1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 return 0; 279 } 280 281 /** 282 * ice_clear_promisc - Disable promiscuous mode for a given PF 283 * @vsi: the VSI being configured 284 * @promisc_m: mask of promiscuous config bits 285 * 286 */ 287 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 288 { 289 int status; 290 291 if (vsi->type != ICE_VSI_PF) 292 return 0; 293 294 if (ice_vsi_has_non_zero_vlans(vsi)) { 295 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 296 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 297 promisc_m); 298 } else { 299 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 300 promisc_m, 0); 301 } 302 303 return status; 304 } 305 306 /** 307 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 308 * @vsi: ptr to the VSI 309 * 310 * Push any outstanding VSI filter changes through the AdminQ. 311 */ 312 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 313 { 314 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 315 struct device *dev = ice_pf_to_dev(vsi->back); 316 struct net_device *netdev = vsi->netdev; 317 bool promisc_forced_on = false; 318 struct ice_pf *pf = vsi->back; 319 struct ice_hw *hw = &pf->hw; 320 u32 changed_flags = 0; 321 int err; 322 323 if (!vsi->netdev) 324 return -EINVAL; 325 326 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 327 usleep_range(1000, 2000); 328 329 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 330 vsi->current_netdev_flags = vsi->netdev->flags; 331 332 INIT_LIST_HEAD(&vsi->tmp_sync_list); 333 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 334 335 if (ice_vsi_fltr_changed(vsi)) { 336 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 337 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 338 339 /* grab the netdev's addr_list_lock */ 340 netif_addr_lock_bh(netdev); 341 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 342 ice_add_mac_to_unsync_list); 343 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 344 ice_add_mac_to_unsync_list); 345 /* our temp lists are populated. release lock */ 346 netif_addr_unlock_bh(netdev); 347 } 348 349 /* Remove MAC addresses in the unsync list */ 350 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 351 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 352 if (err) { 353 netdev_err(netdev, "Failed to delete MAC filters\n"); 354 /* if we failed because of alloc failures, just bail */ 355 if (err == -ENOMEM) 356 goto out; 357 } 358 359 /* Add MAC addresses in the sync list */ 360 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 362 /* If filter is added successfully or already exists, do not go into 363 * 'if' condition and report it as error. Instead continue processing 364 * rest of the function. 365 */ 366 if (err && err != -EEXIST) { 367 netdev_err(netdev, "Failed to add MAC filters\n"); 368 /* If there is no more space for new umac filters, VSI 369 * should go into promiscuous mode. There should be some 370 * space reserved for promiscuous filters. 371 */ 372 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 373 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 374 vsi->state)) { 375 promisc_forced_on = true; 376 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 377 vsi->vsi_num); 378 } else { 379 goto out; 380 } 381 } 382 err = 0; 383 /* check for changes in promiscuous modes */ 384 if (changed_flags & IFF_ALLMULTI) { 385 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 386 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 387 if (err) { 388 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 389 goto out_promisc; 390 } 391 } else { 392 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 393 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags |= IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } 399 } 400 401 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 402 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 403 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 404 if (vsi->current_netdev_flags & IFF_PROMISC) { 405 /* Apply Rx filter rule to get traffic from wire */ 406 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 407 err = ice_set_dflt_vsi(vsi); 408 if (err && err != -EEXIST) { 409 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 410 err, vsi->vsi_num); 411 vsi->current_netdev_flags &= 412 ~IFF_PROMISC; 413 goto out_promisc; 414 } 415 err = 0; 416 vlan_ops->dis_rx_filtering(vsi); 417 } 418 } else { 419 /* Clear Rx filter to remove traffic from wire */ 420 if (ice_is_vsi_dflt_vsi(vsi)) { 421 err = ice_clear_dflt_vsi(vsi); 422 if (err) { 423 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 424 err, vsi->vsi_num); 425 vsi->current_netdev_flags |= 426 IFF_PROMISC; 427 goto out_promisc; 428 } 429 if (vsi->netdev->features & 430 NETIF_F_HW_VLAN_CTAG_FILTER) 431 vlan_ops->ena_rx_filtering(vsi); 432 } 433 } 434 } 435 goto exit; 436 437 out_promisc: 438 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 439 goto exit; 440 out: 441 /* if something went wrong then set the changed flag so we try again */ 442 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 443 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 444 exit: 445 clear_bit(ICE_CFG_BUSY, vsi->state); 446 return err; 447 } 448 449 /** 450 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 451 * @pf: board private structure 452 */ 453 static void ice_sync_fltr_subtask(struct ice_pf *pf) 454 { 455 int v; 456 457 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 458 return; 459 460 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 461 462 ice_for_each_vsi(pf, v) 463 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 464 ice_vsi_sync_fltr(pf->vsi[v])) { 465 /* come back and try again later */ 466 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 467 break; 468 } 469 } 470 471 /** 472 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 473 * @pf: the PF 474 * @locked: is the rtnl_lock already held 475 */ 476 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 477 { 478 int node; 479 int v; 480 481 ice_for_each_vsi(pf, v) 482 if (pf->vsi[v]) 483 ice_dis_vsi(pf->vsi[v], locked); 484 485 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 486 pf->pf_agg_node[node].num_vsis = 0; 487 488 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 489 pf->vf_agg_node[node].num_vsis = 0; 490 } 491 492 /** 493 * ice_clear_sw_switch_recipes - clear switch recipes 494 * @pf: board private structure 495 * 496 * Mark switch recipes as not created in sw structures. There are cases where 497 * rules (especially advanced rules) need to be restored, either re-read from 498 * hardware or added again. For example after the reset. 'recp_created' flag 499 * prevents from doing that and need to be cleared upfront. 500 */ 501 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 502 { 503 struct ice_sw_recipe *recp; 504 u8 i; 505 506 recp = pf->hw.switch_info->recp_list; 507 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 508 recp[i].recp_created = false; 509 } 510 511 /** 512 * ice_prepare_for_reset - prep for reset 513 * @pf: board private structure 514 * @reset_type: reset type requested 515 * 516 * Inform or close all dependent features in prep for reset. 517 */ 518 static void 519 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 520 { 521 struct ice_hw *hw = &pf->hw; 522 struct ice_vsi *vsi; 523 struct ice_vf *vf; 524 unsigned int bkt; 525 526 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 527 528 /* already prepared for reset */ 529 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 530 return; 531 532 ice_unplug_aux_dev(pf); 533 534 /* Notify VFs of impending reset */ 535 if (ice_check_sq_alive(hw, &hw->mailboxq)) 536 ice_vc_notify_reset(pf); 537 538 /* Disable VFs until reset is completed */ 539 mutex_lock(&pf->vfs.table_lock); 540 ice_for_each_vf(pf, bkt, vf) 541 ice_set_vf_state_qs_dis(vf); 542 mutex_unlock(&pf->vfs.table_lock); 543 544 if (ice_is_eswitch_mode_switchdev(pf)) { 545 if (reset_type != ICE_RESET_PFR) 546 ice_clear_sw_switch_recipes(pf); 547 } 548 549 /* release ADQ specific HW and SW resources */ 550 vsi = ice_get_main_vsi(pf); 551 if (!vsi) 552 goto skip; 553 554 /* to be on safe side, reset orig_rss_size so that normal flow 555 * of deciding rss_size can take precedence 556 */ 557 vsi->orig_rss_size = 0; 558 559 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 560 if (reset_type == ICE_RESET_PFR) { 561 vsi->old_ena_tc = vsi->all_enatc; 562 vsi->old_numtc = vsi->all_numtc; 563 } else { 564 ice_remove_q_channels(vsi, true); 565 566 /* for other reset type, do not support channel rebuild 567 * hence reset needed info 568 */ 569 vsi->old_ena_tc = 0; 570 vsi->all_enatc = 0; 571 vsi->old_numtc = 0; 572 vsi->all_numtc = 0; 573 vsi->req_txq = 0; 574 vsi->req_rxq = 0; 575 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 576 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 577 } 578 } 579 skip: 580 581 /* clear SW filtering DB */ 582 ice_clear_hw_tbls(hw); 583 /* disable the VSIs and their queues that are not already DOWN */ 584 ice_pf_dis_all_vsi(pf, false); 585 586 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 587 ice_ptp_prepare_for_reset(pf); 588 589 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 590 ice_gnss_exit(pf); 591 592 if (hw->port_info) 593 ice_sched_clear_port(hw->port_info); 594 595 ice_shutdown_all_ctrlq(hw); 596 597 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 598 } 599 600 /** 601 * ice_do_reset - Initiate one of many types of resets 602 * @pf: board private structure 603 * @reset_type: reset type requested before this function was called. 604 */ 605 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 606 { 607 struct device *dev = ice_pf_to_dev(pf); 608 struct ice_hw *hw = &pf->hw; 609 610 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 611 612 ice_prepare_for_reset(pf, reset_type); 613 614 /* trigger the reset */ 615 if (ice_reset(hw, reset_type)) { 616 dev_err(dev, "reset %d failed\n", reset_type); 617 set_bit(ICE_RESET_FAILED, pf->state); 618 clear_bit(ICE_RESET_OICR_RECV, pf->state); 619 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 620 clear_bit(ICE_PFR_REQ, pf->state); 621 clear_bit(ICE_CORER_REQ, pf->state); 622 clear_bit(ICE_GLOBR_REQ, pf->state); 623 wake_up(&pf->reset_wait_queue); 624 return; 625 } 626 627 /* PFR is a bit of a special case because it doesn't result in an OICR 628 * interrupt. So for PFR, rebuild after the reset and clear the reset- 629 * associated state bits. 630 */ 631 if (reset_type == ICE_RESET_PFR) { 632 pf->pfr_count++; 633 ice_rebuild(pf, reset_type); 634 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 635 clear_bit(ICE_PFR_REQ, pf->state); 636 wake_up(&pf->reset_wait_queue); 637 ice_reset_all_vfs(pf); 638 } 639 } 640 641 /** 642 * ice_reset_subtask - Set up for resetting the device and driver 643 * @pf: board private structure 644 */ 645 static void ice_reset_subtask(struct ice_pf *pf) 646 { 647 enum ice_reset_req reset_type = ICE_RESET_INVAL; 648 649 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 650 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 651 * of reset is pending and sets bits in pf->state indicating the reset 652 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 653 * prepare for pending reset if not already (for PF software-initiated 654 * global resets the software should already be prepared for it as 655 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 656 * by firmware or software on other PFs, that bit is not set so prepare 657 * for the reset now), poll for reset done, rebuild and return. 658 */ 659 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 660 /* Perform the largest reset requested */ 661 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 662 reset_type = ICE_RESET_CORER; 663 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 664 reset_type = ICE_RESET_GLOBR; 665 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 666 reset_type = ICE_RESET_EMPR; 667 /* return if no valid reset type requested */ 668 if (reset_type == ICE_RESET_INVAL) 669 return; 670 ice_prepare_for_reset(pf, reset_type); 671 672 /* make sure we are ready to rebuild */ 673 if (ice_check_reset(&pf->hw)) { 674 set_bit(ICE_RESET_FAILED, pf->state); 675 } else { 676 /* done with reset. start rebuild */ 677 pf->hw.reset_ongoing = false; 678 ice_rebuild(pf, reset_type); 679 /* clear bit to resume normal operations, but 680 * ICE_NEEDS_RESTART bit is set in case rebuild failed 681 */ 682 clear_bit(ICE_RESET_OICR_RECV, pf->state); 683 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 684 clear_bit(ICE_PFR_REQ, pf->state); 685 clear_bit(ICE_CORER_REQ, pf->state); 686 clear_bit(ICE_GLOBR_REQ, pf->state); 687 wake_up(&pf->reset_wait_queue); 688 ice_reset_all_vfs(pf); 689 } 690 691 return; 692 } 693 694 /* No pending resets to finish processing. Check for new resets */ 695 if (test_bit(ICE_PFR_REQ, pf->state)) 696 reset_type = ICE_RESET_PFR; 697 if (test_bit(ICE_CORER_REQ, pf->state)) 698 reset_type = ICE_RESET_CORER; 699 if (test_bit(ICE_GLOBR_REQ, pf->state)) 700 reset_type = ICE_RESET_GLOBR; 701 /* If no valid reset type requested just return */ 702 if (reset_type == ICE_RESET_INVAL) 703 return; 704 705 /* reset if not already down or busy */ 706 if (!test_bit(ICE_DOWN, pf->state) && 707 !test_bit(ICE_CFG_BUSY, pf->state)) { 708 ice_do_reset(pf, reset_type); 709 } 710 } 711 712 /** 713 * ice_print_topo_conflict - print topology conflict message 714 * @vsi: the VSI whose topology status is being checked 715 */ 716 static void ice_print_topo_conflict(struct ice_vsi *vsi) 717 { 718 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 719 case ICE_AQ_LINK_TOPO_CONFLICT: 720 case ICE_AQ_LINK_MEDIA_CONFLICT: 721 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 722 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 723 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 724 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 725 break; 726 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 727 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 728 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 729 else 730 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 731 break; 732 default: 733 break; 734 } 735 } 736 737 /** 738 * ice_print_link_msg - print link up or down message 739 * @vsi: the VSI whose link status is being queried 740 * @isup: boolean for if the link is now up or down 741 */ 742 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 743 { 744 struct ice_aqc_get_phy_caps_data *caps; 745 const char *an_advertised; 746 const char *fec_req; 747 const char *speed; 748 const char *fec; 749 const char *fc; 750 const char *an; 751 int status; 752 753 if (!vsi) 754 return; 755 756 if (vsi->current_isup == isup) 757 return; 758 759 vsi->current_isup = isup; 760 761 if (!isup) { 762 netdev_info(vsi->netdev, "NIC Link is Down\n"); 763 return; 764 } 765 766 switch (vsi->port_info->phy.link_info.link_speed) { 767 case ICE_AQ_LINK_SPEED_100GB: 768 speed = "100 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_50GB: 771 speed = "50 G"; 772 break; 773 case ICE_AQ_LINK_SPEED_40GB: 774 speed = "40 G"; 775 break; 776 case ICE_AQ_LINK_SPEED_25GB: 777 speed = "25 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_20GB: 780 speed = "20 G"; 781 break; 782 case ICE_AQ_LINK_SPEED_10GB: 783 speed = "10 G"; 784 break; 785 case ICE_AQ_LINK_SPEED_5GB: 786 speed = "5 G"; 787 break; 788 case ICE_AQ_LINK_SPEED_2500MB: 789 speed = "2.5 G"; 790 break; 791 case ICE_AQ_LINK_SPEED_1000MB: 792 speed = "1 G"; 793 break; 794 case ICE_AQ_LINK_SPEED_100MB: 795 speed = "100 M"; 796 break; 797 default: 798 speed = "Unknown "; 799 break; 800 } 801 802 switch (vsi->port_info->fc.current_mode) { 803 case ICE_FC_FULL: 804 fc = "Rx/Tx"; 805 break; 806 case ICE_FC_TX_PAUSE: 807 fc = "Tx"; 808 break; 809 case ICE_FC_RX_PAUSE: 810 fc = "Rx"; 811 break; 812 case ICE_FC_NONE: 813 fc = "None"; 814 break; 815 default: 816 fc = "Unknown"; 817 break; 818 } 819 820 /* Get FEC mode based on negotiated link info */ 821 switch (vsi->port_info->phy.link_info.fec_info) { 822 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 823 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 824 fec = "RS-FEC"; 825 break; 826 case ICE_AQ_LINK_25G_KR_FEC_EN: 827 fec = "FC-FEC/BASE-R"; 828 break; 829 default: 830 fec = "NONE"; 831 break; 832 } 833 834 /* check if autoneg completed, might be false due to not supported */ 835 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 836 an = "True"; 837 else 838 an = "False"; 839 840 /* Get FEC mode requested based on PHY caps last SW configuration */ 841 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 842 if (!caps) { 843 fec_req = "Unknown"; 844 an_advertised = "Unknown"; 845 goto done; 846 } 847 848 status = ice_aq_get_phy_caps(vsi->port_info, false, 849 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 850 if (status) 851 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 852 853 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 854 855 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 856 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 857 fec_req = "RS-FEC"; 858 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 859 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 860 fec_req = "FC-FEC/BASE-R"; 861 else 862 fec_req = "NONE"; 863 864 kfree(caps); 865 866 done: 867 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 868 speed, fec_req, fec, an_advertised, an, fc); 869 ice_print_topo_conflict(vsi); 870 } 871 872 /** 873 * ice_vsi_link_event - update the VSI's netdev 874 * @vsi: the VSI on which the link event occurred 875 * @link_up: whether or not the VSI needs to be set up or down 876 */ 877 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 878 { 879 if (!vsi) 880 return; 881 882 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 883 return; 884 885 if (vsi->type == ICE_VSI_PF) { 886 if (link_up == netif_carrier_ok(vsi->netdev)) 887 return; 888 889 if (link_up) { 890 netif_carrier_on(vsi->netdev); 891 netif_tx_wake_all_queues(vsi->netdev); 892 } else { 893 netif_carrier_off(vsi->netdev); 894 netif_tx_stop_all_queues(vsi->netdev); 895 } 896 } 897 } 898 899 /** 900 * ice_set_dflt_mib - send a default config MIB to the FW 901 * @pf: private PF struct 902 * 903 * This function sends a default configuration MIB to the FW. 904 * 905 * If this function errors out at any point, the driver is still able to 906 * function. The main impact is that LFC may not operate as expected. 907 * Therefore an error state in this function should be treated with a DBG 908 * message and continue on with driver rebuild/reenable. 909 */ 910 static void ice_set_dflt_mib(struct ice_pf *pf) 911 { 912 struct device *dev = ice_pf_to_dev(pf); 913 u8 mib_type, *buf, *lldpmib = NULL; 914 u16 len, typelen, offset = 0; 915 struct ice_lldp_org_tlv *tlv; 916 struct ice_hw *hw = &pf->hw; 917 u32 ouisubtype; 918 919 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 920 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 921 if (!lldpmib) { 922 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 923 __func__); 924 return; 925 } 926 927 /* Add ETS CFG TLV */ 928 tlv = (struct ice_lldp_org_tlv *)lldpmib; 929 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 930 ICE_IEEE_ETS_TLV_LEN); 931 tlv->typelen = htons(typelen); 932 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 933 ICE_IEEE_SUBTYPE_ETS_CFG); 934 tlv->ouisubtype = htonl(ouisubtype); 935 936 buf = tlv->tlvinfo; 937 buf[0] = 0; 938 939 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 940 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 941 * Octets 13 - 20 are TSA values - leave as zeros 942 */ 943 buf[5] = 0x64; 944 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 945 offset += len + 2; 946 tlv = (struct ice_lldp_org_tlv *) 947 ((char *)tlv + sizeof(tlv->typelen) + len); 948 949 /* Add ETS REC TLV */ 950 buf = tlv->tlvinfo; 951 tlv->typelen = htons(typelen); 952 953 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 954 ICE_IEEE_SUBTYPE_ETS_REC); 955 tlv->ouisubtype = htonl(ouisubtype); 956 957 /* First octet of buf is reserved 958 * Octets 1 - 4 map UP to TC - all UPs map to zero 959 * Octets 5 - 12 are BW values - set TC 0 to 100%. 960 * Octets 13 - 20 are TSA value - leave as zeros 961 */ 962 buf[5] = 0x64; 963 offset += len + 2; 964 tlv = (struct ice_lldp_org_tlv *) 965 ((char *)tlv + sizeof(tlv->typelen) + len); 966 967 /* Add PFC CFG TLV */ 968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 969 ICE_IEEE_PFC_TLV_LEN); 970 tlv->typelen = htons(typelen); 971 972 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 973 ICE_IEEE_SUBTYPE_PFC_CFG); 974 tlv->ouisubtype = htonl(ouisubtype); 975 976 /* Octet 1 left as all zeros - PFC disabled */ 977 buf[0] = 0x08; 978 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 979 offset += len + 2; 980 981 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 982 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 983 984 kfree(lldpmib); 985 } 986 987 /** 988 * ice_check_phy_fw_load - check if PHY FW load failed 989 * @pf: pointer to PF struct 990 * @link_cfg_err: bitmap from the link info structure 991 * 992 * check if external PHY FW load failed and print an error message if it did 993 */ 994 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 995 { 996 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 997 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 998 return; 999 } 1000 1001 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1002 return; 1003 1004 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1005 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1006 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1007 } 1008 } 1009 1010 /** 1011 * ice_check_module_power 1012 * @pf: pointer to PF struct 1013 * @link_cfg_err: bitmap from the link info structure 1014 * 1015 * check module power level returned by a previous call to aq_get_link_info 1016 * and print error messages if module power level is not supported 1017 */ 1018 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1019 { 1020 /* if module power level is supported, clear the flag */ 1021 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1022 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1023 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1024 return; 1025 } 1026 1027 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1028 * above block didn't clear this bit, there's nothing to do 1029 */ 1030 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1031 return; 1032 1033 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1034 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1035 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1036 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1037 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1038 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1039 } 1040 } 1041 1042 /** 1043 * ice_check_link_cfg_err - check if link configuration failed 1044 * @pf: pointer to the PF struct 1045 * @link_cfg_err: bitmap from the link info structure 1046 * 1047 * print if any link configuration failure happens due to the value in the 1048 * link_cfg_err parameter in the link info structure 1049 */ 1050 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1051 { 1052 ice_check_module_power(pf, link_cfg_err); 1053 ice_check_phy_fw_load(pf, link_cfg_err); 1054 } 1055 1056 /** 1057 * ice_link_event - process the link event 1058 * @pf: PF that the link event is associated with 1059 * @pi: port_info for the port that the link event is associated with 1060 * @link_up: true if the physical link is up and false if it is down 1061 * @link_speed: current link speed received from the link event 1062 * 1063 * Returns 0 on success and negative on failure 1064 */ 1065 static int 1066 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1067 u16 link_speed) 1068 { 1069 struct device *dev = ice_pf_to_dev(pf); 1070 struct ice_phy_info *phy_info; 1071 struct ice_vsi *vsi; 1072 u16 old_link_speed; 1073 bool old_link; 1074 int status; 1075 1076 phy_info = &pi->phy; 1077 phy_info->link_info_old = phy_info->link_info; 1078 1079 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1080 old_link_speed = phy_info->link_info_old.link_speed; 1081 1082 /* update the link info structures and re-enable link events, 1083 * don't bail on failure due to other book keeping needed 1084 */ 1085 status = ice_update_link_info(pi); 1086 if (status) 1087 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1088 pi->lport, status, 1089 ice_aq_str(pi->hw->adminq.sq_last_status)); 1090 1091 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1092 1093 /* Check if the link state is up after updating link info, and treat 1094 * this event as an UP event since the link is actually UP now. 1095 */ 1096 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1097 link_up = true; 1098 1099 vsi = ice_get_main_vsi(pf); 1100 if (!vsi || !vsi->port_info) 1101 return -EINVAL; 1102 1103 /* turn off PHY if media was removed */ 1104 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1105 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1106 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1107 ice_set_link(vsi, false); 1108 } 1109 1110 /* if the old link up/down and speed is the same as the new */ 1111 if (link_up == old_link && link_speed == old_link_speed) 1112 return 0; 1113 1114 if (!ice_is_e810(&pf->hw)) 1115 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1116 1117 if (ice_is_dcb_active(pf)) { 1118 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1119 ice_dcb_rebuild(pf); 1120 } else { 1121 if (link_up) 1122 ice_set_dflt_mib(pf); 1123 } 1124 ice_vsi_link_event(vsi, link_up); 1125 ice_print_link_msg(vsi, link_up); 1126 1127 ice_vc_notify_link_state(pf); 1128 1129 return 0; 1130 } 1131 1132 /** 1133 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1134 * @pf: board private structure 1135 */ 1136 static void ice_watchdog_subtask(struct ice_pf *pf) 1137 { 1138 int i; 1139 1140 /* if interface is down do nothing */ 1141 if (test_bit(ICE_DOWN, pf->state) || 1142 test_bit(ICE_CFG_BUSY, pf->state)) 1143 return; 1144 1145 /* make sure we don't do these things too often */ 1146 if (time_before(jiffies, 1147 pf->serv_tmr_prev + pf->serv_tmr_period)) 1148 return; 1149 1150 pf->serv_tmr_prev = jiffies; 1151 1152 /* Update the stats for active netdevs so the network stack 1153 * can look at updated numbers whenever it cares to 1154 */ 1155 ice_update_pf_stats(pf); 1156 ice_for_each_vsi(pf, i) 1157 if (pf->vsi[i] && pf->vsi[i]->netdev) 1158 ice_update_vsi_stats(pf->vsi[i]); 1159 } 1160 1161 /** 1162 * ice_init_link_events - enable/initialize link events 1163 * @pi: pointer to the port_info instance 1164 * 1165 * Returns -EIO on failure, 0 on success 1166 */ 1167 static int ice_init_link_events(struct ice_port_info *pi) 1168 { 1169 u16 mask; 1170 1171 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1172 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1173 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1174 1175 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1176 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1177 pi->lport); 1178 return -EIO; 1179 } 1180 1181 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1182 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1183 pi->lport); 1184 return -EIO; 1185 } 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * ice_handle_link_event - handle link event via ARQ 1192 * @pf: PF that the link event is associated with 1193 * @event: event structure containing link status info 1194 */ 1195 static int 1196 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1197 { 1198 struct ice_aqc_get_link_status_data *link_data; 1199 struct ice_port_info *port_info; 1200 int status; 1201 1202 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1203 port_info = pf->hw.port_info; 1204 if (!port_info) 1205 return -EINVAL; 1206 1207 status = ice_link_event(pf, port_info, 1208 !!(link_data->link_info & ICE_AQ_LINK_UP), 1209 le16_to_cpu(link_data->link_speed)); 1210 if (status) 1211 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1212 status); 1213 1214 return status; 1215 } 1216 1217 enum ice_aq_task_state { 1218 ICE_AQ_TASK_WAITING = 0, 1219 ICE_AQ_TASK_COMPLETE, 1220 ICE_AQ_TASK_CANCELED, 1221 }; 1222 1223 struct ice_aq_task { 1224 struct hlist_node entry; 1225 1226 u16 opcode; 1227 struct ice_rq_event_info *event; 1228 enum ice_aq_task_state state; 1229 }; 1230 1231 /** 1232 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1233 * @pf: pointer to the PF private structure 1234 * @opcode: the opcode to wait for 1235 * @timeout: how long to wait, in jiffies 1236 * @event: storage for the event info 1237 * 1238 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1239 * current thread will be put to sleep until the specified event occurs or 1240 * until the given timeout is reached. 1241 * 1242 * To obtain only the descriptor contents, pass an event without an allocated 1243 * msg_buf. If the complete data buffer is desired, allocate the 1244 * event->msg_buf with enough space ahead of time. 1245 * 1246 * Returns: zero on success, or a negative error code on failure. 1247 */ 1248 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1249 struct ice_rq_event_info *event) 1250 { 1251 struct device *dev = ice_pf_to_dev(pf); 1252 struct ice_aq_task *task; 1253 unsigned long start; 1254 long ret; 1255 int err; 1256 1257 task = kzalloc(sizeof(*task), GFP_KERNEL); 1258 if (!task) 1259 return -ENOMEM; 1260 1261 INIT_HLIST_NODE(&task->entry); 1262 task->opcode = opcode; 1263 task->event = event; 1264 task->state = ICE_AQ_TASK_WAITING; 1265 1266 spin_lock_bh(&pf->aq_wait_lock); 1267 hlist_add_head(&task->entry, &pf->aq_wait_list); 1268 spin_unlock_bh(&pf->aq_wait_lock); 1269 1270 start = jiffies; 1271 1272 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1273 timeout); 1274 switch (task->state) { 1275 case ICE_AQ_TASK_WAITING: 1276 err = ret < 0 ? ret : -ETIMEDOUT; 1277 break; 1278 case ICE_AQ_TASK_CANCELED: 1279 err = ret < 0 ? ret : -ECANCELED; 1280 break; 1281 case ICE_AQ_TASK_COMPLETE: 1282 err = ret < 0 ? ret : 0; 1283 break; 1284 default: 1285 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1286 err = -EINVAL; 1287 break; 1288 } 1289 1290 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1291 jiffies_to_msecs(jiffies - start), 1292 jiffies_to_msecs(timeout), 1293 opcode); 1294 1295 spin_lock_bh(&pf->aq_wait_lock); 1296 hlist_del(&task->entry); 1297 spin_unlock_bh(&pf->aq_wait_lock); 1298 kfree(task); 1299 1300 return err; 1301 } 1302 1303 /** 1304 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1305 * @pf: pointer to the PF private structure 1306 * @opcode: the opcode of the event 1307 * @event: the event to check 1308 * 1309 * Loops over the current list of pending threads waiting for an AdminQ event. 1310 * For each matching task, copy the contents of the event into the task 1311 * structure and wake up the thread. 1312 * 1313 * If multiple threads wait for the same opcode, they will all be woken up. 1314 * 1315 * Note that event->msg_buf will only be duplicated if the event has a buffer 1316 * with enough space already allocated. Otherwise, only the descriptor and 1317 * message length will be copied. 