1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 #include "ice_hwmon.h" 18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 19 * ice tracepoint functions. This must be done exactly once across the 20 * ice driver. 21 */ 22 #define CREATE_TRACE_POINTS 23 #include "ice_trace.h" 24 #include "ice_eswitch.h" 25 #include "ice_tc_lib.h" 26 #include "ice_vsi_vlan_ops.h" 27 #include <net/xdp_sock_drv.h> 28 29 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 30 static const char ice_driver_string[] = DRV_SUMMARY; 31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 32 33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 34 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 35 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 36 37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_LICENSE("GPL v2"); 40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 41 42 static int debug = -1; 43 module_param(debug, int, 0644); 44 #ifndef CONFIG_DYNAMIC_DEBUG 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 46 #else 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 48 #endif /* !CONFIG_DYNAMIC_DEBUG */ 49 50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 51 EXPORT_SYMBOL(ice_xdp_locking_key); 52 53 /** 54 * ice_hw_to_dev - Get device pointer from the hardware structure 55 * @hw: pointer to the device HW structure 56 * 57 * Used to access the device pointer from compilation units which can't easily 58 * include the definition of struct ice_pf without leading to circular header 59 * dependencies. 60 */ 61 struct device *ice_hw_to_dev(struct ice_hw *hw) 62 { 63 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 64 65 return &pf->pdev->dev; 66 } 67 68 static struct workqueue_struct *ice_wq; 69 struct workqueue_struct *ice_lag_wq; 70 static const struct net_device_ops ice_netdev_safe_mode_ops; 71 static const struct net_device_ops ice_netdev_ops; 72 73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 74 75 static void ice_vsi_release_all(struct ice_pf *pf); 76 77 static int ice_rebuild_channels(struct ice_pf *pf); 78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 79 80 static int 81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 82 void *cb_priv, enum tc_setup_type type, void *type_data, 83 void *data, 84 void (*cleanup)(struct flow_block_cb *block_cb)); 85 86 bool netif_is_ice(const struct net_device *dev) 87 { 88 return dev && (dev->netdev_ops == &ice_netdev_ops); 89 } 90 91 /** 92 * ice_get_tx_pending - returns number of Tx descriptors not processed 93 * @ring: the ring of descriptors 94 */ 95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 96 { 97 u16 head, tail; 98 99 head = ring->next_to_clean; 100 tail = ring->next_to_use; 101 102 if (head != tail) 103 return (head < tail) ? 104 tail - head : (tail + ring->count - head); 105 return 0; 106 } 107 108 /** 109 * ice_check_for_hang_subtask - check for and recover hung queues 110 * @pf: pointer to PF struct 111 */ 112 static void ice_check_for_hang_subtask(struct ice_pf *pf) 113 { 114 struct ice_vsi *vsi = NULL; 115 struct ice_hw *hw; 116 unsigned int i; 117 int packets; 118 u32 v; 119 120 ice_for_each_vsi(pf, v) 121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 122 vsi = pf->vsi[v]; 123 break; 124 } 125 126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 127 return; 128 129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 130 return; 131 132 hw = &vsi->back->hw; 133 134 ice_for_each_txq(vsi, i) { 135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 136 struct ice_ring_stats *ring_stats; 137 138 if (!tx_ring) 139 continue; 140 if (ice_ring_ch_enabled(tx_ring)) 141 continue; 142 143 ring_stats = tx_ring->ring_stats; 144 if (!ring_stats) 145 continue; 146 147 if (tx_ring->desc) { 148 /* If packet counter has not changed the queue is 149 * likely stalled, so force an interrupt for this 150 * queue. 151 * 152 * prev_pkt would be negative if there was no 153 * pending work. 154 */ 155 packets = ring_stats->stats.pkts & INT_MAX; 156 if (ring_stats->tx_stats.prev_pkt == packets) { 157 /* Trigger sw interrupt to revive the queue */ 158 ice_trigger_sw_intr(hw, tx_ring->q_vector); 159 continue; 160 } 161 162 /* Memory barrier between read of packet count and call 163 * to ice_get_tx_pending() 164 */ 165 smp_rmb(); 166 ring_stats->tx_stats.prev_pkt = 167 ice_get_tx_pending(tx_ring) ? packets : -1; 168 } 169 } 170 } 171 172 /** 173 * ice_init_mac_fltr - Set initial MAC filters 174 * @pf: board private structure 175 * 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent 177 * address and broadcast address. If an error is encountered, netdevice will be 178 * unregistered. 179 */ 180 static int ice_init_mac_fltr(struct ice_pf *pf) 181 { 182 struct ice_vsi *vsi; 183 u8 *perm_addr; 184 185 vsi = ice_get_main_vsi(pf); 186 if (!vsi) 187 return -EINVAL; 188 189 perm_addr = vsi->port_info->mac.perm_addr; 190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 191 } 192 193 /** 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 195 * @netdev: the net device on which the sync is happening 196 * @addr: MAC address to sync 197 * 198 * This is a callback function which is called by the in kernel device sync 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 201 * MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 209 ICE_FWD_TO_VSI)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 217 * @netdev: the net device on which the unsync is happening 218 * @addr: MAC address to unsync 219 * 220 * This is a callback function which is called by the in kernel device unsync 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 223 * delete the MAC filters from the hardware. 224 */ 225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 226 { 227 struct ice_netdev_priv *np = netdev_priv(netdev); 228 struct ice_vsi *vsi = np->vsi; 229 230 /* Under some circumstances, we might receive a request to delete our 231 * own device address from our uc list. Because we store the device 232 * address in the VSI's MAC filter list, we need to ignore such 233 * requests and not delete our device address from this list. 234 */ 235 if (ether_addr_equal(addr, netdev->dev_addr)) 236 return 0; 237 238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 239 ICE_FWD_TO_VSI)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_fltr_changed - check if filter state changed 247 * @vsi: VSI to be checked 248 * 249 * returns true if filter state has changed, false otherwise. 250 */ 251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 252 { 253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 255 } 256 257 /** 258 * ice_set_promisc - Enable promiscuous mode for a given PF 259 * @vsi: the VSI being configured 260 * @promisc_m: mask of promiscuous config bits 261 * 262 */ 263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 264 { 265 int status; 266 267 if (vsi->type != ICE_VSI_PF) 268 return 0; 269 270 if (ice_vsi_has_non_zero_vlans(vsi)) { 271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 273 promisc_m); 274 } else { 275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 276 promisc_m, 0); 277 } 278 if (status && status != -EEXIST) 279 return status; 280 281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 282 vsi->vsi_num, promisc_m); 283 return 0; 284 } 285 286 /** 287 * ice_clear_promisc - Disable promiscuous mode for a given PF 288 * @vsi: the VSI being configured 289 * @promisc_m: mask of promiscuous config bits 290 * 291 */ 292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 293 { 294 int status; 295 296 if (vsi->type != ICE_VSI_PF) 297 return 0; 298 299 if (ice_vsi_has_non_zero_vlans(vsi)) { 300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 302 promisc_m); 303 } else { 304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 305 promisc_m, 0); 306 } 307 308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 309 vsi->vsi_num, promisc_m); 310 return status; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 425 /* promiscuous mode implies allmulticast so 426 * that VSIs that are in promiscuous mode are 427 * subscribed to multicast packets coming to 428 * the port 429 */ 430 err = ice_set_promisc(vsi, 431 ICE_MCAST_PROMISC_BITS); 432 if (err) 433 goto out_promisc; 434 } 435 } else { 436 /* Clear Rx filter to remove traffic from wire */ 437 if (ice_is_vsi_dflt_vsi(vsi)) { 438 err = ice_clear_dflt_vsi(vsi); 439 if (err) { 440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 441 err, vsi->vsi_num); 442 vsi->current_netdev_flags |= 443 IFF_PROMISC; 444 goto out_promisc; 445 } 446 if (vsi->netdev->features & 447 NETIF_F_HW_VLAN_CTAG_FILTER) 448 vlan_ops->ena_rx_filtering(vsi); 449 } 450 451 /* disable allmulti here, but only if allmulti is not 452 * still enabled for the netdev 453 */ 454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 455 err = ice_clear_promisc(vsi, 456 ICE_MCAST_PROMISC_BITS); 457 if (err) { 458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 459 err, vsi->vsi_num); 460 } 461 } 462 } 463 } 464 goto exit; 465 466 out_promisc: 467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 468 goto exit; 469 out: 470 /* if something went wrong then set the changed flag so we try again */ 471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 473 exit: 474 clear_bit(ICE_CFG_BUSY, vsi->state); 475 return err; 476 } 477 478 /** 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 480 * @pf: board private structure 481 */ 482 static void ice_sync_fltr_subtask(struct ice_pf *pf) 483 { 484 int v; 485 486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 487 return; 488 489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 490 491 ice_for_each_vsi(pf, v) 492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 493 ice_vsi_sync_fltr(pf->vsi[v])) { 494 /* come back and try again later */ 495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 496 break; 497 } 498 } 499 500 /** 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 502 * @pf: the PF 503 * @locked: is the rtnl_lock already held 504 */ 505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 506 { 507 int node; 508 int v; 509 510 ice_for_each_vsi(pf, v) 511 if (pf->vsi[v]) 512 ice_dis_vsi(pf->vsi[v], locked); 513 514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 515 pf->pf_agg_node[node].num_vsis = 0; 516 517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 518 pf->vf_agg_node[node].num_vsis = 0; 519 } 520 521 /** 522 * ice_clear_sw_switch_recipes - clear switch recipes 523 * @pf: board private structure 524 * 525 * Mark switch recipes as not created in sw structures. There are cases where 526 * rules (especially advanced rules) need to be restored, either re-read from 527 * hardware or added again. For example after the reset. 'recp_created' flag 528 * prevents from doing that and need to be cleared upfront. 529 */ 530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 531 { 532 struct ice_sw_recipe *recp; 533 u8 i; 534 535 recp = pf->hw.switch_info->recp_list; 536 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 537 recp[i].recp_created = false; 538 } 539 540 /** 541 * ice_prepare_for_reset - prep for reset 542 * @pf: board private structure 543 * @reset_type: reset type requested 544 * 545 * Inform or close all dependent features in prep for reset. 546 */ 547 static void 548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 549 { 550 struct ice_hw *hw = &pf->hw; 551 struct ice_vsi *vsi; 552 struct ice_vf *vf; 553 unsigned int bkt; 554 555 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 556 557 /* already prepared for reset */ 558 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 559 return; 560 561 ice_unplug_aux_dev(pf); 562 563 /* Notify VFs of impending reset */ 564 if (ice_check_sq_alive(hw, &hw->mailboxq)) 565 ice_vc_notify_reset(pf); 566 567 /* Disable VFs until reset is completed */ 568 mutex_lock(&pf->vfs.table_lock); 569 ice_for_each_vf(pf, bkt, vf) 570 ice_set_vf_state_dis(vf); 571 mutex_unlock(&pf->vfs.table_lock); 572 573 if (ice_is_eswitch_mode_switchdev(pf)) { 574 if (reset_type != ICE_RESET_PFR) 575 ice_clear_sw_switch_recipes(pf); 576 } 577 578 /* release ADQ specific HW and SW resources */ 579 vsi = ice_get_main_vsi(pf); 580 if (!vsi) 581 goto skip; 582 583 /* to be on safe side, reset orig_rss_size so that normal flow 584 * of deciding rss_size can take precedence 585 */ 586 vsi->orig_rss_size = 0; 587 588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 589 if (reset_type == ICE_RESET_PFR) { 590 vsi->old_ena_tc = vsi->all_enatc; 591 vsi->old_numtc = vsi->all_numtc; 592 } else { 593 ice_remove_q_channels(vsi, true); 594 595 /* for other reset type, do not support channel rebuild 596 * hence reset needed info 597 */ 598 vsi->old_ena_tc = 0; 599 vsi->all_enatc = 0; 600 vsi->old_numtc = 0; 601 vsi->all_numtc = 0; 602 vsi->req_txq = 0; 603 vsi->req_rxq = 0; 604 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 605 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 606 } 607 } 608 skip: 609 610 /* clear SW filtering DB */ 611 ice_clear_hw_tbls(hw); 612 /* disable the VSIs and their queues that are not already DOWN */ 613 ice_pf_dis_all_vsi(pf, false); 614 615 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 616 ice_ptp_prepare_for_reset(pf); 617 618 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 619 ice_gnss_exit(pf); 620 621 if (hw->port_info) 622 ice_sched_clear_port(hw->port_info); 623 624 ice_shutdown_all_ctrlq(hw); 625 626 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 } 628 629 /** 630 * ice_do_reset - Initiate one of many types of resets 631 * @pf: board private structure 632 * @reset_type: reset type requested before this function was called. 633 */ 634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 635 { 636 struct device *dev = ice_pf_to_dev(pf); 637 struct ice_hw *hw = &pf->hw; 638 639 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 640 641 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 642 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 643 reset_type = ICE_RESET_CORER; 644 } 645 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* trigger the reset */ 649 if (ice_reset(hw, reset_type)) { 650 dev_err(dev, "reset %d failed\n", reset_type); 651 set_bit(ICE_RESET_FAILED, pf->state); 652 clear_bit(ICE_RESET_OICR_RECV, pf->state); 653 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 654 clear_bit(ICE_PFR_REQ, pf->state); 655 clear_bit(ICE_CORER_REQ, pf->state); 656 clear_bit(ICE_GLOBR_REQ, pf->state); 657 wake_up(&pf->reset_wait_queue); 658 return; 659 } 660 661 /* PFR is a bit of a special case because it doesn't result in an OICR 662 * interrupt. So for PFR, rebuild after the reset and clear the reset- 663 * associated state bits. 664 */ 665 if (reset_type == ICE_RESET_PFR) { 666 pf->pfr_count++; 667 ice_rebuild(pf, reset_type); 668 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 669 clear_bit(ICE_PFR_REQ, pf->state); 670 wake_up(&pf->reset_wait_queue); 671 ice_reset_all_vfs(pf); 672 } 673 } 674 675 /** 676 * ice_reset_subtask - Set up for resetting the device and driver 677 * @pf: board private structure 678 */ 679 static void ice_reset_subtask(struct ice_pf *pf) 680 { 681 enum ice_reset_req reset_type = ICE_RESET_INVAL; 682 683 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 684 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 685 * of reset is pending and sets bits in pf->state indicating the reset 686 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 687 * prepare for pending reset if not already (for PF software-initiated 688 * global resets the software should already be prepared for it as 689 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 690 * by firmware or software on other PFs, that bit is not set so prepare 691 * for the reset now), poll for reset done, rebuild and return. 692 */ 693 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 694 /* Perform the largest reset requested */ 695 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 696 reset_type = ICE_RESET_CORER; 697 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 698 reset_type = ICE_RESET_GLOBR; 699 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 700 reset_type = ICE_RESET_EMPR; 701 /* return if no valid reset type requested */ 702 if (reset_type == ICE_RESET_INVAL) 703 return; 704 ice_prepare_for_reset(pf, reset_type); 705 706 /* make sure we are ready to rebuild */ 707 if (ice_check_reset(&pf->hw)) { 708 set_bit(ICE_RESET_FAILED, pf->state); 709 } else { 710 /* done with reset. start rebuild */ 711 pf->hw.reset_ongoing = false; 712 ice_rebuild(pf, reset_type); 713 /* clear bit to resume normal operations, but 714 * ICE_NEEDS_RESTART bit is set in case rebuild failed 715 */ 716 clear_bit(ICE_RESET_OICR_RECV, pf->state); 717 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 718 clear_bit(ICE_PFR_REQ, pf->state); 719 clear_bit(ICE_CORER_REQ, pf->state); 720 clear_bit(ICE_GLOBR_REQ, pf->state); 721 wake_up(&pf->reset_wait_queue); 722 ice_reset_all_vfs(pf); 723 } 724 725 return; 726 } 727 728 /* No pending resets to finish processing. Check for new resets */ 729 if (test_bit(ICE_PFR_REQ, pf->state)) { 730 reset_type = ICE_RESET_PFR; 731 if (pf->lag && pf->lag->bonded) { 732 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 733 reset_type = ICE_RESET_CORER; 734 } 735 } 736 if (test_bit(ICE_CORER_REQ, pf->state)) 737 reset_type = ICE_RESET_CORER; 738 if (test_bit(ICE_GLOBR_REQ, pf->state)) 739 reset_type = ICE_RESET_GLOBR; 740 /* If no valid reset type requested just return */ 741 if (reset_type == ICE_RESET_INVAL) 742 return; 743 744 /* reset if not already down or busy */ 745 if (!test_bit(ICE_DOWN, pf->state) && 746 !test_bit(ICE_CFG_BUSY, pf->state)) { 747 ice_do_reset(pf, reset_type); 748 } 749 } 750 751 /** 752 * ice_print_topo_conflict - print topology conflict message 753 * @vsi: the VSI whose topology status is being checked 754 */ 755 static void ice_print_topo_conflict(struct ice_vsi *vsi) 756 { 757 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 758 case ICE_AQ_LINK_TOPO_CONFLICT: 759 case ICE_AQ_LINK_MEDIA_CONFLICT: 760 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 761 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 763 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 764 break; 765 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 766 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 767 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 768 else 769 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 770 break; 771 default: 772 break; 773 } 774 } 775 776 /** 777 * ice_print_link_msg - print link up or down message 778 * @vsi: the VSI whose link status is being queried 779 * @isup: boolean for if the link is now up or down 780 */ 781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 782 { 783 struct ice_aqc_get_phy_caps_data *caps; 784 const char *an_advertised; 785 const char *fec_req; 786 const char *speed; 787 const char *fec; 788 const char *fc; 789 const char *an; 790 int status; 791 792 if (!vsi) 793 return; 794 795 if (vsi->current_isup == isup) 796 return; 797 798 vsi->current_isup = isup; 799 800 if (!isup) { 801 netdev_info(vsi->netdev, "NIC Link is Down\n"); 802 return; 803 } 804 805 switch (vsi->port_info->phy.link_info.link_speed) { 806 case ICE_AQ_LINK_SPEED_100GB: 807 speed = "100 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_50GB: 810 speed = "50 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_40GB: 813 speed = "40 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_25GB: 816 speed = "25 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_20GB: 819 speed = "20 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_10GB: 822 speed = "10 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_5GB: 825 speed = "5 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_2500MB: 828 speed = "2.5 G"; 829 break; 830 case ICE_AQ_LINK_SPEED_1000MB: 831 speed = "1 G"; 832 break; 833 case ICE_AQ_LINK_SPEED_100MB: 834 speed = "100 M"; 835 break; 836 default: 837 speed = "Unknown "; 838 break; 839 } 840 841 switch (vsi->port_info->fc.current_mode) { 842 case ICE_FC_FULL: 843 fc = "Rx/Tx"; 844 break; 845 case ICE_FC_TX_PAUSE: 846 fc = "Tx"; 847 break; 848 case ICE_FC_RX_PAUSE: 849 fc = "Rx"; 850 break; 851 case ICE_FC_NONE: 852 fc = "None"; 853 break; 854 default: 855 fc = "Unknown"; 856 break; 857 } 858 859 /* Get FEC mode based on negotiated link info */ 860 switch (vsi->port_info->phy.link_info.fec_info) { 861 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 862 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 863 fec = "RS-FEC"; 864 break; 865 case ICE_AQ_LINK_25G_KR_FEC_EN: 866 fec = "FC-FEC/BASE-R"; 867 break; 868 default: 869 fec = "NONE"; 870 break; 871 } 872 873 /* check if autoneg completed, might be false due to not supported */ 874 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 875 an = "True"; 876 else 877 an = "False"; 878 879 /* Get FEC mode requested based on PHY caps last SW configuration */ 880 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 881 if (!caps) { 882 fec_req = "Unknown"; 883 an_advertised = "Unknown"; 884 goto done; 885 } 886 887 status = ice_aq_get_phy_caps(vsi->port_info, false, 888 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 889 if (status) 890 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 891 892 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 893 894 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 895 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 896 fec_req = "RS-FEC"; 897 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 898 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 899 fec_req = "FC-FEC/BASE-R"; 900 else 901 fec_req = "NONE"; 902 903 kfree(caps); 904 905 done: 906 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 907 speed, fec_req, fec, an_advertised, an, fc); 908 ice_print_topo_conflict(vsi); 909 } 910 911 /** 912 * ice_vsi_link_event - update the VSI's netdev 913 * @vsi: the VSI on which the link event occurred 914 * @link_up: whether or not the VSI needs to be set up or down 915 */ 916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 917 { 918 if (!vsi) 919 return; 920 921 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 922 return; 923 924 if (vsi->type == ICE_VSI_PF) { 925 if (link_up == netif_carrier_ok(vsi->netdev)) 926 return; 927 928 if (link_up) { 929 netif_carrier_on(vsi->netdev); 930 netif_tx_wake_all_queues(vsi->netdev); 931 } else { 932 netif_carrier_off(vsi->netdev); 933 netif_tx_stop_all_queues(vsi->netdev); 934 } 935 } 936 } 937 938 /** 939 * ice_set_dflt_mib - send a default config MIB to the FW 940 * @pf: private PF struct 941 * 942 * This function sends a default configuration MIB to the FW. 943 * 944 * If this function errors out at any point, the driver is still able to 945 * function. The main impact is that LFC may not operate as expected. 946 * Therefore an error state in this function should be treated with a DBG 947 * message and continue on with driver rebuild/reenable. 948 */ 949 static void ice_set_dflt_mib(struct ice_pf *pf) 950 { 951 struct device *dev = ice_pf_to_dev(pf); 952 u8 mib_type, *buf, *lldpmib = NULL; 953 u16 len, typelen, offset = 0; 954 struct ice_lldp_org_tlv *tlv; 955 struct ice_hw *hw = &pf->hw; 956 u32 ouisubtype; 957 958 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 959 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 960 if (!lldpmib) { 961 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 962 __func__); 963 return; 964 } 965 966 /* Add ETS CFG TLV */ 967 tlv = (struct ice_lldp_org_tlv *)lldpmib; 968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 969 ICE_IEEE_ETS_TLV_LEN); 970 tlv->typelen = htons(typelen); 971 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 972 ICE_IEEE_SUBTYPE_ETS_CFG); 973 tlv->ouisubtype = htonl(ouisubtype); 974 975 buf = tlv->tlvinfo; 976 buf[0] = 0; 977 978 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 979 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 980 * Octets 13 - 20 are TSA values - leave as zeros 981 */ 982 buf[5] = 0x64; 983 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 984 offset += len + 2; 985 tlv = (struct ice_lldp_org_tlv *) 986 ((char *)tlv + sizeof(tlv->typelen) + len); 987 988 /* Add ETS REC TLV */ 989 buf = tlv->tlvinfo; 990 tlv->typelen = htons(typelen); 991 992 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 993 ICE_IEEE_SUBTYPE_ETS_REC); 994 tlv->ouisubtype = htonl(ouisubtype); 995 996 /* First octet of buf is reserved 997 * Octets 1 - 4 map UP to TC - all UPs map to zero 998 * Octets 5 - 12 are BW values - set TC 0 to 100%. 999 * Octets 13 - 20 are TSA value - leave as zeros 1000 */ 1001 buf[5] = 0x64; 1002 offset += len + 2; 1003 tlv = (struct ice_lldp_org_tlv *) 1004 ((char *)tlv + sizeof(tlv->typelen) + len); 1005 1006 /* Add PFC CFG TLV */ 1007 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1008 ICE_IEEE_PFC_TLV_LEN); 1009 tlv->typelen = htons(typelen); 1010 1011 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1012 ICE_IEEE_SUBTYPE_PFC_CFG); 1013 tlv->ouisubtype = htonl(ouisubtype); 1014 1015 /* Octet 1 left as all zeros - PFC disabled */ 1016 buf[0] = 0x08; 1017 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1018 offset += len + 2; 1019 1020 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1021 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1022 1023 kfree(lldpmib); 1024 } 1025 1026 /** 1027 * ice_check_phy_fw_load - check if PHY FW load failed 1028 * @pf: pointer to PF struct 1029 * @link_cfg_err: bitmap from the link info structure 1030 * 1031 * check if external PHY FW load failed and print an error message if it did 1032 */ 1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1034 { 1035 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1036 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1037 return; 1038 } 1039 1040 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1041 return; 1042 1043 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1044 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1045 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_module_power 1051 * @pf: pointer to PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * check module power level returned by a previous call to aq_get_link_info 1055 * and print error messages if module power level is not supported 1056 */ 1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 /* if module power level is supported, clear the flag */ 1060 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1061 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1062 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1063 return; 1064 } 1065 1066 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1067 * above block didn't clear this bit, there's nothing to do 1068 */ 1069 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1070 return; 1071 1072 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1073 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1074 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1075 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1076 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1077 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1078 } 1079 } 1080 1081 /** 1082 * ice_check_link_cfg_err - check if link configuration failed 1083 * @pf: pointer to the PF struct 1084 * @link_cfg_err: bitmap from the link info structure 1085 * 1086 * print if any link configuration failure happens due to the value in the 1087 * link_cfg_err parameter in the link info structure 1088 */ 1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1090 { 1091 ice_check_module_power(pf, link_cfg_err); 1092 ice_check_phy_fw_load(pf, link_cfg_err); 1093 } 1094 1095 /** 1096 * ice_link_event - process the link event 1097 * @pf: PF that the link event is associated with 1098 * @pi: port_info for the port that the link event is associated with 1099 * @link_up: true if the physical link is up and false if it is down 1100 * @link_speed: current link speed received from the link event 1101 * 1102 * Returns 0 on success and negative on failure 1103 */ 1104 static int 1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1106 u16 link_speed) 1107 { 1108 struct device *dev = ice_pf_to_dev(pf); 1109 struct ice_phy_info *phy_info; 1110 struct ice_vsi *vsi; 1111 u16 old_link_speed; 1112 bool old_link; 1113 int status; 1114 1115 phy_info = &pi->phy; 1116 phy_info->link_info_old = phy_info->link_info; 1117 1118 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1119 old_link_speed = phy_info->link_info_old.link_speed; 1120 1121 /* update the link info structures and re-enable link events, 1122 * don't bail on failure due to other book keeping needed 1123 */ 1124 status = ice_update_link_info(pi); 1125 if (status) 1126 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1127 pi->lport, status, 1128 ice_aq_str(pi->hw->adminq.sq_last_status)); 1129 1130 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1131 1132 /* Check if the link state is up after updating link info, and treat 1133 * this event as an UP event since the link is actually UP now. 1134 */ 1135 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1136 link_up = true; 1137 1138 vsi = ice_get_main_vsi(pf); 1139 if (!vsi || !vsi->port_info) 1140 return -EINVAL; 1141 1142 /* turn off PHY if media was removed */ 1143 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1144 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1145 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1146 ice_set_link(vsi, false); 1147 } 1148 1149 /* if the old link up/down and speed is the same as the new */ 1150 if (link_up == old_link && link_speed == old_link_speed) 1151 return 0; 1152 1153 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1154 1155 if (ice_is_dcb_active(pf)) { 1156 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1157 ice_dcb_rebuild(pf); 1158 } else { 1159 if (link_up) 1160 ice_set_dflt_mib(pf); 1161 } 1162 ice_vsi_link_event(vsi, link_up); 1163 ice_print_link_msg(vsi, link_up); 1164 1165 ice_vc_notify_link_state(pf); 1166 1167 return 0; 1168 } 1169 1170 /** 1171 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1172 * @pf: board private structure 1173 */ 1174 static void ice_watchdog_subtask(struct ice_pf *pf) 1175 { 1176 int i; 1177 1178 /* if interface is down do nothing */ 1179 if (test_bit(ICE_DOWN, pf->state) || 1180 test_bit(ICE_CFG_BUSY, pf->state)) 1181 return; 1182 1183 /* make sure we don't do these things too often */ 1184 if (time_before(jiffies, 1185 pf->serv_tmr_prev + pf->serv_tmr_period)) 1186 return; 1187 1188 pf->serv_tmr_prev = jiffies; 1189 1190 /* Update the stats for active netdevs so the network stack 1191 * can look at updated numbers whenever it cares to 1192 */ 1193 ice_update_pf_stats(pf); 1194 ice_for_each_vsi(pf, i) 1195 if (pf->vsi[i] && pf->vsi[i]->netdev) 1196 ice_update_vsi_stats(pf->vsi[i]); 1197 } 1198 1199 /** 1200 * ice_init_link_events - enable/initialize link events 1201 * @pi: pointer to the port_info instance 1202 * 1203 * Returns -EIO on failure, 0 on success 1204 */ 1205 static int ice_init_link_events(struct ice_port_info *pi) 1206 { 1207 u16 mask; 1208 1209 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1210 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1211 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1212 1213 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1220 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1221 pi->lport); 1222 return -EIO; 1223 } 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_handle_link_event - handle link event via ARQ 1230 * @pf: PF that the link event is associated with 1231 * @event: event structure containing link status info 1232 */ 1233 static int 1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1235 { 1236 struct ice_aqc_get_link_status_data *link_data; 1237 struct ice_port_info *port_info; 1238 int status; 1239 1240 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1241 port_info = pf->hw.port_info; 1242 if (!port_info) 1243 return -EINVAL; 1244 1245 status = ice_link_event(pf, port_info, 1246 !!