1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include "ice.h" 9 #include "ice_base.h" 10 #include "ice_lib.h" 11 #include "ice_dcb_lib.h" 12 #include "ice_dcb_nl.h" 13 14 #define DRV_VERSION_MAJOR 0 15 #define DRV_VERSION_MINOR 8 16 #define DRV_VERSION_BUILD 1 17 18 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ 19 __stringify(DRV_VERSION_MINOR) "." \ 20 __stringify(DRV_VERSION_BUILD) "-k" 21 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 22 const char ice_drv_ver[] = DRV_VERSION; 23 static const char ice_driver_string[] = DRV_SUMMARY; 24 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 25 26 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 27 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 28 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 29 30 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 31 MODULE_DESCRIPTION(DRV_SUMMARY); 32 MODULE_LICENSE("GPL v2"); 33 MODULE_VERSION(DRV_VERSION); 34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 35 36 static int debug = -1; 37 module_param(debug, int, 0644); 38 #ifndef CONFIG_DYNAMIC_DEBUG 39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 40 #else 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 42 #endif /* !CONFIG_DYNAMIC_DEBUG */ 43 44 static struct workqueue_struct *ice_wq; 45 static const struct net_device_ops ice_netdev_safe_mode_ops; 46 static const struct net_device_ops ice_netdev_ops; 47 48 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 49 50 static void ice_vsi_release_all(struct ice_pf *pf); 51 52 /** 53 * ice_get_tx_pending - returns number of Tx descriptors not processed 54 * @ring: the ring of descriptors 55 */ 56 static u16 ice_get_tx_pending(struct ice_ring *ring) 57 { 58 u16 head, tail; 59 60 head = ring->next_to_clean; 61 tail = ring->next_to_use; 62 63 if (head != tail) 64 return (head < tail) ? 65 tail - head : (tail + ring->count - head); 66 return 0; 67 } 68 69 /** 70 * ice_check_for_hang_subtask - check for and recover hung queues 71 * @pf: pointer to PF struct 72 */ 73 static void ice_check_for_hang_subtask(struct ice_pf *pf) 74 { 75 struct ice_vsi *vsi = NULL; 76 struct ice_hw *hw; 77 unsigned int i; 78 int packets; 79 u32 v; 80 81 ice_for_each_vsi(pf, v) 82 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 83 vsi = pf->vsi[v]; 84 break; 85 } 86 87 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 88 return; 89 90 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 91 return; 92 93 hw = &vsi->back->hw; 94 95 for (i = 0; i < vsi->num_txq; i++) { 96 struct ice_ring *tx_ring = vsi->tx_rings[i]; 97 98 if (tx_ring && tx_ring->desc) { 99 /* If packet counter has not changed the queue is 100 * likely stalled, so force an interrupt for this 101 * queue. 102 * 103 * prev_pkt would be negative if there was no 104 * pending work. 105 */ 106 packets = tx_ring->stats.pkts & INT_MAX; 107 if (tx_ring->tx_stats.prev_pkt == packets) { 108 /* Trigger sw interrupt to revive the queue */ 109 ice_trigger_sw_intr(hw, tx_ring->q_vector); 110 continue; 111 } 112 113 /* Memory barrier between read of packet count and call 114 * to ice_get_tx_pending() 115 */ 116 smp_rmb(); 117 tx_ring->tx_stats.prev_pkt = 118 ice_get_tx_pending(tx_ring) ? packets : -1; 119 } 120 } 121 } 122 123 /** 124 * ice_init_mac_fltr - Set initial MAC filters 125 * @pf: board private structure 126 * 127 * Set initial set of MAC filters for PF VSI; configure filters for permanent 128 * address and broadcast address. If an error is encountered, netdevice will be 129 * unregistered. 130 */ 131 static int ice_init_mac_fltr(struct ice_pf *pf) 132 { 133 enum ice_status status; 134 u8 broadcast[ETH_ALEN]; 135 struct ice_vsi *vsi; 136 137 vsi = ice_get_main_vsi(pf); 138 if (!vsi) 139 return -EINVAL; 140 141 /* To add a MAC filter, first add the MAC to a list and then 142 * pass the list to ice_add_mac. 143 */ 144 145 /* Add a unicast MAC filter so the VSI can get its packets */ 146 status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true); 147 if (status) 148 goto unregister; 149 150 /* VSI needs to receive broadcast traffic, so add the broadcast 151 * MAC address to the list as well. 152 */ 153 eth_broadcast_addr(broadcast); 154 status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true); 155 if (status) 156 goto unregister; 157 158 return 0; 159 unregister: 160 /* We aren't useful with no MAC filters, so unregister if we 161 * had an error 162 */ 163 if (status && vsi->netdev->reg_state == NETREG_REGISTERED) { 164 dev_err(&pf->pdev->dev, 165 "Could not add MAC filters error %d. Unregistering device\n", 166 status); 167 unregister_netdev(vsi->netdev); 168 free_netdev(vsi->netdev); 169 vsi->netdev = NULL; 170 } 171 172 return -EIO; 173 } 174 175 /** 176 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 177 * @netdev: the net device on which the sync is happening 178 * @addr: MAC address to sync 179 * 180 * This is a callback function which is called by the in kernel device sync 181 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 182 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 183 * MAC filters from the hardware. 184 */ 185 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 186 { 187 struct ice_netdev_priv *np = netdev_priv(netdev); 188 struct ice_vsi *vsi = np->vsi; 189 190 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr)) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 /** 197 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 198 * @netdev: the net device on which the unsync is happening 199 * @addr: MAC address to unsync 200 * 201 * This is a callback function which is called by the in kernel device unsync 202 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 203 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 204 * delete the MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr)) 212 return -EINVAL; 213 214 return 0; 215 } 216 217 /** 218 * ice_vsi_fltr_changed - check if filter state changed 219 * @vsi: VSI to be checked 220 * 221 * returns true if filter state has changed, false otherwise. 222 */ 223 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 224 { 225 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 226 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 227 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 228 } 229 230 /** 231 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 232 * @vsi: the VSI being configured 233 * @promisc_m: mask of promiscuous config bits 234 * @set_promisc: enable or disable promisc flag request 235 * 236 */ 237 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 238 { 239 struct ice_hw *hw = &vsi->back->hw; 240 enum ice_status status = 0; 241 242 if (vsi->type != ICE_VSI_PF) 243 return 0; 244 245 if (vsi->vlan_ena) { 246 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 247 set_promisc); 248 } else { 249 if (set_promisc) 250 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 251 0); 252 else 253 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 254 0); 255 } 256 257 if (status) 258 return -EIO; 259 260 return 0; 261 } 262 263 /** 264 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 265 * @vsi: ptr to the VSI 266 * 267 * Push any outstanding VSI filter changes through the AdminQ. 268 */ 269 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 270 { 271 struct device *dev = &vsi->back->pdev->dev; 272 struct net_device *netdev = vsi->netdev; 273 bool promisc_forced_on = false; 274 struct ice_pf *pf = vsi->back; 275 struct ice_hw *hw = &pf->hw; 276 enum ice_status status = 0; 277 u32 changed_flags = 0; 278 u8 promisc_m; 279 int err = 0; 280 281 if (!vsi->netdev) 282 return -EINVAL; 283 284 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 285 usleep_range(1000, 2000); 286 287 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 288 vsi->current_netdev_flags = vsi->netdev->flags; 289 290 INIT_LIST_HEAD(&vsi->tmp_sync_list); 291 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 292 293 if (ice_vsi_fltr_changed(vsi)) { 294 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 295 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 296 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 297 298 /* grab the netdev's addr_list_lock */ 299 netif_addr_lock_bh(netdev); 300 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 301 ice_add_mac_to_unsync_list); 302 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 303 ice_add_mac_to_unsync_list); 304 /* our temp lists are populated. release lock */ 305 netif_addr_unlock_bh(netdev); 306 } 307 308 /* Remove MAC addresses in the unsync list */ 309 status = ice_remove_mac(hw, &vsi->tmp_unsync_list); 310 ice_free_fltr_list(dev, &vsi->tmp_unsync_list); 311 if (status) { 312 netdev_err(netdev, "Failed to delete MAC filters\n"); 313 /* if we failed because of alloc failures, just bail */ 314 if (status == ICE_ERR_NO_MEMORY) { 315 err = -ENOMEM; 316 goto out; 317 } 318 } 319 320 /* Add MAC addresses in the sync list */ 321 status = ice_add_mac(hw, &vsi->tmp_sync_list); 322 ice_free_fltr_list(dev, &vsi->tmp_sync_list); 323 /* If filter is added successfully or already exists, do not go into 324 * 'if' condition and report it as error. Instead continue processing 325 * rest of the function. 326 */ 327 if (status && status != ICE_ERR_ALREADY_EXISTS) { 328 netdev_err(netdev, "Failed to add MAC filters\n"); 329 /* If there is no more space for new umac filters, VSI 330 * should go into promiscuous mode. There should be some 331 * space reserved for promiscuous filters. 332 */ 333 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 334 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 335 vsi->state)) { 336 promisc_forced_on = true; 337 netdev_warn(netdev, 338 "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 339 vsi->vsi_num); 340 } else { 341 err = -EIO; 342 goto out; 343 } 344 } 345 /* check for changes in promiscuous modes */ 346 if (changed_flags & IFF_ALLMULTI) { 347 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 348 if (vsi->vlan_ena) 349 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 350 else 351 promisc_m = ICE_MCAST_PROMISC_BITS; 352 353 err = ice_cfg_promisc(vsi, promisc_m, true); 354 if (err) { 355 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 356 vsi->vsi_num); 357 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 358 goto out_promisc; 359 } 360 } else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 361 if (vsi->vlan_ena) 362 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 363 else 364 promisc_m = ICE_MCAST_PROMISC_BITS; 365 366 err = ice_cfg_promisc(vsi, promisc_m, false); 367 if (err) { 368 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 369 vsi->vsi_num); 370 vsi->current_netdev_flags |= IFF_ALLMULTI; 371 goto out_promisc; 372 } 373 } 374 } 375 376 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 377 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 378 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 379 if (vsi->current_netdev_flags & IFF_PROMISC) { 380 /* Apply Rx filter rule to get traffic from wire */ 381 status = ice_cfg_dflt_vsi(hw, vsi->idx, true, 382 ICE_FLTR_RX); 383 if (status) { 384 netdev_err(netdev, "Error setting default VSI %i Rx rule\n", 385 vsi->vsi_num); 386 vsi->current_netdev_flags &= ~IFF_PROMISC; 387 err = -EIO; 388 goto out_promisc; 389 } 390 } else { 391 /* Clear Rx filter to remove traffic from wire */ 392 status = ice_cfg_dflt_vsi(hw, vsi->idx, false, 393 ICE_FLTR_RX); 394 if (status) { 395 netdev_err(netdev, "Error clearing default VSI %i Rx rule\n", 396 vsi->vsi_num); 397 vsi->current_netdev_flags |= IFF_PROMISC; 398 err = -EIO; 399 goto out_promisc; 400 } 401 } 402 } 403 goto exit; 404 405 out_promisc: 406 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 407 goto exit; 408 out: 409 /* if something went wrong then set the changed flag so we try again */ 410 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 411 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 412 exit: 413 clear_bit(__ICE_CFG_BUSY, vsi->state); 414 return err; 415 } 416 417 /** 418 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 419 * @pf: board private structure 420 */ 421 static void ice_sync_fltr_subtask(struct ice_pf *pf) 422 { 423 int v; 424 425 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 426 return; 427 428 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 429 430 ice_for_each_vsi(pf, v) 431 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 432 ice_vsi_sync_fltr(pf->vsi[v])) { 433 /* come back and try again later */ 434 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 435 break; 436 } 437 } 438 439 /** 440 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 441 * @pf: the PF 442 * @locked: is the rtnl_lock already held 443 */ 444 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 445 { 446 int v; 447 448 ice_for_each_vsi(pf, v) 449 if (pf->vsi[v]) 450 ice_dis_vsi(pf->vsi[v], locked); 451 } 452 453 /** 454 * ice_prepare_for_reset - prep for the core to reset 455 * @pf: board private structure 456 * 457 * Inform or close all dependent features in prep for reset. 458 */ 459 static void 460 ice_prepare_for_reset(struct ice_pf *pf) 461 { 462 struct ice_hw *hw = &pf->hw; 463 int i; 464 465 /* already prepared for reset */ 466 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 467 return; 468 469 /* Notify VFs of impending reset */ 470 if (ice_check_sq_alive(hw, &hw->mailboxq)) 471 ice_vc_notify_reset(pf); 472 473 /* Disable VFs until reset is completed */ 474 for (i = 0; i < pf->num_alloc_vfs; i++) 475 ice_set_vf_state_qs_dis(&pf->vf[i]); 476 477 /* clear SW filtering DB */ 478 ice_clear_hw_tbls(hw); 479 /* disable the VSIs and their queues that are not already DOWN */ 480 ice_pf_dis_all_vsi(pf, false); 481 482 if (hw->port_info) 483 ice_sched_clear_port(hw->port_info); 484 485 ice_shutdown_all_ctrlq(hw); 486 487 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 488 } 489 490 /** 491 * ice_do_reset - Initiate one of many types of resets 492 * @pf: board private structure 493 * @reset_type: reset type requested 494 * before this function was called. 495 */ 496 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 497 { 498 struct device *dev = &pf->pdev->dev; 499 struct ice_hw *hw = &pf->hw; 500 501 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 502 WARN_ON(in_interrupt()); 503 504 ice_prepare_for_reset(pf); 505 506 /* trigger the reset */ 507 if (ice_reset(hw, reset_type)) { 508 dev_err(dev, "reset %d failed\n", reset_type); 509 set_bit(__ICE_RESET_FAILED, pf->state); 510 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 511 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 512 clear_bit(__ICE_PFR_REQ, pf->state); 513 clear_bit(__ICE_CORER_REQ, pf->state); 514 clear_bit(__ICE_GLOBR_REQ, pf->state); 515 return; 516 } 517 518 /* PFR is a bit of a special case because it doesn't result in an OICR 519 * interrupt. So for PFR, rebuild after the reset and clear the reset- 520 * associated state bits. 521 */ 522 if (reset_type == ICE_RESET_PFR) { 523 pf->pfr_count++; 524 ice_rebuild(pf, reset_type); 525 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 526 clear_bit(__ICE_PFR_REQ, pf->state); 527 ice_reset_all_vfs(pf, true); 528 } 529 } 530 531 /** 532 * ice_reset_subtask - Set up for resetting the device and driver 533 * @pf: board private structure 534 */ 535 static void ice_reset_subtask(struct ice_pf *pf) 536 { 537 enum ice_reset_req reset_type = ICE_RESET_INVAL; 538 539 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 540 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 541 * of reset is pending and sets bits in pf->state indicating the reset 542 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 543 * prepare for pending reset if not already (for PF software-initiated 544 * global resets the software should already be prepared for it as 545 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 546 * by firmware or software on other PFs, that bit is not set so prepare 547 * for the reset now), poll for reset done, rebuild and return. 548 */ 549 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 550 /* Perform the largest reset requested */ 551 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 552 reset_type = ICE_RESET_CORER; 553 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 554 reset_type = ICE_RESET_GLOBR; 555 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 556 reset_type = ICE_RESET_EMPR; 557 /* return if no valid reset type requested */ 558 if (reset_type == ICE_RESET_INVAL) 559 return; 560 ice_prepare_for_reset(pf); 561 562 /* make sure we are ready to rebuild */ 563 if (ice_check_reset(&pf->hw)) { 564 set_bit(__ICE_RESET_FAILED, pf->state); 565 } else { 566 /* done with reset. start rebuild */ 567 pf->hw.reset_ongoing = false; 568 ice_rebuild(pf, reset_type); 569 /* clear bit to resume normal operations, but 570 * ICE_NEEDS_RESTART bit is set in case rebuild failed 571 */ 572 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 573 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 574 clear_bit(__ICE_PFR_REQ, pf->state); 575 clear_bit(__ICE_CORER_REQ, pf->state); 576 clear_bit(__ICE_GLOBR_REQ, pf->state); 577 ice_reset_all_vfs(pf, true); 578 } 579 580 return; 581 } 582 583 /* No pending resets to finish processing. Check for new resets */ 584 if (test_bit(__ICE_PFR_REQ, pf->state)) 585 reset_type = ICE_RESET_PFR; 586 if (test_bit(__ICE_CORER_REQ, pf->state)) 587 reset_type = ICE_RESET_CORER; 588 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 589 reset_type = ICE_RESET_GLOBR; 590 /* If no valid reset type requested just return */ 591 if (reset_type == ICE_RESET_INVAL) 592 return; 593 594 /* reset if not already down or busy */ 595 if (!test_bit(__ICE_DOWN, pf->state) && 596 !test_bit(__ICE_CFG_BUSY, pf->state)) { 597 ice_do_reset(pf, reset_type); 598 } 599 } 600 601 /** 602 * ice_print_topo_conflict - print topology conflict message 603 * @vsi: the VSI whose topology status is being checked 604 */ 605 static void ice_print_topo_conflict(struct ice_vsi *vsi) 606 { 607 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 608 case ICE_AQ_LINK_TOPO_CONFLICT: 609 case ICE_AQ_LINK_MEDIA_CONFLICT: 610 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 611 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 612 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 613 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 614 break; 615 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 616 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 617 break; 618 default: 619 break; 620 } 621 } 622 623 /** 624 * ice_print_link_msg - print link up or down message 625 * @vsi: the VSI whose link status is being queried 626 * @isup: boolean for if the link is now up or down 627 */ 628 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 629 { 630 struct ice_aqc_get_phy_caps_data *caps; 631 enum ice_status status; 632 const char *fec_req; 633 const char *speed; 634 const char *fec; 635 const char *fc; 636 const char *an; 637 638 if (!vsi) 639 return; 640 641 if (vsi->current_isup == isup) 642 return; 643 644 vsi->current_isup = isup; 645 646 if (!isup) { 647 netdev_info(vsi->netdev, "NIC Link is Down\n"); 648 return; 649 } 650 651 switch (vsi->port_info->phy.link_info.link_speed) { 