 6817 const char *ice_stat_str(enum ice_status stat_err) 6818 { 6819 switch (stat_err) { 6820 case ICE_SUCCESS: 6821 return "OK"; 6822 case ICE_ERR_PARAM: 6823 return "ICE_ERR_PARAM"; 6824 case ICE_ERR_NOT_IMPL: 6825 return "ICE_ERR_NOT_IMPL"; 6826 case ICE_ERR_NOT_READY: 6827 return "ICE_ERR_NOT_READY"; 6828 case ICE_ERR_NOT_SUPPORTED: 6829 return "ICE_ERR_NOT_SUPPORTED"; 6830 case ICE_ERR_BAD_PTR: 6831 return "ICE_ERR_BAD_PTR"; 6832 case ICE_ERR_INVAL_SIZE: 6833 return "ICE_ERR_INVAL_SIZE"; 6834 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6835 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6836 case ICE_ERR_RESET_FAILED: 6837 return "ICE_ERR_RESET_FAILED"; 6838 case ICE_ERR_FW_API_VER: 6839 return "ICE_ERR_FW_API_VER"; 6840 case ICE_ERR_NO_MEMORY: 6841 return "ICE_ERR_NO_MEMORY"; 6842 case ICE_ERR_CFG: 6843 return "ICE_ERR_CFG"; 6844 case ICE_ERR_OUT_OF_RANGE: 6845 return "ICE_ERR_OUT_OF_RANGE"; 6846 case ICE_ERR_ALREADY_EXISTS: 6847 return "ICE_ERR_ALREADY_EXISTS"; 6848 case ICE_ERR_NVM: 6849 return "ICE_ERR_NVM"; 6850 case ICE_ERR_NVM_CHECKSUM: 6851 return "ICE_ERR_NVM_CHECKSUM"; 6852 case ICE_ERR_BUF_TOO_SHORT: 6853 return "ICE_ERR_BUF_TOO_SHORT"; 6854 case ICE_ERR_NVM_BLANK_MODE: 6855 return "ICE_ERR_NVM_BLANK_MODE"; 6856 case ICE_ERR_IN_USE: 6857 return "ICE_ERR_IN_USE"; 6858 case ICE_ERR_MAX_LIMIT: 6859 return "ICE_ERR_MAX_LIMIT"; 6860 case ICE_ERR_RESET_ONGOING: 6861 return "ICE_ERR_RESET_ONGOING"; 6862 case ICE_ERR_HW_TABLE: 6863 return "ICE_ERR_HW_TABLE"; 6864 case ICE_ERR_DOES_NOT_EXIST: 6865 return "ICE_ERR_DOES_NOT_EXIST"; 6866 case ICE_ERR_FW_DDP_MISMATCH: 6867 return "ICE_ERR_FW_DDP_MISMATCH"; 6868 case ICE_ERR_AQ_ERROR: 6869 return "ICE_ERR_AQ_ERROR"; 6870 case ICE_ERR_AQ_TIMEOUT: 6871 return "ICE_ERR_AQ_TIMEOUT"; 6872 case ICE_ERR_AQ_FULL: 6873 return "ICE_ERR_AQ_FULL"; 6874 case ICE_ERR_AQ_NO_WORK: 6875 return "ICE_ERR_AQ_NO_WORK"; 6876 case ICE_ERR_AQ_EMPTY: 6877 return "ICE_ERR_AQ_EMPTY"; 6878 case ICE_ERR_AQ_FW_CRITICAL: 6879 return "ICE_ERR_AQ_FW_CRITICAL"; 6880 } 6881 6882 return "ICE_ERR_UNKNOWN"; 6883 } 6884 6885 /** 6886 * ice_set_rss_lut - Set RSS LUT 6887 * @vsi: Pointer to VSI structure 6888 * @lut: Lookup table 6889 * @lut_size: Lookup table size 6890 * 6891 * Returns 0 on success, negative on failure 6892 */ 6893 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6894 { 6895 struct ice_aq_get_set_rss_lut_params params = {}; 6896 struct ice_hw *hw = &vsi->back->hw; 6897 enum ice_status status; 6898 6899 if (!lut) 6900 return -EINVAL; 6901 6902 params.vsi_handle = vsi->idx; 6903 params.lut_size = lut_size; 6904 params.lut_type = vsi->rss_lut_type; 6905 params.lut = lut; 6906 6907 status = ice_aq_set_rss_lut(hw, ¶ms); 6908 if (status) { 6909 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 6910 ice_stat_str(status), 6911 ice_aq_str(hw->adminq.sq_last_status)); 6912 return -EIO; 6913 } 6914 6915 return 0; 6916 } 6917 6918 /** 6919 * ice_set_rss_key - Set RSS key 6920 * @vsi: Pointer to the VSI structure 6921 * @seed: RSS hash seed 6922 * 6923 * Returns 0 on success, negative on failure 6924 */ 6925 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6926 { 6927 struct ice_hw *hw = &vsi->back->hw; 6928 enum ice_status status; 6929 6930 if (!seed) 6931 return -EINVAL; 6932 6933 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6934 if (status) { 6935 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 6936 ice_stat_str(status), 6937 ice_aq_str(hw->adminq.sq_last_status)); 6938 return -EIO; 6939 } 6940 6941 return 0; 6942 } 6943 6944 /** 6945 * ice_get_rss_lut - Get RSS LUT 6946 * @vsi: Pointer to VSI structure 6947 * @lut: Buffer to store the lookup table entries 6948 * @lut_size: Size of buffer to store the lookup table entries 6949 * 6950 * Returns 0 on success, negative on failure 6951 */ 6952 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6953 { 6954 struct ice_aq_get_set_rss_lut_params params = {}; 6955 struct ice_hw *hw = &vsi->back->hw; 6956 enum ice_status status; 6957 6958 if (!lut) 6959 return -EINVAL; 6960 6961 params.vsi_handle = vsi->idx; 6962 params.lut_size = lut_size; 6963 params.lut_type = vsi->rss_lut_type; 6964 params.lut = lut; 6965 6966 status = ice_aq_get_rss_lut(hw, ¶ms); 6967 if (status) { 6968 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 6969 ice_stat_str(status), 6970 ice_aq_str(hw->adminq.sq_last_status)); 6971 return -EIO; 6972 } 6973 6974 return 0; 6975 } 6976 6977 /** 6978 * ice_get_rss_key - Get RSS key 6979 * @vsi: Pointer to VSI structure 6980 * @seed: Buffer to store the key in 6981 * 6982 * Returns 0 on success, negative on failure 6983 */ 6984 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 6985 { 6986 struct ice_hw *hw = &vsi->back->hw; 6987 enum ice_status status; 6988 6989 if (!seed) 6990 return -EINVAL; 6991 6992 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6993 if (status) { 6994 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 6995 ice_stat_str(status), 6996 ice_aq_str(hw->adminq.sq_last_status)); 6997 return -EIO; 6998 } 6999 7000 return 0; 7001 } 7002 7003 /** 7004 * ice_bridge_getlink - Get the hardware bridge mode 7005 * @skb: skb buff 7006 * @pid: process ID 7007 * @seq: RTNL message seq 7008 * @dev: the netdev being configured 7009 * @filter_mask: filter mask passed in 7010 * @nlflags: netlink flags passed in 7011 * 7012 * Return the bridge mode (VEB/VEPA) 7013 */ 7014 static int 7015 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7016 struct net_device *dev, u32 filter_mask, int nlflags) 7017 { 7018 struct ice_netdev_priv *np = netdev_priv(dev); 7019 struct ice_vsi *vsi = np->vsi; 7020 struct ice_pf *pf = vsi->back; 7021 u16 bmode; 7022 7023 bmode = pf->first_sw->bridge_mode; 7024 7025 