(link_data->link_info & ICE_AQ_LINK_UP), 1247 le16_to_cpu(link_data->link_speed)); 1248 if (status) 1249 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1250 status); 1251 1252 return status; 1253 } 1254 1255 /** 1256 * ice_get_fwlog_data - copy the FW log data from ARQ event 1257 * @pf: PF that the FW log event is associated with 1258 * @event: event structure containing FW log data 1259 */ 1260 static void 1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1262 { 1263 struct ice_fwlog_data *fwlog; 1264 struct ice_hw *hw = &pf->hw; 1265 1266 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1267 1268 memset(fwlog->data, 0, PAGE_SIZE); 1269 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1270 1271 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1272 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1273 1274 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1275 /* the rings are full so bump the head to create room */ 1276 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1277 hw->fwlog_ring.size); 1278 } 1279 } 1280 1281 /** 1282 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1283 * @pf: pointer to the PF private structure 1284 * @task: intermediate helper storage and identifier for waiting 1285 * @opcode: the opcode to wait for 1286 * 1287 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1288 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1289 * 1290 * Calls are separated to allow caller registering for event before sending 1291 * the command, which mitigates a race between registering and FW responding. 1292 * 1293 * To obtain only the descriptor contents, pass an task->event with null 1294 * msg_buf. If the complete data buffer is desired, allocate the 1295 * task->event.msg_buf with enough space ahead of time. 1296 */ 1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1298 u16 opcode) 1299 { 1300 INIT_HLIST_NODE(&task->entry); 1301 task->opcode = opcode; 1302 task->state = ICE_AQ_TASK_WAITING; 1303 1304 spin_lock_bh(&pf->aq_wait_lock); 1305 hlist_add_head(&task->entry, &pf->aq_wait_list); 1306 spin_unlock_bh(&pf->aq_wait_lock); 1307 } 1308 1309 /** 1310 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1311 * @pf: pointer to the PF private structure 1312 * @task: ptr prepared by ice_aq_prep_for_event() 1313 * @timeout: how long to wait, in jiffies 1314 * 1315 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1316 * current thread will be put to sleep until the specified event occurs or 1317 * until the given timeout is reached. 1318 * 1319 * Returns: zero on success, or a negative error code on failure. 1320 */ 1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1322 unsigned long timeout) 1323 { 1324 enum ice_aq_task_state *state = &task->state; 1325 struct device *dev = ice_pf_to_dev(pf); 1326 unsigned long start = jiffies; 1327 long ret; 1328 int err; 1329 1330 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1331 *state != ICE_AQ_TASK_WAITING, 1332 timeout); 1333 switch (*state) { 1334 case ICE_AQ_TASK_NOT_PREPARED: 1335 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1336 err = -EINVAL; 1337 break; 1338 case ICE_AQ_TASK_WAITING: 1339 err = ret < 0 ? ret : -ETIMEDOUT; 1340 break; 1341 case ICE_AQ_TASK_CANCELED: 1342 err = ret < 0 ? ret : -ECANCELED; 1343 break; 1344 case ICE_AQ_TASK_COMPLETE: 1345 err = ret < 0 ? ret : 0; 1346 break; 1347 default: 1348 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1349 err = -EINVAL; 1350 break; 1351 } 1352 1353 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1354 jiffies_to_msecs(jiffies - start), 1355 jiffies_to_msecs(timeout), 1356 task->opcode); 1357 1358 spin_lock_bh(&pf->aq_wait_lock); 1359 hlist_del(&task->entry); 1360 spin_unlock_bh(&pf->aq_wait_lock); 1361 1362 return err; 1363 } 1364 1365 /** 1366 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1367 * @pf: pointer to the PF private structure 1368 * @opcode: the opcode of the event 1369 * @event: the event to check 1370 * 1371 * Loops over the current list of pending threads waiting for an AdminQ event. 1372 * For each matching task, copy the contents of the event into the task 1373 * structure and wake up the thread. 1374 * 1375 * If multiple threads wait for the same opcode, they will all be woken up. 1376 * 1377 * Note that event->msg_buf will only be duplicated if the event has a buffer 1378 * with enough space already allocated. Otherwise, only the descriptor and 1379 * message length will be copied. 1380 * 1381 * Returns: true if an event was found, false otherwise 1382 */ 1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1384 struct ice_rq_event_info *event) 1385 { 1386 struct ice_rq_event_info *task_ev; 1387 struct ice_aq_task *task; 1388 bool found = false; 1389 1390 spin_lock_bh(&pf->aq_wait_lock); 1391 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1392 if (task->state != ICE_AQ_TASK_WAITING) 1393 continue; 1394 if (task->opcode != opcode) 1395 continue; 1396 1397 task_ev = &task->event; 1398 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1399 task_ev->msg_len = event->msg_len; 1400 1401 /* Only copy the data buffer if a destination was set */ 1402 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1403 memcpy(task_ev->msg_buf, event->msg_buf, 1404 event->buf_len); 1405 task_ev->buf_len = event->buf_len; 1406 } 1407 1408 task->state = ICE_AQ_TASK_COMPLETE; 1409 found = true; 1410 } 1411 spin_unlock_bh(&pf->aq_wait_lock); 1412 1413 if (found) 1414 wake_up(&pf->aq_wait_queue); 1415 } 1416 1417 /** 1418 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1419 * @pf: the PF private structure 1420 * 1421 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1422 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1423 */ 1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1425 { 1426 struct ice_aq_task *task; 1427 1428 spin_lock_bh(&pf->aq_wait_lock); 1429 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1430 task->state = ICE_AQ_TASK_CANCELED; 1431 spin_unlock_bh(&pf->aq_wait_lock); 1432 1433 wake_up(&pf->aq_wait_queue); 1434 } 1435 1436 #define ICE_MBX_OVERFLOW_WATERMARK 64 1437 1438 /** 1439 * __ice_clean_ctrlq - helper function to clean controlq rings 1440 * @pf: ptr to struct ice_pf 1441 * @q_type: specific Control queue type 1442 */ 1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1444 { 1445 struct device *dev = ice_pf_to_dev(pf); 1446 struct ice_rq_event_info event; 1447 struct ice_hw *hw = &pf->hw; 1448 struct ice_ctl_q_info *cq; 1449 u16 pending, i = 0; 1450 const char *qtype; 1451 u32 oldval, val; 1452 1453 /* Do not clean control queue if/when PF reset fails */ 1454 if (test_bit(ICE_RESET_FAILED, pf->state)) 1455 return 0; 1456 1457 switch (q_type) { 1458 case ICE_CTL_Q_ADMIN: 1459 cq = &hw->adminq; 1460 qtype = "Admin"; 1461 break; 1462 case ICE_CTL_Q_SB: 1463 cq = &hw->sbq; 1464 qtype = "Sideband"; 1465 break; 1466 case ICE_CTL_Q_MAILBOX: 1467 cq = &hw->mailboxq; 1468 qtype = "Mailbox"; 1469 /* we are going to try to detect a malicious VF, so set the 1470 * state to begin detection 1471 */ 1472 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1473 break; 1474 default: 1475 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1476 return 0; 1477 } 1478 1479 /* check for error indications - PF_xx_AxQLEN register layout for 1480 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1481 */ 1482 val = rd32(hw, cq->rq.len); 1483 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1484 PF_FW_ARQLEN_ARQCRIT_M)) { 1485 oldval = val; 1486 if (val & PF_FW_ARQLEN_ARQVFE_M) 1487 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1488 qtype); 1489 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1490 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1491 qtype); 1492 } 1493 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1494 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1495 qtype); 1496 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1497 PF_FW_ARQLEN_ARQCRIT_M); 1498 if (oldval != val) 1499 wr32(hw, cq->rq.len, val); 1500 } 1501 1502 val = rd32(hw, cq->sq.len); 1503 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1504 PF_FW_ATQLEN_ATQCRIT_M)) { 1505 oldval = val; 1506 if (val & PF_FW_ATQLEN_ATQVFE_M) 1507 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1508 qtype); 1509 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1510 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1511 qtype); 1512 } 1513 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1514 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1515 qtype); 1516 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1517 PF_FW_ATQLEN_ATQCRIT_M); 1518 if (oldval != val) 1519 wr32(hw, cq->sq.len, val); 1520 } 1521 1522 event.buf_len = cq->rq_buf_size; 1523 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1524 if (!event.msg_buf) 1525 return 0; 1526 1527 do { 1528 struct ice_mbx_data data = {}; 1529 u16 opcode; 1530 int ret; 1531 1532 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1533 if (ret == -EALREADY) 1534 break; 1535 if (ret) { 1536 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1537 ret); 1538 break; 1539 } 1540 1541 opcode = le16_to_cpu(event.desc.opcode); 1542 1543 /* Notify any thread that might be waiting for this event */ 1544 ice_aq_check_events(pf, opcode, &event); 1545 1546 switch (opcode) { 1547 case ice_aqc_opc_get_link_status: 1548 if (ice_handle_link_event(pf, &event)) 1549 dev_err(dev, "Could not handle link event\n"); 1550 break; 1551 case ice_aqc_opc_event_lan_overflow: 1552 ice_vf_lan_overflow_event(pf, &event); 1553 break; 1554 case ice_mbx_opc_send_msg_to_pf: 1555 data.num_msg_proc = i; 1556 data.num_pending_arq = pending; 1557 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1558 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1559 1560 ice_vc_process_vf_msg(pf, &event, &data); 1561 break; 1562 case ice_aqc_opc_fw_logs_event: 1563 ice_get_fwlog_data(pf, &event); 1564 break; 1565 case ice_aqc_opc_lldp_set_mib_change: 1566 ice_dcb_process_lldp_set_mib_change(pf, &event); 1567 break; 1568 default: 1569 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1570 qtype, opcode); 1571 break; 1572 } 1573 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1574 1575 kfree(event.msg_buf); 1576 1577 return pending && (i == ICE_DFLT_IRQ_WORK); 1578 } 1579 1580 /** 1581 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1582 * @hw: pointer to hardware info 1583 * @cq: control queue information 1584 * 1585 * returns true if there are pending messages in a queue, false if there aren't 1586 */ 1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1588 { 1589 u16 ntu; 1590 1591 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1592 return cq->rq.next_to_clean != ntu; 1593 } 1594 1595 /** 1596 * ice_clean_adminq_subtask - clean the AdminQ rings 1597 * @pf: board private structure 1598 */ 1599 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1600 { 1601 struct ice_hw *hw = &pf->hw; 1602 1603 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1604 return; 1605 1606 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1607 return; 1608 1609 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1610 1611 /* There might be a situation where new messages arrive to a control 1612 * queue between processing the last message and clearing the 1613 * EVENT_PENDING bit. So before exiting, check queue head again (using 1614 * ice_ctrlq_pending) and process new messages if any. 1615 */ 1616 if (ice_ctrlq_pending(hw, &hw->adminq)) 1617 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1618 1619 ice_flush(hw); 1620 } 1621 1622 /** 1623 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1624 * @pf: board private structure 1625 */ 1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1627 { 1628 struct ice_hw *hw = &pf->hw; 1629 1630 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1631 return; 1632 1633 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1634 return; 1635 1636 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1637 1638 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1639 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1640 1641 ice_flush(hw); 1642 } 1643 1644 /** 1645 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1646 * @pf: board private structure 1647 */ 1648 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1649 { 1650 struct ice_hw *hw = &pf->hw; 1651 1652 /* Nothing to do here if sideband queue is not supported */ 1653 if (!ice_is_sbq_supported(hw)) { 1654 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1655 return; 1656 } 1657 1658 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1659 return; 1660 1661 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1662 return; 1663 1664 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1665 1666 if (ice_ctrlq_pending(hw, &hw->sbq)) 1667 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1668 1669 ice_flush(hw); 1670 } 1671 1672 /** 1673 * ice_service_task_schedule - schedule the service task to wake up 1674 * @pf: board private structure 1675 * 1676 * If not already scheduled, this puts the task into the work queue. 1677 */ 1678 void ice_service_task_schedule(struct ice_pf *pf) 1679 { 1680 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1681 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1682 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1683 queue_work(ice_wq, &pf->serv_task); 1684 } 1685 1686 /** 1687 * ice_service_task_complete - finish up the service task 1688 * @pf: board private structure 1689 */ 1690 static void ice_service_task_complete(struct ice_pf *pf) 1691 { 1692 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1693 1694 /* force memory (pf->state) to sync before next service task */ 1695 smp_mb__before_atomic(); 1696 clear_bit(ICE_SERVICE_SCHED, pf->state); 1697 } 1698 1699 /** 1700 * ice_service_task_stop - stop service task and cancel works 1701 * @pf: board private structure 1702 * 1703 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1704 * 1 otherwise. 1705 */ 1706 static int ice_service_task_stop(struct ice_pf *pf) 1707 { 1708 int ret; 1709 1710 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1711 1712 if (pf->serv_tmr.function) 1713 del_timer_sync(&pf->serv_tmr); 1714 if (pf->serv_task.func) 1715 cancel_work_sync(&pf->serv_task); 1716 1717 clear_bit(ICE_SERVICE_SCHED, pf->state); 1718 return ret; 1719 } 1720 1721 /** 1722 * ice_service_task_restart - restart service task and schedule works 1723 * @pf: board private structure 1724 * 1725 * This function is needed for suspend and resume works (e.g WoL scenario) 1726 */ 1727 static void ice_service_task_restart(struct ice_pf *pf) 1728 { 1729 clear_bit(ICE_SERVICE_DIS, pf->state); 1730 ice_service_task_schedule(pf); 1731 } 1732 1733 /** 1734 * ice_service_timer - timer callback to schedule service task 1735 * @t: pointer to timer_list 1736 */ 1737 static void ice_service_timer(struct timer_list *t) 1738 { 1739 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1740 1741 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1742 ice_service_task_schedule(pf); 1743 } 1744 1745 /** 1746 * ice_handle_mdd_event - handle malicious driver detect event 1747 * @pf: pointer to the PF structure 1748 * 1749 * Called from service task. OICR interrupt handler indicates MDD event. 1750 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1751 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1752 * disable the queue, the PF can be configured to reset the VF using ethtool 1753 * private flag mdd-auto-reset-vf. 1754 */ 1755 static void ice_handle_mdd_event(struct ice_pf *pf) 1756 { 1757 struct device *dev = ice_pf_to_dev(pf); 1758 struct ice_hw *hw = &pf->hw; 1759 struct ice_vf *vf; 1760 unsigned int bkt; 1761 u32 reg; 1762 1763 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1764 /* Since the VF MDD event logging is rate limited, check if 1765 * there are pending MDD events. 1766 */ 1767 ice_print_vfs_mdd_events(pf); 1768 return; 1769 } 1770 1771 /* find what triggered an MDD event */ 1772 reg = rd32(hw, GL_MDET_TX_PQM); 1773 if (reg & GL_MDET_TX_PQM_VALID_M) { 1774 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1775 GL_MDET_TX_PQM_PF_NUM_S; 1776 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1777 GL_MDET_TX_PQM_VF_NUM_S; 1778 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1779 GL_MDET_TX_PQM_MAL_TYPE_S; 1780 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1781 GL_MDET_TX_PQM_QNUM_S); 1782 1783 if (netif_msg_tx_err(pf)) 1784 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1785 event, queue, pf_num, vf_num); 1786 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1787 } 1788 1789 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1790 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1791 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1792 GL_MDET_TX_TCLAN_PF_NUM_S; 1793 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1794 GL_MDET_TX_TCLAN_VF_NUM_S; 1795 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1796 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1797 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1798 GL_MDET_TX_TCLAN_QNUM_S); 1799 1800 if (netif_msg_tx_err(pf)) 1801 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1802 event, queue, pf_num, vf_num); 1803 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1804 } 1805 1806 reg = rd32(hw, GL_MDET_RX); 1807 if (reg & GL_MDET_RX_VALID_M) { 1808 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1809 GL_MDET_RX_PF_NUM_S; 1810 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1811 GL_MDET_RX_VF_NUM_S; 1812 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1813 GL_MDET_RX_MAL_TYPE_S; 1814 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1815 GL_MDET_RX_QNUM_S); 1816 1817 if (netif_msg_rx_err(pf)) 1818 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1819 event, queue, pf_num, vf_num); 1820 wr32(hw, GL_MDET_RX, 0xffffffff); 1821 } 1822 1823 /* check to see if this PF caused an MDD event */ 1824 reg = rd32(hw, PF_MDET_TX_PQM); 1825 if (reg & PF_MDET_TX_PQM_VALID_M) { 1826 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1827 if (netif_msg_tx_err(pf)) 1828 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1829 } 1830 1831 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1832 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1833 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1834 if (netif_msg_tx_err(pf)) 1835 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1836 } 1837 1838 reg = rd32(hw, PF_MDET_RX); 1839 if (reg & PF_MDET_RX_VALID_M) { 1840 wr32(hw, PF_MDET_RX, 0xFFFF); 1841 if (netif_msg_rx_err(pf)) 1842 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1843 } 1844 1845 /* Check to see if one of the VFs caused an MDD event, and then 1846 * increment counters and set print pending 1847 */ 1848 mutex_lock(&pf->vfs.table_lock); 1849 ice_for_each_vf(pf, bkt, vf) { 1850 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1851 if (reg & VP_MDET_TX_PQM_VALID_M) { 1852 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1853 vf->mdd_tx_events.count++; 1854 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1855 if (netif_msg_tx_err(pf)) 1856 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1857 vf->vf_id); 1858 } 1859 1860 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1861 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1862 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1863 vf->mdd_tx_events.count++; 1864 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1865 if (netif_msg_tx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1867 vf->vf_id); 1868 } 1869 1870 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1871 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1872 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1873 vf->mdd_tx_events.count++; 1874 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1875 if (netif_msg_tx_err(pf)) 1876 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1877 vf->vf_id); 1878 } 1879 1880 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1881 if (reg & VP_MDET_RX_VALID_M) { 1882 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1883 vf->mdd_rx_events.count++; 1884 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1885 if (netif_msg_rx_err(pf)) 1886 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1887 vf->vf_id); 1888 1889 /* Since the queue is disabled on VF Rx MDD events, the 1890 * PF can be configured to reset the VF through ethtool 1891 * private flag mdd-auto-reset-vf. 1892 */ 1893 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1894 /* VF MDD event counters will be cleared by 1895 * reset, so print the event prior to reset. 1896 */ 1897 ice_print_vf_rx_mdd_event(vf); 1898 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1899 } 1900 } 1901 } 1902 mutex_unlock(&pf->vfs.table_lock); 1903 1904 ice_print_vfs_mdd_events(pf); 1905 } 1906 1907 /** 1908 * ice_force_phys_link_state - Force the physical link state 1909 * @vsi: VSI to force the physical link state to up/down 1910 * @link_up: true/false indicates to set the physical link to up/down 1911 * 1912 * Force the physical link state by getting the current PHY capabilities from 1913 * hardware and setting the PHY config based on the determined capabilities. If 1914 * link changes a link event will be triggered because both the Enable Automatic 1915 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1916 * 1917 * Returns 0 on success, negative on failure 1918 */ 1919 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1920 { 1921 struct ice_aqc_get_phy_caps_data *pcaps; 1922 struct ice_aqc_set_phy_cfg_data *cfg; 1923 struct ice_port_info *pi; 1924 struct device *dev; 1925 int retcode; 1926 1927 if (!vsi || !vsi->port_info || !vsi->back) 1928 return -EINVAL; 1929 if (vsi->type != ICE_VSI_PF) 1930 return 0; 1931 1932 dev = ice_pf_to_dev(vsi->back); 1933 1934 pi = vsi->port_info; 1935 1936 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1937 if (!pcaps) 1938 return -ENOMEM; 1939 1940 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1941 NULL); 1942 if (retcode) { 1943 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1944 vsi->vsi_num, retcode); 1945 retcode = -EIO; 1946 goto out; 1947 } 1948 1949 /* No change in link */ 1950 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1951 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1952 goto out; 1953 1954 /* Use the current user PHY configuration. The current user PHY 1955 * configuration is initialized during probe from PHY capabilities 1956 * software mode, and updated on set PHY configuration. 1957 */ 1958 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1959 if (!cfg) { 1960 retcode = -ENOMEM; 1961 goto out; 1962 } 1963 1964 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1965 if (link_up) 1966 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1967 else 1968 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1969 1970 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1971 if (retcode) { 1972 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1973 vsi->vsi_num, retcode); 1974 retcode = -EIO; 1975 } 1976 1977 kfree(cfg); 1978 out: 1979 kfree(pcaps); 1980 return retcode; 1981 } 1982 1983 /** 1984 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1985 * @pi: port info structure 1986 * 1987 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1988 */ 1989 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1990 { 1991 struct ice_aqc_get_phy_caps_data *pcaps; 1992 struct ice_pf *pf = pi->hw->back; 1993 int err; 1994 1995 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1996 if (!pcaps) 1997 return -ENOMEM; 1998 1999 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2000 pcaps, NULL); 2001 2002 if (err) { 2003 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2004 goto out; 2005 } 2006 2007 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2008 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2009 2010 out: 2011 kfree(pcaps); 2012 return err; 2013 } 2014 2015 /** 2016 * ice_init_link_dflt_override - Initialize link default override 2017 * @pi: port info structure 2018 * 2019 * Initialize link default override and PHY total port shutdown during probe 2020 */ 2021 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2022 { 2023 struct ice_link_default_override_tlv *ldo; 2024 struct ice_pf *pf = pi->hw->back; 2025 2026 ldo = &pf->link_dflt_override; 2027 if (ice_get_link_default_override(ldo, pi)) 2028 return; 2029 2030 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2031 return; 2032 2033 /* Enable Total Port Shutdown (override/replace link-down-on-close 2034 * ethtool private flag) for ports with Port Disable bit set. 2035 */ 2036 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2037 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2038 } 2039 2040 /** 2041 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2042 * @pi: port info structure 2043 * 2044 * If default override is enabled, initialize the user PHY cfg speed and FEC 2045 * settings using the default override mask from the NVM. 2046 * 2047 * The PHY should only be configured with the default override settings the 2048 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2049 * is used to indicate that the user PHY cfg default override is initialized 2050 * and the PHY has not been configured with the default override settings. The 2051 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2052 * configured. 