652 case ICE_AQ_LINK_SPEED_100GB: 653 speed = "100 G"; 654 break; 655 case ICE_AQ_LINK_SPEED_50GB: 656 speed = "50 G"; 657 break; 658 case ICE_AQ_LINK_SPEED_40GB: 659 speed = "40 G"; 660 break; 661 case ICE_AQ_LINK_SPEED_25GB: 662 speed = "25 G"; 663 break; 664 case ICE_AQ_LINK_SPEED_20GB: 665 speed = "20 G"; 666 break; 667 case ICE_AQ_LINK_SPEED_10GB: 668 speed = "10 G"; 669 break; 670 case ICE_AQ_LINK_SPEED_5GB: 671 speed = "5 G"; 672 break; 673 case ICE_AQ_LINK_SPEED_2500MB: 674 speed = "2.5 G"; 675 break; 676 case ICE_AQ_LINK_SPEED_1000MB: 677 speed = "1 G"; 678 break; 679 case ICE_AQ_LINK_SPEED_100MB: 680 speed = "100 M"; 681 break; 682 default: 683 speed = "Unknown"; 684 break; 685 } 686 687 switch (vsi->port_info->fc.current_mode) { 688 case ICE_FC_FULL: 689 fc = "Rx/Tx"; 690 break; 691 case ICE_FC_TX_PAUSE: 692 fc = "Tx"; 693 break; 694 case ICE_FC_RX_PAUSE: 695 fc = "Rx"; 696 break; 697 case ICE_FC_NONE: 698 fc = "None"; 699 break; 700 default: 701 fc = "Unknown"; 702 break; 703 } 704 705 /* Get FEC mode based on negotiated link info */ 706 switch (vsi->port_info->phy.link_info.fec_info) { 707 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 708 /* fall through */ 709 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 710 fec = "RS-FEC"; 711 break; 712 case ICE_AQ_LINK_25G_KR_FEC_EN: 713 fec = "FC-FEC/BASE-R"; 714 break; 715 default: 716 fec = "NONE"; 717 break; 718 } 719 720 /* check if autoneg completed, might be false due to not supported */ 721 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 722 an = "True"; 723 else 724 an = "False"; 725 726 /* Get FEC mode requested based on PHY caps last SW configuration */ 727 caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL); 728 if (!caps) { 729 fec_req = "Unknown"; 730 goto done; 731 } 732 733 status = ice_aq_get_phy_caps(vsi->port_info, false, 734 ICE_AQC_REPORT_SW_CFG, caps, NULL); 735 if (status) 736 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 737 738 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 739 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 740 fec_req = "RS-FEC"; 741 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 742 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 743 fec_req = "FC-FEC/BASE-R"; 744 else 745 fec_req = "NONE"; 746 747 devm_kfree(&vsi->back->pdev->dev, caps); 748 749 done: 750 netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n", 751 speed, fec_req, fec, an, fc); 752 ice_print_topo_conflict(vsi); 753 } 754 755 /** 756 * ice_vsi_link_event - update the VSI's netdev 757 * @vsi: the VSI on which the link event occurred 758 * @link_up: whether or not the VSI needs to be set up or down 759 */ 760 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 761 { 762 if (!vsi) 763 return; 764 765 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 766 return; 767 768 if (vsi->type == ICE_VSI_PF) { 769 if (link_up == netif_carrier_ok(vsi->netdev)) 770 return; 771 772 if (link_up) { 773 netif_carrier_on(vsi->netdev); 774 netif_tx_wake_all_queues(vsi->netdev); 775 } else { 776 netif_carrier_off(vsi->netdev); 777 netif_tx_stop_all_queues(vsi->netdev); 778 } 779 } 780 } 781 782 /** 783 * ice_link_event - process the link event 784 * @pf: PF that the link event is associated with 785 * @pi: port_info for the port that the link event is associated with 786 * @link_up: true if the physical link is up and false if it is down 787 * @link_speed: current link speed received from the link event 788 * 789 * Returns 0 on success and negative on failure 790 */ 791 static int 792 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 793 u16 link_speed) 794 { 795 struct ice_phy_info *phy_info; 796 struct ice_vsi *vsi; 797 u16 old_link_speed; 798 bool old_link; 799 int result; 800 801 phy_info = &pi->phy; 802 phy_info->link_info_old = phy_info->link_info; 803 804 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 805 old_link_speed = phy_info->link_info_old.link_speed; 806 807 /* update the link info structures and re-enable link events, 808 * don't bail on failure due to other book keeping needed 809 */ 810 result = ice_update_link_info(pi); 811 if (result) 812 dev_dbg(&pf->pdev->dev, 813 "Failed to update link status and re-enable link events for port %d\n", 814 pi->lport); 815 816 /* if the old link up/down and speed is the same as the new */ 817 if (link_up == old_link && link_speed == old_link_speed) 818 return result; 819 820 vsi = ice_get_main_vsi(pf); 821 if (!vsi || !vsi->port_info) 822 return -EINVAL; 823 824 /* turn off PHY if media was removed */ 825 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 826 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 827 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 828 829 result = ice_aq_set_link_restart_an(pi, false, NULL); 830 if (result) { 831 dev_dbg(&pf->pdev->dev, 832 "Failed to set link down, VSI %d error %d\n", 833 vsi->vsi_num, result); 834 return result; 835 } 836 } 837 838 ice_vsi_link_event(vsi, link_up); 839 ice_print_link_msg(vsi, link_up); 840 841 if (pf->num_alloc_vfs) 842 ice_vc_notify_link_state(pf); 843 844 return result; 845 } 846 847 /** 848 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 849 * @pf: board private structure 850 */ 851 static void ice_watchdog_subtask(struct ice_pf *pf) 852 { 853 int i; 854 855 /* if interface is down do nothing */ 856 if (test_bit(__ICE_DOWN, pf->state) || 857 test_bit(__ICE_CFG_BUSY, pf->state)) 858 return; 859 860 /* make sure we don't do these things too often */ 861 if (time_before(jiffies, 862 pf->serv_tmr_prev + pf->serv_tmr_period)) 863 return; 864 865 pf->serv_tmr_prev = jiffies; 866 867 /* Update the stats for active netdevs so the network stack 868 * can look at updated numbers whenever it cares to 869 */ 870 ice_update_pf_stats(pf); 871 ice_for_each_vsi(pf, i) 872 if (pf->vsi[i] && pf->vsi[i]->netdev) 873 ice_update_vsi_stats(pf->vsi[i]); 874 } 875 876 /** 877 * ice_init_link_events - enable/initialize link events 878 * @pi: pointer to the port_info instance 879 * 880 * Returns -EIO on failure, 0 on success 881 */ 882 static int ice_init_link_events(struct ice_port_info *pi) 883 { 884 u16 mask; 885 886 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 887 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 888 889 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 890 dev_dbg(ice_hw_to_dev(pi->hw), 891 "Failed to set link event mask for port %d\n", 892 pi->lport); 893 return -EIO; 894 } 895 896 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 897 dev_dbg(ice_hw_to_dev(pi->hw), 898 "Failed to enable link events for port %d\n", 899 pi->lport); 900 return -EIO; 901 } 902 903 return 0; 904 } 905 906 /** 907 * ice_handle_link_event - handle link event via ARQ 908 * @pf: PF that the link event is associated with 909 * @event: event structure containing link status info 910 */ 911 static int 912 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 913 { 914 struct ice_aqc_get_link_status_data *link_data; 915 struct ice_port_info *port_info; 916 int status; 917 918 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 919 port_info = pf->hw.port_info; 920 if (!port_info) 921 return -EINVAL; 922 923 status = ice_link_event(pf, port_info, 924 !!(link_data->link_info & ICE_AQ_LINK_UP), 925 le16_to_cpu(link_data->link_speed)); 926 if (status) 927 dev_dbg(&pf->pdev->dev, 928 "Could not process link event, error %d\n", status); 929 930 return status; 931 } 932 933 /** 934 * __ice_clean_ctrlq - helper function to clean controlq rings 935 * @pf: ptr to struct ice_pf 936 * @q_type: specific Control queue type 937 */ 938 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 939 { 940 struct ice_rq_event_info event; 941 struct ice_hw *hw = &pf->hw; 942 struct ice_ctl_q_info *cq; 943 u16 pending, i = 0; 944 const char *qtype; 945 u32 oldval, val; 946 947 /* Do not clean control queue if/when PF reset fails */ 948 if (test_bit(__ICE_RESET_FAILED, pf->state)) 949 return 0; 950 951 switch (q_type) { 952 case ICE_CTL_Q_ADMIN: 953 cq = &hw->adminq; 954 qtype = "Admin"; 955 break; 956 case ICE_CTL_Q_MAILBOX: 957 cq = &hw->mailboxq; 958 qtype = "Mailbox"; 959 break; 960 default: 961 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n", 962 q_type); 963 return 0; 964 } 965 966 /* check for error indications - PF_xx_AxQLEN register layout for 967 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 968 */ 969 val = rd32(hw, cq->rq.len); 970 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 971 PF_FW_ARQLEN_ARQCRIT_M)) { 972 oldval = val; 973 if (val & PF_FW_ARQLEN_ARQVFE_M) 974 dev_dbg(&pf->pdev->dev, 975 "%s Receive Queue VF Error detected\n", qtype); 976 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 977 dev_dbg(&pf->pdev->dev, 978 "%s Receive Queue Overflow Error detected\n", 979 qtype); 980 } 981 if (val & PF_FW_ARQLEN_ARQCRIT_M) 982 dev_dbg(&pf->pdev->dev, 983 "%s Receive Queue Critical Error detected\n", 984 qtype); 985 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 986 PF_FW_ARQLEN_ARQCRIT_M); 987 if (oldval != val) 988 wr32(hw, cq->rq.len, val); 989 } 990 991 val = rd32(hw, cq->sq.len); 992 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 993 PF_FW_ATQLEN_ATQCRIT_M)) { 994 oldval = val; 995 if (val & PF_FW_ATQLEN_ATQVFE_M) 996 dev_dbg(&pf->pdev->dev, 997 "%s Send Queue VF Error detected\n", qtype); 998 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 999 dev_dbg(&pf->pdev->dev, 1000 "%s Send Queue Overflow Error detected\n", 1001 qtype); 1002 } 1003 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1004 dev_dbg(&pf->pdev->dev, 1005 "%s Send Queue Critical Error detected\n", 1006 qtype); 1007 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1008 PF_FW_ATQLEN_ATQCRIT_M); 1009 if (oldval != val) 1010 wr32(hw, cq->sq.len, val); 1011 } 1012 1013 event.buf_len = cq->rq_buf_size; 1014 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len, 1015 GFP_KERNEL); 1016 if (!event.msg_buf) 1017 return 0; 1018 1019 do { 1020 enum ice_status ret; 1021 u16 opcode; 1022 1023 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1024 if (ret == ICE_ERR_AQ_NO_WORK) 1025 break; 1026 if (ret) { 1027 dev_err(&pf->pdev->dev, 1028 "%s Receive Queue event error %d\n", qtype, 1029 ret); 1030 break; 1031 } 1032 1033 opcode = le16_to_cpu(event.desc.opcode); 1034 1035 switch (opcode) { 1036 case ice_aqc_opc_get_link_status: 1037 if (ice_handle_link_event(pf, &event)) 1038 dev_err(&pf->pdev->dev, 1039 "Could not handle link event\n"); 1040 break; 1041 case ice_mbx_opc_send_msg_to_pf: 1042 ice_vc_process_vf_msg(pf, &event); 1043 break; 1044 case ice_aqc_opc_fw_logging: 1045 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1046 break; 1047 case ice_aqc_opc_lldp_set_mib_change: 1048 ice_dcb_process_lldp_set_mib_change(pf, &event); 1049 break; 1050 default: 1051 dev_dbg(&pf->pdev->dev, 1052 "%s Receive Queue unknown event 0x%04x ignored\n", 1053 qtype, opcode); 1054 break; 1055 } 1056 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1057 1058 devm_kfree(&pf->pdev->dev, event.msg_buf); 1059 1060 return pending && (i == ICE_DFLT_IRQ_WORK); 1061 } 1062 1063 /** 1064 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1065 * @hw: pointer to hardware info 1066 * @cq: control queue information 1067 * 1068 * returns true if there are pending messages in a queue, false if there aren't 1069 */ 1070 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1071 { 1072 u16 ntu; 1073 1074 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1075 return cq->rq.next_to_clean != ntu; 1076 } 1077 1078 /** 1079 * ice_clean_adminq_subtask - clean the AdminQ rings 1080 * @pf: board private structure 1081 */ 1082 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1083 { 1084 struct ice_hw *hw = &pf->hw; 1085 1086 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1087 return; 1088 1089 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1090 return; 1091 1092 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1093 1094 /* There might be a situation where new messages arrive to a control 1095 * queue between processing the last message and clearing the 1096 * EVENT_PENDING bit. So before exiting, check queue head again (using 1097 * ice_ctrlq_pending) and process new messages if any. 1098 */ 1099 if (ice_ctrlq_pending(hw, &hw->adminq)) 1100 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1101 1102 ice_flush(hw); 1103 } 1104 1105 /** 1106 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1107 * @pf: board private structure 1108 */ 1109 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1110 { 1111 struct ice_hw *hw = &pf->hw; 1112 1113 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1114 return; 1115 1116 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1117 return; 1118 1119 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1120 1121 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1122 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1123 1124 ice_flush(hw); 1125 } 1126 1127 /** 1128 * ice_service_task_schedule - schedule the service task to wake up 1129 * @pf: board private structure 1130 * 1131 * If not already scheduled, this puts the task into the work queue. 1132 */ 1133 static void ice_service_task_schedule(struct ice_pf *pf) 1134 { 1135 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1136 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1137 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1138 queue_work(ice_wq, &pf->serv_task); 1139 } 1140 1141 /** 1142 * ice_service_task_complete - finish up the service task 1143 * @pf: board private structure 1144 */ 1145 static void ice_service_task_complete(struct ice_pf *pf) 1146 { 1147 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1148 1149 /* force memory (pf->state) to sync before next service task */ 1150 smp_mb__before_atomic(); 1151 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1152 } 1153 1154 /** 1155 * ice_service_task_stop - stop service task and cancel works 1156 * @pf: board private structure 1157 */ 1158 static void ice_service_task_stop(struct ice_pf *pf) 1159 { 1160 set_bit(__ICE_SERVICE_DIS, pf->state); 1161 1162 if (pf->serv_tmr.function) 1163 del_timer_sync(&pf->serv_tmr); 1164 if (pf->serv_task.func) 1165 cancel_work_sync(&pf->serv_task); 1166 1167 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1168 } 1169 1170 /** 1171 * ice_service_task_restart - restart service task and schedule works 1172 * @pf: board private structure 1173 * 1174 * This function is needed for suspend and resume works (e.g WoL scenario) 1175 */ 1176 static void ice_service_task_restart(struct ice_pf *pf) 1177 { 1178 clear_bit(__ICE_SERVICE_DIS, pf->state); 1179 ice_service_task_schedule(pf); 1180 } 1181 1182 /** 1183 * ice_service_timer - timer callback to schedule service task 1184 * @t: pointer to timer_list 1185 */ 1186 static void ice_service_timer(struct timer_list *t) 1187 { 1188 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1189 1190 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1191 ice_service_task_schedule(pf); 1192 } 1193 1194 /** 1195 * ice_handle_mdd_event - handle malicious driver detect event 1196 * @pf: pointer to the PF structure 1197 * 1198 * Called from service task. OICR interrupt handler indicates MDD event 1199 */ 1200 static void ice_handle_mdd_event(struct ice_pf *pf) 1201 { 1202 struct ice_hw *hw = &pf->hw; 1203 bool mdd_detected = false; 1204 u32 reg; 1205 int i; 1206 1207 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) 1208 return; 1209 1210 /* find what triggered the MDD event */ 1211 reg = rd32(hw, GL_MDET_TX_PQM); 1212 if (reg & GL_MDET_TX_PQM_VALID_M) { 1213 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1214 GL_MDET_TX_PQM_PF_NUM_S; 1215 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1216 GL_MDET_TX_PQM_VF_NUM_S; 1217 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1218 GL_MDET_TX_PQM_MAL_TYPE_S; 1219 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1220 GL_MDET_TX_PQM_QNUM_S); 1221 1222 if (netif_msg_tx_err(pf)) 1223 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1224 event, queue, pf_num, vf_num); 1225 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1226 mdd_detected = true; 1227 } 1228 1229 reg = rd32(hw, GL_MDET_TX_TCLAN); 1230 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1231 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1232 GL_MDET_TX_TCLAN_PF_NUM_S; 1233 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1234 GL_MDET_TX_TCLAN_VF_NUM_S; 1235 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1236 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1237 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1238 GL_MDET_TX_TCLAN_QNUM_S); 1239 1240 if (netif_msg_rx_err(pf)) 1241 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1242 event, queue, pf_num, vf_num); 1243 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1244 mdd_detected = true; 1245 } 1246 1247 reg = rd32(hw, GL_MDET_RX); 1248 if (reg & GL_MDET_RX_VALID_M) { 1249 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1250 GL_MDET_RX_PF_NUM_S; 1251 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1252 GL_MDET_RX_VF_NUM_S; 1253 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1254 GL_MDET_RX_MAL_TYPE_S; 1255 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1256 GL_MDET_RX_QNUM_S); 1257 1258 if (netif_msg_rx_err(pf)) 1259 dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1260 event, queue, pf_num, vf_num); 1261 wr32(hw, GL_MDET_RX, 0xffffffff); 1262 mdd_detected = true; 1263 } 1264 1265 if (mdd_detected) { 1266 bool pf_mdd_detected = false; 1267 1268 reg = rd32(hw, PF_MDET_TX_PQM); 1269 if (reg & PF_MDET_TX_PQM_VALID_M) { 1270 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1271 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1272 pf_mdd_detected = true; 1273 } 1274 1275 reg = rd32(hw, PF_MDET_TX_TCLAN); 1276 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1277 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1278 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); 1279 pf_mdd_detected = true; 1280 } 1281 1282 reg = rd32(hw, PF_MDET_RX); 1283 if (reg & PF_MDET_RX_VALID_M) { 1284 wr32(hw, PF_MDET_RX, 0xFFFF); 1285 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); 1286 pf_mdd_detected = true; 1287 } 1288 /* Queue belongs to the PF initiate a reset */ 1289 if (pf_mdd_detected) { 1290 set_bit(__ICE_NEEDS_RESTART, pf->state); 1291 ice_service_task_schedule(pf); 1292 } 1293 } 1294 1295 /* check to see if one of the VFs caused the MDD */ 1296 for (i = 0; i < pf->num_alloc_vfs; i++) { 1297 struct ice_vf *vf = &pf->vf[i]; 1298 1299 bool vf_mdd_detected = false; 1300 1301 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1302 if (reg & VP_MDET_TX_PQM_VALID_M) { 1303 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1304 vf_mdd_detected = true; 1305 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1306 i); 1307 } 1308 1309 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1310 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1311 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1312 vf_mdd_detected = true; 1313 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1314 i); 1315 } 1316 1317 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1318 