1318 * 1319 * Returns: true if an event was found, false otherwise 1320 */ 1321 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1322 struct ice_rq_event_info *event) 1323 { 1324 struct ice_aq_task *task; 1325 bool found = false; 1326 1327 spin_lock_bh(&pf->aq_wait_lock); 1328 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1329 if (task->state || task->opcode != opcode) 1330 continue; 1331 1332 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1333 task->event->msg_len = event->msg_len; 1334 1335 /* Only copy the data buffer if a destination was set */ 1336 if (task->event->msg_buf && 1337 task->event->buf_len > event->buf_len) { 1338 memcpy(task->event->msg_buf, event->msg_buf, 1339 event->buf_len); 1340 task->event->buf_len = event->buf_len; 1341 } 1342 1343 task->state = ICE_AQ_TASK_COMPLETE; 1344 found = true; 1345 } 1346 spin_unlock_bh(&pf->aq_wait_lock); 1347 1348 if (found) 1349 wake_up(&pf->aq_wait_queue); 1350 } 1351 1352 /** 1353 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1354 * @pf: the PF private structure 1355 * 1356 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1357 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1358 */ 1359 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1360 { 1361 struct ice_aq_task *task; 1362 1363 spin_lock_bh(&pf->aq_wait_lock); 1364 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1365 task->state = ICE_AQ_TASK_CANCELED; 1366 spin_unlock_bh(&pf->aq_wait_lock); 1367 1368 wake_up(&pf->aq_wait_queue); 1369 } 1370 1371 /** 1372 * __ice_clean_ctrlq - helper function to clean controlq rings 1373 * @pf: ptr to struct ice_pf 1374 * @q_type: specific Control queue type 1375 */ 1376 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1377 { 1378 struct device *dev = ice_pf_to_dev(pf); 1379 struct ice_rq_event_info event; 1380 struct ice_hw *hw = &pf->hw; 1381 struct ice_ctl_q_info *cq; 1382 u16 pending, i = 0; 1383 const char *qtype; 1384 u32 oldval, val; 1385 1386 /* Do not clean control queue if/when PF reset fails */ 1387 if (test_bit(ICE_RESET_FAILED, pf->state)) 1388 return 0; 1389 1390 switch (q_type) { 1391 case ICE_CTL_Q_ADMIN: 1392 cq = &hw->adminq; 1393 qtype = "Admin"; 1394 break; 1395 case ICE_CTL_Q_SB: 1396 cq = &hw->sbq; 1397 qtype = "Sideband"; 1398 break; 1399 case ICE_CTL_Q_MAILBOX: 1400 cq = &hw->mailboxq; 1401 qtype = "Mailbox"; 1402 /* we are going to try to detect a malicious VF, so set the 1403 * state to begin detection 1404 */ 1405 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1406 break; 1407 default: 1408 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1409 return 0; 1410 } 1411 1412 /* check for error indications - PF_xx_AxQLEN register layout for 1413 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1414 */ 1415 val = rd32(hw, cq->rq.len); 1416 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1417 PF_FW_ARQLEN_ARQCRIT_M)) { 1418 oldval = val; 1419 if (val & PF_FW_ARQLEN_ARQVFE_M) 1420 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1421 qtype); 1422 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1423 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1424 qtype); 1425 } 1426 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1427 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1428 qtype); 1429 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1430 PF_FW_ARQLEN_ARQCRIT_M); 1431 if (oldval != val) 1432 wr32(hw, cq->rq.len, val); 1433 } 1434 1435 val = rd32(hw, cq->sq.len); 1436 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1437 PF_FW_ATQLEN_ATQCRIT_M)) { 1438 oldval = val; 1439 if (val & PF_FW_ATQLEN_ATQVFE_M) 1440 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1441 qtype); 1442 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1443 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1444 qtype); 1445 } 1446 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1447 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1448 qtype); 1449 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1450 PF_FW_ATQLEN_ATQCRIT_M); 1451 if (oldval != val) 1452 wr32(hw, cq->sq.len, val); 1453 } 1454 1455 event.buf_len = cq->rq_buf_size; 1456 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1457 if (!event.msg_buf) 1458 return 0; 1459 1460 do { 1461 u16 opcode; 1462 int ret; 1463 1464 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1465 if (ret == -EALREADY) 1466 break; 1467 if (ret) { 1468 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1469 ret); 1470 break; 1471 } 1472 1473 opcode = le16_to_cpu(event.desc.opcode); 1474 1475 /* Notify any thread that might be waiting for this event */ 1476 ice_aq_check_events(pf, opcode, &event); 1477 1478 switch (opcode) { 1479 case ice_aqc_opc_get_link_status: 1480 if (ice_handle_link_event(pf, &event)) 1481 dev_err(dev, "Could not handle link event\n"); 1482 break; 1483 case ice_aqc_opc_event_lan_overflow: 1484 ice_vf_lan_overflow_event(pf, &event); 1485 break; 1486 case ice_mbx_opc_send_msg_to_pf: 1487 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1488 ice_vc_process_vf_msg(pf, &event); 1489 break; 1490 case ice_aqc_opc_fw_logging: 1491 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1492 break; 1493 case ice_aqc_opc_lldp_set_mib_change: 1494 ice_dcb_process_lldp_set_mib_change(pf, &event); 1495 break; 1496 default: 1497 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1498 qtype, opcode); 1499 break; 1500 } 1501 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1502 1503 kfree(event.msg_buf); 1504 1505 return pending && (i == ICE_DFLT_IRQ_WORK); 1506 } 1507 1508 /** 1509 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1510 * @hw: pointer to hardware info 1511 * @cq: control queue information 1512 * 1513 * returns true if there are pending messages in a queue, false if there aren't 1514 */ 1515 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1516 { 1517 u16 ntu; 1518 1519 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1520 return cq->rq.next_to_clean != ntu; 1521 } 1522 1523 /** 1524 * ice_clean_adminq_subtask - clean the AdminQ rings 1525 * @pf: board private structure 1526 */ 1527 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1528 { 1529 struct ice_hw *hw = &pf->hw; 1530 1531 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1532 return; 1533 1534 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1535 return; 1536 1537 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1538 1539 /* There might be a situation where new messages arrive to a control 1540 * queue between processing the last message and clearing the 1541 * EVENT_PENDING bit. So before exiting, check queue head again (using 1542 * ice_ctrlq_pending) and process new messages if any. 1543 */ 1544 if (ice_ctrlq_pending(hw, &hw->adminq)) 1545 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1546 1547 ice_flush(hw); 1548 } 1549 1550 /** 1551 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1552 * @pf: board private structure 1553 */ 1554 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1555 { 1556 struct ice_hw *hw = &pf->hw; 1557 1558 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1559 return; 1560 1561 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1562 return; 1563 1564 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1565 1566 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1567 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1568 1569 ice_flush(hw); 1570 } 1571 1572 /** 1573 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1574 * @pf: board private structure 1575 */ 1576 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1577 { 1578 struct ice_hw *hw = &pf->hw; 1579 1580 /* Nothing to do here if sideband queue is not supported */ 1581 if (!ice_is_sbq_supported(hw)) { 1582 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1583 return; 1584 } 1585 1586 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1587 return; 1588 1589 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1590 return; 1591 1592 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1593 1594 if (ice_ctrlq_pending(hw, &hw->sbq)) 1595 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1596 1597 ice_flush(hw); 1598 } 1599 1600 /** 1601 * ice_service_task_schedule - schedule the service task to wake up 1602 * @pf: board private structure 1603 * 1604 * If not already scheduled, this puts the task into the work queue. 1605 */ 1606 void ice_service_task_schedule(struct ice_pf *pf) 1607 { 1608 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1609 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1610 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1611 queue_work(ice_wq, &pf->serv_task); 1612 } 1613 1614 /** 1615 * ice_service_task_complete - finish up the service task 1616 * @pf: board private structure 1617 */ 1618 static void ice_service_task_complete(struct ice_pf *pf) 1619 { 1620 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1621 1622 /* force memory (pf->state) to sync before next service task */ 1623 smp_mb__before_atomic(); 1624 clear_bit(ICE_SERVICE_SCHED, pf->state); 1625 } 1626 1627 /** 1628 * ice_service_task_stop - stop service task and cancel works 1629 * @pf: board private structure 1630 * 1631 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1632 * 1 otherwise. 1633 */ 1634 static int ice_service_task_stop(struct ice_pf *pf) 1635 { 1636 int ret; 1637 1638 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1639 1640 if (pf->serv_tmr.function) 1641 del_timer_sync(&pf->serv_tmr); 1642 if (pf->serv_task.func) 1643 cancel_work_sync(&pf->serv_task); 1644 1645 clear_bit(ICE_SERVICE_SCHED, pf->state); 1646 return ret; 1647 } 1648 1649 /** 1650 * ice_service_task_restart - restart service task and schedule works 1651 * @pf: board private structure 1652 * 1653 * This function is needed for suspend and resume works (e.g WoL scenario) 1654 */ 1655 static void ice_service_task_restart(struct ice_pf *pf) 1656 { 1657 clear_bit(ICE_SERVICE_DIS, pf->state); 1658 ice_service_task_schedule(pf); 1659 } 1660 1661 /** 1662 * ice_service_timer - timer callback to schedule service task 1663 * @t: pointer to timer_list 1664 */ 1665 static void ice_service_timer(struct timer_list *t) 1666 { 1667 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1668 1669 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1670 ice_service_task_schedule(pf); 1671 } 1672 1673 /** 1674 * ice_handle_mdd_event - handle malicious driver detect event 1675 * @pf: pointer to the PF structure 1676 * 1677 * Called from service task. OICR interrupt handler indicates MDD event. 1678 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1679 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1680 * disable the queue, the PF can be configured to reset the VF using ethtool 1681 * private flag mdd-auto-reset-vf. 1682 */ 1683 static void ice_handle_mdd_event(struct ice_pf *pf) 1684 { 1685 struct device *dev = ice_pf_to_dev(pf); 1686 struct ice_hw *hw = &pf->hw; 1687 struct ice_vf *vf; 1688 unsigned int bkt; 1689 u32 reg; 1690 1691 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1692 /* Since the VF MDD event logging is rate limited, check if 1693 * there are pending MDD events. 1694 */ 1695 ice_print_vfs_mdd_events(pf); 1696 return; 1697 } 1698 1699 /* find what triggered an MDD event */ 1700 reg = rd32(hw, GL_MDET_TX_PQM); 1701 if (reg & GL_MDET_TX_PQM_VALID_M) { 1702 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1703 GL_MDET_TX_PQM_PF_NUM_S; 1704 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1705 GL_MDET_TX_PQM_VF_NUM_S; 1706 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1707 GL_MDET_TX_PQM_MAL_TYPE_S; 1708 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1709 GL_MDET_TX_PQM_QNUM_S); 1710 1711 if (netif_msg_tx_err(pf)) 1712 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1713 event, queue, pf_num, vf_num); 1714 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1715 } 1716 1717 reg = rd32(hw, GL_MDET_TX_TCLAN); 1718 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1719 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1720 GL_MDET_TX_TCLAN_PF_NUM_S; 1721 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1722 GL_MDET_TX_TCLAN_VF_NUM_S; 1723 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1724 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1725 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1726 GL_MDET_TX_TCLAN_QNUM_S); 1727 1728 if (netif_msg_tx_err(pf)) 1729 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1730 event, queue, pf_num, vf_num); 1731 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1732 } 1733 1734 reg = rd32(hw, GL_MDET_RX); 1735 if (reg & GL_MDET_RX_VALID_M) { 1736 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1737 GL_MDET_RX_PF_NUM_S; 1738 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1739 GL_MDET_RX_VF_NUM_S; 1740 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1741 GL_MDET_RX_MAL_TYPE_S; 1742 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1743 GL_MDET_RX_QNUM_S); 1744 1745 if (netif_msg_rx_err(pf)) 1746 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1747 event, queue, pf_num, vf_num); 1748 wr32(hw, GL_MDET_RX, 0xffffffff); 1749 } 1750 1751 /* check to see if this PF caused an MDD event */ 1752 reg = rd32(hw, PF_MDET_TX_PQM); 1753 if (reg & PF_MDET_TX_PQM_VALID_M) { 1754 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1755 if (netif_msg_tx_err(pf)) 1756 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1757 } 1758 1759 reg = rd32(hw, PF_MDET_TX_TCLAN); 1760 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1761 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1764 } 1765 1766 reg = rd32(hw, PF_MDET_RX); 1767 if (reg & PF_MDET_RX_VALID_M) { 1768 wr32(hw, PF_MDET_RX, 0xFFFF); 1769 if (netif_msg_rx_err(pf)) 1770 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1771 } 1772 1773 /* Check to see if one of the VFs caused an MDD event, and then 1774 * increment counters and set print pending 1775 */ 1776 mutex_lock(&pf->vfs.table_lock); 1777 ice_for_each_vf(pf, bkt, vf) { 1778 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1779 if (reg & VP_MDET_TX_PQM_VALID_M) { 1780 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1781 vf->mdd_tx_events.count++; 1782 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1783 if (netif_msg_tx_err(pf)) 1784 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1785 vf->vf_id); 1786 } 1787 1788 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1789 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1790 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1791 vf->mdd_tx_events.count++; 1792 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1793 if (netif_msg_tx_err(pf)) 1794 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1795 vf->vf_id); 1796 } 1797 1798 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1799 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1800 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1801 vf->mdd_tx_events.count++; 1802 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1803 if (netif_msg_tx_err(pf)) 1804 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1805 vf->vf_id); 1806 } 1807 1808 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1809 if (reg & VP_MDET_RX_VALID_M) { 1810 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1811 vf->mdd_rx_events.count++; 1812 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1813 if (netif_msg_rx_err(pf)) 1814 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1815 vf->vf_id); 1816 1817 /* Since the queue is disabled on VF Rx MDD events, the 1818 * PF can be configured to reset the VF through ethtool 1819 * private flag mdd-auto-reset-vf. 1820 */ 1821 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1822 /* VF MDD event counters will be cleared by 1823 * reset, so print the event prior to reset. 1824 */ 1825 ice_print_vf_rx_mdd_event(vf); 1826 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1827 } 1828 } 1829 } 1830 mutex_unlock(&pf->vfs.table_lock); 1831 1832 ice_print_vfs_mdd_events(pf); 1833 } 1834 1835 /** 1836 * ice_force_phys_link_state - Force the physical link state 1837 * @vsi: VSI to force the physical link state to up/down 1838 * @link_up: true/false indicates to set the physical link to up/down 1839 * 1840 * Force the physical link state by getting the current PHY capabilities from 1841 * hardware and setting the PHY config based on the determined capabilities. If 1842 * link changes a link event will be triggered because both the Enable Automatic 1843 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1844 * 1845 * Returns 0 on success, negative on failure 1846 */ 1847 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1848 { 1849 struct ice_aqc_get_phy_caps_data *pcaps; 1850 struct ice_aqc_set_phy_cfg_data *cfg; 1851 struct ice_port_info *pi; 1852 struct device *dev; 1853 int retcode; 1854 1855 if (!vsi || !vsi->port_info || !vsi->back) 1856 return -EINVAL; 1857 if (vsi->type != ICE_VSI_PF) 1858 return 0; 1859 1860 dev = ice_pf_to_dev(vsi->back); 1861 1862 pi = vsi->port_info; 1863 1864 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1865 if (!pcaps) 1866 return -ENOMEM; 1867 1868 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1869 NULL); 1870 if (retcode) { 1871 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1872 vsi->vsi_num, retcode); 1873 retcode = -EIO; 1874 goto out; 1875 } 1876 1877 /* No change in link */ 1878 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1879 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1880 goto out; 1881 1882 /* Use the current user PHY configuration. The current user PHY 1883 * configuration is initialized during probe from PHY capabilities 1884 * software mode, and updated on set PHY configuration. 1885 */ 1886 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1887 if (!cfg) { 1888 retcode = -ENOMEM; 1889 goto out; 1890 } 1891 1892 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1893 if (link_up) 1894 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1895 else 1896 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1897 1898 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1899 if (retcode) { 1900 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1901 vsi->vsi_num, retcode); 1902 retcode = -EIO; 1903 } 1904 1905 kfree(cfg); 1906 out: 1907 kfree(pcaps); 1908 return retcode; 1909 } 1910 1911 /** 1912 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1913 * @pi: port info structure 1914 * 1915 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1916 */ 1917 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1918 { 1919 struct ice_aqc_get_phy_caps_data *pcaps; 1920 struct ice_pf *pf = pi->hw->back; 1921 int err; 1922 1923 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1924 if (!pcaps) 1925 return -ENOMEM; 1926 1927 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1928 pcaps, NULL); 1929 1930 if (err) { 1931 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1932 goto out; 1933 } 1934 1935 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1936 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1937 1938 out: 1939 kfree(pcaps); 1940 return err; 1941 } 1942 1943 /** 1944 * ice_init_link_dflt_override - Initialize link default override 1945 * @pi: port info structure 1946 * 1947 * Initialize link default override and PHY total port shutdown during probe 1948 */ 1949 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1950 { 1951 struct ice_link_default_override_tlv *ldo; 1952 struct ice_pf *pf = pi->hw->back; 1953 1954 ldo = &pf->link_dflt_override; 1955 if (ice_get_link_default_override(ldo, pi)) 1956 return; 1957 1958 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1959 return; 1960 1961 /* Enable Total Port Shutdown (override/replace link-down-on-close 1962 * ethtool private flag) for ports with Port Disable bit set. 1963 */ 1964 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1965 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1966 } 1967 1968 /** 1969 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1970 * @pi: port info structure 1971 * 1972 * If default override is enabled, initialize the user PHY cfg speed and FEC 1973 * settings using the default override mask from the NVM. 1974 * 1975 * The PHY should only be configured with the default override settings the 1976 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1977 * is used to indicate that the user PHY cfg default override is initialized 1978 * and the PHY has not been configured with the default override settings. The 1979 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1980 * configured. 1981 * 1982 * This function should be called only if the FW doesn't support default 1983 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1984 */ 1985 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1986 { 1987 struct ice_link_default_override_tlv *ldo; 1988 struct ice_aqc_set_phy_cfg_data *cfg; 1989 struct ice_phy_info *phy = &pi->phy; 1990 struct ice_pf *pf = pi->hw->back; 1991 1992 ldo = &pf->link_dflt_override; 1993 1994 /* If link default override is enabled, use to mask NVM PHY capabilities 1995 * for speed and FEC default configuration. 1996 */ 1997 cfg = &phy->curr_user_phy_cfg; 1998 1999 if (ldo->phy_type_low || ldo->phy_type_high) { 2000 cfg->phy_type_low = pf->nvm_phy_type_lo & 2001 cpu_to_le64(ldo->phy_type_low); 2002 cfg->phy_type_high = pf->nvm_phy_type_hi & 2003 cpu_to_le64(ldo->phy_type_high); 2004 } 2005 cfg->link_fec_opt = ldo->fec_options; 2006 phy->curr_user_fec_req = ICE_FEC_AUTO; 2007 2008 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2009 } 2010 2011 /** 2012 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2013 * @pi: port info structure 2014 * 2015 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2016 * mode to default. The PHY defaults are from get PHY capabilities topology 2017 * with media so call when media is first available. An error is returned if 2018 * called when media is not available. The PHY initialization completed state is 2019 * set here. 2020 * 2021 * These configurations are used when setting PHY 2022 * configuration. The user PHY configuration is updated on set PHY 2023 * configuration. Returns 0 on success, negative on failure 2024 */ 2025 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2026 { 2027 struct ice_aqc_get_phy_caps_data *pcaps; 2028 struct ice_phy_info *phy = &pi->phy; 2029 struct ice_pf *pf = pi->hw->back; 2030 int err; 2031 2032 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2033 return -EIO; 2034 2035 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2036 if (!pcaps) 2037 return -ENOMEM; 2038 2039 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2040 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2041 pcaps, NULL); 2042 else 2043 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2044 pcaps, NULL); 2045 if (err) { 2046 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2047 goto err_out; 2048 } 2049 2050 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2051 2052 /* check if lenient mode is supported and enabled */ 2053 if (ice_fw_supports_link_override(pi->hw) && 2054 !(pcaps->module_compliance_enforcement & 2055 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2056 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2057 2058 /* if the FW supports default PHY configuration mode, then the driver 2059 * does not have to apply link override settings. If not, 2060 * initialize user PHY configuration with link override values 2061 */ 2062 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2063 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2064 ice_init_phy_cfg_dflt_override(pi); 2065 goto out; 2066 } 2067 } 2068 2069 /* if link default override is not enabled, set user flow control and 2070 * FEC settings based on what get_phy_caps returned 2071 */ 2072 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2073 pcaps->link_fec_options); 2074 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2075 2076 out: 2077 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2078 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2079 err_out: 2080 kfree(pcaps); 2081 return err; 2082 } 2083 2084 /** 2085 * ice_configure_phy - configure PHY 2086 * @vsi: VSI of PHY 2087 * 2088 * Set the PHY configuration. If the current PHY configuration is the same as 2089 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2090 * configure the based get PHY capabilities for topology with media. 2091 */ 2092 static int ice_configure_phy(struct ice_vsi *vsi) 2093 { 2094 struct device *dev = ice_pf_to_dev(vsi->back); 2095 struct ice_port_info *pi = vsi->port_info; 2096 struct ice_aqc_get_phy_caps_data *pcaps; 2097 struct ice_aqc_set_phy_cfg_data *cfg; 2098 struct ice_phy_info *phy = &pi->phy; 2099 struct ice_pf *pf = vsi->back; 2100 int err; 2101 2102 /* Ensure we have media as we cannot configure a medialess port */ 2103 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2104 return -EPERM; 2105 2106 ice_print_topo_conflict(vsi); 2107 2108 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2109 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2110 return -EPERM; 2111 2112 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2113 return ice_force_phys_link_state(vsi, true); 2114 2115 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2116 if (!pcaps) 2117 return -ENOMEM; 2118 2119 /* Get current PHY config */ 2120 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2121 NULL); 2122 if (err) { 2123 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2124 vsi->vsi_num, err); 2125 goto done; 2126 } 2127 2128 /* If PHY enable link is configured and configuration has not changed, 2129 * there's nothing to do 2130 */ 2131 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2132 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2133 goto done; 2134 2135 /* Use PHY topology as baseline for configuration */ 2136 memset(pcaps, 0, sizeof(*pcaps)); 2137 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2138 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2139 pcaps, NULL); 2140 else 2141 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2142 pcaps, NULL); 2143 if (err) { 2144 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2145 vsi->vsi_num, err); 2146 goto done; 2147 } 2148 2149 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2150 if (!cfg) { 2151 err = -ENOMEM; 2152 goto done; 2153 } 2154 2155 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2156 2157 /* Speed - If default override pending, use curr_user_phy_cfg set in 2158 * ice_init_phy_user_cfg_ldo. 2159 */ 2160 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2161 vsi->back->state)) { 2162 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2163 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2164 } else { 2165 u64 phy_low = 0, phy_high = 0; 2166 2167 ice_update_phy_type(&phy_low, &phy_high, 2168 pi->phy.curr_user_speed_req); 2169 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2170 cfg->phy_type_high = pcaps->phy_type_high & 2171 cpu_to_le64(phy_high); 2172 } 2173 2174 /* Can't provide what was requested; use PHY capabilities */ 2175 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2176 cfg->phy_type_low = pcaps->phy_type_low; 2177 cfg->phy_type_high = pcaps->phy_type_high; 2178 } 2179 2180 /* FEC */ 2181 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2182 2183 /* Can't provide what was requested; use PHY capabilities */ 2184 if (cfg->link_fec_opt != 2185 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2186 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2187 cfg->link_fec_opt = pcaps->link_fec_options; 2188 } 2189 2190 /* Flow Control - always supported; no need to check against 2191 * capabilities 2192 */ 2193 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2194 2195 /* Enable link and link update */ 2196 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2197 2198 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2199 if (err) 2200 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2201 vsi->vsi_num, err); 2202 2203 kfree(cfg); 2204 done: 2205 kfree(pcaps); 2206 return err; 2207 } 2208 2209 /** 2210 * ice_check_media_subtask - Check for media 2211 * @pf: pointer to PF struct 2212 * 2213 * If media is available, then initialize PHY user configuration if it is not 2214 * been, and configure the PHY if the interface is up. 2215 */ 2216 static void ice_check_media_subtask(struct ice_pf *pf) 2217 { 2218 struct ice_port_info *pi; 2219 struct ice_vsi *vsi; 2220 int err; 2221 2222 /* No need to check for media if it's already present */ 2223 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2224 return; 2225 2226 vsi = ice_get_main_vsi(pf); 2227 if (!vsi) 2228 return; 2229 2230 /* Refresh link info and check if media is present */ 2231 pi = vsi->port_info; 2232 err = ice_update_link_info(pi); 2233 if (err) 2234 return; 2235 2236 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2237 2238 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2239 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2240 ice_init_phy_user_cfg(pi); 2241 2242 /* PHY settings are reset on media insertion, reconfigure 2243 * PHY to preserve settings. 2244 */ 2245 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2246 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2247 return; 2248 2249 err = ice_configure_phy(vsi); 2250 if (!err) 2251 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2252 2253 /* A Link Status Event will be generated; the event handler 2254 * will complete bringing the interface up 2255 */ 2256 } 2257 } 2258 2259 /** 2260 * ice_service_task - manage and run subtasks 2261 * @work: pointer to work_struct contained by the PF struct 2262 */ 2263 static void ice_service_task(struct work_struct *work) 2264 { 2265 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2266 unsigned long start_time = jiffies; 2267 2268 /* subtasks */ 2269 2270 /* process reset requests first */ 2271 ice_reset_subtask(pf); 2272 2273 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2274 if (ice_is_reset_in_progress(pf->state) || 2275 test_bit(ICE_SUSPENDED, pf->state) || 2276 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2277 ice_service_task_complete(pf); 2278 return; 2279 } 2280 2281 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2282 struct iidc_event *event; 2283 2284 event = kzalloc(sizeof(*event), GFP_KERNEL); 2285 if (event) { 2286 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2287 /* report the entire OICR value to AUX driver */ 2288 swap(event->reg, pf->oicr_err_reg); 2289 ice_send_event_to_aux(pf, event); 2290 kfree(event); 2291 } 2292 } 2293 2294 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2295 /* Plug aux device per request */ 2296 ice_plug_aux_dev(pf); 2297 2298 /* Mark plugging as done but check whether unplug was 2299 * requested during ice_plug_aux_dev() call 2300 * (e.g. from ice_clear_rdma_cap()) and if so then 2301 * plug aux device. 2302 */ 2303 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2304 ice_unplug_aux_dev(pf); 2305 } 2306 2307 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2308 struct iidc_event *event; 2309 2310 event = kzalloc(sizeof(*event), GFP_KERNEL); 2311 if (event) { 2312 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2313 ice_send_event_to_aux(pf, event); 2314 kfree(event); 2315 } 2316 } 2317 2318 ice_clean_adminq_subtask(pf); 2319 ice_check_media_subtask(pf); 2320 ice_check_for_hang_subtask(pf); 2321 ice_sync_fltr_subtask(pf); 2322 ice_handle_mdd_event(pf); 2323 ice_watchdog_subtask(pf); 2324 2325 if (ice_is_safe_mode(pf)) { 2326 ice_service_task_complete(pf); 2327 return; 2328 } 2329 2330 ice_process_vflr_event(pf); 2331 ice_clean_mailboxq_subtask(pf); 2332 ice_clean_sbq_subtask(pf); 2333 ice_sync_arfs_fltrs(pf); 2334 ice_flush_fdir_ctx(pf); 2335 2336 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2337 ice_service_task_complete(pf); 2338 2339 /* If the tasks have taken longer than one service timer period 2340 * or there is more work to be done, reset the service timer to 2341 * schedule the service task now. 2342 */ 2343 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2344 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2345 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2346 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2347 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2348 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2349 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2350 mod_timer(&pf->serv_tmr, jiffies); 2351 } 2352 2353 /** 2354 * ice_set_ctrlq_len - helper function to set controlq length 2355 * @hw: pointer to the HW instance 2356 */ 2357 static void ice_set_ctrlq_len(struct ice_hw *hw) 2358 { 2359 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2360 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2361 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2362 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2363 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2364 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2365 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2366 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2367 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2368 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2369 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2370 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2371 } 2372 2373 /** 2374 * ice_schedule_reset - schedule a reset 2375 * @pf: board private structure 2376 * @reset: reset being requested 2377 */ 2378 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2379 { 2380 struct device *dev = ice_pf_to_dev(pf); 2381 2382 /* bail out if earlier reset has failed */ 2383 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2384 dev_dbg(dev, "earlier reset has failed\n"); 2385 return -EIO; 2386 } 2387 /* bail if reset/recovery already in progress */ 2388 if (ice_is_reset_in_progress(pf->state)) { 2389 dev_dbg(dev, "Reset already in progress\n"); 2390 return -EBUSY; 2391 } 2392 2393 switch (reset) { 2394 case ICE_RESET_PFR: 2395 set_bit(ICE_PFR_REQ, pf->state); 2396 break; 2397 case ICE_RESET_CORER: 2398 set_bit(ICE_CORER_REQ, pf->state); 2399 break; 2400 case ICE_RESET_GLOBR: 2401 set_bit(ICE_GLOBR_REQ, pf->state); 2402 break; 2403 default: 2404 return -EINVAL; 2405 } 2406 2407 ice_service_task_schedule(pf); 2408 return 0; 2409 } 2410 2411 /** 2412 * ice_irq_affinity_notify - Callback for affinity changes 2413 * @notify: context as to what irq was changed 2414 * @mask: the new affinity mask 2415 * 2416 * This is a callback function used by the irq_set_affinity_notifier function 2417 * so that we may register to receive changes to the irq affinity masks. 