xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 637567e4a3ef6f6a5ffa48781207d270265f7e68)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
18  * ice tracepoint functions. This must be done exactly once across the
19  * ice driver.
20  */
21 #define CREATE_TRACE_POINTS
22 #include "ice_trace.h"
23 #include "ice_eswitch.h"
24 #include "ice_tc_lib.h"
25 #include "ice_vsi_vlan_ops.h"
26 #include <net/xdp_sock_drv.h>
27 
28 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
29 static const char ice_driver_string[] = DRV_SUMMARY;
30 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
31 
32 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
33 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
34 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
35 
36 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
37 MODULE_DESCRIPTION(DRV_SUMMARY);
38 MODULE_LICENSE("GPL v2");
39 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
40 
41 static int debug = -1;
42 module_param(debug, int, 0644);
43 #ifndef CONFIG_DYNAMIC_DEBUG
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
45 #else
46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
47 #endif /* !CONFIG_DYNAMIC_DEBUG */
48 
49 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
50 EXPORT_SYMBOL(ice_xdp_locking_key);
51 
52 /**
53  * ice_hw_to_dev - Get device pointer from the hardware structure
54  * @hw: pointer to the device HW structure
55  *
56  * Used to access the device pointer from compilation units which can't easily
57  * include the definition of struct ice_pf without leading to circular header
58  * dependencies.
59  */
60 struct device *ice_hw_to_dev(struct ice_hw *hw)
61 {
62 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
63 
64 	return &pf->pdev->dev;
65 }
66 
67 static struct workqueue_struct *ice_wq;
68 struct workqueue_struct *ice_lag_wq;
69 static const struct net_device_ops ice_netdev_safe_mode_ops;
70 static const struct net_device_ops ice_netdev_ops;
71 
72 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
73 
74 static void ice_vsi_release_all(struct ice_pf *pf);
75 
76 static int ice_rebuild_channels(struct ice_pf *pf);
77 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
78 
79 static int
80 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
81 		     void *cb_priv, enum tc_setup_type type, void *type_data,
82 		     void *data,
83 		     void (*cleanup)(struct flow_block_cb *block_cb));
84 
85 bool netif_is_ice(const struct net_device *dev)
86 {
87 	return dev && (dev->netdev_ops == &ice_netdev_ops);
88 }
89 
90 /**
91  * ice_get_tx_pending - returns number of Tx descriptors not processed
92  * @ring: the ring of descriptors
93  */
94 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
95 {
96 	u16 head, tail;
97 
98 	head = ring->next_to_clean;
99 	tail = ring->next_to_use;
100 
101 	if (head != tail)
102 		return (head < tail) ?
103 			tail - head : (tail + ring->count - head);
104 	return 0;
105 }
106 
107 /**
108  * ice_check_for_hang_subtask - check for and recover hung queues
109  * @pf: pointer to PF struct
110  */
111 static void ice_check_for_hang_subtask(struct ice_pf *pf)
112 {
113 	struct ice_vsi *vsi = NULL;
114 	struct ice_hw *hw;
115 	unsigned int i;
116 	int packets;
117 	u32 v;
118 
119 	ice_for_each_vsi(pf, v)
120 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
121 			vsi = pf->vsi[v];
122 			break;
123 		}
124 
125 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
126 		return;
127 
128 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
129 		return;
130 
131 	hw = &vsi->back->hw;
132 
133 	ice_for_each_txq(vsi, i) {
134 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
135 		struct ice_ring_stats *ring_stats;
136 
137 		if (!tx_ring)
138 			continue;
139 		if (ice_ring_ch_enabled(tx_ring))
140 			continue;
141 
142 		ring_stats = tx_ring->ring_stats;
143 		if (!ring_stats)
144 			continue;
145 
146 		if (tx_ring->desc) {
147 			/* If packet counter has not changed the queue is
148 			 * likely stalled, so force an interrupt for this
149 			 * queue.
150 			 *
151 			 * prev_pkt would be negative if there was no
152 			 * pending work.
153 			 */
154 			packets = ring_stats->stats.pkts & INT_MAX;
155 			if (ring_stats->tx_stats.prev_pkt == packets) {
156 				/* Trigger sw interrupt to revive the queue */
157 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
158 				continue;
159 			}
160 
161 			/* Memory barrier between read of packet count and call
162 			 * to ice_get_tx_pending()
163 			 */
164 			smp_rmb();
165 			ring_stats->tx_stats.prev_pkt =
166 			    ice_get_tx_pending(tx_ring) ? packets : -1;
167 		}
168 	}
169 }
170 
171 /**
172  * ice_init_mac_fltr - Set initial MAC filters
173  * @pf: board private structure
174  *
175  * Set initial set of MAC filters for PF VSI; configure filters for permanent
176  * address and broadcast address. If an error is encountered, netdevice will be
177  * unregistered.
178  */
179 static int ice_init_mac_fltr(struct ice_pf *pf)
180 {
181 	struct ice_vsi *vsi;
182 	u8 *perm_addr;
183 
184 	vsi = ice_get_main_vsi(pf);
185 	if (!vsi)
186 		return -EINVAL;
187 
188 	perm_addr = vsi->port_info->mac.perm_addr;
189 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
190 }
191 
192 /**
193  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
194  * @netdev: the net device on which the sync is happening
195  * @addr: MAC address to sync
196  *
197  * This is a callback function which is called by the in kernel device sync
198  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
199  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
200  * MAC filters from the hardware.
201  */
202 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
203 {
204 	struct ice_netdev_priv *np = netdev_priv(netdev);
205 	struct ice_vsi *vsi = np->vsi;
206 
207 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
208 				     ICE_FWD_TO_VSI))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 /**
215  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
216  * @netdev: the net device on which the unsync is happening
217  * @addr: MAC address to unsync
218  *
219  * This is a callback function which is called by the in kernel device unsync
220  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
221  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
222  * delete the MAC filters from the hardware.
223  */
224 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
225 {
226 	struct ice_netdev_priv *np = netdev_priv(netdev);
227 	struct ice_vsi *vsi = np->vsi;
228 
229 	/* Under some circumstances, we might receive a request to delete our
230 	 * own device address from our uc list. Because we store the device
231 	 * address in the VSI's MAC filter list, we need to ignore such
232 	 * requests and not delete our device address from this list.
233 	 */
234 	if (ether_addr_equal(addr, netdev->dev_addr))
235 		return 0;
236 
237 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
238 				     ICE_FWD_TO_VSI))
239 		return -EINVAL;
240 
241 	return 0;
242 }
243 
244 /**
245  * ice_vsi_fltr_changed - check if filter state changed
246  * @vsi: VSI to be checked
247  *
248  * returns true if filter state has changed, false otherwise.
249  */
250 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
251 {
252 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
253 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
254 }
255 
256 /**
257  * ice_set_promisc - Enable promiscuous mode for a given PF
258  * @vsi: the VSI being configured
259  * @promisc_m: mask of promiscuous config bits
260  *
261  */
262 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
263 {
264 	int status;
265 
266 	if (vsi->type != ICE_VSI_PF)
267 		return 0;
268 
269 	if (ice_vsi_has_non_zero_vlans(vsi)) {
270 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
271 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
272 						       promisc_m);
273 	} else {
274 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
275 						  promisc_m, 0);
276 	}
277 	if (status && status != -EEXIST)
278 		return status;
279 
280 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
281 		   vsi->vsi_num, promisc_m);
282 	return 0;
283 }
284 
285 /**
286  * ice_clear_promisc - Disable promiscuous mode for a given PF
287  * @vsi: the VSI being configured
288  * @promisc_m: mask of promiscuous config bits
289  *
290  */
291 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
292 {
293 	int status;
294 
295 	if (vsi->type != ICE_VSI_PF)
296 		return 0;
297 
298 	if (ice_vsi_has_non_zero_vlans(vsi)) {
299 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
300 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
301 							 promisc_m);
302 	} else {
303 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
304 						    promisc_m, 0);
305 	}
306 
307 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
308 		   vsi->vsi_num, promisc_m);
309 	return status;
310 }
311 
312 /**
313  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
314  * @vsi: ptr to the VSI
315  *
316  * Push any outstanding VSI filter changes through the AdminQ.
317  */
318 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
319 {
320 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
321 	struct device *dev = ice_pf_to_dev(vsi->back);
322 	struct net_device *netdev = vsi->netdev;
323 	bool promisc_forced_on = false;
324 	struct ice_pf *pf = vsi->back;
325 	struct ice_hw *hw = &pf->hw;
326 	u32 changed_flags = 0;
327 	int err;
328 
329 	if (!vsi->netdev)
330 		return -EINVAL;
331 
332 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
333 		usleep_range(1000, 2000);
334 
335 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
336 	vsi->current_netdev_flags = vsi->netdev->flags;
337 
338 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
339 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
340 
341 	if (ice_vsi_fltr_changed(vsi)) {
342 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
343 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
344 
345 		/* grab the netdev's addr_list_lock */
346 		netif_addr_lock_bh(netdev);
347 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
348 			      ice_add_mac_to_unsync_list);
349 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
350 			      ice_add_mac_to_unsync_list);
351 		/* our temp lists are populated. release lock */
352 		netif_addr_unlock_bh(netdev);
353 	}
354 
355 	/* Remove MAC addresses in the unsync list */
356 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
357 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
358 	if (err) {
359 		netdev_err(netdev, "Failed to delete MAC filters\n");
360 		/* if we failed because of alloc failures, just bail */
361 		if (err == -ENOMEM)
362 			goto out;
363 	}
364 
365 	/* Add MAC addresses in the sync list */
366 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
367 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
368 	/* If filter is added successfully or already exists, do not go into
369 	 * 'if' condition and report it as error. Instead continue processing
370 	 * rest of the function.
371 	 */
372 	if (err && err != -EEXIST) {
373 		netdev_err(netdev, "Failed to add MAC filters\n");
374 		/* If there is no more space for new umac filters, VSI
375 		 * should go into promiscuous mode. There should be some
376 		 * space reserved for promiscuous filters.
377 		 */
378 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
379 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
380 				      vsi->state)) {
381 			promisc_forced_on = true;
382 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
383 				    vsi->vsi_num);
384 		} else {
385 			goto out;
386 		}
387 	}
388 	err = 0;
389 	/* check for changes in promiscuous modes */
390 	if (changed_flags & IFF_ALLMULTI) {
391 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
392 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
393 			if (err) {
394 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
395 				goto out_promisc;
396 			}
397 		} else {
398 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
399 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
400 			if (err) {
401 				vsi->current_netdev_flags |= IFF_ALLMULTI;
402 				goto out_promisc;
403 			}
404 		}
405 	}
406 
407 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
408 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
409 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
410 		if (vsi->current_netdev_flags & IFF_PROMISC) {
411 			/* Apply Rx filter rule to get traffic from wire */
412 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
413 				err = ice_set_dflt_vsi(vsi);
414 				if (err && err != -EEXIST) {
415 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
416 						   err, vsi->vsi_num);
417 					vsi->current_netdev_flags &=
418 						~IFF_PROMISC;
419 					goto out_promisc;
420 				}
421 				err = 0;
422 				vlan_ops->dis_rx_filtering(vsi);
423 
424 				/* promiscuous mode implies allmulticast so
425 				 * that VSIs that are in promiscuous mode are
426 				 * subscribed to multicast packets coming to
427 				 * the port
428 				 */
429 				err = ice_set_promisc(vsi,
430 						      ICE_MCAST_PROMISC_BITS);
431 				if (err)
432 					goto out_promisc;
433 			}
434 		} else {
435 			/* Clear Rx filter to remove traffic from wire */
436 			if (ice_is_vsi_dflt_vsi(vsi)) {
437 				err = ice_clear_dflt_vsi(vsi);
438 				if (err) {
439 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
440 						   err, vsi->vsi_num);
441 					vsi->current_netdev_flags |=
442 						IFF_PROMISC;
443 					goto out_promisc;
444 				}
445 				if (vsi->netdev->features &
446 				    NETIF_F_HW_VLAN_CTAG_FILTER)
447 					vlan_ops->ena_rx_filtering(vsi);
448 			}
449 
450 			/* disable allmulti here, but only if allmulti is not
451 			 * still enabled for the netdev
452 			 */
453 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
454 				err = ice_clear_promisc(vsi,
455 							ICE_MCAST_PROMISC_BITS);
456 				if (err) {
457 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
458 						   err, vsi->vsi_num);
459 				}
460 			}
461 		}
462 	}
463 	goto exit;
464 
465 out_promisc:
466 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
467 	goto exit;
468 out:
469 	/* if something went wrong then set the changed flag so we try again */
470 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
471 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
472 exit:
473 	clear_bit(ICE_CFG_BUSY, vsi->state);
474 	return err;
475 }
476 
477 /**
478  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
479  * @pf: board private structure
480  */
481 static void ice_sync_fltr_subtask(struct ice_pf *pf)
482 {
483 	int v;
484 
485 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
486 		return;
487 
488 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
489 
490 	ice_for_each_vsi(pf, v)
491 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
492 		    ice_vsi_sync_fltr(pf->vsi[v])) {
493 			/* come back and try again later */
494 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
495 			break;
496 		}
497 }
498 
499 /**
500  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
501  * @pf: the PF
502  * @locked: is the rtnl_lock already held
503  */
504 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
505 {
506 	int node;
507 	int v;
508 
509 	ice_for_each_vsi(pf, v)
510 		if (pf->vsi[v])
511 			ice_dis_vsi(pf->vsi[v], locked);
512 
513 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
514 		pf->pf_agg_node[node].num_vsis = 0;
515 
516 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
517 		pf->vf_agg_node[node].num_vsis = 0;
518 }
519 
520 /**
521  * ice_clear_sw_switch_recipes - clear switch recipes
522  * @pf: board private structure
523  *
524  * Mark switch recipes as not created in sw structures. There are cases where
525  * rules (especially advanced rules) need to be restored, either re-read from
526  * hardware or added again. For example after the reset. 'recp_created' flag
527  * prevents from doing that and need to be cleared upfront.
528  */
529 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
530 {
531 	struct ice_sw_recipe *recp;
532 	u8 i;
533 
534 	recp = pf->hw.switch_info->recp_list;
535 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
536 		recp[i].recp_created = false;
537 }
538 
539 /**
540  * ice_prepare_for_reset - prep for reset
541  * @pf: board private structure
542  * @reset_type: reset type requested
543  *
544  * Inform or close all dependent features in prep for reset.
545  */
546 static void
547 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
548 {
549 	struct ice_hw *hw = &pf->hw;
550 	struct ice_vsi *vsi;
551 	struct ice_vf *vf;
552 	unsigned int bkt;
553 
554 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
555 
556 	/* already prepared for reset */
557 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
558 		return;
559 
560 	ice_unplug_aux_dev(pf);
561 
562 	/* Notify VFs of impending reset */
563 	if (ice_check_sq_alive(hw, &hw->mailboxq))
564 		ice_vc_notify_reset(pf);
565 
566 	/* Disable VFs until reset is completed */
567 	mutex_lock(&pf->vfs.table_lock);
568 	ice_for_each_vf(pf, bkt, vf)
569 		ice_set_vf_state_dis(vf);
570 	mutex_unlock(&pf->vfs.table_lock);
571 
572 	if (ice_is_eswitch_mode_switchdev(pf)) {
573 		if (reset_type != ICE_RESET_PFR)
574 			ice_clear_sw_switch_recipes(pf);
575 	}
576 
577 	/* release ADQ specific HW and SW resources */
578 	vsi = ice_get_main_vsi(pf);
579 	if (!vsi)
580 		goto skip;
581 
582 	/* to be on safe side, reset orig_rss_size so that normal flow
583 	 * of deciding rss_size can take precedence
584 	 */
585 	vsi->orig_rss_size = 0;
586 
587 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
588 		if (reset_type == ICE_RESET_PFR) {
589 			vsi->old_ena_tc = vsi->all_enatc;
590 			vsi->old_numtc = vsi->all_numtc;
591 		} else {
592 			ice_remove_q_channels(vsi, true);
593 
594 			/* for other reset type, do not support channel rebuild
595 			 * hence reset needed info
596 			 */
597 			vsi->old_ena_tc = 0;
598 			vsi->all_enatc = 0;
599 			vsi->old_numtc = 0;
600 			vsi->all_numtc = 0;
601 			vsi->req_txq = 0;
602 			vsi->req_rxq = 0;
603 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
604 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
605 		}
606 	}
607 skip:
608 
609 	/* clear SW filtering DB */
610 	ice_clear_hw_tbls(hw);
611 	/* disable the VSIs and their queues that are not already DOWN */
612 	ice_pf_dis_all_vsi(pf, false);
613 
614 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
615 		ice_ptp_prepare_for_reset(pf);
616 
617 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
618 		ice_gnss_exit(pf);
619 
620 	if (hw->port_info)
621 		ice_sched_clear_port(hw->port_info);
622 
623 	ice_shutdown_all_ctrlq(hw);
624 
625 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
626 }
627 
628 /**
629  * ice_do_reset - Initiate one of many types of resets
630  * @pf: board private structure
631  * @reset_type: reset type requested before this function was called.
632  */
633 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
634 {
635 	struct device *dev = ice_pf_to_dev(pf);
636 	struct ice_hw *hw = &pf->hw;
637 
638 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
639 
640 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
641 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
642 		reset_type = ICE_RESET_CORER;
643 	}
644 
645 	ice_prepare_for_reset(pf, reset_type);
646 
647 	/* trigger the reset */
648 	if (ice_reset(hw, reset_type)) {
649 		dev_err(dev, "reset %d failed\n", reset_type);
650 		set_bit(ICE_RESET_FAILED, pf->state);
651 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
652 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
653 		clear_bit(ICE_PFR_REQ, pf->state);
654 		clear_bit(ICE_CORER_REQ, pf->state);
655 		clear_bit(ICE_GLOBR_REQ, pf->state);
656 		wake_up(&pf->reset_wait_queue);
657 		return;
658 	}
659 
660 	/* PFR is a bit of a special case because it doesn't result in an OICR
661 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
662 	 * associated state bits.
663 	 */
664 	if (reset_type == ICE_RESET_PFR) {
665 		pf->pfr_count++;
666 		ice_rebuild(pf, reset_type);
667 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
668 		clear_bit(ICE_PFR_REQ, pf->state);
669 		wake_up(&pf->reset_wait_queue);
670 		ice_reset_all_vfs(pf);
671 	}
672 }
673 
674 /**
675  * ice_reset_subtask - Set up for resetting the device and driver
676  * @pf: board private structure
677  */
678 static void ice_reset_subtask(struct ice_pf *pf)
679 {
680 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
681 
682 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
683 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
684 	 * of reset is pending and sets bits in pf->state indicating the reset
685 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
686 	 * prepare for pending reset if not already (for PF software-initiated
687 	 * global resets the software should already be prepared for it as
688 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
689 	 * by firmware or software on other PFs, that bit is not set so prepare
690 	 * for the reset now), poll for reset done, rebuild and return.
691 	 */
692 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
693 		/* Perform the largest reset requested */
694 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
695 			reset_type = ICE_RESET_CORER;
696 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
697 			reset_type = ICE_RESET_GLOBR;
698 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
699 			reset_type = ICE_RESET_EMPR;
700 		/* return if no valid reset type requested */
701 		if (reset_type == ICE_RESET_INVAL)
702 			return;
703 		ice_prepare_for_reset(pf, reset_type);
704 
705 		/* make sure we are ready to rebuild */
706 		if (ice_check_reset(&pf->hw)) {
707 			set_bit(ICE_RESET_FAILED, pf->state);
708 		} else {
709 			/* done with reset. start rebuild */
710 			pf->hw.reset_ongoing = false;
711 			ice_rebuild(pf, reset_type);
712 			/* clear bit to resume normal operations, but
713 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
714 			 */
715 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
716 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
717 			clear_bit(ICE_PFR_REQ, pf->state);
718 			clear_bit(ICE_CORER_REQ, pf->state);
719 			clear_bit(ICE_GLOBR_REQ, pf->state);
720 			wake_up(&pf->reset_wait_queue);
721 			ice_reset_all_vfs(pf);
722 		}
723 
724 		return;
725 	}
726 
727 	/* No pending resets to finish processing. Check for new resets */
728 	if (test_bit(ICE_PFR_REQ, pf->state)) {
729 		reset_type = ICE_RESET_PFR;
730 		if (pf->lag && pf->lag->bonded) {
731 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
732 			reset_type = ICE_RESET_CORER;
733 		}
734 	}
735 	if (test_bit(ICE_CORER_REQ, pf->state))
736 		reset_type = ICE_RESET_CORER;
737 	if (test_bit(ICE_GLOBR_REQ, pf->state))
738 		reset_type = ICE_RESET_GLOBR;
739 	/* If no valid reset type requested just return */
740 	if (reset_type == ICE_RESET_INVAL)
741 		return;
742 
743 	/* reset if not already down or busy */
744 	if (!test_bit(ICE_DOWN, pf->state) &&
745 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
746 		ice_do_reset(pf, reset_type);
747 	}
748 }
749 
750 /**
751  * ice_print_topo_conflict - print topology conflict message
752  * @vsi: the VSI whose topology status is being checked
753  */
754 static void ice_print_topo_conflict(struct ice_vsi *vsi)
755 {
756 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
757 	case ICE_AQ_LINK_TOPO_CONFLICT:
758 	case ICE_AQ_LINK_MEDIA_CONFLICT:
759 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
760 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
761 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
762 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
763 		break;
764 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
765 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
766 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
767 		else
768 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
769 		break;
770 	default:
771 		break;
772 	}
773 }
774 
775 /**
776  * ice_print_link_msg - print link up or down message
777  * @vsi: the VSI whose link status is being queried
778  * @isup: boolean for if the link is now up or down
779  */
780 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
781 {
782 	struct ice_aqc_get_phy_caps_data *caps;
783 	const char *an_advertised;
784 	const char *fec_req;
785 	const char *speed;
786 	const char *fec;
787 	const char *fc;
788 	const char *an;
789 	int status;
790 
791 	if (!vsi)
792 		return;
793 
794 	if (vsi->current_isup == isup)
795 		return;
796 
797 	vsi->current_isup = isup;
798 
799 	if (!isup) {
800 		netdev_info(vsi->netdev, "NIC Link is Down\n");
801 		return;
802 	}
803 
804 	switch (vsi->port_info->phy.link_info.link_speed) {
805 	case ICE_AQ_LINK_SPEED_100GB:
806 		speed = "100 G";
807 		break;
808 	case ICE_AQ_LINK_SPEED_50GB:
809 		speed = "50 G";
810 		break;
811 	case ICE_AQ_LINK_SPEED_40GB:
812 		speed = "40 G";
813 		break;
814 	case ICE_AQ_LINK_SPEED_25GB:
815 		speed = "25 G";
816 		break;
817 	case ICE_AQ_LINK_SPEED_20GB:
818 		speed = "20 G";
819 		break;
820 	case ICE_AQ_LINK_SPEED_10GB:
821 		speed = "10 G";
822 		break;
823 	case ICE_AQ_LINK_SPEED_5GB:
824 		speed = "5 G";
825 		break;
826 	case ICE_AQ_LINK_SPEED_2500MB:
827 		speed = "2.5 G";
828 		break;
829 	case ICE_AQ_LINK_SPEED_1000MB:
830 		speed = "1 G";
831 		break;
832 	case ICE_AQ_LINK_SPEED_100MB:
833 		speed = "100 M";
834 		break;
835 	default:
836 		speed = "Unknown ";
837 		break;
838 	}
839 
840 	switch (vsi->port_info->fc.current_mode) {
841 	case ICE_FC_FULL:
842 		fc = "Rx/Tx";
843 		break;
844 	case ICE_FC_TX_PAUSE:
845 		fc = "Tx";
846 		break;
847 	case ICE_FC_RX_PAUSE:
848 		fc = "Rx";
849 		break;
850 	case ICE_FC_NONE:
851 		fc = "None";
852 		break;
853 	default:
854 		fc = "Unknown";
855 		break;
856 	}
857 
858 	/* Get FEC mode based on negotiated link info */
859 	switch (vsi->port_info->phy.link_info.fec_info) {
860 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
861 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
862 		fec = "RS-FEC";
863 		break;
864 	case ICE_AQ_LINK_25G_KR_FEC_EN:
865 		fec = "FC-FEC/BASE-R";
866 		break;
867 	default:
868 		fec = "NONE";
869 		break;
870 	}
871 
872 	/* check if autoneg completed, might be false due to not supported */
873 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
874 		an = "True";
875 	else
876 		an = "False";
877 
878 	/* Get FEC mode requested based on PHY caps last SW configuration */
879 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
880 	if (!caps) {
881 		fec_req = "Unknown";
882 		an_advertised = "Unknown";
883 		goto done;
884 	}
885 
886 	status = ice_aq_get_phy_caps(vsi->port_info, false,
887 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
888 	if (status)
889 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
890 
891 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
892 
893 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
894 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
895 		fec_req = "RS-FEC";
896 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
897 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
898 		fec_req = "FC-FEC/BASE-R";
899 	else
900 		fec_req = "NONE";
901 
902 	kfree(caps);
903 
904 done:
905 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
906 		    speed, fec_req, fec, an_advertised, an, fc);
907 	ice_print_topo_conflict(vsi);
908 }
909 
910 /**
911  * ice_vsi_link_event - update the VSI's netdev
912  * @vsi: the VSI on which the link event occurred
913  * @link_up: whether or not the VSI needs to be set up or down
914  */
915 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
916 {
917 	if (!vsi)
918 		return;
919 
920 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
921 		return;
922 
923 	if (vsi->type == ICE_VSI_PF) {
924 		if (link_up == netif_carrier_ok(vsi->netdev))
925 			return;
926 
927 		if (link_up) {
928 			netif_carrier_on(vsi->netdev);
929 			netif_tx_wake_all_queues(vsi->netdev);
930 		} else {
931 			netif_carrier_off(vsi->netdev);
932 			netif_tx_stop_all_queues(vsi->netdev);
933 		}
934 	}
935 }
936 
937 /**
938  * ice_set_dflt_mib - send a default config MIB to the FW
939  * @pf: private PF struct
940  *
941  * This function sends a default configuration MIB to the FW.
942  *
943  * If this function errors out at any point, the driver is still able to
944  * function.  The main impact is that LFC may not operate as expected.
945  * Therefore an error state in this function should be treated with a DBG
946  * message and continue on with driver rebuild/reenable.
947  */
948 static void ice_set_dflt_mib(struct ice_pf *pf)
949 {
950 	struct device *dev = ice_pf_to_dev(pf);
951 	u8 mib_type, *buf, *lldpmib = NULL;
952 	u16 len, typelen, offset = 0;
953 	struct ice_lldp_org_tlv *tlv;
954 	struct ice_hw *hw = &pf->hw;
955 	u32 ouisubtype;
956 
957 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
958 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
959 	if (!lldpmib) {
960 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
961 			__func__);
962 		return;
963 	}
964 
965 	/* Add ETS CFG TLV */
966 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
967 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
968 		   ICE_IEEE_ETS_TLV_LEN);
969 	tlv->typelen = htons(typelen);
970 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
971 		      ICE_IEEE_SUBTYPE_ETS_CFG);
972 	tlv->ouisubtype = htonl(ouisubtype);
973 
974 	buf = tlv->tlvinfo;
975 	buf[0] = 0;
976 
977 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
978 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
979 	 * Octets 13 - 20 are TSA values - leave as zeros
980 	 */
981 	buf[5] = 0x64;
982 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
983 	offset += len + 2;
984 	tlv = (struct ice_lldp_org_tlv *)
985 		((char *)tlv + sizeof(tlv->typelen) + len);
986 
987 	/* Add ETS REC TLV */
988 	buf = tlv->tlvinfo;
989 	tlv->typelen = htons(typelen);
990 
991 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
992 		      ICE_IEEE_SUBTYPE_ETS_REC);
993 	tlv->ouisubtype = htonl(ouisubtype);
994 
995 	/* First octet of buf is reserved
996 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
997 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
998 	 * Octets 13 - 20 are TSA value - leave as zeros
999 	 */
1000 	buf[5] = 0x64;
1001 	offset += len + 2;
1002 	tlv = (struct ice_lldp_org_tlv *)
1003 		((char *)tlv + sizeof(tlv->typelen) + len);
1004 
1005 	/* Add PFC CFG TLV */
1006 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1007 		   ICE_IEEE_PFC_TLV_LEN);
1008 	tlv->typelen = htons(typelen);
1009 
1010 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1011 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1012 	tlv->ouisubtype = htonl(ouisubtype);
1013 
1014 	/* Octet 1 left as all zeros - PFC disabled */
1015 	buf[0] = 0x08;
1016 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1017 	offset += len + 2;
1018 
1019 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1020 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1021 
1022 	kfree(lldpmib);
1023 }
1024 
1025 /**
1026  * ice_check_phy_fw_load - check if PHY FW load failed
1027  * @pf: pointer to PF struct
1028  * @link_cfg_err: bitmap from the link info structure
1029  *
1030  * check if external PHY FW load failed and print an error message if it did
1031  */
1032 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1033 {
1034 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1035 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1036 		return;
1037 	}
1038 
1039 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1040 		return;
1041 
1042 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1043 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1044 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1045 	}
1046 }
1047 
1048 /**
1049  * ice_check_module_power
1050  * @pf: pointer to PF struct
1051  * @link_cfg_err: bitmap from the link info structure
1052  *
1053  * check module power level returned by a previous call to aq_get_link_info
1054  * and print error messages if module power level is not supported
1055  */
1056 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1057 {
1058 	/* if module power level is supported, clear the flag */
1059 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1060 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1061 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1062 		return;
1063 	}
1064 
1065 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1066 	 * above block didn't clear this bit, there's nothing to do
1067 	 */
1068 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1069 		return;
1070 
1071 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1072 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1073 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1074 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1075 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1076 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1077 	}
1078 }
1079 
1080 /**
1081  * ice_check_link_cfg_err - check if link configuration failed
1082  * @pf: pointer to the PF struct
1083  * @link_cfg_err: bitmap from the link info structure
1084  *
1085  * print if any link configuration failure happens due to the value in the
1086  * link_cfg_err parameter in the link info structure
1087  */
1088 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1089 {
1090 	ice_check_module_power(pf, link_cfg_err);
1091 	ice_check_phy_fw_load(pf, link_cfg_err);
1092 }
1093 
1094 /**
1095  * ice_link_event - process the link event
1096  * @pf: PF that the link event is associated with
1097  * @pi: port_info for the port that the link event is associated with
1098  * @link_up: true if the physical link is up and false if it is down
1099  * @link_speed: current link speed received from the link event
1100  *
1101  * Returns 0 on success and negative on failure
1102  */
1103 static int
1104 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1105 	       u16 link_speed)
1106 {
1107 	struct device *dev = ice_pf_to_dev(pf);
1108 	struct ice_phy_info *phy_info;
1109 	struct ice_vsi *vsi;
1110 	u16 old_link_speed;
1111 	bool old_link;
1112 	int status;
1113 
1114 	phy_info = &pi->phy;
1115 	phy_info->link_info_old = phy_info->link_info;
1116 
1117 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1118 	old_link_speed = phy_info->link_info_old.link_speed;
1119 
1120 	/* update the link info structures and re-enable link events,
1121 	 * don't bail on failure due to other book keeping needed
1122 	 */
1123 	status = ice_update_link_info(pi);
1124 	if (status)
1125 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1126 			pi->lport, status,
1127 			ice_aq_str(pi->hw->adminq.sq_last_status));
1128 
1129 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1130 
1131 	/* Check if the link state is up after updating link info, and treat
1132 	 * this event as an UP event since the link is actually UP now.
1133 	 */
1134 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1135 		link_up = true;
1136 
1137 	vsi = ice_get_main_vsi(pf);
1138 	if (!vsi || !vsi->port_info)
1139 		return -EINVAL;
1140 
1141 	/* turn off PHY if media was removed */
1142 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1143 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1144 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1145 		ice_set_link(vsi, false);
1146 	}
1147 
1148 	/* if the old link up/down and speed is the same as the new */
1149 	if (link_up == old_link && link_speed == old_link_speed)
1150 		return 0;
1151 
1152 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1153 
1154 	if (ice_is_dcb_active(pf)) {
1155 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1156 			ice_dcb_rebuild(pf);
1157 	} else {
1158 		if (link_up)
1159 			ice_set_dflt_mib(pf);
1160 	}
1161 	ice_vsi_link_event(vsi, link_up);
1162 	ice_print_link_msg(vsi, link_up);
1163 
1164 	ice_vc_notify_link_state(pf);
1165 
1166 	return 0;
1167 }
1168 
1169 /**
1170  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1171  * @pf: board private structure
1172  */
1173 static void ice_watchdog_subtask(struct ice_pf *pf)
1174 {
1175 	int i;
1176 
1177 	/* if interface is down do nothing */
1178 	if (test_bit(ICE_DOWN, pf->state) ||
1179 	    test_bit(ICE_CFG_BUSY, pf->state))
1180 		return;
1181 
1182 	/* make sure we don't do these things too often */
1183 	if (time_before(jiffies,
1184 			pf->serv_tmr_prev + pf->serv_tmr_period))
1185 		return;
1186 
1187 	pf->serv_tmr_prev = jiffies;
1188 
1189 	/* Update the stats for active netdevs so the network stack
1190 	 * can look at updated numbers whenever it cares to
1191 	 */
1192 	ice_update_pf_stats(pf);
1193 	ice_for_each_vsi(pf, i)
1194 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1195 			ice_update_vsi_stats(pf->vsi[i]);
1196 }
1197 
1198 /**
1199  * ice_init_link_events - enable/initialize link events
1200  * @pi: pointer to the port_info instance
1201  *
1202  * Returns -EIO on failure, 0 on success
1203  */
1204 static int ice_init_link_events(struct ice_port_info *pi)
1205 {
1206 	u16 mask;
1207 
1208 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1209 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1210 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1211 
1212 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1213 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1214 			pi->lport);
1215 		return -EIO;
1216 	}
1217 
1218 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1219 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1220 			pi->lport);
1221 		return -EIO;
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 /**
1228  * ice_handle_link_event - handle link event via ARQ
1229  * @pf: PF that the link event is associated with
1230  * @event: event structure containing link status info
1231  */
1232 static int
1233 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1234 {
1235 	struct ice_aqc_get_link_status_data *link_data;
1236 	struct ice_port_info *port_info;
1237 	int status;
1238 
1239 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1240 	port_info = pf->hw.port_info;
1241 	if (!port_info)
1242 		return -EINVAL;
1243 
1244 	status = ice_link_event(pf, port_info,
1245 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1246 				le16_to_cpu(link_data->link_speed));
1247 	if (status)
1248 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1249 			status);
1250 
1251 	return status;
1252 }
1253 
1254 /**
1255  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1256  * @pf: pointer to the PF private structure
1257  * @task: intermediate helper storage and identifier for waiting
1258  * @opcode: the opcode to wait for
1259  *
1260  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1261  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1262  *
1263  * Calls are separated to allow caller registering for event before sending
1264  * the command, which mitigates a race between registering and FW responding.
