1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 static struct workqueue_struct *ice_wq; 52 static const struct net_device_ops ice_netdev_safe_mode_ops; 53 static const struct net_device_ops ice_netdev_ops; 54 55 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 56 57 static void ice_vsi_release_all(struct ice_pf *pf); 58 59 static int ice_rebuild_channels(struct ice_pf *pf); 60 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 61 62 static int 63 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 64 void *cb_priv, enum tc_setup_type type, void *type_data, 65 void *data, 66 void (*cleanup)(struct flow_block_cb *block_cb)); 67 68 bool netif_is_ice(struct net_device *dev) 69 { 70 return dev && (dev->netdev_ops == &ice_netdev_ops); 71 } 72 73 /** 74 * ice_get_tx_pending - returns number of Tx descriptors not processed 75 * @ring: the ring of descriptors 76 */ 77 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 78 { 79 u16 head, tail; 80 81 head = ring->next_to_clean; 82 tail = ring->next_to_use; 83 84 if (head != tail) 85 return (head < tail) ? 86 tail - head : (tail + ring->count - head); 87 return 0; 88 } 89 90 /** 91 * ice_check_for_hang_subtask - check for and recover hung queues 92 * @pf: pointer to PF struct 93 */ 94 static void ice_check_for_hang_subtask(struct ice_pf *pf) 95 { 96 struct ice_vsi *vsi = NULL; 97 struct ice_hw *hw; 98 unsigned int i; 99 int packets; 100 u32 v; 101 102 ice_for_each_vsi(pf, v) 103 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 104 vsi = pf->vsi[v]; 105 break; 106 } 107 108 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 109 return; 110 111 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 112 return; 113 114 hw = &vsi->back->hw; 115 116 ice_for_each_txq(vsi, i) { 117 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 118 119 if (!tx_ring) 120 continue; 121 if (ice_ring_ch_enabled(tx_ring)) 122 continue; 123 124 if (tx_ring->desc) { 125 /* If packet counter has not changed the queue is 126 * likely stalled, so force an interrupt for this 127 * queue. 128 * 129 * prev_pkt would be negative if there was no 130 * pending work. 131 */ 132 packets = tx_ring->stats.pkts & INT_MAX; 133 if (tx_ring->tx_stats.prev_pkt == packets) { 134 /* Trigger sw interrupt to revive the queue */ 135 ice_trigger_sw_intr(hw, tx_ring->q_vector); 136 continue; 137 } 138 139 /* Memory barrier between read of packet count and call 140 * to ice_get_tx_pending() 141 */ 142 smp_rmb(); 143 tx_ring->tx_stats.prev_pkt = 144 ice_get_tx_pending(tx_ring) ? packets : -1; 145 } 146 } 147 } 148 149 /** 150 * ice_init_mac_fltr - Set initial MAC filters 151 * @pf: board private structure 152 * 153 * Set initial set of MAC filters for PF VSI; configure filters for permanent 154 * address and broadcast address. If an error is encountered, netdevice will be 155 * unregistered. 156 */ 157 static int ice_init_mac_fltr(struct ice_pf *pf) 158 { 159 struct ice_vsi *vsi; 160 u8 *perm_addr; 161 162 vsi = ice_get_main_vsi(pf); 163 if (!vsi) 164 return -EINVAL; 165 166 perm_addr = vsi->port_info->mac.perm_addr; 167 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 168 } 169 170 /** 171 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 172 * @netdev: the net device on which the sync is happening 173 * @addr: MAC address to sync 174 * 175 * This is a callback function which is called by the in kernel device sync 176 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 177 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 178 * MAC filters from the hardware. 179 */ 180 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 181 { 182 struct ice_netdev_priv *np = netdev_priv(netdev); 183 struct ice_vsi *vsi = np->vsi; 184 185 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 186 ICE_FWD_TO_VSI)) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /** 193 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 194 * @netdev: the net device on which the unsync is happening 195 * @addr: MAC address to unsync 196 * 197 * This is a callback function which is called by the in kernel device unsync 198 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 199 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 200 * delete the MAC filters from the hardware. 201 */ 202 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 203 { 204 struct ice_netdev_priv *np = netdev_priv(netdev); 205 struct ice_vsi *vsi = np->vsi; 206 207 /* Under some circumstances, we might receive a request to delete our 208 * own device address from our uc list. Because we store the device 209 * address in the VSI's MAC filter list, we need to ignore such 210 * requests and not delete our device address from this list. 211 */ 212 if (ether_addr_equal(addr, netdev->dev_addr)) 213 return 0; 214 215 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 216 ICE_FWD_TO_VSI)) 217 return -EINVAL; 218 219 return 0; 220 } 221 222 /** 223 * ice_vsi_fltr_changed - check if filter state changed 224 * @vsi: VSI to be checked 225 * 226 * returns true if filter state has changed, false otherwise. 227 */ 228 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 229 { 230 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 231 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 232 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 233 } 234 235 /** 236 * ice_set_promisc - Enable promiscuous mode for a given PF 237 * @vsi: the VSI being configured 238 * @promisc_m: mask of promiscuous config bits 239 * 240 */ 241 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 242 { 243 int status; 244 245 if (vsi->type != ICE_VSI_PF) 246 return 0; 247 248 if (ice_vsi_has_non_zero_vlans(vsi)) 249 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 250 else 251 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 252 return status; 253 } 254 255 /** 256 * ice_clear_promisc - Disable promiscuous mode for a given PF 257 * @vsi: the VSI being configured 258 * @promisc_m: mask of promiscuous config bits 259 * 260 */ 261 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 262 { 263 int status; 264 265 if (vsi->type != ICE_VSI_PF) 266 return 0; 267 268 if (ice_vsi_has_non_zero_vlans(vsi)) 269 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 270 else 271 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 272 return status; 273 } 274 275 /** 276 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 277 * @vsi: ptr to the VSI 278 * 279 * Push any outstanding VSI filter changes through the AdminQ. 280 */ 281 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 282 { 283 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 284 struct device *dev = ice_pf_to_dev(vsi->back); 285 struct net_device *netdev = vsi->netdev; 286 bool promisc_forced_on = false; 287 struct ice_pf *pf = vsi->back; 288 struct ice_hw *hw = &pf->hw; 289 u32 changed_flags = 0; 290 u8 promisc_m; 291 int err; 292 293 if (!vsi->netdev) 294 return -EINVAL; 295 296 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 297 usleep_range(1000, 2000); 298 299 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 300 vsi->current_netdev_flags = vsi->netdev->flags; 301 302 INIT_LIST_HEAD(&vsi->tmp_sync_list); 303 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 304 305 if (ice_vsi_fltr_changed(vsi)) { 306 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 307 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 308 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 309 310 /* grab the netdev's addr_list_lock */ 311 netif_addr_lock_bh(netdev); 312 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 313 ice_add_mac_to_unsync_list); 314 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 315 ice_add_mac_to_unsync_list); 316 /* our temp lists are populated. release lock */ 317 netif_addr_unlock_bh(netdev); 318 } 319 320 /* Remove MAC addresses in the unsync list */ 321 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 322 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 323 if (err) { 324 netdev_err(netdev, "Failed to delete MAC filters\n"); 325 /* if we failed because of alloc failures, just bail */ 326 if (err == -ENOMEM) 327 goto out; 328 } 329 330 /* Add MAC addresses in the sync list */ 331 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 332 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 333 /* If filter is added successfully or already exists, do not go into 334 * 'if' condition and report it as error. Instead continue processing 335 * rest of the function. 336 */ 337 if (err && err != -EEXIST) { 338 netdev_err(netdev, "Failed to add MAC filters\n"); 339 /* If there is no more space for new umac filters, VSI 340 * should go into promiscuous mode. There should be some 341 * space reserved for promiscuous filters. 342 */ 343 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 344 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 345 vsi->state)) { 346 promisc_forced_on = true; 347 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 348 vsi->vsi_num); 349 } else { 350 goto out; 351 } 352 } 353 err = 0; 354 /* check for changes in promiscuous modes */ 355 if (changed_flags & IFF_ALLMULTI) { 356 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 357 if (ice_vsi_has_non_zero_vlans(vsi)) 358 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 359 else 360 promisc_m = ICE_MCAST_PROMISC_BITS; 361 362 err = ice_set_promisc(vsi, promisc_m); 363 if (err) { 364 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 365 vsi->vsi_num); 366 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 367 goto out_promisc; 368 } 369 } else { 370 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 371 if (ice_vsi_has_non_zero_vlans(vsi)) 372 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 373 else 374 promisc_m = ICE_MCAST_PROMISC_BITS; 375 376 err = ice_clear_promisc(vsi, promisc_m); 377 if (err) { 378 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 379 vsi->vsi_num); 380 vsi->current_netdev_flags |= IFF_ALLMULTI; 381 goto out_promisc; 382 } 383 } 384 } 385 386 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 387 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 388 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 389 if (vsi->current_netdev_flags & IFF_PROMISC) { 390 /* Apply Rx filter rule to get traffic from wire */ 391 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 392 err = ice_set_dflt_vsi(pf->first_sw, vsi); 393 if (err && err != -EEXIST) { 394 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 395 err, vsi->vsi_num); 396 vsi->current_netdev_flags &= 397 ~IFF_PROMISC; 398 goto out_promisc; 399 } 400 err = 0; 401 vlan_ops->dis_rx_filtering(vsi); 402 } 403 } else { 404 /* Clear Rx filter to remove traffic from wire */ 405 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 406 err = ice_clear_dflt_vsi(pf->first_sw); 407 if (err) { 408 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 409 err, vsi->vsi_num); 410 vsi->current_netdev_flags |= 411 IFF_PROMISC; 412 goto out_promisc; 413 } 414 if (vsi->current_netdev_flags & 415 NETIF_F_HW_VLAN_CTAG_FILTER) 416 vlan_ops->ena_rx_filtering(vsi); 417 } 418 } 419 } 420 goto exit; 421 422 out_promisc: 423 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 424 goto exit; 425 out: 426 /* if something went wrong then set the changed flag so we try again */ 427 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 428 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 429 exit: 430 clear_bit(ICE_CFG_BUSY, vsi->state); 431 return err; 432 } 433 434 /** 435 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 436 * @pf: board private structure 437 */ 438 static void ice_sync_fltr_subtask(struct ice_pf *pf) 439 { 440 int v; 441 442 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 443 return; 444 445 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 446 447 ice_for_each_vsi(pf, v) 448 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 449 ice_vsi_sync_fltr(pf->vsi[v])) { 450 /* come back and try again later */ 451 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 452 break; 453 } 454 } 455 456 /** 457 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 458 * @pf: the PF 459 * @locked: is the rtnl_lock already held 460 */ 461 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 462 { 463 int node; 464 int v; 465 466 ice_for_each_vsi(pf, v) 467 if (pf->vsi[v]) 468 ice_dis_vsi(pf->vsi[v], locked); 469 470 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 471 pf->pf_agg_node[node].num_vsis = 0; 472 473 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 474 pf->vf_agg_node[node].num_vsis = 0; 475 } 476 477 /** 478 * ice_clear_sw_switch_recipes - clear switch recipes 479 * @pf: board private structure 480 * 481 * Mark switch recipes as not created in sw structures. There are cases where 482 * rules (especially advanced rules) need to be restored, either re-read from 483 * hardware or added again. For example after the reset. 'recp_created' flag 484 * prevents from doing that and need to be cleared upfront. 485 */ 486 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 487 { 488 struct ice_sw_recipe *recp; 489 u8 i; 490 491 recp = pf->hw.switch_info->recp_list; 492 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 493 recp[i].recp_created = false; 494 } 495 496 /** 497 * ice_prepare_for_reset - prep for reset 498 * @pf: board private structure 499 * @reset_type: reset type requested 500 * 501 * Inform or close all dependent features in prep for reset. 502 */ 503 static void 504 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 505 { 506 struct ice_hw *hw = &pf->hw; 507 struct ice_vsi *vsi; 508 struct ice_vf *vf; 509 unsigned int bkt; 510 511 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 512 513 /* already prepared for reset */ 514 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 515 return; 516 517 ice_unplug_aux_dev(pf); 518 519 /* Notify VFs of impending reset */ 520 if (ice_check_sq_alive(hw, &hw->mailboxq)) 521 ice_vc_notify_reset(pf); 522 523 /* Disable VFs until reset is completed */ 524 mutex_lock(&pf->vfs.table_lock); 525 ice_for_each_vf(pf, bkt, vf) 526 ice_set_vf_state_qs_dis(vf); 527 mutex_unlock(&pf->vfs.table_lock); 528 529 if (ice_is_eswitch_mode_switchdev(pf)) { 530 if (reset_type != ICE_RESET_PFR) 531 ice_clear_sw_switch_recipes(pf); 532 } 533 534 /* release ADQ specific HW and SW resources */ 535 vsi = ice_get_main_vsi(pf); 536 if (!vsi) 537 goto skip; 538 539 /* to be on safe side, reset orig_rss_size so that normal flow 540 * of deciding rss_size can take precedence 541 */ 542 vsi->orig_rss_size = 0; 543 544 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 545 if (reset_type == ICE_RESET_PFR) { 546 vsi->old_ena_tc = vsi->all_enatc; 547 vsi->old_numtc = vsi->all_numtc; 548 } else { 549 ice_remove_q_channels(vsi, true); 550 551 /* for other reset type, do not support channel rebuild 552 * hence reset needed info 553 */ 554 vsi->old_ena_tc = 0; 555 vsi->all_enatc = 0; 556 vsi->old_numtc = 0; 557 vsi->all_numtc = 0; 558 vsi->req_txq = 0; 559 vsi->req_rxq = 0; 560 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 561 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 562 } 563 } 564 skip: 565 566 /* clear SW filtering DB */ 567 ice_clear_hw_tbls(hw); 568 /* disable the VSIs and their queues that are not already DOWN */ 569 ice_pf_dis_all_vsi(pf, false); 570 571 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 572 ice_ptp_prepare_for_reset(pf); 573 574 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 575 ice_gnss_exit(pf); 576 577 if (hw->port_info) 578 ice_sched_clear_port(hw->port_info); 579 580 ice_shutdown_all_ctrlq(hw); 581 582 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 583 } 584 585 /** 586 * ice_do_reset - Initiate one of many types of resets 587 * @pf: board private structure 588 * @reset_type: reset type requested before this function was called. 589 */ 590 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 591 { 592 struct device *dev = ice_pf_to_dev(pf); 593 struct ice_hw *hw = &pf->hw; 594 595 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 596 597 ice_prepare_for_reset(pf, reset_type); 598 599 /* trigger the reset */ 600 if (ice_reset(hw, reset_type)) { 601 dev_err(dev, "reset %d failed\n", reset_type); 602 set_bit(ICE_RESET_FAILED, pf->state); 603 clear_bit(ICE_RESET_OICR_RECV, pf->state); 604 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 605 clear_bit(ICE_PFR_REQ, pf->state); 606 clear_bit(ICE_CORER_REQ, pf->state); 607 clear_bit(ICE_GLOBR_REQ, pf->state); 608 wake_up(&pf->reset_wait_queue); 609 return; 610 } 611 612 /* PFR is a bit of a special case because it doesn't result in an OICR 613 * interrupt. So for PFR, rebuild after the reset and clear the reset- 614 * associated state bits. 615 */ 616 if (reset_type == ICE_RESET_PFR) { 617 pf->pfr_count++; 618 ice_rebuild(pf, reset_type); 619 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 620 clear_bit(ICE_PFR_REQ, pf->state); 621 wake_up(&pf->reset_wait_queue); 622 ice_reset_all_vfs(pf, true); 623 } 624 } 625 626 /** 627 * ice_reset_subtask - Set up for resetting the device and driver 628 * @pf: board private structure 629 */ 630 static void ice_reset_subtask(struct ice_pf *pf) 631 { 632 enum ice_reset_req reset_type = ICE_RESET_INVAL; 633 634 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 635 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 636 * of reset is pending and sets bits in pf->state indicating the reset 637 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 638 * prepare for pending reset if not already (for PF software-initiated 639 * global resets the software should already be prepared for it as 640 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 641 * by firmware or software on other PFs, that bit is not set so prepare 642 * for the reset now), poll for reset done, rebuild and return. 643 */ 644 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 645 /* Perform the largest reset requested */ 646 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 647 reset_type = ICE_RESET_CORER; 648 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 649 reset_type = ICE_RESET_GLOBR; 650 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 651 reset_type = ICE_RESET_EMPR; 652 /* return if no valid reset type requested */ 653 if (reset_type == ICE_RESET_INVAL) 654 return; 655 ice_prepare_for_reset(pf, reset_type); 656 657 /* make sure we are ready to rebuild */ 658 if (ice_check_reset(&pf->hw)) { 659 set_bit(ICE_RESET_FAILED, pf->state); 660 } else { 661 /* done with reset. start rebuild */ 662 pf->hw.reset_ongoing = false; 663 ice_rebuild(pf, reset_type); 664 /* clear bit to resume normal operations, but 665 * ICE_NEEDS_RESTART bit is set in case rebuild failed 666 */ 667 clear_bit(ICE_RESET_OICR_RECV, pf->state); 668 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 669 clear_bit(ICE_PFR_REQ, pf->state); 670 clear_bit(ICE_CORER_REQ, pf->state); 671 clear_bit(ICE_GLOBR_REQ, pf->state); 672 wake_up(&pf->reset_wait_queue); 673 ice_reset_all_vfs(pf, true); 674 } 675 676 return; 677 } 678 679 /* No pending resets to finish processing. Check for new resets */ 680 if (test_bit(ICE_PFR_REQ, pf->state)) 681 reset_type = ICE_RESET_PFR; 682 if (test_bit(ICE_CORER_REQ, pf->state)) 683 reset_type = ICE_RESET_CORER; 684 if (test_bit(ICE_GLOBR_REQ, pf->state)) 685 reset_type = ICE_RESET_GLOBR; 686 /* If no valid reset type requested just return */ 687 if (reset_type == ICE_RESET_INVAL) 688 return; 689 690 /* reset if not already down or busy */ 691 if (!test_bit(ICE_DOWN, pf->state) && 692 !test_bit(ICE_CFG_BUSY, pf->state)) { 693 ice_do_reset(pf, reset_type); 694 } 695 } 696 697 /** 698 * ice_print_topo_conflict - print topology conflict message 699 * @vsi: the VSI whose topology status is being checked 700 */ 701 static void ice_print_topo_conflict(struct ice_vsi *vsi) 702 { 703 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 704 case ICE_AQ_LINK_TOPO_CONFLICT: 705 case ICE_AQ_LINK_MEDIA_CONFLICT: 706 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 707 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 708 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 709 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 710 break; 711 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 712 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 713 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 714 else 715 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 716 break; 717 default: 718 break; 719 } 720 } 721 722 /** 723 * ice_print_link_msg - print link up or down message 724 * @vsi: the VSI whose link status is being queried 725 * @isup: boolean for if the link is now up or down 726 */ 727 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 728 { 729 struct ice_aqc_get_phy_caps_data *caps; 730 const char *an_advertised; 731 const char *fec_req; 732 const char *speed; 733 const char *fec; 734 const char *fc; 735 const char *an; 736 int status; 737 738 if (!vsi) 739 return; 740 741 if (vsi->current_isup == isup) 742 return; 743 744 vsi->current_isup = isup; 745 746 if (!isup) { 747 netdev_info(vsi->netdev, "NIC Link is Down\n"); 748 return; 749 } 750 751 switch (vsi->port_info->phy.link_info.link_speed) { 752 case ICE_AQ_LINK_SPEED_100GB: 753 speed = "100 G"; 754 break; 755 case ICE_AQ_LINK_SPEED_50GB: 756 speed = "50 G"; 757 break; 758 case ICE_AQ_LINK_SPEED_40GB: 759 speed = "40 G"; 760 break; 761 case ICE_AQ_LINK_SPEED_25GB: 762 speed = "25 G"; 763 break; 764 case ICE_AQ_LINK_SPEED_20GB: 765 speed = "20 G"; 766 break; 767 case ICE_AQ_LINK_SPEED_10GB: 768 speed = "10 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_5GB: 771 speed = "5 G"; 772 break; 773 case ICE_AQ_LINK_SPEED_2500MB: 774 speed = "2.5 G"; 775 break; 776 case ICE_AQ_LINK_SPEED_1000MB: 777 speed = "1 G"; 778 break; 779 case ICE_AQ_LINK_SPEED_100MB: 780 speed = "100 M"; 781 break; 782 default: 783 speed = "Unknown "; 784 break; 785 } 786 787 switch (vsi->port_info->fc.current_mode) { 788 case ICE_FC_FULL: 789 fc = "Rx/Tx"; 790 break; 791 case ICE_FC_TX_PAUSE: 792 fc = "Tx"; 793 break; 794 case ICE_FC_RX_PAUSE: 795 fc = "Rx"; 796 break; 797 case ICE_FC_NONE: 798 fc = "None"; 799 break; 800 default: 801 fc = "Unknown"; 802 break; 803 } 804 805 /* Get FEC mode based on negotiated link info */ 806 switch (vsi->port_info->phy.link_info.fec_info) { 807 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 808 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 809 fec = "RS-FEC"; 810 break; 811 case ICE_AQ_LINK_25G_KR_FEC_EN: 812 fec = "FC-FEC/BASE-R"; 813 break; 814 default: 815 fec = "NONE"; 816 break; 817 } 818 819 /* check if autoneg completed, might be false due to not supported */ 820 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 821 an = "True"; 822 else 823 an = "False"; 824 825 /* Get FEC mode requested based on PHY caps last SW configuration */ 826 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 827 if (!caps) { 828 fec_req = "Unknown"; 829 an_advertised = "Unknown"; 830 goto done; 831 } 832 833 status = ice_aq_get_phy_caps(vsi->port_info, false, 834 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 835 if (status) 836 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 837 838 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 839 840 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 841 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 842 fec_req = "RS-FEC"; 843 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 844 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 845 fec_req = "FC-FEC/BASE-R"; 846 else 847 fec_req = "NONE"; 848 849 kfree(caps); 850 851 done: 852 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 853 speed, fec_req, fec, an_advertised, an, fc); 854 ice_print_topo_conflict(vsi); 855 } 856 857 /** 858 * ice_vsi_link_event - update the VSI's netdev 859 * @vsi: the VSI on which the link event occurred 860 * @link_up: whether or not the VSI needs to be set up or down 861 */ 862 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 863 { 864 if (!vsi) 865 return; 866 867 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 868 return; 869 870 if (vsi->type == ICE_VSI_PF) { 871 if (link_up == netif_carrier_ok(vsi->netdev)) 872 return; 873 874 if (link_up) { 875 netif_carrier_on(vsi->netdev); 876 netif_tx_wake_all_queues(vsi->netdev); 877 } else { 878 netif_carrier_off(vsi->netdev); 879 netif_tx_stop_all_queues(vsi->netdev); 880 } 881 } 882 } 883 884 /** 885 * ice_set_dflt_mib - send a default config MIB to the FW 886 * @pf: private PF struct 887 * 888 * This function sends a default configuration MIB to the FW. 889 * 890 * If this function errors out at any point, the driver is still able to 891 * function. The main impact is that LFC may not operate as expected. 892 * Therefore an error state in this function should be treated with a DBG 893 * message and continue on with driver rebuild/reenable. 894 */ 895 static void ice_set_dflt_mib(struct ice_pf *pf) 896 { 897 struct device *dev = ice_pf_to_dev(pf); 898 u8 mib_type, *buf, *lldpmib = NULL; 899 u16 len, typelen, offset = 0; 900 struct ice_lldp_org_tlv *tlv; 901 struct ice_hw *hw = &pf->hw; 902 u32 ouisubtype; 903 904 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 905 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 906 if (!lldpmib) { 907 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 908 __func__); 909 return; 910 } 911 912 /* Add ETS CFG TLV */ 913 tlv = (struct ice_lldp_org_tlv *)lldpmib; 914 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 915 ICE_IEEE_ETS_TLV_LEN); 916 tlv->typelen = htons(typelen); 917 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 918 ICE_IEEE_SUBTYPE_ETS_CFG); 919 tlv->ouisubtype = htonl(ouisubtype); 920 921 buf = tlv->tlvinfo; 922 buf[0] = 0; 923 924 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 925 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 926 * Octets 13 - 20 are TSA values - leave as zeros 927 */ 928 buf[5] = 0x64; 929 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 930 offset += len + 2; 931 tlv = (struct ice_lldp_org_tlv *) 932 ((char *)tlv + sizeof(tlv->typelen) + len); 933 934 /* Add ETS REC TLV */ 935 buf = tlv->tlvinfo; 936 tlv->typelen = htons(typelen); 937 938 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 939 ICE_IEEE_SUBTYPE_ETS_REC); 940 tlv->ouisubtype = htonl(ouisubtype); 941 942 /* First octet of buf is reserved 943 * Octets 1 - 4 map UP to TC - all UPs map to zero 944 * Octets 5 - 12 are BW values - set TC 0 to 100%. 945 * Octets 13 - 20 are TSA value - leave as zeros 946 */ 947 buf[5] = 0x64; 948 offset += len + 2; 949 tlv = (struct ice_lldp_org_tlv *) 950 ((char *)tlv + sizeof(tlv->typelen) + len); 951 952 /* Add PFC CFG TLV */ 953 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 954 ICE_IEEE_PFC_TLV_LEN); 955 tlv->typelen = htons(typelen); 956 957 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 958 ICE_IEEE_SUBTYPE_PFC_CFG); 959 tlv->ouisubtype = htonl(ouisubtype); 960 961 /* Octet 1 left as all zeros - PFC disabled */ 962 buf[0] = 0x08; 963 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 964 offset += len + 2; 965 966 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 967 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 968 969 kfree(lldpmib); 970 } 971 972 /** 973 * ice_check_phy_fw_load - check if PHY FW load failed 974 * @pf: pointer to PF struct 975 * @link_cfg_err: bitmap from the link info structure 976 * 977 * check if external PHY FW load failed and print an error message if it did 978 */ 979 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 980 { 981 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 982 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 983 return; 984 } 985 986 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 987 return; 988 989 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 990 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 991 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 992 } 993 } 994 995 /** 996 * ice_check_module_power 997 * @pf: pointer to PF struct 998 * @link_cfg_err: bitmap from the link info structure 999 * 1000 * check module power level returned by a previous call to aq_get_link_info 1001 * and print error messages if module power level is not supported 1002 */ 1003 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1004 { 1005 /* if module power level is supported, clear the flag */ 1006 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1007 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1008 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1009 return; 1010 } 1011 1012 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1013 * above block didn't clear this bit, there's nothing to do 1014 */ 1015 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1016 return; 1017 1018 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1019 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1020 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1021 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1022 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1023 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1024 } 1025 } 1026 1027 /** 1028 * ice_check_link_cfg_err - check if link configuration failed 1029 * @pf: pointer to the PF struct 1030 * @link_cfg_err: bitmap from the link info structure 1031 * 1032 * print if any link configuration failure happens due to the value in the 1033 * link_cfg_err parameter in the link info structure 1034 */ 1035 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1036 { 1037 ice_check_module_power(pf, link_cfg_err); 1038 ice_check_phy_fw_load(pf, link_cfg_err); 1039 } 1040 1041 /** 1042 * ice_link_event - process the link event 1043 * @pf: PF that the link event is associated with 1044 * @pi: port_info for the port that the link event is associated with 1045 * @link_up: true if the physical link is up and false if it is down 1046 * @link_speed: current link speed received from the link event 1047 * 1048 * Returns 0 on success and negative on failure 1049 */ 1050 static int 1051 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1052 u16 link_speed) 1053 { 1054 struct device *dev = ice_pf_to_dev(pf); 1055 struct ice_phy_info *phy_info; 1056 struct ice_vsi *vsi; 1057 u16 old_link_speed; 1058 bool old_link; 1059 int status; 1060 1061 phy_info = &pi->phy; 1062 phy_info->link_info_old = phy_info->link_info; 1063 1064 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1065 old_link_speed = phy_info->link_info_old.link_speed; 1066 1067 /* update the link info structures and re-enable link events, 1068 * don't bail on failure due to other book keeping needed 1069 */ 1070 status = ice_update_link_info(pi); 1071 if (status) 1072 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1073 pi->lport, status, 1074 ice_aq_str(pi->hw->adminq.sq_last_status)); 1075 1076 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1077 1078 /* Check if the link state is up after updating link info, and treat 1079 * this event as an UP event since the link is actually UP now. 1080 */ 1081 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1082 link_up = true; 1083 1084 vsi = ice_get_main_vsi(pf); 1085 if (!vsi || !vsi->port_info) 1086 return -EINVAL; 1087 1088 /* turn off PHY if media was removed */ 1089 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1090 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1091 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1092 ice_set_link(vsi, false); 1093 } 1094 1095 /* if the old link up/down and speed is the same as the new */ 1096 if (link_up == old_link && link_speed == old_link_speed) 1097 return 0; 1098 1099 if (!ice_is_e810(&pf->hw)) 1100 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1101 1102 if (ice_is_dcb_active(pf)) { 1103 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1104 ice_dcb_rebuild(pf); 1105 } else { 1106 if (link_up) 1107 ice_set_dflt_mib(pf); 1108 } 1109 ice_vsi_link_event(vsi, link_up); 1110 ice_print_link_msg(vsi, link_up); 1111 1112 ice_vc_notify_link_state(pf); 1113 1114 return 0; 1115 } 1116 1117 /** 1118 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1119 * @pf: board private structure 1120 */ 1121 static void ice_watchdog_subtask(struct ice_pf *pf) 1122 { 1123 int i; 1124 1125 /* if interface is down do nothing */ 1126 if (test_bit(ICE_DOWN, pf->state) || 1127 test_bit(ICE_CFG_BUSY, pf->state)) 1128 return; 1129 1130 /* make sure we don't do these things too often */ 1131 if (time_before(jiffies, 1132 pf->serv_tmr_prev + pf->serv_tmr_period)) 1133 return; 1134 1135 pf->serv_tmr_prev = jiffies; 1136 1137 /* Update the stats for active netdevs so the network stack 1138 * can look at updated numbers whenever it cares to 1139 */ 1140 ice_update_pf_stats(pf); 1141 ice_for_each_vsi(pf, i) 1142 if (pf->vsi[i] && pf->vsi[i]->netdev) 1143 ice_update_vsi_stats(pf->vsi[i]); 1144 } 1145 1146 /** 1147 * ice_init_link_events - enable/initialize link events 1148 * @pi: pointer to the port_info instance 1149 * 1150 * Returns -EIO on failure, 0 on success 1151 */ 1152 static int ice_init_link_events(struct ice_port_info *pi) 1153 { 1154 u16 mask; 1155 1156 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1157 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1158 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1159 1160 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1161 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1162 pi->lport); 1163 return -EIO; 1164 } 1165 1166 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1167 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1168 pi->lport); 1169 return -EIO; 1170 } 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_handle_link_event - handle link event via ARQ 1177 * @pf: PF that the link event is associated with 1178 * @event: event structure containing link status info 1179 */ 1180 static int 1181 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1182 { 1183 struct ice_aqc_get_link_status_data *link_data; 1184 struct ice_port_info *port_info; 1185 int status; 1186 1187 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1188 port_info = pf->hw.port_info; 1189 if (!port_info) 1190 return -EINVAL; 1191 1192 status = ice_link_event(pf, port_info, 1193 !!