1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS(LIBIE); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops); 91 } 92 93 /** 94 * ice_get_tx_pending - returns number of Tx descriptors not processed 95 * @ring: the ring of descriptors 96 */ 97 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 98 { 99 u16 head, tail; 100 101 head = ring->next_to_clean; 102 tail = ring->next_to_use; 103 104 if (head != tail) 105 return (head < tail) ? 106 tail - head : (tail + ring->count - head); 107 return 0; 108 } 109 110 /** 111 * ice_check_for_hang_subtask - check for and recover hung queues 112 * @pf: pointer to PF struct 113 */ 114 static void ice_check_for_hang_subtask(struct ice_pf *pf) 115 { 116 struct ice_vsi *vsi = NULL; 117 struct ice_hw *hw; 118 unsigned int i; 119 int packets; 120 u32 v; 121 122 ice_for_each_vsi(pf, v) 123 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 124 vsi = pf->vsi[v]; 125 break; 126 } 127 128 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 129 return; 130 131 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 132 return; 133 134 hw = &vsi->back->hw; 135 136 ice_for_each_txq(vsi, i) { 137 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 138 struct ice_ring_stats *ring_stats; 139 140 if (!tx_ring) 141 continue; 142 if (ice_ring_ch_enabled(tx_ring)) 143 continue; 144 145 ring_stats = tx_ring->ring_stats; 146 if (!ring_stats) 147 continue; 148 149 if (tx_ring->desc) { 150 /* If packet counter has not changed the queue is 151 * likely stalled, so force an interrupt for this 152 * queue. 153 * 154 * prev_pkt would be negative if there was no 155 * pending work. 156 */ 157 packets = ring_stats->stats.pkts & INT_MAX; 158 if (ring_stats->tx_stats.prev_pkt == packets) { 159 /* Trigger sw interrupt to revive the queue */ 160 ice_trigger_sw_intr(hw, tx_ring->q_vector); 161 continue; 162 } 163 164 /* Memory barrier between read of packet count and call 165 * to ice_get_tx_pending() 166 */ 167 smp_rmb(); 168 ring_stats->tx_stats.prev_pkt = 169 ice_get_tx_pending(tx_ring) ? packets : -1; 170 } 171 } 172 } 173 174 /** 175 * ice_init_mac_fltr - Set initial MAC filters 176 * @pf: board private structure 177 * 178 * Set initial set of MAC filters for PF VSI; configure filters for permanent 179 * address and broadcast address. If an error is encountered, netdevice will be 180 * unregistered. 181 */ 182 static int ice_init_mac_fltr(struct ice_pf *pf) 183 { 184 struct ice_vsi *vsi; 185 u8 *perm_addr; 186 187 vsi = ice_get_main_vsi(pf); 188 if (!vsi) 189 return -EINVAL; 190 191 perm_addr = vsi->port_info->mac.perm_addr; 192 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 193 } 194 195 /** 196 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 197 * @netdev: the net device on which the sync is happening 198 * @addr: MAC address to sync 199 * 200 * This is a callback function which is called by the in kernel device sync 201 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 202 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 203 * MAC filters from the hardware. 204 */ 205 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 206 { 207 struct ice_netdev_priv *np = netdev_priv(netdev); 208 struct ice_vsi *vsi = np->vsi; 209 210 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 211 ICE_FWD_TO_VSI)) 212 return -EINVAL; 213 214 return 0; 215 } 216 217 /** 218 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 219 * @netdev: the net device on which the unsync is happening 220 * @addr: MAC address to unsync 221 * 222 * This is a callback function which is called by the in kernel device unsync 223 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 224 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 225 * delete the MAC filters from the hardware. 226 */ 227 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 228 { 229 struct ice_netdev_priv *np = netdev_priv(netdev); 230 struct ice_vsi *vsi = np->vsi; 231 232 /* Under some circumstances, we might receive a request to delete our 233 * own device address from our uc list. Because we store the device 234 * address in the VSI's MAC filter list, we need to ignore such 235 * requests and not delete our device address from this list. 236 */ 237 if (ether_addr_equal(addr, netdev->dev_addr)) 238 return 0; 239 240 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 241 ICE_FWD_TO_VSI)) 242 return -EINVAL; 243 244 return 0; 245 } 246 247 /** 248 * ice_vsi_fltr_changed - check if filter state changed 249 * @vsi: VSI to be checked 250 * 251 * returns true if filter state has changed, false otherwise. 252 */ 253 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 254 { 255 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 256 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 257 } 258 259 /** 260 * ice_set_promisc - Enable promiscuous mode for a given PF 261 * @vsi: the VSI being configured 262 * @promisc_m: mask of promiscuous config bits 263 * 264 */ 265 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 266 { 267 int status; 268 269 if (vsi->type != ICE_VSI_PF) 270 return 0; 271 272 if (ice_vsi_has_non_zero_vlans(vsi)) { 273 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 274 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 275 promisc_m); 276 } else { 277 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 278 promisc_m, 0); 279 } 280 if (status && status != -EEXIST) 281 return status; 282 283 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 284 vsi->vsi_num, promisc_m); 285 return 0; 286 } 287 288 /** 289 * ice_clear_promisc - Disable promiscuous mode for a given PF 290 * @vsi: the VSI being configured 291 * @promisc_m: mask of promiscuous config bits 292 * 293 */ 294 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 295 { 296 int status; 297 298 if (vsi->type != ICE_VSI_PF) 299 return 0; 300 301 if (ice_vsi_has_non_zero_vlans(vsi)) { 302 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 303 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 304 promisc_m); 305 } else { 306 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 307 promisc_m, 0); 308 } 309 310 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 311 vsi->vsi_num, promisc_m); 312 return status; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 427 /* promiscuous mode implies allmulticast so 428 * that VSIs that are in promiscuous mode are 429 * subscribed to multicast packets coming to 430 * the port 431 */ 432 err = ice_set_promisc(vsi, 433 ICE_MCAST_PROMISC_BITS); 434 if (err) 435 goto out_promisc; 436 } 437 } else { 438 /* Clear Rx filter to remove traffic from wire */ 439 if (ice_is_vsi_dflt_vsi(vsi)) { 440 err = ice_clear_dflt_vsi(vsi); 441 if (err) { 442 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 443 err, vsi->vsi_num); 444 vsi->current_netdev_flags |= 445 IFF_PROMISC; 446 goto out_promisc; 447 } 448 if (vsi->netdev->features & 449 NETIF_F_HW_VLAN_CTAG_FILTER) 450 vlan_ops->ena_rx_filtering(vsi); 451 } 452 453 /* disable allmulti here, but only if allmulti is not 454 * still enabled for the netdev 455 */ 456 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 457 err = ice_clear_promisc(vsi, 458 ICE_MCAST_PROMISC_BITS); 459 if (err) { 460 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 461 err, vsi->vsi_num); 462 } 463 } 464 } 465 } 466 goto exit; 467 468 out_promisc: 469 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 470 goto exit; 471 out: 472 /* if something went wrong then set the changed flag so we try again */ 473 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 474 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 475 exit: 476 clear_bit(ICE_CFG_BUSY, vsi->state); 477 return err; 478 } 479 480 /** 481 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 482 * @pf: board private structure 483 */ 484 static void ice_sync_fltr_subtask(struct ice_pf *pf) 485 { 486 int v; 487 488 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 489 return; 490 491 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 492 493 ice_for_each_vsi(pf, v) 494 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 495 ice_vsi_sync_fltr(pf->vsi[v])) { 496 /* come back and try again later */ 497 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 498 break; 499 } 500 } 501 502 /** 503 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 504 * @pf: the PF 505 * @locked: is the rtnl_lock already held 506 */ 507 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 508 { 509 int node; 510 int v; 511 512 ice_for_each_vsi(pf, v) 513 if (pf->vsi[v]) 514 ice_dis_vsi(pf->vsi[v], locked); 515 516 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 517 pf->pf_agg_node[node].num_vsis = 0; 518 519 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 520 pf->vf_agg_node[node].num_vsis = 0; 521 } 522 523 /** 524 * ice_clear_sw_switch_recipes - clear switch recipes 525 * @pf: board private structure 526 * 527 * Mark switch recipes as not created in sw structures. There are cases where 528 * rules (especially advanced rules) need to be restored, either re-read from 529 * hardware or added again. For example after the reset. 'recp_created' flag 530 * prevents from doing that and need to be cleared upfront. 531 */ 532 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 533 { 534 struct ice_sw_recipe *recp; 535 u8 i; 536 537 recp = pf->hw.switch_info->recp_list; 538 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 539 recp[i].recp_created = false; 540 } 541 542 /** 543 * ice_prepare_for_reset - prep for reset 544 * @pf: board private structure 545 * @reset_type: reset type requested 546 * 547 * Inform or close all dependent features in prep for reset. 548 */ 549 static void 550 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 551 { 552 struct ice_hw *hw = &pf->hw; 553 struct ice_vsi *vsi; 554 struct ice_vf *vf; 555 unsigned int bkt; 556 557 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 558 559 /* already prepared for reset */ 560 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 561 return; 562 563 ice_unplug_aux_dev(pf); 564 565 /* Notify VFs of impending reset */ 566 if (ice_check_sq_alive(hw, &hw->mailboxq)) 567 ice_vc_notify_reset(pf); 568 569 /* Disable VFs until reset is completed */ 570 mutex_lock(&pf->vfs.table_lock); 571 ice_for_each_vf(pf, bkt, vf) 572 ice_set_vf_state_dis(vf); 573 mutex_unlock(&pf->vfs.table_lock); 574 575 if (ice_is_eswitch_mode_switchdev(pf)) { 576 if (reset_type != ICE_RESET_PFR) 577 ice_clear_sw_switch_recipes(pf); 578 } 579 580 /* release ADQ specific HW and SW resources */ 581 vsi = ice_get_main_vsi(pf); 582 if (!vsi) 583 goto skip; 584 585 /* to be on safe side, reset orig_rss_size so that normal flow 586 * of deciding rss_size can take precedence 587 */ 588 vsi->orig_rss_size = 0; 589 590 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 591 if (reset_type == ICE_RESET_PFR) { 592 vsi->old_ena_tc = vsi->all_enatc; 593 vsi->old_numtc = vsi->all_numtc; 594 } else { 595 ice_remove_q_channels(vsi, true); 596 597 /* for other reset type, do not support channel rebuild 598 * hence reset needed info 599 */ 600 vsi->old_ena_tc = 0; 601 vsi->all_enatc = 0; 602 vsi->old_numtc = 0; 603 vsi->all_numtc = 0; 604 vsi->req_txq = 0; 605 vsi->req_rxq = 0; 606 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 607 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 608 } 609 } 610 skip: 611 612 /* clear SW filtering DB */ 613 ice_clear_hw_tbls(hw); 614 /* disable the VSIs and their queues that are not already DOWN */ 615 ice_pf_dis_all_vsi(pf, false); 616 617 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 618 ice_ptp_prepare_for_reset(pf, reset_type); 619 620 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 621 ice_gnss_exit(pf); 622 623 if (hw->port_info) 624 ice_sched_clear_port(hw->port_info); 625 626 ice_shutdown_all_ctrlq(hw, false); 627 628 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 } 630 631 /** 632 * ice_do_reset - Initiate one of many types of resets 633 * @pf: board private structure 634 * @reset_type: reset type requested before this function was called. 635 */ 636 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 637 { 638 struct device *dev = ice_pf_to_dev(pf); 639 struct ice_hw *hw = &pf->hw; 640 641 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 642 643 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 644 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 645 reset_type = ICE_RESET_CORER; 646 } 647 648 ice_prepare_for_reset(pf, reset_type); 649 650 /* trigger the reset */ 651 if (ice_reset(hw, reset_type)) { 652 dev_err(dev, "reset %d failed\n", reset_type); 653 set_bit(ICE_RESET_FAILED, pf->state); 654 clear_bit(ICE_RESET_OICR_RECV, pf->state); 655 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 656 clear_bit(ICE_PFR_REQ, pf->state); 657 clear_bit(ICE_CORER_REQ, pf->state); 658 clear_bit(ICE_GLOBR_REQ, pf->state); 659 wake_up(&pf->reset_wait_queue); 660 return; 661 } 662 663 /* PFR is a bit of a special case because it doesn't result in an OICR 664 * interrupt. So for PFR, rebuild after the reset and clear the reset- 665 * associated state bits. 666 */ 667 if (reset_type == ICE_RESET_PFR) { 668 pf->pfr_count++; 669 ice_rebuild(pf, reset_type); 670 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 671 clear_bit(ICE_PFR_REQ, pf->state); 672 wake_up(&pf->reset_wait_queue); 673 ice_reset_all_vfs(pf); 674 } 675 } 676 677 /** 678 * ice_reset_subtask - Set up for resetting the device and driver 679 * @pf: board private structure 680 */ 681 static void ice_reset_subtask(struct ice_pf *pf) 682 { 683 enum ice_reset_req reset_type = ICE_RESET_INVAL; 684 685 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 686 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 687 * of reset is pending and sets bits in pf->state indicating the reset 688 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 689 * prepare for pending reset if not already (for PF software-initiated 690 * global resets the software should already be prepared for it as 691 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 692 * by firmware or software on other PFs, that bit is not set so prepare 693 * for the reset now), poll for reset done, rebuild and return. 694 */ 695 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 696 /* Perform the largest reset requested */ 697 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 698 reset_type = ICE_RESET_CORER; 699 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 700 reset_type = ICE_RESET_GLOBR; 701 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 702 reset_type = ICE_RESET_EMPR; 703 /* return if no valid reset type requested */ 704 if (reset_type == ICE_RESET_INVAL) 705 return; 706 ice_prepare_for_reset(pf, reset_type); 707 708 /* make sure we are ready to rebuild */ 709 if (ice_check_reset(&pf->hw)) { 710 set_bit(ICE_RESET_FAILED, pf->state); 711 } else { 712 /* done with reset. start rebuild */ 713 pf->hw.reset_ongoing = false; 714 ice_rebuild(pf, reset_type); 715 /* clear bit to resume normal operations, but 716 * ICE_NEEDS_RESTART bit is set in case rebuild failed 717 */ 718 clear_bit(ICE_RESET_OICR_RECV, pf->state); 719 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 720 clear_bit(ICE_PFR_REQ, pf->state); 721 clear_bit(ICE_CORER_REQ, pf->state); 722 clear_bit(ICE_GLOBR_REQ, pf->state); 723 wake_up(&pf->reset_wait_queue); 724 ice_reset_all_vfs(pf); 725 } 726 727 return; 728 } 729 730 /* No pending resets to finish processing. Check for new resets */ 731 if (test_bit(ICE_PFR_REQ, pf->state)) { 732 reset_type = ICE_RESET_PFR; 733 if (pf->lag && pf->lag->bonded) { 734 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 735 reset_type = ICE_RESET_CORER; 736 } 737 } 738 if (test_bit(ICE_CORER_REQ, pf->state)) 739 reset_type = ICE_RESET_CORER; 740 if (test_bit(ICE_GLOBR_REQ, pf->state)) 741 reset_type = ICE_RESET_GLOBR; 742 /* If no valid reset type requested just return */ 743 if (reset_type == ICE_RESET_INVAL) 744 return; 745 746 /* reset if not already down or busy */ 747 if (!test_bit(ICE_DOWN, pf->state) && 748 !test_bit(ICE_CFG_BUSY, pf->state)) { 749 ice_do_reset(pf, reset_type); 750 } 751 } 752 753 /** 754 * ice_print_topo_conflict - print topology conflict message 755 * @vsi: the VSI whose topology status is being checked 756 */ 757 static void ice_print_topo_conflict(struct ice_vsi *vsi) 758 { 759 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 760 case ICE_AQ_LINK_TOPO_CONFLICT: 761 case ICE_AQ_LINK_MEDIA_CONFLICT: 762 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 764 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 765 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 766 break; 767 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 768 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 769 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 770 else 771 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 772 break; 773 default: 774 break; 775 } 776 } 777 778 /** 779 * ice_print_link_msg - print link up or down message 780 * @vsi: the VSI whose link status is being queried 781 * @isup: boolean for if the link is now up or down 782 */ 783 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 784 { 785 struct ice_aqc_get_phy_caps_data *caps; 786 const char *an_advertised; 787 const char *fec_req; 788 const char *speed; 789 const char *fec; 790 const char *fc; 791 const char *an; 792 int status; 793 794 if (!vsi) 795 return; 796 797 if (vsi->current_isup == isup) 798 return; 799 800 vsi->current_isup = isup; 801 802 if (!isup) { 803 netdev_info(vsi->netdev, "NIC Link is Down\n"); 804 return; 805 } 806 807 switch (vsi->port_info->phy.link_info.link_speed) { 808 case ICE_AQ_LINK_SPEED_200GB: 809 speed = "200 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_100GB: 812 speed = "100 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_50GB: 815 speed = "50 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_40GB: 818 speed = "40 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_25GB: 821 speed = "25 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_20GB: 824 speed = "20 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_10GB: 827 speed = "10 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_5GB: 830 speed = "5 G"; 831 break; 832 case ICE_AQ_LINK_SPEED_2500MB: 833 speed = "2.5 G"; 834 break; 835 case ICE_AQ_LINK_SPEED_1000MB: 836 speed = "1 G"; 837 break; 838 case ICE_AQ_LINK_SPEED_100MB: 839 speed = "100 M"; 840 break; 841 default: 842 speed = "Unknown "; 843 break; 844 } 845 846 switch (vsi->port_info->fc.current_mode) { 847 case ICE_FC_FULL: 848 fc = "Rx/Tx"; 849 break; 850 case ICE_FC_TX_PAUSE: 851 fc = "Tx"; 852 break; 853 case ICE_FC_RX_PAUSE: 854 fc = "Rx"; 855 break; 856 case ICE_FC_NONE: 857 fc = "None"; 858 break; 859 default: 860 fc = "Unknown"; 861 break; 862 } 863 864 /* Get FEC mode based on negotiated link info */ 865 switch (vsi->port_info->phy.link_info.fec_info) { 866 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 867 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 868 fec = "RS-FEC"; 869 break; 870 case ICE_AQ_LINK_25G_KR_FEC_EN: 871 fec = "FC-FEC/BASE-R"; 872 break; 873 default: 874 fec = "NONE"; 875 break; 876 } 877 878 /* check if autoneg completed, might be false due to not supported */ 879 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 880 an = "True"; 881 else 882 an = "False"; 883 884 /* Get FEC mode requested based on PHY caps last SW configuration */ 885 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 886 if (!caps) { 887 fec_req = "Unknown"; 888 an_advertised = "Unknown"; 889 goto done; 890 } 891 892 status = ice_aq_get_phy_caps(vsi->port_info, false, 893 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 894 if (status) 895 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 896 897 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 898 899 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 900 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 901 fec_req = "RS-FEC"; 902 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 903 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 904 fec_req = "FC-FEC/BASE-R"; 905 else 906 fec_req = "NONE"; 907 908 kfree(caps); 909 910 done: 911 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 912 speed, fec_req, fec, an_advertised, an, fc); 913 ice_print_topo_conflict(vsi); 914 } 915 916 /** 917 * ice_vsi_link_event - update the VSI's netdev 918 * @vsi: the VSI on which the link event occurred 919 * @link_up: whether or not the VSI needs to be set up or down 920 */ 921 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 922 { 923 if (!vsi) 924 return; 925 926 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 927 return; 928 929 if (vsi->type == ICE_VSI_PF) { 930 if (link_up == netif_carrier_ok(vsi->netdev)) 931 return; 932 933 if (link_up) { 934 netif_carrier_on(vsi->netdev); 935 netif_tx_wake_all_queues(vsi->netdev); 936 } else { 937 netif_carrier_off(vsi->netdev); 938 netif_tx_stop_all_queues(vsi->netdev); 939 } 940 } 941 } 942 943 /** 944 * ice_set_dflt_mib - send a default config MIB to the FW 945 * @pf: private PF struct 946 * 947 * This function sends a default configuration MIB to the FW. 948 * 949 * If this function errors out at any point, the driver is still able to 950 * function. The main impact is that LFC may not operate as expected. 951 * Therefore an error state in this function should be treated with a DBG 952 * message and continue on with driver rebuild/reenable. 953 */ 954 static void ice_set_dflt_mib(struct ice_pf *pf) 955 { 956 struct device *dev = ice_pf_to_dev(pf); 957 u8 mib_type, *buf, *lldpmib = NULL; 958 u16 len, typelen, offset = 0; 959 struct ice_lldp_org_tlv *tlv; 960 struct ice_hw *hw = &pf->hw; 961 u32 ouisubtype; 962 963 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 964 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 965 if (!lldpmib) { 966 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 967 __func__); 968 return; 969 } 970 971 /* Add ETS CFG TLV */ 972 tlv = (struct ice_lldp_org_tlv *)lldpmib; 973 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 974 ICE_IEEE_ETS_TLV_LEN); 975 tlv->typelen = htons(typelen); 976 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 977 ICE_IEEE_SUBTYPE_ETS_CFG); 978 tlv->ouisubtype = htonl(ouisubtype); 979 980 buf = tlv->tlvinfo; 981 buf[0] = 0; 982 983 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 984 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 985 * Octets 13 - 20 are TSA values - leave as zeros 986 */ 987 buf[5] = 0x64; 988 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add ETS REC TLV */ 994 buf = tlv->tlvinfo; 995 tlv->typelen = htons(typelen); 996 997 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 998 ICE_IEEE_SUBTYPE_ETS_REC); 999 tlv->ouisubtype = htonl(ouisubtype); 1000 1001 /* First octet of buf is reserved 1002 * Octets 1 - 4 map UP to TC - all UPs map to zero 1003 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1004 * Octets 13 - 20 are TSA value - leave as zeros 1005 */ 1006 buf[5] = 0x64; 1007 offset += len + 2; 1008 tlv = (struct ice_lldp_org_tlv *) 1009 ((char *)tlv + sizeof(tlv->typelen) + len); 1010 1011 /* Add PFC CFG TLV */ 1012 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1013 ICE_IEEE_PFC_TLV_LEN); 1014 tlv->typelen = htons(typelen); 1015 1016 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1017 ICE_IEEE_SUBTYPE_PFC_CFG); 1018 tlv->ouisubtype = htonl(ouisubtype); 1019 1020 /* Octet 1 left as all zeros - PFC disabled */ 1021 buf[0] = 0x08; 1022 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1023 offset += len + 2; 1024 1025 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1026 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1027 1028 kfree(lldpmib); 1029 } 1030 1031 /** 1032 * ice_check_phy_fw_load - check if PHY FW load failed 1033 * @pf: pointer to PF struct 1034 * @link_cfg_err: bitmap from the link info structure 1035 * 1036 * check if external PHY FW load failed and print an error message if it did 1037 */ 1038 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1039 { 1040 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1041 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1042 return; 1043 } 1044 1045 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1046 return; 1047 1048 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1049 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1050 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1051 } 1052 } 1053 1054 /** 1055 * ice_check_module_power 1056 * @pf: pointer to PF struct 1057 * @link_cfg_err: bitmap from the link info structure 1058 * 1059 * check module power level returned by a previous call to aq_get_link_info 1060 * and print error messages if module power level is not supported 1061 */ 1062 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1063 { 1064 /* if module power level is supported, clear the flag */ 1065 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1066 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1067 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1068 return; 1069 } 1070 1071 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1072 * above block didn't clear this bit, there's nothing to do 1073 */ 1074 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1075 return; 1076 1077 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1078 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1079 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1080 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1081 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1082 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1083 } 1084 } 1085 1086 /** 1087 * ice_check_link_cfg_err - check if link configuration failed 1088 * @pf: pointer to the PF struct 1089 * @link_cfg_err: bitmap from the link info structure 1090 * 1091 * print if any link configuration failure happens due to the value in the 1092 * link_cfg_err parameter in the link info structure 1093 */ 1094 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1095 { 1096 ice_check_module_power(pf, link_cfg_err); 1097 ice_check_phy_fw_load(pf, link_cfg_err); 1098 } 1099 1100 /** 1101 * ice_link_event - process the link event 1102 * @pf: PF that the link event is associated with 1103 * @pi: port_info for the port that the link event is associated with 1104 * @link_up: true if the physical link is up and false if it is down 1105 * @link_speed: current link speed received from the link event 1106 * 1107 * Returns 0 on success and negative on failure 1108 */ 1109 static int 1110 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1111 u16 link_speed) 1112 { 1113 struct device *dev = ice_pf_to_dev(pf); 1114 struct ice_phy_info *phy_info; 1115 struct ice_vsi *vsi; 1116 u16 old_link_speed; 1117 bool old_link; 1118 int status; 1119 1120 phy_info = &pi->phy; 1121 phy_info->link_info_old = phy_info->link_info; 1122 1123 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1124 old_link_speed = phy_info->link_info_old.link_speed; 1125 1126 /* update the link info structures and re-enable link events, 1127 * don't bail on failure due to other book keeping needed 1128 */ 1129 status = ice_update_link_info(pi); 1130 if (status) 1131 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1132 pi->lport, status, 1133 ice_aq_str(pi->hw->adminq.sq_last_status)); 1134 1135 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1136 1137 /* Check if the link state is up after updating link info, and treat 1138 * this event as an UP event since the link is actually UP now. 1139 */ 1140 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1141 link_up = true; 1142 1143 vsi = ice_get_main_vsi(pf); 1144 if (!vsi || !vsi->port_info) 1145 return -EINVAL; 1146 1147 /* turn off PHY if media was removed */ 1148 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1149 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1150 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1151 ice_set_link(vsi, false); 1152 } 1153 1154 /* if the old link up/down and speed is the same as the new */ 1155 if (link_up == old_link && link_speed == old_link_speed) 1156 return 0; 1157 1158 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1159 1160 if (ice_is_dcb_active(pf)) { 1161 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1162 ice_dcb_rebuild(pf); 1163 } else { 1164 if (link_up) 1165 ice_set_dflt_mib(pf); 1166 } 1167 ice_vsi_link_event(vsi, link_up); 1168 ice_print_link_msg(vsi, link_up); 1169 1170 ice_vc_notify_link_state(pf); 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1177 * @pf: board private structure 1178 */ 1179 static void ice_watchdog_subtask(struct ice_pf *pf) 1180 { 1181 int i; 1182 1183 /* if interface is down do nothing */ 1184 if (test_bit(ICE_DOWN, pf->state) || 1185 test_bit(ICE_CFG_BUSY, pf->state)) 1186 return; 1187 1188 /* make sure we don't do these things too often */ 1189 if (time_before(jiffies, 1190 pf->serv_tmr_prev + pf->serv_tmr_period)) 1191 return; 1192 1193 pf->serv_tmr_prev = jiffies; 1194 1195 /* Update the stats for active netdevs so the network stack 1196 * can look at updated numbers whenever it cares to 1197 */ 1198 ice_update_pf_stats(pf); 1199 ice_for_each_vsi(pf, i) 1200 if (pf->vsi[i] && pf->vsi[i]->netdev) 1201 ice_update_vsi_stats(pf->vsi[i]); 1202 } 1203 1204 /** 1205 * ice_init_link_events - enable/initialize link events 1206 * @pi: pointer to the port_info instance 1207 * 1208 * Returns -EIO on failure, 0 on success 1209 */ 1210 static int ice_init_link_events(struct ice_port_info *pi) 1211 { 1212 u16 mask; 1213 1214 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1215 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1216 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1217 1218 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1219 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1220 pi->lport); 1221 return -EIO; 1222 } 1223 1224 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1225 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1226 pi->lport); 1227 return -EIO; 1228 } 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * ice_handle_link_event - handle link event via ARQ 1235 * @pf: PF that the link event is associated with 1236 * @event: event structure containing link status info 1237 */ 1238 static int 1239 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1240 { 1241 struct ice_aqc_get_link_status_data *link_data; 1242 struct ice_port_info *port_info; 1243 int status; 1244 1245 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1246 port_info = pf->hw.port_info; 1247 if (!port_info) 1248 return -EINVAL; 1249 1250 status = ice_link_event(pf, port_info, 1251 !!(link_data->link_info & ICE_AQ_LINK_UP), 1252 le16_to_cpu(link_data->link_speed)); 1253 if (status) 1254 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1255 status); 1256 1257 return status; 1258 } 1259 1260 /** 1261 * ice_get_fwlog_data - copy the FW log data from ARQ event 1262 * @pf: PF that the FW log event is associated with 1263 * @event: event structure containing FW log data 1264 */ 1265 static void 1266 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1267 { 1268 struct ice_fwlog_data *fwlog; 1269 struct ice_hw *hw = &pf->hw; 1270 1271 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1272 1273 memset(fwlog->data, 0, PAGE_SIZE); 1274 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1275 1276 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1277 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1278 1279 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1280 /* the rings are full so bump the head to create room */ 1281 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1282 hw->fwlog_ring.size); 1283 } 1284 } 1285 1286 /** 1287 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1288 * @pf: pointer to the PF private structure 1289 * @task: intermediate helper storage and identifier for waiting 1290 * @opcode: the opcode to wait for 1291 * 1292 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1293 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1294 * 1295 * Calls are separated to allow caller registering for event before sending 1296 * the command, which mitigates a race between registering and FW responding. 1297 * 1298 * To obtain only the descriptor contents, pass an task->event with null 1299 * msg_buf. If the complete data buffer is desired, allocate the 1300 * task->event.msg_buf with enough space ahead of time. 1301 */ 1302 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1303 u16 opcode) 1304 { 1305 INIT_HLIST_NODE(&task->entry); 1306 task->opcode = opcode; 1307 task->state = ICE_AQ_TASK_WAITING; 1308 1309 spin_lock_bh(&pf->aq_wait_lock); 1310 hlist_add_head(&task->entry, &pf->aq_wait_list); 1311 spin_unlock_bh(&pf->aq_wait_lock); 1312 } 1313 1314 /** 1315 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1316 * @pf: pointer to the PF private structure 1317 * @task: ptr prepared by ice_aq_prep_for_event() 1318 * @timeout: how long to wait, in jiffies 1319 * 1320 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1321 * current thread will be put to sleep until the specified event occurs or 1322 * until the given timeout is reached. 1323 * 1324 * Returns: zero on success, or a negative error code on failure. 1325 */ 1326 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1327 unsigned long timeout) 1328 { 1329 enum ice_aq_task_state *state = &task->state; 1330 struct device *dev = ice_pf_to_dev(pf); 1331 unsigned long start = jiffies; 1332 long ret; 1333 int err; 1334 1335 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1336 *state != ICE_AQ_TASK_WAITING, 1337 timeout); 1338 switch (*state) { 1339 case ICE_AQ_TASK_NOT_PREPARED: 1340 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1341 err = -EINVAL; 1342 break; 1343 case ICE_AQ_TASK_WAITING: 1344 err = ret < 0 ? ret : -ETIMEDOUT; 1345 break; 1346 case ICE_AQ_TASK_CANCELED: 1347 err = ret < 0 ? ret : -ECANCELED; 1348 break; 1349 case ICE_AQ_TASK_COMPLETE: 1350 err = ret < 0 ? ret : 0; 1351 break; 1352 default: 1353 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1354 err = -EINVAL; 1355 break; 1356 } 1357 1358 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1359 jiffies_to_msecs(jiffies - start), 1360 jiffies_to_msecs(timeout), 1361 task->opcode); 1362 1363 spin_lock_bh(&pf->aq_wait_lock); 1364 hlist_del(&task->entry); 1365 spin_unlock_bh(&pf->aq_wait_lock); 1366 1367 return err; 1368 } 1369 1370 /** 1371 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1372 * @pf: pointer to the PF private structure 1373 * @opcode: the opcode of the event 1374 * @event: the event to check 1375 * 1376 * Loops over the current list of pending threads waiting for an AdminQ event. 