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7026 filter_mask, NULL); 7027 } 7028 7029 /** 7030 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7031 * @vsi: Pointer to VSI structure 7032 * @bmode: Hardware bridge mode (VEB/VEPA) 7033 * 7034 * Returns 0 on success, negative on failure 7035 */ 7036 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7037 { 7038 struct ice_aqc_vsi_props *vsi_props; 7039 struct ice_hw *hw = &vsi->back->hw; 7040 struct ice_vsi_ctx *ctxt; 7041 enum ice_status status; 7042 int ret = 0; 7043 7044 vsi_props = &vsi->info; 7045 7046 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7047 if (!ctxt) 7048 return -ENOMEM; 7049 7050 ctxt->info = vsi->info; 7051 7052 if (bmode == BRIDGE_MODE_VEB) 7053 /* change from VEPA to VEB mode */ 7054 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7055 else 7056 /* change from VEB to VEPA mode */ 7057 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7058 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7059 7060 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7061 if (status) { 7062 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 7063 bmode, ice_stat_str(status), 7064 ice_aq_str(hw->adminq.sq_last_status)); 7065 ret = -EIO; 7066 goto out; 7067 } 7068 /* Update sw flags for book keeping */ 7069 vsi_props->sw_flags = ctxt->info.sw_flags; 7070 7071 out: 7072 kfree(ctxt); 7073 return ret; 7074 } 7075 7076 /** 7077 * ice_bridge_setlink - Set the hardware bridge mode 7078 * @dev: the netdev being configured 7079 * @nlh: RTNL message 7080 * @flags: bridge setlink flags 7081 * @extack: netlink extended ack 7082 * 7083 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7084 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7085 * not already set for all VSIs connected to this switch. And also update the 7086 * unicast switch filter rules for the corresponding switch of the netdev. 7087 */ 7088 static int 7089 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7090 u16 __always_unused flags, 7091 struct netlink_ext_ack __always_unused *extack) 7092 { 7093 struct ice_netdev_priv *np = netdev_priv(dev); 7094 struct ice_pf *pf = np->vsi->back; 7095 struct nlattr *attr, *br_spec; 7096 struct ice_hw *hw = &pf->hw; 7097 enum ice_status status; 7098 struct ice_sw *pf_sw; 7099 int rem, v, err = 0; 7100 7101 pf_sw = pf->first_sw; 7102 /* find the attribute in the netlink message */ 7103 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7104 7105 nla_for_each_nested(attr, br_spec, rem) { 7106 __u16 mode; 7107 7108 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7109 continue; 7110 mode = nla_get_u16(attr); 7111 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7112 return -EINVAL; 7113 /* Continue if bridge mode is not being flipped */ 7114 if (mode == pf_sw->bridge_mode) 7115 continue; 7116 /* Iterates through the PF VSI list and update the loopback 7117 * mode of the VSI 7118 */ 7119 ice_for_each_vsi(pf, v) { 7120 if (!pf->vsi[v]) 7121 continue; 7122 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7123 if (err) 7124 return err; 7125 } 7126 7127 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7128 /* Update the unicast switch filter rules for the corresponding 7129 * switch of the netdev 7130 */ 7131 status = ice_update_sw_rule_bridge_mode(hw); 7132 if (status) { 7133 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 7134 mode, ice_stat_str(status), 7135 ice_aq_str(hw->adminq.sq_last_status)); 7136 /* revert hw->evb_veb */ 7137 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7138 return -EIO; 7139 } 7140 7141 pf_sw->bridge_mode = mode; 7142 } 7143 7144 return 0; 7145 } 7146 7147 /** 7148 * ice_tx_timeout - Respond to a Tx Hang 7149 * @netdev: network interface device structure 7150 * @txqueue: Tx queue 7151 */ 7152 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7153 { 7154 struct ice_netdev_priv *np = netdev_priv(netdev); 7155 struct ice_tx_ring *tx_ring = NULL; 7156 struct ice_vsi *vsi = np->vsi; 7157 struct ice_pf *pf = vsi->back; 7158 u32 i; 7159 7160 pf->tx_timeout_count++; 7161 7162 /* Check if PFC is enabled for the TC to which the queue belongs 7163 * to. If yes then Tx timeout is not caused by a hung queue, no 7164 * need to reset and rebuild 7165 */ 7166 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7167 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7168 txqueue); 7169 return; 7170 } 7171 7172 /* now that we have an index, find the tx_ring struct */ 7173 ice_for_each_txq(vsi, i) 7174 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7175 if (txqueue == vsi->tx_rings[i]->q_index) { 7176 tx_ring = vsi->tx_rings[i]; 7177 break; 7178 } 7179 7180 /* Reset recovery level if enough time has elapsed after last timeout. 7181 * Also ensure no new reset action happens before next timeout period. 7182 */ 7183 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7184 pf->tx_timeout_recovery_level = 1; 7185 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7186 netdev->watchdog_timeo))) 7187 return; 7188 7189 if (tx_ring) { 7190 struct ice_hw *hw = &pf->hw; 7191 u32 head, val = 0; 7192 7193 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7194 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7195 /* Read interrupt register */ 7196 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7197 7198 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7199 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7200 head, tx_ring->next_to_use, val); 7201 } 7202 7203 pf->tx_timeout_last_recovery = jiffies; 7204 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7205 pf->tx_timeout_recovery_level, txqueue); 7206 7207 switch (pf->tx_timeout_recovery_level) { 7208 case 1: 7209 set_bit(ICE_PFR_REQ, pf->state); 7210 break; 7211 case 2: 7212 