1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static DEFINE_IDA(ice_aux_ida); 39 40 static struct workqueue_struct *ice_wq; 41 static const struct net_device_ops ice_netdev_safe_mode_ops; 42 static const struct net_device_ops ice_netdev_ops; 43 static int ice_vsi_open(struct ice_vsi *vsi); 44 45 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 46 47 static void ice_vsi_release_all(struct ice_pf *pf); 48 49 bool netif_is_ice(struct net_device *dev) 50 { 51 return dev && (dev->netdev_ops == &ice_netdev_ops); 52 } 53 54 /** 55 * ice_get_tx_pending - returns number of Tx descriptors not processed 56 * @ring: the ring of descriptors 57 */ 58 static u16 ice_get_tx_pending(struct ice_ring *ring) 59 { 60 u16 head, tail; 61 62 head = ring->next_to_clean; 63 tail = ring->next_to_use; 64 65 if (head != tail) 66 return (head < tail) ? 67 tail - head : (tail + ring->count - head); 68 return 0; 69 } 70 71 /** 72 * ice_check_for_hang_subtask - check for and recover hung queues 73 * @pf: pointer to PF struct 74 */ 75 static void ice_check_for_hang_subtask(struct ice_pf *pf) 76 { 77 struct ice_vsi *vsi = NULL; 78 struct ice_hw *hw; 79 unsigned int i; 80 int packets; 81 u32 v; 82 83 ice_for_each_vsi(pf, v) 84 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 85 vsi = pf->vsi[v]; 86 break; 87 } 88 89 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 90 return; 91 92 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 93 return; 94 95 hw = &vsi->back->hw; 96 97 for (i = 0; i < vsi->num_txq; i++) { 98 struct ice_ring *tx_ring = vsi->tx_rings[i]; 99 100 if (tx_ring && tx_ring->desc) { 101 /* If packet counter has not changed the queue is 102 * likely stalled, so force an interrupt for this 103 * queue. 104 * 105 * prev_pkt would be negative if there was no 106 * pending work. 107 */ 108 packets = tx_ring->stats.pkts & INT_MAX; 109 if (tx_ring->tx_stats.prev_pkt == packets) { 110 /* Trigger sw interrupt to revive the queue */ 111 ice_trigger_sw_intr(hw, tx_ring->q_vector); 112 continue; 113 } 114 115 /* Memory barrier between read of packet count and call 116 * to ice_get_tx_pending() 117 */ 118 smp_rmb(); 119 tx_ring->tx_stats.prev_pkt = 120 ice_get_tx_pending(tx_ring) ? packets : -1; 121 } 122 } 123 } 124 125 /** 126 * ice_init_mac_fltr - Set initial MAC filters 127 * @pf: board private structure 128 * 129 * Set initial set of MAC filters for PF VSI; configure filters for permanent 130 * address and broadcast address. If an error is encountered, netdevice will be 131 * unregistered. 132 */ 133 static int ice_init_mac_fltr(struct ice_pf *pf) 134 { 135 enum ice_status status; 136 struct ice_vsi *vsi; 137 u8 *perm_addr; 138 139 vsi = ice_get_main_vsi(pf); 140 if (!vsi) 141 return -EINVAL; 142 143 perm_addr = vsi->port_info->mac.perm_addr; 144 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 145 if (status) 146 return -EIO; 147 148 return 0; 149 } 150 151 /** 152 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 153 * @netdev: the net device on which the sync is happening 154 * @addr: MAC address to sync 155 * 156 * This is a callback function which is called by the in kernel device sync 157 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 158 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 159 * MAC filters from the hardware. 160 */ 161 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 162 { 163 struct ice_netdev_priv *np = netdev_priv(netdev); 164 struct ice_vsi *vsi = np->vsi; 165 166 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 167 ICE_FWD_TO_VSI)) 168 return -EINVAL; 169 170 return 0; 171 } 172 173 /** 174 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 175 * @netdev: the net device on which the unsync is happening 176 * @addr: MAC address to unsync 177 * 178 * This is a callback function which is called by the in kernel device unsync 179 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 180 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 181 * delete the MAC filters from the hardware. 182 */ 183 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 184 { 185 struct ice_netdev_priv *np = netdev_priv(netdev); 186 struct ice_vsi *vsi = np->vsi; 187 188 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 189 ICE_FWD_TO_VSI)) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 /** 196 * ice_vsi_fltr_changed - check if filter state changed 197 * @vsi: VSI to be checked 198 * 199 * returns true if filter state has changed, false otherwise. 200 */ 201 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 202 { 203 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 204 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 205 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 206 } 207 208 /** 209 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 210 * @vsi: the VSI being configured 211 * @promisc_m: mask of promiscuous config bits 212 * @set_promisc: enable or disable promisc flag request 213 * 214 */ 215 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 216 { 217 struct ice_hw *hw = &vsi->back->hw; 218 enum ice_status status = 0; 219 220 if (vsi->type != ICE_VSI_PF) 221 return 0; 222 223 if (vsi->num_vlan > 1) { 224 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 225 set_promisc); 226 } else { 227 if (set_promisc) 228 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 229 0); 230 else 231 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 232 0); 233 } 234 235 if (status) 236 return -EIO; 237 238 return 0; 239 } 240 241 /** 242 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 243 * @vsi: ptr to the VSI 244 * 245 * Push any outstanding VSI filter changes through the AdminQ. 246 */ 247 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 248 { 249 struct device *dev = ice_pf_to_dev(vsi->back); 250 struct net_device *netdev = vsi->netdev; 251 bool promisc_forced_on = false; 252 struct ice_pf *pf = vsi->back; 253 struct ice_hw *hw = &pf->hw; 254 enum ice_status status = 0; 255 u32 changed_flags = 0; 256 u8 promisc_m; 257 int err = 0; 258 259 if (!vsi->netdev) 260 return -EINVAL; 261 262 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 263 usleep_range(1000, 2000); 264 265 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 266 vsi->current_netdev_flags = vsi->netdev->flags; 267 268 INIT_LIST_HEAD(&vsi->tmp_sync_list); 269 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 270 271 if (ice_vsi_fltr_changed(vsi)) { 272 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 273 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 274 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 275 276 /* grab the netdev's addr_list_lock */ 277 netif_addr_lock_bh(netdev); 278 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 279 ice_add_mac_to_unsync_list); 280 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 281 ice_add_mac_to_unsync_list); 282 /* our temp lists are populated. release lock */ 283 netif_addr_unlock_bh(netdev); 284 } 285 286 /* Remove MAC addresses in the unsync list */ 287 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 288 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 289 if (status) { 290 netdev_err(netdev, "Failed to delete MAC filters\n"); 291 /* if we failed because of alloc failures, just bail */ 292 if (status == ICE_ERR_NO_MEMORY) { 293 err = -ENOMEM; 294 goto out; 295 } 296 } 297 298 /* Add MAC addresses in the sync list */ 299 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 300 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 301 /* If filter is added successfully or already exists, do not go into 302 * 'if' condition and report it as error. Instead continue processing 303 * rest of the function. 304 */ 305 if (status && status != ICE_ERR_ALREADY_EXISTS) { 306 netdev_err(netdev, "Failed to add MAC filters\n"); 307 /* If there is no more space for new umac filters, VSI 308 * should go into promiscuous mode. There should be some 309 * space reserved for promiscuous filters. 310 */ 311 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 312 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 313 vsi->state)) { 314 promisc_forced_on = true; 315 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 316 vsi->vsi_num); 317 } else { 318 err = -EIO; 319 goto out; 320 } 321 } 322 /* check for changes in promiscuous modes */ 323 if (changed_flags & IFF_ALLMULTI) { 324 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 325 if (vsi->num_vlan > 1) 326 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 327 else 328 promisc_m = ICE_MCAST_PROMISC_BITS; 329 330 err = ice_cfg_promisc(vsi, promisc_m, true); 331 if (err) { 332 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 333 vsi->vsi_num); 334 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 335 goto out_promisc; 336 } 337 } else { 338 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 339 if (vsi->num_vlan > 1) 340 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 341 else 342 promisc_m = ICE_MCAST_PROMISC_BITS; 343 344 err = ice_cfg_promisc(vsi, promisc_m, false); 345 if (err) { 346 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 347 vsi->vsi_num); 348 vsi->current_netdev_flags |= IFF_ALLMULTI; 349 goto out_promisc; 350 } 351 } 352 } 353 354 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 355 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 356 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 357 if (vsi->current_netdev_flags & IFF_PROMISC) { 358 /* Apply Rx filter rule to get traffic from wire */ 359 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 360 err = ice_set_dflt_vsi(pf->first_sw, vsi); 361 if (err && err != -EEXIST) { 362 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 363 err, vsi->vsi_num); 364 vsi->current_netdev_flags &= 365 ~IFF_PROMISC; 366 goto out_promisc; 367 } 368 ice_cfg_vlan_pruning(vsi, false, false); 369 } 370 } else { 371 /* Clear Rx filter to remove traffic from wire */ 372 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 373 err = ice_clear_dflt_vsi(pf->first_sw); 374 if (err) { 375 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 376 err, vsi->vsi_num); 377 vsi->current_netdev_flags |= 378 IFF_PROMISC; 379 goto out_promisc; 380 } 381 if (vsi->num_vlan > 1) 382 ice_cfg_vlan_pruning(vsi, true, false); 383 } 384 } 385 } 386 goto exit; 387 388 out_promisc: 389 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 390 goto exit; 391 out: 392 /* if something went wrong then set the changed flag so we try again */ 393 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 394 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 395 exit: 396 clear_bit(ICE_CFG_BUSY, vsi->state); 397 return err; 398 } 399 400 /** 401 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 402 * @pf: board private structure 403 */ 404 static void ice_sync_fltr_subtask(struct ice_pf *pf) 405 { 406 int v; 407 408 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 409 return; 410 411 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 412 413 ice_for_each_vsi(pf, v) 414 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 415 ice_vsi_sync_fltr(pf->vsi[v])) { 416 /* come back and try again later */ 417 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 418 break; 419 } 420 } 421 422 /** 423 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 424 * @pf: the PF 425 * @locked: is the rtnl_lock already held 426 */ 427 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 428 { 429 int node; 430 int v; 431 432 ice_for_each_vsi(pf, v) 433 if (pf->vsi[v]) 434 ice_dis_vsi(pf->vsi[v], locked); 435 436 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 437 pf->pf_agg_node[node].num_vsis = 0; 438 439 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 440 pf->vf_agg_node[node].num_vsis = 0; 441 } 442 443 /** 444 * ice_prepare_for_reset - prep for the core to reset 445 * @pf: board private structure 446 * 447 * Inform or close all dependent features in prep for reset. 448 */ 449 static void 450 ice_prepare_for_reset(struct ice_pf *pf) 451 { 452 struct ice_hw *hw = &pf->hw; 453 unsigned int i; 454 455 /* already prepared for reset */ 456 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 457 return; 458 459 ice_unplug_aux_dev(pf); 460 461 /* Notify VFs of impending reset */ 462 if (ice_check_sq_alive(hw, &hw->mailboxq)) 463 ice_vc_notify_reset(pf); 464 465 /* Disable VFs until reset is completed */ 466 ice_for_each_vf(pf, i) 467 ice_set_vf_state_qs_dis(&pf->vf[i]); 468 469 /* clear SW filtering DB */ 470 ice_clear_hw_tbls(hw); 471 /* disable the VSIs and their queues that are not already DOWN */ 472 ice_pf_dis_all_vsi(pf, false); 473 474 if (hw->port_info) 475 ice_sched_clear_port(hw->port_info); 476 477 ice_shutdown_all_ctrlq(hw); 478 479 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 480 } 481 482 /** 483 * ice_do_reset - Initiate one of many types of resets 484 * @pf: board private structure 485 * @reset_type: reset type requested 486 * before this function was called. 487 */ 488 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 489 { 490 struct device *dev = ice_pf_to_dev(pf); 491 struct ice_hw *hw = &pf->hw; 492 493 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 494 495 ice_prepare_for_reset(pf); 496 497 /* trigger the reset */ 498 if (ice_reset(hw, reset_type)) { 499 dev_err(dev, "reset %d failed\n", reset_type); 500 set_bit(ICE_RESET_FAILED, pf->state); 501 clear_bit(ICE_RESET_OICR_RECV, pf->state); 502 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 503 clear_bit(ICE_PFR_REQ, pf->state); 504 clear_bit(ICE_CORER_REQ, pf->state); 505 clear_bit(ICE_GLOBR_REQ, pf->state); 506 wake_up(&pf->reset_wait_queue); 507 return; 508 } 509 510 /* PFR is a bit of a special case because it doesn't result in an OICR 511 * interrupt. So for PFR, rebuild after the reset and clear the reset- 512 * associated state bits. 513 */ 514 if (reset_type == ICE_RESET_PFR) { 515 pf->pfr_count++; 516 ice_rebuild(pf, reset_type); 517 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 518 clear_bit(ICE_PFR_REQ, pf->state); 519 wake_up(&pf->reset_wait_queue); 520 ice_reset_all_vfs(pf, true); 521 } 522 } 523 524 /** 525 * ice_reset_subtask - Set up for resetting the device and driver 526 * @pf: board private structure 527 */ 528 static void ice_reset_subtask(struct ice_pf *pf) 529 { 530 enum ice_reset_req reset_type = ICE_RESET_INVAL; 531 532 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 533 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 534 * of reset is pending and sets bits in pf->state indicating the reset 535 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 536 * prepare for pending reset if not already (for PF software-initiated 537 * global resets the software should already be prepared for it as 538 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 539 * by firmware or software on other PFs, that bit is not set so prepare 540 * for the reset now), poll for reset done, rebuild and return. 541 */ 542 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 543 /* Perform the largest reset requested */ 544 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 545 reset_type = ICE_RESET_CORER; 546 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 547 reset_type = ICE_RESET_GLOBR; 548 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 549 reset_type = ICE_RESET_EMPR; 550 /* return if no valid reset type requested */ 551 if (reset_type == ICE_RESET_INVAL) 552 return; 553 ice_prepare_for_reset(pf); 554 555 /* make sure we are ready to rebuild */ 556 if (ice_check_reset(&pf->hw)) { 557 set_bit(ICE_RESET_FAILED, pf->state); 558 } else { 559 /* done with reset. start rebuild */ 560 pf->hw.reset_ongoing = false; 561 ice_rebuild(pf, reset_type); 562 /* clear bit to resume normal operations, but 563 * ICE_NEEDS_RESTART bit is set in case rebuild failed 564 */ 565 clear_bit(ICE_RESET_OICR_RECV, pf->state); 566 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 567 clear_bit(ICE_PFR_REQ, pf->state); 568 clear_bit(ICE_CORER_REQ, pf->state); 569 clear_bit(ICE_GLOBR_REQ, pf->state); 570 wake_up(&pf->reset_wait_queue); 571 ice_reset_all_vfs(pf, true); 572 } 573 574 return; 575 } 576 577 /* No pending resets to finish processing. Check for new resets */ 578 if (test_bit(ICE_PFR_REQ, pf->state)) 579 reset_type = ICE_RESET_PFR; 580 if (test_bit(ICE_CORER_REQ, pf->state)) 581 reset_type = ICE_RESET_CORER; 582 if (test_bit(ICE_GLOBR_REQ, pf->state)) 583 reset_type = ICE_RESET_GLOBR; 584 /* If no valid reset type requested just return */ 585 if (reset_type == ICE_RESET_INVAL) 586 return; 587 588 /* reset if not already down or busy */ 589 if (!test_bit(ICE_DOWN, pf->state) && 590 !test_bit(ICE_CFG_BUSY, pf->state)) { 591 ice_do_reset(pf, reset_type); 592 } 593 } 594 595 /** 596 * ice_print_topo_conflict - print topology conflict message 597 * @vsi: the VSI whose topology status is being checked 598 */ 599 static void ice_print_topo_conflict(struct ice_vsi *vsi) 600 { 601 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 602 case ICE_AQ_LINK_TOPO_CONFLICT: 603 case ICE_AQ_LINK_MEDIA_CONFLICT: 604 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 605 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 606 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 607 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 608 break; 609 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 610 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 611 break; 612 default: 613 break; 614 } 615 } 616 617 /** 618 * ice_print_link_msg - print link up or down message 619 * @vsi: the VSI whose link status is being queried 620 * @isup: boolean for if the link is now up or down 621 */ 622 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 623 { 624 struct ice_aqc_get_phy_caps_data *caps; 625 const char *an_advertised; 626 enum ice_status status; 627 const char *fec_req; 628 const char *speed; 629 const char *fec; 630 const char *fc; 631 const char *an; 632 633 if (!vsi) 634 return; 635 636 if (vsi->current_isup == isup) 637 return; 638 639 vsi->current_isup = isup; 640 641 if (!isup) { 642 netdev_info(vsi->netdev, "NIC Link is Down\n"); 643 return; 644 } 645 646 switch (vsi->port_info->phy.link_info.link_speed) { 647 case ICE_AQ_LINK_SPEED_100GB: 648 speed = "100 G"; 649 break; 650 case ICE_AQ_LINK_SPEED_50GB: 651 speed = "50 G"; 652 break; 653 case ICE_AQ_LINK_SPEED_40GB: 654 speed = "40 G"; 655 break; 656 case ICE_AQ_LINK_SPEED_25GB: 657 speed = "25 G"; 658 break; 659 case ICE_AQ_LINK_SPEED_20GB: 660 speed = "20 G"; 661 break; 662 case ICE_AQ_LINK_SPEED_10GB: 663 speed = "10 G"; 664 break; 665 case ICE_AQ_LINK_SPEED_5GB: 666 speed = "5 G"; 667 break; 668 case ICE_AQ_LINK_SPEED_2500MB: 669 speed = "2.5 G"; 670 break; 671 case ICE_AQ_LINK_SPEED_1000MB: 672 speed = "1 G"; 673 break; 674 case ICE_AQ_LINK_SPEED_100MB: 675 speed = "100 M"; 676 break; 677 default: 678 speed = "Unknown "; 679 break; 680 } 681 682 switch (vsi->port_info->fc.current_mode) { 683 case ICE_FC_FULL: 684 fc = "Rx/Tx"; 685 break; 686 case ICE_FC_TX_PAUSE: 687 fc = "Tx"; 688 break; 689 case ICE_FC_RX_PAUSE: 690 fc = "Rx"; 691 break; 692 case ICE_FC_NONE: 693 fc = "None"; 694 break; 695 default: 696 fc = "Unknown"; 697 break; 698 } 699 700 /* Get FEC mode based on negotiated link info */ 701 switch (vsi->port_info->phy.link_info.fec_info) { 702 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 703 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 704 fec = "RS-FEC"; 705 break; 706 case ICE_AQ_LINK_25G_KR_FEC_EN: 707 fec = "FC-FEC/BASE-R"; 708 break; 709 default: 710 fec = "NONE"; 711 break; 712 } 713 714 /* check if autoneg completed, might be false due to not supported */ 715 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 716 an = "True"; 717 else 718 an = "False"; 719 720 /* Get FEC mode requested based on PHY caps last SW configuration */ 721 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 722 if (!caps) { 723 fec_req = "Unknown"; 724 an_advertised = "Unknown"; 725 goto done; 726 } 727 728 status = ice_aq_get_phy_caps(vsi->port_info, false, 729 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 730 if (status) 731 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 732 733 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 734 735 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 736 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 737 fec_req = "RS-FEC"; 738 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 740 fec_req = "FC-FEC/BASE-R"; 741 else 742 fec_req = "NONE"; 743 744 kfree(caps); 745 746 done: 747 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 748 speed, fec_req, fec, an_advertised, an, fc); 749 ice_print_topo_conflict(vsi); 750 } 751 752 /** 753 * ice_vsi_link_event - update the VSI's netdev 754 * @vsi: the VSI on which the link event occurred 755 * @link_up: whether or not the VSI needs to be set up or down 756 */ 757 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 758 { 759 if (!vsi) 760 return; 761 762 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 763 return; 764 765 if (vsi->type == ICE_VSI_PF) { 766 if (link_up == netif_carrier_ok(vsi->netdev)) 767 return; 768 769 if (link_up) { 770 netif_carrier_on(vsi->netdev); 771 netif_tx_wake_all_queues(vsi->netdev); 772 } else { 773 netif_carrier_off(vsi->netdev); 774 netif_tx_stop_all_queues(vsi->netdev); 775 } 776 } 777 } 778 779 /** 780 * ice_set_dflt_mib - send a default config MIB to the FW 781 * @pf: private PF struct 782 * 783 * This function sends a default configuration MIB to the FW. 784 * 785 * If this function errors out at any point, the driver is still able to 786 * function. The main impact is that LFC may not operate as expected. 787 * Therefore an error state in this function should be treated with a DBG 788 * message and continue on with driver rebuild/reenable. 789 */ 790 static void ice_set_dflt_mib(struct ice_pf *pf) 791 { 792 struct device *dev = ice_pf_to_dev(pf); 793 u8 mib_type, *buf, *lldpmib = NULL; 794 u16 len, typelen, offset = 0; 795 struct ice_lldp_org_tlv *tlv; 796 struct ice_hw *hw = &pf->hw; 797 u32 ouisubtype; 798 799 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 800 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 801 if (!lldpmib) { 802 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 803 __func__); 804 return; 805 } 806 807 /* Add ETS CFG TLV */ 808 tlv = (struct ice_lldp_org_tlv *)lldpmib; 809 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 810 ICE_IEEE_ETS_TLV_LEN); 811 tlv->typelen = htons(typelen); 812 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 813 ICE_IEEE_SUBTYPE_ETS_CFG); 814 tlv->ouisubtype = htonl(ouisubtype); 815 816 buf = tlv->tlvinfo; 817 buf[0] = 0; 818 819 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 820 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 821 * Octets 13 - 20 are TSA values - leave as zeros 822 */ 823 buf[5] = 0x64; 824 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 825 offset += len + 2; 826 tlv = (struct ice_lldp_org_tlv *) 827 ((char *)tlv + sizeof(tlv->typelen) + len); 828 829 /* Add ETS REC TLV */ 830 buf = tlv->tlvinfo; 831 tlv->typelen = htons(typelen); 832 833 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 834 ICE_IEEE_SUBTYPE_ETS_REC); 835 tlv->ouisubtype = htonl(ouisubtype); 836 837 /* First octet of buf is reserved 838 * Octets 1 - 4 map UP to TC - all UPs map to zero 839 * Octets 5 - 12 are BW values - set TC 0 to 100%. 