1377 * For each matching task, copy the contents of the event into the task 1378 * structure and wake up the thread. 1379 * 1380 * If multiple threads wait for the same opcode, they will all be woken up. 1381 * 1382 * Note that event->msg_buf will only be duplicated if the event has a buffer 1383 * with enough space already allocated. Otherwise, only the descriptor and 1384 * message length will be copied. 1385 * 1386 * Returns: true if an event was found, false otherwise 1387 */ 1388 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1389 struct ice_rq_event_info *event) 1390 { 1391 struct ice_rq_event_info *task_ev; 1392 struct ice_aq_task *task; 1393 bool found = false; 1394 1395 spin_lock_bh(&pf->aq_wait_lock); 1396 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1397 if (task->state != ICE_AQ_TASK_WAITING) 1398 continue; 1399 if (task->opcode != opcode) 1400 continue; 1401 1402 task_ev = &task->event; 1403 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1404 task_ev->msg_len = event->msg_len; 1405 1406 /* Only copy the data buffer if a destination was set */ 1407 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1408 memcpy(task_ev->msg_buf, event->msg_buf, 1409 event->buf_len); 1410 task_ev->buf_len = event->buf_len; 1411 } 1412 1413 task->state = ICE_AQ_TASK_COMPLETE; 1414 found = true; 1415 } 1416 spin_unlock_bh(&pf->aq_wait_lock); 1417 1418 if (found) 1419 wake_up(&pf->aq_wait_queue); 1420 } 1421 1422 /** 1423 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1424 * @pf: the PF private structure 1425 * 1426 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1427 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1428 */ 1429 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1430 { 1431 struct ice_aq_task *task; 1432 1433 spin_lock_bh(&pf->aq_wait_lock); 1434 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1435 task->state = ICE_AQ_TASK_CANCELED; 1436 spin_unlock_bh(&pf->aq_wait_lock); 1437 1438 wake_up(&pf->aq_wait_queue); 1439 } 1440 1441 #define ICE_MBX_OVERFLOW_WATERMARK 64 1442 1443 /** 1444 * __ice_clean_ctrlq - helper function to clean controlq rings 1445 * @pf: ptr to struct ice_pf 1446 * @q_type: specific Control queue type 1447 */ 1448 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1449 { 1450 struct device *dev = ice_pf_to_dev(pf); 1451 struct ice_rq_event_info event; 1452 struct ice_hw *hw = &pf->hw; 1453 struct ice_ctl_q_info *cq; 1454 u16 pending, i = 0; 1455 const char *qtype; 1456 u32 oldval, val; 1457 1458 /* Do not clean control queue if/when PF reset fails */ 1459 if (test_bit(ICE_RESET_FAILED, pf->state)) 1460 return 0; 1461 1462 switch (q_type) { 1463 case ICE_CTL_Q_ADMIN: 1464 cq = &hw->adminq; 1465 qtype = "Admin"; 1466 break; 1467 case ICE_CTL_Q_SB: 1468 cq = &hw->sbq; 1469 qtype = "Sideband"; 1470 break; 1471 case ICE_CTL_Q_MAILBOX: 1472 cq = &hw->mailboxq; 1473 qtype = "Mailbox"; 1474 /* we are going to try to detect a malicious VF, so set the 1475 * state to begin detection 1476 */ 1477 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1478 break; 1479 default: 1480 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1481 return 0; 1482 } 1483 1484 /* check for error indications - PF_xx_AxQLEN register layout for 1485 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1486 */ 1487 val = rd32(hw, cq->rq.len); 1488 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1489 PF_FW_ARQLEN_ARQCRIT_M)) { 1490 oldval = val; 1491 if (val & PF_FW_ARQLEN_ARQVFE_M) 1492 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1493 qtype); 1494 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1495 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1496 qtype); 1497 } 1498 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1499 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1500 qtype); 1501 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1502 PF_FW_ARQLEN_ARQCRIT_M); 1503 if (oldval != val) 1504 wr32(hw, cq->rq.len, val); 1505 } 1506 1507 val = rd32(hw, cq->sq.len); 1508 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1509 PF_FW_ATQLEN_ATQCRIT_M)) { 1510 oldval = val; 1511 if (val & PF_FW_ATQLEN_ATQVFE_M) 1512 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1513 qtype); 1514 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1515 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1516 qtype); 1517 } 1518 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1519 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1520 qtype); 1521 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1522 PF_FW_ATQLEN_ATQCRIT_M); 1523 if (oldval != val) 1524 wr32(hw, cq->sq.len, val); 1525 } 1526 1527 event.buf_len = cq->rq_buf_size; 1528 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1529 if (!event.msg_buf) 1530 return 0; 1531 1532 do { 1533 struct ice_mbx_data data = {}; 1534 u16 opcode; 1535 int ret; 1536 1537 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1538 if (ret == -EALREADY) 1539 break; 1540 if (ret) { 1541 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1542 ret); 1543 break; 1544 } 1545 1546 opcode = le16_to_cpu(event.desc.opcode); 1547 1548 /* Notify any thread that might be waiting for this event */ 1549 ice_aq_check_events(pf, opcode, &event); 1550 1551 switch (opcode) { 1552 case ice_aqc_opc_get_link_status: 1553 if (ice_handle_link_event(pf, &event)) 1554 dev_err(dev, "Could not handle link event\n"); 1555 break; 1556 case ice_aqc_opc_event_lan_overflow: 1557 ice_vf_lan_overflow_event(pf, &event); 1558 break; 1559 case ice_mbx_opc_send_msg_to_pf: 1560 data.num_msg_proc = i; 1561 data.num_pending_arq = pending; 1562 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1563 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1564 1565 ice_vc_process_vf_msg(pf, &event, &data); 1566 break; 1567 case ice_aqc_opc_fw_logs_event: 1568 ice_get_fwlog_data(pf, &event); 1569 break; 1570 case ice_aqc_opc_lldp_set_mib_change: 1571 ice_dcb_process_lldp_set_mib_change(pf, &event); 1572 break; 1573 default: 1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1575 qtype, opcode); 1576 break; 1577 } 1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1579 1580 kfree(event.msg_buf); 1581 1582 return pending && (i == ICE_DFLT_IRQ_WORK); 1583 } 1584 1585 /** 1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1587 * @hw: pointer to hardware info 1588 * @cq: control queue information 1589 * 1590 * returns true if there are pending messages in a queue, false if there aren't 1591 */ 1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1593 { 1594 u16 ntu; 1595 1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1597 return cq->rq.next_to_clean != ntu; 1598 } 1599 1600 /** 1601 * ice_clean_adminq_subtask - clean the AdminQ rings 1602 * @pf: board private structure 1603 */ 1604 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1605 { 1606 struct ice_hw *hw = &pf->hw; 1607 1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1609 return; 1610 1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1612 return; 1613 1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1615 1616 /* There might be a situation where new messages arrive to a control 1617 * queue between processing the last message and clearing the 1618 * EVENT_PENDING bit. So before exiting, check queue head again (using 1619 * ice_ctrlq_pending) and process new messages if any. 1620 */ 1621 if (ice_ctrlq_pending(hw, &hw->adminq)) 1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1623 1624 ice_flush(hw); 1625 } 1626 1627 /** 1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1629 * @pf: board private structure 1630 */ 1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1632 { 1633 struct ice_hw *hw = &pf->hw; 1634 1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1636 return; 1637 1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1639 return; 1640 1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1642 1643 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1645 1646 ice_flush(hw); 1647 } 1648 1649 /** 1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1651 * @pf: board private structure 1652 */ 1653 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1654 { 1655 struct ice_hw *hw = &pf->hw; 1656 1657 /* if mac_type is not generic, sideband is not supported 1658 * and there's nothing to do here 1659 */ 1660 if (!ice_is_generic_mac(hw)) { 1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1662 return; 1663 } 1664 1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1666 return; 1667 1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1669 return; 1670 1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1672 1673 if (ice_ctrlq_pending(hw, &hw->sbq)) 1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1675 1676 ice_flush(hw); 1677 } 1678 1679 /** 1680 * ice_service_task_schedule - schedule the service task to wake up 1681 * @pf: board private structure 1682 * 1683 * If not already scheduled, this puts the task into the work queue. 1684 */ 1685 void ice_service_task_schedule(struct ice_pf *pf) 1686 { 1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1689 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1690 queue_work(ice_wq, &pf->serv_task); 1691 } 1692 1693 /** 1694 * ice_service_task_complete - finish up the service task 1695 * @pf: board private structure 1696 */ 1697 static void ice_service_task_complete(struct ice_pf *pf) 1698 { 1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1700 1701 /* force memory (pf->state) to sync before next service task */ 1702 smp_mb__before_atomic(); 1703 clear_bit(ICE_SERVICE_SCHED, pf->state); 1704 } 1705 1706 /** 1707 * ice_service_task_stop - stop service task and cancel works 1708 * @pf: board private structure 1709 * 1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1711 * 1 otherwise. 1712 */ 1713 static int ice_service_task_stop(struct ice_pf *pf) 1714 { 1715 int ret; 1716 1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1718 1719 if (pf->serv_tmr.function) 1720 del_timer_sync(&pf->serv_tmr); 1721 if (pf->serv_task.func) 1722 cancel_work_sync(&pf->serv_task); 1723 1724 clear_bit(ICE_SERVICE_SCHED, pf->state); 1725 return ret; 1726 } 1727 1728 /** 1729 * ice_service_task_restart - restart service task and schedule works 1730 * @pf: board private structure 1731 * 1732 * This function is needed for suspend and resume works (e.g WoL scenario) 1733 */ 1734 static void ice_service_task_restart(struct ice_pf *pf) 1735 { 1736 clear_bit(ICE_SERVICE_DIS, pf->state); 1737 ice_service_task_schedule(pf); 1738 } 1739 1740 /** 1741 * ice_service_timer - timer callback to schedule service task 1742 * @t: pointer to timer_list 1743 */ 1744 static void ice_service_timer(struct timer_list *t) 1745 { 1746 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1747 1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1749 ice_service_task_schedule(pf); 1750 } 1751 1752 /** 1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1754 * @pf: pointer to the PF structure 1755 * @vf: pointer to the VF structure 1756 * @reset_vf_tx: whether Tx MDD has occurred 1757 * @reset_vf_rx: whether Rx MDD has occurred 1758 * 1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1760 * automatically reset the VF by enabling the private ethtool flag 1761 * mdd-auto-reset-vf. 1762 */ 1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1764 bool reset_vf_tx, bool reset_vf_rx) 1765 { 1766 struct device *dev = ice_pf_to_dev(pf); 1767 1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1769 return; 1770 1771 /* VF MDD event counters will be cleared by reset, so print the event 1772 * prior to reset. 1773 */ 1774 if (reset_vf_tx) 1775 ice_print_vf_tx_mdd_event(vf); 1776 1777 if (reset_vf_rx) 1778 ice_print_vf_rx_mdd_event(vf); 1779 1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1781 pf->hw.pf_id, vf->vf_id); 1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1783 } 1784 1785 /** 1786 * ice_handle_mdd_event - handle malicious driver detect event 1787 * @pf: pointer to the PF structure 1788 * 1789 * Called from service task. OICR interrupt handler indicates MDD event. 1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1792 * disable the queue, the PF can be configured to reset the VF using ethtool 1793 * private flag mdd-auto-reset-vf. 1794 */ 1795 static void ice_handle_mdd_event(struct ice_pf *pf) 1796 { 1797 struct device *dev = ice_pf_to_dev(pf); 1798 struct ice_hw *hw = &pf->hw; 1799 struct ice_vf *vf; 1800 unsigned int bkt; 1801 u32 reg; 1802 1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1804 /* Since the VF MDD event logging is rate limited, check if 1805 * there are pending MDD events. 1806 */ 1807 ice_print_vfs_mdd_events(pf); 1808 return; 1809 } 1810 1811 /* find what triggered an MDD event */ 1812 reg = rd32(hw, GL_MDET_TX_PQM); 1813 if (reg & GL_MDET_TX_PQM_VALID_M) { 1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1818 1819 if (netif_msg_tx_err(pf)) 1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1821 event, queue, pf_num, vf_num); 1822 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1823 } 1824 1825 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1826 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1827 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1828 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1829 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1830 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1831 1832 if (netif_msg_tx_err(pf)) 1833 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1834 event, queue, pf_num, vf_num); 1835 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1836 } 1837 1838 reg = rd32(hw, GL_MDET_RX); 1839 if (reg & GL_MDET_RX_VALID_M) { 1840 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1841 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1842 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1843 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1844 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1847 event, queue, pf_num, vf_num); 1848 wr32(hw, GL_MDET_RX, 0xffffffff); 1849 } 1850 1851 /* check to see if this PF caused an MDD event */ 1852 reg = rd32(hw, PF_MDET_TX_PQM); 1853 if (reg & PF_MDET_TX_PQM_VALID_M) { 1854 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1855 if (netif_msg_tx_err(pf)) 1856 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1857 } 1858 1859 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1860 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1861 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1862 if (netif_msg_tx_err(pf)) 1863 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1864 } 1865 1866 reg = rd32(hw, PF_MDET_RX); 1867 if (reg & PF_MDET_RX_VALID_M) { 1868 wr32(hw, PF_MDET_RX, 0xFFFF); 1869 if (netif_msg_rx_err(pf)) 1870 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1871 } 1872 1873 /* Check to see if one of the VFs caused an MDD event, and then 1874 * increment counters and set print pending 1875 */ 1876 mutex_lock(&pf->vfs.table_lock); 1877 ice_for_each_vf(pf, bkt, vf) { 1878 bool reset_vf_tx = false, reset_vf_rx = false; 1879 1880 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1881 if (reg & VP_MDET_TX_PQM_VALID_M) { 1882 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1883 vf->mdd_tx_events.count++; 1884 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1885 if (netif_msg_tx_err(pf)) 1886 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1887 vf->vf_id); 1888 1889 reset_vf_tx = true; 1890 } 1891 1892 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1893 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1894 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1895 vf->mdd_tx_events.count++; 1896 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1897 if (netif_msg_tx_err(pf)) 1898 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1899 vf->vf_id); 1900 1901 reset_vf_tx = true; 1902 } 1903 1904 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1905 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1906 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1907 vf->mdd_tx_events.count++; 1908 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1909 if (netif_msg_tx_err(pf)) 1910 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1911 vf->vf_id); 1912 1913 reset_vf_tx = true; 1914 } 1915 1916 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1917 if (reg & VP_MDET_RX_VALID_M) { 1918 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1919 vf->mdd_rx_events.count++; 1920 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1921 if (netif_msg_rx_err(pf)) 1922 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1923 vf->vf_id); 1924 1925 reset_vf_rx = true; 1926 } 1927 1928 if (reset_vf_tx || reset_vf_rx) 1929 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1930 reset_vf_rx); 1931 } 1932 mutex_unlock(&pf->vfs.table_lock); 1933 1934 ice_print_vfs_mdd_events(pf); 1935 } 1936 1937 /** 1938 * ice_force_phys_link_state - Force the physical link state 1939 * @vsi: VSI to force the physical link state to up/down 1940 * @link_up: true/false indicates to set the physical link to up/down 1941 * 1942 * Force the physical link state by getting the current PHY capabilities from 1943 * hardware and setting the PHY config based on the determined capabilities. If 1944 * link changes a link event will be triggered because both the Enable Automatic 1945 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1946 * 1947 * Returns 0 on success, negative on failure 1948 */ 1949 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_aqc_set_phy_cfg_data *cfg; 1953 struct ice_port_info *pi; 1954 struct device *dev; 1955 int retcode; 1956 1957 if (!vsi || !vsi->port_info || !vsi->back) 1958 return -EINVAL; 1959 if (vsi->type != ICE_VSI_PF) 1960 return 0; 1961 1962 dev = ice_pf_to_dev(vsi->back); 1963 1964 pi = vsi->port_info; 1965 1966 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1967 if (!pcaps) 1968 return -ENOMEM; 1969 1970 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1971 NULL); 1972 if (retcode) { 1973 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1974 vsi->vsi_num, retcode); 1975 retcode = -EIO; 1976 goto out; 1977 } 1978 1979 /* No change in link */ 1980 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1981 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1982 goto out; 1983 1984 /* Use the current user PHY configuration. The current user PHY 1985 * configuration is initialized during probe from PHY capabilities 1986 * software mode, and updated on set PHY configuration. 1987 */ 1988 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1989 if (!cfg) { 1990 retcode = -ENOMEM; 1991 goto out; 1992 } 1993 1994 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1995 if (link_up) 1996 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1997 else 1998 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1999 2000 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2001 if (retcode) { 2002 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2003 vsi->vsi_num, retcode); 2004 retcode = -EIO; 2005 } 2006 2007 kfree(cfg); 2008 out: 2009 kfree(pcaps); 2010 return retcode; 2011 } 2012 2013 /** 2014 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2015 * @pi: port info structure 2016 * 2017 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2018 */ 2019 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2020 { 2021 struct ice_aqc_get_phy_caps_data *pcaps; 2022 struct ice_pf *pf = pi->hw->back; 2023 int err; 2024 2025 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2026 if (!pcaps) 2027 return -ENOMEM; 2028 2029 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2030 pcaps, NULL); 2031 2032 if (err) { 2033 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2034 goto out; 2035 } 2036 2037 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2038 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2039 2040 out: 2041 kfree(pcaps); 2042 return err; 2043 } 2044 2045 /** 2046 * ice_init_link_dflt_override - Initialize link default override 2047 * @pi: port info structure 2048 * 2049 * Initialize link default override and PHY total port shutdown during probe 2050 */ 2051 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2052 { 2053 struct ice_link_default_override_tlv *ldo; 2054 struct ice_pf *pf = pi->hw->back; 2055 2056 ldo = &pf->link_dflt_override; 2057 if (ice_get_link_default_override(ldo, pi)) 2058 return; 2059 2060 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2061 return; 2062 2063 /* Enable Total Port Shutdown (override/replace link-down-on-close 2064 * ethtool private flag) for ports with Port Disable bit set. 2065 */ 2066 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2067 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2068 } 2069 2070 /** 2071 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2072 * @pi: port info structure 2073 * 2074 * If default override is enabled, initialize the user PHY cfg speed and FEC 2075 * settings using the default override mask from the NVM. 2076 * 2077 * The PHY should only be configured with the default override settings the 2078 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2079 * is used to indicate that the user PHY cfg default override is initialized 2080 * and the PHY has not been configured with the default override settings. The 2081 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2082 * configured. 2083 * 2084 * This function should be called only if the FW doesn't support default 2085 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2086 */ 2087 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2088 { 2089 struct ice_link_default_override_tlv *ldo; 2090 struct ice_aqc_set_phy_cfg_data *cfg; 2091 struct ice_phy_info *phy = &pi->phy; 2092 struct ice_pf *pf = pi->hw->back; 2093 2094 ldo = &pf->link_dflt_override; 2095 2096 /* If link default override is enabled, use to mask NVM PHY capabilities 2097 * for speed and FEC default configuration. 2098 */ 2099 cfg = &phy->curr_user_phy_cfg; 2100 2101 if (ldo->phy_type_low || ldo->phy_type_high) { 2102 cfg->phy_type_low = pf->nvm_phy_type_lo & 2103 cpu_to_le64(ldo->phy_type_low); 2104 cfg->phy_type_high = pf->nvm_phy_type_hi & 2105 cpu_to_le64(ldo->phy_type_high); 2106 } 2107 cfg->link_fec_opt = ldo->fec_options; 2108 phy->curr_user_fec_req = ICE_FEC_AUTO; 2109 2110 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2111 } 2112 2113 /** 2114 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2115 * @pi: port info structure 2116 * 2117 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2118 * mode to default. The PHY defaults are from get PHY capabilities topology 2119 * with media so call when media is first available. An error is returned if 2120 * called when media is not available. The PHY initialization completed state is 2121 * set here. 2122 * 2123 * These configurations are used when setting PHY 2124 * configuration. The user PHY configuration is updated on set PHY 2125 * configuration. Returns 0 on success, negative on failure 2126 */ 2127 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2128 { 2129 struct ice_aqc_get_phy_caps_data *pcaps; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = pi->hw->back; 2132 int err; 2133 2134 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2135 return -EIO; 2136 2137 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2138 if (!pcaps) 2139 return -ENOMEM; 2140 2141 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2142 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2143 pcaps, NULL); 2144 else 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2146 pcaps, NULL); 2147 if (err) { 2148 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2149 goto err_out; 2150 } 2151 2152 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2153 2154 /* check if lenient mode is supported and enabled */ 2155 if (ice_fw_supports_link_override(pi->hw) && 2156 !(pcaps->module_compliance_enforcement & 2157 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2158 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2159 2160 /* if the FW supports default PHY configuration mode, then the driver 2161 * does not have to apply link override settings. If not, 2162 * initialize user PHY configuration with link override values 2163 */ 2164 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2165 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2166 ice_init_phy_cfg_dflt_override(pi); 2167 goto out; 2168 } 2169 } 2170 2171 /* if link default override is not enabled, set user flow control and 2172 * FEC settings based on what get_phy_caps returned 2173 */ 2174 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2175 pcaps->link_fec_options); 2176 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2177 2178 out: 2179 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2180 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2181 err_out: 2182 kfree(pcaps); 2183 return err; 2184 } 2185 2186 /** 2187 * ice_configure_phy - configure PHY 2188 * @vsi: VSI of PHY 2189 * 2190 * Set the PHY configuration. If the current PHY configuration is the same as 2191 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2192 * configure the based get PHY capabilities for topology with media. 2193 */ 2194 static int ice_configure_phy(struct ice_vsi *vsi) 2195 { 2196 struct device *dev = ice_pf_to_dev(vsi->back); 2197 struct ice_port_info *pi = vsi->port_info; 2198 struct ice_aqc_get_phy_caps_data *pcaps; 2199 struct ice_aqc_set_phy_cfg_data *cfg; 2200 struct ice_phy_info *phy = &pi->phy; 2201 struct ice_pf *pf = vsi->back; 2202 int err; 2203 2204 /* Ensure we have media as we cannot configure a medialess port */ 2205 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2206 return -ENOMEDIUM; 2207 2208 ice_print_topo_conflict(vsi); 2209 2210 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2211 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2212 return -EPERM; 2213 2214 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2215 return ice_force_phys_link_state(vsi, true); 2216 2217 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2218 if (!pcaps) 2219 return -ENOMEM; 2220 2221 /* Get current PHY config */ 2222 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2223 NULL); 2224 if (err) { 2225 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2226 vsi->vsi_num, err); 2227 goto done; 2228 } 2229 2230 /* If PHY enable link is configured and configuration has not changed, 2231 * there's nothing to do 2232 */ 2233 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2234 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2235 goto done; 2236 2237 /* Use PHY topology as baseline for configuration */ 2238 memset(pcaps, 0, sizeof(*pcaps)); 2239 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2240 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2241 pcaps, NULL); 2242 else 2243 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2244 pcaps, NULL); 2245 if (err) { 2246 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2247 vsi->vsi_num, err); 2248 goto done; 2249 } 2250 2251 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2252 if (!cfg) { 2253 err = -ENOMEM; 2254 goto done; 2255 } 2256 2257 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2258 2259 /* Speed - If default override pending, use curr_user_phy_cfg set in 2260 * ice_init_phy_user_cfg_ldo. 2261 */ 2262 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2263 vsi->back->state)) { 2264 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2265 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2266 } else { 2267 u64 phy_low = 0, phy_high = 0; 2268 2269 ice_update_phy_type(&phy_low, &phy_high, 2270 pi->phy.curr_user_speed_req); 2271 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2272 cfg->phy_type_high = pcaps->phy_type_high & 2273 cpu_to_le64(phy_high); 2274 } 2275 2276 /* Can't provide what was requested; use PHY capabilities */ 2277 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2278 cfg->phy_type_low = pcaps->phy_type_low; 2279 cfg->phy_type_high = pcaps->phy_type_high; 2280 } 2281 2282 /* FEC */ 2283 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2284 2285 /* Can't provide what was requested; use PHY capabilities */ 2286 if (cfg->link_fec_opt != 2287 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2288 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2289 cfg->link_fec_opt = pcaps->link_fec_options; 2290 } 2291 2292 /* Flow Control - always supported; no need to check against 2293 * capabilities 2294 */ 2295 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2296 2297 /* Enable link and link update */ 2298 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2299 2300 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2301 if (err) 2302 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2303 vsi->vsi_num, err); 2304 2305 kfree(cfg); 2306 done: 2307 kfree(pcaps); 2308 return err; 2309 } 2310 2311 /** 2312 * ice_check_media_subtask - Check for media 2313 * @pf: pointer to PF struct 2314 * 2315 * If media is available, then initialize PHY user configuration if it is not 2316 * been, and configure the PHY if the interface is up. 2317 */ 2318 static void ice_check_media_subtask(struct ice_pf *pf) 2319 { 2320 struct ice_port_info *pi; 2321 struct ice_vsi *vsi; 2322 int err; 2323 2324 /* No need to check for media if it's already present */ 2325 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2326 return; 2327 2328 vsi = ice_get_main_vsi(pf); 2329 if (!vsi) 2330 return; 2331 2332 /* Refresh link info and check if media is present */ 2333 pi = vsi->port_info; 2334 err = ice_update_link_info(pi); 2335 if (err) 2336 return; 2337 2338 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2339 2340 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2341 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2342 ice_init_phy_user_cfg(pi); 2343 2344 /* PHY settings are reset on media insertion, reconfigure 2345 * PHY to preserve settings. 2346 */ 2347 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2348 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2349 return; 2350 2351 err = ice_configure_phy(vsi); 2352 if (!err) 2353 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2354 2355 /* A Link Status Event will be generated; the event handler 2356 * will complete bringing the interface up 2357 */ 2358 } 2359 } 2360 2361 /** 2362 * ice_service_task - manage and run subtasks 2363 * @work: pointer to work_struct contained by the PF struct 2364 */ 2365 static void ice_service_task(struct work_struct *work) 2366 { 2367 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2368 unsigned long start_time = jiffies; 2369 2370 /* subtasks */ 2371 2372 /* process reset requests first */ 2373 ice_reset_subtask(pf); 2374 2375 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2376 if (ice_is_reset_in_progress(pf->state) || 2377 test_bit(ICE_SUSPENDED, pf->state) || 2378 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2379 ice_service_task_complete(pf); 2380 return; 2381 } 2382 2383 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2384 struct iidc_event *event; 2385 2386 event = kzalloc(sizeof(*event), GFP_KERNEL); 2387 if (event) { 2388 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2389 /* report the entire OICR value to AUX driver */ 2390 swap(event->reg, pf->oicr_err_reg); 2391 ice_send_event_to_aux(pf, event); 2392 kfree(event); 2393 } 2394 } 2395 2396 /* unplug aux dev per request, if an unplug request came in 2397 * while processing a plug request, this will handle it 2398 */ 2399 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2400 ice_unplug_aux_dev(pf); 2401 2402 /* Plug aux device per request */ 2403 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2404 ice_plug_aux_dev(pf); 2405 2406 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2407 struct iidc_event *event; 2408 2409 event = kzalloc(sizeof(*event), GFP_KERNEL); 2410 if (event) { 2411 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2412 ice_send_event_to_aux(pf, event); 2413 kfree(event); 2414 } 2415 } 2416 2417 ice_clean_adminq_subtask(pf); 2418 ice_check_media_subtask(pf); 2419 ice_check_for_hang_subtask(pf); 2420 ice_sync_fltr_subtask(pf); 2421 ice_handle_mdd_event(pf); 2422 ice_watchdog_subtask(pf); 2423 2424 if (ice_is_safe_mode(pf)) { 2425 ice_service_task_complete(pf); 2426 return; 2427 } 2428 2429 ice_process_vflr_event(pf); 2430 ice_clean_mailboxq_subtask(pf); 2431 ice_clean_sbq_subtask(pf); 2432 ice_sync_arfs_fltrs(pf); 2433 ice_flush_fdir_ctx(pf); 2434 2435 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2436 ice_service_task_complete(pf); 2437 2438 /* If the tasks have taken longer than one service timer period 2439 * or there is more work to be done, reset the service timer to 2440 * schedule the service task now. 2441 */ 2442 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2443 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2444 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2446 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2447 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2448 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2449 mod_timer(&pf->serv_tmr, jiffies); 2450 } 2451 2452 /** 2453 * ice_set_ctrlq_len - helper function to set controlq length 2454 * @hw: pointer to the HW instance 2455 */ 2456 static void ice_set_ctrlq_len(struct ice_hw *hw) 2457 { 2458 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2459 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2460 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2461 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2462 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2463 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2464 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2465 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2466 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2467 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2468 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2469 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2470 } 2471 2472 /** 2473 * ice_schedule_reset - schedule a reset 2474 * @pf: board private structure 2475 * @reset: reset being requested 2476 */ 2477 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2478 { 2479 struct device *dev = ice_pf_to_dev(pf); 2480 2481 /* bail out if earlier reset has failed */ 2482 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2483 dev_dbg(dev, "earlier reset has failed\n"); 2484 return -EIO; 2485 } 2486 /* bail if reset/recovery already in progress */ 2487 if (ice_is_reset_in_progress(pf->state)) { 2488 dev_dbg(dev, "Reset already in progress\n"); 2489 return -EBUSY; 2490 } 2491 2492 switch (reset) { 2493 case ICE_RESET_PFR: 2494 set_bit(ICE_PFR_REQ, pf->state); 2495 break; 2496 case ICE_RESET_CORER: 2497 set_bit(ICE_CORER_REQ, pf->state); 2498 break; 2499 case ICE_RESET_GLOBR: 2500 set_bit(ICE_GLOBR_REQ, pf->state); 2501 break; 2502 default: 2503 return -EINVAL; 2504 } 2505 2506 ice_service_task_schedule(pf); 2507 return 0; 2508 } 2509 2510 /** 2511 * ice_irq_affinity_notify - Callback for affinity changes 2512 * @notify: context as to what irq was changed 2513 * @mask: the new affinity mask 2514 * 2515 * This is a callback function used by the irq_set_affinity_notifier function 2516 * so that we may register to receive changes to the irq affinity masks. 