2053 * 2054 * This function should be called only if the FW doesn't support default 2055 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2056 */ 2057 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2058 { 2059 struct ice_link_default_override_tlv *ldo; 2060 struct ice_aqc_set_phy_cfg_data *cfg; 2061 struct ice_phy_info *phy = &pi->phy; 2062 struct ice_pf *pf = pi->hw->back; 2063 2064 ldo = &pf->link_dflt_override; 2065 2066 /* If link default override is enabled, use to mask NVM PHY capabilities 2067 * for speed and FEC default configuration. 2068 */ 2069 cfg = &phy->curr_user_phy_cfg; 2070 2071 if (ldo->phy_type_low || ldo->phy_type_high) { 2072 cfg->phy_type_low = pf->nvm_phy_type_lo & 2073 cpu_to_le64(ldo->phy_type_low); 2074 cfg->phy_type_high = pf->nvm_phy_type_hi & 2075 cpu_to_le64(ldo->phy_type_high); 2076 } 2077 cfg->link_fec_opt = ldo->fec_options; 2078 phy->curr_user_fec_req = ICE_FEC_AUTO; 2079 2080 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2081 } 2082 2083 /** 2084 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2085 * @pi: port info structure 2086 * 2087 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2088 * mode to default. The PHY defaults are from get PHY capabilities topology 2089 * with media so call when media is first available. An error is returned if 2090 * called when media is not available. The PHY initialization completed state is 2091 * set here. 2092 * 2093 * These configurations are used when setting PHY 2094 * configuration. The user PHY configuration is updated on set PHY 2095 * configuration. Returns 0 on success, negative on failure 2096 */ 2097 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2098 { 2099 struct ice_aqc_get_phy_caps_data *pcaps; 2100 struct ice_phy_info *phy = &pi->phy; 2101 struct ice_pf *pf = pi->hw->back; 2102 int err; 2103 2104 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2105 return -EIO; 2106 2107 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2108 if (!pcaps) 2109 return -ENOMEM; 2110 2111 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2112 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2113 pcaps, NULL); 2114 else 2115 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2116 pcaps, NULL); 2117 if (err) { 2118 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2119 goto err_out; 2120 } 2121 2122 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2123 2124 /* check if lenient mode is supported and enabled */ 2125 if (ice_fw_supports_link_override(pi->hw) && 2126 !(pcaps->module_compliance_enforcement & 2127 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2128 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2129 2130 /* if the FW supports default PHY configuration mode, then the driver 2131 * does not have to apply link override settings. If not, 2132 * initialize user PHY configuration with link override values 2133 */ 2134 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2135 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2136 ice_init_phy_cfg_dflt_override(pi); 2137 goto out; 2138 } 2139 } 2140 2141 /* if link default override is not enabled, set user flow control and 2142 * FEC settings based on what get_phy_caps returned 2143 */ 2144 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2145 pcaps->link_fec_options); 2146 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2147 2148 out: 2149 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2150 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2151 err_out: 2152 kfree(pcaps); 2153 return err; 2154 } 2155 2156 /** 2157 * ice_configure_phy - configure PHY 2158 * @vsi: VSI of PHY 2159 * 2160 * Set the PHY configuration. If the current PHY configuration is the same as 2161 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2162 * configure the based get PHY capabilities for topology with media. 2163 */ 2164 static int ice_configure_phy(struct ice_vsi *vsi) 2165 { 2166 struct device *dev = ice_pf_to_dev(vsi->back); 2167 struct ice_port_info *pi = vsi->port_info; 2168 struct ice_aqc_get_phy_caps_data *pcaps; 2169 struct ice_aqc_set_phy_cfg_data *cfg; 2170 struct ice_phy_info *phy = &pi->phy; 2171 struct ice_pf *pf = vsi->back; 2172 int err; 2173 2174 /* Ensure we have media as we cannot configure a medialess port */ 2175 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2176 return -EPERM; 2177 2178 ice_print_topo_conflict(vsi); 2179 2180 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2181 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2182 return -EPERM; 2183 2184 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2185 return ice_force_phys_link_state(vsi, true); 2186 2187 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2188 if (!pcaps) 2189 return -ENOMEM; 2190 2191 /* Get current PHY config */ 2192 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2193 NULL); 2194 if (err) { 2195 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2196 vsi->vsi_num, err); 2197 goto done; 2198 } 2199 2200 /* If PHY enable link is configured and configuration has not changed, 2201 * there's nothing to do 2202 */ 2203 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2204 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2205 goto done; 2206 2207 /* Use PHY topology as baseline for configuration */ 2208 memset(pcaps, 0, sizeof(*pcaps)); 2209 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2210 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2211 pcaps, NULL); 2212 else 2213 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2214 pcaps, NULL); 2215 if (err) { 2216 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2217 vsi->vsi_num, err); 2218 goto done; 2219 } 2220 2221 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2222 if (!cfg) { 2223 err = -ENOMEM; 2224 goto done; 2225 } 2226 2227 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2228 2229 /* Speed - If default override pending, use curr_user_phy_cfg set in 2230 * ice_init_phy_user_cfg_ldo. 2231 */ 2232 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2233 vsi->back->state)) { 2234 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2235 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2236 } else { 2237 u64 phy_low = 0, phy_high = 0; 2238 2239 ice_update_phy_type(&phy_low, &phy_high, 2240 pi->phy.curr_user_speed_req); 2241 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2242 cfg->phy_type_high = pcaps->phy_type_high & 2243 cpu_to_le64(phy_high); 2244 } 2245 2246 /* Can't provide what was requested; use PHY capabilities */ 2247 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2248 cfg->phy_type_low = pcaps->phy_type_low; 2249 cfg->phy_type_high = pcaps->phy_type_high; 2250 } 2251 2252 /* FEC */ 2253 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2254 2255 /* Can't provide what was requested; use PHY capabilities */ 2256 if (cfg->link_fec_opt != 2257 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2258 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2259 cfg->link_fec_opt = pcaps->link_fec_options; 2260 } 2261 2262 /* Flow Control - always supported; no need to check against 2263 * capabilities 2264 */ 2265 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2266 2267 /* Enable link and link update */ 2268 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2269 2270 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2271 if (err) 2272 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2273 vsi->vsi_num, err); 2274 2275 kfree(cfg); 2276 done: 2277 kfree(pcaps); 2278 return err; 2279 } 2280 2281 /** 2282 * ice_check_media_subtask - Check for media 2283 * @pf: pointer to PF struct 2284 * 2285 * If media is available, then initialize PHY user configuration if it is not 2286 * been, and configure the PHY if the interface is up. 2287 */ 2288 static void ice_check_media_subtask(struct ice_pf *pf) 2289 { 2290 struct ice_port_info *pi; 2291 struct ice_vsi *vsi; 2292 int err; 2293 2294 /* No need to check for media if it's already present */ 2295 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2296 return; 2297 2298 vsi = ice_get_main_vsi(pf); 2299 if (!vsi) 2300 return; 2301 2302 /* Refresh link info and check if media is present */ 2303 pi = vsi->port_info; 2304 err = ice_update_link_info(pi); 2305 if (err) 2306 return; 2307 2308 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2309 2310 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2311 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2312 ice_init_phy_user_cfg(pi); 2313 2314 /* PHY settings are reset on media insertion, reconfigure 2315 * PHY to preserve settings. 2316 */ 2317 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2318 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2319 return; 2320 2321 err = ice_configure_phy(vsi); 2322 if (!err) 2323 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2324 2325 /* A Link Status Event will be generated; the event handler 2326 * will complete bringing the interface up 2327 */ 2328 } 2329 } 2330 2331 /** 2332 * ice_service_task - manage and run subtasks 2333 * @work: pointer to work_struct contained by the PF struct 2334 */ 2335 static void ice_service_task(struct work_struct *work) 2336 { 2337 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2338 unsigned long start_time = jiffies; 2339 2340 /* subtasks */ 2341 2342 /* process reset requests first */ 2343 ice_reset_subtask(pf); 2344 2345 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2346 if (ice_is_reset_in_progress(pf->state) || 2347 test_bit(ICE_SUSPENDED, pf->state) || 2348 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2349 ice_service_task_complete(pf); 2350 return; 2351 } 2352 2353 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2354 struct iidc_event *event; 2355 2356 event = kzalloc(sizeof(*event), GFP_KERNEL); 2357 if (event) { 2358 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2359 /* report the entire OICR value to AUX driver */ 2360 swap(event->reg, pf->oicr_err_reg); 2361 ice_send_event_to_aux(pf, event); 2362 kfree(event); 2363 } 2364 } 2365 2366 /* unplug aux dev per request, if an unplug request came in 2367 * while processing a plug request, this will handle it 2368 */ 2369 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2370 ice_unplug_aux_dev(pf); 2371 2372 /* Plug aux device per request */ 2373 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2374 ice_plug_aux_dev(pf); 2375 2376 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2377 struct iidc_event *event; 2378 2379 event = kzalloc(sizeof(*event), GFP_KERNEL); 2380 if (event) { 2381 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2382 ice_send_event_to_aux(pf, event); 2383 kfree(event); 2384 } 2385 } 2386 2387 ice_clean_adminq_subtask(pf); 2388 ice_check_media_subtask(pf); 2389 ice_check_for_hang_subtask(pf); 2390 ice_sync_fltr_subtask(pf); 2391 ice_handle_mdd_event(pf); 2392 ice_watchdog_subtask(pf); 2393 2394 if (ice_is_safe_mode(pf)) { 2395 ice_service_task_complete(pf); 2396 return; 2397 } 2398 2399 ice_process_vflr_event(pf); 2400 ice_clean_mailboxq_subtask(pf); 2401 ice_clean_sbq_subtask(pf); 2402 ice_sync_arfs_fltrs(pf); 2403 ice_flush_fdir_ctx(pf); 2404 2405 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2406 ice_service_task_complete(pf); 2407 2408 /* If the tasks have taken longer than one service timer period 2409 * or there is more work to be done, reset the service timer to 2410 * schedule the service task now. 2411 */ 2412 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2413 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2414 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2415 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2416 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2417 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2418 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2419 mod_timer(&pf->serv_tmr, jiffies); 2420 } 2421 2422 /** 2423 * ice_set_ctrlq_len - helper function to set controlq length 2424 * @hw: pointer to the HW instance 2425 */ 2426 static void ice_set_ctrlq_len(struct ice_hw *hw) 2427 { 2428 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2429 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2430 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2431 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2432 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2433 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2434 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2435 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2436 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2437 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2438 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2439 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2440 } 2441 2442 /** 2443 * ice_schedule_reset - schedule a reset 2444 * @pf: board private structure 2445 * @reset: reset being requested 2446 */ 2447 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2448 { 2449 struct device *dev = ice_pf_to_dev(pf); 2450 2451 /* bail out if earlier reset has failed */ 2452 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2453 dev_dbg(dev, "earlier reset has failed\n"); 2454 return -EIO; 2455 } 2456 /* bail if reset/recovery already in progress */ 2457 if (ice_is_reset_in_progress(pf->state)) { 2458 dev_dbg(dev, "Reset already in progress\n"); 2459 return -EBUSY; 2460 } 2461 2462 switch (reset) { 2463 case ICE_RESET_PFR: 2464 set_bit(ICE_PFR_REQ, pf->state); 2465 break; 2466 case ICE_RESET_CORER: 2467 set_bit(ICE_CORER_REQ, pf->state); 2468 break; 2469 case ICE_RESET_GLOBR: 2470 set_bit(ICE_GLOBR_REQ, pf->state); 2471 break; 2472 default: 2473 return -EINVAL; 2474 } 2475 2476 ice_service_task_schedule(pf); 2477 return 0; 2478 } 2479 2480 /** 2481 * ice_irq_affinity_notify - Callback for affinity changes 2482 * @notify: context as to what irq was changed 2483 * @mask: the new affinity mask 2484 * 2485 * This is a callback function used by the irq_set_affinity_notifier function 2486 * so that we may register to receive changes to the irq affinity masks. 2487 */ 2488 static void 2489 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2490 const cpumask_t *mask) 2491 { 2492 struct ice_q_vector *q_vector = 2493 container_of(notify, struct ice_q_vector, affinity_notify); 2494 2495 cpumask_copy(&q_vector->affinity_mask, mask); 2496 } 2497 2498 /** 2499 * ice_irq_affinity_release - Callback for affinity notifier release 2500 * @ref: internal core kernel usage 2501 * 2502 * This is a callback function used by the irq_set_affinity_notifier function 2503 * to inform the current notification subscriber that they will no longer 2504 * receive notifications. 2505 */ 2506 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2507 2508 /** 2509 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2510 * @vsi: the VSI being configured 2511 */ 2512 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2513 { 2514 struct ice_hw *hw = &vsi->back->hw; 2515 int i; 2516 2517 ice_for_each_q_vector(vsi, i) 2518 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2519 2520 ice_flush(hw); 2521 return 0; 2522 } 2523 2524 /** 2525 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2526 * @vsi: the VSI being configured 2527 * @basename: name for the vector 2528 */ 2529 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2530 { 2531 int q_vectors = vsi->num_q_vectors; 2532 struct ice_pf *pf = vsi->back; 2533 struct device *dev; 2534 int rx_int_idx = 0; 2535 int tx_int_idx = 0; 2536 int vector, err; 2537 int irq_num; 2538 2539 dev = ice_pf_to_dev(pf); 2540 for (vector = 0; vector < q_vectors; vector++) { 2541 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2542 2543 irq_num = q_vector->irq.virq; 2544 2545 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2546 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2547 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2548 tx_int_idx++; 2549 } else if (q_vector->rx.rx_ring) { 2550 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2551 "%s-%s-%d", basename, "rx", rx_int_idx++); 2552 } else if (q_vector->tx.tx_ring) { 2553 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2554 "%s-%s-%d", basename, "tx", tx_int_idx++); 2555 } else { 2556 /* skip this unused q_vector */ 2557 continue; 2558 } 2559 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2560 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2561 IRQF_SHARED, q_vector->name, 2562 q_vector); 2563 else 2564 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2565 0, q_vector->name, q_vector); 2566 if (err) { 2567 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2568 err); 2569 goto free_q_irqs; 2570 } 2571 2572 /* register for affinity change notifications */ 2573 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2574 struct irq_affinity_notify *affinity_notify; 2575 2576 affinity_notify = &q_vector->affinity_notify; 2577 affinity_notify->notify = ice_irq_affinity_notify; 2578 affinity_notify->release = ice_irq_affinity_release; 2579 irq_set_affinity_notifier(irq_num, affinity_notify); 2580 } 2581 2582 /* assign the mask for this irq */ 2583 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2584 } 2585 2586 err = ice_set_cpu_rx_rmap(vsi); 2587 if (err) { 2588 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2589 vsi->vsi_num, ERR_PTR(err)); 2590 goto free_q_irqs; 2591 } 2592 2593 vsi->irqs_ready = true; 2594 return 0; 2595 2596 free_q_irqs: 2597 while (vector--) { 2598 irq_num = vsi->q_vectors[vector]->irq.virq; 2599 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2600 irq_set_affinity_notifier(irq_num, NULL); 2601 irq_set_affinity_hint(irq_num, NULL); 2602 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2603 } 2604 return err; 2605 } 2606 2607 /** 2608 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2609 * @vsi: VSI to setup Tx rings used by XDP 2610 * 2611 * Return 0 on success and negative value on error 2612 */ 2613 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2614 { 2615 struct device *dev = ice_pf_to_dev(vsi->back); 2616 struct ice_tx_desc *tx_desc; 2617 int i, j; 2618 2619 ice_for_each_xdp_txq(vsi, i) { 2620 u16 xdp_q_idx = vsi->alloc_txq + i; 2621 struct ice_ring_stats *ring_stats; 2622 struct ice_tx_ring *xdp_ring; 2623 2624 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2625 if (!xdp_ring) 2626 goto free_xdp_rings; 2627 2628 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2629 if (!ring_stats) { 2630 ice_free_tx_ring(xdp_ring); 2631 goto free_xdp_rings; 2632 } 2633 2634 xdp_ring->ring_stats = ring_stats; 2635 xdp_ring->q_index = xdp_q_idx; 2636 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2637 xdp_ring->vsi = vsi; 2638 xdp_ring->netdev = NULL; 2639 xdp_ring->dev = dev; 2640 xdp_ring->count = vsi->num_tx_desc; 2641 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2642 if (ice_setup_tx_ring(xdp_ring)) 2643 goto free_xdp_rings; 2644 ice_set_ring_xdp(xdp_ring); 2645 spin_lock_init(&xdp_ring->tx_lock); 2646 for (j = 0; j < xdp_ring->count; j++) { 2647 tx_desc = ICE_TX_DESC(xdp_ring, j); 2648 tx_desc->cmd_type_offset_bsz = 0; 2649 } 2650 } 2651 2652 return 0; 2653 2654 free_xdp_rings: 2655 for (; i >= 0; i--) { 2656 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2657 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2658 vsi->xdp_rings[i]->ring_stats = NULL; 2659 ice_free_tx_ring(vsi->xdp_rings[i]); 2660 } 2661 } 2662 return -ENOMEM; 2663 } 2664 2665 /** 2666 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2667 * @vsi: VSI to set the bpf prog on 2668 * @prog: the bpf prog pointer 2669 */ 2670 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2671 { 2672 struct bpf_prog *old_prog; 2673 int i; 2674 2675 old_prog = xchg(&vsi->xdp_prog, prog); 2676 ice_for_each_rxq(vsi, i) 2677 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2678 2679 if (old_prog) 2680 bpf_prog_put(old_prog); 2681 } 2682 2683 /** 2684 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2685 * @vsi: VSI to bring up Tx rings used by XDP 2686 * @prog: bpf program that will be assigned to VSI 2687 * 2688 * Return 0 on success and negative value on error 2689 */ 2690 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2691 { 2692 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2693 int xdp_rings_rem = vsi->num_xdp_txq; 2694 struct ice_pf *pf = vsi->back; 2695 struct ice_qs_cfg xdp_qs_cfg = { 2696 .qs_mutex = &pf->avail_q_mutex, 2697 .pf_map = pf->avail_txqs, 2698 .pf_map_size = pf->max_pf_txqs, 2699 .q_count = vsi->num_xdp_txq, 2700 .scatter_count = ICE_MAX_SCATTER_TXQS, 2701 .vsi_map = vsi->txq_map, 2702 .vsi_map_offset = vsi->alloc_txq, 2703 .mapping_mode = ICE_VSI_MAP_CONTIG 2704 }; 2705 struct device *dev; 2706 int i, v_idx; 2707 int status; 2708 2709 dev = ice_pf_to_dev(pf); 2710 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2711 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2712 if (!vsi->xdp_rings) 2713 return -ENOMEM; 2714 2715 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2716 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2717 goto err_map_xdp; 2718 2719 if (static_key_enabled(&ice_xdp_locking_key)) 2720 netdev_warn(vsi->netdev, 2721 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2722 2723 if (ice_xdp_alloc_setup_rings(vsi)) 2724 goto clear_xdp_rings; 2725 2726 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2727 ice_for_each_q_vector(vsi, v_idx) { 2728 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2729 int xdp_rings_per_v, q_id, q_base; 2730 2731 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2732 vsi->num_q_vectors - v_idx); 2733 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2734 2735 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2736 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2737 2738 xdp_ring->q_vector = q_vector; 2739 xdp_ring->next = q_vector->tx.tx_ring; 2740 q_vector->tx.tx_ring = xdp_ring; 2741 } 2742 xdp_rings_rem -= xdp_rings_per_v; 2743 } 2744 2745 ice_for_each_rxq(vsi, i) { 2746 if (static_key_enabled(&ice_xdp_locking_key)) { 2747 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2748 } else { 2749 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2750 struct ice_tx_ring *ring; 2751 2752 ice_for_each_tx_ring(ring, q_vector->tx) { 2753 if (ice_ring_is_xdp(ring)) { 2754 vsi->rx_rings[i]->xdp_ring = ring; 2755 break; 2756 } 2757 } 2758 } 2759 ice_tx_xsk_pool(vsi, i); 2760 } 2761 2762 /* omit the scheduler update if in reset path; XDP queues will be 2763 * taken into account at the end of ice_vsi_rebuild, where 2764 * ice_cfg_vsi_lan is being called 2765 */ 2766 if (ice_is_reset_in_progress(pf->state)) 2767 return 0; 2768 2769 /* tell the Tx scheduler that right now we have 2770 * additional queues 2771 */ 2772 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2773 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2774 2775 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2776 max_txqs); 2777 if (status) { 2778 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2779 status); 2780 goto clear_xdp_rings; 2781 } 2782 2783 /* assign the prog only when it's not already present on VSI; 2784 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2785 * VSI rebuild that happens under ethtool -L can expose us to 2786 * the bpf_prog refcount issues as we would be swapping same 2787 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2788 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2789 * this is not harmful as dev_xdp_install bumps the refcount 2790 * before calling the op exposed by the driver; 2791 */ 2792 if (!ice_is_xdp_ena_vsi(vsi)) 2793 ice_vsi_assign_bpf_prog(vsi, prog); 2794 2795 return 0; 2796 clear_xdp_rings: 2797 ice_for_each_xdp_txq(vsi, i) 2798 if (vsi->xdp_rings[i]) { 2799 kfree_rcu(vsi->xdp_rings[i], rcu); 2800 vsi->xdp_rings[i] = NULL; 2801 } 2802 2803 err_map_xdp: 2804 mutex_lock(&pf->avail_q_mutex); 2805 ice_for_each_xdp_txq(vsi, i) { 2806 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2807 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2808 } 2809 mutex_unlock(&pf->avail_q_mutex); 2810 2811 devm_kfree(dev, vsi->xdp_rings); 2812 return -ENOMEM; 2813 } 2814 2815 /** 2816 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2817 * @vsi: VSI to remove XDP rings 2818 * 2819 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2820 * resources 2821 */ 2822 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2823 { 2824 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2825 struct ice_pf *pf = vsi->back; 2826 int i, v_idx; 2827 2828 /* q_vectors are freed in reset path so there's no point in detaching 2829 * rings; in case of rebuild being triggered not from reset bits 2830 * in pf->state won't be set, so additionally check first q_vector 2831 * against NULL 2832 */ 2833 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2834 goto free_qmap; 2835 2836 ice_for_each_q_vector(vsi, v_idx) { 2837 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2838 struct ice_tx_ring *ring; 2839 2840 ice_for_each_tx_ring(ring, q_vector->tx) 2841 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2842 break; 2843 2844 /* restore the value of last node prior to XDP setup */ 2845 q_vector->tx.tx_ring = ring; 2846 } 2847 2848 free_qmap: 2849 mutex_lock(&pf->avail_q_mutex); 2850 ice_for_each_xdp_txq(vsi, i) { 2851 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2852 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2853 } 2854 mutex_unlock(&pf->avail_q_mutex); 2855 2856 ice_for_each_xdp_txq(vsi, i) 2857 if (vsi->xdp_rings[i]) { 2858 if (vsi->xdp_rings[i]->desc) { 2859 synchronize_rcu(); 2860 ice_free_tx_ring(vsi->xdp_rings[i]); 2861 } 2862 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2863 vsi->xdp_rings[i]->ring_stats = NULL; 2864 kfree_rcu(vsi->xdp_rings[i], rcu); 2865 vsi->xdp_rings[i] = NULL; 2866 } 2867 2868 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2869 vsi->xdp_rings = NULL; 2870 2871 if (static_key_enabled(&ice_xdp_locking_key)) 2872 static_branch_dec(&ice_xdp_locking_key); 2873 2874 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2875 return 0; 2876 2877 ice_vsi_assign_bpf_prog(vsi, NULL); 2878 2879 /* notify Tx scheduler that we destroyed XDP queues and bring 2880 * back the old number of child nodes 2881 */ 2882 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2883 max_txqs[i] = vsi->num_txq; 2884 2885 /* change number of XDP Tx queues to 0 */ 2886 vsi->num_xdp_txq = 0; 2887 2888 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2889 max_txqs); 2890 } 2891 2892 /** 2893 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2894 * @vsi: VSI to schedule napi on 2895 */ 2896 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2897 { 2898 int i; 2899 2900 ice_for_each_rxq(vsi, i) { 2901 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2902 2903 if (rx_ring->xsk_pool) 2904 napi_schedule(&rx_ring->q_vector->napi); 2905 } 2906 } 2907 2908 /** 2909 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2910 * @vsi: VSI to determine the count of XDP Tx qs 2911 * 2912 * returns 0 if Tx qs count is higher than at least half of CPU count, 2913 * -ENOMEM otherwise 2914 */ 2915 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2916 { 2917 u16 avail = ice_get_avail_txq_count(vsi->back); 2918 u16 cpus = num_possible_cpus(); 2919 2920 if (avail < cpus / 2) 2921 return -ENOMEM; 2922 2923 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2924 2925 if (vsi->num_xdp_txq < cpus) 2926 static_branch_inc(&ice_xdp_locking_key); 2927 2928 return 0; 2929 } 2930 2931 /** 2932 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2933 * @vsi: Pointer to VSI structure 2934 */ 2935 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2936 { 2937 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2938 return ICE_RXBUF_1664; 2939 else 2940 return ICE_RXBUF_3072; 2941 } 2942 2943 /** 2944 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2945 * @vsi: VSI to setup XDP for 2946 * @prog: XDP program 2947 * @extack: netlink extended ack 2948 */ 2949 static int 2950 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2951 struct netlink_ext_ack *extack) 2952 { 2953 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2954 bool if_running = netif_running(vsi->netdev); 2955 int ret = 0, xdp_ring_err = 0; 2956 2957 if (prog && !prog->aux->xdp_has_frags) { 2958 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2959 NL_SET_ERR_MSG_MOD(extack, 2960 "MTU is too large for linear frames and XDP prog does not support frags"); 2961 return -EOPNOTSUPP; 2962 } 2963 } 2964 2965 /* hot swap progs and avoid toggling link */ 2966 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2967 ice_vsi_assign_bpf_prog(vsi, prog); 2968 return 0; 2969 } 2970 2971 /* need to stop netdev while setting up the program for Rx rings */ 2972 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2973 ret = ice_down(vsi); 2974 if (ret) { 2975 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2976 return ret; 2977 } 2978 } 2979 2980 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2981 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2982 if (xdp_ring_err) { 2983 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2984 } else { 2985 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2986 if (xdp_ring_err) 2987 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2988 } 2989 xdp_features_set_redirect_target(vsi->netdev, true); 2990 /* reallocate Rx queues that are used for zero-copy */ 2991 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2992 if (xdp_ring_err) 2993 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2994 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2995 xdp_features_clear_redirect_target(vsi->netdev); 2996 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2997 if (xdp_ring_err) 2998 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2999 /* reallocate Rx queues that were used for zero-copy */ 3000 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3001 if (xdp_ring_err) 3002 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3003 } 3004 3005 if (if_running) 3006 ret = ice_up(vsi); 3007 3008 if (!ret && prog) 3009 ice_vsi_rx_napi_schedule(vsi); 3010 3011 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3012 } 3013 3014 /** 3015 * ice_xdp_safe_mode - XDP handler for safe mode 3016 * @dev: netdevice 3017 * @xdp: XDP command 3018 */ 3019 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3020 struct netdev_bpf *xdp) 3021 { 3022 NL_SET_ERR_MSG_MOD(xdp->extack, 3023 "Please provide working DDP firmware package in order to use XDP\n" 3024 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3025 return -EOPNOTSUPP; 3026 } 3027 3028 /** 3029 * ice_xdp - implements XDP handler 3030 * @dev: netdevice 3031 * @xdp: XDP command 3032 */ 3033 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3034 { 3035 struct ice_netdev_priv *np = netdev_priv(dev); 3036 struct ice_vsi *vsi = np->vsi; 3037 3038 if (vsi->type != ICE_VSI_PF) { 3039 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3040 return -EINVAL; 3041 } 3042 3043 switch (xdp->command) { 3044 case XDP_SETUP_PROG: 3045 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3046 case XDP_SETUP_XSK_POOL: 3047 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3048 xdp->xsk.queue_id); 3049 default: 3050 return -EINVAL; 3051 } 3052 } 3053 3054 /** 3055 * ice_ena_misc_vector - enable the non-queue interrupts 3056 * @pf: board private structure 3057 */ 3058 static void ice_ena_misc_vector(struct ice_pf *pf) 3059 { 3060 struct ice_hw *hw = &pf->hw; 3061 u32 val; 3062 3063 /* Disable anti-spoof detection interrupt to prevent spurious event 3064 * interrupts during a function reset. Anti-spoof functionally is 3065 * still supported. 