set_bit(ICE_CORER_REQ, pf->state); 7213 break; 7214 case 3: 7215 set_bit(ICE_GLOBR_REQ, pf->state); 7216 break; 7217 default: 7218 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7219 set_bit(ICE_DOWN, pf->state); 7220 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7221 set_bit(ICE_SERVICE_DIS, pf->state); 7222 break; 7223 } 7224 7225 ice_service_task_schedule(pf); 7226 pf->tx_timeout_recovery_level++; 7227 } 7228 7229 /** 7230 * ice_setup_tc_cls_flower - flower classifier offloads 7231 * @np: net device to configure 7232 * @filter_dev: device on which filter is added 7233 * @cls_flower: offload data 7234 */ 7235 static int 7236 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7237 struct net_device *filter_dev, 7238 struct flow_cls_offload *cls_flower) 7239 { 7240 struct ice_vsi *vsi = np->vsi; 7241 7242 if (cls_flower->common.chain_index) 7243 return -EOPNOTSUPP; 7244 7245 switch (cls_flower->command) { 7246 case FLOW_CLS_REPLACE: 7247 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7248 case FLOW_CLS_DESTROY: 7249 return ice_del_cls_flower(vsi, cls_flower); 7250 default: 7251 return -EINVAL; 7252 } 7253 } 7254 7255 /** 7256 * ice_setup_tc_block_cb - callback handler registered for TC block 7257 * @type: TC SETUP type 7258 * @type_data: TC flower offload data that contains user input 7259 * @cb_priv: netdev private data 7260 */ 7261 static int 7262 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7263 { 7264 struct ice_netdev_priv *np = cb_priv; 7265 7266 switch (type) { 7267 case TC_SETUP_CLSFLOWER: 7268 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7269 type_data); 7270 default: 7271 return -EOPNOTSUPP; 7272 } 7273 } 7274 7275 /** 7276 * ice_validate_mqprio_qopt - Validate TCF input parameters 7277 * @vsi: Pointer to VSI 7278 * @mqprio_qopt: input parameters for mqprio queue configuration 7279 * 7280 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7281 * needed), and make sure user doesn't specify qcount and BW rate limit 7282 * for TCs, which are more than "num_tc" 7283 */ 7284 static int 7285 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7286 struct tc_mqprio_qopt_offload *mqprio_qopt) 7287 { 7288 u64 sum_max_rate = 0, sum_min_rate = 0; 7289 int non_power_of_2_qcount = 0; 7290 struct ice_pf *pf = vsi->back; 7291 int max_rss_q_cnt = 0; 7292 struct device *dev; 7293 int i, speed; 7294 u8 num_tc; 7295 7296 if (vsi->type != ICE_VSI_PF) 7297 return -EINVAL; 7298 7299 if (mqprio_qopt->qopt.offset[0] != 0 || 7300 mqprio_qopt->qopt.num_tc < 1 || 7301 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7302 return -EINVAL; 7303 7304 dev = ice_pf_to_dev(pf); 7305 vsi->ch_rss_size = 0; 7306 num_tc = mqprio_qopt->qopt.num_tc; 7307 7308 for (i = 0; num_tc; i++) { 7309 int qcount = mqprio_qopt->qopt.count[i]; 7310 u64 max_rate, min_rate, rem; 7311 7312 if (!qcount) 7313 return -EINVAL; 7314 7315 if (is_power_of_2(qcount)) { 7316 if (non_power_of_2_qcount && 7317 qcount > non_power_of_2_qcount) { 7318 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7319 qcount, non_power_of_2_qcount); 7320 return -EINVAL; 7321 } 7322 if (qcount > max_rss_q_cnt) 7323 max_rss_q_cnt = qcount; 7324 } else { 7325 if (non_power_of_2_qcount && 7326 qcount != non_power_of_2_qcount) { 7327 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7328 qcount, non_power_of_2_qcount); 7329 return -EINVAL; 7330 } 7331 if (qcount < max_rss_q_cnt) { 7332 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7333 qcount, max_rss_q_cnt); 7334 return -EINVAL; 7335 } 7336 max_rss_q_cnt = qcount; 7337 non_power_of_2_qcount = qcount; 7338 } 7339 7340 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7341 * converts the bandwidth rate limit into Bytes/s when 7342 * passing it down to the driver. So convert input bandwidth 7343 * from Bytes/s to Kbps 7344 */ 7345 max_rate = mqprio_qopt->max_rate[i]; 7346 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7347 sum_max_rate += max_rate; 7348 7349 /* min_rate is minimum guaranteed rate and it can't be zero */ 7350 min_rate = mqprio_qopt->min_rate[i]; 7351 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7352 sum_min_rate += min_rate; 7353 7354 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7355 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7356 min_rate, ICE_MIN_BW_LIMIT); 7357 return -EINVAL; 7358 } 7359 7360 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7361 if (rem) { 7362 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7363 i, ICE_MIN_BW_LIMIT); 7364 return -EINVAL; 7365 } 7366 7367 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7368 if (rem) { 7369 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7370 i, ICE_MIN_BW_LIMIT); 7371 return -EINVAL; 7372 } 7373 7374 /* min_rate can't be more than max_rate, except when max_rate 7375 * is zero (implies max_rate sought is max line rate). In such 7376 * a case min_rate can be more than max. 7377 */ 7378 if (max_rate && min_rate > max_rate) { 7379 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7380 min_rate, max_rate); 7381 return -EINVAL; 7382 } 7383 7384 if (i >= mqprio_qopt->qopt.num_tc - 1) 7385 break; 7386 if (mqprio_qopt->qopt.offset[i + 1] != 7387 (mqprio_qopt->qopt.offset[i] + qcount)) 7388 return -EINVAL; 7389 } 7390 if (vsi->num_rxq < 7391 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7392 return -EINVAL; 7393 if (vsi->num_txq < 7394 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7395 return -EINVAL; 7396 7397 speed = ice_get_link_speed_kbps(vsi); 7398 if (sum_max_rate && sum_max_rate > (u64)speed) { 7399 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7400 sum_max_rate, speed); 7401 return -EINVAL; 7402 } 7403 if (sum_min_rate && sum_min_rate > (u64)speed) { 7404 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7405 