(link_data->link_info & ICE_AQ_LINK_UP), 1194 le16_to_cpu(link_data->link_speed)); 1195 if (status) 1196 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1197 status); 1198 1199 return status; 1200 } 1201 1202 enum ice_aq_task_state { 1203 ICE_AQ_TASK_WAITING = 0, 1204 ICE_AQ_TASK_COMPLETE, 1205 ICE_AQ_TASK_CANCELED, 1206 }; 1207 1208 struct ice_aq_task { 1209 struct hlist_node entry; 1210 1211 u16 opcode; 1212 struct ice_rq_event_info *event; 1213 enum ice_aq_task_state state; 1214 }; 1215 1216 /** 1217 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1218 * @pf: pointer to the PF private structure 1219 * @opcode: the opcode to wait for 1220 * @timeout: how long to wait, in jiffies 1221 * @event: storage for the event info 1222 * 1223 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1224 * current thread will be put to sleep until the specified event occurs or 1225 * until the given timeout is reached. 1226 * 1227 * To obtain only the descriptor contents, pass an event without an allocated 1228 * msg_buf. If the complete data buffer is desired, allocate the 1229 * event->msg_buf with enough space ahead of time. 1230 * 1231 * Returns: zero on success, or a negative error code on failure. 1232 */ 1233 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1234 struct ice_rq_event_info *event) 1235 { 1236 struct device *dev = ice_pf_to_dev(pf); 1237 struct ice_aq_task *task; 1238 unsigned long start; 1239 long ret; 1240 int err; 1241 1242 task = kzalloc(sizeof(*task), GFP_KERNEL); 1243 if (!task) 1244 return -ENOMEM; 1245 1246 INIT_HLIST_NODE(&task->entry); 1247 task->opcode = opcode; 1248 task->event = event; 1249 task->state = ICE_AQ_TASK_WAITING; 1250 1251 spin_lock_bh(&pf->aq_wait_lock); 1252 hlist_add_head(&task->entry, &pf->aq_wait_list); 1253 spin_unlock_bh(&pf->aq_wait_lock); 1254 1255 start = jiffies; 1256 1257 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1258 timeout); 1259 switch (task->state) { 1260 case ICE_AQ_TASK_WAITING: 1261 err = ret < 0 ? ret : -ETIMEDOUT; 1262 break; 1263 case ICE_AQ_TASK_CANCELED: 1264 err = ret < 0 ? ret : -ECANCELED; 1265 break; 1266 case ICE_AQ_TASK_COMPLETE: 1267 err = ret < 0 ? ret : 0; 1268 break; 1269 default: 1270 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1271 err = -EINVAL; 1272 break; 1273 } 1274 1275 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1276 jiffies_to_msecs(jiffies - start), 1277 jiffies_to_msecs(timeout), 1278 opcode); 1279 1280 spin_lock_bh(&pf->aq_wait_lock); 1281 hlist_del(&task->entry); 1282 spin_unlock_bh(&pf->aq_wait_lock); 1283 kfree(task); 1284 1285 return err; 1286 } 1287 1288 /** 1289 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1290 * @pf: pointer to the PF private structure 1291 * @opcode: the opcode of the event 1292 * @event: the event to check 1293 * 1294 * Loops over the current list of pending threads waiting for an AdminQ event. 1295 * For each matching task, copy the contents of the event into the task 1296 * structure and wake up the thread. 1297 * 1298 * If multiple threads wait for the same opcode, they will all be woken up. 1299 * 1300 * Note that event->msg_buf will only be duplicated if the event has a buffer 1301 * with enough space already allocated. Otherwise, only the descriptor and 1302 * message length will be copied. 1303 * 1304 * Returns: true if an event was found, false otherwise 1305 */ 1306 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1307 struct ice_rq_event_info *event) 1308 { 1309 struct ice_aq_task *task; 1310 bool found = false; 1311 1312 spin_lock_bh(&pf->aq_wait_lock); 1313 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1314 if (task->state || task->opcode != opcode) 1315 continue; 1316 1317 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1318 task->event->msg_len = event->msg_len; 1319 1320 /* Only copy the data buffer if a destination was set */ 1321 if (task->event->msg_buf && 1322 task->event->buf_len > event->buf_len) { 1323 memcpy(task->event->msg_buf, event->msg_buf, 1324 event->buf_len); 1325 task->event->buf_len = event->buf_len; 1326 } 1327 1328 task->state = ICE_AQ_TASK_COMPLETE; 1329 found = true; 1330 } 1331 spin_unlock_bh(&pf->aq_wait_lock); 1332 1333 if (found) 1334 wake_up(&pf->aq_wait_queue); 1335 } 1336 1337 /** 1338 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1339 * @pf: the PF private structure 1340 * 1341 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1342 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1343 */ 1344 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1345 { 1346 struct ice_aq_task *task; 1347 1348 spin_lock_bh(&pf->aq_wait_lock); 1349 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1350 task->state = ICE_AQ_TASK_CANCELED; 1351 spin_unlock_bh(&pf->aq_wait_lock); 1352 1353 wake_up(&pf->aq_wait_queue); 1354 } 1355 1356 /** 1357 * __ice_clean_ctrlq - helper function to clean controlq rings 1358 * @pf: ptr to struct ice_pf 1359 * @q_type: specific Control queue type 1360 */ 1361 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1362 { 1363 struct device *dev = ice_pf_to_dev(pf); 1364 struct ice_rq_event_info event; 1365 struct ice_hw *hw = &pf->hw; 1366 struct ice_ctl_q_info *cq; 1367 u16 pending, i = 0; 1368 const char *qtype; 1369 u32 oldval, val; 1370 1371 /* Do not clean control queue if/when PF reset fails */ 1372 if (test_bit(ICE_RESET_FAILED, pf->state)) 1373 return 0; 1374 1375 switch (q_type) { 1376 case ICE_CTL_Q_ADMIN: 1377 cq = &hw->adminq; 1378 qtype = "Admin"; 1379 break; 1380 case ICE_CTL_Q_SB: 1381 cq = &hw->sbq; 1382 qtype = "Sideband"; 1383 break; 1384 case ICE_CTL_Q_MAILBOX: 1385 cq = &hw->mailboxq; 1386 qtype = "Mailbox"; 1387 /* we are going to try to detect a malicious VF, so set the 1388 * state to begin detection 1389 */ 1390 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1391 break; 1392 default: 1393 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1394 return 0; 1395 } 1396 1397 /* check for error indications - PF_xx_AxQLEN register layout for 1398 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1399 */ 1400 val = rd32(hw, cq->rq.len); 1401 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1402 PF_FW_ARQLEN_ARQCRIT_M)) { 1403 oldval = val; 1404 if (val & PF_FW_ARQLEN_ARQVFE_M) 1405 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1406 qtype); 1407 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1408 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1409 qtype); 1410 } 1411 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1412 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1413 qtype); 1414 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1415 PF_FW_ARQLEN_ARQCRIT_M); 1416 if (oldval != val) 1417 wr32(hw, cq->rq.len, val); 1418 } 1419 1420 val = rd32(hw, cq->sq.len); 1421 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1422 PF_FW_ATQLEN_ATQCRIT_M)) { 1423 oldval = val; 1424 if (val & PF_FW_ATQLEN_ATQVFE_M) 1425 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1426 qtype); 1427 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1428 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1429 qtype); 1430 } 1431 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1432 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1433 qtype); 1434 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1435 PF_FW_ATQLEN_ATQCRIT_M); 1436 if (oldval != val) 1437 wr32(hw, cq->sq.len, val); 1438 } 1439 1440 event.buf_len = cq->rq_buf_size; 1441 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1442 if (!event.msg_buf) 1443 return 0; 1444 1445 do { 1446 u16 opcode; 1447 int ret; 1448 1449 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1450 if (ret == -EALREADY) 1451 break; 1452 if (ret) { 1453 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1454 ret); 1455 break; 1456 } 1457 1458 opcode = le16_to_cpu(event.desc.opcode); 1459 1460 /* Notify any thread that might be waiting for this event */ 1461 ice_aq_check_events(pf, opcode, &event); 1462 1463 switch (opcode) { 1464 case ice_aqc_opc_get_link_status: 1465 if (ice_handle_link_event(pf, &event)) 1466 dev_err(dev, "Could not handle link event\n"); 1467 break; 1468 case ice_aqc_opc_event_lan_overflow: 1469 ice_vf_lan_overflow_event(pf, &event); 1470 break; 1471 case ice_mbx_opc_send_msg_to_pf: 1472 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1473 ice_vc_process_vf_msg(pf, &event); 1474 break; 1475 case ice_aqc_opc_fw_logging: 1476 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1477 break; 1478 case ice_aqc_opc_lldp_set_mib_change: 1479 ice_dcb_process_lldp_set_mib_change(pf, &event); 1480 break; 1481 default: 1482 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1483 qtype, opcode); 1484 break; 1485 } 1486 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1487 1488 kfree(event.msg_buf); 1489 1490 return pending && (i == ICE_DFLT_IRQ_WORK); 1491 } 1492 1493 /** 1494 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1495 * @hw: pointer to hardware info 1496 * @cq: control queue information 1497 * 1498 * returns true if there are pending messages in a queue, false if there aren't 1499 */ 1500 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1501 { 1502 u16 ntu; 1503 1504 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1505 return cq->rq.next_to_clean != ntu; 1506 } 1507 1508 /** 1509 * ice_clean_adminq_subtask - clean the AdminQ rings 1510 * @pf: board private structure 1511 */ 1512 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1513 { 1514 struct ice_hw *hw = &pf->hw; 1515 1516 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1517 return; 1518 1519 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1520 return; 1521 1522 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1523 1524 /* There might be a situation where new messages arrive to a control 1525 * queue between processing the last message and clearing the 1526 * EVENT_PENDING bit. So before exiting, check queue head again (using 1527 * ice_ctrlq_pending) and process new messages if any. 1528 */ 1529 if (ice_ctrlq_pending(hw, &hw->adminq)) 1530 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1531 1532 ice_flush(hw); 1533 } 1534 1535 /** 1536 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1537 * @pf: board private structure 1538 */ 1539 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1540 { 1541 struct ice_hw *hw = &pf->hw; 1542 1543 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1544 return; 1545 1546 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1547 return; 1548 1549 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1550 1551 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1552 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1553 1554 ice_flush(hw); 1555 } 1556 1557 /** 1558 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1559 * @pf: board private structure 1560 */ 1561 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1562 { 1563 struct ice_hw *hw = &pf->hw; 1564 1565 /* Nothing to do here if sideband queue is not supported */ 1566 if (!ice_is_sbq_supported(hw)) { 1567 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1568 return; 1569 } 1570 1571 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1572 return; 1573 1574 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1575 return; 1576 1577 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1578 1579 if (ice_ctrlq_pending(hw, &hw->sbq)) 1580 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1581 1582 ice_flush(hw); 1583 } 1584 1585 /** 1586 * ice_service_task_schedule - schedule the service task to wake up 1587 * @pf: board private structure 1588 * 1589 * If not already scheduled, this puts the task into the work queue. 1590 */ 1591 void ice_service_task_schedule(struct ice_pf *pf) 1592 { 1593 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1594 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1595 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1596 queue_work(ice_wq, &pf->serv_task); 1597 } 1598 1599 /** 1600 * ice_service_task_complete - finish up the service task 1601 * @pf: board private structure 1602 */ 1603 static void ice_service_task_complete(struct ice_pf *pf) 1604 { 1605 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1606 1607 /* force memory (pf->state) to sync before next service task */ 1608 smp_mb__before_atomic(); 1609 clear_bit(ICE_SERVICE_SCHED, pf->state); 1610 } 1611 1612 /** 1613 * ice_service_task_stop - stop service task and cancel works 1614 * @pf: board private structure 1615 * 1616 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1617 * 1 otherwise. 1618 */ 1619 static int ice_service_task_stop(struct ice_pf *pf) 1620 { 1621 int ret; 1622 1623 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1624 1625 if (pf->serv_tmr.function) 1626 del_timer_sync(&pf->serv_tmr); 1627 if (pf->serv_task.func) 1628 cancel_work_sync(&pf->serv_task); 1629 1630 clear_bit(ICE_SERVICE_SCHED, pf->state); 1631 return ret; 1632 } 1633 1634 /** 1635 * ice_service_task_restart - restart service task and schedule works 1636 * @pf: board private structure 1637 * 1638 * This function is needed for suspend and resume works (e.g WoL scenario) 1639 */ 1640 static void ice_service_task_restart(struct ice_pf *pf) 1641 { 1642 clear_bit(ICE_SERVICE_DIS, pf->state); 1643 ice_service_task_schedule(pf); 1644 } 1645 1646 /** 1647 * ice_service_timer - timer callback to schedule service task 1648 * @t: pointer to timer_list 1649 */ 1650 static void ice_service_timer(struct timer_list *t) 1651 { 1652 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1653 1654 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1655 ice_service_task_schedule(pf); 1656 } 1657 1658 /** 1659 * ice_handle_mdd_event - handle malicious driver detect event 1660 * @pf: pointer to the PF structure 1661 * 1662 * Called from service task. OICR interrupt handler indicates MDD event. 1663 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1664 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1665 * disable the queue, the PF can be configured to reset the VF using ethtool 1666 * private flag mdd-auto-reset-vf. 1667 */ 1668 static void ice_handle_mdd_event(struct ice_pf *pf) 1669 { 1670 struct device *dev = ice_pf_to_dev(pf); 1671 struct ice_hw *hw = &pf->hw; 1672 struct ice_vf *vf; 1673 unsigned int bkt; 1674 u32 reg; 1675 1676 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1677 /* Since the VF MDD event logging is rate limited, check if 1678 * there are pending MDD events. 1679 */ 1680 ice_print_vfs_mdd_events(pf); 1681 return; 1682 } 1683 1684 /* find what triggered an MDD event */ 1685 reg = rd32(hw, GL_MDET_TX_PQM); 1686 if (reg & GL_MDET_TX_PQM_VALID_M) { 1687 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1688 GL_MDET_TX_PQM_PF_NUM_S; 1689 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1690 GL_MDET_TX_PQM_VF_NUM_S; 1691 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1692 GL_MDET_TX_PQM_MAL_TYPE_S; 1693 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1694 GL_MDET_TX_PQM_QNUM_S); 1695 1696 if (netif_msg_tx_err(pf)) 1697 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1698 event, queue, pf_num, vf_num); 1699 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1700 } 1701 1702 reg = rd32(hw, GL_MDET_TX_TCLAN); 1703 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1704 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1705 GL_MDET_TX_TCLAN_PF_NUM_S; 1706 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1707 GL_MDET_TX_TCLAN_VF_NUM_S; 1708 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1709 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1710 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1711 GL_MDET_TX_TCLAN_QNUM_S); 1712 1713 if (netif_msg_tx_err(pf)) 1714 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1715 event, queue, pf_num, vf_num); 1716 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1717 } 1718 1719 reg = rd32(hw, GL_MDET_RX); 1720 if (reg & GL_MDET_RX_VALID_M) { 1721 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1722 GL_MDET_RX_PF_NUM_S; 1723 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1724 GL_MDET_RX_VF_NUM_S; 1725 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1726 GL_MDET_RX_MAL_TYPE_S; 1727 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1728 GL_MDET_RX_QNUM_S); 1729 1730 if (netif_msg_rx_err(pf)) 1731 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1732 event, queue, pf_num, vf_num); 1733 wr32(hw, GL_MDET_RX, 0xffffffff); 1734 } 1735 1736 /* check to see if this PF caused an MDD event */ 1737 reg = rd32(hw, PF_MDET_TX_PQM); 1738 if (reg & PF_MDET_TX_PQM_VALID_M) { 1739 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1740 if (netif_msg_tx_err(pf)) 1741 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1742 } 1743 1744 reg = rd32(hw, PF_MDET_TX_TCLAN); 1745 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1746 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1747 if (netif_msg_tx_err(pf)) 1748 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1749 } 1750 1751 reg = rd32(hw, PF_MDET_RX); 1752 if (reg & PF_MDET_RX_VALID_M) { 1753 wr32(hw, PF_MDET_RX, 0xFFFF); 1754 if (netif_msg_rx_err(pf)) 1755 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1756 } 1757 1758 /* Check to see if one of the VFs caused an MDD event, and then 1759 * increment counters and set print pending 1760 */ 1761 mutex_lock(&pf->vfs.table_lock); 1762 ice_for_each_vf(pf, bkt, vf) { 1763 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1764 if (reg & VP_MDET_TX_PQM_VALID_M) { 1765 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1766 vf->mdd_tx_events.count++; 1767 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1768 if (netif_msg_tx_err(pf)) 1769 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1770 vf->vf_id); 1771 } 1772 1773 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1774 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1775 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1776 vf->mdd_tx_events.count++; 1777 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1778 if (netif_msg_tx_err(pf)) 1779 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1780 vf->vf_id); 1781 } 1782 1783 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1784 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1785 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1786 vf->mdd_tx_events.count++; 1787 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1788 if (netif_msg_tx_err(pf)) 1789 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1790 vf->vf_id); 1791 } 1792 1793 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1794 if (reg & VP_MDET_RX_VALID_M) { 1795 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1796 vf->mdd_rx_events.count++; 1797 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1798 if (netif_msg_rx_err(pf)) 1799 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1800 vf->vf_id); 1801 1802 /* Since the queue is disabled on VF Rx MDD events, the 1803 * PF can be configured to reset the VF through ethtool 1804 * private flag mdd-auto-reset-vf. 1805 */ 1806 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1807 /* VF MDD event counters will be cleared by 1808 * reset, so print the event prior to reset. 1809 */ 1810 ice_print_vf_rx_mdd_event(vf); 1811 mutex_lock(&vf->cfg_lock); 1812 ice_reset_vf(vf, false); 1813 mutex_unlock(&vf->cfg_lock); 1814 } 1815 } 1816 } 1817 mutex_unlock(&pf->vfs.table_lock); 1818 1819 ice_print_vfs_mdd_events(pf); 1820 } 1821 1822 /** 1823 * ice_force_phys_link_state - Force the physical link state 1824 * @vsi: VSI to force the physical link state to up/down 1825 * @link_up: true/false indicates to set the physical link to up/down 1826 * 1827 * Force the physical link state by getting the current PHY capabilities from 1828 * hardware and setting the PHY config based on the determined capabilities. If 1829 * link changes a link event will be triggered because both the Enable Automatic 1830 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1831 * 1832 * Returns 0 on success, negative on failure 1833 */ 1834 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1835 { 1836 struct ice_aqc_get_phy_caps_data *pcaps; 1837 struct ice_aqc_set_phy_cfg_data *cfg; 1838 struct ice_port_info *pi; 1839 struct device *dev; 1840 int retcode; 1841 1842 if (!vsi || !vsi->port_info || !vsi->back) 1843 return -EINVAL; 1844 if (vsi->type != ICE_VSI_PF) 1845 return 0; 1846 1847 dev = ice_pf_to_dev(vsi->back); 1848 1849 pi = vsi->port_info; 1850 1851 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1852 if (!pcaps) 1853 return -ENOMEM; 1854 1855 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1856 NULL); 1857 if (retcode) { 1858 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1859 vsi->vsi_num, retcode); 1860 retcode = -EIO; 1861 goto out; 1862 } 1863 1864 /* No change in link */ 1865 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1866 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1867 goto out; 1868 1869 /* Use the current user PHY configuration. The current user PHY 1870 * configuration is initialized during probe from PHY capabilities 1871 * software mode, and updated on set PHY configuration. 1872 */ 1873 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1874 if (!cfg) { 1875 retcode = -ENOMEM; 1876 goto out; 1877 } 1878 1879 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1880 if (link_up) 1881 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1882 else 1883 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1884 1885 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1886 if (retcode) { 1887 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1888 vsi->vsi_num, retcode); 1889 retcode = -EIO; 1890 } 1891 1892 kfree(cfg); 1893 out: 1894 kfree(pcaps); 1895 return retcode; 1896 } 1897 1898 /** 1899 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1900 * @pi: port info structure 1901 * 1902 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1903 */ 1904 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1905 { 1906 struct ice_aqc_get_phy_caps_data *pcaps; 1907 struct ice_pf *pf = pi->hw->back; 1908 int err; 1909 1910 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1911 if (!pcaps) 1912 return -ENOMEM; 1913 1914 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1915 pcaps, NULL); 1916 1917 if (err) { 1918 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1919 goto out; 1920 } 1921 1922 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1923 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1924 1925 out: 1926 kfree(pcaps); 1927 return err; 1928 } 1929 1930 /** 1931 * ice_init_link_dflt_override - Initialize link default override 1932 * @pi: port info structure 1933 * 1934 * Initialize link default override and PHY total port shutdown during probe 1935 */ 1936 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1937 { 1938 struct ice_link_default_override_tlv *ldo; 1939 struct ice_pf *pf = pi->hw->back; 1940 1941 ldo = &pf->link_dflt_override; 1942 if (ice_get_link_default_override(ldo, pi)) 1943 return; 1944 1945 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1946 return; 1947 1948 /* Enable Total Port Shutdown (override/replace link-down-on-close 1949 * ethtool private flag) for ports with Port Disable bit set. 1950 */ 1951 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1952 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1953 } 1954 1955 /** 1956 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1957 * @pi: port info structure 1958 * 1959 * If default override is enabled, initialize the user PHY cfg speed and FEC 1960 * settings using the default override mask from the NVM. 1961 * 1962 * The PHY should only be configured with the default override settings the 1963 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1964 * is used to indicate that the user PHY cfg default override is initialized 1965 * and the PHY has not been configured with the default override settings. The 1966 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1967 * configured. 1968 * 1969 * This function should be called only if the FW doesn't support default 1970 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1971 */ 1972 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1973 { 1974 struct ice_link_default_override_tlv *ldo; 1975 struct ice_aqc_set_phy_cfg_data *cfg; 1976 struct ice_phy_info *phy = &pi->phy; 1977 struct ice_pf *pf = pi->hw->back; 1978 1979 ldo = &pf->link_dflt_override; 1980 1981 /* If link default override is enabled, use to mask NVM PHY capabilities 1982 * for speed and FEC default configuration. 1983 */ 1984 cfg = &phy->curr_user_phy_cfg; 1985 1986 if (ldo->phy_type_low || ldo->phy_type_high) { 1987 cfg->phy_type_low = pf->nvm_phy_type_lo & 1988 cpu_to_le64(ldo->phy_type_low); 1989 cfg->phy_type_high = pf->nvm_phy_type_hi & 1990 cpu_to_le64(ldo->phy_type_high); 1991 } 1992 cfg->link_fec_opt = ldo->fec_options; 1993 phy->curr_user_fec_req = ICE_FEC_AUTO; 1994 1995 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1996 } 1997 1998 /** 1999 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2000 * @pi: port info structure 2001 * 2002 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2003 * mode to default. The PHY defaults are from get PHY capabilities topology 2004 * with media so call when media is first available. An error is returned if 2005 * called when media is not available. The PHY initialization completed state is 2006 * set here. 2007 * 2008 * These configurations are used when setting PHY 2009 * configuration. The user PHY configuration is updated on set PHY 2010 * configuration. Returns 0 on success, negative on failure 2011 */ 2012 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2013 { 2014 struct ice_aqc_get_phy_caps_data *pcaps; 2015 struct ice_phy_info *phy = &pi->phy; 2016 struct ice_pf *pf = pi->hw->back; 2017 int err; 2018 2019 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2020 return -EIO; 2021 2022 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2023 if (!pcaps) 2024 return -ENOMEM; 2025 2026 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2027 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2028 pcaps, NULL); 2029 else 2030 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2031 pcaps, NULL); 2032 if (err) { 2033 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2034 goto err_out; 2035 } 2036 2037 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2038 2039 /* check if lenient mode is supported and enabled */ 2040 if (ice_fw_supports_link_override(pi->hw) && 2041 !(pcaps->module_compliance_enforcement & 2042 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2043 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2044 2045 /* if the FW supports default PHY configuration mode, then the driver 2046 * does not have to apply link override settings. If not, 2047 * initialize user PHY configuration with link override values 2048 */ 2049 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2050 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2051 ice_init_phy_cfg_dflt_override(pi); 2052 goto out; 2053 } 2054 } 2055 2056 /* if link default override is not enabled, set user flow control and 2057 * FEC settings based on what get_phy_caps returned 2058 */ 2059 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2060 pcaps->link_fec_options); 2061 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2062 2063 out: 2064 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2065 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2066 err_out: 2067 kfree(pcaps); 2068 return err; 2069 } 2070 2071 /** 2072 * ice_configure_phy - configure PHY 2073 * @vsi: VSI of PHY 2074 * 2075 * Set the PHY configuration. If the current PHY configuration is the same as 2076 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2077 * configure the based get PHY capabilities for topology with media. 2078 */ 2079 static int ice_configure_phy(struct ice_vsi *vsi) 2080 { 2081 struct device *dev = ice_pf_to_dev(vsi->back); 2082 struct ice_port_info *pi = vsi->port_info; 2083 struct ice_aqc_get_phy_caps_data *pcaps; 2084 struct ice_aqc_set_phy_cfg_data *cfg; 2085 struct ice_phy_info *phy = &pi->phy; 2086 struct ice_pf *pf = vsi->back; 2087 int err; 2088 2089 /* Ensure we have media as we cannot configure a medialess port */ 2090 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2091 return -EPERM; 2092 2093 ice_print_topo_conflict(vsi); 2094 2095 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2096 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2097 return -EPERM; 2098 2099 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2100 return ice_force_phys_link_state(vsi, true); 2101 2102 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2103 if (!pcaps) 2104 return -ENOMEM; 2105 2106 /* Get current PHY config */ 2107 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2108 NULL); 2109 if (err) { 2110 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2111 vsi->vsi_num, err); 2112 goto done; 2113 } 2114 2115 /* If PHY enable link is configured and configuration has not changed, 2116 * there's nothing to do 2117 */ 2118 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2119 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2120 goto done; 2121 2122 /* Use PHY topology as baseline for configuration */ 2123 memset(pcaps, 0, sizeof(*pcaps)); 2124 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2125 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2126 pcaps, NULL); 2127 else 2128 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2129 pcaps, NULL); 2130 if (err) { 2131 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2132 vsi->vsi_num, err); 2133 goto done; 2134 } 2135 2136 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2137 if (!cfg) { 2138 err = -ENOMEM; 2139 goto done; 2140 } 2141 2142 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2143 2144 /* Speed - If default override pending, use curr_user_phy_cfg set in 2145 * ice_init_phy_user_cfg_ldo. 2146 */ 2147 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2148 vsi->back->state)) { 2149 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2150 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2151 } else { 2152 u64 phy_low = 0, phy_high = 0; 2153 2154 ice_update_phy_type(&phy_low, &phy_high, 2155 pi->phy.curr_user_speed_req); 2156 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2157 cfg->phy_type_high = pcaps->phy_type_high & 2158 cpu_to_le64(phy_high); 2159 } 2160 2161 /* Can't provide what was requested; use PHY capabilities */ 2162 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2163 cfg->phy_type_low = pcaps->phy_type_low; 2164 cfg->phy_type_high = pcaps->phy_type_high; 2165 } 2166 2167 /* FEC */ 2168 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2169 2170 /* Can't provide what was requested; use PHY capabilities */ 2171 if (cfg->link_fec_opt != 2172 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2173 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2174 cfg->link_fec_opt = pcaps->link_fec_options; 2175 } 2176 2177 /* Flow Control - always supported; no need to check against 2178 * capabilities 2179 */ 2180 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2181 2182 /* Enable link and link update */ 2183 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2184 2185 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2186 if (err) 2187 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2188 vsi->vsi_num, err); 2189 2190 kfree(cfg); 2191 done: 2192 kfree(pcaps); 2193 return err; 2194 } 2195 2196 /** 2197 * ice_check_media_subtask - Check for media 2198 * @pf: pointer to PF struct 2199 * 2200 * If media is available, then initialize PHY user configuration if it is not 2201 * been, and configure the PHY if the interface is up. 2202 */ 2203 static void ice_check_media_subtask(struct ice_pf *pf) 2204 { 2205 struct ice_port_info *pi; 2206 struct ice_vsi *vsi; 2207 int err; 2208 2209 /* No need to check for media if it's already present */ 2210 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2211 return; 2212 2213 vsi = ice_get_main_vsi(pf); 2214 if (!vsi) 2215 return; 2216 2217 /* Refresh link info and check if media is present */ 2218 pi = vsi->port_info; 2219 err = ice_update_link_info(pi); 2220 if (err) 2221 return; 2222 2223 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2224 2225 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2226 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2227 ice_init_phy_user_cfg(pi); 2228 2229 /* PHY settings are reset on media insertion, reconfigure 2230 * PHY to preserve settings. 