2517 */ 2518 static void 2519 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2520 const cpumask_t *mask) 2521 { 2522 struct ice_q_vector *q_vector = 2523 container_of(notify, struct ice_q_vector, affinity_notify); 2524 2525 cpumask_copy(&q_vector->affinity_mask, mask); 2526 } 2527 2528 /** 2529 * ice_irq_affinity_release - Callback for affinity notifier release 2530 * @ref: internal core kernel usage 2531 * 2532 * This is a callback function used by the irq_set_affinity_notifier function 2533 * to inform the current notification subscriber that they will no longer 2534 * receive notifications. 2535 */ 2536 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2537 2538 /** 2539 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2540 * @vsi: the VSI being configured 2541 */ 2542 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2543 { 2544 struct ice_hw *hw = &vsi->back->hw; 2545 int i; 2546 2547 ice_for_each_q_vector(vsi, i) 2548 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2549 2550 ice_flush(hw); 2551 return 0; 2552 } 2553 2554 /** 2555 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2556 * @vsi: the VSI being configured 2557 * @basename: name for the vector 2558 */ 2559 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2560 { 2561 int q_vectors = vsi->num_q_vectors; 2562 struct ice_pf *pf = vsi->back; 2563 struct device *dev; 2564 int rx_int_idx = 0; 2565 int tx_int_idx = 0; 2566 int vector, err; 2567 int irq_num; 2568 2569 dev = ice_pf_to_dev(pf); 2570 for (vector = 0; vector < q_vectors; vector++) { 2571 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2572 2573 irq_num = q_vector->irq.virq; 2574 2575 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2578 tx_int_idx++; 2579 } else if (q_vector->rx.rx_ring) { 2580 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2581 "%s-%s-%d", basename, "rx", rx_int_idx++); 2582 } else if (q_vector->tx.tx_ring) { 2583 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2584 "%s-%s-%d", basename, "tx", tx_int_idx++); 2585 } else { 2586 /* skip this unused q_vector */ 2587 continue; 2588 } 2589 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 IRQF_SHARED, q_vector->name, 2592 q_vector); 2593 else 2594 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2595 0, q_vector->name, q_vector); 2596 if (err) { 2597 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2598 err); 2599 goto free_q_irqs; 2600 } 2601 2602 /* register for affinity change notifications */ 2603 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2604 struct irq_affinity_notify *affinity_notify; 2605 2606 affinity_notify = &q_vector->affinity_notify; 2607 affinity_notify->notify = ice_irq_affinity_notify; 2608 affinity_notify->release = ice_irq_affinity_release; 2609 irq_set_affinity_notifier(irq_num, affinity_notify); 2610 } 2611 2612 /* assign the mask for this irq */ 2613 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2614 } 2615 2616 err = ice_set_cpu_rx_rmap(vsi); 2617 if (err) { 2618 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2619 vsi->vsi_num, ERR_PTR(err)); 2620 goto free_q_irqs; 2621 } 2622 2623 vsi->irqs_ready = true; 2624 return 0; 2625 2626 free_q_irqs: 2627 while (vector--) { 2628 irq_num = vsi->q_vectors[vector]->irq.virq; 2629 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2630 irq_set_affinity_notifier(irq_num, NULL); 2631 irq_update_affinity_hint(irq_num, NULL); 2632 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2633 } 2634 return err; 2635 } 2636 2637 /** 2638 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2639 * @vsi: VSI to setup Tx rings used by XDP 2640 * 2641 * Return 0 on success and negative value on error 2642 */ 2643 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2644 { 2645 struct device *dev = ice_pf_to_dev(vsi->back); 2646 struct ice_tx_desc *tx_desc; 2647 int i, j; 2648 2649 ice_for_each_xdp_txq(vsi, i) { 2650 u16 xdp_q_idx = vsi->alloc_txq + i; 2651 struct ice_ring_stats *ring_stats; 2652 struct ice_tx_ring *xdp_ring; 2653 2654 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2655 if (!xdp_ring) 2656 goto free_xdp_rings; 2657 2658 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2659 if (!ring_stats) { 2660 ice_free_tx_ring(xdp_ring); 2661 goto free_xdp_rings; 2662 } 2663 2664 xdp_ring->ring_stats = ring_stats; 2665 xdp_ring->q_index = xdp_q_idx; 2666 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2667 xdp_ring->vsi = vsi; 2668 xdp_ring->netdev = NULL; 2669 xdp_ring->dev = dev; 2670 xdp_ring->count = vsi->num_tx_desc; 2671 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2672 if (ice_setup_tx_ring(xdp_ring)) 2673 goto free_xdp_rings; 2674 ice_set_ring_xdp(xdp_ring); 2675 spin_lock_init(&xdp_ring->tx_lock); 2676 for (j = 0; j < xdp_ring->count; j++) { 2677 tx_desc = ICE_TX_DESC(xdp_ring, j); 2678 tx_desc->cmd_type_offset_bsz = 0; 2679 } 2680 } 2681 2682 return 0; 2683 2684 free_xdp_rings: 2685 for (; i >= 0; i--) { 2686 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2687 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2688 vsi->xdp_rings[i]->ring_stats = NULL; 2689 ice_free_tx_ring(vsi->xdp_rings[i]); 2690 } 2691 } 2692 return -ENOMEM; 2693 } 2694 2695 /** 2696 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2697 * @vsi: VSI to set the bpf prog on 2698 * @prog: the bpf prog pointer 2699 */ 2700 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2701 { 2702 struct bpf_prog *old_prog; 2703 int i; 2704 2705 old_prog = xchg(&vsi->xdp_prog, prog); 2706 ice_for_each_rxq(vsi, i) 2707 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2708 2709 if (old_prog) 2710 bpf_prog_put(old_prog); 2711 } 2712 2713 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2714 { 2715 struct ice_q_vector *q_vector; 2716 struct ice_tx_ring *ring; 2717 2718 if (static_key_enabled(&ice_xdp_locking_key)) 2719 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2720 2721 q_vector = vsi->rx_rings[qid]->q_vector; 2722 ice_for_each_tx_ring(ring, q_vector->tx) 2723 if (ice_ring_is_xdp(ring)) 2724 return ring; 2725 2726 return NULL; 2727 } 2728 2729 /** 2730 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2731 * @vsi: the VSI with XDP rings being configured 2732 * 2733 * Map XDP rings to interrupt vectors and perform the configuration steps 2734 * dependent on the mapping. 2735 */ 2736 void ice_map_xdp_rings(struct ice_vsi *vsi) 2737 { 2738 int xdp_rings_rem = vsi->num_xdp_txq; 2739 int v_idx, q_idx; 2740 2741 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2742 ice_for_each_q_vector(vsi, v_idx) { 2743 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2744 int xdp_rings_per_v, q_id, q_base; 2745 2746 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2747 vsi->num_q_vectors - v_idx); 2748 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2749 2750 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2751 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2752 2753 xdp_ring->q_vector = q_vector; 2754 xdp_ring->next = q_vector->tx.tx_ring; 2755 q_vector->tx.tx_ring = xdp_ring; 2756 } 2757 xdp_rings_rem -= xdp_rings_per_v; 2758 } 2759 2760 ice_for_each_rxq(vsi, q_idx) { 2761 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2762 q_idx); 2763 ice_tx_xsk_pool(vsi, q_idx); 2764 } 2765 } 2766 2767 /** 2768 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2769 * @vsi: VSI to bring up Tx rings used by XDP 2770 * @prog: bpf program that will be assigned to VSI 2771 * @cfg_type: create from scratch or restore the existing configuration 2772 * 2773 * Return 0 on success and negative value on error 2774 */ 2775 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2776 enum ice_xdp_cfg cfg_type) 2777 { 2778 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2779 struct ice_pf *pf = vsi->back; 2780 struct ice_qs_cfg xdp_qs_cfg = { 2781 .qs_mutex = &pf->avail_q_mutex, 2782 .pf_map = pf->avail_txqs, 2783 .pf_map_size = pf->max_pf_txqs, 2784 .q_count = vsi->num_xdp_txq, 2785 .scatter_count = ICE_MAX_SCATTER_TXQS, 2786 .vsi_map = vsi->txq_map, 2787 .vsi_map_offset = vsi->alloc_txq, 2788 .mapping_mode = ICE_VSI_MAP_CONTIG 2789 }; 2790 struct device *dev; 2791 int status, i; 2792 2793 dev = ice_pf_to_dev(pf); 2794 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2795 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2796 if (!vsi->xdp_rings) 2797 return -ENOMEM; 2798 2799 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2800 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2801 goto err_map_xdp; 2802 2803 if (static_key_enabled(&ice_xdp_locking_key)) 2804 netdev_warn(vsi->netdev, 2805 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2806 2807 if (ice_xdp_alloc_setup_rings(vsi)) 2808 goto clear_xdp_rings; 2809 2810 /* omit the scheduler update if in reset path; XDP queues will be 2811 * taken into account at the end of ice_vsi_rebuild, where 2812 * ice_cfg_vsi_lan is being called 2813 */ 2814 if (cfg_type == ICE_XDP_CFG_PART) 2815 return 0; 2816 2817 ice_map_xdp_rings(vsi); 2818 2819 /* tell the Tx scheduler that right now we have 2820 * additional queues 2821 */ 2822 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2823 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2824 2825 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2826 max_txqs); 2827 if (status) { 2828 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2829 status); 2830 goto clear_xdp_rings; 2831 } 2832 2833 /* assign the prog only when it's not already present on VSI; 2834 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2835 * VSI rebuild that happens under ethtool -L can expose us to 2836 * the bpf_prog refcount issues as we would be swapping same 2837 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2838 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2839 * this is not harmful as dev_xdp_install bumps the refcount 2840 * before calling the op exposed by the driver; 2841 */ 2842 if (!ice_is_xdp_ena_vsi(vsi)) 2843 ice_vsi_assign_bpf_prog(vsi, prog); 2844 2845 return 0; 2846 clear_xdp_rings: 2847 ice_for_each_xdp_txq(vsi, i) 2848 if (vsi->xdp_rings[i]) { 2849 kfree_rcu(vsi->xdp_rings[i], rcu); 2850 vsi->xdp_rings[i] = NULL; 2851 } 2852 2853 err_map_xdp: 2854 mutex_lock(&pf->avail_q_mutex); 2855 ice_for_each_xdp_txq(vsi, i) { 2856 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2857 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2858 } 2859 mutex_unlock(&pf->avail_q_mutex); 2860 2861 devm_kfree(dev, vsi->xdp_rings); 2862 return -ENOMEM; 2863 } 2864 2865 /** 2866 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2867 * @vsi: VSI to remove XDP rings 2868 * @cfg_type: disable XDP permanently or allow it to be restored later 2869 * 2870 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2871 * resources 2872 */ 2873 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2874 { 2875 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2876 struct ice_pf *pf = vsi->back; 2877 int i, v_idx; 2878 2879 /* q_vectors are freed in reset path so there's no point in detaching 2880 * rings 2881 */ 2882 if (cfg_type == ICE_XDP_CFG_PART) 2883 goto free_qmap; 2884 2885 ice_for_each_q_vector(vsi, v_idx) { 2886 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2887 struct ice_tx_ring *ring; 2888 2889 ice_for_each_tx_ring(ring, q_vector->tx) 2890 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2891 break; 2892 2893 /* restore the value of last node prior to XDP setup */ 2894 q_vector->tx.tx_ring = ring; 2895 } 2896 2897 free_qmap: 2898 mutex_lock(&pf->avail_q_mutex); 2899 ice_for_each_xdp_txq(vsi, i) { 2900 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2901 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2902 } 2903 mutex_unlock(&pf->avail_q_mutex); 2904 2905 ice_for_each_xdp_txq(vsi, i) 2906 if (vsi->xdp_rings[i]) { 2907 if (vsi->xdp_rings[i]->desc) { 2908 synchronize_rcu(); 2909 ice_free_tx_ring(vsi->xdp_rings[i]); 2910 } 2911 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2912 vsi->xdp_rings[i]->ring_stats = NULL; 2913 kfree_rcu(vsi->xdp_rings[i], rcu); 2914 vsi->xdp_rings[i] = NULL; 2915 } 2916 2917 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2918 vsi->xdp_rings = NULL; 2919 2920 if (static_key_enabled(&ice_xdp_locking_key)) 2921 static_branch_dec(&ice_xdp_locking_key); 2922 2923 if (cfg_type == ICE_XDP_CFG_PART) 2924 return 0; 2925 2926 ice_vsi_assign_bpf_prog(vsi, NULL); 2927 2928 /* notify Tx scheduler that we destroyed XDP queues and bring 2929 * back the old number of child nodes 2930 */ 2931 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2932 max_txqs[i] = vsi->num_txq; 2933 2934 /* change number of XDP Tx queues to 0 */ 2935 vsi->num_xdp_txq = 0; 2936 2937 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2938 max_txqs); 2939 } 2940 2941 /** 2942 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2943 * @vsi: VSI to schedule napi on 2944 */ 2945 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2946 { 2947 int i; 2948 2949 ice_for_each_rxq(vsi, i) { 2950 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2951 2952 if (rx_ring->xsk_pool) 2953 napi_schedule(&rx_ring->q_vector->napi); 2954 } 2955 } 2956 2957 /** 2958 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2959 * @vsi: VSI to determine the count of XDP Tx qs 2960 * 2961 * returns 0 if Tx qs count is higher than at least half of CPU count, 2962 * -ENOMEM otherwise 2963 */ 2964 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2965 { 2966 u16 avail = ice_get_avail_txq_count(vsi->back); 2967 u16 cpus = num_possible_cpus(); 2968 2969 if (avail < cpus / 2) 2970 return -ENOMEM; 2971 2972 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2973 2974 if (vsi->num_xdp_txq < cpus) 2975 static_branch_inc(&ice_xdp_locking_key); 2976 2977 return 0; 2978 } 2979 2980 /** 2981 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2982 * @vsi: Pointer to VSI structure 2983 */ 2984 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2985 { 2986 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2987 return ICE_RXBUF_1664; 2988 else 2989 return ICE_RXBUF_3072; 2990 } 2991 2992 /** 2993 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2994 * @vsi: VSI to setup XDP for 2995 * @prog: XDP program 2996 * @extack: netlink extended ack 2997 */ 2998 static int 2999 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3000 struct netlink_ext_ack *extack) 3001 { 3002 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3003 bool if_running = netif_running(vsi->netdev); 3004 int ret = 0, xdp_ring_err = 0; 3005 3006 if (prog && !prog->aux->xdp_has_frags) { 3007 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3008 NL_SET_ERR_MSG_MOD(extack, 3009 "MTU is too large for linear frames and XDP prog does not support frags"); 3010 return -EOPNOTSUPP; 3011 } 3012 } 3013 3014 /* hot swap progs and avoid toggling link */ 3015 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 3016 ice_vsi_assign_bpf_prog(vsi, prog); 3017 return 0; 3018 } 3019 3020 /* need to stop netdev while setting up the program for Rx rings */ 3021 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3022 ret = ice_down(vsi); 3023 if (ret) { 3024 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3025 return ret; 3026 } 3027 } 3028 3029 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3030 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3031 if (xdp_ring_err) { 3032 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3033 } else { 3034 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3035 ICE_XDP_CFG_FULL); 3036 if (xdp_ring_err) 3037 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3038 } 3039 xdp_features_set_redirect_target(vsi->netdev, true); 3040 /* reallocate Rx queues that are used for zero-copy */ 3041 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3042 if (xdp_ring_err) 3043 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3044 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3045 xdp_features_clear_redirect_target(vsi->netdev); 3046 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3047 if (xdp_ring_err) 3048 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3049 /* reallocate Rx queues that were used for zero-copy */ 3050 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3053 } 3054 3055 if (if_running) 3056 ret = ice_up(vsi); 3057 3058 if (!ret && prog) 3059 ice_vsi_rx_napi_schedule(vsi); 3060 3061 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3062 } 3063 3064 /** 3065 * ice_xdp_safe_mode - XDP handler for safe mode 3066 * @dev: netdevice 3067 * @xdp: XDP command 3068 */ 3069 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3070 struct netdev_bpf *xdp) 3071 { 3072 NL_SET_ERR_MSG_MOD(xdp->extack, 3073 "Please provide working DDP firmware package in order to use XDP\n" 3074 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3075 return -EOPNOTSUPP; 3076 } 3077 3078 /** 3079 * ice_xdp - implements XDP handler 3080 * @dev: netdevice 3081 * @xdp: XDP command 3082 */ 3083 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3084 { 3085 struct ice_netdev_priv *np = netdev_priv(dev); 3086 struct ice_vsi *vsi = np->vsi; 3087 3088 if (vsi->type != ICE_VSI_PF) { 3089 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3090 return -EINVAL; 3091 } 3092 3093 switch (xdp->command) { 3094 case XDP_SETUP_PROG: 3095 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3096 case XDP_SETUP_XSK_POOL: 3097 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3098 xdp->xsk.queue_id); 3099 default: 3100 return -EINVAL; 3101 } 3102 } 3103 3104 /** 3105 * ice_ena_misc_vector - enable the non-queue interrupts 3106 * @pf: board private structure 3107 */ 3108 static void ice_ena_misc_vector(struct ice_pf *pf) 3109 { 3110 struct ice_hw *hw = &pf->hw; 3111 u32 pf_intr_start_offset; 3112 u32 val; 3113 3114 /* Disable anti-spoof detection interrupt to prevent spurious event 3115 * interrupts during a function reset. Anti-spoof functionally is 3116 * still supported. 3117 */ 3118 val = rd32(hw, GL_MDCK_TX_TDPU); 3119 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3120 wr32(hw, GL_MDCK_TX_TDPU, val); 3121 3122 /* clear things first */ 3123 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3124 rd32(hw, PFINT_OICR); /* read to clear */ 3125 3126 val = (PFINT_OICR_ECC_ERR_M | 3127 PFINT_OICR_MAL_DETECT_M | 3128 PFINT_OICR_GRST_M | 3129 PFINT_OICR_PCI_EXCEPTION_M | 3130 PFINT_OICR_VFLR_M | 3131 PFINT_OICR_HMC_ERR_M | 3132 PFINT_OICR_PE_PUSH_M | 3133 PFINT_OICR_PE_CRITERR_M); 3134 3135 wr32(hw, PFINT_OICR_ENA, val); 3136 3137 /* SW_ITR_IDX = 0, but don't change INTENA */ 3138 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3139 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3140 3141 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3142 return; 3143 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3144 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3145 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3146 } 3147 3148 /** 3149 * ice_ll_ts_intr - ll_ts interrupt handler 3150 * @irq: interrupt number 3151 * @data: pointer to a q_vector 3152 */ 3153 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3154 { 3155 struct ice_pf *pf = data; 3156 u32 pf_intr_start_offset; 3157 struct ice_ptp_tx *tx; 3158 unsigned long flags; 3159 struct ice_hw *hw; 3160 u32 val; 3161 u8 idx; 3162 3163 hw = &pf->hw; 3164 tx = &pf->ptp.port.tx; 3165 spin_lock_irqsave(&tx->lock, flags); 3166 ice_ptp_complete_tx_single_tstamp(tx); 3167 3168 idx = find_next_bit_wrap(tx->in_use, tx->len, 3169 tx->last_ll_ts_idx_read + 1); 3170 if (idx != tx->len) 3171 ice_ptp_req_tx_single_tstamp(tx, idx); 3172 spin_unlock_irqrestore(&tx->lock, flags); 3173 3174 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3175 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3176 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3177 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3178 val); 3179 3180 return IRQ_HANDLED; 3181 } 3182 3183 /** 3184 * ice_misc_intr - misc interrupt handler 3185 * @irq: interrupt number 3186 * @data: pointer to a q_vector 3187 */ 3188 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3189 { 3190 struct ice_pf *pf = (struct ice_pf *)data; 3191 irqreturn_t ret = IRQ_HANDLED; 3192 struct ice_hw *hw = &pf->hw; 3193 struct device *dev; 3194 u32 oicr, ena_mask; 3195 3196 dev = ice_pf_to_dev(pf); 3197 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3198 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3199 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3200 3201 oicr = rd32(hw, PFINT_OICR); 3202 ena_mask = rd32(hw, PFINT_OICR_ENA); 3203 3204 if (oicr & PFINT_OICR_SWINT_M) { 3205 ena_mask &= ~PFINT_OICR_SWINT_M; 3206 pf->sw_int_count++; 3207 } 3208 3209 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3210 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3211 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3212 } 3213 if (oicr & PFINT_OICR_VFLR_M) { 3214 /* disable any further VFLR event notifications */ 3215 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3216 u32 reg = rd32(hw, PFINT_OICR_ENA); 3217 3218 reg &= ~PFINT_OICR_VFLR_M; 3219 wr32(hw, PFINT_OICR_ENA, reg); 3220 } else { 3221 ena_mask &= ~PFINT_OICR_VFLR_M; 3222 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3223 } 3224 } 3225 3226 if (oicr & PFINT_OICR_GRST_M) { 3227 u32 reset; 3228 3229 /* we have a reset warning */ 3230 ena_mask &= ~PFINT_OICR_GRST_M; 3231 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3232 rd32(hw, GLGEN_RSTAT)); 3233 3234 if (reset == ICE_RESET_CORER) 3235 pf->corer_count++; 3236 else if (reset == ICE_RESET_GLOBR) 3237 pf->globr_count++; 3238 else if (reset == ICE_RESET_EMPR) 3239 pf->empr_count++; 3240 else 3241 dev_dbg(dev, "Invalid reset type %d\n", reset); 3242 3243 /* If a reset cycle isn't already in progress, we set a bit in 3244 * pf->state so that the service task can start a reset/rebuild. 3245 */ 3246 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3247 if (reset == ICE_RESET_CORER) 3248 set_bit(ICE_CORER_RECV, pf->state); 3249 else if (reset == ICE_RESET_GLOBR) 3250 set_bit(ICE_GLOBR_RECV, pf->state); 3251 else 3252 set_bit(ICE_EMPR_RECV, pf->state); 3253 3254 /* There are couple of different bits at play here. 3255 * hw->reset_ongoing indicates whether the hardware is 3256 * in reset. This is set to true when a reset interrupt 3257 * is received and set back to false after the driver 3258 * has determined that the hardware is out of reset. 3259 * 3260 * ICE_RESET_OICR_RECV in pf->state indicates 3261 * that a post reset rebuild is required before the 3262 * driver is operational again. This is set above. 3263 * 3264 * As this is the start of the reset/rebuild cycle, set 3265 * both to indicate that. 3266 */ 3267 hw->reset_ongoing = true; 3268 } 3269 } 3270 3271 if (oicr & PFINT_OICR_TSYN_TX_M) { 3272 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3273 if (ice_pf_state_is_nominal(pf) && 3274 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3275 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3276 unsigned long flags; 3277 u8 idx; 3278 3279 spin_lock_irqsave(&tx->lock, flags); 3280 idx = find_next_bit_wrap(tx->in_use, tx->len, 3281 tx->last_ll_ts_idx_read + 1); 3282 if (idx != tx->len) 3283 ice_ptp_req_tx_single_tstamp(tx, idx); 3284 spin_unlock_irqrestore(&tx->lock, flags); 3285 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3286 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3287 ret = IRQ_WAKE_THREAD; 3288 } 3289 } 3290 3291 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3292 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3293 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3294 3295 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3296 3297 if (ice_pf_src_tmr_owned(pf)) { 3298 /* Save EVENTs from GLTSYN register */ 3299 pf->ptp.ext_ts_irq |= gltsyn_stat & 3300 (GLTSYN_STAT_EVENT0_M | 3301 GLTSYN_STAT_EVENT1_M | 3302 GLTSYN_STAT_EVENT2_M); 3303 3304 ice_ptp_extts_event(pf); 3305 } 3306 } 3307 3308 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3309 if (oicr & ICE_AUX_CRIT_ERR) { 3310 pf->oicr_err_reg |= oicr; 3311 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3312 ena_mask &= ~ICE_AUX_CRIT_ERR; 3313 } 3314 3315 /* Report any remaining unexpected interrupts */ 3316 oicr &= ena_mask; 3317 if (oicr) { 3318 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3319 /* If a critical error is pending there is no choice but to 3320 * reset the device. 3321 */ 3322 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3323 PFINT_OICR_ECC_ERR_M)) { 3324 set_bit(ICE_PFR_REQ, pf->state); 3325 } 3326 } 3327 ice_service_task_schedule(pf); 3328 if (ret == IRQ_HANDLED) 3329 ice_irq_dynamic_ena(hw, NULL, NULL); 3330 3331 return ret; 3332 } 3333 3334 /** 3335 * ice_misc_intr_thread_fn - misc interrupt thread function 3336 * @irq: interrupt number 3337 * @data: pointer to a q_vector 3338 */ 3339 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3340 { 3341 struct ice_pf *pf = data; 3342 struct ice_hw *hw; 3343 3344 hw = &pf->hw; 3345 3346 if (ice_is_reset_in_progress(pf->state)) 3347 goto skip_irq; 3348 3349 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3350 /* Process outstanding Tx timestamps. If there is more work, 3351 * re-arm the interrupt to trigger again. 3352 */ 3353 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3354 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3355 ice_flush(hw); 3356 } 3357 } 3358 3359 skip_irq: 3360 ice_irq_dynamic_ena(hw, NULL, NULL); 3361 3362 return IRQ_HANDLED; 3363 } 3364 3365 /** 3366 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3367 * @hw: pointer to HW structure 3368 */ 3369 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3370 { 3371 /* disable Admin queue Interrupt causes */ 3372 wr32(hw, PFINT_FW_CTL, 3373 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3374 3375 /* disable Mailbox queue Interrupt causes */ 3376 wr32(hw, PFINT_MBX_CTL, 3377 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3378 3379 wr32(hw, PFINT_SB_CTL, 3380 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3381 3382 /* disable Control queue Interrupt causes */ 3383 wr32(hw, PFINT_OICR_CTL, 3384 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3385 3386 ice_flush(hw); 3387 } 3388 3389 /** 3390 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3391 * @pf: board private structure 3392 */ 3393 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3394 { 3395 int irq_num = pf->ll_ts_irq.virq; 3396 3397 synchronize_irq(irq_num); 3398 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3399 3400 ice_free_irq(pf, pf->ll_ts_irq); 3401 } 3402 3403 /** 3404 * ice_free_irq_msix_misc - Unroll misc vector setup 3405 * @pf: board private structure 3406 */ 3407 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3408 { 3409 int misc_irq_num = pf->oicr_irq.virq; 3410 struct ice_hw *hw = &pf->hw; 3411 3412 ice_dis_ctrlq_interrupts(hw); 3413 3414 /* disable OICR interrupt */ 3415 wr32(hw, PFINT_OICR_ENA, 0); 3416 ice_flush(hw); 3417 3418 synchronize_irq(misc_irq_num); 3419 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3420 3421 ice_free_irq(pf, pf->oicr_irq); 3422 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3423 ice_free_irq_msix_ll_ts(pf); 3424 } 3425 3426 /** 3427 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3428 * @hw: pointer to HW structure 3429 * @reg_idx: HW vector index to associate the control queue interrupts with 3430 */ 3431 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3432 { 3433 u32 val; 3434 3435 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3436 PFINT_OICR_CTL_CAUSE_ENA_M); 3437 wr32(hw, PFINT_OICR_CTL, val); 3438 3439 /* enable Admin queue Interrupt causes */ 3440 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3441 PFINT_FW_CTL_CAUSE_ENA_M); 3442 wr32(hw, PFINT_FW_CTL, val); 3443 3444 /* enable Mailbox queue Interrupt causes */ 3445 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3446 PFINT_MBX_CTL_CAUSE_ENA_M); 3447 wr32(hw, PFINT_MBX_CTL, val); 3448 3449 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3450 /* enable Sideband queue Interrupt causes */ 3451 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3452 PFINT_SB_CTL_CAUSE_ENA_M); 3453 wr32(hw, PFINT_SB_CTL, val); 3454 } 3455 3456 ice_flush(hw); 3457 } 3458 3459 /** 3460 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3461 * @pf: board private structure 3462 * 3463 * This sets up the handler for MSIX 0, which is used to manage the 3464 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3465 * when in MSI or Legacy interrupt mode. 3466 */ 3467 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3468 { 3469 struct device *dev = ice_pf_to_dev(pf); 3470 struct ice_hw *hw = &pf->hw; 3471 u32 pf_intr_start_offset; 3472 struct msi_map irq; 3473 int err = 0; 3474 3475 if (!pf->int_name[0]) 3476 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3477 dev_driver_string(dev), dev_name(dev)); 3478 3479 if (!pf->int_name_ll_ts[0]) 3480 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3481 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3482 /* Do not request IRQ but do enable OICR interrupt since settings are 3483 * lost during reset. Note that this function is called only during 3484 * rebuild path and not while reset is in progress. 3485 */ 3486 if (ice_is_reset_in_progress(pf->state)) 3487 goto skip_req_irq; 3488 3489 /* reserve one vector in irq_tracker for misc interrupts */ 3490 irq = ice_alloc_irq(pf, false); 3491 if (irq.index < 0) 3492 return irq.index; 3493 3494 pf->oicr_irq = irq; 3495 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3496 ice_misc_intr_thread_fn, 0, 3497 pf->int_name, pf); 3498 if (err) { 3499 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3500 pf->int_name, err); 3501 ice_free_irq(pf, pf->oicr_irq); 3502 return err; 3503 } 3504 3505 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3506 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3507 goto skip_req_irq; 3508 3509 irq = ice_alloc_irq(pf, false); 3510 if (irq.index < 0) 3511 return irq.index; 3512 3513 pf->ll_ts_irq = irq; 3514 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3515 pf->int_name_ll_ts, pf); 3516 if (err) { 3517 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3518 pf->int_name_ll_ts, err); 3519 ice_free_irq(pf, pf->ll_ts_irq); 3520 return err; 3521 } 3522 3523 skip_req_irq: 3524 ice_ena_misc_vector(pf); 3525 3526 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3527 /* This enables LL TS interrupt */ 3528 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3529 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3530 wr32(hw, PFINT_SB_CTL, 3531 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3532 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3533 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3534 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3535 3536 ice_flush(hw); 3537 ice_irq_dynamic_ena(hw, NULL, NULL); 3538 3539 return 0; 3540 } 3541 3542 /** 3543 * ice_napi_add - register NAPI handler for the VSI 3544 * @vsi: VSI for which NAPI handler is to be registered 3545 * 3546 * This function is only called in the driver's load path. Registering the NAPI 3547 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3548 * reset/rebuild, etc.) 3549 */ 3550 static void ice_napi_add(struct ice_vsi *vsi) 3551 { 3552 int v_idx; 3553 3554 if (!vsi->netdev) 3555 return; 3556 3557 ice_for_each_q_vector(vsi, v_idx) { 3558 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3559 ice_napi_poll); 3560 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3561 } 3562 } 3563 3564 /** 3565 * ice_set_ops - set netdev and ethtools ops for the given netdev 3566 * @vsi: the VSI associated with the new netdev 3567 */ 3568 static void ice_set_ops(struct ice_vsi *vsi) 3569 { 3570 struct net_device *netdev = vsi->netdev; 3571 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3572 3573 if (ice_is_safe_mode(pf)) { 3574 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3575 ice_set_ethtool_safe_mode_ops(netdev); 3576 return; 3577 } 3578 3579 netdev->netdev_ops = &ice_netdev_ops; 3580 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3581 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3582 ice_set_ethtool_ops(netdev); 3583 3584 if (vsi->type != ICE_VSI_PF) 3585 return; 3586 3587 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3588 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3589 NETDEV_XDP_ACT_RX_SG; 3590 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3591 } 3592 3593 /** 3594 * ice_set_netdev_features - set features for the given netdev 3595 * @netdev: netdev instance 3596 */ 3597 static void ice_set_netdev_features(struct net_device *netdev) 3598 { 3599 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3600 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3601 netdev_features_t csumo_features; 3602 netdev_features_t vlano_features; 3603 netdev_features_t dflt_features; 3604 netdev_features_t tso_features; 3605 3606 if (ice_is_safe_mode(pf)) { 3607 /* safe mode */ 3608 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3609 netdev->hw_features = netdev->features; 3610 return; 3611 } 3612 3613 dflt_features = NETIF_F_SG | 3614 NETIF_F_HIGHDMA | 3615 NETIF_F_NTUPLE | 3616 NETIF_F_RXHASH; 3617 3618 csumo_features = NETIF_F_RXCSUM | 3619 NETIF_F_IP_CSUM | 3620 NETIF_F_SCTP_CRC | 3621 NETIF_F_IPV6_CSUM; 3622 3623 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3624 NETIF_F_HW_VLAN_CTAG_TX | 3625 NETIF_F_HW_VLAN_CTAG_RX; 3626 3627 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3628 if (is_dvm_ena) 3629 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3630 3631 tso_features = NETIF_F_TSO | 3632 NETIF_F_TSO_ECN | 3633 NETIF_F_TSO6 | 3634 NETIF_F_GSO_GRE | 3635 NETIF_F_GSO_UDP_TUNNEL | 3636 NETIF_F_GSO_GRE_CSUM | 3637 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3638 NETIF_F_GSO_PARTIAL | 3639 NETIF_F_GSO_IPXIP4 | 3640 NETIF_F_GSO_IPXIP6 | 3641 NETIF_F_GSO_UDP_L4; 3642 3643 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3644 NETIF_F_GSO_GRE_CSUM; 3645 /* set features that user can change */ 3646 netdev->hw_features = dflt_features | csumo_features | 3647 vlano_features | tso_features; 3648 3649 /* add support for HW_CSUM on packets with MPLS header */ 3650 netdev->mpls_features = NETIF_F_HW_CSUM | 3651 NETIF_F_TSO | 3652 NETIF_F_TSO6; 3653 3654 /* enable features */ 3655 netdev->features |= netdev->hw_features; 3656 3657 netdev->hw_features |= NETIF_F_HW_TC; 3658 netdev->hw_features |= NETIF_F_LOOPBACK; 3659 3660 /* encap and VLAN devices inherit default, csumo and tso features */ 3661 netdev->hw_enc_features |= dflt_features | csumo_features | 3662 tso_features; 3663 netdev->vlan_features |= dflt_features | csumo_features | 3664 tso_features; 3665 3666 /* advertise support but don't enable by default since only one type of 3667 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3668 * type turns on the other has to be turned off. This is enforced by the 3669 * ice_fix_features() ndo callback. 