sum_min_rate, speed); 7406 return -EINVAL; 7407 } 7408 7409 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7410 vsi->ch_rss_size = max_rss_q_cnt; 7411 7412 return 0; 7413 } 7414 7415 /** 7416 * ice_add_channel - add a channel by adding VSI 7417 * @pf: ptr to PF device 7418 * @sw_id: underlying HW switching element ID 7419 * @ch: ptr to channel structure 7420 * 7421 * Add a channel (VSI) using add_vsi and queue_map 7422 */ 7423 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7424 { 7425 struct device *dev = ice_pf_to_dev(pf); 7426 struct ice_vsi *vsi; 7427 7428 if (ch->type != ICE_VSI_CHNL) { 7429 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7430 return -EINVAL; 7431 } 7432 7433 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7434 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7435 dev_err(dev, "create chnl VSI failure\n"); 7436 return -EINVAL; 7437 } 7438 7439 ch->sw_id = sw_id; 7440 ch->vsi_num = vsi->vsi_num; 7441 ch->info.mapping_flags = vsi->info.mapping_flags; 7442 ch->ch_vsi = vsi; 7443 /* set the back pointer of channel for newly created VSI */ 7444 vsi->ch = ch; 7445 7446 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7447 sizeof(vsi->info.q_mapping)); 7448 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7449 sizeof(vsi->info.tc_mapping)); 7450 7451 return 0; 7452 } 7453 7454 /** 7455 * ice_chnl_cfg_res 7456 * @vsi: the VSI being setup 7457 * @ch: ptr to channel structure 7458 * 7459 * Configure channel specific resources such as rings, vector. 7460 */ 7461 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7462 { 7463 int i; 7464 7465 for (i = 0; i < ch->num_txq; i++) { 7466 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7467 struct ice_ring_container *rc; 7468 struct ice_tx_ring *tx_ring; 7469 struct ice_rx_ring *rx_ring; 7470 7471 tx_ring = vsi->tx_rings[ch->base_q + i]; 7472 rx_ring = vsi->rx_rings[ch->base_q + i]; 7473 if (!tx_ring || !rx_ring) 7474 continue; 7475 7476 /* setup ring being channel enabled */ 7477 tx_ring->ch = ch; 7478 rx_ring->ch = ch; 7479 7480 /* following code block sets up vector specific attributes */ 7481 tx_q_vector = tx_ring->q_vector; 7482 rx_q_vector = rx_ring->q_vector; 7483 if (!tx_q_vector && !rx_q_vector) 7484 continue; 7485 7486 if (tx_q_vector) { 7487 tx_q_vector->ch = ch; 7488 /* setup Tx and Rx ITR setting if DIM is off */ 7489 rc = &tx_q_vector->tx; 7490 if (!ITR_IS_DYNAMIC(rc)) 7491 ice_write_itr(rc, rc->itr_setting); 7492 } 7493 if (rx_q_vector) { 7494 rx_q_vector->ch = ch; 7495 /* setup Tx and Rx ITR setting if DIM is off */ 7496 rc = &rx_q_vector->rx; 7497 if (!ITR_IS_DYNAMIC(rc)) 7498 ice_write_itr(rc, rc->itr_setting); 7499 } 7500 } 7501 7502 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7503 * GLINT_ITR register would have written to perform in-context 7504 * update, hence perform flush 7505 */ 7506 if (ch->num_txq || ch->num_rxq) 7507 ice_flush(&vsi->back->hw); 7508 } 7509 7510 /** 7511 * ice_cfg_chnl_all_res - configure channel resources 7512 * @vsi: pte to main_vsi 7513 * @ch: ptr to channel structure 7514 * 7515 * This function configures channel specific resources such as flow-director 7516 * counter index, and other resources such as queues, vectors, ITR settings 7517 */ 7518 static void 7519 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7520 { 7521 /* configure channel (aka ADQ) resources such as queues, vectors, 7522 * ITR settings for channel specific vectors and anything else 7523 */ 7524 ice_chnl_cfg_res(vsi, ch); 7525 } 7526 7527 /** 7528 * ice_setup_hw_channel - setup new channel 7529 * @pf: ptr to PF device 7530 * @vsi: the VSI being setup 7531 * @ch: ptr to channel structure 7532 * @sw_id: underlying HW switching element ID 7533 * @type: type of channel to be created (VMDq2/VF) 7534 * 7535 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7536 * and configures Tx rings accordingly 7537 */ 7538 static int 7539 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7540 struct ice_channel *ch, u16 sw_id, u8 type) 7541 { 7542 struct device *dev = ice_pf_to_dev(pf); 7543 int ret; 7544 7545 ch->base_q = vsi->next_base_q; 7546 ch->type = type; 7547 7548 ret = ice_add_channel(pf, sw_id, ch); 7549 if (ret) { 7550 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7551 return ret; 7552 } 7553 7554 /* configure/setup ADQ specific resources */ 7555 ice_cfg_chnl_all_res(vsi, ch); 7556 7557 /* make sure to update the next_base_q so that subsequent channel's 7558 * (aka ADQ) VSI queue map is correct 7559 */ 7560 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7561 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7562 ch->num_rxq); 7563 7564 return 0; 7565 } 7566 7567 /** 7568 * ice_setup_channel - setup new channel using uplink element 7569 * @pf: ptr to PF device 7570 * @vsi: the VSI being setup 7571 * @ch: ptr to channel structure 7572 * 7573 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7574 * and uplink switching element 7575 */ 7576 static bool 7577 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7578 struct ice_channel *ch) 7579 { 7580 struct device *dev = ice_pf_to_dev(pf); 7581 u16 sw_id; 7582 int ret; 7583 7584 if (vsi->type != ICE_VSI_PF) { 7585 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7586 return false; 7587 } 7588 7589 sw_id = pf->first_sw->sw_id; 7590 7591 /* create channel (VSI) */ 7592 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7593 if (ret) { 7594 dev_err(dev, "failed to setup hw_channel\n"); 7595 return false; 7596 } 7597 dev_dbg(dev, "successfully created channel()\n"); 7598 7599 return ch->ch_vsi ? true : false; 7600 } 7601 7602 /** 7603 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7604 * @vsi: VSI to be configured 7605 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7606 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7607 */ 7608 static int 7609 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7610 { 7611 int err; 7612 7613 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7614 if (err) 7615 return err; 7616 7617 return ice_set_max_bw_limit(vsi, max_tx_rate); 7618 } 7619 7620 /** 7621 * ice_create_q_channel - function to create channel 7622 * @vsi: VSI to be configured 7623 * @ch: ptr to channel (it contains channel specific params) 7624 * 7625 * This function creates channel (VSI) using num_queues specified by user, 7626 * reconfigs RSS if needed. 