2231 */ 2232 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2233 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2234 return; 2235 2236 err = ice_configure_phy(vsi); 2237 if (!err) 2238 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2239 2240 /* A Link Status Event will be generated; the event handler 2241 * will complete bringing the interface up 2242 */ 2243 } 2244 } 2245 2246 /** 2247 * ice_service_task - manage and run subtasks 2248 * @work: pointer to work_struct contained by the PF struct 2249 */ 2250 static void ice_service_task(struct work_struct *work) 2251 { 2252 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2253 unsigned long start_time = jiffies; 2254 2255 /* subtasks */ 2256 2257 /* process reset requests first */ 2258 ice_reset_subtask(pf); 2259 2260 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2261 if (ice_is_reset_in_progress(pf->state) || 2262 test_bit(ICE_SUSPENDED, pf->state) || 2263 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2264 ice_service_task_complete(pf); 2265 return; 2266 } 2267 2268 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2269 ice_plug_aux_dev(pf); 2270 2271 ice_clean_adminq_subtask(pf); 2272 ice_check_media_subtask(pf); 2273 ice_check_for_hang_subtask(pf); 2274 ice_sync_fltr_subtask(pf); 2275 ice_handle_mdd_event(pf); 2276 ice_watchdog_subtask(pf); 2277 2278 if (ice_is_safe_mode(pf)) { 2279 ice_service_task_complete(pf); 2280 return; 2281 } 2282 2283 ice_process_vflr_event(pf); 2284 ice_clean_mailboxq_subtask(pf); 2285 ice_clean_sbq_subtask(pf); 2286 ice_sync_arfs_fltrs(pf); 2287 ice_flush_fdir_ctx(pf); 2288 2289 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2290 ice_service_task_complete(pf); 2291 2292 /* If the tasks have taken longer than one service timer period 2293 * or there is more work to be done, reset the service timer to 2294 * schedule the service task now. 2295 */ 2296 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2297 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2298 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2299 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2300 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2301 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2302 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2303 mod_timer(&pf->serv_tmr, jiffies); 2304 } 2305 2306 /** 2307 * ice_set_ctrlq_len - helper function to set controlq length 2308 * @hw: pointer to the HW instance 2309 */ 2310 static void ice_set_ctrlq_len(struct ice_hw *hw) 2311 { 2312 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2313 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2314 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2315 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2316 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2317 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2318 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2319 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2320 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2321 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2322 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2323 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2324 } 2325 2326 /** 2327 * ice_schedule_reset - schedule a reset 2328 * @pf: board private structure 2329 * @reset: reset being requested 2330 */ 2331 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2332 { 2333 struct device *dev = ice_pf_to_dev(pf); 2334 2335 /* bail out if earlier reset has failed */ 2336 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2337 dev_dbg(dev, "earlier reset has failed\n"); 2338 return -EIO; 2339 } 2340 /* bail if reset/recovery already in progress */ 2341 if (ice_is_reset_in_progress(pf->state)) { 2342 dev_dbg(dev, "Reset already in progress\n"); 2343 return -EBUSY; 2344 } 2345 2346 ice_unplug_aux_dev(pf); 2347 2348 switch (reset) { 2349 case ICE_RESET_PFR: 2350 set_bit(ICE_PFR_REQ, pf->state); 2351 break; 2352 case ICE_RESET_CORER: 2353 set_bit(ICE_CORER_REQ, pf->state); 2354 break; 2355 case ICE_RESET_GLOBR: 2356 set_bit(ICE_GLOBR_REQ, pf->state); 2357 break; 2358 default: 2359 return -EINVAL; 2360 } 2361 2362 ice_service_task_schedule(pf); 2363 return 0; 2364 } 2365 2366 /** 2367 * ice_irq_affinity_notify - Callback for affinity changes 2368 * @notify: context as to what irq was changed 2369 * @mask: the new affinity mask 2370 * 2371 * This is a callback function used by the irq_set_affinity_notifier function 2372 * so that we may register to receive changes to the irq affinity masks. 2373 */ 2374 static void 2375 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2376 const cpumask_t *mask) 2377 { 2378 struct ice_q_vector *q_vector = 2379 container_of(notify, struct ice_q_vector, affinity_notify); 2380 2381 cpumask_copy(&q_vector->affinity_mask, mask); 2382 } 2383 2384 /** 2385 * ice_irq_affinity_release - Callback for affinity notifier release 2386 * @ref: internal core kernel usage 2387 * 2388 * This is a callback function used by the irq_set_affinity_notifier function 2389 * to inform the current notification subscriber that they will no longer 2390 * receive notifications. 2391 */ 2392 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2393 2394 /** 2395 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2396 * @vsi: the VSI being configured 2397 */ 2398 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2399 { 2400 struct ice_hw *hw = &vsi->back->hw; 2401 int i; 2402 2403 ice_for_each_q_vector(vsi, i) 2404 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2405 2406 ice_flush(hw); 2407 return 0; 2408 } 2409 2410 /** 2411 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2412 * @vsi: the VSI being configured 2413 * @basename: name for the vector 2414 */ 2415 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2416 { 2417 int q_vectors = vsi->num_q_vectors; 2418 struct ice_pf *pf = vsi->back; 2419 int base = vsi->base_vector; 2420 struct device *dev; 2421 int rx_int_idx = 0; 2422 int tx_int_idx = 0; 2423 int vector, err; 2424 int irq_num; 2425 2426 dev = ice_pf_to_dev(pf); 2427 for (vector = 0; vector < q_vectors; vector++) { 2428 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2429 2430 irq_num = pf->msix_entries[base + vector].vector; 2431 2432 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2433 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2434 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2435 tx_int_idx++; 2436 } else if (q_vector->rx.rx_ring) { 2437 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2438 "%s-%s-%d", basename, "rx", rx_int_idx++); 2439 } else if (q_vector->tx.tx_ring) { 2440 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2441 "%s-%s-%d", basename, "tx", tx_int_idx++); 2442 } else { 2443 /* skip this unused q_vector */ 2444 continue; 2445 } 2446 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2447 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2448 IRQF_SHARED, q_vector->name, 2449 q_vector); 2450 else 2451 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2452 0, q_vector->name, q_vector); 2453 if (err) { 2454 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2455 err); 2456 goto free_q_irqs; 2457 } 2458 2459 /* register for affinity change notifications */ 2460 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2461 struct irq_affinity_notify *affinity_notify; 2462 2463 affinity_notify = &q_vector->affinity_notify; 2464 affinity_notify->notify = ice_irq_affinity_notify; 2465 affinity_notify->release = ice_irq_affinity_release; 2466 irq_set_affinity_notifier(irq_num, affinity_notify); 2467 } 2468 2469 /* assign the mask for this irq */ 2470 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2471 } 2472 2473 vsi->irqs_ready = true; 2474 return 0; 2475 2476 free_q_irqs: 2477 while (vector) { 2478 vector--; 2479 irq_num = pf->msix_entries[base + vector].vector; 2480 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2481 irq_set_affinity_notifier(irq_num, NULL); 2482 irq_set_affinity_hint(irq_num, NULL); 2483 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2484 } 2485 return err; 2486 } 2487 2488 /** 2489 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2490 * @vsi: VSI to setup Tx rings used by XDP 2491 * 2492 * Return 0 on success and negative value on error 2493 */ 2494 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2495 { 2496 struct device *dev = ice_pf_to_dev(vsi->back); 2497 struct ice_tx_desc *tx_desc; 2498 int i, j; 2499 2500 ice_for_each_xdp_txq(vsi, i) { 2501 u16 xdp_q_idx = vsi->alloc_txq + i; 2502 struct ice_tx_ring *xdp_ring; 2503 2504 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2505 2506 if (!xdp_ring) 2507 goto free_xdp_rings; 2508 2509 xdp_ring->q_index = xdp_q_idx; 2510 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2511 xdp_ring->vsi = vsi; 2512 xdp_ring->netdev = NULL; 2513 xdp_ring->dev = dev; 2514 xdp_ring->count = vsi->num_tx_desc; 2515 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2516 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2517 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2518 if (ice_setup_tx_ring(xdp_ring)) 2519 goto free_xdp_rings; 2520 ice_set_ring_xdp(xdp_ring); 2521 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2522 spin_lock_init(&xdp_ring->tx_lock); 2523 for (j = 0; j < xdp_ring->count; j++) { 2524 tx_desc = ICE_TX_DESC(xdp_ring, j); 2525 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2526 } 2527 } 2528 2529 ice_for_each_rxq(vsi, i) { 2530 if (static_key_enabled(&ice_xdp_locking_key)) 2531 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2532 else 2533 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2534 } 2535 2536 return 0; 2537 2538 free_xdp_rings: 2539 for (; i >= 0; i--) 2540 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2541 ice_free_tx_ring(vsi->xdp_rings[i]); 2542 return -ENOMEM; 2543 } 2544 2545 /** 2546 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2547 * @vsi: VSI to set the bpf prog on 2548 * @prog: the bpf prog pointer 2549 */ 2550 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2551 { 2552 struct bpf_prog *old_prog; 2553 int i; 2554 2555 old_prog = xchg(&vsi->xdp_prog, prog); 2556 if (old_prog) 2557 bpf_prog_put(old_prog); 2558 2559 ice_for_each_rxq(vsi, i) 2560 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2561 } 2562 2563 /** 2564 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2565 * @vsi: VSI to bring up Tx rings used by XDP 2566 * @prog: bpf program that will be assigned to VSI 2567 * 2568 * Return 0 on success and negative value on error 2569 */ 2570 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2571 { 2572 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2573 int xdp_rings_rem = vsi->num_xdp_txq; 2574 struct ice_pf *pf = vsi->back; 2575 struct ice_qs_cfg xdp_qs_cfg = { 2576 .qs_mutex = &pf->avail_q_mutex, 2577 .pf_map = pf->avail_txqs, 2578 .pf_map_size = pf->max_pf_txqs, 2579 .q_count = vsi->num_xdp_txq, 2580 .scatter_count = ICE_MAX_SCATTER_TXQS, 2581 .vsi_map = vsi->txq_map, 2582 .vsi_map_offset = vsi->alloc_txq, 2583 .mapping_mode = ICE_VSI_MAP_CONTIG 2584 }; 2585 struct device *dev; 2586 int i, v_idx; 2587 int status; 2588 2589 dev = ice_pf_to_dev(pf); 2590 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2591 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2592 if (!vsi->xdp_rings) 2593 return -ENOMEM; 2594 2595 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2596 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2597 goto err_map_xdp; 2598 2599 if (static_key_enabled(&ice_xdp_locking_key)) 2600 netdev_warn(vsi->netdev, 2601 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2602 2603 if (ice_xdp_alloc_setup_rings(vsi)) 2604 goto clear_xdp_rings; 2605 2606 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2607 ice_for_each_q_vector(vsi, v_idx) { 2608 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2609 int xdp_rings_per_v, q_id, q_base; 2610 2611 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2612 vsi->num_q_vectors - v_idx); 2613 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2614 2615 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2616 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2617 2618 xdp_ring->q_vector = q_vector; 2619 xdp_ring->next = q_vector->tx.tx_ring; 2620 q_vector->tx.tx_ring = xdp_ring; 2621 } 2622 xdp_rings_rem -= xdp_rings_per_v; 2623 } 2624 2625 /* omit the scheduler update if in reset path; XDP queues will be 2626 * taken into account at the end of ice_vsi_rebuild, where 2627 * ice_cfg_vsi_lan is being called 2628 */ 2629 if (ice_is_reset_in_progress(pf->state)) 2630 return 0; 2631 2632 /* tell the Tx scheduler that right now we have 2633 * additional queues 2634 */ 2635 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2636 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2637 2638 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2639 max_txqs); 2640 if (status) { 2641 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2642 status); 2643 goto clear_xdp_rings; 2644 } 2645 2646 /* assign the prog only when it's not already present on VSI; 2647 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2648 * VSI rebuild that happens under ethtool -L can expose us to 2649 * the bpf_prog refcount issues as we would be swapping same 2650 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2651 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2652 * this is not harmful as dev_xdp_install bumps the refcount 2653 * before calling the op exposed by the driver; 2654 */ 2655 if (!ice_is_xdp_ena_vsi(vsi)) 2656 ice_vsi_assign_bpf_prog(vsi, prog); 2657 2658 return 0; 2659 clear_xdp_rings: 2660 ice_for_each_xdp_txq(vsi, i) 2661 if (vsi->xdp_rings[i]) { 2662 kfree_rcu(vsi->xdp_rings[i], rcu); 2663 vsi->xdp_rings[i] = NULL; 2664 } 2665 2666 err_map_xdp: 2667 mutex_lock(&pf->avail_q_mutex); 2668 ice_for_each_xdp_txq(vsi, i) { 2669 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2670 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2671 } 2672 mutex_unlock(&pf->avail_q_mutex); 2673 2674 devm_kfree(dev, vsi->xdp_rings); 2675 return -ENOMEM; 2676 } 2677 2678 /** 2679 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2680 * @vsi: VSI to remove XDP rings 2681 * 2682 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2683 * resources 2684 */ 2685 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2686 { 2687 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2688 struct ice_pf *pf = vsi->back; 2689 int i, v_idx; 2690 2691 /* q_vectors are freed in reset path so there's no point in detaching 2692 * rings; in case of rebuild being triggered not from reset bits 2693 * in pf->state won't be set, so additionally check first q_vector 2694 * against NULL 2695 */ 2696 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2697 goto free_qmap; 2698 2699 ice_for_each_q_vector(vsi, v_idx) { 2700 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2701 struct ice_tx_ring *ring; 2702 2703 ice_for_each_tx_ring(ring, q_vector->tx) 2704 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2705 break; 2706 2707 /* restore the value of last node prior to XDP setup */ 2708 q_vector->tx.tx_ring = ring; 2709 } 2710 2711 free_qmap: 2712 mutex_lock(&pf->avail_q_mutex); 2713 ice_for_each_xdp_txq(vsi, i) { 2714 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2715 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2716 } 2717 mutex_unlock(&pf->avail_q_mutex); 2718 2719 ice_for_each_xdp_txq(vsi, i) 2720 if (vsi->xdp_rings[i]) { 2721 if (vsi->xdp_rings[i]->desc) 2722 ice_free_tx_ring(vsi->xdp_rings[i]); 2723 kfree_rcu(vsi->xdp_rings[i], rcu); 2724 vsi->xdp_rings[i] = NULL; 2725 } 2726 2727 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2728 vsi->xdp_rings = NULL; 2729 2730 if (static_key_enabled(&ice_xdp_locking_key)) 2731 static_branch_dec(&ice_xdp_locking_key); 2732 2733 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2734 return 0; 2735 2736 ice_vsi_assign_bpf_prog(vsi, NULL); 2737 2738 /* notify Tx scheduler that we destroyed XDP queues and bring 2739 * back the old number of child nodes 2740 */ 2741 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2742 max_txqs[i] = vsi->num_txq; 2743 2744 /* change number of XDP Tx queues to 0 */ 2745 vsi->num_xdp_txq = 0; 2746 2747 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2748 max_txqs); 2749 } 2750 2751 /** 2752 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2753 * @vsi: VSI to schedule napi on 2754 */ 2755 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2756 { 2757 int i; 2758 2759 ice_for_each_rxq(vsi, i) { 2760 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2761 2762 if (rx_ring->xsk_pool) 2763 napi_schedule(&rx_ring->q_vector->napi); 2764 } 2765 } 2766 2767 /** 2768 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2769 * @vsi: VSI to determine the count of XDP Tx qs 2770 * 2771 * returns 0 if Tx qs count is higher than at least half of CPU count, 2772 * -ENOMEM otherwise 2773 */ 2774 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2775 { 2776 u16 avail = ice_get_avail_txq_count(vsi->back); 2777 u16 cpus = num_possible_cpus(); 2778 2779 if (avail < cpus / 2) 2780 return -ENOMEM; 2781 2782 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2783 2784 if (vsi->num_xdp_txq < cpus) 2785 static_branch_inc(&ice_xdp_locking_key); 2786 2787 return 0; 2788 } 2789 2790 /** 2791 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2792 * @vsi: VSI to setup XDP for 2793 * @prog: XDP program 2794 * @extack: netlink extended ack 2795 */ 2796 static int 2797 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2798 struct netlink_ext_ack *extack) 2799 { 2800 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2801 bool if_running = netif_running(vsi->netdev); 2802 int ret = 0, xdp_ring_err = 0; 2803 2804 if (frame_size > vsi->rx_buf_len) { 2805 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2806 return -EOPNOTSUPP; 2807 } 2808 2809 /* need to stop netdev while setting up the program for Rx rings */ 2810 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2811 ret = ice_down(vsi); 2812 if (ret) { 2813 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2814 return ret; 2815 } 2816 } 2817 2818 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2819 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2820 if (xdp_ring_err) { 2821 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2822 } else { 2823 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2824 if (xdp_ring_err) 2825 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2826 } 2827 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2828 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2829 if (xdp_ring_err) 2830 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2831 } else { 2832 /* safe to call even when prog == vsi->xdp_prog as 2833 * dev_xdp_install in net/core/dev.c incremented prog's 2834 * refcount so corresponding bpf_prog_put won't cause 2835 * underflow 2836 */ 2837 ice_vsi_assign_bpf_prog(vsi, prog); 2838 } 2839 2840 if (if_running) 2841 ret = ice_up(vsi); 2842 2843 if (!ret && prog) 2844 ice_vsi_rx_napi_schedule(vsi); 2845 2846 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2847 } 2848 2849 /** 2850 * ice_xdp_safe_mode - XDP handler for safe mode 2851 * @dev: netdevice 2852 * @xdp: XDP command 2853 */ 2854 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2855 struct netdev_bpf *xdp) 2856 { 2857 NL_SET_ERR_MSG_MOD(xdp->extack, 2858 "Please provide working DDP firmware package in order to use XDP\n" 2859 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2860 return -EOPNOTSUPP; 2861 } 2862 2863 /** 2864 * ice_xdp - implements XDP handler 2865 * @dev: netdevice 2866 * @xdp: XDP command 2867 */ 2868 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2869 { 2870 struct ice_netdev_priv *np = netdev_priv(dev); 2871 struct ice_vsi *vsi = np->vsi; 2872 2873 if (vsi->type != ICE_VSI_PF) { 2874 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2875 return -EINVAL; 2876 } 2877 2878 switch (xdp->command) { 2879 case XDP_SETUP_PROG: 2880 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2881 case XDP_SETUP_XSK_POOL: 2882 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2883 xdp->xsk.queue_id); 2884 default: 2885 return -EINVAL; 2886 } 2887 } 2888 2889 /** 2890 * ice_ena_misc_vector - enable the non-queue interrupts 2891 * @pf: board private structure 2892 */ 2893 static void ice_ena_misc_vector(struct ice_pf *pf) 2894 { 2895 struct ice_hw *hw = &pf->hw; 2896 u32 val; 2897 2898 /* Disable anti-spoof detection interrupt to prevent spurious event 2899 * interrupts during a function reset. Anti-spoof functionally is 2900 * still supported. 2901 */ 2902 val = rd32(hw, GL_MDCK_TX_TDPU); 2903 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2904 wr32(hw, GL_MDCK_TX_TDPU, val); 2905 2906 /* clear things first */ 2907 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2908 rd32(hw, PFINT_OICR); /* read to clear */ 2909 2910 val = (PFINT_OICR_ECC_ERR_M | 2911 PFINT_OICR_MAL_DETECT_M | 2912 PFINT_OICR_GRST_M | 2913 PFINT_OICR_PCI_EXCEPTION_M | 2914 PFINT_OICR_VFLR_M | 2915 PFINT_OICR_HMC_ERR_M | 2916 PFINT_OICR_PE_PUSH_M | 2917 PFINT_OICR_PE_CRITERR_M); 2918 2919 wr32(hw, PFINT_OICR_ENA, val); 2920 2921 /* SW_ITR_IDX = 0, but don't change INTENA */ 2922 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2923 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2924 } 2925 2926 /** 2927 * ice_misc_intr - misc interrupt handler 2928 * @irq: interrupt number 2929 * @data: pointer to a q_vector 2930 */ 2931 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2932 { 2933 struct ice_pf *pf = (struct ice_pf *)data; 2934 struct ice_hw *hw = &pf->hw; 2935 irqreturn_t ret = IRQ_NONE; 2936 struct device *dev; 2937 u32 oicr, ena_mask; 2938 2939 dev = ice_pf_to_dev(pf); 2940 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2941 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2942 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2943 2944 oicr = rd32(hw, PFINT_OICR); 2945 ena_mask = rd32(hw, PFINT_OICR_ENA); 2946 2947 if (oicr & PFINT_OICR_SWINT_M) { 2948 ena_mask &= ~PFINT_OICR_SWINT_M; 2949 pf->sw_int_count++; 2950 } 2951 2952 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2953 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2954 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2955 } 2956 if (oicr & PFINT_OICR_VFLR_M) { 2957 /* disable any further VFLR event notifications */ 2958 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2959 u32 reg = rd32(hw, PFINT_OICR_ENA); 2960 2961 reg &= ~PFINT_OICR_VFLR_M; 2962 wr32(hw, PFINT_OICR_ENA, reg); 2963 } else { 2964 ena_mask &= ~PFINT_OICR_VFLR_M; 2965 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2966 } 2967 } 2968 2969 if (oicr & PFINT_OICR_GRST_M) { 2970 u32 reset; 2971 2972 /* we have a reset warning */ 2973 ena_mask &= ~PFINT_OICR_GRST_M; 2974 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2975 GLGEN_RSTAT_RESET_TYPE_S; 2976 2977 if (reset == ICE_RESET_CORER) 2978 pf->corer_count++; 2979 else if (reset == ICE_RESET_GLOBR) 2980 pf->globr_count++; 2981 else if (reset == ICE_RESET_EMPR) 2982 pf->empr_count++; 2983 else 2984 dev_dbg(dev, "Invalid reset type %d\n", reset); 2985 2986 /* If a reset cycle isn't already in progress, we set a bit in 2987 * pf->state so that the service task can start a reset/rebuild. 2988 */ 2989 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2990 if (reset == ICE_RESET_CORER) 2991 set_bit(ICE_CORER_RECV, pf->state); 2992 else if (reset == ICE_RESET_GLOBR) 2993 set_bit(ICE_GLOBR_RECV, pf->state); 2994 else 2995 set_bit(ICE_EMPR_RECV, pf->state); 2996 2997 /* There are couple of different bits at play here. 2998 * hw->reset_ongoing indicates whether the hardware is 2999 * in reset. This is set to true when a reset interrupt 3000 * is received and set back to false after the driver 3001 * has determined that the hardware is out of reset. 3002 * 3003 * ICE_RESET_OICR_RECV in pf->state indicates 3004 * that a post reset rebuild is required before the 3005 * driver is operational again. This is set above. 3006 * 3007 * As this is the start of the reset/rebuild cycle, set 3008 * both to indicate that. 3009 */ 3010 hw->reset_ongoing = true; 3011 } 3012 } 3013 3014 if (oicr & PFINT_OICR_TSYN_TX_M) { 3015 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3016 ice_ptp_process_ts(pf); 3017 } 3018 3019 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3020 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3021 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3022 3023 /* Save EVENTs from GTSYN register */ 3024 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3025 GLTSYN_STAT_EVENT1_M | 3026 GLTSYN_STAT_EVENT2_M); 3027 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3028 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3029 } 3030 3031 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3032 if (oicr & ICE_AUX_CRIT_ERR) { 3033 struct iidc_event *event; 3034 3035 ena_mask &= ~ICE_AUX_CRIT_ERR; 3036 event = kzalloc(sizeof(*event), GFP_KERNEL); 3037 if (event) { 3038 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3039 /* report the entire OICR value to AUX driver */ 3040 event->reg = oicr; 3041 ice_send_event_to_aux(pf, event); 3042 kfree(event); 3043 } 3044 } 3045 3046 /* Report any remaining unexpected interrupts */ 3047 oicr &= ena_mask; 3048 if (oicr) { 3049 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3050 /* If a critical error is pending there is no choice but to 3051 * reset the device. 3052 */ 3053 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3054 PFINT_OICR_ECC_ERR_M)) { 3055 set_bit(ICE_PFR_REQ, pf->state); 3056 ice_service_task_schedule(pf); 3057 } 3058 } 3059 ret = IRQ_HANDLED; 3060 3061 ice_service_task_schedule(pf); 3062 ice_irq_dynamic_ena(hw, NULL, NULL); 3063 3064 return ret; 3065 } 3066 3067 /** 3068 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3069 * @hw: pointer to HW structure 3070 */ 3071 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3072 { 3073 /* disable Admin queue Interrupt causes */ 3074 wr32(hw, PFINT_FW_CTL, 3075 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3076 3077 /* disable Mailbox queue Interrupt causes */ 3078 wr32(hw, PFINT_MBX_CTL, 3079 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3080 3081 wr32(hw, PFINT_SB_CTL, 3082 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3083 3084 /* disable Control queue Interrupt causes */ 3085 wr32(hw, PFINT_OICR_CTL, 3086 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3087 3088 ice_flush(hw); 3089 } 3090 3091 /** 3092 * ice_free_irq_msix_misc - Unroll misc vector setup 3093 * @pf: board private structure 3094 */ 3095 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3096 { 3097 struct ice_hw *hw = &pf->hw; 3098 3099 ice_dis_ctrlq_interrupts(hw); 3100 3101 /* disable OICR interrupt */ 3102 wr32(hw, PFINT_OICR_ENA, 0); 3103 ice_flush(hw); 3104 3105 if (pf->msix_entries) { 3106 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3107 devm_free_irq(ice_pf_to_dev(pf), 3108 pf->msix_entries[pf->oicr_idx].vector, pf); 3109 } 3110 3111 pf->num_avail_sw_msix += 1; 3112 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3113 } 3114 3115 /** 3116 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3117 * @hw: pointer to HW structure 3118 * @reg_idx: HW vector index to associate the control queue interrupts with 3119 */ 3120 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3121 { 3122 u32 val; 3123 3124 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3125 PFINT_OICR_CTL_CAUSE_ENA_M); 3126 wr32(hw, PFINT_OICR_CTL, val); 3127 3128 /* enable Admin queue Interrupt causes */ 3129 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3130 PFINT_FW_CTL_CAUSE_ENA_M); 3131 wr32(hw, PFINT_FW_CTL, val); 3132 3133 /* enable Mailbox queue Interrupt causes */ 3134 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3135 PFINT_MBX_CTL_CAUSE_ENA_M); 3136 wr32(hw, PFINT_MBX_CTL, val); 3137 3138 /* This enables Sideband queue Interrupt causes */ 3139 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3140 PFINT_SB_CTL_CAUSE_ENA_M); 3141 wr32(hw, PFINT_SB_CTL, val); 3142 3143 ice_flush(hw); 3144 } 3145 3146 /** 3147 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3148 * @pf: board private structure 3149 * 3150 * This sets up the handler for MSIX 0, which is used to manage the 3151 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3152 * when in MSI or Legacy interrupt mode. 3153 */ 3154 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3155 { 3156 struct device *dev = ice_pf_to_dev(pf); 3157 struct ice_hw *hw = &pf->hw; 3158 int oicr_idx, err = 0; 3159 3160 if (!pf->int_name[0]) 3161 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3162 dev_driver_string(dev), dev_name(dev)); 3163 3164 /* Do not request IRQ but do enable OICR interrupt since settings are 3165 * lost during reset. Note that this function is called only during 3166 * rebuild path and not while reset is in progress. 3167 */ 3168 if (ice_is_reset_in_progress(pf->state)) 3169 goto skip_req_irq; 3170 3171 /* reserve one vector in irq_tracker for misc interrupts */ 3172 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3173 if (oicr_idx < 0) 3174 return oicr_idx; 3175 3176 pf->num_avail_sw_msix -= 1; 3177 pf->oicr_idx = (u16)oicr_idx; 3178 3179 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3180 ice_misc_intr, 0, pf->int_name, pf); 3181 if (err) { 3182 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3183 pf->int_name, err); 3184 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3185 pf->num_avail_sw_msix += 1; 3186 return err; 3187 } 3188 3189 skip_req_irq: 3190 ice_ena_misc_vector(pf); 3191 3192 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3193 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3194 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3195 3196 ice_flush(hw); 3197 ice_irq_dynamic_ena(hw, NULL, NULL); 3198 3199 return 0; 3200 } 3201 3202 /** 3203 * ice_napi_add - register NAPI handler for the VSI 3204 * @vsi: VSI for which NAPI handler is to be registered 3205 * 3206 * This function is only called in the driver's load path. Registering the NAPI 3207 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3208 * reset/rebuild, etc.) 3209 */ 3210 static void ice_napi_add(struct ice_vsi *vsi) 3211 { 3212 int v_idx; 3213 3214 if (!vsi->netdev) 3215 return; 3216 3217 ice_for_each_q_vector(vsi, v_idx) 3218 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3219 ice_napi_poll, NAPI_POLL_WEIGHT); 3220 } 3221 3222 /** 3223 * ice_set_ops - set netdev and ethtools ops for the given netdev 3224 * @netdev: netdev instance 3225 */ 3226 static void ice_set_ops(struct net_device *netdev) 3227 { 3228 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3229 3230 if (ice_is_safe_mode(pf)) { 3231 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3232 ice_set_ethtool_safe_mode_ops(netdev); 3233 return; 3234 } 3235 3236 netdev->netdev_ops = &ice_netdev_ops; 3237 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3238 ice_set_ethtool_ops(netdev); 3239 } 3240 3241 /** 3242 * ice_set_netdev_features - set features for the given netdev 3243 * @netdev: netdev instance 3244 */ 3245 static void ice_set_netdev_features(struct net_device *netdev) 3246 { 3247 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3248 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3249 netdev_features_t csumo_features; 3250 netdev_features_t vlano_features; 3251 netdev_features_t dflt_features; 3252 netdev_features_t tso_features; 3253 3254 if (ice_is_safe_mode(pf)) { 3255 /* safe mode */ 3256 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3257 netdev->hw_features = netdev->features; 3258 return; 3259 } 3260 3261 dflt_features = NETIF_F_SG | 3262 NETIF_F_HIGHDMA | 3263 NETIF_F_NTUPLE | 3264 NETIF_F_RXHASH; 3265 3266 csumo_features = NETIF_F_RXCSUM | 3267 NETIF_F_IP_CSUM | 3268 NETIF_F_SCTP_CRC | 3269 NETIF_F_IPV6_CSUM; 3270 3271 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3272 NETIF_F_HW_VLAN_CTAG_TX | 3273 NETIF_F_HW_VLAN_CTAG_RX; 3274 3275 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3276 if (is_dvm_ena) 3277 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3278 3279 tso_features = NETIF_F_TSO | 3280 NETIF_F_TSO_ECN | 3281 NETIF_F_TSO6 | 3282 NETIF_F_GSO_GRE | 3283 NETIF_F_GSO_UDP_TUNNEL | 3284 NETIF_F_GSO_GRE_CSUM | 3285 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3286 NETIF_F_GSO_PARTIAL | 3287 NETIF_F_GSO_IPXIP4 | 3288 NETIF_F_GSO_IPXIP6 | 3289 NETIF_F_GSO_UDP_L4; 3290 3291 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3292 NETIF_F_GSO_GRE_CSUM; 3293 /* set features that user can change */ 3294 netdev->hw_features = dflt_features | csumo_features | 3295 vlano_features | tso_features; 3296 3297 /* add support for HW_CSUM on packets with MPLS header */ 3298 netdev->mpls_features = NETIF_F_HW_CSUM; 3299 3300 /* enable features */ 3301 netdev->features |= netdev->hw_features; 3302 3303 netdev->hw_features |= NETIF_F_HW_TC; 3304 3305 /* encap and VLAN devices inherit default, csumo and tso features */ 3306 netdev->hw_enc_features |= dflt_features | csumo_features | 3307 tso_features; 3308 netdev->vlan_features |= dflt_features | csumo_features | 3309 tso_features; 3310 3311 /* advertise support but don't enable by default since only one type of 3312 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3313 * type turns on the other has to be turned off. This is enforced by the 3314 * ice_fix_features() ndo callback. 