840 * Octets 13 - 20 are TSA value - leave as zeros 841 */ 842 buf[5] = 0x64; 843 offset += len + 2; 844 tlv = (struct ice_lldp_org_tlv *) 845 ((char *)tlv + sizeof(tlv->typelen) + len); 846 847 /* Add PFC CFG TLV */ 848 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 849 ICE_IEEE_PFC_TLV_LEN); 850 tlv->typelen = htons(typelen); 851 852 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 853 ICE_IEEE_SUBTYPE_PFC_CFG); 854 tlv->ouisubtype = htonl(ouisubtype); 855 856 /* Octet 1 left as all zeros - PFC disabled */ 857 buf[0] = 0x08; 858 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 859 offset += len + 2; 860 861 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 862 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 863 864 kfree(lldpmib); 865 } 866 867 /** 868 * ice_check_module_power 869 * @pf: pointer to PF struct 870 * @link_cfg_err: bitmap from the link info structure 871 * 872 * check module power level returned by a previous call to aq_get_link_info 873 * and print error messages if module power level is not supported 874 */ 875 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 876 { 877 /* if module power level is supported, clear the flag */ 878 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 879 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 880 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 881 return; 882 } 883 884 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 885 * above block didn't clear this bit, there's nothing to do 886 */ 887 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 888 return; 889 890 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 891 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 892 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 893 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 894 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 895 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 896 } 897 } 898 899 /** 900 * ice_link_event - process the link event 901 * @pf: PF that the link event is associated with 902 * @pi: port_info for the port that the link event is associated with 903 * @link_up: true if the physical link is up and false if it is down 904 * @link_speed: current link speed received from the link event 905 * 906 * Returns 0 on success and negative on failure 907 */ 908 static int 909 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 910 u16 link_speed) 911 { 912 struct device *dev = ice_pf_to_dev(pf); 913 struct ice_phy_info *phy_info; 914 enum ice_status status; 915 struct ice_vsi *vsi; 916 u16 old_link_speed; 917 bool old_link; 918 919 phy_info = &pi->phy; 920 phy_info->link_info_old = phy_info->link_info; 921 922 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 923 old_link_speed = phy_info->link_info_old.link_speed; 924 925 /* update the link info structures and re-enable link events, 926 * don't bail on failure due to other book keeping needed 927 */ 928 status = ice_update_link_info(pi); 929 if (status) 930 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 931 pi->lport, ice_stat_str(status), 932 ice_aq_str(pi->hw->adminq.sq_last_status)); 933 934 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 935 936 /* Check if the link state is up after updating link info, and treat 937 * this event as an UP event since the link is actually UP now. 938 */ 939 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 940 link_up = true; 941 942 vsi = ice_get_main_vsi(pf); 943 if (!vsi || !vsi->port_info) 944 return -EINVAL; 945 946 /* turn off PHY if media was removed */ 947 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 948 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 949 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 950 ice_set_link(vsi, false); 951 } 952 953 /* if the old link up/down and speed is the same as the new */ 954 if (link_up == old_link && link_speed == old_link_speed) 955 return 0; 956 957 if (ice_is_dcb_active(pf)) { 958 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 959 ice_dcb_rebuild(pf); 960 } else { 961 if (link_up) 962 ice_set_dflt_mib(pf); 963 } 964 ice_vsi_link_event(vsi, link_up); 965 ice_print_link_msg(vsi, link_up); 966 967 ice_vc_notify_link_state(pf); 968 969 return 0; 970 } 971 972 /** 973 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 974 * @pf: board private structure 975 */ 976 static void ice_watchdog_subtask(struct ice_pf *pf) 977 { 978 int i; 979 980 /* if interface is down do nothing */ 981 if (test_bit(ICE_DOWN, pf->state) || 982 test_bit(ICE_CFG_BUSY, pf->state)) 983 return; 984 985 /* make sure we don't do these things too often */ 986 if (time_before(jiffies, 987 pf->serv_tmr_prev + pf->serv_tmr_period)) 988 return; 989 990 pf->serv_tmr_prev = jiffies; 991 992 /* Update the stats for active netdevs so the network stack 993 * can look at updated numbers whenever it cares to 994 */ 995 ice_update_pf_stats(pf); 996 ice_for_each_vsi(pf, i) 997 if (pf->vsi[i] && pf->vsi[i]->netdev) 998 ice_update_vsi_stats(pf->vsi[i]); 999 } 1000 1001 /** 1002 * ice_init_link_events - enable/initialize link events 1003 * @pi: pointer to the port_info instance 1004 * 1005 * Returns -EIO on failure, 0 on success 1006 */ 1007 static int ice_init_link_events(struct ice_port_info *pi) 1008 { 1009 u16 mask; 1010 1011 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1012 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 1013 1014 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1015 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1016 pi->lport); 1017 return -EIO; 1018 } 1019 1020 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1021 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1022 pi->lport); 1023 return -EIO; 1024 } 1025 1026 return 0; 1027 } 1028 1029 /** 1030 * ice_handle_link_event - handle link event via ARQ 1031 * @pf: PF that the link event is associated with 1032 * @event: event structure containing link status info 1033 */ 1034 static int 1035 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1036 { 1037 struct ice_aqc_get_link_status_data *link_data; 1038 struct ice_port_info *port_info; 1039 int status; 1040 1041 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1042 port_info = pf->hw.port_info; 1043 if (!port_info) 1044 return -EINVAL; 1045 1046 status = ice_link_event(pf, port_info, 1047 !!(link_data->link_info & ICE_AQ_LINK_UP), 1048 le16_to_cpu(link_data->link_speed)); 1049 if (status) 1050 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1051 status); 1052 1053 return status; 1054 } 1055 1056 enum ice_aq_task_state { 1057 ICE_AQ_TASK_WAITING = 0, 1058 ICE_AQ_TASK_COMPLETE, 1059 ICE_AQ_TASK_CANCELED, 1060 }; 1061 1062 struct ice_aq_task { 1063 struct hlist_node entry; 1064 1065 u16 opcode; 1066 struct ice_rq_event_info *event; 1067 enum ice_aq_task_state state; 1068 }; 1069 1070 /** 1071 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1072 * @pf: pointer to the PF private structure 1073 * @opcode: the opcode to wait for 1074 * @timeout: how long to wait, in jiffies 1075 * @event: storage for the event info 1076 * 1077 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1078 * current thread will be put to sleep until the specified event occurs or 1079 * until the given timeout is reached. 1080 * 1081 * To obtain only the descriptor contents, pass an event without an allocated 1082 * msg_buf. If the complete data buffer is desired, allocate the 1083 * event->msg_buf with enough space ahead of time. 1084 * 1085 * Returns: zero on success, or a negative error code on failure. 1086 */ 1087 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1088 struct ice_rq_event_info *event) 1089 { 1090 struct device *dev = ice_pf_to_dev(pf); 1091 struct ice_aq_task *task; 1092 unsigned long start; 1093 long ret; 1094 int err; 1095 1096 task = kzalloc(sizeof(*task), GFP_KERNEL); 1097 if (!task) 1098 return -ENOMEM; 1099 1100 INIT_HLIST_NODE(&task->entry); 1101 task->opcode = opcode; 1102 task->event = event; 1103 task->state = ICE_AQ_TASK_WAITING; 1104 1105 spin_lock_bh(&pf->aq_wait_lock); 1106 hlist_add_head(&task->entry, &pf->aq_wait_list); 1107 spin_unlock_bh(&pf->aq_wait_lock); 1108 1109 start = jiffies; 1110 1111 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1112 timeout); 1113 switch (task->state) { 1114 case ICE_AQ_TASK_WAITING: 1115 err = ret < 0 ? ret : -ETIMEDOUT; 1116 break; 1117 case ICE_AQ_TASK_CANCELED: 1118 err = ret < 0 ? ret : -ECANCELED; 1119 break; 1120 case ICE_AQ_TASK_COMPLETE: 1121 err = ret < 0 ? ret : 0; 1122 break; 1123 default: 1124 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1125 err = -EINVAL; 1126 break; 1127 } 1128 1129 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1130 jiffies_to_msecs(jiffies - start), 1131 jiffies_to_msecs(timeout), 1132 opcode); 1133 1134 spin_lock_bh(&pf->aq_wait_lock); 1135 hlist_del(&task->entry); 1136 spin_unlock_bh(&pf->aq_wait_lock); 1137 kfree(task); 1138 1139 return err; 1140 } 1141 1142 /** 1143 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1144 * @pf: pointer to the PF private structure 1145 * @opcode: the opcode of the event 1146 * @event: the event to check 1147 * 1148 * Loops over the current list of pending threads waiting for an AdminQ event. 1149 * For each matching task, copy the contents of the event into the task 1150 * structure and wake up the thread. 1151 * 1152 * If multiple threads wait for the same opcode, they will all be woken up. 1153 * 1154 * Note that event->msg_buf will only be duplicated if the event has a buffer 1155 * with enough space already allocated. Otherwise, only the descriptor and 1156 * message length will be copied. 1157 * 1158 * Returns: true if an event was found, false otherwise 1159 */ 1160 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1161 struct ice_rq_event_info *event) 1162 { 1163 struct ice_aq_task *task; 1164 bool found = false; 1165 1166 spin_lock_bh(&pf->aq_wait_lock); 1167 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1168 if (task->state || task->opcode != opcode) 1169 continue; 1170 1171 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1172 task->event->msg_len = event->msg_len; 1173 1174 /* Only copy the data buffer if a destination was set */ 1175 if (task->event->msg_buf && 1176 task->event->buf_len > event->buf_len) { 1177 memcpy(task->event->msg_buf, event->msg_buf, 1178 event->buf_len); 1179 task->event->buf_len = event->buf_len; 1180 } 1181 1182 task->state = ICE_AQ_TASK_COMPLETE; 1183 found = true; 1184 } 1185 spin_unlock_bh(&pf->aq_wait_lock); 1186 1187 if (found) 1188 wake_up(&pf->aq_wait_queue); 1189 } 1190 1191 /** 1192 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1193 * @pf: the PF private structure 1194 * 1195 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1196 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1197 */ 1198 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1199 { 1200 struct ice_aq_task *task; 1201 1202 spin_lock_bh(&pf->aq_wait_lock); 1203 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1204 task->state = ICE_AQ_TASK_CANCELED; 1205 spin_unlock_bh(&pf->aq_wait_lock); 1206 1207 wake_up(&pf->aq_wait_queue); 1208 } 1209 1210 /** 1211 * __ice_clean_ctrlq - helper function to clean controlq rings 1212 * @pf: ptr to struct ice_pf 1213 * @q_type: specific Control queue type 1214 */ 1215 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1216 { 1217 struct device *dev = ice_pf_to_dev(pf); 1218 struct ice_rq_event_info event; 1219 struct ice_hw *hw = &pf->hw; 1220 struct ice_ctl_q_info *cq; 1221 u16 pending, i = 0; 1222 const char *qtype; 1223 u32 oldval, val; 1224 1225 /* Do not clean control queue if/when PF reset fails */ 1226 if (test_bit(ICE_RESET_FAILED, pf->state)) 1227 return 0; 1228 1229 switch (q_type) { 1230 case ICE_CTL_Q_ADMIN: 1231 cq = &hw->adminq; 1232 qtype = "Admin"; 1233 break; 1234 case ICE_CTL_Q_MAILBOX: 1235 cq = &hw->mailboxq; 1236 qtype = "Mailbox"; 1237 /* we are going to try to detect a malicious VF, so set the 1238 * state to begin detection 1239 */ 1240 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1241 break; 1242 default: 1243 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1244 return 0; 1245 } 1246 1247 /* check for error indications - PF_xx_AxQLEN register layout for 1248 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1249 */ 1250 val = rd32(hw, cq->rq.len); 1251 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1252 PF_FW_ARQLEN_ARQCRIT_M)) { 1253 oldval = val; 1254 if (val & PF_FW_ARQLEN_ARQVFE_M) 1255 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1256 qtype); 1257 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1258 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1259 qtype); 1260 } 1261 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1262 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1263 qtype); 1264 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1265 PF_FW_ARQLEN_ARQCRIT_M); 1266 if (oldval != val) 1267 wr32(hw, cq->rq.len, val); 1268 } 1269 1270 val = rd32(hw, cq->sq.len); 1271 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1272 PF_FW_ATQLEN_ATQCRIT_M)) { 1273 oldval = val; 1274 if (val & PF_FW_ATQLEN_ATQVFE_M) 1275 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1276 qtype); 1277 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1278 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1279 qtype); 1280 } 1281 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1282 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1283 qtype); 1284 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1285 PF_FW_ATQLEN_ATQCRIT_M); 1286 if (oldval != val) 1287 wr32(hw, cq->sq.len, val); 1288 } 1289 1290 event.buf_len = cq->rq_buf_size; 1291 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1292 if (!event.msg_buf) 1293 return 0; 1294 1295 do { 1296 enum ice_status ret; 1297 u16 opcode; 1298 1299 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1300 if (ret == ICE_ERR_AQ_NO_WORK) 1301 break; 1302 if (ret) { 1303 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1304 ice_stat_str(ret)); 1305 break; 1306 } 1307 1308 opcode = le16_to_cpu(event.desc.opcode); 1309 1310 /* Notify any thread that might be waiting for this event */ 1311 ice_aq_check_events(pf, opcode, &event); 1312 1313 switch (opcode) { 1314 case ice_aqc_opc_get_link_status: 1315 if (ice_handle_link_event(pf, &event)) 1316 dev_err(dev, "Could not handle link event\n"); 1317 break; 1318 case ice_aqc_opc_event_lan_overflow: 1319 ice_vf_lan_overflow_event(pf, &event); 1320 break; 1321 case ice_mbx_opc_send_msg_to_pf: 1322 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1323 ice_vc_process_vf_msg(pf, &event); 1324 break; 1325 case ice_aqc_opc_fw_logging: 1326 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1327 break; 1328 case ice_aqc_opc_lldp_set_mib_change: 1329 ice_dcb_process_lldp_set_mib_change(pf, &event); 1330 break; 1331 default: 1332 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1333 qtype, opcode); 1334 break; 1335 } 1336 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1337 1338 kfree(event.msg_buf); 1339 1340 return pending && (i == ICE_DFLT_IRQ_WORK); 1341 } 1342 1343 /** 1344 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1345 * @hw: pointer to hardware info 1346 * @cq: control queue information 1347 * 1348 * returns true if there are pending messages in a queue, false if there aren't 1349 */ 1350 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1351 { 1352 u16 ntu; 1353 1354 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1355 return cq->rq.next_to_clean != ntu; 1356 } 1357 1358 /** 1359 * ice_clean_adminq_subtask - clean the AdminQ rings 1360 * @pf: board private structure 1361 */ 1362 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1363 { 1364 struct ice_hw *hw = &pf->hw; 1365 1366 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1367 return; 1368 1369 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1370 return; 1371 1372 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1373 1374 /* There might be a situation where new messages arrive to a control 1375 * queue between processing the last message and clearing the 1376 * EVENT_PENDING bit. So before exiting, check queue head again (using 1377 * ice_ctrlq_pending) and process new messages if any. 1378 */ 1379 if (ice_ctrlq_pending(hw, &hw->adminq)) 1380 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1381 1382 ice_flush(hw); 1383 } 1384 1385 /** 1386 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1387 * @pf: board private structure 1388 */ 1389 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1390 { 1391 struct ice_hw *hw = &pf->hw; 1392 1393 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1394 return; 1395 1396 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1397 return; 1398 1399 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1400 1401 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1402 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1403 1404 ice_flush(hw); 1405 } 1406 1407 /** 1408 * ice_service_task_schedule - schedule the service task to wake up 1409 * @pf: board private structure 1410 * 1411 * If not already scheduled, this puts the task into the work queue. 1412 */ 1413 void ice_service_task_schedule(struct ice_pf *pf) 1414 { 1415 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1416 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1417 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1418 queue_work(ice_wq, &pf->serv_task); 1419 } 1420 1421 /** 1422 * ice_service_task_complete - finish up the service task 1423 * @pf: board private structure 1424 */ 1425 static void ice_service_task_complete(struct ice_pf *pf) 1426 { 1427 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1428 1429 /* force memory (pf->state) to sync before next service task */ 1430 smp_mb__before_atomic(); 1431 clear_bit(ICE_SERVICE_SCHED, pf->state); 1432 } 1433 1434 /** 1435 * ice_service_task_stop - stop service task and cancel works 1436 * @pf: board private structure 1437 * 1438 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1439 * 1 otherwise. 1440 */ 1441 static int ice_service_task_stop(struct ice_pf *pf) 1442 { 1443 int ret; 1444 1445 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1446 1447 if (pf->serv_tmr.function) 1448 del_timer_sync(&pf->serv_tmr); 1449 if (pf->serv_task.func) 1450 cancel_work_sync(&pf->serv_task); 1451 1452 clear_bit(ICE_SERVICE_SCHED, pf->state); 1453 return ret; 1454 } 1455 1456 /** 1457 * ice_service_task_restart - restart service task and schedule works 1458 * @pf: board private structure 1459 * 1460 * This function is needed for suspend and resume works (e.g WoL scenario) 1461 */ 1462 static void ice_service_task_restart(struct ice_pf *pf) 1463 { 1464 clear_bit(ICE_SERVICE_DIS, pf->state); 1465 ice_service_task_schedule(pf); 1466 } 1467 1468 /** 1469 * ice_service_timer - timer callback to schedule service task 1470 * @t: pointer to timer_list 1471 */ 1472 static void ice_service_timer(struct timer_list *t) 1473 { 1474 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1475 1476 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1477 ice_service_task_schedule(pf); 1478 } 1479 1480 /** 1481 * ice_handle_mdd_event - handle malicious driver detect event 1482 * @pf: pointer to the PF structure 1483 * 1484 * Called from service task. OICR interrupt handler indicates MDD event. 1485 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1486 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1487 * disable the queue, the PF can be configured to reset the VF using ethtool 1488 * private flag mdd-auto-reset-vf. 1489 */ 1490 static void ice_handle_mdd_event(struct ice_pf *pf) 1491 { 1492 struct device *dev = ice_pf_to_dev(pf); 1493 struct ice_hw *hw = &pf->hw; 1494 unsigned int i; 1495 u32 reg; 1496 1497 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1498 /* Since the VF MDD event logging is rate limited, check if 1499 * there are pending MDD events. 1500 */ 1501 ice_print_vfs_mdd_events(pf); 1502 return; 1503 } 1504 1505 /* find what triggered an MDD event */ 1506 reg = rd32(hw, GL_MDET_TX_PQM); 1507 if (reg & GL_MDET_TX_PQM_VALID_M) { 1508 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1509 GL_MDET_TX_PQM_PF_NUM_S; 1510 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1511 GL_MDET_TX_PQM_VF_NUM_S; 1512 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1513 GL_MDET_TX_PQM_MAL_TYPE_S; 1514 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1515 GL_MDET_TX_PQM_QNUM_S); 1516 1517 if (netif_msg_tx_err(pf)) 1518 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1519 event, queue, pf_num, vf_num); 1520 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1521 } 1522 1523 reg = rd32(hw, GL_MDET_TX_TCLAN); 1524 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1525 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1526 GL_MDET_TX_TCLAN_PF_NUM_S; 1527 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1528 GL_MDET_TX_TCLAN_VF_NUM_S; 1529 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1530 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1531 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1532 GL_MDET_TX_TCLAN_QNUM_S); 1533 1534 if (netif_msg_tx_err(pf)) 1535 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1536 event, queue, pf_num, vf_num); 1537 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1538 } 1539 1540 reg = rd32(hw, GL_MDET_RX); 1541 if (reg & GL_MDET_RX_VALID_M) { 1542 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1543 GL_MDET_RX_PF_NUM_S; 1544 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1545 GL_MDET_RX_VF_NUM_S; 1546 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1547 GL_MDET_RX_MAL_TYPE_S; 1548 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1549 GL_MDET_RX_QNUM_S); 1550 1551 if (netif_msg_rx_err(pf)) 1552 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1553 event, queue, pf_num, vf_num); 1554 wr32(hw, GL_MDET_RX, 0xffffffff); 1555 } 1556 1557 /* check to see if this PF caused an MDD event */ 1558 reg = rd32(hw, PF_MDET_TX_PQM); 1559 if (reg & PF_MDET_TX_PQM_VALID_M) { 1560 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1561 if (netif_msg_tx_err(pf)) 1562 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1563 } 1564 1565 reg = rd32(hw, PF_MDET_TX_TCLAN); 1566 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1567 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1568 if (netif_msg_tx_err(pf)) 1569 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1570 } 1571 1572 reg = rd32(hw, PF_MDET_RX); 1573 if (reg & PF_MDET_RX_VALID_M) { 1574 wr32(hw, PF_MDET_RX, 0xFFFF); 1575 if (netif_msg_rx_err(pf)) 1576 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1577 } 1578 1579 /* Check to see if one of the VFs caused an MDD event, and then 1580 * increment counters and set print pending 1581 */ 1582 ice_for_each_vf(pf, i) { 1583 struct ice_vf *vf = &pf->vf[i]; 1584 1585 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1586 if (reg & VP_MDET_TX_PQM_VALID_M) { 1587 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1588 vf->mdd_tx_events.count++; 1589 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1590 if (netif_msg_tx_err(pf)) 1591 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1592 i); 1593 } 1594 1595 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1596 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1597 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1598 vf->mdd_tx_events.count++; 1599 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1600 if (netif_msg_tx_err(pf)) 1601 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1602 i); 1603 } 1604 1605 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1606 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1607 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1608 vf->mdd_tx_events.count++; 1609 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1610 if (netif_msg_tx_err(pf)) 1611 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1612 i); 1613 } 1614 1615 reg = rd32(hw, VP_MDET_RX(i)); 1616 if (reg & VP_MDET_RX_VALID_M) { 1617 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1618 vf->mdd_rx_events.count++; 1619 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1620 if (netif_msg_rx_err(pf)) 1621 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1622 i); 1623 1624 /* Since the queue is disabled on VF Rx MDD events, the 1625 * PF can be configured to reset the VF through ethtool 1626 * private flag mdd-auto-reset-vf. 1627 */ 1628 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1629 /* VF MDD event counters will be cleared by 1630 * reset, so print the event prior to reset. 1631 */ 1632 ice_print_vf_rx_mdd_event(vf); 1633 ice_reset_vf(&pf->vf[i], false); 1634 } 1635 } 1636 } 1637 1638 ice_print_vfs_mdd_events(pf); 1639 } 1640 1641 /** 1642 * ice_force_phys_link_state - Force the physical link state 1643 * @vsi: VSI to force the physical link state to up/down 1644 * @link_up: true/false indicates to set the physical link to up/down 1645 * 1646 * Force the physical link state by getting the current PHY capabilities from 1647 * hardware and setting the PHY config based on the determined capabilities. If 1648 * link changes a link event will be triggered because both the Enable Automatic 1649 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1650 * 1651 * Returns 0 on success, negative on failure 1652 */ 1653 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1654 { 1655 struct ice_aqc_get_phy_caps_data *pcaps; 1656 struct ice_aqc_set_phy_cfg_data *cfg; 1657 struct ice_port_info *pi; 1658 struct device *dev; 1659 int retcode; 1660 1661 if (!vsi || !vsi->port_info || !vsi->back) 1662 return -EINVAL; 1663 if (vsi->type != ICE_VSI_PF) 1664 return 0; 1665 1666 dev = ice_pf_to_dev(vsi->back); 1667 1668 pi = vsi->port_info; 1669 1670 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1671 if (!pcaps) 1672 return -ENOMEM; 1673 1674 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1675 NULL); 1676 if (retcode) { 1677 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1678 vsi->vsi_num, retcode); 1679 retcode = -EIO; 1680 goto out; 1681 } 1682 1683 /* No change in link */ 1684 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1685 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1686 goto out; 1687 1688 /* Use the current user PHY configuration. The current user PHY 1689 * configuration is initialized during probe from PHY capabilities 1690 * software mode, and updated on set PHY configuration. 1691 */ 1692 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1693 if (!cfg) { 1694 retcode = -ENOMEM; 1695 goto out; 1696 } 1697 1698 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1699 if (link_up) 1700 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1701 else 1702 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1703 1704 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1705 if (retcode) { 1706 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1707 vsi->vsi_num, retcode); 1708 retcode = -EIO; 1709 } 1710 1711 kfree(cfg); 1712 out: 1713 kfree(pcaps); 1714 return retcode; 1715 } 1716 1717 /** 1718 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1719 * @pi: port info structure 1720 * 1721 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1722 */ 1723 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1724 { 1725 struct ice_aqc_get_phy_caps_data *pcaps; 1726 struct ice_pf *pf = pi->hw->back; 1727 enum ice_status status; 1728 int err = 0; 1729 1730 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1731 if (!pcaps) 1732 return -ENOMEM; 1733 1734 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1735 NULL); 1736 1737 if (status) { 1738 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1739 err = -EIO; 1740 goto out; 1741 } 1742 1743 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1744 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1745 1746 out: 1747 kfree(pcaps); 1748 return err; 1749 } 1750 1751 /** 1752 * ice_init_link_dflt_override - Initialize link default override 1753 * @pi: port info structure 1754 * 1755 * Initialize link default override and PHY total port shutdown during probe 1756 */ 1757 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1758 { 1759 struct ice_link_default_override_tlv *ldo; 1760 struct ice_pf *pf = pi->hw->back; 1761 1762 ldo = &pf->link_dflt_override; 1763 if (ice_get_link_default_override(ldo, pi)) 1764 return; 1765 1766 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1767 return; 1768 1769 /* Enable Total Port Shutdown (override/replace link-down-on-close 1770 * ethtool private flag) for ports with Port Disable bit set. 1771 */ 1772 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1773 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1774 } 1775 1776 /** 1777 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1778 * @pi: port info structure 1779 * 1780 * If default override is enabled, initialize the user PHY cfg speed and FEC 1781 * settings using the default override mask from the NVM. 1782 * 1783 * The PHY should only be configured with the default override settings the 1784 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1785 * is used to indicate that the user PHY cfg default override is initialized 1786 * and the PHY has not been configured with the default override settings. The 1787 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1788 * configured. 