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1319 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1320 vf_mdd_detected = true; 1321 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", 1322 i); 1323 } 1324 1325 reg = rd32(hw, VP_MDET_RX(i)); 1326 if (reg & VP_MDET_RX_VALID_M) { 1327 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1328 vf_mdd_detected = true; 1329 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", 1330 i); 1331 } 1332 1333 if (vf_mdd_detected) { 1334 vf->num_mdd_events++; 1335 if (vf->num_mdd_events && 1336 vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD) 1337 dev_info(&pf->pdev->dev, 1338 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n", 1339 i, vf->num_mdd_events); 1340 } 1341 } 1342 } 1343 1344 /** 1345 * ice_force_phys_link_state - Force the physical link state 1346 * @vsi: VSI to force the physical link state to up/down 1347 * @link_up: true/false indicates to set the physical link to up/down 1348 * 1349 * Force the physical link state by getting the current PHY capabilities from 1350 * hardware and setting the PHY config based on the determined capabilities. If 1351 * link changes a link event will be triggered because both the Enable Automatic 1352 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1353 * 1354 * Returns 0 on success, negative on failure 1355 */ 1356 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1357 { 1358 struct ice_aqc_get_phy_caps_data *pcaps; 1359 struct ice_aqc_set_phy_cfg_data *cfg; 1360 struct ice_port_info *pi; 1361 struct device *dev; 1362 int retcode; 1363 1364 if (!vsi || !vsi->port_info || !vsi->back) 1365 return -EINVAL; 1366 if (vsi->type != ICE_VSI_PF) 1367 return 0; 1368 1369 dev = &vsi->back->pdev->dev; 1370 1371 pi = vsi->port_info; 1372 1373 pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL); 1374 if (!pcaps) 1375 return -ENOMEM; 1376 1377 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1378 NULL); 1379 if (retcode) { 1380 dev_err(dev, 1381 "Failed to get phy capabilities, VSI %d error %d\n", 1382 vsi->vsi_num, retcode); 1383 retcode = -EIO; 1384 goto out; 1385 } 1386 1387 /* No change in link */ 1388 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1389 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1390 goto out; 1391 1392 cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL); 1393 if (!cfg) { 1394 retcode = -ENOMEM; 1395 goto out; 1396 } 1397 1398 cfg->phy_type_low = pcaps->phy_type_low; 1399 cfg->phy_type_high = pcaps->phy_type_high; 1400 cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1401 cfg->low_power_ctrl = pcaps->low_power_ctrl; 1402 cfg->eee_cap = pcaps->eee_cap; 1403 cfg->eeer_value = pcaps->eeer_value; 1404 cfg->link_fec_opt = pcaps->link_fec_options; 1405 if (link_up) 1406 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1407 else 1408 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1409 1410 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL); 1411 if (retcode) { 1412 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1413 vsi->vsi_num, retcode); 1414 retcode = -EIO; 1415 } 1416 1417 devm_kfree(dev, cfg); 1418 out: 1419 devm_kfree(dev, pcaps); 1420 return retcode; 1421 } 1422 1423 /** 1424 * ice_check_media_subtask - Check for media; bring link up if detected. 1425 * @pf: pointer to PF struct 1426 */ 1427 static void ice_check_media_subtask(struct ice_pf *pf) 1428 { 1429 struct ice_port_info *pi; 1430 struct ice_vsi *vsi; 1431 int err; 1432 1433 vsi = ice_get_main_vsi(pf); 1434 if (!vsi) 1435 return; 1436 1437 /* No need to check for media if it's already present or the interface 1438 * is down 1439 */ 1440 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) || 1441 test_bit(__ICE_DOWN, vsi->state)) 1442 return; 1443 1444 /* Refresh link info and check if media is present */ 1445 pi = vsi->port_info; 1446 err = ice_update_link_info(pi); 1447 if (err) 1448 return; 1449 1450 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 1451 err = ice_force_phys_link_state(vsi, true); 1452 if (err) 1453 return; 1454 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1455 1456 /* A Link Status Event will be generated; the event handler 1457 * will complete bringing the interface up 1458 */ 1459 } 1460 } 1461 1462 /** 1463 * ice_service_task - manage and run subtasks 1464 * @work: pointer to work_struct contained by the PF struct 1465 */ 1466 static void ice_service_task(struct work_struct *work) 1467 { 1468 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 1469 unsigned long start_time = jiffies; 1470 1471 /* subtasks */ 1472 1473 /* process reset requests first */ 1474 ice_reset_subtask(pf); 1475 1476 /* bail if a reset/recovery cycle is pending or rebuild failed */ 1477 if (ice_is_reset_in_progress(pf->state) || 1478 test_bit(__ICE_SUSPENDED, pf->state) || 1479 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 1480 ice_service_task_complete(pf); 1481 return; 1482 } 1483 1484 ice_clean_adminq_subtask(pf); 1485 ice_check_media_subtask(pf); 1486 ice_check_for_hang_subtask(pf); 1487 ice_sync_fltr_subtask(pf); 1488 ice_handle_mdd_event(pf); 1489 ice_watchdog_subtask(pf); 1490 1491 if (ice_is_safe_mode(pf)) { 1492 ice_service_task_complete(pf); 1493 return; 1494 } 1495 1496 ice_process_vflr_event(pf); 1497 ice_clean_mailboxq_subtask(pf); 1498 1499 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 1500 ice_service_task_complete(pf); 1501 1502 /* If the tasks have taken longer than one service timer period 1503 * or there is more work to be done, reset the service timer to 1504 * schedule the service task now. 1505 */ 1506 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 1507 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 1508 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 1509 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 1510 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1511 mod_timer(&pf->serv_tmr, jiffies); 1512 } 1513 1514 /** 1515 * ice_set_ctrlq_len - helper function to set controlq length 1516 * @hw: pointer to the HW instance 1517 */ 1518 static void ice_set_ctrlq_len(struct ice_hw *hw) 1519 { 1520 hw->adminq.num_rq_entries = ICE_AQ_LEN; 1521 hw->adminq.num_sq_entries = ICE_AQ_LEN; 1522 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 1523 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 1524 hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN; 1525 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 1526 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1527 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 1528 } 1529 1530 /** 1531 * ice_irq_affinity_notify - Callback for affinity changes 1532 * @notify: context as to what irq was changed 1533 * @mask: the new affinity mask 1534 * 1535 * This is a callback function used by the irq_set_affinity_notifier function 1536 * so that we may register to receive changes to the irq affinity masks. 1537 */ 1538 static void 1539 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 1540 const cpumask_t *mask) 1541 { 1542 struct ice_q_vector *q_vector = 1543 container_of(notify, struct ice_q_vector, affinity_notify); 1544 1545 cpumask_copy(&q_vector->affinity_mask, mask); 1546 } 1547 1548 /** 1549 * ice_irq_affinity_release - Callback for affinity notifier release 1550 * @ref: internal core kernel usage 1551 * 1552 * This is a callback function used by the irq_set_affinity_notifier function 1553 * to inform the current notification subscriber that they will no longer 1554 * receive notifications. 1555 */ 1556 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 1557 1558 /** 1559 * ice_vsi_ena_irq - Enable IRQ for the given VSI 1560 * @vsi: the VSI being configured 1561 */ 1562 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 1563 { 1564 struct ice_hw *hw = &vsi->back->hw; 1565 int i; 1566 1567 ice_for_each_q_vector(vsi, i) 1568 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 1569 1570 ice_flush(hw); 1571 return 0; 1572 } 1573 1574 /** 1575 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 1576 * @vsi: the VSI being configured 1577 * @basename: name for the vector 1578 */ 1579 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 1580 { 1581 int q_vectors = vsi->num_q_vectors; 1582 struct ice_pf *pf = vsi->back; 1583 int base = vsi->base_vector; 1584 int rx_int_idx = 0; 1585 int tx_int_idx = 0; 1586 int vector, err; 1587 int irq_num; 1588 1589 for (vector = 0; vector < q_vectors; vector++) { 1590 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 1591 1592 irq_num = pf->msix_entries[base + vector].vector; 1593 1594 if (q_vector->tx.ring && q_vector->rx.ring) { 1595 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1596 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 1597 tx_int_idx++; 1598 } else if (q_vector->rx.ring) { 1599 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1600 "%s-%s-%d", basename, "rx", rx_int_idx++); 1601 } else if (q_vector->tx.ring) { 1602 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1603 "%s-%s-%d", basename, "tx", tx_int_idx++); 1604 } else { 1605 /* skip this unused q_vector */ 1606 continue; 1607 } 1608 err = devm_request_irq(&pf->pdev->dev, irq_num, 1609 vsi->irq_handler, 0, 1610 q_vector->name, q_vector); 1611 if (err) { 1612 netdev_err(vsi->netdev, 1613 "MSIX request_irq failed, error: %d\n", err); 1614 goto free_q_irqs; 1615 } 1616 1617 /* register for affinity change notifications */ 1618 q_vector->affinity_notify.notify = ice_irq_affinity_notify; 1619 q_vector->affinity_notify.release = ice_irq_affinity_release; 1620 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify); 1621 1622 /* assign the mask for this irq */ 1623 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 1624 } 1625 1626 vsi->irqs_ready = true; 1627 return 0; 1628 1629 free_q_irqs: 1630 while (vector) { 1631 vector--; 1632 irq_num = pf->msix_entries[base + vector].vector, 1633 irq_set_affinity_notifier(irq_num, NULL); 1634 irq_set_affinity_hint(irq_num, NULL); 1635 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]); 1636 } 1637 return err; 1638 } 1639 1640 /** 1641 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 1642 * @vsi: VSI to setup Tx rings used by XDP 1643 * 1644 * Return 0 on success and negative value on error 1645 */ 1646 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 1647 { 1648 struct device *dev = &vsi->back->pdev->dev; 1649 int i; 1650 1651 for (i = 0; i < vsi->num_xdp_txq; i++) { 1652 u16 xdp_q_idx = vsi->alloc_txq + i; 1653 struct ice_ring *xdp_ring; 1654 1655 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 1656 1657 if (!xdp_ring) 1658 goto free_xdp_rings; 1659 1660 xdp_ring->q_index = xdp_q_idx; 1661 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 1662 xdp_ring->ring_active = false; 1663 xdp_ring->vsi = vsi; 1664 xdp_ring->netdev = NULL; 1665 xdp_ring->dev = dev; 1666 xdp_ring->count = vsi->num_tx_desc; 1667 vsi->xdp_rings[i] = xdp_ring; 1668 if (ice_setup_tx_ring(xdp_ring)) 1669 goto free_xdp_rings; 1670 ice_set_ring_xdp(xdp_ring); 1671 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring); 1672 } 1673 1674 return 0; 1675 1676 free_xdp_rings: 1677 for (; i >= 0; i--) 1678 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 1679 ice_free_tx_ring(vsi->xdp_rings[i]); 1680 return -ENOMEM; 1681 } 1682 1683 /** 1684 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 1685 * @vsi: VSI to set the bpf prog on 1686 * @prog: the bpf prog pointer 1687 */ 1688 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 1689 { 1690 struct bpf_prog *old_prog; 1691 int i; 1692 1693 old_prog = xchg(&vsi->xdp_prog, prog); 1694 if (old_prog) 1695 bpf_prog_put(old_prog); 1696 1697 ice_for_each_rxq(vsi, i) 1698 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 1699 } 1700 1701 /** 1702 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 1703 * @vsi: VSI to bring up Tx rings used by XDP 1704 * @prog: bpf program that will be assigned to VSI 1705 * 1706 * Return 0 on success and negative value on error 1707 */ 1708 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 1709 { 1710 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1711 int xdp_rings_rem = vsi->num_xdp_txq; 1712 struct ice_pf *pf = vsi->back; 1713 struct ice_qs_cfg xdp_qs_cfg = { 1714 .qs_mutex = &pf->avail_q_mutex, 1715 .pf_map = pf->avail_txqs, 1716 .pf_map_size = pf->max_pf_txqs, 1717 .q_count = vsi->num_xdp_txq, 1718 .scatter_count = ICE_MAX_SCATTER_TXQS, 1719 .vsi_map = vsi->txq_map, 1720 .vsi_map_offset = vsi->alloc_txq, 1721 .mapping_mode = ICE_VSI_MAP_CONTIG 1722 }; 1723 enum ice_status status; 1724 int i, v_idx; 1725 1726 vsi->xdp_rings = devm_kcalloc(&pf->pdev->dev, vsi->num_xdp_txq, 1727 sizeof(*vsi->xdp_rings), GFP_KERNEL); 1728 if (!vsi->xdp_rings) 1729 return -ENOMEM; 1730 1731 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 1732 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 1733 goto err_map_xdp; 1734 1735 if (ice_xdp_alloc_setup_rings(vsi)) 1736 goto clear_xdp_rings; 1737 1738 /* follow the logic from ice_vsi_map_rings_to_vectors */ 1739 ice_for_each_q_vector(vsi, v_idx) { 1740 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1741 int xdp_rings_per_v, q_id, q_base; 1742 1743 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 1744 vsi->num_q_vectors - v_idx); 1745 q_base = vsi->num_xdp_txq - xdp_rings_rem; 1746 1747 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 1748 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 1749 1750 xdp_ring->q_vector = q_vector; 1751 xdp_ring->next = q_vector->tx.ring; 1752 q_vector->tx.ring = xdp_ring; 1753 } 1754 xdp_rings_rem -= xdp_rings_per_v; 1755 } 1756 1757 /* omit the scheduler update if in reset path; XDP queues will be 1758 * taken into account at the end of ice_vsi_rebuild, where 1759 * ice_cfg_vsi_lan is being called 1760 */ 1761 if (ice_is_reset_in_progress(pf->state)) 1762 return 0; 1763 1764 /* tell the Tx scheduler that right now we have 1765 * additional queues 1766 */ 1767 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1768 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 1769 1770 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1771 max_txqs); 1772 if (status) { 1773 dev_err(&pf->pdev->dev, 1774 "Failed VSI LAN queue config for XDP, error:%d\n", 1775 status); 1776 goto clear_xdp_rings; 1777 } 1778 ice_vsi_assign_bpf_prog(vsi, prog); 1779 1780 return 0; 1781 clear_xdp_rings: 1782 for (i = 0; i < vsi->num_xdp_txq; i++) 1783 if (vsi->xdp_rings[i]) { 1784 kfree_rcu(vsi->xdp_rings[i], rcu); 1785 vsi->xdp_rings[i] = NULL; 1786 } 1787 1788 err_map_xdp: 1789 mutex_lock(&pf->avail_q_mutex); 1790 for (i = 0; i < vsi->num_xdp_txq; i++) { 1791 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1792 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1793 } 1794 mutex_unlock(&pf->avail_q_mutex); 1795 1796 devm_kfree(&pf->pdev->dev, vsi->xdp_rings); 1797 return -ENOMEM; 1798 } 1799 1800 /** 1801 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 1802 * @vsi: VSI to remove XDP rings 1803 * 1804 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 1805 * resources 1806 */ 1807 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 1808 { 1809 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 1810 struct ice_pf *pf = vsi->back; 1811 int i, v_idx; 1812 1813 /* q_vectors are freed in reset path so there's no point in detaching 1814 * rings; in case of rebuild being triggered not from reset reset bits 1815 * in pf->state won't be set, so additionally check first q_vector 1816 * against NULL 1817 */ 1818 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1819 goto free_qmap; 1820 1821 ice_for_each_q_vector(vsi, v_idx) { 1822 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 1823 struct ice_ring *ring; 1824 1825 ice_for_each_ring(ring, q_vector->tx) 1826 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 1827 break; 1828 1829 /* restore the value of last node prior to XDP setup */ 1830 q_vector->tx.ring = ring; 1831 } 1832 1833 free_qmap: 1834 mutex_lock(&pf->avail_q_mutex); 1835 for (i = 0; i < vsi->num_xdp_txq; i++) { 1836 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 1837 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 1838 } 1839 mutex_unlock(&pf->avail_q_mutex); 1840 1841 for (i = 0; i < vsi->num_xdp_txq; i++) 1842 if (vsi->xdp_rings[i]) { 1843 if (vsi->xdp_rings[i]->desc) 1844 ice_free_tx_ring(vsi->xdp_rings[i]); 1845 kfree_rcu(vsi->xdp_rings[i], rcu); 1846 vsi->xdp_rings[i] = NULL; 1847 } 1848 1849 devm_kfree(&pf->pdev->dev, vsi->xdp_rings); 1850 vsi->xdp_rings = NULL; 1851 1852 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 1853 return 0; 1854 1855 ice_vsi_assign_bpf_prog(vsi, NULL); 1856 1857 /* notify Tx scheduler that we destroyed XDP queues and bring 1858 * back the old number of child nodes 1859 */ 1860 for (i = 0; i < vsi->tc_cfg.numtc; i++) 1861 max_txqs[i] = vsi->num_txq; 1862 1863 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 1864 max_txqs); 1865 } 1866 1867 /** 1868 * ice_xdp_setup_prog - Add or remove XDP eBPF program 1869 * @vsi: VSI to setup XDP for 1870 * @prog: XDP program 1871 * @extack: netlink extended ack 1872 */ 1873 static int 1874 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 1875 struct netlink_ext_ack *extack) 1876 { 1877 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 1878 bool if_running = netif_running(vsi->netdev); 1879 int ret = 0, xdp_ring_err = 0; 1880 1881 if (frame_size > vsi->rx_buf_len) { 1882 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 1883 return -EOPNOTSUPP; 1884 } 1885 1886 /* need to stop netdev while setting up the program for Rx rings */ 1887 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 1888 ret = ice_down(vsi); 1889 if (ret) { 1890 NL_SET_ERR_MSG_MOD(extack, 1891 "Preparing device for XDP attach failed"); 1892 return ret; 1893 } 1894 } 1895 1896 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 1897 vsi->num_xdp_txq = vsi->alloc_txq; 1898 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 1899 if (xdp_ring_err) 1900 NL_SET_ERR_MSG_MOD(extack, 1901 "Setting up XDP Tx resources failed"); 1902 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 1903 xdp_ring_err = ice_destroy_xdp_rings(vsi); 1904 if (xdp_ring_err) 1905 NL_SET_ERR_MSG_MOD(extack, 1906 "Freeing XDP Tx resources failed"); 1907 } else { 1908 ice_vsi_assign_bpf_prog(vsi, prog); 1909 } 1910 1911 if (if_running) 1912 ret = ice_up(vsi); 1913 1914 if (!ret && prog && vsi->xsk_umems) { 1915 int i; 1916 1917 ice_for_each_rxq(vsi, i) { 1918 struct ice_ring *rx_ring = vsi->rx_rings[i]; 1919 1920 if (rx_ring->xsk_umem) 1921 napi_schedule(&rx_ring->q_vector->napi); 1922 } 1923 } 1924 1925 return (ret || xdp_ring_err) ? -ENOMEM : 0; 1926 } 1927 1928 /** 1929 * ice_xdp - implements XDP handler 1930 * @dev: netdevice 1931 * @xdp: XDP command 1932 */ 1933 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1934 { 1935 struct ice_netdev_priv *np = netdev_priv(dev); 1936 struct ice_vsi *vsi = np->vsi; 1937 1938 if (vsi->type != ICE_VSI_PF) { 1939 NL_SET_ERR_MSG_MOD(xdp->extack, 1940 "XDP can be loaded only on PF VSI"); 1941 return -EINVAL; 1942 } 1943 1944 switch (xdp->command) { 1945 case XDP_SETUP_PROG: 1946 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 1947 case XDP_QUERY_PROG: 1948 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0; 1949 return 0; 1950 case XDP_SETUP_XSK_UMEM: 1951 return ice_xsk_umem_setup(vsi, xdp->xsk.umem, 1952 xdp->xsk.queue_id); 1953 default: 1954 return -EINVAL; 1955 } 1956 } 1957 1958 /** 1959 * ice_ena_misc_vector - enable the non-queue interrupts 1960 * @pf: board private structure 1961 */ 1962 static void ice_ena_misc_vector(struct ice_pf *pf) 1963 { 1964 struct ice_hw *hw = &pf->hw; 1965 u32 val; 1966 1967 /* clear things first */ 1968 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 1969 rd32(hw, PFINT_OICR); /* read to clear */ 1970 1971 val = (PFINT_OICR_ECC_ERR_M | 1972 PFINT_OICR_MAL_DETECT_M | 1973 PFINT_OICR_GRST_M | 1974 PFINT_OICR_PCI_EXCEPTION_M | 1975 PFINT_OICR_VFLR_M | 1976 PFINT_OICR_HMC_ERR_M | 1977 PFINT_OICR_PE_CRITERR_M); 1978 1979 wr32(hw, PFINT_OICR_ENA, val); 1980 1981 /* SW_ITR_IDX = 0, but don't change INTENA */ 1982 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 1983 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 1984 } 1985 1986 /** 1987 * ice_misc_intr - misc interrupt handler 1988 * @irq: interrupt number 1989 * @data: pointer to a q_vector 1990 */ 1991 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 1992 { 1993 struct ice_pf *pf = (struct ice_pf *)data; 1994 struct ice_hw *hw = &pf->hw; 1995 irqreturn_t ret = IRQ_NONE; 1996 u32 oicr, ena_mask; 1997 1998 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1999 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2000 2001 oicr = rd32(hw, PFINT_OICR); 2002 ena_mask = rd32(hw, PFINT_OICR_ENA); 2003 2004 if (oicr & PFINT_OICR_SWINT_M) { 2005 ena_mask &= ~PFINT_OICR_SWINT_M; 2006 pf->sw_int_count++; 2007 } 2008 2009 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2010 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2011 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2012 } 2013 if (oicr & PFINT_OICR_VFLR_M) { 2014 ena_mask &= ~PFINT_OICR_VFLR_M; 2015 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2016 } 2017 2018 if (oicr & PFINT_OICR_GRST_M) { 2019 u32 reset; 2020 2021 /* we have a reset warning */ 2022 ena_mask &= ~PFINT_OICR_GRST_M; 2023 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2024 GLGEN_RSTAT_RESET_TYPE_S; 2025 2026 if (reset == ICE_RESET_CORER) 2027 pf->corer_count++; 2028 else if (reset == ICE_RESET_GLOBR) 2029 pf->globr_count++; 2030 else if (reset == ICE_RESET_EMPR) 2031 pf->empr_count++; 2032 else 2033 dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n", 2034 reset); 2035 2036 /* If a reset cycle isn't already in progress, we set a bit in 2037 * pf->state so that the service task can start a reset/rebuild. 