3315 */ 3316 if (is_dvm_ena) 3317 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3318 NETIF_F_HW_VLAN_STAG_TX; 3319 } 3320 3321 /** 3322 * ice_cfg_netdev - Allocate, configure and register a netdev 3323 * @vsi: the VSI associated with the new netdev 3324 * 3325 * Returns 0 on success, negative value on failure 3326 */ 3327 static int ice_cfg_netdev(struct ice_vsi *vsi) 3328 { 3329 struct ice_netdev_priv *np; 3330 struct net_device *netdev; 3331 u8 mac_addr[ETH_ALEN]; 3332 3333 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3334 vsi->alloc_rxq); 3335 if (!netdev) 3336 return -ENOMEM; 3337 3338 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3339 vsi->netdev = netdev; 3340 np = netdev_priv(netdev); 3341 np->vsi = vsi; 3342 3343 ice_set_netdev_features(netdev); 3344 3345 ice_set_ops(netdev); 3346 3347 if (vsi->type == ICE_VSI_PF) { 3348 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3349 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3350 eth_hw_addr_set(netdev, mac_addr); 3351 ether_addr_copy(netdev->perm_addr, mac_addr); 3352 } 3353 3354 netdev->priv_flags |= IFF_UNICAST_FLT; 3355 3356 /* Setup netdev TC information */ 3357 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3358 3359 /* setup watchdog timeout value to be 5 second */ 3360 netdev->watchdog_timeo = 5 * HZ; 3361 3362 netdev->min_mtu = ETH_MIN_MTU; 3363 netdev->max_mtu = ICE_MAX_MTU; 3364 3365 return 0; 3366 } 3367 3368 /** 3369 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3370 * @lut: Lookup table 3371 * @rss_table_size: Lookup table size 3372 * @rss_size: Range of queue number for hashing 3373 */ 3374 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3375 { 3376 u16 i; 3377 3378 for (i = 0; i < rss_table_size; i++) 3379 lut[i] = i % rss_size; 3380 } 3381 3382 /** 3383 * ice_pf_vsi_setup - Set up a PF VSI 3384 * @pf: board private structure 3385 * @pi: pointer to the port_info instance 3386 * 3387 * Returns pointer to the successfully allocated VSI software struct 3388 * on success, otherwise returns NULL on failure. 3389 */ 3390 static struct ice_vsi * 3391 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3392 { 3393 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL); 3394 } 3395 3396 static struct ice_vsi * 3397 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3398 struct ice_channel *ch) 3399 { 3400 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch); 3401 } 3402 3403 /** 3404 * ice_ctrl_vsi_setup - Set up a control VSI 3405 * @pf: board private structure 3406 * @pi: pointer to the port_info instance 3407 * 3408 * Returns pointer to the successfully allocated VSI software struct 3409 * on success, otherwise returns NULL on failure. 3410 */ 3411 static struct ice_vsi * 3412 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3413 { 3414 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL); 3415 } 3416 3417 /** 3418 * ice_lb_vsi_setup - Set up a loopback VSI 3419 * @pf: board private structure 3420 * @pi: pointer to the port_info instance 3421 * 3422 * Returns pointer to the successfully allocated VSI software struct 3423 * on success, otherwise returns NULL on failure. 3424 */ 3425 struct ice_vsi * 3426 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3427 { 3428 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL); 3429 } 3430 3431 /** 3432 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3433 * @netdev: network interface to be adjusted 3434 * @proto: VLAN TPID 3435 * @vid: VLAN ID to be added 3436 * 3437 * net_device_ops implementation for adding VLAN IDs 3438 */ 3439 static int 3440 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3441 { 3442 struct ice_netdev_priv *np = netdev_priv(netdev); 3443 struct ice_vsi_vlan_ops *vlan_ops; 3444 struct ice_vsi *vsi = np->vsi; 3445 struct ice_vlan vlan; 3446 int ret; 3447 3448 /* VLAN 0 is added by default during load/reset */ 3449 if (!vid) 3450 return 0; 3451 3452 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3453 3454 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3455 * packets aren't pruned by the device's internal switch on Rx 3456 */ 3457 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3458 ret = vlan_ops->add_vlan(vsi, &vlan); 3459 if (!ret) 3460 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3461 3462 return ret; 3463 } 3464 3465 /** 3466 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3467 * @netdev: network interface to be adjusted 3468 * @proto: VLAN TPID 3469 * @vid: VLAN ID to be removed 3470 * 3471 * net_device_ops implementation for removing VLAN IDs 3472 */ 3473 static int 3474 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3475 { 3476 struct ice_netdev_priv *np = netdev_priv(netdev); 3477 struct ice_vsi_vlan_ops *vlan_ops; 3478 struct ice_vsi *vsi = np->vsi; 3479 struct ice_vlan vlan; 3480 int ret; 3481 3482 /* don't allow removal of VLAN 0 */ 3483 if (!vid) 3484 return 0; 3485 3486 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3487 3488 /* Make sure VLAN delete is successful before updating VLAN 3489 * information 3490 */ 3491 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3492 ret = vlan_ops->del_vlan(vsi, &vlan); 3493 if (ret) 3494 return ret; 3495 3496 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3497 return 0; 3498 } 3499 3500 /** 3501 * ice_rep_indr_tc_block_unbind 3502 * @cb_priv: indirection block private data 3503 */ 3504 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3505 { 3506 struct ice_indr_block_priv *indr_priv = cb_priv; 3507 3508 list_del(&indr_priv->list); 3509 kfree(indr_priv); 3510 } 3511 3512 /** 3513 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3514 * @vsi: VSI struct which has the netdev 3515 */ 3516 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3517 { 3518 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3519 3520 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3521 ice_rep_indr_tc_block_unbind); 3522 } 3523 3524 /** 3525 * ice_tc_indir_block_remove - clean indirect TC block notifications 3526 * @pf: PF structure 3527 */ 3528 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3529 { 3530 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3531 3532 if (!pf_vsi) 3533 return; 3534 3535 ice_tc_indir_block_unregister(pf_vsi); 3536 } 3537 3538 /** 3539 * ice_tc_indir_block_register - Register TC indirect block notifications 3540 * @vsi: VSI struct which has the netdev 3541 * 3542 * Returns 0 on success, negative value on failure 3543 */ 3544 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3545 { 3546 struct ice_netdev_priv *np; 3547 3548 if (!vsi || !vsi->netdev) 3549 return -EINVAL; 3550 3551 np = netdev_priv(vsi->netdev); 3552 3553 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3554 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3555 } 3556 3557 /** 3558 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3559 * @pf: board private structure 3560 * 3561 * Returns 0 on success, negative value on failure 3562 */ 3563 static int ice_setup_pf_sw(struct ice_pf *pf) 3564 { 3565 struct device *dev = ice_pf_to_dev(pf); 3566 bool dvm = ice_is_dvm_ena(&pf->hw); 3567 struct ice_vsi *vsi; 3568 int status; 3569 3570 if (ice_is_reset_in_progress(pf->state)) 3571 return -EBUSY; 3572 3573 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3574 if (status) 3575 return -EIO; 3576 3577 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3578 if (!vsi) 3579 return -ENOMEM; 3580 3581 /* init channel list */ 3582 INIT_LIST_HEAD(&vsi->ch_list); 3583 3584 status = ice_cfg_netdev(vsi); 3585 if (status) 3586 goto unroll_vsi_setup; 3587 /* netdev has to be configured before setting frame size */ 3588 ice_vsi_cfg_frame_size(vsi); 3589 3590 /* init indirect block notifications */ 3591 status = ice_tc_indir_block_register(vsi); 3592 if (status) { 3593 dev_err(dev, "Failed to register netdev notifier\n"); 3594 goto unroll_cfg_netdev; 3595 } 3596 3597 /* Setup DCB netlink interface */ 3598 ice_dcbnl_setup(vsi); 3599 3600 /* registering the NAPI handler requires both the queues and 3601 * netdev to be created, which are done in ice_pf_vsi_setup() 3602 * and ice_cfg_netdev() respectively 3603 */ 3604 ice_napi_add(vsi); 3605 3606 status = ice_set_cpu_rx_rmap(vsi); 3607 if (status) { 3608 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3609 vsi->vsi_num, status); 3610 goto unroll_napi_add; 3611 } 3612 status = ice_init_mac_fltr(pf); 3613 if (status) 3614 goto free_cpu_rx_map; 3615 3616 return 0; 3617 3618 free_cpu_rx_map: 3619 ice_free_cpu_rx_rmap(vsi); 3620 unroll_napi_add: 3621 ice_tc_indir_block_unregister(vsi); 3622 unroll_cfg_netdev: 3623 if (vsi) { 3624 ice_napi_del(vsi); 3625 if (vsi->netdev) { 3626 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3627 free_netdev(vsi->netdev); 3628 vsi->netdev = NULL; 3629 } 3630 } 3631 3632 unroll_vsi_setup: 3633 ice_vsi_release(vsi); 3634 return status; 3635 } 3636 3637 /** 3638 * ice_get_avail_q_count - Get count of queues in use 3639 * @pf_qmap: bitmap to get queue use count from 3640 * @lock: pointer to a mutex that protects access to pf_qmap 3641 * @size: size of the bitmap 3642 */ 3643 static u16 3644 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3645 { 3646 unsigned long bit; 3647 u16 count = 0; 3648 3649 mutex_lock(lock); 3650 for_each_clear_bit(bit, pf_qmap, size) 3651 count++; 3652 mutex_unlock(lock); 3653 3654 return count; 3655 } 3656 3657 /** 3658 * ice_get_avail_txq_count - Get count of Tx queues in use 3659 * @pf: pointer to an ice_pf instance 3660 */ 3661 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3662 { 3663 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3664 pf->max_pf_txqs); 3665 } 3666 3667 /** 3668 * ice_get_avail_rxq_count - Get count of Rx queues in use 3669 * @pf: pointer to an ice_pf instance 3670 */ 3671 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3672 { 3673 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3674 pf->max_pf_rxqs); 3675 } 3676 3677 /** 3678 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3679 * @pf: board private structure to initialize 3680 */ 3681 static void ice_deinit_pf(struct ice_pf *pf) 3682 { 3683 ice_service_task_stop(pf); 3684 mutex_destroy(&pf->sw_mutex); 3685 mutex_destroy(&pf->tc_mutex); 3686 mutex_destroy(&pf->avail_q_mutex); 3687 mutex_destroy(&pf->vfs.table_lock); 3688 3689 if (pf->avail_txqs) { 3690 bitmap_free(pf->avail_txqs); 3691 pf->avail_txqs = NULL; 3692 } 3693 3694 if (pf->avail_rxqs) { 3695 bitmap_free(pf->avail_rxqs); 3696 pf->avail_rxqs = NULL; 3697 } 3698 3699 if (pf->ptp.clock) 3700 ptp_clock_unregister(pf->ptp.clock); 3701 } 3702 3703 /** 3704 * ice_set_pf_caps - set PFs capability flags 3705 * @pf: pointer to the PF instance 3706 */ 3707 static void ice_set_pf_caps(struct ice_pf *pf) 3708 { 3709 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3710 3711 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3712 if (func_caps->common_cap.rdma) 3713 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3714 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3715 if (func_caps->common_cap.dcb) 3716 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3717 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3718 if (func_caps->common_cap.sr_iov_1_1) { 3719 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3720 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3721 ICE_MAX_VF_COUNT); 3722 } 3723 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3724 if (func_caps->common_cap.rss_table_size) 3725 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3726 3727 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3728 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3729 u16 unused; 3730 3731 /* ctrl_vsi_idx will be set to a valid value when flow director 3732 * is setup by ice_init_fdir 3733 */ 3734 pf->ctrl_vsi_idx = ICE_NO_VSI; 3735 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3736 /* force guaranteed filter pool for PF */ 3737 ice_alloc_fd_guar_item(&pf->hw, &unused, 3738 func_caps->fd_fltr_guar); 3739 /* force shared filter pool for PF */ 3740 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3741 func_caps->fd_fltr_best_effort); 3742 } 3743 3744 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3745 if (func_caps->common_cap.ieee_1588) 3746 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3747 3748 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3749 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3750 } 3751 3752 /** 3753 * ice_init_pf - Initialize general software structures (struct ice_pf) 3754 * @pf: board private structure to initialize 3755 */ 3756 static int ice_init_pf(struct ice_pf *pf) 3757 { 3758 ice_set_pf_caps(pf); 3759 3760 mutex_init(&pf->sw_mutex); 3761 mutex_init(&pf->tc_mutex); 3762 3763 INIT_HLIST_HEAD(&pf->aq_wait_list); 3764 spin_lock_init(&pf->aq_wait_lock); 3765 init_waitqueue_head(&pf->aq_wait_queue); 3766 3767 init_waitqueue_head(&pf->reset_wait_queue); 3768 3769 /* setup service timer and periodic service task */ 3770 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3771 pf->serv_tmr_period = HZ; 3772 INIT_WORK(&pf->serv_task, ice_service_task); 3773 clear_bit(ICE_SERVICE_SCHED, pf->state); 3774 3775 mutex_init(&pf->avail_q_mutex); 3776 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3777 if (!pf->avail_txqs) 3778 return -ENOMEM; 3779 3780 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3781 if (!pf->avail_rxqs) { 3782 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3783 pf->avail_txqs = NULL; 3784 return -ENOMEM; 3785 } 3786 3787 mutex_init(&pf->vfs.table_lock); 3788 hash_init(pf->vfs.table); 3789 3790 return 0; 3791 } 3792 3793 /** 3794 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3795 * @pf: board private structure 3796 * 3797 * compute the number of MSIX vectors required (v_budget) and request from 3798 * the OS. Return the number of vectors reserved or negative on failure 3799 */ 3800 static int ice_ena_msix_range(struct ice_pf *pf) 3801 { 3802 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3803 struct device *dev = ice_pf_to_dev(pf); 3804 int needed, err, i; 3805 3806 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3807 num_cpus = num_online_cpus(); 3808 3809 /* reserve for LAN miscellaneous handler */ 3810 needed = ICE_MIN_LAN_OICR_MSIX; 3811 if (v_left < needed) 3812 goto no_hw_vecs_left_err; 3813 v_budget += needed; 3814 v_left -= needed; 3815 3816 /* reserve for flow director */ 3817 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3818 needed = ICE_FDIR_MSIX; 3819 if (v_left < needed) 3820 goto no_hw_vecs_left_err; 3821 v_budget += needed; 3822 v_left -= needed; 3823 } 3824 3825 /* reserve for switchdev */ 3826 needed = ICE_ESWITCH_MSIX; 3827 if (v_left < needed) 3828 goto no_hw_vecs_left_err; 3829 v_budget += needed; 3830 v_left -= needed; 3831 3832 /* total used for non-traffic vectors */ 3833 v_other = v_budget; 3834 3835 /* reserve vectors for LAN traffic */ 3836 needed = num_cpus; 3837 if (v_left < needed) 3838 goto no_hw_vecs_left_err; 3839 pf->num_lan_msix = needed; 3840 v_budget += needed; 3841 v_left -= needed; 3842 3843 /* reserve vectors for RDMA auxiliary driver */ 3844 if (ice_is_rdma_ena(pf)) { 3845 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3846 if (v_left < needed) 3847 goto no_hw_vecs_left_err; 3848 pf->num_rdma_msix = needed; 3849 v_budget += needed; 3850 v_left -= needed; 3851 } 3852 3853 pf->msix_entries = devm_kcalloc(dev, v_budget, 3854 sizeof(*pf->msix_entries), GFP_KERNEL); 3855 if (!pf->msix_entries) { 3856 err = -ENOMEM; 3857 goto exit_err; 3858 } 3859 3860 for (i = 0; i < v_budget; i++) 3861 pf->msix_entries[i].entry = i; 3862 3863 /* actually reserve the vectors */ 3864 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3865 ICE_MIN_MSIX, v_budget); 3866 if (v_actual < 0) { 3867 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3868 err = v_actual; 3869 goto msix_err; 3870 } 3871 3872 if (v_actual < v_budget) { 3873 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3874 v_budget, v_actual); 3875 3876 if (v_actual < ICE_MIN_MSIX) { 3877 /* error if we can't get minimum vectors */ 3878 pci_disable_msix(pf->pdev); 3879 err = -ERANGE; 3880 goto msix_err; 3881 } else { 3882 int v_remain = v_actual - v_other; 3883 int v_rdma = 0, v_min_rdma = 0; 3884 3885 if (ice_is_rdma_ena(pf)) { 3886 /* Need at least 1 interrupt in addition to 3887 * AEQ MSIX 3888 */ 3889 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3890 v_min_rdma = ICE_MIN_RDMA_MSIX; 3891 } 3892 3893 if (v_actual == ICE_MIN_MSIX || 3894 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3895 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3896 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3897 3898 pf->num_rdma_msix = 0; 3899 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3900 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3901 (v_remain - v_rdma < v_rdma)) { 3902 /* Support minimum RDMA and give remaining 3903 * vectors to LAN MSIX 3904 */ 3905 pf->num_rdma_msix = v_min_rdma; 3906 pf->num_lan_msix = v_remain - v_min_rdma; 3907 } else { 3908 /* Split remaining MSIX with RDMA after 3909 * accounting for AEQ MSIX 3910 */ 3911 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3912 ICE_RDMA_NUM_AEQ_MSIX; 3913 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3914 } 3915 3916 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3917 pf->num_lan_msix); 3918 3919 if (ice_is_rdma_ena(pf)) 3920 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3921 pf->num_rdma_msix); 3922 } 3923 } 3924 3925 return v_actual; 3926 3927 msix_err: 3928 devm_kfree(dev, pf->msix_entries); 3929 goto exit_err; 3930 3931 no_hw_vecs_left_err: 3932 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3933 needed, v_left); 3934 err = -ERANGE; 3935 exit_err: 3936 pf->num_rdma_msix = 0; 3937 pf->num_lan_msix = 0; 3938 return err; 3939 } 3940 3941 /** 3942 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3943 * @pf: board private structure 3944 */ 3945 static void ice_dis_msix(struct ice_pf *pf) 3946 { 3947 pci_disable_msix(pf->pdev); 3948 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3949 pf->msix_entries = NULL; 3950 } 3951 3952 /** 3953 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3954 * @pf: board private structure 3955 */ 3956 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3957 { 3958 ice_dis_msix(pf); 3959 3960 if (pf->irq_tracker) { 3961 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3962 pf->irq_tracker = NULL; 3963 } 3964 } 3965 3966 /** 3967 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3968 * @pf: board private structure to initialize 3969 */ 3970 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3971 { 3972 int vectors; 3973 3974 vectors = ice_ena_msix_range(pf); 3975 3976 if (vectors < 0) 3977 return vectors; 3978 3979 /* set up vector assignment tracking */ 3980 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3981 struct_size(pf->irq_tracker, list, vectors), 3982 GFP_KERNEL); 3983 if (!pf->irq_tracker) { 3984 ice_dis_msix(pf); 3985 return -ENOMEM; 3986 } 3987 3988 /* populate SW interrupts pool with number of OS granted IRQs. */ 3989 pf->num_avail_sw_msix = (u16)vectors; 3990 pf->irq_tracker->num_entries = (u16)vectors; 3991 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3992 3993 return 0; 3994 } 3995 3996 /** 3997 * ice_is_wol_supported - check if WoL is supported 3998 * @hw: pointer to hardware info 3999 * 4000 * Check if WoL is supported based on the HW configuration. 4001 * Returns true if NVM supports and enables WoL for this port, false otherwise 4002 */ 4003 bool ice_is_wol_supported(struct ice_hw *hw) 4004 { 4005 u16 wol_ctrl; 4006 4007 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4008 * word) indicates WoL is not supported on the corresponding PF ID. 4009 */ 4010 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4011 return false; 4012 4013 return !(BIT(hw->port_info->lport) & wol_ctrl); 4014 } 4015 4016 /** 4017 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4018 * @vsi: VSI being changed 4019 * @new_rx: new number of Rx queues 4020 * @new_tx: new number of Tx queues 4021 * 4022 * Only change the number of queues if new_tx, or new_rx is non-0. 4023 * 4024 * Returns 0 on success. 4025 */ 4026 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4027 { 4028 struct ice_pf *pf = vsi->back; 4029 int err = 0, timeout = 50; 4030 4031 if (!new_rx && !new_tx) 4032 return -EINVAL; 4033 4034 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4035 timeout--; 4036 if (!timeout) 4037 return -EBUSY; 4038 usleep_range(1000, 2000); 4039 } 4040 4041 if (new_tx) 4042 vsi->req_txq = (u16)new_tx; 4043 if (new_rx) 4044 vsi->req_rxq = (u16)new_rx; 4045 4046 /* set for the next time the netdev is started */ 4047 if (!netif_running(vsi->netdev)) { 4048 ice_vsi_rebuild(vsi, false); 4049 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4050 goto done; 4051 } 4052 4053 ice_vsi_close(vsi); 4054 ice_vsi_rebuild(vsi, false); 4055 ice_pf_dcb_recfg(pf); 4056 ice_vsi_open(vsi); 4057 done: 4058 clear_bit(ICE_CFG_BUSY, pf->state); 4059 return err; 4060 } 4061 4062 /** 4063 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4064 * @pf: PF to configure 4065 * 4066 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4067 * VSI can still Tx/Rx VLAN tagged packets. 4068 */ 4069 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4070 { 4071 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4072 struct ice_vsi_ctx *ctxt; 4073 struct ice_hw *hw; 4074 int status; 4075 4076 if (!vsi) 4077 return; 4078 4079 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4080 if (!ctxt) 4081 return; 4082 4083 hw = &pf->hw; 4084 ctxt->info = vsi->info; 4085 4086 ctxt->info.valid_sections = 4087 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4088 ICE_AQ_VSI_PROP_SECURITY_VALID | 4089 ICE_AQ_VSI_PROP_SW_VALID); 4090 4091 /* disable VLAN anti-spoof */ 4092 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4093 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4094 4095 /* disable VLAN pruning and keep all other settings */ 4096 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4097 4098 /* allow all VLANs on Tx and don't strip on Rx */ 4099 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4100 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4101 4102 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4103 if (status) { 4104 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4105 status, ice_aq_str(hw->adminq.sq_last_status)); 4106 } else { 4107 vsi->info.sec_flags = ctxt->info.sec_flags; 4108 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4109 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4110 } 4111 4112 kfree(ctxt); 4113 } 4114 4115 /** 4116 * ice_log_pkg_init - log result of DDP package load 4117 * @hw: pointer to hardware info 4118 * @state: state of package load 4119 */ 4120 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4121 { 4122 struct ice_pf *pf = hw->back; 4123 struct device *dev; 4124 4125 dev = ice_pf_to_dev(pf); 4126 4127 switch (state) { 4128 case ICE_DDP_PKG_SUCCESS: 4129 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4130 hw->active_pkg_name, 4131 hw->active_pkg_ver.major, 4132 hw->active_pkg_ver.minor, 4133 hw->active_pkg_ver.update, 4134 hw->active_pkg_ver.draft); 4135 break; 4136 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4137 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4138 hw->active_pkg_name, 4139 hw->active_pkg_ver.major, 4140 hw->active_pkg_ver.minor, 4141 hw->active_pkg_ver.update, 4142 hw->active_pkg_ver.draft); 4143 break; 4144 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4145 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4146 hw->active_pkg_name, 4147 hw->active_pkg_ver.major, 4148 hw->active_pkg_ver.minor, 4149 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4150 break; 4151 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4152 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4153 hw->active_pkg_name, 4154 hw->active_pkg_ver.major, 4155 hw->active_pkg_ver.minor, 4156 hw->active_pkg_ver.update, 4157 hw->active_pkg_ver.draft, 4158 hw->pkg_name, 4159 hw->pkg_ver.major, 4160 hw->pkg_ver.minor, 4161 hw->pkg_ver.update, 4162 hw->pkg_ver.draft); 4163 break; 4164 case ICE_DDP_PKG_FW_MISMATCH: 4165 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4166 break; 4167 case ICE_DDP_PKG_INVALID_FILE: 4168 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4169 break; 4170 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4171 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4172 break; 4173 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4174 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4175 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4176 break; 4177 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4178 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4179 break; 4180 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4181 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4182 break; 4183 case ICE_DDP_PKG_LOAD_ERROR: 4184 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4185 /* poll for reset to complete */ 4186 if (ice_check_reset(hw)) 4187 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4188 break; 4189 case ICE_DDP_PKG_ERR: 4190 default: 4191 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4192 break; 4193 } 4194 } 4195 4196 /** 4197 * ice_load_pkg - load/reload the DDP Package file 4198 * @firmware: firmware structure when firmware requested or NULL for reload 4199 * @pf: pointer to the PF instance 4200 * 4201 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4202 * initialize HW tables. 4203 */ 4204 static void 4205 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4206 { 4207 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4208 struct device *dev = ice_pf_to_dev(pf); 4209 struct ice_hw *hw = &pf->hw; 4210 4211 /* Load DDP Package */ 4212 if (firmware && !hw->pkg_copy) { 4213 state = ice_copy_and_init_pkg(hw, firmware->data, 4214 firmware->size); 4215 ice_log_pkg_init(hw, state); 4216 } else if (!firmware && hw->pkg_copy) { 4217 /* Reload package during rebuild after CORER/GLOBR reset */ 4218 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4219 ice_log_pkg_init(hw, state); 4220 } else { 4221 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4222 } 4223 4224 if (!ice_is_init_pkg_successful(state)) { 4225 /* Safe Mode */ 4226 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4227 return; 4228 } 4229 4230 /* Successful download package is the precondition for advanced 4231 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4232 */ 4233 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4234 } 4235 4236 /** 4237 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4238 * @pf: pointer to the PF structure 4239 * 4240 * There is no error returned here because the driver should be able to handle 4241 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4242 * specifically with Tx. 4243 */ 4244 static void ice_verify_cacheline_size(struct ice_pf *pf) 4245 { 4246 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4247 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4248 ICE_CACHE_LINE_BYTES); 4249 } 4250 4251 /** 4252 * ice_send_version - update firmware with driver version 4253 * @pf: PF struct 4254 * 4255 * Returns 0 on success, else error code 4256 */ 4257 static int ice_send_version(struct ice_pf *pf) 4258 { 4259 struct ice_driver_ver dv; 4260 4261 dv.major_ver = 0xff; 4262 dv.minor_ver = 0xff; 4263 dv.build_ver = 0xff; 4264 dv.subbuild_ver = 0; 4265 strscpy((char *)dv.driver_string, UTS_RELEASE, 4266 sizeof(dv.driver_string)); 4267 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4268 } 4269 4270 /** 4271 * ice_init_fdir - Initialize flow director VSI and configuration 4272 * @pf: pointer to the PF instance 4273 * 4274 * returns 0 on success, negative on error 4275 */ 4276 static int ice_init_fdir(struct ice_pf *pf) 4277 { 4278 struct device *dev = ice_pf_to_dev(pf); 4279 struct ice_vsi *ctrl_vsi; 4280 int err; 4281 4282 /* Side Band Flow Director needs to have a control VSI. 4283 * Allocate it and store it in the PF. 4284 */ 4285 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4286 if (!ctrl_vsi) { 4287 dev_dbg(dev, "could not create control VSI\n"); 4288 return -ENOMEM; 4289 } 4290 4291 err = ice_vsi_open_ctrl(ctrl_vsi); 4292 if (err) { 4293 dev_dbg(dev, "could not open control VSI\n"); 4294 goto err_vsi_open; 4295 } 4296 4297 mutex_init(&pf->hw.fdir_fltr_lock); 4298 4299 err = ice_fdir_create_dflt_rules(pf); 4300 if (err) 4301 goto err_fdir_rule; 4302 4303 return 0; 4304 4305 err_fdir_rule: 4306 ice_fdir_release_flows(&pf->hw); 4307 ice_vsi_close(ctrl_vsi); 4308 err_vsi_open: 4309 ice_vsi_release(ctrl_vsi); 4310 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4311 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4312 pf->ctrl_vsi_idx = ICE_NO_VSI; 4313 } 4314 return err; 4315 } 4316 4317 /** 4318 * ice_get_opt_fw_name - return optional firmware file name or NULL 4319 * @pf: pointer to the PF instance 4320 */ 4321 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4322 { 4323 /* Optional firmware name same as default with additional dash 4324 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4325 */ 4326 struct pci_dev *pdev = pf->pdev; 4327 char *opt_fw_filename; 4328 u64 dsn; 4329 4330 /* Determine the name of the optional file using the DSN (two 4331 * dwords following the start of the DSN Capability). 4332 */ 4333 dsn = pci_get_dsn(pdev); 4334 if (!dsn) 4335 return NULL; 4336 4337 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4338 if (!opt_fw_filename) 4339 return NULL; 4340 4341 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4342 ICE_DDP_PKG_PATH, dsn); 4343 4344 return opt_fw_filename; 4345 } 4346 4347 /** 4348 * ice_request_fw - Device initialization routine 4349 * @pf: pointer to the PF instance 4350 */ 4351 static void ice_request_fw(struct ice_pf *pf) 4352 { 4353 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4354 const struct firmware *firmware = NULL; 4355 struct device *dev = ice_pf_to_dev(pf); 4356 int err = 0; 4357 4358 /* optional device-specific DDP (if present) overrides the default DDP 4359 * package file. kernel logs a debug message if the file doesn't exist, 4360 * and warning messages for other errors. 