1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1148 1149 if (ice_is_dcb_active(pf)) { 1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1151 ice_dcb_rebuild(pf); 1152 } else { 1153 if (link_up) 1154 ice_set_dflt_mib(pf); 1155 } 1156 ice_vsi_link_event(vsi, link_up); 1157 ice_print_link_msg(vsi, link_up); 1158 1159 ice_vc_notify_link_state(pf); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1166 * @pf: board private structure 1167 */ 1168 static void ice_watchdog_subtask(struct ice_pf *pf) 1169 { 1170 int i; 1171 1172 /* if interface is down do nothing */ 1173 if (test_bit(ICE_DOWN, pf->state) || 1174 test_bit(ICE_CFG_BUSY, pf->state)) 1175 return; 1176 1177 /* make sure we don't do these things too often */ 1178 if (time_before(jiffies, 1179 pf->serv_tmr_prev + pf->serv_tmr_period)) 1180 return; 1181 1182 pf->serv_tmr_prev = jiffies; 1183 1184 /* Update the stats for active netdevs so the network stack 1185 * can look at updated numbers whenever it cares to 1186 */ 1187 ice_update_pf_stats(pf); 1188 ice_for_each_vsi(pf, i) 1189 if (pf->vsi[i] && pf->vsi[i]->netdev) 1190 ice_update_vsi_stats(pf->vsi[i]); 1191 } 1192 1193 /** 1194 * ice_init_link_events - enable/initialize link events 1195 * @pi: pointer to the port_info instance 1196 * 1197 * Returns -EIO on failure, 0 on success 1198 */ 1199 static int ice_init_link_events(struct ice_port_info *pi) 1200 { 1201 u16 mask; 1202 1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1206 1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * ice_handle_link_event - handle link event via ARQ 1224 * @pf: PF that the link event is associated with 1225 * @event: event structure containing link status info 1226 */ 1227 static int 1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1229 { 1230 struct ice_aqc_get_link_status_data *link_data; 1231 struct ice_port_info *port_info; 1232 int status; 1233 1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1235 port_info = pf->hw.port_info; 1236 if (!port_info) 1237 return -EINVAL; 1238 1239 status = ice_link_event(pf, port_info, 1240 !!(link_data->link_info & ICE_AQ_LINK_UP), 1241 le16_to_cpu(link_data->link_speed)); 1242 if (status) 1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1244 status); 1245 1246 return status; 1247 } 1248 1249 /** 1250 * ice_get_fwlog_data - copy the FW log data from ARQ event 1251 * @pf: PF that the FW log event is associated with 1252 * @event: event structure containing FW log data 1253 */ 1254 static void 1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1256 { 1257 struct ice_fwlog_data *fwlog; 1258 struct ice_hw *hw = &pf->hw; 1259 1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1261 1262 memset(fwlog->data, 0, PAGE_SIZE); 1263 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1264 1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1267 1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1269 /* the rings are full so bump the head to create room */ 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1271 hw->fwlog_ring.size); 1272 } 1273 } 1274 1275 /** 1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1277 * @pf: pointer to the PF private structure 1278 * @task: intermediate helper storage and identifier for waiting 1279 * @opcode: the opcode to wait for 1280 * 1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1283 * 1284 * Calls are separated to allow caller registering for event before sending 1285 * the command, which mitigates a race between registering and FW responding. 1286 * 1287 * To obtain only the descriptor contents, pass an task->event with null 1288 * msg_buf. If the complete data buffer is desired, allocate the 1289 * task->event.msg_buf with enough space ahead of time. 1290 */ 1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1292 u16 opcode) 1293 { 1294 INIT_HLIST_NODE(&task->entry); 1295 task->opcode = opcode; 1296 task->state = ICE_AQ_TASK_WAITING; 1297 1298 spin_lock_bh(&pf->aq_wait_lock); 1299 hlist_add_head(&task->entry, &pf->aq_wait_list); 1300 spin_unlock_bh(&pf->aq_wait_lock); 1301 } 1302 1303 /** 1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1305 * @pf: pointer to the PF private structure 1306 * @task: ptr prepared by ice_aq_prep_for_event() 1307 * @timeout: how long to wait, in jiffies 1308 * 1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1310 * current thread will be put to sleep until the specified event occurs or 1311 * until the given timeout is reached. 1312 * 1313 * Returns: zero on success, or a negative error code on failure. 1314 */ 1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1316 unsigned long timeout) 1317 { 1318 enum ice_aq_task_state *state = &task->state; 1319 struct device *dev = ice_pf_to_dev(pf); 1320 unsigned long start = jiffies; 1321 long ret; 1322 int err; 1323 1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1325 *state != ICE_AQ_TASK_WAITING, 1326 timeout); 1327 switch (*state) { 1328 case ICE_AQ_TASK_NOT_PREPARED: 1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1330 err = -EINVAL; 1331 break; 1332 case ICE_AQ_TASK_WAITING: 1333 err = ret < 0 ? ret : -ETIMEDOUT; 1334 break; 1335 case ICE_AQ_TASK_CANCELED: 1336 err = ret < 0 ? ret : -ECANCELED; 1337 break; 1338 case ICE_AQ_TASK_COMPLETE: 1339 err = ret < 0 ? ret : 0; 1340 break; 1341 default: 1342 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1343 err = -EINVAL; 1344 break; 1345 } 1346 1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1348 jiffies_to_msecs(jiffies - start), 1349 jiffies_to_msecs(timeout), 1350 task->opcode); 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_del(&task->entry); 1354 spin_unlock_bh(&pf->aq_wait_lock); 1355 1356 return err; 1357 } 1358 1359 /** 1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1361 * @pf: pointer to the PF private structure 1362 * @opcode: the opcode of the event 1363 * @event: the event to check 1364 * 1365 * Loops over the current list of pending threads waiting for an AdminQ event. 1366 * For each matching task, copy the contents of the event into the task 1367 * structure and wake up the thread. 1368 * 1369 * If multiple threads wait for the same opcode, they will all be woken up. 1370 * 1371 * Note that event->msg_buf will only be duplicated if the event has a buffer 1372 * with enough space already allocated. Otherwise, only the descriptor and 1373 * message length will be copied. 1374 * 1375 * Returns: true if an event was found, false otherwise 1376 */ 1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1378 struct ice_rq_event_info *event) 1379 { 1380 struct ice_rq_event_info *task_ev; 1381 struct ice_aq_task *task; 1382 bool found = false; 1383 1384 spin_lock_bh(&pf->aq_wait_lock); 1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1386 if (task->state != ICE_AQ_TASK_WAITING) 1387 continue; 1388 if (task->opcode != opcode) 1389 continue; 1390 1391 task_ev = &task->event; 1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1393 task_ev->msg_len = event->msg_len; 1394 1395 /* Only copy the data buffer if a destination was set */ 1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1397 memcpy(task_ev->msg_buf, event->msg_buf, 1398 event->buf_len); 1399 task_ev->buf_len = event->buf_len; 1400 } 1401 1402 task->state = ICE_AQ_TASK_COMPLETE; 1403 found = true; 1404 } 1405 spin_unlock_bh(&pf->aq_wait_lock); 1406 1407 if (found) 1408 wake_up(&pf->aq_wait_queue); 1409 } 1410 1411 /** 1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1413 * @pf: the PF private structure 1414 * 1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1417 */ 1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1419 { 1420 struct ice_aq_task *task; 1421 1422 spin_lock_bh(&pf->aq_wait_lock); 1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1424 task->state = ICE_AQ_TASK_CANCELED; 1425 spin_unlock_bh(&pf->aq_wait_lock); 1426 1427 wake_up(&pf->aq_wait_queue); 1428 } 1429 1430 #define ICE_MBX_OVERFLOW_WATERMARK 64 1431 1432 /** 1433 * __ice_clean_ctrlq - helper function to clean controlq rings 1434 * @pf: ptr to struct ice_pf 1435 * @q_type: specific Control queue type 1436 */ 1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1438 { 1439 struct device *dev = ice_pf_to_dev(pf); 1440 struct ice_rq_event_info event; 1441 struct ice_hw *hw = &pf->hw; 1442 struct ice_ctl_q_info *cq; 1443 u16 pending, i = 0; 1444 const char *qtype; 1445 u32 oldval, val; 1446 1447 /* Do not clean control queue if/when PF reset fails */ 1448 if (test_bit(ICE_RESET_FAILED, pf->state)) 1449 return 0; 1450 1451 switch (q_type) { 1452 case ICE_CTL_Q_ADMIN: 1453 cq = &hw->adminq; 1454 qtype = "Admin"; 1455 break; 1456 case ICE_CTL_Q_SB: 1457 cq = &hw->sbq; 1458 qtype = "Sideband"; 1459 break; 1460 case ICE_CTL_Q_MAILBOX: 1461 cq = &hw->mailboxq; 1462 qtype = "Mailbox"; 1463 /* we are going to try to detect a malicious VF, so set the 1464 * state to begin detection 1465 */ 1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1467 break; 1468 default: 1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1470 return 0; 1471 } 1472 1473 /* check for error indications - PF_xx_AxQLEN register layout for 1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1475 */ 1476 val = rd32(hw, cq->rq.len); 1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1478 PF_FW_ARQLEN_ARQCRIT_M)) { 1479 oldval = val; 1480 if (val & PF_FW_ARQLEN_ARQVFE_M) 1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1482 qtype); 1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1485 qtype); 1486 } 1487 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1489 qtype); 1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1491 PF_FW_ARQLEN_ARQCRIT_M); 1492 if (oldval != val) 1493 wr32(hw, cq->rq.len, val); 1494 } 1495 1496 val = rd32(hw, cq->sq.len); 1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1498 PF_FW_ATQLEN_ATQCRIT_M)) { 1499 oldval = val; 1500 if (val & PF_FW_ATQLEN_ATQVFE_M) 1501 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1502 qtype); 1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1505 qtype); 1506 } 1507 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1509 qtype); 1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1511 PF_FW_ATQLEN_ATQCRIT_M); 1512 if (oldval != val) 1513 wr32(hw, cq->sq.len, val); 1514 } 1515 1516 event.buf_len = cq->rq_buf_size; 1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1518 if (!event.msg_buf) 1519 return 0; 1520 1521 do { 1522 struct ice_mbx_data data = {}; 1523 u16 opcode; 1524 int ret; 1525 1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1527 if (ret == -EALREADY) 1528 break; 1529 if (ret) { 1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1531 ret); 1532 break; 1533 } 1534 1535 opcode = le16_to_cpu(event.desc.opcode); 1536 1537 /* Notify any thread that might be waiting for this event */ 1538 ice_aq_check_events(pf, opcode, &event); 1539 1540 switch (opcode) { 1541 case ice_aqc_opc_get_link_status: 1542 if (ice_handle_link_event(pf, &event)) 1543 dev_err(dev, "Could not handle link event\n"); 1544 break; 1545 case ice_aqc_opc_event_lan_overflow: 1546 ice_vf_lan_overflow_event(pf, &event); 1547 break; 1548 case ice_mbx_opc_send_msg_to_pf: 1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1550 ice_vc_process_vf_msg(pf, &event, NULL); 1551 ice_mbx_vf_dec_trig_e830(hw, &event); 1552 } else { 1553 u16 val = hw->mailboxq.num_rq_entries; 1554 1555 data.max_num_msgs_mbx = val; 1556 val = ICE_MBX_OVERFLOW_WATERMARK; 1557 data.async_watermark_val = val; 1558 data.num_msg_proc = i; 1559 data.num_pending_arq = pending; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 } 1563 break; 1564 case ice_aqc_opc_fw_logs_event: 1565 ice_get_fwlog_data(pf, &event); 1566 break; 1567 case ice_aqc_opc_lldp_set_mib_change: 1568 ice_dcb_process_lldp_set_mib_change(pf, &event); 1569 break; 1570 default: 1571 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1572 qtype, opcode); 1573 break; 1574 } 1575 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1576 1577 kfree(event.msg_buf); 1578 1579 return pending && (i == ICE_DFLT_IRQ_WORK); 1580 } 1581 1582 /** 1583 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1584 * @hw: pointer to hardware info 1585 * @cq: control queue information 1586 * 1587 * returns true if there are pending messages in a queue, false if there aren't 1588 */ 1589 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1590 { 1591 u16 ntu; 1592 1593 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1594 return cq->rq.next_to_clean != ntu; 1595 } 1596 1597 /** 1598 * ice_clean_adminq_subtask - clean the AdminQ rings 1599 * @pf: board private structure 1600 */ 1601 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1602 { 1603 struct ice_hw *hw = &pf->hw; 1604 1605 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1606 return; 1607 1608 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1609 return; 1610 1611 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1612 1613 /* There might be a situation where new messages arrive to a control 1614 * queue between processing the last message and clearing the 1615 * EVENT_PENDING bit. So before exiting, check queue head again (using 1616 * ice_ctrlq_pending) and process new messages if any. 1617 */ 1618 if (ice_ctrlq_pending(hw, &hw->adminq)) 1619 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1620 1621 ice_flush(hw); 1622 } 1623 1624 /** 1625 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1626 * @pf: board private structure 1627 */ 1628 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1629 { 1630 struct ice_hw *hw = &pf->hw; 1631 1632 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1633 return; 1634 1635 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1636 return; 1637 1638 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1639 1640 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1641 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1642 1643 ice_flush(hw); 1644 } 1645 1646 /** 1647 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1648 * @pf: board private structure 1649 */ 1650 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1651 { 1652 struct ice_hw *hw = &pf->hw; 1653 1654 /* if mac_type is not generic, sideband is not supported 1655 * and there's nothing to do here 1656 */ 1657 if (!ice_is_generic_mac(hw)) { 1658 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1659 return; 1660 } 1661 1662 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1663 return; 1664 1665 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1666 return; 1667 1668 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1669 1670 if (ice_ctrlq_pending(hw, &hw->sbq)) 1671 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1672 1673 ice_flush(hw); 1674 } 1675 1676 /** 1677 * ice_service_task_schedule - schedule the service task to wake up 1678 * @pf: board private structure 1679 * 1680 * If not already scheduled, this puts the task into the work queue. 1681 */ 1682 void ice_service_task_schedule(struct ice_pf *pf) 1683 { 1684 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1685 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1686 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1687 queue_work(ice_wq, &pf->serv_task); 1688 } 1689 1690 /** 1691 * ice_service_task_complete - finish up the service task 1692 * @pf: board private structure 1693 */ 1694 static void ice_service_task_complete(struct ice_pf *pf) 1695 { 1696 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1697 1698 /* force memory (pf->state) to sync before next service task */ 1699 smp_mb__before_atomic(); 1700 clear_bit(ICE_SERVICE_SCHED, pf->state); 1701 } 1702 1703 /** 1704 * ice_service_task_stop - stop service task and cancel works 1705 * @pf: board private structure 1706 * 1707 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1708 * 1 otherwise. 1709 */ 1710 static int ice_service_task_stop(struct ice_pf *pf) 1711 { 1712 int ret; 1713 1714 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1715 1716 if (pf->serv_tmr.function) 1717 del_timer_sync(&pf->serv_tmr); 1718 if (pf->serv_task.func) 1719 cancel_work_sync(&pf->serv_task); 1720 1721 clear_bit(ICE_SERVICE_SCHED, pf->state); 1722 return ret; 1723 } 1724 1725 /** 1726 * ice_service_task_restart - restart service task and schedule works 1727 * @pf: board private structure 1728 * 1729 * This function is needed for suspend and resume works (e.g WoL scenario) 1730 */ 1731 static void ice_service_task_restart(struct ice_pf *pf) 1732 { 1733 clear_bit(ICE_SERVICE_DIS, pf->state); 1734 ice_service_task_schedule(pf); 1735 } 1736 1737 /** 1738 * ice_service_timer - timer callback to schedule service task 1739 * @t: pointer to timer_list 1740 */ 1741 static void ice_service_timer(struct timer_list *t) 1742 { 1743 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1744 1745 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1746 ice_service_task_schedule(pf); 1747 } 1748 1749 /** 1750 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1751 * @pf: pointer to the PF structure 1752 * @vf: pointer to the VF structure 1753 * @reset_vf_tx: whether Tx MDD has occurred 1754 * @reset_vf_rx: whether Rx MDD has occurred 1755 * 1756 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1757 * automatically reset the VF by enabling the private ethtool flag 1758 * mdd-auto-reset-vf. 1759 */ 1760 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1761 bool reset_vf_tx, bool reset_vf_rx) 1762 { 1763 struct device *dev = ice_pf_to_dev(pf); 1764 1765 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1766 return; 1767 1768 /* VF MDD event counters will be cleared by reset, so print the event 1769 * prior to reset. 1770 */ 1771 if (reset_vf_tx) 1772 ice_print_vf_tx_mdd_event(vf); 1773 1774 if (reset_vf_rx) 1775 ice_print_vf_rx_mdd_event(vf); 1776 1777 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1778 pf->hw.pf_id, vf->vf_id); 1779 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1780 } 1781 1782 /** 1783 * ice_handle_mdd_event - handle malicious driver detect event 1784 * @pf: pointer to the PF structure 1785 * 1786 * Called from service task. OICR interrupt handler indicates MDD event. 1787 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1788 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1789 * disable the queue, the PF can be configured to reset the VF using ethtool 1790 * private flag mdd-auto-reset-vf. 1791 */ 1792 static void ice_handle_mdd_event(struct ice_pf *pf) 1793 { 1794 struct device *dev = ice_pf_to_dev(pf); 1795 struct ice_hw *hw = &pf->hw; 1796 struct ice_vf *vf; 1797 unsigned int bkt; 1798 u32 reg; 1799 1800 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1801 /* Since the VF MDD event logging is rate limited, check if 1802 * there are pending MDD events. 1803 */ 1804 ice_print_vfs_mdd_events(pf); 1805 return; 1806 } 1807 1808 /* find what triggered an MDD event */ 1809 reg = rd32(hw, GL_MDET_TX_PQM); 1810 if (reg & GL_MDET_TX_PQM_VALID_M) { 1811 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1812 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1813 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1814 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1815 1816 if (netif_msg_tx_err(pf)) 1817 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1818 event, queue, pf_num, vf_num); 1819 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1820 event, queue); 1821 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1822 } 1823 1824 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1825 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1826 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1827 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1828 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1829 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1830 1831 if (netif_msg_tx_err(pf)) 1832 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1833 event, queue, pf_num, vf_num); 1834 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1835 event, queue); 1836 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1837 } 1838 1839 reg = rd32(hw, GL_MDET_RX); 1840 if (reg & GL_MDET_RX_VALID_M) { 1841 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1842 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1843 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1844 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1845 1846 if (netif_msg_rx_err(pf)) 1847 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1848 event, queue, pf_num, vf_num); 1849 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1850 queue); 1851 wr32(hw, GL_MDET_RX, 0xffffffff); 1852 } 1853 1854 /* check to see if this PF caused an MDD event */ 1855 reg = rd32(hw, PF_MDET_TX_PQM); 1856 if (reg & PF_MDET_TX_PQM_VALID_M) { 1857 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1858 if (netif_msg_tx_err(pf)) 1859 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1860 } 1861 1862 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1863 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1864 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1865 if (netif_msg_tx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1867 } 1868 1869 reg = rd32(hw, PF_MDET_RX); 1870 if (reg & PF_MDET_RX_VALID_M) { 1871 wr32(hw, PF_MDET_RX, 0xFFFF); 1872 if (netif_msg_rx_err(pf)) 1873 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1874 } 1875 1876 /* Check to see if one of the VFs caused an MDD event, and then 1877 * increment counters and set print pending 1878 */ 1879 mutex_lock(&pf->vfs.table_lock); 1880 ice_for_each_vf(pf, bkt, vf) { 1881 bool reset_vf_tx = false, reset_vf_rx = false; 1882 1883 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1884 if (reg & VP_MDET_TX_PQM_VALID_M) { 1885 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1886 vf->mdd_tx_events.count++; 1887 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1888 if (netif_msg_tx_err(pf)) 1889 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1890 vf->vf_id); 1891 1892 reset_vf_tx = true; 1893 } 1894 1895 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1896 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1897 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1898 vf->mdd_tx_events.count++; 1899 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1900 if (netif_msg_tx_err(pf)) 1901 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1902 vf->vf_id); 1903 1904 reset_vf_tx = true; 1905 } 1906 1907 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1908 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1909 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1910 vf->mdd_tx_events.count++; 1911 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1912 if (netif_msg_tx_err(pf)) 1913 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1914 vf->vf_id); 1915 1916 reset_vf_tx = true; 1917 } 1918 1919 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1920 if (reg & VP_MDET_RX_VALID_M) { 1921 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1922 vf->mdd_rx_events.count++; 1923 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1924 if (netif_msg_rx_err(pf)) 1925 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1926 vf->vf_id); 1927 1928 reset_vf_rx = true; 1929 } 1930 1931 if (reset_vf_tx || reset_vf_rx) 1932 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1933 reset_vf_rx); 1934 } 1935 mutex_unlock(&pf->vfs.table_lock); 1936 1937 ice_print_vfs_mdd_events(pf); 1938 } 1939 1940 /** 1941 * ice_force_phys_link_state - Force the physical link state 1942 * @vsi: VSI to force the physical link state to up/down 1943 * @link_up: true/false indicates to set the physical link to up/down 1944 * 1945 * Force the physical link state by getting the current PHY capabilities from 1946 * hardware and setting the PHY config based on the determined capabilities. If 1947 * link changes a link event will be triggered because both the Enable Automatic 1948 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1949 * 1950 * Returns 0 on success, negative on failure 1951 */ 1952 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1953 { 1954 struct ice_aqc_get_phy_caps_data *pcaps; 1955 struct ice_aqc_set_phy_cfg_data *cfg; 1956 struct ice_port_info *pi; 1957 struct device *dev; 1958 int retcode; 1959 1960 if (!vsi || !vsi->port_info || !vsi->back) 1961 return -EINVAL; 1962 if (vsi->type != ICE_VSI_PF) 1963 return 0; 1964 1965 dev = ice_pf_to_dev(vsi->back); 1966 1967 pi = vsi->port_info; 1968 1969 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1970 if (!pcaps) 1971 return -ENOMEM; 1972 1973 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1974 NULL); 1975 if (retcode) { 1976 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1977 vsi->vsi_num, retcode); 1978 retcode = -EIO; 1979 goto out; 1980 } 1981 1982 /* No change in link */ 1983 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1984 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1985 goto out; 1986 1987 /* Use the current user PHY configuration. The current user PHY 1988 * configuration is initialized during probe from PHY capabilities 1989 * software mode, and updated on set PHY configuration. 1990 */ 1991 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1992 if (!cfg) { 1993 retcode = -ENOMEM; 1994 goto out; 1995 } 1996 1997 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1998 if (link_up) 1999 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2000 else 2001 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2002 2003 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2004 if (retcode) { 2005 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2006 vsi->vsi_num, retcode); 2007 retcode = -EIO; 2008 } 2009 2010 kfree(cfg); 2011 out: 2012 kfree(pcaps); 2013 return retcode; 2014 } 2015 2016 /** 2017 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2018 * @pi: port info structure 2019 * 2020 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2021 */ 2022 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2023 { 2024 struct ice_aqc_get_phy_caps_data *pcaps; 2025 struct ice_pf *pf = pi->hw->back; 2026 int err; 2027 2028 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2029 if (!pcaps) 2030 return -ENOMEM; 2031 2032 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2033 pcaps, NULL); 2034 2035 if (err) { 2036 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2037 goto out; 2038 } 2039 2040 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2041 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2042 2043 out: 2044 kfree(pcaps); 2045 return err; 2046 } 2047 2048 /** 2049 * ice_init_link_dflt_override - Initialize link default override 2050 * @pi: port info structure 2051 * 2052 * Initialize link default override and PHY total port shutdown during probe 2053 */ 2054 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2055 { 2056 struct ice_link_default_override_tlv *ldo; 2057 struct ice_pf *pf = pi->hw->back; 2058 2059 ldo = &pf->link_dflt_override; 2060 if (ice_get_link_default_override(ldo, pi)) 2061 return; 2062 2063 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2064 return; 2065 2066 /* Enable Total Port Shutdown (override/replace link-down-on-close 2067 * ethtool private flag) for ports with Port Disable bit set. 2068 */ 2069 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2070 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2071 } 2072 2073 /** 2074 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2075 * @pi: port info structure 2076 * 2077 * If default override is enabled, initialize the user PHY cfg speed and FEC 2078 * settings using the default override mask from the NVM. 2079 * 2080 * The PHY should only be configured with the default override settings the 2081 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2082 * is used to indicate that the user PHY cfg default override is initialized 2083 * and the PHY has not been configured with the default override settings. The 2084 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2085 * configured. 2086 * 2087 * This function should be called only if the FW doesn't support default 2088 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2089 */ 2090 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2091 { 2092 struct ice_link_default_override_tlv *ldo; 2093 struct ice_aqc_set_phy_cfg_data *cfg; 2094 struct ice_phy_info *phy = &pi->phy; 2095 struct ice_pf *pf = pi->hw->back; 2096 2097 ldo = &pf->link_dflt_override; 2098 2099 /* If link default override is enabled, use to mask NVM PHY capabilities 2100 * for speed and FEC default configuration. 2101 */ 2102 cfg = &phy->curr_user_phy_cfg; 2103 2104 if (ldo->phy_type_low || ldo->phy_type_high) { 2105 cfg->phy_type_low = pf->nvm_phy_type_lo & 2106 cpu_to_le64(ldo->phy_type_low); 2107 cfg->phy_type_high = pf->nvm_phy_type_hi & 2108 cpu_to_le64(ldo->phy_type_high); 2109 } 2110 cfg->link_fec_opt = ldo->fec_options; 2111 phy->curr_user_fec_req = ICE_FEC_AUTO; 2112 2113 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2114 } 2115 2116 /** 2117 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2118 * @pi: port info structure 2119 * 2120 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2121 * mode to default. The PHY defaults are from get PHY capabilities topology 2122 * with media so call when media is first available. An error is returned if 2123 * called when media is not available. The PHY initialization completed state is 2124 * set here. 2125 * 2126 * These configurations are used when setting PHY 2127 * configuration. The user PHY configuration is updated on set PHY 2128 * configuration. Returns 0 on success, negative on failure 2129 */ 2130 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2131 { 2132 struct ice_aqc_get_phy_caps_data *pcaps; 2133 struct ice_phy_info *phy = &pi->phy; 2134 struct ice_pf *pf = pi->hw->back; 2135 int err; 2136 2137 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2138 return -EIO; 2139 2140 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2141 if (!pcaps) 2142 return -ENOMEM; 2143 2144 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2146 pcaps, NULL); 2147 else 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2149 pcaps, NULL); 2150 if (err) { 2151 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2152 goto err_out; 2153 } 2154 2155 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2156 2157 /* check if lenient mode is supported and enabled */ 2158 if (ice_fw_supports_link_override(pi->hw) && 2159 !(pcaps->module_compliance_enforcement & 2160 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2161 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2162 2163 /* if the FW supports default PHY configuration mode, then the driver 2164 * does not have to apply link override settings. If not, 2165 * initialize user PHY configuration with link override values 2166 */ 2167 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2168 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2169 ice_init_phy_cfg_dflt_override(pi); 2170 goto out; 2171 } 2172 } 2173 2174 /* if link default override is not enabled, set user flow control and 2175 * FEC settings based on what get_phy_caps returned 2176 */ 2177 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2178 pcaps->link_fec_options); 2179 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2180 2181 out: 2182 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2183 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2184 err_out: 2185 kfree(pcaps); 2186 return err; 2187 } 2188 2189 /** 2190 * ice_configure_phy - configure PHY 2191 * @vsi: VSI of PHY 2192 * 2193 * Set the PHY configuration. If the current PHY configuration is the same as 2194 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2195 * configure the based get PHY capabilities for topology with media. 