1265  *
1266  * To obtain only the descriptor contents, pass an task->event with null
1267  * msg_buf. If the complete data buffer is desired, allocate the
1268  * task->event.msg_buf with enough space ahead of time.
1269  */
1270 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1271 			   u16 opcode)
1272 {
1273 	INIT_HLIST_NODE(&task->entry);
1274 	task->opcode = opcode;
1275 	task->state = ICE_AQ_TASK_WAITING;
1276 
1277 	spin_lock_bh(&pf->aq_wait_lock);
1278 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1279 	spin_unlock_bh(&pf->aq_wait_lock);
1280 }
1281 
1282 /**
1283  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1284  * @pf: pointer to the PF private structure
1285  * @task: ptr prepared by ice_aq_prep_for_event()
1286  * @timeout: how long to wait, in jiffies
1287  *
1288  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1289  * current thread will be put to sleep until the specified event occurs or
1290  * until the given timeout is reached.
1291  *
1292  * Returns: zero on success, or a negative error code on failure.
1293  */
1294 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1295 			  unsigned long timeout)
1296 {
1297 	enum ice_aq_task_state *state = &task->state;
1298 	struct device *dev = ice_pf_to_dev(pf);
1299 	unsigned long start = jiffies;
1300 	long ret;
1301 	int err;
1302 
1303 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1304 					       *state != ICE_AQ_TASK_WAITING,
1305 					       timeout);
1306 	switch (*state) {
1307 	case ICE_AQ_TASK_NOT_PREPARED:
1308 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1309 		err = -EINVAL;
1310 		break;
1311 	case ICE_AQ_TASK_WAITING:
1312 		err = ret < 0 ? ret : -ETIMEDOUT;
1313 		break;
1314 	case ICE_AQ_TASK_CANCELED:
1315 		err = ret < 0 ? ret : -ECANCELED;
1316 		break;
1317 	case ICE_AQ_TASK_COMPLETE:
1318 		err = ret < 0 ? ret : 0;
1319 		break;
1320 	default:
1321 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1322 		err = -EINVAL;
1323 		break;
1324 	}
1325 
1326 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1327 		jiffies_to_msecs(jiffies - start),
1328 		jiffies_to_msecs(timeout),
1329 		task->opcode);
1330 
1331 	spin_lock_bh(&pf->aq_wait_lock);
1332 	hlist_del(&task->entry);
1333 	spin_unlock_bh(&pf->aq_wait_lock);
1334 
1335 	return err;
1336 }
1337 
1338 /**
1339  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1340  * @pf: pointer to the PF private structure
1341  * @opcode: the opcode of the event
1342  * @event: the event to check
1343  *
1344  * Loops over the current list of pending threads waiting for an AdminQ event.
1345  * For each matching task, copy the contents of the event into the task
1346  * structure and wake up the thread.
1347  *
1348  * If multiple threads wait for the same opcode, they will all be woken up.
1349  *
1350  * Note that event->msg_buf will only be duplicated if the event has a buffer
1351  * with enough space already allocated. Otherwise, only the descriptor and
1352  * message length will be copied.
1353  *
1354  * Returns: true if an event was found, false otherwise
1355  */
1356 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1357 				struct ice_rq_event_info *event)
1358 {
1359 	struct ice_rq_event_info *task_ev;
1360 	struct ice_aq_task *task;
1361 	bool found = false;
1362 
1363 	spin_lock_bh(&pf->aq_wait_lock);
1364 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1365 		if (task->state != ICE_AQ_TASK_WAITING)
1366 			continue;
1367 		if (task->opcode != opcode)
1368 			continue;
1369 
1370 		task_ev = &task->event;
1371 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1372 		task_ev->msg_len = event->msg_len;
1373 
1374 		/* Only copy the data buffer if a destination was set */
1375 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1376 			memcpy(task_ev->msg_buf, event->msg_buf,
1377 			       event->buf_len);
1378 			task_ev->buf_len = event->buf_len;
1379 		}
1380 
1381 		task->state = ICE_AQ_TASK_COMPLETE;
1382 		found = true;
1383 	}
1384 	spin_unlock_bh(&pf->aq_wait_lock);
1385 
1386 	if (found)
1387 		wake_up(&pf->aq_wait_queue);
1388 }
1389 
1390 /**
1391  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1392  * @pf: the PF private structure
1393  *
1394  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1395  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1396  */
1397 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1398 {
1399 	struct ice_aq_task *task;
1400 
1401 	spin_lock_bh(&pf->aq_wait_lock);
1402 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1403 		task->state = ICE_AQ_TASK_CANCELED;
1404 	spin_unlock_bh(&pf->aq_wait_lock);
1405 
1406 	wake_up(&pf->aq_wait_queue);
1407 }
1408 
1409 #define ICE_MBX_OVERFLOW_WATERMARK 64
1410 
1411 /**
1412  * __ice_clean_ctrlq - helper function to clean controlq rings
1413  * @pf: ptr to struct ice_pf
1414  * @q_type: specific Control queue type
1415  */
1416 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1417 {
1418 	struct device *dev = ice_pf_to_dev(pf);
1419 	struct ice_rq_event_info event;
1420 	struct ice_hw *hw = &pf->hw;
1421 	struct ice_ctl_q_info *cq;
1422 	u16 pending, i = 0;
1423 	const char *qtype;
1424 	u32 oldval, val;
1425 
1426 	/* Do not clean control queue if/when PF reset fails */
1427 	if (test_bit(ICE_RESET_FAILED, pf->state))
1428 		return 0;
1429 
1430 	switch (q_type) {
1431 	case ICE_CTL_Q_ADMIN:
1432 		cq = &hw->adminq;
1433 		qtype = "Admin";
1434 		break;
1435 	case ICE_CTL_Q_SB:
1436 		cq = &hw->sbq;
1437 		qtype = "Sideband";
1438 		break;
1439 	case ICE_CTL_Q_MAILBOX:
1440 		cq = &hw->mailboxq;
1441 		qtype = "Mailbox";
1442 		/* we are going to try to detect a malicious VF, so set the
1443 		 * state to begin detection
1444 		 */
1445 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1446 		break;
1447 	default:
1448 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1449 		return 0;
1450 	}
1451 
1452 	/* check for error indications - PF_xx_AxQLEN register layout for
1453 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1454 	 */
1455 	val = rd32(hw, cq->rq.len);
1456 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1457 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1458 		oldval = val;
1459 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1460 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1461 				qtype);
1462 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1463 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1464 				qtype);
1465 		}
1466 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1467 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1468 				qtype);
1469 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1470 			 PF_FW_ARQLEN_ARQCRIT_M);
1471 		if (oldval != val)
1472 			wr32(hw, cq->rq.len, val);
1473 	}
1474 
1475 	val = rd32(hw, cq->sq.len);
1476 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1477 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1478 		oldval = val;
1479 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1480 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1481 				qtype);
1482 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1483 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1484 				qtype);
1485 		}
1486 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1487 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1488 				qtype);
1489 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1490 			 PF_FW_ATQLEN_ATQCRIT_M);
1491 		if (oldval != val)
1492 			wr32(hw, cq->sq.len, val);
1493 	}
1494 
1495 	event.buf_len = cq->rq_buf_size;
1496 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1497 	if (!event.msg_buf)
1498 		return 0;
1499 
1500 	do {
1501 		struct ice_mbx_data data = {};
1502 		u16 opcode;
1503 		int ret;
1504 
1505 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1506 		if (ret == -EALREADY)
1507 			break;
1508 		if (ret) {
1509 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1510 				ret);
1511 			break;
1512 		}
1513 
1514 		opcode = le16_to_cpu(event.desc.opcode);
1515 
1516 		/* Notify any thread that might be waiting for this event */
1517 		ice_aq_check_events(pf, opcode, &event);
1518 
1519 		switch (opcode) {
1520 		case ice_aqc_opc_get_link_status:
1521 			if (ice_handle_link_event(pf, &event))
1522 				dev_err(dev, "Could not handle link event\n");
1523 			break;
1524 		case ice_aqc_opc_event_lan_overflow:
1525 			ice_vf_lan_overflow_event(pf, &event);
1526 			break;
1527 		case ice_mbx_opc_send_msg_to_pf:
1528 			data.num_msg_proc = i;
1529 			data.num_pending_arq = pending;
1530 			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1531 			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1532 
1533 			ice_vc_process_vf_msg(pf, &event, &data);
1534 			break;
1535 		case ice_aqc_opc_fw_logging:
1536 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1537 			break;
1538 		case ice_aqc_opc_lldp_set_mib_change:
1539 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1540 			break;
1541 		default:
1542 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1543 				qtype, opcode);
1544 			break;
1545 		}
1546 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1547 
1548 	kfree(event.msg_buf);
1549 
1550 	return pending && (i == ICE_DFLT_IRQ_WORK);
1551 }
1552 
1553 /**
1554  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1555  * @hw: pointer to hardware info
1556  * @cq: control queue information
1557  *
1558  * returns true if there are pending messages in a queue, false if there aren't
1559  */
1560 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1561 {
1562 	u16 ntu;
1563 
1564 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1565 	return cq->rq.next_to_clean != ntu;
1566 }
1567 
1568 /**
1569  * ice_clean_adminq_subtask - clean the AdminQ rings
1570  * @pf: board private structure
1571  */
1572 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1573 {
1574 	struct ice_hw *hw = &pf->hw;
1575 
1576 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1577 		return;
1578 
1579 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1580 		return;
1581 
1582 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1583 
1584 	/* There might be a situation where new messages arrive to a control
1585 	 * queue between processing the last message and clearing the
1586 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1587 	 * ice_ctrlq_pending) and process new messages if any.
1588 	 */
1589 	if (ice_ctrlq_pending(hw, &hw->adminq))
1590 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1591 
1592 	ice_flush(hw);
1593 }
1594 
1595 /**
1596  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1597  * @pf: board private structure
1598  */
1599 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1600 {
1601 	struct ice_hw *hw = &pf->hw;
1602 
1603 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1604 		return;
1605 
1606 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1607 		return;
1608 
1609 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1610 
1611 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1612 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1613 
1614 	ice_flush(hw);
1615 }
1616 
1617 /**
1618  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1619  * @pf: board private structure
1620  */
1621 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1622 {
1623 	struct ice_hw *hw = &pf->hw;
1624 
1625 	/* Nothing to do here if sideband queue is not supported */
1626 	if (!ice_is_sbq_supported(hw)) {
1627 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1628 		return;
1629 	}
1630 
1631 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1632 		return;
1633 
1634 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1635 		return;
1636 
1637 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1638 
1639 	if (ice_ctrlq_pending(hw, &hw->sbq))
1640 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1641 
1642 	ice_flush(hw);
1643 }
1644 
1645 /**
1646  * ice_service_task_schedule - schedule the service task to wake up
1647  * @pf: board private structure
1648  *
1649  * If not already scheduled, this puts the task into the work queue.
1650  */
1651 void ice_service_task_schedule(struct ice_pf *pf)
1652 {
1653 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1654 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1655 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1656 		queue_work(ice_wq, &pf->serv_task);
1657 }
1658 
1659 /**
1660  * ice_service_task_complete - finish up the service task
1661  * @pf: board private structure
1662  */
1663 static void ice_service_task_complete(struct ice_pf *pf)
1664 {
1665 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1666 
1667 	/* force memory (pf->state) to sync before next service task */
1668 	smp_mb__before_atomic();
1669 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1670 }
1671 
1672 /**
1673  * ice_service_task_stop - stop service task and cancel works
1674  * @pf: board private structure
1675  *
1676  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1677  * 1 otherwise.
1678  */
1679 static int ice_service_task_stop(struct ice_pf *pf)
1680 {
1681 	int ret;
1682 
1683 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1684 
1685 	if (pf->serv_tmr.function)
1686 		del_timer_sync(&pf->serv_tmr);
1687 	if (pf->serv_task.func)
1688 		cancel_work_sync(&pf->serv_task);
1689 
1690 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1691 	return ret;
1692 }
1693 
1694 /**
1695  * ice_service_task_restart - restart service task and schedule works
1696  * @pf: board private structure
1697  *
1698  * This function is needed for suspend and resume works (e.g WoL scenario)
1699  */
1700 static void ice_service_task_restart(struct ice_pf *pf)
1701 {
1702 	clear_bit(ICE_SERVICE_DIS, pf->state);
1703 	ice_service_task_schedule(pf);
1704 }
1705 
1706 /**
1707  * ice_service_timer - timer callback to schedule service task
1708  * @t: pointer to timer_list
1709  */
1710 static void ice_service_timer(struct timer_list *t)
1711 {
1712 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1713 
1714 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1715 	ice_service_task_schedule(pf);
1716 }
1717 
1718 /**
1719  * ice_handle_mdd_event - handle malicious driver detect event
1720  * @pf: pointer to the PF structure
1721  *
1722  * Called from service task. OICR interrupt handler indicates MDD event.
1723  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1724  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1725  * disable the queue, the PF can be configured to reset the VF using ethtool
1726  * private flag mdd-auto-reset-vf.
1727  */
1728 static void ice_handle_mdd_event(struct ice_pf *pf)
1729 {
1730 	struct device *dev = ice_pf_to_dev(pf);
1731 	struct ice_hw *hw = &pf->hw;
1732 	struct ice_vf *vf;
1733 	unsigned int bkt;
1734 	u32 reg;
1735 
1736 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1737 		/* Since the VF MDD event logging is rate limited, check if
1738 		 * there are pending MDD events.
1739 		 */
1740 		ice_print_vfs_mdd_events(pf);
1741 		return;
1742 	}
1743 
1744 	/* find what triggered an MDD event */
1745 	reg = rd32(hw, GL_MDET_TX_PQM);
1746 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1747 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1748 				GL_MDET_TX_PQM_PF_NUM_S;
1749 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1750 				GL_MDET_TX_PQM_VF_NUM_S;
1751 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1752 				GL_MDET_TX_PQM_MAL_TYPE_S;
1753 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1754 				GL_MDET_TX_PQM_QNUM_S);
1755 
1756 		if (netif_msg_tx_err(pf))
1757 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1758 				 event, queue, pf_num, vf_num);
1759 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1760 	}
1761 
1762 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1763 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1764 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1765 				GL_MDET_TX_TCLAN_PF_NUM_S;
1766 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1767 				GL_MDET_TX_TCLAN_VF_NUM_S;
1768 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1769 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1770 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1771 				GL_MDET_TX_TCLAN_QNUM_S);
1772 
1773 		if (netif_msg_tx_err(pf))
1774 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1775 				 event, queue, pf_num, vf_num);
1776 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1777 	}
1778 
1779 	reg = rd32(hw, GL_MDET_RX);
1780 	if (reg & GL_MDET_RX_VALID_M) {
1781 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1782 				GL_MDET_RX_PF_NUM_S;
1783 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1784 				GL_MDET_RX_VF_NUM_S;
1785 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1786 				GL_MDET_RX_MAL_TYPE_S;
1787 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1788 				GL_MDET_RX_QNUM_S);
1789 
1790 		if (netif_msg_rx_err(pf))
1791 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1792 				 event, queue, pf_num, vf_num);
1793 		wr32(hw, GL_MDET_RX, 0xffffffff);
1794 	}
1795 
1796 	/* check to see if this PF caused an MDD event */
1797 	reg = rd32(hw, PF_MDET_TX_PQM);
1798 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1799 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1800 		if (netif_msg_tx_err(pf))
1801 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1802 	}
1803 
1804 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1805 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1806 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1807 		if (netif_msg_tx_err(pf))
1808 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1809 	}
1810 
1811 	reg = rd32(hw, PF_MDET_RX);
1812 	if (reg & PF_MDET_RX_VALID_M) {
1813 		wr32(hw, PF_MDET_RX, 0xFFFF);
1814 		if (netif_msg_rx_err(pf))
1815 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1816 	}
1817 
1818 	/* Check to see if one of the VFs caused an MDD event, and then
1819 	 * increment counters and set print pending
1820 	 */
1821 	mutex_lock(&pf->vfs.table_lock);
1822 	ice_for_each_vf(pf, bkt, vf) {
1823 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1824 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1825 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1826 			vf->mdd_tx_events.count++;
1827 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1828 			if (netif_msg_tx_err(pf))
1829 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1830 					 vf->vf_id);
1831 		}
1832 
1833 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1834 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1835 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1836 			vf->mdd_tx_events.count++;
1837 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1838 			if (netif_msg_tx_err(pf))
1839 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1840 					 vf->vf_id);
1841 		}
1842 
1843 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1844 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1845 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1846 			vf->mdd_tx_events.count++;
1847 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1848 			if (netif_msg_tx_err(pf))
1849 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1850 					 vf->vf_id);
1851 		}
1852 
1853 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1854 		if (reg & VP_MDET_RX_VALID_M) {
1855 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1856 			vf->mdd_rx_events.count++;
1857 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1858 			if (netif_msg_rx_err(pf))
1859 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1860 					 vf->vf_id);
1861 
1862 			/* Since the queue is disabled on VF Rx MDD events, the
1863 			 * PF can be configured to reset the VF through ethtool
1864 			 * private flag mdd-auto-reset-vf.
1865 			 */
1866 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1867 				/* VF MDD event counters will be cleared by
1868 				 * reset, so print the event prior to reset.
1869 				 */
1870 				ice_print_vf_rx_mdd_event(vf);
1871 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1872 			}
1873 		}
1874 	}
1875 	mutex_unlock(&pf->vfs.table_lock);
1876 
1877 	ice_print_vfs_mdd_events(pf);
1878 }
1879 
1880 /**
1881  * ice_force_phys_link_state - Force the physical link state
1882  * @vsi: VSI to force the physical link state to up/down
1883  * @link_up: true/false indicates to set the physical link to up/down
1884  *
1885  * Force the physical link state by getting the current PHY capabilities from
1886  * hardware and setting the PHY config based on the determined capabilities. If
1887  * link changes a link event will be triggered because both the Enable Automatic
1888  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1889  *
1890  * Returns 0 on success, negative on failure
1891  */
1892 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1893 {
1894 	struct ice_aqc_get_phy_caps_data *pcaps;
1895 	struct ice_aqc_set_phy_cfg_data *cfg;
1896 	struct ice_port_info *pi;
1897 	struct device *dev;
1898 	int retcode;
1899 
1900 	if (!vsi || !vsi->port_info || !vsi->back)
1901 		return -EINVAL;
1902 	if (vsi->type != ICE_VSI_PF)
1903 		return 0;
1904 
1905 	dev = ice_pf_to_dev(vsi->back);
1906 
1907 	pi = vsi->port_info;
1908 
1909 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1910 	if (!pcaps)
1911 		return -ENOMEM;
1912 
1913 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1914 				      NULL);
1915 	if (retcode) {
1916 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1917 			vsi->vsi_num, retcode);
1918 		retcode = -EIO;
1919 		goto out;
1920 	}
1921 
1922 	/* No change in link */
1923 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1924 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1925 		goto out;
1926 
1927 	/* Use the current user PHY configuration. The current user PHY
1928 	 * configuration is initialized during probe from PHY capabilities
1929 	 * software mode, and updated on set PHY configuration.
1930 	 */
1931 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1932 	if (!cfg) {
1933 		retcode = -ENOMEM;
1934 		goto out;
1935 	}
1936 
1937 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1938 	if (link_up)
1939 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1940 	else
1941 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1942 
1943 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1944 	if (retcode) {
1945 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1946 			vsi->vsi_num, retcode);
1947 		retcode = -EIO;
1948 	}
1949 
1950 	kfree(cfg);
1951 out:
1952 	kfree(pcaps);
1953 	return retcode;
1954 }
1955 
1956 /**
1957  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1958  * @pi: port info structure
1959  *
1960  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1961  */
1962 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1963 {
1964 	struct ice_aqc_get_phy_caps_data *pcaps;
1965 	struct ice_pf *pf = pi->hw->back;
1966 	int err;
1967 
1968 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1969 	if (!pcaps)
1970 		return -ENOMEM;
1971 
1972 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1973 				  pcaps, NULL);
1974 
1975 	if (err) {
1976 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1977 		goto out;
1978 	}
1979 
1980 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1981 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1982 
1983 out:
1984 	kfree(pcaps);
1985 	return err;
1986 }
1987 
1988 /**
1989  * ice_init_link_dflt_override - Initialize link default override
1990  * @pi: port info structure
1991  *
1992  * Initialize link default override and PHY total port shutdown during probe
1993  */
1994 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1995 {
1996 	struct ice_link_default_override_tlv *ldo;
1997 	struct ice_pf *pf = pi->hw->back;
1998 
1999 	ldo = &pf->link_dflt_override;
2000 	if (ice_get_link_default_override(ldo, pi))
2001 		return;
2002 
2003 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2004 		return;
2005 
2006 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2007 	 * ethtool private flag) for ports with Port Disable bit set.
2008 	 */
2009 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2010 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2011 }
2012 
2013 /**
2014  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2015  * @pi: port info structure
2016  *
2017  * If default override is enabled, initialize the user PHY cfg speed and FEC
2018  * settings using the default override mask from the NVM.
2019  *
2020  * The PHY should only be configured with the default override settings the
2021  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2022  * is used to indicate that the user PHY cfg default override is initialized
2023  * and the PHY has not been configured with the default override settings. The
2024  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2025  * configured.
2026  *
2027  * This function should be called only if the FW doesn't support default
2028  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2029  */
2030 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2031 {
2032 	struct ice_link_default_override_tlv *ldo;
2033 	struct ice_aqc_set_phy_cfg_data *cfg;
2034 	struct ice_phy_info *phy = &pi->phy;
2035 	struct ice_pf *pf = pi->hw->back;
2036 
2037 	ldo = &pf->link_dflt_override;
2038 
2039 	/* If link default override is enabled, use to mask NVM PHY capabilities
2040 	 * for speed and FEC default configuration.
2041 	 */
2042 	cfg = &phy->curr_user_phy_cfg;
2043 
2044 	if (ldo->phy_type_low || ldo->phy_type_high) {
2045 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2046 				    cpu_to_le64(ldo->phy_type_low);
2047 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2048 				     cpu_to_le64(ldo->phy_type_high);
2049 	}
2050 	cfg->link_fec_opt = ldo->fec_options;
2051 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2052 
2053 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2054 }
2055 
2056 /**
2057  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2058  * @pi: port info structure
2059  *
2060  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2061  * mode to default. The PHY defaults are from get PHY capabilities topology
2062  * with media so call when media is first available. An error is returned if
2063  * called when media is not available. The PHY initialization completed state is
2064  * set here.
2065  *
2066  * These configurations are used when setting PHY
2067  * configuration. The user PHY configuration is updated on set PHY
2068  * configuration. Returns 0 on success, negative on failure
2069  */
2070 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2071 {
2072 	struct ice_aqc_get_phy_caps_data *pcaps;
2073 	struct ice_phy_info *phy = &pi->phy;
2074 	struct ice_pf *pf = pi->hw->back;
2075 	int err;
2076 
2077 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2078 		return -EIO;
2079 
2080 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2081 	if (!pcaps)
2082 		return -ENOMEM;
2083 
2084 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2085 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2086 					  pcaps, NULL);
2087 	else
2088 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2089 					  pcaps, NULL);
2090 	if (err) {
2091 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2092 		goto err_out;
2093 	}
2094 
2095 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2096 
2097 	/* check if lenient mode is supported and enabled */
2098 	if (ice_fw_supports_link_override(pi->hw) &&
2099 	    !(pcaps->module_compliance_enforcement &
2100 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2101 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2102 
2103 		/* if the FW supports default PHY configuration mode, then the driver
2104 		 * does not have to apply link override settings. If not,
2105 		 * initialize user PHY configuration with link override values
2106 		 */
2107 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2108 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2109 			ice_init_phy_cfg_dflt_override(pi);
2110 			goto out;
2111 		}
2112 	}
2113 
2114 	/* if link default override is not enabled, set user flow control and
2115 	 * FEC settings based on what get_phy_caps returned
2116 	 */
2117 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2118 						      pcaps->link_fec_options);
2119 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2120 
2121 out:
2122 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2123 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2124 err_out:
2125 	kfree(pcaps);
2126 	return err;
2127 }
2128 
2129 /**
2130  * ice_configure_phy - configure PHY
2131  * @vsi: VSI of PHY
2132  *
2133  * Set the PHY configuration. If the current PHY configuration is the same as
2134  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2135  * configure the based get PHY capabilities for topology with media.
2136  */
2137 static int ice_configure_phy(struct ice_vsi *vsi)
2138 {
2139 	struct device *dev = ice_pf_to_dev(vsi->back);
2140 	struct ice_port_info *pi = vsi->port_info;
2141 	struct ice_aqc_get_phy_caps_data *pcaps;
2142 	struct ice_aqc_set_phy_cfg_data *cfg;
2143 	struct ice_phy_info *phy = &pi->phy;
2144 	struct ice_pf *pf = vsi->back;
2145 	int err;
2146 
2147 	/* Ensure we have media as we cannot configure a medialess port */
2148 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2149 		return -EPERM;
2150 
2151 	ice_print_topo_conflict(vsi);
2152 
2153 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2154 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2155 		return -EPERM;
2156 
2157 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2158 		return ice_force_phys_link_state(vsi, true);
2159 
2160 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2161 	if (!pcaps)
2162 		return -ENOMEM;
2163 
2164 	/* Get current PHY config */
2165 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2166 				  NULL);
2167 	if (err) {
2168 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2169 			vsi->vsi_num, err);
2170 		goto done;
2171 	}
2172 
2173 	/* If PHY enable link is configured and configuration has not changed,
2174 	 * there's nothing to do
2175 	 */
2176 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2177 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2178 		goto done;
2179 
2180 	/* Use PHY topology as baseline for configuration */
2181 	memset(pcaps, 0, sizeof(*pcaps));
2182 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2183 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2184 					  pcaps, NULL);
2185 	else
2186 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2187 					  pcaps, NULL);
2188 	if (err) {
2189 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2190 			vsi->vsi_num, err);
2191 		goto done;
2192 	}
2193 
2194 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2195 	if (!cfg) {
2196 		err = -ENOMEM;
2197 		goto done;
2198 	}
2199 
2200 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2201 
2202 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2203 	 * ice_init_phy_user_cfg_ldo.
2204 	 */
2205 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2206 			       vsi->back->state)) {
2207 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2208 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2209 	} else {
2210 		u64 phy_low = 0, phy_high = 0;
2211 
2212 		ice_update_phy_type(&phy_low, &phy_high,
2213 				    pi->phy.curr_user_speed_req);
2214 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2215 		cfg->phy_type_high = pcaps->phy_type_high &
2216 				     cpu_to_le64(phy_high);
2217 	}
2218 
2219 	/* Can't provide what was requested; use PHY capabilities */
2220 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2221 		cfg->phy_type_low = pcaps->phy_type_low;
2222 		cfg->phy_type_high = pcaps->phy_type_high;
2223 	}
2224 
2225 	/* FEC */
2226 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2227 
2228 	/* Can't provide what was requested; use PHY capabilities */
2229 	if (cfg->link_fec_opt !=
2230 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2231 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2232 		cfg->link_fec_opt = pcaps->link_fec_options;
2233 	}
2234 
2235 	/* Flow Control - always supported; no need to check against
2236 	 * capabilities
2237 	 */
2238 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2239 
2240 	/* Enable link and link update */
2241 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2242 
2243 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2244 	if (err)
2245 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2246 			vsi->vsi_num, err);
2247 
2248 	kfree(cfg);
2249 done:
2250 	kfree(pcaps);
2251 	return err;
2252 }
2253 
2254 /**
2255  * ice_check_media_subtask - Check for media
2256  * @pf: pointer to PF struct
2257  *
2258  * If media is available, then initialize PHY user configuration if it is not
2259  * been, and configure the PHY if the interface is up.
2260  */
2261 static void ice_check_media_subtask(struct ice_pf *pf)
2262 {
2263 	struct ice_port_info *pi;
2264 	struct ice_vsi *vsi;
2265 	int err;
2266 
2267 	/* No need to check for media if it's already present */
2268 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2269 		return;
2270 
2271 	vsi = ice_get_main_vsi(pf);
2272 	if (!vsi)
2273 		return;
2274 
2275 	/* Refresh link info and check if media is present */
2276 	pi = vsi->port_info;
2277 	err = ice_update_link_info(pi);
2278 	if (err)
2279 		return;
2280 
2281 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2282 
2283 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2284 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2285 			ice_init_phy_user_cfg(pi);
2286 
2287 		/* PHY settings are reset on media insertion, reconfigure
2288 		 * PHY to preserve settings.
2289 		 */
2290 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2291 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2292 			return;
2293 
2294 		err = ice_configure_phy(vsi);
2295 		if (!err)
2296 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2297 
2298 		/* A Link Status Event will be generated; the event handler
2299 		 * will complete bringing the interface up
2300 		 */
2301 	}
2302 }
2303 
2304 /**
2305  * ice_service_task - manage and run subtasks
2306  * @work: pointer to work_struct contained by the PF struct
2307  */
2308 static void ice_service_task(struct work_struct *work)
2309 {
2310 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2311 	unsigned long start_time = jiffies;
2312 
2313 	/* subtasks */
2314 
2315 	/* process reset requests first */
2316 	ice_reset_subtask(pf);
2317 
2318 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2319 	if (ice_is_reset_in_progress(pf->state) ||
2320 	    test_bit(ICE_SUSPENDED, pf->state) ||
2321 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2322 		ice_service_task_complete(pf);
2323 		return;
2324 	}
2325 
2326 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2327 		struct iidc_event *event;
2328 
2329 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2330 		if (event) {
2331 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2332 			/* report the entire OICR value to AUX driver */
2333 			swap(event->reg, pf->oicr_err_reg);
2334 			ice_send_event_to_aux(pf, event);
2335 			kfree(event);
2336 		}
2337 	}
2338 
2339 	/* unplug aux dev per request, if an unplug request came in
2340 	 * while processing a plug request, this will handle it
2341 	 */
2342 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2343 		ice_unplug_aux_dev(pf);
2344 
2345 	/* Plug aux device per request */
2346 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2347 		ice_plug_aux_dev(pf);
2348 
2349 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2350 		struct iidc_event *event;
2351 
2352 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2353 		if (event) {
2354 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2355 			ice_send_event_to_aux(pf, event);
2356 			kfree(event);
2357 		}
2358 	}
2359 
2360 	ice_clean_adminq_subtask(pf);
2361 	ice_check_media_subtask(pf);
2362 	ice_check_for_hang_subtask(pf);
2363 	ice_sync_fltr_subtask(pf);
2364 	ice_handle_mdd_event(pf);
2365 	ice_watchdog_subtask(pf);
2366 
2367 	if (ice_is_safe_mode(pf)) {
2368 		ice_service_task_complete(pf);
2369 		return;
2370 	}
2371 
2372 	ice_process_vflr_event(pf);
2373 	ice_clean_mailboxq_subtask(pf);
2374 	ice_clean_sbq_subtask(pf);
2375 	ice_sync_arfs_fltrs(pf);
2376 	ice_flush_fdir_ctx(pf);
2377 
2378 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2379 	ice_service_task_complete(pf);
2380 
2381 	/* If the tasks have taken longer than one service timer period
2382 	 * or there is more work to be done, reset the service timer to
2383 	 * schedule the service task now.
2384 	 */
2385 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2386 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2387 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2388 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2389 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2390 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2391 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2392 		mod_timer(&pf->serv_tmr, jiffies);
2393 }
2394 
2395 /**
2396  * ice_set_ctrlq_len - helper function to set controlq length
2397  * @hw: pointer to the HW instance
2398  */
2399 static void ice_set_ctrlq_len(struct ice_hw *hw)
2400 {
2401 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2402 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2403 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2404 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2405 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2406 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2407 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2408 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2409 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2410 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2411 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2412 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2413 }
2414 
2415 /**
2416  * ice_schedule_reset - schedule a reset
2417  * @pf: board private structure
2418  * @reset: reset being requested
2419  */
2420 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2421 {
2422 	struct device *dev = ice_pf_to_dev(pf);
2423 
2424 	/* bail out if earlier reset has failed */
2425 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2426 		dev_dbg(dev, "earlier reset has failed\n");
2427 		return -EIO;
2428 	}
2429 	/* bail if reset/recovery already in progress */
2430 	if (ice_is_reset_in_progress(pf->state)) {
2431 		dev_dbg(dev, "Reset already in progress\n");
2432 		return -EBUSY;
2433 	}
2434 
2435 	switch (reset) {
2436 	case ICE_RESET_PFR:
2437 		set_bit(ICE_PFR_REQ, pf->state);
2438 		break;
2439 	case ICE_RESET_CORER:
2440 		set_bit(ICE_CORER_REQ, pf->state);
2441 		break;
2442 	case ICE_RESET_GLOBR:
2443 		set_bit(ICE_GLOBR_REQ, pf->state);
2444 		break;
2445 	default:
2446 		return -EINVAL;
2447 	}
2448 
2449 	ice_service_task_schedule(pf);
2450 	return 0;
2451 }
2452 
2453 /**
2454  * ice_irq_affinity_notify - Callback for affinity changes
2455  * @notify: context as to what irq was changed
2456  * @mask: the new affinity mask
2457  *
2458  * This is a callback function used by the irq_set_affinity_notifier function
2459  * so that we may register to receive changes to the irq affinity masks.