2418 */ 2419 static void 2420 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2421 const cpumask_t *mask) 2422 { 2423 struct ice_q_vector *q_vector = 2424 container_of(notify, struct ice_q_vector, affinity_notify); 2425 2426 cpumask_copy(&q_vector->affinity_mask, mask); 2427 } 2428 2429 /** 2430 * ice_irq_affinity_release - Callback for affinity notifier release 2431 * @ref: internal core kernel usage 2432 * 2433 * This is a callback function used by the irq_set_affinity_notifier function 2434 * to inform the current notification subscriber that they will no longer 2435 * receive notifications. 2436 */ 2437 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2438 2439 /** 2440 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2441 * @vsi: the VSI being configured 2442 */ 2443 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2444 { 2445 struct ice_hw *hw = &vsi->back->hw; 2446 int i; 2447 2448 ice_for_each_q_vector(vsi, i) 2449 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2450 2451 ice_flush(hw); 2452 return 0; 2453 } 2454 2455 /** 2456 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2457 * @vsi: the VSI being configured 2458 * @basename: name for the vector 2459 */ 2460 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2461 { 2462 int q_vectors = vsi->num_q_vectors; 2463 struct ice_pf *pf = vsi->back; 2464 int base = vsi->base_vector; 2465 struct device *dev; 2466 int rx_int_idx = 0; 2467 int tx_int_idx = 0; 2468 int vector, err; 2469 int irq_num; 2470 2471 dev = ice_pf_to_dev(pf); 2472 for (vector = 0; vector < q_vectors; vector++) { 2473 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2474 2475 irq_num = pf->msix_entries[base + vector].vector; 2476 2477 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2478 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2479 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2480 tx_int_idx++; 2481 } else if (q_vector->rx.rx_ring) { 2482 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2483 "%s-%s-%d", basename, "rx", rx_int_idx++); 2484 } else if (q_vector->tx.tx_ring) { 2485 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2486 "%s-%s-%d", basename, "tx", tx_int_idx++); 2487 } else { 2488 /* skip this unused q_vector */ 2489 continue; 2490 } 2491 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2492 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2493 IRQF_SHARED, q_vector->name, 2494 q_vector); 2495 else 2496 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2497 0, q_vector->name, q_vector); 2498 if (err) { 2499 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2500 err); 2501 goto free_q_irqs; 2502 } 2503 2504 /* register for affinity change notifications */ 2505 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2506 struct irq_affinity_notify *affinity_notify; 2507 2508 affinity_notify = &q_vector->affinity_notify; 2509 affinity_notify->notify = ice_irq_affinity_notify; 2510 affinity_notify->release = ice_irq_affinity_release; 2511 irq_set_affinity_notifier(irq_num, affinity_notify); 2512 } 2513 2514 /* assign the mask for this irq */ 2515 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2516 } 2517 2518 err = ice_set_cpu_rx_rmap(vsi); 2519 if (err) { 2520 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2521 vsi->vsi_num, ERR_PTR(err)); 2522 goto free_q_irqs; 2523 } 2524 2525 vsi->irqs_ready = true; 2526 return 0; 2527 2528 free_q_irqs: 2529 while (vector) { 2530 vector--; 2531 irq_num = pf->msix_entries[base + vector].vector; 2532 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2533 irq_set_affinity_notifier(irq_num, NULL); 2534 irq_set_affinity_hint(irq_num, NULL); 2535 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2536 } 2537 return err; 2538 } 2539 2540 /** 2541 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2542 * @vsi: VSI to setup Tx rings used by XDP 2543 * 2544 * Return 0 on success and negative value on error 2545 */ 2546 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2547 { 2548 struct device *dev = ice_pf_to_dev(vsi->back); 2549 struct ice_tx_desc *tx_desc; 2550 int i, j; 2551 2552 ice_for_each_xdp_txq(vsi, i) { 2553 u16 xdp_q_idx = vsi->alloc_txq + i; 2554 struct ice_ring_stats *ring_stats; 2555 struct ice_tx_ring *xdp_ring; 2556 2557 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2558 if (!xdp_ring) 2559 goto free_xdp_rings; 2560 2561 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2562 if (!ring_stats) { 2563 ice_free_tx_ring(xdp_ring); 2564 goto free_xdp_rings; 2565 } 2566 2567 xdp_ring->ring_stats = ring_stats; 2568 xdp_ring->q_index = xdp_q_idx; 2569 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2570 xdp_ring->vsi = vsi; 2571 xdp_ring->netdev = NULL; 2572 xdp_ring->dev = dev; 2573 xdp_ring->count = vsi->num_tx_desc; 2574 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2575 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2576 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2577 if (ice_setup_tx_ring(xdp_ring)) 2578 goto free_xdp_rings; 2579 ice_set_ring_xdp(xdp_ring); 2580 spin_lock_init(&xdp_ring->tx_lock); 2581 for (j = 0; j < xdp_ring->count; j++) { 2582 tx_desc = ICE_TX_DESC(xdp_ring, j); 2583 tx_desc->cmd_type_offset_bsz = 0; 2584 } 2585 } 2586 2587 return 0; 2588 2589 free_xdp_rings: 2590 for (; i >= 0; i--) { 2591 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2592 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2593 vsi->xdp_rings[i]->ring_stats = NULL; 2594 ice_free_tx_ring(vsi->xdp_rings[i]); 2595 } 2596 } 2597 return -ENOMEM; 2598 } 2599 2600 /** 2601 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2602 * @vsi: VSI to set the bpf prog on 2603 * @prog: the bpf prog pointer 2604 */ 2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2606 { 2607 struct bpf_prog *old_prog; 2608 int i; 2609 2610 old_prog = xchg(&vsi->xdp_prog, prog); 2611 if (old_prog) 2612 bpf_prog_put(old_prog); 2613 2614 ice_for_each_rxq(vsi, i) 2615 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2616 } 2617 2618 /** 2619 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2620 * @vsi: VSI to bring up Tx rings used by XDP 2621 * @prog: bpf program that will be assigned to VSI 2622 * 2623 * Return 0 on success and negative value on error 2624 */ 2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2626 { 2627 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2628 int xdp_rings_rem = vsi->num_xdp_txq; 2629 struct ice_pf *pf = vsi->back; 2630 struct ice_qs_cfg xdp_qs_cfg = { 2631 .qs_mutex = &pf->avail_q_mutex, 2632 .pf_map = pf->avail_txqs, 2633 .pf_map_size = pf->max_pf_txqs, 2634 .q_count = vsi->num_xdp_txq, 2635 .scatter_count = ICE_MAX_SCATTER_TXQS, 2636 .vsi_map = vsi->txq_map, 2637 .vsi_map_offset = vsi->alloc_txq, 2638 .mapping_mode = ICE_VSI_MAP_CONTIG 2639 }; 2640 struct device *dev; 2641 int i, v_idx; 2642 int status; 2643 2644 dev = ice_pf_to_dev(pf); 2645 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2646 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2647 if (!vsi->xdp_rings) 2648 return -ENOMEM; 2649 2650 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2651 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2652 goto err_map_xdp; 2653 2654 if (static_key_enabled(&ice_xdp_locking_key)) 2655 netdev_warn(vsi->netdev, 2656 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2657 2658 if (ice_xdp_alloc_setup_rings(vsi)) 2659 goto clear_xdp_rings; 2660 2661 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2662 ice_for_each_q_vector(vsi, v_idx) { 2663 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2664 int xdp_rings_per_v, q_id, q_base; 2665 2666 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2667 vsi->num_q_vectors - v_idx); 2668 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2669 2670 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2671 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2672 2673 xdp_ring->q_vector = q_vector; 2674 xdp_ring->next = q_vector->tx.tx_ring; 2675 q_vector->tx.tx_ring = xdp_ring; 2676 } 2677 xdp_rings_rem -= xdp_rings_per_v; 2678 } 2679 2680 ice_for_each_rxq(vsi, i) { 2681 if (static_key_enabled(&ice_xdp_locking_key)) { 2682 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2683 } else { 2684 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2685 struct ice_tx_ring *ring; 2686 2687 ice_for_each_tx_ring(ring, q_vector->tx) { 2688 if (ice_ring_is_xdp(ring)) { 2689 vsi->rx_rings[i]->xdp_ring = ring; 2690 break; 2691 } 2692 } 2693 } 2694 ice_tx_xsk_pool(vsi, i); 2695 } 2696 2697 /* omit the scheduler update if in reset path; XDP queues will be 2698 * taken into account at the end of ice_vsi_rebuild, where 2699 * ice_cfg_vsi_lan is being called 2700 */ 2701 if (ice_is_reset_in_progress(pf->state)) 2702 return 0; 2703 2704 /* tell the Tx scheduler that right now we have 2705 * additional queues 2706 */ 2707 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2708 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2709 2710 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2711 max_txqs); 2712 if (status) { 2713 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2714 status); 2715 goto clear_xdp_rings; 2716 } 2717 2718 /* assign the prog only when it's not already present on VSI; 2719 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2720 * VSI rebuild that happens under ethtool -L can expose us to 2721 * the bpf_prog refcount issues as we would be swapping same 2722 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2723 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2724 * this is not harmful as dev_xdp_install bumps the refcount 2725 * before calling the op exposed by the driver; 2726 */ 2727 if (!ice_is_xdp_ena_vsi(vsi)) 2728 ice_vsi_assign_bpf_prog(vsi, prog); 2729 2730 return 0; 2731 clear_xdp_rings: 2732 ice_for_each_xdp_txq(vsi, i) 2733 if (vsi->xdp_rings[i]) { 2734 kfree_rcu(vsi->xdp_rings[i], rcu); 2735 vsi->xdp_rings[i] = NULL; 2736 } 2737 2738 err_map_xdp: 2739 mutex_lock(&pf->avail_q_mutex); 2740 ice_for_each_xdp_txq(vsi, i) { 2741 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2742 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2743 } 2744 mutex_unlock(&pf->avail_q_mutex); 2745 2746 devm_kfree(dev, vsi->xdp_rings); 2747 return -ENOMEM; 2748 } 2749 2750 /** 2751 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2752 * @vsi: VSI to remove XDP rings 2753 * 2754 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2755 * resources 2756 */ 2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2758 { 2759 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2760 struct ice_pf *pf = vsi->back; 2761 int i, v_idx; 2762 2763 /* q_vectors are freed in reset path so there's no point in detaching 2764 * rings; in case of rebuild being triggered not from reset bits 2765 * in pf->state won't be set, so additionally check first q_vector 2766 * against NULL 2767 */ 2768 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2769 goto free_qmap; 2770 2771 ice_for_each_q_vector(vsi, v_idx) { 2772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2773 struct ice_tx_ring *ring; 2774 2775 ice_for_each_tx_ring(ring, q_vector->tx) 2776 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2777 break; 2778 2779 /* restore the value of last node prior to XDP setup */ 2780 q_vector->tx.tx_ring = ring; 2781 } 2782 2783 free_qmap: 2784 mutex_lock(&pf->avail_q_mutex); 2785 ice_for_each_xdp_txq(vsi, i) { 2786 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2787 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2788 } 2789 mutex_unlock(&pf->avail_q_mutex); 2790 2791 ice_for_each_xdp_txq(vsi, i) 2792 if (vsi->xdp_rings[i]) { 2793 if (vsi->xdp_rings[i]->desc) { 2794 synchronize_rcu(); 2795 ice_free_tx_ring(vsi->xdp_rings[i]); 2796 } 2797 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2798 vsi->xdp_rings[i]->ring_stats = NULL; 2799 kfree_rcu(vsi->xdp_rings[i], rcu); 2800 vsi->xdp_rings[i] = NULL; 2801 } 2802 2803 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2804 vsi->xdp_rings = NULL; 2805 2806 if (static_key_enabled(&ice_xdp_locking_key)) 2807 static_branch_dec(&ice_xdp_locking_key); 2808 2809 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2810 return 0; 2811 2812 ice_vsi_assign_bpf_prog(vsi, NULL); 2813 2814 /* notify Tx scheduler that we destroyed XDP queues and bring 2815 * back the old number of child nodes 2816 */ 2817 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2818 max_txqs[i] = vsi->num_txq; 2819 2820 /* change number of XDP Tx queues to 0 */ 2821 vsi->num_xdp_txq = 0; 2822 2823 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2824 max_txqs); 2825 } 2826 2827 /** 2828 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2829 * @vsi: VSI to schedule napi on 2830 */ 2831 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2832 { 2833 int i; 2834 2835 ice_for_each_rxq(vsi, i) { 2836 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2837 2838 if (rx_ring->xsk_pool) 2839 napi_schedule(&rx_ring->q_vector->napi); 2840 } 2841 } 2842 2843 /** 2844 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2845 * @vsi: VSI to determine the count of XDP Tx qs 2846 * 2847 * returns 0 if Tx qs count is higher than at least half of CPU count, 2848 * -ENOMEM otherwise 2849 */ 2850 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2851 { 2852 u16 avail = ice_get_avail_txq_count(vsi->back); 2853 u16 cpus = num_possible_cpus(); 2854 2855 if (avail < cpus / 2) 2856 return -ENOMEM; 2857 2858 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2859 2860 if (vsi->num_xdp_txq < cpus) 2861 static_branch_inc(&ice_xdp_locking_key); 2862 2863 return 0; 2864 } 2865 2866 /** 2867 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2868 * @vsi: VSI to setup XDP for 2869 * @prog: XDP program 2870 * @extack: netlink extended ack 2871 */ 2872 static int 2873 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2874 struct netlink_ext_ack *extack) 2875 { 2876 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2877 bool if_running = netif_running(vsi->netdev); 2878 int ret = 0, xdp_ring_err = 0; 2879 2880 if (frame_size > vsi->rx_buf_len) { 2881 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2882 return -EOPNOTSUPP; 2883 } 2884 2885 /* need to stop netdev while setting up the program for Rx rings */ 2886 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2887 ret = ice_down(vsi); 2888 if (ret) { 2889 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2890 return ret; 2891 } 2892 } 2893 2894 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2895 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2896 if (xdp_ring_err) { 2897 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2898 } else { 2899 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2900 if (xdp_ring_err) 2901 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2902 } 2903 /* reallocate Rx queues that are used for zero-copy */ 2904 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2905 if (xdp_ring_err) 2906 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2907 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2908 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2909 if (xdp_ring_err) 2910 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2911 /* reallocate Rx queues that were used for zero-copy */ 2912 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2913 if (xdp_ring_err) 2914 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2915 } else { 2916 /* safe to call even when prog == vsi->xdp_prog as 2917 * dev_xdp_install in net/core/dev.c incremented prog's 2918 * refcount so corresponding bpf_prog_put won't cause 2919 * underflow 2920 */ 2921 ice_vsi_assign_bpf_prog(vsi, prog); 2922 } 2923 2924 if (if_running) 2925 ret = ice_up(vsi); 2926 2927 if (!ret && prog) 2928 ice_vsi_rx_napi_schedule(vsi); 2929 2930 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2931 } 2932 2933 /** 2934 * ice_xdp_safe_mode - XDP handler for safe mode 2935 * @dev: netdevice 2936 * @xdp: XDP command 2937 */ 2938 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2939 struct netdev_bpf *xdp) 2940 { 2941 NL_SET_ERR_MSG_MOD(xdp->extack, 2942 "Please provide working DDP firmware package in order to use XDP\n" 2943 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2944 return -EOPNOTSUPP; 2945 } 2946 2947 /** 2948 * ice_xdp - implements XDP handler 2949 * @dev: netdevice 2950 * @xdp: XDP command 2951 */ 2952 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2953 { 2954 struct ice_netdev_priv *np = netdev_priv(dev); 2955 struct ice_vsi *vsi = np->vsi; 2956 2957 if (vsi->type != ICE_VSI_PF) { 2958 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2959 return -EINVAL; 2960 } 2961 2962 switch (xdp->command) { 2963 case XDP_SETUP_PROG: 2964 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2965 case XDP_SETUP_XSK_POOL: 2966 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2967 xdp->xsk.queue_id); 2968 default: 2969 return -EINVAL; 2970 } 2971 } 2972 2973 /** 2974 * ice_ena_misc_vector - enable the non-queue interrupts 2975 * @pf: board private structure 2976 */ 2977 static void ice_ena_misc_vector(struct ice_pf *pf) 2978 { 2979 struct ice_hw *hw = &pf->hw; 2980 u32 val; 2981 2982 /* Disable anti-spoof detection interrupt to prevent spurious event 2983 * interrupts during a function reset. Anti-spoof functionally is 2984 * still supported. 2985 */ 2986 val = rd32(hw, GL_MDCK_TX_TDPU); 2987 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2988 wr32(hw, GL_MDCK_TX_TDPU, val); 2989 2990 /* clear things first */ 2991 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2992 rd32(hw, PFINT_OICR); /* read to clear */ 2993 2994 val = (PFINT_OICR_ECC_ERR_M | 2995 PFINT_OICR_MAL_DETECT_M | 2996 PFINT_OICR_GRST_M | 2997 PFINT_OICR_PCI_EXCEPTION_M | 2998 PFINT_OICR_VFLR_M | 2999 PFINT_OICR_HMC_ERR_M | 3000 PFINT_OICR_PE_PUSH_M | 3001 PFINT_OICR_PE_CRITERR_M); 3002 3003 wr32(hw, PFINT_OICR_ENA, val); 3004 3005 /* SW_ITR_IDX = 0, but don't change INTENA */ 3006 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3007 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3008 } 3009 3010 /** 3011 * ice_misc_intr - misc interrupt handler 3012 * @irq: interrupt number 3013 * @data: pointer to a q_vector 3014 */ 3015 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3016 { 3017 struct ice_pf *pf = (struct ice_pf *)data; 3018 struct ice_hw *hw = &pf->hw; 3019 irqreturn_t ret = IRQ_NONE; 3020 struct device *dev; 3021 u32 oicr, ena_mask; 3022 3023 dev = ice_pf_to_dev(pf); 3024 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3025 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3026 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3027 3028 oicr = rd32(hw, PFINT_OICR); 3029 ena_mask = rd32(hw, PFINT_OICR_ENA); 3030 3031 if (oicr & PFINT_OICR_SWINT_M) { 3032 ena_mask &= ~PFINT_OICR_SWINT_M; 3033 pf->sw_int_count++; 3034 } 3035 3036 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3037 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3038 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3039 } 3040 if (oicr & PFINT_OICR_VFLR_M) { 3041 /* disable any further VFLR event notifications */ 3042 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3043 u32 reg = rd32(hw, PFINT_OICR_ENA); 3044 3045 reg &= ~PFINT_OICR_VFLR_M; 3046 wr32(hw, PFINT_OICR_ENA, reg); 3047 } else { 3048 ena_mask &= ~PFINT_OICR_VFLR_M; 3049 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3050 } 3051 } 3052 3053 if (oicr & PFINT_OICR_GRST_M) { 3054 u32 reset; 3055 3056 /* we have a reset warning */ 3057 ena_mask &= ~PFINT_OICR_GRST_M; 3058 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3059 GLGEN_RSTAT_RESET_TYPE_S; 3060 3061 if (reset == ICE_RESET_CORER) 3062 pf->corer_count++; 3063 else if (reset == ICE_RESET_GLOBR) 3064 pf->globr_count++; 3065 else if (reset == ICE_RESET_EMPR) 3066 pf->empr_count++; 3067 else 3068 dev_dbg(dev, "Invalid reset type %d\n", reset); 3069 3070 /* If a reset cycle isn't already in progress, we set a bit in 3071 * pf->state so that the service task can start a reset/rebuild. 3072 */ 3073 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3074 if (reset == ICE_RESET_CORER) 3075 set_bit(ICE_CORER_RECV, pf->state); 3076 else if (reset == ICE_RESET_GLOBR) 3077 set_bit(ICE_GLOBR_RECV, pf->state); 3078 else 3079 set_bit(ICE_EMPR_RECV, pf->state); 3080 3081 /* There are couple of different bits at play here. 3082 * hw->reset_ongoing indicates whether the hardware is 3083 * in reset. This is set to true when a reset interrupt 3084 * is received and set back to false after the driver 3085 * has determined that the hardware is out of reset. 3086 * 3087 * ICE_RESET_OICR_RECV in pf->state indicates 3088 * that a post reset rebuild is required before the 3089 * driver is operational again. This is set above. 3090 * 3091 * As this is the start of the reset/rebuild cycle, set 3092 * both to indicate that. 3093 */ 3094 hw->reset_ongoing = true; 3095 } 3096 } 3097 3098 if (oicr & PFINT_OICR_TSYN_TX_M) { 3099 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3100 if (!hw->reset_ongoing) 3101 ret = IRQ_WAKE_THREAD; 3102 } 3103 3104 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3105 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3106 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3107 3108 /* Save EVENTs from GTSYN register */ 3109 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3110 GLTSYN_STAT_EVENT1_M | 3111 GLTSYN_STAT_EVENT2_M); 3112 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3113 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3114 } 3115 3116 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3117 if (oicr & ICE_AUX_CRIT_ERR) { 3118 pf->oicr_err_reg |= oicr; 3119 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3120 ena_mask &= ~ICE_AUX_CRIT_ERR; 3121 } 3122 3123 /* Report any remaining unexpected interrupts */ 3124 oicr &= ena_mask; 3125 if (oicr) { 3126 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3127 /* If a critical error is pending there is no choice but to 3128 * reset the device. 3129 */ 3130 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3131 PFINT_OICR_ECC_ERR_M)) { 3132 set_bit(ICE_PFR_REQ, pf->state); 3133 ice_service_task_schedule(pf); 3134 } 3135 } 3136 if (!ret) 3137 ret = IRQ_HANDLED; 3138 3139 ice_service_task_schedule(pf); 3140 ice_irq_dynamic_ena(hw, NULL, NULL); 3141 3142 return ret; 3143 } 3144 3145 /** 3146 * ice_misc_intr_thread_fn - misc interrupt thread function 3147 * @irq: interrupt number 3148 * @data: pointer to a q_vector 3149 */ 3150 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3151 { 3152 struct ice_pf *pf = data; 3153 3154 if (ice_is_reset_in_progress(pf->state)) 3155 return IRQ_HANDLED; 3156 3157 while (!ice_ptp_process_ts(pf)) 3158 usleep_range(50, 100); 3159 3160 return IRQ_HANDLED; 3161 } 3162 3163 /** 3164 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3165 * @hw: pointer to HW structure 3166 */ 3167 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3168 { 3169 /* disable Admin queue Interrupt causes */ 3170 wr32(hw, PFINT_FW_CTL, 3171 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3172 3173 /* disable Mailbox queue Interrupt causes */ 3174 wr32(hw, PFINT_MBX_CTL, 3175 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3176 3177 wr32(hw, PFINT_SB_CTL, 3178 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3179 3180 /* disable Control queue Interrupt causes */ 3181 wr32(hw, PFINT_OICR_CTL, 3182 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3183 3184 ice_flush(hw); 3185 } 3186 3187 /** 3188 * ice_free_irq_msix_misc - Unroll misc vector setup 3189 * @pf: board private structure 3190 */ 3191 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3192 { 3193 struct ice_hw *hw = &pf->hw; 3194 3195 ice_dis_ctrlq_interrupts(hw); 3196 3197 /* disable OICR interrupt */ 3198 wr32(hw, PFINT_OICR_ENA, 0); 3199 ice_flush(hw); 3200 3201 if (pf->msix_entries) { 3202 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3203 devm_free_irq(ice_pf_to_dev(pf), 3204 pf->msix_entries[pf->oicr_idx].vector, pf); 3205 } 3206 3207 pf->num_avail_sw_msix += 1; 3208 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3209 } 3210 3211 /** 3212 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3213 * @hw: pointer to HW structure 3214 * @reg_idx: HW vector index to associate the control queue interrupts with 3215 */ 3216 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3217 { 3218 u32 val; 3219 3220 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3221 PFINT_OICR_CTL_CAUSE_ENA_M); 3222 wr32(hw, PFINT_OICR_CTL, val); 3223 3224 /* enable Admin queue Interrupt causes */ 3225 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3226 PFINT_FW_CTL_CAUSE_ENA_M); 3227 wr32(hw, PFINT_FW_CTL, val); 3228 3229 /* enable Mailbox queue Interrupt causes */ 3230 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3231 PFINT_MBX_CTL_CAUSE_ENA_M); 3232 wr32(hw, PFINT_MBX_CTL, val); 3233 3234 /* This enables Sideband queue Interrupt causes */ 3235 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3236 PFINT_SB_CTL_CAUSE_ENA_M); 3237 wr32(hw, PFINT_SB_CTL, val); 3238 3239 ice_flush(hw); 3240 } 3241 3242 /** 3243 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3244 * @pf: board private structure 3245 * 3246 * This sets up the handler for MSIX 0, which is used to manage the 3247 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3248 * when in MSI or Legacy interrupt mode. 3249 */ 3250 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3251 { 3252 struct device *dev = ice_pf_to_dev(pf); 3253 struct ice_hw *hw = &pf->hw; 3254 int oicr_idx, err = 0; 3255 3256 if (!pf->int_name[0]) 3257 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3258 dev_driver_string(dev), dev_name(dev)); 3259 3260 /* Do not request IRQ but do enable OICR interrupt since settings are 3261 * lost during reset. Note that this function is called only during 3262 * rebuild path and not while reset is in progress. 3263 */ 3264 if (ice_is_reset_in_progress(pf->state)) 3265 goto skip_req_irq; 3266 3267 /* reserve one vector in irq_tracker for misc interrupts */ 3268 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3269 if (oicr_idx < 0) 3270 return oicr_idx; 3271 3272 pf->num_avail_sw_msix -= 1; 3273 pf->oicr_idx = (u16)oicr_idx; 3274 3275 err = devm_request_threaded_irq(dev, 3276 pf->msix_entries[pf->oicr_idx].vector, 3277 ice_misc_intr, ice_misc_intr_thread_fn, 3278 0, pf->int_name, pf); 3279 if (err) { 3280 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3281 pf->int_name, err); 3282 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3283 pf->num_avail_sw_msix += 1; 3284 return err; 3285 } 3286 3287 skip_req_irq: 3288 ice_ena_misc_vector(pf); 3289 3290 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3291 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3292 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3293 3294 ice_flush(hw); 3295 ice_irq_dynamic_ena(hw, NULL, NULL); 3296 3297 return 0; 3298 } 3299 3300 /** 3301 * ice_napi_add - register NAPI handler for the VSI 3302 * @vsi: VSI for which NAPI handler is to be registered 3303 * 3304 * This function is only called in the driver's load path. Registering the NAPI 3305 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3306 * reset/rebuild, etc.) 3307 */ 3308 static void ice_napi_add(struct ice_vsi *vsi) 3309 { 3310 int v_idx; 3311 3312 if (!vsi->netdev) 3313 return; 3314 3315 ice_for_each_q_vector(vsi, v_idx) 3316 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3317 ice_napi_poll); 3318 } 3319 3320 /** 3321 * ice_set_ops - set netdev and ethtools ops for the given netdev 3322 * @netdev: netdev instance 3323 */ 3324 static void ice_set_ops(struct net_device *netdev) 3325 { 3326 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3327 3328 if (ice_is_safe_mode(pf)) { 3329 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3330 ice_set_ethtool_safe_mode_ops(netdev); 3331 return; 3332 } 3333 3334 netdev->netdev_ops = &ice_netdev_ops; 3335 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3336 ice_set_ethtool_ops(netdev); 3337 } 3338 3339 /** 3340 * ice_set_netdev_features - set features for the given netdev 3341 * @netdev: netdev instance 3342 */ 3343 static void ice_set_netdev_features(struct net_device *netdev) 3344 { 3345 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3346 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3347 netdev_features_t csumo_features; 3348 netdev_features_t vlano_features; 3349 netdev_features_t dflt_features; 3350 netdev_features_t tso_features; 3351 3352 if (ice_is_safe_mode(pf)) { 3353 /* safe mode */ 3354 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3355 netdev->hw_features = netdev->features; 3356 return; 3357 } 3358 3359 dflt_features = NETIF_F_SG | 3360 NETIF_F_HIGHDMA | 3361 NETIF_F_NTUPLE | 3362 NETIF_F_RXHASH; 3363 3364 csumo_features = NETIF_F_RXCSUM | 3365 NETIF_F_IP_CSUM | 3366 NETIF_F_SCTP_CRC | 3367 NETIF_F_IPV6_CSUM; 3368 3369 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3370 NETIF_F_HW_VLAN_CTAG_TX | 3371 NETIF_F_HW_VLAN_CTAG_RX; 3372 3373 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3374 if (is_dvm_ena) 3375 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3376 3377 tso_features = NETIF_F_TSO | 3378 NETIF_F_TSO_ECN | 3379 NETIF_F_TSO6 | 3380 NETIF_F_GSO_GRE | 3381 NETIF_F_GSO_UDP_TUNNEL | 3382 NETIF_F_GSO_GRE_CSUM | 3383 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3384 NETIF_F_GSO_PARTIAL | 3385 NETIF_F_GSO_IPXIP4 | 3386 NETIF_F_GSO_IPXIP6 | 3387 NETIF_F_GSO_UDP_L4; 3388 3389 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3390 NETIF_F_GSO_GRE_CSUM; 3391 /* set features that user can change */ 3392 netdev->hw_features = dflt_features | csumo_features | 3393 vlano_features | tso_features; 3394 3395 /* add support for HW_CSUM on packets with MPLS header */ 3396 netdev->mpls_features = NETIF_F_HW_CSUM | 3397 NETIF_F_TSO | 3398 NETIF_F_TSO6; 3399 3400 /* enable features */ 3401 netdev->features |= netdev->hw_features; 3402 3403 netdev->hw_features |= NETIF_F_HW_TC; 3404 netdev->hw_features |= NETIF_F_LOOPBACK; 3405 3406 /* encap and VLAN devices inherit default, csumo and tso features */ 3407 netdev->hw_enc_features |= dflt_features | csumo_features | 3408 tso_features; 3409 netdev->vlan_features |= dflt_features | csumo_features | 3410 tso_features; 3411 3412 /* advertise support but don't enable by default since only one type of 3413 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3414 * type turns on the other has to be turned off. This is enforced by the 3415 * ice_fix_features() ndo callback. 3416 */ 3417 if (is_dvm_ena) 3418 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3419 NETIF_F_HW_VLAN_STAG_TX; 3420 3421 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3422 * be changed at runtime 3423 */ 3424 netdev->hw_features |= NETIF_F_RXFCS; 3425 } 3426 3427 /** 3428 * ice_cfg_netdev - Allocate, configure and register a netdev 3429 * @vsi: the VSI associated with the new netdev 3430 * 3431 * Returns 0 on success, negative value on failure 3432 */ 3433 static int ice_cfg_netdev(struct ice_vsi *vsi) 3434 { 3435 struct ice_netdev_priv *np; 3436 struct net_device *netdev; 3437 u8 mac_addr[ETH_ALEN]; 3438 3439 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3440 vsi->alloc_rxq); 3441 if (!netdev) 3442 return -ENOMEM; 3443 3444 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3445 vsi->netdev = netdev; 3446 np = netdev_priv(netdev); 3447 np->vsi = vsi; 3448 3449 ice_set_netdev_features(netdev); 3450 3451 ice_set_ops(netdev); 3452 3453 if (vsi->type == ICE_VSI_PF) { 3454 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3455 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3456 eth_hw_addr_set(netdev, mac_addr); 3457 ether_addr_copy(netdev->perm_addr, mac_addr); 3458 } 3459 3460 netdev->priv_flags |= IFF_UNICAST_FLT; 3461 3462 /* Setup netdev TC information */ 3463 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3464 3465 /* setup watchdog timeout value to be 5 second */ 3466 netdev->watchdog_timeo = 5 * HZ; 3467 3468 netdev->min_mtu = ETH_MIN_MTU; 3469 netdev->max_mtu = ICE_MAX_MTU; 3470 3471 return 0; 3472 } 3473 3474 /** 3475 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3476 * @lut: Lookup table 3477 * @rss_table_size: Lookup table size 3478 * @rss_size: Range of queue number for hashing 3479 */ 3480 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3481 { 3482 u16 i; 3483 3484 for (i = 0; i < rss_table_size; i++) 3485 lut[i] = i % rss_size; 3486 } 3487 3488 /** 3489 * ice_pf_vsi_setup - Set up a PF VSI 3490 * @pf: board private structure 3491 * @pi: pointer to the port_info instance 3492 * 3493 * Returns pointer to the successfully allocated VSI software struct 3494 * on success, otherwise returns NULL on failure. 3495 */ 3496 static struct ice_vsi * 3497 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3498 { 3499 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3500 } 3501 3502 static struct ice_vsi * 3503 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3504 struct ice_channel *ch) 3505 { 3506 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3507 } 3508 3509 /** 3510 * ice_ctrl_vsi_setup - Set up a control VSI 3511 * @pf: board private structure 3512 * @pi: pointer to the port_info instance 3513 * 3514 * Returns pointer to the successfully allocated VSI software struct 3515 * on success, otherwise returns NULL on failure. 