2196 */ 2197 static int ice_configure_phy(struct ice_vsi *vsi) 2198 { 2199 struct device *dev = ice_pf_to_dev(vsi->back); 2200 struct ice_port_info *pi = vsi->port_info; 2201 struct ice_aqc_get_phy_caps_data *pcaps; 2202 struct ice_aqc_set_phy_cfg_data *cfg; 2203 struct ice_phy_info *phy = &pi->phy; 2204 struct ice_pf *pf = vsi->back; 2205 int err; 2206 2207 /* Ensure we have media as we cannot configure a medialess port */ 2208 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2209 return -ENOMEDIUM; 2210 2211 ice_print_topo_conflict(vsi); 2212 2213 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2214 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2215 return -EPERM; 2216 2217 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2218 return ice_force_phys_link_state(vsi, true); 2219 2220 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2221 if (!pcaps) 2222 return -ENOMEM; 2223 2224 /* Get current PHY config */ 2225 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2226 NULL); 2227 if (err) { 2228 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2229 vsi->vsi_num, err); 2230 goto done; 2231 } 2232 2233 /* If PHY enable link is configured and configuration has not changed, 2234 * there's nothing to do 2235 */ 2236 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2237 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2238 goto done; 2239 2240 /* Use PHY topology as baseline for configuration */ 2241 memset(pcaps, 0, sizeof(*pcaps)); 2242 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2243 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2244 pcaps, NULL); 2245 else 2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2247 pcaps, NULL); 2248 if (err) { 2249 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2250 vsi->vsi_num, err); 2251 goto done; 2252 } 2253 2254 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2255 if (!cfg) { 2256 err = -ENOMEM; 2257 goto done; 2258 } 2259 2260 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2261 2262 /* Speed - If default override pending, use curr_user_phy_cfg set in 2263 * ice_init_phy_user_cfg_ldo. 2264 */ 2265 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2266 vsi->back->state)) { 2267 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2268 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2269 } else { 2270 u64 phy_low = 0, phy_high = 0; 2271 2272 ice_update_phy_type(&phy_low, &phy_high, 2273 pi->phy.curr_user_speed_req); 2274 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2275 cfg->phy_type_high = pcaps->phy_type_high & 2276 cpu_to_le64(phy_high); 2277 } 2278 2279 /* Can't provide what was requested; use PHY capabilities */ 2280 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2281 cfg->phy_type_low = pcaps->phy_type_low; 2282 cfg->phy_type_high = pcaps->phy_type_high; 2283 } 2284 2285 /* FEC */ 2286 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2287 2288 /* Can't provide what was requested; use PHY capabilities */ 2289 if (cfg->link_fec_opt != 2290 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2291 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2292 cfg->link_fec_opt = pcaps->link_fec_options; 2293 } 2294 2295 /* Flow Control - always supported; no need to check against 2296 * capabilities 2297 */ 2298 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2299 2300 /* Enable link and link update */ 2301 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2302 2303 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2304 if (err) 2305 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2306 vsi->vsi_num, err); 2307 2308 kfree(cfg); 2309 done: 2310 kfree(pcaps); 2311 return err; 2312 } 2313 2314 /** 2315 * ice_check_media_subtask - Check for media 2316 * @pf: pointer to PF struct 2317 * 2318 * If media is available, then initialize PHY user configuration if it is not 2319 * been, and configure the PHY if the interface is up. 2320 */ 2321 static void ice_check_media_subtask(struct ice_pf *pf) 2322 { 2323 struct ice_port_info *pi; 2324 struct ice_vsi *vsi; 2325 int err; 2326 2327 /* No need to check for media if it's already present */ 2328 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2329 return; 2330 2331 vsi = ice_get_main_vsi(pf); 2332 if (!vsi) 2333 return; 2334 2335 /* Refresh link info and check if media is present */ 2336 pi = vsi->port_info; 2337 err = ice_update_link_info(pi); 2338 if (err) 2339 return; 2340 2341 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2342 2343 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2344 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2345 ice_init_phy_user_cfg(pi); 2346 2347 /* PHY settings are reset on media insertion, reconfigure 2348 * PHY to preserve settings. 2349 */ 2350 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2351 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2352 return; 2353 2354 err = ice_configure_phy(vsi); 2355 if (!err) 2356 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2357 2358 /* A Link Status Event will be generated; the event handler 2359 * will complete bringing the interface up 2360 */ 2361 } 2362 } 2363 2364 /** 2365 * ice_service_task - manage and run subtasks 2366 * @work: pointer to work_struct contained by the PF struct 2367 */ 2368 static void ice_service_task(struct work_struct *work) 2369 { 2370 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2371 unsigned long start_time = jiffies; 2372 2373 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2374 ice_report_tx_hang(pf); 2375 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2376 } 2377 2378 ice_reset_subtask(pf); 2379 2380 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2381 if (ice_is_reset_in_progress(pf->state) || 2382 test_bit(ICE_SUSPENDED, pf->state) || 2383 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2384 ice_service_task_complete(pf); 2385 return; 2386 } 2387 2388 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2389 struct iidc_event *event; 2390 2391 event = kzalloc(sizeof(*event), GFP_KERNEL); 2392 if (event) { 2393 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2394 /* report the entire OICR value to AUX driver */ 2395 swap(event->reg, pf->oicr_err_reg); 2396 ice_send_event_to_aux(pf, event); 2397 kfree(event); 2398 } 2399 } 2400 2401 /* unplug aux dev per request, if an unplug request came in 2402 * while processing a plug request, this will handle it 2403 */ 2404 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2405 ice_unplug_aux_dev(pf); 2406 2407 /* Plug aux device per request */ 2408 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2409 ice_plug_aux_dev(pf); 2410 2411 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2412 struct iidc_event *event; 2413 2414 event = kzalloc(sizeof(*event), GFP_KERNEL); 2415 if (event) { 2416 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2417 ice_send_event_to_aux(pf, event); 2418 kfree(event); 2419 } 2420 } 2421 2422 ice_clean_adminq_subtask(pf); 2423 ice_check_media_subtask(pf); 2424 ice_check_for_hang_subtask(pf); 2425 ice_sync_fltr_subtask(pf); 2426 ice_handle_mdd_event(pf); 2427 ice_watchdog_subtask(pf); 2428 2429 if (ice_is_safe_mode(pf)) { 2430 ice_service_task_complete(pf); 2431 return; 2432 } 2433 2434 ice_process_vflr_event(pf); 2435 ice_clean_mailboxq_subtask(pf); 2436 ice_clean_sbq_subtask(pf); 2437 ice_sync_arfs_fltrs(pf); 2438 ice_flush_fdir_ctx(pf); 2439 2440 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2441 ice_service_task_complete(pf); 2442 2443 /* If the tasks have taken longer than one service timer period 2444 * or there is more work to be done, reset the service timer to 2445 * schedule the service task now. 2446 */ 2447 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2448 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2449 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2450 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2451 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2452 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2453 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2454 mod_timer(&pf->serv_tmr, jiffies); 2455 } 2456 2457 /** 2458 * ice_set_ctrlq_len - helper function to set controlq length 2459 * @hw: pointer to the HW instance 2460 */ 2461 static void ice_set_ctrlq_len(struct ice_hw *hw) 2462 { 2463 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2464 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2465 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2466 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2467 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2468 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2469 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2470 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2471 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2472 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2473 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2474 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2475 } 2476 2477 /** 2478 * ice_schedule_reset - schedule a reset 2479 * @pf: board private structure 2480 * @reset: reset being requested 2481 */ 2482 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2483 { 2484 struct device *dev = ice_pf_to_dev(pf); 2485 2486 /* bail out if earlier reset has failed */ 2487 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2488 dev_dbg(dev, "earlier reset has failed\n"); 2489 return -EIO; 2490 } 2491 /* bail if reset/recovery already in progress */ 2492 if (ice_is_reset_in_progress(pf->state)) { 2493 dev_dbg(dev, "Reset already in progress\n"); 2494 return -EBUSY; 2495 } 2496 2497 switch (reset) { 2498 case ICE_RESET_PFR: 2499 set_bit(ICE_PFR_REQ, pf->state); 2500 break; 2501 case ICE_RESET_CORER: 2502 set_bit(ICE_CORER_REQ, pf->state); 2503 break; 2504 case ICE_RESET_GLOBR: 2505 set_bit(ICE_GLOBR_REQ, pf->state); 2506 break; 2507 default: 2508 return -EINVAL; 2509 } 2510 2511 ice_service_task_schedule(pf); 2512 return 0; 2513 } 2514 2515 /** 2516 * ice_irq_affinity_notify - Callback for affinity changes 2517 * @notify: context as to what irq was changed 2518 * @mask: the new affinity mask 2519 * 2520 * This is a callback function used by the irq_set_affinity_notifier function 2521 * so that we may register to receive changes to the irq affinity masks. 2522 */ 2523 static void 2524 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2525 const cpumask_t *mask) 2526 { 2527 struct ice_q_vector *q_vector = 2528 container_of(notify, struct ice_q_vector, affinity_notify); 2529 2530 cpumask_copy(&q_vector->affinity_mask, mask); 2531 } 2532 2533 /** 2534 * ice_irq_affinity_release - Callback for affinity notifier release 2535 * @ref: internal core kernel usage 2536 * 2537 * This is a callback function used by the irq_set_affinity_notifier function 2538 * to inform the current notification subscriber that they will no longer 2539 * receive notifications. 2540 */ 2541 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2542 2543 /** 2544 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2545 * @vsi: the VSI being configured 2546 */ 2547 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2548 { 2549 struct ice_hw *hw = &vsi->back->hw; 2550 int i; 2551 2552 ice_for_each_q_vector(vsi, i) 2553 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2554 2555 ice_flush(hw); 2556 return 0; 2557 } 2558 2559 /** 2560 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2561 * @vsi: the VSI being configured 2562 * @basename: name for the vector 2563 */ 2564 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2565 { 2566 int q_vectors = vsi->num_q_vectors; 2567 struct ice_pf *pf = vsi->back; 2568 struct device *dev; 2569 int rx_int_idx = 0; 2570 int tx_int_idx = 0; 2571 int vector, err; 2572 int irq_num; 2573 2574 dev = ice_pf_to_dev(pf); 2575 for (vector = 0; vector < q_vectors; vector++) { 2576 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2577 2578 irq_num = q_vector->irq.virq; 2579 2580 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2581 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2582 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2583 tx_int_idx++; 2584 } else if (q_vector->rx.rx_ring) { 2585 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2586 "%s-%s-%d", basename, "rx", rx_int_idx++); 2587 } else if (q_vector->tx.tx_ring) { 2588 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2589 "%s-%s-%d", basename, "tx", tx_int_idx++); 2590 } else { 2591 /* skip this unused q_vector */ 2592 continue; 2593 } 2594 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2595 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2596 IRQF_SHARED, q_vector->name, 2597 q_vector); 2598 else 2599 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2600 0, q_vector->name, q_vector); 2601 if (err) { 2602 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2603 err); 2604 goto free_q_irqs; 2605 } 2606 2607 /* register for affinity change notifications */ 2608 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2609 struct irq_affinity_notify *affinity_notify; 2610 2611 affinity_notify = &q_vector->affinity_notify; 2612 affinity_notify->notify = ice_irq_affinity_notify; 2613 affinity_notify->release = ice_irq_affinity_release; 2614 irq_set_affinity_notifier(irq_num, affinity_notify); 2615 } 2616 2617 /* assign the mask for this irq */ 2618 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2619 } 2620 2621 err = ice_set_cpu_rx_rmap(vsi); 2622 if (err) { 2623 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2624 vsi->vsi_num, ERR_PTR(err)); 2625 goto free_q_irqs; 2626 } 2627 2628 vsi->irqs_ready = true; 2629 return 0; 2630 2631 free_q_irqs: 2632 while (vector--) { 2633 irq_num = vsi->q_vectors[vector]->irq.virq; 2634 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2635 irq_set_affinity_notifier(irq_num, NULL); 2636 irq_update_affinity_hint(irq_num, NULL); 2637 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2638 } 2639 return err; 2640 } 2641 2642 /** 2643 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2644 * @vsi: VSI to setup Tx rings used by XDP 2645 * 2646 * Return 0 on success and negative value on error 2647 */ 2648 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2649 { 2650 struct device *dev = ice_pf_to_dev(vsi->back); 2651 struct ice_tx_desc *tx_desc; 2652 int i, j; 2653 2654 ice_for_each_xdp_txq(vsi, i) { 2655 u16 xdp_q_idx = vsi->alloc_txq + i; 2656 struct ice_ring_stats *ring_stats; 2657 struct ice_tx_ring *xdp_ring; 2658 2659 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2660 if (!xdp_ring) 2661 goto free_xdp_rings; 2662 2663 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2664 if (!ring_stats) { 2665 ice_free_tx_ring(xdp_ring); 2666 goto free_xdp_rings; 2667 } 2668 2669 xdp_ring->ring_stats = ring_stats; 2670 xdp_ring->q_index = xdp_q_idx; 2671 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2672 xdp_ring->vsi = vsi; 2673 xdp_ring->netdev = NULL; 2674 xdp_ring->dev = dev; 2675 xdp_ring->count = vsi->num_tx_desc; 2676 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2677 if (ice_setup_tx_ring(xdp_ring)) 2678 goto free_xdp_rings; 2679 ice_set_ring_xdp(xdp_ring); 2680 spin_lock_init(&xdp_ring->tx_lock); 2681 for (j = 0; j < xdp_ring->count; j++) { 2682 tx_desc = ICE_TX_DESC(xdp_ring, j); 2683 tx_desc->cmd_type_offset_bsz = 0; 2684 } 2685 } 2686 2687 return 0; 2688 2689 free_xdp_rings: 2690 for (; i >= 0; i--) { 2691 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2692 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2693 vsi->xdp_rings[i]->ring_stats = NULL; 2694 ice_free_tx_ring(vsi->xdp_rings[i]); 2695 } 2696 } 2697 return -ENOMEM; 2698 } 2699 2700 /** 2701 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2702 * @vsi: VSI to set the bpf prog on 2703 * @prog: the bpf prog pointer 2704 */ 2705 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2706 { 2707 struct bpf_prog *old_prog; 2708 int i; 2709 2710 old_prog = xchg(&vsi->xdp_prog, prog); 2711 ice_for_each_rxq(vsi, i) 2712 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2713 2714 if (old_prog) 2715 bpf_prog_put(old_prog); 2716 } 2717 2718 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2719 { 2720 struct ice_q_vector *q_vector; 2721 struct ice_tx_ring *ring; 2722 2723 if (static_key_enabled(&ice_xdp_locking_key)) 2724 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2725 2726 q_vector = vsi->rx_rings[qid]->q_vector; 2727 ice_for_each_tx_ring(ring, q_vector->tx) 2728 if (ice_ring_is_xdp(ring)) 2729 return ring; 2730 2731 return NULL; 2732 } 2733 2734 /** 2735 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2736 * @vsi: the VSI with XDP rings being configured 2737 * 2738 * Map XDP rings to interrupt vectors and perform the configuration steps 2739 * dependent on the mapping. 2740 */ 2741 void ice_map_xdp_rings(struct ice_vsi *vsi) 2742 { 2743 int xdp_rings_rem = vsi->num_xdp_txq; 2744 int v_idx, q_idx; 2745 2746 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2747 ice_for_each_q_vector(vsi, v_idx) { 2748 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2749 int xdp_rings_per_v, q_id, q_base; 2750 2751 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2752 vsi->num_q_vectors - v_idx); 2753 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2754 2755 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2756 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2757 2758 xdp_ring->q_vector = q_vector; 2759 xdp_ring->next = q_vector->tx.tx_ring; 2760 q_vector->tx.tx_ring = xdp_ring; 2761 } 2762 xdp_rings_rem -= xdp_rings_per_v; 2763 } 2764 2765 ice_for_each_rxq(vsi, q_idx) { 2766 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2767 q_idx); 2768 ice_tx_xsk_pool(vsi, q_idx); 2769 } 2770 } 2771 2772 /** 2773 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2774 * @vsi: VSI to bring up Tx rings used by XDP 2775 * @prog: bpf program that will be assigned to VSI 2776 * @cfg_type: create from scratch or restore the existing configuration 2777 * 2778 * Return 0 on success and negative value on error 2779 */ 2780 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2781 enum ice_xdp_cfg cfg_type) 2782 { 2783 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2784 struct ice_pf *pf = vsi->back; 2785 struct ice_qs_cfg xdp_qs_cfg = { 2786 .qs_mutex = &pf->avail_q_mutex, 2787 .pf_map = pf->avail_txqs, 2788 .pf_map_size = pf->max_pf_txqs, 2789 .q_count = vsi->num_xdp_txq, 2790 .scatter_count = ICE_MAX_SCATTER_TXQS, 2791 .vsi_map = vsi->txq_map, 2792 .vsi_map_offset = vsi->alloc_txq, 2793 .mapping_mode = ICE_VSI_MAP_CONTIG 2794 }; 2795 struct device *dev; 2796 int status, i; 2797 2798 dev = ice_pf_to_dev(pf); 2799 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2800 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2801 if (!vsi->xdp_rings) 2802 return -ENOMEM; 2803 2804 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2805 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2806 goto err_map_xdp; 2807 2808 if (static_key_enabled(&ice_xdp_locking_key)) 2809 netdev_warn(vsi->netdev, 2810 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2811 2812 if (ice_xdp_alloc_setup_rings(vsi)) 2813 goto clear_xdp_rings; 2814 2815 /* omit the scheduler update if in reset path; XDP queues will be 2816 * taken into account at the end of ice_vsi_rebuild, where 2817 * ice_cfg_vsi_lan is being called 2818 */ 2819 if (cfg_type == ICE_XDP_CFG_PART) 2820 return 0; 2821 2822 ice_map_xdp_rings(vsi); 2823 2824 /* tell the Tx scheduler that right now we have 2825 * additional queues 2826 */ 2827 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2828 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2829 2830 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2831 max_txqs); 2832 if (status) { 2833 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2834 status); 2835 goto clear_xdp_rings; 2836 } 2837 2838 /* assign the prog only when it's not already present on VSI; 2839 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2840 * VSI rebuild that happens under ethtool -L can expose us to 2841 * the bpf_prog refcount issues as we would be swapping same 2842 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2843 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2844 * this is not harmful as dev_xdp_install bumps the refcount 2845 * before calling the op exposed by the driver; 2846 */ 2847 if (!ice_is_xdp_ena_vsi(vsi)) 2848 ice_vsi_assign_bpf_prog(vsi, prog); 2849 2850 return 0; 2851 clear_xdp_rings: 2852 ice_for_each_xdp_txq(vsi, i) 2853 if (vsi->xdp_rings[i]) { 2854 kfree_rcu(vsi->xdp_rings[i], rcu); 2855 vsi->xdp_rings[i] = NULL; 2856 } 2857 2858 err_map_xdp: 2859 mutex_lock(&pf->avail_q_mutex); 2860 ice_for_each_xdp_txq(vsi, i) { 2861 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2862 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2863 } 2864 mutex_unlock(&pf->avail_q_mutex); 2865 2866 devm_kfree(dev, vsi->xdp_rings); 2867 return -ENOMEM; 2868 } 2869 2870 /** 2871 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2872 * @vsi: VSI to remove XDP rings 2873 * @cfg_type: disable XDP permanently or allow it to be restored later 2874 * 2875 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2876 * resources 2877 */ 2878 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2879 { 2880 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2881 struct ice_pf *pf = vsi->back; 2882 int i, v_idx; 2883 2884 /* q_vectors are freed in reset path so there's no point in detaching 2885 * rings 2886 */ 2887 if (cfg_type == ICE_XDP_CFG_PART) 2888 goto free_qmap; 2889 2890 ice_for_each_q_vector(vsi, v_idx) { 2891 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2892 struct ice_tx_ring *ring; 2893 2894 ice_for_each_tx_ring(ring, q_vector->tx) 2895 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2896 break; 2897 2898 /* restore the value of last node prior to XDP setup */ 2899 q_vector->tx.tx_ring = ring; 2900 } 2901 2902 free_qmap: 2903 mutex_lock(&pf->avail_q_mutex); 2904 ice_for_each_xdp_txq(vsi, i) { 2905 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2906 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2907 } 2908 mutex_unlock(&pf->avail_q_mutex); 2909 2910 ice_for_each_xdp_txq(vsi, i) 2911 if (vsi->xdp_rings[i]) { 2912 if (vsi->xdp_rings[i]->desc) { 2913 synchronize_rcu(); 2914 ice_free_tx_ring(vsi->xdp_rings[i]); 2915 } 2916 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2917 vsi->xdp_rings[i]->ring_stats = NULL; 2918 kfree_rcu(vsi->xdp_rings[i], rcu); 2919 vsi->xdp_rings[i] = NULL; 2920 } 2921 2922 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2923 vsi->xdp_rings = NULL; 2924 2925 if (static_key_enabled(&ice_xdp_locking_key)) 2926 static_branch_dec(&ice_xdp_locking_key); 2927 2928 if (cfg_type == ICE_XDP_CFG_PART) 2929 return 0; 2930 2931 ice_vsi_assign_bpf_prog(vsi, NULL); 2932 2933 /* notify Tx scheduler that we destroyed XDP queues and bring 2934 * back the old number of child nodes 2935 */ 2936 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2937 max_txqs[i] = vsi->num_txq; 2938 2939 /* change number of XDP Tx queues to 0 */ 2940 vsi->num_xdp_txq = 0; 2941 2942 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2943 max_txqs); 2944 } 2945 2946 /** 2947 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2948 * @vsi: VSI to schedule napi on 2949 */ 2950 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2951 { 2952 int i; 2953 2954 ice_for_each_rxq(vsi, i) { 2955 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2956 2957 if (READ_ONCE(rx_ring->xsk_pool)) 2958 napi_schedule(&rx_ring->q_vector->napi); 2959 } 2960 } 2961 2962 /** 2963 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2964 * @vsi: VSI to determine the count of XDP Tx qs 2965 * 2966 * returns 0 if Tx qs count is higher than at least half of CPU count, 2967 * -ENOMEM otherwise 2968 */ 2969 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2970 { 2971 u16 avail = ice_get_avail_txq_count(vsi->back); 2972 u16 cpus = num_possible_cpus(); 2973 2974 if (avail < cpus / 2) 2975 return -ENOMEM; 2976 2977 if (vsi->type == ICE_VSI_SF) 2978 avail = vsi->alloc_txq; 2979 2980 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2981 2982 if (vsi->num_xdp_txq < cpus) 2983 static_branch_inc(&ice_xdp_locking_key); 2984 2985 return 0; 2986 } 2987 2988 /** 2989 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2990 * @vsi: Pointer to VSI structure 2991 */ 2992 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2993 { 2994 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2995 return ICE_RXBUF_1664; 2996 else 2997 return ICE_RXBUF_3072; 2998 } 2999 3000 /** 3001 * ice_xdp_setup_prog - Add or remove XDP eBPF program 3002 * @vsi: VSI to setup XDP for 3003 * @prog: XDP program 3004 * @extack: netlink extended ack 3005 */ 3006 static int 3007 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3008 struct netlink_ext_ack *extack) 3009 { 3010 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3011 int ret = 0, xdp_ring_err = 0; 3012 bool if_running; 3013 3014 if (prog && !prog->aux->xdp_has_frags) { 3015 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3016 NL_SET_ERR_MSG_MOD(extack, 3017 "MTU is too large for linear frames and XDP prog does not support frags"); 3018 return -EOPNOTSUPP; 3019 } 3020 } 3021 3022 /* hot swap progs and avoid toggling link */ 3023 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3024 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3025 ice_vsi_assign_bpf_prog(vsi, prog); 3026 return 0; 3027 } 3028 3029 if_running = netif_running(vsi->netdev) && 3030 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3031 3032 /* need to stop netdev while setting up the program for Rx rings */ 3033 if (if_running) { 3034 ret = ice_down(vsi); 3035 if (ret) { 3036 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3037 return ret; 3038 } 3039 } 3040 3041 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3042 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3043 if (xdp_ring_err) { 3044 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3045 } else { 3046 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3047 ICE_XDP_CFG_FULL); 3048 if (xdp_ring_err) 3049 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3050 } 3051 xdp_features_set_redirect_target(vsi->netdev, true); 3052 /* reallocate Rx queues that are used for zero-copy */ 3053 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3054 if (xdp_ring_err) 3055 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3056 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3057 xdp_features_clear_redirect_target(vsi->netdev); 3058 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3059 if (xdp_ring_err) 3060 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3061 /* reallocate Rx queues that were used for zero-copy */ 3062 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3063 if (xdp_ring_err) 3064 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3065 } 3066 3067 if (if_running) 3068 ret = ice_up(vsi); 3069 3070 if (!ret && prog) 3071 ice_vsi_rx_napi_schedule(vsi); 3072 3073 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3074 } 3075 3076 /** 3077 * ice_xdp_safe_mode - XDP handler for safe mode 3078 * @dev: netdevice 3079 * @xdp: XDP command 3080 */ 3081 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3082 struct netdev_bpf *xdp) 3083 { 3084 NL_SET_ERR_MSG_MOD(xdp->extack, 3085 "Please provide working DDP firmware package in order to use XDP\n" 3086 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3087 return -EOPNOTSUPP; 3088 } 3089 3090 /** 3091 * ice_xdp - implements XDP handler 3092 * @dev: netdevice 3093 * @xdp: XDP command 3094 */ 3095 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3096 { 3097 struct ice_netdev_priv *np = netdev_priv(dev); 3098 struct ice_vsi *vsi = np->vsi; 3099 int ret; 3100 3101 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3102 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3103 return -EINVAL; 3104 } 3105 3106 mutex_lock(&vsi->xdp_state_lock); 3107 3108 switch (xdp->command) { 3109 case XDP_SETUP_PROG: 3110 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3111 break; 3112 case XDP_SETUP_XSK_POOL: 3113 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3114 break; 3115 default: 3116 ret = -EINVAL; 3117 } 3118 3119 mutex_unlock(&vsi->xdp_state_lock); 3120 return ret; 3121 } 3122 3123 /** 3124 * ice_ena_misc_vector - enable the non-queue interrupts 3125 * @pf: board private structure 3126 */ 3127 static void ice_ena_misc_vector(struct ice_pf *pf) 3128 { 3129 struct ice_hw *hw = &pf->hw; 3130 u32 pf_intr_start_offset; 3131 u32 val; 3132 3133 /* Disable anti-spoof detection interrupt to prevent spurious event 3134 * interrupts during a function reset. Anti-spoof functionally is 3135 * still supported. 3136 */ 3137 val = rd32(hw, GL_MDCK_TX_TDPU); 3138 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3139 wr32(hw, GL_MDCK_TX_TDPU, val); 3140 3141 /* clear things first */ 3142 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3143 rd32(hw, PFINT_OICR); /* read to clear */ 3144 3145 val = (PFINT_OICR_ECC_ERR_M | 3146 PFINT_OICR_MAL_DETECT_M | 3147 PFINT_OICR_GRST_M | 3148 PFINT_OICR_PCI_EXCEPTION_M | 3149 PFINT_OICR_VFLR_M | 3150 PFINT_OICR_HMC_ERR_M | 3151 PFINT_OICR_PE_PUSH_M | 3152 PFINT_OICR_PE_CRITERR_M); 3153 3154 wr32(hw, PFINT_OICR_ENA, val); 3155 3156 /* SW_ITR_IDX = 0, but don't change INTENA */ 3157 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3158 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3159 3160 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3161 return; 3162 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3163 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3164 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3165 } 3166 3167 /** 3168 * ice_ll_ts_intr - ll_ts interrupt handler 3169 * @irq: interrupt number 3170 * @data: pointer to a q_vector 3171 */ 3172 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3173 { 3174 struct ice_pf *pf = data; 3175 u32 pf_intr_start_offset; 3176 struct ice_ptp_tx *tx; 3177 unsigned long flags; 3178 struct ice_hw *hw; 3179 u32 val; 3180 u8 idx; 3181 3182 hw = &pf->hw; 3183 tx = &pf->ptp.port.tx; 3184 spin_lock_irqsave(&tx->lock, flags); 3185 ice_ptp_complete_tx_single_tstamp(tx); 3186 3187 idx = find_next_bit_wrap(tx->in_use, tx->len, 3188 tx->last_ll_ts_idx_read + 1); 3189 if (idx != tx->len) 3190 ice_ptp_req_tx_single_tstamp(tx, idx); 3191 spin_unlock_irqrestore(&tx->lock, flags); 3192 3193 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3194 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3195 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3196 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3197 val); 3198 3199 return IRQ_HANDLED; 3200 } 3201 3202 /** 3203 * ice_misc_intr - misc interrupt handler 3204 * @irq: interrupt number 3205 * @data: pointer to a q_vector 3206 */ 3207 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3208 { 3209 struct ice_pf *pf = (struct ice_pf *)data; 3210 irqreturn_t ret = IRQ_HANDLED; 3211 struct ice_hw *hw = &pf->hw; 3212 struct device *dev; 3213 u32 oicr, ena_mask; 3214 3215 dev = ice_pf_to_dev(pf); 3216 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3217 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3218 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3219 3220 oicr = rd32(hw, PFINT_OICR); 3221 ena_mask = rd32(hw, PFINT_OICR_ENA); 3222 3223 if (oicr & PFINT_OICR_SWINT_M) { 3224 ena_mask &= ~PFINT_OICR_SWINT_M; 3225 pf->sw_int_count++; 3226 } 3227 3228 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3229 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3230 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3231 } 3232 if (oicr & PFINT_OICR_VFLR_M) { 3233 /* disable any further VFLR event notifications */ 3234 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3235 u32 reg = rd32(hw, PFINT_OICR_ENA); 3236 3237 reg &= ~PFINT_OICR_VFLR_M; 3238 wr32(hw, PFINT_OICR_ENA, reg); 3239 } else { 3240 ena_mask &= ~PFINT_OICR_VFLR_M; 3241 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3242 } 3243 } 3244 3245 if (oicr & PFINT_OICR_GRST_M) { 3246 u32 reset; 3247 3248 /* we have a reset warning */ 3249 ena_mask &= ~PFINT_OICR_GRST_M; 3250 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3251 rd32(hw, GLGEN_RSTAT)); 3252 3253 if (reset == ICE_RESET_CORER) 3254 pf->corer_count++; 3255 else if (reset == ICE_RESET_GLOBR) 3256 pf->globr_count++; 3257 else if (reset == ICE_RESET_EMPR) 3258 pf->empr_count++; 3259 else 3260 dev_dbg(dev, "Invalid reset type %d\n", reset); 3261 3262 /* If a reset cycle isn't already in progress, we set a bit in 3263 * pf->state so that the service task can start a reset/rebuild. 