2038 * We also make note of which reset happened so that peer 2039 * devices/drivers can be informed. 2040 */ 2041 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2042 if (reset == ICE_RESET_CORER) 2043 set_bit(__ICE_CORER_RECV, pf->state); 2044 else if (reset == ICE_RESET_GLOBR) 2045 set_bit(__ICE_GLOBR_RECV, pf->state); 2046 else 2047 set_bit(__ICE_EMPR_RECV, pf->state); 2048 2049 /* There are couple of different bits at play here. 2050 * hw->reset_ongoing indicates whether the hardware is 2051 * in reset. This is set to true when a reset interrupt 2052 * is received and set back to false after the driver 2053 * has determined that the hardware is out of reset. 2054 * 2055 * __ICE_RESET_OICR_RECV in pf->state indicates 2056 * that a post reset rebuild is required before the 2057 * driver is operational again. This is set above. 2058 * 2059 * As this is the start of the reset/rebuild cycle, set 2060 * both to indicate that. 2061 */ 2062 hw->reset_ongoing = true; 2063 } 2064 } 2065 2066 if (oicr & PFINT_OICR_HMC_ERR_M) { 2067 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2068 dev_dbg(&pf->pdev->dev, 2069 "HMC Error interrupt - info 0x%x, data 0x%x\n", 2070 rd32(hw, PFHMC_ERRORINFO), 2071 rd32(hw, PFHMC_ERRORDATA)); 2072 } 2073 2074 /* Report any remaining unexpected interrupts */ 2075 oicr &= ena_mask; 2076 if (oicr) { 2077 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n", 2078 oicr); 2079 /* If a critical error is pending there is no choice but to 2080 * reset the device. 2081 */ 2082 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2083 PFINT_OICR_PCI_EXCEPTION_M | 2084 PFINT_OICR_ECC_ERR_M)) { 2085 set_bit(__ICE_PFR_REQ, pf->state); 2086 ice_service_task_schedule(pf); 2087 } 2088 } 2089 ret = IRQ_HANDLED; 2090 2091 if (!test_bit(__ICE_DOWN, pf->state)) { 2092 ice_service_task_schedule(pf); 2093 ice_irq_dynamic_ena(hw, NULL, NULL); 2094 } 2095 2096 return ret; 2097 } 2098 2099 /** 2100 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2101 * @hw: pointer to HW structure 2102 */ 2103 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2104 { 2105 /* disable Admin queue Interrupt causes */ 2106 wr32(hw, PFINT_FW_CTL, 2107 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2108 2109 /* disable Mailbox queue Interrupt causes */ 2110 wr32(hw, PFINT_MBX_CTL, 2111 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2112 2113 /* disable Control queue Interrupt causes */ 2114 wr32(hw, PFINT_OICR_CTL, 2115 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2116 2117 ice_flush(hw); 2118 } 2119 2120 /** 2121 * ice_free_irq_msix_misc - Unroll misc vector setup 2122 * @pf: board private structure 2123 */ 2124 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2125 { 2126 struct ice_hw *hw = &pf->hw; 2127 2128 ice_dis_ctrlq_interrupts(hw); 2129 2130 /* disable OICR interrupt */ 2131 wr32(hw, PFINT_OICR_ENA, 0); 2132 ice_flush(hw); 2133 2134 if (pf->msix_entries) { 2135 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2136 devm_free_irq(&pf->pdev->dev, 2137 pf->msix_entries[pf->oicr_idx].vector, pf); 2138 } 2139 2140 pf->num_avail_sw_msix += 1; 2141 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2142 } 2143 2144 /** 2145 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2146 * @hw: pointer to HW structure 2147 * @reg_idx: HW vector index to associate the control queue interrupts with 2148 */ 2149 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2150 { 2151 u32 val; 2152 2153 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2154 PFINT_OICR_CTL_CAUSE_ENA_M); 2155 wr32(hw, PFINT_OICR_CTL, val); 2156 2157 /* enable Admin queue Interrupt causes */ 2158 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2159 PFINT_FW_CTL_CAUSE_ENA_M); 2160 wr32(hw, PFINT_FW_CTL, val); 2161 2162 /* enable Mailbox queue Interrupt causes */ 2163 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2164 PFINT_MBX_CTL_CAUSE_ENA_M); 2165 wr32(hw, PFINT_MBX_CTL, val); 2166 2167 ice_flush(hw); 2168 } 2169 2170 /** 2171 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2172 * @pf: board private structure 2173 * 2174 * This sets up the handler for MSIX 0, which is used to manage the 2175 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2176 * when in MSI or Legacy interrupt mode. 2177 */ 2178 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2179 { 2180 struct ice_hw *hw = &pf->hw; 2181 int oicr_idx, err = 0; 2182 2183 if (!pf->int_name[0]) 2184 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2185 dev_driver_string(&pf->pdev->dev), 2186 dev_name(&pf->pdev->dev)); 2187 2188 /* Do not request IRQ but do enable OICR interrupt since settings are 2189 * lost during reset. Note that this function is called only during 2190 * rebuild path and not while reset is in progress. 2191 */ 2192 if (ice_is_reset_in_progress(pf->state)) 2193 goto skip_req_irq; 2194 2195 /* reserve one vector in irq_tracker for misc interrupts */ 2196 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2197 if (oicr_idx < 0) 2198 return oicr_idx; 2199 2200 pf->num_avail_sw_msix -= 1; 2201 pf->oicr_idx = oicr_idx; 2202 2203 err = devm_request_irq(&pf->pdev->dev, 2204 pf->msix_entries[pf->oicr_idx].vector, 2205 ice_misc_intr, 0, pf->int_name, pf); 2206 if (err) { 2207 dev_err(&pf->pdev->dev, 2208 "devm_request_irq for %s failed: %d\n", 2209 pf->int_name, err); 2210 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2211 pf->num_avail_sw_msix += 1; 2212 return err; 2213 } 2214 2215 skip_req_irq: 2216 ice_ena_misc_vector(pf); 2217 2218 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2219 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2220 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2221 2222 ice_flush(hw); 2223 ice_irq_dynamic_ena(hw, NULL, NULL); 2224 2225 return 0; 2226 } 2227 2228 /** 2229 * ice_napi_add - register NAPI handler for the VSI 2230 * @vsi: VSI for which NAPI handler is to be registered 2231 * 2232 * This function is only called in the driver's load path. Registering the NAPI 2233 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2234 * reset/rebuild, etc.) 2235 */ 2236 static void ice_napi_add(struct ice_vsi *vsi) 2237 { 2238 int v_idx; 2239 2240 if (!vsi->netdev) 2241 return; 2242 2243 ice_for_each_q_vector(vsi, v_idx) 2244 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2245 ice_napi_poll, NAPI_POLL_WEIGHT); 2246 } 2247 2248 /** 2249 * ice_set_ops - set netdev and ethtools ops for the given netdev 2250 * @netdev: netdev instance 2251 */ 2252 static void ice_set_ops(struct net_device *netdev) 2253 { 2254 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2255 2256 if (ice_is_safe_mode(pf)) { 2257 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2258 ice_set_ethtool_safe_mode_ops(netdev); 2259 return; 2260 } 2261 2262 netdev->netdev_ops = &ice_netdev_ops; 2263 ice_set_ethtool_ops(netdev); 2264 } 2265 2266 /** 2267 * ice_set_netdev_features - set features for the given netdev 2268 * @netdev: netdev instance 2269 */ 2270 static void ice_set_netdev_features(struct net_device *netdev) 2271 { 2272 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2273 netdev_features_t csumo_features; 2274 netdev_features_t vlano_features; 2275 netdev_features_t dflt_features; 2276 netdev_features_t tso_features; 2277 2278 if (ice_is_safe_mode(pf)) { 2279 /* safe mode */ 2280 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2281 netdev->hw_features = netdev->features; 2282 return; 2283 } 2284 2285 dflt_features = NETIF_F_SG | 2286 NETIF_F_HIGHDMA | 2287 NETIF_F_RXHASH; 2288 2289 csumo_features = NETIF_F_RXCSUM | 2290 NETIF_F_IP_CSUM | 2291 NETIF_F_SCTP_CRC | 2292 NETIF_F_IPV6_CSUM; 2293 2294 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2295 NETIF_F_HW_VLAN_CTAG_TX | 2296 NETIF_F_HW_VLAN_CTAG_RX; 2297 2298 tso_features = NETIF_F_TSO; 2299 2300 /* set features that user can change */ 2301 netdev->hw_features = dflt_features | csumo_features | 2302 vlano_features | tso_features; 2303 2304 /* enable features */ 2305 netdev->features |= netdev->hw_features; 2306 /* encap and VLAN devices inherit default, csumo and tso features */ 2307 netdev->hw_enc_features |= dflt_features | csumo_features | 2308 tso_features; 2309 netdev->vlan_features |= dflt_features | csumo_features | 2310 tso_features; 2311 } 2312 2313 /** 2314 * ice_cfg_netdev - Allocate, configure and register a netdev 2315 * @vsi: the VSI associated with the new netdev 2316 * 2317 * Returns 0 on success, negative value on failure 2318 */ 2319 static int ice_cfg_netdev(struct ice_vsi *vsi) 2320 { 2321 struct ice_pf *pf = vsi->back; 2322 struct ice_netdev_priv *np; 2323 struct net_device *netdev; 2324 u8 mac_addr[ETH_ALEN]; 2325 int err; 2326 2327 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2328 vsi->alloc_rxq); 2329 if (!netdev) 2330 return -ENOMEM; 2331 2332 vsi->netdev = netdev; 2333 np = netdev_priv(netdev); 2334 np->vsi = vsi; 2335 2336 ice_set_netdev_features(netdev); 2337 2338 ice_set_ops(netdev); 2339 2340 if (vsi->type == ICE_VSI_PF) { 2341 SET_NETDEV_DEV(netdev, &pf->pdev->dev); 2342 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2343 ether_addr_copy(netdev->dev_addr, mac_addr); 2344 ether_addr_copy(netdev->perm_addr, mac_addr); 2345 } 2346 2347 netdev->priv_flags |= IFF_UNICAST_FLT; 2348 2349 /* Setup netdev TC information */ 2350 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2351 2352 /* setup watchdog timeout value to be 5 second */ 2353 netdev->watchdog_timeo = 5 * HZ; 2354 2355 netdev->min_mtu = ETH_MIN_MTU; 2356 netdev->max_mtu = ICE_MAX_MTU; 2357 2358 err = register_netdev(vsi->netdev); 2359 if (err) 2360 return err; 2361 2362 netif_carrier_off(vsi->netdev); 2363 2364 /* make sure transmit queues start off as stopped */ 2365 netif_tx_stop_all_queues(vsi->netdev); 2366 2367 return 0; 2368 } 2369 2370 /** 2371 * ice_fill_rss_lut - Fill the RSS lookup table with default values 2372 * @lut: Lookup table 2373 * @rss_table_size: Lookup table size 2374 * @rss_size: Range of queue number for hashing 2375 */ 2376 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 2377 { 2378 u16 i; 2379 2380 for (i = 0; i < rss_table_size; i++) 2381 lut[i] = i % rss_size; 2382 } 2383 2384 /** 2385 * ice_pf_vsi_setup - Set up a PF VSI 2386 * @pf: board private structure 2387 * @pi: pointer to the port_info instance 2388 * 2389 * Returns pointer to the successfully allocated VSI software struct 2390 * on success, otherwise returns NULL on failure. 2391 */ 2392 static struct ice_vsi * 2393 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2394 { 2395 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 2396 } 2397 2398 /** 2399 * ice_lb_vsi_setup - Set up a loopback VSI 2400 * @pf: board private structure 2401 * @pi: pointer to the port_info instance 2402 * 2403 * Returns pointer to the successfully allocated VSI software struct 2404 * on success, otherwise returns NULL on failure. 2405 */ 2406 struct ice_vsi * 2407 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 2408 { 2409 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 2410 } 2411 2412 /** 2413 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 2414 * @netdev: network interface to be adjusted 2415 * @proto: unused protocol 2416 * @vid: VLAN ID to be added 2417 * 2418 * net_device_ops implementation for adding VLAN IDs 2419 */ 2420 static int 2421 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 2422 u16 vid) 2423 { 2424 struct ice_netdev_priv *np = netdev_priv(netdev); 2425 struct ice_vsi *vsi = np->vsi; 2426 int ret; 2427 2428 if (vid >= VLAN_N_VID) { 2429 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 2430 vid, VLAN_N_VID); 2431 return -EINVAL; 2432 } 2433 2434 if (vsi->info.pvid) 2435 return -EINVAL; 2436 2437 /* Enable VLAN pruning when VLAN 0 is added */ 2438 if (unlikely(!vid)) { 2439 ret = ice_cfg_vlan_pruning(vsi, true, false); 2440 if (ret) 2441 return ret; 2442 } 2443 2444 /* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is 2445 * needed to continue allowing all untagged packets since VLAN prune 2446 * list is applied to all packets by the switch 2447 */ 2448 ret = ice_vsi_add_vlan(vsi, vid); 2449 if (!ret) { 2450 vsi->vlan_ena = true; 2451 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2452 } 2453 2454 return ret; 2455 } 2456 2457 /** 2458 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 2459 * @netdev: network interface to be adjusted 2460 * @proto: unused protocol 2461 * @vid: VLAN ID to be removed 2462 * 2463 * net_device_ops implementation for removing VLAN IDs 2464 */ 2465 static int 2466 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 2467 u16 vid) 2468 { 2469 struct ice_netdev_priv *np = netdev_priv(netdev); 2470 struct ice_vsi *vsi = np->vsi; 2471 int ret; 2472 2473 if (vsi->info.pvid) 2474 return -EINVAL; 2475 2476 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 2477 * information 2478 */ 2479 ret = ice_vsi_kill_vlan(vsi, vid); 2480 if (ret) 2481 return ret; 2482 2483 /* Disable VLAN pruning when VLAN 0 is removed */ 2484 if (unlikely(!vid)) 2485 ret = ice_cfg_vlan_pruning(vsi, false, false); 2486 2487 vsi->vlan_ena = false; 2488 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 2489 return ret; 2490 } 2491 2492 /** 2493 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 2494 * @pf: board private structure 2495 * 2496 * Returns 0 on success, negative value on failure 2497 */ 2498 static int ice_setup_pf_sw(struct ice_pf *pf) 2499 { 2500 struct ice_vsi *vsi; 2501 int status = 0; 2502 2503 if (ice_is_reset_in_progress(pf->state)) 2504 return -EBUSY; 2505 2506 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 2507 if (!vsi) { 2508 status = -ENOMEM; 2509 goto unroll_vsi_setup; 2510 } 2511 2512 status = ice_cfg_netdev(vsi); 2513 if (status) { 2514 status = -ENODEV; 2515 goto unroll_vsi_setup; 2516 } 2517 /* netdev has to be configured before setting frame size */ 2518 ice_vsi_cfg_frame_size(vsi); 2519 2520 /* Setup DCB netlink interface */ 2521 ice_dcbnl_setup(vsi); 2522 2523 /* registering the NAPI handler requires both the queues and 2524 * netdev to be created, which are done in ice_pf_vsi_setup() 2525 * and ice_cfg_netdev() respectively 2526 */ 2527 ice_napi_add(vsi); 2528 2529 status = ice_init_mac_fltr(pf); 2530 if (status) 2531 goto unroll_napi_add; 2532 2533 return status; 2534 2535 unroll_napi_add: 2536 if (vsi) { 2537 ice_napi_del(vsi); 2538 if (vsi->netdev) { 2539 if (vsi->netdev->reg_state == NETREG_REGISTERED) 2540 unregister_netdev(vsi->netdev); 2541 free_netdev(vsi->netdev); 2542 vsi->netdev = NULL; 2543 } 2544 } 2545 2546 unroll_vsi_setup: 2547 if (vsi) { 2548 ice_vsi_free_q_vectors(vsi); 2549 ice_vsi_delete(vsi); 2550 ice_vsi_put_qs(vsi); 2551 ice_vsi_clear(vsi); 2552 } 2553 return status; 2554 } 2555 2556 /** 2557 * ice_get_avail_q_count - Get count of queues in use 2558 * @pf_qmap: bitmap to get queue use count from 2559 * @lock: pointer to a mutex that protects access to pf_qmap 2560 * @size: size of the bitmap 2561 */ 2562 static u16 2563 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 2564 { 2565 u16 count = 0, bit; 2566 2567 mutex_lock(lock); 2568 for_each_clear_bit(bit, pf_qmap, size) 2569 count++; 2570 mutex_unlock(lock); 2571 2572 return count; 2573 } 2574 2575 /** 2576 * ice_get_avail_txq_count - Get count of Tx queues in use 2577 * @pf: pointer to an ice_pf instance 2578 */ 2579 u16 ice_get_avail_txq_count(struct ice_pf *pf) 2580 { 2581 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 2582 pf->max_pf_txqs); 2583 } 2584 2585 /** 2586 * ice_get_avail_rxq_count - Get count of Rx queues in use 2587 * @pf: pointer to an ice_pf instance 2588 */ 2589 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 2590 { 2591 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 2592 pf->max_pf_rxqs); 2593 } 2594 2595 /** 2596 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 2597 * @pf: board private structure to initialize 2598 */ 2599 static void ice_deinit_pf(struct ice_pf *pf) 2600 { 2601 ice_service_task_stop(pf); 2602 mutex_destroy(&pf->sw_mutex); 2603 mutex_destroy(&pf->tc_mutex); 2604 mutex_destroy(&pf->avail_q_mutex); 2605 2606 if (pf->avail_txqs) { 2607 bitmap_free(pf->avail_txqs); 2608 pf->avail_txqs = NULL; 2609 } 2610 2611 if (pf->avail_rxqs) { 2612 bitmap_free(pf->avail_rxqs); 2613 pf->avail_rxqs = NULL; 2614 } 2615 } 2616 2617 /** 2618 * ice_set_pf_caps - set PFs capability flags 2619 * @pf: pointer to the PF instance 2620 */ 2621 static void ice_set_pf_caps(struct ice_pf *pf) 2622 { 2623 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 2624 2625 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2626 if (func_caps->common_cap.dcb) 2627 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 2628 #ifdef CONFIG_PCI_IOV 2629 