1789 * 1790 * This function should be called only if the FW doesn't support default 1791 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1792 */ 1793 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1794 { 1795 struct ice_link_default_override_tlv *ldo; 1796 struct ice_aqc_set_phy_cfg_data *cfg; 1797 struct ice_phy_info *phy = &pi->phy; 1798 struct ice_pf *pf = pi->hw->back; 1799 1800 ldo = &pf->link_dflt_override; 1801 1802 /* If link default override is enabled, use to mask NVM PHY capabilities 1803 * for speed and FEC default configuration. 1804 */ 1805 cfg = &phy->curr_user_phy_cfg; 1806 1807 if (ldo->phy_type_low || ldo->phy_type_high) { 1808 cfg->phy_type_low = pf->nvm_phy_type_lo & 1809 cpu_to_le64(ldo->phy_type_low); 1810 cfg->phy_type_high = pf->nvm_phy_type_hi & 1811 cpu_to_le64(ldo->phy_type_high); 1812 } 1813 cfg->link_fec_opt = ldo->fec_options; 1814 phy->curr_user_fec_req = ICE_FEC_AUTO; 1815 1816 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1817 } 1818 1819 /** 1820 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1821 * @pi: port info structure 1822 * 1823 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1824 * mode to default. The PHY defaults are from get PHY capabilities topology 1825 * with media so call when media is first available. An error is returned if 1826 * called when media is not available. The PHY initialization completed state is 1827 * set here. 1828 * 1829 * These configurations are used when setting PHY 1830 * configuration. The user PHY configuration is updated on set PHY 1831 * configuration. Returns 0 on success, negative on failure 1832 */ 1833 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1834 { 1835 struct ice_aqc_get_phy_caps_data *pcaps; 1836 struct ice_phy_info *phy = &pi->phy; 1837 struct ice_pf *pf = pi->hw->back; 1838 enum ice_status status; 1839 int err = 0; 1840 1841 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1842 return -EIO; 1843 1844 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1845 if (!pcaps) 1846 return -ENOMEM; 1847 1848 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1849 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1850 pcaps, NULL); 1851 else 1852 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1853 pcaps, NULL); 1854 if (status) { 1855 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1856 err = -EIO; 1857 goto err_out; 1858 } 1859 1860 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1861 1862 /* check if lenient mode is supported and enabled */ 1863 if (ice_fw_supports_link_override(pi->hw) && 1864 !(pcaps->module_compliance_enforcement & 1865 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1866 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1867 1868 /* if the FW supports default PHY configuration mode, then the driver 1869 * does not have to apply link override settings. If not, 1870 * initialize user PHY configuration with link override values 1871 */ 1872 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 1873 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 1874 ice_init_phy_cfg_dflt_override(pi); 1875 goto out; 1876 } 1877 } 1878 1879 /* if link default override is not enabled, set user flow control and 1880 * FEC settings based on what get_phy_caps returned 1881 */ 1882 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1883 pcaps->link_fec_options); 1884 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1885 1886 out: 1887 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1888 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 1889 err_out: 1890 kfree(pcaps); 1891 return err; 1892 } 1893 1894 /** 1895 * ice_configure_phy - configure PHY 1896 * @vsi: VSI of PHY 1897 * 1898 * Set the PHY configuration. If the current PHY configuration is the same as 1899 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1900 * configure the based get PHY capabilities for topology with media. 1901 */ 1902 static int ice_configure_phy(struct ice_vsi *vsi) 1903 { 1904 struct device *dev = ice_pf_to_dev(vsi->back); 1905 struct ice_port_info *pi = vsi->port_info; 1906 struct ice_aqc_get_phy_caps_data *pcaps; 1907 struct ice_aqc_set_phy_cfg_data *cfg; 1908 struct ice_phy_info *phy = &pi->phy; 1909 struct ice_pf *pf = vsi->back; 1910 enum ice_status status; 1911 int err = 0; 1912 1913 /* Ensure we have media as we cannot configure a medialess port */ 1914 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1915 return -EPERM; 1916 1917 ice_print_topo_conflict(vsi); 1918 1919 if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1920 return -EPERM; 1921 1922 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 1923 return ice_force_phys_link_state(vsi, true); 1924 1925 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1926 if (!pcaps) 1927 return -ENOMEM; 1928 1929 /* Get current PHY config */ 1930 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1931 NULL); 1932 if (status) { 1933 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1934 vsi->vsi_num, ice_stat_str(status)); 1935 err = -EIO; 1936 goto done; 1937 } 1938 1939 /* If PHY enable link is configured and configuration has not changed, 1940 * there's nothing to do 1941 */ 1942 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1943 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 1944 goto done; 1945 1946 /* Use PHY topology as baseline for configuration */ 1947 memset(pcaps, 0, sizeof(*pcaps)); 1948 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1949 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1950 pcaps, NULL); 1951 else 1952 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1953 pcaps, NULL); 1954 if (status) { 1955 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 1956 vsi->vsi_num, ice_stat_str(status)); 1957 err = -EIO; 1958 goto done; 1959 } 1960 1961 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1962 if (!cfg) { 1963 err = -ENOMEM; 1964 goto done; 1965 } 1966 1967 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1968 1969 /* Speed - If default override pending, use curr_user_phy_cfg set in 1970 * ice_init_phy_user_cfg_ldo. 1971 */ 1972 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1973 vsi->back->state)) { 1974 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 1975 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 1976 } else { 1977 u64 phy_low = 0, phy_high = 0; 1978 1979 ice_update_phy_type(&phy_low, &phy_high, 1980 pi->phy.curr_user_speed_req); 1981 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1982 cfg->phy_type_high = pcaps->phy_type_high & 1983 cpu_to_le64(phy_high); 1984 } 1985 1986 /* Can't provide what was requested; use PHY capabilities */ 1987 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1988 cfg->phy_type_low = pcaps->phy_type_low; 1989 cfg->phy_type_high = pcaps->phy_type_high; 1990 } 1991 1992 /* FEC */ 1993 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 1994 1995 /* Can't provide what was requested; use PHY capabilities */ 1996 if (cfg->link_fec_opt != 1997 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1998 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1999 cfg->link_fec_opt = pcaps->link_fec_options; 2000 } 2001 2002 /* Flow Control - always supported; no need to check against 2003 * capabilities 2004 */ 2005 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2006 2007 /* Enable link and link update */ 2008 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2009 2010 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2011 if (status) { 2012 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 2013 vsi->vsi_num, ice_stat_str(status)); 2014 err = -EIO; 2015 } 2016 2017 kfree(cfg); 2018 done: 2019 kfree(pcaps); 2020 return err; 2021 } 2022 2023 /** 2024 * ice_check_media_subtask - Check for media 2025 * @pf: pointer to PF struct 2026 * 2027 * If media is available, then initialize PHY user configuration if it is not 2028 * been, and configure the PHY if the interface is up. 2029 */ 2030 static void ice_check_media_subtask(struct ice_pf *pf) 2031 { 2032 struct ice_port_info *pi; 2033 struct ice_vsi *vsi; 2034 int err; 2035 2036 /* No need to check for media if it's already present */ 2037 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2038 return; 2039 2040 vsi = ice_get_main_vsi(pf); 2041 if (!vsi) 2042 return; 2043 2044 /* Refresh link info and check if media is present */ 2045 pi = vsi->port_info; 2046 err = ice_update_link_info(pi); 2047 if (err) 2048 return; 2049 2050 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 2051 2052 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2053 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2054 ice_init_phy_user_cfg(pi); 2055 2056 /* PHY settings are reset on media insertion, reconfigure 2057 * PHY to preserve settings. 2058 */ 2059 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2060 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2061 return; 2062 2063 err = ice_configure_phy(vsi); 2064 if (!err) 2065 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2066 2067 /* A Link Status Event will be generated; the event handler 2068 * will complete bringing the interface up 2069 */ 2070 } 2071 } 2072 2073 /** 2074 * ice_service_task - manage and run subtasks 2075 * @work: pointer to work_struct contained by the PF struct 2076 */ 2077 static void ice_service_task(struct work_struct *work) 2078 { 2079 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2080 unsigned long start_time = jiffies; 2081 2082 /* subtasks */ 2083 2084 /* process reset requests first */ 2085 ice_reset_subtask(pf); 2086 2087 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2088 if (ice_is_reset_in_progress(pf->state) || 2089 test_bit(ICE_SUSPENDED, pf->state) || 2090 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2091 ice_service_task_complete(pf); 2092 return; 2093 } 2094 2095 ice_clean_adminq_subtask(pf); 2096 ice_check_media_subtask(pf); 2097 ice_check_for_hang_subtask(pf); 2098 ice_sync_fltr_subtask(pf); 2099 ice_handle_mdd_event(pf); 2100 ice_watchdog_subtask(pf); 2101 2102 if (ice_is_safe_mode(pf)) { 2103 ice_service_task_complete(pf); 2104 return; 2105 } 2106 2107 ice_process_vflr_event(pf); 2108 ice_clean_mailboxq_subtask(pf); 2109 ice_sync_arfs_fltrs(pf); 2110 ice_flush_fdir_ctx(pf); 2111 2112 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2113 ice_service_task_complete(pf); 2114 2115 /* If the tasks have taken longer than one service timer period 2116 * or there is more work to be done, reset the service timer to 2117 * schedule the service task now. 2118 */ 2119 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2120 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2121 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2122 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2123 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2124 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2125 mod_timer(&pf->serv_tmr, jiffies); 2126 } 2127 2128 /** 2129 * ice_set_ctrlq_len - helper function to set controlq length 2130 * @hw: pointer to the HW instance 2131 */ 2132 static void ice_set_ctrlq_len(struct ice_hw *hw) 2133 { 2134 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2135 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2136 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2137 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2138 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2139 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2140 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2141 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2142 } 2143 2144 /** 2145 * ice_schedule_reset - schedule a reset 2146 * @pf: board private structure 2147 * @reset: reset being requested 2148 */ 2149 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2150 { 2151 struct device *dev = ice_pf_to_dev(pf); 2152 2153 /* bail out if earlier reset has failed */ 2154 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2155 dev_dbg(dev, "earlier reset has failed\n"); 2156 return -EIO; 2157 } 2158 /* bail if reset/recovery already in progress */ 2159 if (ice_is_reset_in_progress(pf->state)) { 2160 dev_dbg(dev, "Reset already in progress\n"); 2161 return -EBUSY; 2162 } 2163 2164 ice_unplug_aux_dev(pf); 2165 2166 switch (reset) { 2167 case ICE_RESET_PFR: 2168 set_bit(ICE_PFR_REQ, pf->state); 2169 break; 2170 case ICE_RESET_CORER: 2171 set_bit(ICE_CORER_REQ, pf->state); 2172 break; 2173 case ICE_RESET_GLOBR: 2174 set_bit(ICE_GLOBR_REQ, pf->state); 2175 break; 2176 default: 2177 return -EINVAL; 2178 } 2179 2180 ice_service_task_schedule(pf); 2181 return 0; 2182 } 2183 2184 /** 2185 * ice_irq_affinity_notify - Callback for affinity changes 2186 * @notify: context as to what irq was changed 2187 * @mask: the new affinity mask 2188 * 2189 * This is a callback function used by the irq_set_affinity_notifier function 2190 * so that we may register to receive changes to the irq affinity masks. 2191 */ 2192 static void 2193 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2194 const cpumask_t *mask) 2195 { 2196 struct ice_q_vector *q_vector = 2197 container_of(notify, struct ice_q_vector, affinity_notify); 2198 2199 cpumask_copy(&q_vector->affinity_mask, mask); 2200 } 2201 2202 /** 2203 * ice_irq_affinity_release - Callback for affinity notifier release 2204 * @ref: internal core kernel usage 2205 * 2206 * This is a callback function used by the irq_set_affinity_notifier function 2207 * to inform the current notification subscriber that they will no longer 2208 * receive notifications. 2209 */ 2210 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2211 2212 /** 2213 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2214 * @vsi: the VSI being configured 2215 */ 2216 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2217 { 2218 struct ice_hw *hw = &vsi->back->hw; 2219 int i; 2220 2221 ice_for_each_q_vector(vsi, i) 2222 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2223 2224 ice_flush(hw); 2225 return 0; 2226 } 2227 2228 /** 2229 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2230 * @vsi: the VSI being configured 2231 * @basename: name for the vector 2232 */ 2233 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2234 { 2235 int q_vectors = vsi->num_q_vectors; 2236 struct ice_pf *pf = vsi->back; 2237 int base = vsi->base_vector; 2238 struct device *dev; 2239 int rx_int_idx = 0; 2240 int tx_int_idx = 0; 2241 int vector, err; 2242 int irq_num; 2243 2244 dev = ice_pf_to_dev(pf); 2245 for (vector = 0; vector < q_vectors; vector++) { 2246 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2247 2248 irq_num = pf->msix_entries[base + vector].vector; 2249 2250 if (q_vector->tx.ring && q_vector->rx.ring) { 2251 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2252 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2253 tx_int_idx++; 2254 } else if (q_vector->rx.ring) { 2255 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2256 "%s-%s-%d", basename, "rx", rx_int_idx++); 2257 } else if (q_vector->tx.ring) { 2258 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2259 "%s-%s-%d", basename, "tx", tx_int_idx++); 2260 } else { 2261 /* skip this unused q_vector */ 2262 continue; 2263 } 2264 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2265 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2266 IRQF_SHARED, q_vector->name, 2267 q_vector); 2268 else 2269 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2270 0, q_vector->name, q_vector); 2271 if (err) { 2272 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2273 err); 2274 goto free_q_irqs; 2275 } 2276 2277 /* register for affinity change notifications */ 2278 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2279 struct irq_affinity_notify *affinity_notify; 2280 2281 affinity_notify = &q_vector->affinity_notify; 2282 affinity_notify->notify = ice_irq_affinity_notify; 2283 affinity_notify->release = ice_irq_affinity_release; 2284 irq_set_affinity_notifier(irq_num, affinity_notify); 2285 } 2286 2287 /* assign the mask for this irq */ 2288 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2289 } 2290 2291 vsi->irqs_ready = true; 2292 return 0; 2293 2294 free_q_irqs: 2295 while (vector) { 2296 vector--; 2297 irq_num = pf->msix_entries[base + vector].vector; 2298 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2299 irq_set_affinity_notifier(irq_num, NULL); 2300 irq_set_affinity_hint(irq_num, NULL); 2301 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2302 } 2303 return err; 2304 } 2305 2306 /** 2307 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2308 * @vsi: VSI to setup Tx rings used by XDP 2309 * 2310 * Return 0 on success and negative value on error 2311 */ 2312 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2313 { 2314 struct device *dev = ice_pf_to_dev(vsi->back); 2315 int i; 2316 2317 for (i = 0; i < vsi->num_xdp_txq; i++) { 2318 u16 xdp_q_idx = vsi->alloc_txq + i; 2319 struct ice_ring *xdp_ring; 2320 2321 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2322 2323 if (!xdp_ring) 2324 goto free_xdp_rings; 2325 2326 xdp_ring->q_index = xdp_q_idx; 2327 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2328 xdp_ring->ring_active = false; 2329 xdp_ring->vsi = vsi; 2330 xdp_ring->netdev = NULL; 2331 xdp_ring->dev = dev; 2332 xdp_ring->count = vsi->num_tx_desc; 2333 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2334 if (ice_setup_tx_ring(xdp_ring)) 2335 goto free_xdp_rings; 2336 ice_set_ring_xdp(xdp_ring); 2337 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2338 } 2339 2340 return 0; 2341 2342 free_xdp_rings: 2343 for (; i >= 0; i--) 2344 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2345 ice_free_tx_ring(vsi->xdp_rings[i]); 2346 return -ENOMEM; 2347 } 2348 2349 /** 2350 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2351 * @vsi: VSI to set the bpf prog on 2352 * @prog: the bpf prog pointer 2353 */ 2354 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2355 { 2356 struct bpf_prog *old_prog; 2357 int i; 2358 2359 old_prog = xchg(&vsi->xdp_prog, prog); 2360 if (old_prog) 2361 bpf_prog_put(old_prog); 2362 2363 ice_for_each_rxq(vsi, i) 2364 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2365 } 2366 2367 /** 2368 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2369 * @vsi: VSI to bring up Tx rings used by XDP 2370 * @prog: bpf program that will be assigned to VSI 2371 * 2372 * Return 0 on success and negative value on error 2373 */ 2374 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2375 { 2376 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2377 int xdp_rings_rem = vsi->num_xdp_txq; 2378 struct ice_pf *pf = vsi->back; 2379 struct ice_qs_cfg xdp_qs_cfg = { 2380 .qs_mutex = &pf->avail_q_mutex, 2381 .pf_map = pf->avail_txqs, 2382 .pf_map_size = pf->max_pf_txqs, 2383 .q_count = vsi->num_xdp_txq, 2384 .scatter_count = ICE_MAX_SCATTER_TXQS, 2385 .vsi_map = vsi->txq_map, 2386 .vsi_map_offset = vsi->alloc_txq, 2387 .mapping_mode = ICE_VSI_MAP_CONTIG 2388 }; 2389 enum ice_status status; 2390 struct device *dev; 2391 int i, v_idx; 2392 2393 dev = ice_pf_to_dev(pf); 2394 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2395 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2396 if (!vsi->xdp_rings) 2397 return -ENOMEM; 2398 2399 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2400 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2401 goto err_map_xdp; 2402 2403 if (ice_xdp_alloc_setup_rings(vsi)) 2404 goto clear_xdp_rings; 2405 2406 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2407 ice_for_each_q_vector(vsi, v_idx) { 2408 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2409 int xdp_rings_per_v, q_id, q_base; 2410 2411 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2412 vsi->num_q_vectors - v_idx); 2413 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2414 2415 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2416 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2417 2418 xdp_ring->q_vector = q_vector; 2419 xdp_ring->next = q_vector->tx.ring; 2420 q_vector->tx.ring = xdp_ring; 2421 } 2422 xdp_rings_rem -= xdp_rings_per_v; 2423 } 2424 2425 /* omit the scheduler update if in reset path; XDP queues will be 2426 * taken into account at the end of ice_vsi_rebuild, where 2427 * ice_cfg_vsi_lan is being called 2428 */ 2429 if (ice_is_reset_in_progress(pf->state)) 2430 return 0; 2431 2432 /* tell the Tx scheduler that right now we have 2433 * additional queues 2434 */ 2435 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2436 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2437 2438 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2439 max_txqs); 2440 if (status) { 2441 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2442 ice_stat_str(status)); 2443 goto clear_xdp_rings; 2444 } 2445 ice_vsi_assign_bpf_prog(vsi, prog); 2446 2447 return 0; 2448 clear_xdp_rings: 2449 for (i = 0; i < vsi->num_xdp_txq; i++) 2450 if (vsi->xdp_rings[i]) { 2451 kfree_rcu(vsi->xdp_rings[i], rcu); 2452 vsi->xdp_rings[i] = NULL; 2453 } 2454 2455 err_map_xdp: 2456 mutex_lock(&pf->avail_q_mutex); 2457 for (i = 0; i < vsi->num_xdp_txq; i++) { 2458 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2459 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2460 } 2461 mutex_unlock(&pf->avail_q_mutex); 2462 2463 devm_kfree(dev, vsi->xdp_rings); 2464 return -ENOMEM; 2465 } 2466 2467 /** 2468 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2469 * @vsi: VSI to remove XDP rings 2470 * 2471 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2472 * resources 2473 */ 2474 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2475 { 2476 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2477 struct ice_pf *pf = vsi->back; 2478 int i, v_idx; 2479 2480 /* q_vectors are freed in reset path so there's no point in detaching 2481 * rings; in case of rebuild being triggered not from reset bits 2482 * in pf->state won't be set, so additionally check first q_vector 2483 * against NULL 2484 */ 2485 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2486 goto free_qmap; 2487 2488 ice_for_each_q_vector(vsi, v_idx) { 2489 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2490 struct ice_ring *ring; 2491 2492 ice_for_each_ring(ring, q_vector->tx) 2493 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2494 break; 2495 2496 /* restore the value of last node prior to XDP setup */ 2497 q_vector->tx.ring = ring; 2498 } 2499 2500 free_qmap: 2501 mutex_lock(&pf->avail_q_mutex); 2502 for (i = 0; i < vsi->num_xdp_txq; i++) { 2503 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2504 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2505 } 2506 mutex_unlock(&pf->avail_q_mutex); 2507 2508 for (i = 0; i < vsi->num_xdp_txq; i++) 2509 if (vsi->xdp_rings[i]) { 2510 if (vsi->xdp_rings[i]->desc) 2511 ice_free_tx_ring(vsi->xdp_rings[i]); 2512 kfree_rcu(vsi->xdp_rings[i], rcu); 2513 vsi->xdp_rings[i] = NULL; 2514 } 2515 2516 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2517 vsi->xdp_rings = NULL; 2518 2519 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2520 return 0; 2521 2522 ice_vsi_assign_bpf_prog(vsi, NULL); 2523 2524 /* notify Tx scheduler that we destroyed XDP queues and bring 2525 * back the old number of child nodes 2526 */ 2527 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2528 max_txqs[i] = vsi->num_txq; 2529 2530 /* change number of XDP Tx queues to 0 */ 2531 vsi->num_xdp_txq = 0; 2532 2533 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2534 max_txqs); 2535 } 2536 2537 /** 2538 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2539 * @vsi: VSI to schedule napi on 2540 */ 2541 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2542 { 2543 int i; 2544 2545 ice_for_each_rxq(vsi, i) { 2546 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2547 2548 if (rx_ring->xsk_pool) 2549 napi_schedule(&rx_ring->q_vector->napi); 2550 } 2551 } 2552 2553 /** 2554 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2555 * @vsi: VSI to setup XDP for 2556 * @prog: XDP program 2557 * @extack: netlink extended ack 2558 */ 2559 static int 2560 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2561 struct netlink_ext_ack *extack) 2562 { 2563 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2564 bool if_running = netif_running(vsi->netdev); 2565 int ret = 0, xdp_ring_err = 0; 2566 2567 if (frame_size > vsi->rx_buf_len) { 2568 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2569 return -EOPNOTSUPP; 2570 } 2571 2572 /* need to stop netdev while setting up the program for Rx rings */ 2573 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2574 ret = ice_down(vsi); 2575 if (ret) { 2576 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2577 return ret; 2578 } 2579 } 2580 2581 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2582 vsi->num_xdp_txq = vsi->alloc_rxq; 2583 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2584 if (xdp_ring_err) 2585 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2586 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2587 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2588 if (xdp_ring_err) 2589 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2590 } else { 2591 ice_vsi_assign_bpf_prog(vsi, prog); 2592 } 2593 2594 if (if_running) 2595 ret = ice_up(vsi); 2596 2597 if (!ret && prog) 2598 ice_vsi_rx_napi_schedule(vsi); 2599 2600 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2601 } 2602 2603 /** 2604 * ice_xdp - implements XDP handler 2605 * @dev: netdevice 2606 * @xdp: XDP command 2607 */ 2608 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2609 { 2610 struct ice_netdev_priv *np = netdev_priv(dev); 2611 struct ice_vsi *vsi = np->vsi; 2612 2613 if (vsi->type != ICE_VSI_PF) { 2614 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2615 return -EINVAL; 2616 } 2617 2618 switch (xdp->command) { 2619 case XDP_SETUP_PROG: 2620 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2621 case XDP_SETUP_XSK_POOL: 2622 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2623 xdp->xsk.queue_id); 2624 default: 2625 return -EINVAL; 2626 } 2627 } 2628 2629 /** 2630 * ice_ena_misc_vector - enable the non-queue interrupts 2631 * @pf: board private structure 2632 */ 2633 static void ice_ena_misc_vector(struct ice_pf *pf) 2634 { 2635 struct ice_hw *hw = &pf->hw; 2636 u32 val; 2637 2638 /* Disable anti-spoof detection interrupt to prevent spurious event 2639 * interrupts during a function reset. Anti-spoof functionally is 2640 * still supported. 