3670 */ 3671 if (is_dvm_ena) 3672 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3673 NETIF_F_HW_VLAN_STAG_TX; 3674 3675 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3676 * be changed at runtime 3677 */ 3678 netdev->hw_features |= NETIF_F_RXFCS; 3679 3680 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3681 } 3682 3683 /** 3684 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3685 * @lut: Lookup table 3686 * @rss_table_size: Lookup table size 3687 * @rss_size: Range of queue number for hashing 3688 */ 3689 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3690 { 3691 u16 i; 3692 3693 for (i = 0; i < rss_table_size; i++) 3694 lut[i] = i % rss_size; 3695 } 3696 3697 /** 3698 * ice_pf_vsi_setup - Set up a PF VSI 3699 * @pf: board private structure 3700 * @pi: pointer to the port_info instance 3701 * 3702 * Returns pointer to the successfully allocated VSI software struct 3703 * on success, otherwise returns NULL on failure. 3704 */ 3705 static struct ice_vsi * 3706 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3707 { 3708 struct ice_vsi_cfg_params params = {}; 3709 3710 params.type = ICE_VSI_PF; 3711 params.port_info = pi; 3712 params.flags = ICE_VSI_FLAG_INIT; 3713 3714 return ice_vsi_setup(pf, ¶ms); 3715 } 3716 3717 static struct ice_vsi * 3718 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3719 struct ice_channel *ch) 3720 { 3721 struct ice_vsi_cfg_params params = {}; 3722 3723 params.type = ICE_VSI_CHNL; 3724 params.port_info = pi; 3725 params.ch = ch; 3726 params.flags = ICE_VSI_FLAG_INIT; 3727 3728 return ice_vsi_setup(pf, ¶ms); 3729 } 3730 3731 /** 3732 * ice_ctrl_vsi_setup - Set up a control VSI 3733 * @pf: board private structure 3734 * @pi: pointer to the port_info instance 3735 * 3736 * Returns pointer to the successfully allocated VSI software struct 3737 * on success, otherwise returns NULL on failure. 3738 */ 3739 static struct ice_vsi * 3740 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3741 { 3742 struct ice_vsi_cfg_params params = {}; 3743 3744 params.type = ICE_VSI_CTRL; 3745 params.port_info = pi; 3746 params.flags = ICE_VSI_FLAG_INIT; 3747 3748 return ice_vsi_setup(pf, ¶ms); 3749 } 3750 3751 /** 3752 * ice_lb_vsi_setup - Set up a loopback VSI 3753 * @pf: board private structure 3754 * @pi: pointer to the port_info instance 3755 * 3756 * Returns pointer to the successfully allocated VSI software struct 3757 * on success, otherwise returns NULL on failure. 3758 */ 3759 struct ice_vsi * 3760 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3761 { 3762 struct ice_vsi_cfg_params params = {}; 3763 3764 params.type = ICE_VSI_LB; 3765 params.port_info = pi; 3766 params.flags = ICE_VSI_FLAG_INIT; 3767 3768 return ice_vsi_setup(pf, ¶ms); 3769 } 3770 3771 /** 3772 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3773 * @netdev: network interface to be adjusted 3774 * @proto: VLAN TPID 3775 * @vid: VLAN ID to be added 3776 * 3777 * net_device_ops implementation for adding VLAN IDs 3778 */ 3779 static int 3780 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3781 { 3782 struct ice_netdev_priv *np = netdev_priv(netdev); 3783 struct ice_vsi_vlan_ops *vlan_ops; 3784 struct ice_vsi *vsi = np->vsi; 3785 struct ice_vlan vlan; 3786 int ret; 3787 3788 /* VLAN 0 is added by default during load/reset */ 3789 if (!vid) 3790 return 0; 3791 3792 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3793 usleep_range(1000, 2000); 3794 3795 /* Add multicast promisc rule for the VLAN ID to be added if 3796 * all-multicast is currently enabled. 3797 */ 3798 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3799 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3800 ICE_MCAST_VLAN_PROMISC_BITS, 3801 vid); 3802 if (ret) 3803 goto finish; 3804 } 3805 3806 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3807 3808 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3809 * packets aren't pruned by the device's internal switch on Rx 3810 */ 3811 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3812 ret = vlan_ops->add_vlan(vsi, &vlan); 3813 if (ret) 3814 goto finish; 3815 3816 /* If all-multicast is currently enabled and this VLAN ID is only one 3817 * besides VLAN-0 we have to update look-up type of multicast promisc 3818 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3819 */ 3820 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3821 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3822 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3823 ICE_MCAST_PROMISC_BITS, 0); 3824 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3825 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3826 } 3827 3828 finish: 3829 clear_bit(ICE_CFG_BUSY, vsi->state); 3830 3831 return ret; 3832 } 3833 3834 /** 3835 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3836 * @netdev: network interface to be adjusted 3837 * @proto: VLAN TPID 3838 * @vid: VLAN ID to be removed 3839 * 3840 * net_device_ops implementation for removing VLAN IDs 3841 */ 3842 static int 3843 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3844 { 3845 struct ice_netdev_priv *np = netdev_priv(netdev); 3846 struct ice_vsi_vlan_ops *vlan_ops; 3847 struct ice_vsi *vsi = np->vsi; 3848 struct ice_vlan vlan; 3849 int ret; 3850 3851 /* don't allow removal of VLAN 0 */ 3852 if (!vid) 3853 return 0; 3854 3855 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3856 usleep_range(1000, 2000); 3857 3858 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3859 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3860 if (ret) { 3861 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3862 vsi->vsi_num); 3863 vsi->current_netdev_flags |= IFF_ALLMULTI; 3864 } 3865 3866 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3867 3868 /* Make sure VLAN delete is successful before updating VLAN 3869 * information 3870 */ 3871 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3872 ret = vlan_ops->del_vlan(vsi, &vlan); 3873 if (ret) 3874 goto finish; 3875 3876 /* Remove multicast promisc rule for the removed VLAN ID if 3877 * all-multicast is enabled. 3878 */ 3879 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3880 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3881 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3882 3883 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3884 /* Update look-up type of multicast promisc rule for VLAN 0 3885 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3886 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3887 */ 3888 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3889 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3890 ICE_MCAST_VLAN_PROMISC_BITS, 3891 0); 3892 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3893 ICE_MCAST_PROMISC_BITS, 0); 3894 } 3895 } 3896 3897 finish: 3898 clear_bit(ICE_CFG_BUSY, vsi->state); 3899 3900 return ret; 3901 } 3902 3903 /** 3904 * ice_rep_indr_tc_block_unbind 3905 * @cb_priv: indirection block private data 3906 */ 3907 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3908 { 3909 struct ice_indr_block_priv *indr_priv = cb_priv; 3910 3911 list_del(&indr_priv->list); 3912 kfree(indr_priv); 3913 } 3914 3915 /** 3916 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3917 * @vsi: VSI struct which has the netdev 3918 */ 3919 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3920 { 3921 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3922 3923 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3924 ice_rep_indr_tc_block_unbind); 3925 } 3926 3927 /** 3928 * ice_tc_indir_block_register - Register TC indirect block notifications 3929 * @vsi: VSI struct which has the netdev 3930 * 3931 * Returns 0 on success, negative value on failure 3932 */ 3933 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3934 { 3935 struct ice_netdev_priv *np; 3936 3937 if (!vsi || !vsi->netdev) 3938 return -EINVAL; 3939 3940 np = netdev_priv(vsi->netdev); 3941 3942 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3943 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3944 } 3945 3946 /** 3947 * ice_get_avail_q_count - Get count of queues in use 3948 * @pf_qmap: bitmap to get queue use count from 3949 * @lock: pointer to a mutex that protects access to pf_qmap 3950 * @size: size of the bitmap 3951 */ 3952 static u16 3953 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3954 { 3955 unsigned long bit; 3956 u16 count = 0; 3957 3958 mutex_lock(lock); 3959 for_each_clear_bit(bit, pf_qmap, size) 3960 count++; 3961 mutex_unlock(lock); 3962 3963 return count; 3964 } 3965 3966 /** 3967 * ice_get_avail_txq_count - Get count of Tx queues in use 3968 * @pf: pointer to an ice_pf instance 3969 */ 3970 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3971 { 3972 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3973 pf->max_pf_txqs); 3974 } 3975 3976 /** 3977 * ice_get_avail_rxq_count - Get count of Rx queues in use 3978 * @pf: pointer to an ice_pf instance 3979 */ 3980 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3981 { 3982 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3983 pf->max_pf_rxqs); 3984 } 3985 3986 /** 3987 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3988 * @pf: board private structure to initialize 3989 */ 3990 static void ice_deinit_pf(struct ice_pf *pf) 3991 { 3992 ice_service_task_stop(pf); 3993 mutex_destroy(&pf->lag_mutex); 3994 mutex_destroy(&pf->adev_mutex); 3995 mutex_destroy(&pf->sw_mutex); 3996 mutex_destroy(&pf->tc_mutex); 3997 mutex_destroy(&pf->avail_q_mutex); 3998 mutex_destroy(&pf->vfs.table_lock); 3999 4000 if (pf->avail_txqs) { 4001 bitmap_free(pf->avail_txqs); 4002 pf->avail_txqs = NULL; 4003 } 4004 4005 if (pf->avail_rxqs) { 4006 bitmap_free(pf->avail_rxqs); 4007 pf->avail_rxqs = NULL; 4008 } 4009 4010 if (pf->ptp.clock) 4011 ptp_clock_unregister(pf->ptp.clock); 4012 } 4013 4014 /** 4015 * ice_set_pf_caps - set PFs capability flags 4016 * @pf: pointer to the PF instance 4017 */ 4018 static void ice_set_pf_caps(struct ice_pf *pf) 4019 { 4020 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4021 4022 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4023 if (func_caps->common_cap.rdma) 4024 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4025 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4026 if (func_caps->common_cap.dcb) 4027 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4028 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4029 if (func_caps->common_cap.sr_iov_1_1) { 4030 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4031 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4032 ICE_MAX_SRIOV_VFS); 4033 } 4034 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4035 if (func_caps->common_cap.rss_table_size) 4036 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4037 4038 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4039 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4040 u16 unused; 4041 4042 /* ctrl_vsi_idx will be set to a valid value when flow director 4043 * is setup by ice_init_fdir 4044 */ 4045 pf->ctrl_vsi_idx = ICE_NO_VSI; 4046 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4047 /* force guaranteed filter pool for PF */ 4048 ice_alloc_fd_guar_item(&pf->hw, &unused, 4049 func_caps->fd_fltr_guar); 4050 /* force shared filter pool for PF */ 4051 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4052 func_caps->fd_fltr_best_effort); 4053 } 4054 4055 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4056 if (func_caps->common_cap.ieee_1588 && 4057 !(pf->hw.mac_type == ICE_MAC_E830)) 4058 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4059 4060 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4061 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4062 } 4063 4064 /** 4065 * ice_init_pf - Initialize general software structures (struct ice_pf) 4066 * @pf: board private structure to initialize 4067 */ 4068 static int ice_init_pf(struct ice_pf *pf) 4069 { 4070 ice_set_pf_caps(pf); 4071 4072 mutex_init(&pf->sw_mutex); 4073 mutex_init(&pf->tc_mutex); 4074 mutex_init(&pf->adev_mutex); 4075 mutex_init(&pf->lag_mutex); 4076 4077 INIT_HLIST_HEAD(&pf->aq_wait_list); 4078 spin_lock_init(&pf->aq_wait_lock); 4079 init_waitqueue_head(&pf->aq_wait_queue); 4080 4081 init_waitqueue_head(&pf->reset_wait_queue); 4082 4083 /* setup service timer and periodic service task */ 4084 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4085 pf->serv_tmr_period = HZ; 4086 INIT_WORK(&pf->serv_task, ice_service_task); 4087 clear_bit(ICE_SERVICE_SCHED, pf->state); 4088 4089 mutex_init(&pf->avail_q_mutex); 4090 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4091 if (!pf->avail_txqs) 4092 return -ENOMEM; 4093 4094 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4095 if (!pf->avail_rxqs) { 4096 bitmap_free(pf->avail_txqs); 4097 pf->avail_txqs = NULL; 4098 return -ENOMEM; 4099 } 4100 4101 mutex_init(&pf->vfs.table_lock); 4102 hash_init(pf->vfs.table); 4103 ice_mbx_init_snapshot(&pf->hw); 4104 4105 return 0; 4106 } 4107 4108 /** 4109 * ice_is_wol_supported - check if WoL is supported 4110 * @hw: pointer to hardware info 4111 * 4112 * Check if WoL is supported based on the HW configuration. 4113 * Returns true if NVM supports and enables WoL for this port, false otherwise 4114 */ 4115 bool ice_is_wol_supported(struct ice_hw *hw) 4116 { 4117 u16 wol_ctrl; 4118 4119 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4120 * word) indicates WoL is not supported on the corresponding PF ID. 4121 */ 4122 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4123 return false; 4124 4125 return !(BIT(hw->port_info->lport) & wol_ctrl); 4126 } 4127 4128 /** 4129 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4130 * @vsi: VSI being changed 4131 * @new_rx: new number of Rx queues 4132 * @new_tx: new number of Tx queues 4133 * @locked: is adev device_lock held 4134 * 4135 * Only change the number of queues if new_tx, or new_rx is non-0. 4136 * 4137 * Returns 0 on success. 4138 */ 4139 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4140 { 4141 struct ice_pf *pf = vsi->back; 4142 int i, err = 0, timeout = 50; 4143 4144 if (!new_rx && !new_tx) 4145 return -EINVAL; 4146 4147 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4148 timeout--; 4149 if (!timeout) 4150 return -EBUSY; 4151 usleep_range(1000, 2000); 4152 } 4153 4154 if (new_tx) 4155 vsi->req_txq = (u16)new_tx; 4156 if (new_rx) 4157 vsi->req_rxq = (u16)new_rx; 4158 4159 /* set for the next time the netdev is started */ 4160 if (!netif_running(vsi->netdev)) { 4161 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4162 if (err) 4163 goto rebuild_err; 4164 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4165 goto done; 4166 } 4167 4168 ice_vsi_close(vsi); 4169 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4170 if (err) 4171 goto rebuild_err; 4172 4173 ice_for_each_traffic_class(i) { 4174 if (vsi->tc_cfg.ena_tc & BIT(i)) 4175 netdev_set_tc_queue(vsi->netdev, 4176 vsi->tc_cfg.tc_info[i].netdev_tc, 4177 vsi->tc_cfg.tc_info[i].qcount_tx, 4178 vsi->tc_cfg.tc_info[i].qoffset); 4179 } 4180 ice_pf_dcb_recfg(pf, locked); 4181 ice_vsi_open(vsi); 4182 goto done; 4183 4184 rebuild_err: 4185 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4186 err); 4187 done: 4188 clear_bit(ICE_CFG_BUSY, pf->state); 4189 return err; 4190 } 4191 4192 /** 4193 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4194 * @pf: PF to configure 4195 * 4196 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4197 * VSI can still Tx/Rx VLAN tagged packets. 4198 */ 4199 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4200 { 4201 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4202 struct ice_vsi_ctx *ctxt; 4203 struct ice_hw *hw; 4204 int status; 4205 4206 if (!vsi) 4207 return; 4208 4209 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4210 if (!ctxt) 4211 return; 4212 4213 hw = &pf->hw; 4214 ctxt->info = vsi->info; 4215 4216 ctxt->info.valid_sections = 4217 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4218 ICE_AQ_VSI_PROP_SECURITY_VALID | 4219 ICE_AQ_VSI_PROP_SW_VALID); 4220 4221 /* disable VLAN anti-spoof */ 4222 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4223 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4224 4225 /* disable VLAN pruning and keep all other settings */ 4226 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4227 4228 /* allow all VLANs on Tx and don't strip on Rx */ 4229 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4230 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4231 4232 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4233 if (status) { 4234 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4235 status, ice_aq_str(hw->adminq.sq_last_status)); 4236 } else { 4237 vsi->info.sec_flags = ctxt->info.sec_flags; 4238 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4239 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4240 } 4241 4242 kfree(ctxt); 4243 } 4244 4245 /** 4246 * ice_log_pkg_init - log result of DDP package load 4247 * @hw: pointer to hardware info 4248 * @state: state of package load 4249 */ 4250 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4251 { 4252 struct ice_pf *pf = hw->back; 4253 struct device *dev; 4254 4255 dev = ice_pf_to_dev(pf); 4256 4257 switch (state) { 4258 case ICE_DDP_PKG_SUCCESS: 4259 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4260 hw->active_pkg_name, 4261 hw->active_pkg_ver.major, 4262 hw->active_pkg_ver.minor, 4263 hw->active_pkg_ver.update, 4264 hw->active_pkg_ver.draft); 4265 break; 4266 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4267 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4268 hw->active_pkg_name, 4269 hw->active_pkg_ver.major, 4270 hw->active_pkg_ver.minor, 4271 hw->active_pkg_ver.update, 4272 hw->active_pkg_ver.draft); 4273 break; 4274 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4275 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4276 hw->active_pkg_name, 4277 hw->active_pkg_ver.major, 4278 hw->active_pkg_ver.minor, 4279 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4280 break; 4281 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4282 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4283 hw->active_pkg_name, 4284 hw->active_pkg_ver.major, 4285 hw->active_pkg_ver.minor, 4286 hw->active_pkg_ver.update, 4287 hw->active_pkg_ver.draft, 4288 hw->pkg_name, 4289 hw->pkg_ver.major, 4290 hw->pkg_ver.minor, 4291 hw->pkg_ver.update, 4292 hw->pkg_ver.draft); 4293 break; 4294 case ICE_DDP_PKG_FW_MISMATCH: 4295 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4296 break; 4297 case ICE_DDP_PKG_INVALID_FILE: 4298 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4299 break; 4300 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4301 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4302 break; 4303 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4304 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4305 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4306 break; 4307 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4308 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4309 break; 4310 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4311 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4312 break; 4313 case ICE_DDP_PKG_LOAD_ERROR: 4314 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4315 /* poll for reset to complete */ 4316 if (ice_check_reset(hw)) 4317 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4318 break; 4319 case ICE_DDP_PKG_ERR: 4320 default: 4321 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4322 break; 4323 } 4324 } 4325 4326 /** 4327 * ice_load_pkg - load/reload the DDP Package file 4328 * @firmware: firmware structure when firmware requested or NULL for reload 4329 * @pf: pointer to the PF instance 4330 * 4331 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4332 * initialize HW tables. 4333 */ 4334 static void 4335 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4336 { 4337 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4338 struct device *dev = ice_pf_to_dev(pf); 4339 struct ice_hw *hw = &pf->hw; 4340 4341 /* Load DDP Package */ 4342 if (firmware && !hw->pkg_copy) { 4343 state = ice_copy_and_init_pkg(hw, firmware->data, 4344 firmware->size); 4345 ice_log_pkg_init(hw, state); 4346 } else if (!firmware && hw->pkg_copy) { 4347 /* Reload package during rebuild after CORER/GLOBR reset */ 4348 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4349 ice_log_pkg_init(hw, state); 4350 } else { 4351 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4352 } 4353 4354 if (!ice_is_init_pkg_successful(state)) { 4355 /* Safe Mode */ 4356 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4357 return; 4358 } 4359 4360 /* Successful download package is the precondition for advanced 4361 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4362 */ 4363 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4364 } 4365 4366 /** 4367 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4368 * @pf: pointer to the PF structure 4369 * 4370 * There is no error returned here because the driver should be able to handle 4371 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4372 * specifically with Tx. 4373 */ 4374 static void ice_verify_cacheline_size(struct ice_pf *pf) 4375 { 4376 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4377 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4378 ICE_CACHE_LINE_BYTES); 4379 } 4380 4381 /** 4382 * ice_send_version - update firmware with driver version 4383 * @pf: PF struct 4384 * 4385 * Returns 0 on success, else error code 4386 */ 4387 static int ice_send_version(struct ice_pf *pf) 4388 { 4389 struct ice_driver_ver dv; 4390 4391 dv.major_ver = 0xff; 4392 dv.minor_ver = 0xff; 4393 dv.build_ver = 0xff; 4394 dv.subbuild_ver = 0; 4395 strscpy((char *)dv.driver_string, UTS_RELEASE, 4396 sizeof(dv.driver_string)); 4397 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4398 } 4399 4400 /** 4401 * ice_init_fdir - Initialize flow director VSI and configuration 4402 * @pf: pointer to the PF instance 4403 * 4404 * returns 0 on success, negative on error 4405 */ 4406 static int ice_init_fdir(struct ice_pf *pf) 4407 { 4408 struct device *dev = ice_pf_to_dev(pf); 4409 struct ice_vsi *ctrl_vsi; 4410 int err; 4411 4412 /* Side Band Flow Director needs to have a control VSI. 4413 * Allocate it and store it in the PF. 4414 */ 4415 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4416 if (!ctrl_vsi) { 4417 dev_dbg(dev, "could not create control VSI\n"); 4418 return -ENOMEM; 4419 } 4420 4421 err = ice_vsi_open_ctrl(ctrl_vsi); 4422 if (err) { 4423 dev_dbg(dev, "could not open control VSI\n"); 4424 goto err_vsi_open; 4425 } 4426 4427 mutex_init(&pf->hw.fdir_fltr_lock); 4428 4429 err = ice_fdir_create_dflt_rules(pf); 4430 if (err) 4431 goto err_fdir_rule; 4432 4433 return 0; 4434 4435 err_fdir_rule: 4436 ice_fdir_release_flows(&pf->hw); 4437 ice_vsi_close(ctrl_vsi); 4438 err_vsi_open: 4439 ice_vsi_release(ctrl_vsi); 4440 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4441 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4442 pf->ctrl_vsi_idx = ICE_NO_VSI; 4443 } 4444 return err; 4445 } 4446 4447 static void ice_deinit_fdir(struct ice_pf *pf) 4448 { 4449 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4450 4451 if (!vsi) 4452 return; 4453 4454 ice_vsi_manage_fdir(vsi, false); 4455 ice_vsi_release(vsi); 4456 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4457 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4458 pf->ctrl_vsi_idx = ICE_NO_VSI; 4459 } 4460 4461 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4462 } 4463 4464 /** 4465 * ice_get_opt_fw_name - return optional firmware file name or NULL 4466 * @pf: pointer to the PF instance 4467 */ 4468 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4469 { 4470 /* Optional firmware name same as default with additional dash 4471 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4472 */ 4473 struct pci_dev *pdev = pf->pdev; 4474 char *opt_fw_filename; 4475 u64 dsn; 4476 4477 /* Determine the name of the optional file using the DSN (two 4478 * dwords following the start of the DSN Capability). 4479 */ 4480 dsn = pci_get_dsn(pdev); 4481 if (!dsn) 4482 return NULL; 4483 4484 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4485 if (!opt_fw_filename) 4486 return NULL; 4487 4488 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4489 ICE_DDP_PKG_PATH, dsn); 4490 4491 return opt_fw_filename; 4492 } 4493 4494 /** 4495 * ice_request_fw - Device initialization routine 4496 * @pf: pointer to the PF instance 4497 * @firmware: double pointer to firmware struct 4498 * 4499 * Return: zero when successful, negative values otherwise. 4500 */ 4501 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4502 { 4503 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4504 struct device *dev = ice_pf_to_dev(pf); 4505 int err = 0; 4506 4507 /* optional device-specific DDP (if present) overrides the default DDP 4508 * package file. kernel logs a debug message if the file doesn't exist, 4509 * and warning messages for other errors. 4510 */ 4511 if (opt_fw_filename) { 4512 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4513 kfree(opt_fw_filename); 4514 if (!err) 4515 return err; 4516 } 4517 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4518 if (err) 4519 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4520 4521 return err; 4522 } 4523 4524 /** 4525 * ice_init_tx_topology - performs Tx topology initialization 4526 * @hw: pointer to the hardware structure 4527 * @firmware: pointer to firmware structure 4528 * 4529 * Return: zero when init was successful, negative values otherwise. 4530 */ 4531 static int 4532 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4533 { 4534 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4535 struct ice_pf *pf = hw->back; 4536 struct device *dev; 4537 u8 *buf_copy; 4538 int err; 4539 4540 dev = ice_pf_to_dev(pf); 4541 /* ice_cfg_tx_topo buf argument is not a constant, 4542 * so we have to make a copy 4543 */ 4544 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4545 4546 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4547 if (!err) { 4548 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4549 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4550 else 4551 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4552 /* if there was a change in topology ice_cfg_tx_topo triggered 4553 * a CORER and we need to re-init hw 4554 */ 4555 ice_deinit_hw(hw); 4556 err = ice_init_hw(hw); 4557 4558 return err; 4559 } else if (err == -EIO) { 4560 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4561 } 4562 4563 return 0; 4564 } 4565 4566 /** 4567 * ice_init_ddp_config - DDP related configuration 4568 * @hw: pointer to the hardware structure 4569 * @pf: pointer to pf structure 4570 * 4571 * This function loads DDP file from the disk, then initializes Tx 4572 * topology. At the end DDP package is loaded on the card. 4573 * 4574 * Return: zero when init was successful, negative values otherwise. 4575 */ 4576 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4577 { 4578 struct device *dev = ice_pf_to_dev(pf); 4579 const struct firmware *firmware = NULL; 4580 int err; 4581 4582 err = ice_request_fw(pf, &firmware); 4583 if (err) { 4584 dev_err(dev, "Fail during requesting FW: %d\n", err); 4585 return err; 4586 } 4587 4588 err = ice_init_tx_topology(hw, firmware); 4589 if (err) { 4590 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4591 err); 4592 release_firmware(firmware); 4593 return err; 4594 } 4595 4596 /* Download firmware to device */ 4597 ice_load_pkg(firmware, pf); 4598 release_firmware(firmware); 4599 4600 return 0; 4601 } 4602 4603 /** 4604 * ice_print_wake_reason - show the wake up cause in the log 4605 * @pf: pointer to the PF struct 4606 */ 4607 static void ice_print_wake_reason(struct ice_pf *pf) 4608 { 4609 u32 wus = pf->wakeup_reason; 4610 const char *wake_str; 4611 4612 /* if no wake event, nothing to print */ 4613 if (!wus) 4614 return; 4615 4616 if (wus & PFPM_WUS_LNKC_M) 4617 wake_str = "Link\n"; 4618 else if (wus & PFPM_WUS_MAG_M) 4619 wake_str = "Magic Packet\n"; 4620 else if (wus & PFPM_WUS_MNG_M) 4621 wake_str = "Management\n"; 4622 else if (wus & PFPM_WUS_FW_RST_WK_M) 4623 wake_str = "Firmware Reset\n"; 4624 else 4625 wake_str = "Unknown\n"; 4626 4627 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4628 } 4629 4630 /** 4631 * ice_pf_fwlog_update_module - update 1 module 4632 * @pf: pointer to the PF struct 4633 * @log_level: log_level to use for the @module 4634 * @module: module to update 4635 */ 4636 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4637 { 4638 struct ice_hw *hw = &pf->hw; 4639 4640 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4641 } 4642 4643 /** 4644 * ice_register_netdev - register netdev 4645 * @vsi: pointer to the VSI struct 4646 */ 4647 static int ice_register_netdev(struct ice_vsi *vsi) 4648 { 4649 int err; 4650 4651 if (!vsi || !vsi->netdev) 4652 return -EIO; 4653 4654 err = register_netdev(vsi->netdev); 4655 if (err) 4656 return err; 4657 4658 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4659 netif_carrier_off(vsi->netdev); 4660 netif_tx_stop_all_queues(vsi->netdev); 4661 4662 return 0; 4663 } 4664 4665 static void ice_unregister_netdev(struct ice_vsi *vsi) 4666 { 4667 if (!vsi || !vsi->netdev) 4668 return; 4669 4670 unregister_netdev(vsi->netdev); 4671 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4672 } 4673 4674 /** 4675 * ice_cfg_netdev - Allocate, configure and register a netdev 4676 * @vsi: the VSI associated with the new netdev 4677 * 4678 * Returns 0 on success, negative value on failure 4679 */ 4680 static int ice_cfg_netdev(struct ice_vsi *vsi) 4681 { 4682 struct ice_netdev_priv *np; 4683 struct net_device *netdev; 4684 u8 mac_addr[ETH_ALEN]; 4685 4686 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4687 vsi->alloc_rxq); 4688 if (!netdev) 4689 return -ENOMEM; 4690 4691 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4692 vsi->netdev = netdev; 4693 np = netdev_priv(netdev); 4694 np->vsi = vsi; 4695 4696 ice_set_netdev_features(netdev); 4697 ice_set_ops(vsi); 4698 4699 if (vsi->type == ICE_VSI_PF) { 4700 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4701 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4702 eth_hw_addr_set(netdev, mac_addr); 4703 } 4704 4705 netdev->priv_flags |= IFF_UNICAST_FLT; 4706 4707 /* Setup netdev TC information */ 4708 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4709 4710 netdev->max_mtu = ICE_MAX_MTU; 4711 4712 return 0; 4713 } 4714 4715 static void ice_decfg_netdev(struct ice_vsi *vsi) 4716 { 4717 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4718 free_netdev(vsi->netdev); 4719 vsi->netdev = NULL; 4720 } 4721 4722 /** 4723 * ice_wait_for_fw - wait for full FW readiness 4724 * @hw: pointer to the hardware structure 4725 * @timeout: milliseconds that can elapse before timing out 4726 */ 4727 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4728 { 4729 int fw_loading; 4730 u32 elapsed = 0; 4731 4732 while (elapsed <= timeout) { 4733 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4734 4735 /* firmware was not yet loaded, we have to wait more */ 4736 if (fw_loading) { 4737 elapsed += 100; 4738 msleep(100); 4739 continue; 4740 } 4741 return 0; 4742 } 4743 4744 return -ETIMEDOUT; 4745 } 4746 4747 int ice_init_dev(struct ice_pf *pf) 4748 { 4749 struct device *dev = ice_pf_to_dev(pf); 4750 struct ice_hw *hw = &pf->hw; 4751 int err; 4752 4753 err = ice_init_hw(hw); 4754 if (err) { 4755 dev_err(dev, "ice_init_hw failed: %d\n", err); 4756 return err; 4757 } 4758 4759 /* Some cards require longer initialization times 4760 * due to necessity of loading FW from an external source. 4761 * This can take even half a minute. 