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2630 if (func_caps->common_cap.sr_iov_1_1) { 2631 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 2632 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 2633 ICE_MAX_VF_COUNT); 2634 } 2635 #endif /* CONFIG_PCI_IOV */ 2636 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 2637 if (func_caps->common_cap.rss_table_size) 2638 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 2639 2640 pf->max_pf_txqs = func_caps->common_cap.num_txq; 2641 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 2642 } 2643 2644 /** 2645 * ice_init_pf - Initialize general software structures (struct ice_pf) 2646 * @pf: board private structure to initialize 2647 */ 2648 static int ice_init_pf(struct ice_pf *pf) 2649 { 2650 ice_set_pf_caps(pf); 2651 2652 mutex_init(&pf->sw_mutex); 2653 mutex_init(&pf->tc_mutex); 2654 2655 /* setup service timer and periodic service task */ 2656 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 2657 pf->serv_tmr_period = HZ; 2658 INIT_WORK(&pf->serv_task, ice_service_task); 2659 clear_bit(__ICE_SERVICE_SCHED, pf->state); 2660 2661 mutex_init(&pf->avail_q_mutex); 2662 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 2663 if (!pf->avail_txqs) 2664 return -ENOMEM; 2665 2666 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 2667 if (!pf->avail_rxqs) { 2668 devm_kfree(&pf->pdev->dev, pf->avail_txqs); 2669 pf->avail_txqs = NULL; 2670 return -ENOMEM; 2671 } 2672 2673 return 0; 2674 } 2675 2676 /** 2677 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 2678 * @pf: board private structure 2679 * 2680 * compute the number of MSIX vectors required (v_budget) and request from 2681 * the OS. Return the number of vectors reserved or negative on failure 2682 */ 2683 static int ice_ena_msix_range(struct ice_pf *pf) 2684 { 2685 int v_left, v_actual, v_budget = 0; 2686 int needed, err, i; 2687 2688 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 2689 2690 /* reserve one vector for miscellaneous handler */ 2691 needed = 1; 2692 if (v_left < needed) 2693 goto no_hw_vecs_left_err; 2694 v_budget += needed; 2695 v_left -= needed; 2696 2697 /* reserve vectors for LAN traffic */ 2698 needed = min_t(int, num_online_cpus(), v_left); 2699 if (v_left < needed) 2700 goto no_hw_vecs_left_err; 2701 pf->num_lan_msix = needed; 2702 v_budget += needed; 2703 v_left -= needed; 2704 2705 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget, 2706 sizeof(*pf->msix_entries), GFP_KERNEL); 2707 2708 if (!pf->msix_entries) { 2709 err = -ENOMEM; 2710 goto exit_err; 2711 } 2712 2713 for (i = 0; i < v_budget; i++) 2714 pf->msix_entries[i].entry = i; 2715 2716 /* actually reserve the vectors */ 2717 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 2718 ICE_MIN_MSIX, v_budget); 2719 2720 if (v_actual < 0) { 2721 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n"); 2722 err = v_actual; 2723 goto msix_err; 2724 } 2725 2726 if (v_actual < v_budget) { 2727 dev_warn(&pf->pdev->dev, 2728 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 2729 v_budget, v_actual); 2730 /* 2 vectors for LAN (traffic + OICR) */ 2731 #define ICE_MIN_LAN_VECS 2 2732 2733 if (v_actual < ICE_MIN_LAN_VECS) { 2734 /* error if we can't get minimum vectors */ 2735 pci_disable_msix(pf->pdev); 2736 err = -ERANGE; 2737 goto msix_err; 2738 } else { 2739 pf->num_lan_msix = ICE_MIN_LAN_VECS; 2740 } 2741 } 2742 2743 return v_actual; 2744 2745 msix_err: 2746 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2747 goto exit_err; 2748 2749 no_hw_vecs_left_err: 2750 dev_err(&pf->pdev->dev, 2751 "not enough device MSI-X vectors. requested = %d, available = %d\n", 2752 needed, v_left); 2753 err = -ERANGE; 2754 exit_err: 2755 pf->num_lan_msix = 0; 2756 return err; 2757 } 2758 2759 /** 2760 * ice_dis_msix - Disable MSI-X interrupt setup in OS 2761 * @pf: board private structure 2762 */ 2763 static void ice_dis_msix(struct ice_pf *pf) 2764 { 2765 pci_disable_msix(pf->pdev); 2766 devm_kfree(&pf->pdev->dev, pf->msix_entries); 2767 pf->msix_entries = NULL; 2768 } 2769 2770 /** 2771 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 2772 * @pf: board private structure 2773 */ 2774 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 2775 { 2776 ice_dis_msix(pf); 2777 2778 if (pf->irq_tracker) { 2779 devm_kfree(&pf->pdev->dev, pf->irq_tracker); 2780 pf->irq_tracker = NULL; 2781 } 2782 } 2783 2784 /** 2785 * ice_init_interrupt_scheme - Determine proper interrupt scheme 2786 * @pf: board private structure to initialize 2787 */ 2788 static int ice_init_interrupt_scheme(struct ice_pf *pf) 2789 { 2790 int vectors; 2791 2792 vectors = ice_ena_msix_range(pf); 2793 2794 if (vectors < 0) 2795 return vectors; 2796 2797 /* set up vector assignment tracking */ 2798 pf->irq_tracker = 2799 devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) + 2800 (sizeof(u16) * vectors), GFP_KERNEL); 2801 if (!pf->irq_tracker) { 2802 ice_dis_msix(pf); 2803 return -ENOMEM; 2804 } 2805 2806 /* populate SW interrupts pool with number of OS granted IRQs. */ 2807 pf->num_avail_sw_msix = vectors; 2808 pf->irq_tracker->num_entries = vectors; 2809 pf->irq_tracker->end = pf->irq_tracker->num_entries; 2810 2811 return 0; 2812 } 2813 2814 /** 2815 * ice_log_pkg_init - log result of DDP package load 2816 * @hw: pointer to hardware info 2817 * @status: status of package load 2818 */ 2819 static void 2820 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 2821 { 2822 struct ice_pf *pf = (struct ice_pf *)hw->back; 2823 struct device *dev = &pf->pdev->dev; 2824 2825 switch (*status) { 2826 case ICE_SUCCESS: 2827 /* The package download AdminQ command returned success because 2828 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 2829 * already a package loaded on the device. 2830 */ 2831 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 2832 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 2833 hw->pkg_ver.update == hw->active_pkg_ver.update && 2834 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 2835 !memcmp(hw->pkg_name, hw->active_pkg_name, 2836 sizeof(hw->pkg_name))) { 2837 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 2838 dev_info(dev, 2839 "DDP package already present on device: %s version %d.%d.%d.%d\n", 2840 hw->active_pkg_name, 2841 hw->active_pkg_ver.major, 2842 hw->active_pkg_ver.minor, 2843 hw->active_pkg_ver.update, 2844 hw->active_pkg_ver.draft); 2845 else 2846 dev_info(dev, 2847 "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 2848 hw->active_pkg_name, 2849 hw->active_pkg_ver.major, 2850 hw->active_pkg_ver.minor, 2851 hw->active_pkg_ver.update, 2852 hw->active_pkg_ver.draft); 2853 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 2854 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 2855 dev_err(dev, 2856 "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 2857 hw->active_pkg_name, 2858 hw->active_pkg_ver.major, 2859 hw->active_pkg_ver.minor, 2860 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2861 *status = ICE_ERR_NOT_SUPPORTED; 2862 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2863 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 2864 dev_info(dev, 2865 "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 2866 hw->active_pkg_name, 2867 hw->active_pkg_ver.major, 2868 hw->active_pkg_ver.minor, 2869 hw->active_pkg_ver.update, 2870 hw->active_pkg_ver.draft, 2871 hw->pkg_name, 2872 hw->pkg_ver.major, 2873 hw->pkg_ver.minor, 2874 hw->pkg_ver.update, 2875 hw->pkg_ver.draft); 2876 } else { 2877 dev_err(dev, 2878 "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 2879 *status = ICE_ERR_NOT_SUPPORTED; 2880 } 2881 break; 2882 case ICE_ERR_BUF_TOO_SHORT: 2883 /* fall-through */ 2884 case ICE_ERR_CFG: 2885 dev_err(dev, 2886 "The DDP package file is invalid. Entering Safe Mode.\n"); 2887 break; 2888 case ICE_ERR_NOT_SUPPORTED: 2889 /* Package File version not supported */ 2890 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 2891 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2892 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 2893 dev_err(dev, 2894 "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 2895 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 2896 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 2897 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 2898 dev_err(dev, 2899 "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 2900 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 2901 break; 2902 case ICE_ERR_AQ_ERROR: 2903 switch (hw->pkg_dwnld_status) { 2904 case ICE_AQ_RC_ENOSEC: 2905 case ICE_AQ_RC_EBADSIG: 2906 dev_err(dev, 2907 "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 2908 return; 2909 case ICE_AQ_RC_ESVN: 2910 dev_err(dev, 2911 "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 2912 return; 2913 case ICE_AQ_RC_EBADMAN: 2914 case ICE_AQ_RC_EBADBUF: 2915 dev_err(dev, 2916 "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 2917 return; 2918 default: 2919 break; 2920 } 2921 /* fall-through */ 2922 default: 2923 dev_err(dev, 2924 "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 2925 *status); 2926 break; 2927 } 2928 } 2929 2930 /** 2931 * ice_load_pkg - load/reload the DDP Package file 2932 * @firmware: firmware structure when firmware requested or NULL for reload 2933 * @pf: pointer to the PF instance 2934 * 2935 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 2936 * initialize HW tables. 2937 */ 2938 static void 2939 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 2940 { 2941 enum ice_status status = ICE_ERR_PARAM; 2942 struct device *dev = &pf->pdev->dev; 2943 struct ice_hw *hw = &pf->hw; 2944 2945 /* Load DDP Package */ 2946 if (firmware && !hw->pkg_copy) { 2947 status = ice_copy_and_init_pkg(hw, firmware->data, 2948 firmware->size); 2949 ice_log_pkg_init(hw, &status); 2950 } else if (!firmware && hw->pkg_copy) { 2951 /* Reload package during rebuild after CORER/GLOBR reset */ 2952 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 2953 ice_log_pkg_init(hw, &status); 2954 } else { 2955 dev_err(dev, 2956 "The DDP package file failed to load. Entering Safe Mode.\n"); 2957 } 2958 2959 if (status) { 2960 /* Safe Mode */ 2961 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 2962 return; 2963 } 2964 2965 /* Successful download package is the precondition for advanced 2966 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 2967 */ 2968 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 2969 } 2970 2971 /** 2972 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 2973 * @pf: pointer to the PF structure 2974 * 2975 * There is no error returned here because the driver should be able to handle 2976 * 128 Byte cache lines, so we only print a warning in case issues are seen, 2977 * specifically with Tx. 2978 */ 2979 static void ice_verify_cacheline_size(struct ice_pf *pf) 2980 { 2981 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 2982 dev_warn(&pf->pdev->dev, 2983 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 2984 ICE_CACHE_LINE_BYTES); 2985 } 2986 2987 /** 2988 * ice_send_version - update firmware with driver version 2989 * @pf: PF struct 2990 * 2991 * Returns ICE_SUCCESS on success, else error code 2992 */ 2993 static enum ice_status ice_send_version(struct ice_pf *pf) 2994 { 2995 struct ice_driver_ver dv; 2996 2997 dv.major_ver = DRV_VERSION_MAJOR; 2998 dv.minor_ver = DRV_VERSION_MINOR; 2999 dv.build_ver = DRV_VERSION_BUILD; 3000 dv.subbuild_ver = 0; 3001 strscpy((char *)dv.driver_string, DRV_VERSION, 3002 sizeof(dv.driver_string)); 3003 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3004 } 3005 3006 /** 3007 * ice_get_opt_fw_name - return optional firmware file name or NULL 3008 * @pf: pointer to the PF instance 3009 */ 3010 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3011 { 3012 /* Optional firmware name same as default with additional dash 3013 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3014 */ 3015 struct pci_dev *pdev = pf->pdev; 3016 char *opt_fw_filename = NULL; 3017 u32 dword; 3018 u8 dsn[8]; 3019 int pos; 3020 3021 /* Determine the name of the optional file using the DSN (two 3022 * dwords following the start of the DSN Capability). 3023 */ 3024 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN); 3025 if (pos) { 3026 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3027 if (!opt_fw_filename) 3028 return NULL; 3029 3030 pci_read_config_dword(pdev, pos + 4, &dword); 3031 put_unaligned_le32(dword, &dsn[0]); 3032 pci_read_config_dword(pdev, pos + 8, &dword); 3033 put_unaligned_le32(dword, &dsn[4]); 3034 snprintf(opt_fw_filename, NAME_MAX, 3035 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg", 3036 ICE_DDP_PKG_PATH, 3037 dsn[7], dsn[6], dsn[5], dsn[4], 3038 dsn[3], dsn[2], dsn[1], dsn[0]); 3039 } 3040 3041 return opt_fw_filename; 3042 } 3043 3044 /** 3045 * ice_request_fw - Device initialization routine 3046 * @pf: pointer to the PF instance 3047 */ 3048 static void ice_request_fw(struct ice_pf *pf) 3049 { 3050 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3051 const struct firmware *firmware = NULL; 3052 struct device *dev = &pf->pdev->dev; 3053 int err = 0; 3054 3055 /* optional device-specific DDP (if present) overrides the default DDP 3056 * package file. kernel logs a debug message if the file doesn't exist, 3057 * and warning messages for other errors. 3058 */ 3059 if (opt_fw_filename) { 3060 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3061 if (err) { 3062 kfree(opt_fw_filename); 3063 goto dflt_pkg_load; 3064 } 3065 3066 /* request for firmware was successful. Download to device */ 3067 ice_load_pkg(firmware, pf); 3068 kfree(opt_fw_filename); 3069 release_firmware(firmware); 3070 return; 3071 } 3072 3073 dflt_pkg_load: 3074 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3075 if (err) { 3076 dev_err(dev, 3077 "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3078 return; 3079 } 3080 3081 /* request for firmware was successful. Download to device */ 3082 ice_load_pkg(firmware, pf); 3083 release_firmware(firmware); 3084 } 3085 3086 /** 3087 * ice_probe - Device initialization routine 3088 * @pdev: PCI device information struct 3089 * @ent: entry in ice_pci_tbl 3090 * 3091 * Returns 0 on success, negative on failure 3092 */ 3093 static int 3094 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3095 { 3096 struct device *dev = &pdev->dev; 3097 struct ice_pf *pf; 3098 struct ice_hw *hw; 3099 int err; 3100 3101 /* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */ 3102 err = pcim_enable_device(pdev); 3103 if (err) 3104 return err; 3105 3106 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3107 if (err) { 3108 dev_err(dev, "BAR0 I/O map error %d\n", err); 3109 return err; 3110 } 3111 3112 pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL); 3113 if (!pf) 3114 return -ENOMEM; 3115 3116 /* set up for high or low DMA */ 3117 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 3118 if (err) 3119 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 3120 if (err) { 3121 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 3122 return err; 3123 } 3124 3125 pci_enable_pcie_error_reporting(pdev); 3126 pci_set_master(pdev); 3127 3128 pf->pdev = pdev; 3129 pci_set_drvdata(pdev, pf); 3130 set_bit(__ICE_DOWN, pf->state); 3131 /* Disable service task until DOWN bit is cleared */ 3132 set_bit(__ICE_SERVICE_DIS, pf->state); 3133 3134 hw = &pf->hw; 3135 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 3136 pci_save_state(pdev); 3137 3138 hw->back = pf; 3139 hw->vendor_id = pdev->vendor; 3140 hw->device_id = pdev->device; 3141 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 3142 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3143 hw->subsystem_device_id = pdev->subsystem_device; 3144 hw->bus.device = PCI_SLOT(pdev->devfn); 3145 hw->bus.func = PCI_FUNC(pdev->devfn); 3146 ice_set_ctrlq_len(hw); 3147 3148 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 3149 3150 #ifndef CONFIG_DYNAMIC_DEBUG 3151 if (debug < -1) 3152 hw->debug_mask = debug; 3153 #endif 3154 3155 err = ice_init_hw(hw); 3156 if (err) { 3157 dev_err(dev, "ice_init_hw failed: %d\n", err); 3158 err = -EIO; 3159 goto err_exit_unroll; 3160 } 3161 3162 dev_info(dev, "firmware %d.%d.%d api %d.%d.%d nvm %s build 0x%08x\n", 3163 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch, 3164 hw->api_maj_ver, hw->api_min_ver, hw->api_patch, 3165 ice_nvm_version_str(hw), hw->fw_build); 3166 3167 ice_request_fw(pf); 3168 3169 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 3170 * set in pf->state, which will cause ice_is_safe_mode to return 3171 * true 3172 */ 3173 if (ice_is_safe_mode(pf)) { 3174 dev_err(dev, 3175 "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 3176 /* we already got function/device capabilities but these don't 3177 * reflect what the driver needs to do in safe mode. Instead of 3178 * adding conditional logic everywhere to ignore these 3179 * device/function capabilities, override them. 3180 */ 3181 ice_set_safe_mode_caps(hw); 3182 } 3183 3184 err = ice_init_pf(pf); 3185 if (err) { 3186 dev_err(dev, "ice_init_pf failed: %d\n", err); 3187 goto err_init_pf_unroll; 3188 } 3189 3190 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 3191 if (!pf->num_alloc_vsi) { 3192 err = -EIO; 3193 goto err_init_pf_unroll; 3194 } 3195 3196 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 3197 GFP_KERNEL); 3198 if (!pf->vsi) { 3199 err = -ENOMEM; 3200 goto err_init_pf_unroll; 3201 } 3202 3203 err = ice_init_interrupt_scheme(pf); 3204 if (err) { 3205 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 3206 err = -EIO; 3207 goto err_init_interrupt_unroll; 3208 } 3209 3210 /* Driver is mostly up */ 3211 clear_bit(__ICE_DOWN, pf->state); 3212 3213 /* In case of MSIX we are going to setup the misc vector right here 3214 * to handle admin queue events etc. In case of legacy and MSI 3215 * the misc functionality and queue processing is combined in 3216 * the same vector and that gets setup at open. 3217 */ 3218 err = ice_req_irq_msix_misc(pf); 3219 if (err) { 3220 dev_err(dev, "setup of misc vector failed: %d\n", err); 3221 goto err_init_interrupt_unroll; 3222 } 3223 3224 /* create switch struct for the switch element created by FW on boot */ 3225 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 3226 if (!pf->first_sw) { 3227 err = -ENOMEM; 3228 goto err_msix_misc_unroll; 3229 } 3230 3231 if (hw->evb_veb) 3232 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 3233 else 3234 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 3235 3236 pf->first_sw->pf = pf; 3237 3238 /* record the sw_id available for later use */ 3239 pf->first_sw->sw_id = hw->port_info->sw_id; 3240 3241 err = ice_setup_pf_sw(pf); 3242 if (err) { 3243 dev_err(dev, "probe failed due to setup PF switch:%d\n", err); 3244 goto err_alloc_sw_unroll; 3245 } 3246 3247 clear_bit(__ICE_SERVICE_DIS, pf->state); 3248 3249 /* tell the firmware we are up */ 3250 err = ice_send_version(pf); 3251 if (err) { 3252 dev_err(dev, 3253 "probe failed sending driver version %s. error: %d\n", 3254 ice_drv_ver, err); 3255 goto err_alloc_sw_unroll; 3256 } 3257 3258 /* since everything is good, start the service timer */ 3259 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3260 3261 err = ice_init_link_events(pf->hw.port_info); 3262 if (err) { 3263 dev_err(dev, "ice_init_link_events failed: %d\n", err); 3264 goto err_alloc_sw_unroll; 3265 } 3266 3267 ice_verify_cacheline_size(pf); 3268 3269 /* If no DDP driven features have to be setup, return here */ 3270 if (ice_is_safe_mode(pf)) 3271 return 0; 3272 3273 /* initialize DDP driven features */ 3274 3275 /* Note: DCB init failure is non-fatal to load */ 3276 if (ice_init_pf_dcb(pf, false)) { 3277 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3278 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 3279 } else { 3280 ice_cfg_lldp_mib_change(&pf->hw, true); 3281 } 3282 3283 /* print PCI link speed and width */ 3284 pcie_print_link_status(pf->pdev); 3285 3286 return 0; 3287 3288 err_alloc_sw_unroll: 3289 set_bit(__ICE_SERVICE_DIS, pf->state); 3290 set_bit(__ICE_DOWN, pf->state); 3291 devm_kfree(&pf->pdev->dev, pf->first_sw); 3292 err_msix_misc_unroll: 3293 ice_free_irq_msix_misc(pf); 3294 err_init_interrupt_unroll: 3295 ice_clear_interrupt_scheme(pf); 3296 devm_kfree(dev, pf->vsi); 3297 err_init_pf_unroll: 3298 ice_deinit_pf(pf); 3299 ice_deinit_hw(hw); 3300 err_exit_unroll: 3301 pci_disable_pcie_error_reporting(pdev); 3302 return err; 3303 } 3304 3305 /** 3306 * ice_remove - Device removal routine 3307 * @pdev: PCI device information struct 3308 */ 3309 static void ice_remove(struct pci_dev *pdev) 3310 { 3311 struct ice_pf *pf = pci_get_drvdata(pdev); 3312 int i; 3313 3314 if (!pf) 3315 return; 3316 3317 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 3318 if (!ice_is_reset_in_progress(pf->state)) 3319 break; 3320 msleep(100); 3321 } 3322 3323 set_bit(__ICE_DOWN, pf->state); 3324 ice_service_task_stop(pf); 3325 3326 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) 3327 ice_free_vfs(pf); 3328 ice_vsi_release_all(pf); 3329 ice_free_irq_msix_misc(pf); 3330 ice_for_each_vsi(pf, i) { 3331 if (!pf->vsi[i]) 3332 continue; 3333 ice_vsi_free_q_vectors(pf->vsi[i]); 3334 } 3335 ice_deinit_pf(pf); 3336 ice_deinit_hw(&pf->hw); 3337 /* Issue a PFR as part of the prescribed driver unload flow. Do not 3338 * do it via ice_schedule_reset() since there is no need to rebuild 3339 * and the service task is already stopped. 