2641 */ 2642 val = rd32(hw, GL_MDCK_TX_TDPU); 2643 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2644 wr32(hw, GL_MDCK_TX_TDPU, val); 2645 2646 /* clear things first */ 2647 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2648 rd32(hw, PFINT_OICR); /* read to clear */ 2649 2650 val = (PFINT_OICR_ECC_ERR_M | 2651 PFINT_OICR_MAL_DETECT_M | 2652 PFINT_OICR_GRST_M | 2653 PFINT_OICR_PCI_EXCEPTION_M | 2654 PFINT_OICR_VFLR_M | 2655 PFINT_OICR_HMC_ERR_M | 2656 PFINT_OICR_PE_PUSH_M | 2657 PFINT_OICR_PE_CRITERR_M); 2658 2659 wr32(hw, PFINT_OICR_ENA, val); 2660 2661 /* SW_ITR_IDX = 0, but don't change INTENA */ 2662 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2663 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2664 } 2665 2666 /** 2667 * ice_misc_intr - misc interrupt handler 2668 * @irq: interrupt number 2669 * @data: pointer to a q_vector 2670 */ 2671 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2672 { 2673 struct ice_pf *pf = (struct ice_pf *)data; 2674 struct ice_hw *hw = &pf->hw; 2675 irqreturn_t ret = IRQ_NONE; 2676 struct device *dev; 2677 u32 oicr, ena_mask; 2678 2679 dev = ice_pf_to_dev(pf); 2680 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2681 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2682 2683 oicr = rd32(hw, PFINT_OICR); 2684 ena_mask = rd32(hw, PFINT_OICR_ENA); 2685 2686 if (oicr & PFINT_OICR_SWINT_M) { 2687 ena_mask &= ~PFINT_OICR_SWINT_M; 2688 pf->sw_int_count++; 2689 } 2690 2691 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2692 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2693 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2694 } 2695 if (oicr & PFINT_OICR_VFLR_M) { 2696 /* disable any further VFLR event notifications */ 2697 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2698 u32 reg = rd32(hw, PFINT_OICR_ENA); 2699 2700 reg &= ~PFINT_OICR_VFLR_M; 2701 wr32(hw, PFINT_OICR_ENA, reg); 2702 } else { 2703 ena_mask &= ~PFINT_OICR_VFLR_M; 2704 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2705 } 2706 } 2707 2708 if (oicr & PFINT_OICR_GRST_M) { 2709 u32 reset; 2710 2711 /* we have a reset warning */ 2712 ena_mask &= ~PFINT_OICR_GRST_M; 2713 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2714 GLGEN_RSTAT_RESET_TYPE_S; 2715 2716 if (reset == ICE_RESET_CORER) 2717 pf->corer_count++; 2718 else if (reset == ICE_RESET_GLOBR) 2719 pf->globr_count++; 2720 else if (reset == ICE_RESET_EMPR) 2721 pf->empr_count++; 2722 else 2723 dev_dbg(dev, "Invalid reset type %d\n", reset); 2724 2725 /* If a reset cycle isn't already in progress, we set a bit in 2726 * pf->state so that the service task can start a reset/rebuild. 2727 */ 2728 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2729 if (reset == ICE_RESET_CORER) 2730 set_bit(ICE_CORER_RECV, pf->state); 2731 else if (reset == ICE_RESET_GLOBR) 2732 set_bit(ICE_GLOBR_RECV, pf->state); 2733 else 2734 set_bit(ICE_EMPR_RECV, pf->state); 2735 2736 /* There are couple of different bits at play here. 2737 * hw->reset_ongoing indicates whether the hardware is 2738 * in reset. This is set to true when a reset interrupt 2739 * is received and set back to false after the driver 2740 * has determined that the hardware is out of reset. 2741 * 2742 * ICE_RESET_OICR_RECV in pf->state indicates 2743 * that a post reset rebuild is required before the 2744 * driver is operational again. This is set above. 2745 * 2746 * As this is the start of the reset/rebuild cycle, set 2747 * both to indicate that. 2748 */ 2749 hw->reset_ongoing = true; 2750 } 2751 } 2752 2753 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 2754 if (oicr & ICE_AUX_CRIT_ERR) { 2755 struct iidc_event *event; 2756 2757 ena_mask &= ~ICE_AUX_CRIT_ERR; 2758 event = kzalloc(sizeof(*event), GFP_KERNEL); 2759 if (event) { 2760 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2761 /* report the entire OICR value to AUX driver */ 2762 event->reg = oicr; 2763 ice_send_event_to_aux(pf, event); 2764 kfree(event); 2765 } 2766 } 2767 2768 /* Report any remaining unexpected interrupts */ 2769 oicr &= ena_mask; 2770 if (oicr) { 2771 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2772 /* If a critical error is pending there is no choice but to 2773 * reset the device. 2774 */ 2775 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 2776 PFINT_OICR_ECC_ERR_M)) { 2777 set_bit(ICE_PFR_REQ, pf->state); 2778 ice_service_task_schedule(pf); 2779 } 2780 } 2781 ret = IRQ_HANDLED; 2782 2783 ice_service_task_schedule(pf); 2784 ice_irq_dynamic_ena(hw, NULL, NULL); 2785 2786 return ret; 2787 } 2788 2789 /** 2790 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2791 * @hw: pointer to HW structure 2792 */ 2793 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2794 { 2795 /* disable Admin queue Interrupt causes */ 2796 wr32(hw, PFINT_FW_CTL, 2797 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2798 2799 /* disable Mailbox queue Interrupt causes */ 2800 wr32(hw, PFINT_MBX_CTL, 2801 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2802 2803 /* disable Control queue Interrupt causes */ 2804 wr32(hw, PFINT_OICR_CTL, 2805 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2806 2807 ice_flush(hw); 2808 } 2809 2810 /** 2811 * ice_free_irq_msix_misc - Unroll misc vector setup 2812 * @pf: board private structure 2813 */ 2814 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2815 { 2816 struct ice_hw *hw = &pf->hw; 2817 2818 ice_dis_ctrlq_interrupts(hw); 2819 2820 /* disable OICR interrupt */ 2821 wr32(hw, PFINT_OICR_ENA, 0); 2822 ice_flush(hw); 2823 2824 if (pf->msix_entries) { 2825 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2826 devm_free_irq(ice_pf_to_dev(pf), 2827 pf->msix_entries[pf->oicr_idx].vector, pf); 2828 } 2829 2830 pf->num_avail_sw_msix += 1; 2831 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2832 } 2833 2834 /** 2835 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2836 * @hw: pointer to HW structure 2837 * @reg_idx: HW vector index to associate the control queue interrupts with 2838 */ 2839 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2840 { 2841 u32 val; 2842 2843 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2844 PFINT_OICR_CTL_CAUSE_ENA_M); 2845 wr32(hw, PFINT_OICR_CTL, val); 2846 2847 /* enable Admin queue Interrupt causes */ 2848 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2849 PFINT_FW_CTL_CAUSE_ENA_M); 2850 wr32(hw, PFINT_FW_CTL, val); 2851 2852 /* enable Mailbox queue Interrupt causes */ 2853 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2854 PFINT_MBX_CTL_CAUSE_ENA_M); 2855 wr32(hw, PFINT_MBX_CTL, val); 2856 2857 ice_flush(hw); 2858 } 2859 2860 /** 2861 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2862 * @pf: board private structure 2863 * 2864 * This sets up the handler for MSIX 0, which is used to manage the 2865 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2866 * when in MSI or Legacy interrupt mode. 2867 */ 2868 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2869 { 2870 struct device *dev = ice_pf_to_dev(pf); 2871 struct ice_hw *hw = &pf->hw; 2872 int oicr_idx, err = 0; 2873 2874 if (!pf->int_name[0]) 2875 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2876 dev_driver_string(dev), dev_name(dev)); 2877 2878 /* Do not request IRQ but do enable OICR interrupt since settings are 2879 * lost during reset. Note that this function is called only during 2880 * rebuild path and not while reset is in progress. 2881 */ 2882 if (ice_is_reset_in_progress(pf->state)) 2883 goto skip_req_irq; 2884 2885 /* reserve one vector in irq_tracker for misc interrupts */ 2886 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2887 if (oicr_idx < 0) 2888 return oicr_idx; 2889 2890 pf->num_avail_sw_msix -= 1; 2891 pf->oicr_idx = (u16)oicr_idx; 2892 2893 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2894 ice_misc_intr, 0, pf->int_name, pf); 2895 if (err) { 2896 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2897 pf->int_name, err); 2898 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2899 pf->num_avail_sw_msix += 1; 2900 return err; 2901 } 2902 2903 skip_req_irq: 2904 ice_ena_misc_vector(pf); 2905 2906 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2907 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2908 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2909 2910 ice_flush(hw); 2911 ice_irq_dynamic_ena(hw, NULL, NULL); 2912 2913 return 0; 2914 } 2915 2916 /** 2917 * ice_napi_add - register NAPI handler for the VSI 2918 * @vsi: VSI for which NAPI handler is to be registered 2919 * 2920 * This function is only called in the driver's load path. Registering the NAPI 2921 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2922 * reset/rebuild, etc.) 2923 */ 2924 static void ice_napi_add(struct ice_vsi *vsi) 2925 { 2926 int v_idx; 2927 2928 if (!vsi->netdev) 2929 return; 2930 2931 ice_for_each_q_vector(vsi, v_idx) 2932 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2933 ice_napi_poll, NAPI_POLL_WEIGHT); 2934 } 2935 2936 /** 2937 * ice_set_ops - set netdev and ethtools ops for the given netdev 2938 * @netdev: netdev instance 2939 */ 2940 static void ice_set_ops(struct net_device *netdev) 2941 { 2942 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2943 2944 if (ice_is_safe_mode(pf)) { 2945 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2946 ice_set_ethtool_safe_mode_ops(netdev); 2947 return; 2948 } 2949 2950 netdev->netdev_ops = &ice_netdev_ops; 2951 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 2952 ice_set_ethtool_ops(netdev); 2953 } 2954 2955 /** 2956 * ice_set_netdev_features - set features for the given netdev 2957 * @netdev: netdev instance 2958 */ 2959 static void ice_set_netdev_features(struct net_device *netdev) 2960 { 2961 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2962 netdev_features_t csumo_features; 2963 netdev_features_t vlano_features; 2964 netdev_features_t dflt_features; 2965 netdev_features_t tso_features; 2966 2967 if (ice_is_safe_mode(pf)) { 2968 /* safe mode */ 2969 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2970 netdev->hw_features = netdev->features; 2971 return; 2972 } 2973 2974 dflt_features = NETIF_F_SG | 2975 NETIF_F_HIGHDMA | 2976 NETIF_F_NTUPLE | 2977 NETIF_F_RXHASH; 2978 2979 csumo_features = NETIF_F_RXCSUM | 2980 NETIF_F_IP_CSUM | 2981 NETIF_F_SCTP_CRC | 2982 NETIF_F_IPV6_CSUM; 2983 2984 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2985 NETIF_F_HW_VLAN_CTAG_TX | 2986 NETIF_F_HW_VLAN_CTAG_RX; 2987 2988 tso_features = NETIF_F_TSO | 2989 NETIF_F_TSO_ECN | 2990 NETIF_F_TSO6 | 2991 NETIF_F_GSO_GRE | 2992 NETIF_F_GSO_UDP_TUNNEL | 2993 NETIF_F_GSO_GRE_CSUM | 2994 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2995 NETIF_F_GSO_PARTIAL | 2996 NETIF_F_GSO_IPXIP4 | 2997 NETIF_F_GSO_IPXIP6 | 2998 NETIF_F_GSO_UDP_L4; 2999 3000 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3001 NETIF_F_GSO_GRE_CSUM; 3002 /* set features that user can change */ 3003 netdev->hw_features = dflt_features | csumo_features | 3004 vlano_features | tso_features; 3005 3006 /* add support for HW_CSUM on packets with MPLS header */ 3007 netdev->mpls_features = NETIF_F_HW_CSUM; 3008 3009 /* enable features */ 3010 netdev->features |= netdev->hw_features; 3011 /* encap and VLAN devices inherit default, csumo and tso features */ 3012 netdev->hw_enc_features |= dflt_features | csumo_features | 3013 tso_features; 3014 netdev->vlan_features |= dflt_features | csumo_features | 3015 tso_features; 3016 } 3017 3018 /** 3019 * ice_cfg_netdev - Allocate, configure and register a netdev 3020 * @vsi: the VSI associated with the new netdev 3021 * 3022 * Returns 0 on success, negative value on failure 3023 */ 3024 static int ice_cfg_netdev(struct ice_vsi *vsi) 3025 { 3026 struct ice_pf *pf = vsi->back; 3027 struct ice_netdev_priv *np; 3028 struct net_device *netdev; 3029 u8 mac_addr[ETH_ALEN]; 3030 3031 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3032 vsi->alloc_rxq); 3033 if (!netdev) 3034 return -ENOMEM; 3035 3036 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3037 vsi->netdev = netdev; 3038 np = netdev_priv(netdev); 3039 np->vsi = vsi; 3040 3041 ice_set_netdev_features(netdev); 3042 3043 ice_set_ops(netdev); 3044 3045 if (vsi->type == ICE_VSI_PF) { 3046 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 3047 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3048 ether_addr_copy(netdev->dev_addr, mac_addr); 3049 ether_addr_copy(netdev->perm_addr, mac_addr); 3050 } 3051 3052 netdev->priv_flags |= IFF_UNICAST_FLT; 3053 3054 /* Setup netdev TC information */ 3055 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3056 3057 /* setup watchdog timeout value to be 5 second */ 3058 netdev->watchdog_timeo = 5 * HZ; 3059 3060 netdev->min_mtu = ETH_MIN_MTU; 3061 netdev->max_mtu = ICE_MAX_MTU; 3062 3063 return 0; 3064 } 3065 3066 /** 3067 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3068 * @lut: Lookup table 3069 * @rss_table_size: Lookup table size 3070 * @rss_size: Range of queue number for hashing 3071 */ 3072 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3073 { 3074 u16 i; 3075 3076 for (i = 0; i < rss_table_size; i++) 3077 lut[i] = i % rss_size; 3078 } 3079 3080 /** 3081 * ice_pf_vsi_setup - Set up a PF VSI 3082 * @pf: board private structure 3083 * @pi: pointer to the port_info instance 3084 * 3085 * Returns pointer to the successfully allocated VSI software struct 3086 * on success, otherwise returns NULL on failure. 3087 */ 3088 static struct ice_vsi * 3089 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3090 { 3091 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3092 } 3093 3094 /** 3095 * ice_ctrl_vsi_setup - Set up a control VSI 3096 * @pf: board private structure 3097 * @pi: pointer to the port_info instance 3098 * 3099 * Returns pointer to the successfully allocated VSI software struct 3100 * on success, otherwise returns NULL on failure. 3101 */ 3102 static struct ice_vsi * 3103 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3104 { 3105 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3106 } 3107 3108 /** 3109 * ice_lb_vsi_setup - Set up a loopback VSI 3110 * @pf: board private structure 3111 * @pi: pointer to the port_info instance 3112 * 3113 * Returns pointer to the successfully allocated VSI software struct 3114 * on success, otherwise returns NULL on failure. 3115 */ 3116 struct ice_vsi * 3117 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3118 { 3119 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3120 } 3121 3122 /** 3123 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3124 * @netdev: network interface to be adjusted 3125 * @proto: unused protocol 3126 * @vid: VLAN ID to be added 3127 * 3128 * net_device_ops implementation for adding VLAN IDs 3129 */ 3130 static int 3131 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3132 u16 vid) 3133 { 3134 struct ice_netdev_priv *np = netdev_priv(netdev); 3135 struct ice_vsi *vsi = np->vsi; 3136 int ret; 3137 3138 /* VLAN 0 is added by default during load/reset */ 3139 if (!vid) 3140 return 0; 3141 3142 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3143 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3144 ret = ice_cfg_vlan_pruning(vsi, true, false); 3145 if (ret) 3146 return ret; 3147 } 3148 3149 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3150 * packets aren't pruned by the device's internal switch on Rx 3151 */ 3152 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3153 if (!ret) 3154 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3155 3156 return ret; 3157 } 3158 3159 /** 3160 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3161 * @netdev: network interface to be adjusted 3162 * @proto: unused protocol 3163 * @vid: VLAN ID to be removed 3164 * 3165 * net_device_ops implementation for removing VLAN IDs 3166 */ 3167 static int 3168 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3169 u16 vid) 3170 { 3171 struct ice_netdev_priv *np = netdev_priv(netdev); 3172 struct ice_vsi *vsi = np->vsi; 3173 int ret; 3174 3175 /* don't allow removal of VLAN 0 */ 3176 if (!vid) 3177 return 0; 3178 3179 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3180 * information 3181 */ 3182 ret = ice_vsi_kill_vlan(vsi, vid); 3183 if (ret) 3184 return ret; 3185 3186 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3187 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3188 ret = ice_cfg_vlan_pruning(vsi, false, false); 3189 3190 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3191 return ret; 3192 } 3193 3194 /** 3195 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3196 * @pf: board private structure 3197 * 3198 * Returns 0 on success, negative value on failure 3199 */ 3200 static int ice_setup_pf_sw(struct ice_pf *pf) 3201 { 3202 struct ice_vsi *vsi; 3203 int status = 0; 3204 3205 if (ice_is_reset_in_progress(pf->state)) 3206 return -EBUSY; 3207 3208 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3209 if (!vsi) 3210 return -ENOMEM; 3211 3212 status = ice_cfg_netdev(vsi); 3213 if (status) { 3214 status = -ENODEV; 3215 goto unroll_vsi_setup; 3216 } 3217 /* netdev has to be configured before setting frame size */ 3218 ice_vsi_cfg_frame_size(vsi); 3219 3220 /* Setup DCB netlink interface */ 3221 ice_dcbnl_setup(vsi); 3222 3223 /* registering the NAPI handler requires both the queues and 3224 * netdev to be created, which are done in ice_pf_vsi_setup() 3225 * and ice_cfg_netdev() respectively 3226 */ 3227 ice_napi_add(vsi); 3228 3229 status = ice_set_cpu_rx_rmap(vsi); 3230 if (status) { 3231 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3232 vsi->vsi_num, status); 3233 status = -EINVAL; 3234 goto unroll_napi_add; 3235 } 3236 status = ice_init_mac_fltr(pf); 3237 if (status) 3238 goto free_cpu_rx_map; 3239 3240 return status; 3241 3242 free_cpu_rx_map: 3243 ice_free_cpu_rx_rmap(vsi); 3244 3245 unroll_napi_add: 3246 if (vsi) { 3247 ice_napi_del(vsi); 3248 if (vsi->netdev) { 3249 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3250 free_netdev(vsi->netdev); 3251 vsi->netdev = NULL; 3252 } 3253 } 3254 3255 unroll_vsi_setup: 3256 ice_vsi_release(vsi); 3257 return status; 3258 } 3259 3260 /** 3261 * ice_get_avail_q_count - Get count of queues in use 3262 * @pf_qmap: bitmap to get queue use count from 3263 * @lock: pointer to a mutex that protects access to pf_qmap 3264 * @size: size of the bitmap 3265 */ 3266 static u16 3267 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3268 { 3269 unsigned long bit; 3270 u16 count = 0; 3271 3272 mutex_lock(lock); 3273 for_each_clear_bit(bit, pf_qmap, size) 3274 count++; 3275 mutex_unlock(lock); 3276 3277 return count; 3278 } 3279 3280 /** 3281 * ice_get_avail_txq_count - Get count of Tx queues in use 3282 * @pf: pointer to an ice_pf instance 3283 */ 3284 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3285 { 3286 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3287 pf->max_pf_txqs); 3288 } 3289 3290 /** 3291 * ice_get_avail_rxq_count - Get count of Rx queues in use 3292 * @pf: pointer to an ice_pf instance 3293 */ 3294 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3295 { 3296 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3297 pf->max_pf_rxqs); 3298 } 3299 3300 /** 3301 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3302 * @pf: board private structure to initialize 3303 */ 3304 static void ice_deinit_pf(struct ice_pf *pf) 3305 { 3306 ice_service_task_stop(pf); 3307 mutex_destroy(&pf->sw_mutex); 3308 mutex_destroy(&pf->tc_mutex); 3309 mutex_destroy(&pf->avail_q_mutex); 3310 3311 if (pf->avail_txqs) { 3312 bitmap_free(pf->avail_txqs); 3313 pf->avail_txqs = NULL; 3314 } 3315 3316 if (pf->avail_rxqs) { 3317 bitmap_free(pf->avail_rxqs); 3318 pf->avail_rxqs = NULL; 3319 } 3320 } 3321 3322 /** 3323 * ice_set_pf_caps - set PFs capability flags 3324 * @pf: pointer to the PF instance 3325 */ 3326 static void ice_set_pf_caps(struct ice_pf *pf) 3327 { 3328 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3329 3330 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3331 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3332 if (func_caps->common_cap.rdma) { 3333 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3334 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3335 } 3336 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3337 if (func_caps->common_cap.dcb) 3338 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3339 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3340 if (func_caps->common_cap.sr_iov_1_1) { 3341 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3342 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3343 ICE_MAX_VF_COUNT); 3344 } 3345 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3346 if (func_caps->common_cap.rss_table_size) 3347 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3348 3349 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3350 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3351 u16 unused; 3352 3353 /* ctrl_vsi_idx will be set to a valid value when flow director 3354 * is setup by ice_init_fdir 3355 */ 3356 pf->ctrl_vsi_idx = ICE_NO_VSI; 3357 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3358 /* force guaranteed filter pool for PF */ 3359 ice_alloc_fd_guar_item(&pf->hw, &unused, 3360 func_caps->fd_fltr_guar); 3361 /* force shared filter pool for PF */ 3362 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3363 func_caps->fd_fltr_best_effort); 3364 } 3365 3366 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3367 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3368 } 3369 3370 /** 3371 * ice_init_pf - Initialize general software structures (struct ice_pf) 3372 * @pf: board private structure to initialize 3373 */ 3374 static int ice_init_pf(struct ice_pf *pf) 3375 { 3376 ice_set_pf_caps(pf); 3377 3378 mutex_init(&pf->sw_mutex); 3379 mutex_init(&pf->tc_mutex); 3380 3381 INIT_HLIST_HEAD(&pf->aq_wait_list); 3382 spin_lock_init(&pf->aq_wait_lock); 3383 init_waitqueue_head(&pf->aq_wait_queue); 3384 3385 init_waitqueue_head(&pf->reset_wait_queue); 3386 3387 /* setup service timer and periodic service task */ 3388 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3389 pf->serv_tmr_period = HZ; 3390 INIT_WORK(&pf->serv_task, ice_service_task); 3391 clear_bit(ICE_SERVICE_SCHED, pf->state); 3392 3393 mutex_init(&pf->avail_q_mutex); 3394 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3395 if (!pf->avail_txqs) 3396 return -ENOMEM; 3397 3398 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3399 if (!pf->avail_rxqs) { 3400 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3401 pf->avail_txqs = NULL; 3402 return -ENOMEM; 3403 } 3404 3405 return 0; 3406 } 3407 3408 /** 3409 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3410 * @pf: board private structure 3411 * 3412 * compute the number of MSIX vectors required (v_budget) and request from 3413 * the OS. Return the number of vectors reserved or negative on failure 3414 */ 3415 static int ice_ena_msix_range(struct ice_pf *pf) 3416 { 3417 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3418 struct device *dev = ice_pf_to_dev(pf); 3419 int needed, err, i; 3420 3421 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3422 num_cpus = num_online_cpus(); 3423 3424 /* reserve for LAN miscellaneous handler */ 3425 needed = ICE_MIN_LAN_OICR_MSIX; 3426 if (v_left < needed) 3427 goto no_hw_vecs_left_err; 3428 v_budget += needed; 3429 v_left -= needed; 3430 3431 /* reserve for flow director */ 3432 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3433 needed = ICE_FDIR_MSIX; 3434 if (v_left < needed) 3435 goto no_hw_vecs_left_err; 3436 v_budget += needed; 3437 v_left -= needed; 3438 } 3439 3440 /* total used for non-traffic vectors */ 3441 v_other = v_budget; 3442 3443 /* reserve vectors for LAN traffic */ 3444 needed = num_cpus; 3445 if (v_left < needed) 3446 goto no_hw_vecs_left_err; 3447 pf->num_lan_msix = needed; 3448 v_budget += needed; 3449 v_left -= needed; 3450 3451 /* reserve vectors for RDMA auxiliary driver */ 3452 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3453 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3454 if (v_left < needed) 3455 goto no_hw_vecs_left_err; 3456 pf->num_rdma_msix = needed; 3457 v_budget += needed; 3458 v_left -= needed; 3459 } 3460 3461 pf->msix_entries = devm_kcalloc(dev, v_budget, 3462 sizeof(*pf->msix_entries), GFP_KERNEL); 3463 if (!pf->msix_entries) { 3464 err = -ENOMEM; 3465 goto exit_err; 3466 } 3467 3468 for (i = 0; i < v_budget; i++) 3469 pf->msix_entries[i].entry = i; 3470 3471 /* actually reserve the vectors */ 3472 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3473 ICE_MIN_MSIX, v_budget); 3474 if (v_actual < 0) { 3475 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3476 err = v_actual; 3477 goto msix_err; 3478 } 3479 3480 if (v_actual < v_budget) { 3481 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3482 v_budget, v_actual); 3483 3484 if (v_actual < ICE_MIN_MSIX) { 3485 /* error if we can't get minimum vectors */ 3486 pci_disable_msix(pf->pdev); 3487 err = -ERANGE; 3488 goto msix_err; 3489 } else { 3490 int v_remain = v_actual - v_other; 3491 int v_rdma = 0, v_min_rdma = 0; 3492 3493 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3494 /* Need at least 1 interrupt in addition to 3495 * AEQ MSIX 3496 */ 3497 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3498 v_min_rdma = ICE_MIN_RDMA_MSIX; 3499 } 3500 3501 if (v_actual == ICE_MIN_MSIX || 3502 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3503 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3504 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3505 3506 pf->num_rdma_msix = 0; 3507 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3508 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3509 (v_remain - v_rdma < v_rdma)) { 3510 /* Support minimum RDMA and give remaining 3511 * vectors to LAN MSIX 3512 */ 3513 pf->num_rdma_msix = v_min_rdma; 3514 pf->num_lan_msix = v_remain - v_min_rdma; 3515 } else { 3516 /* Split remaining MSIX with RDMA after 3517 * accounting for AEQ MSIX 3518 */ 3519 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3520 ICE_RDMA_NUM_AEQ_MSIX; 3521 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3522 } 3523 3524 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3525 pf->num_lan_msix); 3526 3527 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3528 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3529 pf->num_rdma_msix); 3530 } 3531 } 3532 3533 return v_actual; 3534 3535 msix_err: 3536 devm_kfree(dev, pf->msix_entries); 3537 goto exit_err; 3538 3539 no_hw_vecs_left_err: 3540 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3541 needed, v_left); 3542 err = -ERANGE; 3543 exit_err: 3544 pf->num_rdma_msix = 0; 3545 pf->num_lan_msix = 0; 3546 return err; 3547 } 3548 3549 /** 3550 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3551 * @pf: board private structure 3552 */ 3553 static void ice_dis_msix(struct ice_pf *pf) 3554 { 3555 pci_disable_msix(pf->pdev); 3556 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3557 pf->msix_entries = NULL; 3558 } 3559 3560 /** 3561 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3562 * @pf: board private structure 3563 */ 3564 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3565 { 3566 ice_dis_msix(pf); 3567 3568 if (pf->irq_tracker) { 3569 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3570 pf->irq_tracker = NULL; 3571 } 3572 } 3573 3574 /** 3575 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3576 * @pf: board private structure to initialize 3577 */ 3578 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3579 { 3580 int vectors; 3581 3582 vectors = ice_ena_msix_range(pf); 3583 3584 if (vectors < 0) 3585 return vectors; 3586 3587 /* set up vector assignment tracking */ 3588 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3589 struct_size(pf->irq_tracker, list, vectors), 3590 GFP_KERNEL); 3591 if (!pf->irq_tracker) { 3592 ice_dis_msix(pf); 3593 return -ENOMEM; 3594 } 3595 3596 /* populate SW interrupts pool with number of OS granted IRQs. */ 3597 pf->num_avail_sw_msix = (u16)vectors; 3598 pf->irq_tracker->num_entries = (u16)vectors; 3599 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3600 3601 return 0; 3602 } 3603 3604 /** 3605 * ice_is_wol_supported - check if WoL is supported 3606 * @hw: pointer to hardware info 3607 * 3608 * Check if WoL is supported based on the HW configuration. 