2460  */
2461 static void
2462 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2463 			const cpumask_t *mask)
2464 {
2465 	struct ice_q_vector *q_vector =
2466 		container_of(notify, struct ice_q_vector, affinity_notify);
2467 
2468 	cpumask_copy(&q_vector->affinity_mask, mask);
2469 }
2470 
2471 /**
2472  * ice_irq_affinity_release - Callback for affinity notifier release
2473  * @ref: internal core kernel usage
2474  *
2475  * This is a callback function used by the irq_set_affinity_notifier function
2476  * to inform the current notification subscriber that they will no longer
2477  * receive notifications.
2478  */
2479 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2480 
2481 /**
2482  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2483  * @vsi: the VSI being configured
2484  */
2485 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2486 {
2487 	struct ice_hw *hw = &vsi->back->hw;
2488 	int i;
2489 
2490 	ice_for_each_q_vector(vsi, i)
2491 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2492 
2493 	ice_flush(hw);
2494 	return 0;
2495 }
2496 
2497 /**
2498  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2499  * @vsi: the VSI being configured
2500  * @basename: name for the vector
2501  */
2502 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2503 {
2504 	int q_vectors = vsi->num_q_vectors;
2505 	struct ice_pf *pf = vsi->back;
2506 	struct device *dev;
2507 	int rx_int_idx = 0;
2508 	int tx_int_idx = 0;
2509 	int vector, err;
2510 	int irq_num;
2511 
2512 	dev = ice_pf_to_dev(pf);
2513 	for (vector = 0; vector < q_vectors; vector++) {
2514 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2515 
2516 		irq_num = q_vector->irq.virq;
2517 
2518 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2519 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2520 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2521 			tx_int_idx++;
2522 		} else if (q_vector->rx.rx_ring) {
2523 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2524 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2525 		} else if (q_vector->tx.tx_ring) {
2526 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2527 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2528 		} else {
2529 			/* skip this unused q_vector */
2530 			continue;
2531 		}
2532 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2533 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2534 					       IRQF_SHARED, q_vector->name,
2535 					       q_vector);
2536 		else
2537 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2538 					       0, q_vector->name, q_vector);
2539 		if (err) {
2540 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2541 				   err);
2542 			goto free_q_irqs;
2543 		}
2544 
2545 		/* register for affinity change notifications */
2546 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2547 			struct irq_affinity_notify *affinity_notify;
2548 
2549 			affinity_notify = &q_vector->affinity_notify;
2550 			affinity_notify->notify = ice_irq_affinity_notify;
2551 			affinity_notify->release = ice_irq_affinity_release;
2552 			irq_set_affinity_notifier(irq_num, affinity_notify);
2553 		}
2554 
2555 		/* assign the mask for this irq */
2556 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2557 	}
2558 
2559 	err = ice_set_cpu_rx_rmap(vsi);
2560 	if (err) {
2561 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2562 			   vsi->vsi_num, ERR_PTR(err));
2563 		goto free_q_irqs;
2564 	}
2565 
2566 	vsi->irqs_ready = true;
2567 	return 0;
2568 
2569 free_q_irqs:
2570 	while (vector--) {
2571 		irq_num = vsi->q_vectors[vector]->irq.virq;
2572 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2573 			irq_set_affinity_notifier(irq_num, NULL);
2574 		irq_set_affinity_hint(irq_num, NULL);
2575 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2576 	}
2577 	return err;
2578 }
2579 
2580 /**
2581  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2582  * @vsi: VSI to setup Tx rings used by XDP
2583  *
2584  * Return 0 on success and negative value on error
2585  */
2586 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2587 {
2588 	struct device *dev = ice_pf_to_dev(vsi->back);
2589 	struct ice_tx_desc *tx_desc;
2590 	int i, j;
2591 
2592 	ice_for_each_xdp_txq(vsi, i) {
2593 		u16 xdp_q_idx = vsi->alloc_txq + i;
2594 		struct ice_ring_stats *ring_stats;
2595 		struct ice_tx_ring *xdp_ring;
2596 
2597 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2598 		if (!xdp_ring)
2599 			goto free_xdp_rings;
2600 
2601 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2602 		if (!ring_stats) {
2603 			ice_free_tx_ring(xdp_ring);
2604 			goto free_xdp_rings;
2605 		}
2606 
2607 		xdp_ring->ring_stats = ring_stats;
2608 		xdp_ring->q_index = xdp_q_idx;
2609 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2610 		xdp_ring->vsi = vsi;
2611 		xdp_ring->netdev = NULL;
2612 		xdp_ring->dev = dev;
2613 		xdp_ring->count = vsi->num_tx_desc;
2614 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2615 		if (ice_setup_tx_ring(xdp_ring))
2616 			goto free_xdp_rings;
2617 		ice_set_ring_xdp(xdp_ring);
2618 		spin_lock_init(&xdp_ring->tx_lock);
2619 		for (j = 0; j < xdp_ring->count; j++) {
2620 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2621 			tx_desc->cmd_type_offset_bsz = 0;
2622 		}
2623 	}
2624 
2625 	return 0;
2626 
2627 free_xdp_rings:
2628 	for (; i >= 0; i--) {
2629 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2630 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2631 			vsi->xdp_rings[i]->ring_stats = NULL;
2632 			ice_free_tx_ring(vsi->xdp_rings[i]);
2633 		}
2634 	}
2635 	return -ENOMEM;
2636 }
2637 
2638 /**
2639  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2640  * @vsi: VSI to set the bpf prog on
2641  * @prog: the bpf prog pointer
2642  */
2643 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2644 {
2645 	struct bpf_prog *old_prog;
2646 	int i;
2647 
2648 	old_prog = xchg(&vsi->xdp_prog, prog);
2649 	ice_for_each_rxq(vsi, i)
2650 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2651 
2652 	if (old_prog)
2653 		bpf_prog_put(old_prog);
2654 }
2655 
2656 /**
2657  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2658  * @vsi: VSI to bring up Tx rings used by XDP
2659  * @prog: bpf program that will be assigned to VSI
2660  *
2661  * Return 0 on success and negative value on error
2662  */
2663 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2664 {
2665 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2666 	int xdp_rings_rem = vsi->num_xdp_txq;
2667 	struct ice_pf *pf = vsi->back;
2668 	struct ice_qs_cfg xdp_qs_cfg = {
2669 		.qs_mutex = &pf->avail_q_mutex,
2670 		.pf_map = pf->avail_txqs,
2671 		.pf_map_size = pf->max_pf_txqs,
2672 		.q_count = vsi->num_xdp_txq,
2673 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2674 		.vsi_map = vsi->txq_map,
2675 		.vsi_map_offset = vsi->alloc_txq,
2676 		.mapping_mode = ICE_VSI_MAP_CONTIG
2677 	};
2678 	struct device *dev;
2679 	int i, v_idx;
2680 	int status;
2681 
2682 	dev = ice_pf_to_dev(pf);
2683 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2684 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2685 	if (!vsi->xdp_rings)
2686 		return -ENOMEM;
2687 
2688 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2689 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2690 		goto err_map_xdp;
2691 
2692 	if (static_key_enabled(&ice_xdp_locking_key))
2693 		netdev_warn(vsi->netdev,
2694 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2695 
2696 	if (ice_xdp_alloc_setup_rings(vsi))
2697 		goto clear_xdp_rings;
2698 
2699 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2700 	ice_for_each_q_vector(vsi, v_idx) {
2701 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2702 		int xdp_rings_per_v, q_id, q_base;
2703 
2704 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2705 					       vsi->num_q_vectors - v_idx);
2706 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2707 
2708 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2709 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2710 
2711 			xdp_ring->q_vector = q_vector;
2712 			xdp_ring->next = q_vector->tx.tx_ring;
2713 			q_vector->tx.tx_ring = xdp_ring;
2714 		}
2715 		xdp_rings_rem -= xdp_rings_per_v;
2716 	}
2717 
2718 	ice_for_each_rxq(vsi, i) {
2719 		if (static_key_enabled(&ice_xdp_locking_key)) {
2720 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2721 		} else {
2722 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2723 			struct ice_tx_ring *ring;
2724 
2725 			ice_for_each_tx_ring(ring, q_vector->tx) {
2726 				if (ice_ring_is_xdp(ring)) {
2727 					vsi->rx_rings[i]->xdp_ring = ring;
2728 					break;
2729 				}
2730 			}
2731 		}
2732 		ice_tx_xsk_pool(vsi, i);
2733 	}
2734 
2735 	/* omit the scheduler update if in reset path; XDP queues will be
2736 	 * taken into account at the end of ice_vsi_rebuild, where
2737 	 * ice_cfg_vsi_lan is being called
2738 	 */
2739 	if (ice_is_reset_in_progress(pf->state))
2740 		return 0;
2741 
2742 	/* tell the Tx scheduler that right now we have
2743 	 * additional queues
2744 	 */
2745 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2746 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2747 
2748 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2749 				 max_txqs);
2750 	if (status) {
2751 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2752 			status);
2753 		goto clear_xdp_rings;
2754 	}
2755 
2756 	/* assign the prog only when it's not already present on VSI;
2757 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2758 	 * VSI rebuild that happens under ethtool -L can expose us to
2759 	 * the bpf_prog refcount issues as we would be swapping same
2760 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2761 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2762 	 * this is not harmful as dev_xdp_install bumps the refcount
2763 	 * before calling the op exposed by the driver;
2764 	 */
2765 	if (!ice_is_xdp_ena_vsi(vsi))
2766 		ice_vsi_assign_bpf_prog(vsi, prog);
2767 
2768 	return 0;
2769 clear_xdp_rings:
2770 	ice_for_each_xdp_txq(vsi, i)
2771 		if (vsi->xdp_rings[i]) {
2772 			kfree_rcu(vsi->xdp_rings[i], rcu);
2773 			vsi->xdp_rings[i] = NULL;
2774 		}
2775 
2776 err_map_xdp:
2777 	mutex_lock(&pf->avail_q_mutex);
2778 	ice_for_each_xdp_txq(vsi, i) {
2779 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2780 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2781 	}
2782 	mutex_unlock(&pf->avail_q_mutex);
2783 
2784 	devm_kfree(dev, vsi->xdp_rings);
2785 	return -ENOMEM;
2786 }
2787 
2788 /**
2789  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2790  * @vsi: VSI to remove XDP rings
2791  *
2792  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2793  * resources
2794  */
2795 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2796 {
2797 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2798 	struct ice_pf *pf = vsi->back;
2799 	int i, v_idx;
2800 
2801 	/* q_vectors are freed in reset path so there's no point in detaching
2802 	 * rings; in case of rebuild being triggered not from reset bits
2803 	 * in pf->state won't be set, so additionally check first q_vector
2804 	 * against NULL
2805 	 */
2806 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2807 		goto free_qmap;
2808 
2809 	ice_for_each_q_vector(vsi, v_idx) {
2810 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2811 		struct ice_tx_ring *ring;
2812 
2813 		ice_for_each_tx_ring(ring, q_vector->tx)
2814 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2815 				break;
2816 
2817 		/* restore the value of last node prior to XDP setup */
2818 		q_vector->tx.tx_ring = ring;
2819 	}
2820 
2821 free_qmap:
2822 	mutex_lock(&pf->avail_q_mutex);
2823 	ice_for_each_xdp_txq(vsi, i) {
2824 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2825 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2826 	}
2827 	mutex_unlock(&pf->avail_q_mutex);
2828 
2829 	ice_for_each_xdp_txq(vsi, i)
2830 		if (vsi->xdp_rings[i]) {
2831 			if (vsi->xdp_rings[i]->desc) {
2832 				synchronize_rcu();
2833 				ice_free_tx_ring(vsi->xdp_rings[i]);
2834 			}
2835 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2836 			vsi->xdp_rings[i]->ring_stats = NULL;
2837 			kfree_rcu(vsi->xdp_rings[i], rcu);
2838 			vsi->xdp_rings[i] = NULL;
2839 		}
2840 
2841 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2842 	vsi->xdp_rings = NULL;
2843 
2844 	if (static_key_enabled(&ice_xdp_locking_key))
2845 		static_branch_dec(&ice_xdp_locking_key);
2846 
2847 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2848 		return 0;
2849 
2850 	ice_vsi_assign_bpf_prog(vsi, NULL);
2851 
2852 	/* notify Tx scheduler that we destroyed XDP queues and bring
2853 	 * back the old number of child nodes
2854 	 */
2855 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2856 		max_txqs[i] = vsi->num_txq;
2857 
2858 	/* change number of XDP Tx queues to 0 */
2859 	vsi->num_xdp_txq = 0;
2860 
2861 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2862 			       max_txqs);
2863 }
2864 
2865 /**
2866  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2867  * @vsi: VSI to schedule napi on
2868  */
2869 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2870 {
2871 	int i;
2872 
2873 	ice_for_each_rxq(vsi, i) {
2874 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2875 
2876 		if (rx_ring->xsk_pool)
2877 			napi_schedule(&rx_ring->q_vector->napi);
2878 	}
2879 }
2880 
2881 /**
2882  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2883  * @vsi: VSI to determine the count of XDP Tx qs
2884  *
2885  * returns 0 if Tx qs count is higher than at least half of CPU count,
2886  * -ENOMEM otherwise
2887  */
2888 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2889 {
2890 	u16 avail = ice_get_avail_txq_count(vsi->back);
2891 	u16 cpus = num_possible_cpus();
2892 
2893 	if (avail < cpus / 2)
2894 		return -ENOMEM;
2895 
2896 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2897 
2898 	if (vsi->num_xdp_txq < cpus)
2899 		static_branch_inc(&ice_xdp_locking_key);
2900 
2901 	return 0;
2902 }
2903 
2904 /**
2905  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2906  * @vsi: Pointer to VSI structure
2907  */
2908 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2909 {
2910 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2911 		return ICE_RXBUF_1664;
2912 	else
2913 		return ICE_RXBUF_3072;
2914 }
2915 
2916 /**
2917  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2918  * @vsi: VSI to setup XDP for
2919  * @prog: XDP program
2920  * @extack: netlink extended ack
2921  */
2922 static int
2923 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2924 		   struct netlink_ext_ack *extack)
2925 {
2926 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2927 	bool if_running = netif_running(vsi->netdev);
2928 	int ret = 0, xdp_ring_err = 0;
2929 
2930 	if (prog && !prog->aux->xdp_has_frags) {
2931 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2932 			NL_SET_ERR_MSG_MOD(extack,
2933 					   "MTU is too large for linear frames and XDP prog does not support frags");
2934 			return -EOPNOTSUPP;
2935 		}
2936 	}
2937 
2938 	/* hot swap progs and avoid toggling link */
2939 	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2940 		ice_vsi_assign_bpf_prog(vsi, prog);
2941 		return 0;
2942 	}
2943 
2944 	/* need to stop netdev while setting up the program for Rx rings */
2945 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2946 		ret = ice_down(vsi);
2947 		if (ret) {
2948 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2949 			return ret;
2950 		}
2951 	}
2952 
2953 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2954 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2955 		if (xdp_ring_err) {
2956 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2957 		} else {
2958 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2959 			if (xdp_ring_err)
2960 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2961 		}
2962 		xdp_features_set_redirect_target(vsi->netdev, true);
2963 		/* reallocate Rx queues that are used for zero-copy */
2964 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2965 		if (xdp_ring_err)
2966 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2967 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2968 		xdp_features_clear_redirect_target(vsi->netdev);
2969 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2970 		if (xdp_ring_err)
2971 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2972 		/* reallocate Rx queues that were used for zero-copy */
2973 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2974 		if (xdp_ring_err)
2975 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2976 	}
2977 
2978 	if (if_running)
2979 		ret = ice_up(vsi);
2980 
2981 	if (!ret && prog)
2982 		ice_vsi_rx_napi_schedule(vsi);
2983 
2984 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2985 }
2986 
2987 /**
2988  * ice_xdp_safe_mode - XDP handler for safe mode
2989  * @dev: netdevice
2990  * @xdp: XDP command
2991  */
2992 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2993 			     struct netdev_bpf *xdp)
2994 {
2995 	NL_SET_ERR_MSG_MOD(xdp->extack,
2996 			   "Please provide working DDP firmware package in order to use XDP\n"
2997 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2998 	return -EOPNOTSUPP;
2999 }
3000 
3001 /**
3002  * ice_xdp - implements XDP handler
3003  * @dev: netdevice
3004  * @xdp: XDP command
3005  */
3006 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3007 {
3008 	struct ice_netdev_priv *np = netdev_priv(dev);
3009 	struct ice_vsi *vsi = np->vsi;
3010 
3011 	if (vsi->type != ICE_VSI_PF) {
3012 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3013 		return -EINVAL;
3014 	}
3015 
3016 	switch (xdp->command) {
3017 	case XDP_SETUP_PROG:
3018 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3019 	case XDP_SETUP_XSK_POOL:
3020 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3021 					  xdp->xsk.queue_id);
3022 	default:
3023 		return -EINVAL;
3024 	}
3025 }
3026 
3027 /**
3028  * ice_ena_misc_vector - enable the non-queue interrupts
3029  * @pf: board private structure
3030  */
3031 static void ice_ena_misc_vector(struct ice_pf *pf)
3032 {
3033 	struct ice_hw *hw = &pf->hw;
3034 	u32 val;
3035 
3036 	/* Disable anti-spoof detection interrupt to prevent spurious event
3037 	 * interrupts during a function reset. Anti-spoof functionally is
3038 	 * still supported.
3039 	 */
3040 	val = rd32(hw, GL_MDCK_TX_TDPU);
3041 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3042 	wr32(hw, GL_MDCK_TX_TDPU, val);
3043 
3044 	/* clear things first */
3045 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3046 	rd32(hw, PFINT_OICR);		/* read to clear */
3047 
3048 	val = (PFINT_OICR_ECC_ERR_M |
3049 	       PFINT_OICR_MAL_DETECT_M |
3050 	       PFINT_OICR_GRST_M |
3051 	       PFINT_OICR_PCI_EXCEPTION_M |
3052 	       PFINT_OICR_VFLR_M |
3053 	       PFINT_OICR_HMC_ERR_M |
3054 	       PFINT_OICR_PE_PUSH_M |
3055 	       PFINT_OICR_PE_CRITERR_M);
3056 
3057 	wr32(hw, PFINT_OICR_ENA, val);
3058 
3059 	/* SW_ITR_IDX = 0, but don't change INTENA */
3060 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3061 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3062 }
3063 
3064 /**
3065  * ice_misc_intr - misc interrupt handler
3066  * @irq: interrupt number
3067  * @data: pointer to a q_vector
3068  */
3069 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3070 {
3071 	struct ice_pf *pf = (struct ice_pf *)data;
3072 	struct ice_hw *hw = &pf->hw;
3073 	struct device *dev;
3074 	u32 oicr, ena_mask;
3075 
3076 	dev = ice_pf_to_dev(pf);
3077 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3078 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3079 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3080 
3081 	oicr = rd32(hw, PFINT_OICR);
3082 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3083 
3084 	if (oicr & PFINT_OICR_SWINT_M) {
3085 		ena_mask &= ~PFINT_OICR_SWINT_M;
3086 		pf->sw_int_count++;
3087 	}
3088 
3089 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3090 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3091 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3092 	}
3093 	if (oicr & PFINT_OICR_VFLR_M) {
3094 		/* disable any further VFLR event notifications */
3095 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3096 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3097 
3098 			reg &= ~PFINT_OICR_VFLR_M;
3099 			wr32(hw, PFINT_OICR_ENA, reg);
3100 		} else {
3101 			ena_mask &= ~PFINT_OICR_VFLR_M;
3102 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3103 		}
3104 	}
3105 
3106 	if (oicr & PFINT_OICR_GRST_M) {
3107 		u32 reset;
3108 
3109 		/* we have a reset warning */
3110 		ena_mask &= ~PFINT_OICR_GRST_M;
3111 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3112 			GLGEN_RSTAT_RESET_TYPE_S;
3113 
3114 		if (reset == ICE_RESET_CORER)
3115 			pf->corer_count++;
3116 		else if (reset == ICE_RESET_GLOBR)
3117 			pf->globr_count++;
3118 		else if (reset == ICE_RESET_EMPR)
3119 			pf->empr_count++;
3120 		else
3121 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3122 
3123 		/* If a reset cycle isn't already in progress, we set a bit in
3124 		 * pf->state so that the service task can start a reset/rebuild.
3125 		 */
3126 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3127 			if (reset == ICE_RESET_CORER)
3128 				set_bit(ICE_CORER_RECV, pf->state);
3129 			else if (reset == ICE_RESET_GLOBR)
3130 				set_bit(ICE_GLOBR_RECV, pf->state);
3131 			else
3132 				set_bit(ICE_EMPR_RECV, pf->state);
3133 
3134 			/* There are couple of different bits at play here.
3135 			 * hw->reset_ongoing indicates whether the hardware is
3136 			 * in reset. This is set to true when a reset interrupt
3137 			 * is received and set back to false after the driver
3138 			 * has determined that the hardware is out of reset.
3139 			 *
3140 			 * ICE_RESET_OICR_RECV in pf->state indicates
3141 			 * that a post reset rebuild is required before the
3142 			 * driver is operational again. This is set above.
3143 			 *
3144 			 * As this is the start of the reset/rebuild cycle, set
3145 			 * both to indicate that.
3146 			 */
3147 			hw->reset_ongoing = true;
3148 		}
3149 	}
3150 
3151 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3152 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3153 		if (!hw->reset_ongoing && ice_ptp_pf_handles_tx_interrupt(pf))
3154 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3155 	}
3156 
3157 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3158 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3159 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3160 
3161 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3162 
3163 		if (ice_pf_src_tmr_owned(pf)) {
3164 			/* Save EVENTs from GLTSYN register */
3165 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3166 					      (GLTSYN_STAT_EVENT0_M |
3167 					       GLTSYN_STAT_EVENT1_M |
3168 					       GLTSYN_STAT_EVENT2_M);
3169 
3170 			set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3171 		}
3172 	}
3173 
3174 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3175 	if (oicr & ICE_AUX_CRIT_ERR) {
3176 		pf->oicr_err_reg |= oicr;
3177 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3178 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3179 	}
3180 
3181 	/* Report any remaining unexpected interrupts */
3182 	oicr &= ena_mask;
3183 	if (oicr) {
3184 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3185 		/* If a critical error is pending there is no choice but to
3186 		 * reset the device.
3187 		 */
3188 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3189 			    PFINT_OICR_ECC_ERR_M)) {
3190 			set_bit(ICE_PFR_REQ, pf->state);
3191 		}
3192 	}
3193 
3194 	return IRQ_WAKE_THREAD;
3195 }
3196 
3197 /**
3198  * ice_misc_intr_thread_fn - misc interrupt thread function
3199  * @irq: interrupt number
3200  * @data: pointer to a q_vector
3201  */
3202 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3203 {
3204 	struct ice_pf *pf = data;
3205 	struct ice_hw *hw;
3206 
3207 	hw = &pf->hw;
3208 
3209 	if (ice_is_reset_in_progress(pf->state))
3210 		return IRQ_HANDLED;
3211 
3212 	ice_service_task_schedule(pf);
3213 
3214 	if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3215 		ice_ptp_extts_event(pf);
3216 
3217 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3218 		/* Process outstanding Tx timestamps. If there is more work,
3219 		 * re-arm the interrupt to trigger again.
3220 		 */
3221 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3222 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3223 			ice_flush(hw);
3224 		}
3225 	}
3226 
3227 	ice_irq_dynamic_ena(hw, NULL, NULL);
3228 
3229 	return IRQ_HANDLED;
3230 }
3231 
3232 /**
3233  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3234  * @hw: pointer to HW structure
3235  */
3236 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3237 {
3238 	/* disable Admin queue Interrupt causes */
3239 	wr32(hw, PFINT_FW_CTL,
3240 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3241 
3242 	/* disable Mailbox queue Interrupt causes */
3243 	wr32(hw, PFINT_MBX_CTL,
3244 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3245 
3246 	wr32(hw, PFINT_SB_CTL,
3247 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3248 
3249 	/* disable Control queue Interrupt causes */
3250 	wr32(hw, PFINT_OICR_CTL,
3251 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3252 
3253 	ice_flush(hw);
3254 }
3255 
3256 /**
3257  * ice_free_irq_msix_misc - Unroll misc vector setup
3258  * @pf: board private structure
3259  */
3260 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3261 {
3262 	int misc_irq_num = pf->oicr_irq.virq;
3263 	struct ice_hw *hw = &pf->hw;
3264 
3265 	ice_dis_ctrlq_interrupts(hw);
3266 
3267 	/* disable OICR interrupt */
3268 	wr32(hw, PFINT_OICR_ENA, 0);
3269 	ice_flush(hw);
3270 
3271 	synchronize_irq(misc_irq_num);
3272 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3273 
3274 	ice_free_irq(pf, pf->oicr_irq);
3275 }
3276 
3277 /**
3278  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3279  * @hw: pointer to HW structure
3280  * @reg_idx: HW vector index to associate the control queue interrupts with
3281  */
3282 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3283 {
3284 	u32 val;
3285 
3286 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3287 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3288 	wr32(hw, PFINT_OICR_CTL, val);
3289 
3290 	/* enable Admin queue Interrupt causes */
3291 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3292 	       PFINT_FW_CTL_CAUSE_ENA_M);
3293 	wr32(hw, PFINT_FW_CTL, val);
3294 
3295 	/* enable Mailbox queue Interrupt causes */
3296 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3297 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3298 	wr32(hw, PFINT_MBX_CTL, val);
3299 
3300 	/* This enables Sideband queue Interrupt causes */
3301 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3302 	       PFINT_SB_CTL_CAUSE_ENA_M);
3303 	wr32(hw, PFINT_SB_CTL, val);
3304 
3305 	ice_flush(hw);
3306 }
3307 
3308 /**
3309  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3310  * @pf: board private structure
3311  *
3312  * This sets up the handler for MSIX 0, which is used to manage the
3313  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3314  * when in MSI or Legacy interrupt mode.
3315  */
3316 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3317 {
3318 	struct device *dev = ice_pf_to_dev(pf);
3319 	struct ice_hw *hw = &pf->hw;
3320 	struct msi_map oicr_irq;
3321 	int err = 0;
3322 
3323 	if (!pf->int_name[0])
3324 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3325 			 dev_driver_string(dev), dev_name(dev));
3326 
3327 	/* Do not request IRQ but do enable OICR interrupt since settings are
3328 	 * lost during reset. Note that this function is called only during
3329 	 * rebuild path and not while reset is in progress.
3330 	 */
3331 	if (ice_is_reset_in_progress(pf->state))
3332 		goto skip_req_irq;
3333 
3334 	/* reserve one vector in irq_tracker for misc interrupts */
3335 	oicr_irq = ice_alloc_irq(pf, false);
3336 	if (oicr_irq.index < 0)
3337 		return oicr_irq.index;
3338 
3339 	pf->oicr_irq = oicr_irq;
3340 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3341 					ice_misc_intr_thread_fn, 0,
3342 					pf->int_name, pf);
3343 	if (err) {
3344 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3345 			pf->int_name, err);
3346 		ice_free_irq(pf, pf->oicr_irq);
3347 		return err;
3348 	}
3349 
3350 skip_req_irq:
3351 	ice_ena_misc_vector(pf);
3352 
3353 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3354 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3355 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3356 
3357 	ice_flush(hw);
3358 	ice_irq_dynamic_ena(hw, NULL, NULL);
3359 
3360 	return 0;
3361 }
3362 
3363 /**
3364  * ice_napi_add - register NAPI handler for the VSI
3365  * @vsi: VSI for which NAPI handler is to be registered
3366  *
3367  * This function is only called in the driver's load path. Registering the NAPI
3368  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3369  * reset/rebuild, etc.)
3370  */
3371 static void ice_napi_add(struct ice_vsi *vsi)
3372 {
3373 	int v_idx;
3374 
3375 	if (!vsi->netdev)
3376 		return;
3377 
3378 	ice_for_each_q_vector(vsi, v_idx)
3379 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3380 			       ice_napi_poll);
3381 }
3382 
3383 /**
3384  * ice_set_ops - set netdev and ethtools ops for the given netdev
3385  * @vsi: the VSI associated with the new netdev
3386  */
3387 static void ice_set_ops(struct ice_vsi *vsi)
3388 {
3389 	struct net_device *netdev = vsi->netdev;
3390 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3391 
3392 	if (ice_is_safe_mode(pf)) {
3393 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3394 		ice_set_ethtool_safe_mode_ops(netdev);
3395 		return;
3396 	}
3397 
3398 	netdev->netdev_ops = &ice_netdev_ops;
3399 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3400 	ice_set_ethtool_ops(netdev);
3401 
3402 	if (vsi->type != ICE_VSI_PF)
3403 		return;
3404 
3405 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3406 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3407 			       NETDEV_XDP_ACT_RX_SG;
3408 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3409 }
3410 
3411 /**
3412  * ice_set_netdev_features - set features for the given netdev
3413  * @netdev: netdev instance
3414  */
3415 static void ice_set_netdev_features(struct net_device *netdev)
3416 {
3417 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3418 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3419 	netdev_features_t csumo_features;
3420 	netdev_features_t vlano_features;
3421 	netdev_features_t dflt_features;
3422 	netdev_features_t tso_features;
3423 
3424 	if (ice_is_safe_mode(pf)) {
3425 		/* safe mode */
3426 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3427 		netdev->hw_features = netdev->features;
3428 		return;
3429 	}
3430 
3431 	dflt_features = NETIF_F_SG	|
3432 			NETIF_F_HIGHDMA	|
3433 			NETIF_F_NTUPLE	|
3434 			NETIF_F_RXHASH;
3435 
3436 	csumo_features = NETIF_F_RXCSUM	  |
3437 			 NETIF_F_IP_CSUM  |
3438 			 NETIF_F_SCTP_CRC |
3439 			 NETIF_F_IPV6_CSUM;
3440 
3441 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3442 			 NETIF_F_HW_VLAN_CTAG_TX     |
3443 			 NETIF_F_HW_VLAN_CTAG_RX;
3444 
3445 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3446 	if (is_dvm_ena)
3447 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3448 
3449 	tso_features = NETIF_F_TSO			|
3450 		       NETIF_F_TSO_ECN			|
3451 		       NETIF_F_TSO6			|
3452 		       NETIF_F_GSO_GRE			|
3453 		       NETIF_F_GSO_UDP_TUNNEL		|
3454 		       NETIF_F_GSO_GRE_CSUM		|
3455 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3456 		       NETIF_F_GSO_PARTIAL		|
3457 		       NETIF_F_GSO_IPXIP4		|
3458 		       NETIF_F_GSO_IPXIP6		|
3459 		       NETIF_F_GSO_UDP_L4;
3460 
3461 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3462 					NETIF_F_GSO_GRE_CSUM;
3463 	/* set features that user can change */
3464 	netdev->hw_features = dflt_features | csumo_features |
3465 			      vlano_features | tso_features;
3466 
3467 	/* add support for HW_CSUM on packets with MPLS header */
3468 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3469 				 NETIF_F_TSO     |
3470 				 NETIF_F_TSO6;
3471 
3472 	/* enable features */
3473 	netdev->features |= netdev->hw_features;
3474 
3475 	netdev->hw_features |= NETIF_F_HW_TC;
3476 	netdev->hw_features |= NETIF_F_LOOPBACK;
3477 
3478 	/* encap and VLAN devices inherit default, csumo and tso features */
3479 	netdev->hw_enc_features |= dflt_features | csumo_features |
3480 				   tso_features;
3481 	netdev->vlan_features |= dflt_features | csumo_features |
3482 				 tso_features;
3483 
3484 	/* advertise support but don't enable by default since only one type of
3485 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3486 	 * type turns on the other has to be turned off. This is enforced by the
3487 	 * ice_fix_features() ndo callback.
3488 	 */
3489 	if (is_dvm_ena)
3490 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3491 			NETIF_F_HW_VLAN_STAG_TX;
3492 
3493 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3494 	 * be changed at runtime
3495 	 */
3496 	netdev->hw_features |= NETIF_F_RXFCS;
3497 
3498 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3499 }
3500 
3501 /**
3502  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3503  * @lut: Lookup table
3504  * @rss_table_size: Lookup table size
3505  * @rss_size: Range of queue number for hashing
3506  */
3507 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3508 {
3509 	u16 i;
3510 
3511 	for (i = 0; i < rss_table_size; i++)
3512 		lut[i] = i % rss_size;
3513 }
3514 
3515 /**
3516  * ice_pf_vsi_setup - Set up a PF VSI
3517  * @pf: board private structure
3518  * @pi: pointer to the port_info instance
3519  *
3520  * Returns pointer to the successfully allocated VSI software struct
3521  * on success, otherwise returns NULL on failure.
3522  */
3523 static struct ice_vsi *
3524 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3525 {
3526 	struct ice_vsi_cfg_params params = {};
3527 
3528 	params.type = ICE_VSI_PF;
3529 	params.pi = pi;
3530 	params.flags = ICE_VSI_FLAG_INIT;
3531 
3532 	return ice_vsi_setup(pf, &params);
3533 }
3534 
3535 static struct ice_vsi *
3536 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3537 		   struct ice_channel *ch)
3538 {
3539 	struct ice_vsi_cfg_params params = {};
3540 
3541 	params.type = ICE_VSI_CHNL;
3542 	params.pi = pi;
3543 	params.ch = ch;
3544 	params.flags = ICE_VSI_FLAG_INIT;
3545 
3546 	return ice_vsi_setup(pf, &params);
3547 }
3548 
3549 /**
3550  * ice_ctrl_vsi_setup - Set up a control VSI
3551  * @pf: board private structure
3552  * @pi: pointer to the port_info instance
3553  *
3554  * Returns pointer to the successfully allocated VSI software struct
3555  * on success, otherwise returns NULL on failure.