4361 */ 4362 if (opt_fw_filename) { 4363 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4364 if (err) { 4365 kfree(opt_fw_filename); 4366 goto dflt_pkg_load; 4367 } 4368 4369 /* request for firmware was successful. Download to device */ 4370 ice_load_pkg(firmware, pf); 4371 kfree(opt_fw_filename); 4372 release_firmware(firmware); 4373 return; 4374 } 4375 4376 dflt_pkg_load: 4377 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4378 if (err) { 4379 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4380 return; 4381 } 4382 4383 /* request for firmware was successful. Download to device */ 4384 ice_load_pkg(firmware, pf); 4385 release_firmware(firmware); 4386 } 4387 4388 /** 4389 * ice_print_wake_reason - show the wake up cause in the log 4390 * @pf: pointer to the PF struct 4391 */ 4392 static void ice_print_wake_reason(struct ice_pf *pf) 4393 { 4394 u32 wus = pf->wakeup_reason; 4395 const char *wake_str; 4396 4397 /* if no wake event, nothing to print */ 4398 if (!wus) 4399 return; 4400 4401 if (wus & PFPM_WUS_LNKC_M) 4402 wake_str = "Link\n"; 4403 else if (wus & PFPM_WUS_MAG_M) 4404 wake_str = "Magic Packet\n"; 4405 else if (wus & PFPM_WUS_MNG_M) 4406 wake_str = "Management\n"; 4407 else if (wus & PFPM_WUS_FW_RST_WK_M) 4408 wake_str = "Firmware Reset\n"; 4409 else 4410 wake_str = "Unknown\n"; 4411 4412 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4413 } 4414 4415 /** 4416 * ice_register_netdev - register netdev and devlink port 4417 * @pf: pointer to the PF struct 4418 */ 4419 static int ice_register_netdev(struct ice_pf *pf) 4420 { 4421 struct ice_vsi *vsi; 4422 int err = 0; 4423 4424 vsi = ice_get_main_vsi(pf); 4425 if (!vsi || !vsi->netdev) 4426 return -EIO; 4427 4428 err = register_netdev(vsi->netdev); 4429 if (err) 4430 goto err_register_netdev; 4431 4432 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4433 netif_carrier_off(vsi->netdev); 4434 netif_tx_stop_all_queues(vsi->netdev); 4435 err = ice_devlink_create_pf_port(pf); 4436 if (err) 4437 goto err_devlink_create; 4438 4439 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4440 4441 return 0; 4442 err_devlink_create: 4443 unregister_netdev(vsi->netdev); 4444 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4445 err_register_netdev: 4446 free_netdev(vsi->netdev); 4447 vsi->netdev = NULL; 4448 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4449 return err; 4450 } 4451 4452 /** 4453 * ice_probe - Device initialization routine 4454 * @pdev: PCI device information struct 4455 * @ent: entry in ice_pci_tbl 4456 * 4457 * Returns 0 on success, negative on failure 4458 */ 4459 static int 4460 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4461 { 4462 struct device *dev = &pdev->dev; 4463 struct ice_pf *pf; 4464 struct ice_hw *hw; 4465 int i, err; 4466 4467 if (pdev->is_virtfn) { 4468 dev_err(dev, "can't probe a virtual function\n"); 4469 return -EINVAL; 4470 } 4471 4472 /* this driver uses devres, see 4473 * Documentation/driver-api/driver-model/devres.rst 4474 */ 4475 err = pcim_enable_device(pdev); 4476 if (err) 4477 return err; 4478 4479 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4480 if (err) { 4481 dev_err(dev, "BAR0 I/O map error %d\n", err); 4482 return err; 4483 } 4484 4485 pf = ice_allocate_pf(dev); 4486 if (!pf) 4487 return -ENOMEM; 4488 4489 /* initialize Auxiliary index to invalid value */ 4490 pf->aux_idx = -1; 4491 4492 /* set up for high or low DMA */ 4493 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4494 if (err) { 4495 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4496 return err; 4497 } 4498 4499 pci_enable_pcie_error_reporting(pdev); 4500 pci_set_master(pdev); 4501 4502 pf->pdev = pdev; 4503 pci_set_drvdata(pdev, pf); 4504 set_bit(ICE_DOWN, pf->state); 4505 /* Disable service task until DOWN bit is cleared */ 4506 set_bit(ICE_SERVICE_DIS, pf->state); 4507 4508 hw = &pf->hw; 4509 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4510 pci_save_state(pdev); 4511 4512 hw->back = pf; 4513 hw->vendor_id = pdev->vendor; 4514 hw->device_id = pdev->device; 4515 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4516 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4517 hw->subsystem_device_id = pdev->subsystem_device; 4518 hw->bus.device = PCI_SLOT(pdev->devfn); 4519 hw->bus.func = PCI_FUNC(pdev->devfn); 4520 ice_set_ctrlq_len(hw); 4521 4522 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4523 4524 #ifndef CONFIG_DYNAMIC_DEBUG 4525 if (debug < -1) 4526 hw->debug_mask = debug; 4527 #endif 4528 4529 err = ice_init_hw(hw); 4530 if (err) { 4531 dev_err(dev, "ice_init_hw failed: %d\n", err); 4532 err = -EIO; 4533 goto err_exit_unroll; 4534 } 4535 4536 ice_init_feature_support(pf); 4537 4538 ice_request_fw(pf); 4539 4540 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4541 * set in pf->state, which will cause ice_is_safe_mode to return 4542 * true 4543 */ 4544 if (ice_is_safe_mode(pf)) { 4545 /* we already got function/device capabilities but these don't 4546 * reflect what the driver needs to do in safe mode. Instead of 4547 * adding conditional logic everywhere to ignore these 4548 * device/function capabilities, override them. 4549 */ 4550 ice_set_safe_mode_caps(hw); 4551 } 4552 4553 err = ice_init_pf(pf); 4554 if (err) { 4555 dev_err(dev, "ice_init_pf failed: %d\n", err); 4556 goto err_init_pf_unroll; 4557 } 4558 4559 ice_devlink_init_regions(pf); 4560 4561 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4562 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4563 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4564 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4565 i = 0; 4566 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4567 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4568 pf->hw.tnl.valid_count[TNL_VXLAN]; 4569 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4570 UDP_TUNNEL_TYPE_VXLAN; 4571 i++; 4572 } 4573 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4574 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4575 pf->hw.tnl.valid_count[TNL_GENEVE]; 4576 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4577 UDP_TUNNEL_TYPE_GENEVE; 4578 i++; 4579 } 4580 4581 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4582 if (!pf->num_alloc_vsi) { 4583 err = -EIO; 4584 goto err_init_pf_unroll; 4585 } 4586 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4587 dev_warn(&pf->pdev->dev, 4588 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4589 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4590 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4591 } 4592 4593 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4594 GFP_KERNEL); 4595 if (!pf->vsi) { 4596 err = -ENOMEM; 4597 goto err_init_pf_unroll; 4598 } 4599 4600 err = ice_init_interrupt_scheme(pf); 4601 if (err) { 4602 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4603 err = -EIO; 4604 goto err_init_vsi_unroll; 4605 } 4606 4607 /* In case of MSIX we are going to setup the misc vector right here 4608 * to handle admin queue events etc. In case of legacy and MSI 4609 * the misc functionality and queue processing is combined in 4610 * the same vector and that gets setup at open. 4611 */ 4612 err = ice_req_irq_msix_misc(pf); 4613 if (err) { 4614 dev_err(dev, "setup of misc vector failed: %d\n", err); 4615 goto err_init_interrupt_unroll; 4616 } 4617 4618 /* create switch struct for the switch element created by FW on boot */ 4619 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4620 if (!pf->first_sw) { 4621 err = -ENOMEM; 4622 goto err_msix_misc_unroll; 4623 } 4624 4625 if (hw->evb_veb) 4626 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4627 else 4628 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4629 4630 pf->first_sw->pf = pf; 4631 4632 /* record the sw_id available for later use */ 4633 pf->first_sw->sw_id = hw->port_info->sw_id; 4634 4635 err = ice_setup_pf_sw(pf); 4636 if (err) { 4637 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4638 goto err_alloc_sw_unroll; 4639 } 4640 4641 clear_bit(ICE_SERVICE_DIS, pf->state); 4642 4643 /* tell the firmware we are up */ 4644 err = ice_send_version(pf); 4645 if (err) { 4646 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4647 UTS_RELEASE, err); 4648 goto err_send_version_unroll; 4649 } 4650 4651 /* since everything is good, start the service timer */ 4652 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4653 4654 err = ice_init_link_events(pf->hw.port_info); 4655 if (err) { 4656 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4657 goto err_send_version_unroll; 4658 } 4659 4660 /* not a fatal error if this fails */ 4661 err = ice_init_nvm_phy_type(pf->hw.port_info); 4662 if (err) 4663 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4664 4665 /* not a fatal error if this fails */ 4666 err = ice_update_link_info(pf->hw.port_info); 4667 if (err) 4668 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4669 4670 ice_init_link_dflt_override(pf->hw.port_info); 4671 4672 ice_check_link_cfg_err(pf, 4673 pf->hw.port_info->phy.link_info.link_cfg_err); 4674 4675 /* if media available, initialize PHY settings */ 4676 if (pf->hw.port_info->phy.link_info.link_info & 4677 ICE_AQ_MEDIA_AVAILABLE) { 4678 /* not a fatal error if this fails */ 4679 err = ice_init_phy_user_cfg(pf->hw.port_info); 4680 if (err) 4681 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4682 4683 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4684 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4685 4686 if (vsi) 4687 ice_configure_phy(vsi); 4688 } 4689 } else { 4690 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4691 } 4692 4693 ice_verify_cacheline_size(pf); 4694 4695 /* Save wakeup reason register for later use */ 4696 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4697 4698 /* check for a power management event */ 4699 ice_print_wake_reason(pf); 4700 4701 /* clear wake status, all bits */ 4702 wr32(hw, PFPM_WUS, U32_MAX); 4703 4704 /* Disable WoL at init, wait for user to enable */ 4705 device_set_wakeup_enable(dev, false); 4706 4707 if (ice_is_safe_mode(pf)) { 4708 ice_set_safe_mode_vlan_cfg(pf); 4709 goto probe_done; 4710 } 4711 4712 /* initialize DDP driven features */ 4713 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4714 ice_ptp_init(pf); 4715 4716 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4717 ice_gnss_init(pf); 4718 4719 /* Note: Flow director init failure is non-fatal to load */ 4720 if (ice_init_fdir(pf)) 4721 dev_err(dev, "could not initialize flow director\n"); 4722 4723 /* Note: DCB init failure is non-fatal to load */ 4724 if (ice_init_pf_dcb(pf, false)) { 4725 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4726 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4727 } else { 4728 ice_cfg_lldp_mib_change(&pf->hw, true); 4729 } 4730 4731 if (ice_init_lag(pf)) 4732 dev_warn(dev, "Failed to init link aggregation support\n"); 4733 4734 /* print PCI link speed and width */ 4735 pcie_print_link_status(pf->pdev); 4736 4737 probe_done: 4738 err = ice_register_netdev(pf); 4739 if (err) 4740 goto err_netdev_reg; 4741 4742 err = ice_devlink_register_params(pf); 4743 if (err) 4744 goto err_netdev_reg; 4745 4746 /* ready to go, so clear down state bit */ 4747 clear_bit(ICE_DOWN, pf->state); 4748 if (ice_is_rdma_ena(pf)) { 4749 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4750 if (pf->aux_idx < 0) { 4751 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4752 err = -ENOMEM; 4753 goto err_devlink_reg_param; 4754 } 4755 4756 err = ice_init_rdma(pf); 4757 if (err) { 4758 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4759 err = -EIO; 4760 goto err_init_aux_unroll; 4761 } 4762 } else { 4763 dev_warn(dev, "RDMA is not supported on this device\n"); 4764 } 4765 4766 ice_devlink_register(pf); 4767 return 0; 4768 4769 err_init_aux_unroll: 4770 pf->adev = NULL; 4771 ida_free(&ice_aux_ida, pf->aux_idx); 4772 err_devlink_reg_param: 4773 ice_devlink_unregister_params(pf); 4774 err_netdev_reg: 4775 err_send_version_unroll: 4776 ice_vsi_release_all(pf); 4777 err_alloc_sw_unroll: 4778 set_bit(ICE_SERVICE_DIS, pf->state); 4779 set_bit(ICE_DOWN, pf->state); 4780 devm_kfree(dev, pf->first_sw); 4781 err_msix_misc_unroll: 4782 ice_free_irq_msix_misc(pf); 4783 err_init_interrupt_unroll: 4784 ice_clear_interrupt_scheme(pf); 4785 err_init_vsi_unroll: 4786 devm_kfree(dev, pf->vsi); 4787 err_init_pf_unroll: 4788 ice_deinit_pf(pf); 4789 ice_devlink_destroy_regions(pf); 4790 ice_deinit_hw(hw); 4791 err_exit_unroll: 4792 pci_disable_pcie_error_reporting(pdev); 4793 pci_disable_device(pdev); 4794 return err; 4795 } 4796 4797 /** 4798 * ice_set_wake - enable or disable Wake on LAN 4799 * @pf: pointer to the PF struct 4800 * 4801 * Simple helper for WoL control 4802 */ 4803 static void ice_set_wake(struct ice_pf *pf) 4804 { 4805 struct ice_hw *hw = &pf->hw; 4806 bool wol = pf->wol_ena; 4807 4808 /* clear wake state, otherwise new wake events won't fire */ 4809 wr32(hw, PFPM_WUS, U32_MAX); 4810 4811 /* enable / disable APM wake up, no RMW needed */ 4812 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4813 4814 /* set magic packet filter enabled */ 4815 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4816 } 4817 4818 /** 4819 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4820 * @pf: pointer to the PF struct 4821 * 4822 * Issue firmware command to enable multicast magic wake, making 4823 * sure that any locally administered address (LAA) is used for 4824 * wake, and that PF reset doesn't undo the LAA. 4825 */ 4826 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4827 { 4828 struct device *dev = ice_pf_to_dev(pf); 4829 struct ice_hw *hw = &pf->hw; 4830 u8 mac_addr[ETH_ALEN]; 4831 struct ice_vsi *vsi; 4832 int status; 4833 u8 flags; 4834 4835 if (!pf->wol_ena) 4836 return; 4837 4838 vsi = ice_get_main_vsi(pf); 4839 if (!vsi) 4840 return; 4841 4842 /* Get current MAC address in case it's an LAA */ 4843 if (vsi->netdev) 4844 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4845 else 4846 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4847 4848 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4849 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4850 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4851 4852 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4853 if (status) 4854 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4855 status, ice_aq_str(hw->adminq.sq_last_status)); 4856 } 4857 4858 /** 4859 * ice_remove - Device removal routine 4860 * @pdev: PCI device information struct 4861 */ 4862 static void ice_remove(struct pci_dev *pdev) 4863 { 4864 struct ice_pf *pf = pci_get_drvdata(pdev); 4865 int i; 4866 4867 ice_devlink_unregister(pf); 4868 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4869 if (!ice_is_reset_in_progress(pf->state)) 4870 break; 4871 msleep(100); 4872 } 4873 4874 ice_tc_indir_block_remove(pf); 4875 4876 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4877 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4878 ice_free_vfs(pf); 4879 } 4880 4881 ice_service_task_stop(pf); 4882 4883 ice_aq_cancel_waiting_tasks(pf); 4884 ice_unplug_aux_dev(pf); 4885 if (pf->aux_idx >= 0) 4886 ida_free(&ice_aux_ida, pf->aux_idx); 4887 ice_devlink_unregister_params(pf); 4888 set_bit(ICE_DOWN, pf->state); 4889 4890 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4891 ice_deinit_lag(pf); 4892 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4893 ice_ptp_release(pf); 4894 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4895 ice_gnss_exit(pf); 4896 if (!ice_is_safe_mode(pf)) 4897 ice_remove_arfs(pf); 4898 ice_setup_mc_magic_wake(pf); 4899 ice_vsi_release_all(pf); 4900 ice_set_wake(pf); 4901 ice_free_irq_msix_misc(pf); 4902 ice_for_each_vsi(pf, i) { 4903 if (!pf->vsi[i]) 4904 continue; 4905 ice_vsi_free_q_vectors(pf->vsi[i]); 4906 } 4907 ice_deinit_pf(pf); 4908 ice_devlink_destroy_regions(pf); 4909 ice_deinit_hw(&pf->hw); 4910 4911 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4912 * do it via ice_schedule_reset() since there is no need to rebuild 4913 * and the service task is already stopped. 4914 */ 4915 ice_reset(&pf->hw, ICE_RESET_PFR); 4916 pci_wait_for_pending_transaction(pdev); 4917 ice_clear_interrupt_scheme(pf); 4918 pci_disable_pcie_error_reporting(pdev); 4919 pci_disable_device(pdev); 4920 } 4921 4922 /** 4923 * ice_shutdown - PCI callback for shutting down device 4924 * @pdev: PCI device information struct 4925 */ 4926 static void ice_shutdown(struct pci_dev *pdev) 4927 { 4928 struct ice_pf *pf = pci_get_drvdata(pdev); 4929 4930 ice_remove(pdev); 4931 4932 if (system_state == SYSTEM_POWER_OFF) { 4933 pci_wake_from_d3(pdev, pf->wol_ena); 4934 pci_set_power_state(pdev, PCI_D3hot); 4935 } 4936 } 4937 4938 #ifdef CONFIG_PM 4939 /** 4940 * ice_prepare_for_shutdown - prep for PCI shutdown 4941 * @pf: board private structure 4942 * 4943 * Inform or close all dependent features in prep for PCI device shutdown 4944 */ 4945 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4946 { 4947 struct ice_hw *hw = &pf->hw; 4948 u32 v; 4949 4950 /* Notify VFs of impending reset */ 4951 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4952 ice_vc_notify_reset(pf); 4953 4954 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4955 4956 /* disable the VSIs and their queues that are not already DOWN */ 4957 ice_pf_dis_all_vsi(pf, false); 4958 4959 ice_for_each_vsi(pf, v) 4960 if (pf->vsi[v]) 4961 pf->vsi[v]->vsi_num = 0; 4962 4963 ice_shutdown_all_ctrlq(hw); 4964 } 4965 4966 /** 4967 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4968 * @pf: board private structure to reinitialize 4969 * 4970 * This routine reinitialize interrupt scheme that was cleared during 4971 * power management suspend callback. 4972 * 4973 * This should be called during resume routine to re-allocate the q_vectors 4974 * and reacquire interrupts. 4975 */ 4976 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4977 { 4978 struct device *dev = ice_pf_to_dev(pf); 4979 int ret, v; 4980 4981 /* Since we clear MSIX flag during suspend, we need to 4982 * set it back during resume... 4983 */ 4984 4985 ret = ice_init_interrupt_scheme(pf); 4986 if (ret) { 4987 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4988 return ret; 4989 } 4990 4991 /* Remap vectors and rings, after successful re-init interrupts */ 4992 ice_for_each_vsi(pf, v) { 4993 if (!pf->vsi[v]) 4994 continue; 4995 4996 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4997 if (ret) 4998 goto err_reinit; 4999 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5000 } 5001 5002 ret = ice_req_irq_msix_misc(pf); 5003 if (ret) { 5004 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5005 ret); 5006 goto err_reinit; 5007 } 5008 5009 return 0; 5010 5011 err_reinit: 5012 while (v--) 5013 if (pf->vsi[v]) 5014 ice_vsi_free_q_vectors(pf->vsi[v]); 5015 5016 return ret; 5017 } 5018 5019 /** 5020 * ice_suspend 5021 * @dev: generic device information structure 5022 * 5023 * Power Management callback to quiesce the device and prepare 5024 * for D3 transition. 5025 */ 5026 static int __maybe_unused ice_suspend(struct device *dev) 5027 { 5028 struct pci_dev *pdev = to_pci_dev(dev); 5029 struct ice_pf *pf; 5030 int disabled, v; 5031 5032 pf = pci_get_drvdata(pdev); 5033 5034 if (!ice_pf_state_is_nominal(pf)) { 5035 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5036 return -EBUSY; 5037 } 5038 5039 /* Stop watchdog tasks until resume completion. 5040 * Even though it is most likely that the service task is 5041 * disabled if the device is suspended or down, the service task's 5042 * state is controlled by a different state bit, and we should 5043 * store and honor whatever state that bit is in at this point. 5044 */ 5045 disabled = ice_service_task_stop(pf); 5046 5047 ice_unplug_aux_dev(pf); 5048 5049 /* Already suspended?, then there is nothing to do */ 5050 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5051 if (!disabled) 5052 ice_service_task_restart(pf); 5053 return 0; 5054 } 5055 5056 if (test_bit(ICE_DOWN, pf->state) || 5057 ice_is_reset_in_progress(pf->state)) { 5058 dev_err(dev, "can't suspend device in reset or already down\n"); 5059 if (!disabled) 5060 ice_service_task_restart(pf); 5061 return 0; 5062 } 5063 5064 ice_setup_mc_magic_wake(pf); 5065 5066 ice_prepare_for_shutdown(pf); 5067 5068 ice_set_wake(pf); 5069 5070 /* Free vectors, clear the interrupt scheme and release IRQs 5071 * for proper hibernation, especially with large number of CPUs. 5072 * Otherwise hibernation might fail when mapping all the vectors back 5073 * to CPU0. 5074 */ 5075 ice_free_irq_msix_misc(pf); 5076 ice_for_each_vsi(pf, v) { 5077 if (!pf->vsi[v]) 5078 continue; 5079 ice_vsi_free_q_vectors(pf->vsi[v]); 5080 } 5081 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5082 ice_clear_interrupt_scheme(pf); 5083 5084 pci_save_state(pdev); 5085 pci_wake_from_d3(pdev, pf->wol_ena); 5086 pci_set_power_state(pdev, PCI_D3hot); 5087 return 0; 5088 } 5089 5090 /** 5091 * ice_resume - PM callback for waking up from D3 5092 * @dev: generic device information structure 5093 */ 5094 static int __maybe_unused ice_resume(struct device *dev) 5095 { 5096 struct pci_dev *pdev = to_pci_dev(dev); 5097 enum ice_reset_req reset_type; 5098 struct ice_pf *pf; 5099 struct ice_hw *hw; 5100 int ret; 5101 5102 pci_set_power_state(pdev, PCI_D0); 5103 pci_restore_state(pdev); 5104 pci_save_state(pdev); 5105 5106 if (!pci_device_is_present(pdev)) 5107 return -ENODEV; 5108 5109 ret = pci_enable_device_mem(pdev); 5110 if (ret) { 5111 dev_err(dev, "Cannot enable device after suspend\n"); 5112 return ret; 5113 } 5114 5115 pf = pci_get_drvdata(pdev); 5116 hw = &pf->hw; 5117 5118 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5119 ice_print_wake_reason(pf); 5120 5121 /* We cleared the interrupt scheme when we suspended, so we need to 5122 * restore it now to resume device functionality. 5123 */ 5124 ret = ice_reinit_interrupt_scheme(pf); 5125 if (ret) 5126 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5127 5128 clear_bit(ICE_DOWN, pf->state); 5129 /* Now perform PF reset and rebuild */ 5130 reset_type = ICE_RESET_PFR; 5131 /* re-enable service task for reset, but allow reset to schedule it */ 5132 clear_bit(ICE_SERVICE_DIS, pf->state); 5133 5134 if (ice_schedule_reset(pf, reset_type)) 5135 dev_err(dev, "Reset during resume failed.\n"); 5136 5137 clear_bit(ICE_SUSPENDED, pf->state); 5138 ice_service_task_restart(pf); 5139 5140 /* Restart the service task */ 5141 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5142 5143 return 0; 5144 } 5145 #endif /* CONFIG_PM */ 5146 5147 /** 5148 * ice_pci_err_detected - warning that PCI error has been detected 5149 * @pdev: PCI device information struct 5150 * @err: the type of PCI error 5151 * 5152 * Called to warn that something happened on the PCI bus and the error handling 5153 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5154 */ 5155 static pci_ers_result_t 5156 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5157 { 5158 struct ice_pf *pf = pci_get_drvdata(pdev); 5159 5160 if (!pf) { 5161 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5162 __func__, err); 5163 return PCI_ERS_RESULT_DISCONNECT; 5164 } 5165 5166 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5167 ice_service_task_stop(pf); 5168 5169 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5170 set_bit(ICE_PFR_REQ, pf->state); 5171 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5172 } 5173 } 5174 5175 return PCI_ERS_RESULT_NEED_RESET; 5176 } 5177 5178 /** 5179 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5180 * @pdev: PCI device information struct 5181 * 5182 * Called to determine if the driver can recover from the PCI slot reset by 5183 * using a register read to determine if the device is recoverable. 5184 */ 5185 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5186 { 5187 struct ice_pf *pf = pci_get_drvdata(pdev); 5188 pci_ers_result_t result; 5189 int err; 5190 u32 reg; 5191 5192 err = pci_enable_device_mem(pdev); 5193 if (err) { 5194 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5195 err); 5196 result = PCI_ERS_RESULT_DISCONNECT; 5197 } else { 5198 pci_set_master(pdev); 5199 pci_restore_state(pdev); 5200 pci_save_state(pdev); 5201 pci_wake_from_d3(pdev, false); 5202 5203 /* Check for life */ 5204 reg = rd32(&pf->hw, GLGEN_RTRIG); 5205 if (!reg) 5206 result = PCI_ERS_RESULT_RECOVERED; 5207 else 5208 result = PCI_ERS_RESULT_DISCONNECT; 5209 } 5210 5211 err = pci_aer_clear_nonfatal_status(pdev); 5212 if (err) 5213 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5214 err); 5215 /* non-fatal, continue */ 5216 5217 return result; 5218 } 5219 5220 /** 5221 * ice_pci_err_resume - restart operations after PCI error recovery 5222 * @pdev: PCI device information struct 5223 * 5224 * Called to allow the driver to bring things back up after PCI error and/or 5225 * reset recovery have finished 5226 */ 5227 static void ice_pci_err_resume(struct pci_dev *pdev) 5228 { 5229 struct ice_pf *pf = pci_get_drvdata(pdev); 5230 5231 if (!pf) { 5232 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5233 __func__); 5234 return; 5235 } 5236 5237 if (test_bit(ICE_SUSPENDED, pf->state)) { 5238 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5239 __func__); 5240 return; 5241 } 5242 5243 ice_restore_all_vfs_msi_state(pdev); 5244 5245 ice_do_reset(pf, ICE_RESET_PFR); 5246 ice_service_task_restart(pf); 5247 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5248 } 5249 5250 /** 5251 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5252 * @pdev: PCI device information struct 5253 */ 5254 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5255 { 5256 struct ice_pf *pf = pci_get_drvdata(pdev); 5257 5258 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5259 ice_service_task_stop(pf); 5260 5261 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5262 set_bit(ICE_PFR_REQ, pf->state); 5263 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5264 } 5265 } 5266 } 5267 5268 /** 5269 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5270 * @pdev: PCI device information struct 5271 */ 5272 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5273 { 5274 ice_pci_err_resume(pdev); 5275 } 5276 5277 /* ice_pci_tbl - PCI Device ID Table 5278 * 5279 * Wildcard entries (PCI_ANY_ID) should come last 5280 * Last entry must be all 0s 5281 * 5282 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5283 * Class, Class Mask, private data (not used) } 5284 */ 5285 static const struct pci_device_id ice_pci_tbl[] = { 5286 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5287 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5288 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5289 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5290 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5291 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5292 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5293 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5294 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5295 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5296 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5297 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5298 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5299 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5300 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5301 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5302 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5303 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5304 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5305 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5306 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5307 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5308 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5309 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5310 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5311 /* required last entry */ 5312 { 0, } 5313 }; 5314 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5315 5316 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5317 5318 static const struct pci_error_handlers ice_pci_err_handler = { 5319 .error_detected = ice_pci_err_detected, 5320 .slot_reset = ice_pci_err_slot_reset, 5321 .reset_prepare = ice_pci_err_reset_prepare, 5322 .reset_done = ice_pci_err_reset_done, 5323 .resume = ice_pci_err_resume 5324 }; 5325 5326 static struct pci_driver ice_driver = { 5327 .name = KBUILD_MODNAME, 5328 .id_table = ice_pci_tbl, 5329 .probe = ice_probe, 5330 .remove = ice_remove, 5331 #ifdef CONFIG_PM 5332 .driver.pm = &ice_pm_ops, 5333 #endif /* CONFIG_PM */ 5334 .shutdown = ice_shutdown, 5335 .sriov_configure = ice_sriov_configure, 5336 .err_handler = &ice_pci_err_handler 5337 }; 5338 5339 /** 5340 * ice_module_init - Driver registration routine 5341 * 5342 * ice_module_init is the first routine called when the driver is 5343 * loaded. All it does is register with the PCI subsystem. 5344 */ 5345 static int __init ice_module_init(void) 5346 { 5347 int status; 5348 5349 pr_info("%s\n", ice_driver_string); 5350 pr_info("%s\n", ice_copyright); 5351 5352 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5353 if (!ice_wq) { 5354 pr_err("Failed to create workqueue\n"); 5355 return -ENOMEM; 5356 } 5357 5358 status = pci_register_driver(&ice_driver); 5359 if (status) { 5360 pr_err("failed to register PCI driver, err %d\n", status); 5361 destroy_workqueue(ice_wq); 5362 } 5363 5364 return status; 5365 } 5366 module_init(ice_module_init); 5367 5368 /** 5369 * ice_module_exit - Driver exit cleanup routine 5370 * 5371 * ice_module_exit is called just before the driver is removed 5372 * from memory. 5373 */ 5374 static void __exit ice_module_exit(void) 5375 { 5376 pci_unregister_driver(&ice_driver); 5377 destroy_workqueue(ice_wq); 5378 pr_info("module unloaded\n"); 5379 } 5380 module_exit(ice_module_exit); 5381 5382 /** 5383 * ice_set_mac_address - NDO callback to set MAC address 5384 * @netdev: network interface device structure 5385 * @pi: pointer to an address structure 5386 * 5387 * Returns 0 on success, negative on failure 5388 */ 5389 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5390 { 5391 struct ice_netdev_priv *np = netdev_priv(netdev); 5392 struct ice_vsi *vsi = np->vsi; 5393 struct ice_pf *pf = vsi->back; 5394 struct ice_hw *hw = &pf->hw; 5395 struct sockaddr *addr = pi; 5396 u8 old_mac[ETH_ALEN]; 5397 u8 flags = 0; 5398 u8 *mac; 5399 int err; 5400 5401 mac = (u8 *)addr->sa_data; 5402 5403 if (!is_valid_ether_addr(mac)) 5404 return -EADDRNOTAVAIL; 5405 5406 if (ether_addr_equal(netdev->dev_addr, mac)) { 5407 netdev_dbg(netdev, "already using mac %pM\n", mac); 5408 return 0; 5409 } 5410 5411 if (test_bit(ICE_DOWN, pf->state) || 5412 ice_is_reset_in_progress(pf->state)) { 5413 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5414 mac); 5415 return -EBUSY; 5416 } 5417 5418 if (ice_chnl_dmac_fltr_cnt(pf)) { 5419 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5420 mac); 5421 return -EAGAIN; 5422 } 5423 5424 netif_addr_lock_bh(netdev); 5425 ether_addr_copy(old_mac, netdev->dev_addr); 5426 /* change the netdev's MAC address */ 5427 eth_hw_addr_set(netdev, mac); 5428 netif_addr_unlock_bh(netdev); 5429 5430 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5431 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5432 if (err && err != -ENOENT) { 5433 err = -EADDRNOTAVAIL; 5434 goto err_update_filters; 5435 } 5436 5437 /* Add filter for new MAC. If filter exists, return success */ 5438 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5439 if (err == -EEXIST) 5440 /* Although this MAC filter is already present in hardware it's 5441 * possible in some cases (e.g. bonding) that dev_addr was 5442 * modified outside of the driver and needs to be restored back 5443 * to this value. 