3516 */ 3517 static struct ice_vsi * 3518 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3519 { 3520 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3521 } 3522 3523 /** 3524 * ice_lb_vsi_setup - Set up a loopback VSI 3525 * @pf: board private structure 3526 * @pi: pointer to the port_info instance 3527 * 3528 * Returns pointer to the successfully allocated VSI software struct 3529 * on success, otherwise returns NULL on failure. 3530 */ 3531 struct ice_vsi * 3532 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3533 { 3534 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3535 } 3536 3537 /** 3538 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3539 * @netdev: network interface to be adjusted 3540 * @proto: VLAN TPID 3541 * @vid: VLAN ID to be added 3542 * 3543 * net_device_ops implementation for adding VLAN IDs 3544 */ 3545 static int 3546 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3547 { 3548 struct ice_netdev_priv *np = netdev_priv(netdev); 3549 struct ice_vsi_vlan_ops *vlan_ops; 3550 struct ice_vsi *vsi = np->vsi; 3551 struct ice_vlan vlan; 3552 int ret; 3553 3554 /* VLAN 0 is added by default during load/reset */ 3555 if (!vid) 3556 return 0; 3557 3558 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3559 usleep_range(1000, 2000); 3560 3561 /* Add multicast promisc rule for the VLAN ID to be added if 3562 * all-multicast is currently enabled. 3563 */ 3564 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3565 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3566 ICE_MCAST_VLAN_PROMISC_BITS, 3567 vid); 3568 if (ret) 3569 goto finish; 3570 } 3571 3572 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3573 3574 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3575 * packets aren't pruned by the device's internal switch on Rx 3576 */ 3577 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3578 ret = vlan_ops->add_vlan(vsi, &vlan); 3579 if (ret) 3580 goto finish; 3581 3582 /* If all-multicast is currently enabled and this VLAN ID is only one 3583 * besides VLAN-0 we have to update look-up type of multicast promisc 3584 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3585 */ 3586 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3587 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3588 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3589 ICE_MCAST_PROMISC_BITS, 0); 3590 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3591 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3592 } 3593 3594 finish: 3595 clear_bit(ICE_CFG_BUSY, vsi->state); 3596 3597 return ret; 3598 } 3599 3600 /** 3601 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3602 * @netdev: network interface to be adjusted 3603 * @proto: VLAN TPID 3604 * @vid: VLAN ID to be removed 3605 * 3606 * net_device_ops implementation for removing VLAN IDs 3607 */ 3608 static int 3609 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3610 { 3611 struct ice_netdev_priv *np = netdev_priv(netdev); 3612 struct ice_vsi_vlan_ops *vlan_ops; 3613 struct ice_vsi *vsi = np->vsi; 3614 struct ice_vlan vlan; 3615 int ret; 3616 3617 /* don't allow removal of VLAN 0 */ 3618 if (!vid) 3619 return 0; 3620 3621 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3622 usleep_range(1000, 2000); 3623 3624 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3625 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3626 if (ret) { 3627 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3628 vsi->vsi_num); 3629 vsi->current_netdev_flags |= IFF_ALLMULTI; 3630 } 3631 3632 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3633 3634 /* Make sure VLAN delete is successful before updating VLAN 3635 * information 3636 */ 3637 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3638 ret = vlan_ops->del_vlan(vsi, &vlan); 3639 if (ret) 3640 goto finish; 3641 3642 /* Remove multicast promisc rule for the removed VLAN ID if 3643 * all-multicast is enabled. 3644 */ 3645 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3646 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3647 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3648 3649 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3650 /* Update look-up type of multicast promisc rule for VLAN 0 3651 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3652 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3653 */ 3654 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3655 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3656 ICE_MCAST_VLAN_PROMISC_BITS, 3657 0); 3658 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3659 ICE_MCAST_PROMISC_BITS, 0); 3660 } 3661 } 3662 3663 finish: 3664 clear_bit(ICE_CFG_BUSY, vsi->state); 3665 3666 return ret; 3667 } 3668 3669 /** 3670 * ice_rep_indr_tc_block_unbind 3671 * @cb_priv: indirection block private data 3672 */ 3673 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3674 { 3675 struct ice_indr_block_priv *indr_priv = cb_priv; 3676 3677 list_del(&indr_priv->list); 3678 kfree(indr_priv); 3679 } 3680 3681 /** 3682 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3683 * @vsi: VSI struct which has the netdev 3684 */ 3685 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3686 { 3687 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3688 3689 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3690 ice_rep_indr_tc_block_unbind); 3691 } 3692 3693 /** 3694 * ice_tc_indir_block_remove - clean indirect TC block notifications 3695 * @pf: PF structure 3696 */ 3697 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3698 { 3699 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3700 3701 if (!pf_vsi) 3702 return; 3703 3704 ice_tc_indir_block_unregister(pf_vsi); 3705 } 3706 3707 /** 3708 * ice_tc_indir_block_register - Register TC indirect block notifications 3709 * @vsi: VSI struct which has the netdev 3710 * 3711 * Returns 0 on success, negative value on failure 3712 */ 3713 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3714 { 3715 struct ice_netdev_priv *np; 3716 3717 if (!vsi || !vsi->netdev) 3718 return -EINVAL; 3719 3720 np = netdev_priv(vsi->netdev); 3721 3722 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3723 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3724 } 3725 3726 /** 3727 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3728 * @pf: board private structure 3729 * 3730 * Returns 0 on success, negative value on failure 3731 */ 3732 static int ice_setup_pf_sw(struct ice_pf *pf) 3733 { 3734 struct device *dev = ice_pf_to_dev(pf); 3735 bool dvm = ice_is_dvm_ena(&pf->hw); 3736 struct ice_vsi *vsi; 3737 int status; 3738 3739 if (ice_is_reset_in_progress(pf->state)) 3740 return -EBUSY; 3741 3742 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3743 if (status) 3744 return -EIO; 3745 3746 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3747 if (!vsi) 3748 return -ENOMEM; 3749 3750 /* init channel list */ 3751 INIT_LIST_HEAD(&vsi->ch_list); 3752 3753 status = ice_cfg_netdev(vsi); 3754 if (status) 3755 goto unroll_vsi_setup; 3756 /* netdev has to be configured before setting frame size */ 3757 ice_vsi_cfg_frame_size(vsi); 3758 3759 /* init indirect block notifications */ 3760 status = ice_tc_indir_block_register(vsi); 3761 if (status) { 3762 dev_err(dev, "Failed to register netdev notifier\n"); 3763 goto unroll_cfg_netdev; 3764 } 3765 3766 /* Setup DCB netlink interface */ 3767 ice_dcbnl_setup(vsi); 3768 3769 /* registering the NAPI handler requires both the queues and 3770 * netdev to be created, which are done in ice_pf_vsi_setup() 3771 * and ice_cfg_netdev() respectively 3772 */ 3773 ice_napi_add(vsi); 3774 3775 status = ice_init_mac_fltr(pf); 3776 if (status) 3777 goto unroll_napi_add; 3778 3779 return 0; 3780 3781 unroll_napi_add: 3782 ice_tc_indir_block_unregister(vsi); 3783 unroll_cfg_netdev: 3784 if (vsi) { 3785 ice_napi_del(vsi); 3786 if (vsi->netdev) { 3787 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3788 free_netdev(vsi->netdev); 3789 vsi->netdev = NULL; 3790 } 3791 } 3792 3793 unroll_vsi_setup: 3794 ice_vsi_release(vsi); 3795 return status; 3796 } 3797 3798 /** 3799 * ice_get_avail_q_count - Get count of queues in use 3800 * @pf_qmap: bitmap to get queue use count from 3801 * @lock: pointer to a mutex that protects access to pf_qmap 3802 * @size: size of the bitmap 3803 */ 3804 static u16 3805 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3806 { 3807 unsigned long bit; 3808 u16 count = 0; 3809 3810 mutex_lock(lock); 3811 for_each_clear_bit(bit, pf_qmap, size) 3812 count++; 3813 mutex_unlock(lock); 3814 3815 return count; 3816 } 3817 3818 /** 3819 * ice_get_avail_txq_count - Get count of Tx queues in use 3820 * @pf: pointer to an ice_pf instance 3821 */ 3822 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3823 { 3824 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3825 pf->max_pf_txqs); 3826 } 3827 3828 /** 3829 * ice_get_avail_rxq_count - Get count of Rx queues in use 3830 * @pf: pointer to an ice_pf instance 3831 */ 3832 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3833 { 3834 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3835 pf->max_pf_rxqs); 3836 } 3837 3838 /** 3839 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3840 * @pf: board private structure to initialize 3841 */ 3842 static void ice_deinit_pf(struct ice_pf *pf) 3843 { 3844 ice_service_task_stop(pf); 3845 mutex_destroy(&pf->adev_mutex); 3846 mutex_destroy(&pf->sw_mutex); 3847 mutex_destroy(&pf->tc_mutex); 3848 mutex_destroy(&pf->avail_q_mutex); 3849 mutex_destroy(&pf->vfs.table_lock); 3850 3851 if (pf->avail_txqs) { 3852 bitmap_free(pf->avail_txqs); 3853 pf->avail_txqs = NULL; 3854 } 3855 3856 if (pf->avail_rxqs) { 3857 bitmap_free(pf->avail_rxqs); 3858 pf->avail_rxqs = NULL; 3859 } 3860 3861 if (pf->ptp.clock) 3862 ptp_clock_unregister(pf->ptp.clock); 3863 } 3864 3865 /** 3866 * ice_set_pf_caps - set PFs capability flags 3867 * @pf: pointer to the PF instance 3868 */ 3869 static void ice_set_pf_caps(struct ice_pf *pf) 3870 { 3871 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3872 3873 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3874 if (func_caps->common_cap.rdma) 3875 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3876 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3877 if (func_caps->common_cap.dcb) 3878 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3879 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3880 if (func_caps->common_cap.sr_iov_1_1) { 3881 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3882 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3883 ICE_MAX_SRIOV_VFS); 3884 } 3885 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3886 if (func_caps->common_cap.rss_table_size) 3887 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3888 3889 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3890 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3891 u16 unused; 3892 3893 /* ctrl_vsi_idx will be set to a valid value when flow director 3894 * is setup by ice_init_fdir 3895 */ 3896 pf->ctrl_vsi_idx = ICE_NO_VSI; 3897 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3898 /* force guaranteed filter pool for PF */ 3899 ice_alloc_fd_guar_item(&pf->hw, &unused, 3900 func_caps->fd_fltr_guar); 3901 /* force shared filter pool for PF */ 3902 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3903 func_caps->fd_fltr_best_effort); 3904 } 3905 3906 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3907 if (func_caps->common_cap.ieee_1588) 3908 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3909 3910 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3911 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3912 } 3913 3914 /** 3915 * ice_init_pf - Initialize general software structures (struct ice_pf) 3916 * @pf: board private structure to initialize 3917 */ 3918 static int ice_init_pf(struct ice_pf *pf) 3919 { 3920 ice_set_pf_caps(pf); 3921 3922 mutex_init(&pf->sw_mutex); 3923 mutex_init(&pf->tc_mutex); 3924 mutex_init(&pf->adev_mutex); 3925 3926 INIT_HLIST_HEAD(&pf->aq_wait_list); 3927 spin_lock_init(&pf->aq_wait_lock); 3928 init_waitqueue_head(&pf->aq_wait_queue); 3929 3930 init_waitqueue_head(&pf->reset_wait_queue); 3931 3932 /* setup service timer and periodic service task */ 3933 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3934 pf->serv_tmr_period = HZ; 3935 INIT_WORK(&pf->serv_task, ice_service_task); 3936 clear_bit(ICE_SERVICE_SCHED, pf->state); 3937 3938 mutex_init(&pf->avail_q_mutex); 3939 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3940 if (!pf->avail_txqs) 3941 return -ENOMEM; 3942 3943 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3944 if (!pf->avail_rxqs) { 3945 bitmap_free(pf->avail_txqs); 3946 pf->avail_txqs = NULL; 3947 return -ENOMEM; 3948 } 3949 3950 mutex_init(&pf->vfs.table_lock); 3951 hash_init(pf->vfs.table); 3952 3953 return 0; 3954 } 3955 3956 /** 3957 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3958 * @pf: board private structure 3959 * @v_remain: number of remaining MSI-X vectors to be distributed 3960 * 3961 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3962 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3963 * remaining vectors. 3964 */ 3965 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3966 { 3967 int v_rdma; 3968 3969 if (!ice_is_rdma_ena(pf)) { 3970 pf->num_lan_msix = v_remain; 3971 return; 3972 } 3973 3974 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3975 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3976 3977 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3978 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3979 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3980 3981 pf->num_rdma_msix = 0; 3982 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3983 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3984 (v_remain - v_rdma < v_rdma)) { 3985 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3986 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3987 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3988 } else { 3989 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3990 */ 3991 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3992 ICE_RDMA_NUM_AEQ_MSIX; 3993 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3994 } 3995 } 3996 3997 /** 3998 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3999 * @pf: board private structure 4000 * 4001 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 4002 * device usage if there are not enough vectors. Return the number of vectors 4003 * reserved or negative on failure. 4004 */ 4005 static int ice_ena_msix_range(struct ice_pf *pf) 4006 { 4007 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 4008 struct device *dev = ice_pf_to_dev(pf); 4009 int err, i; 4010 4011 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 4012 num_cpus = num_online_cpus(); 4013 4014 /* LAN miscellaneous handler */ 4015 v_other = ICE_MIN_LAN_OICR_MSIX; 4016 4017 /* Flow Director */ 4018 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 4019 v_other += ICE_FDIR_MSIX; 4020 4021 /* switchdev */ 4022 v_other += ICE_ESWITCH_MSIX; 4023 4024 v_wanted = v_other; 4025 4026 /* LAN traffic */ 4027 pf->num_lan_msix = num_cpus; 4028 v_wanted += pf->num_lan_msix; 4029 4030 /* RDMA auxiliary driver */ 4031 if (ice_is_rdma_ena(pf)) { 4032 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 4033 v_wanted += pf->num_rdma_msix; 4034 } 4035 4036 if (v_wanted > hw_num_msix) { 4037 int v_remain; 4038 4039 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 4040 v_wanted, hw_num_msix); 4041 4042 if (hw_num_msix < ICE_MIN_MSIX) { 4043 err = -ERANGE; 4044 goto exit_err; 4045 } 4046 4047 v_remain = hw_num_msix - v_other; 4048 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 4049 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 4050 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4051 } 4052 4053 ice_reduce_msix_usage(pf, v_remain); 4054 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 4055 4056 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 4057 pf->num_lan_msix); 4058 if (ice_is_rdma_ena(pf)) 4059 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 4060 pf->num_rdma_msix); 4061 } 4062 4063 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4064 sizeof(*pf->msix_entries), GFP_KERNEL); 4065 if (!pf->msix_entries) { 4066 err = -ENOMEM; 4067 goto exit_err; 4068 } 4069 4070 for (i = 0; i < v_wanted; i++) 4071 pf->msix_entries[i].entry = i; 4072 4073 /* actually reserve the vectors */ 4074 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4075 ICE_MIN_MSIX, v_wanted); 4076 if (v_actual < 0) { 4077 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4078 err = v_actual; 4079 goto msix_err; 4080 } 4081 4082 if (v_actual < v_wanted) { 4083 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4084 v_wanted, v_actual); 4085 4086 if (v_actual < ICE_MIN_MSIX) { 4087 /* error if we can't get minimum vectors */ 4088 pci_disable_msix(pf->pdev); 4089 err = -ERANGE; 4090 goto msix_err; 4091 } else { 4092 int v_remain = v_actual - v_other; 4093 4094 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4095 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4096 4097 ice_reduce_msix_usage(pf, v_remain); 4098 4099 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4100 pf->num_lan_msix); 4101 4102 if (ice_is_rdma_ena(pf)) 4103 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4104 pf->num_rdma_msix); 4105 } 4106 } 4107 4108 return v_actual; 4109 4110 msix_err: 4111 devm_kfree(dev, pf->msix_entries); 4112 4113 exit_err: 4114 pf->num_rdma_msix = 0; 4115 pf->num_lan_msix = 0; 4116 return err; 4117 } 4118 4119 /** 4120 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4121 * @pf: board private structure 4122 */ 4123 static void ice_dis_msix(struct ice_pf *pf) 4124 { 4125 pci_disable_msix(pf->pdev); 4126 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4127 pf->msix_entries = NULL; 4128 } 4129 4130 /** 4131 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4132 * @pf: board private structure 4133 */ 4134 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4135 { 4136 ice_dis_msix(pf); 4137 4138 if (pf->irq_tracker) { 4139 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4140 pf->irq_tracker = NULL; 4141 } 4142 } 4143 4144 /** 4145 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4146 * @pf: board private structure to initialize 4147 */ 4148 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4149 { 4150 int vectors; 4151 4152 vectors = ice_ena_msix_range(pf); 4153 4154 if (vectors < 0) 4155 return vectors; 4156 4157 /* set up vector assignment tracking */ 4158 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4159 struct_size(pf->irq_tracker, list, vectors), 4160 GFP_KERNEL); 4161 if (!pf->irq_tracker) { 4162 ice_dis_msix(pf); 4163 return -ENOMEM; 4164 } 4165 4166 /* populate SW interrupts pool with number of OS granted IRQs. */ 4167 pf->num_avail_sw_msix = (u16)vectors; 4168 pf->irq_tracker->num_entries = (u16)vectors; 4169 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4170 4171 return 0; 4172 } 4173 4174 /** 4175 * ice_is_wol_supported - check if WoL is supported 4176 * @hw: pointer to hardware info 4177 * 4178 * Check if WoL is supported based on the HW configuration. 4179 * Returns true if NVM supports and enables WoL for this port, false otherwise 4180 */ 4181 bool ice_is_wol_supported(struct ice_hw *hw) 4182 { 4183 u16 wol_ctrl; 4184 4185 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4186 * word) indicates WoL is not supported on the corresponding PF ID. 4187 */ 4188 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4189 return false; 4190 4191 return !(BIT(hw->port_info->lport) & wol_ctrl); 4192 } 4193 4194 /** 4195 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4196 * @vsi: VSI being changed 4197 * @new_rx: new number of Rx queues 4198 * @new_tx: new number of Tx queues 4199 * 4200 * Only change the number of queues if new_tx, or new_rx is non-0. 4201 * 4202 * Returns 0 on success. 4203 */ 4204 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4205 { 4206 struct ice_pf *pf = vsi->back; 4207 int err = 0, timeout = 50; 4208 4209 if (!new_rx && !new_tx) 4210 return -EINVAL; 4211 4212 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4213 timeout--; 4214 if (!timeout) 4215 return -EBUSY; 4216 usleep_range(1000, 2000); 4217 } 4218 4219 if (new_tx) 4220 vsi->req_txq = (u16)new_tx; 4221 if (new_rx) 4222 vsi->req_rxq = (u16)new_rx; 4223 4224 /* set for the next time the netdev is started */ 4225 if (!netif_running(vsi->netdev)) { 4226 ice_vsi_rebuild(vsi, false); 4227 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4228 goto done; 4229 } 4230 4231 ice_vsi_close(vsi); 4232 ice_vsi_rebuild(vsi, false); 4233 ice_pf_dcb_recfg(pf); 4234 ice_vsi_open(vsi); 4235 done: 4236 clear_bit(ICE_CFG_BUSY, pf->state); 4237 return err; 4238 } 4239 4240 /** 4241 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4242 * @pf: PF to configure 4243 * 4244 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4245 * VSI can still Tx/Rx VLAN tagged packets. 4246 */ 4247 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4248 { 4249 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4250 struct ice_vsi_ctx *ctxt; 4251 struct ice_hw *hw; 4252 int status; 4253 4254 if (!vsi) 4255 return; 4256 4257 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4258 if (!ctxt) 4259 return; 4260 4261 hw = &pf->hw; 4262 ctxt->info = vsi->info; 4263 4264 ctxt->info.valid_sections = 4265 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4266 ICE_AQ_VSI_PROP_SECURITY_VALID | 4267 ICE_AQ_VSI_PROP_SW_VALID); 4268 4269 /* disable VLAN anti-spoof */ 4270 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4271 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4272 4273 /* disable VLAN pruning and keep all other settings */ 4274 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4275 4276 /* allow all VLANs on Tx and don't strip on Rx */ 4277 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4278 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4279 4280 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4281 if (status) { 4282 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4283 status, ice_aq_str(hw->adminq.sq_last_status)); 4284 } else { 4285 vsi->info.sec_flags = ctxt->info.sec_flags; 4286 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4287 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4288 } 4289 4290 kfree(ctxt); 4291 } 4292 4293 /** 4294 * ice_log_pkg_init - log result of DDP package load 4295 * @hw: pointer to hardware info 4296 * @state: state of package load 4297 */ 4298 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4299 { 4300 struct ice_pf *pf = hw->back; 4301 struct device *dev; 4302 4303 dev = ice_pf_to_dev(pf); 4304 4305 switch (state) { 4306 case ICE_DDP_PKG_SUCCESS: 4307 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4308 hw->active_pkg_name, 4309 hw->active_pkg_ver.major, 4310 hw->active_pkg_ver.minor, 4311 hw->active_pkg_ver.update, 4312 hw->active_pkg_ver.draft); 4313 break; 4314 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4315 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4316 hw->active_pkg_name, 4317 hw->active_pkg_ver.major, 4318 hw->active_pkg_ver.minor, 4319 hw->active_pkg_ver.update, 4320 hw->active_pkg_ver.draft); 4321 break; 4322 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4323 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4324 hw->active_pkg_name, 4325 hw->active_pkg_ver.major, 4326 hw->active_pkg_ver.minor, 4327 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4328 break; 4329 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4330 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4331 hw->active_pkg_name, 4332 hw->active_pkg_ver.major, 4333 hw->active_pkg_ver.minor, 4334 hw->active_pkg_ver.update, 4335 hw->active_pkg_ver.draft, 4336 hw->pkg_name, 4337 hw->pkg_ver.major, 4338 hw->pkg_ver.minor, 4339 hw->pkg_ver.update, 4340 hw->pkg_ver.draft); 4341 break; 4342 case ICE_DDP_PKG_FW_MISMATCH: 4343 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4344 break; 4345 case ICE_DDP_PKG_INVALID_FILE: 4346 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4347 break; 4348 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4349 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4350 break; 4351 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4352 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4353 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4354 break; 4355 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4356 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4357 break; 4358 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4359 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4360 break; 4361 case ICE_DDP_PKG_LOAD_ERROR: 4362 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4363 /* poll for reset to complete */ 4364 if (ice_check_reset(hw)) 4365 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4366 break; 4367 case ICE_DDP_PKG_ERR: 4368 default: 4369 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4370 break; 4371 } 4372 } 4373 4374 /** 4375 * ice_load_pkg - load/reload the DDP Package file 4376 * @firmware: firmware structure when firmware requested or NULL for reload 4377 * @pf: pointer to the PF instance 4378 * 4379 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4380 * initialize HW tables. 4381 */ 4382 static void 4383 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4384 { 4385 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4386 struct device *dev = ice_pf_to_dev(pf); 4387 struct ice_hw *hw = &pf->hw; 4388 4389 /* Load DDP Package */ 4390 if (firmware && !hw->pkg_copy) { 4391 state = ice_copy_and_init_pkg(hw, firmware->data, 4392 firmware->size); 4393 ice_log_pkg_init(hw, state); 4394 } else if (!firmware && hw->pkg_copy) { 4395 /* Reload package during rebuild after CORER/GLOBR reset */ 4396 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4397 ice_log_pkg_init(hw, state); 4398 } else { 4399 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4400 } 4401 4402 if (!ice_is_init_pkg_successful(state)) { 4403 /* Safe Mode */ 4404 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4405 return; 4406 } 4407 4408 /* Successful download package is the precondition for advanced 4409 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4410 */ 4411 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4412 } 4413 4414 /** 4415 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4416 * @pf: pointer to the PF structure 4417 * 4418 * There is no error returned here because the driver should be able to handle 4419 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4420 * specifically with Tx. 4421 */ 4422 static void ice_verify_cacheline_size(struct ice_pf *pf) 4423 { 4424 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4425 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4426 ICE_CACHE_LINE_BYTES); 4427 } 4428 4429 /** 4430 * ice_send_version - update firmware with driver version 4431 * @pf: PF struct 4432 * 4433 * Returns 0 on success, else error code 4434 */ 4435 static int ice_send_version(struct ice_pf *pf) 4436 { 4437 struct ice_driver_ver dv; 4438 4439 dv.major_ver = 0xff; 4440 dv.minor_ver = 0xff; 4441 dv.build_ver = 0xff; 4442 dv.subbuild_ver = 0; 4443 strscpy((char *)dv.driver_string, UTS_RELEASE, 4444 sizeof(dv.driver_string)); 4445 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4446 } 4447 4448 /** 4449 * ice_init_fdir - Initialize flow director VSI and configuration 4450 * @pf: pointer to the PF instance 4451 * 4452 * returns 0 on success, negative on error 4453 */ 4454 static int ice_init_fdir(struct ice_pf *pf) 4455 { 4456 struct device *dev = ice_pf_to_dev(pf); 4457 struct ice_vsi *ctrl_vsi; 4458 int err; 4459 4460 /* Side Band Flow Director needs to have a control VSI. 4461 * Allocate it and store it in the PF. 4462 */ 4463 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4464 if (!ctrl_vsi) { 4465 dev_dbg(dev, "could not create control VSI\n"); 4466 return -ENOMEM; 4467 } 4468 4469 err = ice_vsi_open_ctrl(ctrl_vsi); 4470 if (err) { 4471 dev_dbg(dev, "could not open control VSI\n"); 4472 goto err_vsi_open; 4473 } 4474 4475 mutex_init(&pf->hw.fdir_fltr_lock); 4476 4477 err = ice_fdir_create_dflt_rules(pf); 4478 if (err) 4479 goto err_fdir_rule; 4480 4481 return 0; 4482 4483 err_fdir_rule: 4484 ice_fdir_release_flows(&pf->hw); 4485 ice_vsi_close(ctrl_vsi); 4486 err_vsi_open: 4487 ice_vsi_release(ctrl_vsi); 4488 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4489 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4490 pf->ctrl_vsi_idx = ICE_NO_VSI; 4491 } 4492 return err; 4493 } 4494 4495 /** 4496 * ice_get_opt_fw_name - return optional firmware file name or NULL 4497 * @pf: pointer to the PF instance 4498 */ 4499 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4500 { 4501 /* Optional firmware name same as default with additional dash 4502 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4503 */ 4504 struct pci_dev *pdev = pf->pdev; 4505 char *opt_fw_filename; 4506 u64 dsn; 4507 4508 /* Determine the name of the optional file using the DSN (two 4509 * dwords following the start of the DSN Capability). 4510 */ 4511 dsn = pci_get_dsn(pdev); 4512 if (!dsn) 4513 return NULL; 4514 4515 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4516 if (!opt_fw_filename) 4517 return NULL; 4518 4519 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4520 ICE_DDP_PKG_PATH, dsn); 4521 4522 return opt_fw_filename; 4523 } 4524 4525 /** 4526 * ice_request_fw - Device initialization routine 4527 * @pf: pointer to the PF instance 4528 */ 4529 static void ice_request_fw(struct ice_pf *pf) 4530 { 4531 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4532 const struct firmware *firmware = NULL; 4533 struct device *dev = ice_pf_to_dev(pf); 4534 int err = 0; 4535 4536 /* optional device-specific DDP (if present) overrides the default DDP 4537 * package file. kernel logs a debug message if the file doesn't exist, 4538 * and warning messages for other errors. 