3340 */ 3341 ice_reset(&pf->hw, ICE_RESET_PFR); 3342 pci_wait_for_pending_transaction(pdev); 3343 ice_clear_interrupt_scheme(pf); 3344 pci_disable_pcie_error_reporting(pdev); 3345 } 3346 3347 /** 3348 * ice_pci_err_detected - warning that PCI error has been detected 3349 * @pdev: PCI device information struct 3350 * @err: the type of PCI error 3351 * 3352 * Called to warn that something happened on the PCI bus and the error handling 3353 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 3354 */ 3355 static pci_ers_result_t 3356 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err) 3357 { 3358 struct ice_pf *pf = pci_get_drvdata(pdev); 3359 3360 if (!pf) { 3361 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 3362 __func__, err); 3363 return PCI_ERS_RESULT_DISCONNECT; 3364 } 3365 3366 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3367 ice_service_task_stop(pf); 3368 3369 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3370 set_bit(__ICE_PFR_REQ, pf->state); 3371 ice_prepare_for_reset(pf); 3372 } 3373 } 3374 3375 return PCI_ERS_RESULT_NEED_RESET; 3376 } 3377 3378 /** 3379 * ice_pci_err_slot_reset - a PCI slot reset has just happened 3380 * @pdev: PCI device information struct 3381 * 3382 * Called to determine if the driver can recover from the PCI slot reset by 3383 * using a register read to determine if the device is recoverable. 3384 */ 3385 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 3386 { 3387 struct ice_pf *pf = pci_get_drvdata(pdev); 3388 pci_ers_result_t result; 3389 int err; 3390 u32 reg; 3391 3392 err = pci_enable_device_mem(pdev); 3393 if (err) { 3394 dev_err(&pdev->dev, 3395 "Cannot re-enable PCI device after reset, error %d\n", 3396 err); 3397 result = PCI_ERS_RESULT_DISCONNECT; 3398 } else { 3399 pci_set_master(pdev); 3400 pci_restore_state(pdev); 3401 pci_save_state(pdev); 3402 pci_wake_from_d3(pdev, false); 3403 3404 /* Check for life */ 3405 reg = rd32(&pf->hw, GLGEN_RTRIG); 3406 if (!reg) 3407 result = PCI_ERS_RESULT_RECOVERED; 3408 else 3409 result = PCI_ERS_RESULT_DISCONNECT; 3410 } 3411 3412 err = pci_cleanup_aer_uncorrect_error_status(pdev); 3413 if (err) 3414 dev_dbg(&pdev->dev, 3415 "pci_cleanup_aer_uncorrect_error_status failed, error %d\n", 3416 err); 3417 /* non-fatal, continue */ 3418 3419 return result; 3420 } 3421 3422 /** 3423 * ice_pci_err_resume - restart operations after PCI error recovery 3424 * @pdev: PCI device information struct 3425 * 3426 * Called to allow the driver to bring things back up after PCI error and/or 3427 * reset recovery have finished 3428 */ 3429 static void ice_pci_err_resume(struct pci_dev *pdev) 3430 { 3431 struct ice_pf *pf = pci_get_drvdata(pdev); 3432 3433 if (!pf) { 3434 dev_err(&pdev->dev, 3435 "%s failed, device is unrecoverable\n", __func__); 3436 return; 3437 } 3438 3439 if (test_bit(__ICE_SUSPENDED, pf->state)) { 3440 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 3441 __func__); 3442 return; 3443 } 3444 3445 ice_do_reset(pf, ICE_RESET_PFR); 3446 ice_service_task_restart(pf); 3447 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 3448 } 3449 3450 /** 3451 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 3452 * @pdev: PCI device information struct 3453 */ 3454 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 3455 { 3456 struct ice_pf *pf = pci_get_drvdata(pdev); 3457 3458 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 3459 ice_service_task_stop(pf); 3460 3461 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 3462 set_bit(__ICE_PFR_REQ, pf->state); 3463 ice_prepare_for_reset(pf); 3464 } 3465 } 3466 } 3467 3468 /** 3469 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 3470 * @pdev: PCI device information struct 3471 */ 3472 static void ice_pci_err_reset_done(struct pci_dev *pdev) 3473 { 3474 ice_pci_err_resume(pdev); 3475 } 3476 3477 /* ice_pci_tbl - PCI Device ID Table 3478 * 3479 * Wildcard entries (PCI_ANY_ID) should come last 3480 * Last entry must be all 0s 3481 * 3482 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 3483 * Class, Class Mask, private data (not used) } 3484 */ 3485 static const struct pci_device_id ice_pci_tbl[] = { 3486 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 3487 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 3488 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 3489 /* required last entry */ 3490 { 0, } 3491 }; 3492 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 3493 3494 static const struct pci_error_handlers ice_pci_err_handler = { 3495 .error_detected = ice_pci_err_detected, 3496 .slot_reset = ice_pci_err_slot_reset, 3497 .reset_prepare = ice_pci_err_reset_prepare, 3498 .reset_done = ice_pci_err_reset_done, 3499 .resume = ice_pci_err_resume 3500 }; 3501 3502 static struct pci_driver ice_driver = { 3503 .name = KBUILD_MODNAME, 3504 .id_table = ice_pci_tbl, 3505 .probe = ice_probe, 3506 .remove = ice_remove, 3507 .sriov_configure = ice_sriov_configure, 3508 .err_handler = &ice_pci_err_handler 3509 }; 3510 3511 /** 3512 * ice_module_init - Driver registration routine 3513 * 3514 * ice_module_init is the first routine called when the driver is 3515 * loaded. All it does is register with the PCI subsystem. 3516 */ 3517 static int __init ice_module_init(void) 3518 { 3519 int status; 3520 3521 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver); 3522 pr_info("%s\n", ice_copyright); 3523 3524 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 3525 if (!ice_wq) { 3526 pr_err("Failed to create workqueue\n"); 3527 return -ENOMEM; 3528 } 3529 3530 status = pci_register_driver(&ice_driver); 3531 if (status) { 3532 pr_err("failed to register PCI driver, err %d\n", status); 3533 destroy_workqueue(ice_wq); 3534 } 3535 3536 return status; 3537 } 3538 module_init(ice_module_init); 3539 3540 /** 3541 * ice_module_exit - Driver exit cleanup routine 3542 * 3543 * ice_module_exit is called just before the driver is removed 3544 * from memory. 3545 */ 3546 static void __exit ice_module_exit(void) 3547 { 3548 pci_unregister_driver(&ice_driver); 3549 destroy_workqueue(ice_wq); 3550 pr_info("module unloaded\n"); 3551 } 3552 module_exit(ice_module_exit); 3553 3554 /** 3555 * ice_set_mac_address - NDO callback to set MAC address 3556 * @netdev: network interface device structure 3557 * @pi: pointer to an address structure 3558 * 3559 * Returns 0 on success, negative on failure 3560 */ 3561 static int ice_set_mac_address(struct net_device *netdev, void *pi) 3562 { 3563 struct ice_netdev_priv *np = netdev_priv(netdev); 3564 struct ice_vsi *vsi = np->vsi; 3565 struct ice_pf *pf = vsi->back; 3566 struct ice_hw *hw = &pf->hw; 3567 struct sockaddr *addr = pi; 3568 enum ice_status status; 3569 u8 flags = 0; 3570 int err = 0; 3571 u8 *mac; 3572 3573 mac = (u8 *)addr->sa_data; 3574 3575 if (!is_valid_ether_addr(mac)) 3576 return -EADDRNOTAVAIL; 3577 3578 if (ether_addr_equal(netdev->dev_addr, mac)) { 3579 netdev_warn(netdev, "already using mac %pM\n", mac); 3580 return 0; 3581 } 3582 3583 if (test_bit(__ICE_DOWN, pf->state) || 3584 ice_is_reset_in_progress(pf->state)) { 3585 netdev_err(netdev, "can't set mac %pM. device not ready\n", 3586 mac); 3587 return -EBUSY; 3588 } 3589 3590 /* When we change the MAC address we also have to change the MAC address 3591 * based filter rules that were created previously for the old MAC 3592 * address. So first, we remove the old filter rule using ice_remove_mac 3593 * and then create a new filter rule using ice_add_mac via 3594 * ice_vsi_cfg_mac_fltr function call for both add and/or remove 3595 * filters. 3596 */ 3597 status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false); 3598 if (status) { 3599 err = -EADDRNOTAVAIL; 3600 goto err_update_filters; 3601 } 3602 3603 status = ice_vsi_cfg_mac_fltr(vsi, mac, true); 3604 if (status) { 3605 err = -EADDRNOTAVAIL; 3606 goto err_update_filters; 3607 } 3608 3609 err_update_filters: 3610 if (err) { 3611 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 3612 mac); 3613 return err; 3614 } 3615 3616 /* change the netdev's MAC address */ 3617 memcpy(netdev->dev_addr, mac, netdev->addr_len); 3618 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 3619 netdev->dev_addr); 3620 3621 /* write new MAC address to the firmware */ 3622 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 3623 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 3624 if (status) { 3625 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 3626 mac, status); 3627 } 3628 return 0; 3629 } 3630 3631 /** 3632 * ice_set_rx_mode - NDO callback to set the netdev filters 3633 * @netdev: network interface device structure 3634 */ 3635 static void ice_set_rx_mode(struct net_device *netdev) 3636 { 3637 struct ice_netdev_priv *np = netdev_priv(netdev); 3638 struct ice_vsi *vsi = np->vsi; 3639 3640 if (!vsi) 3641 return; 3642 3643 /* Set the flags to synchronize filters 3644 * ndo_set_rx_mode may be triggered even without a change in netdev 3645 * flags 3646 */ 3647 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 3648 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 3649 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 3650 3651 /* schedule our worker thread which will take care of 3652 * applying the new filter changes 3653 */ 3654 ice_service_task_schedule(vsi->back); 3655 } 3656 3657 /** 3658 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 3659 * @netdev: network interface device structure 3660 * @queue_index: Queue ID 3661 * @maxrate: maximum bandwidth in Mbps 3662 */ 3663 static int 3664 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 3665 { 3666 struct ice_netdev_priv *np = netdev_priv(netdev); 3667 struct ice_vsi *vsi = np->vsi; 3668 enum ice_status status; 3669 u16 q_handle; 3670 u8 tc; 3671 3672 /* Validate maxrate requested is within permitted range */ 3673 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 3674 netdev_err(netdev, 3675 "Invalid max rate %d specified for the queue %d\n", 3676 maxrate, queue_index); 3677 return -EINVAL; 3678 } 3679 3680 q_handle = vsi->tx_rings[queue_index]->q_handle; 3681 tc = ice_dcb_get_tc(vsi, queue_index); 3682 3683 /* Set BW back to default, when user set maxrate to 0 */ 3684 if (!maxrate) 3685 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 3686 q_handle, ICE_MAX_BW); 3687 else 3688 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 3689 q_handle, ICE_MAX_BW, maxrate * 1000); 3690 if (status) { 3691 netdev_err(netdev, 3692 "Unable to set Tx max rate, error %d\n", status); 3693 return -EIO; 3694 } 3695 3696 return 0; 3697 } 3698 3699 /** 3700 * ice_fdb_add - add an entry to the hardware database 3701 * @ndm: the input from the stack 3702 * @tb: pointer to array of nladdr (unused) 3703 * @dev: the net device pointer 3704 * @addr: the MAC address entry being added 3705 * @vid: VLAN ID 3706 * @flags: instructions from stack about fdb operation 3707 * @extack: netlink extended ack 3708 */ 3709 static int 3710 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 3711 struct net_device *dev, const unsigned char *addr, u16 vid, 3712 u16 flags, struct netlink_ext_ack __always_unused *extack) 3713 { 3714 int err; 3715 3716 if (vid) { 3717 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 3718 return -EINVAL; 3719 } 3720 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 3721 netdev_err(dev, "FDB only supports static addresses\n"); 3722 return -EINVAL; 3723 } 3724 3725 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 3726 err = dev_uc_add_excl(dev, addr); 3727 else if (is_multicast_ether_addr(addr)) 3728 err = dev_mc_add_excl(dev, addr); 3729 else 3730 err = -EINVAL; 3731 3732 /* Only return duplicate errors if NLM_F_EXCL is set */ 3733 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 3734 err = 0; 3735 3736 return err; 3737 } 3738 3739 /** 3740 * ice_fdb_del - delete an entry from the hardware database 3741 * @ndm: the input from the stack 3742 * @tb: pointer to array of nladdr (unused) 3743 * @dev: the net device pointer 3744 * @addr: the MAC address entry being added 3745 * @vid: VLAN ID 3746 */ 3747 static int 3748 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 3749 struct net_device *dev, const unsigned char *addr, 3750 __always_unused u16 vid) 3751 { 3752 int err; 3753 3754 if (ndm->ndm_state & NUD_PERMANENT) { 3755 netdev_err(dev, "FDB only supports static addresses\n"); 3756 return -EINVAL; 3757 } 3758 3759 if (is_unicast_ether_addr(addr)) 3760 err = dev_uc_del(dev, addr); 3761 else if (is_multicast_ether_addr(addr)) 3762 err = dev_mc_del(dev, addr); 3763 else 3764 err = -EINVAL; 3765 3766 return err; 3767 } 3768 3769 /** 3770 * ice_set_features - set the netdev feature flags 3771 * @netdev: ptr to the netdev being adjusted 3772 * @features: the feature set that the stack is suggesting 3773 */ 3774 static int 3775 ice_set_features(struct net_device *netdev, netdev_features_t features) 3776 { 3777 struct ice_netdev_priv *np = netdev_priv(netdev); 3778 struct ice_vsi *vsi = np->vsi; 3779 struct ice_pf *pf = vsi->back; 3780 int ret = 0; 3781 3782 /* Don't set any netdev advanced features with device in Safe Mode */ 3783 if (ice_is_safe_mode(vsi->back)) { 3784 dev_err(&vsi->back->pdev->dev, 3785 "Device is in Safe Mode - not enabling advanced netdev features\n"); 3786 return ret; 3787 } 3788 3789 /* Do not change setting during reset */ 3790 if (ice_is_reset_in_progress(pf->state)) { 3791 dev_err(&vsi->back->pdev->dev, 3792 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 3793 return -EBUSY; 3794 } 3795 3796 /* Multiple features can be changed in one call so keep features in 3797 * separate if/else statements to guarantee each feature is checked 3798 */ 3799 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 3800 ret = ice_vsi_manage_rss_lut(vsi, true); 3801 else if (!(features & NETIF_F_RXHASH) && 3802 netdev->features & NETIF_F_RXHASH) 3803 ret = ice_vsi_manage_rss_lut(vsi, false); 3804 3805 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 3806 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3807 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3808 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 3809 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 3810 ret = ice_vsi_manage_vlan_stripping(vsi, false); 3811 3812 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 3813 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3814 ret = ice_vsi_manage_vlan_insertion(vsi); 3815 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 3816 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 3817 ret = ice_vsi_manage_vlan_insertion(vsi); 3818 3819 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3820 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3821 ret = ice_cfg_vlan_pruning(vsi, true, false); 3822 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 3823 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 3824 ret = ice_cfg_vlan_pruning(vsi, false, false); 3825 3826 return ret; 3827 } 3828 3829 /** 3830 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 3831 * @vsi: VSI to setup VLAN properties for 3832 */ 3833 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 3834 { 3835 int ret = 0; 3836 3837 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3838 ret = ice_vsi_manage_vlan_stripping(vsi, true); 3839 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 3840 ret = ice_vsi_manage_vlan_insertion(vsi); 3841 3842 return ret; 3843 } 3844 3845 /** 3846 * ice_vsi_cfg - Setup the VSI 3847 * @vsi: the VSI being configured 3848 * 3849 * Return 0 on success and negative value on error 3850 */ 3851 int ice_vsi_cfg(struct ice_vsi *vsi) 3852 { 3853 int err; 3854 3855 if (vsi->netdev) { 3856 ice_set_rx_mode(vsi->netdev); 3857 3858 err = ice_vsi_vlan_setup(vsi); 3859 3860 if (err) 3861 return err; 3862 } 3863 ice_vsi_cfg_dcb_rings(vsi); 3864 3865 err = ice_vsi_cfg_lan_txqs(vsi); 3866 if (!err && ice_is_xdp_ena_vsi(vsi)) 3867 err = ice_vsi_cfg_xdp_txqs(vsi); 3868 if (!err) 3869 err = ice_vsi_cfg_rxqs(vsi); 3870 3871 return err; 3872 } 3873 3874 /** 3875 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 3876 * @vsi: the VSI being configured 3877 */ 3878 static void ice_napi_enable_all(struct ice_vsi *vsi) 3879 { 3880 int q_idx; 3881 3882 if (!vsi->netdev) 3883 return; 3884 3885 ice_for_each_q_vector(vsi, q_idx) { 3886 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 3887 3888 if (q_vector->rx.ring || q_vector->tx.ring) 3889 napi_enable(&q_vector->napi); 3890 } 3891 } 3892 3893 /** 3894 * ice_up_complete - Finish the last steps of bringing up a connection 3895 * @vsi: The VSI being configured 3896 * 3897 * Return 0 on success and negative value on error 3898 */ 3899 static int ice_up_complete(struct ice_vsi *vsi) 3900 { 3901 struct ice_pf *pf = vsi->back; 3902 int err; 3903 3904 ice_vsi_cfg_msix(vsi); 3905 3906 /* Enable only Rx rings, Tx rings were enabled by the FW when the 3907 * Tx queue group list was configured and the context bits were 3908 * programmed using ice_vsi_cfg_txqs 3909 */ 3910 err = ice_vsi_start_rx_rings(vsi); 3911 if (err) 3912 return err; 3913 3914 clear_bit(__ICE_DOWN, vsi->state); 3915 ice_napi_enable_all(vsi); 3916 ice_vsi_ena_irq(vsi); 3917 3918 if (vsi->port_info && 3919 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 3920 vsi->netdev) { 3921 ice_print_link_msg(vsi, true); 3922 netif_tx_start_all_queues(vsi->netdev); 3923 netif_carrier_on(vsi->netdev); 3924 } 3925 3926 ice_service_task_schedule(pf); 3927 3928 return 0; 3929 } 3930 3931 /** 3932 * ice_up - Bring the connection back up after being down 3933 * @vsi: VSI being configured 3934 */ 3935 int ice_up(struct ice_vsi *vsi) 3936 { 3937 int err; 3938 3939 err = ice_vsi_cfg(vsi); 3940 if (!err) 3941 err = ice_up_complete(vsi); 3942 3943 return err; 3944 } 3945 3946 /** 3947 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 3948 * @ring: Tx or Rx ring to read stats from 3949 * @pkts: packets stats counter 3950 * @bytes: bytes stats counter 3951 * 3952 * This function fetches stats from the ring considering the atomic operations 3953 * that needs to be performed to read u64 values in 32 bit machine. 