5444 */ 5445 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5446 else if (err) 5447 /* error if the new filter addition failed */ 5448 err = -EADDRNOTAVAIL; 5449 5450 err_update_filters: 5451 if (err) { 5452 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5453 mac); 5454 netif_addr_lock_bh(netdev); 5455 eth_hw_addr_set(netdev, old_mac); 5456 netif_addr_unlock_bh(netdev); 5457 return err; 5458 } 5459 5460 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5461 netdev->dev_addr); 5462 5463 /* write new MAC address to the firmware */ 5464 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5465 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5466 if (err) { 5467 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5468 mac, err); 5469 } 5470 return 0; 5471 } 5472 5473 /** 5474 * ice_set_rx_mode - NDO callback to set the netdev filters 5475 * @netdev: network interface device structure 5476 */ 5477 static void ice_set_rx_mode(struct net_device *netdev) 5478 { 5479 struct ice_netdev_priv *np = netdev_priv(netdev); 5480 struct ice_vsi *vsi = np->vsi; 5481 5482 if (!vsi) 5483 return; 5484 5485 /* Set the flags to synchronize filters 5486 * ndo_set_rx_mode may be triggered even without a change in netdev 5487 * flags 5488 */ 5489 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5490 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5491 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5492 5493 /* schedule our worker thread which will take care of 5494 * applying the new filter changes 5495 */ 5496 ice_service_task_schedule(vsi->back); 5497 } 5498 5499 /** 5500 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5501 * @netdev: network interface device structure 5502 * @queue_index: Queue ID 5503 * @maxrate: maximum bandwidth in Mbps 5504 */ 5505 static int 5506 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5507 { 5508 struct ice_netdev_priv *np = netdev_priv(netdev); 5509 struct ice_vsi *vsi = np->vsi; 5510 u16 q_handle; 5511 int status; 5512 u8 tc; 5513 5514 /* Validate maxrate requested is within permitted range */ 5515 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5516 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5517 maxrate, queue_index); 5518 return -EINVAL; 5519 } 5520 5521 q_handle = vsi->tx_rings[queue_index]->q_handle; 5522 tc = ice_dcb_get_tc(vsi, queue_index); 5523 5524 /* Set BW back to default, when user set maxrate to 0 */ 5525 if (!maxrate) 5526 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5527 q_handle, ICE_MAX_BW); 5528 else 5529 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5530 q_handle, ICE_MAX_BW, maxrate * 1000); 5531 if (status) 5532 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5533 status); 5534 5535 return status; 5536 } 5537 5538 /** 5539 * ice_fdb_add - add an entry to the hardware database 5540 * @ndm: the input from the stack 5541 * @tb: pointer to array of nladdr (unused) 5542 * @dev: the net device pointer 5543 * @addr: the MAC address entry being added 5544 * @vid: VLAN ID 5545 * @flags: instructions from stack about fdb operation 5546 * @extack: netlink extended ack 5547 */ 5548 static int 5549 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5550 struct net_device *dev, const unsigned char *addr, u16 vid, 5551 u16 flags, struct netlink_ext_ack __always_unused *extack) 5552 { 5553 int err; 5554 5555 if (vid) { 5556 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5557 return -EINVAL; 5558 } 5559 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5560 netdev_err(dev, "FDB only supports static addresses\n"); 5561 return -EINVAL; 5562 } 5563 5564 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5565 err = dev_uc_add_excl(dev, addr); 5566 else if (is_multicast_ether_addr(addr)) 5567 err = dev_mc_add_excl(dev, addr); 5568 else 5569 err = -EINVAL; 5570 5571 /* Only return duplicate errors if NLM_F_EXCL is set */ 5572 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5573 err = 0; 5574 5575 return err; 5576 } 5577 5578 /** 5579 * ice_fdb_del - delete an entry from the hardware database 5580 * @ndm: the input from the stack 5581 * @tb: pointer to array of nladdr (unused) 5582 * @dev: the net device pointer 5583 * @addr: the MAC address entry being added 5584 * @vid: VLAN ID 5585 */ 5586 static int 5587 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5588 struct net_device *dev, const unsigned char *addr, 5589 __always_unused u16 vid) 5590 { 5591 int err; 5592 5593 if (ndm->ndm_state & NUD_PERMANENT) { 5594 netdev_err(dev, "FDB only supports static addresses\n"); 5595 return -EINVAL; 5596 } 5597 5598 if (is_unicast_ether_addr(addr)) 5599 err = dev_uc_del(dev, addr); 5600 else if (is_multicast_ether_addr(addr)) 5601 err = dev_mc_del(dev, addr); 5602 else 5603 err = -EINVAL; 5604 5605 return err; 5606 } 5607 5608 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5609 NETIF_F_HW_VLAN_CTAG_TX | \ 5610 NETIF_F_HW_VLAN_STAG_RX | \ 5611 NETIF_F_HW_VLAN_STAG_TX) 5612 5613 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5614 NETIF_F_HW_VLAN_STAG_FILTER) 5615 5616 /** 5617 * ice_fix_features - fix the netdev features flags based on device limitations 5618 * @netdev: ptr to the netdev that flags are being fixed on 5619 * @features: features that need to be checked and possibly fixed 5620 * 5621 * Make sure any fixups are made to features in this callback. This enables the 5622 * driver to not have to check unsupported configurations throughout the driver 5623 * because that's the responsiblity of this callback. 5624 * 5625 * Single VLAN Mode (SVM) Supported Features: 5626 * NETIF_F_HW_VLAN_CTAG_FILTER 5627 * NETIF_F_HW_VLAN_CTAG_RX 5628 * NETIF_F_HW_VLAN_CTAG_TX 5629 * 5630 * Double VLAN Mode (DVM) Supported Features: 5631 * NETIF_F_HW_VLAN_CTAG_FILTER 5632 * NETIF_F_HW_VLAN_CTAG_RX 5633 * NETIF_F_HW_VLAN_CTAG_TX 5634 * 5635 * NETIF_F_HW_VLAN_STAG_FILTER 5636 * NETIF_HW_VLAN_STAG_RX 5637 * NETIF_HW_VLAN_STAG_TX 5638 * 5639 * Features that need fixing: 5640 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5641 * These are mutually exlusive as the VSI context cannot support multiple 5642 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5643 * is not done, then default to clearing the requested STAG offload 5644 * settings. 5645 * 5646 * All supported filtering has to be enabled or disabled together. For 5647 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5648 * together. If this is not done, then default to VLAN filtering disabled. 5649 * These are mutually exclusive as there is currently no way to 5650 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5651 * prune rules. 5652 */ 5653 static netdev_features_t 5654 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5655 { 5656 struct ice_netdev_priv *np = netdev_priv(netdev); 5657 netdev_features_t supported_vlan_filtering; 5658 netdev_features_t requested_vlan_filtering; 5659 struct ice_vsi *vsi = np->vsi; 5660 5661 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5662 5663 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5664 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5665 if (ice_is_dvm_ena(&vsi->back->hw)) 5666 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5667 5668 if (requested_vlan_filtering && 5669 requested_vlan_filtering != supported_vlan_filtering) { 5670 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5671 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5672 features |= supported_vlan_filtering; 5673 } else { 5674 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5675 features &= ~supported_vlan_filtering; 5676 } 5677 } 5678 5679 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5680 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5681 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5682 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5683 NETIF_F_HW_VLAN_STAG_TX); 5684 } 5685 5686 return features; 5687 } 5688 5689 /** 5690 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5691 * @vsi: PF's VSI 5692 * @features: features used to determine VLAN offload settings 5693 * 5694 * First, determine the vlan_ethertype based on the VLAN offload bits in 5695 * features. Then determine if stripping and insertion should be enabled or 5696 * disabled. Finally enable or disable VLAN stripping and insertion. 5697 */ 5698 static int 5699 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5700 { 5701 bool enable_stripping = true, enable_insertion = true; 5702 struct ice_vsi_vlan_ops *vlan_ops; 5703 int strip_err = 0, insert_err = 0; 5704 u16 vlan_ethertype = 0; 5705 5706 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5707 5708 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5709 vlan_ethertype = ETH_P_8021AD; 5710 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5711 vlan_ethertype = ETH_P_8021Q; 5712 5713 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5714 enable_stripping = false; 5715 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5716 enable_insertion = false; 5717 5718 if (enable_stripping) 5719 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5720 else 5721 strip_err = vlan_ops->dis_stripping(vsi); 5722 5723 if (enable_insertion) 5724 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5725 else 5726 insert_err = vlan_ops->dis_insertion(vsi); 5727 5728 if (strip_err || insert_err) 5729 return -EIO; 5730 5731 return 0; 5732 } 5733 5734 /** 5735 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5736 * @vsi: PF's VSI 5737 * @features: features used to determine VLAN filtering settings 5738 * 5739 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5740 * features. 5741 */ 5742 static int 5743 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5744 { 5745 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5746 int err = 0; 5747 5748 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5749 * if either bit is set 5750 */ 5751 if (features & 5752 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5753 err = vlan_ops->ena_rx_filtering(vsi); 5754 else 5755 err = vlan_ops->dis_rx_filtering(vsi); 5756 5757 return err; 5758 } 5759 5760 /** 5761 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5762 * @netdev: ptr to the netdev being adjusted 5763 * @features: the feature set that the stack is suggesting 5764 * 5765 * Only update VLAN settings if the requested_vlan_features are different than 5766 * the current_vlan_features. 5767 */ 5768 static int 5769 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5770 { 5771 netdev_features_t current_vlan_features, requested_vlan_features; 5772 struct ice_netdev_priv *np = netdev_priv(netdev); 5773 struct ice_vsi *vsi = np->vsi; 5774 int err; 5775 5776 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5777 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5778 if (current_vlan_features ^ requested_vlan_features) { 5779 err = ice_set_vlan_offload_features(vsi, features); 5780 if (err) 5781 return err; 5782 } 5783 5784 current_vlan_features = netdev->features & 5785 NETIF_VLAN_FILTERING_FEATURES; 5786 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5787 if (current_vlan_features ^ requested_vlan_features) { 5788 err = ice_set_vlan_filtering_features(vsi, features); 5789 if (err) 5790 return err; 5791 } 5792 5793 return 0; 5794 } 5795 5796 /** 5797 * ice_set_features - set the netdev feature flags 5798 * @netdev: ptr to the netdev being adjusted 5799 * @features: the feature set that the stack is suggesting 5800 */ 5801 static int 5802 ice_set_features(struct net_device *netdev, netdev_features_t features) 5803 { 5804 struct ice_netdev_priv *np = netdev_priv(netdev); 5805 struct ice_vsi *vsi = np->vsi; 5806 struct ice_pf *pf = vsi->back; 5807 int ret = 0; 5808 5809 /* Don't set any netdev advanced features with device in Safe Mode */ 5810 if (ice_is_safe_mode(vsi->back)) { 5811 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5812 return ret; 5813 } 5814 5815 /* Do not change setting during reset */ 5816 if (ice_is_reset_in_progress(pf->state)) { 5817 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5818 return -EBUSY; 5819 } 5820 5821 /* Multiple features can be changed in one call so keep features in 5822 * separate if/else statements to guarantee each feature is checked 5823 */ 5824 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5825 ice_vsi_manage_rss_lut(vsi, true); 5826 else if (!(features & NETIF_F_RXHASH) && 5827 netdev->features & NETIF_F_RXHASH) 5828 ice_vsi_manage_rss_lut(vsi, false); 5829 5830 ret = ice_set_vlan_features(netdev, features); 5831 if (ret) 5832 return ret; 5833 5834 if ((features & NETIF_F_NTUPLE) && 5835 !(netdev->features & NETIF_F_NTUPLE)) { 5836 ice_vsi_manage_fdir(vsi, true); 5837 ice_init_arfs(vsi); 5838 } else if (!(features & NETIF_F_NTUPLE) && 5839 (netdev->features & NETIF_F_NTUPLE)) { 5840 ice_vsi_manage_fdir(vsi, false); 5841 ice_clear_arfs(vsi); 5842 } 5843 5844 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5845 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5846 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5847 return -EACCES; 5848 } 5849 5850 if ((features & NETIF_F_HW_TC) && 5851 !(netdev->features & NETIF_F_HW_TC)) 5852 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5853 else 5854 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5855 5856 return 0; 5857 } 5858 5859 /** 5860 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5861 * @vsi: VSI to setup VLAN properties for 5862 */ 5863 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5864 { 5865 int err; 5866 5867 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5868 if (err) 5869 return err; 5870 5871 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5872 if (err) 5873 return err; 5874 5875 return ice_vsi_add_vlan_zero(vsi); 5876 } 5877 5878 /** 5879 * ice_vsi_cfg - Setup the VSI 5880 * @vsi: the VSI being configured 5881 * 5882 * Return 0 on success and negative value on error 5883 */ 5884 int ice_vsi_cfg(struct ice_vsi *vsi) 5885 { 5886 int err; 5887 5888 if (vsi->netdev) { 5889 ice_set_rx_mode(vsi->netdev); 5890 5891 err = ice_vsi_vlan_setup(vsi); 5892 5893 if (err) 5894 return err; 5895 } 5896 ice_vsi_cfg_dcb_rings(vsi); 5897 5898 err = ice_vsi_cfg_lan_txqs(vsi); 5899 if (!err && ice_is_xdp_ena_vsi(vsi)) 5900 err = ice_vsi_cfg_xdp_txqs(vsi); 5901 if (!err) 5902 err = ice_vsi_cfg_rxqs(vsi); 5903 5904 return err; 5905 } 5906 5907 /* THEORY OF MODERATION: 5908 * The ice driver hardware works differently than the hardware that DIMLIB was 5909 * originally made for. ice hardware doesn't have packet count limits that 5910 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5911 * which is hard-coded to a limit of 250,000 ints/second. 5912 * If not using dynamic moderation, the INTRL value can be modified 5913 * by ethtool rx-usecs-high. 5914 */ 5915 struct ice_dim { 5916 /* the throttle rate for interrupts, basically worst case delay before 5917 * an initial interrupt fires, value is stored in microseconds. 5918 */ 5919 u16 itr; 5920 }; 5921 5922 /* Make a different profile for Rx that doesn't allow quite so aggressive 5923 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5924 * second. 5925 */ 5926 static const struct ice_dim rx_profile[] = { 5927 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5928 {8}, /* 125,000 ints/s */ 5929 {16}, /* 62,500 ints/s */ 5930 {62}, /* 16,129 ints/s */ 5931 {126} /* 7,936 ints/s */ 5932 }; 5933 5934 /* The transmit profile, which has the same sorts of values 5935 * as the previous struct 5936 */ 5937 static const struct ice_dim tx_profile[] = { 5938 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5939 {8}, /* 125,000 ints/s */ 5940 {40}, /* 16,125 ints/s */ 5941 {128}, /* 7,812 ints/s */ 5942 {256} /* 3,906 ints/s */ 5943 }; 5944 5945 static void ice_tx_dim_work(struct work_struct *work) 5946 { 5947 struct ice_ring_container *rc; 5948 struct dim *dim; 5949 u16 itr; 5950 5951 dim = container_of(work, struct dim, work); 5952 rc = (struct ice_ring_container *)dim->priv; 5953 5954 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5955 5956 /* look up the values in our local table */ 5957 itr = tx_profile[dim->profile_ix].itr; 5958 5959 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5960 ice_write_itr(rc, itr); 5961 5962 dim->state = DIM_START_MEASURE; 5963 } 5964 5965 static void ice_rx_dim_work(struct work_struct *work) 5966 { 5967 struct ice_ring_container *rc; 5968 struct dim *dim; 5969 u16 itr; 5970 5971 dim = container_of(work, struct dim, work); 5972 rc = (struct ice_ring_container *)dim->priv; 5973 5974 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5975 5976 /* look up the values in our local table */ 5977 itr = rx_profile[dim->profile_ix].itr; 5978 5979 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5980 ice_write_itr(rc, itr); 5981 5982 dim->state = DIM_START_MEASURE; 5983 } 5984 5985 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5986 5987 /** 5988 * ice_init_moderation - set up interrupt moderation 5989 * @q_vector: the vector containing rings to be configured 5990 * 5991 * Set up interrupt moderation registers, with the intent to do the right thing 5992 * when called from reset or from probe, and whether or not dynamic moderation 5993 * is enabled or not. Take special care to write all the registers in both 5994 * dynamic moderation mode or not in order to make sure hardware is in a known 5995 * state. 5996 */ 5997 static void ice_init_moderation(struct ice_q_vector *q_vector) 5998 { 5999 struct ice_ring_container *rc; 6000 bool tx_dynamic, rx_dynamic; 6001 6002 rc = &q_vector->tx; 6003 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6004 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6005 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6006 rc->dim.priv = rc; 6007 tx_dynamic = ITR_IS_DYNAMIC(rc); 6008 6009 /* set the initial TX ITR to match the above */ 6010 ice_write_itr(rc, tx_dynamic ? 6011 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6012 6013 rc = &q_vector->rx; 6014 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6015 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6016 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6017 rc->dim.priv = rc; 6018 rx_dynamic = ITR_IS_DYNAMIC(rc); 6019 6020 /* set the initial RX ITR to match the above */ 6021 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6022 rc->itr_setting); 6023 6024 ice_set_q_vector_intrl(q_vector); 6025 } 6026 6027 /** 6028 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6029 * @vsi: the VSI being configured 6030 */ 6031 static void ice_napi_enable_all(struct ice_vsi *vsi) 6032 { 6033 int q_idx; 6034 6035 if (!vsi->netdev) 6036 return; 6037 6038 ice_for_each_q_vector(vsi, q_idx) { 6039 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6040 6041 ice_init_moderation(q_vector); 6042 6043 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6044 napi_enable(&q_vector->napi); 6045 } 6046 } 6047 6048 /** 6049 * ice_up_complete - Finish the last steps of bringing up a connection 6050 * @vsi: The VSI being configured 6051 * 6052 * Return 0 on success and negative value on error 6053 */ 6054 static int ice_up_complete(struct ice_vsi *vsi) 6055 { 6056 struct ice_pf *pf = vsi->back; 6057 int err; 6058 6059 ice_vsi_cfg_msix(vsi); 6060 6061 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6062 * Tx queue group list was configured and the context bits were 6063 * programmed using ice_vsi_cfg_txqs 6064 */ 6065 err = ice_vsi_start_all_rx_rings(vsi); 6066 if (err) 6067 return err; 6068 6069 clear_bit(ICE_VSI_DOWN, vsi->state); 6070 ice_napi_enable_all(vsi); 6071 ice_vsi_ena_irq(vsi); 6072 6073 if (vsi->port_info && 6074 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6075 vsi->netdev) { 6076 ice_print_link_msg(vsi, true); 6077 netif_tx_start_all_queues(vsi->netdev); 6078 netif_carrier_on(vsi->netdev); 6079 if (!ice_is_e810(&pf->hw)) 6080 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6081 } 6082 6083 /* clear this now, and the first stats read will be used as baseline */ 6084 vsi->stat_offsets_loaded = false; 6085 6086 ice_service_task_schedule(pf); 6087 6088 return 0; 6089 } 6090 6091 /** 6092 * ice_up - Bring the connection back up after being down 6093 * @vsi: VSI being configured 6094 */ 6095 int ice_up(struct ice_vsi *vsi) 6096 { 6097 int err; 6098 6099 err = ice_vsi_cfg(vsi); 6100 if (!err) 6101 err = ice_up_complete(vsi); 6102 6103 return err; 6104 } 6105 6106 /** 6107 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6108 * @syncp: pointer to u64_stats_sync 6109 * @stats: stats that pkts and bytes count will be taken from 6110 * @pkts: packets stats counter 6111 * @bytes: bytes stats counter 6112 * 6113 * This function fetches stats from the ring considering the atomic operations 6114 * that needs to be performed to read u64 values in 32 bit machine. 6115 */ 6116 static void 6117 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 6118 u64 *pkts, u64 *bytes) 6119 { 6120 unsigned int start; 6121 6122 do { 6123 start = u64_stats_fetch_begin_irq(syncp); 6124 *pkts = stats.pkts; 6125 *bytes = stats.bytes; 6126 } while (u64_stats_fetch_retry_irq(syncp, start)); 6127 } 6128 6129 /** 6130 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6131 * @vsi: the VSI to be updated 6132 * @vsi_stats: the stats struct to be updated 6133 * @rings: rings to work on 6134 * @count: number of rings 6135 */ 6136 static void 6137 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6138 struct rtnl_link_stats64 *vsi_stats, 6139 struct ice_tx_ring **rings, u16 count) 6140 { 6141 u16 i; 6142 6143 for (i = 0; i < count; i++) { 6144 struct ice_tx_ring *ring; 6145 u64 pkts = 0, bytes = 0; 6146 6147 ring = READ_ONCE(rings[i]); 6148 if (ring) 6149 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6150 vsi_stats->tx_packets += pkts; 6151 vsi_stats->tx_bytes += bytes; 6152 vsi->tx_restart += ring->tx_stats.restart_q; 6153 vsi->tx_busy += ring->tx_stats.tx_busy; 6154 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6155 } 6156 } 6157 6158 /** 6159 * ice_update_vsi_ring_stats - Update VSI stats counters 6160 * @vsi: the VSI to be updated 6161 */ 6162 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6163 { 6164 struct rtnl_link_stats64 *vsi_stats; 6165 u64 pkts, bytes; 6166 int i; 6167 6168 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6169 if (!vsi_stats) 6170 return; 6171 6172 /* reset non-netdev (extended) stats */ 6173 vsi->tx_restart = 0; 6174 vsi->tx_busy = 0; 6175 vsi->tx_linearize = 0; 6176 vsi->rx_buf_failed = 0; 6177 vsi->rx_page_failed = 0; 6178 6179 rcu_read_lock(); 6180 6181 /* update Tx rings counters */ 6182 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6183 vsi->num_txq); 6184 6185 /* update Rx rings counters */ 6186 ice_for_each_rxq(vsi, i) { 6187 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6188 6189 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6190 vsi_stats->rx_packets += pkts; 6191 vsi_stats->rx_bytes += bytes; 6192 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6193 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6194 } 6195 6196 /* update XDP Tx rings counters */ 6197 if (ice_is_xdp_ena_vsi(vsi)) 6198 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6199 vsi->num_xdp_txq); 6200 6201 rcu_read_unlock(); 6202 6203 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6204 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6205 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6206 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6207 6208 kfree(vsi_stats); 6209 } 6210 6211 /** 6212 * ice_update_vsi_stats - Update VSI stats counters 6213 * @vsi: the VSI to be updated 6214 */ 6215 void ice_update_vsi_stats(struct ice_vsi *vsi) 6216 { 6217 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6218 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6219 struct ice_pf *pf = vsi->back; 6220 6221 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6222 test_bit(ICE_CFG_BUSY, pf->state)) 6223 return; 6224 6225 /* get stats as recorded by Tx/Rx rings */ 6226 ice_update_vsi_ring_stats(vsi); 6227 6228 /* get VSI stats as recorded by the hardware */ 6229 ice_update_eth_stats(vsi); 6230 6231 cur_ns->tx_errors = cur_es->tx_errors; 6232 cur_ns->rx_dropped = cur_es->rx_discards; 6233 cur_ns->tx_dropped = cur_es->tx_discards; 6234 cur_ns->multicast = cur_es->rx_multicast; 6235 6236 /* update some more netdev stats if this is main VSI */ 6237 if (vsi->type == ICE_VSI_PF) { 6238 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6239 cur_ns->rx_errors = pf->stats.crc_errors + 6240 pf->stats.illegal_bytes + 6241 pf->stats.rx_len_errors + 6242 pf->stats.rx_undersize + 6243 pf->hw_csum_rx_error + 6244 pf->stats.rx_jabber + 6245 pf->stats.rx_fragments + 6246 pf->stats.rx_oversize; 6247 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6248 /* record drops from the port level */ 6249 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6250 } 6251 } 6252 6253 /** 6254 * ice_update_pf_stats - Update PF port stats counters 6255 * @pf: PF whose stats needs to be updated 6256 */ 6257 void ice_update_pf_stats(struct ice_pf *pf) 6258 { 6259 struct ice_hw_port_stats *prev_ps, *cur_ps; 6260 struct ice_hw *hw = &pf->hw; 6261 u16 fd_ctr_base; 6262 u8 port; 6263 6264 port = hw->port_info->lport; 6265 prev_ps = &pf->stats_prev; 6266 cur_ps = &pf->stats; 6267 6268 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6269 &prev_ps->eth.rx_bytes, 6270 &cur_ps->eth.rx_bytes); 6271 6272 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6273 &prev_ps->eth.rx_unicast, 6274 &cur_ps->eth.rx_unicast); 6275 6276 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6277 &prev_ps->eth.rx_multicast, 6278 &cur_ps->eth.rx_multicast); 6279 6280 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6281 &prev_ps->eth.rx_broadcast, 6282 &cur_ps->eth.rx_broadcast); 6283 6284 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6285 &prev_ps->eth.rx_discards, 6286 &cur_ps->eth.rx_discards); 6287 6288 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6289 &prev_ps->eth.tx_bytes, 6290 &cur_ps->eth.tx_bytes); 6291 6292 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6293 &prev_ps->eth.tx_unicast, 6294 &cur_ps->eth.tx_unicast); 6295 6296 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6297 &prev_ps->eth.tx_multicast, 6298 &cur_ps->eth.tx_multicast); 6299 6300 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6301 &prev_ps->eth.tx_broadcast, 6302 &cur_ps->eth.tx_broadcast); 6303 6304 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6305 &prev_ps->tx_dropped_link_down, 6306 &cur_ps->tx_dropped_link_down); 6307 6308 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6309 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6310 6311 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6312 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6313 6314 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6315 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6316 6317 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6318 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6319 6320 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6321 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6322 6323 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6324 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6325 6326 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6327 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6328 6329 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6330 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6331 6332 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6333 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6334 6335 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6336 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6337 6338 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6339 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6340 6341 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6342 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6343 6344 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6345 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6346 6347 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6348 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6349 6350 fd_ctr_base = hw->fd_ctr_base; 6351 6352 ice_stat_update40(hw, 6353 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6354 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6355 &cur_ps->fd_sb_match); 6356 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6357 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6358 6359 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6360 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6361 6362 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6363 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6364 6365 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6366 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6367 6368 ice_update_dcb_stats(pf); 6369 6370 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6371 &prev_ps->crc_errors, &cur_ps->crc_errors); 6372 6373 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6374 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6375 6376 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6377 &prev_ps->mac_local_faults, 6378 &cur_ps->mac_local_faults); 6379 6380 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6381 &prev_ps->mac_remote_faults, 6382 &cur_ps->mac_remote_faults); 6383 6384 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6385 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6386 6387 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6388 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6389 6390 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6391 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6392 6393 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6394 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6395 6396 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6397 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6398 6399 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6400 6401 pf->stat_prev_loaded = true; 6402 } 6403 6404 /** 6405 * ice_get_stats64 - get statistics for network device structure 6406 * @netdev: network interface device structure 6407 * @stats: main device statistics structure 6408 */ 6409 static 6410 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6411 { 6412 struct ice_netdev_priv *np = netdev_priv(netdev); 6413 struct rtnl_link_stats64 *vsi_stats; 6414 struct ice_vsi *vsi = np->vsi; 6415 6416 vsi_stats = &vsi->net_stats; 6417 6418 if (!vsi->num_txq || !vsi->num_rxq) 6419 return; 6420 6421 /* netdev packet/byte stats come from ring counter. These are obtained 6422 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6423 * But, only call the update routine and read the registers if VSI is 6424 * not down. 6425 */ 6426 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6427 ice_update_vsi_ring_stats(vsi); 6428 stats->tx_packets = vsi_stats->tx_packets; 6429 stats->tx_bytes = vsi_stats->tx_bytes; 6430 stats->rx_packets = vsi_stats->rx_packets; 6431 stats->rx_bytes = vsi_stats->rx_bytes; 6432 6433 /* The rest of the stats can be read from the hardware but instead we 6434 * just return values that the watchdog task has already obtained from 6435 * the hardware. 