4539 */ 4540 if (opt_fw_filename) { 4541 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4542 if (err) { 4543 kfree(opt_fw_filename); 4544 goto dflt_pkg_load; 4545 } 4546 4547 /* request for firmware was successful. Download to device */ 4548 ice_load_pkg(firmware, pf); 4549 kfree(opt_fw_filename); 4550 release_firmware(firmware); 4551 return; 4552 } 4553 4554 dflt_pkg_load: 4555 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4556 if (err) { 4557 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4558 return; 4559 } 4560 4561 /* request for firmware was successful. Download to device */ 4562 ice_load_pkg(firmware, pf); 4563 release_firmware(firmware); 4564 } 4565 4566 /** 4567 * ice_print_wake_reason - show the wake up cause in the log 4568 * @pf: pointer to the PF struct 4569 */ 4570 static void ice_print_wake_reason(struct ice_pf *pf) 4571 { 4572 u32 wus = pf->wakeup_reason; 4573 const char *wake_str; 4574 4575 /* if no wake event, nothing to print */ 4576 if (!wus) 4577 return; 4578 4579 if (wus & PFPM_WUS_LNKC_M) 4580 wake_str = "Link\n"; 4581 else if (wus & PFPM_WUS_MAG_M) 4582 wake_str = "Magic Packet\n"; 4583 else if (wus & PFPM_WUS_MNG_M) 4584 wake_str = "Management\n"; 4585 else if (wus & PFPM_WUS_FW_RST_WK_M) 4586 wake_str = "Firmware Reset\n"; 4587 else 4588 wake_str = "Unknown\n"; 4589 4590 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4591 } 4592 4593 /** 4594 * ice_register_netdev - register netdev and devlink port 4595 * @pf: pointer to the PF struct 4596 */ 4597 static int ice_register_netdev(struct ice_pf *pf) 4598 { 4599 struct ice_vsi *vsi; 4600 int err = 0; 4601 4602 vsi = ice_get_main_vsi(pf); 4603 if (!vsi || !vsi->netdev) 4604 return -EIO; 4605 4606 err = ice_devlink_create_pf_port(pf); 4607 if (err) 4608 goto err_devlink_create; 4609 4610 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4611 err = register_netdev(vsi->netdev); 4612 if (err) 4613 goto err_register_netdev; 4614 4615 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4616 netif_carrier_off(vsi->netdev); 4617 netif_tx_stop_all_queues(vsi->netdev); 4618 4619 return 0; 4620 err_register_netdev: 4621 ice_devlink_destroy_pf_port(pf); 4622 err_devlink_create: 4623 free_netdev(vsi->netdev); 4624 vsi->netdev = NULL; 4625 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4626 return err; 4627 } 4628 4629 /** 4630 * ice_probe - Device initialization routine 4631 * @pdev: PCI device information struct 4632 * @ent: entry in ice_pci_tbl 4633 * 4634 * Returns 0 on success, negative on failure 4635 */ 4636 static int 4637 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4638 { 4639 struct device *dev = &pdev->dev; 4640 struct ice_pf *pf; 4641 struct ice_hw *hw; 4642 int i, err; 4643 4644 if (pdev->is_virtfn) { 4645 dev_err(dev, "can't probe a virtual function\n"); 4646 return -EINVAL; 4647 } 4648 4649 /* this driver uses devres, see 4650 * Documentation/driver-api/driver-model/devres.rst 4651 */ 4652 err = pcim_enable_device(pdev); 4653 if (err) 4654 return err; 4655 4656 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4657 if (err) { 4658 dev_err(dev, "BAR0 I/O map error %d\n", err); 4659 return err; 4660 } 4661 4662 pf = ice_allocate_pf(dev); 4663 if (!pf) 4664 return -ENOMEM; 4665 4666 /* initialize Auxiliary index to invalid value */ 4667 pf->aux_idx = -1; 4668 4669 /* set up for high or low DMA */ 4670 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4671 if (err) { 4672 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4673 return err; 4674 } 4675 4676 pci_enable_pcie_error_reporting(pdev); 4677 pci_set_master(pdev); 4678 4679 pf->pdev = pdev; 4680 pci_set_drvdata(pdev, pf); 4681 set_bit(ICE_DOWN, pf->state); 4682 /* Disable service task until DOWN bit is cleared */ 4683 set_bit(ICE_SERVICE_DIS, pf->state); 4684 4685 hw = &pf->hw; 4686 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4687 pci_save_state(pdev); 4688 4689 hw->back = pf; 4690 hw->vendor_id = pdev->vendor; 4691 hw->device_id = pdev->device; 4692 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4693 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4694 hw->subsystem_device_id = pdev->subsystem_device; 4695 hw->bus.device = PCI_SLOT(pdev->devfn); 4696 hw->bus.func = PCI_FUNC(pdev->devfn); 4697 ice_set_ctrlq_len(hw); 4698 4699 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4700 4701 #ifndef CONFIG_DYNAMIC_DEBUG 4702 if (debug < -1) 4703 hw->debug_mask = debug; 4704 #endif 4705 4706 err = ice_init_hw(hw); 4707 if (err) { 4708 dev_err(dev, "ice_init_hw failed: %d\n", err); 4709 err = -EIO; 4710 goto err_exit_unroll; 4711 } 4712 4713 ice_init_feature_support(pf); 4714 4715 ice_request_fw(pf); 4716 4717 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4718 * set in pf->state, which will cause ice_is_safe_mode to return 4719 * true 4720 */ 4721 if (ice_is_safe_mode(pf)) { 4722 /* we already got function/device capabilities but these don't 4723 * reflect what the driver needs to do in safe mode. Instead of 4724 * adding conditional logic everywhere to ignore these 4725 * device/function capabilities, override them. 4726 */ 4727 ice_set_safe_mode_caps(hw); 4728 } 4729 4730 err = ice_init_pf(pf); 4731 if (err) { 4732 dev_err(dev, "ice_init_pf failed: %d\n", err); 4733 goto err_init_pf_unroll; 4734 } 4735 4736 ice_devlink_init_regions(pf); 4737 4738 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4739 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4740 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4741 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4742 i = 0; 4743 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4744 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4745 pf->hw.tnl.valid_count[TNL_VXLAN]; 4746 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4747 UDP_TUNNEL_TYPE_VXLAN; 4748 i++; 4749 } 4750 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4751 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4752 pf->hw.tnl.valid_count[TNL_GENEVE]; 4753 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4754 UDP_TUNNEL_TYPE_GENEVE; 4755 i++; 4756 } 4757 4758 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4759 if (!pf->num_alloc_vsi) { 4760 err = -EIO; 4761 goto err_init_pf_unroll; 4762 } 4763 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4764 dev_warn(&pf->pdev->dev, 4765 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4766 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4767 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4768 } 4769 4770 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4771 GFP_KERNEL); 4772 if (!pf->vsi) { 4773 err = -ENOMEM; 4774 goto err_init_pf_unroll; 4775 } 4776 4777 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4778 sizeof(*pf->vsi_stats), GFP_KERNEL); 4779 if (!pf->vsi_stats) { 4780 err = -ENOMEM; 4781 goto err_init_vsi_unroll; 4782 } 4783 4784 err = ice_init_interrupt_scheme(pf); 4785 if (err) { 4786 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4787 err = -EIO; 4788 goto err_init_vsi_stats_unroll; 4789 } 4790 4791 /* In case of MSIX we are going to setup the misc vector right here 4792 * to handle admin queue events etc. In case of legacy and MSI 4793 * the misc functionality and queue processing is combined in 4794 * the same vector and that gets setup at open. 4795 */ 4796 err = ice_req_irq_msix_misc(pf); 4797 if (err) { 4798 dev_err(dev, "setup of misc vector failed: %d\n", err); 4799 goto err_init_interrupt_unroll; 4800 } 4801 4802 /* create switch struct for the switch element created by FW on boot */ 4803 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4804 if (!pf->first_sw) { 4805 err = -ENOMEM; 4806 goto err_msix_misc_unroll; 4807 } 4808 4809 if (hw->evb_veb) 4810 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4811 else 4812 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4813 4814 pf->first_sw->pf = pf; 4815 4816 /* record the sw_id available for later use */ 4817 pf->first_sw->sw_id = hw->port_info->sw_id; 4818 4819 err = ice_setup_pf_sw(pf); 4820 if (err) { 4821 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4822 goto err_alloc_sw_unroll; 4823 } 4824 4825 clear_bit(ICE_SERVICE_DIS, pf->state); 4826 4827 /* tell the firmware we are up */ 4828 err = ice_send_version(pf); 4829 if (err) { 4830 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4831 UTS_RELEASE, err); 4832 goto err_send_version_unroll; 4833 } 4834 4835 /* since everything is good, start the service timer */ 4836 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4837 4838 err = ice_init_link_events(pf->hw.port_info); 4839 if (err) { 4840 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4841 goto err_send_version_unroll; 4842 } 4843 4844 /* not a fatal error if this fails */ 4845 err = ice_init_nvm_phy_type(pf->hw.port_info); 4846 if (err) 4847 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4848 4849 /* not a fatal error if this fails */ 4850 err = ice_update_link_info(pf->hw.port_info); 4851 if (err) 4852 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4853 4854 ice_init_link_dflt_override(pf->hw.port_info); 4855 4856 ice_check_link_cfg_err(pf, 4857 pf->hw.port_info->phy.link_info.link_cfg_err); 4858 4859 /* if media available, initialize PHY settings */ 4860 if (pf->hw.port_info->phy.link_info.link_info & 4861 ICE_AQ_MEDIA_AVAILABLE) { 4862 /* not a fatal error if this fails */ 4863 err = ice_init_phy_user_cfg(pf->hw.port_info); 4864 if (err) 4865 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4866 4867 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4868 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4869 4870 if (vsi) 4871 ice_configure_phy(vsi); 4872 } 4873 } else { 4874 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4875 } 4876 4877 ice_verify_cacheline_size(pf); 4878 4879 /* Save wakeup reason register for later use */ 4880 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4881 4882 /* check for a power management event */ 4883 ice_print_wake_reason(pf); 4884 4885 /* clear wake status, all bits */ 4886 wr32(hw, PFPM_WUS, U32_MAX); 4887 4888 /* Disable WoL at init, wait for user to enable */ 4889 device_set_wakeup_enable(dev, false); 4890 4891 if (ice_is_safe_mode(pf)) { 4892 ice_set_safe_mode_vlan_cfg(pf); 4893 goto probe_done; 4894 } 4895 4896 /* initialize DDP driven features */ 4897 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4898 ice_ptp_init(pf); 4899 4900 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4901 ice_gnss_init(pf); 4902 4903 /* Note: Flow director init failure is non-fatal to load */ 4904 if (ice_init_fdir(pf)) 4905 dev_err(dev, "could not initialize flow director\n"); 4906 4907 /* Note: DCB init failure is non-fatal to load */ 4908 if (ice_init_pf_dcb(pf, false)) { 4909 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4910 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4911 } else { 4912 ice_cfg_lldp_mib_change(&pf->hw, true); 4913 } 4914 4915 if (ice_init_lag(pf)) 4916 dev_warn(dev, "Failed to init link aggregation support\n"); 4917 4918 /* print PCI link speed and width */ 4919 pcie_print_link_status(pf->pdev); 4920 4921 probe_done: 4922 err = ice_register_netdev(pf); 4923 if (err) 4924 goto err_netdev_reg; 4925 4926 err = ice_devlink_register_params(pf); 4927 if (err) 4928 goto err_netdev_reg; 4929 4930 /* ready to go, so clear down state bit */ 4931 clear_bit(ICE_DOWN, pf->state); 4932 if (ice_is_rdma_ena(pf)) { 4933 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4934 if (pf->aux_idx < 0) { 4935 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4936 err = -ENOMEM; 4937 goto err_devlink_reg_param; 4938 } 4939 4940 err = ice_init_rdma(pf); 4941 if (err) { 4942 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4943 err = -EIO; 4944 goto err_init_aux_unroll; 4945 } 4946 } else { 4947 dev_warn(dev, "RDMA is not supported on this device\n"); 4948 } 4949 4950 ice_devlink_register(pf); 4951 return 0; 4952 4953 err_init_aux_unroll: 4954 pf->adev = NULL; 4955 ida_free(&ice_aux_ida, pf->aux_idx); 4956 err_devlink_reg_param: 4957 ice_devlink_unregister_params(pf); 4958 err_netdev_reg: 4959 err_send_version_unroll: 4960 ice_vsi_release_all(pf); 4961 err_alloc_sw_unroll: 4962 set_bit(ICE_SERVICE_DIS, pf->state); 4963 set_bit(ICE_DOWN, pf->state); 4964 devm_kfree(dev, pf->first_sw); 4965 err_msix_misc_unroll: 4966 ice_free_irq_msix_misc(pf); 4967 err_init_interrupt_unroll: 4968 ice_clear_interrupt_scheme(pf); 4969 err_init_vsi_stats_unroll: 4970 devm_kfree(dev, pf->vsi_stats); 4971 pf->vsi_stats = NULL; 4972 err_init_vsi_unroll: 4973 devm_kfree(dev, pf->vsi); 4974 err_init_pf_unroll: 4975 ice_deinit_pf(pf); 4976 ice_devlink_destroy_regions(pf); 4977 ice_deinit_hw(hw); 4978 err_exit_unroll: 4979 pci_disable_pcie_error_reporting(pdev); 4980 pci_disable_device(pdev); 4981 return err; 4982 } 4983 4984 /** 4985 * ice_set_wake - enable or disable Wake on LAN 4986 * @pf: pointer to the PF struct 4987 * 4988 * Simple helper for WoL control 4989 */ 4990 static void ice_set_wake(struct ice_pf *pf) 4991 { 4992 struct ice_hw *hw = &pf->hw; 4993 bool wol = pf->wol_ena; 4994 4995 /* clear wake state, otherwise new wake events won't fire */ 4996 wr32(hw, PFPM_WUS, U32_MAX); 4997 4998 /* enable / disable APM wake up, no RMW needed */ 4999 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5000 5001 /* set magic packet filter enabled */ 5002 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5003 } 5004 5005 /** 5006 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5007 * @pf: pointer to the PF struct 5008 * 5009 * Issue firmware command to enable multicast magic wake, making 5010 * sure that any locally administered address (LAA) is used for 5011 * wake, and that PF reset doesn't undo the LAA. 5012 */ 5013 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5014 { 5015 struct device *dev = ice_pf_to_dev(pf); 5016 struct ice_hw *hw = &pf->hw; 5017 u8 mac_addr[ETH_ALEN]; 5018 struct ice_vsi *vsi; 5019 int status; 5020 u8 flags; 5021 5022 if (!pf->wol_ena) 5023 return; 5024 5025 vsi = ice_get_main_vsi(pf); 5026 if (!vsi) 5027 return; 5028 5029 /* Get current MAC address in case it's an LAA */ 5030 if (vsi->netdev) 5031 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5032 else 5033 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5034 5035 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5036 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5037 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5038 5039 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5040 if (status) 5041 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5042 status, ice_aq_str(hw->adminq.sq_last_status)); 5043 } 5044 5045 /** 5046 * ice_remove - Device removal routine 5047 * @pdev: PCI device information struct 5048 */ 5049 static void ice_remove(struct pci_dev *pdev) 5050 { 5051 struct ice_pf *pf = pci_get_drvdata(pdev); 5052 int i; 5053 5054 ice_devlink_unregister(pf); 5055 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5056 if (!ice_is_reset_in_progress(pf->state)) 5057 break; 5058 msleep(100); 5059 } 5060 5061 ice_tc_indir_block_remove(pf); 5062 5063 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5064 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5065 ice_free_vfs(pf); 5066 } 5067 5068 ice_service_task_stop(pf); 5069 5070 ice_aq_cancel_waiting_tasks(pf); 5071 ice_unplug_aux_dev(pf); 5072 if (pf->aux_idx >= 0) 5073 ida_free(&ice_aux_ida, pf->aux_idx); 5074 ice_devlink_unregister_params(pf); 5075 set_bit(ICE_DOWN, pf->state); 5076 5077 ice_deinit_lag(pf); 5078 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 5079 ice_ptp_release(pf); 5080 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 5081 ice_gnss_exit(pf); 5082 if (!ice_is_safe_mode(pf)) 5083 ice_remove_arfs(pf); 5084 ice_setup_mc_magic_wake(pf); 5085 ice_vsi_release_all(pf); 5086 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 5087 ice_set_wake(pf); 5088 ice_free_irq_msix_misc(pf); 5089 ice_for_each_vsi(pf, i) { 5090 if (!pf->vsi[i]) 5091 continue; 5092 ice_vsi_free_q_vectors(pf->vsi[i]); 5093 } 5094 devm_kfree(&pdev->dev, pf->vsi_stats); 5095 pf->vsi_stats = NULL; 5096 ice_deinit_pf(pf); 5097 ice_devlink_destroy_regions(pf); 5098 ice_deinit_hw(&pf->hw); 5099 5100 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5101 * do it via ice_schedule_reset() since there is no need to rebuild 5102 * and the service task is already stopped. 5103 */ 5104 ice_reset(&pf->hw, ICE_RESET_PFR); 5105 pci_wait_for_pending_transaction(pdev); 5106 ice_clear_interrupt_scheme(pf); 5107 pci_disable_pcie_error_reporting(pdev); 5108 pci_disable_device(pdev); 5109 } 5110 5111 /** 5112 * ice_shutdown - PCI callback for shutting down device 5113 * @pdev: PCI device information struct 5114 */ 5115 static void ice_shutdown(struct pci_dev *pdev) 5116 { 5117 struct ice_pf *pf = pci_get_drvdata(pdev); 5118 5119 ice_remove(pdev); 5120 5121 if (system_state == SYSTEM_POWER_OFF) { 5122 pci_wake_from_d3(pdev, pf->wol_ena); 5123 pci_set_power_state(pdev, PCI_D3hot); 5124 } 5125 } 5126 5127 #ifdef CONFIG_PM 5128 /** 5129 * ice_prepare_for_shutdown - prep for PCI shutdown 5130 * @pf: board private structure 5131 * 5132 * Inform or close all dependent features in prep for PCI device shutdown 5133 */ 5134 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5135 { 5136 struct ice_hw *hw = &pf->hw; 5137 u32 v; 5138 5139 /* Notify VFs of impending reset */ 5140 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5141 ice_vc_notify_reset(pf); 5142 5143 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5144 5145 /* disable the VSIs and their queues that are not already DOWN */ 5146 ice_pf_dis_all_vsi(pf, false); 5147 5148 ice_for_each_vsi(pf, v) 5149 if (pf->vsi[v]) 5150 pf->vsi[v]->vsi_num = 0; 5151 5152 ice_shutdown_all_ctrlq(hw); 5153 } 5154 5155 /** 5156 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5157 * @pf: board private structure to reinitialize 5158 * 5159 * This routine reinitialize interrupt scheme that was cleared during 5160 * power management suspend callback. 5161 * 5162 * This should be called during resume routine to re-allocate the q_vectors 5163 * and reacquire interrupts. 5164 */ 5165 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5166 { 5167 struct device *dev = ice_pf_to_dev(pf); 5168 int ret, v; 5169 5170 /* Since we clear MSIX flag during suspend, we need to 5171 * set it back during resume... 5172 */ 5173 5174 ret = ice_init_interrupt_scheme(pf); 5175 if (ret) { 5176 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5177 return ret; 5178 } 5179 5180 /* Remap vectors and rings, after successful re-init interrupts */ 5181 ice_for_each_vsi(pf, v) { 5182 if (!pf->vsi[v]) 5183 continue; 5184 5185 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5186 if (ret) 5187 goto err_reinit; 5188 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5189 } 5190 5191 ret = ice_req_irq_msix_misc(pf); 5192 if (ret) { 5193 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5194 ret); 5195 goto err_reinit; 5196 } 5197 5198 return 0; 5199 5200 err_reinit: 5201 while (v--) 5202 if (pf->vsi[v]) 5203 ice_vsi_free_q_vectors(pf->vsi[v]); 5204 5205 return ret; 5206 } 5207 5208 /** 5209 * ice_suspend 5210 * @dev: generic device information structure 5211 * 5212 * Power Management callback to quiesce the device and prepare 5213 * for D3 transition. 5214 */ 5215 static int __maybe_unused ice_suspend(struct device *dev) 5216 { 5217 struct pci_dev *pdev = to_pci_dev(dev); 5218 struct ice_pf *pf; 5219 int disabled, v; 5220 5221 pf = pci_get_drvdata(pdev); 5222 5223 if (!ice_pf_state_is_nominal(pf)) { 5224 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5225 return -EBUSY; 5226 } 5227 5228 /* Stop watchdog tasks until resume completion. 5229 * Even though it is most likely that the service task is 5230 * disabled if the device is suspended or down, the service task's 5231 * state is controlled by a different state bit, and we should 5232 * store and honor whatever state that bit is in at this point. 5233 */ 5234 disabled = ice_service_task_stop(pf); 5235 5236 ice_unplug_aux_dev(pf); 5237 5238 /* Already suspended?, then there is nothing to do */ 5239 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5240 if (!disabled) 5241 ice_service_task_restart(pf); 5242 return 0; 5243 } 5244 5245 if (test_bit(ICE_DOWN, pf->state) || 5246 ice_is_reset_in_progress(pf->state)) { 5247 dev_err(dev, "can't suspend device in reset or already down\n"); 5248 if (!disabled) 5249 ice_service_task_restart(pf); 5250 return 0; 5251 } 5252 5253 ice_setup_mc_magic_wake(pf); 5254 5255 ice_prepare_for_shutdown(pf); 5256 5257 ice_set_wake(pf); 5258 5259 /* Free vectors, clear the interrupt scheme and release IRQs 5260 * for proper hibernation, especially with large number of CPUs. 5261 * Otherwise hibernation might fail when mapping all the vectors back 5262 * to CPU0. 5263 */ 5264 ice_free_irq_msix_misc(pf); 5265 ice_for_each_vsi(pf, v) { 5266 if (!pf->vsi[v]) 5267 continue; 5268 ice_vsi_free_q_vectors(pf->vsi[v]); 5269 } 5270 ice_clear_interrupt_scheme(pf); 5271 5272 pci_save_state(pdev); 5273 pci_wake_from_d3(pdev, pf->wol_ena); 5274 pci_set_power_state(pdev, PCI_D3hot); 5275 return 0; 5276 } 5277 5278 /** 5279 * ice_resume - PM callback for waking up from D3 5280 * @dev: generic device information structure 5281 */ 5282 static int __maybe_unused ice_resume(struct device *dev) 5283 { 5284 struct pci_dev *pdev = to_pci_dev(dev); 5285 enum ice_reset_req reset_type; 5286 struct ice_pf *pf; 5287 struct ice_hw *hw; 5288 int ret; 5289 5290 pci_set_power_state(pdev, PCI_D0); 5291 pci_restore_state(pdev); 5292 pci_save_state(pdev); 5293 5294 if (!pci_device_is_present(pdev)) 5295 return -ENODEV; 5296 5297 ret = pci_enable_device_mem(pdev); 5298 if (ret) { 5299 dev_err(dev, "Cannot enable device after suspend\n"); 5300 return ret; 5301 } 5302 5303 pf = pci_get_drvdata(pdev); 5304 hw = &pf->hw; 5305 5306 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5307 ice_print_wake_reason(pf); 5308 5309 /* We cleared the interrupt scheme when we suspended, so we need to 5310 * restore it now to resume device functionality. 5311 */ 5312 ret = ice_reinit_interrupt_scheme(pf); 5313 if (ret) 5314 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5315 5316 clear_bit(ICE_DOWN, pf->state); 5317 /* Now perform PF reset and rebuild */ 5318 reset_type = ICE_RESET_PFR; 5319 /* re-enable service task for reset, but allow reset to schedule it */ 5320 clear_bit(ICE_SERVICE_DIS, pf->state); 5321 5322 if (ice_schedule_reset(pf, reset_type)) 5323 dev_err(dev, "Reset during resume failed.\n"); 5324 5325 clear_bit(ICE_SUSPENDED, pf->state); 5326 ice_service_task_restart(pf); 5327 5328 /* Restart the service task */ 5329 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5330 5331 return 0; 5332 } 5333 #endif /* CONFIG_PM */ 5334 5335 /** 5336 * ice_pci_err_detected - warning that PCI error has been detected 5337 * @pdev: PCI device information struct 5338 * @err: the type of PCI error 5339 * 5340 * Called to warn that something happened on the PCI bus and the error handling 5341 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5342 */ 5343 static pci_ers_result_t 5344 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5345 { 5346 struct ice_pf *pf = pci_get_drvdata(pdev); 5347 5348 if (!pf) { 5349 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5350 __func__, err); 5351 return PCI_ERS_RESULT_DISCONNECT; 5352 } 5353 5354 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5355 ice_service_task_stop(pf); 5356 5357 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5358 set_bit(ICE_PFR_REQ, pf->state); 5359 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5360 } 5361 } 5362 5363 return PCI_ERS_RESULT_NEED_RESET; 5364 } 5365 5366 /** 5367 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5368 * @pdev: PCI device information struct 5369 * 5370 * Called to determine if the driver can recover from the PCI slot reset by 5371 * using a register read to determine if the device is recoverable. 5372 */ 5373 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5374 { 5375 struct ice_pf *pf = pci_get_drvdata(pdev); 5376 pci_ers_result_t result; 5377 int err; 5378 u32 reg; 5379 5380 err = pci_enable_device_mem(pdev); 5381 if (err) { 5382 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5383 err); 5384 result = PCI_ERS_RESULT_DISCONNECT; 5385 } else { 5386 pci_set_master(pdev); 5387 pci_restore_state(pdev); 5388 pci_save_state(pdev); 5389 pci_wake_from_d3(pdev, false); 5390 5391 /* Check for life */ 5392 reg = rd32(&pf->hw, GLGEN_RTRIG); 5393 if (!reg) 5394 result = PCI_ERS_RESULT_RECOVERED; 5395 else 5396 result = PCI_ERS_RESULT_DISCONNECT; 5397 } 5398 5399 return result; 5400 } 5401 5402 /** 5403 * ice_pci_err_resume - restart operations after PCI error recovery 5404 * @pdev: PCI device information struct 5405 * 5406 * Called to allow the driver to bring things back up after PCI error and/or 5407 * reset recovery have finished 5408 */ 5409 static void ice_pci_err_resume(struct pci_dev *pdev) 5410 { 5411 struct ice_pf *pf = pci_get_drvdata(pdev); 5412 5413 if (!pf) { 5414 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5415 __func__); 5416 return; 5417 } 5418 5419 if (test_bit(ICE_SUSPENDED, pf->state)) { 5420 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5421 __func__); 5422 return; 5423 } 5424 5425 ice_restore_all_vfs_msi_state(pdev); 5426 5427 ice_do_reset(pf, ICE_RESET_PFR); 5428 ice_service_task_restart(pf); 5429 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5430 } 5431 5432 /** 5433 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5434 * @pdev: PCI device information struct 5435 */ 5436 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5437 { 5438 struct ice_pf *pf = pci_get_drvdata(pdev); 5439 5440 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5441 ice_service_task_stop(pf); 5442 5443 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5444 set_bit(ICE_PFR_REQ, pf->state); 5445 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5446 } 5447 } 5448 } 5449 5450 /** 5451 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5452 * @pdev: PCI device information struct 5453 */ 5454 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5455 { 5456 ice_pci_err_resume(pdev); 5457 } 5458 5459 /* ice_pci_tbl - PCI Device ID Table 5460 * 5461 * Wildcard entries (PCI_ANY_ID) should come last 5462 * Last entry must be all 0s 5463 * 5464 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5465 * Class, Class Mask, private data (not used) } 5466 */ 5467 static const struct pci_device_id ice_pci_tbl[] = { 5468 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5469 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5470 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5471 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5472 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5473 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5474 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5475 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5476 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5477 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5478 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5479 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5480 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5481 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5482 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5483 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5484 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5485 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5486 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5487 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5488 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5489 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5490 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5491 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5492 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5493 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5494 /* required last entry */ 5495 { 0, } 5496 }; 5497 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5498 5499 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5500 5501 static const struct pci_error_handlers ice_pci_err_handler = { 5502 .error_detected = ice_pci_err_detected, 5503 .slot_reset = ice_pci_err_slot_reset, 5504 .reset_prepare = ice_pci_err_reset_prepare, 5505 .reset_done = ice_pci_err_reset_done, 5506 .resume = ice_pci_err_resume 5507 }; 5508 5509 static struct pci_driver ice_driver = { 5510 .name = KBUILD_MODNAME, 5511 .id_table = ice_pci_tbl, 5512 .probe = ice_probe, 5513 .remove = ice_remove, 5514 #ifdef CONFIG_PM 5515 .driver.pm = &ice_pm_ops, 5516 #endif /* CONFIG_PM */ 5517 .shutdown = ice_shutdown, 5518 .sriov_configure = ice_sriov_configure, 5519 .err_handler = &ice_pci_err_handler 5520 }; 5521 5522 /** 5523 * ice_module_init - Driver registration routine 5524 * 5525 * ice_module_init is the first routine called when the driver is 5526 * loaded. All it does is register with the PCI subsystem. 5527 */ 5528 static int __init ice_module_init(void) 5529 { 5530 int status; 5531 5532 pr_info("%s\n", ice_driver_string); 5533 pr_info("%s\n", ice_copyright); 5534 5535 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5536 if (!ice_wq) { 5537 pr_err("Failed to create workqueue\n"); 5538 return -ENOMEM; 5539 } 5540 5541 status = pci_register_driver(&ice_driver); 5542 if (status) { 5543 pr_err("failed to register PCI driver, err %d\n", status); 5544 destroy_workqueue(ice_wq); 5545 } 5546 5547 return status; 5548 } 5549 module_init(ice_module_init); 5550 5551 /** 5552 * ice_module_exit - Driver exit cleanup routine 5553 * 5554 * ice_module_exit is called just before the driver is removed 5555 * from memory. 5556 */ 5557 static void __exit ice_module_exit(void) 5558 { 5559 pci_unregister_driver(&ice_driver); 5560 destroy_workqueue(ice_wq); 5561 pr_info("module unloaded\n"); 5562 } 5563 module_exit(ice_module_exit); 5564 5565 /** 5566 * ice_set_mac_address - NDO callback to set MAC address 5567 * @netdev: network interface device structure 5568 * @pi: pointer to an address structure 5569 * 5570 * Returns 0 on success, negative on failure 5571 */ 5572 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5573 { 5574 struct ice_netdev_priv *np = netdev_priv(netdev); 5575 struct ice_vsi *vsi = np->vsi; 5576 struct ice_pf *pf = vsi->back; 5577 struct ice_hw *hw = &pf->hw; 5578 struct sockaddr *addr = pi; 5579 u8 old_mac[ETH_ALEN]; 5580 u8 flags = 0; 5581 u8 *mac; 5582 int err; 5583 5584 mac = (u8 *)addr->sa_data; 5585 5586 if (!is_valid_ether_addr(mac)) 5587 return -EADDRNOTAVAIL; 5588 5589 if (ether_addr_equal(netdev->dev_addr, mac)) { 5590 netdev_dbg(netdev, "already using mac %pM\n", mac); 5591 return 0; 5592 } 5593 5594 if (test_bit(ICE_DOWN, pf->state) || 5595 ice_is_reset_in_progress(pf->state)) { 5596 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5597 mac); 5598 return -EBUSY; 5599 } 5600 5601 if (ice_chnl_dmac_fltr_cnt(pf)) { 5602 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5603 mac); 5604 return -EAGAIN; 5605 } 5606 5607 netif_addr_lock_bh(netdev); 5608 ether_addr_copy(old_mac, netdev->dev_addr); 5609 /* change the netdev's MAC address */ 5610 eth_hw_addr_set(netdev, mac); 5611 netif_addr_unlock_bh(netdev); 5612 5613 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5614 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5615 if (err && err != -ENOENT) { 5616 err = -EADDRNOTAVAIL; 5617 goto err_update_filters; 5618 } 5619 5620 /* Add filter for new MAC. If filter exists, return success */ 5621 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5622 if (err == -EEXIST) { 5623 /* Although this MAC filter is already present in hardware it's 5624 * possible in some cases (e.g. bonding) that dev_addr was 5625 * modified outside of the driver and needs to be restored back 5626 * to this value. 5627 */ 5628 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5629 5630 return 0; 5631 } else if (err) { 5632 /* error if the new filter addition failed */ 5633 err = -EADDRNOTAVAIL; 5634 } 5635 5636 err_update_filters: 5637 if (err) { 5638 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5639 mac); 5640 netif_addr_lock_bh(netdev); 5641 eth_hw_addr_set(netdev, old_mac); 5642 netif_addr_unlock_bh(netdev); 5643 return err; 5644 } 5645 5646 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5647 netdev->dev_addr); 5648 5649 /* write new MAC address to the firmware */ 5650 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5651 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5652 if (err) { 5653 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5654 mac, err); 5655 } 5656 return 0; 5657 } 5658 5659 /** 5660 * ice_set_rx_mode - NDO callback to set the netdev filters 5661 * @netdev: network interface device structure 5662 */ 5663 static void ice_set_rx_mode(struct net_device *netdev) 5664 { 5665 struct ice_netdev_priv *np = netdev_priv(netdev); 5666 struct ice_vsi *vsi = np->vsi; 5667 5668 if (!vsi) 5669 return; 5670 5671 /* Set the flags to synchronize filters 5672 * ndo_set_rx_mode may be triggered even without a change in netdev 5673 * flags 5674 */ 5675 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5676 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5677 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5678 5679 /* schedule our worker thread which will take care of 5680 * applying the new filter changes 5681 */ 5682 ice_service_task_schedule(vsi->back); 5683 } 5684 5685 /** 5686 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5687 * @netdev: network interface device structure 5688 * @queue_index: Queue ID 5689 * @maxrate: maximum bandwidth in Mbps 5690 */ 5691 static int 5692 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5693 { 5694 struct ice_netdev_priv *np = netdev_priv(netdev); 5695 struct ice_vsi *vsi = np->vsi; 5696 u16 q_handle; 5697 int status; 5698 u8 tc; 5699 5700 /* Validate maxrate requested is within permitted range */ 5701 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5702 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5703 maxrate, queue_index); 5704 return -EINVAL; 5705 } 5706 5707 q_handle = vsi->tx_rings[queue_index]->q_handle; 5708 tc = ice_dcb_get_tc(vsi, queue_index); 5709 5710 /* Set BW back to default, when user set maxrate to 0 */ 5711 if (!maxrate) 5712 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5713 q_handle, ICE_MAX_BW); 5714 else 5715 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5716 q_handle, ICE_MAX_BW, maxrate * 1000); 5717 if (status) 5718 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5719 status); 5720 5721 return status; 5722 } 5723 5724 /** 5725 * ice_fdb_add - add an entry to the hardware database 5726 * @ndm: the input from the stack 5727 * @tb: pointer to array of nladdr (unused) 5728 * @dev: the net device pointer 5729 * @addr: the MAC address entry being added 5730 * @vid: VLAN ID 5731 * @flags: instructions from stack about fdb operation 5732 * @extack: netlink extended ack 5733 */ 5734 static int 5735 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5736 struct net_device *dev, const unsigned char *addr, u16 vid, 5737 u16 flags, struct netlink_ext_ack __always_unused *extack) 5738 { 5739 int err; 5740 5741 if (vid) { 5742 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5743 return -EINVAL; 5744 } 5745 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5746 netdev_err(dev, "FDB only supports static addresses\n"); 5747 return -EINVAL; 5748 } 5749 5750 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5751 err = dev_uc_add_excl(dev, addr); 5752 else if (is_multicast_ether_addr(addr)) 5753 err = dev_mc_add_excl(dev, addr); 5754 else 5755 err = -EINVAL; 5756 5757 /* Only return duplicate errors if NLM_F_EXCL is set */ 5758 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5759 err = 0; 5760 5761 return err; 5762 } 5763 5764 /** 5765 * ice_fdb_del - delete an entry from the hardware database 5766 * @ndm: the input from the stack 5767 * @tb: pointer to array of nladdr (unused) 5768 * @dev: the net device pointer 5769 * @addr: the MAC address entry being added 5770 * @vid: VLAN ID 5771 * @extack: netlink extended ack 5772 */ 5773 static int 5774 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5775 struct net_device *dev, const unsigned char *addr, 5776 __always_unused u16 vid, struct netlink_ext_ack *extack) 5777 { 5778 int err; 5779 5780 if (ndm->ndm_state & NUD_PERMANENT) { 5781 netdev_err(dev, "FDB only supports static addresses\n"); 5782 return -EINVAL; 5783 } 5784 5785 if (is_unicast_ether_addr(addr)) 5786 err = dev_uc_del(dev, addr); 5787 else if (is_multicast_ether_addr(addr)) 5788 err = dev_mc_del(dev, addr); 5789 else 5790 err = -EINVAL; 5791 5792 return err; 5793 } 5794 5795 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5796 NETIF_F_HW_VLAN_CTAG_TX | \ 5797 NETIF_F_HW_VLAN_STAG_RX | \ 5798 NETIF_F_HW_VLAN_STAG_TX) 5799 5800 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5801 NETIF_F_HW_VLAN_STAG_RX) 5802 5803 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5804 NETIF_F_HW_VLAN_STAG_FILTER) 5805 5806 /** 5807 * ice_fix_features - fix the netdev features flags based on device limitations 5808 * @netdev: ptr to the netdev that flags are being fixed on 5809 * @features: features that need to be checked and possibly fixed 5810 * 5811 * Make sure any fixups are made to features in this callback. This enables the 5812 * driver to not have to check unsupported configurations throughout the driver 5813 * because that's the responsiblity of this callback. 