3556  */
3557 static struct ice_vsi *
3558 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3559 {
3560 	struct ice_vsi_cfg_params params = {};
3561 
3562 	params.type = ICE_VSI_CTRL;
3563 	params.pi = pi;
3564 	params.flags = ICE_VSI_FLAG_INIT;
3565 
3566 	return ice_vsi_setup(pf, &params);
3567 }
3568 
3569 /**
3570  * ice_lb_vsi_setup - Set up a loopback VSI
3571  * @pf: board private structure
3572  * @pi: pointer to the port_info instance
3573  *
3574  * Returns pointer to the successfully allocated VSI software struct
3575  * on success, otherwise returns NULL on failure.
3576  */
3577 struct ice_vsi *
3578 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3579 {
3580 	struct ice_vsi_cfg_params params = {};
3581 
3582 	params.type = ICE_VSI_LB;
3583 	params.pi = pi;
3584 	params.flags = ICE_VSI_FLAG_INIT;
3585 
3586 	return ice_vsi_setup(pf, &params);
3587 }
3588 
3589 /**
3590  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3591  * @netdev: network interface to be adjusted
3592  * @proto: VLAN TPID
3593  * @vid: VLAN ID to be added
3594  *
3595  * net_device_ops implementation for adding VLAN IDs
3596  */
3597 static int
3598 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3599 {
3600 	struct ice_netdev_priv *np = netdev_priv(netdev);
3601 	struct ice_vsi_vlan_ops *vlan_ops;
3602 	struct ice_vsi *vsi = np->vsi;
3603 	struct ice_vlan vlan;
3604 	int ret;
3605 
3606 	/* VLAN 0 is added by default during load/reset */
3607 	if (!vid)
3608 		return 0;
3609 
3610 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3611 		usleep_range(1000, 2000);
3612 
3613 	/* Add multicast promisc rule for the VLAN ID to be added if
3614 	 * all-multicast is currently enabled.
3615 	 */
3616 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3617 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3618 					       ICE_MCAST_VLAN_PROMISC_BITS,
3619 					       vid);
3620 		if (ret)
3621 			goto finish;
3622 	}
3623 
3624 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3625 
3626 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3627 	 * packets aren't pruned by the device's internal switch on Rx
3628 	 */
3629 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3630 	ret = vlan_ops->add_vlan(vsi, &vlan);
3631 	if (ret)
3632 		goto finish;
3633 
3634 	/* If all-multicast is currently enabled and this VLAN ID is only one
3635 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3636 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3637 	 */
3638 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3639 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3640 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3641 					   ICE_MCAST_PROMISC_BITS, 0);
3642 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3643 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3644 	}
3645 
3646 finish:
3647 	clear_bit(ICE_CFG_BUSY, vsi->state);
3648 
3649 	return ret;
3650 }
3651 
3652 /**
3653  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3654  * @netdev: network interface to be adjusted
3655  * @proto: VLAN TPID
3656  * @vid: VLAN ID to be removed
3657  *
3658  * net_device_ops implementation for removing VLAN IDs
3659  */
3660 static int
3661 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3662 {
3663 	struct ice_netdev_priv *np = netdev_priv(netdev);
3664 	struct ice_vsi_vlan_ops *vlan_ops;
3665 	struct ice_vsi *vsi = np->vsi;
3666 	struct ice_vlan vlan;
3667 	int ret;
3668 
3669 	/* don't allow removal of VLAN 0 */
3670 	if (!vid)
3671 		return 0;
3672 
3673 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3674 		usleep_range(1000, 2000);
3675 
3676 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3677 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3678 	if (ret) {
3679 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3680 			   vsi->vsi_num);
3681 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3682 	}
3683 
3684 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3685 
3686 	/* Make sure VLAN delete is successful before updating VLAN
3687 	 * information
3688 	 */
3689 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3690 	ret = vlan_ops->del_vlan(vsi, &vlan);
3691 	if (ret)
3692 		goto finish;
3693 
3694 	/* Remove multicast promisc rule for the removed VLAN ID if
3695 	 * all-multicast is enabled.
3696 	 */
3697 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3698 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3699 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3700 
3701 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3702 		/* Update look-up type of multicast promisc rule for VLAN 0
3703 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3704 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3705 		 */
3706 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3707 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3708 						   ICE_MCAST_VLAN_PROMISC_BITS,
3709 						   0);
3710 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3711 						 ICE_MCAST_PROMISC_BITS, 0);
3712 		}
3713 	}
3714 
3715 finish:
3716 	clear_bit(ICE_CFG_BUSY, vsi->state);
3717 
3718 	return ret;
3719 }
3720 
3721 /**
3722  * ice_rep_indr_tc_block_unbind
3723  * @cb_priv: indirection block private data
3724  */
3725 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3726 {
3727 	struct ice_indr_block_priv *indr_priv = cb_priv;
3728 
3729 	list_del(&indr_priv->list);
3730 	kfree(indr_priv);
3731 }
3732 
3733 /**
3734  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3735  * @vsi: VSI struct which has the netdev
3736  */
3737 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3738 {
3739 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3740 
3741 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3742 				 ice_rep_indr_tc_block_unbind);
3743 }
3744 
3745 /**
3746  * ice_tc_indir_block_register - Register TC indirect block notifications
3747  * @vsi: VSI struct which has the netdev
3748  *
3749  * Returns 0 on success, negative value on failure
3750  */
3751 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3752 {
3753 	struct ice_netdev_priv *np;
3754 
3755 	if (!vsi || !vsi->netdev)
3756 		return -EINVAL;
3757 
3758 	np = netdev_priv(vsi->netdev);
3759 
3760 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3761 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3762 }
3763 
3764 /**
3765  * ice_get_avail_q_count - Get count of queues in use
3766  * @pf_qmap: bitmap to get queue use count from
3767  * @lock: pointer to a mutex that protects access to pf_qmap
3768  * @size: size of the bitmap
3769  */
3770 static u16
3771 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3772 {
3773 	unsigned long bit;
3774 	u16 count = 0;
3775 
3776 	mutex_lock(lock);
3777 	for_each_clear_bit(bit, pf_qmap, size)
3778 		count++;
3779 	mutex_unlock(lock);
3780 
3781 	return count;
3782 }
3783 
3784 /**
3785  * ice_get_avail_txq_count - Get count of Tx queues in use
3786  * @pf: pointer to an ice_pf instance
3787  */
3788 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3789 {
3790 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3791 				     pf->max_pf_txqs);
3792 }
3793 
3794 /**
3795  * ice_get_avail_rxq_count - Get count of Rx queues in use
3796  * @pf: pointer to an ice_pf instance
3797  */
3798 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3799 {
3800 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3801 				     pf->max_pf_rxqs);
3802 }
3803 
3804 /**
3805  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3806  * @pf: board private structure to initialize
3807  */
3808 static void ice_deinit_pf(struct ice_pf *pf)
3809 {
3810 	ice_service_task_stop(pf);
3811 	mutex_destroy(&pf->lag_mutex);
3812 	mutex_destroy(&pf->adev_mutex);
3813 	mutex_destroy(&pf->sw_mutex);
3814 	mutex_destroy(&pf->tc_mutex);
3815 	mutex_destroy(&pf->avail_q_mutex);
3816 	mutex_destroy(&pf->vfs.table_lock);
3817 
3818 	if (pf->avail_txqs) {
3819 		bitmap_free(pf->avail_txqs);
3820 		pf->avail_txqs = NULL;
3821 	}
3822 
3823 	if (pf->avail_rxqs) {
3824 		bitmap_free(pf->avail_rxqs);
3825 		pf->avail_rxqs = NULL;
3826 	}
3827 
3828 	if (pf->ptp.clock)
3829 		ptp_clock_unregister(pf->ptp.clock);
3830 }
3831 
3832 /**
3833  * ice_set_pf_caps - set PFs capability flags
3834  * @pf: pointer to the PF instance
3835  */
3836 static void ice_set_pf_caps(struct ice_pf *pf)
3837 {
3838 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3839 
3840 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3841 	if (func_caps->common_cap.rdma)
3842 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3843 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3844 	if (func_caps->common_cap.dcb)
3845 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3846 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3847 	if (func_caps->common_cap.sr_iov_1_1) {
3848 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3849 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3850 					      ICE_MAX_SRIOV_VFS);
3851 	}
3852 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3853 	if (func_caps->common_cap.rss_table_size)
3854 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3855 
3856 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3857 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3858 		u16 unused;
3859 
3860 		/* ctrl_vsi_idx will be set to a valid value when flow director
3861 		 * is setup by ice_init_fdir
3862 		 */
3863 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3864 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3865 		/* force guaranteed filter pool for PF */
3866 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3867 				       func_caps->fd_fltr_guar);
3868 		/* force shared filter pool for PF */
3869 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3870 				       func_caps->fd_fltr_best_effort);
3871 	}
3872 
3873 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3874 	if (func_caps->common_cap.ieee_1588 &&
3875 	    !(pf->hw.mac_type == ICE_MAC_E830))
3876 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3877 
3878 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3879 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3880 }
3881 
3882 /**
3883  * ice_init_pf - Initialize general software structures (struct ice_pf)
3884  * @pf: board private structure to initialize
3885  */
3886 static int ice_init_pf(struct ice_pf *pf)
3887 {
3888 	ice_set_pf_caps(pf);
3889 
3890 	mutex_init(&pf->sw_mutex);
3891 	mutex_init(&pf->tc_mutex);
3892 	mutex_init(&pf->adev_mutex);
3893 	mutex_init(&pf->lag_mutex);
3894 
3895 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3896 	spin_lock_init(&pf->aq_wait_lock);
3897 	init_waitqueue_head(&pf->aq_wait_queue);
3898 
3899 	init_waitqueue_head(&pf->reset_wait_queue);
3900 
3901 	/* setup service timer and periodic service task */
3902 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3903 	pf->serv_tmr_period = HZ;
3904 	INIT_WORK(&pf->serv_task, ice_service_task);
3905 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3906 
3907 	mutex_init(&pf->avail_q_mutex);
3908 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3909 	if (!pf->avail_txqs)
3910 		return -ENOMEM;
3911 
3912 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3913 	if (!pf->avail_rxqs) {
3914 		bitmap_free(pf->avail_txqs);
3915 		pf->avail_txqs = NULL;
3916 		return -ENOMEM;
3917 	}
3918 
3919 	mutex_init(&pf->vfs.table_lock);
3920 	hash_init(pf->vfs.table);
3921 	ice_mbx_init_snapshot(&pf->hw);
3922 
3923 	return 0;
3924 }
3925 
3926 /**
3927  * ice_is_wol_supported - check if WoL is supported
3928  * @hw: pointer to hardware info
3929  *
3930  * Check if WoL is supported based on the HW configuration.
3931  * Returns true if NVM supports and enables WoL for this port, false otherwise
3932  */
3933 bool ice_is_wol_supported(struct ice_hw *hw)
3934 {
3935 	u16 wol_ctrl;
3936 
3937 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3938 	 * word) indicates WoL is not supported on the corresponding PF ID.
3939 	 */
3940 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3941 		return false;
3942 
3943 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3944 }
3945 
3946 /**
3947  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3948  * @vsi: VSI being changed
3949  * @new_rx: new number of Rx queues
3950  * @new_tx: new number of Tx queues
3951  * @locked: is adev device_lock held
3952  *
3953  * Only change the number of queues if new_tx, or new_rx is non-0.
3954  *
3955  * Returns 0 on success.
3956  */
3957 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3958 {
3959 	struct ice_pf *pf = vsi->back;
3960 	int err = 0, timeout = 50;
3961 
3962 	if (!new_rx && !new_tx)
3963 		return -EINVAL;
3964 
3965 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3966 		timeout--;
3967 		if (!timeout)
3968 			return -EBUSY;
3969 		usleep_range(1000, 2000);
3970 	}
3971 
3972 	if (new_tx)
3973 		vsi->req_txq = (u16)new_tx;
3974 	if (new_rx)
3975 		vsi->req_rxq = (u16)new_rx;
3976 
3977 	/* set for the next time the netdev is started */
3978 	if (!netif_running(vsi->netdev)) {
3979 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3980 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3981 		goto done;
3982 	}
3983 
3984 	ice_vsi_close(vsi);
3985 	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
3986 	ice_pf_dcb_recfg(pf, locked);
3987 	ice_vsi_open(vsi);
3988 done:
3989 	clear_bit(ICE_CFG_BUSY, pf->state);
3990 	return err;
3991 }
3992 
3993 /**
3994  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3995  * @pf: PF to configure
3996  *
3997  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3998  * VSI can still Tx/Rx VLAN tagged packets.
3999  */
4000 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4001 {
4002 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4003 	struct ice_vsi_ctx *ctxt;
4004 	struct ice_hw *hw;
4005 	int status;
4006 
4007 	if (!vsi)
4008 		return;
4009 
4010 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4011 	if (!ctxt)
4012 		return;
4013 
4014 	hw = &pf->hw;
4015 	ctxt->info = vsi->info;
4016 
4017 	ctxt->info.valid_sections =
4018 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4019 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4020 			    ICE_AQ_VSI_PROP_SW_VALID);
4021 
4022 	/* disable VLAN anti-spoof */
4023 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4024 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4025 
4026 	/* disable VLAN pruning and keep all other settings */
4027 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4028 
4029 	/* allow all VLANs on Tx and don't strip on Rx */
4030 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4031 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4032 
4033 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4034 	if (status) {
4035 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4036 			status, ice_aq_str(hw->adminq.sq_last_status));
4037 	} else {
4038 		vsi->info.sec_flags = ctxt->info.sec_flags;
4039 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4040 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4041 	}
4042 
4043 	kfree(ctxt);
4044 }
4045 
4046 /**
4047  * ice_log_pkg_init - log result of DDP package load
4048  * @hw: pointer to hardware info
4049  * @state: state of package load
4050  */
4051 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4052 {
4053 	struct ice_pf *pf = hw->back;
4054 	struct device *dev;
4055 
4056 	dev = ice_pf_to_dev(pf);
4057 
4058 	switch (state) {
4059 	case ICE_DDP_PKG_SUCCESS:
4060 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4061 			 hw->active_pkg_name,
4062 			 hw->active_pkg_ver.major,
4063 			 hw->active_pkg_ver.minor,
4064 			 hw->active_pkg_ver.update,
4065 			 hw->active_pkg_ver.draft);
4066 		break;
4067 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4068 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4069 			 hw->active_pkg_name,
4070 			 hw->active_pkg_ver.major,
4071 			 hw->active_pkg_ver.minor,
4072 			 hw->active_pkg_ver.update,
4073 			 hw->active_pkg_ver.draft);
4074 		break;
4075 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4076 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4077 			hw->active_pkg_name,
4078 			hw->active_pkg_ver.major,
4079 			hw->active_pkg_ver.minor,
4080 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4081 		break;
4082 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4083 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4084 			 hw->active_pkg_name,
4085 			 hw->active_pkg_ver.major,
4086 			 hw->active_pkg_ver.minor,
4087 			 hw->active_pkg_ver.update,
4088 			 hw->active_pkg_ver.draft,
4089 			 hw->pkg_name,
4090 			 hw->pkg_ver.major,
4091 			 hw->pkg_ver.minor,
4092 			 hw->pkg_ver.update,
4093 			 hw->pkg_ver.draft);
4094 		break;
4095 	case ICE_DDP_PKG_FW_MISMATCH:
4096 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4097 		break;
4098 	case ICE_DDP_PKG_INVALID_FILE:
4099 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4100 		break;
4101 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4102 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4103 		break;
4104 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4105 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4106 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4107 		break;
4108 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4109 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4110 		break;
4111 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4112 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4113 		break;
4114 	case ICE_DDP_PKG_LOAD_ERROR:
4115 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4116 		/* poll for reset to complete */
4117 		if (ice_check_reset(hw))
4118 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4119 		break;
4120 	case ICE_DDP_PKG_ERR:
4121 	default:
4122 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4123 		break;
4124 	}
4125 }
4126 
4127 /**
4128  * ice_load_pkg - load/reload the DDP Package file
4129  * @firmware: firmware structure when firmware requested or NULL for reload
4130  * @pf: pointer to the PF instance
4131  *
4132  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4133  * initialize HW tables.
4134  */
4135 static void
4136 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4137 {
4138 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4139 	struct device *dev = ice_pf_to_dev(pf);
4140 	struct ice_hw *hw = &pf->hw;
4141 
4142 	/* Load DDP Package */
4143 	if (firmware && !hw->pkg_copy) {
4144 		state = ice_copy_and_init_pkg(hw, firmware->data,
4145 					      firmware->size);
4146 		ice_log_pkg_init(hw, state);
4147 	} else if (!firmware && hw->pkg_copy) {
4148 		/* Reload package during rebuild after CORER/GLOBR reset */
4149 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4150 		ice_log_pkg_init(hw, state);
4151 	} else {
4152 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4153 	}
4154 
4155 	if (!ice_is_init_pkg_successful(state)) {
4156 		/* Safe Mode */
4157 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4158 		return;
4159 	}
4160 
4161 	/* Successful download package is the precondition for advanced
4162 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4163 	 */
4164 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4165 }
4166 
4167 /**
4168  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4169  * @pf: pointer to the PF structure
4170  *
4171  * There is no error returned here because the driver should be able to handle
4172  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4173  * specifically with Tx.
4174  */
4175 static void ice_verify_cacheline_size(struct ice_pf *pf)
4176 {
4177 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4178 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4179 			 ICE_CACHE_LINE_BYTES);
4180 }
4181 
4182 /**
4183  * ice_send_version - update firmware with driver version
4184  * @pf: PF struct
4185  *
4186  * Returns 0 on success, else error code
4187  */
4188 static int ice_send_version(struct ice_pf *pf)
4189 {
4190 	struct ice_driver_ver dv;
4191 
4192 	dv.major_ver = 0xff;
4193 	dv.minor_ver = 0xff;
4194 	dv.build_ver = 0xff;
4195 	dv.subbuild_ver = 0;
4196 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4197 		sizeof(dv.driver_string));
4198 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4199 }
4200 
4201 /**
4202  * ice_init_fdir - Initialize flow director VSI and configuration
4203  * @pf: pointer to the PF instance
4204  *
4205  * returns 0 on success, negative on error
4206  */
4207 static int ice_init_fdir(struct ice_pf *pf)
4208 {
4209 	struct device *dev = ice_pf_to_dev(pf);
4210 	struct ice_vsi *ctrl_vsi;
4211 	int err;
4212 
4213 	/* Side Band Flow Director needs to have a control VSI.
4214 	 * Allocate it and store it in the PF.
4215 	 */
4216 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4217 	if (!ctrl_vsi) {
4218 		dev_dbg(dev, "could not create control VSI\n");
4219 		return -ENOMEM;
4220 	}
4221 
4222 	err = ice_vsi_open_ctrl(ctrl_vsi);
4223 	if (err) {
4224 		dev_dbg(dev, "could not open control VSI\n");
4225 		goto err_vsi_open;
4226 	}
4227 
4228 	mutex_init(&pf->hw.fdir_fltr_lock);
4229 
4230 	err = ice_fdir_create_dflt_rules(pf);
4231 	if (err)
4232 		goto err_fdir_rule;
4233 
4234 	return 0;
4235 
4236 err_fdir_rule:
4237 	ice_fdir_release_flows(&pf->hw);
4238 	ice_vsi_close(ctrl_vsi);
4239 err_vsi_open:
4240 	ice_vsi_release(ctrl_vsi);
4241 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4242 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4243 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4244 	}
4245 	return err;
4246 }
4247 
4248 static void ice_deinit_fdir(struct ice_pf *pf)
4249 {
4250 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4251 
4252 	if (!vsi)
4253 		return;
4254 
4255 	ice_vsi_manage_fdir(vsi, false);
4256 	ice_vsi_release(vsi);
4257 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4258 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4259 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4260 	}
4261 
4262 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4263 }
4264 
4265 /**
4266  * ice_get_opt_fw_name - return optional firmware file name or NULL
4267  * @pf: pointer to the PF instance
4268  */
4269 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4270 {
4271 	/* Optional firmware name same as default with additional dash
4272 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4273 	 */
4274 	struct pci_dev *pdev = pf->pdev;
4275 	char *opt_fw_filename;
4276 	u64 dsn;
4277 
4278 	/* Determine the name of the optional file using the DSN (two
4279 	 * dwords following the start of the DSN Capability).
4280 	 */
4281 	dsn = pci_get_dsn(pdev);
4282 	if (!dsn)
4283 		return NULL;
4284 
4285 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4286 	if (!opt_fw_filename)
4287 		return NULL;
4288 
4289 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4290 		 ICE_DDP_PKG_PATH, dsn);
4291 
4292 	return opt_fw_filename;
4293 }
4294 
4295 /**
4296  * ice_request_fw - Device initialization routine
4297  * @pf: pointer to the PF instance
4298  */
4299 static void ice_request_fw(struct ice_pf *pf)
4300 {
4301 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4302 	const struct firmware *firmware = NULL;
4303 	struct device *dev = ice_pf_to_dev(pf);
4304 	int err = 0;
4305 
4306 	/* optional device-specific DDP (if present) overrides the default DDP
4307 	 * package file. kernel logs a debug message if the file doesn't exist,
4308 	 * and warning messages for other errors.
4309 	 */
4310 	if (opt_fw_filename) {
4311 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4312 		if (err) {
4313 			kfree(opt_fw_filename);
4314 			goto dflt_pkg_load;
4315 		}
4316 
4317 		/* request for firmware was successful. Download to device */
4318 		ice_load_pkg(firmware, pf);
4319 		kfree(opt_fw_filename);
4320 		release_firmware(firmware);
4321 		return;
4322 	}
4323 
4324 dflt_pkg_load:
4325 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4326 	if (err) {
4327 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4328 		return;
4329 	}
4330 
4331 	/* request for firmware was successful. Download to device */
4332 	ice_load_pkg(firmware, pf);
4333 	release_firmware(firmware);
4334 }
4335 
4336 /**
4337  * ice_print_wake_reason - show the wake up cause in the log
4338  * @pf: pointer to the PF struct
4339  */
4340 static void ice_print_wake_reason(struct ice_pf *pf)
4341 {
4342 	u32 wus = pf->wakeup_reason;
4343 	const char *wake_str;
4344 
4345 	/* if no wake event, nothing to print */
4346 	if (!wus)
4347 		return;
4348 
4349 	if (wus & PFPM_WUS_LNKC_M)
4350 		wake_str = "Link\n";
4351 	else if (wus & PFPM_WUS_MAG_M)
4352 		wake_str = "Magic Packet\n";
4353 	else if (wus & PFPM_WUS_MNG_M)
4354 		wake_str = "Management\n";
4355 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4356 		wake_str = "Firmware Reset\n";
4357 	else
4358 		wake_str = "Unknown\n";
4359 
4360 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4361 }
4362 
4363 /**
4364  * ice_register_netdev - register netdev
4365  * @vsi: pointer to the VSI struct
4366  */
4367 static int ice_register_netdev(struct ice_vsi *vsi)
4368 {
4369 	int err;
4370 
4371 	if (!vsi || !vsi->netdev)
4372 		return -EIO;
4373 
4374 	err = register_netdev(vsi->netdev);
4375 	if (err)
4376 		return err;
4377 
4378 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4379 	netif_carrier_off(vsi->netdev);
4380 	netif_tx_stop_all_queues(vsi->netdev);
4381 
4382 	return 0;
4383 }
4384 
4385 static void ice_unregister_netdev(struct ice_vsi *vsi)
4386 {
4387 	if (!vsi || !vsi->netdev)
4388 		return;
4389 
4390 	unregister_netdev(vsi->netdev);
4391 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4392 }
4393 
4394 /**
4395  * ice_cfg_netdev - Allocate, configure and register a netdev
4396  * @vsi: the VSI associated with the new netdev
4397  *
4398  * Returns 0 on success, negative value on failure
4399  */
4400 static int ice_cfg_netdev(struct ice_vsi *vsi)
4401 {
4402 	struct ice_netdev_priv *np;
4403 	struct net_device *netdev;
4404 	u8 mac_addr[ETH_ALEN];
4405 
4406 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4407 				    vsi->alloc_rxq);
4408 	if (!netdev)
4409 		return -ENOMEM;
4410 
4411 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4412 	vsi->netdev = netdev;
4413 	np = netdev_priv(netdev);
4414 	np->vsi = vsi;
4415 
4416 	ice_set_netdev_features(netdev);
4417 	ice_set_ops(vsi);
4418 
4419 	if (vsi->type == ICE_VSI_PF) {
4420 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4421 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4422 		eth_hw_addr_set(netdev, mac_addr);
4423 	}
4424 
4425 	netdev->priv_flags |= IFF_UNICAST_FLT;
4426 
4427 	/* Setup netdev TC information */
4428 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4429 
4430 	netdev->max_mtu = ICE_MAX_MTU;
4431 
4432 	return 0;
4433 }
4434 
4435 static void ice_decfg_netdev(struct ice_vsi *vsi)
4436 {
4437 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4438 	free_netdev(vsi->netdev);
4439 	vsi->netdev = NULL;
4440 }
4441 
4442 static int ice_start_eth(struct ice_vsi *vsi)
4443 {
4444 	int err;
4445 
4446 	err = ice_init_mac_fltr(vsi->back);
4447 	if (err)
4448 		return err;
4449 
4450 	err = ice_vsi_open(vsi);
4451 	if (err)
4452 		ice_fltr_remove_all(vsi);
4453 
4454 	return err;
4455 }
4456 
4457 static void ice_stop_eth(struct ice_vsi *vsi)
4458 {
4459 	ice_fltr_remove_all(vsi);
4460 	ice_vsi_close(vsi);
4461 }
4462 
4463 static int ice_init_eth(struct ice_pf *pf)
4464 {
4465 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4466 	int err;
4467 
4468 	if (!vsi)
4469 		return -EINVAL;
4470 
4471 	/* init channel list */
4472 	INIT_LIST_HEAD(&vsi->ch_list);
4473 
4474 	err = ice_cfg_netdev(vsi);
4475 	if (err)
4476 		return err;
4477 	/* Setup DCB netlink interface */
4478 	ice_dcbnl_setup(vsi);
4479 
4480 	err = ice_init_mac_fltr(pf);
4481 	if (err)
4482 		goto err_init_mac_fltr;
4483 
4484 	err = ice_devlink_create_pf_port(pf);
4485 	if (err)
4486 		goto err_devlink_create_pf_port;
4487 
4488 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4489 
4490 	err = ice_register_netdev(vsi);
4491 	if (err)
4492 		goto err_register_netdev;
4493 
4494 	err = ice_tc_indir_block_register(vsi);
4495 	if (err)
4496 		goto err_tc_indir_block_register;
4497 
4498 	ice_napi_add(vsi);
4499 
4500 	return 0;
4501 
4502 err_tc_indir_block_register:
4503 	ice_unregister_netdev(vsi);
4504 err_register_netdev:
4505 	ice_devlink_destroy_pf_port(pf);
4506 err_devlink_create_pf_port:
4507 err_init_mac_fltr:
4508 	ice_decfg_netdev(vsi);
4509 	return err;
4510 }
4511 
4512 static void ice_deinit_eth(struct ice_pf *pf)
4513 {
4514 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4515 
4516 	if (!vsi)
4517 		return;
4518 
4519 	ice_vsi_close(vsi);
4520 	ice_unregister_netdev(vsi);
4521 	ice_devlink_destroy_pf_port(pf);
4522 	ice_tc_indir_block_unregister(vsi);
4523 	ice_decfg_netdev(vsi);
4524 }
4525 
4526 /**
4527  * ice_wait_for_fw - wait for full FW readiness
4528  * @hw: pointer to the hardware structure
4529  * @timeout: milliseconds that can elapse before timing out
4530  */
4531 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4532 {
4533 	int fw_loading;
4534 	u32 elapsed = 0;
4535 
4536 	while (elapsed <= timeout) {
4537 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4538 
4539 		/* firmware was not yet loaded, we have to wait more */
4540 		if (fw_loading) {
4541 			elapsed += 100;
4542 			msleep(100);
4543 			continue;
4544 		}
4545 		return 0;
4546 	}
4547 
4548 	return -ETIMEDOUT;
4549 }
4550 
4551 static int ice_init_dev(struct ice_pf *pf)
4552 {
4553 	struct device *dev = ice_pf_to_dev(pf);
4554 	struct ice_hw *hw = &pf->hw;
4555 	int err;
4556 
4557 	err = ice_init_hw(hw);
4558 	if (err) {
4559 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4560 		return err;
4561 	}
4562 
4563 	/* Some cards require longer initialization times
4564 	 * due to necessity of loading FW from an external source.
4565 	 * This can take even half a minute.
4566 	 */
4567 	if (ice_is_pf_c827(hw)) {
4568 		err = ice_wait_for_fw(hw, 30000);
4569 		if (err) {
4570 			dev_err(dev, "ice_wait_for_fw timed out");
4571 			return err;
4572 		}
4573 	}
4574 
4575 	ice_init_feature_support(pf);
4576 
4577 	ice_request_fw(pf);
4578 
4579 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4580 	 * set in pf->state, which will cause ice_is_safe_mode to return
4581 	 * true
4582 	 */
4583 	if (ice_is_safe_mode(pf)) {
4584 		/* we already got function/device capabilities but these don't
4585 		 * reflect what the driver needs to do in safe mode. Instead of
4586 		 * adding conditional logic everywhere to ignore these
4587 		 * device/function capabilities, override them.
4588 		 */
4589 		ice_set_safe_mode_caps(hw);
4590 	}
4591 
4592 	err = ice_init_pf(pf);
4593 	if (err) {
4594 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4595 		goto err_init_pf;
4596 	}
4597 
4598 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4599 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4600 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4601 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4602 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4603 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4604 			pf->hw.tnl.valid_count[TNL_VXLAN];
4605 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4606 			UDP_TUNNEL_TYPE_VXLAN;
4607 	}
4608 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4609 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4610 			pf->hw.tnl.valid_count[TNL_GENEVE];
4611 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4612 			UDP_TUNNEL_TYPE_GENEVE;
4613 	}
4614 
4615 	err = ice_init_interrupt_scheme(pf);
4616 	if (err) {
4617 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4618 		err = -EIO;
4619 		goto err_init_interrupt_scheme;
4620 	}
4621 
4622 	/* In case of MSIX we are going to setup the misc vector right here
4623 	 * to handle admin queue events etc. In case of legacy and MSI
4624 	 * the misc functionality and queue processing is combined in
4625 	 * the same vector and that gets setup at open.