3264 */ 3265 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3266 if (reset == ICE_RESET_CORER) 3267 set_bit(ICE_CORER_RECV, pf->state); 3268 else if (reset == ICE_RESET_GLOBR) 3269 set_bit(ICE_GLOBR_RECV, pf->state); 3270 else 3271 set_bit(ICE_EMPR_RECV, pf->state); 3272 3273 /* There are couple of different bits at play here. 3274 * hw->reset_ongoing indicates whether the hardware is 3275 * in reset. This is set to true when a reset interrupt 3276 * is received and set back to false after the driver 3277 * has determined that the hardware is out of reset. 3278 * 3279 * ICE_RESET_OICR_RECV in pf->state indicates 3280 * that a post reset rebuild is required before the 3281 * driver is operational again. This is set above. 3282 * 3283 * As this is the start of the reset/rebuild cycle, set 3284 * both to indicate that. 3285 */ 3286 hw->reset_ongoing = true; 3287 } 3288 } 3289 3290 if (oicr & PFINT_OICR_TSYN_TX_M) { 3291 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3292 if (ice_pf_state_is_nominal(pf) && 3293 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3294 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3295 unsigned long flags; 3296 u8 idx; 3297 3298 spin_lock_irqsave(&tx->lock, flags); 3299 idx = find_next_bit_wrap(tx->in_use, tx->len, 3300 tx->last_ll_ts_idx_read + 1); 3301 if (idx != tx->len) 3302 ice_ptp_req_tx_single_tstamp(tx, idx); 3303 spin_unlock_irqrestore(&tx->lock, flags); 3304 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3305 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3306 ret = IRQ_WAKE_THREAD; 3307 } 3308 } 3309 3310 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3311 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3312 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3313 3314 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3315 3316 if (ice_pf_src_tmr_owned(pf)) { 3317 /* Save EVENTs from GLTSYN register */ 3318 pf->ptp.ext_ts_irq |= gltsyn_stat & 3319 (GLTSYN_STAT_EVENT0_M | 3320 GLTSYN_STAT_EVENT1_M | 3321 GLTSYN_STAT_EVENT2_M); 3322 3323 ice_ptp_extts_event(pf); 3324 } 3325 } 3326 3327 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3328 if (oicr & ICE_AUX_CRIT_ERR) { 3329 pf->oicr_err_reg |= oicr; 3330 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3331 ena_mask &= ~ICE_AUX_CRIT_ERR; 3332 } 3333 3334 /* Report any remaining unexpected interrupts */ 3335 oicr &= ena_mask; 3336 if (oicr) { 3337 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3338 /* If a critical error is pending there is no choice but to 3339 * reset the device. 3340 */ 3341 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3342 PFINT_OICR_ECC_ERR_M)) { 3343 set_bit(ICE_PFR_REQ, pf->state); 3344 } 3345 } 3346 ice_service_task_schedule(pf); 3347 if (ret == IRQ_HANDLED) 3348 ice_irq_dynamic_ena(hw, NULL, NULL); 3349 3350 return ret; 3351 } 3352 3353 /** 3354 * ice_misc_intr_thread_fn - misc interrupt thread function 3355 * @irq: interrupt number 3356 * @data: pointer to a q_vector 3357 */ 3358 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3359 { 3360 struct ice_pf *pf = data; 3361 struct ice_hw *hw; 3362 3363 hw = &pf->hw; 3364 3365 if (ice_is_reset_in_progress(pf->state)) 3366 goto skip_irq; 3367 3368 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3369 /* Process outstanding Tx timestamps. If there is more work, 3370 * re-arm the interrupt to trigger again. 3371 */ 3372 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3373 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3374 ice_flush(hw); 3375 } 3376 } 3377 3378 skip_irq: 3379 ice_irq_dynamic_ena(hw, NULL, NULL); 3380 3381 return IRQ_HANDLED; 3382 } 3383 3384 /** 3385 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3386 * @hw: pointer to HW structure 3387 */ 3388 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3389 { 3390 /* disable Admin queue Interrupt causes */ 3391 wr32(hw, PFINT_FW_CTL, 3392 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3393 3394 /* disable Mailbox queue Interrupt causes */ 3395 wr32(hw, PFINT_MBX_CTL, 3396 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3397 3398 wr32(hw, PFINT_SB_CTL, 3399 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3400 3401 /* disable Control queue Interrupt causes */ 3402 wr32(hw, PFINT_OICR_CTL, 3403 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3404 3405 ice_flush(hw); 3406 } 3407 3408 /** 3409 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3410 * @pf: board private structure 3411 */ 3412 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3413 { 3414 int irq_num = pf->ll_ts_irq.virq; 3415 3416 synchronize_irq(irq_num); 3417 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3418 3419 ice_free_irq(pf, pf->ll_ts_irq); 3420 } 3421 3422 /** 3423 * ice_free_irq_msix_misc - Unroll misc vector setup 3424 * @pf: board private structure 3425 */ 3426 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3427 { 3428 int misc_irq_num = pf->oicr_irq.virq; 3429 struct ice_hw *hw = &pf->hw; 3430 3431 ice_dis_ctrlq_interrupts(hw); 3432 3433 /* disable OICR interrupt */ 3434 wr32(hw, PFINT_OICR_ENA, 0); 3435 ice_flush(hw); 3436 3437 synchronize_irq(misc_irq_num); 3438 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3439 3440 ice_free_irq(pf, pf->oicr_irq); 3441 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3442 ice_free_irq_msix_ll_ts(pf); 3443 } 3444 3445 /** 3446 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3447 * @hw: pointer to HW structure 3448 * @reg_idx: HW vector index to associate the control queue interrupts with 3449 */ 3450 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3451 { 3452 u32 val; 3453 3454 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3455 PFINT_OICR_CTL_CAUSE_ENA_M); 3456 wr32(hw, PFINT_OICR_CTL, val); 3457 3458 /* enable Admin queue Interrupt causes */ 3459 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3460 PFINT_FW_CTL_CAUSE_ENA_M); 3461 wr32(hw, PFINT_FW_CTL, val); 3462 3463 /* enable Mailbox queue Interrupt causes */ 3464 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3465 PFINT_MBX_CTL_CAUSE_ENA_M); 3466 wr32(hw, PFINT_MBX_CTL, val); 3467 3468 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3469 /* enable Sideband queue Interrupt causes */ 3470 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3471 PFINT_SB_CTL_CAUSE_ENA_M); 3472 wr32(hw, PFINT_SB_CTL, val); 3473 } 3474 3475 ice_flush(hw); 3476 } 3477 3478 /** 3479 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3480 * @pf: board private structure 3481 * 3482 * This sets up the handler for MSIX 0, which is used to manage the 3483 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3484 * when in MSI or Legacy interrupt mode. 3485 */ 3486 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3487 { 3488 struct device *dev = ice_pf_to_dev(pf); 3489 struct ice_hw *hw = &pf->hw; 3490 u32 pf_intr_start_offset; 3491 struct msi_map irq; 3492 int err = 0; 3493 3494 if (!pf->int_name[0]) 3495 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3496 dev_driver_string(dev), dev_name(dev)); 3497 3498 if (!pf->int_name_ll_ts[0]) 3499 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3500 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3501 /* Do not request IRQ but do enable OICR interrupt since settings are 3502 * lost during reset. Note that this function is called only during 3503 * rebuild path and not while reset is in progress. 3504 */ 3505 if (ice_is_reset_in_progress(pf->state)) 3506 goto skip_req_irq; 3507 3508 /* reserve one vector in irq_tracker for misc interrupts */ 3509 irq = ice_alloc_irq(pf, false); 3510 if (irq.index < 0) 3511 return irq.index; 3512 3513 pf->oicr_irq = irq; 3514 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3515 ice_misc_intr_thread_fn, 0, 3516 pf->int_name, pf); 3517 if (err) { 3518 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3519 pf->int_name, err); 3520 ice_free_irq(pf, pf->oicr_irq); 3521 return err; 3522 } 3523 3524 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3525 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3526 goto skip_req_irq; 3527 3528 irq = ice_alloc_irq(pf, false); 3529 if (irq.index < 0) 3530 return irq.index; 3531 3532 pf->ll_ts_irq = irq; 3533 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3534 pf->int_name_ll_ts, pf); 3535 if (err) { 3536 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3537 pf->int_name_ll_ts, err); 3538 ice_free_irq(pf, pf->ll_ts_irq); 3539 return err; 3540 } 3541 3542 skip_req_irq: 3543 ice_ena_misc_vector(pf); 3544 3545 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3546 /* This enables LL TS interrupt */ 3547 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3548 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3549 wr32(hw, PFINT_SB_CTL, 3550 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3551 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3552 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3553 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3554 3555 ice_flush(hw); 3556 ice_irq_dynamic_ena(hw, NULL, NULL); 3557 3558 return 0; 3559 } 3560 3561 /** 3562 * ice_set_ops - set netdev and ethtools ops for the given netdev 3563 * @vsi: the VSI associated with the new netdev 3564 */ 3565 static void ice_set_ops(struct ice_vsi *vsi) 3566 { 3567 struct net_device *netdev = vsi->netdev; 3568 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3569 3570 if (ice_is_safe_mode(pf)) { 3571 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3572 ice_set_ethtool_safe_mode_ops(netdev); 3573 return; 3574 } 3575 3576 netdev->netdev_ops = &ice_netdev_ops; 3577 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3578 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3579 ice_set_ethtool_ops(netdev); 3580 3581 if (vsi->type != ICE_VSI_PF) 3582 return; 3583 3584 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3585 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3586 NETDEV_XDP_ACT_RX_SG; 3587 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3588 } 3589 3590 /** 3591 * ice_set_netdev_features - set features for the given netdev 3592 * @netdev: netdev instance 3593 */ 3594 void ice_set_netdev_features(struct net_device *netdev) 3595 { 3596 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3597 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3598 netdev_features_t csumo_features; 3599 netdev_features_t vlano_features; 3600 netdev_features_t dflt_features; 3601 netdev_features_t tso_features; 3602 3603 if (ice_is_safe_mode(pf)) { 3604 /* safe mode */ 3605 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3606 netdev->hw_features = netdev->features; 3607 return; 3608 } 3609 3610 dflt_features = NETIF_F_SG | 3611 NETIF_F_HIGHDMA | 3612 NETIF_F_NTUPLE | 3613 NETIF_F_RXHASH; 3614 3615 csumo_features = NETIF_F_RXCSUM | 3616 NETIF_F_IP_CSUM | 3617 NETIF_F_SCTP_CRC | 3618 NETIF_F_IPV6_CSUM; 3619 3620 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3621 NETIF_F_HW_VLAN_CTAG_TX | 3622 NETIF_F_HW_VLAN_CTAG_RX; 3623 3624 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3625 if (is_dvm_ena) 3626 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3627 3628 tso_features = NETIF_F_TSO | 3629 NETIF_F_TSO_ECN | 3630 NETIF_F_TSO6 | 3631 NETIF_F_GSO_GRE | 3632 NETIF_F_GSO_UDP_TUNNEL | 3633 NETIF_F_GSO_GRE_CSUM | 3634 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3635 NETIF_F_GSO_PARTIAL | 3636 NETIF_F_GSO_IPXIP4 | 3637 NETIF_F_GSO_IPXIP6 | 3638 NETIF_F_GSO_UDP_L4; 3639 3640 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3641 NETIF_F_GSO_GRE_CSUM; 3642 /* set features that user can change */ 3643 netdev->hw_features = dflt_features | csumo_features | 3644 vlano_features | tso_features; 3645 3646 /* add support for HW_CSUM on packets with MPLS header */ 3647 netdev->mpls_features = NETIF_F_HW_CSUM | 3648 NETIF_F_TSO | 3649 NETIF_F_TSO6; 3650 3651 /* enable features */ 3652 netdev->features |= netdev->hw_features; 3653 3654 netdev->hw_features |= NETIF_F_HW_TC; 3655 netdev->hw_features |= NETIF_F_LOOPBACK; 3656 3657 /* encap and VLAN devices inherit default, csumo and tso features */ 3658 netdev->hw_enc_features |= dflt_features | csumo_features | 3659 tso_features; 3660 netdev->vlan_features |= dflt_features | csumo_features | 3661 tso_features; 3662 3663 /* advertise support but don't enable by default since only one type of 3664 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3665 * type turns on the other has to be turned off. This is enforced by the 3666 * ice_fix_features() ndo callback. 3667 */ 3668 if (is_dvm_ena) 3669 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3670 NETIF_F_HW_VLAN_STAG_TX; 3671 3672 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3673 * be changed at runtime 3674 */ 3675 netdev->hw_features |= NETIF_F_RXFCS; 3676 3677 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3678 } 3679 3680 /** 3681 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3682 * @lut: Lookup table 3683 * @rss_table_size: Lookup table size 3684 * @rss_size: Range of queue number for hashing 3685 */ 3686 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3687 { 3688 u16 i; 3689 3690 for (i = 0; i < rss_table_size; i++) 3691 lut[i] = i % rss_size; 3692 } 3693 3694 /** 3695 * ice_pf_vsi_setup - Set up a PF VSI 3696 * @pf: board private structure 3697 * @pi: pointer to the port_info instance 3698 * 3699 * Returns pointer to the successfully allocated VSI software struct 3700 * on success, otherwise returns NULL on failure. 3701 */ 3702 static struct ice_vsi * 3703 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3704 { 3705 struct ice_vsi_cfg_params params = {}; 3706 3707 params.type = ICE_VSI_PF; 3708 params.port_info = pi; 3709 params.flags = ICE_VSI_FLAG_INIT; 3710 3711 return ice_vsi_setup(pf, ¶ms); 3712 } 3713 3714 static struct ice_vsi * 3715 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3716 struct ice_channel *ch) 3717 { 3718 struct ice_vsi_cfg_params params = {}; 3719 3720 params.type = ICE_VSI_CHNL; 3721 params.port_info = pi; 3722 params.ch = ch; 3723 params.flags = ICE_VSI_FLAG_INIT; 3724 3725 return ice_vsi_setup(pf, ¶ms); 3726 } 3727 3728 /** 3729 * ice_ctrl_vsi_setup - Set up a control VSI 3730 * @pf: board private structure 3731 * @pi: pointer to the port_info instance 3732 * 3733 * Returns pointer to the successfully allocated VSI software struct 3734 * on success, otherwise returns NULL on failure. 3735 */ 3736 static struct ice_vsi * 3737 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3738 { 3739 struct ice_vsi_cfg_params params = {}; 3740 3741 params.type = ICE_VSI_CTRL; 3742 params.port_info = pi; 3743 params.flags = ICE_VSI_FLAG_INIT; 3744 3745 return ice_vsi_setup(pf, ¶ms); 3746 } 3747 3748 /** 3749 * ice_lb_vsi_setup - Set up a loopback VSI 3750 * @pf: board private structure 3751 * @pi: pointer to the port_info instance 3752 * 3753 * Returns pointer to the successfully allocated VSI software struct 3754 * on success, otherwise returns NULL on failure. 3755 */ 3756 struct ice_vsi * 3757 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3758 { 3759 struct ice_vsi_cfg_params params = {}; 3760 3761 params.type = ICE_VSI_LB; 3762 params.port_info = pi; 3763 params.flags = ICE_VSI_FLAG_INIT; 3764 3765 return ice_vsi_setup(pf, ¶ms); 3766 } 3767 3768 /** 3769 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3770 * @netdev: network interface to be adjusted 3771 * @proto: VLAN TPID 3772 * @vid: VLAN ID to be added 3773 * 3774 * net_device_ops implementation for adding VLAN IDs 3775 */ 3776 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3777 { 3778 struct ice_netdev_priv *np = netdev_priv(netdev); 3779 struct ice_vsi_vlan_ops *vlan_ops; 3780 struct ice_vsi *vsi = np->vsi; 3781 struct ice_vlan vlan; 3782 int ret; 3783 3784 /* VLAN 0 is added by default during load/reset */ 3785 if (!vid) 3786 return 0; 3787 3788 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3789 usleep_range(1000, 2000); 3790 3791 /* Add multicast promisc rule for the VLAN ID to be added if 3792 * all-multicast is currently enabled. 3793 */ 3794 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3795 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3796 ICE_MCAST_VLAN_PROMISC_BITS, 3797 vid); 3798 if (ret) 3799 goto finish; 3800 } 3801 3802 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3803 3804 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3805 * packets aren't pruned by the device's internal switch on Rx 3806 */ 3807 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3808 ret = vlan_ops->add_vlan(vsi, &vlan); 3809 if (ret) 3810 goto finish; 3811 3812 /* If all-multicast is currently enabled and this VLAN ID is only one 3813 * besides VLAN-0 we have to update look-up type of multicast promisc 3814 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3815 */ 3816 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3817 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3818 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3819 ICE_MCAST_PROMISC_BITS, 0); 3820 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3821 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3822 } 3823 3824 finish: 3825 clear_bit(ICE_CFG_BUSY, vsi->state); 3826 3827 return ret; 3828 } 3829 3830 /** 3831 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3832 * @netdev: network interface to be adjusted 3833 * @proto: VLAN TPID 3834 * @vid: VLAN ID to be removed 3835 * 3836 * net_device_ops implementation for removing VLAN IDs 3837 */ 3838 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3839 { 3840 struct ice_netdev_priv *np = netdev_priv(netdev); 3841 struct ice_vsi_vlan_ops *vlan_ops; 3842 struct ice_vsi *vsi = np->vsi; 3843 struct ice_vlan vlan; 3844 int ret; 3845 3846 /* don't allow removal of VLAN 0 */ 3847 if (!vid) 3848 return 0; 3849 3850 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3851 usleep_range(1000, 2000); 3852 3853 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3854 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3855 if (ret) { 3856 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3857 vsi->vsi_num); 3858 vsi->current_netdev_flags |= IFF_ALLMULTI; 3859 } 3860 3861 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3862 3863 /* Make sure VLAN delete is successful before updating VLAN 3864 * information 3865 */ 3866 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3867 ret = vlan_ops->del_vlan(vsi, &vlan); 3868 if (ret) 3869 goto finish; 3870 3871 /* Remove multicast promisc rule for the removed VLAN ID if 3872 * all-multicast is enabled. 3873 */ 3874 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3875 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3876 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3877 3878 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3879 /* Update look-up type of multicast promisc rule for VLAN 0 3880 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3881 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3882 */ 3883 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3884 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3885 ICE_MCAST_VLAN_PROMISC_BITS, 3886 0); 3887 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3888 ICE_MCAST_PROMISC_BITS, 0); 3889 } 3890 } 3891 3892 finish: 3893 clear_bit(ICE_CFG_BUSY, vsi->state); 3894 3895 return ret; 3896 } 3897 3898 /** 3899 * ice_rep_indr_tc_block_unbind 3900 * @cb_priv: indirection block private data 3901 */ 3902 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3903 { 3904 struct ice_indr_block_priv *indr_priv = cb_priv; 3905 3906 list_del(&indr_priv->list); 3907 kfree(indr_priv); 3908 } 3909 3910 /** 3911 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3912 * @vsi: VSI struct which has the netdev 3913 */ 3914 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3915 { 3916 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3917 3918 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3919 ice_rep_indr_tc_block_unbind); 3920 } 3921 3922 /** 3923 * ice_tc_indir_block_register - Register TC indirect block notifications 3924 * @vsi: VSI struct which has the netdev 3925 * 3926 * Returns 0 on success, negative value on failure 3927 */ 3928 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3929 { 3930 struct ice_netdev_priv *np; 3931 3932 if (!vsi || !vsi->netdev) 3933 return -EINVAL; 3934 3935 np = netdev_priv(vsi->netdev); 3936 3937 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3938 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3939 } 3940 3941 /** 3942 * ice_get_avail_q_count - Get count of queues in use 3943 * @pf_qmap: bitmap to get queue use count from 3944 * @lock: pointer to a mutex that protects access to pf_qmap 3945 * @size: size of the bitmap 3946 */ 3947 static u16 3948 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3949 { 3950 unsigned long bit; 3951 u16 count = 0; 3952 3953 mutex_lock(lock); 3954 for_each_clear_bit(bit, pf_qmap, size) 3955 count++; 3956 mutex_unlock(lock); 3957 3958 return count; 3959 } 3960 3961 /** 3962 * ice_get_avail_txq_count - Get count of Tx queues in use 3963 * @pf: pointer to an ice_pf instance 3964 */ 3965 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3966 { 3967 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3968 pf->max_pf_txqs); 3969 } 3970 3971 /** 3972 * ice_get_avail_rxq_count - Get count of Rx queues in use 3973 * @pf: pointer to an ice_pf instance 3974 */ 3975 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3976 { 3977 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3978 pf->max_pf_rxqs); 3979 } 3980 3981 /** 3982 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3983 * @pf: board private structure to initialize 3984 */ 3985 static void ice_deinit_pf(struct ice_pf *pf) 3986 { 3987 ice_service_task_stop(pf); 3988 mutex_destroy(&pf->lag_mutex); 3989 mutex_destroy(&pf->adev_mutex); 3990 mutex_destroy(&pf->sw_mutex); 3991 mutex_destroy(&pf->tc_mutex); 3992 mutex_destroy(&pf->avail_q_mutex); 3993 mutex_destroy(&pf->vfs.table_lock); 3994 3995 if (pf->avail_txqs) { 3996 bitmap_free(pf->avail_txqs); 3997 pf->avail_txqs = NULL; 3998 } 3999 4000 if (pf->avail_rxqs) { 4001 bitmap_free(pf->avail_rxqs); 4002 pf->avail_rxqs = NULL; 4003 } 4004 4005 if (pf->ptp.clock) 4006 ptp_clock_unregister(pf->ptp.clock); 4007 4008 xa_destroy(&pf->dyn_ports); 4009 xa_destroy(&pf->sf_nums); 4010 } 4011 4012 /** 4013 * ice_set_pf_caps - set PFs capability flags 4014 * @pf: pointer to the PF instance 4015 */ 4016 static void ice_set_pf_caps(struct ice_pf *pf) 4017 { 4018 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4019 4020 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4021 if (func_caps->common_cap.rdma) 4022 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4023 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4024 if (func_caps->common_cap.dcb) 4025 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4026 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4027 if (func_caps->common_cap.sr_iov_1_1) { 4028 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4029 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4030 ICE_MAX_SRIOV_VFS); 4031 } 4032 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4033 if (func_caps->common_cap.rss_table_size) 4034 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4035 4036 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4037 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4038 u16 unused; 4039 4040 /* ctrl_vsi_idx will be set to a valid value when flow director 4041 * is setup by ice_init_fdir 4042 */ 4043 pf->ctrl_vsi_idx = ICE_NO_VSI; 4044 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4045 /* force guaranteed filter pool for PF */ 4046 ice_alloc_fd_guar_item(&pf->hw, &unused, 4047 func_caps->fd_fltr_guar); 4048 /* force shared filter pool for PF */ 4049 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4050 func_caps->fd_fltr_best_effort); 4051 } 4052 4053 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4054 if (func_caps->common_cap.ieee_1588 && 4055 !(pf->hw.mac_type == ICE_MAC_E830)) 4056 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4057 4058 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4059 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4060 } 4061 4062 /** 4063 * ice_init_pf - Initialize general software structures (struct ice_pf) 4064 * @pf: board private structure to initialize 4065 */ 4066 static int ice_init_pf(struct ice_pf *pf) 4067 { 4068 ice_set_pf_caps(pf); 4069 4070 mutex_init(&pf->sw_mutex); 4071 mutex_init(&pf->tc_mutex); 4072 mutex_init(&pf->adev_mutex); 4073 mutex_init(&pf->lag_mutex); 4074 4075 INIT_HLIST_HEAD(&pf->aq_wait_list); 4076 spin_lock_init(&pf->aq_wait_lock); 4077 init_waitqueue_head(&pf->aq_wait_queue); 4078 4079 init_waitqueue_head(&pf->reset_wait_queue); 4080 4081 /* setup service timer and periodic service task */ 4082 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4083 pf->serv_tmr_period = HZ; 4084 INIT_WORK(&pf->serv_task, ice_service_task); 4085 clear_bit(ICE_SERVICE_SCHED, pf->state); 4086 4087 mutex_init(&pf->avail_q_mutex); 4088 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4089 if (!pf->avail_txqs) 4090 return -ENOMEM; 4091 4092 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4093 if (!pf->avail_rxqs) { 4094 bitmap_free(pf->avail_txqs); 4095 pf->avail_txqs = NULL; 4096 return -ENOMEM; 4097 } 4098 4099 mutex_init(&pf->vfs.table_lock); 4100 hash_init(pf->vfs.table); 4101 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4102 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4103 ICE_MBX_OVERFLOW_WATERMARK); 4104 else 4105 ice_mbx_init_snapshot(&pf->hw); 4106 4107 xa_init(&pf->dyn_ports); 4108 xa_init(&pf->sf_nums); 4109 4110 return 0; 4111 } 4112 4113 /** 4114 * ice_is_wol_supported - check if WoL is supported 4115 * @hw: pointer to hardware info 4116 * 4117 * Check if WoL is supported based on the HW configuration. 4118 * Returns true if NVM supports and enables WoL for this port, false otherwise 4119 */ 4120 bool ice_is_wol_supported(struct ice_hw *hw) 4121 { 4122 u16 wol_ctrl; 4123 4124 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4125 * word) indicates WoL is not supported on the corresponding PF ID. 4126 */ 4127 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4128 return false; 4129 4130 return !(BIT(hw->port_info->lport) & wol_ctrl); 4131 } 4132 4133 /** 4134 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4135 * @vsi: VSI being changed 4136 * @new_rx: new number of Rx queues 4137 * @new_tx: new number of Tx queues 4138 * @locked: is adev device_lock held 4139 * 4140 * Only change the number of queues if new_tx, or new_rx is non-0. 4141 * 4142 * Returns 0 on success. 4143 */ 4144 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4145 { 4146 struct ice_pf *pf = vsi->back; 4147 int i, err = 0, timeout = 50; 4148 4149 if (!new_rx && !new_tx) 4150 return -EINVAL; 4151 4152 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4153 timeout--; 4154 if (!timeout) 4155 return -EBUSY; 4156 usleep_range(1000, 2000); 4157 } 4158 4159 if (new_tx) 4160 vsi->req_txq = (u16)new_tx; 4161 if (new_rx) 4162 vsi->req_rxq = (u16)new_rx; 4163 4164 /* set for the next time the netdev is started */ 4165 if (!netif_running(vsi->netdev)) { 4166 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4167 if (err) 4168 goto rebuild_err; 4169 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4170 goto done; 4171 } 4172 4173 ice_vsi_close(vsi); 4174 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4175 if (err) 4176 goto rebuild_err; 4177 4178 ice_for_each_traffic_class(i) { 4179 if (vsi->tc_cfg.ena_tc & BIT(i)) 4180 netdev_set_tc_queue(vsi->netdev, 4181 vsi->tc_cfg.tc_info[i].netdev_tc, 4182 vsi->tc_cfg.tc_info[i].qcount_tx, 4183 vsi->tc_cfg.tc_info[i].qoffset); 4184 } 4185 ice_pf_dcb_recfg(pf, locked); 4186 ice_vsi_open(vsi); 4187 goto done; 4188 4189 rebuild_err: 4190 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4191 err); 4192 done: 4193 clear_bit(ICE_CFG_BUSY, pf->state); 4194 return err; 4195 } 4196 4197 /** 4198 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4199 * @pf: PF to configure 4200 * 4201 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4202 * VSI can still Tx/Rx VLAN tagged packets. 