5814 * 5815 * Single VLAN Mode (SVM) Supported Features: 5816 * NETIF_F_HW_VLAN_CTAG_FILTER 5817 * NETIF_F_HW_VLAN_CTAG_RX 5818 * NETIF_F_HW_VLAN_CTAG_TX 5819 * 5820 * Double VLAN Mode (DVM) Supported Features: 5821 * NETIF_F_HW_VLAN_CTAG_FILTER 5822 * NETIF_F_HW_VLAN_CTAG_RX 5823 * NETIF_F_HW_VLAN_CTAG_TX 5824 * 5825 * NETIF_F_HW_VLAN_STAG_FILTER 5826 * NETIF_HW_VLAN_STAG_RX 5827 * NETIF_HW_VLAN_STAG_TX 5828 * 5829 * Features that need fixing: 5830 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5831 * These are mutually exlusive as the VSI context cannot support multiple 5832 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5833 * is not done, then default to clearing the requested STAG offload 5834 * settings. 5835 * 5836 * All supported filtering has to be enabled or disabled together. For 5837 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5838 * together. If this is not done, then default to VLAN filtering disabled. 5839 * These are mutually exclusive as there is currently no way to 5840 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5841 * prune rules. 5842 */ 5843 static netdev_features_t 5844 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5845 { 5846 struct ice_netdev_priv *np = netdev_priv(netdev); 5847 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 5848 bool cur_ctag, cur_stag, req_ctag, req_stag; 5849 5850 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 5851 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5852 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5853 5854 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 5855 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 5856 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 5857 5858 if (req_vlan_fltr != cur_vlan_fltr) { 5859 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 5860 if (req_ctag && req_stag) { 5861 features |= NETIF_VLAN_FILTERING_FEATURES; 5862 } else if (!req_ctag && !req_stag) { 5863 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5864 } else if ((!cur_ctag && req_ctag && !cur_stag) || 5865 (!cur_stag && req_stag && !cur_ctag)) { 5866 features |= NETIF_VLAN_FILTERING_FEATURES; 5867 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 5868 } else if ((cur_ctag && !req_ctag && cur_stag) || 5869 (cur_stag && !req_stag && cur_ctag)) { 5870 features &= ~NETIF_VLAN_FILTERING_FEATURES; 5871 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 5872 } 5873 } else { 5874 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 5875 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 5876 5877 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 5878 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 5879 } 5880 } 5881 5882 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5883 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5884 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5885 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5886 NETIF_F_HW_VLAN_STAG_TX); 5887 } 5888 5889 if (!(netdev->features & NETIF_F_RXFCS) && 5890 (features & NETIF_F_RXFCS) && 5891 (features & NETIF_VLAN_STRIPPING_FEATURES) && 5892 !ice_vsi_has_non_zero_vlans(np->vsi)) { 5893 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 5894 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 5895 } 5896 5897 return features; 5898 } 5899 5900 /** 5901 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5902 * @vsi: PF's VSI 5903 * @features: features used to determine VLAN offload settings 5904 * 5905 * First, determine the vlan_ethertype based on the VLAN offload bits in 5906 * features. Then determine if stripping and insertion should be enabled or 5907 * disabled. Finally enable or disable VLAN stripping and insertion. 5908 */ 5909 static int 5910 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5911 { 5912 bool enable_stripping = true, enable_insertion = true; 5913 struct ice_vsi_vlan_ops *vlan_ops; 5914 int strip_err = 0, insert_err = 0; 5915 u16 vlan_ethertype = 0; 5916 5917 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5918 5919 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5920 vlan_ethertype = ETH_P_8021AD; 5921 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5922 vlan_ethertype = ETH_P_8021Q; 5923 5924 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5925 enable_stripping = false; 5926 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5927 enable_insertion = false; 5928 5929 if (enable_stripping) 5930 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5931 else 5932 strip_err = vlan_ops->dis_stripping(vsi); 5933 5934 if (enable_insertion) 5935 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5936 else 5937 insert_err = vlan_ops->dis_insertion(vsi); 5938 5939 if (strip_err || insert_err) 5940 return -EIO; 5941 5942 return 0; 5943 } 5944 5945 /** 5946 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5947 * @vsi: PF's VSI 5948 * @features: features used to determine VLAN filtering settings 5949 * 5950 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5951 * features. 5952 */ 5953 static int 5954 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5955 { 5956 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5957 int err = 0; 5958 5959 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5960 * if either bit is set 5961 */ 5962 if (features & 5963 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5964 err = vlan_ops->ena_rx_filtering(vsi); 5965 else 5966 err = vlan_ops->dis_rx_filtering(vsi); 5967 5968 return err; 5969 } 5970 5971 /** 5972 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5973 * @netdev: ptr to the netdev being adjusted 5974 * @features: the feature set that the stack is suggesting 5975 * 5976 * Only update VLAN settings if the requested_vlan_features are different than 5977 * the current_vlan_features. 5978 */ 5979 static int 5980 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5981 { 5982 netdev_features_t current_vlan_features, requested_vlan_features; 5983 struct ice_netdev_priv *np = netdev_priv(netdev); 5984 struct ice_vsi *vsi = np->vsi; 5985 int err; 5986 5987 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5988 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5989 if (current_vlan_features ^ requested_vlan_features) { 5990 if ((features & NETIF_F_RXFCS) && 5991 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 5992 dev_err(ice_pf_to_dev(vsi->back), 5993 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 5994 return -EIO; 5995 } 5996 5997 err = ice_set_vlan_offload_features(vsi, features); 5998 if (err) 5999 return err; 6000 } 6001 6002 current_vlan_features = netdev->features & 6003 NETIF_VLAN_FILTERING_FEATURES; 6004 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6005 if (current_vlan_features ^ requested_vlan_features) { 6006 err = ice_set_vlan_filtering_features(vsi, features); 6007 if (err) 6008 return err; 6009 } 6010 6011 return 0; 6012 } 6013 6014 /** 6015 * ice_set_loopback - turn on/off loopback mode on underlying PF 6016 * @vsi: ptr to VSI 6017 * @ena: flag to indicate the on/off setting 6018 */ 6019 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6020 { 6021 bool if_running = netif_running(vsi->netdev); 6022 int ret; 6023 6024 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6025 ret = ice_down(vsi); 6026 if (ret) { 6027 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6028 return ret; 6029 } 6030 } 6031 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6032 if (ret) 6033 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6034 if (if_running) 6035 ret = ice_up(vsi); 6036 6037 return ret; 6038 } 6039 6040 /** 6041 * ice_set_features - set the netdev feature flags 6042 * @netdev: ptr to the netdev being adjusted 6043 * @features: the feature set that the stack is suggesting 6044 */ 6045 static int 6046 ice_set_features(struct net_device *netdev, netdev_features_t features) 6047 { 6048 netdev_features_t changed = netdev->features ^ features; 6049 struct ice_netdev_priv *np = netdev_priv(netdev); 6050 struct ice_vsi *vsi = np->vsi; 6051 struct ice_pf *pf = vsi->back; 6052 int ret = 0; 6053 6054 /* Don't set any netdev advanced features with device in Safe Mode */ 6055 if (ice_is_safe_mode(pf)) { 6056 dev_err(ice_pf_to_dev(pf), 6057 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6058 return ret; 6059 } 6060 6061 /* Do not change setting during reset */ 6062 if (ice_is_reset_in_progress(pf->state)) { 6063 dev_err(ice_pf_to_dev(pf), 6064 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6065 return -EBUSY; 6066 } 6067 6068 /* Multiple features can be changed in one call so keep features in 6069 * separate if/else statements to guarantee each feature is checked 6070 */ 6071 if (changed & NETIF_F_RXHASH) 6072 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6073 6074 ret = ice_set_vlan_features(netdev, features); 6075 if (ret) 6076 return ret; 6077 6078 /* Turn on receive of FCS aka CRC, and after setting this 6079 * flag the packet data will have the 4 byte CRC appended 6080 */ 6081 if (changed & NETIF_F_RXFCS) { 6082 if ((features & NETIF_F_RXFCS) && 6083 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6084 dev_err(ice_pf_to_dev(vsi->back), 6085 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6086 return -EIO; 6087 } 6088 6089 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6090 ret = ice_down_up(vsi); 6091 if (ret) 6092 return ret; 6093 } 6094 6095 if (changed & NETIF_F_NTUPLE) { 6096 bool ena = !!(features & NETIF_F_NTUPLE); 6097 6098 ice_vsi_manage_fdir(vsi, ena); 6099 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6100 } 6101 6102 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6103 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6104 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6105 return -EACCES; 6106 } 6107 6108 if (changed & NETIF_F_HW_TC) { 6109 bool ena = !!(features & NETIF_F_HW_TC); 6110 6111 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6112 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6113 } 6114 6115 if (changed & NETIF_F_LOOPBACK) 6116 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6117 6118 return ret; 6119 } 6120 6121 /** 6122 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6123 * @vsi: VSI to setup VLAN properties for 6124 */ 6125 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6126 { 6127 int err; 6128 6129 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6130 if (err) 6131 return err; 6132 6133 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6134 if (err) 6135 return err; 6136 6137 return ice_vsi_add_vlan_zero(vsi); 6138 } 6139 6140 /** 6141 * ice_vsi_cfg - Setup the VSI 6142 * @vsi: the VSI being configured 6143 * 6144 * Return 0 on success and negative value on error 6145 */ 6146 int ice_vsi_cfg(struct ice_vsi *vsi) 6147 { 6148 int err; 6149 6150 if (vsi->netdev) { 6151 ice_set_rx_mode(vsi->netdev); 6152 6153 if (vsi->type != ICE_VSI_LB) { 6154 err = ice_vsi_vlan_setup(vsi); 6155 6156 if (err) 6157 return err; 6158 } 6159 } 6160 ice_vsi_cfg_dcb_rings(vsi); 6161 6162 err = ice_vsi_cfg_lan_txqs(vsi); 6163 if (!err && ice_is_xdp_ena_vsi(vsi)) 6164 err = ice_vsi_cfg_xdp_txqs(vsi); 6165 if (!err) 6166 err = ice_vsi_cfg_rxqs(vsi); 6167 6168 return err; 6169 } 6170 6171 /* THEORY OF MODERATION: 6172 * The ice driver hardware works differently than the hardware that DIMLIB was 6173 * originally made for. ice hardware doesn't have packet count limits that 6174 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6175 * which is hard-coded to a limit of 250,000 ints/second. 6176 * If not using dynamic moderation, the INTRL value can be modified 6177 * by ethtool rx-usecs-high. 6178 */ 6179 struct ice_dim { 6180 /* the throttle rate for interrupts, basically worst case delay before 6181 * an initial interrupt fires, value is stored in microseconds. 6182 */ 6183 u16 itr; 6184 }; 6185 6186 /* Make a different profile for Rx that doesn't allow quite so aggressive 6187 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6188 * second. 6189 */ 6190 static const struct ice_dim rx_profile[] = { 6191 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6192 {8}, /* 125,000 ints/s */ 6193 {16}, /* 62,500 ints/s */ 6194 {62}, /* 16,129 ints/s */ 6195 {126} /* 7,936 ints/s */ 6196 }; 6197 6198 /* The transmit profile, which has the same sorts of values 6199 * as the previous struct 6200 */ 6201 static const struct ice_dim tx_profile[] = { 6202 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6203 {8}, /* 125,000 ints/s */ 6204 {40}, /* 16,125 ints/s */ 6205 {128}, /* 7,812 ints/s */ 6206 {256} /* 3,906 ints/s */ 6207 }; 6208 6209 static void ice_tx_dim_work(struct work_struct *work) 6210 { 6211 struct ice_ring_container *rc; 6212 struct dim *dim; 6213 u16 itr; 6214 6215 dim = container_of(work, struct dim, work); 6216 rc = (struct ice_ring_container *)dim->priv; 6217 6218 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6219 6220 /* look up the values in our local table */ 6221 itr = tx_profile[dim->profile_ix].itr; 6222 6223 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6224 ice_write_itr(rc, itr); 6225 6226 dim->state = DIM_START_MEASURE; 6227 } 6228 6229 static void ice_rx_dim_work(struct work_struct *work) 6230 { 6231 struct ice_ring_container *rc; 6232 struct dim *dim; 6233 u16 itr; 6234 6235 dim = container_of(work, struct dim, work); 6236 rc = (struct ice_ring_container *)dim->priv; 6237 6238 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6239 6240 /* look up the values in our local table */ 6241 itr = rx_profile[dim->profile_ix].itr; 6242 6243 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6244 ice_write_itr(rc, itr); 6245 6246 dim->state = DIM_START_MEASURE; 6247 } 6248 6249 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6250 6251 /** 6252 * ice_init_moderation - set up interrupt moderation 6253 * @q_vector: the vector containing rings to be configured 6254 * 6255 * Set up interrupt moderation registers, with the intent to do the right thing 6256 * when called from reset or from probe, and whether or not dynamic moderation 6257 * is enabled or not. Take special care to write all the registers in both 6258 * dynamic moderation mode or not in order to make sure hardware is in a known 6259 * state. 6260 */ 6261 static void ice_init_moderation(struct ice_q_vector *q_vector) 6262 { 6263 struct ice_ring_container *rc; 6264 bool tx_dynamic, rx_dynamic; 6265 6266 rc = &q_vector->tx; 6267 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6268 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6269 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6270 rc->dim.priv = rc; 6271 tx_dynamic = ITR_IS_DYNAMIC(rc); 6272 6273 /* set the initial TX ITR to match the above */ 6274 ice_write_itr(rc, tx_dynamic ? 6275 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6276 6277 rc = &q_vector->rx; 6278 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6279 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6280 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6281 rc->dim.priv = rc; 6282 rx_dynamic = ITR_IS_DYNAMIC(rc); 6283 6284 /* set the initial RX ITR to match the above */ 6285 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6286 rc->itr_setting); 6287 6288 ice_set_q_vector_intrl(q_vector); 6289 } 6290 6291 /** 6292 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6293 * @vsi: the VSI being configured 6294 */ 6295 static void ice_napi_enable_all(struct ice_vsi *vsi) 6296 { 6297 int q_idx; 6298 6299 if (!vsi->netdev) 6300 return; 6301 6302 ice_for_each_q_vector(vsi, q_idx) { 6303 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6304 6305 ice_init_moderation(q_vector); 6306 6307 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6308 napi_enable(&q_vector->napi); 6309 } 6310 } 6311 6312 /** 6313 * ice_up_complete - Finish the last steps of bringing up a connection 6314 * @vsi: The VSI being configured 6315 * 6316 * Return 0 on success and negative value on error 6317 */ 6318 static int ice_up_complete(struct ice_vsi *vsi) 6319 { 6320 struct ice_pf *pf = vsi->back; 6321 int err; 6322 6323 ice_vsi_cfg_msix(vsi); 6324 6325 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6326 * Tx queue group list was configured and the context bits were 6327 * programmed using ice_vsi_cfg_txqs 6328 */ 6329 err = ice_vsi_start_all_rx_rings(vsi); 6330 if (err) 6331 return err; 6332 6333 clear_bit(ICE_VSI_DOWN, vsi->state); 6334 ice_napi_enable_all(vsi); 6335 ice_vsi_ena_irq(vsi); 6336 6337 if (vsi->port_info && 6338 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6339 vsi->netdev) { 6340 ice_print_link_msg(vsi, true); 6341 netif_tx_start_all_queues(vsi->netdev); 6342 netif_carrier_on(vsi->netdev); 6343 if (!ice_is_e810(&pf->hw)) 6344 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6345 } 6346 6347 /* Perform an initial read of the statistics registers now to 6348 * set the baseline so counters are ready when interface is up 6349 */ 6350 ice_update_eth_stats(vsi); 6351 ice_service_task_schedule(pf); 6352 6353 return 0; 6354 } 6355 6356 /** 6357 * ice_up - Bring the connection back up after being down 6358 * @vsi: VSI being configured 6359 */ 6360 int ice_up(struct ice_vsi *vsi) 6361 { 6362 int err; 6363 6364 err = ice_vsi_cfg(vsi); 6365 if (!err) 6366 err = ice_up_complete(vsi); 6367 6368 return err; 6369 } 6370 6371 /** 6372 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6373 * @syncp: pointer to u64_stats_sync 6374 * @stats: stats that pkts and bytes count will be taken from 6375 * @pkts: packets stats counter 6376 * @bytes: bytes stats counter 6377 * 6378 * This function fetches stats from the ring considering the atomic operations 6379 * that needs to be performed to read u64 values in 32 bit machine. 6380 */ 6381 void 6382 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6383 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6384 { 6385 unsigned int start; 6386 6387 do { 6388 start = u64_stats_fetch_begin(syncp); 6389 *pkts = stats.pkts; 6390 *bytes = stats.bytes; 6391 } while (u64_stats_fetch_retry(syncp, start)); 6392 } 6393 6394 /** 6395 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6396 * @vsi: the VSI to be updated 6397 * @vsi_stats: the stats struct to be updated 6398 * @rings: rings to work on 6399 * @count: number of rings 6400 */ 6401 static void 6402 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6403 struct rtnl_link_stats64 *vsi_stats, 6404 struct ice_tx_ring **rings, u16 count) 6405 { 6406 u16 i; 6407 6408 for (i = 0; i < count; i++) { 6409 struct ice_tx_ring *ring; 6410 u64 pkts = 0, bytes = 0; 6411 6412 ring = READ_ONCE(rings[i]); 6413 if (!ring || !ring->ring_stats) 6414 continue; 6415 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6416 ring->ring_stats->stats, &pkts, 6417 &bytes); 6418 vsi_stats->tx_packets += pkts; 6419 vsi_stats->tx_bytes += bytes; 6420 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6421 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6422 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6423 } 6424 } 6425 6426 /** 6427 * ice_update_vsi_ring_stats - Update VSI stats counters 6428 * @vsi: the VSI to be updated 6429 */ 6430 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6431 { 6432 struct rtnl_link_stats64 *net_stats, *stats_prev; 6433 struct rtnl_link_stats64 *vsi_stats; 6434 u64 pkts, bytes; 6435 int i; 6436 6437 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6438 if (!vsi_stats) 6439 return; 6440 6441 /* reset non-netdev (extended) stats */ 6442 vsi->tx_restart = 0; 6443 vsi->tx_busy = 0; 6444 vsi->tx_linearize = 0; 6445 vsi->rx_buf_failed = 0; 6446 vsi->rx_page_failed = 0; 6447 6448 rcu_read_lock(); 6449 6450 /* update Tx rings counters */ 6451 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6452 vsi->num_txq); 6453 6454 /* update Rx rings counters */ 6455 ice_for_each_rxq(vsi, i) { 6456 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6457 struct ice_ring_stats *ring_stats; 6458 6459 ring_stats = ring->ring_stats; 6460 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6461 ring_stats->stats, &pkts, 6462 &bytes); 6463 vsi_stats->rx_packets += pkts; 6464 vsi_stats->rx_bytes += bytes; 6465 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6466 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6467 } 6468 6469 /* update XDP Tx rings counters */ 6470 if (ice_is_xdp_ena_vsi(vsi)) 6471 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6472 vsi->num_xdp_txq); 6473 6474 rcu_read_unlock(); 6475 6476 net_stats = &vsi->net_stats; 6477 stats_prev = &vsi->net_stats_prev; 6478 6479 /* clear prev counters after reset */ 6480 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6481 vsi_stats->rx_packets < stats_prev->rx_packets) { 6482 stats_prev->tx_packets = 0; 6483 stats_prev->tx_bytes = 0; 6484 stats_prev->rx_packets = 0; 6485 stats_prev->rx_bytes = 0; 6486 } 6487 6488 /* update netdev counters */ 6489 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6490 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6491 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6492 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6493 6494 stats_prev->tx_packets = vsi_stats->tx_packets; 6495 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6496 stats_prev->rx_packets = vsi_stats->rx_packets; 6497 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6498 6499 kfree(vsi_stats); 6500 } 6501 6502 /** 6503 * ice_update_vsi_stats - Update VSI stats counters 6504 * @vsi: the VSI to be updated 6505 */ 6506 void ice_update_vsi_stats(struct ice_vsi *vsi) 6507 { 6508 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6509 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6510 struct ice_pf *pf = vsi->back; 6511 6512 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6513 test_bit(ICE_CFG_BUSY, pf->state)) 6514 return; 6515 6516 /* get stats as recorded by Tx/Rx rings */ 6517 ice_update_vsi_ring_stats(vsi); 6518 6519 /* get VSI stats as recorded by the hardware */ 6520 ice_update_eth_stats(vsi); 6521 6522 cur_ns->tx_errors = cur_es->tx_errors; 6523 cur_ns->rx_dropped = cur_es->rx_discards; 6524 cur_ns->tx_dropped = cur_es->tx_discards; 6525 cur_ns->multicast = cur_es->rx_multicast; 6526 6527 /* update some more netdev stats if this is main VSI */ 6528 if (vsi->type == ICE_VSI_PF) { 6529 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6530 cur_ns->rx_errors = pf->stats.crc_errors + 6531 pf->stats.illegal_bytes + 6532 pf->stats.rx_len_errors + 6533 pf->stats.rx_undersize + 6534 pf->hw_csum_rx_error + 6535 pf->stats.rx_jabber + 6536 pf->stats.rx_fragments + 6537 pf->stats.rx_oversize; 6538 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6539 /* record drops from the port level */ 6540 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6541 } 6542 } 6543 6544 /** 6545 * ice_update_pf_stats - Update PF port stats counters 6546 * @pf: PF whose stats needs to be updated 6547 */ 6548 void ice_update_pf_stats(struct ice_pf *pf) 6549 { 6550 struct ice_hw_port_stats *prev_ps, *cur_ps; 6551 struct ice_hw *hw = &pf->hw; 6552 u16 fd_ctr_base; 6553 u8 port; 6554 6555 port = hw->port_info->lport; 6556 prev_ps = &pf->stats_prev; 6557 cur_ps = &pf->stats; 6558 6559 if (ice_is_reset_in_progress(pf->state)) 6560 pf->stat_prev_loaded = false; 6561 6562 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6563 &prev_ps->eth.rx_bytes, 6564 &cur_ps->eth.rx_bytes); 6565 6566 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6567 &prev_ps->eth.rx_unicast, 6568 &cur_ps->eth.rx_unicast); 6569 6570 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6571 &prev_ps->eth.rx_multicast, 6572 &cur_ps->eth.rx_multicast); 6573 6574 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6575 &prev_ps->eth.rx_broadcast, 6576 &cur_ps->eth.rx_broadcast); 6577 6578 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6579 &prev_ps->eth.rx_discards, 6580 &cur_ps->eth.rx_discards); 6581 6582 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6583 &prev_ps->eth.tx_bytes, 6584 &cur_ps->eth.tx_bytes); 6585 6586 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6587 &prev_ps->eth.tx_unicast, 6588 &cur_ps->eth.tx_unicast); 6589 6590 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6591 &prev_ps->eth.tx_multicast, 6592 &cur_ps->eth.tx_multicast); 6593 6594 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6595 &prev_ps->eth.tx_broadcast, 6596 &cur_ps->eth.tx_broadcast); 6597 6598 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6599 &prev_ps->tx_dropped_link_down, 6600 &cur_ps->tx_dropped_link_down); 6601 6602 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6603 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6604 6605 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6606 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6607 6608 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6609 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6610 6611 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6612 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6613 6614 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6615 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6616 6617 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6618 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6619 6620 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6621 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6622 6623 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6624 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6625 6626 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6627 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6628 6629 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6630 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6631 6632 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6633 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6634 6635 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6636 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6637 6638 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6639 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6640 6641 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6642 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6643 6644 fd_ctr_base = hw->fd_ctr_base; 6645 6646 ice_stat_update40(hw, 6647 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6648 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6649 &cur_ps->fd_sb_match); 6650 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6651 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6652 6653 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6654 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6655 6656 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6657 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6658 6659 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6660 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6661 6662 ice_update_dcb_stats(pf); 6663 6664 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6665 &prev_ps->crc_errors, &cur_ps->crc_errors); 6666 6667 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6668 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6669 6670 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6671 &prev_ps->mac_local_faults, 6672 &cur_ps->mac_local_faults); 6673 6674 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6675 &prev_ps->mac_remote_faults, 6676 &cur_ps->mac_remote_faults); 6677 6678 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6679 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6680 6681 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6682 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6683 6684 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6685 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6686 6687 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6688 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6689 6690 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6691 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6692 6693 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6694 6695 pf->stat_prev_loaded = true; 6696 } 6697 6698 /** 6699 * ice_get_stats64 - get statistics for network device structure 6700 * @netdev: network interface device structure 6701 * @stats: main device statistics structure 6702 */ 6703 static 6704 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6705 { 6706 struct ice_netdev_priv *np = netdev_priv(netdev); 6707 struct rtnl_link_stats64 *vsi_stats; 6708 struct ice_vsi *vsi = np->vsi; 6709 6710 vsi_stats = &vsi->net_stats; 6711 6712 if (!vsi->num_txq || !vsi->num_rxq) 6713 return; 6714 6715 /* netdev packet/byte stats come from ring counter. These are obtained 6716 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6717 * But, only call the update routine and read the registers if VSI is 6718 * not down. 6719 */ 6720 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6721 ice_update_vsi_ring_stats(vsi); 6722 stats->tx_packets = vsi_stats->tx_packets; 6723 stats->tx_bytes = vsi_stats->tx_bytes; 6724 stats->rx_packets = vsi_stats->rx_packets; 6725 stats->rx_bytes = vsi_stats->rx_bytes; 6726 6727 /* The rest of the stats can be read from the hardware but instead we 6728 * just return values that the watchdog task has already obtained from 6729 * the hardware. 