3066 */ 3067 val = rd32(hw, GL_MDCK_TX_TDPU); 3068 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3069 wr32(hw, GL_MDCK_TX_TDPU, val); 3070 3071 /* clear things first */ 3072 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3073 rd32(hw, PFINT_OICR); /* read to clear */ 3074 3075 val = (PFINT_OICR_ECC_ERR_M | 3076 PFINT_OICR_MAL_DETECT_M | 3077 PFINT_OICR_GRST_M | 3078 PFINT_OICR_PCI_EXCEPTION_M | 3079 PFINT_OICR_VFLR_M | 3080 PFINT_OICR_HMC_ERR_M | 3081 PFINT_OICR_PE_PUSH_M | 3082 PFINT_OICR_PE_CRITERR_M); 3083 3084 wr32(hw, PFINT_OICR_ENA, val); 3085 3086 /* SW_ITR_IDX = 0, but don't change INTENA */ 3087 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3088 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3089 } 3090 3091 /** 3092 * ice_misc_intr - misc interrupt handler 3093 * @irq: interrupt number 3094 * @data: pointer to a q_vector 3095 */ 3096 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3097 { 3098 struct ice_pf *pf = (struct ice_pf *)data; 3099 struct ice_hw *hw = &pf->hw; 3100 struct device *dev; 3101 u32 oicr, ena_mask; 3102 3103 dev = ice_pf_to_dev(pf); 3104 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3105 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3106 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3107 3108 oicr = rd32(hw, PFINT_OICR); 3109 ena_mask = rd32(hw, PFINT_OICR_ENA); 3110 3111 if (oicr & PFINT_OICR_SWINT_M) { 3112 ena_mask &= ~PFINT_OICR_SWINT_M; 3113 pf->sw_int_count++; 3114 } 3115 3116 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3117 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3118 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3119 } 3120 if (oicr & PFINT_OICR_VFLR_M) { 3121 /* disable any further VFLR event notifications */ 3122 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3123 u32 reg = rd32(hw, PFINT_OICR_ENA); 3124 3125 reg &= ~PFINT_OICR_VFLR_M; 3126 wr32(hw, PFINT_OICR_ENA, reg); 3127 } else { 3128 ena_mask &= ~PFINT_OICR_VFLR_M; 3129 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3130 } 3131 } 3132 3133 if (oicr & PFINT_OICR_GRST_M) { 3134 u32 reset; 3135 3136 /* we have a reset warning */ 3137 ena_mask &= ~PFINT_OICR_GRST_M; 3138 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3139 GLGEN_RSTAT_RESET_TYPE_S; 3140 3141 if (reset == ICE_RESET_CORER) 3142 pf->corer_count++; 3143 else if (reset == ICE_RESET_GLOBR) 3144 pf->globr_count++; 3145 else if (reset == ICE_RESET_EMPR) 3146 pf->empr_count++; 3147 else 3148 dev_dbg(dev, "Invalid reset type %d\n", reset); 3149 3150 /* If a reset cycle isn't already in progress, we set a bit in 3151 * pf->state so that the service task can start a reset/rebuild. 3152 */ 3153 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3154 if (reset == ICE_RESET_CORER) 3155 set_bit(ICE_CORER_RECV, pf->state); 3156 else if (reset == ICE_RESET_GLOBR) 3157 set_bit(ICE_GLOBR_RECV, pf->state); 3158 else 3159 set_bit(ICE_EMPR_RECV, pf->state); 3160 3161 /* There are couple of different bits at play here. 3162 * hw->reset_ongoing indicates whether the hardware is 3163 * in reset. This is set to true when a reset interrupt 3164 * is received and set back to false after the driver 3165 * has determined that the hardware is out of reset. 3166 * 3167 * ICE_RESET_OICR_RECV in pf->state indicates 3168 * that a post reset rebuild is required before the 3169 * driver is operational again. This is set above. 3170 * 3171 * As this is the start of the reset/rebuild cycle, set 3172 * both to indicate that. 3173 */ 3174 hw->reset_ongoing = true; 3175 } 3176 } 3177 3178 if (oicr & PFINT_OICR_TSYN_TX_M) { 3179 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3180 if (ice_ptp_pf_handles_tx_interrupt(pf)) 3181 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3182 } 3183 3184 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3185 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3186 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3187 3188 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3189 3190 if (ice_pf_src_tmr_owned(pf)) { 3191 /* Save EVENTs from GLTSYN register */ 3192 pf->ptp.ext_ts_irq |= gltsyn_stat & 3193 (GLTSYN_STAT_EVENT0_M | 3194 GLTSYN_STAT_EVENT1_M | 3195 GLTSYN_STAT_EVENT2_M); 3196 3197 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3198 } 3199 } 3200 3201 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3202 if (oicr & ICE_AUX_CRIT_ERR) { 3203 pf->oicr_err_reg |= oicr; 3204 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3205 ena_mask &= ~ICE_AUX_CRIT_ERR; 3206 } 3207 3208 /* Report any remaining unexpected interrupts */ 3209 oicr &= ena_mask; 3210 if (oicr) { 3211 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3212 /* If a critical error is pending there is no choice but to 3213 * reset the device. 3214 */ 3215 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3216 PFINT_OICR_ECC_ERR_M)) { 3217 set_bit(ICE_PFR_REQ, pf->state); 3218 } 3219 } 3220 3221 return IRQ_WAKE_THREAD; 3222 } 3223 3224 /** 3225 * ice_misc_intr_thread_fn - misc interrupt thread function 3226 * @irq: interrupt number 3227 * @data: pointer to a q_vector 3228 */ 3229 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3230 { 3231 struct ice_pf *pf = data; 3232 struct ice_hw *hw; 3233 3234 hw = &pf->hw; 3235 3236 if (ice_is_reset_in_progress(pf->state)) 3237 return IRQ_HANDLED; 3238 3239 ice_service_task_schedule(pf); 3240 3241 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3242 ice_ptp_extts_event(pf); 3243 3244 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3245 /* Process outstanding Tx timestamps. If there is more work, 3246 * re-arm the interrupt to trigger again. 3247 */ 3248 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3249 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3250 ice_flush(hw); 3251 } 3252 } 3253 3254 ice_irq_dynamic_ena(hw, NULL, NULL); 3255 3256 return IRQ_HANDLED; 3257 } 3258 3259 /** 3260 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3261 * @hw: pointer to HW structure 3262 */ 3263 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3264 { 3265 /* disable Admin queue Interrupt causes */ 3266 wr32(hw, PFINT_FW_CTL, 3267 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3268 3269 /* disable Mailbox queue Interrupt causes */ 3270 wr32(hw, PFINT_MBX_CTL, 3271 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3272 3273 wr32(hw, PFINT_SB_CTL, 3274 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3275 3276 /* disable Control queue Interrupt causes */ 3277 wr32(hw, PFINT_OICR_CTL, 3278 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3279 3280 ice_flush(hw); 3281 } 3282 3283 /** 3284 * ice_free_irq_msix_misc - Unroll misc vector setup 3285 * @pf: board private structure 3286 */ 3287 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3288 { 3289 int misc_irq_num = pf->oicr_irq.virq; 3290 struct ice_hw *hw = &pf->hw; 3291 3292 ice_dis_ctrlq_interrupts(hw); 3293 3294 /* disable OICR interrupt */ 3295 wr32(hw, PFINT_OICR_ENA, 0); 3296 ice_flush(hw); 3297 3298 synchronize_irq(misc_irq_num); 3299 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3300 3301 ice_free_irq(pf, pf->oicr_irq); 3302 } 3303 3304 /** 3305 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3306 * @hw: pointer to HW structure 3307 * @reg_idx: HW vector index to associate the control queue interrupts with 3308 */ 3309 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3310 { 3311 u32 val; 3312 3313 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3314 PFINT_OICR_CTL_CAUSE_ENA_M); 3315 wr32(hw, PFINT_OICR_CTL, val); 3316 3317 /* enable Admin queue Interrupt causes */ 3318 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3319 PFINT_FW_CTL_CAUSE_ENA_M); 3320 wr32(hw, PFINT_FW_CTL, val); 3321 3322 /* enable Mailbox queue Interrupt causes */ 3323 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3324 PFINT_MBX_CTL_CAUSE_ENA_M); 3325 wr32(hw, PFINT_MBX_CTL, val); 3326 3327 /* This enables Sideband queue Interrupt causes */ 3328 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3329 PFINT_SB_CTL_CAUSE_ENA_M); 3330 wr32(hw, PFINT_SB_CTL, val); 3331 3332 ice_flush(hw); 3333 } 3334 3335 /** 3336 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3337 * @pf: board private structure 3338 * 3339 * This sets up the handler for MSIX 0, which is used to manage the 3340 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3341 * when in MSI or Legacy interrupt mode. 3342 */ 3343 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3344 { 3345 struct device *dev = ice_pf_to_dev(pf); 3346 struct ice_hw *hw = &pf->hw; 3347 struct msi_map oicr_irq; 3348 int err = 0; 3349 3350 if (!pf->int_name[0]) 3351 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3352 dev_driver_string(dev), dev_name(dev)); 3353 3354 /* Do not request IRQ but do enable OICR interrupt since settings are 3355 * lost during reset. Note that this function is called only during 3356 * rebuild path and not while reset is in progress. 3357 */ 3358 if (ice_is_reset_in_progress(pf->state)) 3359 goto skip_req_irq; 3360 3361 /* reserve one vector in irq_tracker for misc interrupts */ 3362 oicr_irq = ice_alloc_irq(pf, false); 3363 if (oicr_irq.index < 0) 3364 return oicr_irq.index; 3365 3366 pf->oicr_irq = oicr_irq; 3367 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3368 ice_misc_intr_thread_fn, 0, 3369 pf->int_name, pf); 3370 if (err) { 3371 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3372 pf->int_name, err); 3373 ice_free_irq(pf, pf->oicr_irq); 3374 return err; 3375 } 3376 3377 skip_req_irq: 3378 ice_ena_misc_vector(pf); 3379 3380 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3381 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3382 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3383 3384 ice_flush(hw); 3385 ice_irq_dynamic_ena(hw, NULL, NULL); 3386 3387 return 0; 3388 } 3389 3390 /** 3391 * ice_napi_add - register NAPI handler for the VSI 3392 * @vsi: VSI for which NAPI handler is to be registered 3393 * 3394 * This function is only called in the driver's load path. Registering the NAPI 3395 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3396 * reset/rebuild, etc.) 3397 */ 3398 static void ice_napi_add(struct ice_vsi *vsi) 3399 { 3400 int v_idx; 3401 3402 if (!vsi->netdev) 3403 return; 3404 3405 ice_for_each_q_vector(vsi, v_idx) { 3406 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3407 ice_napi_poll); 3408 ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3409 } 3410 } 3411 3412 /** 3413 * ice_set_ops - set netdev and ethtools ops for the given netdev 3414 * @vsi: the VSI associated with the new netdev 3415 */ 3416 static void ice_set_ops(struct ice_vsi *vsi) 3417 { 3418 struct net_device *netdev = vsi->netdev; 3419 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3420 3421 if (ice_is_safe_mode(pf)) { 3422 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3423 ice_set_ethtool_safe_mode_ops(netdev); 3424 return; 3425 } 3426 3427 netdev->netdev_ops = &ice_netdev_ops; 3428 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3429 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3430 ice_set_ethtool_ops(netdev); 3431 3432 if (vsi->type != ICE_VSI_PF) 3433 return; 3434 3435 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3436 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3437 NETDEV_XDP_ACT_RX_SG; 3438 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3439 } 3440 3441 /** 3442 * ice_set_netdev_features - set features for the given netdev 3443 * @netdev: netdev instance 3444 */ 3445 static void ice_set_netdev_features(struct net_device *netdev) 3446 { 3447 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3448 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3449 netdev_features_t csumo_features; 3450 netdev_features_t vlano_features; 3451 netdev_features_t dflt_features; 3452 netdev_features_t tso_features; 3453 3454 if (ice_is_safe_mode(pf)) { 3455 /* safe mode */ 3456 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3457 netdev->hw_features = netdev->features; 3458 return; 3459 } 3460 3461 dflt_features = NETIF_F_SG | 3462 NETIF_F_HIGHDMA | 3463 NETIF_F_NTUPLE | 3464 NETIF_F_RXHASH; 3465 3466 csumo_features = NETIF_F_RXCSUM | 3467 NETIF_F_IP_CSUM | 3468 NETIF_F_SCTP_CRC | 3469 NETIF_F_IPV6_CSUM; 3470 3471 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3472 NETIF_F_HW_VLAN_CTAG_TX | 3473 NETIF_F_HW_VLAN_CTAG_RX; 3474 3475 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3476 if (is_dvm_ena) 3477 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3478 3479 tso_features = NETIF_F_TSO | 3480 NETIF_F_TSO_ECN | 3481 NETIF_F_TSO6 | 3482 NETIF_F_GSO_GRE | 3483 NETIF_F_GSO_UDP_TUNNEL | 3484 NETIF_F_GSO_GRE_CSUM | 3485 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3486 NETIF_F_GSO_PARTIAL | 3487 NETIF_F_GSO_IPXIP4 | 3488 NETIF_F_GSO_IPXIP6 | 3489 NETIF_F_GSO_UDP_L4; 3490 3491 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3492 NETIF_F_GSO_GRE_CSUM; 3493 /* set features that user can change */ 3494 netdev->hw_features = dflt_features | csumo_features | 3495 vlano_features | tso_features; 3496 3497 /* add support for HW_CSUM on packets with MPLS header */ 3498 netdev->mpls_features = NETIF_F_HW_CSUM | 3499 NETIF_F_TSO | 3500 NETIF_F_TSO6; 3501 3502 /* enable features */ 3503 netdev->features |= netdev->hw_features; 3504 3505 netdev->hw_features |= NETIF_F_HW_TC; 3506 netdev->hw_features |= NETIF_F_LOOPBACK; 3507 3508 /* encap and VLAN devices inherit default, csumo and tso features */ 3509 netdev->hw_enc_features |= dflt_features | csumo_features | 3510 tso_features; 3511 netdev->vlan_features |= dflt_features | csumo_features | 3512 tso_features; 3513 3514 /* advertise support but don't enable by default since only one type of 3515 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3516 * type turns on the other has to be turned off. This is enforced by the 3517 * ice_fix_features() ndo callback. 3518 */ 3519 if (is_dvm_ena) 3520 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3521 NETIF_F_HW_VLAN_STAG_TX; 3522 3523 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3524 * be changed at runtime 3525 */ 3526 netdev->hw_features |= NETIF_F_RXFCS; 3527 3528 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3529 } 3530 3531 /** 3532 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3533 * @lut: Lookup table 3534 * @rss_table_size: Lookup table size 3535 * @rss_size: Range of queue number for hashing 3536 */ 3537 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3538 { 3539 u16 i; 3540 3541 for (i = 0; i < rss_table_size; i++) 3542 lut[i] = i % rss_size; 3543 } 3544 3545 /** 3546 * ice_pf_vsi_setup - Set up a PF VSI 3547 * @pf: board private structure 3548 * @pi: pointer to the port_info instance 3549 * 3550 * Returns pointer to the successfully allocated VSI software struct 3551 * on success, otherwise returns NULL on failure. 3552 */ 3553 static struct ice_vsi * 3554 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3555 { 3556 struct ice_vsi_cfg_params params = {}; 3557 3558 params.type = ICE_VSI_PF; 3559 params.pi = pi; 3560 params.flags = ICE_VSI_FLAG_INIT; 3561 3562 return ice_vsi_setup(pf, ¶ms); 3563 } 3564 3565 static struct ice_vsi * 3566 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3567 struct ice_channel *ch) 3568 { 3569 struct ice_vsi_cfg_params params = {}; 3570 3571 params.type = ICE_VSI_CHNL; 3572 params.pi = pi; 3573 params.ch = ch; 3574 params.flags = ICE_VSI_FLAG_INIT; 3575 3576 return ice_vsi_setup(pf, ¶ms); 3577 } 3578 3579 /** 3580 * ice_ctrl_vsi_setup - Set up a control VSI 3581 * @pf: board private structure 3582 * @pi: pointer to the port_info instance 3583 * 3584 * Returns pointer to the successfully allocated VSI software struct 3585 * on success, otherwise returns NULL on failure. 3586 */ 3587 static struct ice_vsi * 3588 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3589 { 3590 struct ice_vsi_cfg_params params = {}; 3591 3592 params.type = ICE_VSI_CTRL; 3593 params.pi = pi; 3594 params.flags = ICE_VSI_FLAG_INIT; 3595 3596 return ice_vsi_setup(pf, ¶ms); 3597 } 3598 3599 /** 3600 * ice_lb_vsi_setup - Set up a loopback VSI 3601 * @pf: board private structure 3602 * @pi: pointer to the port_info instance 3603 * 3604 * Returns pointer to the successfully allocated VSI software struct 3605 * on success, otherwise returns NULL on failure. 3606 */ 3607 struct ice_vsi * 3608 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3609 { 3610 struct ice_vsi_cfg_params params = {}; 3611 3612 params.type = ICE_VSI_LB; 3613 params.pi = pi; 3614 params.flags = ICE_VSI_FLAG_INIT; 3615 3616 return ice_vsi_setup(pf, ¶ms); 3617 } 3618 3619 /** 3620 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3621 * @netdev: network interface to be adjusted 3622 * @proto: VLAN TPID 3623 * @vid: VLAN ID to be added 3624 * 3625 * net_device_ops implementation for adding VLAN IDs 3626 */ 3627 static int 3628 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3629 { 3630 struct ice_netdev_priv *np = netdev_priv(netdev); 3631 struct ice_vsi_vlan_ops *vlan_ops; 3632 struct ice_vsi *vsi = np->vsi; 3633 struct ice_vlan vlan; 3634 int ret; 3635 3636 /* VLAN 0 is added by default during load/reset */ 3637 if (!vid) 3638 return 0; 3639 3640 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3641 usleep_range(1000, 2000); 3642 3643 /* Add multicast promisc rule for the VLAN ID to be added if 3644 * all-multicast is currently enabled. 3645 */ 3646 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3647 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3648 ICE_MCAST_VLAN_PROMISC_BITS, 3649 vid); 3650 if (ret) 3651 goto finish; 3652 } 3653 3654 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3655 3656 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3657 * packets aren't pruned by the device's internal switch on Rx 3658 */ 3659 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3660 ret = vlan_ops->add_vlan(vsi, &vlan); 3661 if (ret) 3662 goto finish; 3663 3664 /* If all-multicast is currently enabled and this VLAN ID is only one 3665 * besides VLAN-0 we have to update look-up type of multicast promisc 3666 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3667 */ 3668 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3669 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3670 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3671 ICE_MCAST_PROMISC_BITS, 0); 3672 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3673 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3674 } 3675 3676 finish: 3677 clear_bit(ICE_CFG_BUSY, vsi->state); 3678 3679 return ret; 3680 } 3681 3682 /** 3683 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3684 * @netdev: network interface to be adjusted 3685 * @proto: VLAN TPID 3686 * @vid: VLAN ID to be removed 3687 * 3688 * net_device_ops implementation for removing VLAN IDs 3689 */ 3690 static int 3691 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3692 { 3693 struct ice_netdev_priv *np = netdev_priv(netdev); 3694 struct ice_vsi_vlan_ops *vlan_ops; 3695 struct ice_vsi *vsi = np->vsi; 3696 struct ice_vlan vlan; 3697 int ret; 3698 3699 /* don't allow removal of VLAN 0 */ 3700 if (!vid) 3701 return 0; 3702 3703 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3704 usleep_range(1000, 2000); 3705 3706 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3707 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3708 if (ret) { 3709 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3710 vsi->vsi_num); 3711 vsi->current_netdev_flags |= IFF_ALLMULTI; 3712 } 3713 3714 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3715 3716 /* Make sure VLAN delete is successful before updating VLAN 3717 * information 3718 */ 3719 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3720 ret = vlan_ops->del_vlan(vsi, &vlan); 3721 if (ret) 3722 goto finish; 3723 3724 /* Remove multicast promisc rule for the removed VLAN ID if 3725 * all-multicast is enabled. 3726 */ 3727 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3728 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3729 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3730 3731 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3732 /* Update look-up type of multicast promisc rule for VLAN 0 3733 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3734 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3735 */ 3736 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3737 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3738 ICE_MCAST_VLAN_PROMISC_BITS, 3739 0); 3740 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3741 ICE_MCAST_PROMISC_BITS, 0); 3742 } 3743 } 3744 3745 finish: 3746 clear_bit(ICE_CFG_BUSY, vsi->state); 3747 3748 return ret; 3749 } 3750 3751 /** 3752 * ice_rep_indr_tc_block_unbind 3753 * @cb_priv: indirection block private data 3754 */ 3755 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3756 { 3757 struct ice_indr_block_priv *indr_priv = cb_priv; 3758 3759 list_del(&indr_priv->list); 3760 kfree(indr_priv); 3761 } 3762 3763 /** 3764 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3765 * @vsi: VSI struct which has the netdev 3766 */ 3767 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3768 { 3769 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3770 3771 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3772 ice_rep_indr_tc_block_unbind); 3773 } 3774 3775 /** 3776 * ice_tc_indir_block_register - Register TC indirect block notifications 3777 * @vsi: VSI struct which has the netdev 3778 * 3779 * Returns 0 on success, negative value on failure 3780 */ 3781 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3782 { 3783 struct ice_netdev_priv *np; 3784 3785 if (!vsi || !vsi->netdev) 3786 return -EINVAL; 3787 3788 np = netdev_priv(vsi->netdev); 3789 3790 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3791 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3792 } 3793 3794 /** 3795 * ice_get_avail_q_count - Get count of queues in use 3796 * @pf_qmap: bitmap to get queue use count from 3797 * @lock: pointer to a mutex that protects access to pf_qmap 3798 * @size: size of the bitmap 3799 */ 3800 static u16 3801 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3802 { 3803 unsigned long bit; 3804 u16 count = 0; 3805 3806 mutex_lock(lock); 3807 for_each_clear_bit(bit, pf_qmap, size) 3808 count++; 3809 mutex_unlock(lock); 3810 3811 return count; 3812 } 3813 3814 /** 3815 * ice_get_avail_txq_count - Get count of Tx queues in use 3816 * @pf: pointer to an ice_pf instance 3817 */ 3818 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3819 { 3820 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3821 pf->max_pf_txqs); 3822 } 3823 3824 /** 3825 * ice_get_avail_rxq_count - Get count of Rx queues in use 3826 * @pf: pointer to an ice_pf instance 3827 */ 3828 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3829 { 3830 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3831 pf->max_pf_rxqs); 3832 } 3833 3834 /** 3835 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3836 * @pf: board private structure to initialize 3837 */ 3838 static void ice_deinit_pf(struct ice_pf *pf) 3839 { 3840 ice_service_task_stop(pf); 3841 mutex_destroy(&pf->lag_mutex); 3842 mutex_destroy(&pf->adev_mutex); 3843 mutex_destroy(&pf->sw_mutex); 3844 mutex_destroy(&pf->tc_mutex); 3845 mutex_destroy(&pf->avail_q_mutex); 3846 mutex_destroy(&pf->vfs.table_lock); 3847 3848 if (pf->avail_txqs) { 3849 bitmap_free(pf->avail_txqs); 3850 pf->avail_txqs = NULL; 3851 } 3852 3853 if (pf->avail_rxqs) { 3854 bitmap_free(pf->avail_rxqs); 3855 pf->avail_rxqs = NULL; 3856 } 3857 3858 if (pf->ptp.clock) 3859 ptp_clock_unregister(pf->ptp.clock); 3860 } 3861 3862 /** 3863 * ice_set_pf_caps - set PFs capability flags 3864 * @pf: pointer to the PF instance 3865 */ 3866 static void ice_set_pf_caps(struct ice_pf *pf) 3867 { 3868 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3869 3870 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3871 if (func_caps->common_cap.rdma) 3872 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3873 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3874 if (func_caps->common_cap.dcb) 3875 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3876 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3877 if (func_caps->common_cap.sr_iov_1_1) { 3878 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3879 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3880 ICE_MAX_SRIOV_VFS); 3881 } 3882 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3883 if (func_caps->common_cap.rss_table_size) 3884 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3885 3886 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3887 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3888 u16 unused; 3889 3890 /* ctrl_vsi_idx will be set to a valid value when flow director 3891 * is setup by ice_init_fdir 3892 */ 3893 pf->ctrl_vsi_idx = ICE_NO_VSI; 3894 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3895 /* force guaranteed filter pool for PF */ 3896 ice_alloc_fd_guar_item(&pf->hw, &unused, 3897 func_caps->fd_fltr_guar); 3898 /* force shared filter pool for PF */ 3899 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3900 func_caps->fd_fltr_best_effort); 3901 } 3902 3903 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3904 if (func_caps->common_cap.ieee_1588 && 3905 !