7627 */ 7628 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7629 { 7630 struct ice_pf *pf = vsi->back; 7631 struct device *dev; 7632 7633 if (!ch) 7634 return -EINVAL; 7635 7636 dev = ice_pf_to_dev(pf); 7637 if (!ch->num_txq || !ch->num_rxq) { 7638 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7639 return -EINVAL; 7640 } 7641 7642 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7643 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7644 vsi->cnt_q_avail, ch->num_txq); 7645 return -EINVAL; 7646 } 7647 7648 if (!ice_setup_channel(pf, vsi, ch)) { 7649 dev_info(dev, "Failed to setup channel\n"); 7650 return -EINVAL; 7651 } 7652 /* configure BW rate limit */ 7653 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7654 int ret; 7655 7656 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7657 ch->min_tx_rate); 7658 if (ret) 7659 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7660 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7661 else 7662 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7663 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7664 } 7665 7666 vsi->cnt_q_avail -= ch->num_txq; 7667 7668 return 0; 7669 } 7670 7671 /** 7672 * ice_rem_all_chnl_fltrs - removes all channel filters 7673 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7674 * 7675 * Remove all advanced switch filters only if they are channel specific 7676 * tc-flower based filter 7677 */ 7678 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7679 { 7680 struct ice_tc_flower_fltr *fltr; 7681 struct hlist_node *node; 7682 7683 /* to remove all channel filters, iterate an ordered list of filters */ 7684 hlist_for_each_entry_safe(fltr, node, 7685 &pf->tc_flower_fltr_list, 7686 tc_flower_node) { 7687 struct ice_rule_query_data rule; 7688 int status; 7689 7690 /* for now process only channel specific filters */ 7691 if (!ice_is_chnl_fltr(fltr)) 7692 continue; 7693 7694 rule.rid = fltr->rid; 7695 rule.rule_id = fltr->rule_id; 7696 rule.vsi_handle = fltr->dest_id; 7697 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 7698 if (status) { 7699 if (status == -ENOENT) 7700 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 7701 rule.rule_id); 7702 else 7703 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 7704 status); 7705 } else if (fltr->dest_vsi) { 7706 /* update advanced switch filter count */ 7707 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 7708 u32 flags = fltr->flags; 7709 7710 fltr->dest_vsi->num_chnl_fltr--; 7711 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 7712 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 7713 pf->num_dmac_chnl_fltrs--; 7714 } 7715 } 7716 7717 hlist_del(&fltr->tc_flower_node); 7718 kfree(fltr); 7719 } 7720 } 7721 7722 /** 7723 * ice_remove_q_channels - Remove queue channels for the TCs 7724 * @vsi: VSI to be configured 7725 * @rem_fltr: delete advanced switch filter or not 7726 * 7727 * Remove queue channels for the TCs 7728 */ 7729 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 7730 { 7731 struct ice_channel *ch, *ch_tmp; 7732 struct ice_pf *pf = vsi->back; 7733 int i; 7734 7735 /* remove all tc-flower based filter if they are channel filters only */ 7736 if (rem_fltr) 7737 ice_rem_all_chnl_fltrs(pf); 7738 7739 /* perform cleanup for channels if they exist */ 7740 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 7741 struct ice_vsi *ch_vsi; 7742 7743 list_del(&ch->list); 7744 ch_vsi = ch->ch_vsi; 7745 if (!ch_vsi) { 7746 kfree(ch); 7747 continue; 7748 } 7749 7750 /* Reset queue contexts */ 7751 for (i = 0; i < ch->num_rxq; i++) { 7752 struct ice_tx_ring *tx_ring; 7753 struct ice_rx_ring *rx_ring; 7754 7755 tx_ring = vsi->tx_rings[ch->base_q + i]; 7756 rx_ring = vsi->rx_rings[ch->base_q + i]; 7757 if (tx_ring) { 7758 tx_ring->ch = NULL; 7759 if (tx_ring->q_vector) 7760 tx_ring->q_vector->ch = NULL; 7761 } 7762 if (rx_ring) { 7763 rx_ring->ch = NULL; 7764 if (rx_ring->q_vector) 7765 rx_ring->q_vector->ch = NULL; 7766 } 7767 } 7768 7769 /* clear the VSI from scheduler tree */ 7770 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 7771 7772 /* Delete VSI from FW */ 7773 ice_vsi_delete(ch->ch_vsi); 7774 7775 /* Delete VSI from PF and HW VSI arrays */ 7776 ice_vsi_clear(ch->ch_vsi); 7777 7778 /* free the channel */ 7779 kfree(ch); 7780 } 7781 7782 /* clear the channel VSI map which is stored in main VSI */ 7783 ice_for_each_chnl_tc(i) 7784 vsi->tc_map_vsi[i] = NULL; 7785 7786 /* reset main VSI's all TC information */ 7787 vsi->all_enatc = 0; 7788 vsi->all_numtc = 0; 7789 } 7790 7791 /** 7792 * ice_rebuild_channels - rebuild channel 7793 * @pf: ptr to PF 7794 * 7795 * Recreate channel VSIs and replay filters 7796 */ 7797 static int ice_rebuild_channels(struct ice_pf *pf) 7798 { 7799 struct device *dev = ice_pf_to_dev(pf); 7800 struct ice_vsi *main_vsi; 7801 bool rem_adv_fltr = true; 7802 struct ice_channel *ch; 7803 struct ice_vsi *vsi; 7804 int tc_idx = 1; 7805 int i, err; 7806 7807 main_vsi = ice_get_main_vsi(pf); 7808 if (!main_vsi) 7809 return 0; 7810 7811 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 7812 main_vsi->old_numtc == 1) 