6730 */ 6731 stats->multicast = vsi_stats->multicast; 6732 stats->tx_errors = vsi_stats->tx_errors; 6733 stats->tx_dropped = vsi_stats->tx_dropped; 6734 stats->rx_errors = vsi_stats->rx_errors; 6735 stats->rx_dropped = vsi_stats->rx_dropped; 6736 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6737 stats->rx_length_errors = vsi_stats->rx_length_errors; 6738 } 6739 6740 /** 6741 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6742 * @vsi: VSI having NAPI disabled 6743 */ 6744 static void ice_napi_disable_all(struct ice_vsi *vsi) 6745 { 6746 int q_idx; 6747 6748 if (!vsi->netdev) 6749 return; 6750 6751 ice_for_each_q_vector(vsi, q_idx) { 6752 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6753 6754 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6755 napi_disable(&q_vector->napi); 6756 6757 cancel_work_sync(&q_vector->tx.dim.work); 6758 cancel_work_sync(&q_vector->rx.dim.work); 6759 } 6760 } 6761 6762 /** 6763 * ice_down - Shutdown the connection 6764 * @vsi: The VSI being stopped 6765 * 6766 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6767 */ 6768 int ice_down(struct ice_vsi *vsi) 6769 { 6770 int i, tx_err, rx_err, vlan_err = 0; 6771 6772 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6773 6774 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6775 vlan_err = ice_vsi_del_vlan_zero(vsi); 6776 if (!ice_is_e810(&vsi->back->hw)) 6777 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6778 netif_carrier_off(vsi->netdev); 6779 netif_tx_disable(vsi->netdev); 6780 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6781 ice_eswitch_stop_all_tx_queues(vsi->back); 6782 } 6783 6784 ice_vsi_dis_irq(vsi); 6785 6786 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6787 if (tx_err) 6788 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6789 vsi->vsi_num, tx_err); 6790 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6791 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6792 if (tx_err) 6793 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6794 vsi->vsi_num, tx_err); 6795 } 6796 6797 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6798 if (rx_err) 6799 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6800 vsi->vsi_num, rx_err); 6801 6802 ice_napi_disable_all(vsi); 6803 6804 ice_for_each_txq(vsi, i) 6805 ice_clean_tx_ring(vsi->tx_rings[i]); 6806 6807 ice_for_each_rxq(vsi, i) 6808 ice_clean_rx_ring(vsi->rx_rings[i]); 6809 6810 if (tx_err || rx_err || vlan_err) { 6811 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6812 vsi->vsi_num, vsi->vsw->sw_id); 6813 return -EIO; 6814 } 6815 6816 return 0; 6817 } 6818 6819 /** 6820 * ice_down_up - shutdown the VSI connection and bring it up 6821 * @vsi: the VSI to be reconnected 6822 */ 6823 int ice_down_up(struct ice_vsi *vsi) 6824 { 6825 int ret; 6826 6827 /* if DOWN already set, nothing to do */ 6828 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6829 return 0; 6830 6831 ret = ice_down(vsi); 6832 if (ret) 6833 return ret; 6834 6835 ret = ice_up(vsi); 6836 if (ret) { 6837 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6838 return ret; 6839 } 6840 6841 return 0; 6842 } 6843 6844 /** 6845 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6846 * @vsi: VSI having resources allocated 6847 * 6848 * Return 0 on success, negative on failure 6849 */ 6850 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6851 { 6852 int i, err = 0; 6853 6854 if (!vsi->num_txq) { 6855 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6856 vsi->vsi_num); 6857 return -EINVAL; 6858 } 6859 6860 ice_for_each_txq(vsi, i) { 6861 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6862 6863 if (!ring) 6864 return -EINVAL; 6865 6866 if (vsi->netdev) 6867 ring->netdev = vsi->netdev; 6868 err = ice_setup_tx_ring(ring); 6869 if (err) 6870 break; 6871 } 6872 6873 return err; 6874 } 6875 6876 /** 6877 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6878 * @vsi: VSI having resources allocated 6879 * 6880 * Return 0 on success, negative on failure 6881 */ 6882 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6883 { 6884 int i, err = 0; 6885 6886 if (!vsi->num_rxq) { 6887 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6888 vsi->vsi_num); 6889 return -EINVAL; 6890 } 6891 6892 ice_for_each_rxq(vsi, i) { 6893 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6894 6895 if (!ring) 6896 return -EINVAL; 6897 6898 if (vsi->netdev) 6899 ring->netdev = vsi->netdev; 6900 err = ice_setup_rx_ring(ring); 6901 if (err) 6902 break; 6903 } 6904 6905 return err; 6906 } 6907 6908 /** 6909 * ice_vsi_open_ctrl - open control VSI for use 6910 * @vsi: the VSI to open 6911 * 6912 * Initialization of the Control VSI 6913 * 6914 * Returns 0 on success, negative value on error 6915 */ 6916 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6917 { 6918 char int_name[ICE_INT_NAME_STR_LEN]; 6919 struct ice_pf *pf = vsi->back; 6920 struct device *dev; 6921 int err; 6922 6923 dev = ice_pf_to_dev(pf); 6924 /* allocate descriptors */ 6925 err = ice_vsi_setup_tx_rings(vsi); 6926 if (err) 6927 goto err_setup_tx; 6928 6929 err = ice_vsi_setup_rx_rings(vsi); 6930 if (err) 6931 goto err_setup_rx; 6932 6933 err = ice_vsi_cfg(vsi); 6934 if (err) 6935 goto err_setup_rx; 6936 6937 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6938 dev_driver_string(dev), dev_name(dev)); 6939 err = ice_vsi_req_irq_msix(vsi, int_name); 6940 if (err) 6941 goto err_setup_rx; 6942 6943 ice_vsi_cfg_msix(vsi); 6944 6945 err = ice_vsi_start_all_rx_rings(vsi); 6946 if (err) 6947 goto err_up_complete; 6948 6949 clear_bit(ICE_VSI_DOWN, vsi->state); 6950 ice_vsi_ena_irq(vsi); 6951 6952 return 0; 6953 6954 err_up_complete: 6955 ice_down(vsi); 6956 err_setup_rx: 6957 ice_vsi_free_rx_rings(vsi); 6958 err_setup_tx: 6959 ice_vsi_free_tx_rings(vsi); 6960 6961 return err; 6962 } 6963 6964 /** 6965 * ice_vsi_open - Called when a network interface is made active 6966 * @vsi: the VSI to open 6967 * 6968 * Initialization of the VSI 6969 * 6970 * Returns 0 on success, negative value on error 6971 */ 6972 int ice_vsi_open(struct ice_vsi *vsi) 6973 { 6974 char int_name[ICE_INT_NAME_STR_LEN]; 6975 struct ice_pf *pf = vsi->back; 6976 int err; 6977 6978 /* allocate descriptors */ 6979 err = ice_vsi_setup_tx_rings(vsi); 6980 if (err) 6981 goto err_setup_tx; 6982 6983 err = ice_vsi_setup_rx_rings(vsi); 6984 if (err) 6985 goto err_setup_rx; 6986 6987 err = ice_vsi_cfg(vsi); 6988 if (err) 6989 goto err_setup_rx; 6990 6991 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6992 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6993 err = ice_vsi_req_irq_msix(vsi, int_name); 6994 if (err) 6995 goto err_setup_rx; 6996 6997 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 6998 6999 if (vsi->type == ICE_VSI_PF) { 7000 /* Notify the stack of the actual queue counts. */ 7001 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7002 if (err) 7003 goto err_set_qs; 7004 7005 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7006 if (err) 7007 goto err_set_qs; 7008 } 7009 7010 err = ice_up_complete(vsi); 7011 if (err) 7012 goto err_up_complete; 7013 7014 return 0; 7015 7016 err_up_complete: 7017 ice_down(vsi); 7018 err_set_qs: 7019 ice_vsi_free_irq(vsi); 7020 err_setup_rx: 7021 ice_vsi_free_rx_rings(vsi); 7022 err_setup_tx: 7023 ice_vsi_free_tx_rings(vsi); 7024 7025 return err; 7026 } 7027 7028 /** 7029 * ice_vsi_release_all - Delete all VSIs 7030 * @pf: PF from which all VSIs are being removed 7031 */ 7032 static void ice_vsi_release_all(struct ice_pf *pf) 7033 { 7034 int err, i; 7035 7036 if (!pf->vsi) 7037 return; 7038 7039 ice_for_each_vsi(pf, i) { 7040 if (!pf->vsi[i]) 7041 continue; 7042 7043 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7044 continue; 7045 7046 err = ice_vsi_release(pf->vsi[i]); 7047 if (err) 7048 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7049 i, err, pf->vsi[i]->vsi_num); 7050 } 7051 } 7052 7053 /** 7054 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7055 * @pf: pointer to the PF instance 7056 * @type: VSI type to rebuild 7057 * 7058 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7059 */ 7060 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7061 { 7062 struct device *dev = ice_pf_to_dev(pf); 7063 int i, err; 7064 7065 ice_for_each_vsi(pf, i) { 7066 struct ice_vsi *vsi = pf->vsi[i]; 7067 7068 if (!vsi || vsi->type != type) 7069 continue; 7070 7071 /* rebuild the VSI */ 7072 err = ice_vsi_rebuild(vsi, true); 7073 if (err) { 7074 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7075 err, vsi->idx, ice_vsi_type_str(type)); 7076 return err; 7077 } 7078 7079 /* replay filters for the VSI */ 7080 err = ice_replay_vsi(&pf->hw, vsi->idx); 7081 if (err) { 7082 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7083 err, vsi->idx, ice_vsi_type_str(type)); 7084 return err; 7085 } 7086 7087 /* Re-map HW VSI number, using VSI handle that has been 7088 * previously validated in ice_replay_vsi() call above 7089 */ 7090 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7091 7092 /* enable the VSI */ 7093 err = ice_ena_vsi(vsi, false); 7094 if (err) { 7095 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7096 err, vsi->idx, ice_vsi_type_str(type)); 7097 return err; 7098 } 7099 7100 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7101 ice_vsi_type_str(type)); 7102 } 7103 7104 return 0; 7105 } 7106 7107 /** 7108 * ice_update_pf_netdev_link - Update PF netdev link status 7109 * @pf: pointer to the PF instance 7110 */ 7111 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7112 { 7113 bool link_up; 7114 int i; 7115 7116 ice_for_each_vsi(pf, i) { 7117 struct ice_vsi *vsi = pf->vsi[i]; 7118 7119 if (!vsi || vsi->type != ICE_VSI_PF) 7120 return; 7121 7122 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7123 if (link_up) { 7124 netif_carrier_on(pf->vsi[i]->netdev); 7125 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7126 } else { 7127 netif_carrier_off(pf->vsi[i]->netdev); 7128 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7129 } 7130 } 7131 } 7132 7133 /** 7134 * ice_rebuild - rebuild after reset 7135 * @pf: PF to rebuild 7136 * @reset_type: type of reset 7137 * 7138 * Do not rebuild VF VSI in this flow because that is already handled via 7139 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7140 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7141 * to reset/rebuild all the VF VSI twice. 7142 */ 7143 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7144 { 7145 struct device *dev = ice_pf_to_dev(pf); 7146 struct ice_hw *hw = &pf->hw; 7147 bool dvm; 7148 int err; 7149 7150 if (test_bit(ICE_DOWN, pf->state)) 7151 goto clear_recovery; 7152 7153 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7154 7155 #define ICE_EMP_RESET_SLEEP_MS 5000 7156 if (reset_type == ICE_RESET_EMPR) { 7157 /* If an EMP reset has occurred, any previously pending flash 7158 * update will have completed. We no longer know whether or 7159 * not the NVM update EMP reset is restricted. 7160 */ 7161 pf->fw_emp_reset_disabled = false; 7162 7163 msleep(ICE_EMP_RESET_SLEEP_MS); 7164 } 7165 7166 err = ice_init_all_ctrlq(hw); 7167 if (err) { 7168 dev_err(dev, "control queues init failed %d\n", err); 7169 goto err_init_ctrlq; 7170 } 7171 7172 /* if DDP was previously loaded successfully */ 7173 if (!ice_is_safe_mode(pf)) { 7174 /* reload the SW DB of filter tables */ 7175 if (reset_type == ICE_RESET_PFR) 7176 ice_fill_blk_tbls(hw); 7177 else 7178 /* Reload DDP Package after CORER/GLOBR reset */ 7179 ice_load_pkg(NULL, pf); 7180 } 7181 7182 err = ice_clear_pf_cfg(hw); 7183 if (err) { 7184 dev_err(dev, "clear PF configuration failed %d\n", err); 7185 goto err_init_ctrlq; 7186 } 7187 7188 ice_clear_pxe_mode(hw); 7189 7190 err = ice_init_nvm(hw); 7191 if (err) { 7192 dev_err(dev, "ice_init_nvm failed %d\n", err); 7193 goto err_init_ctrlq; 7194 } 7195 7196 err = ice_get_caps(hw); 7197 if (err) { 7198 dev_err(dev, "ice_get_caps failed %d\n", err); 7199 goto err_init_ctrlq; 7200 } 7201 7202 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7203 if (err) { 7204 dev_err(dev, "set_mac_cfg failed %d\n", err); 7205 goto err_init_ctrlq; 7206 } 7207 7208 dvm = ice_is_dvm_ena(hw); 7209 7210 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7211 if (err) 7212 goto err_init_ctrlq; 7213 7214 err = ice_sched_init_port(hw->port_info); 7215 if (err) 7216 goto err_sched_init_port; 7217 7218 /* start misc vector */ 7219 err = ice_req_irq_msix_misc(pf); 7220 if (err) { 7221 dev_err(dev, "misc vector setup failed: %d\n", err); 7222 goto err_sched_init_port; 7223 } 7224 7225 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7226 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7227 if (!rd32(hw, PFQF_FD_SIZE)) { 7228 u16 unused, guar, b_effort; 7229 7230 guar = hw->func_caps.fd_fltr_guar; 7231 b_effort = hw->func_caps.fd_fltr_best_effort; 7232 7233 /* force guaranteed filter pool for PF */ 7234 ice_alloc_fd_guar_item(hw, &unused, guar); 7235 /* force shared filter pool for PF */ 7236 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7237 } 7238 } 7239 7240 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7241 ice_dcb_rebuild(pf); 7242 7243 /* If the PF previously had enabled PTP, PTP init needs to happen before 7244 * the VSI rebuild. If not, this causes the PTP link status events to 7245 * fail. 7246 */ 7247 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7248 ice_ptp_reset(pf); 7249 7250 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7251 ice_gnss_init(pf); 7252 7253 /* rebuild PF VSI */ 7254 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7255 if (err) { 7256 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7257 goto err_vsi_rebuild; 7258 } 7259 7260 /* configure PTP timestamping after VSI rebuild */ 7261 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7262 ice_ptp_cfg_timestamp(pf, false); 7263 7264 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7265 if (err) { 7266 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7267 goto err_vsi_rebuild; 7268 } 7269 7270 if (reset_type == ICE_RESET_PFR) { 7271 err = ice_rebuild_channels(pf); 7272 if (err) { 7273 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7274 err); 7275 goto err_vsi_rebuild; 7276 } 7277 } 7278 7279 /* If Flow Director is active */ 7280 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7281 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7282 if (err) { 7283 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7284 goto err_vsi_rebuild; 7285 } 7286 7287 /* replay HW Flow Director recipes */ 7288 if (hw->fdir_prof) 7289 ice_fdir_replay_flows(hw); 7290 7291 /* replay Flow Director filters */ 7292 ice_fdir_replay_fltrs(pf); 7293 7294 ice_rebuild_arfs(pf); 7295 } 7296 7297 ice_update_pf_netdev_link(pf); 7298 7299 /* tell the firmware we are up */ 7300 err = ice_send_version(pf); 7301 if (err) { 7302 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7303 err); 7304 goto err_vsi_rebuild; 7305 } 7306 7307 ice_replay_post(hw); 7308 7309 /* if we get here, reset flow is successful */ 7310 clear_bit(ICE_RESET_FAILED, pf->state); 7311 7312 ice_plug_aux_dev(pf); 7313 return; 7314 7315 err_vsi_rebuild: 7316 err_sched_init_port: 7317 ice_sched_cleanup_all(hw); 7318 err_init_ctrlq: 7319 ice_shutdown_all_ctrlq(hw); 7320 set_bit(ICE_RESET_FAILED, pf->state); 7321 clear_recovery: 7322 /* set this bit in PF state to control service task scheduling */ 7323 set_bit(ICE_NEEDS_RESTART, pf->state); 7324 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7325 } 7326 7327 /** 7328 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7329 * @vsi: Pointer to VSI structure 7330 */ 7331 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7332 { 7333 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7334 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7335 else 7336 return ICE_RXBUF_3072; 7337 } 7338 7339 /** 7340 * ice_change_mtu - NDO callback to change the MTU 7341 * @netdev: network interface device structure 7342 * @new_mtu: new value for maximum frame size 7343 * 7344 * Returns 0 on success, negative on failure 7345 */ 7346 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7347 { 7348 struct ice_netdev_priv *np = netdev_priv(netdev); 7349 struct ice_vsi *vsi = np->vsi; 7350 struct ice_pf *pf = vsi->back; 7351 u8 count = 0; 7352 int err = 0; 7353 7354 if (new_mtu == (int)netdev->mtu) { 7355 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7356 return 0; 7357 } 7358 7359 if (ice_is_xdp_ena_vsi(vsi)) { 7360 int frame_size = ice_max_xdp_frame_size(vsi); 7361 7362 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7363 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7364 frame_size - ICE_ETH_PKT_HDR_PAD); 7365 return -EINVAL; 7366 } 7367 } 7368 7369 /* if a reset is in progress, wait for some time for it to complete */ 7370 do { 7371 if (ice_is_reset_in_progress(pf->state)) { 7372 count++; 7373 usleep_range(1000, 2000); 7374 } else { 7375 break; 7376 } 7377 7378 } while (count < 100); 7379 7380 if (count == 100) { 7381 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7382 return -EBUSY; 7383 } 7384 7385 netdev->mtu = (unsigned int)new_mtu; 7386 7387 /* if VSI is up, bring it down and then back up */ 7388 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7389 err = ice_down(vsi); 7390 if (err) { 7391 netdev_err(netdev, "change MTU if_down err %d\n", err); 7392 return err; 7393 } 7394 7395 err = ice_up(vsi); 7396 if (err) { 7397 netdev_err(netdev, "change MTU if_up err %d\n", err); 7398 return err; 7399 } 7400 } 7401 7402 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7403 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7404 7405 return err; 7406 } 7407 7408 /** 7409 * ice_eth_ioctl - Access the hwtstamp interface 7410 * @netdev: network interface device structure 7411 * @ifr: interface request data 7412 * @cmd: ioctl command 7413 */ 7414 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7415 { 7416 struct ice_netdev_priv *np = netdev_priv(netdev); 7417 struct ice_pf *pf = np->vsi->back; 7418 7419 switch (cmd) { 7420 case SIOCGHWTSTAMP: 7421 return ice_ptp_get_ts_config(pf, ifr); 7422 case SIOCSHWTSTAMP: 7423 return ice_ptp_set_ts_config(pf, ifr); 7424 default: 7425 return -EOPNOTSUPP; 7426 } 7427 } 7428 7429 /** 7430 * ice_aq_str - convert AQ err code to a string 7431 * @aq_err: the AQ error code to convert 7432 */ 7433 const char *ice_aq_str(enum ice_aq_err aq_err) 7434 { 7435 switch (aq_err) { 7436 case ICE_AQ_RC_OK: 7437 return "OK"; 7438 case ICE_AQ_RC_EPERM: 7439 return "ICE_AQ_RC_EPERM"; 7440 case ICE_AQ_RC_ENOENT: 7441 return "ICE_AQ_RC_ENOENT"; 7442 case ICE_AQ_RC_ENOMEM: 7443 return "ICE_AQ_RC_ENOMEM"; 7444 case ICE_AQ_RC_EBUSY: 7445 return "ICE_AQ_RC_EBUSY"; 7446 case ICE_AQ_RC_EEXIST: 7447 return "ICE_AQ_RC_EEXIST"; 7448 case ICE_AQ_RC_EINVAL: 7449 return "ICE_AQ_RC_EINVAL"; 7450 case ICE_AQ_RC_ENOSPC: 7451 return "ICE_AQ_RC_ENOSPC"; 7452 case ICE_AQ_RC_ENOSYS: 7453 return "ICE_AQ_RC_ENOSYS"; 7454 case ICE_AQ_RC_EMODE: 7455 return "ICE_AQ_RC_EMODE"; 7456 case ICE_AQ_RC_ENOSEC: 7457 return "ICE_AQ_RC_ENOSEC"; 7458 case ICE_AQ_RC_EBADSIG: 7459 return "ICE_AQ_RC_EBADSIG"; 7460 case ICE_AQ_RC_ESVN: 7461 return "ICE_AQ_RC_ESVN"; 7462 case ICE_AQ_RC_EBADMAN: 7463 return "ICE_AQ_RC_EBADMAN"; 7464 case ICE_AQ_RC_EBADBUF: 7465 return "ICE_AQ_RC_EBADBUF"; 7466 } 7467 7468 return "ICE_AQ_RC_UNKNOWN"; 7469 } 7470 7471 /** 7472 * ice_set_rss_lut - Set RSS LUT 7473 * @vsi: Pointer to VSI structure 7474 * @lut: Lookup table 7475 * @lut_size: Lookup table size 7476 * 7477 * Returns 0 on success, negative on failure 7478 */ 7479 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7480 { 7481 struct ice_aq_get_set_rss_lut_params params = {}; 7482 struct ice_hw *hw = &vsi->back->hw; 7483 int status; 7484 7485 if (!lut) 7486 return -EINVAL; 7487 7488 params.vsi_handle = vsi->idx; 7489 params.lut_size = lut_size; 7490 params.lut_type = vsi->rss_lut_type; 7491 params.lut = lut; 7492 7493 status = ice_aq_set_rss_lut(hw, ¶ms); 7494 if (status) 7495 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7496 status, ice_aq_str(hw->adminq.sq_last_status)); 7497 7498 return status; 7499 } 7500 7501 /** 7502 * ice_set_rss_key - Set RSS key 7503 * @vsi: Pointer to the VSI structure 7504 * @seed: RSS hash seed 7505 * 7506 * Returns 0 on success, negative on failure 7507 */ 7508 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7509 { 7510 struct ice_hw *hw = &vsi->back->hw; 7511 int status; 7512 7513 if (!seed) 7514 return -EINVAL; 7515 7516 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7517 if (status) 7518 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7519 status, ice_aq_str(hw->adminq.sq_last_status)); 7520 7521 return status; 7522 } 7523 7524 /** 7525 * ice_get_rss_lut - Get RSS LUT 7526 * @vsi: Pointer to VSI structure 7527 * @lut: Buffer to store the lookup table entries 7528 * @lut_size: Size of buffer to store the lookup table entries 7529 * 7530 * Returns 0 on success, negative on failure 7531 */ 7532 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7533 { 7534 struct ice_aq_get_set_rss_lut_params params = {}; 7535 struct ice_hw *hw = &vsi->back->hw; 7536 int status; 7537 7538 if (!lut) 7539 return -EINVAL; 7540 7541 params.vsi_handle = vsi->idx; 7542 params.lut_size = lut_size; 7543 params.lut_type = vsi->rss_lut_type; 7544 params.lut = lut; 7545 7546 status = ice_aq_get_rss_lut(hw, ¶ms); 7547 if (status) 7548 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7549 status, ice_aq_str(hw->adminq.sq_last_status)); 7550 7551 return status; 7552 } 7553 7554 /** 7555 * ice_get_rss_key - Get RSS key 7556 * @vsi: Pointer to VSI structure 7557 * @seed: Buffer to store the key in 7558 * 7559 * Returns 0 on success, negative on failure 7560 */ 7561 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7562 { 7563 struct ice_hw *hw = &vsi->back->hw; 7564 int status; 7565 7566 if (!seed) 7567 return -EINVAL; 7568 7569 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7570 if (status) 7571 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7572 status, ice_aq_str(hw->adminq.sq_last_status)); 7573 7574 return status; 7575 } 7576 7577 /** 7578 * ice_bridge_getlink - Get the hardware bridge mode 7579 * @skb: skb buff 7580 * @pid: process ID 7581 * @seq: RTNL message seq 7582 * @dev: the netdev being configured 7583 * @filter_mask: filter mask passed in 7584 * @nlflags: netlink flags passed in 7585 * 7586 * Return the bridge mode (VEB/VEPA) 7587 */ 7588 static int 7589 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7590 struct net_device *dev, u32 filter_mask, int nlflags) 7591 { 7592 struct ice_netdev_priv *np = netdev_priv(dev); 7593 struct ice_vsi *vsi = np->vsi; 7594 struct ice_pf *pf = vsi->back; 7595 u16 bmode; 7596 7597 bmode = pf->first_sw->bridge_mode; 7598 7599 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7600 filter_mask, NULL); 7601 } 7602 7603 /** 7604 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7605 * @vsi: Pointer to VSI structure 7606 * @bmode: Hardware bridge mode (VEB/VEPA) 7607 * 7608 * Returns 0 on success, negative on failure 7609 */ 7610 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7611 { 7612 struct ice_aqc_vsi_props *vsi_props; 7613 struct ice_hw *hw = &vsi->back->hw; 7614 struct ice_vsi_ctx *ctxt; 7615 int ret; 7616 7617 vsi_props = &vsi->info; 7618 7619 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7620 if (!ctxt) 7621 return -ENOMEM; 7622 7623 ctxt->info = vsi->info; 7624 7625 if (bmode == BRIDGE_MODE_VEB) 7626 /* change from VEPA to VEB mode */ 7627 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7628 else 7629 /* change from VEB to VEPA mode */ 7630 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7631 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7632 7633 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7634 if (ret) { 7635 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7636 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7637 goto out; 7638 } 7639 /* Update sw flags for book keeping */ 7640 vsi_props->sw_flags = ctxt->info.sw_flags; 7641 7642 out: 7643 kfree(ctxt); 7644 return ret; 7645 } 7646 7647 /** 7648 * ice_bridge_setlink - Set the hardware bridge mode 7649 * @dev: the netdev being configured 7650 * @nlh: RTNL message 7651 * @flags: bridge setlink flags 7652 * @extack: netlink extended ack 7653 * 7654 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7655 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7656 * not already set for all VSIs connected to this switch. And also update the 7657 * unicast switch filter rules for the corresponding switch of the netdev. 7658 */ 7659 static int 7660 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7661 u16 __always_unused flags, 7662 struct netlink_ext_ack __always_unused *extack) 7663 { 7664 struct ice_netdev_priv *np = netdev_priv(dev); 7665 struct ice_pf *pf = np->vsi->back; 7666 struct nlattr *attr, *br_spec; 7667 struct ice_hw *hw = &pf->hw; 7668 struct ice_sw *pf_sw; 7669 int rem, v, err = 0; 7670 7671 pf_sw = pf->first_sw; 7672 /* find the attribute in the netlink message */ 7673 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7674 7675 nla_for_each_nested(attr, br_spec, rem) { 7676 __u16 mode; 7677 7678 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7679 continue; 7680 mode = nla_get_u16(attr); 7681 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7682 return -EINVAL; 7683 /* Continue if bridge mode is not being flipped */ 7684 if (mode == pf_sw->bridge_mode) 7685 continue; 7686 /* Iterates through the PF VSI list and update the loopback 7687 * mode of the VSI 7688 */ 7689 ice_for_each_vsi(pf, v) { 7690 if (!pf->vsi[v]) 7691 continue; 7692 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7693 if (err) 7694 return err; 7695 } 7696 7697 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7698 /* Update the unicast switch filter rules for the corresponding 7699 * switch of the netdev 7700 */ 7701 err = ice_update_sw_rule_bridge_mode(hw); 7702 if (err) { 7703 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7704 mode, err, 7705 ice_aq_str(hw->adminq.sq_last_status)); 7706 /* revert hw->evb_veb */ 7707 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7708 return err; 7709 } 7710 7711 pf_sw->bridge_mode = mode; 7712 } 7713 7714 return 0; 7715 } 7716 7717 /** 7718 * ice_tx_timeout - Respond to a Tx Hang 7719 * @netdev: network interface device structure 7720 * @txqueue: Tx queue 7721 */ 7722 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7723 { 7724 struct ice_netdev_priv *np = netdev_priv(netdev); 7725 struct ice_tx_ring *tx_ring = NULL; 7726 struct ice_vsi *vsi = np->vsi; 7727 struct ice_pf *pf = vsi->back; 7728 u32 i; 7729 7730 pf->tx_timeout_count++; 7731 7732 /* Check if PFC is enabled for the TC to which the queue belongs 7733 * to. If yes then Tx timeout is not caused by a hung queue, no 7734 * need to reset and rebuild 7735 */ 7736 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7737 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7738 txqueue); 7739 return; 7740 } 7741 7742 /* now that we have an index, find the tx_ring struct */ 7743 ice_for_each_txq(vsi, i) 7744 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7745 if (txqueue == vsi->tx_rings[i]->q_index) { 7746 tx_ring = vsi->tx_rings[i]; 7747 break; 7748 } 7749 7750 /* Reset recovery level if enough time has elapsed after last timeout. 7751 * Also ensure no new reset action happens before next timeout period. 7752 */ 7753 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7754 pf->tx_timeout_recovery_level = 1; 7755 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7756 netdev->watchdog_timeo))) 7757 return; 7758 7759 if (tx_ring) { 7760 struct ice_hw *hw = &pf->hw; 7761 u32 head, val = 0; 7762 7763 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7764 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7765 /* Read interrupt register */ 7766 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7767 7768 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7769 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7770 head, tx_ring->next_to_use, val); 7771 } 7772 7773 pf->tx_timeout_last_recovery = jiffies; 7774 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7775 pf->tx_timeout_recovery_level, txqueue); 7776 7777 switch (pf->tx_timeout_recovery_level) { 7778 case 1: 7779 set_bit(ICE_PFR_REQ, pf->state); 7780 break; 7781 case 2: 7782 set_bit(ICE_CORER_REQ, pf->state); 7783 break; 7784 case 3: 7785 set_bit(ICE_GLOBR_REQ, pf->state); 7786 break; 7787 default: 7788 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7789 set_bit(ICE_DOWN, pf->state); 7790 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7791 set_bit(ICE_SERVICE_DIS, pf->state); 7792 break; 7793 } 7794 7795 ice_service_task_schedule(pf); 7796 pf->tx_timeout_recovery_level++; 7797 } 7798 7799 /** 7800 * ice_setup_tc_cls_flower - flower classifier offloads 7801 * @np: net device to configure 7802 * @filter_dev: device on which filter is added 7803 * @cls_flower: offload data 7804 */ 7805 static int 7806 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7807 struct net_device *filter_dev, 7808 struct flow_cls_offload *cls_flower) 7809 { 7810 struct ice_vsi *vsi = np->vsi; 7811 7812 if (cls_flower->common.chain_index) 7813 return -EOPNOTSUPP; 7814 7815 switch (cls_flower->command) { 7816 case FLOW_CLS_REPLACE: 7817 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7818 case FLOW_CLS_DESTROY: 7819 return ice_del_cls_flower(vsi, cls_flower); 7820 default: 7821 return -EINVAL; 7822 } 7823 } 7824 7825 /** 7826 * ice_setup_tc_block_cb - callback handler registered for TC block 7827 * @type: TC SETUP type 7828 * @type_data: TC flower offload data that contains user input 7829 * @cb_priv: netdev private data 7830 */ 7831 static int 7832 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7833 { 7834 struct ice_netdev_priv *np = cb_priv; 7835 7836 switch (type) { 7837 case TC_SETUP_CLSFLOWER: 7838 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7839 type_data); 7840 default: 7841 return -EOPNOTSUPP; 7842 } 7843 } 7844 7845 /** 7846 * ice_validate_mqprio_qopt - Validate TCF input parameters 7847 * @vsi: Pointer to VSI 7848 * @mqprio_qopt: input parameters for mqprio queue configuration 7849 * 7850 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7851 * needed), and make sure user doesn't specify qcount and BW rate limit 7852 * for TCs, which are more than "num_tc" 7853 */ 7854 static int 7855 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7856 struct tc_mqprio_qopt_offload *mqprio_qopt) 7857 { 7858 u64 sum_max_rate = 0, sum_min_rate = 0; 7859 int non_power_of_2_qcount = 0; 7860 struct ice_pf *pf = vsi->back; 7861 int max_rss_q_cnt = 0; 7862 struct device *dev; 7863 int i, speed; 7864 u8 num_tc; 7865 7866 if (vsi->type != ICE_VSI_PF) 7867 return -EINVAL; 7868 7869 if (mqprio_qopt->qopt.offset[0] != 0 || 7870 mqprio_qopt->qopt.num_tc < 1 || 7871 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7872 return -EINVAL; 7873 7874 dev = ice_pf_to_dev(pf); 7875 vsi->ch_rss_size = 0; 7876 num_tc = mqprio_qopt->qopt.num_tc; 7877 7878 for (i = 0; num_tc; i++) { 7879 int qcount = mqprio_qopt->qopt.count[i]; 7880 u64 max_rate, min_rate, rem; 7881 7882 if (!qcount) 7883 return -EINVAL; 7884 7885 if (is_power_of_2(qcount)) { 7886 if (non_power_of_2_qcount && 7887 qcount > non_power_of_2_qcount) { 7888 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7889 qcount, non_power_of_2_qcount); 7890 return -EINVAL; 7891 } 7892 if (qcount > max_rss_q_cnt) 7893 max_rss_q_cnt = qcount; 7894 } else { 7895 if (non_power_of_2_qcount && 7896 qcount != non_power_of_2_qcount) { 7897 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7898 qcount, non_power_of_2_qcount); 7899 return -EINVAL; 7900 } 7901 if (qcount < max_rss_q_cnt) { 7902 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7903 qcount, max_rss_q_cnt); 7904 return -EINVAL; 7905 } 7906 max_rss_q_cnt = qcount; 7907 non_power_of_2_qcount = qcount; 7908 } 7909 7910 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7911 * converts the bandwidth rate limit into Bytes/s when 7912 * passing it down to the driver. So convert input bandwidth 7913 * from Bytes/s to Kbps 7914 */ 7915 max_rate = mqprio_qopt->max_rate[i]; 7916 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7917 sum_max_rate += max_rate; 7918 7919 /* min_rate is minimum guaranteed rate and it can't be zero */ 7920 min_rate = mqprio_qopt->min_rate[i]; 7921 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7922 sum_min_rate += min_rate; 7923 7924 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7925 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7926 min_rate, ICE_MIN_BW_LIMIT); 7927 return -EINVAL; 7928 } 7929 7930 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7931 if (rem) { 7932 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7933 i, ICE_MIN_BW_LIMIT); 7934 return -EINVAL; 7935 } 7936 7937 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7938 if (rem) { 7939 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7940 i, ICE_MIN_BW_LIMIT); 7941 return -EINVAL; 7942 } 7943 7944 /* min_rate can't be more than max_rate, except when max_rate 7945 * is zero (implies max_rate sought is max line rate). In such 7946 * a case min_rate can be more than max. 7947 */ 7948 if (max_rate && min_rate > max_rate) { 7949 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7950 min_rate, max_rate); 7951 return -EINVAL; 7952 } 7953 7954 if (i >= mqprio_qopt->qopt.num_tc - 1) 7955 break; 7956 if (mqprio_qopt->qopt.offset[i + 1] != 7957 (mqprio_qopt->qopt.offset[i] + qcount)) 7958 return -EINVAL; 7959 } 7960 if (vsi->num_rxq < 7961 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7962 return -EINVAL; 7963 if (vsi->num_txq < 7964 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7965 return -EINVAL; 7966 7967 speed = ice_get_link_speed_kbps(vsi); 7968 if (sum_max_rate && sum_max_rate > (u64)speed) { 7969 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7970 sum_max_rate, speed); 7971 return -EINVAL; 7972 } 7973 if (sum_min_rate && sum_min_rate > (u64)speed) { 7974 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7975 sum_min_rate, speed); 7976 return -EINVAL; 7977 } 7978 7979 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7980 vsi->ch_rss_size = max_rss_q_cnt; 7981 7982 return 0; 7983 } 7984 7985 /** 7986 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7987 * @pf: ptr to PF device 7988 * @vsi: ptr to VSI 7989 */ 7990 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7991 { 7992 struct device *dev = ice_pf_to_dev(pf); 7993 bool added = false; 7994 struct ice_hw *hw; 7995 int flow; 7996 7997 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7998 return -EINVAL; 7999 8000 hw = &pf->hw; 8001 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8002 struct ice_fd_hw_prof *prof; 8003 int tun, status; 8004 u64 entry_h; 8005 8006 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8007 hw->fdir_prof[flow]->cnt)) 8008 continue; 8009 8010 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8011 enum ice_flow_priority prio; 8012 u64 prof_id; 8013 8014 /* add this VSI to FDir profile for this flow */ 8015 prio = ICE_FLOW_PRIO_NORMAL; 8016 prof = hw->fdir_prof[flow]; 8017 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8018 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8019 prof->vsi_h[0], vsi->idx, 8020 prio, prof->fdir_seg[tun], 8021 &entry_h); 8022 if (status) { 8023 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8024 vsi->idx, flow); 8025 continue; 8026 } 8027 8028 prof->entry_h[prof->cnt][tun] = entry_h; 8029 } 8030 8031 /* store VSI for filter replay and delete */ 8032 prof->vsi_h[prof->cnt] = vsi->idx; 8033 prof->cnt++; 8034 8035 added = true; 8036 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8037 flow); 8038 } 8039 8040 if (!added) 8041 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8042 8043 return 0; 8044 } 8045 8046 /** 8047 * ice_add_channel - add a channel by adding VSI 8048 * @pf: ptr to PF device 8049 * @sw_id: underlying HW switching element ID 8050 * @ch: ptr to channel structure 8051 * 8052 * Add a channel (VSI) using add_vsi and queue_map 8053 */ 8054 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8055 { 8056 struct device *dev = ice_pf_to_dev(pf); 8057 struct ice_vsi *vsi; 8058 8059 if (ch->type != ICE_VSI_CHNL) { 8060 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8061 return -EINVAL; 8062 } 8063 8064 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8065 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8066 dev_err(dev, "create chnl VSI failure\n"); 8067 return -EINVAL; 8068 } 8069 8070 ice_add_vsi_to_fdir(pf, vsi); 8071 8072 ch->sw_id = sw_id; 8073 ch->vsi_num = vsi->vsi_num; 8074 ch->info.mapping_flags = vsi->info.mapping_flags; 8075 ch->ch_vsi = vsi; 8076 /* set the back pointer of channel for newly created VSI */ 8077 vsi->ch = ch; 8078 8079 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8080 sizeof(vsi->info.q_mapping)); 8081 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8082 sizeof(vsi->info.tc_mapping)); 8083 8084 return 0; 8085 } 8086 8087 /** 8088 * ice_chnl_cfg_res 8089 * @vsi: the VSI being setup 8090 * @ch: ptr to channel structure 8091 * 8092 * Configure channel specific resources such as rings, vector. 