3609 * Returns true if NVM supports and enables WoL for this port, false otherwise 3610 */ 3611 bool ice_is_wol_supported(struct ice_hw *hw) 3612 { 3613 u16 wol_ctrl; 3614 3615 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3616 * word) indicates WoL is not supported on the corresponding PF ID. 3617 */ 3618 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3619 return false; 3620 3621 return !(BIT(hw->port_info->lport) & wol_ctrl); 3622 } 3623 3624 /** 3625 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3626 * @vsi: VSI being changed 3627 * @new_rx: new number of Rx queues 3628 * @new_tx: new number of Tx queues 3629 * 3630 * Only change the number of queues if new_tx, or new_rx is non-0. 3631 * 3632 * Returns 0 on success. 3633 */ 3634 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3635 { 3636 struct ice_pf *pf = vsi->back; 3637 int err = 0, timeout = 50; 3638 3639 if (!new_rx && !new_tx) 3640 return -EINVAL; 3641 3642 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3643 timeout--; 3644 if (!timeout) 3645 return -EBUSY; 3646 usleep_range(1000, 2000); 3647 } 3648 3649 if (new_tx) 3650 vsi->req_txq = (u16)new_tx; 3651 if (new_rx) 3652 vsi->req_rxq = (u16)new_rx; 3653 3654 /* set for the next time the netdev is started */ 3655 if (!netif_running(vsi->netdev)) { 3656 ice_vsi_rebuild(vsi, false); 3657 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3658 goto done; 3659 } 3660 3661 ice_vsi_close(vsi); 3662 ice_vsi_rebuild(vsi, false); 3663 ice_pf_dcb_recfg(pf); 3664 ice_vsi_open(vsi); 3665 done: 3666 clear_bit(ICE_CFG_BUSY, pf->state); 3667 return err; 3668 } 3669 3670 /** 3671 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3672 * @pf: PF to configure 3673 * 3674 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3675 * VSI can still Tx/Rx VLAN tagged packets. 3676 */ 3677 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3678 { 3679 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3680 struct ice_vsi_ctx *ctxt; 3681 enum ice_status status; 3682 struct ice_hw *hw; 3683 3684 if (!vsi) 3685 return; 3686 3687 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3688 if (!ctxt) 3689 return; 3690 3691 hw = &pf->hw; 3692 ctxt->info = vsi->info; 3693 3694 ctxt->info.valid_sections = 3695 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3696 ICE_AQ_VSI_PROP_SECURITY_VALID | 3697 ICE_AQ_VSI_PROP_SW_VALID); 3698 3699 /* disable VLAN anti-spoof */ 3700 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3701 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3702 3703 /* disable VLAN pruning and keep all other settings */ 3704 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3705 3706 /* allow all VLANs on Tx and don't strip on Rx */ 3707 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3708 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3709 3710 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3711 if (status) { 3712 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3713 ice_stat_str(status), 3714 ice_aq_str(hw->adminq.sq_last_status)); 3715 } else { 3716 vsi->info.sec_flags = ctxt->info.sec_flags; 3717 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3718 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3719 } 3720 3721 kfree(ctxt); 3722 } 3723 3724 /** 3725 * ice_log_pkg_init - log result of DDP package load 3726 * @hw: pointer to hardware info 3727 * @status: status of package load 3728 */ 3729 static void 3730 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3731 { 3732 struct ice_pf *pf = (struct ice_pf *)hw->back; 3733 struct device *dev = ice_pf_to_dev(pf); 3734 3735 switch (*status) { 3736 case ICE_SUCCESS: 3737 /* The package download AdminQ command returned success because 3738 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3739 * already a package loaded on the device. 3740 */ 3741 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3742 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3743 hw->pkg_ver.update == hw->active_pkg_ver.update && 3744 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3745 !memcmp(hw->pkg_name, hw->active_pkg_name, 3746 sizeof(hw->pkg_name))) { 3747 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3748 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3749 hw->active_pkg_name, 3750 hw->active_pkg_ver.major, 3751 hw->active_pkg_ver.minor, 3752 hw->active_pkg_ver.update, 3753 hw->active_pkg_ver.draft); 3754 else 3755 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3756 hw->active_pkg_name, 3757 hw->active_pkg_ver.major, 3758 hw->active_pkg_ver.minor, 3759 hw->active_pkg_ver.update, 3760 hw->active_pkg_ver.draft); 3761 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3762 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3763 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3764 hw->active_pkg_name, 3765 hw->active_pkg_ver.major, 3766 hw->active_pkg_ver.minor, 3767 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3768 *status = ICE_ERR_NOT_SUPPORTED; 3769 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3770 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3771 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3772 hw->active_pkg_name, 3773 hw->active_pkg_ver.major, 3774 hw->active_pkg_ver.minor, 3775 hw->active_pkg_ver.update, 3776 hw->active_pkg_ver.draft, 3777 hw->pkg_name, 3778 hw->pkg_ver.major, 3779 hw->pkg_ver.minor, 3780 hw->pkg_ver.update, 3781 hw->pkg_ver.draft); 3782 } else { 3783 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3784 *status = ICE_ERR_NOT_SUPPORTED; 3785 } 3786 break; 3787 case ICE_ERR_FW_DDP_MISMATCH: 3788 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3789 break; 3790 case ICE_ERR_BUF_TOO_SHORT: 3791 case ICE_ERR_CFG: 3792 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3793 break; 3794 case ICE_ERR_NOT_SUPPORTED: 3795 /* Package File version not supported */ 3796 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3797 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3798 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3799 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3800 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3801 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3802 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3803 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3804 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3805 break; 3806 case ICE_ERR_AQ_ERROR: 3807 switch (hw->pkg_dwnld_status) { 3808 case ICE_AQ_RC_ENOSEC: 3809 case ICE_AQ_RC_EBADSIG: 3810 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3811 return; 3812 case ICE_AQ_RC_ESVN: 3813 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3814 return; 3815 case ICE_AQ_RC_EBADMAN: 3816 case ICE_AQ_RC_EBADBUF: 3817 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3818 /* poll for reset to complete */ 3819 if (ice_check_reset(hw)) 3820 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3821 return; 3822 default: 3823 break; 3824 } 3825 fallthrough; 3826 default: 3827 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3828 *status); 3829 break; 3830 } 3831 } 3832 3833 /** 3834 * ice_load_pkg - load/reload the DDP Package file 3835 * @firmware: firmware structure when firmware requested or NULL for reload 3836 * @pf: pointer to the PF instance 3837 * 3838 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3839 * initialize HW tables. 3840 */ 3841 static void 3842 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3843 { 3844 enum ice_status status = ICE_ERR_PARAM; 3845 struct device *dev = ice_pf_to_dev(pf); 3846 struct ice_hw *hw = &pf->hw; 3847 3848 /* Load DDP Package */ 3849 if (firmware && !hw->pkg_copy) { 3850 status = ice_copy_and_init_pkg(hw, firmware->data, 3851 firmware->size); 3852 ice_log_pkg_init(hw, &status); 3853 } else if (!firmware && hw->pkg_copy) { 3854 /* Reload package during rebuild after CORER/GLOBR reset */ 3855 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3856 ice_log_pkg_init(hw, &status); 3857 } else { 3858 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3859 } 3860 3861 if (status) { 3862 /* Safe Mode */ 3863 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3864 return; 3865 } 3866 3867 /* Successful download package is the precondition for advanced 3868 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3869 */ 3870 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3871 } 3872 3873 /** 3874 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3875 * @pf: pointer to the PF structure 3876 * 3877 * There is no error returned here because the driver should be able to handle 3878 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3879 * specifically with Tx. 3880 */ 3881 static void ice_verify_cacheline_size(struct ice_pf *pf) 3882 { 3883 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3884 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3885 ICE_CACHE_LINE_BYTES); 3886 } 3887 3888 /** 3889 * ice_send_version - update firmware with driver version 3890 * @pf: PF struct 3891 * 3892 * Returns ICE_SUCCESS on success, else error code 3893 */ 3894 static enum ice_status ice_send_version(struct ice_pf *pf) 3895 { 3896 struct ice_driver_ver dv; 3897 3898 dv.major_ver = 0xff; 3899 dv.minor_ver = 0xff; 3900 dv.build_ver = 0xff; 3901 dv.subbuild_ver = 0; 3902 strscpy((char *)dv.driver_string, UTS_RELEASE, 3903 sizeof(dv.driver_string)); 3904 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3905 } 3906 3907 /** 3908 * ice_init_fdir - Initialize flow director VSI and configuration 3909 * @pf: pointer to the PF instance 3910 * 3911 * returns 0 on success, negative on error 3912 */ 3913 static int ice_init_fdir(struct ice_pf *pf) 3914 { 3915 struct device *dev = ice_pf_to_dev(pf); 3916 struct ice_vsi *ctrl_vsi; 3917 int err; 3918 3919 /* Side Band Flow Director needs to have a control VSI. 3920 * Allocate it and store it in the PF. 3921 */ 3922 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3923 if (!ctrl_vsi) { 3924 dev_dbg(dev, "could not create control VSI\n"); 3925 return -ENOMEM; 3926 } 3927 3928 err = ice_vsi_open_ctrl(ctrl_vsi); 3929 if (err) { 3930 dev_dbg(dev, "could not open control VSI\n"); 3931 goto err_vsi_open; 3932 } 3933 3934 mutex_init(&pf->hw.fdir_fltr_lock); 3935 3936 err = ice_fdir_create_dflt_rules(pf); 3937 if (err) 3938 goto err_fdir_rule; 3939 3940 return 0; 3941 3942 err_fdir_rule: 3943 ice_fdir_release_flows(&pf->hw); 3944 ice_vsi_close(ctrl_vsi); 3945 err_vsi_open: 3946 ice_vsi_release(ctrl_vsi); 3947 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3948 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3949 pf->ctrl_vsi_idx = ICE_NO_VSI; 3950 } 3951 return err; 3952 } 3953 3954 /** 3955 * ice_get_opt_fw_name - return optional firmware file name or NULL 3956 * @pf: pointer to the PF instance 3957 */ 3958 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3959 { 3960 /* Optional firmware name same as default with additional dash 3961 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3962 */ 3963 struct pci_dev *pdev = pf->pdev; 3964 char *opt_fw_filename; 3965 u64 dsn; 3966 3967 /* Determine the name of the optional file using the DSN (two 3968 * dwords following the start of the DSN Capability). 3969 */ 3970 dsn = pci_get_dsn(pdev); 3971 if (!dsn) 3972 return NULL; 3973 3974 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3975 if (!opt_fw_filename) 3976 return NULL; 3977 3978 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3979 ICE_DDP_PKG_PATH, dsn); 3980 3981 return opt_fw_filename; 3982 } 3983 3984 /** 3985 * ice_request_fw - Device initialization routine 3986 * @pf: pointer to the PF instance 3987 */ 3988 static void ice_request_fw(struct ice_pf *pf) 3989 { 3990 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3991 const struct firmware *firmware = NULL; 3992 struct device *dev = ice_pf_to_dev(pf); 3993 int err = 0; 3994 3995 /* optional device-specific DDP (if present) overrides the default DDP 3996 * package file. kernel logs a debug message if the file doesn't exist, 3997 * and warning messages for other errors. 3998 */ 3999 if (opt_fw_filename) { 4000 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4001 if (err) { 4002 kfree(opt_fw_filename); 4003 goto dflt_pkg_load; 4004 } 4005 4006 /* request for firmware was successful. Download to device */ 4007 ice_load_pkg(firmware, pf); 4008 kfree(opt_fw_filename); 4009 release_firmware(firmware); 4010 return; 4011 } 4012 4013 dflt_pkg_load: 4014 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4015 if (err) { 4016 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4017 return; 4018 } 4019 4020 /* request for firmware was successful. Download to device */ 4021 ice_load_pkg(firmware, pf); 4022 release_firmware(firmware); 4023 } 4024 4025 /** 4026 * ice_print_wake_reason - show the wake up cause in the log 4027 * @pf: pointer to the PF struct 4028 */ 4029 static void ice_print_wake_reason(struct ice_pf *pf) 4030 { 4031 u32 wus = pf->wakeup_reason; 4032 const char *wake_str; 4033 4034 /* if no wake event, nothing to print */ 4035 if (!wus) 4036 return; 4037 4038 if (wus & PFPM_WUS_LNKC_M) 4039 wake_str = "Link\n"; 4040 else if (wus & PFPM_WUS_MAG_M) 4041 wake_str = "Magic Packet\n"; 4042 else if (wus & PFPM_WUS_MNG_M) 4043 wake_str = "Management\n"; 4044 else if (wus & PFPM_WUS_FW_RST_WK_M) 4045 wake_str = "Firmware Reset\n"; 4046 else 4047 wake_str = "Unknown\n"; 4048 4049 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4050 } 4051 4052 /** 4053 * ice_register_netdev - register netdev and devlink port 4054 * @pf: pointer to the PF struct 4055 */ 4056 static int ice_register_netdev(struct ice_pf *pf) 4057 { 4058 struct ice_vsi *vsi; 4059 int err = 0; 4060 4061 vsi = ice_get_main_vsi(pf); 4062 if (!vsi || !vsi->netdev) 4063 return -EIO; 4064 4065 err = register_netdev(vsi->netdev); 4066 if (err) 4067 goto err_register_netdev; 4068 4069 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4070 netif_carrier_off(vsi->netdev); 4071 netif_tx_stop_all_queues(vsi->netdev); 4072 err = ice_devlink_create_port(vsi); 4073 if (err) 4074 goto err_devlink_create; 4075 4076 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 4077 4078 return 0; 4079 err_devlink_create: 4080 unregister_netdev(vsi->netdev); 4081 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4082 err_register_netdev: 4083 free_netdev(vsi->netdev); 4084 vsi->netdev = NULL; 4085 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4086 return err; 4087 } 4088 4089 /** 4090 * ice_probe - Device initialization routine 4091 * @pdev: PCI device information struct 4092 * @ent: entry in ice_pci_tbl 4093 * 4094 * Returns 0 on success, negative on failure 4095 */ 4096 static int 4097 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4098 { 4099 struct device *dev = &pdev->dev; 4100 struct ice_pf *pf; 4101 struct ice_hw *hw; 4102 int i, err; 4103 4104 /* this driver uses devres, see 4105 * Documentation/driver-api/driver-model/devres.rst 4106 */ 4107 err = pcim_enable_device(pdev); 4108 if (err) 4109 return err; 4110 4111 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4112 if (err) { 4113 dev_err(dev, "BAR0 I/O map error %d\n", err); 4114 return err; 4115 } 4116 4117 pf = ice_allocate_pf(dev); 4118 if (!pf) 4119 return -ENOMEM; 4120 4121 /* set up for high or low DMA */ 4122 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4123 if (err) 4124 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4125 if (err) { 4126 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4127 return err; 4128 } 4129 4130 pci_enable_pcie_error_reporting(pdev); 4131 pci_set_master(pdev); 4132 4133 pf->pdev = pdev; 4134 pci_set_drvdata(pdev, pf); 4135 set_bit(ICE_DOWN, pf->state); 4136 /* Disable service task until DOWN bit is cleared */ 4137 set_bit(ICE_SERVICE_DIS, pf->state); 4138 4139 hw = &pf->hw; 4140 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4141 pci_save_state(pdev); 4142 4143 hw->back = pf; 4144 hw->vendor_id = pdev->vendor; 4145 hw->device_id = pdev->device; 4146 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4147 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4148 hw->subsystem_device_id = pdev->subsystem_device; 4149 hw->bus.device = PCI_SLOT(pdev->devfn); 4150 hw->bus.func = PCI_FUNC(pdev->devfn); 4151 ice_set_ctrlq_len(hw); 4152 4153 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4154 4155 err = ice_devlink_register(pf); 4156 if (err) { 4157 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4158 goto err_exit_unroll; 4159 } 4160 4161 #ifndef CONFIG_DYNAMIC_DEBUG 4162 if (debug < -1) 4163 hw->debug_mask = debug; 4164 #endif 4165 4166 err = ice_init_hw(hw); 4167 if (err) { 4168 dev_err(dev, "ice_init_hw failed: %d\n", err); 4169 err = -EIO; 4170 goto err_exit_unroll; 4171 } 4172 4173 ice_request_fw(pf); 4174 4175 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4176 * set in pf->state, which will cause ice_is_safe_mode to return 4177 * true 4178 */ 4179 if (ice_is_safe_mode(pf)) { 4180 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4181 /* we already got function/device capabilities but these don't 4182 * reflect what the driver needs to do in safe mode. Instead of 4183 * adding conditional logic everywhere to ignore these 4184 * device/function capabilities, override them. 4185 */ 4186 ice_set_safe_mode_caps(hw); 4187 } 4188 4189 err = ice_init_pf(pf); 4190 if (err) { 4191 dev_err(dev, "ice_init_pf failed: %d\n", err); 4192 goto err_init_pf_unroll; 4193 } 4194 4195 ice_devlink_init_regions(pf); 4196 4197 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4198 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4199 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4200 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4201 i = 0; 4202 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4203 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4204 pf->hw.tnl.valid_count[TNL_VXLAN]; 4205 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4206 UDP_TUNNEL_TYPE_VXLAN; 4207 i++; 4208 } 4209 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4210 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4211 pf->hw.tnl.valid_count[TNL_GENEVE]; 4212 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4213 UDP_TUNNEL_TYPE_GENEVE; 4214 i++; 4215 } 4216 4217 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4218 if (!pf->num_alloc_vsi) { 4219 err = -EIO; 4220 goto err_init_pf_unroll; 4221 } 4222 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4223 dev_warn(&pf->pdev->dev, 4224 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4225 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4226 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4227 } 4228 4229 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4230 GFP_KERNEL); 4231 if (!pf->vsi) { 4232 err = -ENOMEM; 4233 goto err_init_pf_unroll; 4234 } 4235 4236 err = ice_init_interrupt_scheme(pf); 4237 if (err) { 4238 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4239 err = -EIO; 4240 goto err_init_vsi_unroll; 4241 } 4242 4243 /* In case of MSIX we are going to setup the misc vector right here 4244 * to handle admin queue events etc. In case of legacy and MSI 4245 * the misc functionality and queue processing is combined in 4246 * the same vector and that gets setup at open. 4247 */ 4248 err = ice_req_irq_msix_misc(pf); 4249 if (err) { 4250 dev_err(dev, "setup of misc vector failed: %d\n", err); 4251 goto err_init_interrupt_unroll; 4252 } 4253 4254 /* create switch struct for the switch element created by FW on boot */ 4255 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4256 if (!pf->first_sw) { 4257 err = -ENOMEM; 4258 goto err_msix_misc_unroll; 4259 } 4260 4261 if (hw->evb_veb) 4262 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4263 else 4264 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4265 4266 pf->first_sw->pf = pf; 4267 4268 /* record the sw_id available for later use */ 4269 pf->first_sw->sw_id = hw->port_info->sw_id; 4270 4271 err = ice_setup_pf_sw(pf); 4272 if (err) { 4273 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4274 goto err_alloc_sw_unroll; 4275 } 4276 4277 clear_bit(ICE_SERVICE_DIS, pf->state); 4278 4279 /* tell the firmware we are up */ 4280 err = ice_send_version(pf); 4281 if (err) { 4282 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4283 UTS_RELEASE, err); 4284 goto err_send_version_unroll; 4285 } 4286 4287 /* since everything is good, start the service timer */ 4288 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4289 4290 err = ice_init_link_events(pf->hw.port_info); 4291 if (err) { 4292 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4293 goto err_send_version_unroll; 4294 } 4295 4296 /* not a fatal error if this fails */ 4297 err = ice_init_nvm_phy_type(pf->hw.port_info); 4298 if (err) 4299 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4300 4301 /* not a fatal error if this fails */ 4302 err = ice_update_link_info(pf->hw.port_info); 4303 if (err) 4304 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4305 4306 ice_init_link_dflt_override(pf->hw.port_info); 4307 4308 ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err); 4309 4310 /* if media available, initialize PHY settings */ 4311 if (pf->hw.port_info->phy.link_info.link_info & 4312 ICE_AQ_MEDIA_AVAILABLE) { 4313 /* not a fatal error if this fails */ 4314 err = ice_init_phy_user_cfg(pf->hw.port_info); 4315 if (err) 4316 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4317 4318 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4319 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4320 4321 if (vsi) 4322 ice_configure_phy(vsi); 4323 } 4324 } else { 4325 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4326 } 4327 4328 ice_verify_cacheline_size(pf); 4329 4330 /* Save wakeup reason register for later use */ 4331 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4332 4333 /* check for a power management event */ 4334 ice_print_wake_reason(pf); 4335 4336 /* clear wake status, all bits */ 4337 wr32(hw, PFPM_WUS, U32_MAX); 4338 4339 /* Disable WoL at init, wait for user to enable */ 4340 device_set_wakeup_enable(dev, false); 4341 4342 if (ice_is_safe_mode(pf)) { 4343 ice_set_safe_mode_vlan_cfg(pf); 4344 goto probe_done; 4345 } 4346 4347 /* initialize DDP driven features */ 4348 4349 /* Note: Flow director init failure is non-fatal to load */ 4350 if (ice_init_fdir(pf)) 4351 dev_err(dev, "could not initialize flow director\n"); 4352 4353 /* Note: DCB init failure is non-fatal to load */ 4354 if (ice_init_pf_dcb(pf, false)) { 4355 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4356 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4357 } else { 4358 ice_cfg_lldp_mib_change(&pf->hw, true); 4359 } 4360 4361 if (ice_init_lag(pf)) 4362 dev_warn(dev, "Failed to init link aggregation support\n"); 4363 4364 /* print PCI link speed and width */ 4365 pcie_print_link_status(pf->pdev); 4366 4367 probe_done: 4368 err = ice_register_netdev(pf); 4369 if (err) 4370 goto err_netdev_reg; 4371 4372 /* ready to go, so clear down state bit */ 4373 clear_bit(ICE_DOWN, pf->state); 4374 if (ice_is_aux_ena(pf)) { 4375 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4376 if (pf->aux_idx < 0) { 4377 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4378 err = -ENOMEM; 4379 goto err_netdev_reg; 4380 } 4381 4382 err = ice_init_rdma(pf); 4383 if (err) { 4384 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4385 err = -EIO; 4386 goto err_init_aux_unroll; 4387 } 4388 } else { 4389 dev_warn(dev, "RDMA is not supported on this device\n"); 4390 } 4391 4392 return 0; 4393 4394 err_init_aux_unroll: 4395 pf->adev = NULL; 4396 ida_free(&ice_aux_ida, pf->aux_idx); 4397 err_netdev_reg: 4398 err_send_version_unroll: 4399 ice_vsi_release_all(pf); 4400 err_alloc_sw_unroll: 4401 set_bit(ICE_SERVICE_DIS, pf->state); 4402 set_bit(ICE_DOWN, pf->state); 4403 devm_kfree(dev, pf->first_sw); 4404 err_msix_misc_unroll: 4405 ice_free_irq_msix_misc(pf); 4406 err_init_interrupt_unroll: 4407 ice_clear_interrupt_scheme(pf); 4408 err_init_vsi_unroll: 4409 devm_kfree(dev, pf->vsi); 4410 err_init_pf_unroll: 4411 ice_deinit_pf(pf); 4412 ice_devlink_destroy_regions(pf); 4413 ice_deinit_hw(hw); 4414 err_exit_unroll: 4415 ice_devlink_unregister(pf); 4416 pci_disable_pcie_error_reporting(pdev); 4417 pci_disable_device(pdev); 4418 return err; 4419 } 4420 4421 /** 4422 * ice_set_wake - enable or disable Wake on LAN 4423 * @pf: pointer to the PF struct 4424 * 4425 * Simple helper for WoL control 4426 */ 4427 static void ice_set_wake(struct ice_pf *pf) 4428 { 4429 struct ice_hw *hw = &pf->hw; 4430 bool wol = pf->wol_ena; 4431 4432 /* clear wake state, otherwise new wake events won't fire */ 4433 wr32(hw, PFPM_WUS, U32_MAX); 4434 4435 /* enable / disable APM wake up, no RMW needed */ 4436 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4437 4438 /* set magic packet filter enabled */ 4439 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4440 } 4441 4442 /** 4443 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4444 * @pf: pointer to the PF struct 4445 * 4446 * Issue firmware command to enable multicast magic wake, making 4447 * sure that any locally administered address (LAA) is used for 4448 * wake, and that PF reset doesn't undo the LAA. 4449 */ 4450 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4451 { 4452 struct device *dev = ice_pf_to_dev(pf); 4453 struct ice_hw *hw = &pf->hw; 4454 enum ice_status status; 4455 u8 mac_addr[ETH_ALEN]; 4456 struct ice_vsi *vsi; 4457 u8 flags; 4458 4459 if (!pf->wol_ena) 4460 return; 4461 4462 vsi = ice_get_main_vsi(pf); 4463 if (!vsi) 4464 return; 4465 4466 /* Get current MAC address in case it's an LAA */ 4467 if (vsi->netdev) 4468 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4469 else 4470 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4471 4472 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4473 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4474 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4475 4476 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4477 if (status) 4478 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4479 ice_stat_str(status), 4480 ice_aq_str(hw->adminq.sq_last_status)); 4481 } 4482 4483 /** 4484 * ice_remove - Device removal routine 4485 * @pdev: PCI device information struct 4486 */ 4487 static void ice_remove(struct pci_dev *pdev) 4488 { 4489 struct ice_pf *pf = pci_get_drvdata(pdev); 4490 int i; 4491 4492 if (!pf) 4493 return; 4494 4495 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4496 if (!ice_is_reset_in_progress(pf->state)) 4497 break; 4498 msleep(100); 4499 } 4500 4501 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4502 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4503 ice_free_vfs(pf); 4504 } 4505 4506 ice_service_task_stop(pf); 4507 4508 ice_aq_cancel_waiting_tasks(pf); 4509 ice_unplug_aux_dev(pf); 4510 ida_free(&ice_aux_ida, pf->aux_idx); 4511 set_bit(ICE_DOWN, pf->state); 4512 4513 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4514 ice_deinit_lag(pf); 4515 if (!ice_is_safe_mode(pf)) 4516 ice_remove_arfs(pf); 4517 ice_setup_mc_magic_wake(pf); 4518 ice_vsi_release_all(pf); 4519 ice_set_wake(pf); 4520 ice_free_irq_msix_misc(pf); 4521 ice_for_each_vsi(pf, i) { 4522 if (!pf->vsi[i]) 4523 continue; 4524 ice_vsi_free_q_vectors(pf->vsi[i]); 4525 } 4526 ice_deinit_pf(pf); 4527 ice_devlink_destroy_regions(pf); 4528 ice_deinit_hw(&pf->hw); 4529 ice_devlink_unregister(pf); 4530 4531 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4532 * do it via ice_schedule_reset() since there is no need to rebuild 4533 * and the service task is already stopped. 