4626 	 */
4627 	err = ice_req_irq_msix_misc(pf);
4628 	if (err) {
4629 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4630 		goto err_req_irq_msix_misc;
4631 	}
4632 
4633 	return 0;
4634 
4635 err_req_irq_msix_misc:
4636 	ice_clear_interrupt_scheme(pf);
4637 err_init_interrupt_scheme:
4638 	ice_deinit_pf(pf);
4639 err_init_pf:
4640 	ice_deinit_hw(hw);
4641 	return err;
4642 }
4643 
4644 static void ice_deinit_dev(struct ice_pf *pf)
4645 {
4646 	ice_free_irq_msix_misc(pf);
4647 	ice_deinit_pf(pf);
4648 	ice_deinit_hw(&pf->hw);
4649 
4650 	/* Service task is already stopped, so call reset directly. */
4651 	ice_reset(&pf->hw, ICE_RESET_PFR);
4652 	pci_wait_for_pending_transaction(pf->pdev);
4653 	ice_clear_interrupt_scheme(pf);
4654 }
4655 
4656 static void ice_init_features(struct ice_pf *pf)
4657 {
4658 	struct device *dev = ice_pf_to_dev(pf);
4659 
4660 	if (ice_is_safe_mode(pf))
4661 		return;
4662 
4663 	/* initialize DDP driven features */
4664 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4665 		ice_ptp_init(pf);
4666 
4667 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4668 		ice_gnss_init(pf);
4669 
4670 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4671 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4672 		ice_dpll_init(pf);
4673 
4674 	/* Note: Flow director init failure is non-fatal to load */
4675 	if (ice_init_fdir(pf))
4676 		dev_err(dev, "could not initialize flow director\n");
4677 
4678 	/* Note: DCB init failure is non-fatal to load */
4679 	if (ice_init_pf_dcb(pf, false)) {
4680 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4681 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4682 	} else {
4683 		ice_cfg_lldp_mib_change(&pf->hw, true);
4684 	}
4685 
4686 	if (ice_init_lag(pf))
4687 		dev_warn(dev, "Failed to init link aggregation support\n");
4688 }
4689 
4690 static void ice_deinit_features(struct ice_pf *pf)
4691 {
4692 	if (ice_is_safe_mode(pf))
4693 		return;
4694 
4695 	ice_deinit_lag(pf);
4696 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4697 		ice_cfg_lldp_mib_change(&pf->hw, false);
4698 	ice_deinit_fdir(pf);
4699 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4700 		ice_gnss_exit(pf);
4701 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4702 		ice_ptp_release(pf);
4703 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4704 		ice_dpll_deinit(pf);
4705 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4706 		xa_destroy(&pf->eswitch.reprs);
4707 }
4708 
4709 static void ice_init_wakeup(struct ice_pf *pf)
4710 {
4711 	/* Save wakeup reason register for later use */
4712 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4713 
4714 	/* check for a power management event */
4715 	ice_print_wake_reason(pf);
4716 
4717 	/* clear wake status, all bits */
4718 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4719 
4720 	/* Disable WoL at init, wait for user to enable */
4721 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4722 }
4723 
4724 static int ice_init_link(struct ice_pf *pf)
4725 {
4726 	struct device *dev = ice_pf_to_dev(pf);
4727 	int err;
4728 
4729 	err = ice_init_link_events(pf->hw.port_info);
4730 	if (err) {
4731 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4732 		return err;
4733 	}
4734 
4735 	/* not a fatal error if this fails */
4736 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4737 	if (err)
4738 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4739 
4740 	/* not a fatal error if this fails */
4741 	err = ice_update_link_info(pf->hw.port_info);
4742 	if (err)
4743 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4744 
4745 	ice_init_link_dflt_override(pf->hw.port_info);
4746 
4747 	ice_check_link_cfg_err(pf,
4748 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4749 
4750 	/* if media available, initialize PHY settings */
4751 	if (pf->hw.port_info->phy.link_info.link_info &
4752 	    ICE_AQ_MEDIA_AVAILABLE) {
4753 		/* not a fatal error if this fails */
4754 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4755 		if (err)
4756 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4757 
4758 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4759 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4760 
4761 			if (vsi)
4762 				ice_configure_phy(vsi);
4763 		}
4764 	} else {
4765 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4766 	}
4767 
4768 	return err;
4769 }
4770 
4771 static int ice_init_pf_sw(struct ice_pf *pf)
4772 {
4773 	bool dvm = ice_is_dvm_ena(&pf->hw);
4774 	struct ice_vsi *vsi;
4775 	int err;
4776 
4777 	/* create switch struct for the switch element created by FW on boot */
4778 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4779 	if (!pf->first_sw)
4780 		return -ENOMEM;
4781 
4782 	if (pf->hw.evb_veb)
4783 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4784 	else
4785 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4786 
4787 	pf->first_sw->pf = pf;
4788 
4789 	/* record the sw_id available for later use */
4790 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4791 
4792 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4793 	if (err)
4794 		goto err_aq_set_port_params;
4795 
4796 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4797 	if (!vsi) {
4798 		err = -ENOMEM;
4799 		goto err_pf_vsi_setup;
4800 	}
4801 
4802 	return 0;
4803 
4804 err_pf_vsi_setup:
4805 err_aq_set_port_params:
4806 	kfree(pf->first_sw);
4807 	return err;
4808 }
4809 
4810 static void ice_deinit_pf_sw(struct ice_pf *pf)
4811 {
4812 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4813 
4814 	if (!vsi)
4815 		return;
4816 
4817 	ice_vsi_release(vsi);
4818 	kfree(pf->first_sw);
4819 }
4820 
4821 static int ice_alloc_vsis(struct ice_pf *pf)
4822 {
4823 	struct device *dev = ice_pf_to_dev(pf);
4824 
4825 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4826 	if (!pf->num_alloc_vsi)
4827 		return -EIO;
4828 
4829 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4830 		dev_warn(dev,
4831 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4832 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4833 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4834 	}
4835 
4836 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4837 			       GFP_KERNEL);
4838 	if (!pf->vsi)
4839 		return -ENOMEM;
4840 
4841 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4842 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4843 	if (!pf->vsi_stats) {
4844 		devm_kfree(dev, pf->vsi);
4845 		return -ENOMEM;
4846 	}
4847 
4848 	return 0;
4849 }
4850 
4851 static void ice_dealloc_vsis(struct ice_pf *pf)
4852 {
4853 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4854 	pf->vsi_stats = NULL;
4855 
4856 	pf->num_alloc_vsi = 0;
4857 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4858 	pf->vsi = NULL;
4859 }
4860 
4861 static int ice_init_devlink(struct ice_pf *pf)
4862 {
4863 	int err;
4864 
4865 	err = ice_devlink_register_params(pf);
4866 	if (err)
4867 		return err;
4868 
4869 	ice_devlink_init_regions(pf);
4870 	ice_devlink_register(pf);
4871 
4872 	return 0;
4873 }
4874 
4875 static void ice_deinit_devlink(struct ice_pf *pf)
4876 {
4877 	ice_devlink_unregister(pf);
4878 	ice_devlink_destroy_regions(pf);
4879 	ice_devlink_unregister_params(pf);
4880 }
4881 
4882 static int ice_init(struct ice_pf *pf)
4883 {
4884 	int err;
4885 
4886 	err = ice_init_dev(pf);
4887 	if (err)
4888 		return err;
4889 
4890 	err = ice_alloc_vsis(pf);
4891 	if (err)
4892 		goto err_alloc_vsis;
4893 
4894 	err = ice_init_pf_sw(pf);
4895 	if (err)
4896 		goto err_init_pf_sw;
4897 
4898 	ice_init_wakeup(pf);
4899 
4900 	err = ice_init_link(pf);
4901 	if (err)
4902 		goto err_init_link;
4903 
4904 	err = ice_send_version(pf);
4905 	if (err)
4906 		goto err_init_link;
4907 
4908 	ice_verify_cacheline_size(pf);
4909 
4910 	if (ice_is_safe_mode(pf))
4911 		ice_set_safe_mode_vlan_cfg(pf);
4912 	else
4913 		/* print PCI link speed and width */
4914 		pcie_print_link_status(pf->pdev);
4915 
4916 	/* ready to go, so clear down state bit */
4917 	clear_bit(ICE_DOWN, pf->state);
4918 	clear_bit(ICE_SERVICE_DIS, pf->state);
4919 
4920 	/* since everything is good, start the service timer */
4921 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4922 
4923 	return 0;
4924 
4925 err_init_link:
4926 	ice_deinit_pf_sw(pf);
4927 err_init_pf_sw:
4928 	ice_dealloc_vsis(pf);
4929 err_alloc_vsis:
4930 	ice_deinit_dev(pf);
4931 	return err;
4932 }
4933 
4934 static void ice_deinit(struct ice_pf *pf)
4935 {
4936 	set_bit(ICE_SERVICE_DIS, pf->state);
4937 	set_bit(ICE_DOWN, pf->state);
4938 
4939 	ice_deinit_pf_sw(pf);
4940 	ice_dealloc_vsis(pf);
4941 	ice_deinit_dev(pf);
4942 }
4943 
4944 /**
4945  * ice_load - load pf by init hw and starting VSI
4946  * @pf: pointer to the pf instance
4947  */
4948 int ice_load(struct ice_pf *pf)
4949 {
4950 	struct ice_vsi_cfg_params params = {};
4951 	struct ice_vsi *vsi;
4952 	int err;
4953 
4954 	err = ice_init_dev(pf);
4955 	if (err)
4956 		return err;
4957 
4958 	vsi = ice_get_main_vsi(pf);
4959 
4960 	params = ice_vsi_to_params(vsi);
4961 	params.flags = ICE_VSI_FLAG_INIT;
4962 
4963 	rtnl_lock();
4964 	err = ice_vsi_cfg(vsi, &params);
4965 	if (err)
4966 		goto err_vsi_cfg;
4967 
4968 	err = ice_start_eth(ice_get_main_vsi(pf));
4969 	if (err)
4970 		goto err_start_eth;
4971 	rtnl_unlock();
4972 
4973 	err = ice_init_rdma(pf);
4974 	if (err)
4975 		goto err_init_rdma;
4976 
4977 	ice_init_features(pf);
4978 	ice_service_task_restart(pf);
4979 
4980 	clear_bit(ICE_DOWN, pf->state);
4981 
4982 	return 0;
4983 
4984 err_init_rdma:
4985 	ice_vsi_close(ice_get_main_vsi(pf));
4986 	rtnl_lock();
4987 err_start_eth:
4988 	ice_vsi_decfg(ice_get_main_vsi(pf));
4989 err_vsi_cfg:
4990 	rtnl_unlock();
4991 	ice_deinit_dev(pf);
4992 	return err;
4993 }
4994 
4995 /**
4996  * ice_unload - unload pf by stopping VSI and deinit hw
4997  * @pf: pointer to the pf instance
4998  */
4999 void ice_unload(struct ice_pf *pf)
5000 {
5001 	ice_deinit_features(pf);
5002 	ice_deinit_rdma(pf);
5003 	rtnl_lock();
5004 	ice_stop_eth(ice_get_main_vsi(pf));
5005 	ice_vsi_decfg(ice_get_main_vsi(pf));
5006 	rtnl_unlock();
5007 	ice_deinit_dev(pf);
5008 }
5009 
5010 /**
5011  * ice_probe - Device initialization routine
5012  * @pdev: PCI device information struct
5013  * @ent: entry in ice_pci_tbl
5014  *
5015  * Returns 0 on success, negative on failure
5016  */
5017 static int
5018 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5019 {
5020 	struct device *dev = &pdev->dev;
5021 	struct ice_pf *pf;
5022 	struct ice_hw *hw;
5023 	int err;
5024 
5025 	if (pdev->is_virtfn) {
5026 		dev_err(dev, "can't probe a virtual function\n");
5027 		return -EINVAL;
5028 	}
5029 
5030 	/* when under a kdump kernel initiate a reset before enabling the
5031 	 * device in order to clear out any pending DMA transactions. These
5032 	 * transactions can cause some systems to machine check when doing
5033 	 * the pcim_enable_device() below.
5034 	 */
5035 	if (is_kdump_kernel()) {
5036 		pci_save_state(pdev);
5037 		pci_clear_master(pdev);
5038 		err = pcie_flr(pdev);
5039 		if (err)
5040 			return err;
5041 		pci_restore_state(pdev);
5042 	}
5043 
5044 	/* this driver uses devres, see
5045 	 * Documentation/driver-api/driver-model/devres.rst
5046 	 */
5047 	err = pcim_enable_device(pdev);
5048 	if (err)
5049 		return err;
5050 
5051 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5052 	if (err) {
5053 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5054 		return err;
5055 	}
5056 
5057 	pf = ice_allocate_pf(dev);
5058 	if (!pf)
5059 		return -ENOMEM;
5060 
5061 	/* initialize Auxiliary index to invalid value */
5062 	pf->aux_idx = -1;
5063 
5064 	/* set up for high or low DMA */
5065 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5066 	if (err) {
5067 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5068 		return err;
5069 	}
5070 
5071 	pci_set_master(pdev);
5072 
5073 	pf->pdev = pdev;
5074 	pci_set_drvdata(pdev, pf);
5075 	set_bit(ICE_DOWN, pf->state);
5076 	/* Disable service task until DOWN bit is cleared */
5077 	set_bit(ICE_SERVICE_DIS, pf->state);
5078 
5079 	hw = &pf->hw;
5080 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5081 	pci_save_state(pdev);
5082 
5083 	hw->back = pf;
5084 	hw->port_info = NULL;
5085 	hw->vendor_id = pdev->vendor;
5086 	hw->device_id = pdev->device;
5087 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5088 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5089 	hw->subsystem_device_id = pdev->subsystem_device;
5090 	hw->bus.device = PCI_SLOT(pdev->devfn);
5091 	hw->bus.func = PCI_FUNC(pdev->devfn);
5092 	ice_set_ctrlq_len(hw);
5093 
5094 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5095 
5096 #ifndef CONFIG_DYNAMIC_DEBUG
5097 	if (debug < -1)
5098 		hw->debug_mask = debug;
5099 #endif
5100 
5101 	err = ice_init(pf);
5102 	if (err)
5103 		goto err_init;
5104 
5105 	err = ice_init_eth(pf);
5106 	if (err)
5107 		goto err_init_eth;
5108 
5109 	err = ice_init_rdma(pf);
5110 	if (err)
5111 		goto err_init_rdma;
5112 
5113 	err = ice_init_devlink(pf);
5114 	if (err)
5115 		goto err_init_devlink;
5116 
5117 	ice_init_features(pf);
5118 
5119 	return 0;
5120 
5121 err_init_devlink:
5122 	ice_deinit_rdma(pf);
5123 err_init_rdma:
5124 	ice_deinit_eth(pf);
5125 err_init_eth:
5126 	ice_deinit(pf);
5127 err_init:
5128 	pci_disable_device(pdev);
5129 	return err;
5130 }
5131 
5132 /**
5133  * ice_set_wake - enable or disable Wake on LAN
5134  * @pf: pointer to the PF struct
5135  *
5136  * Simple helper for WoL control
5137  */
5138 static void ice_set_wake(struct ice_pf *pf)
5139 {
5140 	struct ice_hw *hw = &pf->hw;
5141 	bool wol = pf->wol_ena;
5142 
5143 	/* clear wake state, otherwise new wake events won't fire */
5144 	wr32(hw, PFPM_WUS, U32_MAX);
5145 
5146 	/* enable / disable APM wake up, no RMW needed */
5147 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5148 
5149 	/* set magic packet filter enabled */
5150 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5151 }
5152 
5153 /**
5154  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5155  * @pf: pointer to the PF struct
5156  *
5157  * Issue firmware command to enable multicast magic wake, making
5158  * sure that any locally administered address (LAA) is used for
5159  * wake, and that PF reset doesn't undo the LAA.
5160  */
5161 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5162 {
5163 	struct device *dev = ice_pf_to_dev(pf);
5164 	struct ice_hw *hw = &pf->hw;
5165 	u8 mac_addr[ETH_ALEN];
5166 	struct ice_vsi *vsi;
5167 	int status;
5168 	u8 flags;
5169 
5170 	if (!pf->wol_ena)
5171 		return;
5172 
5173 	vsi = ice_get_main_vsi(pf);
5174 	if (!vsi)
5175 		return;
5176 
5177 	/* Get current MAC address in case it's an LAA */
5178 	if (vsi->netdev)
5179 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5180 	else
5181 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5182 
5183 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5184 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5185 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5186 
5187 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5188 	if (status)
5189 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5190 			status, ice_aq_str(hw->adminq.sq_last_status));
5191 }
5192 
5193 /**
5194  * ice_remove - Device removal routine
5195  * @pdev: PCI device information struct
5196  */
5197 static void ice_remove(struct pci_dev *pdev)
5198 {
5199 	struct ice_pf *pf = pci_get_drvdata(pdev);
5200 	int i;
5201 
5202 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5203 		if (!ice_is_reset_in_progress(pf->state))
5204 			break;
5205 		msleep(100);
5206 	}
5207 
5208 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5209 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5210 		ice_free_vfs(pf);
5211 	}
5212 
5213 	ice_service_task_stop(pf);
5214 	ice_aq_cancel_waiting_tasks(pf);
5215 	set_bit(ICE_DOWN, pf->state);
5216 
5217 	if (!ice_is_safe_mode(pf))
5218 		ice_remove_arfs(pf);
5219 	ice_deinit_features(pf);
5220 	ice_deinit_devlink(pf);
5221 	ice_deinit_rdma(pf);
5222 	ice_deinit_eth(pf);
5223 	ice_deinit(pf);
5224 
5225 	ice_vsi_release_all(pf);
5226 
5227 	ice_setup_mc_magic_wake(pf);
5228 	ice_set_wake(pf);
5229 
5230 	pci_disable_device(pdev);
5231 }
5232 
5233 /**
5234  * ice_shutdown - PCI callback for shutting down device
5235  * @pdev: PCI device information struct
5236  */
5237 static void ice_shutdown(struct pci_dev *pdev)
5238 {
5239 	struct ice_pf *pf = pci_get_drvdata(pdev);
5240 
5241 	ice_remove(pdev);
5242 
5243 	if (system_state == SYSTEM_POWER_OFF) {
5244 		pci_wake_from_d3(pdev, pf->wol_ena);
5245 		pci_set_power_state(pdev, PCI_D3hot);
5246 	}
5247 }
5248 
5249 #ifdef CONFIG_PM
5250 /**
5251  * ice_prepare_for_shutdown - prep for PCI shutdown
5252  * @pf: board private structure
5253  *
5254  * Inform or close all dependent features in prep for PCI device shutdown
5255  */
5256 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5257 {
5258 	struct ice_hw *hw = &pf->hw;
5259 	u32 v;
5260 
5261 	/* Notify VFs of impending reset */
5262 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5263 		ice_vc_notify_reset(pf);
5264 
5265 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5266 
5267 	/* disable the VSIs and their queues that are not already DOWN */
5268 	ice_pf_dis_all_vsi(pf, false);
5269 
5270 	ice_for_each_vsi(pf, v)
5271 		if (pf->vsi[v])
5272 			pf->vsi[v]->vsi_num = 0;
5273 
5274 	ice_shutdown_all_ctrlq(hw);
5275 }
5276 
5277 /**
5278  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5279  * @pf: board private structure to reinitialize
5280  *
5281  * This routine reinitialize interrupt scheme that was cleared during
5282  * power management suspend callback.
5283  *
5284  * This should be called during resume routine to re-allocate the q_vectors
5285  * and reacquire interrupts.
5286  */
5287 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5288 {
5289 	struct device *dev = ice_pf_to_dev(pf);
5290 	int ret, v;
5291 
5292 	/* Since we clear MSIX flag during suspend, we need to
5293 	 * set it back during resume...
5294 	 */
5295 
5296 	ret = ice_init_interrupt_scheme(pf);
5297 	if (ret) {
5298 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5299 		return ret;
5300 	}
5301 
5302 	/* Remap vectors and rings, after successful re-init interrupts */
5303 	ice_for_each_vsi(pf, v) {
5304 		if (!pf->vsi[v])
5305 			continue;
5306 
5307 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5308 		if (ret)
5309 			goto err_reinit;
5310 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5311 	}
5312 
5313 	ret = ice_req_irq_msix_misc(pf);
5314 	if (ret) {
5315 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5316 			ret);
5317 		goto err_reinit;
5318 	}
5319 
5320 	return 0;
5321 
5322 err_reinit:
5323 	while (v--)
5324 		if (pf->vsi[v])
5325 			ice_vsi_free_q_vectors(pf->vsi[v]);
5326 
5327 	return ret;
5328 }
5329 
5330 /**
5331  * ice_suspend
5332  * @dev: generic device information structure
5333  *
5334  * Power Management callback to quiesce the device and prepare
5335  * for D3 transition.
5336  */
5337 static int __maybe_unused ice_suspend(struct device *dev)
5338 {
5339 	struct pci_dev *pdev = to_pci_dev(dev);
5340 	struct ice_pf *pf;
5341 	int disabled, v;
5342 
5343 	pf = pci_get_drvdata(pdev);
5344 
5345 	if (!ice_pf_state_is_nominal(pf)) {
5346 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5347 		return -EBUSY;
5348 	}
5349 
5350 	/* Stop watchdog tasks until resume completion.
5351 	 * Even though it is most likely that the service task is
5352 	 * disabled if the device is suspended or down, the service task's
5353 	 * state is controlled by a different state bit, and we should
5354 	 * store and honor whatever state that bit is in at this point.
5355 	 */
5356 	disabled = ice_service_task_stop(pf);
5357 
5358 	ice_unplug_aux_dev(pf);
5359 
5360 	/* Already suspended?, then there is nothing to do */
5361 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5362 		if (!disabled)
5363 			ice_service_task_restart(pf);
5364 		return 0;
5365 	}
5366 
5367 	if (test_bit(ICE_DOWN, pf->state) ||
5368 	    ice_is_reset_in_progress(pf->state)) {
5369 		dev_err(dev, "can't suspend device in reset or already down\n");
5370 		if (!disabled)
5371 			ice_service_task_restart(pf);
5372 		return 0;
5373 	}
5374 
5375 	ice_setup_mc_magic_wake(pf);
5376 
5377 	ice_prepare_for_shutdown(pf);
5378 
5379 	ice_set_wake(pf);
5380 
5381 	/* Free vectors, clear the interrupt scheme and release IRQs
5382 	 * for proper hibernation, especially with large number of CPUs.
5383 	 * Otherwise hibernation might fail when mapping all the vectors back
5384 	 * to CPU0.
5385 	 */
5386 	ice_free_irq_msix_misc(pf);
5387 	ice_for_each_vsi(pf, v) {
5388 		if (!pf->vsi[v])
5389 			continue;
5390 		ice_vsi_free_q_vectors(pf->vsi[v]);
5391 	}
5392 	ice_clear_interrupt_scheme(pf);
5393 
5394 	pci_save_state(pdev);
5395 	pci_wake_from_d3(pdev, pf->wol_ena);
5396 	pci_set_power_state(pdev, PCI_D3hot);
5397 	return 0;
5398 }
5399 
5400 /**
5401  * ice_resume - PM callback for waking up from D3
5402  * @dev: generic device information structure
5403  */
5404 static int __maybe_unused ice_resume(struct device *dev)
5405 {
5406 	struct pci_dev *pdev = to_pci_dev(dev);
5407 	enum ice_reset_req reset_type;
5408 	struct ice_pf *pf;
5409 	struct ice_hw *hw;
5410 	int ret;
5411 
5412 	pci_set_power_state(pdev, PCI_D0);
5413 	pci_restore_state(pdev);
5414 	pci_save_state(pdev);
5415 
5416 	if (!pci_device_is_present(pdev))
5417 		return -ENODEV;
5418 
5419 	ret = pci_enable_device_mem(pdev);
5420 	if (ret) {
5421 		dev_err(dev, "Cannot enable device after suspend\n");
5422 		return ret;
5423 	}
5424 
5425 	pf = pci_get_drvdata(pdev);
5426 	hw = &pf->hw;
5427 
5428 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5429 	ice_print_wake_reason(pf);
5430 
5431 	/* We cleared the interrupt scheme when we suspended, so we need to
5432 	 * restore it now to resume device functionality.
5433 	 */
5434 	ret = ice_reinit_interrupt_scheme(pf);
5435 	if (ret)
5436 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5437 
5438 	clear_bit(ICE_DOWN, pf->state);
5439 	/* Now perform PF reset and rebuild */
5440 	reset_type = ICE_RESET_PFR;
5441 	/* re-enable service task for reset, but allow reset to schedule it */
5442 	clear_bit(ICE_SERVICE_DIS, pf->state);
5443 
5444 	if (ice_schedule_reset(pf, reset_type))
5445 		dev_err(dev, "Reset during resume failed.\n");
5446 
5447 	clear_bit(ICE_SUSPENDED, pf->state);
5448 	ice_service_task_restart(pf);
5449 
5450 	/* Restart the service task */
5451 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5452 
5453 	return 0;
5454 }
5455 #endif /* CONFIG_PM */
5456 
5457 /**
5458  * ice_pci_err_detected - warning that PCI error has been detected
5459  * @pdev: PCI device information struct
5460  * @err: the type of PCI error
5461  *
5462  * Called to warn that something happened on the PCI bus and the error handling
5463  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5464  */
5465 static pci_ers_result_t
5466 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5467 {
5468 	struct ice_pf *pf = pci_get_drvdata(pdev);
5469 
5470 	if (!pf) {
5471 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5472 			__func__, err);
5473 		return PCI_ERS_RESULT_DISCONNECT;
5474 	}
5475 
5476 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5477 		ice_service_task_stop(pf);
5478 
5479 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5480 			set_bit(ICE_PFR_REQ, pf->state);
5481 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5482 		}
5483 	}
5484 
5485 	return PCI_ERS_RESULT_NEED_RESET;
5486 }
5487 
5488 /**
5489  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5490  * @pdev: PCI device information struct
5491  *
5492  * Called to determine if the driver can recover from the PCI slot reset by
5493  * using a register read to determine if the device is recoverable.
5494  */
5495 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5496 {
5497 	struct ice_pf *pf = pci_get_drvdata(pdev);
5498 	pci_ers_result_t result;
5499 	int err;
5500 	u32 reg;
5501 
5502 	err = pci_enable_device_mem(pdev);
5503 	if (err) {
5504 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5505 			err);
5506 		result = PCI_ERS_RESULT_DISCONNECT;
5507 	} else {
5508 		pci_set_master(pdev);
5509 		pci_restore_state(pdev);
5510 		pci_save_state(pdev);
5511 		pci_wake_from_d3(pdev, false);
5512 
5513 		/* Check for life */
5514 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5515 		if (!reg)
5516 			result = PCI_ERS_RESULT_RECOVERED;
5517 		else
5518 			result = PCI_ERS_RESULT_DISCONNECT;
5519 	}
5520 
5521 	return result;
5522 }
5523 
5524 /**
5525  * ice_pci_err_resume - restart operations after PCI error recovery
5526  * @pdev: PCI device information struct
5527  *
5528  * Called to allow the driver to bring things back up after PCI error and/or
5529  * reset recovery have finished
5530  */
5531 static void ice_pci_err_resume(struct pci_dev *pdev)
5532 {
5533 	struct ice_pf *pf = pci_get_drvdata(pdev);
5534 
5535 	if (!pf) {
5536 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5537 			__func__);
5538 		return;
5539 	}
5540 
5541 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5542 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5543 			__func__);
5544 		return;
5545 	}
5546 
5547 	ice_restore_all_vfs_msi_state(pf);
5548 
5549 	ice_do_reset(pf, ICE_RESET_PFR);
5550 	ice_service_task_restart(pf);
5551 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5552 }
5553 
5554 /**
5555  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5556  * @pdev: PCI device information struct
5557  */
5558 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5559 {
5560 	struct ice_pf *pf = pci_get_drvdata(pdev);
5561 
5562 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5563 		ice_service_task_stop(pf);
5564 
5565 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5566 			set_bit(ICE_PFR_REQ, pf->state);
5567 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5568 		}
5569 	}
5570 }
5571 
5572 /**
5573  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5574  * @pdev: PCI device information struct
5575  */
5576 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5577 {
5578 	ice_pci_err_resume(pdev);
5579 }
5580 
5581 /* ice_pci_tbl - PCI Device ID Table
5582  *
5583  * Wildcard entries (PCI_ANY_ID) should come last
5584  * Last entry must be all 0s
5585  *
5586  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5587  *   Class, Class Mask, private data (not used) }
5588  */
5589 static const struct pci_device_id ice_pci_tbl[] = {
5590 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5591 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5592 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5593 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5594 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5595 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5596 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5597 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5598 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5599 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5600 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5601 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5602 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5603 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5604 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5605 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5606 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5607 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5608 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5609 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5610 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5611 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5612 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5613 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5614 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5615 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5616 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5617 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5618 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5619 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5620 	/* required last entry */
5621 	{}
5622 };
5623 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5624 
5625 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5626 
5627 static const struct pci_error_handlers ice_pci_err_handler = {
5628 	.error_detected = ice_pci_err_detected,
5629 	.slot_reset = ice_pci_err_slot_reset,
5630 	.reset_prepare = ice_pci_err_reset_prepare,
5631 	.reset_done = ice_pci_err_reset_done,
5632 	.resume = ice_pci_err_resume
5633 };
5634 
5635 static struct pci_driver ice_driver = {
5636 	.name = KBUILD_MODNAME,
5637 	.id_table = ice_pci_tbl,
5638 	.probe = ice_probe,
5639 	.remove = ice_remove,
5640 #ifdef CONFIG_PM
5641 	.driver.pm = &ice_pm_ops,
5642 #endif /* CONFIG_PM */
5643 	.shutdown = ice_shutdown,
5644 	.sriov_configure = ice_sriov_configure,
5645 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5646 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5647 	.err_handler = &ice_pci_err_handler
5648 };
5649 
5650 /**
5651  * ice_module_init - Driver registration routine
5652  *
5653  * ice_module_init is the first routine called when the driver is
5654  * loaded. All it does is register with the PCI subsystem.
5655  */
5656 static int __init ice_module_init(void)
5657 {
5658 	int status = -ENOMEM;
5659 
5660 	pr_info("%s\n", ice_driver_string);
5661 	pr_info("%s\n", ice_copyright);
5662 
5663 	ice_adv_lnk_speed_maps_init();
5664 
5665 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5666 	if (!ice_wq) {
5667 		pr_err("Failed to create workqueue\n");
5668 		return status;
5669 	}
5670 
5671 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5672 	if (!ice_lag_wq) {
5673 		pr_err("Failed to create LAG workqueue\n");
5674 		goto err_dest_wq;
5675 	}
5676 
5677 	status = pci_register_driver(&ice_driver);
5678 	if (status) {
5679 		pr_err("failed to register PCI driver, err %d\n", status);
5680 		goto err_dest_lag_wq;
5681 	}
5682 
5683 	return 0;
5684 
5685 err_dest_lag_wq:
5686 	destroy_workqueue(ice_lag_wq);
5687 err_dest_wq:
5688 	destroy_workqueue(ice_wq);
5689 	return status;
5690 }
5691 module_init(ice_module_init);
5692 
5693 /**
5694  * ice_module_exit - Driver exit cleanup routine
5695  *
5696  * ice_module_exit is called just before the driver is removed
5697  * from memory.
5698  */
5699 static void __exit ice_module_exit(void)
5700 {
5701 	pci_unregister_driver(&ice_driver);
5702 	destroy_workqueue(ice_wq);
5703 	destroy_workqueue(ice_lag_wq);
5704 	pr_info("module unloaded\n");
5705 }
5706 module_exit(ice_module_exit);
5707 
5708 /**
5709  * ice_set_mac_address - NDO callback to set MAC address
5710  * @netdev: network interface device structure
5711  * @pi: pointer to an address structure
5712  *
5713  * Returns 0 on success, negative on failure
5714  */
5715 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5716 {
5717 	struct ice_netdev_priv *np = netdev_priv(netdev);
5718 	struct ice_vsi *vsi = np->vsi;
5719 	struct ice_pf *pf = vsi->back;
5720 	struct ice_hw *hw = &pf->hw;
5721 	struct sockaddr *addr = pi;
5722 	u8 old_mac[ETH_ALEN];
5723 	u8 flags = 0;
5724 	u8 *mac;
5725 	int err;
5726 
5727 	mac = (u8 *)addr->sa_data;
5728 
5729 	if (!is_valid_ether_addr(mac))
5730 		return -EADDRNOTAVAIL;
5731 
5732 	if (test_bit(ICE_DOWN, pf->state) ||
5733 	    ice_is_reset_in_progress(pf->state)) {
5734 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5735 			   mac);
5736 		return -EBUSY;
5737 	}
5738 
5739 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5740 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5741 			   mac);
5742 		return -EAGAIN;
5743 	}
5744 
5745 	netif_addr_lock_bh(netdev);
5746 	ether_addr_copy(old_mac, netdev->dev_addr);
5747 	/* change the netdev's MAC address */
5748 	eth_hw_addr_set(netdev, mac);
5749 	netif_addr_unlock_bh(netdev);
5750 
5751 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5752 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5753 	if (err && err != -ENOENT) {
5754 		err = -EADDRNOTAVAIL;
5755 		goto err_update_filters;
5756 	}
5757 
5758 	/* Add filter for new MAC. If filter exists, return success */
5759 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5760 	if (err == -EEXIST) {
5761 		/* Although this MAC filter is already present in hardware it's
5762 		 * possible in some cases (e.g. bonding) that dev_addr was
5763 		 * modified outside of the driver and needs to be restored back
5764 		 * to this value.
5765 		 */
5766 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5767 
5768 		return 0;
5769 	} else if (err) {
5770 		/* error if the new filter addition failed */
5771 		err = -EADDRNOTAVAIL;
5772 	}
5773 
5774 err_update_filters:
5775 	if (err) {
5776 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5777 			   mac);
5778 		netif_addr_lock_bh(netdev);
5779 		eth_hw_addr_set(netdev, old_mac);
5780 		netif_addr_unlock_bh(netdev);
5781 		return err;
5782 	}
5783 
5784 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5785 		   netdev->dev_addr);
5786 
5787 	/* write new MAC address to the firmware */
5788 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5789 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5790 	if (err) {
5791 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5792 			   mac, err);
5793 	}
5794 	return 0;
5795 }
5796 
5797 /**
5798  * ice_set_rx_mode - NDO callback to set the netdev filters
5799  * @netdev: network interface device structure
5800  */
5801 static void ice_set_rx_mode(struct net_device *netdev)
5802 {
5803 	struct ice_netdev_priv *np = netdev_priv(netdev);
5804 	struct ice_vsi *vsi = np->vsi;
5805 
5806 	if (!vsi || ice_is_switchdev_running(vsi->back))
5807 		return;
5808 
5809 	/* Set the flags to synchronize filters
5810 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5811 	 * flags
5812 	 */
5813 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5814 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5815 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5816 
5817 	/* schedule our worker thread which will take care of
5818 	 * applying the new filter changes
5819 	 */
5820 	ice_service_task_schedule(vsi->back);
5821 }
5822 
5823 /**
5824  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5825  * @netdev: network interface device structure
5826  * @queue_index: Queue ID
5827  * @maxrate: maximum bandwidth in Mbps
5828  */
5829 static int
5830 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5831 {
5832 	struct ice_netdev_priv *np = netdev_priv(netdev);
5833 	struct ice_vsi *vsi = np->vsi;
5834 	u16 q_handle;
5835 	int status;
5836 	u8 tc;
5837 
5838 	/* Validate maxrate requested is within permitted range */
5839 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5840 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5841 			   maxrate, queue_index);
5842 		return -EINVAL;
5843 	}
5844 
5845 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5846 	tc = ice_dcb_get_tc(vsi, queue_index);
5847 
5848 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5849 	if (!vsi) {
5850 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5851 			   queue_index);
5852 		return -EINVAL;
5853 	}
5854 
5855 	/* Set BW back to default, when user set maxrate to 0 */
5856 	if (!maxrate)
5857 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5858 					       q_handle, ICE_MAX_BW);
5859 	else
5860 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5861 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5862 	if (status)
5863 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5864 			   status);
5865 
5866 	return status;
5867 }
5868 
5869 /**
5870  * ice_fdb_add - add an entry to the hardware database
5871  * @ndm: the input from the stack
5872  * @tb: pointer to array of nladdr (unused)
5873  * @dev: the net device pointer
5874  * @addr: the MAC address entry being added
5875  * @vid: VLAN ID
5876  * @flags: instructions from stack about fdb operation
5877  * @extack: netlink extended ack
5878  */
5879 static int
5880 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5881 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5882 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5883 {
5884 	int err;
5885 
5886 	if (vid) {
5887 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5888 		return -EINVAL;
5889 	}
5890 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5891 		netdev_err(dev, "FDB only supports static addresses\n");
5892 		return -EINVAL;
5893 	}
5894 
5895 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5896 		err = dev_uc_add_excl(dev, addr);
5897 	else if (is_multicast_ether_addr(addr))
5898 		err = dev_mc_add_excl(dev, addr);
5899 	else
5900 		err = -EINVAL;
5901 
5902 	/* Only return duplicate errors if NLM_F_EXCL is set */
5903 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5904 		err = 0;
5905 
5906 	return err;
5907 }
5908 
5909 /**
5910  * ice_fdb_del - delete an entry from the hardware database
5911  * @ndm: the input from the stack
5912  * @tb: pointer to array of nladdr (unused)
5913  * @dev: the net device pointer
5914  * @addr: the MAC address entry being added
5915  * @vid: VLAN ID
5916  * @extack: netlink extended ack
5917  */
5918 static int
5919 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5920 	    struct net_device *dev, const unsigned char *addr,
5921 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5922 {
5923 	int err;
5924 
5925 	if (ndm->ndm_state & NUD_PERMANENT) {
5926 		netdev_err(dev, "FDB only supports static addresses\n");
5927 		return -EINVAL;
5928 	}
5929 
5930 	if (is_unicast_ether_addr(addr))
5931 		err = dev_uc_del(dev, addr);
5932 	else if (is_multicast_ether_addr(addr))
5933 		err = dev_mc_del(dev, addr);
5934 	else
5935 		err = -EINVAL;
5936 
5937 	return err;
5938 }
5939 
5940 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5941 					 NETIF_F_HW_VLAN_CTAG_TX | \
5942 					 NETIF_F_HW_VLAN_STAG_RX | \
5943 					 NETIF_F_HW_VLAN_STAG_TX)
5944 
5945 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5946 					 NETIF_F_HW_VLAN_STAG_RX)
5947 
5948 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
5949 					 NETIF_F_HW_VLAN_STAG_FILTER)
5950 
5951 /**
5952  * ice_fix_features - fix the netdev features flags based on device limitations
5953  * @netdev: ptr to the netdev that flags are being fixed on
5954  * @features: features that need to be checked and possibly fixed
5955  *
5956  * Make sure any fixups are made to features in this callback. This enables the
5957  * driver to not have to check unsupported configurations throughout the driver
5958  * because that's the responsiblity of this callback.