7813 return 0; /* nothing to be done */ 7814 7815 /* reconfigure main VSI based on old value of TC and cached values 7816 * for MQPRIO opts 7817 */ 7818 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 7819 if (err) { 7820 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 7821 main_vsi->old_ena_tc, main_vsi->vsi_num); 7822 return err; 7823 } 7824 7825 /* rebuild ADQ VSIs */ 7826 ice_for_each_vsi(pf, i) { 7827 enum ice_vsi_type type; 7828 7829 vsi = pf->vsi[i]; 7830 if (!vsi || vsi->type != ICE_VSI_CHNL) 7831 continue; 7832 7833 type = vsi->type; 7834 7835 /* rebuild ADQ VSI */ 7836 err = ice_vsi_rebuild(vsi, true); 7837 if (err) { 7838 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 7839 ice_vsi_type_str(type), vsi->idx, err); 7840 goto cleanup; 7841 } 7842 7843 /* Re-map HW VSI number, using VSI handle that has been 7844 * previously validated in ice_replay_vsi() call above 7845 */ 7846 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7847 7848 /* replay filters for the VSI */ 7849 err = ice_replay_vsi(&pf->hw, vsi->idx); 7850 if (err) { 7851 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 7852 ice_vsi_type_str(type), err, vsi->idx); 7853 rem_adv_fltr = false; 7854 goto cleanup; 7855 } 7856 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 7857 ice_vsi_type_str(type), vsi->idx); 7858 7859 /* store ADQ VSI at correct TC index in main VSI's 7860 * map of TC to VSI 7861 */ 7862 main_vsi->tc_map_vsi[tc_idx++] = vsi; 7863 } 7864 7865 /* ADQ VSI(s) has been rebuilt successfully, so setup 7866 * channel for main VSI's Tx and Rx rings 7867 */ 7868 list_for_each_entry(ch, &main_vsi->ch_list, list) { 7869 struct ice_vsi *ch_vsi; 7870 7871 ch_vsi = ch->ch_vsi; 7872 if (!ch_vsi) 7873 continue; 7874 7875 /* reconfig channel resources */ 7876 ice_cfg_chnl_all_res(main_vsi, ch); 7877 7878 /* replay BW rate limit if it is non-zero */ 7879 if (!ch->max_tx_rate && !ch->min_tx_rate) 7880 continue; 7881 7882 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 7883 ch->min_tx_rate); 7884 if (err) 7885 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 7886 err, ch->max_tx_rate, ch->min_tx_rate, 7887 ch_vsi->vsi_num); 7888 else 7889 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 7890 ch->max_tx_rate, ch->min_tx_rate, 7891 ch_vsi->vsi_num); 7892 } 7893 7894 /* reconfig RSS for main VSI */ 7895 if (main_vsi->ch_rss_size) 7896 ice_vsi_cfg_rss_lut_key(main_vsi); 7897 7898 return 0; 7899 7900 cleanup: 7901 ice_remove_q_channels(main_vsi, rem_adv_fltr); 7902 return err; 7903 } 7904 7905 /** 7906 * ice_create_q_channels - Add queue channel for the given TCs 7907 * @vsi: VSI to be configured 7908 * 7909 * Configures queue channel mapping to the given TCs 7910 */ 7911 static int ice_create_q_channels(struct ice_vsi *vsi) 7912 { 7913 struct ice_pf *pf = vsi->back; 7914 struct ice_channel *ch; 7915 int ret = 0, i; 7916 7917 ice_for_each_chnl_tc(i) { 7918 if (!(vsi->all_enatc & BIT(i))) 7919 continue; 7920 7921 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 7922 if (!ch) { 7923 ret = -ENOMEM; 7924 goto err_free; 7925 } 7926 INIT_LIST_HEAD(&ch->list); 7927 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 7928 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 7929 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 7930 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 7931 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 7932 7933 /* convert to Kbits/s */ 7934 if (ch->max_tx_rate) 7935 ch->max_tx_rate = div_u64(ch->max_tx_rate, 7936 ICE_BW_KBPS_DIVISOR); 7937 if (ch->min_tx_rate) 7938 ch->min_tx_rate = div_u64(ch->min_tx_rate, 7939 ICE_BW_KBPS_DIVISOR); 7940 7941 ret = ice_create_q_channel(vsi, ch); 7942 if (ret) { 7943 dev_err(ice_pf_to_dev(pf), 7944 "failed creating channel TC:%d\n", i); 7945 kfree(ch); 7946 goto err_free; 7947 } 7948 list_add_tail(&ch->list, &vsi->ch_list); 7949 vsi->tc_map_vsi[i] = ch->ch_vsi; 7950 dev_dbg(ice_pf_to_dev(pf), 7951 "successfully created channel: VSI %pK\n", ch->ch_vsi); 7952 } 7953 return 0; 7954 7955 err_free: 7956 ice_remove_q_channels(vsi, false); 7957 7958 return ret; 7959 } 7960 7961 /** 7962 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 7963 * @netdev: net device to configure 7964 * @type_data: TC offload data 7965 */ 7966 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 7967 { 7968 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 7969 struct ice_netdev_priv *np = netdev_priv(netdev); 7970 struct ice_vsi *vsi = np->vsi; 7971 struct ice_pf *pf = vsi->back; 7972 u16 mode, ena_tc_qdisc = 0; 7973 int cur_txq, cur_rxq; 7974 u8 hw = 0, num_tcf; 7975 struct device *dev; 7976 int ret, i; 7977 7978 dev = ice_pf_to_dev(pf); 7979 num_tcf = mqprio_qopt->qopt.num_tc; 7980 hw = mqprio_qopt->qopt.hw; 7981 mode = mqprio_qopt->mode; 7982 if (!hw) { 7983 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 7984 vsi->ch_rss_size = 0; 7985 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 7986 goto config_tcf; 7987 } 7988 7989 /* Generate queue region map for number of TCF requested */ 7990 for (i = 0; i < num_tcf; i++) 7991 ena_tc_qdisc |= BIT(i); 7992 7993 switch (mode) { 7994 case TC_MQPRIO_MODE_CHANNEL: 7995 7996 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 7997 if (ret) { 7998 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 7999 ret); 8000 return ret; 8001 } 8002 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8003 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8004 /* don't assume state of hw_tc_offload during driver load 8005 * and set the flag for TC flower filter if hw_tc_offload 8006 * already ON 8007 */ 8008 if (vsi->netdev->features & NETIF_F_HW_TC) 8009 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8010 break; 8011 default: 8012 return -EINVAL; 8013 } 8014 8015 config_tcf: 8016 8017 /* Requesting same TCF configuration as already enabled */ 8018 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8019 mode != TC_MQPRIO_MODE_CHANNEL) 8020 return 0; 8021 8022 /* Pause VSI queues */ 8023 ice_dis_vsi(vsi, true); 8024 8025 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8026 ice_remove_q_channels(vsi, true); 8027 8028 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8029 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8030 num_online_cpus()); 8031 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8032 num_online_cpus()); 8033 } else { 8034 /* logic to rebuild VSI, same like ethtool -L */ 8035 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8036 8037 for (i = 0; i < num_tcf; i++) { 8038 if (!