4762 */ 4763 if (ice_is_pf_c827(hw)) { 4764 err = ice_wait_for_fw(hw, 30000); 4765 if (err) { 4766 dev_err(dev, "ice_wait_for_fw timed out"); 4767 return err; 4768 } 4769 } 4770 4771 ice_init_feature_support(pf); 4772 4773 err = ice_init_ddp_config(hw, pf); 4774 if (err) 4775 return err; 4776 4777 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4778 * set in pf->state, which will cause ice_is_safe_mode to return 4779 * true 4780 */ 4781 if (ice_is_safe_mode(pf)) { 4782 /* we already got function/device capabilities but these don't 4783 * reflect what the driver needs to do in safe mode. Instead of 4784 * adding conditional logic everywhere to ignore these 4785 * device/function capabilities, override them. 4786 */ 4787 ice_set_safe_mode_caps(hw); 4788 } 4789 4790 err = ice_init_pf(pf); 4791 if (err) { 4792 dev_err(dev, "ice_init_pf failed: %d\n", err); 4793 goto err_init_pf; 4794 } 4795 4796 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4797 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4798 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4799 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4800 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4801 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4802 pf->hw.tnl.valid_count[TNL_VXLAN]; 4803 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4804 UDP_TUNNEL_TYPE_VXLAN; 4805 } 4806 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4807 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4808 pf->hw.tnl.valid_count[TNL_GENEVE]; 4809 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4810 UDP_TUNNEL_TYPE_GENEVE; 4811 } 4812 4813 err = ice_init_interrupt_scheme(pf); 4814 if (err) { 4815 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4816 err = -EIO; 4817 goto err_init_interrupt_scheme; 4818 } 4819 4820 /* In case of MSIX we are going to setup the misc vector right here 4821 * to handle admin queue events etc. In case of legacy and MSI 4822 * the misc functionality and queue processing is combined in 4823 * the same vector and that gets setup at open. 4824 */ 4825 err = ice_req_irq_msix_misc(pf); 4826 if (err) { 4827 dev_err(dev, "setup of misc vector failed: %d\n", err); 4828 goto err_req_irq_msix_misc; 4829 } 4830 4831 return 0; 4832 4833 err_req_irq_msix_misc: 4834 ice_clear_interrupt_scheme(pf); 4835 err_init_interrupt_scheme: 4836 ice_deinit_pf(pf); 4837 err_init_pf: 4838 ice_deinit_hw(hw); 4839 return err; 4840 } 4841 4842 void ice_deinit_dev(struct ice_pf *pf) 4843 { 4844 ice_free_irq_msix_misc(pf); 4845 ice_deinit_pf(pf); 4846 ice_deinit_hw(&pf->hw); 4847 4848 /* Service task is already stopped, so call reset directly. */ 4849 ice_reset(&pf->hw, ICE_RESET_PFR); 4850 pci_wait_for_pending_transaction(pf->pdev); 4851 ice_clear_interrupt_scheme(pf); 4852 } 4853 4854 static void ice_init_features(struct ice_pf *pf) 4855 { 4856 struct device *dev = ice_pf_to_dev(pf); 4857 4858 if (ice_is_safe_mode(pf)) 4859 return; 4860 4861 /* initialize DDP driven features */ 4862 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4863 ice_ptp_init(pf); 4864 4865 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4866 ice_gnss_init(pf); 4867 4868 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4869 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4870 ice_dpll_init(pf); 4871 4872 /* Note: Flow director init failure is non-fatal to load */ 4873 if (ice_init_fdir(pf)) 4874 dev_err(dev, "could not initialize flow director\n"); 4875 4876 /* Note: DCB init failure is non-fatal to load */ 4877 if (ice_init_pf_dcb(pf, false)) { 4878 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4879 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4880 } else { 4881 ice_cfg_lldp_mib_change(&pf->hw, true); 4882 } 4883 4884 if (ice_init_lag(pf)) 4885 dev_warn(dev, "Failed to init link aggregation support\n"); 4886 4887 ice_hwmon_init(pf); 4888 } 4889 4890 static void ice_deinit_features(struct ice_pf *pf) 4891 { 4892 if (ice_is_safe_mode(pf)) 4893 return; 4894 4895 ice_deinit_lag(pf); 4896 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4897 ice_cfg_lldp_mib_change(&pf->hw, false); 4898 ice_deinit_fdir(pf); 4899 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4900 ice_gnss_exit(pf); 4901 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4902 ice_ptp_release(pf); 4903 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4904 ice_dpll_deinit(pf); 4905 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4906 xa_destroy(&pf->eswitch.reprs); 4907 } 4908 4909 static void ice_init_wakeup(struct ice_pf *pf) 4910 { 4911 /* Save wakeup reason register for later use */ 4912 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4913 4914 /* check for a power management event */ 4915 ice_print_wake_reason(pf); 4916 4917 /* clear wake status, all bits */ 4918 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4919 4920 /* Disable WoL at init, wait for user to enable */ 4921 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4922 } 4923 4924 static int ice_init_link(struct ice_pf *pf) 4925 { 4926 struct device *dev = ice_pf_to_dev(pf); 4927 int err; 4928 4929 err = ice_init_link_events(pf->hw.port_info); 4930 if (err) { 4931 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4932 return err; 4933 } 4934 4935 /* not a fatal error if this fails */ 4936 err = ice_init_nvm_phy_type(pf->hw.port_info); 4937 if (err) 4938 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4939 4940 /* not a fatal error if this fails */ 4941 err = ice_update_link_info(pf->hw.port_info); 4942 if (err) 4943 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4944 4945 ice_init_link_dflt_override(pf->hw.port_info); 4946 4947 ice_check_link_cfg_err(pf, 4948 pf->hw.port_info->phy.link_info.link_cfg_err); 4949 4950 /* if media available, initialize PHY settings */ 4951 if (pf->hw.port_info->phy.link_info.link_info & 4952 ICE_AQ_MEDIA_AVAILABLE) { 4953 /* not a fatal error if this fails */ 4954 err = ice_init_phy_user_cfg(pf->hw.port_info); 4955 if (err) 4956 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4957 4958 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4959 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4960 4961 if (vsi) 4962 ice_configure_phy(vsi); 4963 } 4964 } else { 4965 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4966 } 4967 4968 return err; 4969 } 4970 4971 static int ice_init_pf_sw(struct ice_pf *pf) 4972 { 4973 bool dvm = ice_is_dvm_ena(&pf->hw); 4974 struct ice_vsi *vsi; 4975 int err; 4976 4977 /* create switch struct for the switch element created by FW on boot */ 4978 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4979 if (!pf->first_sw) 4980 return -ENOMEM; 4981 4982 if (pf->hw.evb_veb) 4983 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4984 else 4985 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4986 4987 pf->first_sw->pf = pf; 4988 4989 /* record the sw_id available for later use */ 4990 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4991 4992 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4993 if (err) 4994 goto err_aq_set_port_params; 4995 4996 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4997 if (!vsi) { 4998 err = -ENOMEM; 4999 goto err_pf_vsi_setup; 5000 } 5001 5002 return 0; 5003 5004 err_pf_vsi_setup: 5005 err_aq_set_port_params: 5006 kfree(pf->first_sw); 5007 return err; 5008 } 5009 5010 static void ice_deinit_pf_sw(struct ice_pf *pf) 5011 { 5012 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5013 5014 if (!vsi) 5015 return; 5016 5017 ice_vsi_release(vsi); 5018 kfree(pf->first_sw); 5019 } 5020 5021 static int ice_alloc_vsis(struct ice_pf *pf) 5022 { 5023 struct device *dev = ice_pf_to_dev(pf); 5024 5025 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5026 if (!pf->num_alloc_vsi) 5027 return -EIO; 5028 5029 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5030 dev_warn(dev, 5031 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5032 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5033 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5034 } 5035 5036 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5037 GFP_KERNEL); 5038 if (!pf->vsi) 5039 return -ENOMEM; 5040 5041 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5042 sizeof(*pf->vsi_stats), GFP_KERNEL); 5043 if (!pf->vsi_stats) { 5044 devm_kfree(dev, pf->vsi); 5045 return -ENOMEM; 5046 } 5047 5048 return 0; 5049 } 5050 5051 static void ice_dealloc_vsis(struct ice_pf *pf) 5052 { 5053 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5054 pf->vsi_stats = NULL; 5055 5056 pf->num_alloc_vsi = 0; 5057 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5058 pf->vsi = NULL; 5059 } 5060 5061 static int ice_init_devlink(struct ice_pf *pf) 5062 { 5063 int err; 5064 5065 err = ice_devlink_register_params(pf); 5066 if (err) 5067 return err; 5068 5069 ice_devlink_init_regions(pf); 5070 ice_devlink_register(pf); 5071 5072 return 0; 5073 } 5074 5075 static void ice_deinit_devlink(struct ice_pf *pf) 5076 { 5077 ice_devlink_unregister(pf); 5078 ice_devlink_destroy_regions(pf); 5079 ice_devlink_unregister_params(pf); 5080 } 5081 5082 static int ice_init(struct ice_pf *pf) 5083 { 5084 int err; 5085 5086 err = ice_init_dev(pf); 5087 if (err) 5088 return err; 5089 5090 err = ice_alloc_vsis(pf); 5091 if (err) 5092 goto err_alloc_vsis; 5093 5094 err = ice_init_pf_sw(pf); 5095 if (err) 5096 goto err_init_pf_sw; 5097 5098 ice_init_wakeup(pf); 5099 5100 err = ice_init_link(pf); 5101 if (err) 5102 goto err_init_link; 5103 5104 err = ice_send_version(pf); 5105 if (err) 5106 goto err_init_link; 5107 5108 ice_verify_cacheline_size(pf); 5109 5110 if (ice_is_safe_mode(pf)) 5111 ice_set_safe_mode_vlan_cfg(pf); 5112 else 5113 /* print PCI link speed and width */ 5114 pcie_print_link_status(pf->pdev); 5115 5116 /* ready to go, so clear down state bit */ 5117 clear_bit(ICE_DOWN, pf->state); 5118 clear_bit(ICE_SERVICE_DIS, pf->state); 5119 5120 /* since everything is good, start the service timer */ 5121 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5122 5123 return 0; 5124 5125 err_init_link: 5126 ice_deinit_pf_sw(pf); 5127 err_init_pf_sw: 5128 ice_dealloc_vsis(pf); 5129 err_alloc_vsis: 5130 ice_deinit_dev(pf); 5131 return err; 5132 } 5133 5134 static void ice_deinit(struct ice_pf *pf) 5135 { 5136 set_bit(ICE_SERVICE_DIS, pf->state); 5137 set_bit(ICE_DOWN, pf->state); 5138 5139 ice_deinit_pf_sw(pf); 5140 ice_dealloc_vsis(pf); 5141 ice_deinit_dev(pf); 5142 } 5143 5144 /** 5145 * ice_load - load pf by init hw and starting VSI 5146 * @pf: pointer to the pf instance 5147 * 5148 * This function has to be called under devl_lock. 5149 */ 5150 int ice_load(struct ice_pf *pf) 5151 { 5152 struct ice_vsi *vsi; 5153 int err; 5154 5155 devl_assert_locked(priv_to_devlink(pf)); 5156 5157 vsi = ice_get_main_vsi(pf); 5158 5159 /* init channel list */ 5160 INIT_LIST_HEAD(&vsi->ch_list); 5161 5162 err = ice_cfg_netdev(vsi); 5163 if (err) 5164 return err; 5165 5166 /* Setup DCB netlink interface */ 5167 ice_dcbnl_setup(vsi); 5168 5169 err = ice_init_mac_fltr(pf); 5170 if (err) 5171 goto err_init_mac_fltr; 5172 5173 err = ice_devlink_create_pf_port(pf); 5174 if (err) 5175 goto err_devlink_create_pf_port; 5176 5177 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5178 5179 err = ice_register_netdev(vsi); 5180 if (err) 5181 goto err_register_netdev; 5182 5183 err = ice_tc_indir_block_register(vsi); 5184 if (err) 5185 goto err_tc_indir_block_register; 5186 5187 ice_napi_add(vsi); 5188 5189 err = ice_init_rdma(pf); 5190 if (err) 5191 goto err_init_rdma; 5192 5193 ice_init_features(pf); 5194 ice_service_task_restart(pf); 5195 5196 clear_bit(ICE_DOWN, pf->state); 5197 5198 return 0; 5199 5200 err_init_rdma: 5201 ice_tc_indir_block_unregister(vsi); 5202 err_tc_indir_block_register: 5203 ice_unregister_netdev(vsi); 5204 err_register_netdev: 5205 ice_devlink_destroy_pf_port(pf); 5206 err_devlink_create_pf_port: 5207 err_init_mac_fltr: 5208 ice_decfg_netdev(vsi); 5209 return err; 5210 } 5211 5212 /** 5213 * ice_unload - unload pf by stopping VSI and deinit hw 5214 * @pf: pointer to the pf instance 5215 * 5216 * This function has to be called under devl_lock. 5217 */ 5218 void ice_unload(struct ice_pf *pf) 5219 { 5220 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5221 5222 devl_assert_locked(priv_to_devlink(pf)); 5223 5224 ice_deinit_features(pf); 5225 ice_deinit_rdma(pf); 5226 ice_tc_indir_block_unregister(vsi); 5227 ice_unregister_netdev(vsi); 5228 ice_devlink_destroy_pf_port(pf); 5229 ice_decfg_netdev(vsi); 5230 } 5231 5232 /** 5233 * ice_probe - Device initialization routine 5234 * @pdev: PCI device information struct 5235 * @ent: entry in ice_pci_tbl 5236 * 5237 * Returns 0 on success, negative on failure 5238 */ 5239 static int 5240 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5241 { 5242 struct device *dev = &pdev->dev; 5243 struct ice_adapter *adapter; 5244 struct ice_pf *pf; 5245 struct ice_hw *hw; 5246 int err; 5247 5248 if (pdev->is_virtfn) { 5249 dev_err(dev, "can't probe a virtual function\n"); 5250 return -EINVAL; 5251 } 5252 5253 /* when under a kdump kernel initiate a reset before enabling the 5254 * device in order to clear out any pending DMA transactions. These 5255 * transactions can cause some systems to machine check when doing 5256 * the pcim_enable_device() below. 5257 */ 5258 if (is_kdump_kernel()) { 5259 pci_save_state(pdev); 5260 pci_clear_master(pdev); 5261 err = pcie_flr(pdev); 5262 if (err) 5263 return err; 5264 pci_restore_state(pdev); 5265 } 5266 5267 /* this driver uses devres, see 5268 * Documentation/driver-api/driver-model/devres.rst 5269 */ 5270 err = pcim_enable_device(pdev); 5271 if (err) 5272 return err; 5273 5274 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5275 if (err) { 5276 dev_err(dev, "BAR0 I/O map error %d\n", err); 5277 return err; 5278 } 5279 5280 pf = ice_allocate_pf(dev); 5281 if (!pf) 5282 return -ENOMEM; 5283 5284 /* initialize Auxiliary index to invalid value */ 5285 pf->aux_idx = -1; 5286 5287 /* set up for high or low DMA */ 5288 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5289 if (err) { 5290 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5291 return err; 5292 } 5293 5294 pci_set_master(pdev); 5295 5296 adapter = ice_adapter_get(pdev); 5297 if (IS_ERR(adapter)) 5298 return PTR_ERR(adapter); 5299 5300 pf->pdev = pdev; 5301 pf->adapter = adapter; 5302 pci_set_drvdata(pdev, pf); 5303 set_bit(ICE_DOWN, pf->state); 5304 /* Disable service task until DOWN bit is cleared */ 5305 set_bit(ICE_SERVICE_DIS, pf->state); 5306 5307 hw = &pf->hw; 5308 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5309 pci_save_state(pdev); 5310 5311 hw->back = pf; 5312 hw->port_info = NULL; 5313 hw->vendor_id = pdev->vendor; 5314 hw->device_id = pdev->device; 5315 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5316 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5317 hw->subsystem_device_id = pdev->subsystem_device; 5318 hw->bus.device = PCI_SLOT(pdev->devfn); 5319 hw->bus.func = PCI_FUNC(pdev->devfn); 5320 ice_set_ctrlq_len(hw); 5321 5322 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5323 5324 #ifndef CONFIG_DYNAMIC_DEBUG 5325 if (debug < -1) 5326 hw->debug_mask = debug; 5327 #endif 5328 5329 err = ice_init(pf); 5330 if (err) 5331 goto err_init; 5332 5333 devl_lock(priv_to_devlink(pf)); 5334 err = ice_load(pf); 5335 if (err) 5336 goto err_load; 5337 5338 err = ice_init_devlink(pf); 5339 if (err) 5340 goto err_init_devlink; 5341 devl_unlock(priv_to_devlink(pf)); 5342 5343 return 0; 5344 5345 err_init_devlink: 5346 ice_unload(pf); 5347 err_load: 5348 devl_unlock(priv_to_devlink(pf)); 5349 ice_deinit(pf); 5350 err_init: 5351 ice_adapter_put(pdev); 5352 pci_disable_device(pdev); 5353 return err; 5354 } 5355 5356 /** 5357 * ice_set_wake - enable or disable Wake on LAN 5358 * @pf: pointer to the PF struct 5359 * 5360 * Simple helper for WoL control 5361 */ 5362 static void ice_set_wake(struct ice_pf *pf) 5363 { 5364 struct ice_hw *hw = &pf->hw; 5365 bool wol = pf->wol_ena; 5366 5367 /* clear wake state, otherwise new wake events won't fire */ 5368 wr32(hw, PFPM_WUS, U32_MAX); 5369 5370 /* enable / disable APM wake up, no RMW needed */ 5371 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5372 5373 /* set magic packet filter enabled */ 5374 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5375 } 5376 5377 /** 5378 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5379 * @pf: pointer to the PF struct 5380 * 5381 * Issue firmware command to enable multicast magic wake, making 5382 * sure that any locally administered address (LAA) is used for 5383 * wake, and that PF reset doesn't undo the LAA. 5384 */ 5385 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5386 { 5387 struct device *dev = ice_pf_to_dev(pf); 5388 struct ice_hw *hw = &pf->hw; 5389 u8 mac_addr[ETH_ALEN]; 5390 struct ice_vsi *vsi; 5391 int status; 5392 u8 flags; 5393 5394 if (!pf->wol_ena) 5395 return; 5396 5397 vsi = ice_get_main_vsi(pf); 5398 if (!vsi) 5399 return; 5400 5401 /* Get current MAC address in case it's an LAA */ 5402 if (vsi->netdev) 5403 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5404 else 5405 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5406 5407 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5408 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5409 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5410 5411 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5412 if (status) 5413 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5414 status, ice_aq_str(hw->adminq.sq_last_status)); 5415 } 5416 5417 /** 5418 * ice_remove - Device removal routine 5419 * @pdev: PCI device information struct 5420 */ 5421 static void ice_remove(struct pci_dev *pdev) 5422 { 5423 struct ice_pf *pf = pci_get_drvdata(pdev); 5424 int i; 5425 5426 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5427 if (!ice_is_reset_in_progress(pf->state)) 5428 break; 5429 msleep(100); 5430 } 5431 5432 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5433 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5434 ice_free_vfs(pf); 5435 } 5436 5437 ice_hwmon_exit(pf); 5438 5439 ice_service_task_stop(pf); 5440 ice_aq_cancel_waiting_tasks(pf); 5441 set_bit(ICE_DOWN, pf->state); 5442 5443 if (!ice_is_safe_mode(pf)) 5444 ice_remove_arfs(pf); 5445 5446 devl_lock(priv_to_devlink(pf)); 5447 ice_deinit_devlink(pf); 5448 5449 ice_unload(pf); 5450 devl_unlock(priv_to_devlink(pf)); 5451 5452 ice_deinit(pf); 5453 ice_vsi_release_all(pf); 5454 5455 ice_setup_mc_magic_wake(pf); 5456 ice_set_wake(pf); 5457 5458 ice_adapter_put(pdev); 5459 pci_disable_device(pdev); 5460 } 5461 5462 /** 5463 * ice_shutdown - PCI callback for shutting down device 5464 * @pdev: PCI device information struct 5465 */ 5466 static void ice_shutdown(struct pci_dev *pdev) 5467 { 5468 struct ice_pf *pf = pci_get_drvdata(pdev); 5469 5470 ice_remove(pdev); 5471 5472 if (system_state == SYSTEM_POWER_OFF) { 5473 pci_wake_from_d3(pdev, pf->wol_ena); 5474 pci_set_power_state(pdev, PCI_D3hot); 5475 } 5476 } 5477 5478 /** 5479 * ice_prepare_for_shutdown - prep for PCI shutdown 5480 * @pf: board private structure 5481 * 5482 * Inform or close all dependent features in prep for PCI device shutdown 5483 */ 5484 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5485 { 5486 struct ice_hw *hw = &pf->hw; 5487 u32 v; 5488 5489 /* Notify VFs of impending reset */ 5490 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5491 ice_vc_notify_reset(pf); 5492 5493 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5494 5495 /* disable the VSIs and their queues that are not already DOWN */ 5496 ice_pf_dis_all_vsi(pf, false); 5497 5498 ice_for_each_vsi(pf, v) 5499 if (pf->vsi[v]) 5500 pf->vsi[v]->vsi_num = 0; 5501 5502 ice_shutdown_all_ctrlq(hw, true); 5503 } 5504 5505 /** 5506 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5507 * @pf: board private structure to reinitialize 5508 * 5509 * This routine reinitialize interrupt scheme that was cleared during 5510 * power management suspend callback. 5511 * 5512 * This should be called during resume routine to re-allocate the q_vectors 5513 * and reacquire interrupts. 5514 */ 5515 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5516 { 5517 struct device *dev = ice_pf_to_dev(pf); 5518 int ret, v; 5519 5520 /* Since we clear MSIX flag during suspend, we need to 5521 * set it back during resume... 5522 */ 5523 5524 ret = ice_init_interrupt_scheme(pf); 5525 if (ret) { 5526 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5527 return ret; 5528 } 5529 5530 /* Remap vectors and rings, after successful re-init interrupts */ 5531 ice_for_each_vsi(pf, v) { 5532 if (!pf->vsi[v]) 5533 continue; 5534 5535 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5536 if (ret) 5537 goto err_reinit; 5538 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5539 ice_vsi_set_napi_queues(pf->vsi[v]); 5540 } 5541 5542 ret = ice_req_irq_msix_misc(pf); 5543 if (ret) { 5544 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5545 ret); 5546 goto err_reinit; 5547 } 5548 5549 return 0; 5550 5551 err_reinit: 5552 while (v--) 5553 if (pf->vsi[v]) 5554 ice_vsi_free_q_vectors(pf->vsi[v]); 5555 5556 return ret; 5557 } 5558 5559 /** 5560 * ice_suspend 5561 * @dev: generic device information structure 5562 * 5563 * Power Management callback to quiesce the device and prepare 5564 * for D3 transition. 5565 */ 5566 static int ice_suspend(struct device *dev) 5567 { 5568 struct pci_dev *pdev = to_pci_dev(dev); 5569 struct ice_pf *pf; 5570 int disabled, v; 5571 5572 pf = pci_get_drvdata(pdev); 5573 5574 if (!ice_pf_state_is_nominal(pf)) { 5575 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5576 return -EBUSY; 5577 } 5578 5579 /* Stop watchdog tasks until resume completion. 5580 * Even though it is most likely that the service task is 5581 * disabled if the device is suspended or down, the service task's 5582 * state is controlled by a different state bit, and we should 5583 * store and honor whatever state that bit is in at this point. 5584 */ 5585 disabled = ice_service_task_stop(pf); 5586 5587 ice_deinit_rdma(pf); 5588 5589 /* Already suspended?, then there is nothing to do */ 5590 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5591 if (!disabled) 5592 ice_service_task_restart(pf); 5593 return 0; 5594 } 5595 5596 if (test_bit(ICE_DOWN, pf->state) || 5597 ice_is_reset_in_progress(pf->state)) { 5598 dev_err(dev, "can't suspend device in reset or already down\n"); 5599 if (!disabled) 5600 ice_service_task_restart(pf); 5601 return 0; 5602 } 5603 5604 ice_setup_mc_magic_wake(pf); 5605 5606 ice_prepare_for_shutdown(pf); 5607 5608 ice_set_wake(pf); 5609 5610 /* Free vectors, clear the interrupt scheme and release IRQs 5611 * for proper hibernation, especially with large number of CPUs. 5612 * Otherwise hibernation might fail when mapping all the vectors back 5613 * to CPU0. 5614 */ 5615 ice_free_irq_msix_misc(pf); 5616 ice_for_each_vsi(pf, v) { 5617 if (!pf->vsi[v]) 5618 continue; 5619 ice_vsi_free_q_vectors(pf->vsi[v]); 5620 } 5621 ice_clear_interrupt_scheme(pf); 5622 5623 pci_save_state(pdev); 5624 pci_wake_from_d3(pdev, pf->wol_ena); 5625 pci_set_power_state(pdev, PCI_D3hot); 5626 return 0; 5627 } 5628 5629 /** 5630 * ice_resume - PM callback for waking up from D3 5631 * @dev: generic device information structure 5632 */ 5633 static int ice_resume(struct device *dev) 5634 { 5635 struct pci_dev *pdev = to_pci_dev(dev); 5636 enum ice_reset_req reset_type; 5637 struct ice_pf *pf; 5638 struct ice_hw *hw; 5639 int ret; 5640 5641 pci_set_power_state(pdev, PCI_D0); 5642 pci_restore_state(pdev); 5643 pci_save_state(pdev); 5644 5645 if (!pci_device_is_present(pdev)) 5646 return -ENODEV; 5647 5648 ret = pci_enable_device_mem(pdev); 5649 if (ret) { 5650 dev_err(dev, "Cannot enable device after suspend\n"); 5651 return ret; 5652 } 5653 5654 pf = pci_get_drvdata(pdev); 5655 hw = &pf->hw; 5656 5657 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5658 ice_print_wake_reason(pf); 5659 5660 /* We cleared the interrupt scheme when we suspended, so we need to 5661 * restore it now to resume device functionality. 5662 */ 5663 ret = ice_reinit_interrupt_scheme(pf); 5664 if (ret) 5665 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5666 5667 ret = ice_init_rdma(pf); 5668 if (ret) 5669 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5670 ret); 5671 5672 clear_bit(ICE_DOWN, pf->state); 5673 /* Now perform PF reset and rebuild */ 5674 reset_type = ICE_RESET_PFR; 5675 /* re-enable service task for reset, but allow reset to schedule it */ 5676 clear_bit(ICE_SERVICE_DIS, pf->state); 5677 5678 if (ice_schedule_reset(pf, reset_type)) 5679 dev_err(dev, "Reset during resume failed.\n"); 5680 5681 clear_bit(ICE_SUSPENDED, pf->state); 5682 ice_service_task_restart(pf); 5683 5684 /* Restart the service task */ 5685 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5686 5687 return 0; 5688 } 5689 5690 /** 5691 * ice_pci_err_detected - warning that PCI error has been detected 5692 * @pdev: PCI device information struct 5693 * @err: the type of PCI error 5694 * 5695 * Called to warn that something happened on the PCI bus and the error handling 5696 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5697 */ 5698 static pci_ers_result_t 5699 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5700 { 5701 struct ice_pf *pf = pci_get_drvdata(pdev); 5702 5703 if (!pf) { 5704 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5705 __func__, err); 5706 return PCI_ERS_RESULT_DISCONNECT; 5707 } 5708 5709 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5710 ice_service_task_stop(pf); 5711 5712 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5713 set_bit(ICE_PFR_REQ, pf->state); 5714 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5715 } 5716 } 5717 5718 return PCI_ERS_RESULT_NEED_RESET; 5719 } 5720 5721 /** 5722 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5723 * @pdev: PCI device information struct 5724 * 5725 * Called to determine if the driver can recover from the PCI slot reset by 5726 * using a register read to determine if the device is recoverable. 5727 */ 5728 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5729 { 5730 struct ice_pf *pf = pci_get_drvdata(pdev); 5731 pci_ers_result_t result; 5732 int err; 5733 u32 reg; 5734 5735 err = pci_enable_device_mem(pdev); 5736 if (err) { 5737 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5738 err); 5739 result = PCI_ERS_RESULT_DISCONNECT; 5740 } else { 5741 pci_set_master(pdev); 5742 pci_restore_state(pdev); 5743 pci_save_state(pdev); 5744 pci_wake_from_d3(pdev, false); 5745 5746 /* Check for life */ 5747 reg = rd32(&pf->hw, GLGEN_RTRIG); 5748 if (!reg) 5749 result = PCI_ERS_RESULT_RECOVERED; 5750 else 5751 result = PCI_ERS_RESULT_DISCONNECT; 5752 } 5753 5754 return result; 5755 } 5756 5757 /** 5758 * ice_pci_err_resume - restart operations after PCI error recovery 5759 * @pdev: PCI device information struct 5760 * 5761 * Called to allow the driver to bring things back up after PCI error and/or 5762 * reset recovery have finished 5763 */ 5764 static void ice_pci_err_resume(struct pci_dev *pdev) 5765 { 5766 struct ice_pf *pf = pci_get_drvdata(pdev); 5767 5768 if (!pf) { 5769 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5770 __func__); 5771 return; 5772 } 5773 5774 if (test_bit(ICE_SUSPENDED, pf->state)) { 5775 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5776 __func__); 5777 return; 5778 } 5779 5780 ice_restore_all_vfs_msi_state(pf); 5781 5782 ice_do_reset(pf, ICE_RESET_PFR); 5783 ice_service_task_restart(pf); 5784 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5785 } 5786 5787 /** 5788 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5789 * @pdev: PCI device information struct 5790 */ 5791 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5792 { 5793 struct ice_pf *pf = pci_get_drvdata(pdev); 5794 5795 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5796 ice_service_task_stop(pf); 5797 5798 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5799 set_bit(ICE_PFR_REQ, pf->state); 5800 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5801 } 5802 } 5803 } 5804 5805 /** 5806 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5807 * @pdev: PCI device information struct 5808 */ 5809 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5810 { 5811 ice_pci_err_resume(pdev); 5812 } 5813 5814 /* ice_pci_tbl - PCI Device ID Table 5815 * 5816 * Wildcard entries (PCI_ANY_ID) should come last 5817 * Last entry must be all 0s 5818 * 5819 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5820 * Class, Class Mask, private data (not used) } 5821 */ 5822 static const struct pci_device_id ice_pci_tbl[] = { 5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5863 /* required last entry */ 5864 {} 5865 }; 5866 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5867 5868 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5869 5870 static const struct pci_error_handlers ice_pci_err_handler = { 5871 .error_detected = ice_pci_err_detected, 5872 .slot_reset = ice_pci_err_slot_reset, 5873 .reset_prepare = ice_pci_err_reset_prepare, 5874 .reset_done = ice_pci_err_reset_done, 5875 .resume = ice_pci_err_resume 5876 }; 5877 5878 static struct pci_driver ice_driver = { 5879 .name = KBUILD_MODNAME, 5880 .id_table = ice_pci_tbl, 5881 .probe = ice_probe, 5882 .remove = ice_remove, 5883 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5884 .shutdown = ice_shutdown, 5885 .sriov_configure = ice_sriov_configure, 5886 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5887 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5888 .err_handler = &ice_pci_err_handler 5889 }; 5890 5891 /** 5892 * ice_module_init - Driver registration routine 5893 * 5894 * ice_module_init is the first routine called when the driver is 5895 * loaded. All it does is register with the PCI subsystem. 5896 */ 5897 static int __init ice_module_init(void) 5898 { 5899 int status = -ENOMEM; 5900 5901 pr_info("%s\n", ice_driver_string); 5902 pr_info("%s\n", ice_copyright); 5903 5904 ice_adv_lnk_speed_maps_init(); 5905 5906 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5907 if (!ice_wq) { 5908 pr_err("Failed to create workqueue\n"); 5909 return status; 5910 } 5911 5912 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5913 if (!ice_lag_wq) { 5914 pr_err("Failed to create LAG workqueue\n"); 5915 goto err_dest_wq; 5916 } 5917 5918 ice_debugfs_init(); 5919 5920 status = pci_register_driver(&ice_driver); 5921 if (status) { 5922 pr_err("failed to register PCI driver, err %d\n", status); 5923 goto err_dest_lag_wq; 5924 } 5925 5926 return 0; 5927 5928 err_dest_lag_wq: 5929 destroy_workqueue(ice_lag_wq); 5930 ice_debugfs_exit(); 5931 err_dest_wq: 5932 destroy_workqueue(ice_wq); 5933 return status; 5934 } 5935 module_init(ice_module_init); 5936 5937 /** 5938 * ice_module_exit - Driver exit cleanup routine 5939 * 5940 * ice_module_exit is called just before the driver is removed 5941 * from memory. 5942 */ 5943 static void __exit ice_module_exit(void) 5944 { 5945 pci_unregister_driver(&ice_driver); 5946 ice_debugfs_exit(); 5947 destroy_workqueue(ice_wq); 5948 destroy_workqueue(ice_lag_wq); 5949 pr_info("module unloaded\n"); 5950 } 5951 module_exit(ice_module_exit); 5952 5953 /** 5954 * ice_set_mac_address - NDO callback to set MAC address 5955 * @netdev: network interface device structure 5956 * @pi: pointer to an address structure 5957 * 5958 * Returns 0 on success, negative on failure 5959 */ 5960 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5961 { 5962 struct ice_netdev_priv *np = netdev_priv(netdev); 5963 struct ice_vsi *vsi = np->vsi; 5964 struct ice_pf *pf = vsi->back; 5965 struct ice_hw *hw = &pf->hw; 5966 struct sockaddr *addr = pi; 5967 u8 old_mac[ETH_ALEN]; 5968 u8 flags = 0; 5969 u8 *mac; 5970 int err; 5971 5972 mac = (u8 *)addr->sa_data; 5973 5974 if (!is_valid_ether_addr(mac)) 5975 return -EADDRNOTAVAIL; 5976 5977 if (test_bit(ICE_DOWN, pf->state) || 5978 ice_is_reset_in_progress(pf->state)) { 5979 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5980 mac); 5981 return -EBUSY; 5982 } 5983 5984 if (ice_chnl_dmac_fltr_cnt(pf)) { 5985 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5986 mac); 5987 return -EAGAIN; 5988 } 5989 5990 netif_addr_lock_bh(netdev); 5991 ether_addr_copy(old_mac, netdev->dev_addr); 5992 /* change the netdev's MAC address */ 5993 eth_hw_addr_set(netdev, mac); 5994 netif_addr_unlock_bh(netdev); 5995 5996 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5997 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5998 if (err && err != -ENOENT) { 5999 err = -EADDRNOTAVAIL; 6000 goto err_update_filters; 6001 } 6002 6003 /* Add filter for new MAC. If filter exists, return success */ 6004 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6005 if (err == -EEXIST) { 6006 /* Although this MAC filter is already present in hardware it's 6007 * possible in some cases (e.g. bonding) that dev_addr was 6008 * modified outside of the driver and needs to be restored back 6009 * to this value. 6010 */ 6011 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6012 6013 return 0; 6014 } else if (err) { 6015 /* error if the new filter addition failed */ 6016 err = -EADDRNOTAVAIL; 6017 } 6018 6019 err_update_filters: 6020 if (err) { 6021 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6022 mac); 6023 netif_addr_lock_bh(netdev); 6024 eth_hw_addr_set(netdev, old_mac); 6025 netif_addr_unlock_bh(netdev); 6026 return err; 6027 } 6028 6029 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6030 netdev->dev_addr); 6031 6032 /* write new MAC address to the firmware */ 6033 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6034 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6035 if (err) { 6036 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6037 mac, err); 6038 } 6039 return 0; 6040 } 6041 6042 /** 6043 * ice_set_rx_mode - NDO callback to set the netdev filters 6044 * @netdev: network interface device structure 6045 */ 6046 static void ice_set_rx_mode(struct net_device *netdev) 6047 { 6048 struct ice_netdev_priv *np = netdev_priv(netdev); 6049 struct ice_vsi *vsi = np->vsi; 6050 6051 if (!vsi || ice_is_switchdev_running(vsi->back)) 6052 return; 6053 6054 /* Set the flags to synchronize filters 6055 * ndo_set_rx_mode may be triggered even without a change in netdev 6056 * flags 6057 */ 6058 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6059 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6060 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6061 6062 /* schedule our worker thread which will take care of 6063 * applying the new filter changes 6064 */ 6065 ice_service_task_schedule(vsi->back); 6066 } 6067 6068 /** 6069 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6070 * @netdev: network interface device structure 6071 * @queue_index: Queue ID 6072 * @maxrate: maximum bandwidth in Mbps 6073 */ 6074 static int 6075 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6076 { 6077 struct ice_netdev_priv *np = netdev_priv(netdev); 6078 struct ice_vsi *vsi = np->vsi; 6079 u16 q_handle; 6080 int status; 6081 u8 tc; 6082 6083 /* Validate maxrate requested is within permitted range */ 6084 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6085 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6086 maxrate, queue_index); 6087 return -EINVAL; 6088 } 6089 6090 q_handle = vsi->tx_rings[queue_index]->q_handle; 6091 tc = ice_dcb_get_tc(vsi, queue_index); 6092 6093 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6094 if (!vsi) { 6095 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6096 queue_index); 6097 return -EINVAL; 6098 } 6099 6100 /* Set BW back to default, when user set maxrate to 0 */ 6101 if (!maxrate) 6102 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6103 q_handle, ICE_MAX_BW); 6104 else 6105 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6106 q_handle, ICE_MAX_BW, maxrate * 1000); 6107 if (status) 6108 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6109 status); 6110 6111 return status; 6112 } 6113 6114 /** 6115 * ice_fdb_add - add an entry to the hardware database 6116 * @ndm: the input from the stack 6117 * @tb: pointer to array of nladdr (unused) 6118 * @dev: the net device pointer 6119 * @addr: the MAC address entry being added 6120 * @vid: VLAN ID 6121 * @flags: instructions from stack about fdb operation 6122 * @extack: netlink extended ack 6123 */ 6124 static int 6125 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6126 struct net_device *dev, const unsigned char *addr, u16 vid, 6127 u16 flags, struct netlink_ext_ack __always_unused *extack) 6128 { 6129 int err; 6130 6131 if (vid) { 6132 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6133 return -EINVAL; 6134 } 6135 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6136 netdev_err(dev, "FDB only supports static addresses\n"); 6137 return -EINVAL; 6138 } 6139 6140 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6141 err = dev_uc_add_excl(dev, addr); 6142 else if (is_multicast_ether_addr(addr)) 6143 err = dev_mc_add_excl(dev, addr); 6144 else 6145 err = -EINVAL; 6146 6147 /* Only return duplicate errors if NLM_F_EXCL is set */ 6148 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6149 err = 0; 6150 6151 return err; 6152 } 6153 6154 /** 6155 * ice_fdb_del - delete an entry from the hardware database 6156 * @ndm: the input from the stack 6157 * @tb: pointer to array of nladdr (unused) 6158 * @dev: the net device pointer 6159 * @addr: the MAC address entry being added 6160 * @vid: VLAN ID 6161 * @extack: netlink extended ack 6162 */ 6163 static int 6164 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6165 struct net_device *dev, const unsigned char *addr, 6166 __always_unused u16 vid, struct netlink_ext_ack *extack) 6167 { 6168 int err; 6169 6170 if (ndm->ndm_state & NUD_PERMANENT) { 6171 netdev_err(dev, "FDB only supports static addresses\n"); 6172 return -EINVAL; 6173 } 6174 6175 if (is_unicast_ether_addr(addr)) 6176 err = dev_uc_del(dev, addr); 6177 else if (is_multicast_ether_addr(addr)) 6178 err = dev_mc_del(dev, addr); 6179 else 6180 err = -EINVAL; 6181 6182 return err; 6183 } 6184 6185 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6186 NETIF_F_HW_VLAN_CTAG_TX | \ 6187 NETIF_F_HW_VLAN_STAG_RX | \ 6188 NETIF_F_HW_VLAN_STAG_TX) 6189 6190 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6191 NETIF_F_HW_VLAN_STAG_RX) 6192 6193 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6194 NETIF_F_HW_VLAN_STAG_FILTER) 6195 6196 /** 6197 * ice_fix_features - fix the netdev features flags based on device limitations 6198 * @netdev: ptr to the netdev that flags are being fixed on 6199 * @features: features that need to be checked and possibly fixed 6200 * 6201 * Make sure any fixups are made to features in this callback. This enables the 6202 * driver to not have to check unsupported configurations throughout the driver 6203 * because that's the responsiblity of this callback. 