(pf->hw.mac_type == ICE_MAC_E830)) 3906 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3907 3908 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3909 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3910 } 3911 3912 /** 3913 * ice_init_pf - Initialize general software structures (struct ice_pf) 3914 * @pf: board private structure to initialize 3915 */ 3916 static int ice_init_pf(struct ice_pf *pf) 3917 { 3918 ice_set_pf_caps(pf); 3919 3920 mutex_init(&pf->sw_mutex); 3921 mutex_init(&pf->tc_mutex); 3922 mutex_init(&pf->adev_mutex); 3923 mutex_init(&pf->lag_mutex); 3924 3925 INIT_HLIST_HEAD(&pf->aq_wait_list); 3926 spin_lock_init(&pf->aq_wait_lock); 3927 init_waitqueue_head(&pf->aq_wait_queue); 3928 3929 init_waitqueue_head(&pf->reset_wait_queue); 3930 3931 /* setup service timer and periodic service task */ 3932 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3933 pf->serv_tmr_period = HZ; 3934 INIT_WORK(&pf->serv_task, ice_service_task); 3935 clear_bit(ICE_SERVICE_SCHED, pf->state); 3936 3937 mutex_init(&pf->avail_q_mutex); 3938 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3939 if (!pf->avail_txqs) 3940 return -ENOMEM; 3941 3942 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3943 if (!pf->avail_rxqs) { 3944 bitmap_free(pf->avail_txqs); 3945 pf->avail_txqs = NULL; 3946 return -ENOMEM; 3947 } 3948 3949 mutex_init(&pf->vfs.table_lock); 3950 hash_init(pf->vfs.table); 3951 ice_mbx_init_snapshot(&pf->hw); 3952 3953 return 0; 3954 } 3955 3956 /** 3957 * ice_is_wol_supported - check if WoL is supported 3958 * @hw: pointer to hardware info 3959 * 3960 * Check if WoL is supported based on the HW configuration. 3961 * Returns true if NVM supports and enables WoL for this port, false otherwise 3962 */ 3963 bool ice_is_wol_supported(struct ice_hw *hw) 3964 { 3965 u16 wol_ctrl; 3966 3967 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3968 * word) indicates WoL is not supported on the corresponding PF ID. 3969 */ 3970 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3971 return false; 3972 3973 return !(BIT(hw->port_info->lport) & wol_ctrl); 3974 } 3975 3976 /** 3977 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3978 * @vsi: VSI being changed 3979 * @new_rx: new number of Rx queues 3980 * @new_tx: new number of Tx queues 3981 * @locked: is adev device_lock held 3982 * 3983 * Only change the number of queues if new_tx, or new_rx is non-0. 3984 * 3985 * Returns 0 on success. 3986 */ 3987 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3988 { 3989 struct ice_pf *pf = vsi->back; 3990 int err = 0, timeout = 50; 3991 3992 if (!new_rx && !new_tx) 3993 return -EINVAL; 3994 3995 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3996 timeout--; 3997 if (!timeout) 3998 return -EBUSY; 3999 usleep_range(1000, 2000); 4000 } 4001 4002 if (new_tx) 4003 vsi->req_txq = (u16)new_tx; 4004 if (new_rx) 4005 vsi->req_rxq = (u16)new_rx; 4006 4007 /* set for the next time the netdev is started */ 4008 if (!netif_running(vsi->netdev)) { 4009 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4010 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4011 goto done; 4012 } 4013 4014 ice_vsi_close(vsi); 4015 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4016 ice_pf_dcb_recfg(pf, locked); 4017 ice_vsi_open(vsi); 4018 done: 4019 clear_bit(ICE_CFG_BUSY, pf->state); 4020 return err; 4021 } 4022 4023 /** 4024 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4025 * @pf: PF to configure 4026 * 4027 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4028 * VSI can still Tx/Rx VLAN tagged packets. 4029 */ 4030 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4031 { 4032 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4033 struct ice_vsi_ctx *ctxt; 4034 struct ice_hw *hw; 4035 int status; 4036 4037 if (!vsi) 4038 return; 4039 4040 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4041 if (!ctxt) 4042 return; 4043 4044 hw = &pf->hw; 4045 ctxt->info = vsi->info; 4046 4047 ctxt->info.valid_sections = 4048 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4049 ICE_AQ_VSI_PROP_SECURITY_VALID | 4050 ICE_AQ_VSI_PROP_SW_VALID); 4051 4052 /* disable VLAN anti-spoof */ 4053 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4054 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4055 4056 /* disable VLAN pruning and keep all other settings */ 4057 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4058 4059 /* allow all VLANs on Tx and don't strip on Rx */ 4060 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4061 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4062 4063 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4064 if (status) { 4065 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4066 status, ice_aq_str(hw->adminq.sq_last_status)); 4067 } else { 4068 vsi->info.sec_flags = ctxt->info.sec_flags; 4069 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4070 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4071 } 4072 4073 kfree(ctxt); 4074 } 4075 4076 /** 4077 * ice_log_pkg_init - log result of DDP package load 4078 * @hw: pointer to hardware info 4079 * @state: state of package load 4080 */ 4081 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4082 { 4083 struct ice_pf *pf = hw->back; 4084 struct device *dev; 4085 4086 dev = ice_pf_to_dev(pf); 4087 4088 switch (state) { 4089 case ICE_DDP_PKG_SUCCESS: 4090 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4091 hw->active_pkg_name, 4092 hw->active_pkg_ver.major, 4093 hw->active_pkg_ver.minor, 4094 hw->active_pkg_ver.update, 4095 hw->active_pkg_ver.draft); 4096 break; 4097 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4098 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4099 hw->active_pkg_name, 4100 hw->active_pkg_ver.major, 4101 hw->active_pkg_ver.minor, 4102 hw->active_pkg_ver.update, 4103 hw->active_pkg_ver.draft); 4104 break; 4105 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4106 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4107 hw->active_pkg_name, 4108 hw->active_pkg_ver.major, 4109 hw->active_pkg_ver.minor, 4110 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4111 break; 4112 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4113 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4114 hw->active_pkg_name, 4115 hw->active_pkg_ver.major, 4116 hw->active_pkg_ver.minor, 4117 hw->active_pkg_ver.update, 4118 hw->active_pkg_ver.draft, 4119 hw->pkg_name, 4120 hw->pkg_ver.major, 4121 hw->pkg_ver.minor, 4122 hw->pkg_ver.update, 4123 hw->pkg_ver.draft); 4124 break; 4125 case ICE_DDP_PKG_FW_MISMATCH: 4126 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4127 break; 4128 case ICE_DDP_PKG_INVALID_FILE: 4129 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4130 break; 4131 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4132 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4133 break; 4134 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4135 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4136 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4137 break; 4138 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4139 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4140 break; 4141 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4142 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4143 break; 4144 case ICE_DDP_PKG_LOAD_ERROR: 4145 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4146 /* poll for reset to complete */ 4147 if (ice_check_reset(hw)) 4148 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4149 break; 4150 case ICE_DDP_PKG_ERR: 4151 default: 4152 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4153 break; 4154 } 4155 } 4156 4157 /** 4158 * ice_load_pkg - load/reload the DDP Package file 4159 * @firmware: firmware structure when firmware requested or NULL for reload 4160 * @pf: pointer to the PF instance 4161 * 4162 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4163 * initialize HW tables. 4164 */ 4165 static void 4166 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4167 { 4168 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4169 struct device *dev = ice_pf_to_dev(pf); 4170 struct ice_hw *hw = &pf->hw; 4171 4172 /* Load DDP Package */ 4173 if (firmware && !hw->pkg_copy) { 4174 state = ice_copy_and_init_pkg(hw, firmware->data, 4175 firmware->size); 4176 ice_log_pkg_init(hw, state); 4177 } else if (!firmware && hw->pkg_copy) { 4178 /* Reload package during rebuild after CORER/GLOBR reset */ 4179 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4180 ice_log_pkg_init(hw, state); 4181 } else { 4182 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4183 } 4184 4185 if (!ice_is_init_pkg_successful(state)) { 4186 /* Safe Mode */ 4187 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4188 return; 4189 } 4190 4191 /* Successful download package is the precondition for advanced 4192 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4193 */ 4194 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4195 } 4196 4197 /** 4198 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4199 * @pf: pointer to the PF structure 4200 * 4201 * There is no error returned here because the driver should be able to handle 4202 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4203 * specifically with Tx. 4204 */ 4205 static void ice_verify_cacheline_size(struct ice_pf *pf) 4206 { 4207 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4208 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4209 ICE_CACHE_LINE_BYTES); 4210 } 4211 4212 /** 4213 * ice_send_version - update firmware with driver version 4214 * @pf: PF struct 4215 * 4216 * Returns 0 on success, else error code 4217 */ 4218 static int ice_send_version(struct ice_pf *pf) 4219 { 4220 struct ice_driver_ver dv; 4221 4222 dv.major_ver = 0xff; 4223 dv.minor_ver = 0xff; 4224 dv.build_ver = 0xff; 4225 dv.subbuild_ver = 0; 4226 strscpy((char *)dv.driver_string, UTS_RELEASE, 4227 sizeof(dv.driver_string)); 4228 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4229 } 4230 4231 /** 4232 * ice_init_fdir - Initialize flow director VSI and configuration 4233 * @pf: pointer to the PF instance 4234 * 4235 * returns 0 on success, negative on error 4236 */ 4237 static int ice_init_fdir(struct ice_pf *pf) 4238 { 4239 struct device *dev = ice_pf_to_dev(pf); 4240 struct ice_vsi *ctrl_vsi; 4241 int err; 4242 4243 /* Side Band Flow Director needs to have a control VSI. 4244 * Allocate it and store it in the PF. 4245 */ 4246 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4247 if (!ctrl_vsi) { 4248 dev_dbg(dev, "could not create control VSI\n"); 4249 return -ENOMEM; 4250 } 4251 4252 err = ice_vsi_open_ctrl(ctrl_vsi); 4253 if (err) { 4254 dev_dbg(dev, "could not open control VSI\n"); 4255 goto err_vsi_open; 4256 } 4257 4258 mutex_init(&pf->hw.fdir_fltr_lock); 4259 4260 err = ice_fdir_create_dflt_rules(pf); 4261 if (err) 4262 goto err_fdir_rule; 4263 4264 return 0; 4265 4266 err_fdir_rule: 4267 ice_fdir_release_flows(&pf->hw); 4268 ice_vsi_close(ctrl_vsi); 4269 err_vsi_open: 4270 ice_vsi_release(ctrl_vsi); 4271 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4272 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4273 pf->ctrl_vsi_idx = ICE_NO_VSI; 4274 } 4275 return err; 4276 } 4277 4278 static void ice_deinit_fdir(struct ice_pf *pf) 4279 { 4280 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4281 4282 if (!vsi) 4283 return; 4284 4285 ice_vsi_manage_fdir(vsi, false); 4286 ice_vsi_release(vsi); 4287 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4288 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4289 pf->ctrl_vsi_idx = ICE_NO_VSI; 4290 } 4291 4292 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4293 } 4294 4295 /** 4296 * ice_get_opt_fw_name - return optional firmware file name or NULL 4297 * @pf: pointer to the PF instance 4298 */ 4299 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4300 { 4301 /* Optional firmware name same as default with additional dash 4302 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4303 */ 4304 struct pci_dev *pdev = pf->pdev; 4305 char *opt_fw_filename; 4306 u64 dsn; 4307 4308 /* Determine the name of the optional file using the DSN (two 4309 * dwords following the start of the DSN Capability). 4310 */ 4311 dsn = pci_get_dsn(pdev); 4312 if (!dsn) 4313 return NULL; 4314 4315 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4316 if (!opt_fw_filename) 4317 return NULL; 4318 4319 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4320 ICE_DDP_PKG_PATH, dsn); 4321 4322 return opt_fw_filename; 4323 } 4324 4325 /** 4326 * ice_request_fw - Device initialization routine 4327 * @pf: pointer to the PF instance 4328 */ 4329 static void ice_request_fw(struct ice_pf *pf) 4330 { 4331 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4332 const struct firmware *firmware = NULL; 4333 struct device *dev = ice_pf_to_dev(pf); 4334 int err = 0; 4335 4336 /* optional device-specific DDP (if present) overrides the default DDP 4337 * package file. kernel logs a debug message if the file doesn't exist, 4338 * and warning messages for other errors. 4339 */ 4340 if (opt_fw_filename) { 4341 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4342 if (err) { 4343 kfree(opt_fw_filename); 4344 goto dflt_pkg_load; 4345 } 4346 4347 /* request for firmware was successful. Download to device */ 4348 ice_load_pkg(firmware, pf); 4349 kfree(opt_fw_filename); 4350 release_firmware(firmware); 4351 return; 4352 } 4353 4354 dflt_pkg_load: 4355 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4356 if (err) { 4357 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4358 return; 4359 } 4360 4361 /* request for firmware was successful. Download to device */ 4362 ice_load_pkg(firmware, pf); 4363 release_firmware(firmware); 4364 } 4365 4366 /** 4367 * ice_print_wake_reason - show the wake up cause in the log 4368 * @pf: pointer to the PF struct 4369 */ 4370 static void ice_print_wake_reason(struct ice_pf *pf) 4371 { 4372 u32 wus = pf->wakeup_reason; 4373 const char *wake_str; 4374 4375 /* if no wake event, nothing to print */ 4376 if (!wus) 4377 return; 4378 4379 if (wus & PFPM_WUS_LNKC_M) 4380 wake_str = "Link\n"; 4381 else if (wus & PFPM_WUS_MAG_M) 4382 wake_str = "Magic Packet\n"; 4383 else if (wus & PFPM_WUS_MNG_M) 4384 wake_str = "Management\n"; 4385 else if (wus & PFPM_WUS_FW_RST_WK_M) 4386 wake_str = "Firmware Reset\n"; 4387 else 4388 wake_str = "Unknown\n"; 4389 4390 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4391 } 4392 4393 /** 4394 * ice_pf_fwlog_update_module - update 1 module 4395 * @pf: pointer to the PF struct 4396 * @log_level: log_level to use for the @module 4397 * @module: module to update 4398 */ 4399 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4400 { 4401 struct ice_hw *hw = &pf->hw; 4402 4403 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4404 } 4405 4406 /** 4407 * ice_register_netdev - register netdev 4408 * @vsi: pointer to the VSI struct 4409 */ 4410 static int ice_register_netdev(struct ice_vsi *vsi) 4411 { 4412 int err; 4413 4414 if (!vsi || !vsi->netdev) 4415 return -EIO; 4416 4417 err = register_netdev(vsi->netdev); 4418 if (err) 4419 return err; 4420 4421 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4422 netif_carrier_off(vsi->netdev); 4423 netif_tx_stop_all_queues(vsi->netdev); 4424 4425 return 0; 4426 } 4427 4428 static void ice_unregister_netdev(struct ice_vsi *vsi) 4429 { 4430 if (!vsi || !vsi->netdev) 4431 return; 4432 4433 unregister_netdev(vsi->netdev); 4434 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4435 } 4436 4437 /** 4438 * ice_cfg_netdev - Allocate, configure and register a netdev 4439 * @vsi: the VSI associated with the new netdev 4440 * 4441 * Returns 0 on success, negative value on failure 4442 */ 4443 static int ice_cfg_netdev(struct ice_vsi *vsi) 4444 { 4445 struct ice_netdev_priv *np; 4446 struct net_device *netdev; 4447 u8 mac_addr[ETH_ALEN]; 4448 4449 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4450 vsi->alloc_rxq); 4451 if (!netdev) 4452 return -ENOMEM; 4453 4454 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4455 vsi->netdev = netdev; 4456 np = netdev_priv(netdev); 4457 np->vsi = vsi; 4458 4459 ice_set_netdev_features(netdev); 4460 ice_set_ops(vsi); 4461 4462 if (vsi->type == ICE_VSI_PF) { 4463 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4464 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4465 eth_hw_addr_set(netdev, mac_addr); 4466 } 4467 4468 netdev->priv_flags |= IFF_UNICAST_FLT; 4469 4470 /* Setup netdev TC information */ 4471 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4472 4473 netdev->max_mtu = ICE_MAX_MTU; 4474 4475 return 0; 4476 } 4477 4478 static void ice_decfg_netdev(struct ice_vsi *vsi) 4479 { 4480 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4481 free_netdev(vsi->netdev); 4482 vsi->netdev = NULL; 4483 } 4484 4485 static int ice_start_eth(struct ice_vsi *vsi) 4486 { 4487 int err; 4488 4489 err = ice_init_mac_fltr(vsi->back); 4490 if (err) 4491 return err; 4492 4493 err = ice_vsi_open(vsi); 4494 if (err) 4495 ice_fltr_remove_all(vsi); 4496 4497 return err; 4498 } 4499 4500 static void ice_stop_eth(struct ice_vsi *vsi) 4501 { 4502 ice_fltr_remove_all(vsi); 4503 ice_vsi_close(vsi); 4504 } 4505 4506 static int ice_init_eth(struct ice_pf *pf) 4507 { 4508 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4509 int err; 4510 4511 if (!vsi) 4512 return -EINVAL; 4513 4514 /* init channel list */ 4515 INIT_LIST_HEAD(&vsi->ch_list); 4516 4517 err = ice_cfg_netdev(vsi); 4518 if (err) 4519 return err; 4520 /* Setup DCB netlink interface */ 4521 ice_dcbnl_setup(vsi); 4522 4523 err = ice_init_mac_fltr(pf); 4524 if (err) 4525 goto err_init_mac_fltr; 4526 4527 err = ice_devlink_create_pf_port(pf); 4528 if (err) 4529 goto err_devlink_create_pf_port; 4530 4531 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4532 4533 err = ice_register_netdev(vsi); 4534 if (err) 4535 goto err_register_netdev; 4536 4537 err = ice_tc_indir_block_register(vsi); 4538 if (err) 4539 goto err_tc_indir_block_register; 4540 4541 ice_napi_add(vsi); 4542 4543 return 0; 4544 4545 err_tc_indir_block_register: 4546 ice_unregister_netdev(vsi); 4547 err_register_netdev: 4548 ice_devlink_destroy_pf_port(pf); 4549 err_devlink_create_pf_port: 4550 err_init_mac_fltr: 4551 ice_decfg_netdev(vsi); 4552 return err; 4553 } 4554 4555 static void ice_deinit_eth(struct ice_pf *pf) 4556 { 4557 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4558 4559 if (!vsi) 4560 return; 4561 4562 ice_vsi_close(vsi); 4563 ice_unregister_netdev(vsi); 4564 ice_devlink_destroy_pf_port(pf); 4565 ice_tc_indir_block_unregister(vsi); 4566 ice_decfg_netdev(vsi); 4567 } 4568 4569 /** 4570 * ice_wait_for_fw - wait for full FW readiness 4571 * @hw: pointer to the hardware structure 4572 * @timeout: milliseconds that can elapse before timing out 4573 */ 4574 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4575 { 4576 int fw_loading; 4577 u32 elapsed = 0; 4578 4579 while (elapsed <= timeout) { 4580 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4581 4582 /* firmware was not yet loaded, we have to wait more */ 4583 if (fw_loading) { 4584 elapsed += 100; 4585 msleep(100); 4586 continue; 4587 } 4588 return 0; 4589 } 4590 4591 return -ETIMEDOUT; 4592 } 4593 4594 static int ice_init_dev(struct ice_pf *pf) 4595 { 4596 struct device *dev = ice_pf_to_dev(pf); 4597 struct ice_hw *hw = &pf->hw; 4598 int err; 4599 4600 err = ice_init_hw(hw); 4601 if (err) { 4602 dev_err(dev, "ice_init_hw failed: %d\n", err); 4603 return err; 4604 } 4605 4606 /* Some cards require longer initialization times 4607 * due to necessity of loading FW from an external source. 4608 * This can take even half a minute. 4609 */ 4610 if (ice_is_pf_c827(hw)) { 4611 err = ice_wait_for_fw(hw, 30000); 4612 if (err) { 4613 dev_err(dev, "ice_wait_for_fw timed out"); 4614 return err; 4615 } 4616 } 4617 4618 ice_init_feature_support(pf); 4619 4620 ice_request_fw(pf); 4621 4622 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4623 * set in pf->state, which will cause ice_is_safe_mode to return 4624 * true 4625 */ 4626 if (ice_is_safe_mode(pf)) { 4627 /* we already got function/device capabilities but these don't 4628 * reflect what the driver needs to do in safe mode. Instead of 4629 * adding conditional logic everywhere to ignore these 4630 * device/function capabilities, override them. 4631 */ 4632 ice_set_safe_mode_caps(hw); 4633 } 4634 4635 err = ice_init_pf(pf); 4636 if (err) { 4637 dev_err(dev, "ice_init_pf failed: %d\n", err); 4638 goto err_init_pf; 4639 } 4640 4641 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4642 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4643 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4644 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4645 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4646 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4647 pf->hw.tnl.valid_count[TNL_VXLAN]; 4648 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4649 UDP_TUNNEL_TYPE_VXLAN; 4650 } 4651 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4652 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4653 pf->hw.tnl.valid_count[TNL_GENEVE]; 4654 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4655 UDP_TUNNEL_TYPE_GENEVE; 4656 } 4657 4658 err = ice_init_interrupt_scheme(pf); 4659 if (err) { 4660 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4661 err = -EIO; 4662 goto err_init_interrupt_scheme; 4663 } 4664 4665 /* In case of MSIX we are going to setup the misc vector right here 4666 * to handle admin queue events etc. In case of legacy and MSI 4667 * the misc functionality and queue processing is combined in 4668 * the same vector and that gets setup at open. 4669 */ 4670 err = ice_req_irq_msix_misc(pf); 4671 if (err) { 4672 dev_err(dev, "setup of misc vector failed: %d\n", err); 4673 goto err_req_irq_msix_misc; 4674 } 4675 4676 return 0; 4677 4678 err_req_irq_msix_misc: 4679 ice_clear_interrupt_scheme(pf); 4680 err_init_interrupt_scheme: 4681 ice_deinit_pf(pf); 4682 err_init_pf: 4683 ice_deinit_hw(hw); 4684 return err; 4685 } 4686 4687 static void ice_deinit_dev(struct ice_pf *pf) 4688 { 4689 ice_free_irq_msix_misc(pf); 4690 ice_deinit_pf(pf); 4691 ice_deinit_hw(&pf->hw); 4692 4693 /* Service task is already stopped, so call reset directly. */ 4694 ice_reset(&pf->hw, ICE_RESET_PFR); 4695 pci_wait_for_pending_transaction(pf->pdev); 4696 ice_clear_interrupt_scheme(pf); 4697 } 4698 4699 static void ice_init_features(struct ice_pf *pf) 4700 { 4701 struct device *dev = ice_pf_to_dev(pf); 4702 4703 if (ice_is_safe_mode(pf)) 4704 return; 4705 4706 /* initialize DDP driven features */ 4707 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4708 ice_ptp_init(pf); 4709 4710 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4711 ice_gnss_init(pf); 4712 4713 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4714 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4715 ice_dpll_init(pf); 4716 4717 /* Note: Flow director init failure is non-fatal to load */ 4718 if (ice_init_fdir(pf)) 4719 dev_err(dev, "could not initialize flow director\n"); 4720 4721 /* Note: DCB init failure is non-fatal to load */ 4722 if (ice_init_pf_dcb(pf, false)) { 4723 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4724 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4725 } else { 4726 ice_cfg_lldp_mib_change(&pf->hw, true); 4727 } 4728 4729 if (ice_init_lag(pf)) 4730 dev_warn(dev, "Failed to init link aggregation support\n"); 4731 4732 ice_hwmon_init(pf); 4733 } 4734 4735 static void ice_deinit_features(struct ice_pf *pf) 4736 { 4737 if (ice_is_safe_mode(pf)) 4738 return; 4739 4740 ice_deinit_lag(pf); 4741 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4742 ice_cfg_lldp_mib_change(&pf->hw, false); 4743 ice_deinit_fdir(pf); 4744 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4745 ice_gnss_exit(pf); 4746 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4747 ice_ptp_release(pf); 4748 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4749 ice_dpll_deinit(pf); 4750 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4751 xa_destroy(&pf->eswitch.reprs); 4752 } 4753 4754 static void ice_init_wakeup(struct ice_pf *pf) 4755 { 4756 /* Save wakeup reason register for later use */ 4757 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4758 4759 /* check for a power management event */ 4760 ice_print_wake_reason(pf); 4761 4762 /* clear wake status, all bits */ 4763 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4764 4765 /* Disable WoL at init, wait for user to enable */ 4766 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4767 } 4768 4769 static int ice_init_link(struct ice_pf *pf) 4770 { 4771 struct device *dev = ice_pf_to_dev(pf); 4772 int err; 4773 4774 err = ice_init_link_events(pf->hw.port_info); 4775 if (err) { 4776 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4777 return err; 4778 } 4779 4780 /* not a fatal error if this fails */ 4781 err = ice_init_nvm_phy_type(pf->hw.port_info); 4782 if (err) 4783 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4784 4785 /* not a fatal error if this fails */ 4786 err = ice_update_link_info(pf->hw.port_info); 4787 if (err) 4788 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4789 4790 ice_init_link_dflt_override(pf->hw.port_info); 4791 4792 ice_check_link_cfg_err(pf, 4793 pf->hw.port_info->phy.link_info.link_cfg_err); 4794 4795 /* if media available, initialize PHY settings */ 4796 if (pf->hw.port_info->phy.link_info.link_info & 4797 ICE_AQ_MEDIA_AVAILABLE) { 4798 /* not a fatal error if this fails */ 4799 err = ice_init_phy_user_cfg(pf->hw.port_info); 4800 if (err) 4801 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4802 4803 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4804 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4805 4806 if (vsi) 4807 ice_configure_phy(vsi); 4808 } 4809 } else { 4810 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4811 } 4812 4813 return err; 4814 } 4815 4816 static int ice_init_pf_sw(struct ice_pf *pf) 4817 { 4818 bool dvm = ice_is_dvm_ena(&pf->hw); 4819 struct ice_vsi *vsi; 4820 int err; 4821 4822 /* create switch struct for the switch element created by FW on boot */ 4823 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4824 if (!pf->first_sw) 4825 return -ENOMEM; 4826 4827 if (pf->hw.evb_veb) 4828 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4829 else 4830 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4831 4832 pf->first_sw->pf = pf; 4833 4834 /* record the sw_id available for later use */ 4835 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4836 4837 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4838 if (err) 4839 goto err_aq_set_port_params; 4840 4841 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4842 if (!vsi) { 4843 err = -ENOMEM; 4844 goto err_pf_vsi_setup; 4845 } 4846 4847 return 0; 4848 4849 err_pf_vsi_setup: 4850 err_aq_set_port_params: 4851 kfree(pf->first_sw); 4852 return err; 4853 } 4854 4855 static void ice_deinit_pf_sw(struct ice_pf *pf) 4856 { 4857 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4858 4859 if (!vsi) 4860 return; 4861 4862 ice_vsi_release(vsi); 4863 kfree(pf->first_sw); 4864 } 4865 4866 static int ice_alloc_vsis(struct ice_pf *pf) 4867 { 4868 struct device *dev = ice_pf_to_dev(pf); 4869 4870 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4871 if (!pf->num_alloc_vsi) 4872 return -EIO; 4873 4874 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4875 dev_warn(dev, 4876 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4877 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4878 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4879 } 4880 4881 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4882 GFP_KERNEL); 4883 if (!pf->vsi) 4884 return -ENOMEM; 4885 4886 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4887 sizeof(*pf->vsi_stats), GFP_KERNEL); 4888 if (!pf->vsi_stats) { 4889 devm_kfree(dev, pf->vsi); 4890 return -ENOMEM; 4891 } 4892 4893 return 0; 4894 } 4895 4896 static void ice_dealloc_vsis(struct ice_pf *pf) 4897 { 4898 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4899 pf->vsi_stats = NULL; 4900 4901 pf->num_alloc_vsi = 0; 4902 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4903 pf->vsi = NULL; 4904 } 4905 4906 static int ice_init_devlink(struct ice_pf *pf) 4907 { 4908 int err; 4909 4910 err = ice_devlink_register_params(pf); 4911 if (err) 4912 return err; 4913 4914 ice_devlink_init_regions(pf); 4915 ice_devlink_register(pf); 4916 4917 return 0; 4918 } 4919 4920 static void ice_deinit_devlink(struct ice_pf *pf) 4921 { 4922 ice_devlink_unregister(pf); 4923 ice_devlink_destroy_regions(pf); 4924 ice_devlink_unregister_params(pf); 4925 } 4926 4927 static int ice_init(struct ice_pf *pf) 4928 { 4929 int err; 4930 4931 err = ice_init_dev(pf); 4932 if (err) 4933 return err; 4934 4935 err = ice_alloc_vsis(pf); 4936 if (err) 4937 goto err_alloc_vsis; 4938 4939 err = ice_init_pf_sw(pf); 4940 if (err) 4941 goto err_init_pf_sw; 4942 4943 ice_init_wakeup(pf); 4944 4945 err = ice_init_link(pf); 4946 if (err) 4947 goto err_init_link; 4948 4949 err = ice_send_version(pf); 4950 if (err) 4951 goto err_init_link; 4952 4953 ice_verify_cacheline_size(pf); 4954 4955 if (ice_is_safe_mode(pf)) 4956 ice_set_safe_mode_vlan_cfg(pf); 4957 else 4958 /* print PCI link speed and width */ 4959 pcie_print_link_status(pf->pdev); 4960 4961 /* ready to go, so clear down state bit */ 4962 clear_bit(ICE_DOWN, pf->state); 4963 clear_bit(ICE_SERVICE_DIS, pf->state); 4964 4965 /* since everything is good, start the service timer */ 4966 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4967 4968 return 0; 4969 4970 err_init_link: 4971 ice_deinit_pf_sw(pf); 4972 err_init_pf_sw: 4973 ice_dealloc_vsis(pf); 4974 err_alloc_vsis: 4975 ice_deinit_dev(pf); 4976 return err; 4977 } 4978 4979 static void ice_deinit(struct ice_pf *pf) 4980 { 4981 set_bit(ICE_SERVICE_DIS, pf->state); 4982 set_bit(ICE_DOWN, pf->state); 4983 4984 ice_deinit_pf_sw(pf); 4985 ice_dealloc_vsis(pf); 4986 ice_deinit_dev(pf); 4987 } 4988 4989 /** 4990 * ice_load - load pf by init hw and starting VSI 4991 * @pf: pointer to the pf instance 4992 */ 4993 int ice_load(struct ice_pf *pf) 4994 { 4995 struct ice_vsi_cfg_params params = {}; 4996 struct ice_vsi *vsi; 4997 int err; 4998 4999 err = ice_init_dev(pf); 5000 if (err) 5001 return err; 5002 5003 vsi = ice_get_main_vsi(pf); 5004 5005 params = ice_vsi_to_params(vsi); 5006 params.flags = ICE_VSI_FLAG_INIT; 5007 5008 rtnl_lock(); 5009 err = ice_vsi_cfg(vsi, ¶ms); 5010 if (err) 5011 goto err_vsi_cfg; 5012 5013 err = ice_start_eth(ice_get_main_vsi(pf)); 5014 if (err) 5015 goto err_start_eth; 5016 rtnl_unlock(); 5017 5018 err = ice_init_rdma(pf); 5019 if (err) 5020 goto err_init_rdma; 5021 5022 ice_init_features(pf); 5023 ice_service_task_restart(pf); 5024 5025 clear_bit(ICE_DOWN, pf->state); 5026 5027 return 0; 5028 5029 err_init_rdma: 5030 ice_vsi_close(ice_get_main_vsi(pf)); 5031 rtnl_lock(); 5032 err_start_eth: 5033 ice_vsi_decfg(ice_get_main_vsi(pf)); 5034 err_vsi_cfg: 5035 rtnl_unlock(); 5036 ice_deinit_dev(pf); 5037 return err; 5038 } 5039 5040 /** 5041 * ice_unload - unload pf by stopping VSI and deinit hw 5042 * @pf: pointer to the pf instance 5043 */ 5044 void ice_unload(struct ice_pf *pf) 5045 { 5046 ice_deinit_features(pf); 5047 ice_deinit_rdma(pf); 5048 rtnl_lock(); 5049 ice_stop_eth(ice_get_main_vsi(pf)); 5050 ice_vsi_decfg(ice_get_main_vsi(pf)); 5051 rtnl_unlock(); 5052 ice_deinit_dev(pf); 5053 } 5054 5055 /** 5056 * ice_probe - Device initialization routine 5057 * @pdev: PCI device information struct 5058 * @ent: entry in ice_pci_tbl 5059 * 5060 * Returns 0 on success, negative on failure 5061 */ 5062 static int 5063 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5064 { 5065 struct device *dev = &pdev->dev; 5066 struct ice_pf *pf; 5067 struct ice_hw *hw; 5068 int err; 5069 5070 if (pdev->is_virtfn) { 5071 dev_err(dev, "can't probe a virtual function\n"); 5072 return -EINVAL; 5073 } 5074 5075 /* when under a kdump kernel initiate a reset before enabling the 5076 * device in order to clear out any pending DMA transactions. These 5077 * transactions can cause some systems to machine check when doing 5078 * the pcim_enable_device() below. 