(ena_tc_qdisc & BIT(i))) 8039 continue; 8040 8041 offset = vsi->mqprio_qopt.qopt.offset[i]; 8042 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8043 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8044 } 8045 vsi->req_txq = offset + qcount_tx; 8046 vsi->req_rxq = offset + qcount_rx; 8047 8048 /* store away original rss_size info, so that it gets reused 8049 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8050 * determine, what should be the rss_sizefor main VSI 8051 */ 8052 vsi->orig_rss_size = vsi->rss_size; 8053 } 8054 8055 /* save current values of Tx and Rx queues before calling VSI rebuild 8056 * for fallback option 8057 */ 8058 cur_txq = vsi->num_txq; 8059 cur_rxq = vsi->num_rxq; 8060 8061 /* proceed with rebuild main VSI using correct number of queues */ 8062 ret = ice_vsi_rebuild(vsi, false); 8063 if (ret) { 8064 /* fallback to current number of queues */ 8065 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8066 vsi->req_txq = cur_txq; 8067 vsi->req_rxq = cur_rxq; 8068 clear_bit(ICE_RESET_FAILED, pf->state); 8069 if (ice_vsi_rebuild(vsi, false)) { 8070 dev_err(dev, "Rebuild of main VSI failed again\n"); 8071 return ret; 8072 } 8073 } 8074 8075 vsi->all_numtc = num_tcf; 8076 vsi->all_enatc = ena_tc_qdisc; 8077 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8078 if (ret) { 8079 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8080 vsi->vsi_num); 8081 goto exit; 8082 } 8083 8084 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8085 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8086 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8087 8088 /* set TC0 rate limit if specified */ 8089 if (max_tx_rate || min_tx_rate) { 8090 /* convert to Kbits/s */ 8091 if (max_tx_rate) 8092 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8093 if (min_tx_rate) 8094 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8095 8096 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8097 if (!ret) { 8098 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8099 max_tx_rate, min_tx_rate, vsi->vsi_num); 8100 } else { 8101 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8102 max_tx_rate, min_tx_rate, vsi->vsi_num); 8103 goto exit; 8104 } 8105 } 8106 ret = ice_create_q_channels(vsi); 8107 if (ret) { 8108 netdev_err(netdev, "failed configuring queue channels\n"); 8109 goto exit; 8110 } else { 8111 netdev_dbg(netdev, "successfully configured channels\n"); 8112 } 8113 } 8114 8115 if (vsi->ch_rss_size) 8116 ice_vsi_cfg_rss_lut_key(vsi); 8117 8118 exit: 8119 /* if error, reset the all_numtc and all_enatc */ 8120 if (ret) { 8121 vsi->all_numtc = 0; 8122 vsi->all_enatc = 0; 8123 } 8124 /* resume VSI */ 8125 ice_ena_vsi(vsi, true); 8126 8127 return ret; 8128 } 8129 8130 static LIST_HEAD(ice_block_cb_list); 8131 8132 static int 8133 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8134 void *type_data) 8135 { 8136 struct ice_netdev_priv *np = netdev_priv(netdev); 8137 struct ice_pf *pf = np->vsi->back; 8138 int err; 8139 8140 switch (type) { 8141 case TC_SETUP_BLOCK: 8142 return flow_block_cb_setup_simple(type_data, 8143 &ice_block_cb_list, 8144 ice_setup_tc_block_cb, 8145 np, np, true); 8146 case TC_SETUP_QDISC_MQPRIO: 8147 /* setup traffic classifier for receive side */ 8148 mutex_lock(&pf->tc_mutex); 8149 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8150 mutex_unlock(&pf->tc_mutex); 8151 return err; 8152 default: 8153 return -EOPNOTSUPP; 8154 } 8155 return -EOPNOTSUPP; 8156 } 8157 8158 /** 8159 * ice_open - Called when a network interface becomes active 8160 * @netdev: network interface device structure 8161 * 8162 * The open entry point is called when a network interface is made 8163 * active by the system (IFF_UP). At this point all resources needed 8164 * for transmit and receive operations are allocated, the interrupt 8165 * handler is registered with the OS, the netdev watchdog is enabled, 8166 * and the stack is notified that the interface is ready. 8167 * 8168 * Returns 0 on success, negative value on failure 8169 */ 8170 int ice_open(struct net_device *netdev) 8171 { 8172 struct ice_netdev_priv *np = netdev_priv(netdev); 8173 struct ice_pf *pf = np->vsi->back; 8174 8175 if (ice_is_reset_in_progress(pf->state)) { 8176 netdev_err(netdev, "can't open net device while reset is in progress"); 8177 return -EBUSY; 8178 } 8179 8180 return ice_open_internal(netdev); 8181 } 8182 8183 /** 8184 * ice_open_internal - Called when a network interface becomes active 8185 * @netdev: network interface device structure 8186 * 8187 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8188 * handling routine 8189 * 8190 * Returns 0 on success, negative value on failure 8191 */ 8192 int ice_open_internal(struct net_device *netdev) 8193 { 8194 struct ice_netdev_priv *np = netdev_priv(netdev); 8195 struct ice_vsi *vsi = np->vsi; 8196 struct ice_pf *pf = vsi->back; 8197 struct ice_port_info *pi; 8198 enum ice_status status; 8199 int err; 8200 8201 