8093 */ 8094 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8095 { 8096 int i; 8097 8098 for (i = 0; i < ch->num_txq; i++) { 8099 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8100 struct ice_ring_container *rc; 8101 struct ice_tx_ring *tx_ring; 8102 struct ice_rx_ring *rx_ring; 8103 8104 tx_ring = vsi->tx_rings[ch->base_q + i]; 8105 rx_ring = vsi->rx_rings[ch->base_q + i]; 8106 if (!tx_ring || !rx_ring) 8107 continue; 8108 8109 /* setup ring being channel enabled */ 8110 tx_ring->ch = ch; 8111 rx_ring->ch = ch; 8112 8113 /* following code block sets up vector specific attributes */ 8114 tx_q_vector = tx_ring->q_vector; 8115 rx_q_vector = rx_ring->q_vector; 8116 if (!tx_q_vector && !rx_q_vector) 8117 continue; 8118 8119 if (tx_q_vector) { 8120 tx_q_vector->ch = ch; 8121 /* setup Tx and Rx ITR setting if DIM is off */ 8122 rc = &tx_q_vector->tx; 8123 if (!ITR_IS_DYNAMIC(rc)) 8124 ice_write_itr(rc, rc->itr_setting); 8125 } 8126 if (rx_q_vector) { 8127 rx_q_vector->ch = ch; 8128 /* setup Tx and Rx ITR setting if DIM is off */ 8129 rc = &rx_q_vector->rx; 8130 if (!ITR_IS_DYNAMIC(rc)) 8131 ice_write_itr(rc, rc->itr_setting); 8132 } 8133 } 8134 8135 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8136 * GLINT_ITR register would have written to perform in-context 8137 * update, hence perform flush 8138 */ 8139 if (ch->num_txq || ch->num_rxq) 8140 ice_flush(&vsi->back->hw); 8141 } 8142 8143 /** 8144 * ice_cfg_chnl_all_res - configure channel resources 8145 * @vsi: pte to main_vsi 8146 * @ch: ptr to channel structure 8147 * 8148 * This function configures channel specific resources such as flow-director 8149 * counter index, and other resources such as queues, vectors, ITR settings 8150 */ 8151 static void 8152 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8153 { 8154 /* configure channel (aka ADQ) resources such as queues, vectors, 8155 * ITR settings for channel specific vectors and anything else 8156 */ 8157 ice_chnl_cfg_res(vsi, ch); 8158 } 8159 8160 /** 8161 * ice_setup_hw_channel - setup new channel 8162 * @pf: ptr to PF device 8163 * @vsi: the VSI being setup 8164 * @ch: ptr to channel structure 8165 * @sw_id: underlying HW switching element ID 8166 * @type: type of channel to be created (VMDq2/VF) 8167 * 8168 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8169 * and configures Tx rings accordingly 8170 */ 8171 static int 8172 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8173 struct ice_channel *ch, u16 sw_id, u8 type) 8174 { 8175 struct device *dev = ice_pf_to_dev(pf); 8176 int ret; 8177 8178 ch->base_q = vsi->next_base_q; 8179 ch->type = type; 8180 8181 ret = ice_add_channel(pf, sw_id, ch); 8182 if (ret) { 8183 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8184 return ret; 8185 } 8186 8187 /* configure/setup ADQ specific resources */ 8188 ice_cfg_chnl_all_res(vsi, ch); 8189 8190 /* make sure to update the next_base_q so that subsequent channel's 8191 * (aka ADQ) VSI queue map is correct 8192 */ 8193 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8194 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8195 ch->num_rxq); 8196 8197 return 0; 8198 } 8199 8200 /** 8201 * ice_setup_channel - setup new channel using uplink element 8202 * @pf: ptr to PF device 8203 * @vsi: the VSI being setup 8204 * @ch: ptr to channel structure 8205 * 8206 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8207 * and uplink switching element 8208 */ 8209 static bool 8210 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8211 struct ice_channel *ch) 8212 { 8213 struct device *dev = ice_pf_to_dev(pf); 8214 u16 sw_id; 8215 int ret; 8216 8217 if (vsi->type != ICE_VSI_PF) { 8218 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8219 return false; 8220 } 8221 8222 sw_id = pf->first_sw->sw_id; 8223 8224 /* create channel (VSI) */ 8225 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8226 if (ret) { 8227 dev_err(dev, "failed to setup hw_channel\n"); 8228 return false; 8229 } 8230 dev_dbg(dev, "successfully created channel()\n"); 8231 8232 return ch->ch_vsi ? true : false; 8233 } 8234 8235 /** 8236 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8237 * @vsi: VSI to be configured 8238 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8239 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8240 */ 8241 static int 8242 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8243 { 8244 int err; 8245 8246 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8247 if (err) 8248 return err; 8249 8250 return ice_set_max_bw_limit(vsi, max_tx_rate); 8251 } 8252 8253 /** 8254 * ice_create_q_channel - function to create channel 8255 * @vsi: VSI to be configured 8256 * @ch: ptr to channel (it contains channel specific params) 8257 * 8258 * This function creates channel (VSI) using num_queues specified by user, 8259 * reconfigs RSS if needed. 8260 */ 8261 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8262 { 8263 struct ice_pf *pf = vsi->back; 8264 struct device *dev; 8265 8266 if (!ch) 8267 return -EINVAL; 8268 8269 dev = ice_pf_to_dev(pf); 8270 if (!ch->num_txq || !ch->num_rxq) { 8271 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8272 return -EINVAL; 8273 } 8274 8275 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8276 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8277 vsi->cnt_q_avail, ch->num_txq); 8278 return -EINVAL; 8279 } 8280 8281 if (!ice_setup_channel(pf, vsi, ch)) { 8282 dev_info(dev, "Failed to setup channel\n"); 8283 return -EINVAL; 8284 } 8285 /* configure BW rate limit */ 8286 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8287 int ret; 8288 8289 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8290 ch->min_tx_rate); 8291 if (ret) 8292 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8293 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8294 else 8295 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8296 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8297 } 8298 8299 vsi->cnt_q_avail -= ch->num_txq; 8300 8301 return 0; 8302 } 8303 8304 /** 8305 * ice_rem_all_chnl_fltrs - removes all channel filters 8306 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8307 * 8308 * Remove all advanced switch filters only if they are channel specific 8309 * tc-flower based filter 8310 */ 8311 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8312 { 8313 struct ice_tc_flower_fltr *fltr; 8314 struct hlist_node *node; 8315 8316 /* to remove all channel filters, iterate an ordered list of filters */ 8317 hlist_for_each_entry_safe(fltr, node, 8318 &pf->tc_flower_fltr_list, 8319 tc_flower_node) { 8320 struct ice_rule_query_data rule; 8321 int status; 8322 8323 /* for now process only channel specific filters */ 8324 if (!ice_is_chnl_fltr(fltr)) 8325 continue; 8326 8327 rule.rid = fltr->rid; 8328 rule.rule_id = fltr->rule_id; 8329 rule.vsi_handle = fltr->dest_vsi_handle; 8330 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8331 if (status) { 8332 if (status == -ENOENT) 8333 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8334 rule.rule_id); 8335 else 8336 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8337 status); 8338 } else if (fltr->dest_vsi) { 8339 /* update advanced switch filter count */ 8340 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8341 u32 flags = fltr->flags; 8342 8343 fltr->dest_vsi->num_chnl_fltr--; 8344 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8345 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8346 pf->num_dmac_chnl_fltrs--; 8347 } 8348 } 8349 8350 hlist_del(&fltr->tc_flower_node); 8351 kfree(fltr); 8352 } 8353 } 8354 8355 /** 8356 * ice_remove_q_channels - Remove queue channels for the TCs 8357 * @vsi: VSI to be configured 8358 * @rem_fltr: delete advanced switch filter or not 8359 * 8360 * Remove queue channels for the TCs 8361 */ 8362 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8363 { 8364 struct ice_channel *ch, *ch_tmp; 8365 struct ice_pf *pf = vsi->back; 8366 int i; 8367 8368 /* remove all tc-flower based filter if they are channel filters only */ 8369 if (rem_fltr) 8370 ice_rem_all_chnl_fltrs(pf); 8371 8372 /* remove ntuple filters since queue configuration is being changed */ 8373 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8374 struct ice_hw *hw = &pf->hw; 8375 8376 mutex_lock(&hw->fdir_fltr_lock); 8377 ice_fdir_del_all_fltrs(vsi); 8378 mutex_unlock(&hw->fdir_fltr_lock); 8379 } 8380 8381 /* perform cleanup for channels if they exist */ 8382 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8383 struct ice_vsi *ch_vsi; 8384 8385 list_del(&ch->list); 8386 ch_vsi = ch->ch_vsi; 8387 if (!ch_vsi) { 8388 kfree(ch); 8389 continue; 8390 } 8391 8392 /* Reset queue contexts */ 8393 for (i = 0; i < ch->num_rxq; i++) { 8394 struct ice_tx_ring *tx_ring; 8395 struct ice_rx_ring *rx_ring; 8396 8397 tx_ring = vsi->tx_rings[ch->base_q + i]; 8398 rx_ring = vsi->rx_rings[ch->base_q + i]; 8399 if (tx_ring) { 8400 tx_ring->ch = NULL; 8401 if (tx_ring->q_vector) 8402 tx_ring->q_vector->ch = NULL; 8403 } 8404 if (rx_ring) { 8405 rx_ring->ch = NULL; 8406 if (rx_ring->q_vector) 8407 rx_ring->q_vector->ch = NULL; 8408 } 8409 } 8410 8411 /* Release FD resources for the channel VSI */ 8412 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8413 8414 /* clear the VSI from scheduler tree */ 8415 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8416 8417 /* Delete VSI from FW */ 8418 ice_vsi_delete(ch->ch_vsi); 8419 8420 /* Delete VSI from PF and HW VSI arrays */ 8421 ice_vsi_clear(ch->ch_vsi); 8422 8423 /* free the channel */ 8424 kfree(ch); 8425 } 8426 8427 /* clear the channel VSI map which is stored in main VSI */ 8428 ice_for_each_chnl_tc(i) 8429 vsi->tc_map_vsi[i] = NULL; 8430 8431 /* reset main VSI's all TC information */ 8432 vsi->all_enatc = 0; 8433 vsi->all_numtc = 0; 8434 } 8435 8436 /** 8437 * ice_rebuild_channels - rebuild channel 8438 * @pf: ptr to PF 8439 * 8440 * Recreate channel VSIs and replay filters 8441 */ 8442 static int ice_rebuild_channels(struct ice_pf *pf) 8443 { 8444 struct device *dev = ice_pf_to_dev(pf); 8445 struct ice_vsi *main_vsi; 8446 bool rem_adv_fltr = true; 8447 struct ice_channel *ch; 8448 struct ice_vsi *vsi; 8449 int tc_idx = 1; 8450 int i, err; 8451 8452 main_vsi = ice_get_main_vsi(pf); 8453 if (!main_vsi) 8454 return 0; 8455 8456 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8457 main_vsi->old_numtc == 1) 8458 return 0; /* nothing to be done */ 8459 8460 /* reconfigure main VSI based on old value of TC and cached values 8461 * for MQPRIO opts 8462 */ 8463 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8464 if (err) { 8465 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8466 main_vsi->old_ena_tc, main_vsi->vsi_num); 8467 return err; 8468 } 8469 8470 /* rebuild ADQ VSIs */ 8471 ice_for_each_vsi(pf, i) { 8472 enum ice_vsi_type type; 8473 8474 vsi = pf->vsi[i]; 8475 if (!vsi || vsi->type != ICE_VSI_CHNL) 8476 continue; 8477 8478 type = vsi->type; 8479 8480 /* rebuild ADQ VSI */ 8481 err = ice_vsi_rebuild(vsi, true); 8482 if (err) { 8483 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8484 ice_vsi_type_str(type), vsi->idx, err); 8485 goto cleanup; 8486 } 8487 8488 /* Re-map HW VSI number, using VSI handle that has been 8489 * previously validated in ice_replay_vsi() call above 8490 */ 8491 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8492 8493 /* replay filters for the VSI */ 8494 err = ice_replay_vsi(&pf->hw, vsi->idx); 8495 if (err) { 8496 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8497 ice_vsi_type_str(type), err, vsi->idx); 8498 rem_adv_fltr = false; 8499 goto cleanup; 8500 } 8501 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8502 ice_vsi_type_str(type), vsi->idx); 8503 8504 /* store ADQ VSI at correct TC index in main VSI's 8505 * map of TC to VSI 8506 */ 8507 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8508 } 8509 8510 /* ADQ VSI(s) has been rebuilt successfully, so setup 8511 * channel for main VSI's Tx and Rx rings 8512 */ 8513 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8514 struct ice_vsi *ch_vsi; 8515 8516 ch_vsi = ch->ch_vsi; 8517 if (!ch_vsi) 8518 continue; 8519 8520 /* reconfig channel resources */ 8521 ice_cfg_chnl_all_res(main_vsi, ch); 8522 8523 /* replay BW rate limit if it is non-zero */ 8524 if (!ch->max_tx_rate && !ch->min_tx_rate) 8525 continue; 8526 8527 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8528 ch->min_tx_rate); 8529 if (err) 8530 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8531 err, ch->max_tx_rate, ch->min_tx_rate, 8532 ch_vsi->vsi_num); 8533 else 8534 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8535 ch->max_tx_rate, ch->min_tx_rate, 8536 ch_vsi->vsi_num); 8537 } 8538 8539 /* reconfig RSS for main VSI */ 8540 if (main_vsi->ch_rss_size) 8541 ice_vsi_cfg_rss_lut_key(main_vsi); 8542 8543 return 0; 8544 8545 cleanup: 8546 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8547 return err; 8548 } 8549 8550 /** 8551 * ice_create_q_channels - Add queue channel for the given TCs 8552 * @vsi: VSI to be configured 8553 * 8554 * Configures queue channel mapping to the given TCs 8555 */ 8556 static int ice_create_q_channels(struct ice_vsi *vsi) 8557 { 8558 struct ice_pf *pf = vsi->back; 8559 struct ice_channel *ch; 8560 int ret = 0, i; 8561 8562 ice_for_each_chnl_tc(i) { 8563 if (!(vsi->all_enatc & BIT(i))) 8564 continue; 8565 8566 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8567 if (!ch) { 8568 ret = -ENOMEM; 8569 goto err_free; 8570 } 8571 INIT_LIST_HEAD(&ch->list); 8572 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8573 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8574 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8575 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8576 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8577 8578 /* convert to Kbits/s */ 8579 if (ch->max_tx_rate) 8580 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8581 ICE_BW_KBPS_DIVISOR); 8582 if (ch->min_tx_rate) 8583 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8584 ICE_BW_KBPS_DIVISOR); 8585 8586 ret = ice_create_q_channel(vsi, ch); 8587 if (ret) { 8588 dev_err(ice_pf_to_dev(pf), 8589 "failed creating channel TC:%d\n", i); 8590 kfree(ch); 8591 goto err_free; 8592 } 8593 list_add_tail(&ch->list, &vsi->ch_list); 8594 vsi->tc_map_vsi[i] = ch->ch_vsi; 8595 dev_dbg(ice_pf_to_dev(pf), 8596 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8597 } 8598 return 0; 8599 8600 err_free: 8601 ice_remove_q_channels(vsi, false); 8602 8603 return ret; 8604 } 8605 8606 /** 8607 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8608 * @netdev: net device to configure 8609 * @type_data: TC offload data 8610 */ 8611 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8612 { 8613 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8614 struct ice_netdev_priv *np = netdev_priv(netdev); 8615 struct ice_vsi *vsi = np->vsi; 8616 struct ice_pf *pf = vsi->back; 8617 u16 mode, ena_tc_qdisc = 0; 8618 int cur_txq, cur_rxq; 8619 u8 hw = 0, num_tcf; 8620 struct device *dev; 8621 int ret, i; 8622 8623 dev = ice_pf_to_dev(pf); 8624 num_tcf = mqprio_qopt->qopt.num_tc; 8625 hw = mqprio_qopt->qopt.hw; 8626 mode = mqprio_qopt->mode; 8627 if (!hw) { 8628 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8629 vsi->ch_rss_size = 0; 8630 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8631 goto config_tcf; 8632 } 8633 8634 /* Generate queue region map for number of TCF requested */ 8635 for (i = 0; i < num_tcf; i++) 8636 ena_tc_qdisc |= BIT(i); 8637 8638 switch (mode) { 8639 case TC_MQPRIO_MODE_CHANNEL: 8640 8641 if (pf->hw.port_info->is_custom_tx_enabled) { 8642 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8643 return -EBUSY; 8644 } 8645 ice_tear_down_devlink_rate_tree(pf); 8646 8647 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8648 if (ret) { 8649 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8650 ret); 8651 return ret; 8652 } 8653 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8654 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8655 /* don't assume state of hw_tc_offload during driver load 8656 * and set the flag for TC flower filter if hw_tc_offload 8657 * already ON 8658 */ 8659 if (vsi->netdev->features & NETIF_F_HW_TC) 8660 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8661 break; 8662 default: 8663 return -EINVAL; 8664 } 8665 8666 config_tcf: 8667 8668 /* Requesting same TCF configuration as already enabled */ 8669 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8670 mode != TC_MQPRIO_MODE_CHANNEL) 8671 return 0; 8672 8673 /* Pause VSI queues */ 8674 ice_dis_vsi(vsi, true); 8675 8676 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8677 ice_remove_q_channels(vsi, true); 8678 8679 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8680 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8681 num_online_cpus()); 8682 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8683 num_online_cpus()); 8684 } else { 8685 /* logic to rebuild VSI, same like ethtool -L */ 8686 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8687 8688 for (i = 0; i < num_tcf; i++) { 8689 if (!(ena_tc_qdisc & BIT(i))) 8690 continue; 8691 8692 offset = vsi->mqprio_qopt.qopt.offset[i]; 8693 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8694 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8695 } 8696 vsi->req_txq = offset + qcount_tx; 8697 vsi->req_rxq = offset + qcount_rx; 8698 8699 /* store away original rss_size info, so that it gets reused 8700 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8701 * determine, what should be the rss_sizefor main VSI 8702 */ 8703 vsi->orig_rss_size = vsi->rss_size; 8704 } 8705 8706 /* save current values of Tx and Rx queues before calling VSI rebuild 8707 * for fallback option 8708 */ 8709 cur_txq = vsi->num_txq; 8710 cur_rxq = vsi->num_rxq; 8711 8712 /* proceed with rebuild main VSI using correct number of queues */ 8713 ret = ice_vsi_rebuild(vsi, false); 8714 if (ret) { 8715 /* fallback to current number of queues */ 8716 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8717 vsi->req_txq = cur_txq; 8718 vsi->req_rxq = cur_rxq; 8719 clear_bit(ICE_RESET_FAILED, pf->state); 8720 if (ice_vsi_rebuild(vsi, false)) { 8721 dev_err(dev, "Rebuild of main VSI failed again\n"); 8722 return ret; 8723 } 8724 } 8725 8726 vsi->all_numtc = num_tcf; 8727 vsi->all_enatc = ena_tc_qdisc; 8728 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8729 if (ret) { 8730 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8731 vsi->vsi_num); 8732 goto exit; 8733 } 8734 8735 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8736 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8737 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8738 8739 /* set TC0 rate limit if specified */ 8740 if (max_tx_rate || min_tx_rate) { 8741 /* convert to Kbits/s */ 8742 if (max_tx_rate) 8743 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8744 if (min_tx_rate) 8745 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8746 8747 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8748 if (!ret) { 8749 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8750 max_tx_rate, min_tx_rate, vsi->vsi_num); 8751 } else { 8752 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8753 max_tx_rate, min_tx_rate, vsi->vsi_num); 8754 goto exit; 8755 } 8756 } 8757 ret = ice_create_q_channels(vsi); 8758 if (ret) { 8759 netdev_err(netdev, "failed configuring queue channels\n"); 8760 goto exit; 8761 } else { 8762 netdev_dbg(netdev, "successfully configured channels\n"); 8763 } 8764 } 8765 8766 if (vsi->ch_rss_size) 8767 ice_vsi_cfg_rss_lut_key(vsi); 8768 8769 exit: 8770 /* if error, reset the all_numtc and all_enatc */ 8771 if (ret) { 8772 vsi->all_numtc = 0; 8773 vsi->all_enatc = 0; 8774 } 8775 /* resume VSI */ 8776 ice_ena_vsi(vsi, true); 8777 8778 return ret; 8779 } 8780 8781 static LIST_HEAD(ice_block_cb_list); 8782 8783 static int 8784 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8785 void *type_data) 8786 { 8787 struct ice_netdev_priv *np = netdev_priv(netdev); 8788 struct ice_pf *pf = np->vsi->back; 8789 int err; 8790 8791 switch (type) { 8792 case TC_SETUP_BLOCK: 8793 return flow_block_cb_setup_simple(type_data, 8794 &ice_block_cb_list, 8795 ice_setup_tc_block_cb, 8796 np, np, true); 8797 case TC_SETUP_QDISC_MQPRIO: 8798 /* setup traffic classifier for receive side */ 8799 mutex_lock(&pf->tc_mutex); 8800 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8801 mutex_unlock(&pf->tc_mutex); 8802 return err; 8803 default: 8804 return -EOPNOTSUPP; 8805 } 8806 return -EOPNOTSUPP; 8807 } 8808 8809 static struct ice_indr_block_priv * 8810 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8811 struct net_device *netdev) 8812 { 8813 struct ice_indr_block_priv *cb_priv; 8814 8815 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8816 if (!cb_priv->netdev) 8817 return NULL; 8818 if (cb_priv->netdev == netdev) 8819 return cb_priv; 8820 } 8821 return NULL; 8822 } 8823 8824 static int 8825 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8826 void *indr_priv) 8827 { 8828 struct ice_indr_block_priv *priv = indr_priv; 8829 struct ice_netdev_priv *np = priv->np; 8830 8831 switch (type) { 8832 case TC_SETUP_CLSFLOWER: 8833 return ice_setup_tc_cls_flower(np, priv->netdev, 8834 (struct flow_cls_offload *) 8835 type_data); 8836 default: 8837 return -EOPNOTSUPP; 8838 } 8839 } 8840 8841 static int 8842 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8843 struct ice_netdev_priv *np, 8844 struct flow_block_offload *f, void *data, 8845 void (*cleanup)(struct flow_block_cb *block_cb)) 8846 { 8847 struct ice_indr_block_priv *indr_priv; 8848 struct flow_block_cb *block_cb; 8849 8850 if (!ice_is_tunnel_supported(netdev) && 8851 !(is_vlan_dev(netdev) && 8852 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8853 return -EOPNOTSUPP; 8854 8855 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8856 return -EOPNOTSUPP; 8857 8858 switch (f->command) { 8859 case FLOW_BLOCK_BIND: 8860 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8861 if (indr_priv) 8862 return -EEXIST; 8863 8864 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8865 if (!indr_priv) 8866 return -ENOMEM; 8867 8868 indr_priv->netdev = netdev; 8869 indr_priv->np = np; 8870 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8871 8872 block_cb = 8873 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8874 indr_priv, indr_priv, 8875 ice_rep_indr_tc_block_unbind, 8876 f, netdev, sch, data, np, 8877 cleanup); 8878 8879 if (IS_ERR(block_cb)) { 8880 list_del(&indr_priv->list); 8881 kfree(indr_priv); 8882 return PTR_ERR(block_cb); 8883 } 8884 flow_block_cb_add(block_cb, f); 8885 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8886 break; 8887 case FLOW_BLOCK_UNBIND: 8888 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8889 if (!indr_priv) 8890 return -ENOENT; 8891 8892 block_cb = flow_block_cb_lookup(f->block, 8893 ice_indr_setup_block_cb, 8894 indr_priv); 8895 if (!block_cb) 8896 return -ENOENT; 8897 8898 flow_indr_block_cb_remove(block_cb, f); 8899 8900 list_del(&block_cb->driver_list); 8901 break; 8902 default: 8903 return -EOPNOTSUPP; 8904 } 8905 return 0; 8906 } 8907 8908 static int 8909 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8910 void *cb_priv, enum tc_setup_type type, void *type_data, 8911 void *data, 8912 void (*cleanup)(struct flow_block_cb *block_cb)) 8913 { 8914 switch (type) { 8915 case TC_SETUP_BLOCK: 8916 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8917 data, cleanup); 8918 8919 default: 8920 return -EOPNOTSUPP; 8921 } 8922 } 8923 8924 /** 8925 * ice_open - Called when a network interface becomes active 8926 * @netdev: network interface device structure 8927 * 8928 * The open entry point is called when a network interface is made 8929 * active by the system (IFF_UP). At this point all resources needed 8930 * for transmit and receive operations are allocated, the interrupt 8931 * handler is registered with the OS, the netdev watchdog is enabled, 8932 * and the stack is notified that the interface is ready. 8933 * 8934 * Returns 0 on success, negative value on failure 8935 */ 8936 int ice_open(struct net_device *netdev) 8937 { 8938 struct ice_netdev_priv *np = netdev_priv(netdev); 8939 struct ice_pf *pf = np->vsi->back; 8940 8941 if (ice_is_reset_in_progress(pf->state)) { 8942 netdev_err(netdev, "can't open net device while reset is in progress"); 8943 return -EBUSY; 8944 } 8945 8946 return ice_open_internal(netdev); 8947 } 8948 8949 /** 8950 * ice_open_internal - Called when a network interface becomes active 8951 * @netdev: network interface device structure 8952 * 8953 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8954 * handling routine 8955 * 8956 * Returns 0 on success, negative value on failure 8957 */ 8958 int ice_open_internal(struct net_device *netdev) 8959 { 8960 struct ice_netdev_priv *np = netdev_priv(netdev); 8961 struct ice_vsi *vsi = np->vsi; 8962 struct ice_pf *pf = vsi->back; 8963 struct ice_port_info *pi; 8964 int err; 8965 8966 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8967 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8968 return -EIO; 8969 } 8970 8971 netif_carrier_off(netdev); 8972 8973 pi = vsi->port_info; 8974 err = ice_update_link_info(pi); 8975 if (err) { 8976 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8977 return err; 8978 } 8979 8980 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8981 8982 /* Set PHY if there is media, otherwise, turn off PHY */ 8983 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8984 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8985 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8986 err = ice_init_phy_user_cfg(pi); 8987 if (err) { 8988 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8989 err); 8990 return err; 8991 } 8992 } 8993 8994 err = ice_configure_phy(vsi); 8995 if (err) { 8996 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8997 err); 8998 return err; 8999 } 9000 } else { 9001 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9002 ice_set_link(vsi, false); 9003 } 9004 9005 err = ice_vsi_open(vsi); 9006 if (err) 9007 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9008 vsi->vsi_num, vsi->vsw->sw_id); 9009 9010 /* Update existing tunnels information */ 9011 udp_tunnel_get_rx_info(netdev); 9012 9013 return err; 9014 } 9015 9016 /** 9017 * ice_stop - Disables a network interface 9018 * @netdev: network interface device structure 9019 * 9020 * The stop entry point is called when an interface is de-activated by the OS, 9021 * and the netdevice enters the DOWN state. The hardware is still under the 9022 * driver's control, but the netdev interface is disabled. 9023 * 9024 * Returns success only - not allowed to fail 9025 */ 9026 int ice_stop(struct net_device *netdev) 9027 { 9028 struct ice_netdev_priv *np = netdev_priv(netdev); 9029 struct ice_vsi *vsi = np->vsi; 9030 struct ice_pf *pf = vsi->back; 9031 9032 if (ice_is_reset_in_progress(pf->state)) { 9033 netdev_err(netdev, "can't stop net device while reset is in progress"); 9034 return -EBUSY; 9035 } 9036 9037 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9038 int link_err = ice_force_phys_link_state(vsi, false); 9039 9040 if (link_err) { 9041 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9042 vsi->vsi_num, link_err); 9043 return -EIO; 9044 } 9045 } 9046 9047 ice_vsi_close(vsi); 9048 9049 return 0; 9050 } 9051 9052 /** 9053 * ice_features_check - Validate encapsulated packet conforms to limits 9054 * @skb: skb buffer 9055 * @netdev: This port's netdev 9056 * @features: Offload features that the stack believes apply 9057 */ 9058 static netdev_features_t 9059 ice_features_check(struct sk_buff *skb, 9060 struct net_device __always_unused *netdev, 9061 netdev_features_t features) 9062 { 9063 bool gso = skb_is_gso(skb); 9064 size_t len; 9065 9066 /* No point in doing any of this if neither checksum nor GSO are 9067 * being requested for this frame. We can rule out both by just 9068 * checking for CHECKSUM_PARTIAL 9069 */ 9070 if (skb->ip_summed != CHECKSUM_PARTIAL) 9071 return features; 9072 9073 /* We cannot support GSO if the MSS is going to be less than 9074 * 64 bytes. If it is then we need to drop support for GSO. 9075 */ 9076 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9077 features &= ~NETIF_F_GSO_MASK; 9078 9079 len = skb_network_offset(skb); 9080 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9081 goto out_rm_features; 9082 9083 len = skb_network_header_len(skb); 9084 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9085 goto out_rm_features; 9086 9087 if (skb->encapsulation) { 9088 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9089 * the case of IPIP frames, the transport header pointer is 9090 * after the inner header! So check to make sure that this 9091 * is a GRE or UDP_TUNNEL frame before doing that math. 9092 */ 9093 if (gso && (skb_shinfo(skb)->gso_type & 9094 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9095 len = skb_inner_network_header(skb) - 9096 skb_transport_header(skb); 9097 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9098 goto out_rm_features; 9099 } 9100 9101 len = skb_inner_network_header_len(skb); 9102 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9103 goto out_rm_features; 9104 } 9105 9106 return features; 9107 out_rm_features: 9108 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9109 } 9110 9111 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9112 .ndo_open = ice_open, 9113 .ndo_stop = ice_stop, 9114 .ndo_start_xmit = ice_start_xmit, 9115 .ndo_set_mac_address = ice_set_mac_address, 9116 .ndo_validate_addr = eth_validate_addr, 9117 .ndo_change_mtu = ice_change_mtu, 9118 .ndo_get_stats64 = ice_get_stats64, 9119 .ndo_tx_timeout = ice_tx_timeout, 9120 .ndo_bpf = ice_xdp_safe_mode, 9121 }; 9122 9123 static const struct net_device_ops ice_netdev_ops = { 9124 .ndo_open = ice_open, 9125 .ndo_stop = ice_stop, 9126 .ndo_start_xmit = ice_start_xmit, 9127 .ndo_select_queue = ice_select_queue, 9128 .ndo_features_check = ice_features_check, 9129 .ndo_fix_features = ice_fix_features, 9130 .ndo_set_rx_mode = ice_set_rx_mode, 9131 .ndo_set_mac_address = ice_set_mac_address, 9132 .ndo_validate_addr = eth_validate_addr, 9133 .ndo_change_mtu = ice_change_mtu, 9134 .ndo_get_stats64 = ice_get_stats64, 9135 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9136 .ndo_eth_ioctl = ice_eth_ioctl, 9137 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9138 .ndo_set_vf_mac = ice_set_vf_mac, 9139 .ndo_get_vf_config = ice_get_vf_cfg, 9140 .ndo_set_vf_trust = ice_set_vf_trust, 9141 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9142 .ndo_set_vf_link_state = ice_set_vf_link_state, 9143 .ndo_get_vf_stats = ice_get_vf_stats, 9144 .ndo_set_vf_rate = ice_set_vf_bw, 9145 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9146 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9147 .ndo_setup_tc = ice_setup_tc, 9148 .ndo_set_features = ice_set_features, 9149 .ndo_bridge_getlink = ice_bridge_getlink, 9150 .ndo_bridge_setlink = ice_bridge_setlink, 9151 .ndo_fdb_add = ice_fdb_add, 9152 .ndo_fdb_del = ice_fdb_del, 9153 #ifdef CONFIG_RFS_ACCEL 9154 .ndo_rx_flow_steer = ice_rx_flow_steer, 9155 #endif 9156 .ndo_tx_timeout = ice_tx_timeout, 9157 .ndo_bpf = ice_xdp, 9158 .ndo_xdp_xmit = ice_xdp_xmit, 9159 .ndo_xsk_wakeup = ice_xsk_wakeup, 9160 }; 9161