3954 */ 3955 static void 3956 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 3957 { 3958 unsigned int start; 3959 *pkts = 0; 3960 *bytes = 0; 3961 3962 if (!ring) 3963 return; 3964 do { 3965 start = u64_stats_fetch_begin_irq(&ring->syncp); 3966 *pkts = ring->stats.pkts; 3967 *bytes = ring->stats.bytes; 3968 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3969 } 3970 3971 /** 3972 * ice_update_vsi_ring_stats - Update VSI stats counters 3973 * @vsi: the VSI to be updated 3974 */ 3975 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 3976 { 3977 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 3978 struct ice_ring *ring; 3979 u64 pkts, bytes; 3980 int i; 3981 3982 /* reset netdev stats */ 3983 vsi_stats->tx_packets = 0; 3984 vsi_stats->tx_bytes = 0; 3985 vsi_stats->rx_packets = 0; 3986 vsi_stats->rx_bytes = 0; 3987 3988 /* reset non-netdev (extended) stats */ 3989 vsi->tx_restart = 0; 3990 vsi->tx_busy = 0; 3991 vsi->tx_linearize = 0; 3992 vsi->rx_buf_failed = 0; 3993 vsi->rx_page_failed = 0; 3994 3995 rcu_read_lock(); 3996 3997 /* update Tx rings counters */ 3998 ice_for_each_txq(vsi, i) { 3999 ring = READ_ONCE(vsi->tx_rings[i]); 4000 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4001 vsi_stats->tx_packets += pkts; 4002 vsi_stats->tx_bytes += bytes; 4003 vsi->tx_restart += ring->tx_stats.restart_q; 4004 vsi->tx_busy += ring->tx_stats.tx_busy; 4005 vsi->tx_linearize += ring->tx_stats.tx_linearize; 4006 } 4007 4008 /* update Rx rings counters */ 4009 ice_for_each_rxq(vsi, i) { 4010 ring = READ_ONCE(vsi->rx_rings[i]); 4011 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 4012 vsi_stats->rx_packets += pkts; 4013 vsi_stats->rx_bytes += bytes; 4014 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 4015 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 4016 } 4017 4018 rcu_read_unlock(); 4019 } 4020 4021 /** 4022 * ice_update_vsi_stats - Update VSI stats counters 4023 * @vsi: the VSI to be updated 4024 */ 4025 void ice_update_vsi_stats(struct ice_vsi *vsi) 4026 { 4027 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 4028 struct ice_eth_stats *cur_es = &vsi->eth_stats; 4029 struct ice_pf *pf = vsi->back; 4030 4031 if (test_bit(__ICE_DOWN, vsi->state) || 4032 test_bit(__ICE_CFG_BUSY, pf->state)) 4033 return; 4034 4035 /* get stats as recorded by Tx/Rx rings */ 4036 ice_update_vsi_ring_stats(vsi); 4037 4038 /* get VSI stats as recorded by the hardware */ 4039 ice_update_eth_stats(vsi); 4040 4041 cur_ns->tx_errors = cur_es->tx_errors; 4042 cur_ns->rx_dropped = cur_es->rx_discards; 4043 cur_ns->tx_dropped = cur_es->tx_discards; 4044 cur_ns->multicast = cur_es->rx_multicast; 4045 4046 /* update some more netdev stats if this is main VSI */ 4047 if (vsi->type == ICE_VSI_PF) { 4048 cur_ns->rx_crc_errors = pf->stats.crc_errors; 4049 cur_ns->rx_errors = pf->stats.crc_errors + 4050 pf->stats.illegal_bytes; 4051 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 4052 /* record drops from the port level */ 4053 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 4054 } 4055 } 4056 4057 /** 4058 * ice_update_pf_stats - Update PF port stats counters 4059 * @pf: PF whose stats needs to be updated 4060 */ 4061 void ice_update_pf_stats(struct ice_pf *pf) 4062 { 4063 struct ice_hw_port_stats *prev_ps, *cur_ps; 4064 struct ice_hw *hw = &pf->hw; 4065 u8 port; 4066 4067 port = hw->port_info->lport; 4068 prev_ps = &pf->stats_prev; 4069 cur_ps = &pf->stats; 4070 4071 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 4072 &prev_ps->eth.rx_bytes, 4073 &cur_ps->eth.rx_bytes); 4074 4075 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 4076 &prev_ps->eth.rx_unicast, 4077 &cur_ps->eth.rx_unicast); 4078 4079 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 4080 &prev_ps->eth.rx_multicast, 4081 &cur_ps->eth.rx_multicast); 4082 4083 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 4084 &prev_ps->eth.rx_broadcast, 4085 &cur_ps->eth.rx_broadcast); 4086 4087 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 4088 &prev_ps->eth.rx_discards, 4089 &cur_ps->eth.rx_discards); 4090 4091 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 4092 &prev_ps->eth.tx_bytes, 4093 &cur_ps->eth.tx_bytes); 4094 4095 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 4096 &prev_ps->eth.tx_unicast, 4097 &cur_ps->eth.tx_unicast); 4098 4099 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 4100 &prev_ps->eth.tx_multicast, 4101 &cur_ps->eth.tx_multicast); 4102 4103 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 4104 &prev_ps->eth.tx_broadcast, 4105 &cur_ps->eth.tx_broadcast); 4106 4107 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 4108 &prev_ps->tx_dropped_link_down, 4109 &cur_ps->tx_dropped_link_down); 4110 4111 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 4112 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 4113 4114 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 4115 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 4116 4117 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 4118 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 4119 4120 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 4121 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 4122 4123 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 4124 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 4125 4126 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 4127 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 4128 4129 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 4130 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 4131 4132 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 4133 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 4134 4135 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 4136 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 4137 4138 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 4139 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 4140 4141 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 4142 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 4143 4144 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 4145 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 4146 4147 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 4148 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 4149 4150 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 4151 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 4152 4153 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 4154 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 4155 4156 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 4157 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 4158 4159 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 4160 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 4161 4162 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 4163 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 4164 4165 ice_update_dcb_stats(pf); 4166 4167 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 4168 &prev_ps->crc_errors, &cur_ps->crc_errors); 4169 4170 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 4171 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 4172 4173 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 4174 &prev_ps->mac_local_faults, 4175 &cur_ps->mac_local_faults); 4176 4177 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 4178 &prev_ps->mac_remote_faults, 4179 &cur_ps->mac_remote_faults); 4180 4181 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 4182 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 4183 4184 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 4185 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 4186 4187 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 4188 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 4189 4190 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 4191 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 4192 4193 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 4194 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 4195 4196 pf->stat_prev_loaded = true; 4197 } 4198 4199 /** 4200 * ice_get_stats64 - get statistics for network device structure 4201 * @netdev: network interface device structure 4202 * @stats: main device statistics structure 4203 */ 4204 static 4205 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 4206 { 4207 struct ice_netdev_priv *np = netdev_priv(netdev); 4208 struct rtnl_link_stats64 *vsi_stats; 4209 struct ice_vsi *vsi = np->vsi; 4210 4211 vsi_stats = &vsi->net_stats; 4212 4213 if (!vsi->num_txq || !vsi->num_rxq) 4214 return; 4215 4216 /* netdev packet/byte stats come from ring counter. These are obtained 4217 * by summing up ring counters (done by ice_update_vsi_ring_stats). 4218 * But, only call the update routine and read the registers if VSI is 4219 * not down. 4220 */ 4221 if (!test_bit(__ICE_DOWN, vsi->state)) 4222 ice_update_vsi_ring_stats(vsi); 4223 stats->tx_packets = vsi_stats->tx_packets; 4224 stats->tx_bytes = vsi_stats->tx_bytes; 4225 stats->rx_packets = vsi_stats->rx_packets; 4226 stats->rx_bytes = vsi_stats->rx_bytes; 4227 4228 /* The rest of the stats can be read from the hardware but instead we 4229 * just return values that the watchdog task has already obtained from 4230 * the hardware. 4231 */ 4232 stats->multicast = vsi_stats->multicast; 4233 stats->tx_errors = vsi_stats->tx_errors; 4234 stats->tx_dropped = vsi_stats->tx_dropped; 4235 stats->rx_errors = vsi_stats->rx_errors; 4236 stats->rx_dropped = vsi_stats->rx_dropped; 4237 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 4238 stats->rx_length_errors = vsi_stats->rx_length_errors; 4239 } 4240 4241 /** 4242 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 4243 * @vsi: VSI having NAPI disabled 4244 */ 4245 static void ice_napi_disable_all(struct ice_vsi *vsi) 4246 { 4247 int q_idx; 4248 4249 if (!vsi->netdev) 4250 return; 4251 4252 ice_for_each_q_vector(vsi, q_idx) { 4253 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 4254 4255 if (q_vector->rx.ring || q_vector->tx.ring) 4256 napi_disable(&q_vector->napi); 4257 } 4258 } 4259 4260 /** 4261 * ice_down - Shutdown the connection 4262 * @vsi: The VSI being stopped 4263 */ 4264 int ice_down(struct ice_vsi *vsi) 4265 { 4266 int i, tx_err, rx_err, link_err = 0; 4267 4268 /* Caller of this function is expected to set the 4269 * vsi->state __ICE_DOWN bit 4270 */ 4271 if (vsi->netdev) { 4272 netif_carrier_off(vsi->netdev); 4273 netif_tx_disable(vsi->netdev); 4274 } 4275 4276 ice_vsi_dis_irq(vsi); 4277 4278 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 4279 if (tx_err) 4280 netdev_err(vsi->netdev, 4281 "Failed stop Tx rings, VSI %d error %d\n", 4282 vsi->vsi_num, tx_err); 4283 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 4284 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 4285 if (tx_err) 4286 netdev_err(vsi->netdev, 4287 "Failed stop XDP rings, VSI %d error %d\n", 4288 vsi->vsi_num, tx_err); 4289 } 4290 4291 rx_err = ice_vsi_stop_rx_rings(vsi); 4292 if (rx_err) 4293 netdev_err(vsi->netdev, 4294 "Failed stop Rx rings, VSI %d error %d\n", 4295 vsi->vsi_num, rx_err); 4296 4297 ice_napi_disable_all(vsi); 4298 4299 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 4300 link_err = ice_force_phys_link_state(vsi, false); 4301 if (link_err) 4302 netdev_err(vsi->netdev, 4303 "Failed to set physical link down, VSI %d error %d\n", 4304 vsi->vsi_num, link_err); 4305 } 4306 4307 ice_for_each_txq(vsi, i) 4308 ice_clean_tx_ring(vsi->tx_rings[i]); 4309 4310 ice_for_each_rxq(vsi, i) 4311 ice_clean_rx_ring(vsi->rx_rings[i]); 4312 4313 if (tx_err || rx_err || link_err) { 4314 netdev_err(vsi->netdev, 4315 "Failed to close VSI 0x%04X on switch 0x%04X\n", 4316 vsi->vsi_num, vsi->vsw->sw_id); 4317 return -EIO; 4318 } 4319 4320 return 0; 4321 } 4322 4323 /** 4324 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 4325 * @vsi: VSI having resources allocated 4326 * 4327 * Return 0 on success, negative on failure 4328 */ 4329 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 4330 { 4331 int i, err = 0; 4332 4333 if (!vsi->num_txq) { 4334 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n", 4335 vsi->vsi_num); 4336 return -EINVAL; 4337 } 4338 4339 ice_for_each_txq(vsi, i) { 4340 struct ice_ring *ring = vsi->tx_rings[i]; 4341 4342 if (!ring) 4343 return -EINVAL; 4344 4345 ring->netdev = vsi->netdev; 4346 err = ice_setup_tx_ring(ring); 4347 if (err) 4348 break; 4349 } 4350 4351 return err; 4352 } 4353 4354 /** 4355 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 4356 * @vsi: VSI having resources allocated 4357 * 4358 * Return 0 on success, negative on failure 4359 */ 4360 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 4361 { 4362 int i, err = 0; 4363 4364 if (!vsi->num_rxq) { 4365 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n", 4366 vsi->vsi_num); 4367 return -EINVAL; 4368 } 4369 4370 ice_for_each_rxq(vsi, i) { 4371 struct ice_ring *ring = vsi->rx_rings[i]; 4372 4373 if (!ring) 4374 return -EINVAL; 4375 4376 ring->netdev = vsi->netdev; 4377 err = ice_setup_rx_ring(ring); 4378 if (err) 4379 break; 4380 } 4381 4382 return err; 4383 } 4384 4385 /** 4386 * ice_vsi_open - Called when a network interface is made active 4387 * @vsi: the VSI to open 4388 * 4389 * Initialization of the VSI 4390 * 4391 * Returns 0 on success, negative value on error 4392 */ 4393 static int ice_vsi_open(struct ice_vsi *vsi) 4394 { 4395 char int_name[ICE_INT_NAME_STR_LEN]; 4396 struct ice_pf *pf = vsi->back; 4397 int err; 4398 4399 /* allocate descriptors */ 4400 err = ice_vsi_setup_tx_rings(vsi); 4401 if (err) 4402 goto err_setup_tx; 4403 4404 err = ice_vsi_setup_rx_rings(vsi); 4405 if (err) 4406 goto err_setup_rx; 4407 4408 err = ice_vsi_cfg(vsi); 4409 if (err) 4410 goto err_setup_rx; 4411 4412 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 4413 dev_driver_string(&pf->pdev->dev), vsi->netdev->name); 4414 err = ice_vsi_req_irq_msix(vsi, int_name); 4415 if (err) 4416 goto err_setup_rx; 4417 4418 /* Notify the stack of the actual queue counts. */ 4419 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 4420 if (err) 4421 goto err_set_qs; 4422 4423 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 4424 if (err) 4425 goto err_set_qs; 4426 4427 err = ice_up_complete(vsi); 4428 if (err) 4429 goto err_up_complete; 4430 4431 return 0; 4432 4433 err_up_complete: 4434 ice_down(vsi); 4435 err_set_qs: 4436 ice_vsi_free_irq(vsi); 4437 err_setup_rx: 4438 ice_vsi_free_rx_rings(vsi); 4439 err_setup_tx: 4440 ice_vsi_free_tx_rings(vsi); 4441 4442 return err; 4443 } 4444 4445 /** 4446 * ice_vsi_release_all - Delete all VSIs 4447 * @pf: PF from which all VSIs are being removed 4448 */ 4449 static void ice_vsi_release_all(struct ice_pf *pf) 4450 { 4451 int err, i; 4452 4453 if (!pf->vsi) 4454 return; 4455 4456 ice_for_each_vsi(pf, i) { 4457 if (!pf->vsi[i]) 4458 continue; 4459 4460 err = ice_vsi_release(pf->vsi[i]); 4461 if (err) 4462 dev_dbg(&pf->pdev->dev, 4463 "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 4464 i, err, pf->vsi[i]->vsi_num); 4465 } 4466 } 4467 4468 /** 4469 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 4470 * @pf: pointer to the PF instance 4471 * @type: VSI type to rebuild 4472 * 4473 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 4474 */ 4475 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 4476 { 4477 enum ice_status status; 4478 int i, err; 4479 4480 ice_for_each_vsi(pf, i) { 4481 struct ice_vsi *vsi = pf->vsi[i]; 4482 4483 if (!vsi || vsi->type != type) 4484 continue; 4485 4486 /* rebuild the VSI */ 4487 err = ice_vsi_rebuild(vsi); 4488 if (err) { 4489 dev_err(&pf->pdev->dev, 4490 "rebuild VSI failed, err %d, VSI index %d, type %s\n", 4491 err, vsi->idx, ice_vsi_type_str(type)); 4492 return err; 4493 } 4494 4495 /* replay filters for the VSI */ 4496 status = ice_replay_vsi(&pf->hw, vsi->idx); 4497 if (status) { 4498 dev_err(&pf->pdev->dev, 4499 "replay VSI failed, status %d, VSI index %d, type %s\n", 4500 status, vsi->idx, ice_vsi_type_str(type)); 4501 return -EIO; 4502 } 4503 4504 /* Re-map HW VSI number, using VSI handle that has been 4505 * previously validated in ice_replay_vsi() call above 4506 */ 4507 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 4508 4509 /* enable the VSI */ 4510 err = ice_ena_vsi(vsi, false); 4511 if (err) { 4512 dev_err(&pf->pdev->dev, 4513 "enable VSI failed, err %d, VSI index %d, type %s\n", 4514 err, vsi->idx, ice_vsi_type_str(type)); 4515 return err; 4516 } 4517 4518 dev_info(&pf->pdev->dev, "VSI rebuilt. VSI index %d, type %s\n", 4519 vsi->idx, ice_vsi_type_str(type)); 4520 } 4521 4522 return 0; 4523 } 4524 4525 /** 4526 * ice_update_pf_netdev_link - Update PF netdev link status 4527 * @pf: pointer to the PF instance 4528 */ 4529 static void ice_update_pf_netdev_link(struct ice_pf *pf) 4530 { 4531 bool link_up; 4532 int i; 4533 4534 ice_for_each_vsi(pf, i) { 4535 struct ice_vsi *vsi = pf->vsi[i]; 4536 4537 if (!vsi || vsi->type != ICE_VSI_PF) 4538 return; 4539 4540 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 4541 if (link_up) { 4542 netif_carrier_on(pf->vsi[i]->netdev); 4543 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 4544 } else { 4545 netif_carrier_off(pf->vsi[i]->netdev); 4546 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 4547 } 4548 } 4549 } 4550 4551 /** 4552 * ice_rebuild - rebuild after reset 4553 * @pf: PF to rebuild 4554 * @reset_type: type of reset 4555 */ 4556 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 4557 { 4558 struct device *dev = &pf->pdev->dev; 4559 struct ice_hw *hw = &pf->hw; 4560 enum ice_status ret; 4561 int err; 4562 4563 if (test_bit(__ICE_DOWN, pf->state)) 4564 goto clear_recovery; 4565 4566 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 4567 4568 ret = ice_init_all_ctrlq(hw); 4569 if (ret) { 4570 dev_err(dev, "control queues init failed %d\n", ret); 4571 goto err_init_ctrlq; 4572 } 4573 4574 /* if DDP was previously loaded successfully */ 4575 if (!ice_is_safe_mode(pf)) { 4576 /* reload the SW DB of filter tables */ 4577 if (reset_type == ICE_RESET_PFR) 4578 ice_fill_blk_tbls(hw); 4579 else 4580 /* Reload DDP Package after CORER/GLOBR reset */ 4581 ice_load_pkg(NULL, pf); 4582 } 4583 4584 ret = ice_clear_pf_cfg(hw); 4585 if (ret) { 4586 dev_err(dev, "clear PF configuration