5959  *
5960  * Single VLAN Mode (SVM) Supported Features:
5961  *	NETIF_F_HW_VLAN_CTAG_FILTER
5962  *	NETIF_F_HW_VLAN_CTAG_RX
5963  *	NETIF_F_HW_VLAN_CTAG_TX
5964  *
5965  * Double VLAN Mode (DVM) Supported Features:
5966  *	NETIF_F_HW_VLAN_CTAG_FILTER
5967  *	NETIF_F_HW_VLAN_CTAG_RX
5968  *	NETIF_F_HW_VLAN_CTAG_TX
5969  *
5970  *	NETIF_F_HW_VLAN_STAG_FILTER
5971  *	NETIF_HW_VLAN_STAG_RX
5972  *	NETIF_HW_VLAN_STAG_TX
5973  *
5974  * Features that need fixing:
5975  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5976  *	These are mutually exlusive as the VSI context cannot support multiple
5977  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
5978  *	is not done, then default to clearing the requested STAG offload
5979  *	settings.
5980  *
5981  *	All supported filtering has to be enabled or disabled together. For
5982  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5983  *	together. If this is not done, then default to VLAN filtering disabled.
5984  *	These are mutually exclusive as there is currently no way to
5985  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5986  *	prune rules.
5987  */
5988 static netdev_features_t
5989 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5990 {
5991 	struct ice_netdev_priv *np = netdev_priv(netdev);
5992 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5993 	bool cur_ctag, cur_stag, req_ctag, req_stag;
5994 
5995 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5996 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5997 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5998 
5999 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6000 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6001 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6002 
6003 	if (req_vlan_fltr != cur_vlan_fltr) {
6004 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6005 			if (req_ctag && req_stag) {
6006 				features |= NETIF_VLAN_FILTERING_FEATURES;
6007 			} else if (!req_ctag && !req_stag) {
6008 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6009 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6010 				   (!cur_stag && req_stag && !cur_ctag)) {
6011 				features |= NETIF_VLAN_FILTERING_FEATURES;
6012 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6013 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6014 				   (cur_stag && !req_stag && cur_ctag)) {
6015 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6016 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6017 			}
6018 		} else {
6019 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6020 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6021 
6022 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6023 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6024 		}
6025 	}
6026 
6027 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6028 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6029 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6030 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6031 			      NETIF_F_HW_VLAN_STAG_TX);
6032 	}
6033 
6034 	if (!(netdev->features & NETIF_F_RXFCS) &&
6035 	    (features & NETIF_F_RXFCS) &&
6036 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6037 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6038 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6039 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6040 	}
6041 
6042 	return features;
6043 }
6044 
6045 /**
6046  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6047  * @vsi: PF's VSI
6048  * @features: features used to determine VLAN offload settings
6049  *
6050  * First, determine the vlan_ethertype based on the VLAN offload bits in
6051  * features. Then determine if stripping and insertion should be enabled or
6052  * disabled. Finally enable or disable VLAN stripping and insertion.
6053  */
6054 static int
6055 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6056 {
6057 	bool enable_stripping = true, enable_insertion = true;
6058 	struct ice_vsi_vlan_ops *vlan_ops;
6059 	int strip_err = 0, insert_err = 0;
6060 	u16 vlan_ethertype = 0;
6061 
6062 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6063 
6064 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6065 		vlan_ethertype = ETH_P_8021AD;
6066 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6067 		vlan_ethertype = ETH_P_8021Q;
6068 
6069 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6070 		enable_stripping = false;
6071 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6072 		enable_insertion = false;
6073 
6074 	if (enable_stripping)
6075 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6076 	else
6077 		strip_err = vlan_ops->dis_stripping(vsi);
6078 
6079 	if (enable_insertion)
6080 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6081 	else
6082 		insert_err = vlan_ops->dis_insertion(vsi);
6083 
6084 	if (strip_err || insert_err)
6085 		return -EIO;
6086 
6087 	return 0;
6088 }
6089 
6090 /**
6091  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6092  * @vsi: PF's VSI
6093  * @features: features used to determine VLAN filtering settings
6094  *
6095  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6096  * features.
6097  */
6098 static int
6099 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6100 {
6101 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6102 	int err = 0;
6103 
6104 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6105 	 * if either bit is set
6106 	 */
6107 	if (features &
6108 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6109 		err = vlan_ops->ena_rx_filtering(vsi);
6110 	else
6111 		err = vlan_ops->dis_rx_filtering(vsi);
6112 
6113 	return err;
6114 }
6115 
6116 /**
6117  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6118  * @netdev: ptr to the netdev being adjusted
6119  * @features: the feature set that the stack is suggesting
6120  *
6121  * Only update VLAN settings if the requested_vlan_features are different than
6122  * the current_vlan_features.
6123  */
6124 static int
6125 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6126 {
6127 	netdev_features_t current_vlan_features, requested_vlan_features;
6128 	struct ice_netdev_priv *np = netdev_priv(netdev);
6129 	struct ice_vsi *vsi = np->vsi;
6130 	int err;
6131 
6132 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6133 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6134 	if (current_vlan_features ^ requested_vlan_features) {
6135 		if ((features & NETIF_F_RXFCS) &&
6136 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6137 			dev_err(ice_pf_to_dev(vsi->back),
6138 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6139 			return -EIO;
6140 		}
6141 
6142 		err = ice_set_vlan_offload_features(vsi, features);
6143 		if (err)
6144 			return err;
6145 	}
6146 
6147 	current_vlan_features = netdev->features &
6148 		NETIF_VLAN_FILTERING_FEATURES;
6149 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6150 	if (current_vlan_features ^ requested_vlan_features) {
6151 		err = ice_set_vlan_filtering_features(vsi, features);
6152 		if (err)
6153 			return err;
6154 	}
6155 
6156 	return 0;
6157 }
6158 
6159 /**
6160  * ice_set_loopback - turn on/off loopback mode on underlying PF
6161  * @vsi: ptr to VSI
6162  * @ena: flag to indicate the on/off setting
6163  */
6164 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6165 {
6166 	bool if_running = netif_running(vsi->netdev);
6167 	int ret;
6168 
6169 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6170 		ret = ice_down(vsi);
6171 		if (ret) {
6172 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6173 			return ret;
6174 		}
6175 	}
6176 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6177 	if (ret)
6178 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6179 	if (if_running)
6180 		ret = ice_up(vsi);
6181 
6182 	return ret;
6183 }
6184 
6185 /**
6186  * ice_set_features - set the netdev feature flags
6187  * @netdev: ptr to the netdev being adjusted
6188  * @features: the feature set that the stack is suggesting
6189  */
6190 static int
6191 ice_set_features(struct net_device *netdev, netdev_features_t features)
6192 {
6193 	netdev_features_t changed = netdev->features ^ features;
6194 	struct ice_netdev_priv *np = netdev_priv(netdev);
6195 	struct ice_vsi *vsi = np->vsi;
6196 	struct ice_pf *pf = vsi->back;
6197 	int ret = 0;
6198 
6199 	/* Don't set any netdev advanced features with device in Safe Mode */
6200 	if (ice_is_safe_mode(pf)) {
6201 		dev_err(ice_pf_to_dev(pf),
6202 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6203 		return ret;
6204 	}
6205 
6206 	/* Do not change setting during reset */
6207 	if (ice_is_reset_in_progress(pf->state)) {
6208 		dev_err(ice_pf_to_dev(pf),
6209 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6210 		return -EBUSY;
6211 	}
6212 
6213 	/* Multiple features can be changed in one call so keep features in
6214 	 * separate if/else statements to guarantee each feature is checked
6215 	 */
6216 	if (changed & NETIF_F_RXHASH)
6217 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6218 
6219 	ret = ice_set_vlan_features(netdev, features);
6220 	if (ret)
6221 		return ret;
6222 
6223 	/* Turn on receive of FCS aka CRC, and after setting this
6224 	 * flag the packet data will have the 4 byte CRC appended
6225 	 */
6226 	if (changed & NETIF_F_RXFCS) {
6227 		if ((features & NETIF_F_RXFCS) &&
6228 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6229 			dev_err(ice_pf_to_dev(vsi->back),
6230 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6231 			return -EIO;
6232 		}
6233 
6234 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6235 		ret = ice_down_up(vsi);
6236 		if (ret)
6237 			return ret;
6238 	}
6239 
6240 	if (changed & NETIF_F_NTUPLE) {
6241 		bool ena = !!(features & NETIF_F_NTUPLE);
6242 
6243 		ice_vsi_manage_fdir(vsi, ena);
6244 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6245 	}
6246 
6247 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6248 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6249 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6250 		return -EACCES;
6251 	}
6252 
6253 	if (changed & NETIF_F_HW_TC) {
6254 		bool ena = !!(features & NETIF_F_HW_TC);
6255 
6256 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6257 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6258 	}
6259 
6260 	if (changed & NETIF_F_LOOPBACK)
6261 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6262 
6263 	return ret;
6264 }
6265 
6266 /**
6267  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6268  * @vsi: VSI to setup VLAN properties for
6269  */
6270 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6271 {
6272 	int err;
6273 
6274 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6275 	if (err)
6276 		return err;
6277 
6278 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6279 	if (err)
6280 		return err;
6281 
6282 	return ice_vsi_add_vlan_zero(vsi);
6283 }
6284 
6285 /**
6286  * ice_vsi_cfg_lan - Setup the VSI lan related config
6287  * @vsi: the VSI being configured
6288  *
6289  * Return 0 on success and negative value on error
6290  */
6291 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6292 {
6293 	int err;
6294 
6295 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6296 		ice_set_rx_mode(vsi->netdev);
6297 
6298 		err = ice_vsi_vlan_setup(vsi);
6299 		if (err)
6300 			return err;
6301 	}
6302 	ice_vsi_cfg_dcb_rings(vsi);
6303 
6304 	err = ice_vsi_cfg_lan_txqs(vsi);
6305 	if (!err && ice_is_xdp_ena_vsi(vsi))
6306 		err = ice_vsi_cfg_xdp_txqs(vsi);
6307 	if (!err)
6308 		err = ice_vsi_cfg_rxqs(vsi);
6309 
6310 	return err;
6311 }
6312 
6313 /* THEORY OF MODERATION:
6314  * The ice driver hardware works differently than the hardware that DIMLIB was
6315  * originally made for. ice hardware doesn't have packet count limits that
6316  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6317  * which is hard-coded to a limit of 250,000 ints/second.
6318  * If not using dynamic moderation, the INTRL value can be modified
6319  * by ethtool rx-usecs-high.
6320  */
6321 struct ice_dim {
6322 	/* the throttle rate for interrupts, basically worst case delay before
6323 	 * an initial interrupt fires, value is stored in microseconds.
6324 	 */
6325 	u16 itr;
6326 };
6327 
6328 /* Make a different profile for Rx that doesn't allow quite so aggressive
6329  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6330  * second.
6331  */
6332 static const struct ice_dim rx_profile[] = {
6333 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6334 	{8},    /* 125,000 ints/s */
6335 	{16},   /*  62,500 ints/s */
6336 	{62},   /*  16,129 ints/s */
6337 	{126}   /*   7,936 ints/s */
6338 };
6339 
6340 /* The transmit profile, which has the same sorts of values
6341  * as the previous struct
6342  */
6343 static const struct ice_dim tx_profile[] = {
6344 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6345 	{8},    /* 125,000 ints/s */
6346 	{40},   /*  16,125 ints/s */
6347 	{128},  /*   7,812 ints/s */
6348 	{256}   /*   3,906 ints/s */
6349 };
6350 
6351 static void ice_tx_dim_work(struct work_struct *work)
6352 {
6353 	struct ice_ring_container *rc;
6354 	struct dim *dim;
6355 	u16 itr;
6356 
6357 	dim = container_of(work, struct dim, work);
6358 	rc = dim->priv;
6359 
6360 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6361 
6362 	/* look up the values in our local table */
6363 	itr = tx_profile[dim->profile_ix].itr;
6364 
6365 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6366 	ice_write_itr(rc, itr);
6367 
6368 	dim->state = DIM_START_MEASURE;
6369 }
6370 
6371 static void ice_rx_dim_work(struct work_struct *work)
6372 {
6373 	struct ice_ring_container *rc;
6374 	struct dim *dim;
6375 	u16 itr;
6376 
6377 	dim = container_of(work, struct dim, work);
6378 	rc = dim->priv;
6379 
6380 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6381 
6382 	/* look up the values in our local table */
6383 	itr = rx_profile[dim->profile_ix].itr;
6384 
6385 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6386 	ice_write_itr(rc, itr);
6387 
6388 	dim->state = DIM_START_MEASURE;
6389 }
6390 
6391 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6392 
6393 /**
6394  * ice_init_moderation - set up interrupt moderation
6395  * @q_vector: the vector containing rings to be configured
6396  *
6397  * Set up interrupt moderation registers, with the intent to do the right thing
6398  * when called from reset or from probe, and whether or not dynamic moderation
6399  * is enabled or not. Take special care to write all the registers in both
6400  * dynamic moderation mode or not in order to make sure hardware is in a known
6401  * state.
6402  */
6403 static void ice_init_moderation(struct ice_q_vector *q_vector)
6404 {
6405 	struct ice_ring_container *rc;
6406 	bool tx_dynamic, rx_dynamic;
6407 
6408 	rc = &q_vector->tx;
6409 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6410 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6411 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6412 	rc->dim.priv = rc;
6413 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6414 
6415 	/* set the initial TX ITR to match the above */
6416 	ice_write_itr(rc, tx_dynamic ?
6417 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6418 
6419 	rc = &q_vector->rx;
6420 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6421 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6422 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6423 	rc->dim.priv = rc;
6424 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6425 
6426 	/* set the initial RX ITR to match the above */
6427 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6428 				       rc->itr_setting);
6429 
6430 	ice_set_q_vector_intrl(q_vector);
6431 }
6432 
6433 /**
6434  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6435  * @vsi: the VSI being configured
6436  */
6437 static void ice_napi_enable_all(struct ice_vsi *vsi)
6438 {
6439 	int q_idx;
6440 
6441 	if (!vsi->netdev)
6442 		return;
6443 
6444 	ice_for_each_q_vector(vsi, q_idx) {
6445 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6446 
6447 		ice_init_moderation(q_vector);
6448 
6449 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6450 			napi_enable(&q_vector->napi);
6451 	}
6452 }
6453 
6454 /**
6455  * ice_up_complete - Finish the last steps of bringing up a connection
6456  * @vsi: The VSI being configured
6457  *
6458  * Return 0 on success and negative value on error
6459  */
6460 static int ice_up_complete(struct ice_vsi *vsi)
6461 {
6462 	struct ice_pf *pf = vsi->back;
6463 	int err;
6464 
6465 	ice_vsi_cfg_msix(vsi);
6466 
6467 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6468 	 * Tx queue group list was configured and the context bits were
6469 	 * programmed using ice_vsi_cfg_txqs
6470 	 */
6471 	err = ice_vsi_start_all_rx_rings(vsi);
6472 	if (err)
6473 		return err;
6474 
6475 	clear_bit(ICE_VSI_DOWN, vsi->state);
6476 	ice_napi_enable_all(vsi);
6477 	ice_vsi_ena_irq(vsi);
6478 
6479 	if (vsi->port_info &&
6480 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6481 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6482 		ice_print_link_msg(vsi, true);
6483 		netif_tx_start_all_queues(vsi->netdev);
6484 		netif_carrier_on(vsi->netdev);
6485 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6486 	}
6487 
6488 	/* Perform an initial read of the statistics registers now to
6489 	 * set the baseline so counters are ready when interface is up
6490 	 */
6491 	ice_update_eth_stats(vsi);
6492 
6493 	if (vsi->type == ICE_VSI_PF)
6494 		ice_service_task_schedule(pf);
6495 
6496 	return 0;
6497 }
6498 
6499 /**
6500  * ice_up - Bring the connection back up after being down
6501  * @vsi: VSI being configured
6502  */
6503 int ice_up(struct ice_vsi *vsi)
6504 {
6505 	int err;
6506 
6507 	err = ice_vsi_cfg_lan(vsi);
6508 	if (!err)
6509 		err = ice_up_complete(vsi);
6510 
6511 	return err;
6512 }
6513 
6514 /**
6515  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6516  * @syncp: pointer to u64_stats_sync
6517  * @stats: stats that pkts and bytes count will be taken from
6518  * @pkts: packets stats counter
6519  * @bytes: bytes stats counter
6520  *
6521  * This function fetches stats from the ring considering the atomic operations
6522  * that needs to be performed to read u64 values in 32 bit machine.
6523  */
6524 void
6525 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6526 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6527 {
6528 	unsigned int start;
6529 
6530 	do {
6531 		start = u64_stats_fetch_begin(syncp);
6532 		*pkts = stats.pkts;
6533 		*bytes = stats.bytes;
6534 	} while (u64_stats_fetch_retry(syncp, start));
6535 }
6536 
6537 /**
6538  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6539  * @vsi: the VSI to be updated
6540  * @vsi_stats: the stats struct to be updated
6541  * @rings: rings to work on
6542  * @count: number of rings
6543  */
6544 static void
6545 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6546 			     struct rtnl_link_stats64 *vsi_stats,
6547 			     struct ice_tx_ring **rings, u16 count)
6548 {
6549 	u16 i;
6550 
6551 	for (i = 0; i < count; i++) {
6552 		struct ice_tx_ring *ring;
6553 		u64 pkts = 0, bytes = 0;
6554 
6555 		ring = READ_ONCE(rings[i]);
6556 		if (!ring || !ring->ring_stats)
6557 			continue;
6558 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6559 					     ring->ring_stats->stats, &pkts,
6560 					     &bytes);
6561 		vsi_stats->tx_packets += pkts;
6562 		vsi_stats->tx_bytes += bytes;
6563 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6564 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6565 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6566 	}
6567 }
6568 
6569 /**
6570  * ice_update_vsi_ring_stats - Update VSI stats counters
6571  * @vsi: the VSI to be updated
6572  */
6573 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6574 {
6575 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6576 	struct rtnl_link_stats64 *vsi_stats;
6577 	u64 pkts, bytes;
6578 	int i;
6579 
6580 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6581 	if (!vsi_stats)
6582 		return;
6583 
6584 	/* reset non-netdev (extended) stats */
6585 	vsi->tx_restart = 0;
6586 	vsi->tx_busy = 0;
6587 	vsi->tx_linearize = 0;
6588 	vsi->rx_buf_failed = 0;
6589 	vsi->rx_page_failed = 0;
6590 
6591 	rcu_read_lock();
6592 
6593 	/* update Tx rings counters */
6594 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6595 				     vsi->num_txq);
6596 
6597 	/* update Rx rings counters */
6598 	ice_for_each_rxq(vsi, i) {
6599 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6600 		struct ice_ring_stats *ring_stats;
6601 
6602 		ring_stats = ring->ring_stats;
6603 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6604 					     ring_stats->stats, &pkts,
6605 					     &bytes);
6606 		vsi_stats->rx_packets += pkts;
6607 		vsi_stats->rx_bytes += bytes;
6608 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6609 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6610 	}
6611 
6612 	/* update XDP Tx rings counters */
6613 	if (ice_is_xdp_ena_vsi(vsi))
6614 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6615 					     vsi->num_xdp_txq);
6616 
6617 	rcu_read_unlock();
6618 
6619 	net_stats = &vsi->net_stats;
6620 	stats_prev = &vsi->net_stats_prev;
6621 
6622 	/* clear prev counters after reset */
6623 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6624 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6625 		stats_prev->tx_packets = 0;
6626 		stats_prev->tx_bytes = 0;
6627 		stats_prev->rx_packets = 0;
6628 		stats_prev->rx_bytes = 0;
6629 	}
6630 
6631 	/* update netdev counters */
6632 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6633 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6634 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6635 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6636 
6637 	stats_prev->tx_packets = vsi_stats->tx_packets;
6638 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6639 	stats_prev->rx_packets = vsi_stats->rx_packets;
6640 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6641 
6642 	kfree(vsi_stats);
6643 }
6644 
6645 /**
6646  * ice_update_vsi_stats - Update VSI stats counters
6647  * @vsi: the VSI to be updated
6648  */
6649 void ice_update_vsi_stats(struct ice_vsi *vsi)
6650 {
6651 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6652 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6653 	struct ice_pf *pf = vsi->back;
6654 
6655 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6656 	    test_bit(ICE_CFG_BUSY, pf->state))
6657 		return;
6658 
6659 	/* get stats as recorded by Tx/Rx rings */
6660 	ice_update_vsi_ring_stats(vsi);
6661 
6662 	/* get VSI stats as recorded by the hardware */
6663 	ice_update_eth_stats(vsi);
6664 
6665 	cur_ns->tx_errors = cur_es->tx_errors;
6666 	cur_ns->rx_dropped = cur_es->rx_discards;
6667 	cur_ns->tx_dropped = cur_es->tx_discards;
6668 	cur_ns->multicast = cur_es->rx_multicast;
6669 
6670 	/* update some more netdev stats if this is main VSI */
6671 	if (vsi->type == ICE_VSI_PF) {
6672 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6673 		cur_ns->rx_errors = pf->stats.crc_errors +
6674 				    pf->stats.illegal_bytes +
6675 				    pf->stats.rx_len_errors +
6676 				    pf->stats.rx_undersize +
6677 				    pf->hw_csum_rx_error +
6678 				    pf->stats.rx_jabber +
6679 				    pf->stats.rx_fragments +
6680 				    pf->stats.rx_oversize;
6681 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6682 		/* record drops from the port level */
6683 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6684 	}
6685 }
6686 
6687 /**
6688  * ice_update_pf_stats - Update PF port stats counters
6689  * @pf: PF whose stats needs to be updated
6690  */
6691 void ice_update_pf_stats(struct ice_pf *pf)
6692 {
6693 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6694 	struct ice_hw *hw = &pf->hw;
6695 	u16 fd_ctr_base;
6696 	u8 port;
6697 
6698 	port = hw->port_info->lport;
6699 	prev_ps = &pf->stats_prev;
6700 	cur_ps = &pf->stats;
6701 
6702 	if (ice_is_reset_in_progress(pf->state))
6703 		pf->stat_prev_loaded = false;
6704 
6705 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6706 			  &prev_ps->eth.rx_bytes,
6707 			  &cur_ps->eth.rx_bytes);
6708 
6709 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6710 			  &prev_ps->eth.rx_unicast,
6711 			  &cur_ps->eth.rx_unicast);
6712 
6713 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6714 			  &prev_ps->eth.rx_multicast,
6715 			  &cur_ps->eth.rx_multicast);
6716 
6717 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6718 			  &prev_ps->eth.rx_broadcast,
6719 			  &cur_ps->eth.rx_broadcast);
6720 
6721 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6722 			  &prev_ps->eth.rx_discards,
6723 			  &cur_ps->eth.rx_discards);
6724 
6725 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6726 			  &prev_ps->eth.tx_bytes,
6727 			  &cur_ps->eth.tx_bytes);
6728 
6729 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6730 			  &prev_ps->eth.tx_unicast,
6731 			  &cur_ps->eth.tx_unicast);
6732 
6733 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6734 			  &prev_ps->eth.tx_multicast,
6735 			  &cur_ps->eth.tx_multicast);
6736 
6737 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6738 			  &prev_ps->eth.tx_broadcast,
6739 			  &cur_ps->eth.tx_broadcast);
6740 
6741 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6742 			  &prev_ps->tx_dropped_link_down,
6743 			  &cur_ps->tx_dropped_link_down);
6744 
6745 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6746 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6747 
6748 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6749 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6750 
6751 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6752 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6753 
6754 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6755 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6756 
6757 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6758 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6759 
6760 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6761 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6762 
6763 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6764 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6765 
6766 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6767 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6768 
6769 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6770 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6771 
6772 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6773 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6774 
6775 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6776 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6777 
6778 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6779 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6780 
6781 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6782 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6783 
6784 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6785 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6786 
6787 	fd_ctr_base = hw->fd_ctr_base;
6788 
6789 	ice_stat_update40(hw,
6790 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6791 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6792 			  &cur_ps->fd_sb_match);
6793 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6794 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6795 
6796 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6797 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6798 
6799 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6800 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6801 
6802 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6803 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6804 
6805 	ice_update_dcb_stats(pf);
6806 
6807 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6808 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6809 
6810 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6811 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6812 
6813 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6814 			  &prev_ps->mac_local_faults,
6815 			  &cur_ps->mac_local_faults);
6816 
6817 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6818 			  &prev_ps->mac_remote_faults,
6819 			  &cur_ps->mac_remote_faults);
6820 
6821 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6822 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6823 
6824 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6825 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6826 
6827 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6828 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6829 
6830 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6831 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6832 
6833 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6834 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6835 
6836 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6837 
6838 	pf->stat_prev_loaded = true;
6839 }
6840 
6841 /**
6842  * ice_get_stats64 - get statistics for network device structure
6843  * @netdev: network interface device structure
6844  * @stats: main device statistics structure
6845  */
6846 static
6847 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6848 {
6849 	struct ice_netdev_priv *np = netdev_priv(netdev);
6850 	struct rtnl_link_stats64 *vsi_stats;
6851 	struct ice_vsi *vsi = np->vsi;
6852 
6853 	vsi_stats = &vsi->net_stats;
6854 
6855 	if (!vsi->num_txq || !vsi->num_rxq)
6856 		return;
6857 
6858 	/* netdev packet/byte stats come from ring counter. These are obtained
6859 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6860 	 * But, only call the update routine and read the registers if VSI is
6861 	 * not down.
6862 	 */
6863 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6864 		ice_update_vsi_ring_stats(vsi);
6865 	stats->tx_packets = vsi_stats->tx_packets;
6866 	stats->tx_bytes = vsi_stats->tx_bytes;
6867 	stats->rx_packets = vsi_stats->rx_packets;
6868 	stats->rx_bytes = vsi_stats->rx_bytes;
6869 
6870 	/* The rest of the stats can be read from the hardware but instead we
6871 	 * just return values that the watchdog task has already obtained from
6872 	 * the hardware.
6873 	 */
6874 	stats->multicast = vsi_stats->multicast;
6875 	stats->tx_errors = vsi_stats->tx_errors;
6876 	stats->tx_dropped = vsi_stats->tx_dropped;
6877 	stats->rx_errors = vsi_stats->rx_errors;
6878 	stats->rx_dropped = vsi_stats->rx_dropped;
6879 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6880 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6881 }
6882 
6883 /**
6884  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6885  * @vsi: VSI having NAPI disabled
6886  */
6887 static void ice_napi_disable_all(struct ice_vsi *vsi)
6888 {
6889 	int q_idx;
6890 
6891 	if (!vsi->netdev)
6892 		return;
6893 
6894 	ice_for_each_q_vector(vsi, q_idx) {
6895 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6896 
6897 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6898 			napi_disable(&q_vector->napi);
6899 
6900 		cancel_work_sync(&q_vector->tx.dim.work);
6901 		cancel_work_sync(&q_vector->rx.dim.work);
6902 	}
6903 }
6904 
6905 /**
6906  * ice_down - Shutdown the connection
6907  * @vsi: The VSI being stopped
6908  *
6909  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6910  */
6911 int ice_down(struct ice_vsi *vsi)
6912 {
6913 	int i, tx_err, rx_err, vlan_err = 0;
6914 
6915 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6916 
6917 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6918 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6919 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6920 		netif_carrier_off(vsi->netdev);
6921 		netif_tx_disable(vsi->netdev);
6922 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6923 		ice_eswitch_stop_all_tx_queues(vsi->back);
6924 	}
6925 
6926 	ice_vsi_dis_irq(vsi);
6927 
6928 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6929 	if (tx_err)
6930 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6931 			   vsi->vsi_num, tx_err);
6932 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6933 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6934 		if (tx_err)
6935 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6936 				   vsi->vsi_num, tx_err);
6937 	}
6938 
6939 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6940 	if (rx_err)
6941 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6942 			   vsi->vsi_num, rx_err);
6943 
6944 	ice_napi_disable_all(vsi);
6945 
6946 	ice_for_each_txq(vsi, i)
6947 		ice_clean_tx_ring(vsi->tx_rings[i]);
6948 
6949 	if (ice_is_xdp_ena_vsi(vsi))
6950 		ice_for_each_xdp_txq(vsi, i)
6951 			ice_clean_tx_ring(vsi->xdp_rings[i]);
6952 
6953 	ice_for_each_rxq(vsi, i)
6954 		ice_clean_rx_ring(vsi->rx_rings[i]);
6955 
6956 	if (tx_err || rx_err || vlan_err) {
6957 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6958 			   vsi->vsi_num, vsi->vsw->sw_id);
6959 		return -EIO;
6960 	}
6961 
6962 	return 0;
6963 }
6964 
6965 /**
6966  * ice_down_up - shutdown the VSI connection and bring it up
6967  * @vsi: the VSI to be reconnected
6968  */
6969 int ice_down_up(struct ice_vsi *vsi)
6970 {
6971 	int ret;
6972 
6973 	/* if DOWN already set, nothing to do */
6974 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6975 		return 0;
6976 
6977 	ret = ice_down(vsi);
6978 	if (ret)
6979 		return ret;
6980 
6981 	ret = ice_up(vsi);
6982 	if (ret) {
6983 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6984 		return ret;
6985 	}
6986 
6987 	return 0;
6988 }
6989 
6990 /**
6991  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6992  * @vsi: VSI having resources allocated
6993  *
6994  * Return 0 on success, negative on failure
6995  */
6996 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6997 {
6998 	int i, err = 0;
6999 
7000 	if (!vsi->num_txq) {
7001 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7002 			vsi->vsi_num);
7003 		return -EINVAL;
7004 	}
7005 
7006 	ice_for_each_txq(vsi, i) {
7007 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7008 
7009 		if (!ring)
7010 			return -EINVAL;
7011 
7012 		if (vsi->netdev)
7013 			ring->netdev = vsi->netdev;
7014 		err = ice_setup_tx_ring(ring);
7015 		if (err)
7016 			break;
7017 	}
7018 
7019 	return err;
7020 }
7021 
7022 /**
7023  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7024  * @vsi: VSI having resources allocated
7025  *
7026  * Return 0 on success, negative on failure
7027  */
7028 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7029 {
7030 	int i, err = 0;
7031 
7032 	if (!vsi->num_rxq) {
7033 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7034 			vsi->vsi_num);
7035 		return -EINVAL;
7036 	}
7037 
7038 	ice_for_each_rxq(vsi, i) {
7039 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7040 
7041 		if (!ring)
7042 			return -EINVAL;
7043 
7044 		if (vsi->netdev)
7045 			ring->netdev = vsi->netdev;
7046 		err = ice_setup_rx_ring(ring);
7047 		if (err)
7048 			break;
7049 	}
7050 
7051 	return err;
7052 }
7053 
7054 /**
7055  * ice_vsi_open_ctrl - open control VSI for use
7056  * @vsi: the VSI to open
7057  *
7058  * Initialization of the Control VSI
7059  *
7060  * Returns 0 on success, negative value on error
7061  */
7062 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7063 {
7064 	char int_name[ICE_INT_NAME_STR_LEN];
7065 	struct ice_pf *pf = vsi->back;
7066 	struct device *dev;
7067 	int err;
7068 
7069 	dev = ice_pf_to_dev(pf);
7070 	/* allocate descriptors */
7071 	err = ice_vsi_setup_tx_rings(vsi);
7072 	if (err)
7073 		goto err_setup_tx;
7074 
7075 	err = ice_vsi_setup_rx_rings(vsi);
7076 	if (err)
7077 		goto err_setup_rx;
7078 
7079 	err = ice_vsi_cfg_lan(vsi);
7080 	if (err)
7081 		goto err_setup_rx;
7082 
7083 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7084 		 dev_driver_string(dev), dev_name(dev));
7085 	err = ice_vsi_req_irq_msix(vsi, int_name);
7086 	if (err)
7087 		goto err_setup_rx;
7088 
7089 	ice_vsi_cfg_msix(vsi);
7090 
7091 	err = ice_vsi_start_all_rx_rings(vsi);
7092 	if (err)
7093 		goto err_up_complete;
7094 
7095 	clear_bit(ICE_VSI_DOWN, vsi->state);
7096 	ice_vsi_ena_irq(vsi);
7097 
7098 	return 0;
7099 
7100 err_up_complete:
7101 	ice_down(vsi);
7102 err_setup_rx:
7103 	ice_vsi_free_rx_rings(vsi);
7104 err_setup_tx:
7105 	ice_vsi_free_tx_rings(vsi);
7106 
7107 	return err;
7108 }
7109 
7110 /**
7111  * ice_vsi_open - Called when a network interface is made active
7112  * @vsi: the VSI to open
7113  *
7114  * Initialization of the VSI
7115  *
7116  * Returns 0 on success, negative value on error
7117  */
7118 int ice_vsi_open(struct ice_vsi *vsi)
7119 {
7120 	char int_name[ICE_INT_NAME_STR_LEN];
7121 	struct ice_pf *pf = vsi->back;
7122 	int err;
7123 
7124 	/* allocate descriptors */
7125 	err = ice_vsi_setup_tx_rings(vsi);
7126 	if (err)
7127 		goto err_setup_tx;
7128 
7129 	err = ice_vsi_setup_rx_rings(vsi);
7130 	if (err)
7131 		goto err_setup_rx;
7132 
7133 	err = ice_vsi_cfg_lan(vsi);
7134 	if (err)
7135 		goto err_setup_rx;
7136 
7137 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7138 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7139 	err = ice_vsi_req_irq_msix(vsi, int_name);
7140 	if (err)
7141 		goto err_setup_rx;
7142 
7143 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7144 
7145 	if (vsi->type == ICE_VSI_PF) {
7146 		/* Notify the stack of the actual queue counts. */
7147 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7148 		if (err)
7149 			goto err_set_qs;
7150 
7151 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7152 		if (err)
7153 			goto err_set_qs;
7154 	}
7155 
7156 	err = ice_up_complete(vsi);
7157 	if (err)
7158 		goto err_up_complete;
7159 
7160 	return 0;
7161 
7162 err_up_complete:
7163 	ice_down(vsi);
7164 err_set_qs:
7165 	ice_vsi_free_irq(vsi);
7166 err_setup_rx:
7167 	ice_vsi_free_rx_rings(vsi);
7168 err_setup_tx:
7169 	ice_vsi_free_tx_rings(vsi);
7170 
7171 	return err;
7172 }
7173 
7174 /**
7175  * ice_vsi_release_all - Delete all VSIs
7176  * @pf: PF from which all VSIs are being removed
7177  */
7178 static void ice_vsi_release_all(struct ice_pf *pf)
7179 {
7180 	int err, i;
7181 
7182 	if (!pf->vsi)
7183 		return;
7184 
7185 	ice_for_each_vsi(pf, i) {
7186 		if (!pf->vsi[i])
7187 			continue;
7188 
7189 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7190 			continue;
7191 
7192 		err = ice_vsi_release(pf->vsi[i]);
7193 		if (err)
7194 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7195 				i, err, pf->vsi[i]->vsi_num);
7196 	}
7197 }
7198 
7199 /**
7200  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7201  * @pf: pointer to the PF instance
7202  * @type: VSI type to rebuild
7203  *
7204  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7205  */
7206 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7207 {
7208 	struct device *dev = ice_pf_to_dev(pf);
7209 	int i, err;
7210 
7211 	ice_for_each_vsi(pf, i) {
7212 		struct ice_vsi *vsi = pf->vsi[i];
7213 
7214 		if (!vsi || vsi->type != type)
7215 			continue;
7216 
7217 		/* rebuild the VSI */
7218 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7219 		if (err) {
7220 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7221 				err, vsi->idx, ice_vsi_type_str(type));
7222 			return err;
7223 		}
7224 
7225 		/* replay filters for the VSI */
7226 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7227 		if (err) {
7228 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7229 				err, vsi->idx, ice_vsi_type_str(type));
7230 			return err;
7231 		}
7232 
7233 		/* Re-map HW VSI number, using VSI handle that has been
7234 		 * previously validated in ice_replay_vsi() call above
7235 		 */
7236 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7237 
7238 		/* enable the VSI */
7239 		err = ice_ena_vsi(vsi, false);
7240 		if (err) {
7241 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7242 				err, vsi->idx, ice_vsi_type_str(type));
7243 			return err;
7244 		}
7245 
7246 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7247 			 ice_vsi_type_str(type));
7248 	}
7249 
7250 	return 0;
7251 }
7252 
7253 /**
7254  * ice_update_pf_netdev_link - Update PF netdev link status
7255  * @pf: pointer to the PF instance
7256  */
7257 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7258 {
7259 	bool link_up;
7260 	int i;
7261 
7262 	ice_for_each_vsi(pf, i) {
7263 		struct ice_vsi *vsi = pf->vsi[i];
7264 
7265 		if (!vsi || vsi->type != ICE_VSI_PF)
7266 			return;
7267 
7268 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7269 		if (link_up) {
7270 			netif_carrier_on(pf->vsi[i]->netdev);
7271 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7272 		} else {
7273 			netif_carrier_off(pf->vsi[i]->netdev);
7274 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7275 		}
7276 	}
7277 }
7278 
7279 /**
7280  * ice_rebuild - rebuild after reset
7281  * @pf: PF to rebuild
7282  * @reset_type: type of reset
7283  *
7284  * Do not rebuild VF VSI in this flow because that is already handled via
7285  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7286  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7287  * to reset/rebuild all the VF VSI twice.