4203 */ 4204 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4205 { 4206 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4207 struct ice_vsi_ctx *ctxt; 4208 struct ice_hw *hw; 4209 int status; 4210 4211 if (!vsi) 4212 return; 4213 4214 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4215 if (!ctxt) 4216 return; 4217 4218 hw = &pf->hw; 4219 ctxt->info = vsi->info; 4220 4221 ctxt->info.valid_sections = 4222 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4223 ICE_AQ_VSI_PROP_SECURITY_VALID | 4224 ICE_AQ_VSI_PROP_SW_VALID); 4225 4226 /* disable VLAN anti-spoof */ 4227 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4228 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4229 4230 /* disable VLAN pruning and keep all other settings */ 4231 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4232 4233 /* allow all VLANs on Tx and don't strip on Rx */ 4234 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4235 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4236 4237 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4238 if (status) { 4239 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4240 status, ice_aq_str(hw->adminq.sq_last_status)); 4241 } else { 4242 vsi->info.sec_flags = ctxt->info.sec_flags; 4243 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4244 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4245 } 4246 4247 kfree(ctxt); 4248 } 4249 4250 /** 4251 * ice_log_pkg_init - log result of DDP package load 4252 * @hw: pointer to hardware info 4253 * @state: state of package load 4254 */ 4255 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4256 { 4257 struct ice_pf *pf = hw->back; 4258 struct device *dev; 4259 4260 dev = ice_pf_to_dev(pf); 4261 4262 switch (state) { 4263 case ICE_DDP_PKG_SUCCESS: 4264 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4265 hw->active_pkg_name, 4266 hw->active_pkg_ver.major, 4267 hw->active_pkg_ver.minor, 4268 hw->active_pkg_ver.update, 4269 hw->active_pkg_ver.draft); 4270 break; 4271 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4272 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4273 hw->active_pkg_name, 4274 hw->active_pkg_ver.major, 4275 hw->active_pkg_ver.minor, 4276 hw->active_pkg_ver.update, 4277 hw->active_pkg_ver.draft); 4278 break; 4279 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4280 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4281 hw->active_pkg_name, 4282 hw->active_pkg_ver.major, 4283 hw->active_pkg_ver.minor, 4284 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4285 break; 4286 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4287 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4288 hw->active_pkg_name, 4289 hw->active_pkg_ver.major, 4290 hw->active_pkg_ver.minor, 4291 hw->active_pkg_ver.update, 4292 hw->active_pkg_ver.draft, 4293 hw->pkg_name, 4294 hw->pkg_ver.major, 4295 hw->pkg_ver.minor, 4296 hw->pkg_ver.update, 4297 hw->pkg_ver.draft); 4298 break; 4299 case ICE_DDP_PKG_FW_MISMATCH: 4300 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4301 break; 4302 case ICE_DDP_PKG_INVALID_FILE: 4303 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4304 break; 4305 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4306 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4307 break; 4308 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4309 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4310 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4311 break; 4312 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4313 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4314 break; 4315 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4316 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4317 break; 4318 case ICE_DDP_PKG_LOAD_ERROR: 4319 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4320 /* poll for reset to complete */ 4321 if (ice_check_reset(hw)) 4322 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4323 break; 4324 case ICE_DDP_PKG_ERR: 4325 default: 4326 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4327 break; 4328 } 4329 } 4330 4331 /** 4332 * ice_load_pkg - load/reload the DDP Package file 4333 * @firmware: firmware structure when firmware requested or NULL for reload 4334 * @pf: pointer to the PF instance 4335 * 4336 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4337 * initialize HW tables. 4338 */ 4339 static void 4340 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4341 { 4342 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4343 struct device *dev = ice_pf_to_dev(pf); 4344 struct ice_hw *hw = &pf->hw; 4345 4346 /* Load DDP Package */ 4347 if (firmware && !hw->pkg_copy) { 4348 state = ice_copy_and_init_pkg(hw, firmware->data, 4349 firmware->size); 4350 ice_log_pkg_init(hw, state); 4351 } else if (!firmware && hw->pkg_copy) { 4352 /* Reload package during rebuild after CORER/GLOBR reset */ 4353 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4354 ice_log_pkg_init(hw, state); 4355 } else { 4356 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4357 } 4358 4359 if (!ice_is_init_pkg_successful(state)) { 4360 /* Safe Mode */ 4361 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4362 return; 4363 } 4364 4365 /* Successful download package is the precondition for advanced 4366 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4367 */ 4368 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4369 } 4370 4371 /** 4372 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4373 * @pf: pointer to the PF structure 4374 * 4375 * There is no error returned here because the driver should be able to handle 4376 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4377 * specifically with Tx. 4378 */ 4379 static void ice_verify_cacheline_size(struct ice_pf *pf) 4380 { 4381 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4382 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4383 ICE_CACHE_LINE_BYTES); 4384 } 4385 4386 /** 4387 * ice_send_version - update firmware with driver version 4388 * @pf: PF struct 4389 * 4390 * Returns 0 on success, else error code 4391 */ 4392 static int ice_send_version(struct ice_pf *pf) 4393 { 4394 struct ice_driver_ver dv; 4395 4396 dv.major_ver = 0xff; 4397 dv.minor_ver = 0xff; 4398 dv.build_ver = 0xff; 4399 dv.subbuild_ver = 0; 4400 strscpy((char *)dv.driver_string, UTS_RELEASE, 4401 sizeof(dv.driver_string)); 4402 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4403 } 4404 4405 /** 4406 * ice_init_fdir - Initialize flow director VSI and configuration 4407 * @pf: pointer to the PF instance 4408 * 4409 * returns 0 on success, negative on error 4410 */ 4411 static int ice_init_fdir(struct ice_pf *pf) 4412 { 4413 struct device *dev = ice_pf_to_dev(pf); 4414 struct ice_vsi *ctrl_vsi; 4415 int err; 4416 4417 /* Side Band Flow Director needs to have a control VSI. 4418 * Allocate it and store it in the PF. 4419 */ 4420 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4421 if (!ctrl_vsi) { 4422 dev_dbg(dev, "could not create control VSI\n"); 4423 return -ENOMEM; 4424 } 4425 4426 err = ice_vsi_open_ctrl(ctrl_vsi); 4427 if (err) { 4428 dev_dbg(dev, "could not open control VSI\n"); 4429 goto err_vsi_open; 4430 } 4431 4432 mutex_init(&pf->hw.fdir_fltr_lock); 4433 4434 err = ice_fdir_create_dflt_rules(pf); 4435 if (err) 4436 goto err_fdir_rule; 4437 4438 return 0; 4439 4440 err_fdir_rule: 4441 ice_fdir_release_flows(&pf->hw); 4442 ice_vsi_close(ctrl_vsi); 4443 err_vsi_open: 4444 ice_vsi_release(ctrl_vsi); 4445 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4446 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4447 pf->ctrl_vsi_idx = ICE_NO_VSI; 4448 } 4449 return err; 4450 } 4451 4452 static void ice_deinit_fdir(struct ice_pf *pf) 4453 { 4454 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4455 4456 if (!vsi) 4457 return; 4458 4459 ice_vsi_manage_fdir(vsi, false); 4460 ice_vsi_release(vsi); 4461 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4462 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4463 pf->ctrl_vsi_idx = ICE_NO_VSI; 4464 } 4465 4466 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4467 } 4468 4469 /** 4470 * ice_get_opt_fw_name - return optional firmware file name or NULL 4471 * @pf: pointer to the PF instance 4472 */ 4473 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4474 { 4475 /* Optional firmware name same as default with additional dash 4476 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4477 */ 4478 struct pci_dev *pdev = pf->pdev; 4479 char *opt_fw_filename; 4480 u64 dsn; 4481 4482 /* Determine the name of the optional file using the DSN (two 4483 * dwords following the start of the DSN Capability). 4484 */ 4485 dsn = pci_get_dsn(pdev); 4486 if (!dsn) 4487 return NULL; 4488 4489 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4490 if (!opt_fw_filename) 4491 return NULL; 4492 4493 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4494 ICE_DDP_PKG_PATH, dsn); 4495 4496 return opt_fw_filename; 4497 } 4498 4499 /** 4500 * ice_request_fw - Device initialization routine 4501 * @pf: pointer to the PF instance 4502 * @firmware: double pointer to firmware struct 4503 * 4504 * Return: zero when successful, negative values otherwise. 4505 */ 4506 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4507 { 4508 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4509 struct device *dev = ice_pf_to_dev(pf); 4510 int err = 0; 4511 4512 /* optional device-specific DDP (if present) overrides the default DDP 4513 * package file. kernel logs a debug message if the file doesn't exist, 4514 * and warning messages for other errors. 4515 */ 4516 if (opt_fw_filename) { 4517 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4518 kfree(opt_fw_filename); 4519 if (!err) 4520 return err; 4521 } 4522 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4523 if (err) 4524 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4525 4526 return err; 4527 } 4528 4529 /** 4530 * ice_init_tx_topology - performs Tx topology initialization 4531 * @hw: pointer to the hardware structure 4532 * @firmware: pointer to firmware structure 4533 * 4534 * Return: zero when init was successful, negative values otherwise. 4535 */ 4536 static int 4537 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4538 { 4539 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4540 struct ice_pf *pf = hw->back; 4541 struct device *dev; 4542 int err; 4543 4544 dev = ice_pf_to_dev(pf); 4545 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4546 if (!err) { 4547 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4548 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4549 else 4550 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4551 /* if there was a change in topology ice_cfg_tx_topo triggered 4552 * a CORER and we need to re-init hw 4553 */ 4554 ice_deinit_hw(hw); 4555 err = ice_init_hw(hw); 4556 4557 return err; 4558 } else if (err == -EIO) { 4559 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4560 } 4561 4562 return 0; 4563 } 4564 4565 /** 4566 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4567 * @hw: pointer to the hardware structure 4568 * @pf: pointer to pf structure 4569 * 4570 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4571 * formats the PF hardware supports. The exact list of supported RXDIDs 4572 * depends on the loaded DDP package. The IDs can be determined by reading the 4573 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4574 * 4575 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4576 * in the DDP package. The 16-byte legacy descriptor is never supported by 4577 * VFs. 4578 */ 4579 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4580 { 4581 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4582 4583 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4584 u32 regval; 4585 4586 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4587 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4588 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4589 pf->supported_rxdids |= BIT(i); 4590 } 4591 } 4592 4593 /** 4594 * ice_init_ddp_config - DDP related configuration 4595 * @hw: pointer to the hardware structure 4596 * @pf: pointer to pf structure 4597 * 4598 * This function loads DDP file from the disk, then initializes Tx 4599 * topology. At the end DDP package is loaded on the card. 4600 * 4601 * Return: zero when init was successful, negative values otherwise. 4602 */ 4603 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4604 { 4605 struct device *dev = ice_pf_to_dev(pf); 4606 const struct firmware *firmware = NULL; 4607 int err; 4608 4609 err = ice_request_fw(pf, &firmware); 4610 if (err) { 4611 dev_err(dev, "Fail during requesting FW: %d\n", err); 4612 return err; 4613 } 4614 4615 err = ice_init_tx_topology(hw, firmware); 4616 if (err) { 4617 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4618 err); 4619 release_firmware(firmware); 4620 return err; 4621 } 4622 4623 /* Download firmware to device */ 4624 ice_load_pkg(firmware, pf); 4625 release_firmware(firmware); 4626 4627 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4628 ice_init_supported_rxdids(hw, pf); 4629 4630 return 0; 4631 } 4632 4633 /** 4634 * ice_print_wake_reason - show the wake up cause in the log 4635 * @pf: pointer to the PF struct 4636 */ 4637 static void ice_print_wake_reason(struct ice_pf *pf) 4638 { 4639 u32 wus = pf->wakeup_reason; 4640 const char *wake_str; 4641 4642 /* if no wake event, nothing to print */ 4643 if (!wus) 4644 return; 4645 4646 if (wus & PFPM_WUS_LNKC_M) 4647 wake_str = "Link\n"; 4648 else if (wus & PFPM_WUS_MAG_M) 4649 wake_str = "Magic Packet\n"; 4650 else if (wus & PFPM_WUS_MNG_M) 4651 wake_str = "Management\n"; 4652 else if (wus & PFPM_WUS_FW_RST_WK_M) 4653 wake_str = "Firmware Reset\n"; 4654 else 4655 wake_str = "Unknown\n"; 4656 4657 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4658 } 4659 4660 /** 4661 * ice_pf_fwlog_update_module - update 1 module 4662 * @pf: pointer to the PF struct 4663 * @log_level: log_level to use for the @module 4664 * @module: module to update 4665 */ 4666 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4667 { 4668 struct ice_hw *hw = &pf->hw; 4669 4670 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4671 } 4672 4673 /** 4674 * ice_register_netdev - register netdev 4675 * @vsi: pointer to the VSI struct 4676 */ 4677 static int ice_register_netdev(struct ice_vsi *vsi) 4678 { 4679 int err; 4680 4681 if (!vsi || !vsi->netdev) 4682 return -EIO; 4683 4684 err = register_netdev(vsi->netdev); 4685 if (err) 4686 return err; 4687 4688 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4689 netif_carrier_off(vsi->netdev); 4690 netif_tx_stop_all_queues(vsi->netdev); 4691 4692 return 0; 4693 } 4694 4695 static void ice_unregister_netdev(struct ice_vsi *vsi) 4696 { 4697 if (!vsi || !vsi->netdev) 4698 return; 4699 4700 unregister_netdev(vsi->netdev); 4701 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4702 } 4703 4704 /** 4705 * ice_cfg_netdev - Allocate, configure and register a netdev 4706 * @vsi: the VSI associated with the new netdev 4707 * 4708 * Returns 0 on success, negative value on failure 4709 */ 4710 static int ice_cfg_netdev(struct ice_vsi *vsi) 4711 { 4712 struct ice_netdev_priv *np; 4713 struct net_device *netdev; 4714 u8 mac_addr[ETH_ALEN]; 4715 4716 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4717 vsi->alloc_rxq); 4718 if (!netdev) 4719 return -ENOMEM; 4720 4721 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4722 vsi->netdev = netdev; 4723 np = netdev_priv(netdev); 4724 np->vsi = vsi; 4725 4726 ice_set_netdev_features(netdev); 4727 ice_set_ops(vsi); 4728 4729 if (vsi->type == ICE_VSI_PF) { 4730 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4731 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4732 eth_hw_addr_set(netdev, mac_addr); 4733 } 4734 4735 netdev->priv_flags |= IFF_UNICAST_FLT; 4736 4737 /* Setup netdev TC information */ 4738 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4739 4740 netdev->max_mtu = ICE_MAX_MTU; 4741 4742 return 0; 4743 } 4744 4745 static void ice_decfg_netdev(struct ice_vsi *vsi) 4746 { 4747 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4748 free_netdev(vsi->netdev); 4749 vsi->netdev = NULL; 4750 } 4751 4752 int ice_init_dev(struct ice_pf *pf) 4753 { 4754 struct device *dev = ice_pf_to_dev(pf); 4755 struct ice_hw *hw = &pf->hw; 4756 int err; 4757 4758 ice_init_feature_support(pf); 4759 4760 err = ice_init_ddp_config(hw, pf); 4761 4762 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4763 * set in pf->state, which will cause ice_is_safe_mode to return 4764 * true 4765 */ 4766 if (err || ice_is_safe_mode(pf)) { 4767 /* we already got function/device capabilities but these don't 4768 * reflect what the driver needs to do in safe mode. Instead of 4769 * adding conditional logic everywhere to ignore these 4770 * device/function capabilities, override them. 4771 */ 4772 ice_set_safe_mode_caps(hw); 4773 } 4774 4775 err = ice_init_pf(pf); 4776 if (err) { 4777 dev_err(dev, "ice_init_pf failed: %d\n", err); 4778 return err; 4779 } 4780 4781 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4782 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4783 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4784 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4785 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4786 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4787 pf->hw.tnl.valid_count[TNL_VXLAN]; 4788 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4789 UDP_TUNNEL_TYPE_VXLAN; 4790 } 4791 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4792 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4793 pf->hw.tnl.valid_count[TNL_GENEVE]; 4794 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4795 UDP_TUNNEL_TYPE_GENEVE; 4796 } 4797 4798 err = ice_init_interrupt_scheme(pf); 4799 if (err) { 4800 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4801 err = -EIO; 4802 goto err_init_interrupt_scheme; 4803 } 4804 4805 /* In case of MSIX we are going to setup the misc vector right here 4806 * to handle admin queue events etc. In case of legacy and MSI 4807 * the misc functionality and queue processing is combined in 4808 * the same vector and that gets setup at open. 4809 */ 4810 err = ice_req_irq_msix_misc(pf); 4811 if (err) { 4812 dev_err(dev, "setup of misc vector failed: %d\n", err); 4813 goto err_req_irq_msix_misc; 4814 } 4815 4816 return 0; 4817 4818 err_req_irq_msix_misc: 4819 ice_clear_interrupt_scheme(pf); 4820 err_init_interrupt_scheme: 4821 ice_deinit_pf(pf); 4822 return err; 4823 } 4824 4825 void ice_deinit_dev(struct ice_pf *pf) 4826 { 4827 ice_free_irq_msix_misc(pf); 4828 ice_deinit_pf(pf); 4829 ice_deinit_hw(&pf->hw); 4830 4831 /* Service task is already stopped, so call reset directly. */ 4832 ice_reset(&pf->hw, ICE_RESET_PFR); 4833 pci_wait_for_pending_transaction(pf->pdev); 4834 ice_clear_interrupt_scheme(pf); 4835 } 4836 4837 static void ice_init_features(struct ice_pf *pf) 4838 { 4839 struct device *dev = ice_pf_to_dev(pf); 4840 4841 if (ice_is_safe_mode(pf)) 4842 return; 4843 4844 /* initialize DDP driven features */ 4845 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4846 ice_ptp_init(pf); 4847 4848 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4849 ice_gnss_init(pf); 4850 4851 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4852 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4853 ice_dpll_init(pf); 4854 4855 /* Note: Flow director init failure is non-fatal to load */ 4856 if (ice_init_fdir(pf)) 4857 dev_err(dev, "could not initialize flow director\n"); 4858 4859 /* Note: DCB init failure is non-fatal to load */ 4860 if (ice_init_pf_dcb(pf, false)) { 4861 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4862 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4863 } else { 4864 ice_cfg_lldp_mib_change(&pf->hw, true); 4865 } 4866 4867 if (ice_init_lag(pf)) 4868 dev_warn(dev, "Failed to init link aggregation support\n"); 4869 4870 ice_hwmon_init(pf); 4871 } 4872 4873 static void ice_deinit_features(struct ice_pf *pf) 4874 { 4875 if (ice_is_safe_mode(pf)) 4876 return; 4877 4878 ice_deinit_lag(pf); 4879 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4880 ice_cfg_lldp_mib_change(&pf->hw, false); 4881 ice_deinit_fdir(pf); 4882 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4883 ice_gnss_exit(pf); 4884 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4885 ice_ptp_release(pf); 4886 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4887 ice_dpll_deinit(pf); 4888 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4889 xa_destroy(&pf->eswitch.reprs); 4890 } 4891 4892 static void ice_init_wakeup(struct ice_pf *pf) 4893 { 4894 /* Save wakeup reason register for later use */ 4895 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4896 4897 /* check for a power management event */ 4898 ice_print_wake_reason(pf); 4899 4900 /* clear wake status, all bits */ 4901 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4902 4903 /* Disable WoL at init, wait for user to enable */ 4904 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4905 } 4906 4907 static int ice_init_link(struct ice_pf *pf) 4908 { 4909 struct device *dev = ice_pf_to_dev(pf); 4910 int err; 4911 4912 err = ice_init_link_events(pf->hw.port_info); 4913 if (err) { 4914 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4915 return err; 4916 } 4917 4918 /* not a fatal error if this fails */ 4919 err = ice_init_nvm_phy_type(pf->hw.port_info); 4920 if (err) 4921 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4922 4923 /* not a fatal error if this fails */ 4924 err = ice_update_link_info(pf->hw.port_info); 4925 if (err) 4926 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4927 4928 ice_init_link_dflt_override(pf->hw.port_info); 4929 4930 ice_check_link_cfg_err(pf, 4931 pf->hw.port_info->phy.link_info.link_cfg_err); 4932 4933 /* if media available, initialize PHY settings */ 4934 if (pf->hw.port_info->phy.link_info.link_info & 4935 ICE_AQ_MEDIA_AVAILABLE) { 4936 /* not a fatal error if this fails */ 4937 err = ice_init_phy_user_cfg(pf->hw.port_info); 4938 if (err) 4939 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4940 4941 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4942 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4943 4944 if (vsi) 4945 ice_configure_phy(vsi); 4946 } 4947 } else { 4948 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4949 } 4950 4951 return err; 4952 } 4953 4954 static int ice_init_pf_sw(struct ice_pf *pf) 4955 { 4956 bool dvm = ice_is_dvm_ena(&pf->hw); 4957 struct ice_vsi *vsi; 4958 int err; 4959 4960 /* create switch struct for the switch element created by FW on boot */ 4961 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4962 if (!pf->first_sw) 4963 return -ENOMEM; 4964 4965 if (pf->hw.evb_veb) 4966 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4967 else 4968 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4969 4970 pf->first_sw->pf = pf; 4971 4972 /* record the sw_id available for later use */ 4973 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4974 4975 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4976 if (err) 4977 goto err_aq_set_port_params; 4978 4979 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4980 if (!vsi) { 4981 err = -ENOMEM; 4982 goto err_pf_vsi_setup; 4983 } 4984 4985 return 0; 4986 4987 err_pf_vsi_setup: 4988 err_aq_set_port_params: 4989 kfree(pf->first_sw); 4990 return err; 4991 } 4992 4993 static void ice_deinit_pf_sw(struct ice_pf *pf) 4994 { 4995 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4996 4997 if (!vsi) 4998 return; 4999 5000 ice_vsi_release(vsi); 5001 kfree(pf->first_sw); 5002 } 5003 5004 static int ice_alloc_vsis(struct ice_pf *pf) 5005 { 5006 struct device *dev = ice_pf_to_dev(pf); 5007 5008 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5009 if (!pf->num_alloc_vsi) 5010 return -EIO; 5011 5012 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5013 dev_warn(dev, 5014 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5015 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5016 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5017 } 5018 5019 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5020 GFP_KERNEL); 5021 if (!pf->vsi) 5022 return -ENOMEM; 5023 5024 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5025 sizeof(*pf->vsi_stats), GFP_KERNEL); 5026 if (!pf->vsi_stats) { 5027 devm_kfree(dev, pf->vsi); 5028 return -ENOMEM; 5029 } 5030 5031 return 0; 5032 } 5033 5034 static void ice_dealloc_vsis(struct ice_pf *pf) 5035 { 5036 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5037 pf->vsi_stats = NULL; 5038 5039 pf->num_alloc_vsi = 0; 5040 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5041 pf->vsi = NULL; 5042 } 5043 5044 static int ice_init_devlink(struct ice_pf *pf) 5045 { 5046 int err; 5047 5048 err = ice_devlink_register_params(pf); 5049 if (err) 5050 return err; 5051 5052 ice_devlink_init_regions(pf); 5053 ice_health_init(pf); 5054 ice_devlink_register(pf); 5055 5056 return 0; 5057 } 5058 5059 static void ice_deinit_devlink(struct ice_pf *pf) 5060 { 5061 ice_devlink_unregister(pf); 5062 ice_health_deinit(pf); 5063 ice_devlink_destroy_regions(pf); 5064 ice_devlink_unregister_params(pf); 5065 } 5066 5067 static int ice_init(struct ice_pf *pf) 5068 { 5069 int err; 5070 5071 err = ice_init_dev(pf); 5072 if (err) 5073 return err; 5074 5075 err = ice_alloc_vsis(pf); 5076 if (err) 5077 goto err_alloc_vsis; 5078 5079 err = ice_init_pf_sw(pf); 5080 if (err) 5081 goto err_init_pf_sw; 5082 5083 ice_init_wakeup(pf); 5084 5085 err = ice_init_link(pf); 5086 if (err) 5087 goto err_init_link; 5088 5089 err = ice_send_version(pf); 5090 if (err) 5091 goto err_init_link; 5092 5093 ice_verify_cacheline_size(pf); 5094 5095 if (ice_is_safe_mode(pf)) 5096 ice_set_safe_mode_vlan_cfg(pf); 5097 else 5098 /* print PCI link speed and width */ 5099 pcie_print_link_status(pf->pdev); 5100 5101 /* ready to go, so clear down state bit */ 5102 clear_bit(ICE_DOWN, pf->state); 5103 clear_bit(ICE_SERVICE_DIS, pf->state); 5104 5105 /* since everything is good, start the service timer */ 5106 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5107 5108 return 0; 5109 5110 err_init_link: 5111 ice_deinit_pf_sw(pf); 5112 err_init_pf_sw: 5113 ice_dealloc_vsis(pf); 5114 err_alloc_vsis: 5115 ice_deinit_dev(pf); 5116 return err; 5117 } 5118 5119 static void ice_deinit(struct ice_pf *pf) 5120 { 5121 set_bit(ICE_SERVICE_DIS, pf->state); 5122 set_bit(ICE_DOWN, pf->state); 5123 5124 ice_deinit_pf_sw(pf); 5125 ice_dealloc_vsis(pf); 5126 ice_deinit_dev(pf); 5127 } 5128 5129 /** 5130 * ice_load - load pf by init hw and starting VSI 5131 * @pf: pointer to the pf instance 5132 * 5133 * This function has to be called under devl_lock. 5134 */ 5135 int ice_load(struct ice_pf *pf) 5136 { 5137 struct ice_vsi *vsi; 5138 int err; 5139 5140 devl_assert_locked(priv_to_devlink(pf)); 5141 5142 vsi = ice_get_main_vsi(pf); 5143 5144 /* init channel list */ 5145 INIT_LIST_HEAD(&vsi->ch_list); 5146 5147 err = ice_cfg_netdev(vsi); 5148 if (err) 5149 return err; 5150 5151 /* Setup DCB netlink interface */ 5152 ice_dcbnl_setup(vsi); 5153 5154 err = ice_init_mac_fltr(pf); 5155 if (err) 5156 goto err_init_mac_fltr; 5157 5158 err = ice_devlink_create_pf_port(pf); 5159 if (err) 5160 goto err_devlink_create_pf_port; 5161 5162 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5163 5164 err = ice_register_netdev(vsi); 5165 if (err) 5166 goto err_register_netdev; 5167 5168 err = ice_tc_indir_block_register(vsi); 5169 if (err) 5170 goto err_tc_indir_block_register; 5171 5172 ice_napi_add(vsi); 5173 5174 err = ice_init_rdma(pf); 5175 if (err) 5176 goto err_init_rdma; 5177 5178 ice_init_features(pf); 5179 ice_service_task_restart(pf); 5180 5181 clear_bit(ICE_DOWN, pf->state); 5182 5183 return 0; 5184 5185 err_init_rdma: 5186 ice_tc_indir_block_unregister(vsi); 5187 err_tc_indir_block_register: 5188 ice_unregister_netdev(vsi); 5189 err_register_netdev: 5190 ice_devlink_destroy_pf_port(pf); 5191 err_devlink_create_pf_port: 5192 err_init_mac_fltr: 5193 ice_decfg_netdev(vsi); 5194 return err; 5195 } 5196 5197 /** 5198 * ice_unload - unload pf by stopping VSI and deinit hw 5199 * @pf: pointer to the pf instance 5200 * 5201 * This function has to be called under devl_lock. 5202 */ 5203 void ice_unload(struct ice_pf *pf) 5204 { 5205 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5206 5207 devl_assert_locked(priv_to_devlink(pf)); 5208 5209 ice_deinit_features(pf); 5210 ice_deinit_rdma(pf); 5211 ice_tc_indir_block_unregister(vsi); 5212 ice_unregister_netdev(vsi); 5213 ice_devlink_destroy_pf_port(pf); 5214 ice_decfg_netdev(vsi); 5215 } 5216 5217 /** 5218 * ice_probe - Device initialization routine 5219 * @pdev: PCI device information struct 5220 * @ent: entry in ice_pci_tbl 5221 * 5222 * Returns 0 on success, negative on failure 5223 */ 5224 static int 5225 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5226 { 5227 struct device *dev = &pdev->dev; 5228 struct ice_adapter *adapter; 5229 struct ice_pf *pf; 5230 struct ice_hw *hw; 5231 int err; 5232 5233 if (pdev->is_virtfn) { 5234 dev_err(dev, "can't probe a virtual function\n"); 5235 return -EINVAL; 5236 } 5237 5238 /* when under a kdump kernel initiate a reset before enabling the 5239 * device in order to clear out any pending DMA transactions. These 5240 * transactions can cause some systems to machine check when doing 5241 * the pcim_enable_device() below. 