4534 */ 4535 ice_reset(&pf->hw, ICE_RESET_PFR); 4536 pci_wait_for_pending_transaction(pdev); 4537 ice_clear_interrupt_scheme(pf); 4538 pci_disable_pcie_error_reporting(pdev); 4539 pci_disable_device(pdev); 4540 } 4541 4542 /** 4543 * ice_shutdown - PCI callback for shutting down device 4544 * @pdev: PCI device information struct 4545 */ 4546 static void ice_shutdown(struct pci_dev *pdev) 4547 { 4548 struct ice_pf *pf = pci_get_drvdata(pdev); 4549 4550 ice_remove(pdev); 4551 4552 if (system_state == SYSTEM_POWER_OFF) { 4553 pci_wake_from_d3(pdev, pf->wol_ena); 4554 pci_set_power_state(pdev, PCI_D3hot); 4555 } 4556 } 4557 4558 #ifdef CONFIG_PM 4559 /** 4560 * ice_prepare_for_shutdown - prep for PCI shutdown 4561 * @pf: board private structure 4562 * 4563 * Inform or close all dependent features in prep for PCI device shutdown 4564 */ 4565 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4566 { 4567 struct ice_hw *hw = &pf->hw; 4568 u32 v; 4569 4570 /* Notify VFs of impending reset */ 4571 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4572 ice_vc_notify_reset(pf); 4573 4574 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4575 4576 /* disable the VSIs and their queues that are not already DOWN */ 4577 ice_pf_dis_all_vsi(pf, false); 4578 4579 ice_for_each_vsi(pf, v) 4580 if (pf->vsi[v]) 4581 pf->vsi[v]->vsi_num = 0; 4582 4583 ice_shutdown_all_ctrlq(hw); 4584 } 4585 4586 /** 4587 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4588 * @pf: board private structure to reinitialize 4589 * 4590 * This routine reinitialize interrupt scheme that was cleared during 4591 * power management suspend callback. 4592 * 4593 * This should be called during resume routine to re-allocate the q_vectors 4594 * and reacquire interrupts. 4595 */ 4596 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4597 { 4598 struct device *dev = ice_pf_to_dev(pf); 4599 int ret, v; 4600 4601 /* Since we clear MSIX flag during suspend, we need to 4602 * set it back during resume... 4603 */ 4604 4605 ret = ice_init_interrupt_scheme(pf); 4606 if (ret) { 4607 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4608 return ret; 4609 } 4610 4611 /* Remap vectors and rings, after successful re-init interrupts */ 4612 ice_for_each_vsi(pf, v) { 4613 if (!pf->vsi[v]) 4614 continue; 4615 4616 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4617 if (ret) 4618 goto err_reinit; 4619 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4620 } 4621 4622 ret = ice_req_irq_msix_misc(pf); 4623 if (ret) { 4624 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4625 ret); 4626 goto err_reinit; 4627 } 4628 4629 return 0; 4630 4631 err_reinit: 4632 while (v--) 4633 if (pf->vsi[v]) 4634 ice_vsi_free_q_vectors(pf->vsi[v]); 4635 4636 return ret; 4637 } 4638 4639 /** 4640 * ice_suspend 4641 * @dev: generic device information structure 4642 * 4643 * Power Management callback to quiesce the device and prepare 4644 * for D3 transition. 4645 */ 4646 static int __maybe_unused ice_suspend(struct device *dev) 4647 { 4648 struct pci_dev *pdev = to_pci_dev(dev); 4649 struct ice_pf *pf; 4650 int disabled, v; 4651 4652 pf = pci_get_drvdata(pdev); 4653 4654 if (!ice_pf_state_is_nominal(pf)) { 4655 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4656 return -EBUSY; 4657 } 4658 4659 /* Stop watchdog tasks until resume completion. 4660 * Even though it is most likely that the service task is 4661 * disabled if the device is suspended or down, the service task's 4662 * state is controlled by a different state bit, and we should 4663 * store and honor whatever state that bit is in at this point. 4664 */ 4665 disabled = ice_service_task_stop(pf); 4666 4667 ice_unplug_aux_dev(pf); 4668 4669 /* Already suspended?, then there is nothing to do */ 4670 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 4671 if (!disabled) 4672 ice_service_task_restart(pf); 4673 return 0; 4674 } 4675 4676 if (test_bit(ICE_DOWN, pf->state) || 4677 ice_is_reset_in_progress(pf->state)) { 4678 dev_err(dev, "can't suspend device in reset or already down\n"); 4679 if (!disabled) 4680 ice_service_task_restart(pf); 4681 return 0; 4682 } 4683 4684 ice_setup_mc_magic_wake(pf); 4685 4686 ice_prepare_for_shutdown(pf); 4687 4688 ice_set_wake(pf); 4689 4690 /* Free vectors, clear the interrupt scheme and release IRQs 4691 * for proper hibernation, especially with large number of CPUs. 4692 * Otherwise hibernation might fail when mapping all the vectors back 4693 * to CPU0. 4694 */ 4695 ice_free_irq_msix_misc(pf); 4696 ice_for_each_vsi(pf, v) { 4697 if (!pf->vsi[v]) 4698 continue; 4699 ice_vsi_free_q_vectors(pf->vsi[v]); 4700 } 4701 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 4702 ice_clear_interrupt_scheme(pf); 4703 4704 pci_save_state(pdev); 4705 pci_wake_from_d3(pdev, pf->wol_ena); 4706 pci_set_power_state(pdev, PCI_D3hot); 4707 return 0; 4708 } 4709 4710 /** 4711 * ice_resume - PM callback for waking up from D3 4712 * @dev: generic device information structure 4713 */ 4714 static int __maybe_unused ice_resume(struct device *dev) 4715 { 4716 struct pci_dev *pdev = to_pci_dev(dev); 4717 enum ice_reset_req reset_type; 4718 struct ice_pf *pf; 4719 struct ice_hw *hw; 4720 int ret; 4721 4722 pci_set_power_state(pdev, PCI_D0); 4723 pci_restore_state(pdev); 4724 pci_save_state(pdev); 4725 4726 if (!pci_device_is_present(pdev)) 4727 return -ENODEV; 4728 4729 ret = pci_enable_device_mem(pdev); 4730 if (ret) { 4731 dev_err(dev, "Cannot enable device after suspend\n"); 4732 return ret; 4733 } 4734 4735 pf = pci_get_drvdata(pdev); 4736 hw = &pf->hw; 4737 4738 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4739 ice_print_wake_reason(pf); 4740 4741 /* We cleared the interrupt scheme when we suspended, so we need to 4742 * restore it now to resume device functionality. 4743 */ 4744 ret = ice_reinit_interrupt_scheme(pf); 4745 if (ret) 4746 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4747 4748 clear_bit(ICE_DOWN, pf->state); 4749 /* Now perform PF reset and rebuild */ 4750 reset_type = ICE_RESET_PFR; 4751 /* re-enable service task for reset, but allow reset to schedule it */ 4752 clear_bit(ICE_SERVICE_DIS, pf->state); 4753 4754 if (ice_schedule_reset(pf, reset_type)) 4755 dev_err(dev, "Reset during resume failed.\n"); 4756 4757 clear_bit(ICE_SUSPENDED, pf->state); 4758 ice_service_task_restart(pf); 4759 4760 /* Restart the service task */ 4761 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4762 4763 return 0; 4764 } 4765 #endif /* CONFIG_PM */ 4766 4767 /** 4768 * ice_pci_err_detected - warning that PCI error has been detected 4769 * @pdev: PCI device information struct 4770 * @err: the type of PCI error 4771 * 4772 * Called to warn that something happened on the PCI bus and the error handling 4773 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4774 */ 4775 static pci_ers_result_t 4776 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4777 { 4778 struct ice_pf *pf = pci_get_drvdata(pdev); 4779 4780 if (!pf) { 4781 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4782 __func__, err); 4783 return PCI_ERS_RESULT_DISCONNECT; 4784 } 4785 4786 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4787 ice_service_task_stop(pf); 4788 4789 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4790 set_bit(ICE_PFR_REQ, pf->state); 4791 ice_prepare_for_reset(pf); 4792 } 4793 } 4794 4795 return PCI_ERS_RESULT_NEED_RESET; 4796 } 4797 4798 /** 4799 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4800 * @pdev: PCI device information struct 4801 * 4802 * Called to determine if the driver can recover from the PCI slot reset by 4803 * using a register read to determine if the device is recoverable. 4804 */ 4805 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4806 { 4807 struct ice_pf *pf = pci_get_drvdata(pdev); 4808 pci_ers_result_t result; 4809 int err; 4810 u32 reg; 4811 4812 err = pci_enable_device_mem(pdev); 4813 if (err) { 4814 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4815 err); 4816 result = PCI_ERS_RESULT_DISCONNECT; 4817 } else { 4818 pci_set_master(pdev); 4819 pci_restore_state(pdev); 4820 pci_save_state(pdev); 4821 pci_wake_from_d3(pdev, false); 4822 4823 /* Check for life */ 4824 reg = rd32(&pf->hw, GLGEN_RTRIG); 4825 if (!reg) 4826 result = PCI_ERS_RESULT_RECOVERED; 4827 else 4828 result = PCI_ERS_RESULT_DISCONNECT; 4829 } 4830 4831 err = pci_aer_clear_nonfatal_status(pdev); 4832 if (err) 4833 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4834 err); 4835 /* non-fatal, continue */ 4836 4837 return result; 4838 } 4839 4840 /** 4841 * ice_pci_err_resume - restart operations after PCI error recovery 4842 * @pdev: PCI device information struct 4843 * 4844 * Called to allow the driver to bring things back up after PCI error and/or 4845 * reset recovery have finished 4846 */ 4847 static void ice_pci_err_resume(struct pci_dev *pdev) 4848 { 4849 struct ice_pf *pf = pci_get_drvdata(pdev); 4850 4851 if (!pf) { 4852 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4853 __func__); 4854 return; 4855 } 4856 4857 if (test_bit(ICE_SUSPENDED, pf->state)) { 4858 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4859 __func__); 4860 return; 4861 } 4862 4863 ice_restore_all_vfs_msi_state(pdev); 4864 4865 ice_do_reset(pf, ICE_RESET_PFR); 4866 ice_service_task_restart(pf); 4867 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4868 } 4869 4870 /** 4871 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4872 * @pdev: PCI device information struct 4873 */ 4874 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4875 { 4876 struct ice_pf *pf = pci_get_drvdata(pdev); 4877 4878 if (!test_bit(ICE_SUSPENDED, pf->state)) { 4879 ice_service_task_stop(pf); 4880 4881 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 4882 set_bit(ICE_PFR_REQ, pf->state); 4883 ice_prepare_for_reset(pf); 4884 } 4885 } 4886 } 4887 4888 /** 4889 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4890 * @pdev: PCI device information struct 4891 */ 4892 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4893 { 4894 ice_pci_err_resume(pdev); 4895 } 4896 4897 /* ice_pci_tbl - PCI Device ID Table 4898 * 4899 * Wildcard entries (PCI_ANY_ID) should come last 4900 * Last entry must be all 0s 4901 * 4902 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4903 * Class, Class Mask, private data (not used) } 4904 */ 4905 static const struct pci_device_id ice_pci_tbl[] = { 4906 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4907 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4908 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4909 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4910 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4911 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4912 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4913 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4914 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4915 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4916 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4917 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4918 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4919 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4920 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4921 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4922 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4923 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4924 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4925 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4926 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4927 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4928 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4929 /* required last entry */ 4930 { 0, } 4931 }; 4932 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4933 4934 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4935 4936 static const struct pci_error_handlers ice_pci_err_handler = { 4937 .error_detected = ice_pci_err_detected, 4938 .slot_reset = ice_pci_err_slot_reset, 4939 .reset_prepare = ice_pci_err_reset_prepare, 4940 .reset_done = ice_pci_err_reset_done, 4941 .resume = ice_pci_err_resume 4942 }; 4943 4944 static struct pci_driver ice_driver = { 4945 .name = KBUILD_MODNAME, 4946 .id_table = ice_pci_tbl, 4947 .probe = ice_probe, 4948 .remove = ice_remove, 4949 #ifdef CONFIG_PM 4950 .driver.pm = &ice_pm_ops, 4951 #endif /* CONFIG_PM */ 4952 .shutdown = ice_shutdown, 4953 .sriov_configure = ice_sriov_configure, 4954 .err_handler = &ice_pci_err_handler 4955 }; 4956 4957 /** 4958 * ice_module_init - Driver registration routine 4959 * 4960 * ice_module_init is the first routine called when the driver is 4961 * loaded. All it does is register with the PCI subsystem. 4962 */ 4963 static int __init ice_module_init(void) 4964 { 4965 int status; 4966 4967 pr_info("%s\n", ice_driver_string); 4968 pr_info("%s\n", ice_copyright); 4969 4970 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 4971 if (!ice_wq) { 4972 pr_err("Failed to create workqueue\n"); 4973 return -ENOMEM; 4974 } 4975 4976 status = pci_register_driver(&ice_driver); 4977 if (status) { 4978 pr_err("failed to register PCI driver, err %d\n", status); 4979 destroy_workqueue(ice_wq); 4980 } 4981 4982 return status; 4983 } 4984 module_init(ice_module_init); 4985 4986 /** 4987 * ice_module_exit - Driver exit cleanup routine 4988 * 4989 * ice_module_exit is called just before the driver is removed 4990 * from memory. 4991 */ 4992 static void __exit ice_module_exit(void) 4993 { 4994 pci_unregister_driver(&ice_driver); 4995 destroy_workqueue(ice_wq); 4996 pr_info("module unloaded\n"); 4997 } 4998 module_exit(ice_module_exit); 4999 5000 /** 5001 * ice_set_mac_address - NDO callback to set MAC address 5002 * @netdev: network interface device structure 5003 * @pi: pointer to an address structure 5004 * 5005 * Returns 0 on success, negative on failure 5006 */ 5007 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5008 { 5009 struct ice_netdev_priv *np = netdev_priv(netdev); 5010 struct ice_vsi *vsi = np->vsi; 5011 struct ice_pf *pf = vsi->back; 5012 struct ice_hw *hw = &pf->hw; 5013 struct sockaddr *addr = pi; 5014 enum ice_status status; 5015 u8 flags = 0; 5016 int err = 0; 5017 u8 *mac; 5018 5019 mac = (u8 *)addr->sa_data; 5020 5021 if (!is_valid_ether_addr(mac)) 5022 return -EADDRNOTAVAIL; 5023 5024 if (ether_addr_equal(netdev->dev_addr, mac)) { 5025 netdev_warn(netdev, "already using mac %pM\n", mac); 5026 return 0; 5027 } 5028 5029 if (test_bit(ICE_DOWN, pf->state) || 5030 ice_is_reset_in_progress(pf->state)) { 5031 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5032 mac); 5033 return -EBUSY; 5034 } 5035 5036 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5037 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 5038 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 5039 err = -EADDRNOTAVAIL; 5040 goto err_update_filters; 5041 } 5042 5043 /* Add filter for new MAC. If filter exists, return success */ 5044 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5045 if (status == ICE_ERR_ALREADY_EXISTS) { 5046 /* Although this MAC filter is already present in hardware it's 5047 * possible in some cases (e.g. bonding) that dev_addr was 5048 * modified outside of the driver and needs to be restored back 5049 * to this value. 5050 */ 5051 memcpy(netdev->dev_addr, mac, netdev->addr_len); 5052 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5053 return 0; 5054 } 5055 5056 /* error if the new filter addition failed */ 5057 if (status) 5058 err = -EADDRNOTAVAIL; 5059 5060 err_update_filters: 5061 if (err) { 5062 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5063 mac); 5064 return err; 5065 } 5066 5067 /* change the netdev's MAC address */ 5068 memcpy(netdev->dev_addr, mac, netdev->addr_len); 5069 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5070 netdev->dev_addr); 5071 5072 /* write new MAC address to the firmware */ 5073 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5074 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5075 if (status) { 5076 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 5077 mac, ice_stat_str(status)); 5078 } 5079 return 0; 5080 } 5081 5082 /** 5083 * ice_set_rx_mode - NDO callback to set the netdev filters 5084 * @netdev: network interface device structure 5085 */ 5086 static void ice_set_rx_mode(struct net_device *netdev) 5087 { 5088 struct ice_netdev_priv *np = netdev_priv(netdev); 5089 struct ice_vsi *vsi = np->vsi; 5090 5091 if (!vsi) 5092 return; 5093 5094 /* Set the flags to synchronize filters 5095 * ndo_set_rx_mode may be triggered even without a change in netdev 5096 * flags 5097 */ 5098 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5099 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5100 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5101 5102 /* schedule our worker thread which will take care of 5103 * applying the new filter changes 5104 */ 5105 ice_service_task_schedule(vsi->back); 5106 } 5107 5108 /** 5109 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5110 * @netdev: network interface device structure 5111 * @queue_index: Queue ID 5112 * @maxrate: maximum bandwidth in Mbps 5113 */ 5114 static int 5115 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5116 { 5117 struct ice_netdev_priv *np = netdev_priv(netdev); 5118 struct ice_vsi *vsi = np->vsi; 5119 enum ice_status status; 5120 u16 q_handle; 5121 u8 tc; 5122 5123 /* Validate maxrate requested is within permitted range */ 5124 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5125 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5126 maxrate, queue_index); 5127 return -EINVAL; 5128 } 5129 5130 q_handle = vsi->tx_rings[queue_index]->q_handle; 5131 tc = ice_dcb_get_tc(vsi, queue_index); 5132 5133 /* Set BW back to default, when user set maxrate to 0 */ 5134 if (!maxrate) 5135 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5136 q_handle, ICE_MAX_BW); 5137 else 5138 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5139 q_handle, ICE_MAX_BW, maxrate * 1000); 5140 if (status) { 5141 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5142 ice_stat_str(status)); 5143 return -EIO; 5144 } 5145 5146 return 0; 5147 } 5148 5149 /** 5150 * ice_fdb_add - add an entry to the hardware database 5151 * @ndm: the input from the stack 5152 * @tb: pointer to array of nladdr (unused) 5153 * @dev: the net device pointer 5154 * @addr: the MAC address entry being added 5155 * @vid: VLAN ID 5156 * @flags: instructions from stack about fdb operation 5157 * @extack: netlink extended ack 5158 */ 5159 static int 5160 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5161 struct net_device *dev, const unsigned char *addr, u16 vid, 5162 u16 flags, struct netlink_ext_ack __always_unused *extack) 5163 { 5164 int err; 5165 5166 if (vid) { 5167 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5168 return -EINVAL; 5169 } 5170 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5171 netdev_err(dev, "FDB only supports static addresses\n"); 5172 return -EINVAL; 5173 } 5174 5175 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5176 err = dev_uc_add_excl(dev, addr); 5177 else if (is_multicast_ether_addr(addr)) 5178 err = dev_mc_add_excl(dev, addr); 5179 else 5180 err = -EINVAL; 5181 5182 /* Only return duplicate errors if NLM_F_EXCL is set */ 5183 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5184 err = 0; 5185 5186 return err; 5187 } 5188 5189 /** 5190 * ice_fdb_del - delete an entry from the hardware database 5191 * @ndm: the input from the stack 5192 * @tb: pointer to array of nladdr (unused) 5193 * @dev: the net device pointer 5194 * @addr: the MAC address entry being added 5195 * @vid: VLAN ID 5196 */ 5197 static int 5198 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5199 struct net_device *dev, const unsigned char *addr, 5200 __always_unused u16 vid) 5201 { 5202 int err; 5203 5204 if (ndm->ndm_state & NUD_PERMANENT) { 5205 netdev_err(dev, "FDB only supports static addresses\n"); 5206 return -EINVAL; 5207 } 5208 5209 if (is_unicast_ether_addr(addr)) 5210 err = dev_uc_del(dev, addr); 5211 else if (is_multicast_ether_addr(addr)) 5212 err = dev_mc_del(dev, addr); 5213 else 5214 err = -EINVAL; 5215 5216 return err; 5217 } 5218 5219 /** 5220 * ice_set_features - set the netdev feature flags 5221 * @netdev: ptr to the netdev being adjusted 5222 * @features: the feature set that the stack is suggesting 5223 */ 5224 static int 5225 ice_set_features(struct net_device *netdev, netdev_features_t features) 5226 { 5227 struct ice_netdev_priv *np = netdev_priv(netdev); 5228 struct ice_vsi *vsi = np->vsi; 5229 struct ice_pf *pf = vsi->back; 5230 int ret = 0; 5231 5232 /* Don't set any netdev advanced features with device in Safe Mode */ 5233 if (ice_is_safe_mode(vsi->back)) { 5234 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5235 return ret; 5236 } 5237 5238 /* Do not change setting during reset */ 5239 if (ice_is_reset_in_progress(pf->state)) { 5240 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5241 return -EBUSY; 5242 } 5243 5244 /* Multiple features can be changed in one call so keep features in 5245 * separate if/else statements to guarantee each feature is checked 5246 */ 5247 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5248 ice_vsi_manage_rss_lut(vsi, true); 5249 else if (!(features & NETIF_F_RXHASH) && 5250 netdev->features & NETIF_F_RXHASH) 5251 ice_vsi_manage_rss_lut(vsi, false); 5252 5253 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5254 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5255 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5256 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5257 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5258 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5259 5260 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5261 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5262 ret = ice_vsi_manage_vlan_insertion(vsi); 5263 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5264 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5265 ret = ice_vsi_manage_vlan_insertion(vsi); 5266 5267 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5268 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5269 ret = ice_cfg_vlan_pruning(vsi, true, false); 5270 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5271 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5272 ret = ice_cfg_vlan_pruning(vsi, false, false); 5273 5274 if ((features & NETIF_F_NTUPLE) && 5275 !(netdev->features & NETIF_F_NTUPLE)) { 5276 ice_vsi_manage_fdir(vsi, true); 5277 ice_init_arfs(vsi); 5278 } else if (!