6204 * 6205 * Single VLAN Mode (SVM) Supported Features: 6206 * NETIF_F_HW_VLAN_CTAG_FILTER 6207 * NETIF_F_HW_VLAN_CTAG_RX 6208 * NETIF_F_HW_VLAN_CTAG_TX 6209 * 6210 * Double VLAN Mode (DVM) Supported Features: 6211 * NETIF_F_HW_VLAN_CTAG_FILTER 6212 * NETIF_F_HW_VLAN_CTAG_RX 6213 * NETIF_F_HW_VLAN_CTAG_TX 6214 * 6215 * NETIF_F_HW_VLAN_STAG_FILTER 6216 * NETIF_HW_VLAN_STAG_RX 6217 * NETIF_HW_VLAN_STAG_TX 6218 * 6219 * Features that need fixing: 6220 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6221 * These are mutually exlusive as the VSI context cannot support multiple 6222 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6223 * is not done, then default to clearing the requested STAG offload 6224 * settings. 6225 * 6226 * All supported filtering has to be enabled or disabled together. For 6227 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6228 * together. If this is not done, then default to VLAN filtering disabled. 6229 * These are mutually exclusive as there is currently no way to 6230 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6231 * prune rules. 6232 */ 6233 static netdev_features_t 6234 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6235 { 6236 struct ice_netdev_priv *np = netdev_priv(netdev); 6237 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6238 bool cur_ctag, cur_stag, req_ctag, req_stag; 6239 6240 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6241 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6242 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6243 6244 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6245 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6246 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6247 6248 if (req_vlan_fltr != cur_vlan_fltr) { 6249 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6250 if (req_ctag && req_stag) { 6251 features |= NETIF_VLAN_FILTERING_FEATURES; 6252 } else if (!req_ctag && !req_stag) { 6253 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6254 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6255 (!cur_stag && req_stag && !cur_ctag)) { 6256 features |= NETIF_VLAN_FILTERING_FEATURES; 6257 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6258 } else if ((cur_ctag && !req_ctag && cur_stag) || 6259 (cur_stag && !req_stag && cur_ctag)) { 6260 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6261 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6262 } 6263 } else { 6264 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6265 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6266 6267 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6268 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6269 } 6270 } 6271 6272 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6273 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6274 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6275 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6276 NETIF_F_HW_VLAN_STAG_TX); 6277 } 6278 6279 if (!(netdev->features & NETIF_F_RXFCS) && 6280 (features & NETIF_F_RXFCS) && 6281 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6282 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6283 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6284 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6285 } 6286 6287 return features; 6288 } 6289 6290 /** 6291 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6292 * @vsi: PF's VSI 6293 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6294 * 6295 * Store current stripped VLAN proto in ring packet context, 6296 * so it can be accessed more efficiently by packet processing code. 6297 */ 6298 static void 6299 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6300 { 6301 u16 i; 6302 6303 ice_for_each_alloc_rxq(vsi, i) 6304 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6305 } 6306 6307 /** 6308 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6309 * @vsi: PF's VSI 6310 * @features: features used to determine VLAN offload settings 6311 * 6312 * First, determine the vlan_ethertype based on the VLAN offload bits in 6313 * features. Then determine if stripping and insertion should be enabled or 6314 * disabled. Finally enable or disable VLAN stripping and insertion. 6315 */ 6316 static int 6317 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6318 { 6319 bool enable_stripping = true, enable_insertion = true; 6320 struct ice_vsi_vlan_ops *vlan_ops; 6321 int strip_err = 0, insert_err = 0; 6322 u16 vlan_ethertype = 0; 6323 6324 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6325 6326 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6327 vlan_ethertype = ETH_P_8021AD; 6328 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6329 vlan_ethertype = ETH_P_8021Q; 6330 6331 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6332 enable_stripping = false; 6333 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6334 enable_insertion = false; 6335 6336 if (enable_stripping) 6337 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6338 else 6339 strip_err = vlan_ops->dis_stripping(vsi); 6340 6341 if (enable_insertion) 6342 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6343 else 6344 insert_err = vlan_ops->dis_insertion(vsi); 6345 6346 if (strip_err || insert_err) 6347 return -EIO; 6348 6349 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6350 htons(vlan_ethertype) : 0); 6351 6352 return 0; 6353 } 6354 6355 /** 6356 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6357 * @vsi: PF's VSI 6358 * @features: features used to determine VLAN filtering settings 6359 * 6360 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6361 * features. 6362 */ 6363 static int 6364 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6365 { 6366 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6367 int err = 0; 6368 6369 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6370 * if either bit is set 6371 */ 6372 if (features & 6373 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6374 err = vlan_ops->ena_rx_filtering(vsi); 6375 else 6376 err = vlan_ops->dis_rx_filtering(vsi); 6377 6378 return err; 6379 } 6380 6381 /** 6382 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6383 * @netdev: ptr to the netdev being adjusted 6384 * @features: the feature set that the stack is suggesting 6385 * 6386 * Only update VLAN settings if the requested_vlan_features are different than 6387 * the current_vlan_features. 6388 */ 6389 static int 6390 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6391 { 6392 netdev_features_t current_vlan_features, requested_vlan_features; 6393 struct ice_netdev_priv *np = netdev_priv(netdev); 6394 struct ice_vsi *vsi = np->vsi; 6395 int err; 6396 6397 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6398 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6399 if (current_vlan_features ^ requested_vlan_features) { 6400 if ((features & NETIF_F_RXFCS) && 6401 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6402 dev_err(ice_pf_to_dev(vsi->back), 6403 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6404 return -EIO; 6405 } 6406 6407 err = ice_set_vlan_offload_features(vsi, features); 6408 if (err) 6409 return err; 6410 } 6411 6412 current_vlan_features = netdev->features & 6413 NETIF_VLAN_FILTERING_FEATURES; 6414 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6415 if (current_vlan_features ^ requested_vlan_features) { 6416 err = ice_set_vlan_filtering_features(vsi, features); 6417 if (err) 6418 return err; 6419 } 6420 6421 return 0; 6422 } 6423 6424 /** 6425 * ice_set_loopback - turn on/off loopback mode on underlying PF 6426 * @vsi: ptr to VSI 6427 * @ena: flag to indicate the on/off setting 6428 */ 6429 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6430 { 6431 bool if_running = netif_running(vsi->netdev); 6432 int ret; 6433 6434 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6435 ret = ice_down(vsi); 6436 if (ret) { 6437 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6438 return ret; 6439 } 6440 } 6441 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6442 if (ret) 6443 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6444 if (if_running) 6445 ret = ice_up(vsi); 6446 6447 return ret; 6448 } 6449 6450 /** 6451 * ice_set_features - set the netdev feature flags 6452 * @netdev: ptr to the netdev being adjusted 6453 * @features: the feature set that the stack is suggesting 6454 */ 6455 static int 6456 ice_set_features(struct net_device *netdev, netdev_features_t features) 6457 { 6458 netdev_features_t changed = netdev->features ^ features; 6459 struct ice_netdev_priv *np = netdev_priv(netdev); 6460 struct ice_vsi *vsi = np->vsi; 6461 struct ice_pf *pf = vsi->back; 6462 int ret = 0; 6463 6464 /* Don't set any netdev advanced features with device in Safe Mode */ 6465 if (ice_is_safe_mode(pf)) { 6466 dev_err(ice_pf_to_dev(pf), 6467 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6468 return ret; 6469 } 6470 6471 /* Do not change setting during reset */ 6472 if (ice_is_reset_in_progress(pf->state)) { 6473 dev_err(ice_pf_to_dev(pf), 6474 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6475 return -EBUSY; 6476 } 6477 6478 /* Multiple features can be changed in one call so keep features in 6479 * separate if/else statements to guarantee each feature is checked 6480 */ 6481 if (changed & NETIF_F_RXHASH) 6482 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6483 6484 ret = ice_set_vlan_features(netdev, features); 6485 if (ret) 6486 return ret; 6487 6488 /* Turn on receive of FCS aka CRC, and after setting this 6489 * flag the packet data will have the 4 byte CRC appended 6490 */ 6491 if (changed & NETIF_F_RXFCS) { 6492 if ((features & NETIF_F_RXFCS) && 6493 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6494 dev_err(ice_pf_to_dev(vsi->back), 6495 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6496 return -EIO; 6497 } 6498 6499 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6500 ret = ice_down_up(vsi); 6501 if (ret) 6502 return ret; 6503 } 6504 6505 if (changed & NETIF_F_NTUPLE) { 6506 bool ena = !!(features & NETIF_F_NTUPLE); 6507 6508 ice_vsi_manage_fdir(vsi, ena); 6509 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6510 } 6511 6512 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6513 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6514 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6515 return -EACCES; 6516 } 6517 6518 if (changed & NETIF_F_HW_TC) { 6519 bool ena = !!(features & NETIF_F_HW_TC); 6520 6521 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6522 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6523 } 6524 6525 if (changed & NETIF_F_LOOPBACK) 6526 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6527 6528 return ret; 6529 } 6530 6531 /** 6532 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6533 * @vsi: VSI to setup VLAN properties for 6534 */ 6535 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6536 { 6537 int err; 6538 6539 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6540 if (err) 6541 return err; 6542 6543 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6544 if (err) 6545 return err; 6546 6547 return ice_vsi_add_vlan_zero(vsi); 6548 } 6549 6550 /** 6551 * ice_vsi_cfg_lan - Setup the VSI lan related config 6552 * @vsi: the VSI being configured 6553 * 6554 * Return 0 on success and negative value on error 6555 */ 6556 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6557 { 6558 int err; 6559 6560 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6561 ice_set_rx_mode(vsi->netdev); 6562 6563 err = ice_vsi_vlan_setup(vsi); 6564 if (err) 6565 return err; 6566 } 6567 ice_vsi_cfg_dcb_rings(vsi); 6568 6569 err = ice_vsi_cfg_lan_txqs(vsi); 6570 if (!err && ice_is_xdp_ena_vsi(vsi)) 6571 err = ice_vsi_cfg_xdp_txqs(vsi); 6572 if (!err) 6573 err = ice_vsi_cfg_rxqs(vsi); 6574 6575 return err; 6576 } 6577 6578 /* THEORY OF MODERATION: 6579 * The ice driver hardware works differently than the hardware that DIMLIB was 6580 * originally made for. ice hardware doesn't have packet count limits that 6581 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6582 * which is hard-coded to a limit of 250,000 ints/second. 6583 * If not using dynamic moderation, the INTRL value can be modified 6584 * by ethtool rx-usecs-high. 6585 */ 6586 struct ice_dim { 6587 /* the throttle rate for interrupts, basically worst case delay before 6588 * an initial interrupt fires, value is stored in microseconds. 6589 */ 6590 u16 itr; 6591 }; 6592 6593 /* Make a different profile for Rx that doesn't allow quite so aggressive 6594 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6595 * second. 6596 */ 6597 static const struct ice_dim rx_profile[] = { 6598 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6599 {8}, /* 125,000 ints/s */ 6600 {16}, /* 62,500 ints/s */ 6601 {62}, /* 16,129 ints/s */ 6602 {126} /* 7,936 ints/s */ 6603 }; 6604 6605 /* The transmit profile, which has the same sorts of values 6606 * as the previous struct 6607 */ 6608 static const struct ice_dim tx_profile[] = { 6609 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6610 {8}, /* 125,000 ints/s */ 6611 {40}, /* 16,125 ints/s */ 6612 {128}, /* 7,812 ints/s */ 6613 {256} /* 3,906 ints/s */ 6614 }; 6615 6616 static void ice_tx_dim_work(struct work_struct *work) 6617 { 6618 struct ice_ring_container *rc; 6619 struct dim *dim; 6620 u16 itr; 6621 6622 dim = container_of(work, struct dim, work); 6623 rc = dim->priv; 6624 6625 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6626 6627 /* look up the values in our local table */ 6628 itr = tx_profile[dim->profile_ix].itr; 6629 6630 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6631 ice_write_itr(rc, itr); 6632 6633 dim->state = DIM_START_MEASURE; 6634 } 6635 6636 static void ice_rx_dim_work(struct work_struct *work) 6637 { 6638 struct ice_ring_container *rc; 6639 struct dim *dim; 6640 u16 itr; 6641 6642 dim = container_of(work, struct dim, work); 6643 rc = dim->priv; 6644 6645 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6646 6647 /* look up the values in our local table */ 6648 itr = rx_profile[dim->profile_ix].itr; 6649 6650 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6651 ice_write_itr(rc, itr); 6652 6653 dim->state = DIM_START_MEASURE; 6654 } 6655 6656 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6657 6658 /** 6659 * ice_init_moderation - set up interrupt moderation 6660 * @q_vector: the vector containing rings to be configured 6661 * 6662 * Set up interrupt moderation registers, with the intent to do the right thing 6663 * when called from reset or from probe, and whether or not dynamic moderation 6664 * is enabled or not. Take special care to write all the registers in both 6665 * dynamic moderation mode or not in order to make sure hardware is in a known 6666 * state. 6667 */ 6668 static void ice_init_moderation(struct ice_q_vector *q_vector) 6669 { 6670 struct ice_ring_container *rc; 6671 bool tx_dynamic, rx_dynamic; 6672 6673 rc = &q_vector->tx; 6674 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6675 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6676 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6677 rc->dim.priv = rc; 6678 tx_dynamic = ITR_IS_DYNAMIC(rc); 6679 6680 /* set the initial TX ITR to match the above */ 6681 ice_write_itr(rc, tx_dynamic ? 6682 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6683 6684 rc = &q_vector->rx; 6685 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6686 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6687 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6688 rc->dim.priv = rc; 6689 rx_dynamic = ITR_IS_DYNAMIC(rc); 6690 6691 /* set the initial RX ITR to match the above */ 6692 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6693 rc->itr_setting); 6694 6695 ice_set_q_vector_intrl(q_vector); 6696 } 6697 6698 /** 6699 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6700 * @vsi: the VSI being configured 6701 */ 6702 static void ice_napi_enable_all(struct ice_vsi *vsi) 6703 { 6704 int q_idx; 6705 6706 if (!vsi->netdev) 6707 return; 6708 6709 ice_for_each_q_vector(vsi, q_idx) { 6710 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6711 6712 ice_init_moderation(q_vector); 6713 6714 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6715 napi_enable(&q_vector->napi); 6716 } 6717 } 6718 6719 /** 6720 * ice_up_complete - Finish the last steps of bringing up a connection 6721 * @vsi: The VSI being configured 6722 * 6723 * Return 0 on success and negative value on error 6724 */ 6725 static int ice_up_complete(struct ice_vsi *vsi) 6726 { 6727 struct ice_pf *pf = vsi->back; 6728 int err; 6729 6730 ice_vsi_cfg_msix(vsi); 6731 6732 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6733 * Tx queue group list was configured and the context bits were 6734 * programmed using ice_vsi_cfg_txqs 6735 */ 6736 err = ice_vsi_start_all_rx_rings(vsi); 6737 if (err) 6738 return err; 6739 6740 clear_bit(ICE_VSI_DOWN, vsi->state); 6741 ice_napi_enable_all(vsi); 6742 ice_vsi_ena_irq(vsi); 6743 6744 if (vsi->port_info && 6745 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6746 vsi->netdev && vsi->type == ICE_VSI_PF) { 6747 ice_print_link_msg(vsi, true); 6748 netif_tx_start_all_queues(vsi->netdev); 6749 netif_carrier_on(vsi->netdev); 6750 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6751 } 6752 6753 /* Perform an initial read of the statistics registers now to 6754 * set the baseline so counters are ready when interface is up 6755 */ 6756 ice_update_eth_stats(vsi); 6757 6758 if (vsi->type == ICE_VSI_PF) 6759 ice_service_task_schedule(pf); 6760 6761 return 0; 6762 } 6763 6764 /** 6765 * ice_up - Bring the connection back up after being down 6766 * @vsi: VSI being configured 6767 */ 6768 int ice_up(struct ice_vsi *vsi) 6769 { 6770 int err; 6771 6772 err = ice_vsi_cfg_lan(vsi); 6773 if (!err) 6774 err = ice_up_complete(vsi); 6775 6776 return err; 6777 } 6778 6779 /** 6780 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6781 * @syncp: pointer to u64_stats_sync 6782 * @stats: stats that pkts and bytes count will be taken from 6783 * @pkts: packets stats counter 6784 * @bytes: bytes stats counter 6785 * 6786 * This function fetches stats from the ring considering the atomic operations 6787 * that needs to be performed to read u64 values in 32 bit machine. 6788 */ 6789 void 6790 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6791 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6792 { 6793 unsigned int start; 6794 6795 do { 6796 start = u64_stats_fetch_begin(syncp); 6797 *pkts = stats.pkts; 6798 *bytes = stats.bytes; 6799 } while (u64_stats_fetch_retry(syncp, start)); 6800 } 6801 6802 /** 6803 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6804 * @vsi: the VSI to be updated 6805 * @vsi_stats: the stats struct to be updated 6806 * @rings: rings to work on 6807 * @count: number of rings 6808 */ 6809 static void 6810 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6811 struct rtnl_link_stats64 *vsi_stats, 6812 struct ice_tx_ring **rings, u16 count) 6813 { 6814 u16 i; 6815 6816 for (i = 0; i < count; i++) { 6817 struct ice_tx_ring *ring; 6818 u64 pkts = 0, bytes = 0; 6819 6820 ring = READ_ONCE(rings[i]); 6821 if (!ring || !ring->ring_stats) 6822 continue; 6823 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6824 ring->ring_stats->stats, &pkts, 6825 &bytes); 6826 vsi_stats->tx_packets += pkts; 6827 vsi_stats->tx_bytes += bytes; 6828 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6829 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6830 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6831 } 6832 } 6833 6834 /** 6835 * ice_update_vsi_ring_stats - Update VSI stats counters 6836 * @vsi: the VSI to be updated 6837 */ 6838 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6839 { 6840 struct rtnl_link_stats64 *net_stats, *stats_prev; 6841 struct rtnl_link_stats64 *vsi_stats; 6842 struct ice_pf *pf = vsi->back; 6843 u64 pkts, bytes; 6844 int i; 6845 6846 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6847 if (!vsi_stats) 6848 return; 6849 6850 /* reset non-netdev (extended) stats */ 6851 vsi->tx_restart = 0; 6852 vsi->tx_busy = 0; 6853 vsi->tx_linearize = 0; 6854 vsi->rx_buf_failed = 0; 6855 vsi->rx_page_failed = 0; 6856 6857 rcu_read_lock(); 6858 6859 /* update Tx rings counters */ 6860 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6861 vsi->num_txq); 6862 6863 /* update Rx rings counters */ 6864 ice_for_each_rxq(vsi, i) { 6865 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6866 struct ice_ring_stats *ring_stats; 6867 6868 ring_stats = ring->ring_stats; 6869 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6870 ring_stats->stats, &pkts, 6871 &bytes); 6872 vsi_stats->rx_packets += pkts; 6873 vsi_stats->rx_bytes += bytes; 6874 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6875 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6876 } 6877 6878 /* update XDP Tx rings counters */ 6879 if (ice_is_xdp_ena_vsi(vsi)) 6880 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6881 vsi->num_xdp_txq); 6882 6883 rcu_read_unlock(); 6884 6885 net_stats = &vsi->net_stats; 6886 stats_prev = &vsi->net_stats_prev; 6887 6888 /* Update netdev counters, but keep in mind that values could start at 6889 * random value after PF reset. And as we increase the reported stat by 6890 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6891 * let's skip this round. 6892 */ 6893 if (likely(pf->stat_prev_loaded)) { 6894 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6895 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6896 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6897 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6898 } 6899 6900 stats_prev->tx_packets = vsi_stats->tx_packets; 6901 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6902 stats_prev->rx_packets = vsi_stats->rx_packets; 6903 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6904 6905 kfree(vsi_stats); 6906 } 6907 6908 /** 6909 * ice_update_vsi_stats - Update VSI stats counters 6910 * @vsi: the VSI to be updated 6911 */ 6912 void ice_update_vsi_stats(struct ice_vsi *vsi) 6913 { 6914 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6915 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6916 struct ice_pf *pf = vsi->back; 6917 6918 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6919 test_bit(ICE_CFG_BUSY, pf->state)) 6920 return; 6921 6922 /* get stats as recorded by Tx/Rx rings */ 6923 ice_update_vsi_ring_stats(vsi); 6924 6925 /* get VSI stats as recorded by the hardware */ 6926 ice_update_eth_stats(vsi); 6927 6928 cur_ns->tx_errors = cur_es->tx_errors; 6929 cur_ns->rx_dropped = cur_es->rx_discards; 6930 cur_ns->tx_dropped = cur_es->tx_discards; 6931 cur_ns->multicast = cur_es->rx_multicast; 6932 6933 /* update some more netdev stats if this is main VSI */ 6934 if (vsi->type == ICE_VSI_PF) { 6935 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6936 cur_ns->rx_errors = pf->stats.crc_errors + 6937 pf->stats.illegal_bytes + 6938 pf->stats.rx_undersize + 6939 pf->hw_csum_rx_error + 6940 pf->stats.rx_jabber + 6941 pf->stats.rx_fragments + 6942 pf->stats.rx_oversize; 6943 /* record drops from the port level */ 6944 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6945 } 6946 } 6947 6948 /** 6949 * ice_update_pf_stats - Update PF port stats counters 6950 * @pf: PF whose stats needs to be updated 6951 */ 6952 void ice_update_pf_stats(struct ice_pf *pf) 6953 { 6954 struct ice_hw_port_stats *prev_ps, *cur_ps; 6955 struct ice_hw *hw = &pf->hw; 6956 u16 fd_ctr_base; 6957 u8 port; 6958 6959 port = hw->port_info->lport; 6960 prev_ps = &pf->stats_prev; 6961 cur_ps = &pf->stats; 6962 6963 if (ice_is_reset_in_progress(pf->state)) 6964 pf->stat_prev_loaded = false; 6965 6966 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6967 &prev_ps->eth.rx_bytes, 6968 &cur_ps->eth.rx_bytes); 6969 6970 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6971 &prev_ps->eth.rx_unicast, 6972 &cur_ps->eth.rx_unicast); 6973 6974 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6975 &prev_ps->eth.rx_multicast, 6976 &cur_ps->eth.rx_multicast); 6977 6978 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6979 &prev_ps->eth.rx_broadcast, 6980 &cur_ps->eth.rx_broadcast); 6981 6982 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6983 &prev_ps->eth.rx_discards, 6984 &cur_ps->eth.rx_discards); 6985 6986 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6987 &prev_ps->eth.tx_bytes, 6988 &cur_ps->eth.tx_bytes); 6989 6990 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6991 &prev_ps->eth.tx_unicast, 6992 &cur_ps->eth.tx_unicast); 6993 6994 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6995 &prev_ps->eth.tx_multicast, 6996 &cur_ps->eth.tx_multicast); 6997 6998 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6999 &prev_ps->eth.tx_broadcast, 7000 &cur_ps->eth.tx_broadcast); 7001 7002 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7003 &prev_ps->tx_dropped_link_down, 7004 &cur_ps->tx_dropped_link_down); 7005 7006 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7007 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7008 7009 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7010 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7011 7012 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7013 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7014 7015 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7016 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7017 7018 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7019 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7020 7021 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7022 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7023 7024 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7025 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7026 7027 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7028 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7029 7030 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7031 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7032 7033 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7034 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7035 7036 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7037 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7038 7039 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7040 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7041 7042 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7043 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7044 7045 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7046 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7047 7048 fd_ctr_base = hw->fd_ctr_base; 7049 7050 ice_stat_update40(hw, 7051 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7052 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7053 &cur_ps->fd_sb_match); 7054 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7055 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7056 7057 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7058 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7059 7060 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7061 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7062 7063 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7064 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7065 7066 ice_update_dcb_stats(pf); 7067 7068 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7069 &prev_ps->crc_errors, &cur_ps->crc_errors); 7070 7071 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7072 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7073 7074 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7075 &prev_ps->mac_local_faults, 7076 &cur_ps->mac_local_faults); 7077 7078 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7079 &prev_ps->mac_remote_faults, 7080 &cur_ps->mac_remote_faults); 7081 7082 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7083 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7084 7085 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7086 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7087 7088 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7089 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7090 7091 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7092 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7093 7094 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7095 7096 pf->stat_prev_loaded = true; 7097 } 7098 7099 /** 7100 * ice_get_stats64 - get statistics for network device structure 7101 * @netdev: network interface device structure 7102 * @stats: main device statistics structure 7103 */ 7104 static 7105 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7106 { 7107 struct ice_netdev_priv *np = netdev_priv(netdev); 7108 struct rtnl_link_stats64 *vsi_stats; 7109 struct ice_vsi *vsi = np->vsi; 7110 7111 vsi_stats = &vsi->net_stats; 7112 7113 if (!vsi->num_txq || !vsi->num_rxq) 7114 return; 7115 7116 /* netdev packet/byte stats come from ring counter. These are obtained 7117 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7118 * But, only call the update routine and read the registers if VSI is 7119 * not down. 7120 */ 7121 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7122 ice_update_vsi_ring_stats(vsi); 7123 stats->tx_packets = vsi_stats->tx_packets; 7124 stats->tx_bytes = vsi_stats->tx_bytes; 7125 stats->rx_packets = vsi_stats->rx_packets; 7126 stats->rx_bytes = vsi_stats->rx_bytes; 7127 7128 /* The rest of the stats can be read from the hardware but instead we 7129 * just return values that the watchdog task has already obtained from 7130 * the hardware. 