6436 */ 6437 stats->multicast = vsi_stats->multicast; 6438 stats->tx_errors = vsi_stats->tx_errors; 6439 stats->tx_dropped = vsi_stats->tx_dropped; 6440 stats->rx_errors = vsi_stats->rx_errors; 6441 stats->rx_dropped = vsi_stats->rx_dropped; 6442 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6443 stats->rx_length_errors = vsi_stats->rx_length_errors; 6444 } 6445 6446 /** 6447 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6448 * @vsi: VSI having NAPI disabled 6449 */ 6450 static void ice_napi_disable_all(struct ice_vsi *vsi) 6451 { 6452 int q_idx; 6453 6454 if (!vsi->netdev) 6455 return; 6456 6457 ice_for_each_q_vector(vsi, q_idx) { 6458 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6459 6460 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6461 napi_disable(&q_vector->napi); 6462 6463 cancel_work_sync(&q_vector->tx.dim.work); 6464 cancel_work_sync(&q_vector->rx.dim.work); 6465 } 6466 } 6467 6468 /** 6469 * ice_down - Shutdown the connection 6470 * @vsi: The VSI being stopped 6471 * 6472 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6473 */ 6474 int ice_down(struct ice_vsi *vsi) 6475 { 6476 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6477 6478 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6479 6480 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6481 vlan_err = ice_vsi_del_vlan_zero(vsi); 6482 if (!ice_is_e810(&vsi->back->hw)) 6483 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6484 netif_carrier_off(vsi->netdev); 6485 netif_tx_disable(vsi->netdev); 6486 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6487 ice_eswitch_stop_all_tx_queues(vsi->back); 6488 } 6489 6490 ice_vsi_dis_irq(vsi); 6491 6492 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6493 if (tx_err) 6494 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6495 vsi->vsi_num, tx_err); 6496 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6497 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6498 if (tx_err) 6499 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6500 vsi->vsi_num, tx_err); 6501 } 6502 6503 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6504 if (rx_err) 6505 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6506 vsi->vsi_num, rx_err); 6507 6508 ice_napi_disable_all(vsi); 6509 6510 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6511 link_err = ice_force_phys_link_state(vsi, false); 6512 if (link_err) 6513 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6514 vsi->vsi_num, link_err); 6515 } 6516 6517 ice_for_each_txq(vsi, i) 6518 ice_clean_tx_ring(vsi->tx_rings[i]); 6519 6520 ice_for_each_rxq(vsi, i) 6521 ice_clean_rx_ring(vsi->rx_rings[i]); 6522 6523 if (tx_err || rx_err || link_err || vlan_err) { 6524 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6525 vsi->vsi_num, vsi->vsw->sw_id); 6526 return -EIO; 6527 } 6528 6529 return 0; 6530 } 6531 6532 /** 6533 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6534 * @vsi: VSI having resources allocated 6535 * 6536 * Return 0 on success, negative on failure 6537 */ 6538 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6539 { 6540 int i, err = 0; 6541 6542 if (!vsi->num_txq) { 6543 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6544 vsi->vsi_num); 6545 return -EINVAL; 6546 } 6547 6548 ice_for_each_txq(vsi, i) { 6549 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6550 6551 if (!ring) 6552 return -EINVAL; 6553 6554 if (vsi->netdev) 6555 ring->netdev = vsi->netdev; 6556 err = ice_setup_tx_ring(ring); 6557 if (err) 6558 break; 6559 } 6560 6561 return err; 6562 } 6563 6564 /** 6565 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6566 * @vsi: VSI having resources allocated 6567 * 6568 * Return 0 on success, negative on failure 6569 */ 6570 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6571 { 6572 int i, err = 0; 6573 6574 if (!vsi->num_rxq) { 6575 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6576 vsi->vsi_num); 6577 return -EINVAL; 6578 } 6579 6580 ice_for_each_rxq(vsi, i) { 6581 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6582 6583 if (!ring) 6584 return -EINVAL; 6585 6586 if (vsi->netdev) 6587 ring->netdev = vsi->netdev; 6588 err = ice_setup_rx_ring(ring); 6589 if (err) 6590 break; 6591 } 6592 6593 return err; 6594 } 6595 6596 /** 6597 * ice_vsi_open_ctrl - open control VSI for use 6598 * @vsi: the VSI to open 6599 * 6600 * Initialization of the Control VSI 6601 * 6602 * Returns 0 on success, negative value on error 6603 */ 6604 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6605 { 6606 char int_name[ICE_INT_NAME_STR_LEN]; 6607 struct ice_pf *pf = vsi->back; 6608 struct device *dev; 6609 int err; 6610 6611 dev = ice_pf_to_dev(pf); 6612 /* allocate descriptors */ 6613 err = ice_vsi_setup_tx_rings(vsi); 6614 if (err) 6615 goto err_setup_tx; 6616 6617 err = ice_vsi_setup_rx_rings(vsi); 6618 if (err) 6619 goto err_setup_rx; 6620 6621 err = ice_vsi_cfg(vsi); 6622 if (err) 6623 goto err_setup_rx; 6624 6625 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6626 dev_driver_string(dev), dev_name(dev)); 6627 err = ice_vsi_req_irq_msix(vsi, int_name); 6628 if (err) 6629 goto err_setup_rx; 6630 6631 ice_vsi_cfg_msix(vsi); 6632 6633 err = ice_vsi_start_all_rx_rings(vsi); 6634 if (err) 6635 goto err_up_complete; 6636 6637 clear_bit(ICE_VSI_DOWN, vsi->state); 6638 ice_vsi_ena_irq(vsi); 6639 6640 return 0; 6641 6642 err_up_complete: 6643 ice_down(vsi); 6644 err_setup_rx: 6645 ice_vsi_free_rx_rings(vsi); 6646 err_setup_tx: 6647 ice_vsi_free_tx_rings(vsi); 6648 6649 return err; 6650 } 6651 6652 /** 6653 * ice_vsi_open - Called when a network interface is made active 6654 * @vsi: the VSI to open 6655 * 6656 * Initialization of the VSI 6657 * 6658 * Returns 0 on success, negative value on error 6659 */ 6660 int ice_vsi_open(struct ice_vsi *vsi) 6661 { 6662 char int_name[ICE_INT_NAME_STR_LEN]; 6663 struct ice_pf *pf = vsi->back; 6664 int err; 6665 6666 /* allocate descriptors */ 6667 err = ice_vsi_setup_tx_rings(vsi); 6668 if (err) 6669 goto err_setup_tx; 6670 6671 err = ice_vsi_setup_rx_rings(vsi); 6672 if (err) 6673 goto err_setup_rx; 6674 6675 err = ice_vsi_cfg(vsi); 6676 if (err) 6677 goto err_setup_rx; 6678 6679 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6680 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6681 err = ice_vsi_req_irq_msix(vsi, int_name); 6682 if (err) 6683 goto err_setup_rx; 6684 6685 if (vsi->type == ICE_VSI_PF) { 6686 /* Notify the stack of the actual queue counts. */ 6687 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6688 if (err) 6689 goto err_set_qs; 6690 6691 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6692 if (err) 6693 goto err_set_qs; 6694 } 6695 6696 err = ice_up_complete(vsi); 6697 if (err) 6698 goto err_up_complete; 6699 6700 return 0; 6701 6702 err_up_complete: 6703 ice_down(vsi); 6704 err_set_qs: 6705 ice_vsi_free_irq(vsi); 6706 err_setup_rx: 6707 ice_vsi_free_rx_rings(vsi); 6708 err_setup_tx: 6709 ice_vsi_free_tx_rings(vsi); 6710 6711 return err; 6712 } 6713 6714 /** 6715 * ice_vsi_release_all - Delete all VSIs 6716 * @pf: PF from which all VSIs are being removed 6717 */ 6718 static void ice_vsi_release_all(struct ice_pf *pf) 6719 { 6720 int err, i; 6721 6722 if (!pf->vsi) 6723 return; 6724 6725 ice_for_each_vsi(pf, i) { 6726 if (!pf->vsi[i]) 6727 continue; 6728 6729 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6730 continue; 6731 6732 err = ice_vsi_release(pf->vsi[i]); 6733 if (err) 6734 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6735 i, err, pf->vsi[i]->vsi_num); 6736 } 6737 } 6738 6739 /** 6740 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6741 * @pf: pointer to the PF instance 6742 * @type: VSI type to rebuild 6743 * 6744 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6745 */ 6746 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6747 { 6748 struct device *dev = ice_pf_to_dev(pf); 6749 int i, err; 6750 6751 ice_for_each_vsi(pf, i) { 6752 struct ice_vsi *vsi = pf->vsi[i]; 6753 6754 if (!vsi || vsi->type != type) 6755 continue; 6756 6757 /* rebuild the VSI */ 6758 err = ice_vsi_rebuild(vsi, true); 6759 if (err) { 6760 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6761 err, vsi->idx, ice_vsi_type_str(type)); 6762 return err; 6763 } 6764 6765 /* replay filters for the VSI */ 6766 err = ice_replay_vsi(&pf->hw, vsi->idx); 6767 if (err) { 6768 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6769 err, vsi->idx, ice_vsi_type_str(type)); 6770 return err; 6771 } 6772 6773 /* Re-map HW VSI number, using VSI handle that has been 6774 * previously validated in ice_replay_vsi() call above 6775 */ 6776 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6777 6778 /* enable the VSI */ 6779 err = ice_ena_vsi(vsi, false); 6780 if (err) { 6781 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6782 err, vsi->idx, ice_vsi_type_str(type)); 6783 return err; 6784 } 6785 6786 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6787 ice_vsi_type_str(type)); 6788 } 6789 6790 return 0; 6791 } 6792 6793 /** 6794 * ice_update_pf_netdev_link - Update PF netdev link status 6795 * @pf: pointer to the PF instance 6796 */ 6797 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6798 { 6799 bool link_up; 6800 int i; 6801 6802 ice_for_each_vsi(pf, i) { 6803 struct ice_vsi *vsi = pf->vsi[i]; 6804 6805 if (!vsi || vsi->type != ICE_VSI_PF) 6806 return; 6807 6808 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6809 if (link_up) { 6810 netif_carrier_on(pf->vsi[i]->netdev); 6811 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6812 } else { 6813 netif_carrier_off(pf->vsi[i]->netdev); 6814 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6815 } 6816 } 6817 } 6818 6819 /** 6820 * ice_rebuild - rebuild after reset 6821 * @pf: PF to rebuild 6822 * @reset_type: type of reset 6823 * 6824 * Do not rebuild VF VSI in this flow because that is already handled via 6825 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6826 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6827 * to reset/rebuild all the VF VSI twice. 6828 */ 6829 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6830 { 6831 struct device *dev = ice_pf_to_dev(pf); 6832 struct ice_hw *hw = &pf->hw; 6833 bool dvm; 6834 int err; 6835 6836 if (test_bit(ICE_DOWN, pf->state)) 6837 goto clear_recovery; 6838 6839 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6840 6841 if (reset_type == ICE_RESET_EMPR) { 6842 /* If an EMP reset has occurred, any previously pending flash 6843 * update will have completed. We no longer know whether or 6844 * not the NVM update EMP reset is restricted. 6845 */ 6846 pf->fw_emp_reset_disabled = false; 6847 } 6848 6849 err = ice_init_all_ctrlq(hw); 6850 if (err) { 6851 dev_err(dev, "control queues init failed %d\n", err); 6852 goto err_init_ctrlq; 6853 } 6854 6855 /* if DDP was previously loaded successfully */ 6856 if (!ice_is_safe_mode(pf)) { 6857 /* reload the SW DB of filter tables */ 6858 if (reset_type == ICE_RESET_PFR) 6859 ice_fill_blk_tbls(hw); 6860 else 6861 /* Reload DDP Package after CORER/GLOBR reset */ 6862 ice_load_pkg(NULL, pf); 6863 } 6864 6865 err = ice_clear_pf_cfg(hw); 6866 if (err) { 6867 dev_err(dev, "clear PF configuration failed %d\n", err); 6868 goto err_init_ctrlq; 6869 } 6870 6871 if (pf->first_sw->dflt_vsi_ena) 6872 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6873 /* clear the default VSI configuration if it exists */ 6874 pf->first_sw->dflt_vsi = NULL; 6875 pf->first_sw->dflt_vsi_ena = false; 6876 6877 ice_clear_pxe_mode(hw); 6878 6879 err = ice_init_nvm(hw); 6880 if (err) { 6881 dev_err(dev, "ice_init_nvm failed %d\n", err); 6882 goto err_init_ctrlq; 6883 } 6884 6885 err = ice_get_caps(hw); 6886 if (err) { 6887 dev_err(dev, "ice_get_caps failed %d\n", err); 6888 goto err_init_ctrlq; 6889 } 6890 6891 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6892 if (err) { 6893 dev_err(dev, "set_mac_cfg failed %d\n", err); 6894 goto err_init_ctrlq; 6895 } 6896 6897 dvm = ice_is_dvm_ena(hw); 6898 6899 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 6900 if (err) 6901 goto err_init_ctrlq; 6902 6903 err = ice_sched_init_port(hw->port_info); 6904 if (err) 6905 goto err_sched_init_port; 6906 6907 /* start misc vector */ 6908 err = ice_req_irq_msix_misc(pf); 6909 if (err) { 6910 dev_err(dev, "misc vector setup failed: %d\n", err); 6911 goto err_sched_init_port; 6912 } 6913 6914 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6915 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6916 if (!rd32(hw, PFQF_FD_SIZE)) { 6917 u16 unused, guar, b_effort; 6918 6919 guar = hw->func_caps.fd_fltr_guar; 6920 b_effort = hw->func_caps.fd_fltr_best_effort; 6921 6922 /* force guaranteed filter pool for PF */ 6923 ice_alloc_fd_guar_item(hw, &unused, guar); 6924 /* force shared filter pool for PF */ 6925 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6926 } 6927 } 6928 6929 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6930 ice_dcb_rebuild(pf); 6931 6932 /* If the PF previously had enabled PTP, PTP init needs to happen before 6933 * the VSI rebuild. If not, this causes the PTP link status events to 6934 * fail. 6935 */ 6936 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6937 ice_ptp_reset(pf); 6938 6939 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 6940 ice_gnss_init(pf); 6941 6942 /* rebuild PF VSI */ 6943 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6944 if (err) { 6945 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6946 goto err_vsi_rebuild; 6947 } 6948 6949 /* configure PTP timestamping after VSI rebuild */ 6950 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6951 ice_ptp_cfg_timestamp(pf, false); 6952 6953 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6954 if (err) { 6955 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6956 goto err_vsi_rebuild; 6957 } 6958 6959 if (reset_type == ICE_RESET_PFR) { 6960 err = ice_rebuild_channels(pf); 6961 if (err) { 6962 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6963 err); 6964 goto err_vsi_rebuild; 6965 } 6966 } 6967 6968 /* If Flow Director is active */ 6969 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6970 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6971 if (err) { 6972 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6973 goto err_vsi_rebuild; 6974 } 6975 6976 /* replay HW Flow Director recipes */ 6977 if (hw->fdir_prof) 6978 ice_fdir_replay_flows(hw); 6979 6980 /* replay Flow Director filters */ 6981 ice_fdir_replay_fltrs(pf); 6982 6983 ice_rebuild_arfs(pf); 6984 } 6985 6986 ice_update_pf_netdev_link(pf); 6987 6988 /* tell the firmware we are up */ 6989 err = ice_send_version(pf); 6990 if (err) { 6991 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 6992 err); 6993 goto err_vsi_rebuild; 6994 } 6995 6996 ice_replay_post(hw); 6997 6998 /* if we get here, reset flow is successful */ 6999 clear_bit(ICE_RESET_FAILED, pf->state); 7000 7001 ice_plug_aux_dev(pf); 7002 return; 7003 7004 err_vsi_rebuild: 7005 err_sched_init_port: 7006 ice_sched_cleanup_all(hw); 7007 err_init_ctrlq: 7008 ice_shutdown_all_ctrlq(hw); 7009 set_bit(ICE_RESET_FAILED, pf->state); 7010 clear_recovery: 7011 /* set this bit in PF state to control service task scheduling */ 7012 set_bit(ICE_NEEDS_RESTART, pf->state); 7013 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7014 } 7015 7016 /** 7017 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7018 * @vsi: Pointer to VSI structure 7019 */ 7020 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7021 { 7022 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7023 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7024 else 7025 return ICE_RXBUF_3072; 7026 } 7027 7028 /** 7029 * ice_change_mtu - NDO callback to change the MTU 7030 * @netdev: network interface device structure 7031 * @new_mtu: new value for maximum frame size 7032 * 7033 * Returns 0 on success, negative on failure 7034 */ 7035 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7036 { 7037 struct ice_netdev_priv *np = netdev_priv(netdev); 7038 struct ice_vsi *vsi = np->vsi; 7039 struct ice_pf *pf = vsi->back; 7040 struct iidc_event *event; 7041 u8 count = 0; 7042 int err = 0; 7043 7044 if (new_mtu == (int)netdev->mtu) { 7045 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7046 return 0; 7047 } 7048 7049 if (ice_is_xdp_ena_vsi(vsi)) { 7050 int frame_size = ice_max_xdp_frame_size(vsi); 7051 7052 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7053 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7054 frame_size - ICE_ETH_PKT_HDR_PAD); 7055 return -EINVAL; 7056 } 7057 } 7058 7059 /* if a reset is in progress, wait for some time for it to complete */ 7060 do { 7061 if (ice_is_reset_in_progress(pf->state)) { 7062 count++; 7063 usleep_range(1000, 2000); 7064 } else { 7065 break; 7066 } 7067 7068 } while (count < 100); 7069 7070 if (count == 100) { 7071 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7072 return -EBUSY; 7073 } 7074 7075 event = kzalloc(sizeof(*event), GFP_KERNEL); 7076 if (!event) 7077 return -ENOMEM; 7078 7079 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 7080 ice_send_event_to_aux(pf, event); 7081 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 7082 7083 netdev->mtu = (unsigned int)new_mtu; 7084 7085 /* if VSI is up, bring it down and then back up */ 7086 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7087 err = ice_down(vsi); 7088 if (err) { 7089 netdev_err(netdev, "change MTU if_down err %d\n", err); 7090 goto event_after; 7091 } 7092 7093 err = ice_up(vsi); 7094 if (err) { 7095 netdev_err(netdev, "change MTU if_up err %d\n", err); 7096 goto event_after; 7097 } 7098 } 7099 7100 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7101 event_after: 7102 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 7103 ice_send_event_to_aux(pf, event); 7104 kfree(event); 7105 7106 return err; 7107 } 7108 7109 /** 7110 * ice_eth_ioctl - Access the hwtstamp interface 7111 * @netdev: network interface device structure 7112 * @ifr: interface request data 7113 * @cmd: ioctl command 7114 */ 7115 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7116 { 7117 struct ice_netdev_priv *np = netdev_priv(netdev); 7118 struct ice_pf *pf = np->vsi->back; 7119 7120 switch (cmd) { 7121 case SIOCGHWTSTAMP: 7122 return ice_ptp_get_ts_config(pf, ifr); 7123 case SIOCSHWTSTAMP: 7124 return ice_ptp_set_ts_config(pf, ifr); 7125 default: 7126 return -EOPNOTSUPP; 7127 } 7128 } 7129 7130 /** 7131 * ice_aq_str - convert AQ err code to a string 7132 * @aq_err: the AQ error code to convert 7133 */ 7134 const char *ice_aq_str(enum ice_aq_err aq_err) 7135 { 7136 switch (aq_err) { 7137 case ICE_AQ_RC_OK: 7138 return "OK"; 7139 case ICE_AQ_RC_EPERM: 7140 return "ICE_AQ_RC_EPERM"; 7141 case ICE_AQ_RC_ENOENT: 7142 return "ICE_AQ_RC_ENOENT"; 7143 case ICE_AQ_RC_ENOMEM: 7144 return "ICE_AQ_RC_ENOMEM"; 7145 case ICE_AQ_RC_EBUSY: 7146 return "ICE_AQ_RC_EBUSY"; 7147 case ICE_AQ_RC_EEXIST: 7148 return "ICE_AQ_RC_EEXIST"; 7149 case ICE_AQ_RC_EINVAL: 7150 return "ICE_AQ_RC_EINVAL"; 7151 case ICE_AQ_RC_ENOSPC: 7152 return "ICE_AQ_RC_ENOSPC"; 7153 case ICE_AQ_RC_ENOSYS: 7154 return "ICE_AQ_RC_ENOSYS"; 7155 case ICE_AQ_RC_EMODE: 7156 return "ICE_AQ_RC_EMODE"; 7157 case ICE_AQ_RC_ENOSEC: 7158 return "ICE_AQ_RC_ENOSEC"; 7159 case ICE_AQ_RC_EBADSIG: 7160 return "ICE_AQ_RC_EBADSIG"; 7161 case ICE_AQ_RC_ESVN: 7162 return "ICE_AQ_RC_ESVN"; 7163 case ICE_AQ_RC_EBADMAN: 7164 return "ICE_AQ_RC_EBADMAN"; 7165 case ICE_AQ_RC_EBADBUF: 7166 return "ICE_AQ_RC_EBADBUF"; 7167 } 7168 7169 return "ICE_AQ_RC_UNKNOWN"; 7170 } 7171 7172 /** 7173 * ice_set_rss_lut - Set RSS LUT 7174 * @vsi: Pointer to VSI structure 7175 * @lut: Lookup table 7176 * @lut_size: Lookup table size 7177 * 7178 * Returns 0 on success, negative on failure 7179 */ 7180 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7181 { 7182 struct ice_aq_get_set_rss_lut_params params = {}; 7183 struct ice_hw *hw = &vsi->back->hw; 7184 int status; 7185 7186 if (!lut) 7187 return -EINVAL; 7188 7189 params.vsi_handle = vsi->idx; 7190 params.lut_size = lut_size; 7191 params.lut_type = vsi->rss_lut_type; 7192 params.lut = lut; 7193 7194 status = ice_aq_set_rss_lut(hw, ¶ms); 7195 if (status) 7196 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7197 status, ice_aq_str(hw->adminq.sq_last_status)); 7198 7199 return status; 7200 } 7201 7202 /** 7203 * ice_set_rss_key - Set RSS key 7204 * @vsi: Pointer to the VSI structure 7205 * @seed: RSS hash seed 7206 * 7207 * Returns 0 on success, negative on failure 7208 */ 7209 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7210 { 7211 struct ice_hw *hw = &vsi->back->hw; 7212 int status; 7213 7214 if (!seed) 7215 return -EINVAL; 7216 7217 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7218 if (status) 7219 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7220 status, ice_aq_str(hw->adminq.sq_last_status)); 7221 7222 return status; 7223 } 7224 7225 /** 7226 * ice_get_rss_lut - Get RSS LUT 7227 * @vsi: Pointer to VSI structure 7228 * @lut: Buffer to store the lookup table entries 7229 * @lut_size: Size of buffer to store the lookup table entries 7230 * 7231 * Returns 0 on success, negative on failure 7232 */ 7233 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7234 { 7235 struct ice_aq_get_set_rss_lut_params params = {}; 7236 struct ice_hw *hw = &vsi->back->hw; 7237 int status; 7238 7239 if (!lut) 7240 return -EINVAL; 7241 7242 params.vsi_handle = vsi->idx; 7243 params.lut_size = lut_size; 7244 params.lut_type = vsi->rss_lut_type; 7245 params.lut = lut; 7246 7247 status = ice_aq_get_rss_lut(hw, ¶ms); 7248 if (status) 7249 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7250 status, ice_aq_str(hw->adminq.sq_last_status)); 7251 7252 return status; 7253 } 7254 7255 /** 7256 * ice_get_rss_key - Get RSS key 7257 * @vsi: Pointer to VSI structure 7258 * @seed: Buffer to store the key in 7259 * 7260 * Returns 0 on success, negative on failure 7261 */ 7262 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7263 { 7264 struct ice_hw *hw = &vsi->back->hw; 7265 int status; 7266 7267 if (!seed) 7268 return -EINVAL; 7269 7270 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7271 if (status) 7272 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7273 status, ice_aq_str(hw->adminq.sq_last_status)); 7274 7275 return status; 7276 } 7277 7278 /** 7279 * ice_bridge_getlink - Get the hardware bridge mode 7280 * @skb: skb buff 7281 * @pid: process ID 7282 * @seq: RTNL message seq 7283 * @dev: the netdev being configured 7284 * @filter_mask: filter mask passed in 7285 * @nlflags: netlink flags passed in 7286 * 7287 * Return the bridge mode (VEB/VEPA) 7288 */ 7289 static int 7290 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7291 struct net_device *dev, u32 filter_mask, int nlflags) 7292 { 7293 struct ice_netdev_priv *np = netdev_priv(dev); 7294 struct ice_vsi *vsi = np->vsi; 7295 struct ice_pf *pf = vsi->back; 7296 u16 bmode; 7297 7298 bmode = pf->first_sw->bridge_mode; 7299 7300 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7301 filter_mask, NULL); 7302 } 7303 7304 /** 7305 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7306 * @vsi: Pointer to VSI structure 7307 * @bmode: Hardware bridge mode (VEB/VEPA) 7308 * 7309 * Returns 0 on success, negative on failure 7310 */ 7311 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7312 { 7313 struct ice_aqc_vsi_props *vsi_props; 7314 struct ice_hw *hw = &vsi->back->hw; 7315 struct ice_vsi_ctx *ctxt; 7316 int ret; 7317 7318 vsi_props = &vsi->info; 7319 7320 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7321 if (!ctxt) 7322 return -ENOMEM; 7323 7324 ctxt->info = vsi->info; 7325 7326 if (bmode == BRIDGE_MODE_VEB) 7327 /* change from VEPA to VEB mode */ 7328 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7329 else 7330 /* change from VEB to VEPA mode */ 7331 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7332 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7333 7334 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7335 if (ret) { 7336 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7337 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7338 goto out; 7339 } 7340 /* Update sw flags for book keeping */ 7341 vsi_props->sw_flags = ctxt->info.sw_flags; 7342 7343 out: 7344 kfree(ctxt); 7345 return ret; 7346 } 7347 7348 /** 7349 * ice_bridge_setlink - Set the hardware bridge mode 7350 * @dev: the netdev being configured 7351 * @nlh: RTNL message 7352 * @flags: bridge setlink flags 7353 * @extack: netlink extended ack 7354 * 7355 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7356 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7357 * not already set for all VSIs connected to this switch. And also update the 7358 * unicast switch filter rules for the corresponding switch of the netdev. 7359 */ 7360 static int 7361 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7362 u16 __always_unused flags, 7363 struct netlink_ext_ack __always_unused *extack) 7364 { 7365 struct ice_netdev_priv *np = netdev_priv(dev); 7366 struct ice_pf *pf = np->vsi->back; 7367 struct nlattr *attr, *br_spec; 7368 struct ice_hw *hw = &pf->hw; 7369 struct ice_sw *pf_sw; 7370 int rem, v, err = 0; 7371 7372 pf_sw = pf->first_sw; 7373 /* find the attribute in the netlink message */ 7374 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7375 7376 nla_for_each_nested(attr, br_spec, rem) { 7377 __u16 mode; 7378 7379 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7380 continue; 7381 mode = nla_get_u16(attr); 7382 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7383 return -EINVAL; 7384 /* Continue if bridge mode is not being flipped */ 7385 if (mode == pf_sw->bridge_mode) 7386 continue; 7387 /* Iterates through the PF VSI list and update the loopback 7388 * mode of the VSI 7389 */ 7390 ice_for_each_vsi(pf, v) { 7391 if (!pf->vsi[v]) 7392 continue; 7393 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7394 if (err) 7395 return err; 7396 } 7397 7398 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7399 /* Update the unicast switch filter rules for the corresponding 7400 * switch of the netdev 7401 */ 7402 err = ice_update_sw_rule_bridge_mode(hw); 7403 if (err) { 7404 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7405 mode, err, 7406 ice_aq_str(hw->adminq.sq_last_status)); 7407 /* revert hw->evb_veb */ 7408 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7409 return err; 7410 } 7411 7412 pf_sw->bridge_mode = mode; 7413 } 7414 7415 return 0; 7416 } 7417 7418 /** 7419 * ice_tx_timeout - Respond to a Tx Hang 7420 * @netdev: network interface device structure 7421 * @txqueue: Tx queue 7422 */ 7423 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7424 { 7425 struct ice_netdev_priv *np = netdev_priv(netdev); 7426 struct ice_tx_ring *tx_ring = NULL; 7427 struct ice_vsi *vsi = np->vsi; 7428 struct ice_pf *pf = vsi->back; 7429 u32 i; 7430 7431 pf->tx_timeout_count++; 7432 7433 /* Check if PFC is enabled for the TC to which the queue belongs 7434 * to. If yes then Tx timeout is not caused by a hung queue, no 7435 * need to reset and rebuild 7436 */ 7437 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7438 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7439 txqueue); 7440 return; 7441 } 7442 7443 /* now that we have an index, find the tx_ring struct */ 7444 ice_for_each_txq(vsi, i) 7445 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7446 if (txqueue == vsi->tx_rings[i]->q_index) { 7447 tx_ring = vsi->tx_rings[i]; 7448 break; 7449 } 7450 7451 /* Reset recovery level if enough time has elapsed after last timeout. 7452 * Also ensure no new reset action happens before next timeout period. 7453 */ 7454 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7455 pf->tx_timeout_recovery_level = 1; 7456 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7457 netdev->watchdog_timeo))) 7458 return; 7459 7460 if (tx_ring) { 7461 struct ice_hw *hw = &pf->hw; 7462 u32 head, val = 0; 7463 7464 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7465 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7466 /* Read interrupt register */ 7467 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7468 7469 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7470 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7471 head, tx_ring->next_to_use, val); 7472 } 7473 7474 pf->tx_timeout_last_recovery = jiffies; 7475 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7476 pf->tx_timeout_recovery_level, txqueue); 7477 7478 switch (pf->tx_timeout_recovery_level) { 7479 case 1: 7480 set_bit(ICE_PFR_REQ, pf->state); 7481 break; 7482 case 2: 7483 set_bit(ICE_CORER_REQ, pf->state); 7484 break; 7485 case 3: 7486 set_bit(ICE_GLOBR_REQ, pf->state); 7487 break; 7488 default: 7489 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7490 set_bit(ICE_DOWN, pf->state); 7491 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7492 set_bit(ICE_SERVICE_DIS, pf->state); 7493 break; 7494 } 7495 7496 ice_service_task_schedule(pf); 7497 pf->tx_timeout_recovery_level++; 7498 } 7499 7500 /** 7501 * ice_setup_tc_cls_flower - flower classifier offloads 7502 * @np: net device to configure 7503 * @filter_dev: device on which filter is added 7504 * @cls_flower: offload data 7505 */ 7506 static int 7507 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7508 struct net_device *filter_dev, 7509 struct flow_cls_offload *cls_flower) 7510 { 7511 struct ice_vsi *vsi = np->vsi; 7512 7513 if (cls_flower->common.chain_index) 7514 return -EOPNOTSUPP; 7515 7516 switch (cls_flower->command) { 7517 case FLOW_CLS_REPLACE: 7518 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7519 case FLOW_CLS_DESTROY: 7520 return ice_del_cls_flower(vsi, cls_flower); 7521 default: 7522 return -EINVAL; 7523 } 7524 } 7525 7526 /** 7527 * ice_setup_tc_block_cb - callback handler registered for TC block 7528 * @type: TC SETUP type 7529 * @type_data: TC flower offload data that contains user input 7530 * @cb_priv: netdev private data 7531 */ 7532 static int 7533 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7534 { 7535 struct ice_netdev_priv *np = cb_priv; 7536 7537 switch (type) { 7538 case TC_SETUP_CLSFLOWER: 7539 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7540 type_data); 7541 default: 7542 return -EOPNOTSUPP; 7543 } 7544 } 7545 7546 /** 7547 * ice_validate_mqprio_qopt - Validate TCF input parameters 7548 * @vsi: Pointer to VSI 7549 * @mqprio_qopt: input parameters for mqprio queue configuration 7550 * 7551 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7552 * needed), and make sure user doesn't specify qcount and BW rate limit 7553 * for TCs, which are more than "num_tc" 7554 */ 7555 static int 7556 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7557 struct tc_mqprio_qopt_offload *mqprio_qopt) 7558 { 7559 u64 sum_max_rate = 0, sum_min_rate = 0; 7560 int non_power_of_2_qcount = 0; 7561 struct ice_pf *pf = vsi->back; 7562 int max_rss_q_cnt = 0; 7563 struct device *dev; 7564 int i, speed; 7565 u8 num_tc; 7566 7567 if (vsi->type != ICE_VSI_PF) 7568 return -EINVAL; 7569 7570 if (mqprio_qopt->qopt.offset[0] != 0 || 7571 mqprio_qopt->qopt.num_tc < 1 || 7572 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7573 return -EINVAL; 7574 7575 dev = ice_pf_to_dev(pf); 7576 vsi->ch_rss_size = 0; 7577 num_tc = mqprio_qopt->qopt.num_tc; 7578 7579 for (i = 0; num_tc; i++) { 7580 int qcount = mqprio_qopt->qopt.count[i]; 7581 u64 max_rate, min_rate, rem; 7582 7583 if (!qcount) 7584 return -EINVAL; 7585 7586 if (is_power_of_2(qcount)) { 7587 if (non_power_of_2_qcount && 7588 qcount > non_power_of_2_qcount) { 7589 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7590 qcount, non_power_of_2_qcount); 7591 return -EINVAL; 7592 } 7593 if (qcount > max_rss_q_cnt) 7594 max_rss_q_cnt = qcount; 7595 } else { 7596 if (non_power_of_2_qcount && 7597 qcount != non_power_of_2_qcount) { 7598 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7599 qcount, non_power_of_2_qcount); 7600 return -EINVAL; 7601 } 7602 if (qcount < max_rss_q_cnt) { 7603 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7604 qcount, max_rss_q_cnt); 7605 return -EINVAL; 7606 } 7607 max_rss_q_cnt = qcount; 7608 non_power_of_2_qcount = qcount; 7609 } 7610 7611 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7612 * converts the bandwidth rate limit into Bytes/s when 7613 * passing it down to the driver. So convert input bandwidth 7614 * from Bytes/s to Kbps 7615 */ 7616 max_rate = mqprio_qopt->max_rate[i]; 7617 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7618 sum_max_rate += max_rate; 7619 7620 /* min_rate is minimum guaranteed rate and it can't be zero */ 7621 min_rate = mqprio_qopt->min_rate[i]; 7622 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7623 sum_min_rate += min_rate; 7624 7625 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7626 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7627 min_rate, ICE_MIN_BW_LIMIT); 7628 return -EINVAL; 7629 } 7630 7631 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7632 if (rem) { 7633 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7634 i, ICE_MIN_BW_LIMIT); 7635 return -EINVAL; 7636 } 7637 7638 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7639 if (rem) { 7640 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7641 i, ICE_MIN_BW_LIMIT); 7642 return -EINVAL; 7643 } 7644 7645 /* min_rate can't be more than max_rate, except when max_rate 7646 * is zero (implies max_rate sought is max line rate). In such 7647 * a case min_rate can be more than max. 7648 */ 7649 if (max_rate && min_rate > max_rate) { 7650 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7651 min_rate, max_rate); 7652 return -EINVAL; 7653 } 7654 7655 if (i >= mqprio_qopt->qopt.num_tc - 1) 7656 break; 7657 if (mqprio_qopt->qopt.offset[i + 1] != 7658 (mqprio_qopt->qopt.offset[i] + qcount)) 7659 return -EINVAL; 7660 } 7661 if (vsi->num_rxq < 7662 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7663 return -EINVAL; 7664 if (vsi->num_txq < 7665 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7666 return -EINVAL; 7667 7668 speed = ice_get_link_speed_kbps(vsi); 7669 if (sum_max_rate && sum_max_rate > (u64)speed) { 7670 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7671 sum_max_rate, speed); 7672 return -EINVAL; 7673 } 7674 if (sum_min_rate && sum_min_rate > (u64)speed) { 7675 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7676 sum_min_rate, speed); 7677 return -EINVAL; 7678 } 7679 7680 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7681 vsi->ch_rss_size = max_rss_q_cnt; 7682 7683 return 0; 7684 } 7685 7686 /** 7687 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7688 * @pf: ptr to PF device 7689 * @vsi: ptr to VSI 7690 */ 7691 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7692 { 7693 struct device *dev = ice_pf_to_dev(pf); 7694 bool added = false; 7695 struct ice_hw *hw; 7696 int flow; 7697 7698 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7699 return -EINVAL; 7700 7701 hw = &pf->hw; 7702 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7703 struct ice_fd_hw_prof *prof; 7704 int tun, status; 7705 u64 entry_h; 7706 7707 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7708 hw->fdir_prof[flow]->cnt)) 7709 continue; 7710 7711 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7712 enum ice_flow_priority prio; 7713 u64 prof_id; 7714 7715 /* add this VSI to FDir profile for this flow */ 7716 prio = ICE_FLOW_PRIO_NORMAL; 7717 prof = hw->fdir_prof[flow]; 7718 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7719 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7720 prof->vsi_h[0], vsi->idx, 7721 prio, prof->fdir_seg[tun], 7722 &entry_h); 7723 if (status) { 7724 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7725 vsi->idx, flow); 7726 continue; 7727 } 7728 7729 prof->entry_h[prof->cnt][tun] = entry_h; 7730 } 7731 7732 /* store VSI for filter replay and delete */ 7733 prof->vsi_h[prof->cnt] = vsi->idx; 7734 prof->cnt++; 7735 7736 added = true; 7737 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7738 flow); 7739 } 7740 7741 if (!added) 7742 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7743 7744 return 0; 7745 } 7746 7747 /** 7748 * ice_add_channel - add a channel by adding VSI 7749 * @pf: ptr to PF device 7750 * @sw_id: underlying HW switching element ID 7751 * @ch: ptr to channel structure 7752 * 7753 * Add a channel (VSI) using add_vsi and queue_map 7754 */ 7755 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7756 { 7757 struct device *dev = ice_pf_to_dev(pf); 7758 struct ice_vsi *vsi; 7759 7760 if (ch->type != ICE_VSI_CHNL) { 7761 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7762 return -EINVAL; 7763 } 7764 7765 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7766 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7767 dev_err(dev, "create chnl VSI failure\n"); 7768 return -EINVAL; 7769 } 7770 7771 ice_add_vsi_to_fdir(pf, vsi); 7772 7773 ch->sw_id = sw_id; 7774 ch->vsi_num = vsi->vsi_num; 7775 ch->info.mapping_flags = vsi->info.mapping_flags; 7776 ch->ch_vsi = vsi; 7777 /* set the back pointer of channel for newly created VSI */ 7778 vsi->ch = ch; 7779 7780 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7781 sizeof(vsi->info.q_mapping)); 7782 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7783 sizeof(vsi->info.tc_mapping)); 7784 7785 return 0; 7786 } 7787 7788 /** 7789 * ice_chnl_cfg_res 7790 * @vsi: the VSI being setup 7791 * @ch: ptr to channel structure 7792 * 7793 * Configure channel specific resources such as rings, vector. 