5079 */ 5080 if (is_kdump_kernel()) { 5081 pci_save_state(pdev); 5082 pci_clear_master(pdev); 5083 err = pcie_flr(pdev); 5084 if (err) 5085 return err; 5086 pci_restore_state(pdev); 5087 } 5088 5089 /* this driver uses devres, see 5090 * Documentation/driver-api/driver-model/devres.rst 5091 */ 5092 err = pcim_enable_device(pdev); 5093 if (err) 5094 return err; 5095 5096 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5097 if (err) { 5098 dev_err(dev, "BAR0 I/O map error %d\n", err); 5099 return err; 5100 } 5101 5102 pf = ice_allocate_pf(dev); 5103 if (!pf) 5104 return -ENOMEM; 5105 5106 /* initialize Auxiliary index to invalid value */ 5107 pf->aux_idx = -1; 5108 5109 /* set up for high or low DMA */ 5110 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5111 if (err) { 5112 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5113 return err; 5114 } 5115 5116 pci_set_master(pdev); 5117 5118 pf->pdev = pdev; 5119 pci_set_drvdata(pdev, pf); 5120 set_bit(ICE_DOWN, pf->state); 5121 /* Disable service task until DOWN bit is cleared */ 5122 set_bit(ICE_SERVICE_DIS, pf->state); 5123 5124 hw = &pf->hw; 5125 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5126 pci_save_state(pdev); 5127 5128 hw->back = pf; 5129 hw->port_info = NULL; 5130 hw->vendor_id = pdev->vendor; 5131 hw->device_id = pdev->device; 5132 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5133 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5134 hw->subsystem_device_id = pdev->subsystem_device; 5135 hw->bus.device = PCI_SLOT(pdev->devfn); 5136 hw->bus.func = PCI_FUNC(pdev->devfn); 5137 ice_set_ctrlq_len(hw); 5138 5139 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5140 5141 #ifndef CONFIG_DYNAMIC_DEBUG 5142 if (debug < -1) 5143 hw->debug_mask = debug; 5144 #endif 5145 5146 err = ice_init(pf); 5147 if (err) 5148 goto err_init; 5149 5150 err = ice_init_eth(pf); 5151 if (err) 5152 goto err_init_eth; 5153 5154 err = ice_init_rdma(pf); 5155 if (err) 5156 goto err_init_rdma; 5157 5158 err = ice_init_devlink(pf); 5159 if (err) 5160 goto err_init_devlink; 5161 5162 ice_init_features(pf); 5163 5164 return 0; 5165 5166 err_init_devlink: 5167 ice_deinit_rdma(pf); 5168 err_init_rdma: 5169 ice_deinit_eth(pf); 5170 err_init_eth: 5171 ice_deinit(pf); 5172 err_init: 5173 pci_disable_device(pdev); 5174 return err; 5175 } 5176 5177 /** 5178 * ice_set_wake - enable or disable Wake on LAN 5179 * @pf: pointer to the PF struct 5180 * 5181 * Simple helper for WoL control 5182 */ 5183 static void ice_set_wake(struct ice_pf *pf) 5184 { 5185 struct ice_hw *hw = &pf->hw; 5186 bool wol = pf->wol_ena; 5187 5188 /* clear wake state, otherwise new wake events won't fire */ 5189 wr32(hw, PFPM_WUS, U32_MAX); 5190 5191 /* enable / disable APM wake up, no RMW needed */ 5192 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5193 5194 /* set magic packet filter enabled */ 5195 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5196 } 5197 5198 /** 5199 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5200 * @pf: pointer to the PF struct 5201 * 5202 * Issue firmware command to enable multicast magic wake, making 5203 * sure that any locally administered address (LAA) is used for 5204 * wake, and that PF reset doesn't undo the LAA. 5205 */ 5206 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5207 { 5208 struct device *dev = ice_pf_to_dev(pf); 5209 struct ice_hw *hw = &pf->hw; 5210 u8 mac_addr[ETH_ALEN]; 5211 struct ice_vsi *vsi; 5212 int status; 5213 u8 flags; 5214 5215 if (!pf->wol_ena) 5216 return; 5217 5218 vsi = ice_get_main_vsi(pf); 5219 if (!vsi) 5220 return; 5221 5222 /* Get current MAC address in case it's an LAA */ 5223 if (vsi->netdev) 5224 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5225 else 5226 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5227 5228 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5229 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5230 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5231 5232 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5233 if (status) 5234 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5235 status, ice_aq_str(hw->adminq.sq_last_status)); 5236 } 5237 5238 /** 5239 * ice_remove - Device removal routine 5240 * @pdev: PCI device information struct 5241 */ 5242 static void ice_remove(struct pci_dev *pdev) 5243 { 5244 struct ice_pf *pf = pci_get_drvdata(pdev); 5245 int i; 5246 5247 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5248 if (!ice_is_reset_in_progress(pf->state)) 5249 break; 5250 msleep(100); 5251 } 5252 5253 ice_debugfs_exit(); 5254 5255 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5256 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5257 ice_free_vfs(pf); 5258 } 5259 5260 ice_hwmon_exit(pf); 5261 5262 ice_service_task_stop(pf); 5263 ice_aq_cancel_waiting_tasks(pf); 5264 set_bit(ICE_DOWN, pf->state); 5265 5266 if (!ice_is_safe_mode(pf)) 5267 ice_remove_arfs(pf); 5268 ice_deinit_features(pf); 5269 ice_deinit_devlink(pf); 5270 ice_deinit_rdma(pf); 5271 ice_deinit_eth(pf); 5272 ice_deinit(pf); 5273 5274 ice_vsi_release_all(pf); 5275 5276 ice_setup_mc_magic_wake(pf); 5277 ice_set_wake(pf); 5278 5279 pci_disable_device(pdev); 5280 } 5281 5282 /** 5283 * ice_shutdown - PCI callback for shutting down device 5284 * @pdev: PCI device information struct 5285 */ 5286 static void ice_shutdown(struct pci_dev *pdev) 5287 { 5288 struct ice_pf *pf = pci_get_drvdata(pdev); 5289 5290 ice_remove(pdev); 5291 5292 if (system_state == SYSTEM_POWER_OFF) { 5293 pci_wake_from_d3(pdev, pf->wol_ena); 5294 pci_set_power_state(pdev, PCI_D3hot); 5295 } 5296 } 5297 5298 #ifdef CONFIG_PM 5299 /** 5300 * ice_prepare_for_shutdown - prep for PCI shutdown 5301 * @pf: board private structure 5302 * 5303 * Inform or close all dependent features in prep for PCI device shutdown 5304 */ 5305 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5306 { 5307 struct ice_hw *hw = &pf->hw; 5308 u32 v; 5309 5310 /* Notify VFs of impending reset */ 5311 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5312 ice_vc_notify_reset(pf); 5313 5314 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5315 5316 /* disable the VSIs and their queues that are not already DOWN */ 5317 ice_pf_dis_all_vsi(pf, false); 5318 5319 ice_for_each_vsi(pf, v) 5320 if (pf->vsi[v]) 5321 pf->vsi[v]->vsi_num = 0; 5322 5323 ice_shutdown_all_ctrlq(hw); 5324 } 5325 5326 /** 5327 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5328 * @pf: board private structure to reinitialize 5329 * 5330 * This routine reinitialize interrupt scheme that was cleared during 5331 * power management suspend callback. 5332 * 5333 * This should be called during resume routine to re-allocate the q_vectors 5334 * and reacquire interrupts. 5335 */ 5336 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5337 { 5338 struct device *dev = ice_pf_to_dev(pf); 5339 int ret, v; 5340 5341 /* Since we clear MSIX flag during suspend, we need to 5342 * set it back during resume... 5343 */ 5344 5345 ret = ice_init_interrupt_scheme(pf); 5346 if (ret) { 5347 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5348 return ret; 5349 } 5350 5351 /* Remap vectors and rings, after successful re-init interrupts */ 5352 ice_for_each_vsi(pf, v) { 5353 if (!pf->vsi[v]) 5354 continue; 5355 5356 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5357 if (ret) 5358 goto err_reinit; 5359 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5360 } 5361 5362 ret = ice_req_irq_msix_misc(pf); 5363 if (ret) { 5364 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5365 ret); 5366 goto err_reinit; 5367 } 5368 5369 return 0; 5370 5371 err_reinit: 5372 while (v--) 5373 if (pf->vsi[v]) 5374 ice_vsi_free_q_vectors(pf->vsi[v]); 5375 5376 return ret; 5377 } 5378 5379 /** 5380 * ice_suspend 5381 * @dev: generic device information structure 5382 * 5383 * Power Management callback to quiesce the device and prepare 5384 * for D3 transition. 5385 */ 5386 static int __maybe_unused ice_suspend(struct device *dev) 5387 { 5388 struct pci_dev *pdev = to_pci_dev(dev); 5389 struct ice_pf *pf; 5390 int disabled, v; 5391 5392 pf = pci_get_drvdata(pdev); 5393 5394 if (!ice_pf_state_is_nominal(pf)) { 5395 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5396 return -EBUSY; 5397 } 5398 5399 /* Stop watchdog tasks until resume completion. 5400 * Even though it is most likely that the service task is 5401 * disabled if the device is suspended or down, the service task's 5402 * state is controlled by a different state bit, and we should 5403 * store and honor whatever state that bit is in at this point. 5404 */ 5405 disabled = ice_service_task_stop(pf); 5406 5407 ice_unplug_aux_dev(pf); 5408 5409 /* Already suspended?, then there is nothing to do */ 5410 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5411 if (!disabled) 5412 ice_service_task_restart(pf); 5413 return 0; 5414 } 5415 5416 if (test_bit(ICE_DOWN, pf->state) || 5417 ice_is_reset_in_progress(pf->state)) { 5418 dev_err(dev, "can't suspend device in reset or already down\n"); 5419 if (!disabled) 5420 ice_service_task_restart(pf); 5421 return 0; 5422 } 5423 5424 ice_setup_mc_magic_wake(pf); 5425 5426 ice_prepare_for_shutdown(pf); 5427 5428 ice_set_wake(pf); 5429 5430 /* Free vectors, clear the interrupt scheme and release IRQs 5431 * for proper hibernation, especially with large number of CPUs. 5432 * Otherwise hibernation might fail when mapping all the vectors back 5433 * to CPU0. 5434 */ 5435 ice_free_irq_msix_misc(pf); 5436 ice_for_each_vsi(pf, v) { 5437 if (!pf->vsi[v]) 5438 continue; 5439 ice_vsi_free_q_vectors(pf->vsi[v]); 5440 } 5441 ice_clear_interrupt_scheme(pf); 5442 5443 pci_save_state(pdev); 5444 pci_wake_from_d3(pdev, pf->wol_ena); 5445 pci_set_power_state(pdev, PCI_D3hot); 5446 return 0; 5447 } 5448 5449 /** 5450 * ice_resume - PM callback for waking up from D3 5451 * @dev: generic device information structure 5452 */ 5453 static int __maybe_unused ice_resume(struct device *dev) 5454 { 5455 struct pci_dev *pdev = to_pci_dev(dev); 5456 enum ice_reset_req reset_type; 5457 struct ice_pf *pf; 5458 struct ice_hw *hw; 5459 int ret; 5460 5461 pci_set_power_state(pdev, PCI_D0); 5462 pci_restore_state(pdev); 5463 pci_save_state(pdev); 5464 5465 if (!pci_device_is_present(pdev)) 5466 return -ENODEV; 5467 5468 ret = pci_enable_device_mem(pdev); 5469 if (ret) { 5470 dev_err(dev, "Cannot enable device after suspend\n"); 5471 return ret; 5472 } 5473 5474 pf = pci_get_drvdata(pdev); 5475 hw = &pf->hw; 5476 5477 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5478 ice_print_wake_reason(pf); 5479 5480 /* We cleared the interrupt scheme when we suspended, so we need to 5481 * restore it now to resume device functionality. 5482 */ 5483 ret = ice_reinit_interrupt_scheme(pf); 5484 if (ret) 5485 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5486 5487 clear_bit(ICE_DOWN, pf->state); 5488 /* Now perform PF reset and rebuild */ 5489 reset_type = ICE_RESET_PFR; 5490 /* re-enable service task for reset, but allow reset to schedule it */ 5491 clear_bit(ICE_SERVICE_DIS, pf->state); 5492 5493 if (ice_schedule_reset(pf, reset_type)) 5494 dev_err(dev, "Reset during resume failed.\n"); 5495 5496 clear_bit(ICE_SUSPENDED, pf->state); 5497 ice_service_task_restart(pf); 5498 5499 /* Restart the service task */ 5500 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5501 5502 return 0; 5503 } 5504 #endif /* CONFIG_PM */ 5505 5506 /** 5507 * ice_pci_err_detected - warning that PCI error has been detected 5508 * @pdev: PCI device information struct 5509 * @err: the type of PCI error 5510 * 5511 * Called to warn that something happened on the PCI bus and the error handling 5512 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5513 */ 5514 static pci_ers_result_t 5515 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5516 { 5517 struct ice_pf *pf = pci_get_drvdata(pdev); 5518 5519 if (!pf) { 5520 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5521 __func__, err); 5522 return PCI_ERS_RESULT_DISCONNECT; 5523 } 5524 5525 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5526 ice_service_task_stop(pf); 5527 5528 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5529 set_bit(ICE_PFR_REQ, pf->state); 5530 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5531 } 5532 } 5533 5534 return PCI_ERS_RESULT_NEED_RESET; 5535 } 5536 5537 /** 5538 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5539 * @pdev: PCI device information struct 5540 * 5541 * Called to determine if the driver can recover from the PCI slot reset by 5542 * using a register read to determine if the device is recoverable. 5543 */ 5544 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5545 { 5546 struct ice_pf *pf = pci_get_drvdata(pdev); 5547 pci_ers_result_t result; 5548 int err; 5549 u32 reg; 5550 5551 err = pci_enable_device_mem(pdev); 5552 if (err) { 5553 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5554 err); 5555 result = PCI_ERS_RESULT_DISCONNECT; 5556 } else { 5557 pci_set_master(pdev); 5558 pci_restore_state(pdev); 5559 pci_save_state(pdev); 5560 pci_wake_from_d3(pdev, false); 5561 5562 /* Check for life */ 5563 reg = rd32(&pf->hw, GLGEN_RTRIG); 5564 if (!reg) 5565 result = PCI_ERS_RESULT_RECOVERED; 5566 else 5567 result = PCI_ERS_RESULT_DISCONNECT; 5568 } 5569 5570 return result; 5571 } 5572 5573 /** 5574 * ice_pci_err_resume - restart operations after PCI error recovery 5575 * @pdev: PCI device information struct 5576 * 5577 * Called to allow the driver to bring things back up after PCI error and/or 5578 * reset recovery have finished 5579 */ 5580 static void ice_pci_err_resume(struct pci_dev *pdev) 5581 { 5582 struct ice_pf *pf = pci_get_drvdata(pdev); 5583 5584 if (!pf) { 5585 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5586 __func__); 5587 return; 5588 } 5589 5590 if (test_bit(ICE_SUSPENDED, pf->state)) { 5591 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5592 __func__); 5593 return; 5594 } 5595 5596 ice_restore_all_vfs_msi_state(pf); 5597 5598 ice_do_reset(pf, ICE_RESET_PFR); 5599 ice_service_task_restart(pf); 5600 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5601 } 5602 5603 /** 5604 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5605 * @pdev: PCI device information struct 5606 */ 5607 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5608 { 5609 struct ice_pf *pf = pci_get_drvdata(pdev); 5610 5611 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5612 ice_service_task_stop(pf); 5613 5614 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5615 set_bit(ICE_PFR_REQ, pf->state); 5616 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5617 } 5618 } 5619 } 5620 5621 /** 5622 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5623 * @pdev: PCI device information struct 5624 */ 5625 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5626 { 5627 ice_pci_err_resume(pdev); 5628 } 5629 5630 /* ice_pci_tbl - PCI Device ID Table 5631 * 5632 * Wildcard entries (PCI_ANY_ID) should come last 5633 * Last entry must be all 0s 5634 * 5635 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5636 * Class, Class Mask, private data (not used) } 5637 */ 5638 static const struct pci_device_id ice_pci_tbl[] = { 5639 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5640 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5641 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5642 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5643 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5644 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5645 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5646 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5647 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5648 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5649 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5650 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5651 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5652 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5653 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5654 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5655 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5656 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5657 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5658 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5659 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5660 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5661 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5662 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5663 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5664 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5665 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5666 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5667 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5668 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5669 /* required last entry */ 5670 {} 5671 }; 5672 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5673 5674 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5675 5676 static const struct pci_error_handlers ice_pci_err_handler = { 5677 .error_detected = ice_pci_err_detected, 5678 .slot_reset = ice_pci_err_slot_reset, 5679 .reset_prepare = ice_pci_err_reset_prepare, 5680 .reset_done = ice_pci_err_reset_done, 5681 .resume = ice_pci_err_resume 5682 }; 5683 5684 static struct pci_driver ice_driver = { 5685 .name = KBUILD_MODNAME, 5686 .id_table = ice_pci_tbl, 5687 .probe = ice_probe, 5688 .remove = ice_remove, 5689 #ifdef CONFIG_PM 5690 .driver.pm = &ice_pm_ops, 5691 #endif /* CONFIG_PM */ 5692 .shutdown = ice_shutdown, 5693 .sriov_configure = ice_sriov_configure, 5694 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5695 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5696 .err_handler = &ice_pci_err_handler 5697 }; 5698 5699 /** 5700 * ice_module_init - Driver registration routine 5701 * 5702 * ice_module_init is the first routine called when the driver is 5703 * loaded. All it does is register with the PCI subsystem. 5704 */ 5705 static int __init ice_module_init(void) 5706 { 5707 int status = -ENOMEM; 5708 5709 pr_info("%s\n", ice_driver_string); 5710 pr_info("%s\n", ice_copyright); 5711 5712 ice_adv_lnk_speed_maps_init(); 5713 5714 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5715 if (!ice_wq) { 5716 pr_err("Failed to create workqueue\n"); 5717 return status; 5718 } 5719 5720 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5721 if (!ice_lag_wq) { 5722 pr_err("Failed to create LAG workqueue\n"); 5723 goto err_dest_wq; 5724 } 5725 5726 ice_debugfs_init(); 5727 5728 status = pci_register_driver(&ice_driver); 5729 if (status) { 5730 pr_err("failed to register PCI driver, err %d\n", status); 5731 goto err_dest_lag_wq; 5732 } 5733 5734 return 0; 5735 5736 err_dest_lag_wq: 5737 destroy_workqueue(ice_lag_wq); 5738 ice_debugfs_exit(); 5739 err_dest_wq: 5740 destroy_workqueue(ice_wq); 5741 return status; 5742 } 5743 module_init(ice_module_init); 5744 5745 /** 5746 * ice_module_exit - Driver exit cleanup routine 5747 * 5748 * ice_module_exit is called just before the driver is removed 5749 * from memory. 5750 */ 5751 static void __exit ice_module_exit(void) 5752 { 5753 pci_unregister_driver(&ice_driver); 5754 destroy_workqueue(ice_wq); 5755 destroy_workqueue(ice_lag_wq); 5756 pr_info("module unloaded\n"); 5757 } 5758 module_exit(ice_module_exit); 5759 5760 /** 5761 * ice_set_mac_address - NDO callback to set MAC address 5762 * @netdev: network interface device structure 5763 * @pi: pointer to an address structure 5764 * 5765 * Returns 0 on success, negative on failure 5766 */ 5767 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5768 { 5769 struct ice_netdev_priv *np = netdev_priv(netdev); 5770 struct ice_vsi *vsi = np->vsi; 5771 struct ice_pf *pf = vsi->back; 5772 struct ice_hw *hw = &pf->hw; 5773 struct sockaddr *addr = pi; 5774 u8 old_mac[ETH_ALEN]; 5775 u8 flags = 0; 5776 u8 *mac; 5777 int err; 5778 5779 mac = (u8 *)addr->sa_data; 5780 5781 if (!is_valid_ether_addr(mac)) 5782 return -EADDRNOTAVAIL; 5783 5784 if (test_bit(ICE_DOWN, pf->state) || 5785 ice_is_reset_in_progress(pf->state)) { 5786 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5787 mac); 5788 return -EBUSY; 5789 } 5790 5791 if (ice_chnl_dmac_fltr_cnt(pf)) { 5792 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5793 mac); 5794 return -EAGAIN; 5795 } 5796 5797 netif_addr_lock_bh(netdev); 5798 ether_addr_copy(old_mac, netdev->dev_addr); 5799 /* change the netdev's MAC address */ 5800 eth_hw_addr_set(netdev, mac); 5801 netif_addr_unlock_bh(netdev); 5802 5803 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5804 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5805 if (err && err != -ENOENT) { 5806 err = -EADDRNOTAVAIL; 5807 goto err_update_filters; 5808 } 5809 5810 /* Add filter for new MAC. If filter exists, return success */ 5811 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5812 if (err == -EEXIST) { 5813 /* Although this MAC filter is already present in hardware it's 5814 * possible in some cases (e.g. bonding) that dev_addr was 5815 * modified outside of the driver and needs to be restored back 5816 * to this value. 5817 */ 5818 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5819 5820 return 0; 5821 } else if (err) { 5822 /* error if the new filter addition failed */ 5823 err = -EADDRNOTAVAIL; 5824 } 5825 5826 err_update_filters: 5827 if (err) { 5828 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5829 mac); 5830 netif_addr_lock_bh(netdev); 5831 eth_hw_addr_set(netdev, old_mac); 5832 netif_addr_unlock_bh(netdev); 5833 return err; 5834 } 5835 5836 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5837 netdev->dev_addr); 5838 5839 /* write new MAC address to the firmware */ 5840 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5841 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5842 if (err) { 5843 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5844 mac, err); 5845 } 5846 return 0; 5847 } 5848 5849 /** 5850 * ice_set_rx_mode - NDO callback to set the netdev filters 5851 * @netdev: network interface device structure 5852 */ 5853 static void ice_set_rx_mode(struct net_device *netdev) 5854 { 5855 struct ice_netdev_priv *np = netdev_priv(netdev); 5856 struct ice_vsi *vsi = np->vsi; 5857 5858 if (!vsi || ice_is_switchdev_running(vsi->back)) 5859 return; 5860 5861 /* Set the flags to synchronize filters 5862 * ndo_set_rx_mode may be triggered even without a change in netdev 5863 * flags 5864 */ 5865 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5866 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5867 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5868 5869 /* schedule our worker thread which will take care of 5870 * applying the new filter changes 5871 */ 5872 ice_service_task_schedule(vsi->back); 5873 } 5874 5875 /** 5876 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5877 * @netdev: network interface device structure 5878 * @queue_index: Queue ID 5879 * @maxrate: maximum bandwidth in Mbps 5880 */ 5881 static int 5882 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5883 { 5884 struct ice_netdev_priv *np = netdev_priv(netdev); 5885 struct ice_vsi *vsi = np->vsi; 5886 u16 q_handle; 5887 int status; 5888 u8 tc; 5889 5890 /* Validate maxrate requested is within permitted range */ 5891 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5892 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5893 maxrate, queue_index); 5894 return -EINVAL; 5895 } 5896 5897 q_handle = vsi->tx_rings[queue_index]->q_handle; 5898 tc = ice_dcb_get_tc(vsi, queue_index); 5899 5900 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5901 if (!vsi) { 5902 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5903 queue_index); 5904 return -EINVAL; 5905 } 5906 5907 /* Set BW back to default, when user set maxrate to 0 */ 5908 if (!maxrate) 5909 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5910 q_handle, ICE_MAX_BW); 5911 else 5912 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5913 q_handle, ICE_MAX_BW, maxrate * 1000); 5914 if (status) 5915 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5916 status); 5917 5918 return status; 5919 } 5920 5921 /** 5922 * ice_fdb_add - add an entry to the hardware database 5923 * @ndm: the input from the stack 5924 * @tb: pointer to array of nladdr (unused) 5925 * @dev: the net device pointer 5926 * @addr: the MAC address entry being added 5927 * @vid: VLAN ID 5928 * @flags: instructions from stack about fdb operation 5929 * @extack: netlink extended ack 5930 */ 5931 static int 5932 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5933 struct net_device *dev, const unsigned char *addr, u16 vid, 5934 u16 flags, struct netlink_ext_ack __always_unused *extack) 5935 { 5936 int err; 5937 5938 if (vid) { 5939 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5940 return -EINVAL; 5941 } 5942 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5943 netdev_err(dev, "FDB only supports static addresses\n"); 5944 return -EINVAL; 5945 } 5946 5947 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5948 err = dev_uc_add_excl(dev, addr); 5949 else if (is_multicast_ether_addr(addr)) 5950 err = dev_mc_add_excl(dev, addr); 5951 else 5952 err = -EINVAL; 5953 5954 /* Only return duplicate errors if NLM_F_EXCL is set */ 5955 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5956 err = 0; 5957 5958 return err; 5959 } 5960 5961 /** 5962 * ice_fdb_del - delete an entry from the hardware database 5963 * @ndm: the input from the stack 5964 * @tb: pointer to array of nladdr (unused) 5965 * @dev: the net device pointer 5966 * @addr: the MAC address entry being added 5967 * @vid: VLAN ID 5968 * @extack: netlink extended ack 5969 */ 5970 static int 5971 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5972 struct net_device *dev, const unsigned char *addr, 5973 __always_unused u16 vid, struct netlink_ext_ack *extack) 5974 { 5975 int err; 5976 5977 if (ndm->ndm_state & NUD_PERMANENT) { 5978 netdev_err(dev, "FDB only supports static addresses\n"); 5979 return -EINVAL; 5980 } 5981 5982 if (is_unicast_ether_addr(addr)) 5983 err = dev_uc_del(dev, addr); 5984 else if (is_multicast_ether_addr(addr)) 5985 err = dev_mc_del(dev, addr); 5986 else 5987 err = -EINVAL; 5988 5989 return err; 5990 } 5991 5992 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5993 NETIF_F_HW_VLAN_CTAG_TX | \ 5994 NETIF_F_HW_VLAN_STAG_RX | \ 5995 NETIF_F_HW_VLAN_STAG_TX) 5996 5997 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5998 NETIF_F_HW_VLAN_STAG_RX) 5999 6000 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6001 NETIF_F_HW_VLAN_STAG_FILTER) 6002 6003 /** 6004 * ice_fix_features - fix the netdev features flags based on device limitations 6005 * @netdev: ptr to the netdev that flags are being fixed on 6006 * @features: features that need to be checked and possibly fixed 6007 * 6008 * Make sure any fixups are made to features in this callback. This enables the 6009 * driver to not have to check unsupported configurations throughout the driver 6010 * because that's the responsiblity of this callback. 