7288  */
7289 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7290 {
7291 	struct device *dev = ice_pf_to_dev(pf);
7292 	struct ice_hw *hw = &pf->hw;
7293 	bool dvm;
7294 	int err;
7295 
7296 	if (test_bit(ICE_DOWN, pf->state))
7297 		goto clear_recovery;
7298 
7299 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7300 
7301 #define ICE_EMP_RESET_SLEEP_MS 5000
7302 	if (reset_type == ICE_RESET_EMPR) {
7303 		/* If an EMP reset has occurred, any previously pending flash
7304 		 * update will have completed. We no longer know whether or
7305 		 * not the NVM update EMP reset is restricted.
7306 		 */
7307 		pf->fw_emp_reset_disabled = false;
7308 
7309 		msleep(ICE_EMP_RESET_SLEEP_MS);
7310 	}
7311 
7312 	err = ice_init_all_ctrlq(hw);
7313 	if (err) {
7314 		dev_err(dev, "control queues init failed %d\n", err);
7315 		goto err_init_ctrlq;
7316 	}
7317 
7318 	/* if DDP was previously loaded successfully */
7319 	if (!ice_is_safe_mode(pf)) {
7320 		/* reload the SW DB of filter tables */
7321 		if (reset_type == ICE_RESET_PFR)
7322 			ice_fill_blk_tbls(hw);
7323 		else
7324 			/* Reload DDP Package after CORER/GLOBR reset */
7325 			ice_load_pkg(NULL, pf);
7326 	}
7327 
7328 	err = ice_clear_pf_cfg(hw);
7329 	if (err) {
7330 		dev_err(dev, "clear PF configuration failed %d\n", err);
7331 		goto err_init_ctrlq;
7332 	}
7333 
7334 	ice_clear_pxe_mode(hw);
7335 
7336 	err = ice_init_nvm(hw);
7337 	if (err) {
7338 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7339 		goto err_init_ctrlq;
7340 	}
7341 
7342 	err = ice_get_caps(hw);
7343 	if (err) {
7344 		dev_err(dev, "ice_get_caps failed %d\n", err);
7345 		goto err_init_ctrlq;
7346 	}
7347 
7348 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7349 	if (err) {
7350 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7351 		goto err_init_ctrlq;
7352 	}
7353 
7354 	dvm = ice_is_dvm_ena(hw);
7355 
7356 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7357 	if (err)
7358 		goto err_init_ctrlq;
7359 
7360 	err = ice_sched_init_port(hw->port_info);
7361 	if (err)
7362 		goto err_sched_init_port;
7363 
7364 	/* start misc vector */
7365 	err = ice_req_irq_msix_misc(pf);
7366 	if (err) {
7367 		dev_err(dev, "misc vector setup failed: %d\n", err);
7368 		goto err_sched_init_port;
7369 	}
7370 
7371 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7372 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7373 		if (!rd32(hw, PFQF_FD_SIZE)) {
7374 			u16 unused, guar, b_effort;
7375 
7376 			guar = hw->func_caps.fd_fltr_guar;
7377 			b_effort = hw->func_caps.fd_fltr_best_effort;
7378 
7379 			/* force guaranteed filter pool for PF */
7380 			ice_alloc_fd_guar_item(hw, &unused, guar);
7381 			/* force shared filter pool for PF */
7382 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7383 		}
7384 	}
7385 
7386 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7387 		ice_dcb_rebuild(pf);
7388 
7389 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7390 	 * the VSI rebuild. If not, this causes the PTP link status events to
7391 	 * fail.
7392 	 */
7393 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7394 		ice_ptp_reset(pf);
7395 
7396 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7397 		ice_gnss_init(pf);
7398 
7399 	/* rebuild PF VSI */
7400 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7401 	if (err) {
7402 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7403 		goto err_vsi_rebuild;
7404 	}
7405 
7406 	err = ice_eswitch_rebuild(pf);
7407 	if (err) {
7408 		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7409 		goto err_vsi_rebuild;
7410 	}
7411 
7412 	if (reset_type == ICE_RESET_PFR) {
7413 		err = ice_rebuild_channels(pf);
7414 		if (err) {
7415 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7416 				err);
7417 			goto err_vsi_rebuild;
7418 		}
7419 	}
7420 
7421 	/* If Flow Director is active */
7422 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7423 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7424 		if (err) {
7425 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7426 			goto err_vsi_rebuild;
7427 		}
7428 
7429 		/* replay HW Flow Director recipes */
7430 		if (hw->fdir_prof)
7431 			ice_fdir_replay_flows(hw);
7432 
7433 		/* replay Flow Director filters */
7434 		ice_fdir_replay_fltrs(pf);
7435 
7436 		ice_rebuild_arfs(pf);
7437 	}
7438 
7439 	ice_update_pf_netdev_link(pf);
7440 
7441 	/* tell the firmware we are up */
7442 	err = ice_send_version(pf);
7443 	if (err) {
7444 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7445 			err);
7446 		goto err_vsi_rebuild;
7447 	}
7448 
7449 	ice_replay_post(hw);
7450 
7451 	/* if we get here, reset flow is successful */
7452 	clear_bit(ICE_RESET_FAILED, pf->state);
7453 
7454 	ice_plug_aux_dev(pf);
7455 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7456 		ice_lag_rebuild(pf);
7457 
7458 	/* Restore timestamp mode settings after VSI rebuild */
7459 	ice_ptp_restore_timestamp_mode(pf);
7460 	return;
7461 
7462 err_vsi_rebuild:
7463 err_sched_init_port:
7464 	ice_sched_cleanup_all(hw);
7465 err_init_ctrlq:
7466 	ice_shutdown_all_ctrlq(hw);
7467 	set_bit(ICE_RESET_FAILED, pf->state);
7468 clear_recovery:
7469 	/* set this bit in PF state to control service task scheduling */
7470 	set_bit(ICE_NEEDS_RESTART, pf->state);
7471 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7472 }
7473 
7474 /**
7475  * ice_change_mtu - NDO callback to change the MTU
7476  * @netdev: network interface device structure
7477  * @new_mtu: new value for maximum frame size
7478  *
7479  * Returns 0 on success, negative on failure
7480  */
7481 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7482 {
7483 	struct ice_netdev_priv *np = netdev_priv(netdev);
7484 	struct ice_vsi *vsi = np->vsi;
7485 	struct ice_pf *pf = vsi->back;
7486 	struct bpf_prog *prog;
7487 	u8 count = 0;
7488 	int err = 0;
7489 
7490 	if (new_mtu == (int)netdev->mtu) {
7491 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7492 		return 0;
7493 	}
7494 
7495 	prog = vsi->xdp_prog;
7496 	if (prog && !prog->aux->xdp_has_frags) {
7497 		int frame_size = ice_max_xdp_frame_size(vsi);
7498 
7499 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7500 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7501 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7502 			return -EINVAL;
7503 		}
7504 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7505 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7506 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7507 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7508 			return -EINVAL;
7509 		}
7510 	}
7511 
7512 	/* if a reset is in progress, wait for some time for it to complete */
7513 	do {
7514 		if (ice_is_reset_in_progress(pf->state)) {
7515 			count++;
7516 			usleep_range(1000, 2000);
7517 		} else {
7518 			break;
7519 		}
7520 
7521 	} while (count < 100);
7522 
7523 	if (count == 100) {
7524 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7525 		return -EBUSY;
7526 	}
7527 
7528 	netdev->mtu = (unsigned int)new_mtu;
7529 	err = ice_down_up(vsi);
7530 	if (err)
7531 		return err;
7532 
7533 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7534 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7535 
7536 	return err;
7537 }
7538 
7539 /**
7540  * ice_eth_ioctl - Access the hwtstamp interface
7541  * @netdev: network interface device structure
7542  * @ifr: interface request data
7543  * @cmd: ioctl command
7544  */
7545 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7546 {
7547 	struct ice_netdev_priv *np = netdev_priv(netdev);
7548 	struct ice_pf *pf = np->vsi->back;
7549 
7550 	switch (cmd) {
7551 	case SIOCGHWTSTAMP:
7552 		return ice_ptp_get_ts_config(pf, ifr);
7553 	case SIOCSHWTSTAMP:
7554 		return ice_ptp_set_ts_config(pf, ifr);
7555 	default:
7556 		return -EOPNOTSUPP;
7557 	}
7558 }
7559 
7560 /**
7561  * ice_aq_str - convert AQ err code to a string
7562  * @aq_err: the AQ error code to convert
7563  */
7564 const char *ice_aq_str(enum ice_aq_err aq_err)
7565 {
7566 	switch (aq_err) {
7567 	case ICE_AQ_RC_OK:
7568 		return "OK";
7569 	case ICE_AQ_RC_EPERM:
7570 		return "ICE_AQ_RC_EPERM";
7571 	case ICE_AQ_RC_ENOENT:
7572 		return "ICE_AQ_RC_ENOENT";
7573 	case ICE_AQ_RC_ENOMEM:
7574 		return "ICE_AQ_RC_ENOMEM";
7575 	case ICE_AQ_RC_EBUSY:
7576 		return "ICE_AQ_RC_EBUSY";
7577 	case ICE_AQ_RC_EEXIST:
7578 		return "ICE_AQ_RC_EEXIST";
7579 	case ICE_AQ_RC_EINVAL:
7580 		return "ICE_AQ_RC_EINVAL";
7581 	case ICE_AQ_RC_ENOSPC:
7582 		return "ICE_AQ_RC_ENOSPC";
7583 	case ICE_AQ_RC_ENOSYS:
7584 		return "ICE_AQ_RC_ENOSYS";
7585 	case ICE_AQ_RC_EMODE:
7586 		return "ICE_AQ_RC_EMODE";
7587 	case ICE_AQ_RC_ENOSEC:
7588 		return "ICE_AQ_RC_ENOSEC";
7589 	case ICE_AQ_RC_EBADSIG:
7590 		return "ICE_AQ_RC_EBADSIG";
7591 	case ICE_AQ_RC_ESVN:
7592 		return "ICE_AQ_RC_ESVN";
7593 	case ICE_AQ_RC_EBADMAN:
7594 		return "ICE_AQ_RC_EBADMAN";
7595 	case ICE_AQ_RC_EBADBUF:
7596 		return "ICE_AQ_RC_EBADBUF";
7597 	}
7598 
7599 	return "ICE_AQ_RC_UNKNOWN";
7600 }
7601 
7602 /**
7603  * ice_set_rss_lut - Set RSS LUT
7604  * @vsi: Pointer to VSI structure
7605  * @lut: Lookup table
7606  * @lut_size: Lookup table size
7607  *
7608  * Returns 0 on success, negative on failure
7609  */
7610 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7611 {
7612 	struct ice_aq_get_set_rss_lut_params params = {};
7613 	struct ice_hw *hw = &vsi->back->hw;
7614 	int status;
7615 
7616 	if (!lut)
7617 		return -EINVAL;
7618 
7619 	params.vsi_handle = vsi->idx;
7620 	params.lut_size = lut_size;
7621 	params.lut_type = vsi->rss_lut_type;
7622 	params.lut = lut;
7623 
7624 	status = ice_aq_set_rss_lut(hw, &params);
7625 	if (status)
7626 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7627 			status, ice_aq_str(hw->adminq.sq_last_status));
7628 
7629 	return status;
7630 }
7631 
7632 /**
7633  * ice_set_rss_key - Set RSS key
7634  * @vsi: Pointer to the VSI structure
7635  * @seed: RSS hash seed
7636  *
7637  * Returns 0 on success, negative on failure
7638  */
7639 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7640 {
7641 	struct ice_hw *hw = &vsi->back->hw;
7642 	int status;
7643 
7644 	if (!seed)
7645 		return -EINVAL;
7646 
7647 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7648 	if (status)
7649 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7650 			status, ice_aq_str(hw->adminq.sq_last_status));
7651 
7652 	return status;
7653 }
7654 
7655 /**
7656  * ice_get_rss_lut - Get RSS LUT
7657  * @vsi: Pointer to VSI structure
7658  * @lut: Buffer to store the lookup table entries
7659  * @lut_size: Size of buffer to store the lookup table entries
7660  *
7661  * Returns 0 on success, negative on failure
7662  */
7663 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7664 {
7665 	struct ice_aq_get_set_rss_lut_params params = {};
7666 	struct ice_hw *hw = &vsi->back->hw;
7667 	int status;
7668 
7669 	if (!lut)
7670 		return -EINVAL;
7671 
7672 	params.vsi_handle = vsi->idx;
7673 	params.lut_size = lut_size;
7674 	params.lut_type = vsi->rss_lut_type;
7675 	params.lut = lut;
7676 
7677 	status = ice_aq_get_rss_lut(hw, &params);
7678 	if (status)
7679 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7680 			status, ice_aq_str(hw->adminq.sq_last_status));
7681 
7682 	return status;
7683 }
7684 
7685 /**
7686  * ice_get_rss_key - Get RSS key
7687  * @vsi: Pointer to VSI structure
7688  * @seed: Buffer to store the key in
7689  *
7690  * Returns 0 on success, negative on failure
7691  */
7692 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7693 {
7694 	struct ice_hw *hw = &vsi->back->hw;
7695 	int status;
7696 
7697 	if (!seed)
7698 		return -EINVAL;
7699 
7700 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7701 	if (status)
7702 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7703 			status, ice_aq_str(hw->adminq.sq_last_status));
7704 
7705 	return status;
7706 }
7707 
7708 /**
7709  * ice_bridge_getlink - Get the hardware bridge mode
7710  * @skb: skb buff
7711  * @pid: process ID
7712  * @seq: RTNL message seq
7713  * @dev: the netdev being configured
7714  * @filter_mask: filter mask passed in
7715  * @nlflags: netlink flags passed in
7716  *
7717  * Return the bridge mode (VEB/VEPA)
7718  */
7719 static int
7720 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7721 		   struct net_device *dev, u32 filter_mask, int nlflags)
7722 {
7723 	struct ice_netdev_priv *np = netdev_priv(dev);
7724 	struct ice_vsi *vsi = np->vsi;
7725 	struct ice_pf *pf = vsi->back;
7726 	u16 bmode;
7727 
7728 	bmode = pf->first_sw->bridge_mode;
7729 
7730 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7731 				       filter_mask, NULL);
7732 }
7733 
7734 /**
7735  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7736  * @vsi: Pointer to VSI structure
7737  * @bmode: Hardware bridge mode (VEB/VEPA)
7738  *
7739  * Returns 0 on success, negative on failure
7740  */
7741 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7742 {
7743 	struct ice_aqc_vsi_props *vsi_props;
7744 	struct ice_hw *hw = &vsi->back->hw;
7745 	struct ice_vsi_ctx *ctxt;
7746 	int ret;
7747 
7748 	vsi_props = &vsi->info;
7749 
7750 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7751 	if (!ctxt)
7752 		return -ENOMEM;
7753 
7754 	ctxt->info = vsi->info;
7755 
7756 	if (bmode == BRIDGE_MODE_VEB)
7757 		/* change from VEPA to VEB mode */
7758 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7759 	else
7760 		/* change from VEB to VEPA mode */
7761 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7762 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7763 
7764 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7765 	if (ret) {
7766 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7767 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7768 		goto out;
7769 	}
7770 	/* Update sw flags for book keeping */
7771 	vsi_props->sw_flags = ctxt->info.sw_flags;
7772 
7773 out:
7774 	kfree(ctxt);
7775 	return ret;
7776 }
7777 
7778 /**
7779  * ice_bridge_setlink - Set the hardware bridge mode
7780  * @dev: the netdev being configured
7781  * @nlh: RTNL message
7782  * @flags: bridge setlink flags
7783  * @extack: netlink extended ack
7784  *
7785  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7786  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7787  * not already set for all VSIs connected to this switch. And also update the
7788  * unicast switch filter rules for the corresponding switch of the netdev.
7789  */
7790 static int
7791 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7792 		   u16 __always_unused flags,
7793 		   struct netlink_ext_ack __always_unused *extack)
7794 {
7795 	struct ice_netdev_priv *np = netdev_priv(dev);
7796 	struct ice_pf *pf = np->vsi->back;
7797 	struct nlattr *attr, *br_spec;
7798 	struct ice_hw *hw = &pf->hw;
7799 	struct ice_sw *pf_sw;
7800 	int rem, v, err = 0;
7801 
7802 	pf_sw = pf->first_sw;
7803 	/* find the attribute in the netlink message */
7804 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7805 
7806 	nla_for_each_nested(attr, br_spec, rem) {
7807 		__u16 mode;
7808 
7809 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7810 			continue;
7811 		mode = nla_get_u16(attr);
7812 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7813 			return -EINVAL;
7814 		/* Continue  if bridge mode is not being flipped */
7815 		if (mode == pf_sw->bridge_mode)
7816 			continue;
7817 		/* Iterates through the PF VSI list and update the loopback
7818 		 * mode of the VSI
7819 		 */
7820 		ice_for_each_vsi(pf, v) {
7821 			if (!pf->vsi[v])
7822 				continue;
7823 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7824 			if (err)
7825 				return err;
7826 		}
7827 
7828 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7829 		/* Update the unicast switch filter rules for the corresponding
7830 		 * switch of the netdev
7831 		 */
7832 		err = ice_update_sw_rule_bridge_mode(hw);
7833 		if (err) {
7834 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7835 				   mode, err,
7836 				   ice_aq_str(hw->adminq.sq_last_status));
7837 			/* revert hw->evb_veb */
7838 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7839 			return err;
7840 		}
7841 
7842 		pf_sw->bridge_mode = mode;
7843 	}
7844 
7845 	return 0;
7846 }
7847 
7848 /**
7849  * ice_tx_timeout - Respond to a Tx Hang
7850  * @netdev: network interface device structure
7851  * @txqueue: Tx queue
7852  */
7853 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7854 {
7855 	struct ice_netdev_priv *np = netdev_priv(netdev);
7856 	struct ice_tx_ring *tx_ring = NULL;
7857 	struct ice_vsi *vsi = np->vsi;
7858 	struct ice_pf *pf = vsi->back;
7859 	u32 i;
7860 
7861 	pf->tx_timeout_count++;
7862 
7863 	/* Check if PFC is enabled for the TC to which the queue belongs
7864 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7865 	 * need to reset and rebuild
7866 	 */
7867 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7868 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7869 			 txqueue);
7870 		return;
7871 	}
7872 
7873 	/* now that we have an index, find the tx_ring struct */
7874 	ice_for_each_txq(vsi, i)
7875 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7876 			if (txqueue == vsi->tx_rings[i]->q_index) {
7877 				tx_ring = vsi->tx_rings[i];
7878 				break;
7879 			}
7880 
7881 	/* Reset recovery level if enough time has elapsed after last timeout.
7882 	 * Also ensure no new reset action happens before next timeout period.
7883 	 */
7884 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7885 		pf->tx_timeout_recovery_level = 1;
7886 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7887 				       netdev->watchdog_timeo)))
7888 		return;
7889 
7890 	if (tx_ring) {
7891 		struct ice_hw *hw = &pf->hw;
7892 		u32 head, val = 0;
7893 
7894 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7895 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7896 		/* Read interrupt register */
7897 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7898 
7899 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7900 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7901 			    head, tx_ring->next_to_use, val);
7902 	}
7903 
7904 	pf->tx_timeout_last_recovery = jiffies;
7905 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7906 		    pf->tx_timeout_recovery_level, txqueue);
7907 
7908 	switch (pf->tx_timeout_recovery_level) {
7909 	case 1:
7910 		set_bit(ICE_PFR_REQ, pf->state);
7911 		break;
7912 	case 2:
7913 		set_bit(ICE_CORER_REQ, pf->state);
7914 		break;
7915 	case 3:
7916 		set_bit(ICE_GLOBR_REQ, pf->state);
7917 		break;
7918 	default:
7919 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7920 		set_bit(ICE_DOWN, pf->state);
7921 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7922 		set_bit(ICE_SERVICE_DIS, pf->state);
7923 		break;
7924 	}
7925 
7926 	ice_service_task_schedule(pf);
7927 	pf->tx_timeout_recovery_level++;
7928 }
7929 
7930 /**
7931  * ice_setup_tc_cls_flower - flower classifier offloads
7932  * @np: net device to configure
7933  * @filter_dev: device on which filter is added
7934  * @cls_flower: offload data
7935  */
7936 static int
7937 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7938 			struct net_device *filter_dev,
7939 			struct flow_cls_offload *cls_flower)
7940 {
7941 	struct ice_vsi *vsi = np->vsi;
7942 
7943 	if (cls_flower->common.chain_index)
7944 		return -EOPNOTSUPP;
7945 
7946 	switch (cls_flower->command) {
7947 	case FLOW_CLS_REPLACE:
7948 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7949 	case FLOW_CLS_DESTROY:
7950 		return ice_del_cls_flower(vsi, cls_flower);
7951 	default:
7952 		return -EINVAL;
7953 	}
7954 }
7955 
7956 /**
7957  * ice_setup_tc_block_cb - callback handler registered for TC block
7958  * @type: TC SETUP type
7959  * @type_data: TC flower offload data that contains user input
7960  * @cb_priv: netdev private data
7961  */
7962 static int
7963 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7964 {
7965 	struct ice_netdev_priv *np = cb_priv;
7966 
7967 	switch (type) {
7968 	case TC_SETUP_CLSFLOWER:
7969 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7970 					       type_data);
7971 	default:
7972 		return -EOPNOTSUPP;
7973 	}
7974 }
7975 
7976 /**
7977  * ice_validate_mqprio_qopt - Validate TCF input parameters
7978  * @vsi: Pointer to VSI
7979  * @mqprio_qopt: input parameters for mqprio queue configuration
7980  *
7981  * This function validates MQPRIO params, such as qcount (power of 2 wherever
7982  * needed), and make sure user doesn't specify qcount and BW rate limit
7983  * for TCs, which are more than "num_tc"
7984  */
7985 static int
7986 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7987 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
7988 {
7989 	int non_power_of_2_qcount = 0;
7990 	struct ice_pf *pf = vsi->back;
7991 	int max_rss_q_cnt = 0;
7992 	u64 sum_min_rate = 0;
7993 	struct device *dev;
7994 	int i, speed;
7995 	u8 num_tc;
7996 
7997 	if (vsi->type != ICE_VSI_PF)
7998 		return -EINVAL;
7999 
8000 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8001 	    mqprio_qopt->qopt.num_tc < 1 ||
8002 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8003 		return -EINVAL;
8004 
8005 	dev = ice_pf_to_dev(pf);
8006 	vsi->ch_rss_size = 0;
8007 	num_tc = mqprio_qopt->qopt.num_tc;
8008 	speed = ice_get_link_speed_kbps(vsi);
8009 
8010 	for (i = 0; num_tc; i++) {
8011 		int qcount = mqprio_qopt->qopt.count[i];
8012 		u64 max_rate, min_rate, rem;
8013 
8014 		if (!qcount)
8015 			return -EINVAL;
8016 
8017 		if (is_power_of_2(qcount)) {
8018 			if (non_power_of_2_qcount &&
8019 			    qcount > non_power_of_2_qcount) {
8020 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8021 					qcount, non_power_of_2_qcount);
8022 				return -EINVAL;
8023 			}
8024 			if (qcount > max_rss_q_cnt)
8025 				max_rss_q_cnt = qcount;
8026 		} else {
8027 			if (non_power_of_2_qcount &&
8028 			    qcount != non_power_of_2_qcount) {
8029 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8030 					qcount, non_power_of_2_qcount);
8031 				return -EINVAL;
8032 			}
8033 			if (qcount < max_rss_q_cnt) {
8034 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8035 					qcount, max_rss_q_cnt);
8036 				return -EINVAL;
8037 			}
8038 			max_rss_q_cnt = qcount;
8039 			non_power_of_2_qcount = qcount;
8040 		}
8041 
8042 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8043 		 * converts the bandwidth rate limit into Bytes/s when
8044 		 * passing it down to the driver. So convert input bandwidth
8045 		 * from Bytes/s to Kbps
8046 		 */
8047 		max_rate = mqprio_qopt->max_rate[i];
8048 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8049 
8050 		/* min_rate is minimum guaranteed rate and it can't be zero */
8051 		min_rate = mqprio_qopt->min_rate[i];
8052 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8053 		sum_min_rate += min_rate;
8054 
8055 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8056 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8057 				min_rate, ICE_MIN_BW_LIMIT);
8058 			return -EINVAL;
8059 		}
8060 
8061 		if (max_rate && max_rate > speed) {
8062 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8063 				i, max_rate, speed);
8064 			return -EINVAL;
8065 		}
8066 
8067 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8068 		if (rem) {
8069 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8070 				i, ICE_MIN_BW_LIMIT);
8071 			return -EINVAL;
8072 		}
8073 
8074 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8075 		if (rem) {
8076 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8077 				i, ICE_MIN_BW_LIMIT);
8078 			return -EINVAL;
8079 		}
8080 
8081 		/* min_rate can't be more than max_rate, except when max_rate
8082 		 * is zero (implies max_rate sought is max line rate). In such
8083 		 * a case min_rate can be more than max.
8084 		 */
8085 		if (max_rate && min_rate > max_rate) {
8086 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8087 				min_rate, max_rate);
8088 			return -EINVAL;
8089 		}
8090 
8091 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8092 			break;
8093 		if (mqprio_qopt->qopt.offset[i + 1] !=
8094 		    (mqprio_qopt->qopt.offset[i] + qcount))
8095 			return -EINVAL;
8096 	}
8097 	if (vsi->num_rxq <
8098 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8099 		return -EINVAL;
8100 	if (vsi->num_txq <
8101 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8102 		return -EINVAL;
8103 
8104 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8105 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8106 			sum_min_rate, speed);
8107 		return -EINVAL;
8108 	}
8109 
8110 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8111 	vsi->ch_rss_size = max_rss_q_cnt;
8112 
8113 	return 0;
8114 }
8115 
8116 /**
8117  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8118  * @pf: ptr to PF device
8119  * @vsi: ptr to VSI
8120  */
8121 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8122 {
8123 	struct device *dev = ice_pf_to_dev(pf);
8124 	bool added = false;
8125 	struct ice_hw *hw;
8126 	int flow;
8127 
8128 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8129 		return -EINVAL;
8130 
8131 	hw = &pf->hw;
8132 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8133 		struct ice_fd_hw_prof *prof;
8134 		int tun, status;
8135 		u64 entry_h;
8136 
8137 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8138 		      hw->fdir_prof[flow]->cnt))
8139 			continue;
8140 
8141 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8142 			enum ice_flow_priority prio;
8143 			u64 prof_id;
8144 
8145 			/* add this VSI to FDir profile for this flow */
8146 			prio = ICE_FLOW_PRIO_NORMAL;
8147 			prof = hw->fdir_prof[flow];
8148 			prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8149 			status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8150 						    prof->vsi_h[0], vsi->idx,
8151 						    prio, prof->fdir_seg[tun],
8152 						    &entry_h);
8153 			if (status) {
8154 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8155 					vsi->idx, flow);
8156 				continue;
8157 			}
8158 
8159 			prof->entry_h[prof->cnt][tun] = entry_h;
8160 		}
8161 
8162 		/* store VSI for filter replay and delete */
8163 		prof->vsi_h[prof->cnt] = vsi->idx;
8164 		prof->cnt++;
8165 
8166 		added = true;
8167 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8168 			flow);
8169 	}
8170 
8171 	if (!added)
8172 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8173 
8174 	return 0;
8175 }
8176 
8177 /**
8178  * ice_add_channel - add a channel by adding VSI
8179  * @pf: ptr to PF device
8180  * @sw_id: underlying HW switching element ID
8181  * @ch: ptr to channel structure
8182  *
8183  * Add a channel (VSI) using add_vsi and queue_map
8184  */
8185 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8186 {
8187 	struct device *dev = ice_pf_to_dev(pf);
8188 	struct ice_vsi *vsi;
8189 
8190 	if (ch->type != ICE_VSI_CHNL) {
8191 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8192 		return -EINVAL;
8193 	}
8194 
8195 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8196 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8197 		dev_err(dev, "create chnl VSI failure\n");
8198 		return -EINVAL;
8199 	}
8200 
8201 	ice_add_vsi_to_fdir(pf, vsi);
8202 
8203 	ch->sw_id = sw_id;
8204 	ch->vsi_num = vsi->vsi_num;
8205 	ch->info.mapping_flags = vsi->info.mapping_flags;
8206 	ch->ch_vsi = vsi;
8207 	/* set the back pointer of channel for newly created VSI */
8208 	vsi->ch = ch;
8209 
8210 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8211 	       sizeof(vsi->info.q_mapping));
8212 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8213 	       sizeof(vsi->info.tc_mapping));
8214 
8215 	return 0;
8216 }
8217 
8218 /**
8219  * ice_chnl_cfg_res
8220  * @vsi: the VSI being setup
8221  * @ch: ptr to channel structure
8222  *
8223  * Configure channel specific resources such as rings, vector.