5242 */ 5243 if (is_kdump_kernel()) { 5244 pci_save_state(pdev); 5245 pci_clear_master(pdev); 5246 err = pcie_flr(pdev); 5247 if (err) 5248 return err; 5249 pci_restore_state(pdev); 5250 } 5251 5252 /* this driver uses devres, see 5253 * Documentation/driver-api/driver-model/devres.rst 5254 */ 5255 err = pcim_enable_device(pdev); 5256 if (err) 5257 return err; 5258 5259 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5260 if (err) { 5261 dev_err(dev, "BAR0 I/O map error %d\n", err); 5262 return err; 5263 } 5264 5265 pf = ice_allocate_pf(dev); 5266 if (!pf) 5267 return -ENOMEM; 5268 5269 /* initialize Auxiliary index to invalid value */ 5270 pf->aux_idx = -1; 5271 5272 /* set up for high or low DMA */ 5273 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5274 if (err) { 5275 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5276 return err; 5277 } 5278 5279 pci_set_master(pdev); 5280 5281 adapter = ice_adapter_get(pdev); 5282 if (IS_ERR(adapter)) 5283 return PTR_ERR(adapter); 5284 5285 pf->pdev = pdev; 5286 pf->adapter = adapter; 5287 pci_set_drvdata(pdev, pf); 5288 set_bit(ICE_DOWN, pf->state); 5289 /* Disable service task until DOWN bit is cleared */ 5290 set_bit(ICE_SERVICE_DIS, pf->state); 5291 5292 hw = &pf->hw; 5293 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5294 pci_save_state(pdev); 5295 5296 hw->back = pf; 5297 hw->port_info = NULL; 5298 hw->vendor_id = pdev->vendor; 5299 hw->device_id = pdev->device; 5300 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5301 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5302 hw->subsystem_device_id = pdev->subsystem_device; 5303 hw->bus.device = PCI_SLOT(pdev->devfn); 5304 hw->bus.func = PCI_FUNC(pdev->devfn); 5305 ice_set_ctrlq_len(hw); 5306 5307 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5308 5309 #ifndef CONFIG_DYNAMIC_DEBUG 5310 if (debug < -1) 5311 hw->debug_mask = debug; 5312 #endif 5313 5314 err = ice_init_hw(hw); 5315 if (err) { 5316 dev_err(dev, "ice_init_hw failed: %d\n", err); 5317 goto unroll_adapter; 5318 } 5319 5320 err = ice_init(pf); 5321 if (err) 5322 goto unroll_hw_init; 5323 5324 devl_lock(priv_to_devlink(pf)); 5325 err = ice_load(pf); 5326 if (err) 5327 goto err_load; 5328 5329 err = ice_init_devlink(pf); 5330 if (err) 5331 goto err_init_devlink; 5332 devl_unlock(priv_to_devlink(pf)); 5333 5334 return 0; 5335 5336 err_init_devlink: 5337 ice_unload(pf); 5338 err_load: 5339 devl_unlock(priv_to_devlink(pf)); 5340 ice_deinit(pf); 5341 unroll_hw_init: 5342 ice_deinit_hw(hw); 5343 unroll_adapter: 5344 ice_adapter_put(pdev); 5345 return err; 5346 } 5347 5348 /** 5349 * ice_set_wake - enable or disable Wake on LAN 5350 * @pf: pointer to the PF struct 5351 * 5352 * Simple helper for WoL control 5353 */ 5354 static void ice_set_wake(struct ice_pf *pf) 5355 { 5356 struct ice_hw *hw = &pf->hw; 5357 bool wol = pf->wol_ena; 5358 5359 /* clear wake state, otherwise new wake events won't fire */ 5360 wr32(hw, PFPM_WUS, U32_MAX); 5361 5362 /* enable / disable APM wake up, no RMW needed */ 5363 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5364 5365 /* set magic packet filter enabled */ 5366 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5367 } 5368 5369 /** 5370 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5371 * @pf: pointer to the PF struct 5372 * 5373 * Issue firmware command to enable multicast magic wake, making 5374 * sure that any locally administered address (LAA) is used for 5375 * wake, and that PF reset doesn't undo the LAA. 5376 */ 5377 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5378 { 5379 struct device *dev = ice_pf_to_dev(pf); 5380 struct ice_hw *hw = &pf->hw; 5381 u8 mac_addr[ETH_ALEN]; 5382 struct ice_vsi *vsi; 5383 int status; 5384 u8 flags; 5385 5386 if (!pf->wol_ena) 5387 return; 5388 5389 vsi = ice_get_main_vsi(pf); 5390 if (!vsi) 5391 return; 5392 5393 /* Get current MAC address in case it's an LAA */ 5394 if (vsi->netdev) 5395 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5396 else 5397 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5398 5399 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5400 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5401 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5402 5403 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5404 if (status) 5405 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5406 status, ice_aq_str(hw->adminq.sq_last_status)); 5407 } 5408 5409 /** 5410 * ice_remove - Device removal routine 5411 * @pdev: PCI device information struct 5412 */ 5413 static void ice_remove(struct pci_dev *pdev) 5414 { 5415 struct ice_pf *pf = pci_get_drvdata(pdev); 5416 int i; 5417 5418 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5419 if (!ice_is_reset_in_progress(pf->state)) 5420 break; 5421 msleep(100); 5422 } 5423 5424 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5425 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5426 ice_free_vfs(pf); 5427 } 5428 5429 ice_hwmon_exit(pf); 5430 5431 ice_service_task_stop(pf); 5432 ice_aq_cancel_waiting_tasks(pf); 5433 set_bit(ICE_DOWN, pf->state); 5434 5435 if (!ice_is_safe_mode(pf)) 5436 ice_remove_arfs(pf); 5437 5438 devl_lock(priv_to_devlink(pf)); 5439 ice_dealloc_all_dynamic_ports(pf); 5440 ice_deinit_devlink(pf); 5441 5442 ice_unload(pf); 5443 devl_unlock(priv_to_devlink(pf)); 5444 5445 ice_deinit(pf); 5446 ice_vsi_release_all(pf); 5447 5448 ice_setup_mc_magic_wake(pf); 5449 ice_set_wake(pf); 5450 5451 ice_adapter_put(pdev); 5452 } 5453 5454 /** 5455 * ice_shutdown - PCI callback for shutting down device 5456 * @pdev: PCI device information struct 5457 */ 5458 static void ice_shutdown(struct pci_dev *pdev) 5459 { 5460 struct ice_pf *pf = pci_get_drvdata(pdev); 5461 5462 ice_remove(pdev); 5463 5464 if (system_state == SYSTEM_POWER_OFF) { 5465 pci_wake_from_d3(pdev, pf->wol_ena); 5466 pci_set_power_state(pdev, PCI_D3hot); 5467 } 5468 } 5469 5470 /** 5471 * ice_prepare_for_shutdown - prep for PCI shutdown 5472 * @pf: board private structure 5473 * 5474 * Inform or close all dependent features in prep for PCI device shutdown 5475 */ 5476 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5477 { 5478 struct ice_hw *hw = &pf->hw; 5479 u32 v; 5480 5481 /* Notify VFs of impending reset */ 5482 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5483 ice_vc_notify_reset(pf); 5484 5485 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5486 5487 /* disable the VSIs and their queues that are not already DOWN */ 5488 ice_pf_dis_all_vsi(pf, false); 5489 5490 ice_for_each_vsi(pf, v) 5491 if (pf->vsi[v]) 5492 pf->vsi[v]->vsi_num = 0; 5493 5494 ice_shutdown_all_ctrlq(hw, true); 5495 } 5496 5497 /** 5498 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5499 * @pf: board private structure to reinitialize 5500 * 5501 * This routine reinitialize interrupt scheme that was cleared during 5502 * power management suspend callback. 5503 * 5504 * This should be called during resume routine to re-allocate the q_vectors 5505 * and reacquire interrupts. 5506 */ 5507 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5508 { 5509 struct device *dev = ice_pf_to_dev(pf); 5510 int ret, v; 5511 5512 /* Since we clear MSIX flag during suspend, we need to 5513 * set it back during resume... 5514 */ 5515 5516 ret = ice_init_interrupt_scheme(pf); 5517 if (ret) { 5518 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5519 return ret; 5520 } 5521 5522 /* Remap vectors and rings, after successful re-init interrupts */ 5523 ice_for_each_vsi(pf, v) { 5524 if (!pf->vsi[v]) 5525 continue; 5526 5527 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5528 if (ret) 5529 goto err_reinit; 5530 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5531 rtnl_lock(); 5532 ice_vsi_set_napi_queues(pf->vsi[v]); 5533 rtnl_unlock(); 5534 } 5535 5536 ret = ice_req_irq_msix_misc(pf); 5537 if (ret) { 5538 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5539 ret); 5540 goto err_reinit; 5541 } 5542 5543 return 0; 5544 5545 err_reinit: 5546 while (v--) 5547 if (pf->vsi[v]) { 5548 rtnl_lock(); 5549 ice_vsi_clear_napi_queues(pf->vsi[v]); 5550 rtnl_unlock(); 5551 ice_vsi_free_q_vectors(pf->vsi[v]); 5552 } 5553 5554 return ret; 5555 } 5556 5557 /** 5558 * ice_suspend 5559 * @dev: generic device information structure 5560 * 5561 * Power Management callback to quiesce the device and prepare 5562 * for D3 transition. 5563 */ 5564 static int ice_suspend(struct device *dev) 5565 { 5566 struct pci_dev *pdev = to_pci_dev(dev); 5567 struct ice_pf *pf; 5568 int disabled, v; 5569 5570 pf = pci_get_drvdata(pdev); 5571 5572 if (!ice_pf_state_is_nominal(pf)) { 5573 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5574 return -EBUSY; 5575 } 5576 5577 /* Stop watchdog tasks until resume completion. 5578 * Even though it is most likely that the service task is 5579 * disabled if the device is suspended or down, the service task's 5580 * state is controlled by a different state bit, and we should 5581 * store and honor whatever state that bit is in at this point. 5582 */ 5583 disabled = ice_service_task_stop(pf); 5584 5585 ice_deinit_rdma(pf); 5586 5587 /* Already suspended?, then there is nothing to do */ 5588 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5589 if (!disabled) 5590 ice_service_task_restart(pf); 5591 return 0; 5592 } 5593 5594 if (test_bit(ICE_DOWN, pf->state) || 5595 ice_is_reset_in_progress(pf->state)) { 5596 dev_err(dev, "can't suspend device in reset or already down\n"); 5597 if (!disabled) 5598 ice_service_task_restart(pf); 5599 return 0; 5600 } 5601 5602 ice_setup_mc_magic_wake(pf); 5603 5604 ice_prepare_for_shutdown(pf); 5605 5606 ice_set_wake(pf); 5607 5608 /* Free vectors, clear the interrupt scheme and release IRQs 5609 * for proper hibernation, especially with large number of CPUs. 5610 * Otherwise hibernation might fail when mapping all the vectors back 5611 * to CPU0. 5612 */ 5613 ice_free_irq_msix_misc(pf); 5614 ice_for_each_vsi(pf, v) { 5615 if (!pf->vsi[v]) 5616 continue; 5617 rtnl_lock(); 5618 ice_vsi_clear_napi_queues(pf->vsi[v]); 5619 rtnl_unlock(); 5620 ice_vsi_free_q_vectors(pf->vsi[v]); 5621 } 5622 ice_clear_interrupt_scheme(pf); 5623 5624 pci_save_state(pdev); 5625 pci_wake_from_d3(pdev, pf->wol_ena); 5626 pci_set_power_state(pdev, PCI_D3hot); 5627 return 0; 5628 } 5629 5630 /** 5631 * ice_resume - PM callback for waking up from D3 5632 * @dev: generic device information structure 5633 */ 5634 static int ice_resume(struct device *dev) 5635 { 5636 struct pci_dev *pdev = to_pci_dev(dev); 5637 enum ice_reset_req reset_type; 5638 struct ice_pf *pf; 5639 struct ice_hw *hw; 5640 int ret; 5641 5642 pci_set_power_state(pdev, PCI_D0); 5643 pci_restore_state(pdev); 5644 pci_save_state(pdev); 5645 5646 if (!pci_device_is_present(pdev)) 5647 return -ENODEV; 5648 5649 ret = pci_enable_device_mem(pdev); 5650 if (ret) { 5651 dev_err(dev, "Cannot enable device after suspend\n"); 5652 return ret; 5653 } 5654 5655 pf = pci_get_drvdata(pdev); 5656 hw = &pf->hw; 5657 5658 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5659 ice_print_wake_reason(pf); 5660 5661 /* We cleared the interrupt scheme when we suspended, so we need to 5662 * restore it now to resume device functionality. 5663 */ 5664 ret = ice_reinit_interrupt_scheme(pf); 5665 if (ret) 5666 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5667 5668 ret = ice_init_rdma(pf); 5669 if (ret) 5670 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5671 ret); 5672 5673 clear_bit(ICE_DOWN, pf->state); 5674 /* Now perform PF reset and rebuild */ 5675 reset_type = ICE_RESET_PFR; 5676 /* re-enable service task for reset, but allow reset to schedule it */ 5677 clear_bit(ICE_SERVICE_DIS, pf->state); 5678 5679 if (ice_schedule_reset(pf, reset_type)) 5680 dev_err(dev, "Reset during resume failed.\n"); 5681 5682 clear_bit(ICE_SUSPENDED, pf->state); 5683 ice_service_task_restart(pf); 5684 5685 /* Restart the service task */ 5686 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5687 5688 return 0; 5689 } 5690 5691 /** 5692 * ice_pci_err_detected - warning that PCI error has been detected 5693 * @pdev: PCI device information struct 5694 * @err: the type of PCI error 5695 * 5696 * Called to warn that something happened on the PCI bus and the error handling 5697 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5698 */ 5699 static pci_ers_result_t 5700 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5701 { 5702 struct ice_pf *pf = pci_get_drvdata(pdev); 5703 5704 if (!pf) { 5705 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5706 __func__, err); 5707 return PCI_ERS_RESULT_DISCONNECT; 5708 } 5709 5710 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5711 ice_service_task_stop(pf); 5712 5713 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5714 set_bit(ICE_PFR_REQ, pf->state); 5715 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5716 } 5717 } 5718 5719 return PCI_ERS_RESULT_NEED_RESET; 5720 } 5721 5722 /** 5723 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5724 * @pdev: PCI device information struct 5725 * 5726 * Called to determine if the driver can recover from the PCI slot reset by 5727 * using a register read to determine if the device is recoverable. 5728 */ 5729 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5730 { 5731 struct ice_pf *pf = pci_get_drvdata(pdev); 5732 pci_ers_result_t result; 5733 int err; 5734 u32 reg; 5735 5736 err = pci_enable_device_mem(pdev); 5737 if (err) { 5738 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5739 err); 5740 result = PCI_ERS_RESULT_DISCONNECT; 5741 } else { 5742 pci_set_master(pdev); 5743 pci_restore_state(pdev); 5744 pci_save_state(pdev); 5745 pci_wake_from_d3(pdev, false); 5746 5747 /* Check for life */ 5748 reg = rd32(&pf->hw, GLGEN_RTRIG); 5749 if (!reg) 5750 result = PCI_ERS_RESULT_RECOVERED; 5751 else 5752 result = PCI_ERS_RESULT_DISCONNECT; 5753 } 5754 5755 return result; 5756 } 5757 5758 /** 5759 * ice_pci_err_resume - restart operations after PCI error recovery 5760 * @pdev: PCI device information struct 5761 * 5762 * Called to allow the driver to bring things back up after PCI error and/or 5763 * reset recovery have finished 5764 */ 5765 static void ice_pci_err_resume(struct pci_dev *pdev) 5766 { 5767 struct ice_pf *pf = pci_get_drvdata(pdev); 5768 5769 if (!pf) { 5770 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5771 __func__); 5772 return; 5773 } 5774 5775 if (test_bit(ICE_SUSPENDED, pf->state)) { 5776 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5777 __func__); 5778 return; 5779 } 5780 5781 ice_restore_all_vfs_msi_state(pf); 5782 5783 ice_do_reset(pf, ICE_RESET_PFR); 5784 ice_service_task_restart(pf); 5785 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5786 } 5787 5788 /** 5789 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5790 * @pdev: PCI device information struct 5791 */ 5792 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5793 { 5794 struct ice_pf *pf = pci_get_drvdata(pdev); 5795 5796 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5797 ice_service_task_stop(pf); 5798 5799 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5800 set_bit(ICE_PFR_REQ, pf->state); 5801 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5802 } 5803 } 5804 } 5805 5806 /** 5807 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5808 * @pdev: PCI device information struct 5809 */ 5810 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5811 { 5812 ice_pci_err_resume(pdev); 5813 } 5814 5815 /* ice_pci_tbl - PCI Device ID Table 5816 * 5817 * Wildcard entries (PCI_ANY_ID) should come last 5818 * Last entry must be all 0s 5819 * 5820 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5821 * Class, Class Mask, private data (not used) } 5822 */ 5823 static const struct pci_device_id ice_pci_tbl[] = { 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5864 /* required last entry */ 5865 {} 5866 }; 5867 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5868 5869 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5870 5871 static const struct pci_error_handlers ice_pci_err_handler = { 5872 .error_detected = ice_pci_err_detected, 5873 .slot_reset = ice_pci_err_slot_reset, 5874 .reset_prepare = ice_pci_err_reset_prepare, 5875 .reset_done = ice_pci_err_reset_done, 5876 .resume = ice_pci_err_resume 5877 }; 5878 5879 static struct pci_driver ice_driver = { 5880 .name = KBUILD_MODNAME, 5881 .id_table = ice_pci_tbl, 5882 .probe = ice_probe, 5883 .remove = ice_remove, 5884 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5885 .shutdown = ice_shutdown, 5886 .sriov_configure = ice_sriov_configure, 5887 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5888 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5889 .err_handler = &ice_pci_err_handler 5890 }; 5891 5892 /** 5893 * ice_module_init - Driver registration routine 5894 * 5895 * ice_module_init is the first routine called when the driver is 5896 * loaded. All it does is register with the PCI subsystem. 5897 */ 5898 static int __init ice_module_init(void) 5899 { 5900 int status = -ENOMEM; 5901 5902 pr_info("%s\n", ice_driver_string); 5903 pr_info("%s\n", ice_copyright); 5904 5905 ice_adv_lnk_speed_maps_init(); 5906 5907 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5908 if (!ice_wq) { 5909 pr_err("Failed to create workqueue\n"); 5910 return status; 5911 } 5912 5913 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5914 if (!ice_lag_wq) { 5915 pr_err("Failed to create LAG workqueue\n"); 5916 goto err_dest_wq; 5917 } 5918 5919 ice_debugfs_init(); 5920 5921 status = pci_register_driver(&ice_driver); 5922 if (status) { 5923 pr_err("failed to register PCI driver, err %d\n", status); 5924 goto err_dest_lag_wq; 5925 } 5926 5927 status = ice_sf_driver_register(); 5928 if (status) { 5929 pr_err("Failed to register SF driver, err %d\n", status); 5930 goto err_sf_driver; 5931 } 5932 5933 return 0; 5934 5935 err_sf_driver: 5936 pci_unregister_driver(&ice_driver); 5937 err_dest_lag_wq: 5938 destroy_workqueue(ice_lag_wq); 5939 ice_debugfs_exit(); 5940 err_dest_wq: 5941 destroy_workqueue(ice_wq); 5942 return status; 5943 } 5944 module_init(ice_module_init); 5945 5946 /** 5947 * ice_module_exit - Driver exit cleanup routine 5948 * 5949 * ice_module_exit is called just before the driver is removed 5950 * from memory. 5951 */ 5952 static void __exit ice_module_exit(void) 5953 { 5954 ice_sf_driver_unregister(); 5955 pci_unregister_driver(&ice_driver); 5956 ice_debugfs_exit(); 5957 destroy_workqueue(ice_wq); 5958 destroy_workqueue(ice_lag_wq); 5959 pr_info("module unloaded\n"); 5960 } 5961 module_exit(ice_module_exit); 5962 5963 /** 5964 * ice_set_mac_address - NDO callback to set MAC address 5965 * @netdev: network interface device structure 5966 * @pi: pointer to an address structure 5967 * 5968 * Returns 0 on success, negative on failure 5969 */ 5970 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5971 { 5972 struct ice_netdev_priv *np = netdev_priv(netdev); 5973 struct ice_vsi *vsi = np->vsi; 5974 struct ice_pf *pf = vsi->back; 5975 struct ice_hw *hw = &pf->hw; 5976 struct sockaddr *addr = pi; 5977 u8 old_mac[ETH_ALEN]; 5978 u8 flags = 0; 5979 u8 *mac; 5980 int err; 5981 5982 mac = (u8 *)addr->sa_data; 5983 5984 if (!is_valid_ether_addr(mac)) 5985 return -EADDRNOTAVAIL; 5986 5987 if (test_bit(ICE_DOWN, pf->state) || 5988 ice_is_reset_in_progress(pf->state)) { 5989 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5990 mac); 5991 return -EBUSY; 5992 } 5993 5994 if (ice_chnl_dmac_fltr_cnt(pf)) { 5995 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5996 mac); 5997 return -EAGAIN; 5998 } 5999 6000 netif_addr_lock_bh(netdev); 6001 ether_addr_copy(old_mac, netdev->dev_addr); 6002 /* change the netdev's MAC address */ 6003 eth_hw_addr_set(netdev, mac); 6004 netif_addr_unlock_bh(netdev); 6005 6006 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6007 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6008 if (err && err != -ENOENT) { 6009 err = -EADDRNOTAVAIL; 6010 goto err_update_filters; 6011 } 6012 6013 /* Add filter for new MAC. If filter exists, return success */ 6014 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6015 if (err == -EEXIST) { 6016 /* Although this MAC filter is already present in hardware it's 6017 * possible in some cases (e.g. bonding) that dev_addr was 6018 * modified outside of the driver and needs to be restored back 6019 * to this value. 6020 */ 6021 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6022 6023 return 0; 6024 } else if (err) { 6025 /* error if the new filter addition failed */ 6026 err = -EADDRNOTAVAIL; 6027 } 6028 6029 err_update_filters: 6030 if (err) { 6031 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6032 mac); 6033 netif_addr_lock_bh(netdev); 6034 eth_hw_addr_set(netdev, old_mac); 6035 netif_addr_unlock_bh(netdev); 6036 return err; 6037 } 6038 6039 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6040 netdev->dev_addr); 6041 6042 /* write new MAC address to the firmware */ 6043 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6044 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6045 if (err) { 6046 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6047 mac, err); 6048 } 6049 return 0; 6050 } 6051 6052 /** 6053 * ice_set_rx_mode - NDO callback to set the netdev filters 6054 * @netdev: network interface device structure 6055 */ 6056 static void ice_set_rx_mode(struct net_device *netdev) 6057 { 6058 struct ice_netdev_priv *np = netdev_priv(netdev); 6059 struct ice_vsi *vsi = np->vsi; 6060 6061 if (!vsi || ice_is_switchdev_running(vsi->back)) 6062 return; 6063 6064 /* Set the flags to synchronize filters 6065 * ndo_set_rx_mode may be triggered even without a change in netdev 6066 * flags 6067 */ 6068 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6069 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6070 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6071 6072 /* schedule our worker thread which will take care of 6073 * applying the new filter changes 6074 */ 6075 ice_service_task_schedule(vsi->back); 6076 } 6077 6078 /** 6079 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6080 * @netdev: network interface device structure 6081 * @queue_index: Queue ID 6082 * @maxrate: maximum bandwidth in Mbps 6083 */ 6084 static int 6085 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6086 { 6087 struct ice_netdev_priv *np = netdev_priv(netdev); 6088 struct ice_vsi *vsi = np->vsi; 6089 u16 q_handle; 6090 int status; 6091 u8 tc; 6092 6093 /* Validate maxrate requested is within permitted range */ 6094 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6095 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6096 maxrate, queue_index); 6097 return -EINVAL; 6098 } 6099 6100 q_handle = vsi->tx_rings[queue_index]->q_handle; 6101 tc = ice_dcb_get_tc(vsi, queue_index); 6102 6103 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6104 if (!vsi) { 6105 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6106 queue_index); 6107 return -EINVAL; 6108 } 6109 6110 /* Set BW back to default, when user set maxrate to 0 */ 6111 if (!maxrate) 6112 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6113 q_handle, ICE_MAX_BW); 6114 else 6115 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6116 q_handle, ICE_MAX_BW, maxrate * 1000); 6117 if (status) 6118 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6119 status); 6120 6121 return status; 6122 } 6123 6124 /** 6125 * ice_fdb_add - add an entry to the hardware database 6126 * @ndm: the input from the stack 6127 * @tb: pointer to array of nladdr (unused) 6128 * @dev: the net device pointer 6129 * @addr: the MAC address entry being added 6130 * @vid: VLAN ID 6131 * @flags: instructions from stack about fdb operation 6132 * @notified: whether notification was emitted 6133 * @extack: netlink extended ack 6134 */ 6135 static int 6136 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6137 struct net_device *dev, const unsigned char *addr, u16 vid, 6138 u16 flags, bool *notified, 6139 struct netlink_ext_ack __always_unused *extack) 6140 { 6141 int err; 6142 6143 if (vid) { 6144 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6145 return -EINVAL; 6146 } 6147 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6148 netdev_err(dev, "FDB only supports static addresses\n"); 6149 return -EINVAL; 6150 } 6151 6152 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6153 err = dev_uc_add_excl(dev, addr); 6154 else if (is_multicast_ether_addr(addr)) 6155 err = dev_mc_add_excl(dev, addr); 6156 else 6157 err = -EINVAL; 6158 6159 /* Only return duplicate errors if NLM_F_EXCL is set */ 6160 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6161 err = 0; 6162 6163 return err; 6164 } 6165 6166 /** 6167 * ice_fdb_del - delete an entry from the hardware database 6168 * @ndm: the input from the stack 6169 * @tb: pointer to array of nladdr (unused) 6170 * @dev: the net device pointer 6171 * @addr: the MAC address entry being added 6172 * @vid: VLAN ID 6173 * @notified: whether notification was emitted 6174 * @extack: netlink extended ack 6175 */ 6176 static int 6177 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6178 struct net_device *dev, const unsigned char *addr, 6179 __always_unused u16 vid, bool *notified, 6180 struct netlink_ext_ack *extack) 6181 { 6182 int err; 6183 6184 if (ndm->ndm_state & NUD_PERMANENT) { 6185 netdev_err(dev, "FDB only supports static addresses\n"); 6186 return -EINVAL; 6187 } 6188 6189 if (is_unicast_ether_addr(addr)) 6190 err = dev_uc_del(dev, addr); 6191 else if (is_multicast_ether_addr(addr)) 6192 err = dev_mc_del(dev, addr); 6193 else 6194 err = -EINVAL; 6195 6196 return err; 6197 } 6198 6199 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6200 NETIF_F_HW_VLAN_CTAG_TX | \ 6201 NETIF_F_HW_VLAN_STAG_RX | \ 6202 NETIF_F_HW_VLAN_STAG_TX) 6203 6204 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6205 NETIF_F_HW_VLAN_STAG_RX) 6206 6207 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6208 NETIF_F_HW_VLAN_STAG_FILTER) 6209 6210 /** 6211 * ice_fix_features - fix the netdev features flags based on device limitations 6212 * @netdev: ptr to the netdev that flags are being fixed on 6213 * @features: features that need to be checked and possibly fixed 6214 * 6215 * Make sure any fixups are made to features in this callback. This enables the 6216 * driver to not have to check unsupported configurations throughout the driver 6217 * because that's the responsiblity of this callback. 6218 * 6219 * Single VLAN Mode (SVM) Supported Features: 6220 * NETIF_F_HW_VLAN_CTAG_FILTER 6221 * NETIF_F_HW_VLAN_CTAG_RX 6222 * NETIF_F_HW_VLAN_CTAG_TX 6223 * 6224 * Double VLAN Mode (DVM) Supported Features: 6225 * NETIF_F_HW_VLAN_CTAG_FILTER 6226 * NETIF_F_HW_VLAN_CTAG_RX 6227 * NETIF_F_HW_VLAN_CTAG_TX 6228 * 6229 * NETIF_F_HW_VLAN_STAG_FILTER 6230 * NETIF_HW_VLAN_STAG_RX 6231 * NETIF_HW_VLAN_STAG_TX 6232 * 6233 * Features that need fixing: 6234 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6235 * These are mutually exlusive as the VSI context cannot support multiple 6236 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6237 * is not done, then default to clearing the requested STAG offload 6238 * settings. 6239 * 6240 * All supported filtering has to be enabled or disabled together. For 6241 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6242 * together. If this is not done, then default to VLAN filtering disabled. 6243 * These are mutually exclusive as there is currently no way to 6244 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6245 * prune rules. 6246 */ 6247 static netdev_features_t 6248 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6249 { 6250 struct ice_netdev_priv *np = netdev_priv(netdev); 6251 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6252 bool cur_ctag, cur_stag, req_ctag, req_stag; 6253 6254 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6255 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6256 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6257 6258 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6259 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6260 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6261 6262 if (req_vlan_fltr != cur_vlan_fltr) { 6263 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6264 if (req_ctag && req_stag) { 6265 features |= NETIF_VLAN_FILTERING_FEATURES; 6266 } else if (!req_ctag && !req_stag) { 6267 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6268 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6269 (!cur_stag && req_stag && !cur_ctag)) { 6270 features |= NETIF_VLAN_FILTERING_FEATURES; 6271 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6272 } else if ((cur_ctag && !req_ctag && cur_stag) || 6273 (cur_stag && !req_stag && cur_ctag)) { 6274 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6275 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6276 } 6277 } else { 6278 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6279 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6280 6281 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6282 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6283 } 6284 } 6285 6286 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6287 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6288 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6289 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6290 NETIF_F_HW_VLAN_STAG_TX); 6291 } 6292 6293 if (!(netdev->features & NETIF_F_RXFCS) && 6294 (features & NETIF_F_RXFCS) && 6295 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6296 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6297 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6298 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6299 } 6300 6301 return features; 6302 } 6303 6304 /** 6305 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6306 * @vsi: PF's VSI 6307 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6308 * 6309 * Store current stripped VLAN proto in ring packet context, 6310 * so it can be accessed more efficiently by packet processing code. 6311 */ 6312 static void 6313 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6314 { 6315 u16 i; 6316 6317 ice_for_each_alloc_rxq(vsi, i) 6318 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6319 } 6320 6321 /** 6322 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6323 * @vsi: PF's VSI 6324 * @features: features used to determine VLAN offload settings 6325 * 6326 * First, determine the vlan_ethertype based on the VLAN offload bits in 6327 * features. Then determine if stripping and insertion should be enabled or 6328 * disabled. Finally enable or disable VLAN stripping and insertion. 6329 */ 6330 static int 6331 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6332 { 6333 bool enable_stripping = true, enable_insertion = true; 6334 struct ice_vsi_vlan_ops *vlan_ops; 6335 int strip_err = 0, insert_err = 0; 6336 u16 vlan_ethertype = 0; 6337 6338 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6339 6340 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6341 vlan_ethertype = ETH_P_8021AD; 6342 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6343 vlan_ethertype = ETH_P_8021Q; 6344 6345 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6346 enable_stripping = false; 6347 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6348 enable_insertion = false; 6349 6350 if (enable_stripping) 6351 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6352 else 6353 strip_err = vlan_ops->dis_stripping(vsi); 6354 6355 if (enable_insertion) 6356 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6357 else 6358 insert_err = vlan_ops->dis_insertion(vsi); 6359 6360 if (strip_err || insert_err) 6361 return -EIO; 6362 6363 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6364 htons(vlan_ethertype) : 0); 6365 6366 return 0; 6367 } 6368 6369 /** 6370 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6371 * @vsi: PF's VSI 6372 * @features: features used to determine VLAN filtering settings 6373 * 6374 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6375 * features. 6376 */ 6377 static int 6378 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6379 { 6380 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6381 int err = 0; 6382 6383 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6384 * if either bit is set. In switchdev mode Rx filtering should never be 6385 * enabled. 6386 */ 6387 if ((features & 6388 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6389 !ice_is_eswitch_mode_switchdev(vsi->back)) 6390 err = vlan_ops->ena_rx_filtering(vsi); 6391 else 6392 err = vlan_ops->dis_rx_filtering(vsi); 6393 6394 return err; 6395 } 6396 6397 /** 6398 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6399 * @netdev: ptr to the netdev being adjusted 6400 * @features: the feature set that the stack is suggesting 6401 * 6402 * Only update VLAN settings if the requested_vlan_features are different than 6403 * the current_vlan_features. 