6011 * 6012 * Single VLAN Mode (SVM) Supported Features: 6013 * NETIF_F_HW_VLAN_CTAG_FILTER 6014 * NETIF_F_HW_VLAN_CTAG_RX 6015 * NETIF_F_HW_VLAN_CTAG_TX 6016 * 6017 * Double VLAN Mode (DVM) Supported Features: 6018 * NETIF_F_HW_VLAN_CTAG_FILTER 6019 * NETIF_F_HW_VLAN_CTAG_RX 6020 * NETIF_F_HW_VLAN_CTAG_TX 6021 * 6022 * NETIF_F_HW_VLAN_STAG_FILTER 6023 * NETIF_HW_VLAN_STAG_RX 6024 * NETIF_HW_VLAN_STAG_TX 6025 * 6026 * Features that need fixing: 6027 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6028 * These are mutually exlusive as the VSI context cannot support multiple 6029 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6030 * is not done, then default to clearing the requested STAG offload 6031 * settings. 6032 * 6033 * All supported filtering has to be enabled or disabled together. For 6034 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6035 * together. If this is not done, then default to VLAN filtering disabled. 6036 * These are mutually exclusive as there is currently no way to 6037 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6038 * prune rules. 6039 */ 6040 static netdev_features_t 6041 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6042 { 6043 struct ice_netdev_priv *np = netdev_priv(netdev); 6044 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6045 bool cur_ctag, cur_stag, req_ctag, req_stag; 6046 6047 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6048 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6049 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6050 6051 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6052 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6053 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6054 6055 if (req_vlan_fltr != cur_vlan_fltr) { 6056 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6057 if (req_ctag && req_stag) { 6058 features |= NETIF_VLAN_FILTERING_FEATURES; 6059 } else if (!req_ctag && !req_stag) { 6060 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6061 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6062 (!cur_stag && req_stag && !cur_ctag)) { 6063 features |= NETIF_VLAN_FILTERING_FEATURES; 6064 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6065 } else if ((cur_ctag && !req_ctag && cur_stag) || 6066 (cur_stag && !req_stag && cur_ctag)) { 6067 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6068 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6069 } 6070 } else { 6071 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6072 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6073 6074 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6075 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6076 } 6077 } 6078 6079 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6080 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6081 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6082 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6083 NETIF_F_HW_VLAN_STAG_TX); 6084 } 6085 6086 if (!(netdev->features & NETIF_F_RXFCS) && 6087 (features & NETIF_F_RXFCS) && 6088 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6089 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6090 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6091 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6092 } 6093 6094 return features; 6095 } 6096 6097 /** 6098 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6099 * @vsi: PF's VSI 6100 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6101 * 6102 * Store current stripped VLAN proto in ring packet context, 6103 * so it can be accessed more efficiently by packet processing code. 6104 */ 6105 static void 6106 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6107 { 6108 u16 i; 6109 6110 ice_for_each_alloc_rxq(vsi, i) 6111 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6112 } 6113 6114 /** 6115 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6116 * @vsi: PF's VSI 6117 * @features: features used to determine VLAN offload settings 6118 * 6119 * First, determine the vlan_ethertype based on the VLAN offload bits in 6120 * features. Then determine if stripping and insertion should be enabled or 6121 * disabled. Finally enable or disable VLAN stripping and insertion. 6122 */ 6123 static int 6124 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6125 { 6126 bool enable_stripping = true, enable_insertion = true; 6127 struct ice_vsi_vlan_ops *vlan_ops; 6128 int strip_err = 0, insert_err = 0; 6129 u16 vlan_ethertype = 0; 6130 6131 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6132 6133 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6134 vlan_ethertype = ETH_P_8021AD; 6135 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6136 vlan_ethertype = ETH_P_8021Q; 6137 6138 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6139 enable_stripping = false; 6140 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6141 enable_insertion = false; 6142 6143 if (enable_stripping) 6144 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6145 else 6146 strip_err = vlan_ops->dis_stripping(vsi); 6147 6148 if (enable_insertion) 6149 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6150 else 6151 insert_err = vlan_ops->dis_insertion(vsi); 6152 6153 if (strip_err || insert_err) 6154 return -EIO; 6155 6156 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6157 htons(vlan_ethertype) : 0); 6158 6159 return 0; 6160 } 6161 6162 /** 6163 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6164 * @vsi: PF's VSI 6165 * @features: features used to determine VLAN filtering settings 6166 * 6167 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6168 * features. 6169 */ 6170 static int 6171 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6172 { 6173 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6174 int err = 0; 6175 6176 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6177 * if either bit is set 6178 */ 6179 if (features & 6180 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6181 err = vlan_ops->ena_rx_filtering(vsi); 6182 else 6183 err = vlan_ops->dis_rx_filtering(vsi); 6184 6185 return err; 6186 } 6187 6188 /** 6189 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6190 * @netdev: ptr to the netdev being adjusted 6191 * @features: the feature set that the stack is suggesting 6192 * 6193 * Only update VLAN settings if the requested_vlan_features are different than 6194 * the current_vlan_features. 6195 */ 6196 static int 6197 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6198 { 6199 netdev_features_t current_vlan_features, requested_vlan_features; 6200 struct ice_netdev_priv *np = netdev_priv(netdev); 6201 struct ice_vsi *vsi = np->vsi; 6202 int err; 6203 6204 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6205 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6206 if (current_vlan_features ^ requested_vlan_features) { 6207 if ((features & NETIF_F_RXFCS) && 6208 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6209 dev_err(ice_pf_to_dev(vsi->back), 6210 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6211 return -EIO; 6212 } 6213 6214 err = ice_set_vlan_offload_features(vsi, features); 6215 if (err) 6216 return err; 6217 } 6218 6219 current_vlan_features = netdev->features & 6220 NETIF_VLAN_FILTERING_FEATURES; 6221 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6222 if (current_vlan_features ^ requested_vlan_features) { 6223 err = ice_set_vlan_filtering_features(vsi, features); 6224 if (err) 6225 return err; 6226 } 6227 6228 return 0; 6229 } 6230 6231 /** 6232 * ice_set_loopback - turn on/off loopback mode on underlying PF 6233 * @vsi: ptr to VSI 6234 * @ena: flag to indicate the on/off setting 6235 */ 6236 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6237 { 6238 bool if_running = netif_running(vsi->netdev); 6239 int ret; 6240 6241 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6242 ret = ice_down(vsi); 6243 if (ret) { 6244 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6245 return ret; 6246 } 6247 } 6248 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6249 if (ret) 6250 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6251 if (if_running) 6252 ret = ice_up(vsi); 6253 6254 return ret; 6255 } 6256 6257 /** 6258 * ice_set_features - set the netdev feature flags 6259 * @netdev: ptr to the netdev being adjusted 6260 * @features: the feature set that the stack is suggesting 6261 */ 6262 static int 6263 ice_set_features(struct net_device *netdev, netdev_features_t features) 6264 { 6265 netdev_features_t changed = netdev->features ^ features; 6266 struct ice_netdev_priv *np = netdev_priv(netdev); 6267 struct ice_vsi *vsi = np->vsi; 6268 struct ice_pf *pf = vsi->back; 6269 int ret = 0; 6270 6271 /* Don't set any netdev advanced features with device in Safe Mode */ 6272 if (ice_is_safe_mode(pf)) { 6273 dev_err(ice_pf_to_dev(pf), 6274 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6275 return ret; 6276 } 6277 6278 /* Do not change setting during reset */ 6279 if (ice_is_reset_in_progress(pf->state)) { 6280 dev_err(ice_pf_to_dev(pf), 6281 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6282 return -EBUSY; 6283 } 6284 6285 /* Multiple features can be changed in one call so keep features in 6286 * separate if/else statements to guarantee each feature is checked 6287 */ 6288 if (changed & NETIF_F_RXHASH) 6289 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6290 6291 ret = ice_set_vlan_features(netdev, features); 6292 if (ret) 6293 return ret; 6294 6295 /* Turn on receive of FCS aka CRC, and after setting this 6296 * flag the packet data will have the 4 byte CRC appended 6297 */ 6298 if (changed & NETIF_F_RXFCS) { 6299 if ((features & NETIF_F_RXFCS) && 6300 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6301 dev_err(ice_pf_to_dev(vsi->back), 6302 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6303 return -EIO; 6304 } 6305 6306 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6307 ret = ice_down_up(vsi); 6308 if (ret) 6309 return ret; 6310 } 6311 6312 if (changed & NETIF_F_NTUPLE) { 6313 bool ena = !!(features & NETIF_F_NTUPLE); 6314 6315 ice_vsi_manage_fdir(vsi, ena); 6316 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6317 } 6318 6319 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6320 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6321 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6322 return -EACCES; 6323 } 6324 6325 if (changed & NETIF_F_HW_TC) { 6326 bool ena = !!(features & NETIF_F_HW_TC); 6327 6328 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6329 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6330 } 6331 6332 if (changed & NETIF_F_LOOPBACK) 6333 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6334 6335 return ret; 6336 } 6337 6338 /** 6339 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6340 * @vsi: VSI to setup VLAN properties for 6341 */ 6342 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6343 { 6344 int err; 6345 6346 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6347 if (err) 6348 return err; 6349 6350 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6351 if (err) 6352 return err; 6353 6354 return ice_vsi_add_vlan_zero(vsi); 6355 } 6356 6357 /** 6358 * ice_vsi_cfg_lan - Setup the VSI lan related config 6359 * @vsi: the VSI being configured 6360 * 6361 * Return 0 on success and negative value on error 6362 */ 6363 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6364 { 6365 int err; 6366 6367 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6368 ice_set_rx_mode(vsi->netdev); 6369 6370 err = ice_vsi_vlan_setup(vsi); 6371 if (err) 6372 return err; 6373 } 6374 ice_vsi_cfg_dcb_rings(vsi); 6375 6376 err = ice_vsi_cfg_lan_txqs(vsi); 6377 if (!err && ice_is_xdp_ena_vsi(vsi)) 6378 err = ice_vsi_cfg_xdp_txqs(vsi); 6379 if (!err) 6380 err = ice_vsi_cfg_rxqs(vsi); 6381 6382 return err; 6383 } 6384 6385 /* THEORY OF MODERATION: 6386 * The ice driver hardware works differently than the hardware that DIMLIB was 6387 * originally made for. ice hardware doesn't have packet count limits that 6388 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6389 * which is hard-coded to a limit of 250,000 ints/second. 6390 * If not using dynamic moderation, the INTRL value can be modified 6391 * by ethtool rx-usecs-high. 6392 */ 6393 struct ice_dim { 6394 /* the throttle rate for interrupts, basically worst case delay before 6395 * an initial interrupt fires, value is stored in microseconds. 6396 */ 6397 u16 itr; 6398 }; 6399 6400 /* Make a different profile for Rx that doesn't allow quite so aggressive 6401 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6402 * second. 6403 */ 6404 static const struct ice_dim rx_profile[] = { 6405 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6406 {8}, /* 125,000 ints/s */ 6407 {16}, /* 62,500 ints/s */ 6408 {62}, /* 16,129 ints/s */ 6409 {126} /* 7,936 ints/s */ 6410 }; 6411 6412 /* The transmit profile, which has the same sorts of values 6413 * as the previous struct 6414 */ 6415 static const struct ice_dim tx_profile[] = { 6416 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6417 {8}, /* 125,000 ints/s */ 6418 {40}, /* 16,125 ints/s */ 6419 {128}, /* 7,812 ints/s */ 6420 {256} /* 3,906 ints/s */ 6421 }; 6422 6423 static void ice_tx_dim_work(struct work_struct *work) 6424 { 6425 struct ice_ring_container *rc; 6426 struct dim *dim; 6427 u16 itr; 6428 6429 dim = container_of(work, struct dim, work); 6430 rc = dim->priv; 6431 6432 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6433 6434 /* look up the values in our local table */ 6435 itr = tx_profile[dim->profile_ix].itr; 6436 6437 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6438 ice_write_itr(rc, itr); 6439 6440 dim->state = DIM_START_MEASURE; 6441 } 6442 6443 static void ice_rx_dim_work(struct work_struct *work) 6444 { 6445 struct ice_ring_container *rc; 6446 struct dim *dim; 6447 u16 itr; 6448 6449 dim = container_of(work, struct dim, work); 6450 rc = dim->priv; 6451 6452 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6453 6454 /* look up the values in our local table */ 6455 itr = rx_profile[dim->profile_ix].itr; 6456 6457 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6458 ice_write_itr(rc, itr); 6459 6460 dim->state = DIM_START_MEASURE; 6461 } 6462 6463 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6464 6465 /** 6466 * ice_init_moderation - set up interrupt moderation 6467 * @q_vector: the vector containing rings to be configured 6468 * 6469 * Set up interrupt moderation registers, with the intent to do the right thing 6470 * when called from reset or from probe, and whether or not dynamic moderation 6471 * is enabled or not. Take special care to write all the registers in both 6472 * dynamic moderation mode or not in order to make sure hardware is in a known 6473 * state. 6474 */ 6475 static void ice_init_moderation(struct ice_q_vector *q_vector) 6476 { 6477 struct ice_ring_container *rc; 6478 bool tx_dynamic, rx_dynamic; 6479 6480 rc = &q_vector->tx; 6481 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6482 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6483 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6484 rc->dim.priv = rc; 6485 tx_dynamic = ITR_IS_DYNAMIC(rc); 6486 6487 /* set the initial TX ITR to match the above */ 6488 ice_write_itr(rc, tx_dynamic ? 6489 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6490 6491 rc = &q_vector->rx; 6492 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6493 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6494 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6495 rc->dim.priv = rc; 6496 rx_dynamic = ITR_IS_DYNAMIC(rc); 6497 6498 /* set the initial RX ITR to match the above */ 6499 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6500 rc->itr_setting); 6501 6502 ice_set_q_vector_intrl(q_vector); 6503 } 6504 6505 /** 6506 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6507 * @vsi: the VSI being configured 6508 */ 6509 static void ice_napi_enable_all(struct ice_vsi *vsi) 6510 { 6511 int q_idx; 6512 6513 if (!vsi->netdev) 6514 return; 6515 6516 ice_for_each_q_vector(vsi, q_idx) { 6517 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6518 6519 ice_init_moderation(q_vector); 6520 6521 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6522 napi_enable(&q_vector->napi); 6523 } 6524 } 6525 6526 /** 6527 * ice_up_complete - Finish the last steps of bringing up a connection 6528 * @vsi: The VSI being configured 6529 * 6530 * Return 0 on success and negative value on error 6531 */ 6532 static int ice_up_complete(struct ice_vsi *vsi) 6533 { 6534 struct ice_pf *pf = vsi->back; 6535 int err; 6536 6537 ice_vsi_cfg_msix(vsi); 6538 6539 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6540 * Tx queue group list was configured and the context bits were 6541 * programmed using ice_vsi_cfg_txqs 6542 */ 6543 err = ice_vsi_start_all_rx_rings(vsi); 6544 if (err) 6545 return err; 6546 6547 clear_bit(ICE_VSI_DOWN, vsi->state); 6548 ice_napi_enable_all(vsi); 6549 ice_vsi_ena_irq(vsi); 6550 6551 if (vsi->port_info && 6552 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6553 vsi->netdev && vsi->type == ICE_VSI_PF) { 6554 ice_print_link_msg(vsi, true); 6555 netif_tx_start_all_queues(vsi->netdev); 6556 netif_carrier_on(vsi->netdev); 6557 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6558 } 6559 6560 /* Perform an initial read of the statistics registers now to 6561 * set the baseline so counters are ready when interface is up 6562 */ 6563 ice_update_eth_stats(vsi); 6564 6565 if (vsi->type == ICE_VSI_PF) 6566 ice_service_task_schedule(pf); 6567 6568 return 0; 6569 } 6570 6571 /** 6572 * ice_up - Bring the connection back up after being down 6573 * @vsi: VSI being configured 6574 */ 6575 int ice_up(struct ice_vsi *vsi) 6576 { 6577 int err; 6578 6579 err = ice_vsi_cfg_lan(vsi); 6580 if (!err) 6581 err = ice_up_complete(vsi); 6582 6583 return err; 6584 } 6585 6586 /** 6587 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6588 * @syncp: pointer to u64_stats_sync 6589 * @stats: stats that pkts and bytes count will be taken from 6590 * @pkts: packets stats counter 6591 * @bytes: bytes stats counter 6592 * 6593 * This function fetches stats from the ring considering the atomic operations 6594 * that needs to be performed to read u64 values in 32 bit machine. 6595 */ 6596 void 6597 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6598 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6599 { 6600 unsigned int start; 6601 6602 do { 6603 start = u64_stats_fetch_begin(syncp); 6604 *pkts = stats.pkts; 6605 *bytes = stats.bytes; 6606 } while (u64_stats_fetch_retry(syncp, start)); 6607 } 6608 6609 /** 6610 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6611 * @vsi: the VSI to be updated 6612 * @vsi_stats: the stats struct to be updated 6613 * @rings: rings to work on 6614 * @count: number of rings 6615 */ 6616 static void 6617 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6618 struct rtnl_link_stats64 *vsi_stats, 6619 struct ice_tx_ring **rings, u16 count) 6620 { 6621 u16 i; 6622 6623 for (i = 0; i < count; i++) { 6624 struct ice_tx_ring *ring; 6625 u64 pkts = 0, bytes = 0; 6626 6627 ring = READ_ONCE(rings[i]); 6628 if (!ring || !ring->ring_stats) 6629 continue; 6630 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6631 ring->ring_stats->stats, &pkts, 6632 &bytes); 6633 vsi_stats->tx_packets += pkts; 6634 vsi_stats->tx_bytes += bytes; 6635 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6636 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6637 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6638 } 6639 } 6640 6641 /** 6642 * ice_update_vsi_ring_stats - Update VSI stats counters 6643 * @vsi: the VSI to be updated 6644 */ 6645 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6646 { 6647 struct rtnl_link_stats64 *net_stats, *stats_prev; 6648 struct rtnl_link_stats64 *vsi_stats; 6649 u64 pkts, bytes; 6650 int i; 6651 6652 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6653 if (!vsi_stats) 6654 return; 6655 6656 /* reset non-netdev (extended) stats */ 6657 vsi->tx_restart = 0; 6658 vsi->tx_busy = 0; 6659 vsi->tx_linearize = 0; 6660 vsi->rx_buf_failed = 0; 6661 vsi->rx_page_failed = 0; 6662 6663 rcu_read_lock(); 6664 6665 /* update Tx rings counters */ 6666 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6667 vsi->num_txq); 6668 6669 /* update Rx rings counters */ 6670 ice_for_each_rxq(vsi, i) { 6671 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6672 struct ice_ring_stats *ring_stats; 6673 6674 ring_stats = ring->ring_stats; 6675 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6676 ring_stats->stats, &pkts, 6677 &bytes); 6678 vsi_stats->rx_packets += pkts; 6679 vsi_stats->rx_bytes += bytes; 6680 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6681 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6682 } 6683 6684 /* update XDP Tx rings counters */ 6685 if (ice_is_xdp_ena_vsi(vsi)) 6686 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6687 vsi->num_xdp_txq); 6688 6689 rcu_read_unlock(); 6690 6691 net_stats = &vsi->net_stats; 6692 stats_prev = &vsi->net_stats_prev; 6693 6694 /* clear prev counters after reset */ 6695 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6696 vsi_stats->rx_packets < stats_prev->rx_packets) { 6697 stats_prev->tx_packets = 0; 6698 stats_prev->tx_bytes = 0; 6699 stats_prev->rx_packets = 0; 6700 stats_prev->rx_bytes = 0; 6701 } 6702 6703 /* update netdev counters */ 6704 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6705 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6706 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6707 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6708 6709 stats_prev->tx_packets = vsi_stats->tx_packets; 6710 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6711 stats_prev->rx_packets = vsi_stats->rx_packets; 6712 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6713 6714 kfree(vsi_stats); 6715 } 6716 6717 /** 6718 * ice_update_vsi_stats - Update VSI stats counters 6719 * @vsi: the VSI to be updated 6720 */ 6721 void ice_update_vsi_stats(struct ice_vsi *vsi) 6722 { 6723 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6724 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6725 struct ice_pf *pf = vsi->back; 6726 6727 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6728 test_bit(ICE_CFG_BUSY, pf->state)) 6729 return; 6730 6731 /* get stats as recorded by Tx/Rx rings */ 6732 ice_update_vsi_ring_stats(vsi); 6733 6734 /* get VSI stats as recorded by the hardware */ 6735 ice_update_eth_stats(vsi); 6736 6737 cur_ns->tx_errors = cur_es->tx_errors; 6738 cur_ns->rx_dropped = cur_es->rx_discards; 6739 cur_ns->tx_dropped = cur_es->tx_discards; 6740 cur_ns->multicast = cur_es->rx_multicast; 6741 6742 /* update some more netdev stats if this is main VSI */ 6743 if (vsi->type == ICE_VSI_PF) { 6744 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6745 cur_ns->rx_errors = pf->stats.crc_errors + 6746 pf->stats.illegal_bytes + 6747 pf->stats.rx_len_errors + 6748 pf->stats.rx_undersize + 6749 pf->hw_csum_rx_error + 6750 pf->stats.rx_jabber + 6751 pf->stats.rx_fragments + 6752 pf->stats.rx_oversize; 6753 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6754 /* record drops from the port level */ 6755 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6756 } 6757 } 6758 6759 /** 6760 * ice_update_pf_stats - Update PF port stats counters 6761 * @pf: PF whose stats needs to be updated 6762 */ 6763 void ice_update_pf_stats(struct ice_pf *pf) 6764 { 6765 struct ice_hw_port_stats *prev_ps, *cur_ps; 6766 struct ice_hw *hw = &pf->hw; 6767 u16 fd_ctr_base; 6768 u8 port; 6769 6770 port = hw->port_info->lport; 6771 prev_ps = &pf->stats_prev; 6772 cur_ps = &pf->stats; 6773 6774 if (ice_is_reset_in_progress(pf->state)) 6775 pf->stat_prev_loaded = false; 6776 6777 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6778 &prev_ps->eth.rx_bytes, 6779 &cur_ps->eth.rx_bytes); 6780 6781 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6782 &prev_ps->eth.rx_unicast, 6783 &cur_ps->eth.rx_unicast); 6784 6785 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6786 &prev_ps->eth.rx_multicast, 6787 &cur_ps->eth.rx_multicast); 6788 6789 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6790 &prev_ps->eth.rx_broadcast, 6791 &cur_ps->eth.rx_broadcast); 6792 6793 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6794 &prev_ps->eth.rx_discards, 6795 &cur_ps->eth.rx_discards); 6796 6797 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6798 &prev_ps->eth.tx_bytes, 6799 &cur_ps->eth.tx_bytes); 6800 6801 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6802 &prev_ps->eth.tx_unicast, 6803 &cur_ps->eth.tx_unicast); 6804 6805 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6806 &prev_ps->eth.tx_multicast, 6807 &cur_ps->eth.tx_multicast); 6808 6809 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6810 &prev_ps->eth.tx_broadcast, 6811 &cur_ps->eth.tx_broadcast); 6812 6813 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6814 &prev_ps->tx_dropped_link_down, 6815 &cur_ps->tx_dropped_link_down); 6816 6817 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6818 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6819 6820 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6821 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6822 6823 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6824 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6825 6826 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6827 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6828 6829 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6830 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6831 6832 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6833 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6834 6835 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6836 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6837 6838 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6839 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6840 6841 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6842 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6843 6844 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6845 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6846 6847 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6848 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6849 6850 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6851 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6852 6853 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6854 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6855 6856 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6857 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6858 6859 fd_ctr_base = hw->fd_ctr_base; 6860 6861 ice_stat_update40(hw, 6862 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6863 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6864 &cur_ps->fd_sb_match); 6865 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6866 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6867 6868 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6869 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6870 6871 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6872 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6873 6874 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6875 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6876 6877 ice_update_dcb_stats(pf); 6878 6879 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6880 &prev_ps->crc_errors, &cur_ps->crc_errors); 6881 6882 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6883 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6884 6885 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6886 &prev_ps->mac_local_faults, 6887 &cur_ps->mac_local_faults); 6888 6889 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6890 &prev_ps->mac_remote_faults, 6891 &cur_ps->mac_remote_faults); 6892 6893 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6894 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6895 6896 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6897 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6898 6899 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6900 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6901 6902 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6903 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6904 6905 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6906 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6907 6908 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6909 6910 pf->stat_prev_loaded = true; 6911 } 6912 6913 /** 6914 * ice_get_stats64 - get statistics for network device structure 6915 * @netdev: network interface device structure 6916 * @stats: main device statistics structure 6917 */ 6918 static 6919 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6920 { 6921 struct ice_netdev_priv *np = netdev_priv(netdev); 6922 struct rtnl_link_stats64 *vsi_stats; 6923 struct ice_vsi *vsi = np->vsi; 6924 6925 vsi_stats = &vsi->net_stats; 6926 6927 if (!vsi->num_txq || !vsi->num_rxq) 6928 return; 6929 6930 /* netdev packet/byte stats come from ring counter. These are obtained 6931 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6932 * But, only call the update routine and read the registers if VSI is 6933 * not down. 6934 */ 6935 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6936 ice_update_vsi_ring_stats(vsi); 6937 stats->tx_packets = vsi_stats->tx_packets; 6938 stats->tx_bytes = vsi_stats->tx_bytes; 6939 stats->rx_packets = vsi_stats->rx_packets; 6940 stats->rx_bytes = vsi_stats->rx_bytes; 6941 6942 /* The rest of the stats can be read from the hardware but instead we 6943 * just return values that the watchdog task has already obtained from 6944 * the hardware. 