7794 */ 7795 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7796 { 7797 int i; 7798 7799 for (i = 0; i < ch->num_txq; i++) { 7800 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7801 struct ice_ring_container *rc; 7802 struct ice_tx_ring *tx_ring; 7803 struct ice_rx_ring *rx_ring; 7804 7805 tx_ring = vsi->tx_rings[ch->base_q + i]; 7806 rx_ring = vsi->rx_rings[ch->base_q + i]; 7807 if (!tx_ring || !rx_ring) 7808 continue; 7809 7810 /* setup ring being channel enabled */ 7811 tx_ring->ch = ch; 7812 rx_ring->ch = ch; 7813 7814 /* following code block sets up vector specific attributes */ 7815 tx_q_vector = tx_ring->q_vector; 7816 rx_q_vector = rx_ring->q_vector; 7817 if (!tx_q_vector && !rx_q_vector) 7818 continue; 7819 7820 if (tx_q_vector) { 7821 tx_q_vector->ch = ch; 7822 /* setup Tx and Rx ITR setting if DIM is off */ 7823 rc = &tx_q_vector->tx; 7824 if (!ITR_IS_DYNAMIC(rc)) 7825 ice_write_itr(rc, rc->itr_setting); 7826 } 7827 if (rx_q_vector) { 7828 rx_q_vector->ch = ch; 7829 /* setup Tx and Rx ITR setting if DIM is off */ 7830 rc = &rx_q_vector->rx; 7831 if (!ITR_IS_DYNAMIC(rc)) 7832 ice_write_itr(rc, rc->itr_setting); 7833 } 7834 } 7835 7836 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7837 * GLINT_ITR register would have written to perform in-context 7838 * update, hence perform flush 7839 */ 7840 if (ch->num_txq || ch->num_rxq) 7841 ice_flush(&vsi->back->hw); 7842 } 7843 7844 /** 7845 * ice_cfg_chnl_all_res - configure channel resources 7846 * @vsi: pte to main_vsi 7847 * @ch: ptr to channel structure 7848 * 7849 * This function configures channel specific resources such as flow-director 7850 * counter index, and other resources such as queues, vectors, ITR settings 7851 */ 7852 static void 7853 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7854 { 7855 /* configure channel (aka ADQ) resources such as queues, vectors, 7856 * ITR settings for channel specific vectors and anything else 7857 */ 7858 ice_chnl_cfg_res(vsi, ch); 7859 } 7860 7861 /** 7862 * ice_setup_hw_channel - setup new channel 7863 * @pf: ptr to PF device 7864 * @vsi: the VSI being setup 7865 * @ch: ptr to channel structure 7866 * @sw_id: underlying HW switching element ID 7867 * @type: type of channel to be created (VMDq2/VF) 7868 * 7869 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7870 * and configures Tx rings accordingly 7871 */ 7872 static int 7873 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7874 struct ice_channel *ch, u16 sw_id, u8 type) 7875 { 7876 struct device *dev = ice_pf_to_dev(pf); 7877 int ret; 7878 7879 ch->base_q = vsi->next_base_q; 7880 ch->type = type; 7881 7882 ret = ice_add_channel(pf, sw_id, ch); 7883 if (ret) { 7884 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7885 return ret; 7886 } 7887 7888 /* configure/setup ADQ specific resources */ 7889 ice_cfg_chnl_all_res(vsi, ch); 7890 7891 /* make sure to update the next_base_q so that subsequent channel's 7892 * (aka ADQ) VSI queue map is correct 7893 */ 7894 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7895 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7896 ch->num_rxq); 7897 7898 return 0; 7899 } 7900 7901 /** 7902 * ice_setup_channel - setup new channel using uplink element 7903 * @pf: ptr to PF device 7904 * @vsi: the VSI being setup 7905 * @ch: ptr to channel structure 7906 * 7907 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7908 * and uplink switching element 7909 */ 7910 static bool 7911 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7912 struct ice_channel *ch) 7913 { 7914 struct device *dev = ice_pf_to_dev(pf); 7915 u16 sw_id; 7916 int ret; 7917 7918 if (vsi->type != ICE_VSI_PF) { 7919 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7920 return false; 7921 } 7922 7923 sw_id = pf->first_sw->sw_id; 7924 7925 /* create channel (VSI) */ 7926 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7927 if (ret) { 7928 dev_err(dev, "failed to setup hw_channel\n"); 7929 return false; 7930 } 7931 dev_dbg(dev, "successfully created channel()\n"); 7932 7933 return ch->ch_vsi ? true : false; 7934 } 7935 7936 /** 7937 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7938 * @vsi: VSI to be configured 7939 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7940 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7941 */ 7942 static int 7943 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7944 { 7945 int err; 7946 7947 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7948 if (err) 7949 return err; 7950 7951 return ice_set_max_bw_limit(vsi, max_tx_rate); 7952 } 7953 7954 /** 7955 * ice_create_q_channel - function to create channel 7956 * @vsi: VSI to be configured 7957 * @ch: ptr to channel (it contains channel specific params) 7958 * 7959 * This function creates channel (VSI) using num_queues specified by user, 7960 * reconfigs RSS if needed. 7961 */ 7962 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7963 { 7964 struct ice_pf *pf = vsi->back; 7965 struct device *dev; 7966 7967 if (!ch) 7968 return -EINVAL; 7969 7970 dev = ice_pf_to_dev(pf); 7971 if (!ch->num_txq || !ch->num_rxq) { 7972 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7973 return -EINVAL; 7974 } 7975 7976 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7977 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7978 vsi->cnt_q_avail, ch->num_txq); 7979 return -EINVAL; 7980 } 7981 7982 if (!ice_setup_channel(pf, vsi, ch)) { 7983 dev_info(dev, "Failed to setup channel\n"); 7984 return -EINVAL; 7985 } 7986 /* configure BW rate limit */ 7987 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7988 int ret; 7989 7990 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7991 ch->min_tx_rate); 7992 if (ret) 7993 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7994 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7995 else 7996 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7997 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7998 } 7999 8000 vsi->cnt_q_avail -= ch->num_txq; 8001 8002 return 0; 8003 } 8004 8005 /** 8006 * ice_rem_all_chnl_fltrs - removes all channel filters 8007 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8008 * 8009 * Remove all advanced switch filters only if they are channel specific 8010 * tc-flower based filter 8011 */ 8012 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8013 { 8014 struct ice_tc_flower_fltr *fltr; 8015 struct hlist_node *node; 8016 8017 /* to remove all channel filters, iterate an ordered list of filters */ 8018 hlist_for_each_entry_safe(fltr, node, 8019 &pf->tc_flower_fltr_list, 8020 tc_flower_node) { 8021 struct ice_rule_query_data rule; 8022 int status; 8023 8024 /* for now process only channel specific filters */ 8025 if (!ice_is_chnl_fltr(fltr)) 8026 continue; 8027 8028 rule.rid = fltr->rid; 8029 rule.rule_id = fltr->rule_id; 8030 rule.vsi_handle = fltr->dest_id; 8031 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8032 if (status) { 8033 if (status == -ENOENT) 8034 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8035 rule.rule_id); 8036 else 8037 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8038 status); 8039 } else if (fltr->dest_vsi) { 8040 /* update advanced switch filter count */ 8041 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8042 u32 flags = fltr->flags; 8043 8044 fltr->dest_vsi->num_chnl_fltr--; 8045 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8046 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8047 pf->num_dmac_chnl_fltrs--; 8048 } 8049 } 8050 8051 hlist_del(&fltr->tc_flower_node); 8052 kfree(fltr); 8053 } 8054 } 8055 8056 /** 8057 * ice_remove_q_channels - Remove queue channels for the TCs 8058 * @vsi: VSI to be configured 8059 * @rem_fltr: delete advanced switch filter or not 8060 * 8061 * Remove queue channels for the TCs 8062 */ 8063 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8064 { 8065 struct ice_channel *ch, *ch_tmp; 8066 struct ice_pf *pf = vsi->back; 8067 int i; 8068 8069 /* remove all tc-flower based filter if they are channel filters only */ 8070 if (rem_fltr) 8071 ice_rem_all_chnl_fltrs(pf); 8072 8073 /* remove ntuple filters since queue configuration is being changed */ 8074 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8075 struct ice_hw *hw = &pf->hw; 8076 8077 mutex_lock(&hw->fdir_fltr_lock); 8078 ice_fdir_del_all_fltrs(vsi); 8079 mutex_unlock(&hw->fdir_fltr_lock); 8080 } 8081 8082 /* perform cleanup for channels if they exist */ 8083 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8084 struct ice_vsi *ch_vsi; 8085 8086 list_del(&ch->list); 8087 ch_vsi = ch->ch_vsi; 8088 if (!ch_vsi) { 8089 kfree(ch); 8090 continue; 8091 } 8092 8093 /* Reset queue contexts */ 8094 for (i = 0; i < ch->num_rxq; i++) { 8095 struct ice_tx_ring *tx_ring; 8096 struct ice_rx_ring *rx_ring; 8097 8098 tx_ring = vsi->tx_rings[ch->base_q + i]; 8099 rx_ring = vsi->rx_rings[ch->base_q + i]; 8100 if (tx_ring) { 8101 tx_ring->ch = NULL; 8102 if (tx_ring->q_vector) 8103 tx_ring->q_vector->ch = NULL; 8104 } 8105 if (rx_ring) { 8106 rx_ring->ch = NULL; 8107 if (rx_ring->q_vector) 8108 rx_ring->q_vector->ch = NULL; 8109 } 8110 } 8111 8112 /* Release FD resources for the channel VSI */ 8113 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8114 8115 /* clear the VSI from scheduler tree */ 8116 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8117 8118 /* Delete VSI from FW */ 8119 ice_vsi_delete(ch->ch_vsi); 8120 8121 /* Delete VSI from PF and HW VSI arrays */ 8122 ice_vsi_clear(ch->ch_vsi); 8123 8124 /* free the channel */ 8125 kfree(ch); 8126 } 8127 8128 /* clear the channel VSI map which is stored in main VSI */ 8129 ice_for_each_chnl_tc(i) 8130 vsi->tc_map_vsi[i] = NULL; 8131 8132 /* reset main VSI's all TC information */ 8133 vsi->all_enatc = 0; 8134 vsi->all_numtc = 0; 8135 } 8136 8137 /** 8138 * ice_rebuild_channels - rebuild channel 8139 * @pf: ptr to PF 8140 * 8141 * Recreate channel VSIs and replay filters 8142 */ 8143 static int ice_rebuild_channels(struct ice_pf *pf) 8144 { 8145 struct device *dev = ice_pf_to_dev(pf); 8146 struct ice_vsi *main_vsi; 8147 bool rem_adv_fltr = true; 8148 struct ice_channel *ch; 8149 struct ice_vsi *vsi; 8150 int tc_idx = 1; 8151 int i, err; 8152 8153 main_vsi = ice_get_main_vsi(pf); 8154 if (!main_vsi) 8155 return 0; 8156 8157 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8158 main_vsi->old_numtc == 1) 8159 return 0; /* nothing to be done */ 8160 8161 /* reconfigure main VSI based on old value of TC and cached values 8162 * for MQPRIO opts 8163 */ 8164 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8165 if (err) { 8166 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8167 main_vsi->old_ena_tc, main_vsi->vsi_num); 8168 return err; 8169 } 8170 8171 /* rebuild ADQ VSIs */ 8172 ice_for_each_vsi(pf, i) { 8173 enum ice_vsi_type type; 8174 8175 vsi = pf->vsi[i]; 8176 if (!vsi || vsi->type != ICE_VSI_CHNL) 8177 continue; 8178 8179 type = vsi->type; 8180 8181 /* rebuild ADQ VSI */ 8182 err = ice_vsi_rebuild(vsi, true); 8183 if (err) { 8184 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8185 ice_vsi_type_str(type), vsi->idx, err); 8186 goto cleanup; 8187 } 8188 8189 /* Re-map HW VSI number, using VSI handle that has been 8190 * previously validated in ice_replay_vsi() call above 8191 */ 8192 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8193 8194 /* replay filters for the VSI */ 8195 err = ice_replay_vsi(&pf->hw, vsi->idx); 8196 if (err) { 8197 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8198 ice_vsi_type_str(type), err, vsi->idx); 8199 rem_adv_fltr = false; 8200 goto cleanup; 8201 } 8202 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8203 ice_vsi_type_str(type), vsi->idx); 8204 8205 /* store ADQ VSI at correct TC index in main VSI's 8206 * map of TC to VSI 8207 */ 8208 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8209 } 8210 8211 /* ADQ VSI(s) has been rebuilt successfully, so setup 8212 * channel for main VSI's Tx and Rx rings 8213 */ 8214 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8215 struct ice_vsi *ch_vsi; 8216 8217 ch_vsi = ch->ch_vsi; 8218 if (!ch_vsi) 8219 continue; 8220 8221 /* reconfig channel resources */ 8222 ice_cfg_chnl_all_res(main_vsi, ch); 8223 8224 /* replay BW rate limit if it is non-zero */ 8225 if (!ch->max_tx_rate && !ch->min_tx_rate) 8226 continue; 8227 8228 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8229 ch->min_tx_rate); 8230 if (err) 8231 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8232 err, ch->max_tx_rate, ch->min_tx_rate, 8233 ch_vsi->vsi_num); 8234 else 8235 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8236 ch->max_tx_rate, ch->min_tx_rate, 8237 ch_vsi->vsi_num); 8238 } 8239 8240 /* reconfig RSS for main VSI */ 8241 if (main_vsi->ch_rss_size) 8242 ice_vsi_cfg_rss_lut_key(main_vsi); 8243 8244 return 0; 8245 8246 cleanup: 8247 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8248 return err; 8249 } 8250 8251 /** 8252 * ice_create_q_channels - Add queue channel for the given TCs 8253 * @vsi: VSI to be configured 8254 * 8255 * Configures queue channel mapping to the given TCs 8256 */ 8257 static int ice_create_q_channels(struct ice_vsi *vsi) 8258 { 8259 struct ice_pf *pf = vsi->back; 8260 struct ice_channel *ch; 8261 int ret = 0, i; 8262 8263 ice_for_each_chnl_tc(i) { 8264 if (!(vsi->all_enatc & BIT(i))) 8265 continue; 8266 8267 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8268 if (!ch) { 8269 ret = -ENOMEM; 8270 goto err_free; 8271 } 8272 INIT_LIST_HEAD(&ch->list); 8273 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8274 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8275 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8276 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8277 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8278 8279 /* convert to Kbits/s */ 8280 if (ch->max_tx_rate) 8281 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8282 ICE_BW_KBPS_DIVISOR); 8283 if (ch->min_tx_rate) 8284 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8285 ICE_BW_KBPS_DIVISOR); 8286 8287 ret = ice_create_q_channel(vsi, ch); 8288 if (ret) { 8289 dev_err(ice_pf_to_dev(pf), 8290 "failed creating channel TC:%d\n", i); 8291 kfree(ch); 8292 goto err_free; 8293 } 8294 list_add_tail(&ch->list, &vsi->ch_list); 8295 vsi->tc_map_vsi[i] = ch->ch_vsi; 8296 dev_dbg(ice_pf_to_dev(pf), 8297 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8298 } 8299 return 0; 8300 8301 err_free: 8302 ice_remove_q_channels(vsi, false); 8303 8304 return ret; 8305 } 8306 8307 /** 8308 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8309 * @netdev: net device to configure 8310 * @type_data: TC offload data 8311 */ 8312 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8313 { 8314 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8315 struct ice_netdev_priv *np = netdev_priv(netdev); 8316 struct ice_vsi *vsi = np->vsi; 8317 struct ice_pf *pf = vsi->back; 8318 u16 mode, ena_tc_qdisc = 0; 8319 int cur_txq, cur_rxq; 8320 u8 hw = 0, num_tcf; 8321 struct device *dev; 8322 int ret, i; 8323 8324 dev = ice_pf_to_dev(pf); 8325 num_tcf = mqprio_qopt->qopt.num_tc; 8326 hw = mqprio_qopt->qopt.hw; 8327 mode = mqprio_qopt->mode; 8328 if (!hw) { 8329 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8330 vsi->ch_rss_size = 0; 8331 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8332 goto config_tcf; 8333 } 8334 8335 /* Generate queue region map for number of TCF requested */ 8336 for (i = 0; i < num_tcf; i++) 8337 ena_tc_qdisc |= BIT(i); 8338 8339 switch (mode) { 8340 case TC_MQPRIO_MODE_CHANNEL: 8341 8342 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8343 if (ret) { 8344 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8345 ret); 8346 return ret; 8347 } 8348 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8349 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8350 /* don't assume state of hw_tc_offload during driver load 8351 * and set the flag for TC flower filter if hw_tc_offload 8352 * already ON 8353 */ 8354 if (vsi->netdev->features & NETIF_F_HW_TC) 8355 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8356 break; 8357 default: 8358 return -EINVAL; 8359 } 8360 8361 config_tcf: 8362 8363 /* Requesting same TCF configuration as already enabled */ 8364 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8365 mode != TC_MQPRIO_MODE_CHANNEL) 8366 return 0; 8367 8368 /* Pause VSI queues */ 8369 ice_dis_vsi(vsi, true); 8370 8371 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8372 ice_remove_q_channels(vsi, true); 8373 8374 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8375 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8376 num_online_cpus()); 8377 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8378 num_online_cpus()); 8379 } else { 8380 /* logic to rebuild VSI, same like ethtool -L */ 8381 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8382 8383 for (i = 0; i < num_tcf; i++) { 8384 if (!(ena_tc_qdisc & BIT(i))) 8385 continue; 8386 8387 offset = vsi->mqprio_qopt.qopt.offset[i]; 8388 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8389 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8390 } 8391 vsi->req_txq = offset + qcount_tx; 8392 vsi->req_rxq = offset + qcount_rx; 8393 8394 /* store away original rss_size info, so that it gets reused 8395 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8396 * determine, what should be the rss_sizefor main VSI 8397 */ 8398 vsi->orig_rss_size = vsi->rss_size; 8399 } 8400 8401 /* save current values of Tx and Rx queues before calling VSI rebuild 8402 * for fallback option 8403 */ 8404 cur_txq = vsi->num_txq; 8405 cur_rxq = vsi->num_rxq; 8406 8407 /* proceed with rebuild main VSI using correct number of queues */ 8408 ret = ice_vsi_rebuild(vsi, false); 8409 if (ret) { 8410 /* fallback to current number of queues */ 8411 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8412 vsi->req_txq = cur_txq; 8413 vsi->req_rxq = cur_rxq; 8414 clear_bit(ICE_RESET_FAILED, pf->state); 8415 if (ice_vsi_rebuild(vsi, false)) { 8416 dev_err(dev, "Rebuild of main VSI failed again\n"); 8417 return ret; 8418 } 8419 } 8420 8421 vsi->all_numtc = num_tcf; 8422 vsi->all_enatc = ena_tc_qdisc; 8423 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8424 if (ret) { 8425 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8426 vsi->vsi_num); 8427 goto exit; 8428 } 8429 8430 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8431 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8432 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8433 8434 /* set TC0 rate limit if specified */ 8435 if (max_tx_rate || min_tx_rate) { 8436 /* convert to Kbits/s */ 8437 if (max_tx_rate) 8438 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8439 if (min_tx_rate) 8440 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8441 8442 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8443 if (!ret) { 8444 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8445 max_tx_rate, min_tx_rate, vsi->vsi_num); 8446 } else { 8447 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8448 max_tx_rate, min_tx_rate, vsi->vsi_num); 8449 goto exit; 8450 } 8451 } 8452 ret = ice_create_q_channels(vsi); 8453 if (ret) { 8454 netdev_err(netdev, "failed configuring queue channels\n"); 8455 goto exit; 8456 } else { 8457 netdev_dbg(netdev, "successfully configured channels\n"); 8458 } 8459 } 8460 8461 if (vsi->ch_rss_size) 8462 ice_vsi_cfg_rss_lut_key(vsi); 8463 8464 exit: 8465 /* if error, reset the all_numtc and all_enatc */ 8466 if (ret) { 8467 vsi->all_numtc = 0; 8468 vsi->all_enatc = 0; 8469 } 8470 /* resume VSI */ 8471 ice_ena_vsi(vsi, true); 8472 8473 return ret; 8474 } 8475 8476 static LIST_HEAD(ice_block_cb_list); 8477 8478 static int 8479 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8480 void *type_data) 8481 { 8482 struct ice_netdev_priv *np = netdev_priv(netdev); 8483 struct ice_pf *pf = np->vsi->back; 8484 int err; 8485 8486 switch (type) { 8487 case TC_SETUP_BLOCK: 8488 return flow_block_cb_setup_simple(type_data, 8489 &ice_block_cb_list, 8490 ice_setup_tc_block_cb, 8491 np, np, true); 8492 case TC_SETUP_QDISC_MQPRIO: 8493 /* setup traffic classifier for receive side */ 8494 mutex_lock(&pf->tc_mutex); 8495 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8496 mutex_unlock(&pf->tc_mutex); 8497 return err; 8498 default: 8499 return -EOPNOTSUPP; 8500 } 8501 return -EOPNOTSUPP; 8502 } 8503 8504 static struct ice_indr_block_priv * 8505 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8506 struct net_device *netdev) 8507 { 8508 struct ice_indr_block_priv *cb_priv; 8509 8510 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8511 if (!cb_priv->netdev) 8512 return NULL; 8513 if (cb_priv->netdev == netdev) 8514 return cb_priv; 8515 } 8516 return NULL; 8517 } 8518 8519 static int 8520 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8521 void *indr_priv) 8522 { 8523 struct ice_indr_block_priv *priv = indr_priv; 8524 struct ice_netdev_priv *np = priv->np; 8525 8526 switch (type) { 8527 case TC_SETUP_CLSFLOWER: 8528 return ice_setup_tc_cls_flower(np, priv->netdev, 8529 (struct flow_cls_offload *) 8530 type_data); 8531 default: 8532 return -EOPNOTSUPP; 8533 } 8534 } 8535 8536 static int 8537 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8538 struct ice_netdev_priv *np, 8539 struct flow_block_offload *f, void *data, 8540 void (*cleanup)(struct flow_block_cb *block_cb)) 8541 { 8542 struct ice_indr_block_priv *indr_priv; 8543 struct flow_block_cb *block_cb; 8544 8545 if (!ice_is_tunnel_supported(netdev) && 8546 !(is_vlan_dev(netdev) && 8547 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8548 return -EOPNOTSUPP; 8549 8550 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8551 return -EOPNOTSUPP; 8552 8553 switch (f->command) { 8554 case FLOW_BLOCK_BIND: 8555 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8556 if (indr_priv) 8557 return -EEXIST; 8558 8559 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8560 if (!indr_priv) 8561 return -ENOMEM; 8562 8563 indr_priv->netdev = netdev; 8564 indr_priv->np = np; 8565 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8566 8567 block_cb = 8568 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8569 indr_priv, indr_priv, 8570 ice_rep_indr_tc_block_unbind, 8571 f, netdev, sch, data, np, 8572 cleanup); 8573 8574 if (IS_ERR(block_cb)) { 8575 list_del(&indr_priv->list); 8576 kfree(indr_priv); 8577 return PTR_ERR(block_cb); 8578 } 8579 flow_block_cb_add(block_cb, f); 8580 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8581 break; 8582 case FLOW_BLOCK_UNBIND: 8583 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8584 if (!indr_priv) 8585 return -ENOENT; 8586 8587 block_cb = flow_block_cb_lookup(f->block, 8588 ice_indr_setup_block_cb, 8589 indr_priv); 8590 if (!block_cb) 8591 return -ENOENT; 8592 8593 flow_indr_block_cb_remove(block_cb, f); 8594 8595 list_del(&block_cb->driver_list); 8596 break; 8597 default: 8598 return -EOPNOTSUPP; 8599 } 8600 return 0; 8601 } 8602 8603 static int 8604 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8605 void *cb_priv, enum tc_setup_type type, void *type_data, 8606 void *data, 8607 void (*cleanup)(struct flow_block_cb *block_cb)) 8608 { 8609 switch (type) { 8610 case TC_SETUP_BLOCK: 8611 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8612 data, cleanup); 8613 8614 default: 8615 return -EOPNOTSUPP; 8616 } 8617 } 8618 8619 /** 8620 * ice_open - Called when a network interface becomes active 8621 * @netdev: network interface device structure 8622 * 8623 * The open entry point is called when a network interface is made 8624 * active by the system (IFF_UP). At this point all resources needed 8625 * for transmit and receive operations are allocated, the interrupt 8626 * handler is registered with the OS, the netdev watchdog is enabled, 8627 * and the stack is notified that the interface is ready. 8628 * 8629 * Returns 0 on success, negative value on failure 8630 */ 8631 int ice_open(struct net_device *netdev) 8632 { 8633 struct ice_netdev_priv *np = netdev_priv(netdev); 8634 struct ice_pf *pf = np->vsi->back; 8635 8636 if (ice_is_reset_in_progress(pf->state)) { 8637 netdev_err(netdev, "can't open net device while reset is in progress"); 8638 return -EBUSY; 8639 } 8640 8641 return ice_open_internal(netdev); 8642 } 8643 8644 /** 8645 * ice_open_internal - Called when a network interface becomes active 8646 * @netdev: network interface device structure 8647 * 8648 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8649 * handling routine 8650 * 8651 * Returns 0 on success, negative value on failure 8652 */ 8653 int ice_open_internal(struct net_device *netdev) 8654 { 8655 struct ice_netdev_priv *np = netdev_priv(netdev); 8656 struct ice_vsi *vsi = np->vsi; 8657 struct ice_pf *pf = vsi->back; 8658 struct ice_port_info *pi; 8659 int err; 8660 8661 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8662 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8663 return -EIO; 8664 } 8665 8666 netif_carrier_off(netdev); 8667 8668 pi = vsi->port_info; 8669 err = ice_update_link_info(pi); 8670 if (err) { 8671 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8672 return err; 8673 } 8674 8675 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8676 8677 /* Set PHY if there is media, otherwise, turn off PHY */ 8678 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8679 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8680 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8681 err = ice_init_phy_user_cfg(pi); 8682 if (err) { 8683 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8684 err); 8685 return err; 8686 } 8687 } 8688 8689 err = ice_configure_phy(vsi); 8690 if (err) { 8691 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8692 err); 8693 return err; 8694 } 8695 } else { 8696 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8697 ice_set_link(vsi, false); 8698 } 8699 8700 err = ice_vsi_open(vsi); 8701 if (err) 8702 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8703 vsi->vsi_num, vsi->vsw->sw_id); 8704 8705 /* Update existing tunnels information */ 8706 udp_tunnel_get_rx_info(netdev); 8707 8708 return err; 8709 } 8710 8711 /** 8712 * ice_stop - Disables a network interface 8713 * @netdev: network interface device structure 8714 * 8715 * The stop entry point is called when an interface is de-activated by the OS, 8716 * and the netdevice enters the DOWN state. The hardware is still under the 8717 * driver's control, but the netdev interface is disabled. 8718 * 8719 * Returns success only - not allowed to fail 8720 */ 8721 int ice_stop(struct net_device *netdev) 8722 { 8723 struct ice_netdev_priv *np = netdev_priv(netdev); 8724 struct ice_vsi *vsi = np->vsi; 8725 struct ice_pf *pf = vsi->back; 8726 8727 if (ice_is_reset_in_progress(pf->state)) { 8728 netdev_err(netdev, "can't stop net device while reset is in progress"); 8729 return -EBUSY; 8730 } 8731 8732 ice_vsi_close(vsi); 8733 8734 return 0; 8735 } 8736 8737 /** 8738 * ice_features_check - Validate encapsulated packet conforms to limits 8739 * @skb: skb buffer 8740 * @netdev: This port's netdev 8741 * @features: Offload features that the stack believes apply 8742 */ 8743 static netdev_features_t 8744 ice_features_check(struct sk_buff *skb, 8745 struct net_device __always_unused *netdev, 8746 netdev_features_t features) 8747 { 8748 bool gso = skb_is_gso(skb); 8749 size_t len; 8750 8751 /* No point in doing any of this if neither checksum nor GSO are 8752 * being requested for this frame. We can rule out both by just 8753 * checking for CHECKSUM_PARTIAL 8754 */ 8755 if (skb->ip_summed != CHECKSUM_PARTIAL) 8756 return features; 8757 8758 /* We cannot support GSO if the MSS is going to be less than 8759 * 64 bytes. If it is then we need to drop support for GSO. 8760 */ 8761 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8762 features &= ~NETIF_F_GSO_MASK; 8763 8764 len = skb_network_offset(skb); 8765 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8766 goto out_rm_features; 8767 8768 len = skb_network_header_len(skb); 8769 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8770 goto out_rm_features; 8771 8772 if (skb->encapsulation) { 8773 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8774 * the case of IPIP frames, the transport header pointer is 8775 * after the inner header! So check to make sure that this 8776 * is a GRE or UDP_TUNNEL frame before doing that math. 8777 */ 8778 if (gso && (skb_shinfo(skb)->gso_type & 8779 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8780 len = skb_inner_network_header(skb) - 8781 skb_transport_header(skb); 8782 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8783 goto out_rm_features; 8784 } 8785 8786 len = skb_inner_network_header_len(skb); 8787 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8788 goto out_rm_features; 8789 } 8790 8791 return features; 8792 out_rm_features: 8793 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8794 } 8795 8796 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8797 .ndo_open = ice_open, 8798 .ndo_stop = ice_stop, 8799 .ndo_start_xmit = ice_start_xmit, 8800 .ndo_set_mac_address = ice_set_mac_address, 8801 .ndo_validate_addr = eth_validate_addr, 8802 .ndo_change_mtu = ice_change_mtu, 8803 .ndo_get_stats64 = ice_get_stats64, 8804 .ndo_tx_timeout = ice_tx_timeout, 8805 .ndo_bpf = ice_xdp_safe_mode, 8806 }; 8807 8808 static const struct net_device_ops ice_netdev_ops = { 8809 .ndo_open = ice_open, 8810 .ndo_stop = ice_stop, 8811 .ndo_start_xmit = ice_start_xmit, 8812 .ndo_select_queue = ice_select_queue, 8813 .ndo_features_check = ice_features_check, 8814 .ndo_fix_features = ice_fix_features, 8815 .ndo_set_rx_mode = ice_set_rx_mode, 8816 .ndo_set_mac_address = ice_set_mac_address, 8817 .ndo_validate_addr = eth_validate_addr, 8818 .ndo_change_mtu = ice_change_mtu, 8819 .ndo_get_stats64 = ice_get_stats64, 8820 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8821 .ndo_eth_ioctl = ice_eth_ioctl, 8822 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8823 .ndo_set_vf_mac = ice_set_vf_mac, 8824 .ndo_get_vf_config = ice_get_vf_cfg, 8825 .ndo_set_vf_trust = ice_set_vf_trust, 8826 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8827 .ndo_set_vf_link_state = ice_set_vf_link_state, 8828 .ndo_get_vf_stats = ice_get_vf_stats, 8829 .ndo_set_vf_rate = ice_set_vf_bw, 8830 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8831 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8832 .ndo_setup_tc = ice_setup_tc, 8833 .ndo_set_features = ice_set_features, 8834 .ndo_bridge_getlink = ice_bridge_getlink, 8835 .ndo_bridge_setlink = ice_bridge_setlink, 8836 .ndo_fdb_add = ice_fdb_add, 8837 .ndo_fdb_del = ice_fdb_del, 8838 #ifdef CONFIG_RFS_ACCEL 8839 .ndo_rx_flow_steer = ice_rx_flow_steer, 8840 #endif 8841 .ndo_tx_timeout = ice_tx_timeout, 8842 .ndo_bpf = ice_xdp, 8843 .ndo_xdp_xmit = ice_xdp_xmit, 8844 .ndo_xsk_wakeup = ice_xsk_wakeup, 8845 }; 8846