6404 */ 6405 static int 6406 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6407 { 6408 netdev_features_t current_vlan_features, requested_vlan_features; 6409 struct ice_netdev_priv *np = netdev_priv(netdev); 6410 struct ice_vsi *vsi = np->vsi; 6411 int err; 6412 6413 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6414 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6415 if (current_vlan_features ^ requested_vlan_features) { 6416 if ((features & NETIF_F_RXFCS) && 6417 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6418 dev_err(ice_pf_to_dev(vsi->back), 6419 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6420 return -EIO; 6421 } 6422 6423 err = ice_set_vlan_offload_features(vsi, features); 6424 if (err) 6425 return err; 6426 } 6427 6428 current_vlan_features = netdev->features & 6429 NETIF_VLAN_FILTERING_FEATURES; 6430 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6431 if (current_vlan_features ^ requested_vlan_features) { 6432 err = ice_set_vlan_filtering_features(vsi, features); 6433 if (err) 6434 return err; 6435 } 6436 6437 return 0; 6438 } 6439 6440 /** 6441 * ice_set_loopback - turn on/off loopback mode on underlying PF 6442 * @vsi: ptr to VSI 6443 * @ena: flag to indicate the on/off setting 6444 */ 6445 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6446 { 6447 bool if_running = netif_running(vsi->netdev); 6448 int ret; 6449 6450 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6451 ret = ice_down(vsi); 6452 if (ret) { 6453 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6454 return ret; 6455 } 6456 } 6457 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6458 if (ret) 6459 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6460 if (if_running) 6461 ret = ice_up(vsi); 6462 6463 return ret; 6464 } 6465 6466 /** 6467 * ice_set_features - set the netdev feature flags 6468 * @netdev: ptr to the netdev being adjusted 6469 * @features: the feature set that the stack is suggesting 6470 */ 6471 static int 6472 ice_set_features(struct net_device *netdev, netdev_features_t features) 6473 { 6474 netdev_features_t changed = netdev->features ^ features; 6475 struct ice_netdev_priv *np = netdev_priv(netdev); 6476 struct ice_vsi *vsi = np->vsi; 6477 struct ice_pf *pf = vsi->back; 6478 int ret = 0; 6479 6480 /* Don't set any netdev advanced features with device in Safe Mode */ 6481 if (ice_is_safe_mode(pf)) { 6482 dev_err(ice_pf_to_dev(pf), 6483 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6484 return ret; 6485 } 6486 6487 /* Do not change setting during reset */ 6488 if (ice_is_reset_in_progress(pf->state)) { 6489 dev_err(ice_pf_to_dev(pf), 6490 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6491 return -EBUSY; 6492 } 6493 6494 /* Multiple features can be changed in one call so keep features in 6495 * separate if/else statements to guarantee each feature is checked 6496 */ 6497 if (changed & NETIF_F_RXHASH) 6498 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6499 6500 ret = ice_set_vlan_features(netdev, features); 6501 if (ret) 6502 return ret; 6503 6504 /* Turn on receive of FCS aka CRC, and after setting this 6505 * flag the packet data will have the 4 byte CRC appended 6506 */ 6507 if (changed & NETIF_F_RXFCS) { 6508 if ((features & NETIF_F_RXFCS) && 6509 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6510 dev_err(ice_pf_to_dev(vsi->back), 6511 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6512 return -EIO; 6513 } 6514 6515 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6516 ret = ice_down_up(vsi); 6517 if (ret) 6518 return ret; 6519 } 6520 6521 if (changed & NETIF_F_NTUPLE) { 6522 bool ena = !!(features & NETIF_F_NTUPLE); 6523 6524 ice_vsi_manage_fdir(vsi, ena); 6525 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6526 } 6527 6528 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6529 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6530 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6531 return -EACCES; 6532 } 6533 6534 if (changed & NETIF_F_HW_TC) { 6535 bool ena = !!(features & NETIF_F_HW_TC); 6536 6537 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6538 } 6539 6540 if (changed & NETIF_F_LOOPBACK) 6541 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6542 6543 return ret; 6544 } 6545 6546 /** 6547 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6548 * @vsi: VSI to setup VLAN properties for 6549 */ 6550 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6551 { 6552 int err; 6553 6554 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6555 if (err) 6556 return err; 6557 6558 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6559 if (err) 6560 return err; 6561 6562 return ice_vsi_add_vlan_zero(vsi); 6563 } 6564 6565 /** 6566 * ice_vsi_cfg_lan - Setup the VSI lan related config 6567 * @vsi: the VSI being configured 6568 * 6569 * Return 0 on success and negative value on error 6570 */ 6571 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6572 { 6573 int err; 6574 6575 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6576 ice_set_rx_mode(vsi->netdev); 6577 6578 err = ice_vsi_vlan_setup(vsi); 6579 if (err) 6580 return err; 6581 } 6582 ice_vsi_cfg_dcb_rings(vsi); 6583 6584 err = ice_vsi_cfg_lan_txqs(vsi); 6585 if (!err && ice_is_xdp_ena_vsi(vsi)) 6586 err = ice_vsi_cfg_xdp_txqs(vsi); 6587 if (!err) 6588 err = ice_vsi_cfg_rxqs(vsi); 6589 6590 return err; 6591 } 6592 6593 /* THEORY OF MODERATION: 6594 * The ice driver hardware works differently than the hardware that DIMLIB was 6595 * originally made for. ice hardware doesn't have packet count limits that 6596 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6597 * which is hard-coded to a limit of 250,000 ints/second. 6598 * If not using dynamic moderation, the INTRL value can be modified 6599 * by ethtool rx-usecs-high. 6600 */ 6601 struct ice_dim { 6602 /* the throttle rate for interrupts, basically worst case delay before 6603 * an initial interrupt fires, value is stored in microseconds. 6604 */ 6605 u16 itr; 6606 }; 6607 6608 /* Make a different profile for Rx that doesn't allow quite so aggressive 6609 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6610 * second. 6611 */ 6612 static const struct ice_dim rx_profile[] = { 6613 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6614 {8}, /* 125,000 ints/s */ 6615 {16}, /* 62,500 ints/s */ 6616 {62}, /* 16,129 ints/s */ 6617 {126} /* 7,936 ints/s */ 6618 }; 6619 6620 /* The transmit profile, which has the same sorts of values 6621 * as the previous struct 6622 */ 6623 static const struct ice_dim tx_profile[] = { 6624 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6625 {8}, /* 125,000 ints/s */ 6626 {40}, /* 16,125 ints/s */ 6627 {128}, /* 7,812 ints/s */ 6628 {256} /* 3,906 ints/s */ 6629 }; 6630 6631 static void ice_tx_dim_work(struct work_struct *work) 6632 { 6633 struct ice_ring_container *rc; 6634 struct dim *dim; 6635 u16 itr; 6636 6637 dim = container_of(work, struct dim, work); 6638 rc = dim->priv; 6639 6640 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6641 6642 /* look up the values in our local table */ 6643 itr = tx_profile[dim->profile_ix].itr; 6644 6645 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6646 ice_write_itr(rc, itr); 6647 6648 dim->state = DIM_START_MEASURE; 6649 } 6650 6651 static void ice_rx_dim_work(struct work_struct *work) 6652 { 6653 struct ice_ring_container *rc; 6654 struct dim *dim; 6655 u16 itr; 6656 6657 dim = container_of(work, struct dim, work); 6658 rc = dim->priv; 6659 6660 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6661 6662 /* look up the values in our local table */ 6663 itr = rx_profile[dim->profile_ix].itr; 6664 6665 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6666 ice_write_itr(rc, itr); 6667 6668 dim->state = DIM_START_MEASURE; 6669 } 6670 6671 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6672 6673 /** 6674 * ice_init_moderation - set up interrupt moderation 6675 * @q_vector: the vector containing rings to be configured 6676 * 6677 * Set up interrupt moderation registers, with the intent to do the right thing 6678 * when called from reset or from probe, and whether or not dynamic moderation 6679 * is enabled or not. Take special care to write all the registers in both 6680 * dynamic moderation mode or not in order to make sure hardware is in a known 6681 * state. 6682 */ 6683 static void ice_init_moderation(struct ice_q_vector *q_vector) 6684 { 6685 struct ice_ring_container *rc; 6686 bool tx_dynamic, rx_dynamic; 6687 6688 rc = &q_vector->tx; 6689 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6690 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6691 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6692 rc->dim.priv = rc; 6693 tx_dynamic = ITR_IS_DYNAMIC(rc); 6694 6695 /* set the initial TX ITR to match the above */ 6696 ice_write_itr(rc, tx_dynamic ? 6697 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6698 6699 rc = &q_vector->rx; 6700 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6701 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6702 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6703 rc->dim.priv = rc; 6704 rx_dynamic = ITR_IS_DYNAMIC(rc); 6705 6706 /* set the initial RX ITR to match the above */ 6707 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6708 rc->itr_setting); 6709 6710 ice_set_q_vector_intrl(q_vector); 6711 } 6712 6713 /** 6714 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6715 * @vsi: the VSI being configured 6716 */ 6717 static void ice_napi_enable_all(struct ice_vsi *vsi) 6718 { 6719 int q_idx; 6720 6721 if (!vsi->netdev) 6722 return; 6723 6724 ice_for_each_q_vector(vsi, q_idx) { 6725 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6726 6727 ice_init_moderation(q_vector); 6728 6729 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6730 napi_enable(&q_vector->napi); 6731 } 6732 } 6733 6734 /** 6735 * ice_up_complete - Finish the last steps of bringing up a connection 6736 * @vsi: The VSI being configured 6737 * 6738 * Return 0 on success and negative value on error 6739 */ 6740 static int ice_up_complete(struct ice_vsi *vsi) 6741 { 6742 struct ice_pf *pf = vsi->back; 6743 int err; 6744 6745 ice_vsi_cfg_msix(vsi); 6746 6747 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6748 * Tx queue group list was configured and the context bits were 6749 * programmed using ice_vsi_cfg_txqs 6750 */ 6751 err = ice_vsi_start_all_rx_rings(vsi); 6752 if (err) 6753 return err; 6754 6755 clear_bit(ICE_VSI_DOWN, vsi->state); 6756 ice_napi_enable_all(vsi); 6757 ice_vsi_ena_irq(vsi); 6758 6759 if (vsi->port_info && 6760 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6761 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6762 vsi->type == ICE_VSI_SF)))) { 6763 ice_print_link_msg(vsi, true); 6764 netif_tx_start_all_queues(vsi->netdev); 6765 netif_carrier_on(vsi->netdev); 6766 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6767 } 6768 6769 /* Perform an initial read of the statistics registers now to 6770 * set the baseline so counters are ready when interface is up 6771 */ 6772 ice_update_eth_stats(vsi); 6773 6774 if (vsi->type == ICE_VSI_PF) 6775 ice_service_task_schedule(pf); 6776 6777 return 0; 6778 } 6779 6780 /** 6781 * ice_up - Bring the connection back up after being down 6782 * @vsi: VSI being configured 6783 */ 6784 int ice_up(struct ice_vsi *vsi) 6785 { 6786 int err; 6787 6788 err = ice_vsi_cfg_lan(vsi); 6789 if (!err) 6790 err = ice_up_complete(vsi); 6791 6792 return err; 6793 } 6794 6795 /** 6796 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6797 * @syncp: pointer to u64_stats_sync 6798 * @stats: stats that pkts and bytes count will be taken from 6799 * @pkts: packets stats counter 6800 * @bytes: bytes stats counter 6801 * 6802 * This function fetches stats from the ring considering the atomic operations 6803 * that needs to be performed to read u64 values in 32 bit machine. 6804 */ 6805 void 6806 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6807 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6808 { 6809 unsigned int start; 6810 6811 do { 6812 start = u64_stats_fetch_begin(syncp); 6813 *pkts = stats.pkts; 6814 *bytes = stats.bytes; 6815 } while (u64_stats_fetch_retry(syncp, start)); 6816 } 6817 6818 /** 6819 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6820 * @vsi: the VSI to be updated 6821 * @vsi_stats: the stats struct to be updated 6822 * @rings: rings to work on 6823 * @count: number of rings 6824 */ 6825 static void 6826 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6827 struct rtnl_link_stats64 *vsi_stats, 6828 struct ice_tx_ring **rings, u16 count) 6829 { 6830 u16 i; 6831 6832 for (i = 0; i < count; i++) { 6833 struct ice_tx_ring *ring; 6834 u64 pkts = 0, bytes = 0; 6835 6836 ring = READ_ONCE(rings[i]); 6837 if (!ring || !ring->ring_stats) 6838 continue; 6839 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6840 ring->ring_stats->stats, &pkts, 6841 &bytes); 6842 vsi_stats->tx_packets += pkts; 6843 vsi_stats->tx_bytes += bytes; 6844 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6845 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6846 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6847 } 6848 } 6849 6850 /** 6851 * ice_update_vsi_ring_stats - Update VSI stats counters 6852 * @vsi: the VSI to be updated 6853 */ 6854 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6855 { 6856 struct rtnl_link_stats64 *net_stats, *stats_prev; 6857 struct rtnl_link_stats64 *vsi_stats; 6858 struct ice_pf *pf = vsi->back; 6859 u64 pkts, bytes; 6860 int i; 6861 6862 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6863 if (!vsi_stats) 6864 return; 6865 6866 /* reset non-netdev (extended) stats */ 6867 vsi->tx_restart = 0; 6868 vsi->tx_busy = 0; 6869 vsi->tx_linearize = 0; 6870 vsi->rx_buf_failed = 0; 6871 vsi->rx_page_failed = 0; 6872 6873 rcu_read_lock(); 6874 6875 /* update Tx rings counters */ 6876 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6877 vsi->num_txq); 6878 6879 /* update Rx rings counters */ 6880 ice_for_each_rxq(vsi, i) { 6881 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6882 struct ice_ring_stats *ring_stats; 6883 6884 ring_stats = ring->ring_stats; 6885 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6886 ring_stats->stats, &pkts, 6887 &bytes); 6888 vsi_stats->rx_packets += pkts; 6889 vsi_stats->rx_bytes += bytes; 6890 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6891 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6892 } 6893 6894 /* update XDP Tx rings counters */ 6895 if (ice_is_xdp_ena_vsi(vsi)) 6896 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6897 vsi->num_xdp_txq); 6898 6899 rcu_read_unlock(); 6900 6901 net_stats = &vsi->net_stats; 6902 stats_prev = &vsi->net_stats_prev; 6903 6904 /* Update netdev counters, but keep in mind that values could start at 6905 * random value after PF reset. And as we increase the reported stat by 6906 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6907 * let's skip this round. 6908 */ 6909 if (likely(pf->stat_prev_loaded)) { 6910 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6911 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6912 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6913 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6914 } 6915 6916 stats_prev->tx_packets = vsi_stats->tx_packets; 6917 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6918 stats_prev->rx_packets = vsi_stats->rx_packets; 6919 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6920 6921 kfree(vsi_stats); 6922 } 6923 6924 /** 6925 * ice_update_vsi_stats - Update VSI stats counters 6926 * @vsi: the VSI to be updated 6927 */ 6928 void ice_update_vsi_stats(struct ice_vsi *vsi) 6929 { 6930 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6931 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6932 struct ice_pf *pf = vsi->back; 6933 6934 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6935 test_bit(ICE_CFG_BUSY, pf->state)) 6936 return; 6937 6938 /* get stats as recorded by Tx/Rx rings */ 6939 ice_update_vsi_ring_stats(vsi); 6940 6941 /* get VSI stats as recorded by the hardware */ 6942 ice_update_eth_stats(vsi); 6943 6944 cur_ns->tx_errors = cur_es->tx_errors; 6945 cur_ns->rx_dropped = cur_es->rx_discards; 6946 cur_ns->tx_dropped = cur_es->tx_discards; 6947 cur_ns->multicast = cur_es->rx_multicast; 6948 6949 /* update some more netdev stats if this is main VSI */ 6950 if (vsi->type == ICE_VSI_PF) { 6951 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6952 cur_ns->rx_errors = pf->stats.crc_errors + 6953 pf->stats.illegal_bytes + 6954 pf->stats.rx_undersize + 6955 pf->hw_csum_rx_error + 6956 pf->stats.rx_jabber + 6957 pf->stats.rx_fragments + 6958 pf->stats.rx_oversize; 6959 /* record drops from the port level */ 6960 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6961 } 6962 } 6963 6964 /** 6965 * ice_update_pf_stats - Update PF port stats counters 6966 * @pf: PF whose stats needs to be updated 6967 */ 6968 void ice_update_pf_stats(struct ice_pf *pf) 6969 { 6970 struct ice_hw_port_stats *prev_ps, *cur_ps; 6971 struct ice_hw *hw = &pf->hw; 6972 u16 fd_ctr_base; 6973 u8 port; 6974 6975 port = hw->port_info->lport; 6976 prev_ps = &pf->stats_prev; 6977 cur_ps = &pf->stats; 6978 6979 if (ice_is_reset_in_progress(pf->state)) 6980 pf->stat_prev_loaded = false; 6981 6982 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6983 &prev_ps->eth.rx_bytes, 6984 &cur_ps->eth.rx_bytes); 6985 6986 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6987 &prev_ps->eth.rx_unicast, 6988 &cur_ps->eth.rx_unicast); 6989 6990 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6991 &prev_ps->eth.rx_multicast, 6992 &cur_ps->eth.rx_multicast); 6993 6994 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6995 &prev_ps->eth.rx_broadcast, 6996 &cur_ps->eth.rx_broadcast); 6997 6998 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6999 &prev_ps->eth.rx_discards, 7000 &cur_ps->eth.rx_discards); 7001 7002 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7003 &prev_ps->eth.tx_bytes, 7004 &cur_ps->eth.tx_bytes); 7005 7006 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7007 &prev_ps->eth.tx_unicast, 7008 &cur_ps->eth.tx_unicast); 7009 7010 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7011 &prev_ps->eth.tx_multicast, 7012 &cur_ps->eth.tx_multicast); 7013 7014 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7015 &prev_ps->eth.tx_broadcast, 7016 &cur_ps->eth.tx_broadcast); 7017 7018 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7019 &prev_ps->tx_dropped_link_down, 7020 &cur_ps->tx_dropped_link_down); 7021 7022 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7023 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7024 7025 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7026 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7027 7028 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7029 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7030 7031 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7032 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7033 7034 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7035 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7036 7037 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7038 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7039 7040 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7041 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7042 7043 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7044 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7045 7046 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7047 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7048 7049 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7050 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7051 7052 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7053 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7054 7055 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7056 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7057 7058 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7059 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7060 7061 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7062 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7063 7064 fd_ctr_base = hw->fd_ctr_base; 7065 7066 ice_stat_update40(hw, 7067 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7068 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7069 &cur_ps->fd_sb_match); 7070 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7071 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7072 7073 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7074 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7075 7076 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7077 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7078 7079 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7080 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7081 7082 ice_update_dcb_stats(pf); 7083 7084 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7085 &prev_ps->crc_errors, &cur_ps->crc_errors); 7086 7087 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7088 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7089 7090 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7091 &prev_ps->mac_local_faults, 7092 &cur_ps->mac_local_faults); 7093 7094 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7095 &prev_ps->mac_remote_faults, 7096 &cur_ps->mac_remote_faults); 7097 7098 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7099 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7100 7101 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7102 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7103 7104 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7105 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7106 7107 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7108 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7109 7110 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7111 7112 pf->stat_prev_loaded = true; 7113 } 7114 7115 /** 7116 * ice_get_stats64 - get statistics for network device structure 7117 * @netdev: network interface device structure 7118 * @stats: main device statistics structure 7119 */ 7120 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7121 { 7122 struct ice_netdev_priv *np = netdev_priv(netdev); 7123 struct rtnl_link_stats64 *vsi_stats; 7124 struct ice_vsi *vsi = np->vsi; 7125 7126 vsi_stats = &vsi->net_stats; 7127 7128 if (!vsi->num_txq || !vsi->num_rxq) 7129 return; 7130 7131 /* netdev packet/byte stats come from ring counter. These are obtained 7132 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7133 * But, only call the update routine and read the registers if VSI is 7134 * not down. 7135 */ 7136 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7137 ice_update_vsi_ring_stats(vsi); 7138 stats->tx_packets = vsi_stats->tx_packets; 7139 stats->tx_bytes = vsi_stats->tx_bytes; 7140 stats->rx_packets = vsi_stats->rx_packets; 7141 stats->rx_bytes = vsi_stats->rx_bytes; 7142 7143 /* The rest of the stats can be read from the hardware but instead we 7144 * just return values that the watchdog task has already obtained from 7145 * the hardware. 7146 */ 7147 stats->multicast = vsi_stats->multicast; 7148 stats->tx_errors = vsi_stats->tx_errors; 7149 stats->tx_dropped = vsi_stats->tx_dropped; 7150 stats->rx_errors = vsi_stats->rx_errors; 7151 stats->rx_dropped = vsi_stats->rx_dropped; 7152 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7153 stats->rx_length_errors = vsi_stats->rx_length_errors; 7154 } 7155 7156 /** 7157 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7158 * @vsi: VSI having NAPI disabled 7159 */ 7160 static void ice_napi_disable_all(struct ice_vsi *vsi) 7161 { 7162 int q_idx; 7163 7164 if (!vsi->netdev) 7165 return; 7166 7167 ice_for_each_q_vector(vsi, q_idx) { 7168 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7169 7170 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7171 napi_disable(&q_vector->napi); 7172 7173 cancel_work_sync(&q_vector->tx.dim.work); 7174 cancel_work_sync(&q_vector->rx.dim.work); 7175 } 7176 } 7177 7178 /** 7179 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7180 * @vsi: the VSI being un-configured 7181 */ 7182 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7183 { 7184 struct ice_pf *pf = vsi->back; 7185 struct ice_hw *hw = &pf->hw; 7186 u32 val; 7187 int i; 7188 7189 /* disable interrupt causation from each Rx queue; Tx queues are 7190 * handled in ice_vsi_stop_tx_ring() 7191 */ 7192 if (vsi->rx_rings) { 7193 ice_for_each_rxq(vsi, i) { 7194 if (vsi->rx_rings[i]) { 7195 u16 reg; 7196 7197 reg = vsi->rx_rings[i]->reg_idx; 7198 val = rd32(hw, QINT_RQCTL(reg)); 7199 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7200 wr32(hw, QINT_RQCTL(reg), val); 7201 } 7202 } 7203 } 7204 7205 /* disable each interrupt */ 7206 ice_for_each_q_vector(vsi, i) { 7207 if (!vsi->q_vectors[i]) 7208 continue; 7209 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7210 } 7211 7212 ice_flush(hw); 7213 7214 /* don't call synchronize_irq() for VF's from the host */ 7215 if (vsi->type == ICE_VSI_VF) 7216 return; 7217 7218 ice_for_each_q_vector(vsi, i) 7219 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7220 } 7221 7222 /** 7223 * ice_down - Shutdown the connection 7224 * @vsi: The VSI being stopped 7225 * 7226 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7227 */ 7228 int ice_down(struct ice_vsi *vsi) 7229 { 7230 int i, tx_err, rx_err, vlan_err = 0; 7231 7232 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7233 7234 if (vsi->netdev) { 7235 vlan_err = ice_vsi_del_vlan_zero(vsi); 7236 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7237 netif_carrier_off(vsi->netdev); 7238 netif_tx_disable(vsi->netdev); 7239 } 7240 7241 ice_vsi_dis_irq(vsi); 7242 7243 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7244 if (tx_err) 7245 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7246 vsi->vsi_num, tx_err); 7247 if (!tx_err && vsi->xdp_rings) { 7248 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7249 if (tx_err) 7250 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7251 vsi->vsi_num, tx_err); 7252 } 7253 7254 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7255 if (rx_err) 7256 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7257 vsi->vsi_num, rx_err); 7258 7259 ice_napi_disable_all(vsi); 7260 7261 ice_for_each_txq(vsi, i) 7262 ice_clean_tx_ring(vsi->tx_rings[i]); 7263 7264 if (vsi->xdp_rings) 7265 ice_for_each_xdp_txq(vsi, i) 7266 ice_clean_tx_ring(vsi->xdp_rings[i]); 7267 7268 ice_for_each_rxq(vsi, i) 7269 ice_clean_rx_ring(vsi->rx_rings[i]); 7270 7271 if (tx_err || rx_err || vlan_err) { 7272 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7273 vsi->vsi_num, vsi->vsw->sw_id); 7274 return -EIO; 7275 } 7276 7277 return 0; 7278 } 7279 7280 /** 7281 * ice_down_up - shutdown the VSI connection and bring it up 7282 * @vsi: the VSI to be reconnected 7283 */ 7284 int ice_down_up(struct ice_vsi *vsi) 7285 { 7286 int ret; 7287 7288 /* if DOWN already set, nothing to do */ 7289 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7290 return 0; 7291 7292 ret = ice_down(vsi); 7293 if (ret) 7294 return ret; 7295 7296 ret = ice_up(vsi); 7297 if (ret) { 7298 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7299 return ret; 7300 } 7301 7302 return 0; 7303 } 7304 7305 /** 7306 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7307 * @vsi: VSI having resources allocated 7308 * 7309 * Return 0 on success, negative on failure 7310 */ 7311 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7312 { 7313 int i, err = 0; 7314 7315 if (!vsi->num_txq) { 7316 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7317 vsi->vsi_num); 7318 return -EINVAL; 7319 } 7320 7321 ice_for_each_txq(vsi, i) { 7322 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7323 7324 if (!ring) 7325 return -EINVAL; 7326 7327 if (vsi->netdev) 7328 ring->netdev = vsi->netdev; 7329 err = ice_setup_tx_ring(ring); 7330 if (err) 7331 break; 7332 } 7333 7334 return err; 7335 } 7336 7337 /** 7338 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7339 * @vsi: VSI having resources allocated 7340 * 7341 * Return 0 on success, negative on failure 7342 */ 7343 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7344 { 7345 int i, err = 0; 7346 7347 if (!vsi->num_rxq) { 7348 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7349 vsi->vsi_num); 7350 return -EINVAL; 7351 } 7352 7353 ice_for_each_rxq(vsi, i) { 7354 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7355 7356 if (!ring) 7357 return -EINVAL; 7358 7359 if (vsi->netdev) 7360 ring->netdev = vsi->netdev; 7361 err = ice_setup_rx_ring(ring); 7362 if (err) 7363 break; 7364 } 7365 7366 return err; 7367 } 7368 7369 /** 7370 * ice_vsi_open_ctrl - open control VSI for use 7371 * @vsi: the VSI to open 7372 * 7373 * Initialization of the Control VSI 7374 * 7375 * Returns 0 on success, negative value on error 7376 */ 7377 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7378 { 7379 char int_name[ICE_INT_NAME_STR_LEN]; 7380 struct ice_pf *pf = vsi->back; 7381 struct device *dev; 7382 int err; 7383 7384 dev = ice_pf_to_dev(pf); 7385 /* allocate descriptors */ 7386 err = ice_vsi_setup_tx_rings(vsi); 7387 if (err) 7388 goto err_setup_tx; 7389 7390 err = ice_vsi_setup_rx_rings(vsi); 7391 if (err) 7392 goto err_setup_rx; 7393 7394 err = ice_vsi_cfg_lan(vsi); 7395 if (err) 7396 goto err_setup_rx; 7397 7398 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7399 dev_driver_string(dev), dev_name(dev)); 7400 err = ice_vsi_req_irq_msix(vsi, int_name); 7401 if (err) 7402 goto err_setup_rx; 7403 7404 ice_vsi_cfg_msix(vsi); 7405 7406 err = ice_vsi_start_all_rx_rings(vsi); 7407 if (err) 7408 goto err_up_complete; 7409 7410 clear_bit(ICE_VSI_DOWN, vsi->state); 7411 ice_vsi_ena_irq(vsi); 7412 7413 return 0; 7414 7415 err_up_complete: 7416 ice_down(vsi); 7417 err_setup_rx: 7418 ice_vsi_free_rx_rings(vsi); 7419 err_setup_tx: 7420 ice_vsi_free_tx_rings(vsi); 7421 7422 return err; 7423 } 7424 7425 /** 7426 * ice_vsi_open - Called when a network interface is made active 7427 * @vsi: the VSI to open 7428 * 7429 * Initialization of the VSI 7430 * 7431 * Returns 0 on success, negative value on error 7432 */ 7433 int ice_vsi_open(struct ice_vsi *vsi) 7434 { 7435 char int_name[ICE_INT_NAME_STR_LEN]; 7436 struct ice_pf *pf = vsi->back; 7437 int err; 7438 7439 /* allocate descriptors */ 7440 err = ice_vsi_setup_tx_rings(vsi); 7441 if (err) 7442 goto err_setup_tx; 7443 7444 err = ice_vsi_setup_rx_rings(vsi); 7445 if (err) 7446 goto err_setup_rx; 7447 7448 err = ice_vsi_cfg_lan(vsi); 7449 if (err) 7450 goto err_setup_rx; 7451 7452 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7453 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7454 err = ice_vsi_req_irq_msix(vsi, int_name); 7455 if (err) 7456 goto err_setup_rx; 7457 7458 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7459 7460 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7461 /* Notify the stack of the actual queue counts. */ 7462 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7463 if (err) 7464 goto err_set_qs; 7465 7466 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7467 if (err) 7468 goto err_set_qs; 7469 7470 ice_vsi_set_napi_queues(vsi); 7471 } 7472 7473 err = ice_up_complete(vsi); 7474 if (err) 7475 goto err_up_complete; 7476 7477 return 0; 7478 7479 err_up_complete: 7480 ice_down(vsi); 7481 err_set_qs: 7482 ice_vsi_free_irq(vsi); 7483 err_setup_rx: 7484 ice_vsi_free_rx_rings(vsi); 7485 err_setup_tx: 7486 ice_vsi_free_tx_rings(vsi); 7487 7488 return err; 7489 } 7490 7491 /** 7492 * ice_vsi_release_all - Delete all VSIs 7493 * @pf: PF from which all VSIs are being removed 7494 */ 7495 static void ice_vsi_release_all(struct ice_pf *pf) 7496 { 7497 int err, i; 7498 7499 if (!pf->vsi) 7500 return; 7501 7502 ice_for_each_vsi(pf, i) { 7503 if (!pf->vsi[i]) 7504 continue; 7505 7506 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7507 continue; 7508 7509 err = ice_vsi_release(pf->vsi[i]); 7510 if (err) 7511 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7512 i, err, pf->vsi[i]->vsi_num); 7513 } 7514 } 7515 7516 /** 7517 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7518 * @pf: pointer to the PF instance 7519 * @type: VSI type to rebuild 7520 * 7521 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7522 */ 7523 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7524 { 7525 struct device *dev = ice_pf_to_dev(pf); 7526 int i, err; 7527 7528 ice_for_each_vsi(pf, i) { 7529 struct ice_vsi *vsi = pf->vsi[i]; 7530 7531 if (!vsi || vsi->type != type) 7532 continue; 7533 7534 /* rebuild the VSI */ 7535 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7536 if (err) { 7537 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7538 err, vsi->idx, ice_vsi_type_str(type)); 7539 return err; 7540 } 7541 7542 /* replay filters for the VSI */ 7543 err = ice_replay_vsi(&pf->hw, vsi->idx); 7544 if (err) { 7545 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7546 err, vsi->idx, ice_vsi_type_str(type)); 7547 return err; 7548 } 7549 7550 /* Re-map HW VSI number, using VSI handle that has been 7551 * previously validated in ice_replay_vsi() call above 7552 */ 7553 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7554 7555 /* enable the VSI */ 7556 err = ice_ena_vsi(vsi, false); 7557 if (err) { 7558 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7559 err, vsi->idx, ice_vsi_type_str(type)); 7560 return err; 7561 } 7562 7563 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7564 ice_vsi_type_str(type)); 7565 } 7566 7567 return 0; 7568 } 7569 7570 /** 7571 * ice_update_pf_netdev_link - Update PF netdev link status 7572 * @pf: pointer to the PF instance 7573 */ 7574 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7575 { 7576 bool link_up; 7577 int i; 7578 7579 ice_for_each_vsi(pf, i) { 7580 struct ice_vsi *vsi = pf->vsi[i]; 7581 7582 if (!vsi || vsi->type != ICE_VSI_PF) 7583 return; 7584 7585 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7586 if (link_up) { 7587 netif_carrier_on(pf->vsi[i]->netdev); 7588 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7589 } else { 7590 netif_carrier_off(pf->vsi[i]->netdev); 7591 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7592 } 7593 } 7594 } 7595 7596 /** 7597 * ice_rebuild - rebuild after reset 7598 * @pf: PF to rebuild 7599 * @reset_type: type of reset 7600 * 7601 * Do not rebuild VF VSI in this flow because that is already handled via 7602 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7603 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7604 * to reset/rebuild all the VF VSI twice. 