8224  */
8225 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8226 {
8227 	int i;
8228 
8229 	for (i = 0; i < ch->num_txq; i++) {
8230 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8231 		struct ice_ring_container *rc;
8232 		struct ice_tx_ring *tx_ring;
8233 		struct ice_rx_ring *rx_ring;
8234 
8235 		tx_ring = vsi->tx_rings[ch->base_q + i];
8236 		rx_ring = vsi->rx_rings[ch->base_q + i];
8237 		if (!tx_ring || !rx_ring)
8238 			continue;
8239 
8240 		/* setup ring being channel enabled */
8241 		tx_ring->ch = ch;
8242 		rx_ring->ch = ch;
8243 
8244 		/* following code block sets up vector specific attributes */
8245 		tx_q_vector = tx_ring->q_vector;
8246 		rx_q_vector = rx_ring->q_vector;
8247 		if (!tx_q_vector && !rx_q_vector)
8248 			continue;
8249 
8250 		if (tx_q_vector) {
8251 			tx_q_vector->ch = ch;
8252 			/* setup Tx and Rx ITR setting if DIM is off */
8253 			rc = &tx_q_vector->tx;
8254 			if (!ITR_IS_DYNAMIC(rc))
8255 				ice_write_itr(rc, rc->itr_setting);
8256 		}
8257 		if (rx_q_vector) {
8258 			rx_q_vector->ch = ch;
8259 			/* setup Tx and Rx ITR setting if DIM is off */
8260 			rc = &rx_q_vector->rx;
8261 			if (!ITR_IS_DYNAMIC(rc))
8262 				ice_write_itr(rc, rc->itr_setting);
8263 		}
8264 	}
8265 
8266 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8267 	 * GLINT_ITR register would have written to perform in-context
8268 	 * update, hence perform flush
8269 	 */
8270 	if (ch->num_txq || ch->num_rxq)
8271 		ice_flush(&vsi->back->hw);
8272 }
8273 
8274 /**
8275  * ice_cfg_chnl_all_res - configure channel resources
8276  * @vsi: pte to main_vsi
8277  * @ch: ptr to channel structure
8278  *
8279  * This function configures channel specific resources such as flow-director
8280  * counter index, and other resources such as queues, vectors, ITR settings
8281  */
8282 static void
8283 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8284 {
8285 	/* configure channel (aka ADQ) resources such as queues, vectors,
8286 	 * ITR settings for channel specific vectors and anything else
8287 	 */
8288 	ice_chnl_cfg_res(vsi, ch);
8289 }
8290 
8291 /**
8292  * ice_setup_hw_channel - setup new channel
8293  * @pf: ptr to PF device
8294  * @vsi: the VSI being setup
8295  * @ch: ptr to channel structure
8296  * @sw_id: underlying HW switching element ID
8297  * @type: type of channel to be created (VMDq2/VF)
8298  *
8299  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8300  * and configures Tx rings accordingly
8301  */
8302 static int
8303 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8304 		     struct ice_channel *ch, u16 sw_id, u8 type)
8305 {
8306 	struct device *dev = ice_pf_to_dev(pf);
8307 	int ret;
8308 
8309 	ch->base_q = vsi->next_base_q;
8310 	ch->type = type;
8311 
8312 	ret = ice_add_channel(pf, sw_id, ch);
8313 	if (ret) {
8314 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8315 		return ret;
8316 	}
8317 
8318 	/* configure/setup ADQ specific resources */
8319 	ice_cfg_chnl_all_res(vsi, ch);
8320 
8321 	/* make sure to update the next_base_q so that subsequent channel's
8322 	 * (aka ADQ) VSI queue map is correct
8323 	 */
8324 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8325 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8326 		ch->num_rxq);
8327 
8328 	return 0;
8329 }
8330 
8331 /**
8332  * ice_setup_channel - setup new channel using uplink element
8333  * @pf: ptr to PF device
8334  * @vsi: the VSI being setup
8335  * @ch: ptr to channel structure
8336  *
8337  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8338  * and uplink switching element
8339  */
8340 static bool
8341 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8342 		  struct ice_channel *ch)
8343 {
8344 	struct device *dev = ice_pf_to_dev(pf);
8345 	u16 sw_id;
8346 	int ret;
8347 
8348 	if (vsi->type != ICE_VSI_PF) {
8349 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8350 		return false;
8351 	}
8352 
8353 	sw_id = pf->first_sw->sw_id;
8354 
8355 	/* create channel (VSI) */
8356 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8357 	if (ret) {
8358 		dev_err(dev, "failed to setup hw_channel\n");
8359 		return false;
8360 	}
8361 	dev_dbg(dev, "successfully created channel()\n");
8362 
8363 	return ch->ch_vsi ? true : false;
8364 }
8365 
8366 /**
8367  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8368  * @vsi: VSI to be configured
8369  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8370  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8371  */
8372 static int
8373 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8374 {
8375 	int err;
8376 
8377 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8378 	if (err)
8379 		return err;
8380 
8381 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8382 }
8383 
8384 /**
8385  * ice_create_q_channel - function to create channel
8386  * @vsi: VSI to be configured
8387  * @ch: ptr to channel (it contains channel specific params)
8388  *
8389  * This function creates channel (VSI) using num_queues specified by user,
8390  * reconfigs RSS if needed.
8391  */
8392 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8393 {
8394 	struct ice_pf *pf = vsi->back;
8395 	struct device *dev;
8396 
8397 	if (!ch)
8398 		return -EINVAL;
8399 
8400 	dev = ice_pf_to_dev(pf);
8401 	if (!ch->num_txq || !ch->num_rxq) {
8402 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8403 		return -EINVAL;
8404 	}
8405 
8406 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8407 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8408 			vsi->cnt_q_avail, ch->num_txq);
8409 		return -EINVAL;
8410 	}
8411 
8412 	if (!ice_setup_channel(pf, vsi, ch)) {
8413 		dev_info(dev, "Failed to setup channel\n");
8414 		return -EINVAL;
8415 	}
8416 	/* configure BW rate limit */
8417 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8418 		int ret;
8419 
8420 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8421 				       ch->min_tx_rate);
8422 		if (ret)
8423 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8424 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8425 		else
8426 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8427 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8428 	}
8429 
8430 	vsi->cnt_q_avail -= ch->num_txq;
8431 
8432 	return 0;
8433 }
8434 
8435 /**
8436  * ice_rem_all_chnl_fltrs - removes all channel filters
8437  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8438  *
8439  * Remove all advanced switch filters only if they are channel specific
8440  * tc-flower based filter
8441  */
8442 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8443 {
8444 	struct ice_tc_flower_fltr *fltr;
8445 	struct hlist_node *node;
8446 
8447 	/* to remove all channel filters, iterate an ordered list of filters */
8448 	hlist_for_each_entry_safe(fltr, node,
8449 				  &pf->tc_flower_fltr_list,
8450 				  tc_flower_node) {
8451 		struct ice_rule_query_data rule;
8452 		int status;
8453 
8454 		/* for now process only channel specific filters */
8455 		if (!ice_is_chnl_fltr(fltr))
8456 			continue;
8457 
8458 		rule.rid = fltr->rid;
8459 		rule.rule_id = fltr->rule_id;
8460 		rule.vsi_handle = fltr->dest_vsi_handle;
8461 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8462 		if (status) {
8463 			if (status == -ENOENT)
8464 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8465 					rule.rule_id);
8466 			else
8467 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8468 					status);
8469 		} else if (fltr->dest_vsi) {
8470 			/* update advanced switch filter count */
8471 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8472 				u32 flags = fltr->flags;
8473 
8474 				fltr->dest_vsi->num_chnl_fltr--;
8475 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8476 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8477 					pf->num_dmac_chnl_fltrs--;
8478 			}
8479 		}
8480 
8481 		hlist_del(&fltr->tc_flower_node);
8482 		kfree(fltr);
8483 	}
8484 }
8485 
8486 /**
8487  * ice_remove_q_channels - Remove queue channels for the TCs
8488  * @vsi: VSI to be configured
8489  * @rem_fltr: delete advanced switch filter or not
8490  *
8491  * Remove queue channels for the TCs
8492  */
8493 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8494 {
8495 	struct ice_channel *ch, *ch_tmp;
8496 	struct ice_pf *pf = vsi->back;
8497 	int i;
8498 
8499 	/* remove all tc-flower based filter if they are channel filters only */
8500 	if (rem_fltr)
8501 		ice_rem_all_chnl_fltrs(pf);
8502 
8503 	/* remove ntuple filters since queue configuration is being changed */
8504 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8505 		struct ice_hw *hw = &pf->hw;
8506 
8507 		mutex_lock(&hw->fdir_fltr_lock);
8508 		ice_fdir_del_all_fltrs(vsi);
8509 		mutex_unlock(&hw->fdir_fltr_lock);
8510 	}
8511 
8512 	/* perform cleanup for channels if they exist */
8513 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8514 		struct ice_vsi *ch_vsi;
8515 
8516 		list_del(&ch->list);
8517 		ch_vsi = ch->ch_vsi;
8518 		if (!ch_vsi) {
8519 			kfree(ch);
8520 			continue;
8521 		}
8522 
8523 		/* Reset queue contexts */
8524 		for (i = 0; i < ch->num_rxq; i++) {
8525 			struct ice_tx_ring *tx_ring;
8526 			struct ice_rx_ring *rx_ring;
8527 
8528 			tx_ring = vsi->tx_rings[ch->base_q + i];
8529 			rx_ring = vsi->rx_rings[ch->base_q + i];
8530 			if (tx_ring) {
8531 				tx_ring->ch = NULL;
8532 				if (tx_ring->q_vector)
8533 					tx_ring->q_vector->ch = NULL;
8534 			}
8535 			if (rx_ring) {
8536 				rx_ring->ch = NULL;
8537 				if (rx_ring->q_vector)
8538 					rx_ring->q_vector->ch = NULL;
8539 			}
8540 		}
8541 
8542 		/* Release FD resources for the channel VSI */
8543 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8544 
8545 		/* clear the VSI from scheduler tree */
8546 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8547 
8548 		/* Delete VSI from FW, PF and HW VSI arrays */
8549 		ice_vsi_delete(ch->ch_vsi);
8550 
8551 		/* free the channel */
8552 		kfree(ch);
8553 	}
8554 
8555 	/* clear the channel VSI map which is stored in main VSI */
8556 	ice_for_each_chnl_tc(i)
8557 		vsi->tc_map_vsi[i] = NULL;
8558 
8559 	/* reset main VSI's all TC information */
8560 	vsi->all_enatc = 0;
8561 	vsi->all_numtc = 0;
8562 }
8563 
8564 /**
8565  * ice_rebuild_channels - rebuild channel
8566  * @pf: ptr to PF
8567  *
8568  * Recreate channel VSIs and replay filters
8569  */
8570 static int ice_rebuild_channels(struct ice_pf *pf)
8571 {
8572 	struct device *dev = ice_pf_to_dev(pf);
8573 	struct ice_vsi *main_vsi;
8574 	bool rem_adv_fltr = true;
8575 	struct ice_channel *ch;
8576 	struct ice_vsi *vsi;
8577 	int tc_idx = 1;
8578 	int i, err;
8579 
8580 	main_vsi = ice_get_main_vsi(pf);
8581 	if (!main_vsi)
8582 		return 0;
8583 
8584 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8585 	    main_vsi->old_numtc == 1)
8586 		return 0; /* nothing to be done */
8587 
8588 	/* reconfigure main VSI based on old value of TC and cached values
8589 	 * for MQPRIO opts
8590 	 */
8591 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8592 	if (err) {
8593 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8594 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8595 		return err;
8596 	}
8597 
8598 	/* rebuild ADQ VSIs */
8599 	ice_for_each_vsi(pf, i) {
8600 		enum ice_vsi_type type;
8601 
8602 		vsi = pf->vsi[i];
8603 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8604 			continue;
8605 
8606 		type = vsi->type;
8607 
8608 		/* rebuild ADQ VSI */
8609 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8610 		if (err) {
8611 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8612 				ice_vsi_type_str(type), vsi->idx, err);
8613 			goto cleanup;
8614 		}
8615 
8616 		/* Re-map HW VSI number, using VSI handle that has been
8617 		 * previously validated in ice_replay_vsi() call above
8618 		 */
8619 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8620 
8621 		/* replay filters for the VSI */
8622 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8623 		if (err) {
8624 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8625 				ice_vsi_type_str(type), err, vsi->idx);
8626 			rem_adv_fltr = false;
8627 			goto cleanup;
8628 		}
8629 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8630 			 ice_vsi_type_str(type), vsi->idx);
8631 
8632 		/* store ADQ VSI at correct TC index in main VSI's
8633 		 * map of TC to VSI
8634 		 */
8635 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8636 	}
8637 
8638 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8639 	 * channel for main VSI's Tx and Rx rings
8640 	 */
8641 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8642 		struct ice_vsi *ch_vsi;
8643 
8644 		ch_vsi = ch->ch_vsi;
8645 		if (!ch_vsi)
8646 			continue;
8647 
8648 		/* reconfig channel resources */
8649 		ice_cfg_chnl_all_res(main_vsi, ch);
8650 
8651 		/* replay BW rate limit if it is non-zero */
8652 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8653 			continue;
8654 
8655 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8656 				       ch->min_tx_rate);
8657 		if (err)
8658 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8659 				err, ch->max_tx_rate, ch->min_tx_rate,
8660 				ch_vsi->vsi_num);
8661 		else
8662 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8663 				ch->max_tx_rate, ch->min_tx_rate,
8664 				ch_vsi->vsi_num);
8665 	}
8666 
8667 	/* reconfig RSS for main VSI */
8668 	if (main_vsi->ch_rss_size)
8669 		ice_vsi_cfg_rss_lut_key(main_vsi);
8670 
8671 	return 0;
8672 
8673 cleanup:
8674 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8675 	return err;
8676 }
8677 
8678 /**
8679  * ice_create_q_channels - Add queue channel for the given TCs
8680  * @vsi: VSI to be configured
8681  *
8682  * Configures queue channel mapping to the given TCs
8683  */
8684 static int ice_create_q_channels(struct ice_vsi *vsi)
8685 {
8686 	struct ice_pf *pf = vsi->back;
8687 	struct ice_channel *ch;
8688 	int ret = 0, i;
8689 
8690 	ice_for_each_chnl_tc(i) {
8691 		if (!(vsi->all_enatc & BIT(i)))
8692 			continue;
8693 
8694 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8695 		if (!ch) {
8696 			ret = -ENOMEM;
8697 			goto err_free;
8698 		}
8699 		INIT_LIST_HEAD(&ch->list);
8700 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8701 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8702 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8703 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8704 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8705 
8706 		/* convert to Kbits/s */
8707 		if (ch->max_tx_rate)
8708 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8709 						  ICE_BW_KBPS_DIVISOR);
8710 		if (ch->min_tx_rate)
8711 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8712 						  ICE_BW_KBPS_DIVISOR);
8713 
8714 		ret = ice_create_q_channel(vsi, ch);
8715 		if (ret) {
8716 			dev_err(ice_pf_to_dev(pf),
8717 				"failed creating channel TC:%d\n", i);
8718 			kfree(ch);
8719 			goto err_free;
8720 		}
8721 		list_add_tail(&ch->list, &vsi->ch_list);
8722 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8723 		dev_dbg(ice_pf_to_dev(pf),
8724 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8725 	}
8726 	return 0;
8727 
8728 err_free:
8729 	ice_remove_q_channels(vsi, false);
8730 
8731 	return ret;
8732 }
8733 
8734 /**
8735  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8736  * @netdev: net device to configure
8737  * @type_data: TC offload data
8738  */
8739 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8740 {
8741 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8742 	struct ice_netdev_priv *np = netdev_priv(netdev);
8743 	struct ice_vsi *vsi = np->vsi;
8744 	struct ice_pf *pf = vsi->back;
8745 	u16 mode, ena_tc_qdisc = 0;
8746 	int cur_txq, cur_rxq;
8747 	u8 hw = 0, num_tcf;
8748 	struct device *dev;
8749 	int ret, i;
8750 
8751 	dev = ice_pf_to_dev(pf);
8752 	num_tcf = mqprio_qopt->qopt.num_tc;
8753 	hw = mqprio_qopt->qopt.hw;
8754 	mode = mqprio_qopt->mode;
8755 	if (!hw) {
8756 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8757 		vsi->ch_rss_size = 0;
8758 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8759 		goto config_tcf;
8760 	}
8761 
8762 	/* Generate queue region map for number of TCF requested */
8763 	for (i = 0; i < num_tcf; i++)
8764 		ena_tc_qdisc |= BIT(i);
8765 
8766 	switch (mode) {
8767 	case TC_MQPRIO_MODE_CHANNEL:
8768 
8769 		if (pf->hw.port_info->is_custom_tx_enabled) {
8770 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8771 			return -EBUSY;
8772 		}
8773 		ice_tear_down_devlink_rate_tree(pf);
8774 
8775 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8776 		if (ret) {
8777 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8778 				   ret);
8779 			return ret;
8780 		}
8781 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8782 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8783 		/* don't assume state of hw_tc_offload during driver load
8784 		 * and set the flag for TC flower filter if hw_tc_offload
8785 		 * already ON
8786 		 */
8787 		if (vsi->netdev->features & NETIF_F_HW_TC)
8788 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8789 		break;
8790 	default:
8791 		return -EINVAL;
8792 	}
8793 
8794 config_tcf:
8795 
8796 	/* Requesting same TCF configuration as already enabled */
8797 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8798 	    mode != TC_MQPRIO_MODE_CHANNEL)
8799 		return 0;
8800 
8801 	/* Pause VSI queues */
8802 	ice_dis_vsi(vsi, true);
8803 
8804 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8805 		ice_remove_q_channels(vsi, true);
8806 
8807 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8808 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8809 				     num_online_cpus());
8810 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8811 				     num_online_cpus());
8812 	} else {
8813 		/* logic to rebuild VSI, same like ethtool -L */
8814 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8815 
8816 		for (i = 0; i < num_tcf; i++) {
8817 			if (!(ena_tc_qdisc & BIT(i)))
8818 				continue;
8819 
8820 			offset = vsi->mqprio_qopt.qopt.offset[i];
8821 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8822 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8823 		}
8824 		vsi->req_txq = offset + qcount_tx;
8825 		vsi->req_rxq = offset + qcount_rx;
8826 
8827 		/* store away original rss_size info, so that it gets reused
8828 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8829 		 * determine, what should be the rss_sizefor main VSI
8830 		 */
8831 		vsi->orig_rss_size = vsi->rss_size;
8832 	}
8833 
8834 	/* save current values of Tx and Rx queues before calling VSI rebuild
8835 	 * for fallback option
8836 	 */
8837 	cur_txq = vsi->num_txq;
8838 	cur_rxq = vsi->num_rxq;
8839 
8840 	/* proceed with rebuild main VSI using correct number of queues */
8841 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8842 	if (ret) {
8843 		/* fallback to current number of queues */
8844 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8845 		vsi->req_txq = cur_txq;
8846 		vsi->req_rxq = cur_rxq;
8847 		clear_bit(ICE_RESET_FAILED, pf->state);
8848 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8849 			dev_err(dev, "Rebuild of main VSI failed again\n");
8850 			return ret;
8851 		}
8852 	}
8853 
8854 	vsi->all_numtc = num_tcf;
8855 	vsi->all_enatc = ena_tc_qdisc;
8856 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8857 	if (ret) {
8858 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8859 			   vsi->vsi_num);
8860 		goto exit;
8861 	}
8862 
8863 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8864 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8865 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8866 
8867 		/* set TC0 rate limit if specified */
8868 		if (max_tx_rate || min_tx_rate) {
8869 			/* convert to Kbits/s */
8870 			if (max_tx_rate)
8871 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8872 			if (min_tx_rate)
8873 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8874 
8875 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8876 			if (!ret) {
8877 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8878 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8879 			} else {
8880 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8881 					max_tx_rate, min_tx_rate, vsi->vsi_num);
8882 				goto exit;
8883 			}
8884 		}
8885 		ret = ice_create_q_channels(vsi);
8886 		if (ret) {
8887 			netdev_err(netdev, "failed configuring queue channels\n");
8888 			goto exit;
8889 		} else {
8890 			netdev_dbg(netdev, "successfully configured channels\n");
8891 		}
8892 	}
8893 
8894 	if (vsi->ch_rss_size)
8895 		ice_vsi_cfg_rss_lut_key(vsi);
8896 
8897 exit:
8898 	/* if error, reset the all_numtc and all_enatc */
8899 	if (ret) {
8900 		vsi->all_numtc = 0;
8901 		vsi->all_enatc = 0;
8902 	}
8903 	/* resume VSI */
8904 	ice_ena_vsi(vsi, true);
8905 
8906 	return ret;
8907 }
8908 
8909 static LIST_HEAD(ice_block_cb_list);
8910 
8911 static int
8912 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8913 	     void *type_data)
8914 {
8915 	struct ice_netdev_priv *np = netdev_priv(netdev);
8916 	struct ice_pf *pf = np->vsi->back;
8917 	bool locked = false;
8918 	int err;
8919 
8920 	switch (type) {
8921 	case TC_SETUP_BLOCK:
8922 		return flow_block_cb_setup_simple(type_data,
8923 						  &ice_block_cb_list,
8924 						  ice_setup_tc_block_cb,
8925 						  np, np, true);
8926 	case TC_SETUP_QDISC_MQPRIO:
8927 		if (ice_is_eswitch_mode_switchdev(pf)) {
8928 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
8929 			return -EOPNOTSUPP;
8930 		}
8931 
8932 		if (pf->adev) {
8933 			mutex_lock(&pf->adev_mutex);
8934 			device_lock(&pf->adev->dev);
8935 			locked = true;
8936 			if (pf->adev->dev.driver) {
8937 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
8938 				err = -EBUSY;
8939 				goto adev_unlock;
8940 			}
8941 		}
8942 
8943 		/* setup traffic classifier for receive side */
8944 		mutex_lock(&pf->tc_mutex);
8945 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8946 		mutex_unlock(&pf->tc_mutex);
8947 
8948 adev_unlock:
8949 		if (locked) {
8950 			device_unlock(&pf->adev->dev);
8951 			mutex_unlock(&pf->adev_mutex);
8952 		}
8953 		return err;
8954 	default:
8955 		return -EOPNOTSUPP;
8956 	}
8957 	return -EOPNOTSUPP;
8958 }
8959 
8960 static struct ice_indr_block_priv *
8961 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8962 			   struct net_device *netdev)
8963 {
8964 	struct ice_indr_block_priv *cb_priv;
8965 
8966 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8967 		if (!cb_priv->netdev)
8968 			return NULL;
8969 		if (cb_priv->netdev == netdev)
8970 			return cb_priv;
8971 	}
8972 	return NULL;
8973 }
8974 
8975 static int
8976 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8977 			void *indr_priv)
8978 {
8979 	struct ice_indr_block_priv *priv = indr_priv;
8980 	struct ice_netdev_priv *np = priv->np;
8981 
8982 	switch (type) {
8983 	case TC_SETUP_CLSFLOWER:
8984 		return ice_setup_tc_cls_flower(np, priv->netdev,
8985 					       (struct flow_cls_offload *)
8986 					       type_data);
8987 	default:
8988 		return -EOPNOTSUPP;
8989 	}
8990 }
8991 
8992 static int
8993 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8994 			struct ice_netdev_priv *np,
8995 			struct flow_block_offload *f, void *data,
8996 			void (*cleanup)(struct flow_block_cb *block_cb))
8997 {
8998 	struct ice_indr_block_priv *indr_priv;
8999 	struct flow_block_cb *block_cb;
9000 
9001 	if (!ice_is_tunnel_supported(netdev) &&
9002 	    !(is_vlan_dev(netdev) &&
9003 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9004 		return -EOPNOTSUPP;
9005 
9006 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9007 		return -EOPNOTSUPP;
9008 
9009 	switch (f->command) {
9010 	case FLOW_BLOCK_BIND:
9011 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9012 		if (indr_priv)
9013 			return -EEXIST;
9014 
9015 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9016 		if (!indr_priv)
9017 			return -ENOMEM;
9018 
9019 		indr_priv->netdev = netdev;
9020 		indr_priv->np = np;
9021 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9022 
9023 		block_cb =
9024 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9025 						 indr_priv, indr_priv,
9026 						 ice_rep_indr_tc_block_unbind,
9027 						 f, netdev, sch, data, np,
9028 						 cleanup);
9029 
9030 		if (IS_ERR(block_cb)) {
9031 			list_del(&indr_priv->list);
9032 			kfree(indr_priv);
9033 			return PTR_ERR(block_cb);
9034 		}
9035 		flow_block_cb_add(block_cb, f);
9036 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9037 		break;
9038 	case FLOW_BLOCK_UNBIND:
9039 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9040 		if (!indr_priv)
9041 			return -ENOENT;
9042 
9043 		block_cb = flow_block_cb_lookup(f->block,
9044 						ice_indr_setup_block_cb,
9045 						indr_priv);
9046 		if (!block_cb)
9047 			return -ENOENT;
9048 
9049 		flow_indr_block_cb_remove(block_cb, f);
9050 
9051 		list_del(&block_cb->driver_list);
9052 		break;
9053 	default:
9054 		return -EOPNOTSUPP;
9055 	}
9056 	return 0;
9057 }
9058 
9059 static int
9060 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9061 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9062 		     void *data,
9063 		     void (*cleanup)(struct flow_block_cb *block_cb))
9064 {
9065 	switch (type) {
9066 	case TC_SETUP_BLOCK:
9067 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9068 					       data, cleanup);
9069 
9070 	default:
9071 		return -EOPNOTSUPP;
9072 	}
9073 }
9074 
9075 /**
9076  * ice_open - Called when a network interface becomes active
9077  * @netdev: network interface device structure
9078  *
9079  * The open entry point is called when a network interface is made
9080  * active by the system (IFF_UP). At this point all resources needed
9081  * for transmit and receive operations are allocated, the interrupt
9082  * handler is registered with the OS, the netdev watchdog is enabled,
9083  * and the stack is notified that the interface is ready.
9084  *
9085  * Returns 0 on success, negative value on failure
9086  */
9087 int ice_open(struct net_device *netdev)
9088 {
9089 	struct ice_netdev_priv *np = netdev_priv(netdev);
9090 	struct ice_pf *pf = np->vsi->back;
9091 
9092 	if (ice_is_reset_in_progress(pf->state)) {
9093 		netdev_err(netdev, "can't open net device while reset is in progress");
9094 		return -EBUSY;
9095 	}
9096 
9097 	return ice_open_internal(netdev);
9098 }
9099 
9100 /**
9101  * ice_open_internal - Called when a network interface becomes active
9102  * @netdev: network interface device structure
9103  *
9104  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9105  * handling routine
9106  *
9107  * Returns 0 on success, negative value on failure
9108  */
9109 int ice_open_internal(struct net_device *netdev)
9110 {
9111 	struct ice_netdev_priv *np = netdev_priv(netdev);
9112 	struct ice_vsi *vsi = np->vsi;
9113 	struct ice_pf *pf = vsi->back;
9114 	struct ice_port_info *pi;
9115 	int err;
9116 
9117 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9118 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9119 		return -EIO;
9120 	}
9121 
9122 	netif_carrier_off(netdev);
9123 
9124 	pi = vsi->port_info;
9125 	err = ice_update_link_info(pi);
9126 	if (err) {
9127 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9128 		return err;
9129 	}
9130 
9131 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9132 
9133 	/* Set PHY if there is media, otherwise, turn off PHY */
9134 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9135 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9136 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9137 			err = ice_init_phy_user_cfg(pi);
9138 			if (err) {
9139 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9140 					   err);
9141 				return err;
9142 			}
9143 		}
9144 
9145 		err = ice_configure_phy(vsi);
9146 		if (err) {
9147 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9148 				   err);
9149 			return err;
9150 		}
9151 	} else {
9152 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9153 		ice_set_link(vsi, false);
9154 	}
9155 
9156 	err = ice_vsi_open(vsi);
9157 	if (err)
9158 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9159 			   vsi->vsi_num, vsi->vsw->sw_id);
9160 
9161 	/* Update existing tunnels information */
9162 	udp_tunnel_get_rx_info(netdev);
9163 
9164 	return err;
9165 }
9166 
9167 /**
9168  * ice_stop - Disables a network interface
9169  * @netdev: network interface device structure
9170  *
9171  * The stop entry point is called when an interface is de-activated by the OS,
9172  * and the netdevice enters the DOWN state. The hardware is still under the
9173  * driver's control, but the netdev interface is disabled.
9174  *
9175  * Returns success only - not allowed to fail
9176  */
9177 int ice_stop(struct net_device *netdev)
9178 {
9179 	struct ice_netdev_priv *np = netdev_priv(netdev);
9180 	struct ice_vsi *vsi = np->vsi;
9181 	struct ice_pf *pf = vsi->back;
9182 
9183 	if (ice_is_reset_in_progress(pf->state)) {
9184 		netdev_err(netdev, "can't stop net device while reset is in progress");
9185 		return -EBUSY;
9186 	}
9187 
9188 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9189 		int link_err = ice_force_phys_link_state(vsi, false);
9190 
9191 		if (link_err) {
9192 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9193 				   vsi->vsi_num, link_err);
9194 			return -EIO;
9195 		}
9196 	}
9197 
9198 	ice_vsi_close(vsi);
9199 
9200 	return 0;
9201 }
9202 
9203 /**
9204  * ice_features_check - Validate encapsulated packet conforms to limits
9205  * @skb: skb buffer
9206  * @netdev: This port's netdev
9207  * @features: Offload features that the stack believes apply
9208  */
9209 static netdev_features_t
9210 ice_features_check(struct sk_buff *skb,
9211 		   struct net_device __always_unused *netdev,
9212 		   netdev_features_t features)
9213 {
9214 	bool gso = skb_is_gso(skb);
9215 	size_t len;
9216 
9217 	/* No point in doing any of this if neither checksum nor GSO are
9218 	 * being requested for this frame. We can rule out both by just
9219 	 * checking for CHECKSUM_PARTIAL
9220 	 */
9221 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9222 		return features;
9223 
9224 	/* We cannot support GSO if the MSS is going to be less than
9225 	 * 64 bytes. If it is then we need to drop support for GSO.
9226 	 */
9227 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9228 		features &= ~NETIF_F_GSO_MASK;
9229 
9230 	len = skb_network_offset(skb);
9231 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9232 		goto out_rm_features;
9233 
9234 	len = skb_network_header_len(skb);
9235 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9236 		goto out_rm_features;
9237 
9238 	if (skb->encapsulation) {
9239 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9240 		 * the case of IPIP frames, the transport header pointer is
9241 		 * after the inner header! So check to make sure that this
9242 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9243 		 */
9244 		if (gso && (skb_shinfo(skb)->gso_type &
9245 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9246 			len = skb_inner_network_header(skb) -
9247 			      skb_transport_header(skb);
9248 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9249 				goto out_rm_features;
9250 		}
9251 
9252 		len = skb_inner_network_header_len(skb);
9253 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9254 			goto out_rm_features;
9255 	}
9256 
9257 	return features;
9258 out_rm_features:
9259 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9260 }
9261 
9262 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9263 	.ndo_open = ice_open,
9264 	.ndo_stop = ice_stop,
9265 	.ndo_start_xmit = ice_start_xmit,
9266 	.ndo_set_mac_address = ice_set_mac_address,
9267 	.ndo_validate_addr = eth_validate_addr,
9268 	.ndo_change_mtu = ice_change_mtu,
9269 	.ndo_get_stats64 = ice_get_stats64,
9270 	.ndo_tx_timeout = ice_tx_timeout,
9271 	.ndo_bpf = ice_xdp_safe_mode,
9272 };
9273 
9274 static const struct net_device_ops ice_netdev_ops = {
9275 	.ndo_open = ice_open,
9276 	.ndo_stop = ice_stop,
9277 	.ndo_start_xmit = ice_start_xmit,
9278 	.ndo_select_queue = ice_select_queue,
9279 	.ndo_features_check = ice_features_check,
9280 	.ndo_fix_features = ice_fix_features,
9281 	.ndo_set_rx_mode = ice_set_rx_mode,
9282 	.ndo_set_mac_address = ice_set_mac_address,
9283 	.ndo_validate_addr = eth_validate_addr,
9284 	.ndo_change_mtu = ice_change_mtu,
9285 	.ndo_get_stats64 = ice_get_stats64,
9286 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9287 	.ndo_eth_ioctl = ice_eth_ioctl,
9288 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9289 	.ndo_set_vf_mac = ice_set_vf_mac,
9290 	.ndo_get_vf_config = ice_get_vf_cfg,
9291 	.ndo_set_vf_trust = ice_set_vf_trust,
9292 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9293 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9294 	.ndo_get_vf_stats = ice_get_vf_stats,
9295 	.ndo_set_vf_rate = ice_set_vf_bw,
9296 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9297 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9298 	.ndo_setup_tc = ice_setup_tc,
9299 	.ndo_set_features = ice_set_features,
9300 	.ndo_bridge_getlink = ice_bridge_getlink,
9301 	.ndo_bridge_setlink = ice_bridge_setlink,
9302 	.ndo_fdb_add = ice_fdb_add,
9303 	.ndo_fdb_del = ice_fdb_del,
9304 #ifdef CONFIG_RFS_ACCEL
9305 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9306 #endif
9307 	.ndo_tx_timeout = ice_tx_timeout,
9308 	.ndo_bpf = ice_xdp,
9309 	.ndo_xdp_xmit = ice_xdp_xmit,
9310 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9311 };
9312