(features & NETIF_F_NTUPLE) && 5279 (netdev->features & NETIF_F_NTUPLE)) { 5280 ice_vsi_manage_fdir(vsi, false); 5281 ice_clear_arfs(vsi); 5282 } 5283 5284 return ret; 5285 } 5286 5287 /** 5288 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5289 * @vsi: VSI to setup VLAN properties for 5290 */ 5291 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5292 { 5293 int ret = 0; 5294 5295 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5296 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5297 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5298 ret = ice_vsi_manage_vlan_insertion(vsi); 5299 5300 return ret; 5301 } 5302 5303 /** 5304 * ice_vsi_cfg - Setup the VSI 5305 * @vsi: the VSI being configured 5306 * 5307 * Return 0 on success and negative value on error 5308 */ 5309 int ice_vsi_cfg(struct ice_vsi *vsi) 5310 { 5311 int err; 5312 5313 if (vsi->netdev) { 5314 ice_set_rx_mode(vsi->netdev); 5315 5316 err = ice_vsi_vlan_setup(vsi); 5317 5318 if (err) 5319 return err; 5320 } 5321 ice_vsi_cfg_dcb_rings(vsi); 5322 5323 err = ice_vsi_cfg_lan_txqs(vsi); 5324 if (!err && ice_is_xdp_ena_vsi(vsi)) 5325 err = ice_vsi_cfg_xdp_txqs(vsi); 5326 if (!err) 5327 err = ice_vsi_cfg_rxqs(vsi); 5328 5329 return err; 5330 } 5331 5332 /* THEORY OF MODERATION: 5333 * The below code creates custom DIM profiles for use by this driver, because 5334 * the ice driver hardware works differently than the hardware that DIMLIB was 5335 * originally made for. ice hardware doesn't have packet count limits that 5336 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5337 * and this code adds that capability to be used by the driver when it's using 5338 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver 5339 * for how to "respond" to traffic and interrupts, so this driver uses a 5340 * slightly different set of moderation parameters to get best performance. 5341 */ 5342 struct ice_dim { 5343 /* the throttle rate for interrupts, basically worst case delay before 5344 * an initial interrupt fires, value is stored in microseconds. 5345 */ 5346 u16 itr; 5347 /* the rate limit for interrupts, which can cap a delay from a small 5348 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR 5349 * could yield as much as 500,000 interrupts per second, but with a 5350 * 10us rate limit, it limits to 100,000 interrupts per second. Value 5351 * is stored in microseconds. 5352 */ 5353 u16 intrl; 5354 }; 5355 5356 /* Make a different profile for Rx that doesn't allow quite so aggressive 5357 * moderation at the high end (it maxes out at 128us or about 8k interrupts a 5358 * second. The INTRL/rate parameters here are only useful to cap small ITR 5359 * values, which is why for larger ITR's - like 128, which can only generate 5360 * 8k interrupts per second, there is no point to rate limit and the values 5361 * are set to zero. The rate limit values do affect latency, and so must 5362 * be reasonably small so to not impact latency sensitive tests. 5363 */ 5364 static const struct ice_dim rx_profile[] = { 5365 {2, 10}, 5366 {8, 16}, 5367 {32, 0}, 5368 {96, 0}, 5369 {128, 0} 5370 }; 5371 5372 /* The transmit profile, which has the same sorts of values 5373 * as the previous struct 5374 */ 5375 static const struct ice_dim tx_profile[] = { 5376 {2, 10}, 5377 {8, 16}, 5378 {64, 0}, 5379 {128, 0}, 5380 {256, 0} 5381 }; 5382 5383 static void ice_tx_dim_work(struct work_struct *work) 5384 { 5385 struct ice_ring_container *rc; 5386 struct ice_q_vector *q_vector; 5387 struct dim *dim; 5388 u16 itr, intrl; 5389 5390 dim = container_of(work, struct dim, work); 5391 rc = container_of(dim, struct ice_ring_container, dim); 5392 q_vector = container_of(rc, struct ice_q_vector, tx); 5393 5394 if (dim->profile_ix >= ARRAY_SIZE(tx_profile)) 5395 dim->profile_ix = ARRAY_SIZE(tx_profile) - 1; 5396 5397 /* look up the values in our local table */ 5398 itr = tx_profile[dim->profile_ix].itr; 5399 intrl = tx_profile[dim->profile_ix].intrl; 5400 5401 ice_write_itr(rc, itr); 5402 ice_write_intrl(q_vector, intrl); 5403 5404 dim->state = DIM_START_MEASURE; 5405 } 5406 5407 static void ice_rx_dim_work(struct work_struct *work) 5408 { 5409 struct ice_ring_container *rc; 5410 struct ice_q_vector *q_vector; 5411 struct dim *dim; 5412 u16 itr, intrl; 5413 5414 dim = container_of(work, struct dim, work); 5415 rc = container_of(dim, struct ice_ring_container, dim); 5416 q_vector = container_of(rc, struct ice_q_vector, rx); 5417 5418 if (dim->profile_ix >= ARRAY_SIZE(rx_profile)) 5419 dim->profile_ix = ARRAY_SIZE(rx_profile) - 1; 5420 5421 /* look up the values in our local table */ 5422 itr = rx_profile[dim->profile_ix].itr; 5423 intrl = rx_profile[dim->profile_ix].intrl; 5424 5425 ice_write_itr(rc, itr); 5426 ice_write_intrl(q_vector, intrl); 5427 5428 dim->state = DIM_START_MEASURE; 5429 } 5430 5431 /** 5432 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5433 * @vsi: the VSI being configured 5434 */ 5435 static void ice_napi_enable_all(struct ice_vsi *vsi) 5436 { 5437 int q_idx; 5438 5439 if (!vsi->netdev) 5440 return; 5441 5442 ice_for_each_q_vector(vsi, q_idx) { 5443 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5444 5445 INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work); 5446 q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5447 5448 INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work); 5449 q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5450 5451 if (q_vector->rx.ring || q_vector->tx.ring) 5452 napi_enable(&q_vector->napi); 5453 } 5454 } 5455 5456 /** 5457 * ice_up_complete - Finish the last steps of bringing up a connection 5458 * @vsi: The VSI being configured 5459 * 5460 * Return 0 on success and negative value on error 5461 */ 5462 static int ice_up_complete(struct ice_vsi *vsi) 5463 { 5464 struct ice_pf *pf = vsi->back; 5465 int err; 5466 5467 ice_vsi_cfg_msix(vsi); 5468 5469 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5470 * Tx queue group list was configured and the context bits were 5471 * programmed using ice_vsi_cfg_txqs 5472 */ 5473 err = ice_vsi_start_all_rx_rings(vsi); 5474 if (err) 5475 return err; 5476 5477 clear_bit(ICE_VSI_DOWN, vsi->state); 5478 ice_napi_enable_all(vsi); 5479 ice_vsi_ena_irq(vsi); 5480 5481 if (vsi->port_info && 5482 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5483 vsi->netdev) { 5484 ice_print_link_msg(vsi, true); 5485 netif_tx_start_all_queues(vsi->netdev); 5486 netif_carrier_on(vsi->netdev); 5487 } 5488 5489 ice_service_task_schedule(pf); 5490 5491 return 0; 5492 } 5493 5494 /** 5495 * ice_up - Bring the connection back up after being down 5496 * @vsi: VSI being configured 5497 */ 5498 int ice_up(struct ice_vsi *vsi) 5499 { 5500 int err; 5501 5502 err = ice_vsi_cfg(vsi); 5503 if (!err) 5504 err = ice_up_complete(vsi); 5505 5506 return err; 5507 } 5508 5509 /** 5510 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5511 * @ring: Tx or Rx ring to read stats from 5512 * @pkts: packets stats counter 5513 * @bytes: bytes stats counter 5514 * 5515 * This function fetches stats from the ring considering the atomic operations 5516 * that needs to be performed to read u64 values in 32 bit machine. 5517 */ 5518 static void 5519 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5520 { 5521 unsigned int start; 5522 *pkts = 0; 5523 *bytes = 0; 5524 5525 if (!ring) 5526 return; 5527 do { 5528 start = u64_stats_fetch_begin_irq(&ring->syncp); 5529 *pkts = ring->stats.pkts; 5530 *bytes = ring->stats.bytes; 5531 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5532 } 5533 5534 /** 5535 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5536 * @vsi: the VSI to be updated 5537 * @rings: rings to work on 5538 * @count: number of rings 5539 */ 5540 static void 5541 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5542 u16 count) 5543 { 5544 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5545 u16 i; 5546 5547 for (i = 0; i < count; i++) { 5548 struct ice_ring *ring; 5549 u64 pkts, bytes; 5550 5551 ring = READ_ONCE(rings[i]); 5552 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5553 vsi_stats->tx_packets += pkts; 5554 vsi_stats->tx_bytes += bytes; 5555 vsi->tx_restart += ring->tx_stats.restart_q; 5556 vsi->tx_busy += ring->tx_stats.tx_busy; 5557 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5558 } 5559 } 5560 5561 /** 5562 * ice_update_vsi_ring_stats - Update VSI stats counters 5563 * @vsi: the VSI to be updated 5564 */ 5565 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5566 { 5567 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5568 struct ice_ring *ring; 5569 u64 pkts, bytes; 5570 int i; 5571 5572 /* reset netdev stats */ 5573 vsi_stats->tx_packets = 0; 5574 vsi_stats->tx_bytes = 0; 5575 vsi_stats->rx_packets = 0; 5576 vsi_stats->rx_bytes = 0; 5577 5578 /* reset non-netdev (extended) stats */ 5579 vsi->tx_restart = 0; 5580 vsi->tx_busy = 0; 5581 vsi->tx_linearize = 0; 5582 vsi->rx_buf_failed = 0; 5583 vsi->rx_page_failed = 0; 5584 5585 rcu_read_lock(); 5586 5587 /* update Tx rings counters */ 5588 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5589 5590 /* update Rx rings counters */ 5591 ice_for_each_rxq(vsi, i) { 5592 ring = READ_ONCE(vsi->rx_rings[i]); 5593 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5594 vsi_stats->rx_packets += pkts; 5595 vsi_stats->rx_bytes += bytes; 5596 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5597 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5598 } 5599 5600 /* update XDP Tx rings counters */ 5601 if (ice_is_xdp_ena_vsi(vsi)) 5602 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5603 vsi->num_xdp_txq); 5604 5605 rcu_read_unlock(); 5606 } 5607 5608 /** 5609 * ice_update_vsi_stats - Update VSI stats counters 5610 * @vsi: the VSI to be updated 5611 */ 5612 void ice_update_vsi_stats(struct ice_vsi *vsi) 5613 { 5614 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5615 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5616 struct ice_pf *pf = vsi->back; 5617 5618 if (test_bit(ICE_VSI_DOWN, vsi->state) || 5619 test_bit(ICE_CFG_BUSY, pf->state)) 5620 return; 5621 5622 /* get stats as recorded by Tx/Rx rings */ 5623 ice_update_vsi_ring_stats(vsi); 5624 5625 /* get VSI stats as recorded by the hardware */ 5626 ice_update_eth_stats(vsi); 5627 5628 cur_ns->tx_errors = cur_es->tx_errors; 5629 cur_ns->rx_dropped = cur_es->rx_discards; 5630 cur_ns->tx_dropped = cur_es->tx_discards; 5631 cur_ns->multicast = cur_es->rx_multicast; 5632 5633 /* update some more netdev stats if this is main VSI */ 5634 if (vsi->type == ICE_VSI_PF) { 5635 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5636 cur_ns->rx_errors = pf->stats.crc_errors + 5637 pf->stats.illegal_bytes + 5638 pf->stats.rx_len_errors + 5639 pf->stats.rx_undersize + 5640 pf->hw_csum_rx_error + 5641 pf->stats.rx_jabber + 5642 pf->stats.rx_fragments + 5643 pf->stats.rx_oversize; 5644 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5645 /* record drops from the port level */ 5646 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5647 } 5648 } 5649 5650 /** 5651 * ice_update_pf_stats - Update PF port stats counters 5652 * @pf: PF whose stats needs to be updated 5653 */ 5654 void ice_update_pf_stats(struct ice_pf *pf) 5655 { 5656 struct ice_hw_port_stats *prev_ps, *cur_ps; 5657 struct ice_hw *hw = &pf->hw; 5658 u16 fd_ctr_base; 5659 u8 port; 5660 5661 port = hw->port_info->lport; 5662 prev_ps = &pf->stats_prev; 5663 cur_ps = &pf->stats; 5664 5665 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5666 &prev_ps->eth.rx_bytes, 5667 &cur_ps->eth.rx_bytes); 5668 5669 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5670 &prev_ps->eth.rx_unicast, 5671 &cur_ps->eth.rx_unicast); 5672 5673 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5674 &prev_ps->eth.rx_multicast, 5675 &cur_ps->eth.rx_multicast); 5676 5677 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5678 &prev_ps->eth.rx_broadcast, 5679 &cur_ps->eth.rx_broadcast); 5680 5681 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5682 &prev_ps->eth.rx_discards, 5683 &cur_ps->eth.rx_discards); 5684 5685 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5686 &prev_ps->eth.tx_bytes, 5687 &cur_ps->eth.tx_bytes); 5688 5689 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5690 &prev_ps->eth.tx_unicast, 5691 &cur_ps->eth.tx_unicast); 5692 5693 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5694 &prev_ps->eth.tx_multicast, 5695 &cur_ps->eth.tx_multicast); 5696 5697 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5698 &prev_ps->eth.tx_broadcast, 5699 &cur_ps->eth.tx_broadcast); 5700 5701 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5702 &prev_ps->tx_dropped_link_down, 5703 &cur_ps->tx_dropped_link_down); 5704 5705 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5706 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5707 5708 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5709 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5710 5711 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5712 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5713 5714 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5715 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5716 5717 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5718 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5719 5720 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5721 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5722 5723 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5724 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5725 5726 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5727 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5728 5729 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5730 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5731 5732 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5733 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5734 5735 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5736 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5737 5738 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5739 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5740 5741 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5742 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5743 5744 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5745 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5746 5747 fd_ctr_base = hw->fd_ctr_base; 5748 5749 ice_stat_update40(hw, 5750 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5751 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5752 &cur_ps->fd_sb_match); 5753 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5754 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5755 5756 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5757 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5758 5759 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5760 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5761 5762 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5763 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5764 5765 ice_update_dcb_stats(pf); 5766 5767 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5768 &prev_ps->crc_errors, &cur_ps->crc_errors); 5769 5770 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5771 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5772 5773 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5774 &prev_ps->mac_local_faults, 5775 &cur_ps->mac_local_faults); 5776 5777 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5778 &prev_ps->mac_remote_faults, 5779 &cur_ps->mac_remote_faults); 5780 5781 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5782 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5783 5784 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5785 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5786 5787 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5788 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5789 5790 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5791 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5792 5793 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5794 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5795 5796 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5797 5798 pf->stat_prev_loaded = true; 5799 } 5800 5801 /** 5802 * ice_get_stats64 - get statistics for network device structure 5803 * @netdev: network interface device structure 5804 * @stats: main device statistics structure 5805 */ 5806 static 5807 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5808 { 5809 struct ice_netdev_priv *np = netdev_priv(netdev); 5810 struct rtnl_link_stats64 *vsi_stats; 5811 struct ice_vsi *vsi = np->vsi; 5812 5813 vsi_stats = &vsi->net_stats; 5814 5815 if (!vsi->num_txq || !vsi->num_rxq) 5816 return; 5817 5818 /* netdev packet/byte stats come from ring counter. These are obtained 5819 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5820 * But, only call the update routine and read the registers if VSI is 5821 * not down. 5822 */ 5823 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 5824 ice_update_vsi_ring_stats(vsi); 5825 stats->tx_packets = vsi_stats->tx_packets; 5826 stats->tx_bytes = vsi_stats->tx_bytes; 5827 stats->rx_packets = vsi_stats->rx_packets; 5828 stats->rx_bytes = vsi_stats->rx_bytes; 5829 5830 /* The rest of the stats can be read from the hardware but instead we 5831 * just return values that the watchdog task has already obtained from 5832 * the hardware. 5833 */ 5834 stats->multicast = vsi_stats->multicast; 5835 stats->tx_errors = vsi_stats->tx_errors; 5836 stats->tx_dropped = vsi_stats->tx_dropped; 5837 stats->rx_errors = vsi_stats->rx_errors; 5838 stats->rx_dropped = vsi_stats->rx_dropped; 5839 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5840 stats->rx_length_errors = vsi_stats->rx_length_errors; 5841 } 5842 5843 /** 5844 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5845 * @vsi: VSI having NAPI disabled 5846 */ 5847 static void ice_napi_disable_all(struct ice_vsi *vsi) 5848 { 5849 int q_idx; 5850 5851 if (!vsi->netdev) 5852 return; 5853 5854 ice_for_each_q_vector(vsi, q_idx) { 5855 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5856 5857 if (q_vector->rx.ring || q_vector->tx.ring) 5858 napi_disable(&q_vector->napi); 5859 5860 cancel_work_sync(&q_vector->tx.dim.work); 5861 cancel_work_sync(&q_vector->rx.dim.work); 5862 } 5863 } 5864 5865 /** 5866 * ice_down - Shutdown the connection 5867 * @vsi: The VSI being stopped 5868 */ 5869 int ice_down(struct ice_vsi *vsi) 5870 { 5871 int i, tx_err, rx_err, link_err = 0; 5872 5873 /* Caller of this function is expected to set the 5874 * vsi->state ICE_DOWN bit 5875 */ 5876 if (vsi->netdev) { 5877 netif_carrier_off(vsi->netdev); 5878 netif_tx_disable(vsi->netdev); 5879 } 5880 5881 ice_vsi_dis_irq(vsi); 5882 5883 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5884 if (tx_err) 5885 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5886 vsi->vsi_num, tx_err); 5887 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5888 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5889 if (tx_err) 5890 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5891 vsi->vsi_num, tx_err); 5892 } 5893 5894 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5895 if (rx_err) 5896 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5897 vsi->vsi_num, rx_err); 5898 5899 ice_napi_disable_all(vsi); 5900 5901 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5902 link_err = ice_force_phys_link_state(vsi, false); 5903 if (link_err) 5904 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5905 vsi->vsi_num, link_err); 5906 } 5907 5908 ice_for_each_txq(vsi, i) 5909 ice_clean_tx_ring(vsi->tx_rings[i]); 5910 5911 ice_for_each_rxq(vsi, i) 5912 ice_clean_rx_ring(vsi->rx_rings[i]); 5913 5914 if (tx_err || rx_err || link_err) { 5915 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5916 vsi->vsi_num, vsi->vsw->sw_id); 5917 return -EIO; 5918 } 5919 5920 return 0; 5921 } 5922 5923 /** 5924 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5925 * @vsi: VSI having resources allocated 5926 * 5927 * Return 0 on success, negative on failure 5928 */ 5929 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5930 { 5931 int i, err = 0; 5932 5933 if (!vsi->num_txq) { 5934 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5935 vsi->vsi_num); 5936 return -EINVAL; 5937 } 5938 5939 ice_for_each_txq(vsi, i) { 5940 struct ice_ring *ring = vsi->tx_rings[i]; 5941 5942 if (!ring) 5943 return -EINVAL; 5944 5945 ring->netdev = vsi->netdev; 5946 err = ice_setup_tx_ring(ring); 5947 if (err) 5948 break; 5949 } 5950 5951 return err; 5952 } 5953 5954 /** 5955 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5956 * @vsi: VSI having resources allocated 5957 * 5958 * Return 0 on success, negative on failure 5959 */ 5960 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5961 { 5962 int i, err = 0; 5963 5964 if (!vsi->num_rxq) { 5965 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5966 vsi->vsi_num); 5967 return -EINVAL; 5968 } 5969 5970 ice_for_each_rxq(vsi, i) { 5971 struct ice_ring *ring = vsi->rx_rings[i]; 5972 5973 if (!ring) 5974 return -EINVAL; 5975 5976 ring->netdev = vsi->netdev; 5977 err = ice_setup_rx_ring(ring); 5978 if (err) 5979 break; 5980 } 5981 5982 return err; 5983 } 5984 5985 /** 5986 * ice_vsi_open_ctrl - open control VSI for use 5987 * @vsi: the VSI to open 5988 * 5989 * Initialization of the Control VSI 5990 * 5991 * Returns 0 on success, negative value on error 5992 */ 5993 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5994 { 5995 char int_name[ICE_INT_NAME_STR_LEN]; 5996 struct ice_pf *pf = vsi->back; 5997 struct device *dev; 5998 int err; 5999 6000 dev = ice_pf_to_dev(pf); 6001 /* allocate descriptors */ 6002 err = ice_vsi_setup_tx_rings(vsi); 6003 if (err) 6004 goto err_setup_tx; 6005 6006 err = ice_vsi_setup_rx_rings(vsi); 6007 if (err) 6008 goto err_setup_rx; 6009 6010 err = ice_vsi_cfg(vsi); 6011 if (err) 6012 goto err_setup_rx; 6013 6014 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6015 dev_driver_string(dev), dev_name(dev)); 6016 err = ice_vsi_req_irq_msix(vsi, int_name); 6017 if (err) 6018 goto err_setup_rx; 6019 6020 ice_vsi_cfg_msix(vsi); 6021 6022 err = ice_vsi_start_all_rx_rings(vsi); 6023 if (err) 6024 goto err_up_complete; 6025 6026 clear_bit(ICE_VSI_DOWN, vsi->state); 6027 ice_vsi_ena_irq(vsi); 6028 6029 return 0; 6030 6031 err_up_complete: 6032 ice_down(vsi); 6033 err_setup_rx: 6034 ice_vsi_free_rx_rings(vsi); 6035 err_setup_tx: 6036 ice_vsi_free_tx_rings(vsi); 6037 6038 return err; 6039 } 6040 6041 /** 6042 * ice_vsi_open - Called when a network interface is made active 6043 * @vsi: the VSI to open 6044 * 6045 * Initialization of the VSI 6046 * 6047 * Returns 0 on success, negative value on error 6048 */ 6049 static int ice_vsi_open(struct ice_vsi *vsi) 6050 { 6051 char int_name[ICE_INT_NAME_STR_LEN]; 6052 struct ice_pf *pf = vsi->back; 6053 int err; 6054 6055 /* allocate descriptors */ 6056 err = ice_vsi_setup_tx_rings(vsi); 6057 if (err) 6058 goto err_setup_tx; 6059 6060 err = ice_vsi_setup_rx_rings(vsi); 6061 if (err) 6062 goto err_setup_rx; 6063 6064 err = ice_vsi_cfg(vsi); 6065 if (err) 6066 goto err_setup_rx; 6067 6068 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6069 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6070 err = ice_vsi_req_irq_msix(vsi, int_name); 6071 if (err) 6072 goto err_setup_rx; 6073 6074 /* Notify the stack of the actual queue counts. */ 6075 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6076 if (err) 6077 goto err_set_qs; 6078 6079 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6080 if (err) 6081 goto err_set_qs; 6082 6083 err = ice_up_complete(vsi); 6084 if (err) 6085 goto err_up_complete; 6086 6087 return 0; 6088 6089 err_up_complete: 6090 ice_down(vsi); 6091 err_set_qs: 6092 ice_vsi_free_irq(vsi); 6093 err_setup_rx: 6094 ice_vsi_free_rx_rings(vsi); 6095 err_setup_tx: 6096 ice_vsi_free_tx_rings(vsi); 6097 6098 return err; 6099 } 6100 6101 /** 6102 * ice_vsi_release_all - Delete all VSIs 6103 * @pf: PF from which all VSIs are being removed 6104 */ 6105 static void ice_vsi_release_all(struct ice_pf *pf) 6106 { 6107 int err, i; 6108 6109 if (!pf->vsi) 6110 return; 6111 6112 ice_for_each_vsi(pf, i) { 6113 if (!pf->vsi[i]) 6114 continue; 6115 6116 err = ice_vsi_release(pf->vsi[i]); 6117 if (err) 6118 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6119 i, err, pf->vsi[i]->vsi_num); 6120 } 6121 } 6122 6123 /** 6124 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6125 * @pf: pointer to the PF instance 6126 * @type: VSI type to rebuild 6127 * 6128 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6129 */ 6130 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6131 { 6132 struct device *dev = ice_pf_to_dev(pf); 6133 enum ice_status status; 6134 int i, err; 6135 6136 ice_for_each_vsi(pf, i) { 6137 struct ice_vsi *vsi = pf->vsi[i]; 6138 6139 if (!vsi || vsi->type != type) 6140 continue; 6141 6142 /* rebuild the VSI */ 6143 err = ice_vsi_rebuild(vsi, true); 6144 if (err) { 6145 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6146 err, vsi->idx, ice_vsi_type_str(type)); 6147 return err; 6148 } 6149 6150 /* replay filters for the VSI */ 6151 status = ice_replay_vsi(&pf->hw, vsi->idx); 6152 if (status) { 6153 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6154 ice_stat_str(status), vsi->idx, 6155 ice_vsi_type_str(type)); 6156 return -EIO; 6157 } 6158 6159 /* Re-map HW VSI number, using VSI handle that has been 6160 * previously validated in ice_replay_vsi() call above 6161 */ 6162 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6163 6164 /* enable the VSI */ 6165 err = ice_ena_vsi(vsi, false); 6166 if (err) { 6167 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6168 err, vsi->idx, ice_vsi_type_str(type)); 6169 return err; 6170 } 6171 6172 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6173 ice_vsi_type_str(type)); 6174 } 6175 6176 return 0; 6177 } 6178 6179 /** 6180 * ice_update_pf_netdev_link - Update PF netdev link status 6181 * @pf: pointer to the PF instance 6182 */ 6183 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6184 { 6185 bool link_up; 6186 int i; 6187 6188 ice_for_each_vsi(pf, i) { 6189 struct ice_vsi *vsi = pf->vsi[i]; 6190 6191 if (!vsi || vsi->type != ICE_VSI_PF) 6192 return; 6193 6194 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6195 if (link_up) { 6196 netif_carrier_on(pf->vsi[i]->netdev); 6197 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6198 } else { 6199 netif_carrier_off(pf->vsi[i]->netdev); 6200 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6201 } 6202 } 6203 } 6204 6205 /** 6206 * ice_rebuild - rebuild after reset 6207 * @pf: PF to rebuild 6208 * @reset_type: type of reset 6209 * 6210 * Do not rebuild VF VSI in this flow because that is already handled via 6211 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6212 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6213 * to reset/rebuild all the VF VSI twice. 