7605 */ 7606 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7607 { 7608 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7609 struct device *dev = ice_pf_to_dev(pf); 7610 struct ice_hw *hw = &pf->hw; 7611 bool dvm; 7612 int err; 7613 7614 if (test_bit(ICE_DOWN, pf->state)) 7615 goto clear_recovery; 7616 7617 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7618 7619 #define ICE_EMP_RESET_SLEEP_MS 5000 7620 if (reset_type == ICE_RESET_EMPR) { 7621 /* If an EMP reset has occurred, any previously pending flash 7622 * update will have completed. We no longer know whether or 7623 * not the NVM update EMP reset is restricted. 7624 */ 7625 pf->fw_emp_reset_disabled = false; 7626 7627 msleep(ICE_EMP_RESET_SLEEP_MS); 7628 } 7629 7630 err = ice_init_all_ctrlq(hw); 7631 if (err) { 7632 dev_err(dev, "control queues init failed %d\n", err); 7633 goto err_init_ctrlq; 7634 } 7635 7636 /* if DDP was previously loaded successfully */ 7637 if (!ice_is_safe_mode(pf)) { 7638 /* reload the SW DB of filter tables */ 7639 if (reset_type == ICE_RESET_PFR) 7640 ice_fill_blk_tbls(hw); 7641 else 7642 /* Reload DDP Package after CORER/GLOBR reset */ 7643 ice_load_pkg(NULL, pf); 7644 } 7645 7646 err = ice_clear_pf_cfg(hw); 7647 if (err) { 7648 dev_err(dev, "clear PF configuration failed %d\n", err); 7649 goto err_init_ctrlq; 7650 } 7651 7652 ice_clear_pxe_mode(hw); 7653 7654 err = ice_init_nvm(hw); 7655 if (err) { 7656 dev_err(dev, "ice_init_nvm failed %d\n", err); 7657 goto err_init_ctrlq; 7658 } 7659 7660 err = ice_get_caps(hw); 7661 if (err) { 7662 dev_err(dev, "ice_get_caps failed %d\n", err); 7663 goto err_init_ctrlq; 7664 } 7665 7666 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7667 if (err) { 7668 dev_err(dev, "set_mac_cfg failed %d\n", err); 7669 goto err_init_ctrlq; 7670 } 7671 7672 dvm = ice_is_dvm_ena(hw); 7673 7674 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7675 if (err) 7676 goto err_init_ctrlq; 7677 7678 err = ice_sched_init_port(hw->port_info); 7679 if (err) 7680 goto err_sched_init_port; 7681 7682 /* start misc vector */ 7683 err = ice_req_irq_msix_misc(pf); 7684 if (err) { 7685 dev_err(dev, "misc vector setup failed: %d\n", err); 7686 goto err_sched_init_port; 7687 } 7688 7689 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7690 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7691 if (!rd32(hw, PFQF_FD_SIZE)) { 7692 u16 unused, guar, b_effort; 7693 7694 guar = hw->func_caps.fd_fltr_guar; 7695 b_effort = hw->func_caps.fd_fltr_best_effort; 7696 7697 /* force guaranteed filter pool for PF */ 7698 ice_alloc_fd_guar_item(hw, &unused, guar); 7699 /* force shared filter pool for PF */ 7700 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7701 } 7702 } 7703 7704 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7705 ice_dcb_rebuild(pf); 7706 7707 /* If the PF previously had enabled PTP, PTP init needs to happen before 7708 * the VSI rebuild. If not, this causes the PTP link status events to 7709 * fail. 7710 */ 7711 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7712 ice_ptp_rebuild(pf, reset_type); 7713 7714 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7715 ice_gnss_init(pf); 7716 7717 /* rebuild PF VSI */ 7718 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7719 if (err) { 7720 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7721 goto err_vsi_rebuild; 7722 } 7723 7724 if (reset_type == ICE_RESET_PFR) { 7725 err = ice_rebuild_channels(pf); 7726 if (err) { 7727 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7728 err); 7729 goto err_vsi_rebuild; 7730 } 7731 } 7732 7733 /* If Flow Director is active */ 7734 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7735 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7736 if (err) { 7737 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7738 goto err_vsi_rebuild; 7739 } 7740 7741 /* replay HW Flow Director recipes */ 7742 if (hw->fdir_prof) 7743 ice_fdir_replay_flows(hw); 7744 7745 /* replay Flow Director filters */ 7746 ice_fdir_replay_fltrs(pf); 7747 7748 ice_rebuild_arfs(pf); 7749 } 7750 7751 if (vsi && vsi->netdev) 7752 netif_device_attach(vsi->netdev); 7753 7754 ice_update_pf_netdev_link(pf); 7755 7756 /* tell the firmware we are up */ 7757 err = ice_send_version(pf); 7758 if (err) { 7759 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7760 err); 7761 goto err_vsi_rebuild; 7762 } 7763 7764 ice_replay_post(hw); 7765 7766 /* if we get here, reset flow is successful */ 7767 clear_bit(ICE_RESET_FAILED, pf->state); 7768 7769 ice_health_clear(pf); 7770 7771 ice_plug_aux_dev(pf); 7772 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7773 ice_lag_rebuild(pf); 7774 7775 /* Restore timestamp mode settings after VSI rebuild */ 7776 ice_ptp_restore_timestamp_mode(pf); 7777 return; 7778 7779 err_vsi_rebuild: 7780 err_sched_init_port: 7781 ice_sched_cleanup_all(hw); 7782 err_init_ctrlq: 7783 ice_shutdown_all_ctrlq(hw, false); 7784 set_bit(ICE_RESET_FAILED, pf->state); 7785 clear_recovery: 7786 /* set this bit in PF state to control service task scheduling */ 7787 set_bit(ICE_NEEDS_RESTART, pf->state); 7788 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7789 } 7790 7791 /** 7792 * ice_change_mtu - NDO callback to change the MTU 7793 * @netdev: network interface device structure 7794 * @new_mtu: new value for maximum frame size 7795 * 7796 * Returns 0 on success, negative on failure 7797 */ 7798 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7799 { 7800 struct ice_netdev_priv *np = netdev_priv(netdev); 7801 struct ice_vsi *vsi = np->vsi; 7802 struct ice_pf *pf = vsi->back; 7803 struct bpf_prog *prog; 7804 u8 count = 0; 7805 int err = 0; 7806 7807 if (new_mtu == (int)netdev->mtu) { 7808 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7809 return 0; 7810 } 7811 7812 prog = vsi->xdp_prog; 7813 if (prog && !prog->aux->xdp_has_frags) { 7814 int frame_size = ice_max_xdp_frame_size(vsi); 7815 7816 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7817 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7818 frame_size - ICE_ETH_PKT_HDR_PAD); 7819 return -EINVAL; 7820 } 7821 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7822 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7823 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7824 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7825 return -EINVAL; 7826 } 7827 } 7828 7829 /* if a reset is in progress, wait for some time for it to complete */ 7830 do { 7831 if (ice_is_reset_in_progress(pf->state)) { 7832 count++; 7833 usleep_range(1000, 2000); 7834 } else { 7835 break; 7836 } 7837 7838 } while (count < 100); 7839 7840 if (count == 100) { 7841 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7842 return -EBUSY; 7843 } 7844 7845 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7846 err = ice_down_up(vsi); 7847 if (err) 7848 return err; 7849 7850 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7851 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7852 7853 return err; 7854 } 7855 7856 /** 7857 * ice_eth_ioctl - Access the hwtstamp interface 7858 * @netdev: network interface device structure 7859 * @ifr: interface request data 7860 * @cmd: ioctl command 7861 */ 7862 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7863 { 7864 struct ice_netdev_priv *np = netdev_priv(netdev); 7865 struct ice_pf *pf = np->vsi->back; 7866 7867 switch (cmd) { 7868 case SIOCGHWTSTAMP: 7869 return ice_ptp_get_ts_config(pf, ifr); 7870 case SIOCSHWTSTAMP: 7871 return ice_ptp_set_ts_config(pf, ifr); 7872 default: 7873 return -EOPNOTSUPP; 7874 } 7875 } 7876 7877 /** 7878 * ice_aq_str - convert AQ err code to a string 7879 * @aq_err: the AQ error code to convert 7880 */ 7881 const char *ice_aq_str(enum ice_aq_err aq_err) 7882 { 7883 switch (aq_err) { 7884 case ICE_AQ_RC_OK: 7885 return "OK"; 7886 case ICE_AQ_RC_EPERM: 7887 return "ICE_AQ_RC_EPERM"; 7888 case ICE_AQ_RC_ENOENT: 7889 return "ICE_AQ_RC_ENOENT"; 7890 case ICE_AQ_RC_ENOMEM: 7891 return "ICE_AQ_RC_ENOMEM"; 7892 case ICE_AQ_RC_EBUSY: 7893 return "ICE_AQ_RC_EBUSY"; 7894 case ICE_AQ_RC_EEXIST: 7895 return "ICE_AQ_RC_EEXIST"; 7896 case ICE_AQ_RC_EINVAL: 7897 return "ICE_AQ_RC_EINVAL"; 7898 case ICE_AQ_RC_ENOSPC: 7899 return "ICE_AQ_RC_ENOSPC"; 7900 case ICE_AQ_RC_ENOSYS: 7901 return "ICE_AQ_RC_ENOSYS"; 7902 case ICE_AQ_RC_EMODE: 7903 return "ICE_AQ_RC_EMODE"; 7904 case ICE_AQ_RC_ENOSEC: 7905 return "ICE_AQ_RC_ENOSEC"; 7906 case ICE_AQ_RC_EBADSIG: 7907 return "ICE_AQ_RC_EBADSIG"; 7908 case ICE_AQ_RC_ESVN: 7909 return "ICE_AQ_RC_ESVN"; 7910 case ICE_AQ_RC_EBADMAN: 7911 return "ICE_AQ_RC_EBADMAN"; 7912 case ICE_AQ_RC_EBADBUF: 7913 return "ICE_AQ_RC_EBADBUF"; 7914 } 7915 7916 return "ICE_AQ_RC_UNKNOWN"; 7917 } 7918 7919 /** 7920 * ice_set_rss_lut - Set RSS LUT 7921 * @vsi: Pointer to VSI structure 7922 * @lut: Lookup table 7923 * @lut_size: Lookup table size 7924 * 7925 * Returns 0 on success, negative on failure 7926 */ 7927 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7928 { 7929 struct ice_aq_get_set_rss_lut_params params = {}; 7930 struct ice_hw *hw = &vsi->back->hw; 7931 int status; 7932 7933 if (!lut) 7934 return -EINVAL; 7935 7936 params.vsi_handle = vsi->idx; 7937 params.lut_size = lut_size; 7938 params.lut_type = vsi->rss_lut_type; 7939 params.lut = lut; 7940 7941 status = ice_aq_set_rss_lut(hw, ¶ms); 7942 if (status) 7943 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7944 status, ice_aq_str(hw->adminq.sq_last_status)); 7945 7946 return status; 7947 } 7948 7949 /** 7950 * ice_set_rss_key - Set RSS key 7951 * @vsi: Pointer to the VSI structure 7952 * @seed: RSS hash seed 7953 * 7954 * Returns 0 on success, negative on failure 7955 */ 7956 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7957 { 7958 struct ice_hw *hw = &vsi->back->hw; 7959 int status; 7960 7961 if (!seed) 7962 return -EINVAL; 7963 7964 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7965 if (status) 7966 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7967 status, ice_aq_str(hw->adminq.sq_last_status)); 7968 7969 return status; 7970 } 7971 7972 /** 7973 * ice_get_rss_lut - Get RSS LUT 7974 * @vsi: Pointer to VSI structure 7975 * @lut: Buffer to store the lookup table entries 7976 * @lut_size: Size of buffer to store the lookup table entries 7977 * 7978 * Returns 0 on success, negative on failure 7979 */ 7980 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7981 { 7982 struct ice_aq_get_set_rss_lut_params params = {}; 7983 struct ice_hw *hw = &vsi->back->hw; 7984 int status; 7985 7986 if (!lut) 7987 return -EINVAL; 7988 7989 params.vsi_handle = vsi->idx; 7990 params.lut_size = lut_size; 7991 params.lut_type = vsi->rss_lut_type; 7992 params.lut = lut; 7993 7994 status = ice_aq_get_rss_lut(hw, ¶ms); 7995 if (status) 7996 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7997 status, ice_aq_str(hw->adminq.sq_last_status)); 7998 7999 return status; 8000 } 8001 8002 /** 8003 * ice_get_rss_key - Get RSS key 8004 * @vsi: Pointer to VSI structure 8005 * @seed: Buffer to store the key in 8006 * 8007 * Returns 0 on success, negative on failure 8008 */ 8009 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8010 { 8011 struct ice_hw *hw = &vsi->back->hw; 8012 int status; 8013 8014 if (!seed) 8015 return -EINVAL; 8016 8017 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8018 if (status) 8019 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8020 status, ice_aq_str(hw->adminq.sq_last_status)); 8021 8022 return status; 8023 } 8024 8025 /** 8026 * ice_set_rss_hfunc - Set RSS HASH function 8027 * @vsi: Pointer to VSI structure 8028 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8029 * 8030 * Returns 0 on success, negative on failure 8031 */ 8032 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8033 { 8034 struct ice_hw *hw = &vsi->back->hw; 8035 struct ice_vsi_ctx *ctx; 8036 bool symm; 8037 int err; 8038 8039 if (hfunc == vsi->rss_hfunc) 8040 return 0; 8041 8042 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8043 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8044 return -EOPNOTSUPP; 8045 8046 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8047 if (!ctx) 8048 return -ENOMEM; 8049 8050 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8051 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8052 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8053 ctx->info.q_opt_rss |= 8054 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8055 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8056 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8057 8058 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8059 if (err) { 8060 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8061 vsi->vsi_num, err); 8062 } else { 8063 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8064 vsi->rss_hfunc = hfunc; 8065 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8066 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8067 "Symmetric " : ""); 8068 } 8069 kfree(ctx); 8070 if (err) 8071 return err; 8072 8073 /* Fix the symmetry setting for all existing RSS configurations */ 8074 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8075 return ice_set_rss_cfg_symm(hw, vsi, symm); 8076 } 8077 8078 /** 8079 * ice_bridge_getlink - Get the hardware bridge mode 8080 * @skb: skb buff 8081 * @pid: process ID 8082 * @seq: RTNL message seq 8083 * @dev: the netdev being configured 8084 * @filter_mask: filter mask passed in 8085 * @nlflags: netlink flags passed in 8086 * 8087 * Return the bridge mode (VEB/VEPA) 8088 */ 8089 static int 8090 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8091 struct net_device *dev, u32 filter_mask, int nlflags) 8092 { 8093 struct ice_netdev_priv *np = netdev_priv(dev); 8094 struct ice_vsi *vsi = np->vsi; 8095 struct ice_pf *pf = vsi->back; 8096 u16 bmode; 8097 8098 bmode = pf->first_sw->bridge_mode; 8099 8100 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8101 filter_mask, NULL); 8102 } 8103 8104 /** 8105 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8106 * @vsi: Pointer to VSI structure 8107 * @bmode: Hardware bridge mode (VEB/VEPA) 8108 * 8109 * Returns 0 on success, negative on failure 8110 */ 8111 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8112 { 8113 struct ice_aqc_vsi_props *vsi_props; 8114 struct ice_hw *hw = &vsi->back->hw; 8115 struct ice_vsi_ctx *ctxt; 8116 int ret; 8117 8118 vsi_props = &vsi->info; 8119 8120 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8121 if (!ctxt) 8122 return -ENOMEM; 8123 8124 ctxt->info = vsi->info; 8125 8126 if (bmode == BRIDGE_MODE_VEB) 8127 /* change from VEPA to VEB mode */ 8128 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8129 else 8130 /* change from VEB to VEPA mode */ 8131 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8132 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8133 8134 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8135 if (ret) { 8136 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8137 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8138 goto out; 8139 } 8140 /* Update sw flags for book keeping */ 8141 vsi_props->sw_flags = ctxt->info.sw_flags; 8142 8143 out: 8144 kfree(ctxt); 8145 return ret; 8146 } 8147 8148 /** 8149 * ice_bridge_setlink - Set the hardware bridge mode 8150 * @dev: the netdev being configured 8151 * @nlh: RTNL message 8152 * @flags: bridge setlink flags 8153 * @extack: netlink extended ack 8154 * 8155 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8156 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8157 * not already set for all VSIs connected to this switch. And also update the 8158 * unicast switch filter rules for the corresponding switch of the netdev. 8159 */ 8160 static int 8161 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8162 u16 __always_unused flags, 8163 struct netlink_ext_ack __always_unused *extack) 8164 { 8165 struct ice_netdev_priv *np = netdev_priv(dev); 8166 struct ice_pf *pf = np->vsi->back; 8167 struct nlattr *attr, *br_spec; 8168 struct ice_hw *hw = &pf->hw; 8169 struct ice_sw *pf_sw; 8170 int rem, v, err = 0; 8171 8172 pf_sw = pf->first_sw; 8173 /* find the attribute in the netlink message */ 8174 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8175 if (!br_spec) 8176 return -EINVAL; 8177 8178 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8179 __u16 mode = nla_get_u16(attr); 8180 8181 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8182 return -EINVAL; 8183 /* Continue if bridge mode is not being flipped */ 8184 if (mode == pf_sw->bridge_mode) 8185 continue; 8186 /* Iterates through the PF VSI list and update the loopback 8187 * mode of the VSI 8188 */ 8189 ice_for_each_vsi(pf, v) { 8190 if (!pf->vsi[v]) 8191 continue; 8192 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8193 if (err) 8194 return err; 8195 } 8196 8197 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8198 /* Update the unicast switch filter rules for the corresponding 8199 * switch of the netdev 8200 */ 8201 err = ice_update_sw_rule_bridge_mode(hw); 8202 if (err) { 8203 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8204 mode, err, 8205 ice_aq_str(hw->adminq.sq_last_status)); 8206 /* revert hw->evb_veb */ 8207 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8208 return err; 8209 } 8210 8211 pf_sw->bridge_mode = mode; 8212 } 8213 8214 return 0; 8215 } 8216 8217 /** 8218 * ice_tx_timeout - Respond to a Tx Hang 8219 * @netdev: network interface device structure 8220 * @txqueue: Tx queue 8221 */ 8222 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8223 { 8224 struct ice_netdev_priv *np = netdev_priv(netdev); 8225 struct ice_tx_ring *tx_ring = NULL; 8226 struct ice_vsi *vsi = np->vsi; 8227 struct ice_pf *pf = vsi->back; 8228 u32 i; 8229 8230 pf->tx_timeout_count++; 8231 8232 /* Check if PFC is enabled for the TC to which the queue belongs 8233 * to. If yes then Tx timeout is not caused by a hung queue, no 8234 * need to reset and rebuild 8235 */ 8236 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8237 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8238 txqueue); 8239 return; 8240 } 8241 8242 /* now that we have an index, find the tx_ring struct */ 8243 ice_for_each_txq(vsi, i) 8244 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8245 if (txqueue == vsi->tx_rings[i]->q_index) { 8246 tx_ring = vsi->tx_rings[i]; 8247 break; 8248 } 8249 8250 /* Reset recovery level if enough time has elapsed after last timeout. 8251 * Also ensure no new reset action happens before next timeout period. 8252 */ 8253 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8254 pf->tx_timeout_recovery_level = 1; 8255 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8256 netdev->watchdog_timeo))) 8257 return; 8258 8259 if (tx_ring) { 8260 struct ice_hw *hw = &pf->hw; 8261 u32 head, intr = 0; 8262 8263 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8264 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8265 /* Read interrupt register */ 8266 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8267 8268 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8269 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8270 head, tx_ring->next_to_use, intr); 8271 8272 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8273 } 8274 8275 pf->tx_timeout_last_recovery = jiffies; 8276 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8277 pf->tx_timeout_recovery_level, txqueue); 8278 8279 switch (pf->tx_timeout_recovery_level) { 8280 case 1: 8281 set_bit(ICE_PFR_REQ, pf->state); 8282 break; 8283 case 2: 8284 set_bit(ICE_CORER_REQ, pf->state); 8285 break; 8286 case 3: 8287 set_bit(ICE_GLOBR_REQ, pf->state); 8288 break; 8289 default: 8290 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8291 set_bit(ICE_DOWN, pf->state); 8292 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8293 set_bit(ICE_SERVICE_DIS, pf->state); 8294 break; 8295 } 8296 8297 ice_service_task_schedule(pf); 8298 pf->tx_timeout_recovery_level++; 8299 } 8300 8301 /** 8302 * ice_setup_tc_cls_flower - flower classifier offloads 8303 * @np: net device to configure 8304 * @filter_dev: device on which filter is added 8305 * @cls_flower: offload data 8306 */ 8307 static int 8308 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8309 struct net_device *filter_dev, 8310 struct flow_cls_offload *cls_flower) 8311 { 8312 struct ice_vsi *vsi = np->vsi; 8313 8314 if (cls_flower->common.chain_index) 8315 return -EOPNOTSUPP; 8316 8317 switch (cls_flower->command) { 8318 case FLOW_CLS_REPLACE: 8319 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8320 case FLOW_CLS_DESTROY: 8321 return ice_del_cls_flower(vsi, cls_flower); 8322 default: 8323 return -EINVAL; 8324 } 8325 } 8326 8327 /** 8328 * ice_setup_tc_block_cb - callback handler registered for TC block 8329 * @type: TC SETUP type 8330 * @type_data: TC flower offload data that contains user input 8331 * @cb_priv: netdev private data 8332 */ 8333 static int 8334 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8335 { 8336 struct ice_netdev_priv *np = cb_priv; 8337 8338 switch (type) { 8339 case TC_SETUP_CLSFLOWER: 8340 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8341 type_data); 8342 default: 8343 return -EOPNOTSUPP; 8344 } 8345 } 8346 8347 /** 8348 * ice_validate_mqprio_qopt - Validate TCF input parameters 8349 * @vsi: Pointer to VSI 8350 * @mqprio_qopt: input parameters for mqprio queue configuration 8351 * 8352 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8353 * needed), and make sure user doesn't specify qcount and BW rate limit 8354 * for TCs, which are more than "num_tc" 8355 */ 8356 static int 8357 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8358 struct tc_mqprio_qopt_offload *mqprio_qopt) 8359 { 8360 int non_power_of_2_qcount = 0; 8361 struct ice_pf *pf = vsi->back; 8362 int max_rss_q_cnt = 0; 8363 u64 sum_min_rate = 0; 8364 struct device *dev; 8365 int i, speed; 8366 u8 num_tc; 8367 8368 if (vsi->type != ICE_VSI_PF) 8369 return -EINVAL; 8370 8371 if (mqprio_qopt->qopt.offset[0] != 0 || 8372 mqprio_qopt->qopt.num_tc < 1 || 8373 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8374 return -EINVAL; 8375 8376 dev = ice_pf_to_dev(pf); 8377 vsi->ch_rss_size = 0; 8378 num_tc = mqprio_qopt->qopt.num_tc; 8379 speed = ice_get_link_speed_kbps(vsi); 8380 8381 for (i = 0; num_tc; i++) { 8382 int qcount = mqprio_qopt->qopt.count[i]; 8383 u64 max_rate, min_rate, rem; 8384 8385 if (!qcount) 8386 return -EINVAL; 8387 8388 if (is_power_of_2(qcount)) { 8389 if (non_power_of_2_qcount && 8390 qcount > non_power_of_2_qcount) { 8391 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8392 qcount, non_power_of_2_qcount); 8393 return -EINVAL; 8394 } 8395 if (qcount > max_rss_q_cnt) 8396 max_rss_q_cnt = qcount; 8397 } else { 8398 if (non_power_of_2_qcount && 8399 qcount != non_power_of_2_qcount) { 8400 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8401 qcount, non_power_of_2_qcount); 8402 return -EINVAL; 8403 } 8404 if (qcount < max_rss_q_cnt) { 8405 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8406 qcount, max_rss_q_cnt); 8407 return -EINVAL; 8408 } 8409 max_rss_q_cnt = qcount; 8410 non_power_of_2_qcount = qcount; 8411 } 8412 8413 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8414 * converts the bandwidth rate limit into Bytes/s when 8415 * passing it down to the driver. So convert input bandwidth 8416 * from Bytes/s to Kbps 8417 */ 8418 max_rate = mqprio_qopt->max_rate[i]; 8419 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8420 8421 /* min_rate is minimum guaranteed rate and it can't be zero */ 8422 min_rate = mqprio_qopt->min_rate[i]; 8423 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8424 sum_min_rate += min_rate; 8425 8426 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8427 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8428 min_rate, ICE_MIN_BW_LIMIT); 8429 return -EINVAL; 8430 } 8431 8432 if (max_rate && max_rate > speed) { 8433 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8434 i, max_rate, speed); 8435 return -EINVAL; 8436 } 8437 8438 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8439 if (rem) { 8440 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8441 i, ICE_MIN_BW_LIMIT); 8442 return -EINVAL; 8443 } 8444 8445 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8446 if (rem) { 8447 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8448 i, ICE_MIN_BW_LIMIT); 8449 return -EINVAL; 8450 } 8451 8452 /* min_rate can't be more than max_rate, except when max_rate 8453 * is zero (implies max_rate sought is max line rate). In such 8454 * a case min_rate can be more than max. 8455 */ 8456 if (max_rate && min_rate > max_rate) { 8457 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8458 min_rate, max_rate); 8459 return -EINVAL; 8460 } 8461 8462 if (i >= mqprio_qopt->qopt.num_tc - 1) 8463 break; 8464 if (mqprio_qopt->qopt.offset[i + 1] != 8465 (mqprio_qopt->qopt.offset[i] + qcount)) 8466 return -EINVAL; 8467 } 8468 if (vsi->num_rxq < 8469 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8470 return -EINVAL; 8471 if (vsi->num_txq < 8472 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8473 return -EINVAL; 8474 8475 if (sum_min_rate && sum_min_rate > (u64)speed) { 8476 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8477 sum_min_rate, speed); 8478 return -EINVAL; 8479 } 8480 8481 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8482 vsi->ch_rss_size = max_rss_q_cnt; 8483 8484 return 0; 8485 } 8486 8487 /** 8488 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8489 * @pf: ptr to PF device 8490 * @vsi: ptr to VSI 8491 */ 8492 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8493 { 8494 struct device *dev = ice_pf_to_dev(pf); 8495 bool added = false; 8496 struct ice_hw *hw; 8497 int flow; 8498 8499 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8500 return -EINVAL; 8501 8502 hw = &pf->hw; 8503 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8504 struct ice_fd_hw_prof *prof; 8505 int tun, status; 8506 u64 entry_h; 8507 8508 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8509 hw->fdir_prof[flow]->cnt)) 8510 continue; 8511 8512 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8513 enum ice_flow_priority prio; 8514 8515 /* add this VSI to FDir profile for this flow */ 8516 prio = ICE_FLOW_PRIO_NORMAL; 8517 prof = hw->fdir_prof[flow]; 8518 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8519 prof->prof_id[tun], 8520 prof->vsi_h[0], vsi->idx, 8521 prio, prof->fdir_seg[tun], 8522 &entry_h); 8523 if (status) { 8524 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8525 vsi->idx, flow); 8526 continue; 8527 } 8528 8529 prof->entry_h[prof->cnt][tun] = entry_h; 8530 } 8531 8532 /* store VSI for filter replay and delete */ 8533 prof->vsi_h[prof->cnt] = vsi->idx; 8534 prof->cnt++; 8535 8536 added = true; 8537 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8538 flow); 8539 } 8540 8541 if (!added) 8542 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8543 8544 return 0; 8545 } 8546 8547 /** 8548 * ice_add_channel - add a channel by adding VSI 8549 * @pf: ptr to PF device 8550 * @sw_id: underlying HW switching element ID 8551 * @ch: ptr to channel structure 8552 * 8553 * Add a channel (VSI) using add_vsi and queue_map 8554 */ 8555 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8556 { 8557 struct device *dev = ice_pf_to_dev(pf); 8558 struct ice_vsi *vsi; 8559 8560 if (ch->type != ICE_VSI_CHNL) { 8561 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8562 return -EINVAL; 8563 } 8564 8565 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8566 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8567 dev_err(dev, "create chnl VSI failure\n"); 8568 return -EINVAL; 8569 } 8570 8571 ice_add_vsi_to_fdir(pf, vsi); 8572 8573 ch->sw_id = sw_id; 8574 ch->vsi_num = vsi->vsi_num; 8575 ch->info.mapping_flags = vsi->info.mapping_flags; 8576 ch->ch_vsi = vsi; 8577 /* set the back pointer of channel for newly created VSI */ 8578 vsi->ch = ch; 8579 8580 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8581 sizeof(vsi->info.q_mapping)); 8582 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8583 sizeof(vsi->info.tc_mapping)); 8584 8585 return 0; 8586 } 8587 8588 /** 8589 * ice_chnl_cfg_res 8590 * @vsi: the VSI being setup 8591 * @ch: ptr to channel structure 8592 * 8593 * Configure channel specific resources such as rings, vector. 