7131 */ 7132 stats->multicast = vsi_stats->multicast; 7133 stats->tx_errors = vsi_stats->tx_errors; 7134 stats->tx_dropped = vsi_stats->tx_dropped; 7135 stats->rx_errors = vsi_stats->rx_errors; 7136 stats->rx_dropped = vsi_stats->rx_dropped; 7137 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7138 stats->rx_length_errors = vsi_stats->rx_length_errors; 7139 } 7140 7141 /** 7142 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7143 * @vsi: VSI having NAPI disabled 7144 */ 7145 static void ice_napi_disable_all(struct ice_vsi *vsi) 7146 { 7147 int q_idx; 7148 7149 if (!vsi->netdev) 7150 return; 7151 7152 ice_for_each_q_vector(vsi, q_idx) { 7153 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7154 7155 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7156 napi_disable(&q_vector->napi); 7157 7158 cancel_work_sync(&q_vector->tx.dim.work); 7159 cancel_work_sync(&q_vector->rx.dim.work); 7160 } 7161 } 7162 7163 /** 7164 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7165 * @vsi: the VSI being un-configured 7166 */ 7167 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7168 { 7169 struct ice_pf *pf = vsi->back; 7170 struct ice_hw *hw = &pf->hw; 7171 u32 val; 7172 int i; 7173 7174 /* disable interrupt causation from each Rx queue; Tx queues are 7175 * handled in ice_vsi_stop_tx_ring() 7176 */ 7177 if (vsi->rx_rings) { 7178 ice_for_each_rxq(vsi, i) { 7179 if (vsi->rx_rings[i]) { 7180 u16 reg; 7181 7182 reg = vsi->rx_rings[i]->reg_idx; 7183 val = rd32(hw, QINT_RQCTL(reg)); 7184 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7185 wr32(hw, QINT_RQCTL(reg), val); 7186 } 7187 } 7188 } 7189 7190 /* disable each interrupt */ 7191 ice_for_each_q_vector(vsi, i) { 7192 if (!vsi->q_vectors[i]) 7193 continue; 7194 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7195 } 7196 7197 ice_flush(hw); 7198 7199 /* don't call synchronize_irq() for VF's from the host */ 7200 if (vsi->type == ICE_VSI_VF) 7201 return; 7202 7203 ice_for_each_q_vector(vsi, i) 7204 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7205 } 7206 7207 /** 7208 * ice_down - Shutdown the connection 7209 * @vsi: The VSI being stopped 7210 * 7211 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7212 */ 7213 int ice_down(struct ice_vsi *vsi) 7214 { 7215 int i, tx_err, rx_err, vlan_err = 0; 7216 7217 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7218 7219 if (vsi->netdev) { 7220 vlan_err = ice_vsi_del_vlan_zero(vsi); 7221 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7222 netif_carrier_off(vsi->netdev); 7223 netif_tx_disable(vsi->netdev); 7224 } 7225 7226 ice_vsi_dis_irq(vsi); 7227 7228 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7229 if (tx_err) 7230 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7231 vsi->vsi_num, tx_err); 7232 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7233 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7234 if (tx_err) 7235 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7236 vsi->vsi_num, tx_err); 7237 } 7238 7239 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7240 if (rx_err) 7241 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7242 vsi->vsi_num, rx_err); 7243 7244 ice_napi_disable_all(vsi); 7245 7246 ice_for_each_txq(vsi, i) 7247 ice_clean_tx_ring(vsi->tx_rings[i]); 7248 7249 if (ice_is_xdp_ena_vsi(vsi)) 7250 ice_for_each_xdp_txq(vsi, i) 7251 ice_clean_tx_ring(vsi->xdp_rings[i]); 7252 7253 ice_for_each_rxq(vsi, i) 7254 ice_clean_rx_ring(vsi->rx_rings[i]); 7255 7256 if (tx_err || rx_err || vlan_err) { 7257 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7258 vsi->vsi_num, vsi->vsw->sw_id); 7259 return -EIO; 7260 } 7261 7262 return 0; 7263 } 7264 7265 /** 7266 * ice_down_up - shutdown the VSI connection and bring it up 7267 * @vsi: the VSI to be reconnected 7268 */ 7269 int ice_down_up(struct ice_vsi *vsi) 7270 { 7271 int ret; 7272 7273 /* if DOWN already set, nothing to do */ 7274 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7275 return 0; 7276 7277 ret = ice_down(vsi); 7278 if (ret) 7279 return ret; 7280 7281 ret = ice_up(vsi); 7282 if (ret) { 7283 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7284 return ret; 7285 } 7286 7287 return 0; 7288 } 7289 7290 /** 7291 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7292 * @vsi: VSI having resources allocated 7293 * 7294 * Return 0 on success, negative on failure 7295 */ 7296 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7297 { 7298 int i, err = 0; 7299 7300 if (!vsi->num_txq) { 7301 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7302 vsi->vsi_num); 7303 return -EINVAL; 7304 } 7305 7306 ice_for_each_txq(vsi, i) { 7307 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7308 7309 if (!ring) 7310 return -EINVAL; 7311 7312 if (vsi->netdev) 7313 ring->netdev = vsi->netdev; 7314 err = ice_setup_tx_ring(ring); 7315 if (err) 7316 break; 7317 } 7318 7319 return err; 7320 } 7321 7322 /** 7323 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7324 * @vsi: VSI having resources allocated 7325 * 7326 * Return 0 on success, negative on failure 7327 */ 7328 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7329 { 7330 int i, err = 0; 7331 7332 if (!vsi->num_rxq) { 7333 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7334 vsi->vsi_num); 7335 return -EINVAL; 7336 } 7337 7338 ice_for_each_rxq(vsi, i) { 7339 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7340 7341 if (!ring) 7342 return -EINVAL; 7343 7344 if (vsi->netdev) 7345 ring->netdev = vsi->netdev; 7346 err = ice_setup_rx_ring(ring); 7347 if (err) 7348 break; 7349 } 7350 7351 return err; 7352 } 7353 7354 /** 7355 * ice_vsi_open_ctrl - open control VSI for use 7356 * @vsi: the VSI to open 7357 * 7358 * Initialization of the Control VSI 7359 * 7360 * Returns 0 on success, negative value on error 7361 */ 7362 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7363 { 7364 char int_name[ICE_INT_NAME_STR_LEN]; 7365 struct ice_pf *pf = vsi->back; 7366 struct device *dev; 7367 int err; 7368 7369 dev = ice_pf_to_dev(pf); 7370 /* allocate descriptors */ 7371 err = ice_vsi_setup_tx_rings(vsi); 7372 if (err) 7373 goto err_setup_tx; 7374 7375 err = ice_vsi_setup_rx_rings(vsi); 7376 if (err) 7377 goto err_setup_rx; 7378 7379 err = ice_vsi_cfg_lan(vsi); 7380 if (err) 7381 goto err_setup_rx; 7382 7383 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7384 dev_driver_string(dev), dev_name(dev)); 7385 err = ice_vsi_req_irq_msix(vsi, int_name); 7386 if (err) 7387 goto err_setup_rx; 7388 7389 ice_vsi_cfg_msix(vsi); 7390 7391 err = ice_vsi_start_all_rx_rings(vsi); 7392 if (err) 7393 goto err_up_complete; 7394 7395 clear_bit(ICE_VSI_DOWN, vsi->state); 7396 ice_vsi_ena_irq(vsi); 7397 7398 return 0; 7399 7400 err_up_complete: 7401 ice_down(vsi); 7402 err_setup_rx: 7403 ice_vsi_free_rx_rings(vsi); 7404 err_setup_tx: 7405 ice_vsi_free_tx_rings(vsi); 7406 7407 return err; 7408 } 7409 7410 /** 7411 * ice_vsi_open - Called when a network interface is made active 7412 * @vsi: the VSI to open 7413 * 7414 * Initialization of the VSI 7415 * 7416 * Returns 0 on success, negative value on error 7417 */ 7418 int ice_vsi_open(struct ice_vsi *vsi) 7419 { 7420 char int_name[ICE_INT_NAME_STR_LEN]; 7421 struct ice_pf *pf = vsi->back; 7422 int err; 7423 7424 /* allocate descriptors */ 7425 err = ice_vsi_setup_tx_rings(vsi); 7426 if (err) 7427 goto err_setup_tx; 7428 7429 err = ice_vsi_setup_rx_rings(vsi); 7430 if (err) 7431 goto err_setup_rx; 7432 7433 err = ice_vsi_cfg_lan(vsi); 7434 if (err) 7435 goto err_setup_rx; 7436 7437 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7438 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7439 err = ice_vsi_req_irq_msix(vsi, int_name); 7440 if (err) 7441 goto err_setup_rx; 7442 7443 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7444 7445 if (vsi->type == ICE_VSI_PF) { 7446 /* Notify the stack of the actual queue counts. */ 7447 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7448 if (err) 7449 goto err_set_qs; 7450 7451 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7452 if (err) 7453 goto err_set_qs; 7454 } 7455 7456 err = ice_up_complete(vsi); 7457 if (err) 7458 goto err_up_complete; 7459 7460 return 0; 7461 7462 err_up_complete: 7463 ice_down(vsi); 7464 err_set_qs: 7465 ice_vsi_free_irq(vsi); 7466 err_setup_rx: 7467 ice_vsi_free_rx_rings(vsi); 7468 err_setup_tx: 7469 ice_vsi_free_tx_rings(vsi); 7470 7471 return err; 7472 } 7473 7474 /** 7475 * ice_vsi_release_all - Delete all VSIs 7476 * @pf: PF from which all VSIs are being removed 7477 */ 7478 static void ice_vsi_release_all(struct ice_pf *pf) 7479 { 7480 int err, i; 7481 7482 if (!pf->vsi) 7483 return; 7484 7485 ice_for_each_vsi(pf, i) { 7486 if (!pf->vsi[i]) 7487 continue; 7488 7489 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7490 continue; 7491 7492 err = ice_vsi_release(pf->vsi[i]); 7493 if (err) 7494 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7495 i, err, pf->vsi[i]->vsi_num); 7496 } 7497 } 7498 7499 /** 7500 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7501 * @pf: pointer to the PF instance 7502 * @type: VSI type to rebuild 7503 * 7504 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7505 */ 7506 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7507 { 7508 struct device *dev = ice_pf_to_dev(pf); 7509 int i, err; 7510 7511 ice_for_each_vsi(pf, i) { 7512 struct ice_vsi *vsi = pf->vsi[i]; 7513 7514 if (!vsi || vsi->type != type) 7515 continue; 7516 7517 /* rebuild the VSI */ 7518 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7519 if (err) { 7520 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7521 err, vsi->idx, ice_vsi_type_str(type)); 7522 return err; 7523 } 7524 7525 /* replay filters for the VSI */ 7526 err = ice_replay_vsi(&pf->hw, vsi->idx); 7527 if (err) { 7528 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7529 err, vsi->idx, ice_vsi_type_str(type)); 7530 return err; 7531 } 7532 7533 /* Re-map HW VSI number, using VSI handle that has been 7534 * previously validated in ice_replay_vsi() call above 7535 */ 7536 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7537 7538 /* enable the VSI */ 7539 err = ice_ena_vsi(vsi, false); 7540 if (err) { 7541 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7542 err, vsi->idx, ice_vsi_type_str(type)); 7543 return err; 7544 } 7545 7546 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7547 ice_vsi_type_str(type)); 7548 } 7549 7550 return 0; 7551 } 7552 7553 /** 7554 * ice_update_pf_netdev_link - Update PF netdev link status 7555 * @pf: pointer to the PF instance 7556 */ 7557 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7558 { 7559 bool link_up; 7560 int i; 7561 7562 ice_for_each_vsi(pf, i) { 7563 struct ice_vsi *vsi = pf->vsi[i]; 7564 7565 if (!vsi || vsi->type != ICE_VSI_PF) 7566 return; 7567 7568 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7569 if (link_up) { 7570 netif_carrier_on(pf->vsi[i]->netdev); 7571 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7572 } else { 7573 netif_carrier_off(pf->vsi[i]->netdev); 7574 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7575 } 7576 } 7577 } 7578 7579 /** 7580 * ice_rebuild - rebuild after reset 7581 * @pf: PF to rebuild 7582 * @reset_type: type of reset 7583 * 7584 * Do not rebuild VF VSI in this flow because that is already handled via 7585 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7586 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7587 * to reset/rebuild all the VF VSI twice. 7588 */ 7589 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7590 { 7591 struct device *dev = ice_pf_to_dev(pf); 7592 struct ice_hw *hw = &pf->hw; 7593 bool dvm; 7594 int err; 7595 7596 if (test_bit(ICE_DOWN, pf->state)) 7597 goto clear_recovery; 7598 7599 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7600 7601 #define ICE_EMP_RESET_SLEEP_MS 5000 7602 if (reset_type == ICE_RESET_EMPR) { 7603 /* If an EMP reset has occurred, any previously pending flash 7604 * update will have completed. We no longer know whether or 7605 * not the NVM update EMP reset is restricted. 7606 */ 7607 pf->fw_emp_reset_disabled = false; 7608 7609 msleep(ICE_EMP_RESET_SLEEP_MS); 7610 } 7611 7612 err = ice_init_all_ctrlq(hw); 7613 if (err) { 7614 dev_err(dev, "control queues init failed %d\n", err); 7615 goto err_init_ctrlq; 7616 } 7617 7618 /* if DDP was previously loaded successfully */ 7619 if (!ice_is_safe_mode(pf)) { 7620 /* reload the SW DB of filter tables */ 7621 if (reset_type == ICE_RESET_PFR) 7622 ice_fill_blk_tbls(hw); 7623 else 7624 /* Reload DDP Package after CORER/GLOBR reset */ 7625 ice_load_pkg(NULL, pf); 7626 } 7627 7628 err = ice_clear_pf_cfg(hw); 7629 if (err) { 7630 dev_err(dev, "clear PF configuration failed %d\n", err); 7631 goto err_init_ctrlq; 7632 } 7633 7634 ice_clear_pxe_mode(hw); 7635 7636 err = ice_init_nvm(hw); 7637 if (err) { 7638 dev_err(dev, "ice_init_nvm failed %d\n", err); 7639 goto err_init_ctrlq; 7640 } 7641 7642 err = ice_get_caps(hw); 7643 if (err) { 7644 dev_err(dev, "ice_get_caps failed %d\n", err); 7645 goto err_init_ctrlq; 7646 } 7647 7648 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7649 if (err) { 7650 dev_err(dev, "set_mac_cfg failed %d\n", err); 7651 goto err_init_ctrlq; 7652 } 7653 7654 dvm = ice_is_dvm_ena(hw); 7655 7656 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7657 if (err) 7658 goto err_init_ctrlq; 7659 7660 err = ice_sched_init_port(hw->port_info); 7661 if (err) 7662 goto err_sched_init_port; 7663 7664 /* start misc vector */ 7665 err = ice_req_irq_msix_misc(pf); 7666 if (err) { 7667 dev_err(dev, "misc vector setup failed: %d\n", err); 7668 goto err_sched_init_port; 7669 } 7670 7671 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7672 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7673 if (!rd32(hw, PFQF_FD_SIZE)) { 7674 u16 unused, guar, b_effort; 7675 7676 guar = hw->func_caps.fd_fltr_guar; 7677 b_effort = hw->func_caps.fd_fltr_best_effort; 7678 7679 /* force guaranteed filter pool for PF */ 7680 ice_alloc_fd_guar_item(hw, &unused, guar); 7681 /* force shared filter pool for PF */ 7682 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7683 } 7684 } 7685 7686 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7687 ice_dcb_rebuild(pf); 7688 7689 /* If the PF previously had enabled PTP, PTP init needs to happen before 7690 * the VSI rebuild. If not, this causes the PTP link status events to 7691 * fail. 7692 */ 7693 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7694 ice_ptp_rebuild(pf, reset_type); 7695 7696 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7697 ice_gnss_init(pf); 7698 7699 /* rebuild PF VSI */ 7700 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7701 if (err) { 7702 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7703 goto err_vsi_rebuild; 7704 } 7705 7706 ice_eswitch_rebuild(pf); 7707 7708 if (reset_type == ICE_RESET_PFR) { 7709 err = ice_rebuild_channels(pf); 7710 if (err) { 7711 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7712 err); 7713 goto err_vsi_rebuild; 7714 } 7715 } 7716 7717 /* If Flow Director is active */ 7718 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7719 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7720 if (err) { 7721 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7722 goto err_vsi_rebuild; 7723 } 7724 7725 /* replay HW Flow Director recipes */ 7726 if (hw->fdir_prof) 7727 ice_fdir_replay_flows(hw); 7728 7729 /* replay Flow Director filters */ 7730 ice_fdir_replay_fltrs(pf); 7731 7732 ice_rebuild_arfs(pf); 7733 } 7734 7735 ice_update_pf_netdev_link(pf); 7736 7737 /* tell the firmware we are up */ 7738 err = ice_send_version(pf); 7739 if (err) { 7740 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7741 err); 7742 goto err_vsi_rebuild; 7743 } 7744 7745 ice_replay_post(hw); 7746 7747 /* if we get here, reset flow is successful */ 7748 clear_bit(ICE_RESET_FAILED, pf->state); 7749 7750 ice_plug_aux_dev(pf); 7751 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7752 ice_lag_rebuild(pf); 7753 7754 /* Restore timestamp mode settings after VSI rebuild */ 7755 ice_ptp_restore_timestamp_mode(pf); 7756 return; 7757 7758 err_vsi_rebuild: 7759 err_sched_init_port: 7760 ice_sched_cleanup_all(hw); 7761 err_init_ctrlq: 7762 ice_shutdown_all_ctrlq(hw, false); 7763 set_bit(ICE_RESET_FAILED, pf->state); 7764 clear_recovery: 7765 /* set this bit in PF state to control service task scheduling */ 7766 set_bit(ICE_NEEDS_RESTART, pf->state); 7767 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7768 } 7769 7770 /** 7771 * ice_change_mtu - NDO callback to change the MTU 7772 * @netdev: network interface device structure 7773 * @new_mtu: new value for maximum frame size 7774 * 7775 * Returns 0 on success, negative on failure 7776 */ 7777 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7778 { 7779 struct ice_netdev_priv *np = netdev_priv(netdev); 7780 struct ice_vsi *vsi = np->vsi; 7781 struct ice_pf *pf = vsi->back; 7782 struct bpf_prog *prog; 7783 u8 count = 0; 7784 int err = 0; 7785 7786 if (new_mtu == (int)netdev->mtu) { 7787 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7788 return 0; 7789 } 7790 7791 prog = vsi->xdp_prog; 7792 if (prog && !prog->aux->xdp_has_frags) { 7793 int frame_size = ice_max_xdp_frame_size(vsi); 7794 7795 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7796 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7797 frame_size - ICE_ETH_PKT_HDR_PAD); 7798 return -EINVAL; 7799 } 7800 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7801 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7802 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7803 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7804 return -EINVAL; 7805 } 7806 } 7807 7808 /* if a reset is in progress, wait for some time for it to complete */ 7809 do { 7810 if (ice_is_reset_in_progress(pf->state)) { 7811 count++; 7812 usleep_range(1000, 2000); 7813 } else { 7814 break; 7815 } 7816 7817 } while (count < 100); 7818 7819 if (count == 100) { 7820 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7821 return -EBUSY; 7822 } 7823 7824 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7825 err = ice_down_up(vsi); 7826 if (err) 7827 return err; 7828 7829 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7830 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7831 7832 return err; 7833 } 7834 7835 /** 7836 * ice_eth_ioctl - Access the hwtstamp interface 7837 * @netdev: network interface device structure 7838 * @ifr: interface request data 7839 * @cmd: ioctl command 7840 */ 7841 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7842 { 7843 struct ice_netdev_priv *np = netdev_priv(netdev); 7844 struct ice_pf *pf = np->vsi->back; 7845 7846 switch (cmd) { 7847 case SIOCGHWTSTAMP: 7848 return ice_ptp_get_ts_config(pf, ifr); 7849 case SIOCSHWTSTAMP: 7850 return ice_ptp_set_ts_config(pf, ifr); 7851 default: 7852 return -EOPNOTSUPP; 7853 } 7854 } 7855 7856 /** 7857 * ice_aq_str - convert AQ err code to a string 7858 * @aq_err: the AQ error code to convert 7859 */ 7860 const char *ice_aq_str(enum ice_aq_err aq_err) 7861 { 7862 switch (aq_err) { 7863 case ICE_AQ_RC_OK: 7864 return "OK"; 7865 case ICE_AQ_RC_EPERM: 7866 return "ICE_AQ_RC_EPERM"; 7867 case ICE_AQ_RC_ENOENT: 7868 return "ICE_AQ_RC_ENOENT"; 7869 case ICE_AQ_RC_ENOMEM: 7870 return "ICE_AQ_RC_ENOMEM"; 7871 case ICE_AQ_RC_EBUSY: 7872 return "ICE_AQ_RC_EBUSY"; 7873 case ICE_AQ_RC_EEXIST: 7874 return "ICE_AQ_RC_EEXIST"; 7875 case ICE_AQ_RC_EINVAL: 7876 return "ICE_AQ_RC_EINVAL"; 7877 case ICE_AQ_RC_ENOSPC: 7878 return "ICE_AQ_RC_ENOSPC"; 7879 case ICE_AQ_RC_ENOSYS: 7880 return "ICE_AQ_RC_ENOSYS"; 7881 case ICE_AQ_RC_EMODE: 7882 return "ICE_AQ_RC_EMODE"; 7883 case ICE_AQ_RC_ENOSEC: 7884 return "ICE_AQ_RC_ENOSEC"; 7885 case ICE_AQ_RC_EBADSIG: 7886 return "ICE_AQ_RC_EBADSIG"; 7887 case ICE_AQ_RC_ESVN: 7888 return "ICE_AQ_RC_ESVN"; 7889 case ICE_AQ_RC_EBADMAN: 7890 return "ICE_AQ_RC_EBADMAN"; 7891 case ICE_AQ_RC_EBADBUF: 7892 return "ICE_AQ_RC_EBADBUF"; 7893 } 7894 7895 return "ICE_AQ_RC_UNKNOWN"; 7896 } 7897 7898 /** 7899 * ice_set_rss_lut - Set RSS LUT 7900 * @vsi: Pointer to VSI structure 7901 * @lut: Lookup table 7902 * @lut_size: Lookup table size 7903 * 7904 * Returns 0 on success, negative on failure 7905 */ 7906 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7907 { 7908 struct ice_aq_get_set_rss_lut_params params = {}; 7909 struct ice_hw *hw = &vsi->back->hw; 7910 int status; 7911 7912 if (!lut) 7913 return -EINVAL; 7914 7915 params.vsi_handle = vsi->idx; 7916 params.lut_size = lut_size; 7917 params.lut_type = vsi->rss_lut_type; 7918 params.lut = lut; 7919 7920 status = ice_aq_set_rss_lut(hw, ¶ms); 7921 if (status) 7922 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7923 status, ice_aq_str(hw->adminq.sq_last_status)); 7924 7925 return status; 7926 } 7927 7928 /** 7929 * ice_set_rss_key - Set RSS key 7930 * @vsi: Pointer to the VSI structure 7931 * @seed: RSS hash seed 7932 * 7933 * Returns 0 on success, negative on failure 7934 */ 7935 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7936 { 7937 struct ice_hw *hw = &vsi->back->hw; 7938 int status; 7939 7940 if (!seed) 7941 return -EINVAL; 7942 7943 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7944 if (status) 7945 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7946 status, ice_aq_str(hw->adminq.sq_last_status)); 7947 7948 return status; 7949 } 7950 7951 /** 7952 * ice_get_rss_lut - Get RSS LUT 7953 * @vsi: Pointer to VSI structure 7954 * @lut: Buffer to store the lookup table entries 7955 * @lut_size: Size of buffer to store the lookup table entries 7956 * 7957 * Returns 0 on success, negative on failure 7958 */ 7959 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7960 { 7961 struct ice_aq_get_set_rss_lut_params params = {}; 7962 struct ice_hw *hw = &vsi->back->hw; 7963 int status; 7964 7965 if (!lut) 7966 return -EINVAL; 7967 7968 params.vsi_handle = vsi->idx; 7969 params.lut_size = lut_size; 7970 params.lut_type = vsi->rss_lut_type; 7971 params.lut = lut; 7972 7973 status = ice_aq_get_rss_lut(hw, ¶ms); 7974 if (status) 7975 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7976 status, ice_aq_str(hw->adminq.sq_last_status)); 7977 7978 return status; 7979 } 7980 7981 /** 7982 * ice_get_rss_key - Get RSS key 7983 * @vsi: Pointer to VSI structure 7984 * @seed: Buffer to store the key in 7985 * 7986 * Returns 0 on success, negative on failure 7987 */ 7988 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7989 { 7990 struct ice_hw *hw = &vsi->back->hw; 7991 int status; 7992 7993 if (!seed) 7994 return -EINVAL; 7995 7996 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7997 if (status) 7998 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7999 status, ice_aq_str(hw->adminq.sq_last_status)); 8000 8001 return status; 8002 } 8003 8004 /** 8005 * ice_set_rss_hfunc - Set RSS HASH function 8006 * @vsi: Pointer to VSI structure 8007 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8008 * 8009 * Returns 0 on success, negative on failure 8010 */ 8011 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8012 { 8013 struct ice_hw *hw = &vsi->back->hw; 8014 struct ice_vsi_ctx *ctx; 8015 bool symm; 8016 int err; 8017 8018 if (hfunc == vsi->rss_hfunc) 8019 return 0; 8020 8021 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8022 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8023 return -EOPNOTSUPP; 8024 8025 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8026 if (!ctx) 8027 return -ENOMEM; 8028 8029 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8030 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8031 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8032 ctx->info.q_opt_rss |= 8033 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8034 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8035 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8036 8037 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8038 if (err) { 8039 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8040 vsi->vsi_num, err); 8041 } else { 8042 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8043 vsi->rss_hfunc = hfunc; 8044 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8045 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8046 "Symmetric " : ""); 8047 } 8048 kfree(ctx); 8049 if (err) 8050 return err; 8051 8052 /* Fix the symmetry setting for all existing RSS configurations */ 8053 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8054 return ice_set_rss_cfg_symm(hw, vsi, symm); 8055 } 8056 8057 /** 8058 * ice_bridge_getlink - Get the hardware bridge mode 8059 * @skb: skb buff 8060 * @pid: process ID 8061 * @seq: RTNL message seq 8062 * @dev: the netdev being configured 8063 * @filter_mask: filter mask passed in 8064 * @nlflags: netlink flags passed in 8065 * 8066 * Return the bridge mode (VEB/VEPA) 8067 */ 8068 static int 8069 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8070 struct net_device *dev, u32 filter_mask, int nlflags) 8071 { 8072 struct ice_netdev_priv *np = netdev_priv(dev); 8073 struct ice_vsi *vsi = np->vsi; 8074 struct ice_pf *pf = vsi->back; 8075 u16 bmode; 8076 8077 bmode = pf->first_sw->bridge_mode; 8078 8079 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8080 filter_mask, NULL); 8081 } 8082 8083 /** 8084 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8085 * @vsi: Pointer to VSI structure 8086 * @bmode: Hardware bridge mode (VEB/VEPA) 8087 * 8088 * Returns 0 on success, negative on failure 8089 */ 8090 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8091 { 8092 struct ice_aqc_vsi_props *vsi_props; 8093 struct ice_hw *hw = &vsi->back->hw; 8094 struct ice_vsi_ctx *ctxt; 8095 int ret; 8096 8097 vsi_props = &vsi->info; 8098 8099 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8100 if (!ctxt) 8101 return -ENOMEM; 8102 8103 ctxt->info = vsi->info; 8104 8105 if (bmode == BRIDGE_MODE_VEB) 8106 /* change from VEPA to VEB mode */ 8107 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8108 else 8109 /* change from VEB to VEPA mode */ 8110 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8111 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8112 8113 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8114 if (ret) { 8115 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8116 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8117 goto out; 8118 } 8119 /* Update sw flags for book keeping */ 8120 vsi_props->sw_flags = ctxt->info.sw_flags; 8121 8122 out: 8123 kfree(ctxt); 8124 return ret; 8125 } 8126 8127 /** 8128 * ice_bridge_setlink - Set the hardware bridge mode 8129 * @dev: the netdev being configured 8130 * @nlh: RTNL message 8131 * @flags: bridge setlink flags 8132 * @extack: netlink extended ack 8133 * 8134 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8135 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8136 * not already set for all VSIs connected to this switch. And also update the 8137 * unicast switch filter rules for the corresponding switch of the netdev. 8138 */ 8139 static int 8140 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8141 u16 __always_unused flags, 8142 struct netlink_ext_ack __always_unused *extack) 8143 { 8144 struct ice_netdev_priv *np = netdev_priv(dev); 8145 struct ice_pf *pf = np->vsi->back; 8146 struct nlattr *attr, *br_spec; 8147 struct ice_hw *hw = &pf->hw; 8148 struct ice_sw *pf_sw; 8149 int rem, v, err = 0; 8150 8151 pf_sw = pf->first_sw; 8152 /* find the attribute in the netlink message */ 8153 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8154 if (!br_spec) 8155 return -EINVAL; 8156 8157 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8158 __u16 mode = nla_get_u16(attr); 8159 8160 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8161 return -EINVAL; 8162 /* Continue if bridge mode is not being flipped */ 8163 if (mode == pf_sw->bridge_mode) 8164 continue; 8165 /* Iterates through the PF VSI list and update the loopback 8166 * mode of the VSI 8167 */ 8168 ice_for_each_vsi(pf, v) { 8169 if (!pf->vsi[v]) 8170 continue; 8171 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8172 if (err) 8173 return err; 8174 } 8175 8176 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8177 /* Update the unicast switch filter rules for the corresponding 8178 * switch of the netdev 8179 */ 8180 err = ice_update_sw_rule_bridge_mode(hw); 8181 if (err) { 8182 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8183 mode, err, 8184 ice_aq_str(hw->adminq.sq_last_status)); 8185 /* revert hw->evb_veb */ 8186 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8187 return err; 8188 } 8189 8190 pf_sw->bridge_mode = mode; 8191 } 8192 8193 return 0; 8194 } 8195 8196 /** 8197 * ice_tx_timeout - Respond to a Tx Hang 8198 * @netdev: network interface device structure 8199 * @txqueue: Tx queue 8200 */ 8201 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8202 { 8203 struct ice_netdev_priv *np = netdev_priv(netdev); 8204 struct ice_tx_ring *tx_ring = NULL; 8205 struct ice_vsi *vsi = np->vsi; 8206 struct ice_pf *pf = vsi->back; 8207 u32 i; 8208 8209 pf->tx_timeout_count++; 8210 8211 /* Check if PFC is enabled for the TC to which the queue belongs 8212 * to. If yes then Tx timeout is not caused by a hung queue, no 8213 * need to reset and rebuild 8214 */ 8215 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8216 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8217 txqueue); 8218 return; 8219 } 8220 8221 /* now that we have an index, find the tx_ring struct */ 8222 ice_for_each_txq(vsi, i) 8223 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8224 if (txqueue == vsi->tx_rings[i]->q_index) { 8225 tx_ring = vsi->tx_rings[i]; 8226 break; 8227 } 8228 8229 /* Reset recovery level if enough time has elapsed after last timeout. 8230 * Also ensure no new reset action happens before next timeout period. 8231 */ 8232 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8233 pf->tx_timeout_recovery_level = 1; 8234 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8235 netdev->watchdog_timeo))) 8236 return; 8237 8238 if (tx_ring) { 8239 struct ice_hw *hw = &pf->hw; 8240 u32 head, val = 0; 8241 8242 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8243 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8244 /* Read interrupt register */ 8245 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8246 8247 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8248 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8249 head, tx_ring->next_to_use, val); 8250 } 8251 8252 pf->tx_timeout_last_recovery = jiffies; 8253 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8254 pf->tx_timeout_recovery_level, txqueue); 8255 8256 switch (pf->tx_timeout_recovery_level) { 8257 case 1: 8258 set_bit(ICE_PFR_REQ, pf->state); 8259 break; 8260 case 2: 8261 set_bit(ICE_CORER_REQ, pf->state); 8262 break; 8263 case 3: 8264 set_bit(ICE_GLOBR_REQ, pf->state); 8265 break; 8266 default: 8267 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8268 set_bit(ICE_DOWN, pf->state); 8269 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8270 set_bit(ICE_SERVICE_DIS, pf->state); 8271 break; 8272 } 8273 8274 ice_service_task_schedule(pf); 8275 pf->tx_timeout_recovery_level++; 8276 } 8277 8278 /** 8279 * ice_setup_tc_cls_flower - flower classifier offloads 8280 * @np: net device to configure 8281 * @filter_dev: device on which filter is added 8282 * @cls_flower: offload data 8283 */ 8284 static int 8285 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8286 struct net_device *filter_dev, 8287 struct flow_cls_offload *cls_flower) 8288 { 8289 struct ice_vsi *vsi = np->vsi; 8290 8291 if (cls_flower->common.chain_index) 8292 return -EOPNOTSUPP; 8293 8294 switch (cls_flower->command) { 8295 case FLOW_CLS_REPLACE: 8296 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8297 case FLOW_CLS_DESTROY: 8298 return ice_del_cls_flower(vsi, cls_flower); 8299 default: 8300 return -EINVAL; 8301 } 8302 } 8303 8304 /** 8305 * ice_setup_tc_block_cb - callback handler registered for TC block 8306 * @type: TC SETUP type 8307 * @type_data: TC flower offload data that contains user input 8308 * @cb_priv: netdev private data 8309 */ 8310 static int 8311 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8312 { 8313 struct ice_netdev_priv *np = cb_priv; 8314 8315 switch (type) { 8316 case TC_SETUP_CLSFLOWER: 8317 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8318 type_data); 8319 default: 8320 return -EOPNOTSUPP; 8321 } 8322 } 8323 8324 /** 8325 * ice_validate_mqprio_qopt - Validate TCF input parameters 8326 * @vsi: Pointer to VSI 8327 * @mqprio_qopt: input parameters for mqprio queue configuration 8328 * 8329 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8330 * needed), and make sure user doesn't specify qcount and BW rate limit 8331 * for TCs, which are more than "num_tc" 8332 */ 8333 static int 8334 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8335 struct tc_mqprio_qopt_offload *mqprio_qopt) 8336 { 8337 int non_power_of_2_qcount = 0; 8338 struct ice_pf *pf = vsi->back; 8339 int max_rss_q_cnt = 0; 8340 u64 sum_min_rate = 0; 8341 struct device *dev; 8342 int i, speed; 8343 u8 num_tc; 8344 8345 if (vsi->type != ICE_VSI_PF) 8346 return -EINVAL; 8347 8348 if (mqprio_qopt->qopt.offset[0] != 0 || 8349 mqprio_qopt->qopt.num_tc < 1 || 8350 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8351 return -EINVAL; 8352 8353 dev = ice_pf_to_dev(pf); 8354 vsi->ch_rss_size = 0; 8355 num_tc = mqprio_qopt->qopt.num_tc; 8356 speed = ice_get_link_speed_kbps(vsi); 8357 8358 for (i = 0; num_tc; i++) { 8359 int qcount = mqprio_qopt->qopt.count[i]; 8360 u64 max_rate, min_rate, rem; 8361 8362 if (!qcount) 8363 return -EINVAL; 8364 8365 if (is_power_of_2(qcount)) { 8366 if (non_power_of_2_qcount && 8367 qcount > non_power_of_2_qcount) { 8368 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8369 qcount, non_power_of_2_qcount); 8370 return -EINVAL; 8371 } 8372 if (qcount > max_rss_q_cnt) 8373 max_rss_q_cnt = qcount; 8374 } else { 8375 if (non_power_of_2_qcount && 8376 qcount != non_power_of_2_qcount) { 8377 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8378 qcount, non_power_of_2_qcount); 8379 return -EINVAL; 8380 } 8381 if (qcount < max_rss_q_cnt) { 8382 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8383 qcount, max_rss_q_cnt); 8384 return -EINVAL; 8385 } 8386 max_rss_q_cnt = qcount; 8387 non_power_of_2_qcount = qcount; 8388 } 8389 8390 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8391 * converts the bandwidth rate limit into Bytes/s when 8392 * passing it down to the driver. So convert input bandwidth 8393 * from Bytes/s to Kbps 8394 */ 8395 max_rate = mqprio_qopt->max_rate[i]; 8396 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8397 8398 /* min_rate is minimum guaranteed rate and it can't be zero */ 8399 min_rate = mqprio_qopt->min_rate[i]; 8400 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8401 sum_min_rate += min_rate; 8402 8403 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8404 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8405 min_rate, ICE_MIN_BW_LIMIT); 8406 return -EINVAL; 8407 } 8408 8409 if (max_rate && max_rate > speed) { 8410 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8411 i, max_rate, speed); 8412 return -EINVAL; 8413 } 8414 8415 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8416 if (rem) { 8417 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8418 i, ICE_MIN_BW_LIMIT); 8419 return -EINVAL; 8420 } 8421 8422 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8423 if (rem) { 8424 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8425 i, ICE_MIN_BW_LIMIT); 8426 return -EINVAL; 8427 } 8428 8429 /* min_rate can't be more than max_rate, except when max_rate 8430 * is zero (implies max_rate sought is max line rate). In such 8431 * a case min_rate can be more than max. 8432 */ 8433 if (max_rate && min_rate > max_rate) { 8434 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8435 min_rate, max_rate); 8436 return -EINVAL; 8437 } 8438 8439 if (i >= mqprio_qopt->qopt.num_tc - 1) 8440 break; 8441 if (mqprio_qopt->qopt.offset[i + 1] != 8442 (mqprio_qopt->qopt.offset[i] + qcount)) 8443 return -EINVAL; 8444 } 8445 if (vsi->num_rxq < 8446 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8447 return -EINVAL; 8448 if (vsi->num_txq < 8449 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8450 return -EINVAL; 8451 8452 if (sum_min_rate && sum_min_rate > (u64)speed) { 8453 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8454 sum_min_rate, speed); 8455 return -EINVAL; 8456 } 8457 8458 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8459 vsi->ch_rss_size = max_rss_q_cnt; 8460 8461 return 0; 8462 } 8463 8464 /** 8465 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8466 * @pf: ptr to PF device 8467 * @vsi: ptr to VSI 8468 */ 8469 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8470 { 8471 struct device *dev = ice_pf_to_dev(pf); 8472 bool added = false; 8473 struct ice_hw *hw; 8474 int flow; 8475 8476 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8477 return -EINVAL; 8478 8479 hw = &pf->hw; 8480 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8481 struct ice_fd_hw_prof *prof; 8482 int tun, status; 8483 u64 entry_h; 8484 8485 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8486 hw->fdir_prof[flow]->cnt)) 8487 continue; 8488 8489 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8490 enum ice_flow_priority prio; 8491 8492 /* add this VSI to FDir profile for this flow */ 8493 prio = ICE_FLOW_PRIO_NORMAL; 8494 prof = hw->fdir_prof[flow]; 8495 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8496 prof->prof_id[tun], 8497 prof->vsi_h[0], vsi->idx, 8498 prio, prof->fdir_seg[tun], 8499 &entry_h); 8500 if (status) { 8501 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8502 vsi->idx, flow); 8503 continue; 8504 } 8505 8506 prof->entry_h[prof->cnt][tun] = entry_h; 8507 } 8508 8509 /* store VSI for filter replay and delete */ 8510 prof->vsi_h[prof->cnt] = vsi->idx; 8511 prof->cnt++; 8512 8513 added = true; 8514 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8515 flow); 8516 } 8517 8518 if (!added) 8519 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8520 8521 return 0; 8522 } 8523 8524 /** 8525 * ice_add_channel - add a channel by adding VSI 8526 * @pf: ptr to PF device 8527 * @sw_id: underlying HW switching element ID 8528 * @ch: ptr to channel structure 8529 * 8530 * Add a channel (VSI) using add_vsi and queue_map 8531 */ 8532 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8533 { 8534 struct device *dev = ice_pf_to_dev(pf); 8535 struct ice_vsi *vsi; 8536 8537 if (ch->type != ICE_VSI_CHNL) { 8538 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8539 return -EINVAL; 8540 } 8541 8542 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8543 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8544 dev_err(dev, "create chnl VSI failure\n"); 8545 return -EINVAL; 8546 } 8547 8548 ice_add_vsi_to_fdir(pf, vsi); 8549 8550 ch->sw_id = sw_id; 8551 ch->vsi_num = vsi->vsi_num; 8552 ch->info.mapping_flags = vsi->info.mapping_flags; 8553 ch->ch_vsi = vsi; 8554 /* set the back pointer of channel for newly created VSI */ 8555 vsi->ch = ch; 8556 8557 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8558 sizeof(vsi->info.q_mapping)); 8559 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8560 sizeof(vsi->info.tc_mapping)); 8561 8562 return 0; 8563 } 8564 8565 /** 8566 * ice_chnl_cfg_res 8567 * @vsi: the VSI being setup 8568 * @ch: ptr to channel structure 8569 * 8570 * Configure channel specific resources such as rings, vector. 