6214 */ 6215 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6216 { 6217 struct device *dev = ice_pf_to_dev(pf); 6218 struct ice_hw *hw = &pf->hw; 6219 enum ice_status ret; 6220 int err; 6221 6222 if (test_bit(ICE_DOWN, pf->state)) 6223 goto clear_recovery; 6224 6225 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6226 6227 ret = ice_init_all_ctrlq(hw); 6228 if (ret) { 6229 dev_err(dev, "control queues init failed %s\n", 6230 ice_stat_str(ret)); 6231 goto err_init_ctrlq; 6232 } 6233 6234 /* if DDP was previously loaded successfully */ 6235 if (!ice_is_safe_mode(pf)) { 6236 /* reload the SW DB of filter tables */ 6237 if (reset_type == ICE_RESET_PFR) 6238 ice_fill_blk_tbls(hw); 6239 else 6240 /* Reload DDP Package after CORER/GLOBR reset */ 6241 ice_load_pkg(NULL, pf); 6242 } 6243 6244 ret = ice_clear_pf_cfg(hw); 6245 if (ret) { 6246 dev_err(dev, "clear PF configuration failed %s\n", 6247 ice_stat_str(ret)); 6248 goto err_init_ctrlq; 6249 } 6250 6251 if (pf->first_sw->dflt_vsi_ena) 6252 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6253 /* clear the default VSI configuration if it exists */ 6254 pf->first_sw->dflt_vsi = NULL; 6255 pf->first_sw->dflt_vsi_ena = false; 6256 6257 ice_clear_pxe_mode(hw); 6258 6259 ret = ice_init_nvm(hw); 6260 if (ret) { 6261 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret)); 6262 goto err_init_ctrlq; 6263 } 6264 6265 ret = ice_get_caps(hw); 6266 if (ret) { 6267 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6268 goto err_init_ctrlq; 6269 } 6270 6271 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6272 if (ret) { 6273 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6274 goto err_init_ctrlq; 6275 } 6276 6277 err = ice_sched_init_port(hw->port_info); 6278 if (err) 6279 goto err_sched_init_port; 6280 6281 /* start misc vector */ 6282 err = ice_req_irq_msix_misc(pf); 6283 if (err) { 6284 dev_err(dev, "misc vector setup failed: %d\n", err); 6285 goto err_sched_init_port; 6286 } 6287 6288 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6289 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6290 if (!rd32(hw, PFQF_FD_SIZE)) { 6291 u16 unused, guar, b_effort; 6292 6293 guar = hw->func_caps.fd_fltr_guar; 6294 b_effort = hw->func_caps.fd_fltr_best_effort; 6295 6296 /* force guaranteed filter pool for PF */ 6297 ice_alloc_fd_guar_item(hw, &unused, guar); 6298 /* force shared filter pool for PF */ 6299 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6300 } 6301 } 6302 6303 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6304 ice_dcb_rebuild(pf); 6305 6306 /* rebuild PF VSI */ 6307 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6308 if (err) { 6309 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6310 goto err_vsi_rebuild; 6311 } 6312 6313 /* If Flow Director is active */ 6314 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6315 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6316 if (err) { 6317 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6318 goto err_vsi_rebuild; 6319 } 6320 6321 /* replay HW Flow Director recipes */ 6322 if (hw->fdir_prof) 6323 ice_fdir_replay_flows(hw); 6324 6325 /* replay Flow Director filters */ 6326 ice_fdir_replay_fltrs(pf); 6327 6328 ice_rebuild_arfs(pf); 6329 } 6330 6331 ice_update_pf_netdev_link(pf); 6332 6333 /* tell the firmware we are up */ 6334 ret = ice_send_version(pf); 6335 if (ret) { 6336 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6337 ice_stat_str(ret)); 6338 goto err_vsi_rebuild; 6339 } 6340 6341 ice_replay_post(hw); 6342 6343 /* if we get here, reset flow is successful */ 6344 clear_bit(ICE_RESET_FAILED, pf->state); 6345 6346 ice_plug_aux_dev(pf); 6347 return; 6348 6349 err_vsi_rebuild: 6350 err_sched_init_port: 6351 ice_sched_cleanup_all(hw); 6352 err_init_ctrlq: 6353 ice_shutdown_all_ctrlq(hw); 6354 set_bit(ICE_RESET_FAILED, pf->state); 6355 clear_recovery: 6356 /* set this bit in PF state to control service task scheduling */ 6357 set_bit(ICE_NEEDS_RESTART, pf->state); 6358 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6359 } 6360 6361 /** 6362 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6363 * @vsi: Pointer to VSI structure 6364 */ 6365 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6366 { 6367 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6368 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6369 else 6370 return ICE_RXBUF_3072; 6371 } 6372 6373 /** 6374 * ice_change_mtu - NDO callback to change the MTU 6375 * @netdev: network interface device structure 6376 * @new_mtu: new value for maximum frame size 6377 * 6378 * Returns 0 on success, negative on failure 6379 */ 6380 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6381 { 6382 struct ice_netdev_priv *np = netdev_priv(netdev); 6383 struct ice_vsi *vsi = np->vsi; 6384 struct ice_pf *pf = vsi->back; 6385 struct iidc_event *event; 6386 u8 count = 0; 6387 int err = 0; 6388 6389 if (new_mtu == (int)netdev->mtu) { 6390 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6391 return 0; 6392 } 6393 6394 if (ice_is_xdp_ena_vsi(vsi)) { 6395 int frame_size = ice_max_xdp_frame_size(vsi); 6396 6397 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6398 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6399 frame_size - ICE_ETH_PKT_HDR_PAD); 6400 return -EINVAL; 6401 } 6402 } 6403 6404 /* if a reset is in progress, wait for some time for it to complete */ 6405 do { 6406 if (ice_is_reset_in_progress(pf->state)) { 6407 count++; 6408 usleep_range(1000, 2000); 6409 } else { 6410 break; 6411 } 6412 6413 } while (count < 100); 6414 6415 if (count == 100) { 6416 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6417 return -EBUSY; 6418 } 6419 6420 event = kzalloc(sizeof(*event), GFP_KERNEL); 6421 if (!event) 6422 return -ENOMEM; 6423 6424 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6425 ice_send_event_to_aux(pf, event); 6426 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6427 6428 netdev->mtu = (unsigned int)new_mtu; 6429 6430 /* if VSI is up, bring it down and then back up */ 6431 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6432 err = ice_down(vsi); 6433 if (err) { 6434 netdev_err(netdev, "change MTU if_down err %d\n", err); 6435 goto event_after; 6436 } 6437 6438 err = ice_up(vsi); 6439 if (err) { 6440 netdev_err(netdev, "change MTU if_up err %d\n", err); 6441 goto event_after; 6442 } 6443 } 6444 6445 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6446 event_after: 6447 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6448 ice_send_event_to_aux(pf, event); 6449 kfree(event); 6450 6451 return err; 6452 } 6453 6454 /** 6455 * ice_aq_str - convert AQ err code to a string 6456 * @aq_err: the AQ error code to convert 6457 */ 6458 const char *ice_aq_str(enum ice_aq_err aq_err) 6459 { 6460 switch (aq_err) { 6461 case ICE_AQ_RC_OK: 6462 return "OK"; 6463 case ICE_AQ_RC_EPERM: 6464 return "ICE_AQ_RC_EPERM"; 6465 case ICE_AQ_RC_ENOENT: 6466 return "ICE_AQ_RC_ENOENT"; 6467 case ICE_AQ_RC_ENOMEM: 6468 return "ICE_AQ_RC_ENOMEM"; 6469 case ICE_AQ_RC_EBUSY: 6470 return "ICE_AQ_RC_EBUSY"; 6471 case ICE_AQ_RC_EEXIST: 6472 return "ICE_AQ_RC_EEXIST"; 6473 case ICE_AQ_RC_EINVAL: 6474 return "ICE_AQ_RC_EINVAL"; 6475 case ICE_AQ_RC_ENOSPC: 6476 return "ICE_AQ_RC_ENOSPC"; 6477 case ICE_AQ_RC_ENOSYS: 6478 return "ICE_AQ_RC_ENOSYS"; 6479 case ICE_AQ_RC_EMODE: 6480 return "ICE_AQ_RC_EMODE"; 6481 case ICE_AQ_RC_ENOSEC: 6482 return "ICE_AQ_RC_ENOSEC"; 6483 case ICE_AQ_RC_EBADSIG: 6484 return "ICE_AQ_RC_EBADSIG"; 6485 case ICE_AQ_RC_ESVN: 6486 return "ICE_AQ_RC_ESVN"; 6487 case ICE_AQ_RC_EBADMAN: 6488 return "ICE_AQ_RC_EBADMAN"; 6489 case ICE_AQ_RC_EBADBUF: 6490 return "ICE_AQ_RC_EBADBUF"; 6491 } 6492 6493 return "ICE_AQ_RC_UNKNOWN"; 6494 } 6495 6496 /** 6497 * ice_stat_str - convert status err code to a string 6498 * @stat_err: the status error code to convert 6499 */ 6500 const char *ice_stat_str(enum ice_status stat_err) 6501 { 6502 switch (stat_err) { 6503 case ICE_SUCCESS: 6504 return "OK"; 6505 case ICE_ERR_PARAM: 6506 return "ICE_ERR_PARAM"; 6507 case ICE_ERR_NOT_IMPL: 6508 return "ICE_ERR_NOT_IMPL"; 6509 case ICE_ERR_NOT_READY: 6510 return "ICE_ERR_NOT_READY"; 6511 case ICE_ERR_NOT_SUPPORTED: 6512 return "ICE_ERR_NOT_SUPPORTED"; 6513 case ICE_ERR_BAD_PTR: 6514 return "ICE_ERR_BAD_PTR"; 6515 case ICE_ERR_INVAL_SIZE: 6516 return "ICE_ERR_INVAL_SIZE"; 6517 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6518 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6519 case ICE_ERR_RESET_FAILED: 6520 return "ICE_ERR_RESET_FAILED"; 6521 case ICE_ERR_FW_API_VER: 6522 return "ICE_ERR_FW_API_VER"; 6523 case ICE_ERR_NO_MEMORY: 6524 return "ICE_ERR_NO_MEMORY"; 6525 case ICE_ERR_CFG: 6526 return "ICE_ERR_CFG"; 6527 case ICE_ERR_OUT_OF_RANGE: 6528 return "ICE_ERR_OUT_OF_RANGE"; 6529 case ICE_ERR_ALREADY_EXISTS: 6530 return "ICE_ERR_ALREADY_EXISTS"; 6531 case ICE_ERR_NVM: 6532 return "ICE_ERR_NVM"; 6533 case ICE_ERR_NVM_CHECKSUM: 6534 return "ICE_ERR_NVM_CHECKSUM"; 6535 case ICE_ERR_BUF_TOO_SHORT: 6536 return "ICE_ERR_BUF_TOO_SHORT"; 6537 case ICE_ERR_NVM_BLANK_MODE: 6538 return "ICE_ERR_NVM_BLANK_MODE"; 6539 case ICE_ERR_IN_USE: 6540 return "ICE_ERR_IN_USE"; 6541 case ICE_ERR_MAX_LIMIT: 6542 return "ICE_ERR_MAX_LIMIT"; 6543 case ICE_ERR_RESET_ONGOING: 6544 return "ICE_ERR_RESET_ONGOING"; 6545 case ICE_ERR_HW_TABLE: 6546 return "ICE_ERR_HW_TABLE"; 6547 case ICE_ERR_DOES_NOT_EXIST: 6548 return "ICE_ERR_DOES_NOT_EXIST"; 6549 case ICE_ERR_FW_DDP_MISMATCH: 6550 return "ICE_ERR_FW_DDP_MISMATCH"; 6551 case ICE_ERR_AQ_ERROR: 6552 return "ICE_ERR_AQ_ERROR"; 6553 case ICE_ERR_AQ_TIMEOUT: 6554 return "ICE_ERR_AQ_TIMEOUT"; 6555 case ICE_ERR_AQ_FULL: 6556 return "ICE_ERR_AQ_FULL"; 6557 case ICE_ERR_AQ_NO_WORK: 6558 return "ICE_ERR_AQ_NO_WORK"; 6559 case ICE_ERR_AQ_EMPTY: 6560 return "ICE_ERR_AQ_EMPTY"; 6561 case ICE_ERR_AQ_FW_CRITICAL: 6562 return "ICE_ERR_AQ_FW_CRITICAL"; 6563 } 6564 6565 return "ICE_ERR_UNKNOWN"; 6566 } 6567 6568 /** 6569 * ice_set_rss_lut - Set RSS LUT 6570 * @vsi: Pointer to VSI structure 6571 * @lut: Lookup table 6572 * @lut_size: Lookup table size 6573 * 6574 * Returns 0 on success, negative on failure 6575 */ 6576 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6577 { 6578 struct ice_aq_get_set_rss_lut_params params = {}; 6579 struct ice_hw *hw = &vsi->back->hw; 6580 enum ice_status status; 6581 6582 if (!lut) 6583 return -EINVAL; 6584 6585 params.vsi_handle = vsi->idx; 6586 params.lut_size = lut_size; 6587 params.lut_type = vsi->rss_lut_type; 6588 params.lut = lut; 6589 6590 status = ice_aq_set_rss_lut(hw, ¶ms); 6591 if (status) { 6592 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 6593 ice_stat_str(status), 6594 ice_aq_str(hw->adminq.sq_last_status)); 6595 return -EIO; 6596 } 6597 6598 return 0; 6599 } 6600 6601 /** 6602 * ice_set_rss_key - Set RSS key 6603 * @vsi: Pointer to the VSI structure 6604 * @seed: RSS hash seed 6605 * 6606 * Returns 0 on success, negative on failure 6607 */ 6608 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 6609 { 6610 struct ice_hw *hw = &vsi->back->hw; 6611 enum ice_status status; 6612 6613 if (!seed) 6614 return -EINVAL; 6615 6616 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6617 if (status) { 6618 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 6619 ice_stat_str(status), 6620 ice_aq_str(hw->adminq.sq_last_status)); 6621 return -EIO; 6622 } 6623 6624 return 0; 6625 } 6626 6627 /** 6628 * ice_get_rss_lut - Get RSS LUT 6629 * @vsi: Pointer to VSI structure 6630 * @lut: Buffer to store the lookup table entries 6631 * @lut_size: Size of buffer to store the lookup table entries 6632 * 6633 * Returns 0 on success, negative on failure 6634 */ 6635 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 6636 { 6637 struct ice_aq_get_set_rss_lut_params params = {}; 6638 struct ice_hw *hw = &vsi->back->hw; 6639 enum ice_status status; 6640 6641 if (!lut) 6642 return -EINVAL; 6643 6644 params.vsi_handle = vsi->idx; 6645 params.lut_size = lut_size; 6646 params.lut_type = vsi->rss_lut_type; 6647 params.lut = lut; 6648 6649 status = ice_aq_get_rss_lut(hw, ¶ms); 6650 if (status) { 6651 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 6652 ice_stat_str(status), 6653 ice_aq_str(hw->adminq.sq_last_status)); 6654 return -EIO; 6655 } 6656 6657 return 0; 6658 } 6659 6660 /** 6661 * ice_get_rss_key - Get RSS key 6662 * @vsi: Pointer to VSI structure 6663 * @seed: Buffer to store the key in 6664 * 6665 * Returns 0 on success, negative on failure 6666 */ 6667 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 6668 { 6669 struct ice_hw *hw = &vsi->back->hw; 6670 enum ice_status status; 6671 6672 if (!seed) 6673 return -EINVAL; 6674 6675 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 6676 if (status) { 6677 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 6678 ice_stat_str(status), 6679 ice_aq_str(hw->adminq.sq_last_status)); 6680 return -EIO; 6681 } 6682 6683 return 0; 6684 } 6685 6686 /** 6687 * ice_bridge_getlink - Get the hardware bridge mode 6688 * @skb: skb buff 6689 * @pid: process ID 6690 * @seq: RTNL message seq 6691 * @dev: the netdev being configured 6692 * @filter_mask: filter mask passed in 6693 * @nlflags: netlink flags passed in 6694 * 6695 * Return the bridge mode (VEB/VEPA) 6696 */ 6697 static int 6698 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6699 struct net_device *dev, u32 filter_mask, int nlflags) 6700 { 6701 struct ice_netdev_priv *np = netdev_priv(dev); 6702 struct ice_vsi *vsi = np->vsi; 6703 struct ice_pf *pf = vsi->back; 6704 u16 bmode; 6705 6706 bmode = pf->first_sw->bridge_mode; 6707 6708 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6709 filter_mask, NULL); 6710 } 6711 6712 /** 6713 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6714 * @vsi: Pointer to VSI structure 6715 * @bmode: Hardware bridge mode (VEB/VEPA) 6716 * 6717 * Returns 0 on success, negative on failure 6718 */ 6719 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6720 { 6721 struct ice_aqc_vsi_props *vsi_props; 6722 struct ice_hw *hw = &vsi->back->hw; 6723 struct ice_vsi_ctx *ctxt; 6724 enum ice_status status; 6725 int ret = 0; 6726 6727 vsi_props = &vsi->info; 6728 6729 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6730 if (!ctxt) 6731 return -ENOMEM; 6732 6733 ctxt->info = vsi->info; 6734 6735 if (bmode == BRIDGE_MODE_VEB) 6736 /* change from VEPA to VEB mode */ 6737 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6738 else 6739 /* change from VEB to VEPA mode */ 6740 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6741 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6742 6743 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6744 if (status) { 6745 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6746 bmode, ice_stat_str(status), 6747 ice_aq_str(hw->adminq.sq_last_status)); 6748 ret = -EIO; 6749 goto out; 6750 } 6751 /* Update sw flags for book keeping */ 6752 vsi_props->sw_flags = ctxt->info.sw_flags; 6753 6754 out: 6755 kfree(ctxt); 6756 return ret; 6757 } 6758 6759 /** 6760 * ice_bridge_setlink - Set the hardware bridge mode 6761 * @dev: the netdev being configured 6762 * @nlh: RTNL message 6763 * @flags: bridge setlink flags 6764 * @extack: netlink extended ack 6765 * 6766 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6767 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6768 * not already set for all VSIs connected to this switch. And also update the 6769 * unicast switch filter rules for the corresponding switch of the netdev. 6770 */ 6771 static int 6772 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6773 u16 __always_unused flags, 6774 struct netlink_ext_ack __always_unused *extack) 6775 { 6776 struct ice_netdev_priv *np = netdev_priv(dev); 6777 struct ice_pf *pf = np->vsi->back; 6778 struct nlattr *attr, *br_spec; 6779 struct ice_hw *hw = &pf->hw; 6780 enum ice_status status; 6781 struct ice_sw *pf_sw; 6782 int rem, v, err = 0; 6783 6784 pf_sw = pf->first_sw; 6785 /* find the attribute in the netlink message */ 6786 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6787 6788 nla_for_each_nested(attr, br_spec, rem) { 6789 __u16 mode; 6790 6791 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6792 continue; 6793 mode = nla_get_u16(attr); 6794 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6795 return -EINVAL; 6796 /* Continue if bridge mode is not being flipped */ 6797 if (mode == pf_sw->bridge_mode) 6798 continue; 6799 /* Iterates through the PF VSI list and update the loopback 6800 * mode of the VSI 6801 */ 6802 ice_for_each_vsi(pf, v) { 6803 if (!pf->vsi[v]) 6804 continue; 6805 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6806 if (err) 6807 return err; 6808 } 6809 6810 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6811 /* Update the unicast switch filter rules for the corresponding 6812 * switch of the netdev 6813 */ 6814 status = ice_update_sw_rule_bridge_mode(hw); 6815 if (status) { 6816 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6817 mode, ice_stat_str(status), 6818 ice_aq_str(hw->adminq.sq_last_status)); 6819 /* revert hw->evb_veb */ 6820 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6821 return -EIO; 6822 } 6823 6824 pf_sw->bridge_mode = mode; 6825 } 6826 6827 return 0; 6828 } 6829 6830 /** 6831 * ice_tx_timeout - Respond to a Tx Hang 6832 * @netdev: network interface device structure 6833 * @txqueue: Tx queue 6834 */ 6835 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6836 { 6837 struct ice_netdev_priv *np = netdev_priv(netdev); 6838 struct ice_ring *tx_ring = NULL; 6839 struct ice_vsi *vsi = np->vsi; 6840 struct ice_pf *pf = vsi->back; 6841 u32 i; 6842 6843 pf->tx_timeout_count++; 6844 6845 /* Check if PFC is enabled for the TC to which the queue belongs 6846 * to. If yes then Tx timeout is not caused by a hung queue, no 6847 * need to reset and rebuild 6848 */ 6849 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6850 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6851 txqueue); 6852 return; 6853 } 6854 6855 /* now that we have an index, find the tx_ring struct */ 6856 for (i = 0; i < vsi->num_txq; i++) 6857 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6858 if (txqueue == vsi->tx_rings[i]->q_index) { 6859 tx_ring = vsi->tx_rings[i]; 6860 break; 6861 } 6862 6863 /* Reset recovery level if enough time has elapsed after last timeout. 6864 * Also ensure no new reset action happens before next timeout period. 6865 */ 6866 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6867 pf->tx_timeout_recovery_level = 1; 6868 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6869 netdev->watchdog_timeo))) 6870 return; 6871 6872 if (tx_ring) { 6873 struct ice_hw *hw = &pf->hw; 6874 u32 head, val = 0; 6875 6876 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6877 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6878 /* Read interrupt register */ 6879 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6880 6881 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6882 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6883 head, tx_ring->next_to_use, val); 6884 } 6885 6886 pf->tx_timeout_last_recovery = jiffies; 6887 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6888 pf->tx_timeout_recovery_level, txqueue); 6889 6890 switch (pf->tx_timeout_recovery_level) { 6891 case 1: 6892 set_bit(ICE_PFR_REQ, pf->state); 6893 break; 6894 case 2: 6895 set_bit(ICE_CORER_REQ, pf->state); 6896 break; 6897 case 3: 6898 set_bit(ICE_GLOBR_REQ, pf->state); 6899 break; 6900 default: 6901 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6902 set_bit(ICE_DOWN, pf->state); 6903 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 6904 set_bit(ICE_SERVICE_DIS, pf->state); 6905 break; 6906 } 6907 6908 ice_service_task_schedule(pf); 6909 pf->tx_timeout_recovery_level++; 6910 } 6911 6912 /** 6913 * ice_open - Called when a network interface becomes active 6914 * @netdev: network interface device structure 6915 * 6916 * The open entry point is called when a network interface is made 6917 * active by the system (IFF_UP). At this point all resources needed 6918 * for transmit and receive operations are allocated, the interrupt 6919 * handler is registered with the OS, the netdev watchdog is enabled, 6920 * and the stack is notified that the interface is ready. 6921 * 6922 * Returns 0 on success, negative value on failure 6923 */ 6924 int ice_open(struct net_device *netdev) 6925 { 6926 struct ice_netdev_priv *np = netdev_priv(netdev); 6927 struct ice_pf *pf = np->vsi->back; 6928 6929 if (ice_is_reset_in_progress(pf->state)) { 6930 netdev_err(netdev, "can't open net device while reset is in progress"); 6931 return -EBUSY; 6932 } 6933 6934 return ice_open_internal(netdev); 6935 } 6936 6937 /** 6938 * ice_open_internal - Called when a network interface becomes active 6939 * @netdev: network interface device structure 6940 * 6941 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 6942 * handling routine 6943 * 6944 * Returns 0 on success, negative value on failure 6945 */ 6946 int ice_open_internal(struct net_device *netdev) 6947 { 6948 struct ice_netdev_priv *np = netdev_priv(netdev); 6949 struct ice_vsi *vsi = np->vsi; 6950 struct ice_pf *pf = vsi->back; 6951 struct ice_port_info *pi; 6952 enum ice_status status; 6953 int err; 6954 6955 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 6956 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6957 return -EIO; 6958 } 6959 6960 netif_carrier_off(netdev); 6961 6962 pi = vsi->port_info; 6963 status = ice_update_link_info(pi); 6964 if (status) { 6965 netdev_err(netdev, "Failed to get link info, error %s\n", 6966 ice_stat_str(status)); 6967 return -EIO; 6968 } 6969 6970 ice_check_module_power(pf, pi->phy.link_info.link_cfg_err); 6971 6972 /* Set PHY if there is media, otherwise, turn off PHY */ 6973 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6974 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6975 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 6976 err = ice_init_phy_user_cfg(pi); 6977 if (err) { 6978 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6979 err); 6980 return err; 6981 } 6982 } 6983 6984 err = ice_configure_phy(vsi); 6985 if (err) { 6986 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6987 err); 6988 return err; 6989 } 6990 } else { 6991 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6992 ice_set_link(vsi, false); 6993 } 6994 6995 err = ice_vsi_open(vsi); 6996 if (err) 6997 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6998 vsi->vsi_num, vsi->vsw->sw_id); 6999 7000 /* Update existing tunnels information */ 7001 udp_tunnel_get_rx_info(netdev); 7002 7003 return err; 7004 } 7005 7006 /** 7007 * ice_stop - Disables a network interface 7008 * @netdev: network interface device structure 7009 * 7010 * The stop entry point is called when an interface is de-activated by the OS, 7011 * and the netdevice enters the DOWN state. The hardware is still under the 7012 * driver's control, but the netdev interface is disabled. 7013 * 7014 * Returns success only - not allowed to fail 7015 */ 7016 int ice_stop(struct net_device *netdev) 7017 { 7018 struct ice_netdev_priv *np = netdev_priv(netdev); 7019 struct ice_vsi *vsi = np->vsi; 7020 struct ice_pf *pf = vsi->back; 7021 7022 if (ice_is_reset_in_progress(pf->state)) { 7023 netdev_err(netdev, "can't stop net device while reset is in progress"); 7024 return -EBUSY; 7025 } 7026 7027 ice_vsi_close(vsi); 7028 7029 return 0; 7030 } 7031 7032 /** 7033 * ice_features_check - Validate encapsulated packet conforms to limits 7034 * @skb: skb buffer 7035 * @netdev: This port's netdev 7036 * @features: Offload features that the stack believes apply 7037 */ 7038 static netdev_features_t 7039 ice_features_check(struct sk_buff *skb, 7040 struct net_device __always_unused *netdev, 7041 netdev_features_t features) 7042 { 7043 size_t len; 7044 7045 /* No point in doing any of this if neither checksum nor GSO are 7046 * being requested for this frame. We can rule out both by just 7047 * checking for CHECKSUM_PARTIAL 7048 */ 7049 if (skb->ip_summed != CHECKSUM_PARTIAL) 7050 return features; 7051 7052 /* We cannot support GSO if the MSS is going to be less than 7053 * 64 bytes. If it is then we need to drop support for GSO. 7054 */ 7055 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 7056 features &= ~NETIF_F_GSO_MASK; 7057 7058 len = skb_network_header(skb) - skb->data; 7059 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 7060 goto out_rm_features; 7061 7062 len = skb_transport_header(skb) - skb_network_header(skb); 7063 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7064 goto out_rm_features; 7065 7066 if (skb->encapsulation) { 7067 len = skb_inner_network_header(skb) - skb_transport_header(skb); 7068 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 7069 goto out_rm_features; 7070 7071 len = skb_inner_transport_header(skb) - 7072 skb_inner_network_header(skb); 7073 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 7074 goto out_rm_features; 7075 } 7076 7077 return features; 7078 out_rm_features: 7079 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 7080 } 7081 7082 static const struct net_device_ops ice_netdev_safe_mode_ops = { 7083 .ndo_open = ice_open, 7084 .ndo_stop = ice_stop, 7085 .ndo_start_xmit = ice_start_xmit, 7086 .ndo_set_mac_address = ice_set_mac_address, 7087 .ndo_validate_addr = eth_validate_addr, 7088 .ndo_change_mtu = ice_change_mtu, 7089 .ndo_get_stats64 = ice_get_stats64, 7090 .ndo_tx_timeout = ice_tx_timeout, 7091 }; 7092 7093 static const struct net_device_ops ice_netdev_ops = { 7094 .ndo_open = ice_open, 7095 .ndo_stop = ice_stop, 7096 .ndo_start_xmit = ice_start_xmit, 7097 .ndo_features_check = ice_features_check, 7098 .ndo_set_rx_mode = ice_set_rx_mode, 7099 .ndo_set_mac_address = ice_set_mac_address, 7100 .ndo_validate_addr = eth_validate_addr, 7101 .ndo_change_mtu = ice_change_mtu, 7102 .ndo_get_stats64 = ice_get_stats64, 7103 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 7104 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 7105 .ndo_set_vf_mac = ice_set_vf_mac, 7106 .ndo_get_vf_config = ice_get_vf_cfg, 7107 .ndo_set_vf_trust = ice_set_vf_trust, 7108 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 7109 .ndo_set_vf_link_state = ice_set_vf_link_state, 7110 .ndo_get_vf_stats = ice_get_vf_stats, 7111 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 7112 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 7113 .ndo_set_features = ice_set_features, 7114 .ndo_bridge_getlink = ice_bridge_getlink, 7115 .ndo_bridge_setlink = ice_bridge_setlink, 7116 .ndo_fdb_add = ice_fdb_add, 7117 .ndo_fdb_del = ice_fdb_del, 7118 #ifdef CONFIG_RFS_ACCEL 7119 .ndo_rx_flow_steer = ice_rx_flow_steer, 7120 #endif 7121 .ndo_tx_timeout = ice_tx_timeout, 7122 .ndo_bpf = ice_xdp, 7123 .ndo_xdp_xmit = ice_xdp_xmit, 7124 .ndo_xsk_wakeup = ice_xsk_wakeup, 7125 }; 7126