failed %d\n", ret); 4587 goto err_init_ctrlq; 4588 } 4589 4590 ice_clear_pxe_mode(hw); 4591 4592 ret = ice_get_caps(hw); 4593 if (ret) { 4594 dev_err(dev, "ice_get_caps failed %d\n", ret); 4595 goto err_init_ctrlq; 4596 } 4597 4598 err = ice_sched_init_port(hw->port_info); 4599 if (err) 4600 goto err_sched_init_port; 4601 4602 err = ice_update_link_info(hw->port_info); 4603 if (err) 4604 dev_err(&pf->pdev->dev, "Get link status error %d\n", err); 4605 4606 /* start misc vector */ 4607 err = ice_req_irq_msix_misc(pf); 4608 if (err) { 4609 dev_err(dev, "misc vector setup failed: %d\n", err); 4610 goto err_sched_init_port; 4611 } 4612 4613 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 4614 ice_dcb_rebuild(pf); 4615 4616 /* rebuild PF VSI */ 4617 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 4618 if (err) { 4619 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 4620 goto err_vsi_rebuild; 4621 } 4622 4623 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4624 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF); 4625 if (err) { 4626 dev_err(dev, "VF VSI rebuild failed: %d\n", err); 4627 goto err_vsi_rebuild; 4628 } 4629 } 4630 4631 ice_update_pf_netdev_link(pf); 4632 4633 /* tell the firmware we are up */ 4634 ret = ice_send_version(pf); 4635 if (ret) { 4636 dev_err(dev, 4637 "Rebuild failed due to error sending driver version: %d\n", 4638 ret); 4639 goto err_vsi_rebuild; 4640 } 4641 4642 ice_replay_post(hw); 4643 4644 /* if we get here, reset flow is successful */ 4645 clear_bit(__ICE_RESET_FAILED, pf->state); 4646 return; 4647 4648 err_vsi_rebuild: 4649 err_sched_init_port: 4650 ice_sched_cleanup_all(hw); 4651 err_init_ctrlq: 4652 ice_shutdown_all_ctrlq(hw); 4653 set_bit(__ICE_RESET_FAILED, pf->state); 4654 clear_recovery: 4655 /* set this bit in PF state to control service task scheduling */ 4656 set_bit(__ICE_NEEDS_RESTART, pf->state); 4657 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 4658 } 4659 4660 /** 4661 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 4662 * @vsi: Pointer to VSI structure 4663 */ 4664 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 4665 { 4666 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 4667 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 4668 else 4669 return ICE_RXBUF_3072; 4670 } 4671 4672 /** 4673 * ice_change_mtu - NDO callback to change the MTU 4674 * @netdev: network interface device structure 4675 * @new_mtu: new value for maximum frame size 4676 * 4677 * Returns 0 on success, negative on failure 4678 */ 4679 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 4680 { 4681 struct ice_netdev_priv *np = netdev_priv(netdev); 4682 struct ice_vsi *vsi = np->vsi; 4683 struct ice_pf *pf = vsi->back; 4684 u8 count = 0; 4685 4686 if (new_mtu == netdev->mtu) { 4687 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 4688 return 0; 4689 } 4690 4691 if (ice_is_xdp_ena_vsi(vsi)) { 4692 int frame_size = ice_max_xdp_frame_size(vsi); 4693 4694 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 4695 netdev_err(netdev, "max MTU for XDP usage is %d\n", 4696 frame_size - ICE_ETH_PKT_HDR_PAD); 4697 return -EINVAL; 4698 } 4699 } 4700 4701 if (new_mtu < netdev->min_mtu) { 4702 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 4703 netdev->min_mtu); 4704 return -EINVAL; 4705 } else if (new_mtu > netdev->max_mtu) { 4706 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 4707 netdev->min_mtu); 4708 return -EINVAL; 4709 } 4710 /* if a reset is in progress, wait for some time for it to complete */ 4711 do { 4712 if (ice_is_reset_in_progress(pf->state)) { 4713 count++; 4714 usleep_range(1000, 2000); 4715 } else { 4716 break; 4717 } 4718 4719 } while (count < 100); 4720 4721 if (count == 100) { 4722 netdev_err(netdev, "can't change MTU. Device is busy\n"); 4723 return -EBUSY; 4724 } 4725 4726 netdev->mtu = new_mtu; 4727 4728 /* if VSI is up, bring it down and then back up */ 4729 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 4730 int err; 4731 4732 err = ice_down(vsi); 4733 if (err) { 4734 netdev_err(netdev, "change MTU if_up err %d\n", err); 4735 return err; 4736 } 4737 4738 err = ice_up(vsi); 4739 if (err) { 4740 netdev_err(netdev, "change MTU if_up err %d\n", err); 4741 return err; 4742 } 4743 } 4744 4745 netdev_info(netdev, "changed MTU to %d\n", new_mtu); 4746 return 0; 4747 } 4748 4749 /** 4750 * ice_set_rss - Set RSS keys and lut 4751 * @vsi: Pointer to VSI structure 4752 * @seed: RSS hash seed 4753 * @lut: Lookup table 4754 * @lut_size: Lookup table size 4755 * 4756 * Returns 0 on success, negative on failure 4757 */ 4758 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4759 { 4760 struct ice_pf *pf = vsi->back; 4761 struct ice_hw *hw = &pf->hw; 4762 enum ice_status status; 4763 4764 if (seed) { 4765 struct ice_aqc_get_set_rss_keys *buf = 4766 (struct ice_aqc_get_set_rss_keys *)seed; 4767 4768 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 4769 4770 if (status) { 4771 dev_err(&pf->pdev->dev, 4772 "Cannot set RSS key, err %d aq_err %d\n", 4773 status, hw->adminq.rq_last_status); 4774 return -EIO; 4775 } 4776 } 4777 4778 if (lut) { 4779 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4780 lut, lut_size); 4781 if (status) { 4782 dev_err(&pf->pdev->dev, 4783 "Cannot set RSS lut, err %d aq_err %d\n", 4784 status, hw->adminq.rq_last_status); 4785 return -EIO; 4786 } 4787 } 4788 4789 return 0; 4790 } 4791 4792 /** 4793 * ice_get_rss - Get RSS keys and lut 4794 * @vsi: Pointer to VSI structure 4795 * @seed: Buffer to store the keys 4796 * @lut: Buffer to store the lookup table entries 4797 * @lut_size: Size of buffer to store the lookup table entries 4798 * 4799 * Returns 0 on success, negative on failure 4800 */ 4801 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 4802 { 4803 struct ice_pf *pf = vsi->back; 4804 struct ice_hw *hw = &pf->hw; 4805 enum ice_status status; 4806 4807 if (seed) { 4808 struct ice_aqc_get_set_rss_keys *buf = 4809 (struct ice_aqc_get_set_rss_keys *)seed; 4810 4811 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 4812 if (status) { 4813 dev_err(&pf->pdev->dev, 4814 "Cannot get RSS key, err %d aq_err %d\n", 4815 status, hw->adminq.rq_last_status); 4816 return -EIO; 4817 } 4818 } 4819 4820 if (lut) { 4821 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 4822 lut, lut_size); 4823 if (status) { 4824 dev_err(&pf->pdev->dev, 4825 "Cannot get RSS lut, err %d aq_err %d\n", 4826 status, hw->adminq.rq_last_status); 4827 return -EIO; 4828 } 4829 } 4830 4831 return 0; 4832 } 4833 4834 /** 4835 * ice_bridge_getlink - Get the hardware bridge mode 4836 * @skb: skb buff 4837 * @pid: process ID 4838 * @seq: RTNL message seq 4839 * @dev: the netdev being configured 4840 * @filter_mask: filter mask passed in 4841 * @nlflags: netlink flags passed in 4842 * 4843 * Return the bridge mode (VEB/VEPA) 4844 */ 4845 static int 4846 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 4847 struct net_device *dev, u32 filter_mask, int nlflags) 4848 { 4849 struct ice_netdev_priv *np = netdev_priv(dev); 4850 struct ice_vsi *vsi = np->vsi; 4851 struct ice_pf *pf = vsi->back; 4852 u16 bmode; 4853 4854 bmode = pf->first_sw->bridge_mode; 4855 4856 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 4857 filter_mask, NULL); 4858 } 4859 4860 /** 4861 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 4862 * @vsi: Pointer to VSI structure 4863 * @bmode: Hardware bridge mode (VEB/VEPA) 4864 * 4865 * Returns 0 on success, negative on failure 4866 */ 4867 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 4868 { 4869 struct device *dev = &vsi->back->pdev->dev; 4870 struct ice_aqc_vsi_props *vsi_props; 4871 struct ice_hw *hw = &vsi->back->hw; 4872 struct ice_vsi_ctx *ctxt; 4873 enum ice_status status; 4874 int ret = 0; 4875 4876 vsi_props = &vsi->info; 4877 4878 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL); 4879 if (!ctxt) 4880 return -ENOMEM; 4881 4882 ctxt->info = vsi->info; 4883 4884 if (bmode == BRIDGE_MODE_VEB) 4885 /* change from VEPA to VEB mode */ 4886 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4887 else 4888 /* change from VEB to VEPA mode */ 4889 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 4890 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 4891 4892 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4893 if (status) { 4894 dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n", 4895 bmode, status, hw->adminq.sq_last_status); 4896 ret = -EIO; 4897 goto out; 4898 } 4899 /* Update sw flags for book keeping */ 4900 vsi_props->sw_flags = ctxt->info.sw_flags; 4901 4902 out: 4903 devm_kfree(dev, ctxt); 4904 return ret; 4905 } 4906 4907 /** 4908 * ice_bridge_setlink - Set the hardware bridge mode 4909 * @dev: the netdev being configured 4910 * @nlh: RTNL message 4911 * @flags: bridge setlink flags 4912 * @extack: netlink extended ack 4913 * 4914 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 4915 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 4916 * not already set for all VSIs connected to this switch. And also update the 4917 * unicast switch filter rules for the corresponding switch of the netdev. 4918 */ 4919 static int 4920 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 4921 u16 __always_unused flags, 4922 struct netlink_ext_ack __always_unused *extack) 4923 { 4924 struct ice_netdev_priv *np = netdev_priv(dev); 4925 struct ice_pf *pf = np->vsi->back; 4926 struct nlattr *attr, *br_spec; 4927 struct ice_hw *hw = &pf->hw; 4928 enum ice_status status; 4929 struct ice_sw *pf_sw; 4930 int rem, v, err = 0; 4931 4932 pf_sw = pf->first_sw; 4933 /* find the attribute in the netlink message */ 4934 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 4935 4936 nla_for_each_nested(attr, br_spec, rem) { 4937 __u16 mode; 4938 4939 if (nla_type(attr) != IFLA_BRIDGE_MODE) 4940 continue; 4941 mode = nla_get_u16(attr); 4942 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 4943 return -EINVAL; 4944 /* Continue if bridge mode is not being flipped */ 4945 if (mode == pf_sw->bridge_mode) 4946 continue; 4947 /* Iterates through the PF VSI list and update the loopback 4948 * mode of the VSI 4949 */ 4950 ice_for_each_vsi(pf, v) { 4951 if (!pf->vsi[v]) 4952 continue; 4953 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 4954 if (err) 4955 return err; 4956 } 4957 4958 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 4959 /* Update the unicast switch filter rules for the corresponding 4960 * switch of the netdev 4961 */ 4962 status = ice_update_sw_rule_bridge_mode(hw); 4963 if (status) { 4964 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n", 4965 mode, status, hw->adminq.sq_last_status); 4966 /* revert hw->evb_veb */ 4967 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 4968 return -EIO; 4969 } 4970 4971 pf_sw->bridge_mode = mode; 4972 } 4973 4974 return 0; 4975 } 4976 4977 /** 4978 * ice_tx_timeout - Respond to a Tx Hang 4979 * @netdev: network interface device structure 4980 */ 4981 static void ice_tx_timeout(struct net_device *netdev) 4982 { 4983 struct ice_netdev_priv *np = netdev_priv(netdev); 4984 struct ice_ring *tx_ring = NULL; 4985 struct ice_vsi *vsi = np->vsi; 4986 struct ice_pf *pf = vsi->back; 4987 int hung_queue = -1; 4988 u32 i; 4989 4990 pf->tx_timeout_count++; 4991 4992 /* find the stopped queue the same way dev_watchdog() does */ 4993 for (i = 0; i < netdev->num_tx_queues; i++) { 4994 unsigned long trans_start; 4995 struct netdev_queue *q; 4996 4997 q = netdev_get_tx_queue(netdev, i); 4998 trans_start = q->trans_start; 4999 if (netif_xmit_stopped(q) && 5000 time_after(jiffies, 5001 trans_start + netdev->watchdog_timeo)) { 5002 hung_queue = i; 5003 break; 5004 } 5005 } 5006 5007 if (i == netdev->num_tx_queues) 5008 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n"); 5009 else 5010 /* now that we have an index, find the tx_ring struct */ 5011 for (i = 0; i < vsi->num_txq; i++) 5012 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 5013 if (hung_queue == vsi->tx_rings[i]->q_index) { 5014 tx_ring = vsi->tx_rings[i]; 5015 break; 5016 } 5017 5018 /* Reset recovery level if enough time has elapsed after last timeout. 5019 * Also ensure no new reset action happens before next timeout period. 5020 */ 5021 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 5022 pf->tx_timeout_recovery_level = 1; 5023 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 5024 netdev->watchdog_timeo))) 5025 return; 5026 5027 if (tx_ring) { 5028 struct ice_hw *hw = &pf->hw; 5029 u32 head, val = 0; 5030 5031 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) & 5032 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 5033 /* Read interrupt register */ 5034 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 5035 5036 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 5037 vsi->vsi_num, hung_queue, tx_ring->next_to_clean, 5038 head, tx_ring->next_to_use, val); 5039 } 5040 5041 pf->tx_timeout_last_recovery = jiffies; 5042 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n", 5043 pf->tx_timeout_recovery_level, hung_queue); 5044 5045 switch (pf->tx_timeout_recovery_level) { 5046 case 1: 5047 set_bit(__ICE_PFR_REQ, pf->state); 5048 break; 5049 case 2: 5050 set_bit(__ICE_CORER_REQ, pf->state); 5051 break; 5052 case 3: 5053 set_bit(__ICE_GLOBR_REQ, pf->state); 5054 break; 5055 default: 5056 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 5057 set_bit(__ICE_DOWN, pf->state); 5058 set_bit(__ICE_NEEDS_RESTART, vsi->state); 5059 set_bit(__ICE_SERVICE_DIS, pf->state); 5060 break; 5061 } 5062 5063 ice_service_task_schedule(pf); 5064 pf->tx_timeout_recovery_level++; 5065 } 5066 5067 /** 5068 * ice_open - Called when a network interface becomes active 5069 * @netdev: network interface device structure 5070 * 5071 * The open entry point is called when a network interface is made 5072 * active by the system (IFF_UP). At this point all resources needed 5073 * for transmit and receive operations are allocated, the interrupt 5074 * handler is registered with the OS, the netdev watchdog is enabled, 5075 * and the stack is notified that the interface is ready. 5076 * 5077 * Returns 0 on success, negative value on failure 5078 */ 5079 int ice_open(struct net_device *netdev) 5080 { 5081 struct ice_netdev_priv *np = netdev_priv(netdev); 5082 struct ice_vsi *vsi = np->vsi; 5083 struct ice_port_info *pi; 5084 int err; 5085 5086 if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) { 5087 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 5088 return -EIO; 5089 } 5090 5091 netif_carrier_off(netdev); 5092 5093 pi = vsi->port_info; 5094 err = ice_update_link_info(pi); 5095 if (err) { 5096 netdev_err(netdev, "Failed to get link info, error %d\n", 5097 err); 5098 return err; 5099 } 5100 5101 /* Set PHY if there is media, otherwise, turn off PHY */ 5102 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 5103 err = ice_force_phys_link_state(vsi, true); 5104 if (err) { 5105 netdev_err(netdev, 5106 "Failed to set physical link up, error %d\n", 5107 err); 5108 return err; 5109 } 5110 } else { 5111 err = ice_aq_set_link_restart_an(pi, false, NULL); 5112 if (err) { 5113 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 5114 vsi->vsi_num, err); 5115 return err; 5116 } 5117 set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags); 5118 } 5119 5120 err = ice_vsi_open(vsi); 5121 if (err) 5122 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 5123 vsi->vsi_num, vsi->vsw->sw_id); 5124 return err; 5125 } 5126 5127 /** 5128 * ice_stop - Disables a network interface 5129 * @netdev: network interface device structure 5130 * 5131 * The stop entry point is called when an interface is de-activated by the OS, 5132 * and the netdevice enters the DOWN state. The hardware is still under the 5133 * driver's control, but the netdev interface is disabled. 5134 * 5135 * Returns success only - not allowed to fail 5136 */ 5137 int ice_stop(struct net_device *netdev) 5138 { 5139 struct ice_netdev_priv *np = netdev_priv(netdev); 5140 struct ice_vsi *vsi = np->vsi; 5141 5142 ice_vsi_close(vsi); 5143 5144 return 0; 5145 } 5146 5147 /** 5148 * ice_features_check - Validate encapsulated packet conforms to limits 5149 * @skb: skb buffer 5150 * @netdev: This port's netdev 5151 * @features: Offload features that the stack believes apply 5152 */ 5153 static netdev_features_t 5154 ice_features_check(struct sk_buff *skb, 5155 struct net_device __always_unused *netdev, 5156 netdev_features_t features) 5157 { 5158 size_t len; 5159 5160 /* No point in doing any of this if neither checksum nor GSO are 5161 * being requested for this frame. We can rule out both by just 5162 * checking for CHECKSUM_PARTIAL 5163 */ 5164 if (skb->ip_summed != CHECKSUM_PARTIAL) 5165 return features; 5166 5167 /* We cannot support GSO if the MSS is going to be less than 5168 * 64 bytes. If it is then we need to drop support for GSO. 5169 */ 5170 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 5171 features &= ~NETIF_F_GSO_MASK; 5172 5173 len = skb_network_header(skb) - skb->data; 5174 if (len & ~(ICE_TXD_MACLEN_MAX)) 5175 goto out_rm_features; 5176 5177 len = skb_transport_header(skb) - skb_network_header(skb); 5178 if (len & ~(ICE_TXD_IPLEN_MAX)) 5179 goto out_rm_features; 5180 5181 if (skb->encapsulation) { 5182 len = skb_inner_network_header(skb) - skb_transport_header(skb); 5183 if (len & ~(ICE_TXD_L4LEN_MAX)) 5184 goto out_rm_features; 5185 5186 len = skb_inner_transport_header(skb) - 5187 skb_inner_network_header(skb); 5188 if (len & ~(ICE_TXD_IPLEN_MAX)) 5189 goto out_rm_features; 5190 } 5191 5192 return features; 5193 out_rm_features: 5194 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 5195 } 5196 5197 static const struct net_device_ops ice_netdev_safe_mode_ops = { 5198 .ndo_open = ice_open, 5199 .ndo_stop = ice_stop, 5200 .ndo_start_xmit = ice_start_xmit, 5201 .ndo_set_mac_address = ice_set_mac_address, 5202 .ndo_validate_addr = eth_validate_addr, 5203 .ndo_change_mtu = ice_change_mtu, 5204 .ndo_get_stats64 = ice_get_stats64, 5205 .ndo_tx_timeout = ice_tx_timeout, 5206 }; 5207 5208 static const struct net_device_ops ice_netdev_ops = { 5209 .ndo_open = ice_open, 5210 .ndo_stop = ice_stop, 5211 .ndo_start_xmit = ice_start_xmit, 5212 .ndo_features_check = ice_features_check, 5213 .ndo_set_rx_mode = ice_set_rx_mode, 5214 .ndo_set_mac_address = ice_set_mac_address, 5215 .ndo_validate_addr = eth_validate_addr, 5216 .ndo_change_mtu = ice_change_mtu, 5217 .ndo_get_stats64 = ice_get_stats64, 5218 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 5219 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 5220 .ndo_set_vf_mac = ice_set_vf_mac, 5221 .ndo_get_vf_config = ice_get_vf_cfg, 5222 .ndo_set_vf_trust = ice_set_vf_trust, 5223 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 5224 .ndo_set_vf_link_state = ice_set_vf_link_state, 5225 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 5226 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 5227 .ndo_set_features = ice_set_features, 5228 .ndo_bridge_getlink = ice_bridge_getlink, 5229 .ndo_bridge_setlink = ice_bridge_setlink, 5230 .ndo_fdb_add = ice_fdb_add, 5231 .ndo_fdb_del = ice_fdb_del, 5232 .ndo_tx_timeout = ice_tx_timeout, 5233 .ndo_bpf = ice_xdp, 5234 .ndo_xdp_xmit = ice_xdp_xmit, 5235 .ndo_xsk_wakeup = ice_xsk_wakeup, 5236 }; 5237