8571 */ 8572 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8573 { 8574 int i; 8575 8576 for (i = 0; i < ch->num_txq; i++) { 8577 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8578 struct ice_ring_container *rc; 8579 struct ice_tx_ring *tx_ring; 8580 struct ice_rx_ring *rx_ring; 8581 8582 tx_ring = vsi->tx_rings[ch->base_q + i]; 8583 rx_ring = vsi->rx_rings[ch->base_q + i]; 8584 if (!tx_ring || !rx_ring) 8585 continue; 8586 8587 /* setup ring being channel enabled */ 8588 tx_ring->ch = ch; 8589 rx_ring->ch = ch; 8590 8591 /* following code block sets up vector specific attributes */ 8592 tx_q_vector = tx_ring->q_vector; 8593 rx_q_vector = rx_ring->q_vector; 8594 if (!tx_q_vector && !rx_q_vector) 8595 continue; 8596 8597 if (tx_q_vector) { 8598 tx_q_vector->ch = ch; 8599 /* setup Tx and Rx ITR setting if DIM is off */ 8600 rc = &tx_q_vector->tx; 8601 if (!ITR_IS_DYNAMIC(rc)) 8602 ice_write_itr(rc, rc->itr_setting); 8603 } 8604 if (rx_q_vector) { 8605 rx_q_vector->ch = ch; 8606 /* setup Tx and Rx ITR setting if DIM is off */ 8607 rc = &rx_q_vector->rx; 8608 if (!ITR_IS_DYNAMIC(rc)) 8609 ice_write_itr(rc, rc->itr_setting); 8610 } 8611 } 8612 8613 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8614 * GLINT_ITR register would have written to perform in-context 8615 * update, hence perform flush 8616 */ 8617 if (ch->num_txq || ch->num_rxq) 8618 ice_flush(&vsi->back->hw); 8619 } 8620 8621 /** 8622 * ice_cfg_chnl_all_res - configure channel resources 8623 * @vsi: pte to main_vsi 8624 * @ch: ptr to channel structure 8625 * 8626 * This function configures channel specific resources such as flow-director 8627 * counter index, and other resources such as queues, vectors, ITR settings 8628 */ 8629 static void 8630 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8631 { 8632 /* configure channel (aka ADQ) resources such as queues, vectors, 8633 * ITR settings for channel specific vectors and anything else 8634 */ 8635 ice_chnl_cfg_res(vsi, ch); 8636 } 8637 8638 /** 8639 * ice_setup_hw_channel - setup new channel 8640 * @pf: ptr to PF device 8641 * @vsi: the VSI being setup 8642 * @ch: ptr to channel structure 8643 * @sw_id: underlying HW switching element ID 8644 * @type: type of channel to be created (VMDq2/VF) 8645 * 8646 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8647 * and configures Tx rings accordingly 8648 */ 8649 static int 8650 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8651 struct ice_channel *ch, u16 sw_id, u8 type) 8652 { 8653 struct device *dev = ice_pf_to_dev(pf); 8654 int ret; 8655 8656 ch->base_q = vsi->next_base_q; 8657 ch->type = type; 8658 8659 ret = ice_add_channel(pf, sw_id, ch); 8660 if (ret) { 8661 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8662 return ret; 8663 } 8664 8665 /* configure/setup ADQ specific resources */ 8666 ice_cfg_chnl_all_res(vsi, ch); 8667 8668 /* make sure to update the next_base_q so that subsequent channel's 8669 * (aka ADQ) VSI queue map is correct 8670 */ 8671 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8672 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8673 ch->num_rxq); 8674 8675 return 0; 8676 } 8677 8678 /** 8679 * ice_setup_channel - setup new channel using uplink element 8680 * @pf: ptr to PF device 8681 * @vsi: the VSI being setup 8682 * @ch: ptr to channel structure 8683 * 8684 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8685 * and uplink switching element 8686 */ 8687 static bool 8688 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8689 struct ice_channel *ch) 8690 { 8691 struct device *dev = ice_pf_to_dev(pf); 8692 u16 sw_id; 8693 int ret; 8694 8695 if (vsi->type != ICE_VSI_PF) { 8696 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8697 return false; 8698 } 8699 8700 sw_id = pf->first_sw->sw_id; 8701 8702 /* create channel (VSI) */ 8703 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8704 if (ret) { 8705 dev_err(dev, "failed to setup hw_channel\n"); 8706 return false; 8707 } 8708 dev_dbg(dev, "successfully created channel()\n"); 8709 8710 return ch->ch_vsi ? true : false; 8711 } 8712 8713 /** 8714 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8715 * @vsi: VSI to be configured 8716 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8717 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8718 */ 8719 static int 8720 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8721 { 8722 int err; 8723 8724 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8725 if (err) 8726 return err; 8727 8728 return ice_set_max_bw_limit(vsi, max_tx_rate); 8729 } 8730 8731 /** 8732 * ice_create_q_channel - function to create channel 8733 * @vsi: VSI to be configured 8734 * @ch: ptr to channel (it contains channel specific params) 8735 * 8736 * This function creates channel (VSI) using num_queues specified by user, 8737 * reconfigs RSS if needed. 8738 */ 8739 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8740 { 8741 struct ice_pf *pf = vsi->back; 8742 struct device *dev; 8743 8744 if (!ch) 8745 return -EINVAL; 8746 8747 dev = ice_pf_to_dev(pf); 8748 if (!ch->num_txq || !ch->num_rxq) { 8749 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8750 return -EINVAL; 8751 } 8752 8753 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8754 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8755 vsi->cnt_q_avail, ch->num_txq); 8756 return -EINVAL; 8757 } 8758 8759 if (!ice_setup_channel(pf, vsi, ch)) { 8760 dev_info(dev, "Failed to setup channel\n"); 8761 return -EINVAL; 8762 } 8763 /* configure BW rate limit */ 8764 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8765 int ret; 8766 8767 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8768 ch->min_tx_rate); 8769 if (ret) 8770 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8771 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8772 else 8773 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8774 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8775 } 8776 8777 vsi->cnt_q_avail -= ch->num_txq; 8778 8779 return 0; 8780 } 8781 8782 /** 8783 * ice_rem_all_chnl_fltrs - removes all channel filters 8784 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8785 * 8786 * Remove all advanced switch filters only if they are channel specific 8787 * tc-flower based filter 8788 */ 8789 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8790 { 8791 struct ice_tc_flower_fltr *fltr; 8792 struct hlist_node *node; 8793 8794 /* to remove all channel filters, iterate an ordered list of filters */ 8795 hlist_for_each_entry_safe(fltr, node, 8796 &pf->tc_flower_fltr_list, 8797 tc_flower_node) { 8798 struct ice_rule_query_data rule; 8799 int status; 8800 8801 /* for now process only channel specific filters */ 8802 if (!ice_is_chnl_fltr(fltr)) 8803 continue; 8804 8805 rule.rid = fltr->rid; 8806 rule.rule_id = fltr->rule_id; 8807 rule.vsi_handle = fltr->dest_vsi_handle; 8808 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8809 if (status) { 8810 if (status == -ENOENT) 8811 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8812 rule.rule_id); 8813 else 8814 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8815 status); 8816 } else if (fltr->dest_vsi) { 8817 /* update advanced switch filter count */ 8818 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8819 u32 flags = fltr->flags; 8820 8821 fltr->dest_vsi->num_chnl_fltr--; 8822 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8823 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8824 pf->num_dmac_chnl_fltrs--; 8825 } 8826 } 8827 8828 hlist_del(&fltr->tc_flower_node); 8829 kfree(fltr); 8830 } 8831 } 8832 8833 /** 8834 * ice_remove_q_channels - Remove queue channels for the TCs 8835 * @vsi: VSI to be configured 8836 * @rem_fltr: delete advanced switch filter or not 8837 * 8838 * Remove queue channels for the TCs 8839 */ 8840 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8841 { 8842 struct ice_channel *ch, *ch_tmp; 8843 struct ice_pf *pf = vsi->back; 8844 int i; 8845 8846 /* remove all tc-flower based filter if they are channel filters only */ 8847 if (rem_fltr) 8848 ice_rem_all_chnl_fltrs(pf); 8849 8850 /* remove ntuple filters since queue configuration is being changed */ 8851 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8852 struct ice_hw *hw = &pf->hw; 8853 8854 mutex_lock(&hw->fdir_fltr_lock); 8855 ice_fdir_del_all_fltrs(vsi); 8856 mutex_unlock(&hw->fdir_fltr_lock); 8857 } 8858 8859 /* perform cleanup for channels if they exist */ 8860 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8861 struct ice_vsi *ch_vsi; 8862 8863 list_del(&ch->list); 8864 ch_vsi = ch->ch_vsi; 8865 if (!ch_vsi) { 8866 kfree(ch); 8867 continue; 8868 } 8869 8870 /* Reset queue contexts */ 8871 for (i = 0; i < ch->num_rxq; i++) { 8872 struct ice_tx_ring *tx_ring; 8873 struct ice_rx_ring *rx_ring; 8874 8875 tx_ring = vsi->tx_rings[ch->base_q + i]; 8876 rx_ring = vsi->rx_rings[ch->base_q + i]; 8877 if (tx_ring) { 8878 tx_ring->ch = NULL; 8879 if (tx_ring->q_vector) 8880 tx_ring->q_vector->ch = NULL; 8881 } 8882 if (rx_ring) { 8883 rx_ring->ch = NULL; 8884 if (rx_ring->q_vector) 8885 rx_ring->q_vector->ch = NULL; 8886 } 8887 } 8888 8889 /* Release FD resources for the channel VSI */ 8890 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8891 8892 /* clear the VSI from scheduler tree */ 8893 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8894 8895 /* Delete VSI from FW, PF and HW VSI arrays */ 8896 ice_vsi_delete(ch->ch_vsi); 8897 8898 /* free the channel */ 8899 kfree(ch); 8900 } 8901 8902 /* clear the channel VSI map which is stored in main VSI */ 8903 ice_for_each_chnl_tc(i) 8904 vsi->tc_map_vsi[i] = NULL; 8905 8906 /* reset main VSI's all TC information */ 8907 vsi->all_enatc = 0; 8908 vsi->all_numtc = 0; 8909 } 8910 8911 /** 8912 * ice_rebuild_channels - rebuild channel 8913 * @pf: ptr to PF 8914 * 8915 * Recreate channel VSIs and replay filters 8916 */ 8917 static int ice_rebuild_channels(struct ice_pf *pf) 8918 { 8919 struct device *dev = ice_pf_to_dev(pf); 8920 struct ice_vsi *main_vsi; 8921 bool rem_adv_fltr = true; 8922 struct ice_channel *ch; 8923 struct ice_vsi *vsi; 8924 int tc_idx = 1; 8925 int i, err; 8926 8927 main_vsi = ice_get_main_vsi(pf); 8928 if (!main_vsi) 8929 return 0; 8930 8931 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8932 main_vsi->old_numtc == 1) 8933 return 0; /* nothing to be done */ 8934 8935 /* reconfigure main VSI based on old value of TC and cached values 8936 * for MQPRIO opts 8937 */ 8938 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8939 if (err) { 8940 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8941 main_vsi->old_ena_tc, main_vsi->vsi_num); 8942 return err; 8943 } 8944 8945 /* rebuild ADQ VSIs */ 8946 ice_for_each_vsi(pf, i) { 8947 enum ice_vsi_type type; 8948 8949 vsi = pf->vsi[i]; 8950 if (!vsi || vsi->type != ICE_VSI_CHNL) 8951 continue; 8952 8953 type = vsi->type; 8954 8955 /* rebuild ADQ VSI */ 8956 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8957 if (err) { 8958 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8959 ice_vsi_type_str(type), vsi->idx, err); 8960 goto cleanup; 8961 } 8962 8963 /* Re-map HW VSI number, using VSI handle that has been 8964 * previously validated in ice_replay_vsi() call above 8965 */ 8966 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8967 8968 /* replay filters for the VSI */ 8969 err = ice_replay_vsi(&pf->hw, vsi->idx); 8970 if (err) { 8971 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8972 ice_vsi_type_str(type), err, vsi->idx); 8973 rem_adv_fltr = false; 8974 goto cleanup; 8975 } 8976 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8977 ice_vsi_type_str(type), vsi->idx); 8978 8979 /* store ADQ VSI at correct TC index in main VSI's 8980 * map of TC to VSI 8981 */ 8982 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8983 } 8984 8985 /* ADQ VSI(s) has been rebuilt successfully, so setup 8986 * channel for main VSI's Tx and Rx rings 8987 */ 8988 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8989 struct ice_vsi *ch_vsi; 8990 8991 ch_vsi = ch->ch_vsi; 8992 if (!ch_vsi) 8993 continue; 8994 8995 /* reconfig channel resources */ 8996 ice_cfg_chnl_all_res(main_vsi, ch); 8997 8998 /* replay BW rate limit if it is non-zero */ 8999 if (!ch->max_tx_rate && !ch->min_tx_rate) 9000 continue; 9001 9002 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9003 ch->min_tx_rate); 9004 if (err) 9005 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9006 err, ch->max_tx_rate, ch->min_tx_rate, 9007 ch_vsi->vsi_num); 9008 else 9009 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9010 ch->max_tx_rate, ch->min_tx_rate, 9011 ch_vsi->vsi_num); 9012 } 9013 9014 /* reconfig RSS for main VSI */ 9015 if (main_vsi->ch_rss_size) 9016 ice_vsi_cfg_rss_lut_key(main_vsi); 9017 9018 return 0; 9019 9020 cleanup: 9021 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9022 return err; 9023 } 9024 9025 /** 9026 * ice_create_q_channels - Add queue channel for the given TCs 9027 * @vsi: VSI to be configured 9028 * 9029 * Configures queue channel mapping to the given TCs 9030 */ 9031 static int ice_create_q_channels(struct ice_vsi *vsi) 9032 { 9033 struct ice_pf *pf = vsi->back; 9034 struct ice_channel *ch; 9035 int ret = 0, i; 9036 9037 ice_for_each_chnl_tc(i) { 9038 if (!(vsi->all_enatc & BIT(i))) 9039 continue; 9040 9041 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9042 if (!ch) { 9043 ret = -ENOMEM; 9044 goto err_free; 9045 } 9046 INIT_LIST_HEAD(&ch->list); 9047 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9048 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9049 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9050 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9051 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9052 9053 /* convert to Kbits/s */ 9054 if (ch->max_tx_rate) 9055 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9056 ICE_BW_KBPS_DIVISOR); 9057 if (ch->min_tx_rate) 9058 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9059 ICE_BW_KBPS_DIVISOR); 9060 9061 ret = ice_create_q_channel(vsi, ch); 9062 if (ret) { 9063 dev_err(ice_pf_to_dev(pf), 9064 "failed creating channel TC:%d\n", i); 9065 kfree(ch); 9066 goto err_free; 9067 } 9068 list_add_tail(&ch->list, &vsi->ch_list); 9069 vsi->tc_map_vsi[i] = ch->ch_vsi; 9070 dev_dbg(ice_pf_to_dev(pf), 9071 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9072 } 9073 return 0; 9074 9075 err_free: 9076 ice_remove_q_channels(vsi, false); 9077 9078 return ret; 9079 } 9080 9081 /** 9082 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9083 * @netdev: net device to configure 9084 * @type_data: TC offload data 9085 */ 9086 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9087 { 9088 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9089 struct ice_netdev_priv *np = netdev_priv(netdev); 9090 struct ice_vsi *vsi = np->vsi; 9091 struct ice_pf *pf = vsi->back; 9092 u16 mode, ena_tc_qdisc = 0; 9093 int cur_txq, cur_rxq; 9094 u8 hw = 0, num_tcf; 9095 struct device *dev; 9096 int ret, i; 9097 9098 dev = ice_pf_to_dev(pf); 9099 num_tcf = mqprio_qopt->qopt.num_tc; 9100 hw = mqprio_qopt->qopt.hw; 9101 mode = mqprio_qopt->mode; 9102 if (!hw) { 9103 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9104 vsi->ch_rss_size = 0; 9105 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9106 goto config_tcf; 9107 } 9108 9109 /* Generate queue region map for number of TCF requested */ 9110 for (i = 0; i < num_tcf; i++) 9111 ena_tc_qdisc |= BIT(i); 9112 9113 switch (mode) { 9114 case TC_MQPRIO_MODE_CHANNEL: 9115 9116 if (pf->hw.port_info->is_custom_tx_enabled) { 9117 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9118 return -EBUSY; 9119 } 9120 ice_tear_down_devlink_rate_tree(pf); 9121 9122 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9123 if (ret) { 9124 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9125 ret); 9126 return ret; 9127 } 9128 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9129 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9130 /* don't assume state of hw_tc_offload during driver load 9131 * and set the flag for TC flower filter if hw_tc_offload 9132 * already ON 9133 */ 9134 if (vsi->netdev->features & NETIF_F_HW_TC) 9135 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9136 break; 9137 default: 9138 return -EINVAL; 9139 } 9140 9141 config_tcf: 9142 9143 /* Requesting same TCF configuration as already enabled */ 9144 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9145 mode != TC_MQPRIO_MODE_CHANNEL) 9146 return 0; 9147 9148 /* Pause VSI queues */ 9149 ice_dis_vsi(vsi, true); 9150 9151 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9152 ice_remove_q_channels(vsi, true); 9153 9154 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9155 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9156 num_online_cpus()); 9157 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9158 num_online_cpus()); 9159 } else { 9160 /* logic to rebuild VSI, same like ethtool -L */ 9161 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9162 9163 for (i = 0; i < num_tcf; i++) { 9164 if (!(ena_tc_qdisc & BIT(i))) 9165 continue; 9166 9167 offset = vsi->mqprio_qopt.qopt.offset[i]; 9168 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9169 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9170 } 9171 vsi->req_txq = offset + qcount_tx; 9172 vsi->req_rxq = offset + qcount_rx; 9173 9174 /* store away original rss_size info, so that it gets reused 9175 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9176 * determine, what should be the rss_sizefor main VSI 9177 */ 9178 vsi->orig_rss_size = vsi->rss_size; 9179 } 9180 9181 /* save current values of Tx and Rx queues before calling VSI rebuild 9182 * for fallback option 9183 */ 9184 cur_txq = vsi->num_txq; 9185 cur_rxq = vsi->num_rxq; 9186 9187 /* proceed with rebuild main VSI using correct number of queues */ 9188 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9189 if (ret) { 9190 /* fallback to current number of queues */ 9191 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9192 vsi->req_txq = cur_txq; 9193 vsi->req_rxq = cur_rxq; 9194 clear_bit(ICE_RESET_FAILED, pf->state); 9195 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9196 dev_err(dev, "Rebuild of main VSI failed again\n"); 9197 return ret; 9198 } 9199 } 9200 9201 vsi->all_numtc = num_tcf; 9202 vsi->all_enatc = ena_tc_qdisc; 9203 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9204 if (ret) { 9205 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9206 vsi->vsi_num); 9207 goto exit; 9208 } 9209 9210 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9211 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9212 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9213 9214 /* set TC0 rate limit if specified */ 9215 if (max_tx_rate || min_tx_rate) { 9216 /* convert to Kbits/s */ 9217 if (max_tx_rate) 9218 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9219 if (min_tx_rate) 9220 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9221 9222 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9223 if (!ret) { 9224 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9225 max_tx_rate, min_tx_rate, vsi->vsi_num); 9226 } else { 9227 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9228 max_tx_rate, min_tx_rate, vsi->vsi_num); 9229 goto exit; 9230 } 9231 } 9232 ret = ice_create_q_channels(vsi); 9233 if (ret) { 9234 netdev_err(netdev, "failed configuring queue channels\n"); 9235 goto exit; 9236 } else { 9237 netdev_dbg(netdev, "successfully configured channels\n"); 9238 } 9239 } 9240 9241 if (vsi->ch_rss_size) 9242 ice_vsi_cfg_rss_lut_key(vsi); 9243 9244 exit: 9245 /* if error, reset the all_numtc and all_enatc */ 9246 if (ret) { 9247 vsi->all_numtc = 0; 9248 vsi->all_enatc = 0; 9249 } 9250 /* resume VSI */ 9251 ice_ena_vsi(vsi, true); 9252 9253 return ret; 9254 } 9255 9256 static LIST_HEAD(ice_block_cb_list); 9257 9258 static int 9259 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9260 void *type_data) 9261 { 9262 struct ice_netdev_priv *np = netdev_priv(netdev); 9263 struct ice_pf *pf = np->vsi->back; 9264 bool locked = false; 9265 int err; 9266 9267 switch (type) { 9268 case TC_SETUP_BLOCK: 9269 return flow_block_cb_setup_simple(type_data, 9270 &ice_block_cb_list, 9271 ice_setup_tc_block_cb, 9272 np, np, true); 9273 case TC_SETUP_QDISC_MQPRIO: 9274 if (ice_is_eswitch_mode_switchdev(pf)) { 9275 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9276 return -EOPNOTSUPP; 9277 } 9278 9279 if (pf->adev) { 9280 mutex_lock(&pf->adev_mutex); 9281 device_lock(&pf->adev->dev); 9282 locked = true; 9283 if (pf->adev->dev.driver) { 9284 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9285 err = -EBUSY; 9286 goto adev_unlock; 9287 } 9288 } 9289 9290 /* setup traffic classifier for receive side */ 9291 mutex_lock(&pf->tc_mutex); 9292 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9293 mutex_unlock(&pf->tc_mutex); 9294 9295 adev_unlock: 9296 if (locked) { 9297 device_unlock(&pf->adev->dev); 9298 mutex_unlock(&pf->adev_mutex); 9299 } 9300 return err; 9301 default: 9302 return -EOPNOTSUPP; 9303 } 9304 return -EOPNOTSUPP; 9305 } 9306 9307 static struct ice_indr_block_priv * 9308 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9309 struct net_device *netdev) 9310 { 9311 struct ice_indr_block_priv *cb_priv; 9312 9313 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9314 if (!cb_priv->netdev) 9315 return NULL; 9316 if (cb_priv->netdev == netdev) 9317 return cb_priv; 9318 } 9319 return NULL; 9320 } 9321 9322 static int 9323 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9324 void *indr_priv) 9325 { 9326 struct ice_indr_block_priv *priv = indr_priv; 9327 struct ice_netdev_priv *np = priv->np; 9328 9329 switch (type) { 9330 case TC_SETUP_CLSFLOWER: 9331 return ice_setup_tc_cls_flower(np, priv->netdev, 9332 (struct flow_cls_offload *) 9333 type_data); 9334 default: 9335 return -EOPNOTSUPP; 9336 } 9337 } 9338 9339 static int 9340 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9341 struct ice_netdev_priv *np, 9342 struct flow_block_offload *f, void *data, 9343 void (*cleanup)(struct flow_block_cb *block_cb)) 9344 { 9345 struct ice_indr_block_priv *indr_priv; 9346 struct flow_block_cb *block_cb; 9347 9348 if (!ice_is_tunnel_supported(netdev) && 9349 !(is_vlan_dev(netdev) && 9350 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9351 return -EOPNOTSUPP; 9352 9353 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9354 return -EOPNOTSUPP; 9355 9356 switch (f->command) { 9357 case FLOW_BLOCK_BIND: 9358 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9359 if (indr_priv) 9360 return -EEXIST; 9361 9362 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9363 if (!indr_priv) 9364 return -ENOMEM; 9365 9366 indr_priv->netdev = netdev; 9367 indr_priv->np = np; 9368 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9369 9370 block_cb = 9371 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9372 indr_priv, indr_priv, 9373 ice_rep_indr_tc_block_unbind, 9374 f, netdev, sch, data, np, 9375 cleanup); 9376 9377 if (IS_ERR(block_cb)) { 9378 list_del(&indr_priv->list); 9379 kfree(indr_priv); 9380 return PTR_ERR(block_cb); 9381 } 9382 flow_block_cb_add(block_cb, f); 9383 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9384 break; 9385 case FLOW_BLOCK_UNBIND: 9386 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9387 if (!indr_priv) 9388 return -ENOENT; 9389 9390 block_cb = flow_block_cb_lookup(f->block, 9391 ice_indr_setup_block_cb, 9392 indr_priv); 9393 if (!block_cb) 9394 return -ENOENT; 9395 9396 flow_indr_block_cb_remove(block_cb, f); 9397 9398 list_del(&block_cb->driver_list); 9399 break; 9400 default: 9401 return -EOPNOTSUPP; 9402 } 9403 return 0; 9404 } 9405 9406 static int 9407 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9408 void *cb_priv, enum tc_setup_type type, void *type_data, 9409 void *data, 9410 void (*cleanup)(struct flow_block_cb *block_cb)) 9411 { 9412 switch (type) { 9413 case TC_SETUP_BLOCK: 9414 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9415 data, cleanup); 9416 9417 default: 9418 return -EOPNOTSUPP; 9419 } 9420 } 9421 9422 /** 9423 * ice_open - Called when a network interface becomes active 9424 * @netdev: network interface device structure 9425 * 9426 * The open entry point is called when a network interface is made 9427 * active by the system (IFF_UP). At this point all resources needed 9428 * for transmit and receive operations are allocated, the interrupt 9429 * handler is registered with the OS, the netdev watchdog is enabled, 9430 * and the stack is notified that the interface is ready. 9431 * 9432 * Returns 0 on success, negative value on failure 9433 */ 9434 int ice_open(struct net_device *netdev) 9435 { 9436 struct ice_netdev_priv *np = netdev_priv(netdev); 9437 struct ice_pf *pf = np->vsi->back; 9438 9439 if (ice_is_reset_in_progress(pf->state)) { 9440 netdev_err(netdev, "can't open net device while reset is in progress"); 9441 return -EBUSY; 9442 } 9443 9444 return ice_open_internal(netdev); 9445 } 9446 9447 /** 9448 * ice_open_internal - Called when a network interface becomes active 9449 * @netdev: network interface device structure 9450 * 9451 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9452 * handling routine 9453 * 9454 * Returns 0 on success, negative value on failure 9455 */ 9456 int ice_open_internal(struct net_device *netdev) 9457 { 9458 struct ice_netdev_priv *np = netdev_priv(netdev); 9459 struct ice_vsi *vsi = np->vsi; 9460 struct ice_pf *pf = vsi->back; 9461 struct ice_port_info *pi; 9462 int err; 9463 9464 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9465 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9466 return -EIO; 9467 } 9468 9469 netif_carrier_off(netdev); 9470 9471 pi = vsi->port_info; 9472 err = ice_update_link_info(pi); 9473 if (err) { 9474 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9475 return err; 9476 } 9477 9478 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9479 9480 /* Set PHY if there is media, otherwise, turn off PHY */ 9481 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9482 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9483 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9484 err = ice_init_phy_user_cfg(pi); 9485 if (err) { 9486 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9487 err); 9488 return err; 9489 } 9490 } 9491 9492 err = ice_configure_phy(vsi); 9493 if (err) { 9494 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9495 err); 9496 return err; 9497 } 9498 } else { 9499 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9500 ice_set_link(vsi, false); 9501 } 9502 9503 err = ice_vsi_open(vsi); 9504 if (err) 9505 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9506 vsi->vsi_num, vsi->vsw->sw_id); 9507 9508 /* Update existing tunnels information */ 9509 udp_tunnel_get_rx_info(netdev); 9510 9511 return err; 9512 } 9513 9514 /** 9515 * ice_stop - Disables a network interface 9516 * @netdev: network interface device structure 9517 * 9518 * The stop entry point is called when an interface is de-activated by the OS, 9519 * and the netdevice enters the DOWN state. The hardware is still under the 9520 * driver's control, but the netdev interface is disabled. 9521 * 9522 * Returns success only - not allowed to fail 9523 */ 9524 int ice_stop(struct net_device *netdev) 9525 { 9526 struct ice_netdev_priv *np = netdev_priv(netdev); 9527 struct ice_vsi *vsi = np->vsi; 9528 struct ice_pf *pf = vsi->back; 9529 9530 if (ice_is_reset_in_progress(pf->state)) { 9531 netdev_err(netdev, "can't stop net device while reset is in progress"); 9532 return -EBUSY; 9533 } 9534 9535 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9536 int link_err = ice_force_phys_link_state(vsi, false); 9537 9538 if (link_err) { 9539 if (link_err == -ENOMEDIUM) 9540 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9541 vsi->vsi_num); 9542 else 9543 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9544 vsi->vsi_num, link_err); 9545 9546 ice_vsi_close(vsi); 9547 return -EIO; 9548 } 9549 } 9550 9551 ice_vsi_close(vsi); 9552 9553 return 0; 9554 } 9555 9556 /** 9557 * ice_features_check - Validate encapsulated packet conforms to limits 9558 * @skb: skb buffer 9559 * @netdev: This port's netdev 9560 * @features: Offload features that the stack believes apply 9561 */ 9562 static netdev_features_t 9563 ice_features_check(struct sk_buff *skb, 9564 struct net_device __always_unused *netdev, 9565 netdev_features_t features) 9566 { 9567 bool gso = skb_is_gso(skb); 9568 size_t len; 9569 9570 /* No point in doing any of this if neither checksum nor GSO are 9571 * being requested for this frame. We can rule out both by just 9572 * checking for CHECKSUM_PARTIAL 9573 */ 9574 if (skb->ip_summed != CHECKSUM_PARTIAL) 9575 return features; 9576 9577 /* We cannot support GSO if the MSS is going to be less than 9578 * 64 bytes. If it is then we need to drop support for GSO. 9579 */ 9580 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9581 features &= ~NETIF_F_GSO_MASK; 9582 9583 len = skb_network_offset(skb); 9584 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9585 goto out_rm_features; 9586 9587 len = skb_network_header_len(skb); 9588 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9589 goto out_rm_features; 9590 9591 if (skb->encapsulation) { 9592 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9593 * the case of IPIP frames, the transport header pointer is 9594 * after the inner header! So check to make sure that this 9595 * is a GRE or UDP_TUNNEL frame before doing that math. 9596 */ 9597 if (gso && (skb_shinfo(skb)->gso_type & 9598 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9599 len = skb_inner_network_header(skb) - 9600 skb_transport_header(skb); 9601 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9602 goto out_rm_features; 9603 } 9604 9605 len = skb_inner_network_header_len(skb); 9606 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9607 goto out_rm_features; 9608 } 9609 9610 return features; 9611 out_rm_features: 9612 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9613 } 9614 9615 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9616 .ndo_open = ice_open, 9617 .ndo_stop = ice_stop, 9618 .ndo_start_xmit = ice_start_xmit, 9619 .ndo_set_mac_address = ice_set_mac_address, 9620 .ndo_validate_addr = eth_validate_addr, 9621 .ndo_change_mtu = ice_change_mtu, 9622 .ndo_get_stats64 = ice_get_stats64, 9623 .ndo_tx_timeout = ice_tx_timeout, 9624 .ndo_bpf = ice_xdp_safe_mode, 9625 }; 9626 9627 static const struct net_device_ops ice_netdev_ops = { 9628 .ndo_open = ice_open, 9629 .ndo_stop = ice_stop, 9630 .ndo_start_xmit = ice_start_xmit, 9631 .ndo_select_queue = ice_select_queue, 9632 .ndo_features_check = ice_features_check, 9633 .ndo_fix_features = ice_fix_features, 9634 .ndo_set_rx_mode = ice_set_rx_mode, 9635 .ndo_set_mac_address = ice_set_mac_address, 9636 .ndo_validate_addr = eth_validate_addr, 9637 .ndo_change_mtu = ice_change_mtu, 9638 .ndo_get_stats64 = ice_get_stats64, 9639 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9640 .ndo_eth_ioctl = ice_eth_ioctl, 9641 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9642 .ndo_set_vf_mac = ice_set_vf_mac, 9643 .ndo_get_vf_config = ice_get_vf_cfg, 9644 .ndo_set_vf_trust = ice_set_vf_trust, 9645 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9646 .ndo_set_vf_link_state = ice_set_vf_link_state, 9647 .ndo_get_vf_stats = ice_get_vf_stats, 9648 .ndo_set_vf_rate = ice_set_vf_bw, 9649 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9650 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9651 .ndo_setup_tc = ice_setup_tc, 9652 .ndo_set_features = ice_set_features, 9653 .ndo_bridge_getlink = ice_bridge_getlink, 9654 .ndo_bridge_setlink = ice_bridge_setlink, 9655 .ndo_fdb_add = ice_fdb_add, 9656 .ndo_fdb_del = ice_fdb_del, 9657 #ifdef CONFIG_RFS_ACCEL 9658 .ndo_rx_flow_steer = ice_rx_flow_steer, 9659 #endif 9660 .ndo_tx_timeout = ice_tx_timeout, 9661 .ndo_bpf = ice_xdp, 9662 .ndo_xdp_xmit = ice_xdp_xmit, 9663 .ndo_xsk_wakeup = ice_xsk_wakeup, 9664 }; 9665