8594 */ 8595 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8596 { 8597 int i; 8598 8599 for (i = 0; i < ch->num_txq; i++) { 8600 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8601 struct ice_ring_container *rc; 8602 struct ice_tx_ring *tx_ring; 8603 struct ice_rx_ring *rx_ring; 8604 8605 tx_ring = vsi->tx_rings[ch->base_q + i]; 8606 rx_ring = vsi->rx_rings[ch->base_q + i]; 8607 if (!tx_ring || !rx_ring) 8608 continue; 8609 8610 /* setup ring being channel enabled */ 8611 tx_ring->ch = ch; 8612 rx_ring->ch = ch; 8613 8614 /* following code block sets up vector specific attributes */ 8615 tx_q_vector = tx_ring->q_vector; 8616 rx_q_vector = rx_ring->q_vector; 8617 if (!tx_q_vector && !rx_q_vector) 8618 continue; 8619 8620 if (tx_q_vector) { 8621 tx_q_vector->ch = ch; 8622 /* setup Tx and Rx ITR setting if DIM is off */ 8623 rc = &tx_q_vector->tx; 8624 if (!ITR_IS_DYNAMIC(rc)) 8625 ice_write_itr(rc, rc->itr_setting); 8626 } 8627 if (rx_q_vector) { 8628 rx_q_vector->ch = ch; 8629 /* setup Tx and Rx ITR setting if DIM is off */ 8630 rc = &rx_q_vector->rx; 8631 if (!ITR_IS_DYNAMIC(rc)) 8632 ice_write_itr(rc, rc->itr_setting); 8633 } 8634 } 8635 8636 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8637 * GLINT_ITR register would have written to perform in-context 8638 * update, hence perform flush 8639 */ 8640 if (ch->num_txq || ch->num_rxq) 8641 ice_flush(&vsi->back->hw); 8642 } 8643 8644 /** 8645 * ice_cfg_chnl_all_res - configure channel resources 8646 * @vsi: pte to main_vsi 8647 * @ch: ptr to channel structure 8648 * 8649 * This function configures channel specific resources such as flow-director 8650 * counter index, and other resources such as queues, vectors, ITR settings 8651 */ 8652 static void 8653 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8654 { 8655 /* configure channel (aka ADQ) resources such as queues, vectors, 8656 * ITR settings for channel specific vectors and anything else 8657 */ 8658 ice_chnl_cfg_res(vsi, ch); 8659 } 8660 8661 /** 8662 * ice_setup_hw_channel - setup new channel 8663 * @pf: ptr to PF device 8664 * @vsi: the VSI being setup 8665 * @ch: ptr to channel structure 8666 * @sw_id: underlying HW switching element ID 8667 * @type: type of channel to be created (VMDq2/VF) 8668 * 8669 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8670 * and configures Tx rings accordingly 8671 */ 8672 static int 8673 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8674 struct ice_channel *ch, u16 sw_id, u8 type) 8675 { 8676 struct device *dev = ice_pf_to_dev(pf); 8677 int ret; 8678 8679 ch->base_q = vsi->next_base_q; 8680 ch->type = type; 8681 8682 ret = ice_add_channel(pf, sw_id, ch); 8683 if (ret) { 8684 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8685 return ret; 8686 } 8687 8688 /* configure/setup ADQ specific resources */ 8689 ice_cfg_chnl_all_res(vsi, ch); 8690 8691 /* make sure to update the next_base_q so that subsequent channel's 8692 * (aka ADQ) VSI queue map is correct 8693 */ 8694 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8695 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8696 ch->num_rxq); 8697 8698 return 0; 8699 } 8700 8701 /** 8702 * ice_setup_channel - setup new channel using uplink element 8703 * @pf: ptr to PF device 8704 * @vsi: the VSI being setup 8705 * @ch: ptr to channel structure 8706 * 8707 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8708 * and uplink switching element 8709 */ 8710 static bool 8711 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8712 struct ice_channel *ch) 8713 { 8714 struct device *dev = ice_pf_to_dev(pf); 8715 u16 sw_id; 8716 int ret; 8717 8718 if (vsi->type != ICE_VSI_PF) { 8719 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8720 return false; 8721 } 8722 8723 sw_id = pf->first_sw->sw_id; 8724 8725 /* create channel (VSI) */ 8726 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8727 if (ret) { 8728 dev_err(dev, "failed to setup hw_channel\n"); 8729 return false; 8730 } 8731 dev_dbg(dev, "successfully created channel()\n"); 8732 8733 return ch->ch_vsi ? true : false; 8734 } 8735 8736 /** 8737 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8738 * @vsi: VSI to be configured 8739 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8740 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8741 */ 8742 static int 8743 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8744 { 8745 int err; 8746 8747 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8748 if (err) 8749 return err; 8750 8751 return ice_set_max_bw_limit(vsi, max_tx_rate); 8752 } 8753 8754 /** 8755 * ice_create_q_channel - function to create channel 8756 * @vsi: VSI to be configured 8757 * @ch: ptr to channel (it contains channel specific params) 8758 * 8759 * This function creates channel (VSI) using num_queues specified by user, 8760 * reconfigs RSS if needed. 8761 */ 8762 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8763 { 8764 struct ice_pf *pf = vsi->back; 8765 struct device *dev; 8766 8767 if (!ch) 8768 return -EINVAL; 8769 8770 dev = ice_pf_to_dev(pf); 8771 if (!ch->num_txq || !ch->num_rxq) { 8772 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8773 return -EINVAL; 8774 } 8775 8776 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8777 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8778 vsi->cnt_q_avail, ch->num_txq); 8779 return -EINVAL; 8780 } 8781 8782 if (!ice_setup_channel(pf, vsi, ch)) { 8783 dev_info(dev, "Failed to setup channel\n"); 8784 return -EINVAL; 8785 } 8786 /* configure BW rate limit */ 8787 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8788 int ret; 8789 8790 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8791 ch->min_tx_rate); 8792 if (ret) 8793 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8794 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8795 else 8796 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8797 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8798 } 8799 8800 vsi->cnt_q_avail -= ch->num_txq; 8801 8802 return 0; 8803 } 8804 8805 /** 8806 * ice_rem_all_chnl_fltrs - removes all channel filters 8807 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8808 * 8809 * Remove all advanced switch filters only if they are channel specific 8810 * tc-flower based filter 8811 */ 8812 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8813 { 8814 struct ice_tc_flower_fltr *fltr; 8815 struct hlist_node *node; 8816 8817 /* to remove all channel filters, iterate an ordered list of filters */ 8818 hlist_for_each_entry_safe(fltr, node, 8819 &pf->tc_flower_fltr_list, 8820 tc_flower_node) { 8821 struct ice_rule_query_data rule; 8822 int status; 8823 8824 /* for now process only channel specific filters */ 8825 if (!ice_is_chnl_fltr(fltr)) 8826 continue; 8827 8828 rule.rid = fltr->rid; 8829 rule.rule_id = fltr->rule_id; 8830 rule.vsi_handle = fltr->dest_vsi_handle; 8831 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8832 if (status) { 8833 if (status == -ENOENT) 8834 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8835 rule.rule_id); 8836 else 8837 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8838 status); 8839 } else if (fltr->dest_vsi) { 8840 /* update advanced switch filter count */ 8841 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8842 u32 flags = fltr->flags; 8843 8844 fltr->dest_vsi->num_chnl_fltr--; 8845 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8846 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8847 pf->num_dmac_chnl_fltrs--; 8848 } 8849 } 8850 8851 hlist_del(&fltr->tc_flower_node); 8852 kfree(fltr); 8853 } 8854 } 8855 8856 /** 8857 * ice_remove_q_channels - Remove queue channels for the TCs 8858 * @vsi: VSI to be configured 8859 * @rem_fltr: delete advanced switch filter or not 8860 * 8861 * Remove queue channels for the TCs 8862 */ 8863 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8864 { 8865 struct ice_channel *ch, *ch_tmp; 8866 struct ice_pf *pf = vsi->back; 8867 int i; 8868 8869 /* remove all tc-flower based filter if they are channel filters only */ 8870 if (rem_fltr) 8871 ice_rem_all_chnl_fltrs(pf); 8872 8873 /* remove ntuple filters since queue configuration is being changed */ 8874 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8875 struct ice_hw *hw = &pf->hw; 8876 8877 mutex_lock(&hw->fdir_fltr_lock); 8878 ice_fdir_del_all_fltrs(vsi); 8879 mutex_unlock(&hw->fdir_fltr_lock); 8880 } 8881 8882 /* perform cleanup for channels if they exist */ 8883 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8884 struct ice_vsi *ch_vsi; 8885 8886 list_del(&ch->list); 8887 ch_vsi = ch->ch_vsi; 8888 if (!ch_vsi) { 8889 kfree(ch); 8890 continue; 8891 } 8892 8893 /* Reset queue contexts */ 8894 for (i = 0; i < ch->num_rxq; i++) { 8895 struct ice_tx_ring *tx_ring; 8896 struct ice_rx_ring *rx_ring; 8897 8898 tx_ring = vsi->tx_rings[ch->base_q + i]; 8899 rx_ring = vsi->rx_rings[ch->base_q + i]; 8900 if (tx_ring) { 8901 tx_ring->ch = NULL; 8902 if (tx_ring->q_vector) 8903 tx_ring->q_vector->ch = NULL; 8904 } 8905 if (rx_ring) { 8906 rx_ring->ch = NULL; 8907 if (rx_ring->q_vector) 8908 rx_ring->q_vector->ch = NULL; 8909 } 8910 } 8911 8912 /* Release FD resources for the channel VSI */ 8913 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8914 8915 /* clear the VSI from scheduler tree */ 8916 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8917 8918 /* Delete VSI from FW, PF and HW VSI arrays */ 8919 ice_vsi_delete(ch->ch_vsi); 8920 8921 /* free the channel */ 8922 kfree(ch); 8923 } 8924 8925 /* clear the channel VSI map which is stored in main VSI */ 8926 ice_for_each_chnl_tc(i) 8927 vsi->tc_map_vsi[i] = NULL; 8928 8929 /* reset main VSI's all TC information */ 8930 vsi->all_enatc = 0; 8931 vsi->all_numtc = 0; 8932 } 8933 8934 /** 8935 * ice_rebuild_channels - rebuild channel 8936 * @pf: ptr to PF 8937 * 8938 * Recreate channel VSIs and replay filters 8939 */ 8940 static int ice_rebuild_channels(struct ice_pf *pf) 8941 { 8942 struct device *dev = ice_pf_to_dev(pf); 8943 struct ice_vsi *main_vsi; 8944 bool rem_adv_fltr = true; 8945 struct ice_channel *ch; 8946 struct ice_vsi *vsi; 8947 int tc_idx = 1; 8948 int i, err; 8949 8950 main_vsi = ice_get_main_vsi(pf); 8951 if (!main_vsi) 8952 return 0; 8953 8954 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8955 main_vsi->old_numtc == 1) 8956 return 0; /* nothing to be done */ 8957 8958 /* reconfigure main VSI based on old value of TC and cached values 8959 * for MQPRIO opts 8960 */ 8961 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8962 if (err) { 8963 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8964 main_vsi->old_ena_tc, main_vsi->vsi_num); 8965 return err; 8966 } 8967 8968 /* rebuild ADQ VSIs */ 8969 ice_for_each_vsi(pf, i) { 8970 enum ice_vsi_type type; 8971 8972 vsi = pf->vsi[i]; 8973 if (!vsi || vsi->type != ICE_VSI_CHNL) 8974 continue; 8975 8976 type = vsi->type; 8977 8978 /* rebuild ADQ VSI */ 8979 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8980 if (err) { 8981 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8982 ice_vsi_type_str(type), vsi->idx, err); 8983 goto cleanup; 8984 } 8985 8986 /* Re-map HW VSI number, using VSI handle that has been 8987 * previously validated in ice_replay_vsi() call above 8988 */ 8989 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8990 8991 /* replay filters for the VSI */ 8992 err = ice_replay_vsi(&pf->hw, vsi->idx); 8993 if (err) { 8994 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8995 ice_vsi_type_str(type), err, vsi->idx); 8996 rem_adv_fltr = false; 8997 goto cleanup; 8998 } 8999 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9000 ice_vsi_type_str(type), vsi->idx); 9001 9002 /* store ADQ VSI at correct TC index in main VSI's 9003 * map of TC to VSI 9004 */ 9005 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9006 } 9007 9008 /* ADQ VSI(s) has been rebuilt successfully, so setup 9009 * channel for main VSI's Tx and Rx rings 9010 */ 9011 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9012 struct ice_vsi *ch_vsi; 9013 9014 ch_vsi = ch->ch_vsi; 9015 if (!ch_vsi) 9016 continue; 9017 9018 /* reconfig channel resources */ 9019 ice_cfg_chnl_all_res(main_vsi, ch); 9020 9021 /* replay BW rate limit if it is non-zero */ 9022 if (!ch->max_tx_rate && !ch->min_tx_rate) 9023 continue; 9024 9025 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9026 ch->min_tx_rate); 9027 if (err) 9028 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9029 err, ch->max_tx_rate, ch->min_tx_rate, 9030 ch_vsi->vsi_num); 9031 else 9032 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9033 ch->max_tx_rate, ch->min_tx_rate, 9034 ch_vsi->vsi_num); 9035 } 9036 9037 /* reconfig RSS for main VSI */ 9038 if (main_vsi->ch_rss_size) 9039 ice_vsi_cfg_rss_lut_key(main_vsi); 9040 9041 return 0; 9042 9043 cleanup: 9044 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9045 return err; 9046 } 9047 9048 /** 9049 * ice_create_q_channels - Add queue channel for the given TCs 9050 * @vsi: VSI to be configured 9051 * 9052 * Configures queue channel mapping to the given TCs 9053 */ 9054 static int ice_create_q_channels(struct ice_vsi *vsi) 9055 { 9056 struct ice_pf *pf = vsi->back; 9057 struct ice_channel *ch; 9058 int ret = 0, i; 9059 9060 ice_for_each_chnl_tc(i) { 9061 if (!(vsi->all_enatc & BIT(i))) 9062 continue; 9063 9064 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9065 if (!ch) { 9066 ret = -ENOMEM; 9067 goto err_free; 9068 } 9069 INIT_LIST_HEAD(&ch->list); 9070 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9071 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9072 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9073 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9074 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9075 9076 /* convert to Kbits/s */ 9077 if (ch->max_tx_rate) 9078 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9079 ICE_BW_KBPS_DIVISOR); 9080 if (ch->min_tx_rate) 9081 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9082 ICE_BW_KBPS_DIVISOR); 9083 9084 ret = ice_create_q_channel(vsi, ch); 9085 if (ret) { 9086 dev_err(ice_pf_to_dev(pf), 9087 "failed creating channel TC:%d\n", i); 9088 kfree(ch); 9089 goto err_free; 9090 } 9091 list_add_tail(&ch->list, &vsi->ch_list); 9092 vsi->tc_map_vsi[i] = ch->ch_vsi; 9093 dev_dbg(ice_pf_to_dev(pf), 9094 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9095 } 9096 return 0; 9097 9098 err_free: 9099 ice_remove_q_channels(vsi, false); 9100 9101 return ret; 9102 } 9103 9104 /** 9105 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9106 * @netdev: net device to configure 9107 * @type_data: TC offload data 9108 */ 9109 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9110 { 9111 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9112 struct ice_netdev_priv *np = netdev_priv(netdev); 9113 struct ice_vsi *vsi = np->vsi; 9114 struct ice_pf *pf = vsi->back; 9115 u16 mode, ena_tc_qdisc = 0; 9116 int cur_txq, cur_rxq; 9117 u8 hw = 0, num_tcf; 9118 struct device *dev; 9119 int ret, i; 9120 9121 dev = ice_pf_to_dev(pf); 9122 num_tcf = mqprio_qopt->qopt.num_tc; 9123 hw = mqprio_qopt->qopt.hw; 9124 mode = mqprio_qopt->mode; 9125 if (!hw) { 9126 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9127 vsi->ch_rss_size = 0; 9128 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9129 goto config_tcf; 9130 } 9131 9132 /* Generate queue region map for number of TCF requested */ 9133 for (i = 0; i < num_tcf; i++) 9134 ena_tc_qdisc |= BIT(i); 9135 9136 switch (mode) { 9137 case TC_MQPRIO_MODE_CHANNEL: 9138 9139 if (pf->hw.port_info->is_custom_tx_enabled) { 9140 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9141 return -EBUSY; 9142 } 9143 ice_tear_down_devlink_rate_tree(pf); 9144 9145 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9146 if (ret) { 9147 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9148 ret); 9149 return ret; 9150 } 9151 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9152 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9153 /* don't assume state of hw_tc_offload during driver load 9154 * and set the flag for TC flower filter if hw_tc_offload 9155 * already ON 9156 */ 9157 if (vsi->netdev->features & NETIF_F_HW_TC) 9158 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9159 break; 9160 default: 9161 return -EINVAL; 9162 } 9163 9164 config_tcf: 9165 9166 /* Requesting same TCF configuration as already enabled */ 9167 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9168 mode != TC_MQPRIO_MODE_CHANNEL) 9169 return 0; 9170 9171 /* Pause VSI queues */ 9172 ice_dis_vsi(vsi, true); 9173 9174 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9175 ice_remove_q_channels(vsi, true); 9176 9177 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9178 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9179 num_online_cpus()); 9180 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9181 num_online_cpus()); 9182 } else { 9183 /* logic to rebuild VSI, same like ethtool -L */ 9184 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9185 9186 for (i = 0; i < num_tcf; i++) { 9187 if (!(ena_tc_qdisc & BIT(i))) 9188 continue; 9189 9190 offset = vsi->mqprio_qopt.qopt.offset[i]; 9191 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9192 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9193 } 9194 vsi->req_txq = offset + qcount_tx; 9195 vsi->req_rxq = offset + qcount_rx; 9196 9197 /* store away original rss_size info, so that it gets reused 9198 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9199 * determine, what should be the rss_sizefor main VSI 9200 */ 9201 vsi->orig_rss_size = vsi->rss_size; 9202 } 9203 9204 /* save current values of Tx and Rx queues before calling VSI rebuild 9205 * for fallback option 9206 */ 9207 cur_txq = vsi->num_txq; 9208 cur_rxq = vsi->num_rxq; 9209 9210 /* proceed with rebuild main VSI using correct number of queues */ 9211 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9212 if (ret) { 9213 /* fallback to current number of queues */ 9214 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9215 vsi->req_txq = cur_txq; 9216 vsi->req_rxq = cur_rxq; 9217 clear_bit(ICE_RESET_FAILED, pf->state); 9218 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9219 dev_err(dev, "Rebuild of main VSI failed again\n"); 9220 return ret; 9221 } 9222 } 9223 9224 vsi->all_numtc = num_tcf; 9225 vsi->all_enatc = ena_tc_qdisc; 9226 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9227 if (ret) { 9228 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9229 vsi->vsi_num); 9230 goto exit; 9231 } 9232 9233 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9234 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9235 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9236 9237 /* set TC0 rate limit if specified */ 9238 if (max_tx_rate || min_tx_rate) { 9239 /* convert to Kbits/s */ 9240 if (max_tx_rate) 9241 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9242 if (min_tx_rate) 9243 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9244 9245 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9246 if (!ret) { 9247 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9248 max_tx_rate, min_tx_rate, vsi->vsi_num); 9249 } else { 9250 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9251 max_tx_rate, min_tx_rate, vsi->vsi_num); 9252 goto exit; 9253 } 9254 } 9255 ret = ice_create_q_channels(vsi); 9256 if (ret) { 9257 netdev_err(netdev, "failed configuring queue channels\n"); 9258 goto exit; 9259 } else { 9260 netdev_dbg(netdev, "successfully configured channels\n"); 9261 } 9262 } 9263 9264 if (vsi->ch_rss_size) 9265 ice_vsi_cfg_rss_lut_key(vsi); 9266 9267 exit: 9268 /* if error, reset the all_numtc and all_enatc */ 9269 if (ret) { 9270 vsi->all_numtc = 0; 9271 vsi->all_enatc = 0; 9272 } 9273 /* resume VSI */ 9274 ice_ena_vsi(vsi, true); 9275 9276 return ret; 9277 } 9278 9279 static LIST_HEAD(ice_block_cb_list); 9280 9281 static int 9282 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9283 void *type_data) 9284 { 9285 struct ice_netdev_priv *np = netdev_priv(netdev); 9286 struct ice_pf *pf = np->vsi->back; 9287 bool locked = false; 9288 int err; 9289 9290 switch (type) { 9291 case TC_SETUP_BLOCK: 9292 return flow_block_cb_setup_simple(type_data, 9293 &ice_block_cb_list, 9294 ice_setup_tc_block_cb, 9295 np, np, true); 9296 case TC_SETUP_QDISC_MQPRIO: 9297 if (ice_is_eswitch_mode_switchdev(pf)) { 9298 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9299 return -EOPNOTSUPP; 9300 } 9301 9302 if (pf->adev) { 9303 mutex_lock(&pf->adev_mutex); 9304 device_lock(&pf->adev->dev); 9305 locked = true; 9306 if (pf->adev->dev.driver) { 9307 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9308 err = -EBUSY; 9309 goto adev_unlock; 9310 } 9311 } 9312 9313 /* setup traffic classifier for receive side */ 9314 mutex_lock(&pf->tc_mutex); 9315 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9316 mutex_unlock(&pf->tc_mutex); 9317 9318 adev_unlock: 9319 if (locked) { 9320 device_unlock(&pf->adev->dev); 9321 mutex_unlock(&pf->adev_mutex); 9322 } 9323 return err; 9324 default: 9325 return -EOPNOTSUPP; 9326 } 9327 return -EOPNOTSUPP; 9328 } 9329 9330 static struct ice_indr_block_priv * 9331 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9332 struct net_device *netdev) 9333 { 9334 struct ice_indr_block_priv *cb_priv; 9335 9336 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9337 if (!cb_priv->netdev) 9338 return NULL; 9339 if (cb_priv->netdev == netdev) 9340 return cb_priv; 9341 } 9342 return NULL; 9343 } 9344 9345 static int 9346 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9347 void *indr_priv) 9348 { 9349 struct ice_indr_block_priv *priv = indr_priv; 9350 struct ice_netdev_priv *np = priv->np; 9351 9352 switch (type) { 9353 case TC_SETUP_CLSFLOWER: 9354 return ice_setup_tc_cls_flower(np, priv->netdev, 9355 (struct flow_cls_offload *) 9356 type_data); 9357 default: 9358 return -EOPNOTSUPP; 9359 } 9360 } 9361 9362 static int 9363 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9364 struct ice_netdev_priv *np, 9365 struct flow_block_offload *f, void *data, 9366 void (*cleanup)(struct flow_block_cb *block_cb)) 9367 { 9368 struct ice_indr_block_priv *indr_priv; 9369 struct flow_block_cb *block_cb; 9370 9371 if (!ice_is_tunnel_supported(netdev) && 9372 !(is_vlan_dev(netdev) && 9373 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9374 return -EOPNOTSUPP; 9375 9376 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9377 return -EOPNOTSUPP; 9378 9379 switch (f->command) { 9380 case FLOW_BLOCK_BIND: 9381 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9382 if (indr_priv) 9383 return -EEXIST; 9384 9385 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9386 if (!indr_priv) 9387 return -ENOMEM; 9388 9389 indr_priv->netdev = netdev; 9390 indr_priv->np = np; 9391 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9392 9393 block_cb = 9394 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9395 indr_priv, indr_priv, 9396 ice_rep_indr_tc_block_unbind, 9397 f, netdev, sch, data, np, 9398 cleanup); 9399 9400 if (IS_ERR(block_cb)) { 9401 list_del(&indr_priv->list); 9402 kfree(indr_priv); 9403 return PTR_ERR(block_cb); 9404 } 9405 flow_block_cb_add(block_cb, f); 9406 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9407 break; 9408 case FLOW_BLOCK_UNBIND: 9409 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9410 if (!indr_priv) 9411 return -ENOENT; 9412 9413 block_cb = flow_block_cb_lookup(f->block, 9414 ice_indr_setup_block_cb, 9415 indr_priv); 9416 if (!block_cb) 9417 return -ENOENT; 9418 9419 flow_indr_block_cb_remove(block_cb, f); 9420 9421 list_del(&block_cb->driver_list); 9422 break; 9423 default: 9424 return -EOPNOTSUPP; 9425 } 9426 return 0; 9427 } 9428 9429 static int 9430 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9431 void *cb_priv, enum tc_setup_type type, void *type_data, 9432 void *data, 9433 void (*cleanup)(struct flow_block_cb *block_cb)) 9434 { 9435 switch (type) { 9436 case TC_SETUP_BLOCK: 9437 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9438 data, cleanup); 9439 9440 default: 9441 return -EOPNOTSUPP; 9442 } 9443 } 9444 9445 /** 9446 * ice_open - Called when a network interface becomes active 9447 * @netdev: network interface device structure 9448 * 9449 * The open entry point is called when a network interface is made 9450 * active by the system (IFF_UP). At this point all resources needed 9451 * for transmit and receive operations are allocated, the interrupt 9452 * handler is registered with the OS, the netdev watchdog is enabled, 9453 * and the stack is notified that the interface is ready. 9454 * 9455 * Returns 0 on success, negative value on failure 9456 */ 9457 int ice_open(struct net_device *netdev) 9458 { 9459 struct ice_netdev_priv *np = netdev_priv(netdev); 9460 struct ice_pf *pf = np->vsi->back; 9461 9462 if (ice_is_reset_in_progress(pf->state)) { 9463 netdev_err(netdev, "can't open net device while reset is in progress"); 9464 return -EBUSY; 9465 } 9466 9467 return ice_open_internal(netdev); 9468 } 9469 9470 /** 9471 * ice_open_internal - Called when a network interface becomes active 9472 * @netdev: network interface device structure 9473 * 9474 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9475 * handling routine 9476 * 9477 * Returns 0 on success, negative value on failure 9478 */ 9479 int ice_open_internal(struct net_device *netdev) 9480 { 9481 struct ice_netdev_priv *np = netdev_priv(netdev); 9482 struct ice_vsi *vsi = np->vsi; 9483 struct ice_pf *pf = vsi->back; 9484 struct ice_port_info *pi; 9485 int err; 9486 9487 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9488 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9489 return -EIO; 9490 } 9491 9492 netif_carrier_off(netdev); 9493 9494 pi = vsi->port_info; 9495 err = ice_update_link_info(pi); 9496 if (err) { 9497 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9498 return err; 9499 } 9500 9501 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9502 9503 /* Set PHY if there is media, otherwise, turn off PHY */ 9504 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9505 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9506 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9507 err = ice_init_phy_user_cfg(pi); 9508 if (err) { 9509 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9510 err); 9511 return err; 9512 } 9513 } 9514 9515 err = ice_configure_phy(vsi); 9516 if (err) { 9517 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9518 err); 9519 return err; 9520 } 9521 } else { 9522 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9523 ice_set_link(vsi, false); 9524 } 9525 9526 err = ice_vsi_open(vsi); 9527 if (err) 9528 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9529 vsi->vsi_num, vsi->vsw->sw_id); 9530 9531 /* Update existing tunnels information */ 9532 udp_tunnel_get_rx_info(netdev); 9533 9534 return err; 9535 } 9536 9537 /** 9538 * ice_stop - Disables a network interface 9539 * @netdev: network interface device structure 9540 * 9541 * The stop entry point is called when an interface is de-activated by the OS, 9542 * and the netdevice enters the DOWN state. The hardware is still under the 9543 * driver's control, but the netdev interface is disabled. 9544 * 9545 * Returns success only - not allowed to fail 9546 */ 9547 int ice_stop(struct net_device *netdev) 9548 { 9549 struct ice_netdev_priv *np = netdev_priv(netdev); 9550 struct ice_vsi *vsi = np->vsi; 9551 struct ice_pf *pf = vsi->back; 9552 9553 if (ice_is_reset_in_progress(pf->state)) { 9554 netdev_err(netdev, "can't stop net device while reset is in progress"); 9555 return -EBUSY; 9556 } 9557 9558 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9559 int link_err = ice_force_phys_link_state(vsi, false); 9560 9561 if (link_err) { 9562 if (link_err == -ENOMEDIUM) 9563 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9564 vsi->vsi_num); 9565 else 9566 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9567 vsi->vsi_num, link_err); 9568 9569 ice_vsi_close(vsi); 9570 return -EIO; 9571 } 9572 } 9573 9574 ice_vsi_close(vsi); 9575 9576 return 0; 9577 } 9578 9579 /** 9580 * ice_features_check - Validate encapsulated packet conforms to limits 9581 * @skb: skb buffer 9582 * @netdev: This port's netdev 9583 * @features: Offload features that the stack believes apply 9584 */ 9585 static netdev_features_t 9586 ice_features_check(struct sk_buff *skb, 9587 struct net_device __always_unused *netdev, 9588 netdev_features_t features) 9589 { 9590 bool gso = skb_is_gso(skb); 9591 size_t len; 9592 9593 /* No point in doing any of this if neither checksum nor GSO are 9594 * being requested for this frame. We can rule out both by just 9595 * checking for CHECKSUM_PARTIAL 9596 */ 9597 if (skb->ip_summed != CHECKSUM_PARTIAL) 9598 return features; 9599 9600 /* We cannot support GSO if the MSS is going to be less than 9601 * 64 bytes. If it is then we need to drop support for GSO. 9602 */ 9603 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9604 features &= ~NETIF_F_GSO_MASK; 9605 9606 len = skb_network_offset(skb); 9607 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9608 goto out_rm_features; 9609 9610 len = skb_network_header_len(skb); 9611 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9612 goto out_rm_features; 9613 9614 if (skb->encapsulation) { 9615 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9616 * the case of IPIP frames, the transport header pointer is 9617 * after the inner header! So check to make sure that this 9618 * is a GRE or UDP_TUNNEL frame before doing that math. 9619 */ 9620 if (gso && (skb_shinfo(skb)->gso_type & 9621 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9622 len = skb_inner_network_header(skb) - 9623 skb_transport_header(skb); 9624 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9625 goto out_rm_features; 9626 } 9627 9628 len = skb_inner_network_header_len(skb); 9629 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9630 goto out_rm_features; 9631 } 9632 9633 return features; 9634 out_rm_features: 9635 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9636 } 9637 9638 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9639 .ndo_open = ice_open, 9640 .ndo_stop = ice_stop, 9641 .ndo_start_xmit = ice_start_xmit, 9642 .ndo_set_mac_address = ice_set_mac_address, 9643 .ndo_validate_addr = eth_validate_addr, 9644 .ndo_change_mtu = ice_change_mtu, 9645 .ndo_get_stats64 = ice_get_stats64, 9646 .ndo_tx_timeout = ice_tx_timeout, 9647 .ndo_bpf = ice_xdp_safe_mode, 9648 }; 9649 9650 static const struct net_device_ops ice_netdev_ops = { 9651 .ndo_open = ice_open, 9652 .ndo_stop = ice_stop, 9653 .ndo_start_xmit = ice_start_xmit, 9654 .ndo_select_queue = ice_select_queue, 9655 .ndo_features_check = ice_features_check, 9656 .ndo_fix_features = ice_fix_features, 9657 .ndo_set_rx_mode = ice_set_rx_mode, 9658 .ndo_set_mac_address = ice_set_mac_address, 9659 .ndo_validate_addr = eth_validate_addr, 9660 .ndo_change_mtu = ice_change_mtu, 9661 .ndo_get_stats64 = ice_get_stats64, 9662 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9663 .ndo_eth_ioctl = ice_eth_ioctl, 9664 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9665 .ndo_set_vf_mac = ice_set_vf_mac, 9666 .ndo_get_vf_config = ice_get_vf_cfg, 9667 .ndo_set_vf_trust = ice_set_vf_trust, 9668 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9669 .ndo_set_vf_link_state = ice_set_vf_link_state, 9670 .ndo_get_vf_stats = ice_get_vf_stats, 9671 .ndo_set_vf_rate = ice_set_vf_bw, 9672 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9673 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9674 .ndo_setup_tc = ice_setup_tc, 9675 .ndo_set_features = ice_set_features, 9676 .ndo_bridge_getlink = ice_bridge_getlink, 9677 .ndo_bridge_setlink = ice_bridge_setlink, 9678 .ndo_fdb_add = ice_fdb_add, 9679 .ndo_fdb_del = ice_fdb_del, 9680 #ifdef CONFIG_RFS_ACCEL 9681 .ndo_rx_flow_steer = ice_rx_flow_steer, 9682 #endif 9683 .ndo_tx_timeout = ice_tx_timeout, 9684 .ndo_bpf = ice_xdp, 9685 .ndo_xdp_xmit = ice_xdp_xmit, 9686 .ndo_xsk_wakeup = ice_xsk_wakeup, 9687 }; 9688