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8202 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8203 return -EIO; 8204 } 8205 8206 netif_carrier_off(netdev); 8207 8208 pi = vsi->port_info; 8209 status = ice_update_link_info(pi); 8210 if (status) { 8211 netdev_err(netdev, "Failed to get link info, error %s\n", 8212 ice_stat_str(status)); 8213 return -EIO; 8214 } 8215 8216 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 8217 8218 /* Set PHY if there is media, otherwise, turn off PHY */ 8219 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8220 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8221 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8222 err = ice_init_phy_user_cfg(pi); 8223 if (err) { 8224 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8225 err); 8226 return err; 8227 } 8228 } 8229 8230 err = ice_configure_phy(vsi); 8231 if (err) { 8232 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8233 err); 8234 return err; 8235 } 8236 } else { 8237 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8238 ice_set_link(vsi, false); 8239 } 8240 8241 err = ice_vsi_open(vsi); 8242 if (err) 8243 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8244 vsi->vsi_num, vsi->vsw->sw_id); 8245 8246 /* Update existing tunnels information */ 8247 udp_tunnel_get_rx_info(netdev); 8248 8249 return err; 8250 } 8251 8252 /** 8253 * ice_stop - Disables a network interface 8254 * @netdev: network interface device structure 8255 * 8256 * The stop entry point is called when an interface is de-activated by the OS, 8257 * and the netdevice enters the DOWN state. The hardware is still under the 8258 * driver's control, but the netdev interface is disabled. 8259 * 8260 * Returns success only - not allowed to fail 8261 */ 8262 int ice_stop(struct net_device *netdev) 8263 { 8264 struct ice_netdev_priv *np = netdev_priv(netdev); 8265 struct ice_vsi *vsi = np->vsi; 8266 struct ice_pf *pf = vsi->back; 8267 8268 if (ice_is_reset_in_progress(pf->state)) { 8269 netdev_err(netdev, "can't stop net device while reset is in progress"); 8270 return -EBUSY; 8271 } 8272 8273 ice_vsi_close(vsi); 8274 8275 return 0; 8276 } 8277 8278 /** 8279 * ice_features_check - Validate encapsulated packet conforms to limits 8280 * @skb: skb buffer 8281 * @netdev: This port's netdev 8282 * @features: Offload features that the stack believes apply 8283 */ 8284 static netdev_features_t 8285 ice_features_check(struct sk_buff *skb, 8286 struct net_device __always_unused *netdev, 8287 netdev_features_t features) 8288 { 8289 size_t len; 8290 8291 /* No point in doing any of this if neither checksum nor GSO are 8292 * being requested for this frame. We can rule out both by just 8293 * checking for CHECKSUM_PARTIAL 8294 */ 8295 if (skb->ip_summed != CHECKSUM_PARTIAL) 8296 return features; 8297 8298 /* We cannot support GSO if the MSS is going to be less than 8299 * 64 bytes. If it is then we need to drop support for GSO. 8300 */ 8301 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 8302 features &= ~NETIF_F_GSO_MASK; 8303 8304 len = skb_network_header(skb) - skb->data; 8305 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8306 goto out_rm_features; 8307 8308 len = skb_transport_header(skb) - skb_network_header(skb); 8309 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8310 goto out_rm_features; 8311 8312 if (skb->encapsulation) { 8313 len = skb_inner_network_header(skb) - skb_transport_header(skb); 8314 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8315 goto out_rm_features; 8316 8317 len = skb_inner_transport_header(skb) - 8318 skb_inner_network_header(skb); 8319 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8320 goto out_rm_features; 8321 } 8322 8323 return features; 8324 out_rm_features: 8325 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8326 } 8327 8328 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8329 .ndo_open = ice_open, 8330 .ndo_stop = ice_stop, 8331 .ndo_start_xmit = ice_start_xmit, 8332 .ndo_set_mac_address = ice_set_mac_address, 8333 .ndo_validate_addr = eth_validate_addr, 8334 .ndo_change_mtu = ice_change_mtu, 8335 .ndo_get_stats64 = ice_get_stats64, 8336 .ndo_tx_timeout = ice_tx_timeout, 8337 .ndo_bpf = ice_xdp_safe_mode, 8338 }; 8339 8340 static const struct net_device_ops ice_netdev_ops = { 8341 .ndo_open = ice_open, 8342 .ndo_stop = ice_stop, 8343 .ndo_start_xmit = ice_start_xmit, 8344 .ndo_select_queue = ice_select_queue, 8345 .ndo_features_check = ice_features_check, 8346 .ndo_set_rx_mode = ice_set_rx_mode, 8347 .ndo_set_mac_address = ice_set_mac_address, 8348 .ndo_validate_addr = eth_validate_addr, 8349 .ndo_change_mtu = ice_change_mtu, 8350 .ndo_get_stats64 = ice_get_stats64, 8351 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8352 .ndo_eth_ioctl = ice_eth_ioctl, 8353 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8354 .ndo_set_vf_mac = ice_set_vf_mac, 8355 .ndo_get_vf_config = ice_get_vf_cfg, 8356 .ndo_set_vf_trust = ice_set_vf_trust, 8357 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8358 .ndo_set_vf_link_state = ice_set_vf_link_state, 8359 .ndo_get_vf_stats = ice_get_vf_stats, 8360 .ndo_set_vf_rate = ice_set_vf_bw, 8361 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8362 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8363 .ndo_setup_tc = ice_setup_tc, 8364 .ndo_set_features = ice_set_features, 8365 .ndo_bridge_getlink = ice_bridge_getlink, 8366 .ndo_bridge_setlink = ice_bridge_setlink, 8367 .ndo_fdb_add = ice_fdb_add, 8368 .ndo_fdb_del = ice_fdb_del, 8369 #ifdef CONFIG_RFS_ACCEL 8370 .ndo_rx_flow_steer = ice_rx_flow_steer, 8371 #endif 8372 .ndo_tx_timeout = ice_tx_timeout, 8373 .ndo_bpf = ice_xdp, 8374 .ndo_xdp_xmit = ice_xdp_xmit, 8375 .ndo_xsk_wakeup = ice_xsk_wakeup, 8376 }; 8377