6945 */ 6946 stats->multicast = vsi_stats->multicast; 6947 stats->tx_errors = vsi_stats->tx_errors; 6948 stats->tx_dropped = vsi_stats->tx_dropped; 6949 stats->rx_errors = vsi_stats->rx_errors; 6950 stats->rx_dropped = vsi_stats->rx_dropped; 6951 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6952 stats->rx_length_errors = vsi_stats->rx_length_errors; 6953 } 6954 6955 /** 6956 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6957 * @vsi: VSI having NAPI disabled 6958 */ 6959 static void ice_napi_disable_all(struct ice_vsi *vsi) 6960 { 6961 int q_idx; 6962 6963 if (!vsi->netdev) 6964 return; 6965 6966 ice_for_each_q_vector(vsi, q_idx) { 6967 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6968 6969 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6970 napi_disable(&q_vector->napi); 6971 6972 cancel_work_sync(&q_vector->tx.dim.work); 6973 cancel_work_sync(&q_vector->rx.dim.work); 6974 } 6975 } 6976 6977 /** 6978 * ice_down - Shutdown the connection 6979 * @vsi: The VSI being stopped 6980 * 6981 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6982 */ 6983 int ice_down(struct ice_vsi *vsi) 6984 { 6985 int i, tx_err, rx_err, vlan_err = 0; 6986 6987 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6988 6989 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6990 vlan_err = ice_vsi_del_vlan_zero(vsi); 6991 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6992 netif_carrier_off(vsi->netdev); 6993 netif_tx_disable(vsi->netdev); 6994 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6995 ice_eswitch_stop_all_tx_queues(vsi->back); 6996 } 6997 6998 ice_vsi_dis_irq(vsi); 6999 7000 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7001 if (tx_err) 7002 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7003 vsi->vsi_num, tx_err); 7004 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7005 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7006 if (tx_err) 7007 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7008 vsi->vsi_num, tx_err); 7009 } 7010 7011 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7012 if (rx_err) 7013 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7014 vsi->vsi_num, rx_err); 7015 7016 ice_napi_disable_all(vsi); 7017 7018 ice_for_each_txq(vsi, i) 7019 ice_clean_tx_ring(vsi->tx_rings[i]); 7020 7021 if (ice_is_xdp_ena_vsi(vsi)) 7022 ice_for_each_xdp_txq(vsi, i) 7023 ice_clean_tx_ring(vsi->xdp_rings[i]); 7024 7025 ice_for_each_rxq(vsi, i) 7026 ice_clean_rx_ring(vsi->rx_rings[i]); 7027 7028 if (tx_err || rx_err || vlan_err) { 7029 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7030 vsi->vsi_num, vsi->vsw->sw_id); 7031 return -EIO; 7032 } 7033 7034 return 0; 7035 } 7036 7037 /** 7038 * ice_down_up - shutdown the VSI connection and bring it up 7039 * @vsi: the VSI to be reconnected 7040 */ 7041 int ice_down_up(struct ice_vsi *vsi) 7042 { 7043 int ret; 7044 7045 /* if DOWN already set, nothing to do */ 7046 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7047 return 0; 7048 7049 ret = ice_down(vsi); 7050 if (ret) 7051 return ret; 7052 7053 ret = ice_up(vsi); 7054 if (ret) { 7055 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7056 return ret; 7057 } 7058 7059 return 0; 7060 } 7061 7062 /** 7063 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7064 * @vsi: VSI having resources allocated 7065 * 7066 * Return 0 on success, negative on failure 7067 */ 7068 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7069 { 7070 int i, err = 0; 7071 7072 if (!vsi->num_txq) { 7073 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7074 vsi->vsi_num); 7075 return -EINVAL; 7076 } 7077 7078 ice_for_each_txq(vsi, i) { 7079 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7080 7081 if (!ring) 7082 return -EINVAL; 7083 7084 if (vsi->netdev) 7085 ring->netdev = vsi->netdev; 7086 err = ice_setup_tx_ring(ring); 7087 if (err) 7088 break; 7089 } 7090 7091 return err; 7092 } 7093 7094 /** 7095 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7096 * @vsi: VSI having resources allocated 7097 * 7098 * Return 0 on success, negative on failure 7099 */ 7100 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7101 { 7102 int i, err = 0; 7103 7104 if (!vsi->num_rxq) { 7105 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7106 vsi->vsi_num); 7107 return -EINVAL; 7108 } 7109 7110 ice_for_each_rxq(vsi, i) { 7111 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7112 7113 if (!ring) 7114 return -EINVAL; 7115 7116 if (vsi->netdev) 7117 ring->netdev = vsi->netdev; 7118 err = ice_setup_rx_ring(ring); 7119 if (err) 7120 break; 7121 } 7122 7123 return err; 7124 } 7125 7126 /** 7127 * ice_vsi_open_ctrl - open control VSI for use 7128 * @vsi: the VSI to open 7129 * 7130 * Initialization of the Control VSI 7131 * 7132 * Returns 0 on success, negative value on error 7133 */ 7134 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7135 { 7136 char int_name[ICE_INT_NAME_STR_LEN]; 7137 struct ice_pf *pf = vsi->back; 7138 struct device *dev; 7139 int err; 7140 7141 dev = ice_pf_to_dev(pf); 7142 /* allocate descriptors */ 7143 err = ice_vsi_setup_tx_rings(vsi); 7144 if (err) 7145 goto err_setup_tx; 7146 7147 err = ice_vsi_setup_rx_rings(vsi); 7148 if (err) 7149 goto err_setup_rx; 7150 7151 err = ice_vsi_cfg_lan(vsi); 7152 if (err) 7153 goto err_setup_rx; 7154 7155 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7156 dev_driver_string(dev), dev_name(dev)); 7157 err = ice_vsi_req_irq_msix(vsi, int_name); 7158 if (err) 7159 goto err_setup_rx; 7160 7161 ice_vsi_cfg_msix(vsi); 7162 7163 err = ice_vsi_start_all_rx_rings(vsi); 7164 if (err) 7165 goto err_up_complete; 7166 7167 clear_bit(ICE_VSI_DOWN, vsi->state); 7168 ice_vsi_ena_irq(vsi); 7169 7170 return 0; 7171 7172 err_up_complete: 7173 ice_down(vsi); 7174 err_setup_rx: 7175 ice_vsi_free_rx_rings(vsi); 7176 err_setup_tx: 7177 ice_vsi_free_tx_rings(vsi); 7178 7179 return err; 7180 } 7181 7182 /** 7183 * ice_vsi_open - Called when a network interface is made active 7184 * @vsi: the VSI to open 7185 * 7186 * Initialization of the VSI 7187 * 7188 * Returns 0 on success, negative value on error 7189 */ 7190 int ice_vsi_open(struct ice_vsi *vsi) 7191 { 7192 char int_name[ICE_INT_NAME_STR_LEN]; 7193 struct ice_pf *pf = vsi->back; 7194 int err; 7195 7196 /* allocate descriptors */ 7197 err = ice_vsi_setup_tx_rings(vsi); 7198 if (err) 7199 goto err_setup_tx; 7200 7201 err = ice_vsi_setup_rx_rings(vsi); 7202 if (err) 7203 goto err_setup_rx; 7204 7205 err = ice_vsi_cfg_lan(vsi); 7206 if (err) 7207 goto err_setup_rx; 7208 7209 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7210 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7211 err = ice_vsi_req_irq_msix(vsi, int_name); 7212 if (err) 7213 goto err_setup_rx; 7214 7215 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7216 7217 if (vsi->type == ICE_VSI_PF) { 7218 /* Notify the stack of the actual queue counts. */ 7219 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7220 if (err) 7221 goto err_set_qs; 7222 7223 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7224 if (err) 7225 goto err_set_qs; 7226 } 7227 7228 err = ice_up_complete(vsi); 7229 if (err) 7230 goto err_up_complete; 7231 7232 return 0; 7233 7234 err_up_complete: 7235 ice_down(vsi); 7236 err_set_qs: 7237 ice_vsi_free_irq(vsi); 7238 err_setup_rx: 7239 ice_vsi_free_rx_rings(vsi); 7240 err_setup_tx: 7241 ice_vsi_free_tx_rings(vsi); 7242 7243 return err; 7244 } 7245 7246 /** 7247 * ice_vsi_release_all - Delete all VSIs 7248 * @pf: PF from which all VSIs are being removed 7249 */ 7250 static void ice_vsi_release_all(struct ice_pf *pf) 7251 { 7252 int err, i; 7253 7254 if (!pf->vsi) 7255 return; 7256 7257 ice_for_each_vsi(pf, i) { 7258 if (!pf->vsi[i]) 7259 continue; 7260 7261 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7262 continue; 7263 7264 err = ice_vsi_release(pf->vsi[i]); 7265 if (err) 7266 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7267 i, err, pf->vsi[i]->vsi_num); 7268 } 7269 } 7270 7271 /** 7272 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7273 * @pf: pointer to the PF instance 7274 * @type: VSI type to rebuild 7275 * 7276 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7277 */ 7278 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7279 { 7280 struct device *dev = ice_pf_to_dev(pf); 7281 int i, err; 7282 7283 ice_for_each_vsi(pf, i) { 7284 struct ice_vsi *vsi = pf->vsi[i]; 7285 7286 if (!vsi || vsi->type != type) 7287 continue; 7288 7289 /* rebuild the VSI */ 7290 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7291 if (err) { 7292 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7293 err, vsi->idx, ice_vsi_type_str(type)); 7294 return err; 7295 } 7296 7297 /* replay filters for the VSI */ 7298 err = ice_replay_vsi(&pf->hw, vsi->idx); 7299 if (err) { 7300 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7301 err, vsi->idx, ice_vsi_type_str(type)); 7302 return err; 7303 } 7304 7305 /* Re-map HW VSI number, using VSI handle that has been 7306 * previously validated in ice_replay_vsi() call above 7307 */ 7308 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7309 7310 /* enable the VSI */ 7311 err = ice_ena_vsi(vsi, false); 7312 if (err) { 7313 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7314 err, vsi->idx, ice_vsi_type_str(type)); 7315 return err; 7316 } 7317 7318 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7319 ice_vsi_type_str(type)); 7320 } 7321 7322 return 0; 7323 } 7324 7325 /** 7326 * ice_update_pf_netdev_link - Update PF netdev link status 7327 * @pf: pointer to the PF instance 7328 */ 7329 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7330 { 7331 bool link_up; 7332 int i; 7333 7334 ice_for_each_vsi(pf, i) { 7335 struct ice_vsi *vsi = pf->vsi[i]; 7336 7337 if (!vsi || vsi->type != ICE_VSI_PF) 7338 return; 7339 7340 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7341 if (link_up) { 7342 netif_carrier_on(pf->vsi[i]->netdev); 7343 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7344 } else { 7345 netif_carrier_off(pf->vsi[i]->netdev); 7346 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7347 } 7348 } 7349 } 7350 7351 /** 7352 * ice_rebuild - rebuild after reset 7353 * @pf: PF to rebuild 7354 * @reset_type: type of reset 7355 * 7356 * Do not rebuild VF VSI in this flow because that is already handled via 7357 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7358 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7359 * to reset/rebuild all the VF VSI twice. 7360 */ 7361 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7362 { 7363 struct device *dev = ice_pf_to_dev(pf); 7364 struct ice_hw *hw = &pf->hw; 7365 bool dvm; 7366 int err; 7367 7368 if (test_bit(ICE_DOWN, pf->state)) 7369 goto clear_recovery; 7370 7371 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7372 7373 #define ICE_EMP_RESET_SLEEP_MS 5000 7374 if (reset_type == ICE_RESET_EMPR) { 7375 /* If an EMP reset has occurred, any previously pending flash 7376 * update will have completed. We no longer know whether or 7377 * not the NVM update EMP reset is restricted. 7378 */ 7379 pf->fw_emp_reset_disabled = false; 7380 7381 msleep(ICE_EMP_RESET_SLEEP_MS); 7382 } 7383 7384 err = ice_init_all_ctrlq(hw); 7385 if (err) { 7386 dev_err(dev, "control queues init failed %d\n", err); 7387 goto err_init_ctrlq; 7388 } 7389 7390 /* if DDP was previously loaded successfully */ 7391 if (!ice_is_safe_mode(pf)) { 7392 /* reload the SW DB of filter tables */ 7393 if (reset_type == ICE_RESET_PFR) 7394 ice_fill_blk_tbls(hw); 7395 else 7396 /* Reload DDP Package after CORER/GLOBR reset */ 7397 ice_load_pkg(NULL, pf); 7398 } 7399 7400 err = ice_clear_pf_cfg(hw); 7401 if (err) { 7402 dev_err(dev, "clear PF configuration failed %d\n", err); 7403 goto err_init_ctrlq; 7404 } 7405 7406 ice_clear_pxe_mode(hw); 7407 7408 err = ice_init_nvm(hw); 7409 if (err) { 7410 dev_err(dev, "ice_init_nvm failed %d\n", err); 7411 goto err_init_ctrlq; 7412 } 7413 7414 err = ice_get_caps(hw); 7415 if (err) { 7416 dev_err(dev, "ice_get_caps failed %d\n", err); 7417 goto err_init_ctrlq; 7418 } 7419 7420 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7421 if (err) { 7422 dev_err(dev, "set_mac_cfg failed %d\n", err); 7423 goto err_init_ctrlq; 7424 } 7425 7426 dvm = ice_is_dvm_ena(hw); 7427 7428 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7429 if (err) 7430 goto err_init_ctrlq; 7431 7432 err = ice_sched_init_port(hw->port_info); 7433 if (err) 7434 goto err_sched_init_port; 7435 7436 /* start misc vector */ 7437 err = ice_req_irq_msix_misc(pf); 7438 if (err) { 7439 dev_err(dev, "misc vector setup failed: %d\n", err); 7440 goto err_sched_init_port; 7441 } 7442 7443 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7444 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7445 if (!rd32(hw, PFQF_FD_SIZE)) { 7446 u16 unused, guar, b_effort; 7447 7448 guar = hw->func_caps.fd_fltr_guar; 7449 b_effort = hw->func_caps.fd_fltr_best_effort; 7450 7451 /* force guaranteed filter pool for PF */ 7452 ice_alloc_fd_guar_item(hw, &unused, guar); 7453 /* force shared filter pool for PF */ 7454 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7455 } 7456 } 7457 7458 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7459 ice_dcb_rebuild(pf); 7460 7461 /* If the PF previously had enabled PTP, PTP init needs to happen before 7462 * the VSI rebuild. If not, this causes the PTP link status events to 7463 * fail. 7464 */ 7465 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7466 ice_ptp_reset(pf); 7467 7468 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7469 ice_gnss_init(pf); 7470 7471 /* rebuild PF VSI */ 7472 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7473 if (err) { 7474 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7475 goto err_vsi_rebuild; 7476 } 7477 7478 err = ice_eswitch_rebuild(pf); 7479 if (err) { 7480 dev_err(dev, "Switchdev rebuild failed: %d\n", err); 7481 goto err_vsi_rebuild; 7482 } 7483 7484 if (reset_type == ICE_RESET_PFR) { 7485 err = ice_rebuild_channels(pf); 7486 if (err) { 7487 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7488 err); 7489 goto err_vsi_rebuild; 7490 } 7491 } 7492 7493 /* If Flow Director is active */ 7494 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7495 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7496 if (err) { 7497 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7498 goto err_vsi_rebuild; 7499 } 7500 7501 /* replay HW Flow Director recipes */ 7502 if (hw->fdir_prof) 7503 ice_fdir_replay_flows(hw); 7504 7505 /* replay Flow Director filters */ 7506 ice_fdir_replay_fltrs(pf); 7507 7508 ice_rebuild_arfs(pf); 7509 } 7510 7511 ice_update_pf_netdev_link(pf); 7512 7513 /* tell the firmware we are up */ 7514 err = ice_send_version(pf); 7515 if (err) { 7516 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7517 err); 7518 goto err_vsi_rebuild; 7519 } 7520 7521 ice_replay_post(hw); 7522 7523 /* if we get here, reset flow is successful */ 7524 clear_bit(ICE_RESET_FAILED, pf->state); 7525 7526 ice_plug_aux_dev(pf); 7527 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7528 ice_lag_rebuild(pf); 7529 7530 /* Restore timestamp mode settings after VSI rebuild */ 7531 ice_ptp_restore_timestamp_mode(pf); 7532 return; 7533 7534 err_vsi_rebuild: 7535 err_sched_init_port: 7536 ice_sched_cleanup_all(hw); 7537 err_init_ctrlq: 7538 ice_shutdown_all_ctrlq(hw); 7539 set_bit(ICE_RESET_FAILED, pf->state); 7540 clear_recovery: 7541 /* set this bit in PF state to control service task scheduling */ 7542 set_bit(ICE_NEEDS_RESTART, pf->state); 7543 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7544 } 7545 7546 /** 7547 * ice_change_mtu - NDO callback to change the MTU 7548 * @netdev: network interface device structure 7549 * @new_mtu: new value for maximum frame size 7550 * 7551 * Returns 0 on success, negative on failure 7552 */ 7553 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7554 { 7555 struct ice_netdev_priv *np = netdev_priv(netdev); 7556 struct ice_vsi *vsi = np->vsi; 7557 struct ice_pf *pf = vsi->back; 7558 struct bpf_prog *prog; 7559 u8 count = 0; 7560 int err = 0; 7561 7562 if (new_mtu == (int)netdev->mtu) { 7563 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7564 return 0; 7565 } 7566 7567 prog = vsi->xdp_prog; 7568 if (prog && !prog->aux->xdp_has_frags) { 7569 int frame_size = ice_max_xdp_frame_size(vsi); 7570 7571 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7572 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7573 frame_size - ICE_ETH_PKT_HDR_PAD); 7574 return -EINVAL; 7575 } 7576 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7577 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7578 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7579 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7580 return -EINVAL; 7581 } 7582 } 7583 7584 /* if a reset is in progress, wait for some time for it to complete */ 7585 do { 7586 if (ice_is_reset_in_progress(pf->state)) { 7587 count++; 7588 usleep_range(1000, 2000); 7589 } else { 7590 break; 7591 } 7592 7593 } while (count < 100); 7594 7595 if (count == 100) { 7596 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7597 return -EBUSY; 7598 } 7599 7600 netdev->mtu = (unsigned int)new_mtu; 7601 err = ice_down_up(vsi); 7602 if (err) 7603 return err; 7604 7605 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7606 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7607 7608 return err; 7609 } 7610 7611 /** 7612 * ice_eth_ioctl - Access the hwtstamp interface 7613 * @netdev: network interface device structure 7614 * @ifr: interface request data 7615 * @cmd: ioctl command 7616 */ 7617 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7618 { 7619 struct ice_netdev_priv *np = netdev_priv(netdev); 7620 struct ice_pf *pf = np->vsi->back; 7621 7622 switch (cmd) { 7623 case SIOCGHWTSTAMP: 7624 return ice_ptp_get_ts_config(pf, ifr); 7625 case SIOCSHWTSTAMP: 7626 return ice_ptp_set_ts_config(pf, ifr); 7627 default: 7628 return -EOPNOTSUPP; 7629 } 7630 } 7631 7632 /** 7633 * ice_aq_str - convert AQ err code to a string 7634 * @aq_err: the AQ error code to convert 7635 */ 7636 const char *ice_aq_str(enum ice_aq_err aq_err) 7637 { 7638 switch (aq_err) { 7639 case ICE_AQ_RC_OK: 7640 return "OK"; 7641 case ICE_AQ_RC_EPERM: 7642 return "ICE_AQ_RC_EPERM"; 7643 case ICE_AQ_RC_ENOENT: 7644 return "ICE_AQ_RC_ENOENT"; 7645 case ICE_AQ_RC_ENOMEM: 7646 return "ICE_AQ_RC_ENOMEM"; 7647 case ICE_AQ_RC_EBUSY: 7648 return "ICE_AQ_RC_EBUSY"; 7649 case ICE_AQ_RC_EEXIST: 7650 return "ICE_AQ_RC_EEXIST"; 7651 case ICE_AQ_RC_EINVAL: 7652 return "ICE_AQ_RC_EINVAL"; 7653 case ICE_AQ_RC_ENOSPC: 7654 return "ICE_AQ_RC_ENOSPC"; 7655 case ICE_AQ_RC_ENOSYS: 7656 return "ICE_AQ_RC_ENOSYS"; 7657 case ICE_AQ_RC_EMODE: 7658 return "ICE_AQ_RC_EMODE"; 7659 case ICE_AQ_RC_ENOSEC: 7660 return "ICE_AQ_RC_ENOSEC"; 7661 case ICE_AQ_RC_EBADSIG: 7662 return "ICE_AQ_RC_EBADSIG"; 7663 case ICE_AQ_RC_ESVN: 7664 return "ICE_AQ_RC_ESVN"; 7665 case ICE_AQ_RC_EBADMAN: 7666 return "ICE_AQ_RC_EBADMAN"; 7667 case ICE_AQ_RC_EBADBUF: 7668 return "ICE_AQ_RC_EBADBUF"; 7669 } 7670 7671 return "ICE_AQ_RC_UNKNOWN"; 7672 } 7673 7674 /** 7675 * ice_set_rss_lut - Set RSS LUT 7676 * @vsi: Pointer to VSI structure 7677 * @lut: Lookup table 7678 * @lut_size: Lookup table size 7679 * 7680 * Returns 0 on success, negative on failure 7681 */ 7682 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7683 { 7684 struct ice_aq_get_set_rss_lut_params params = {}; 7685 struct ice_hw *hw = &vsi->back->hw; 7686 int status; 7687 7688 if (!lut) 7689 return -EINVAL; 7690 7691 params.vsi_handle = vsi->idx; 7692 params.lut_size = lut_size; 7693 params.lut_type = vsi->rss_lut_type; 7694 params.lut = lut; 7695 7696 status = ice_aq_set_rss_lut(hw, ¶ms); 7697 if (status) 7698 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7699 status, ice_aq_str(hw->adminq.sq_last_status)); 7700 7701 return status; 7702 } 7703 7704 /** 7705 * ice_set_rss_key - Set RSS key 7706 * @vsi: Pointer to the VSI structure 7707 * @seed: RSS hash seed 7708 * 7709 * Returns 0 on success, negative on failure 7710 */ 7711 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7712 { 7713 struct ice_hw *hw = &vsi->back->hw; 7714 int status; 7715 7716 if (!seed) 7717 return -EINVAL; 7718 7719 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7720 if (status) 7721 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7722 status, ice_aq_str(hw->adminq.sq_last_status)); 7723 7724 return status; 7725 } 7726 7727 /** 7728 * ice_get_rss_lut - Get RSS LUT 7729 * @vsi: Pointer to VSI structure 7730 * @lut: Buffer to store the lookup table entries 7731 * @lut_size: Size of buffer to store the lookup table entries 7732 * 7733 * Returns 0 on success, negative on failure 7734 */ 7735 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7736 { 7737 struct ice_aq_get_set_rss_lut_params params = {}; 7738 struct ice_hw *hw = &vsi->back->hw; 7739 int status; 7740 7741 if (!lut) 7742 return -EINVAL; 7743 7744 params.vsi_handle = vsi->idx; 7745 params.lut_size = lut_size; 7746 params.lut_type = vsi->rss_lut_type; 7747 params.lut = lut; 7748 7749 status = ice_aq_get_rss_lut(hw, ¶ms); 7750 if (status) 7751 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7752 status, ice_aq_str(hw->adminq.sq_last_status)); 7753 7754 return status; 7755 } 7756 7757 /** 7758 * ice_get_rss_key - Get RSS key 7759 * @vsi: Pointer to VSI structure 7760 * @seed: Buffer to store the key in 7761 * 7762 * Returns 0 on success, negative on failure 7763 */ 7764 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7765 { 7766 struct ice_hw *hw = &vsi->back->hw; 7767 int status; 7768 7769 if (!seed) 7770 return -EINVAL; 7771 7772 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7773 if (status) 7774 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7775 status, ice_aq_str(hw->adminq.sq_last_status)); 7776 7777 return status; 7778 } 7779 7780 /** 7781 * ice_set_rss_hfunc - Set RSS HASH function 7782 * @vsi: Pointer to VSI structure 7783 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7784 * 7785 * Returns 0 on success, negative on failure 7786 */ 7787 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7788 { 7789 struct ice_hw *hw = &vsi->back->hw; 7790 struct ice_vsi_ctx *ctx; 7791 bool symm; 7792 int err; 7793 7794 if (hfunc == vsi->rss_hfunc) 7795 return 0; 7796 7797 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7798 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7799 return -EOPNOTSUPP; 7800 7801 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7802 if (!ctx) 7803 return -ENOMEM; 7804 7805 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 7806 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 7807 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 7808 ctx->info.q_opt_rss |= 7809 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 7810 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 7811 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 7812 7813 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 7814 if (err) { 7815 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 7816 vsi->vsi_num, err); 7817 } else { 7818 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 7819 vsi->rss_hfunc = hfunc; 7820 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 7821 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 7822 "Symmetric " : ""); 7823 } 7824 kfree(ctx); 7825 if (err) 7826 return err; 7827 7828 /* Fix the symmetry setting for all existing RSS configurations */ 7829 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 7830 return ice_set_rss_cfg_symm(hw, vsi, symm); 7831 } 7832 7833 /** 7834 * ice_bridge_getlink - Get the hardware bridge mode 7835 * @skb: skb buff 7836 * @pid: process ID 7837 * @seq: RTNL message seq 7838 * @dev: the netdev being configured 7839 * @filter_mask: filter mask passed in 7840 * @nlflags: netlink flags passed in 7841 * 7842 * Return the bridge mode (VEB/VEPA) 7843 */ 7844 static int 7845 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7846 struct net_device *dev, u32 filter_mask, int nlflags) 7847 { 7848 struct ice_netdev_priv *np = netdev_priv(dev); 7849 struct ice_vsi *vsi = np->vsi; 7850 struct ice_pf *pf = vsi->back; 7851 u16 bmode; 7852 7853 bmode = pf->first_sw->bridge_mode; 7854 7855 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7856 filter_mask, NULL); 7857 } 7858 7859 /** 7860 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7861 * @vsi: Pointer to VSI structure 7862 * @bmode: Hardware bridge mode (VEB/VEPA) 7863 * 7864 * Returns 0 on success, negative on failure 7865 */ 7866 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7867 { 7868 struct ice_aqc_vsi_props *vsi_props; 7869 struct ice_hw *hw = &vsi->back->hw; 7870 struct ice_vsi_ctx *ctxt; 7871 int ret; 7872 7873 vsi_props = &vsi->info; 7874 7875 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7876 if (!ctxt) 7877 return -ENOMEM; 7878 7879 ctxt->info = vsi->info; 7880 7881 if (bmode == BRIDGE_MODE_VEB) 7882 /* change from VEPA to VEB mode */ 7883 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7884 else 7885 /* change from VEB to VEPA mode */ 7886 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7887 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7888 7889 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7890 if (ret) { 7891 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7892 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7893 goto out; 7894 } 7895 /* Update sw flags for book keeping */ 7896 vsi_props->sw_flags = ctxt->info.sw_flags; 7897 7898 out: 7899 kfree(ctxt); 7900 return ret; 7901 } 7902 7903 /** 7904 * ice_bridge_setlink - Set the hardware bridge mode 7905 * @dev: the netdev being configured 7906 * @nlh: RTNL message 7907 * @flags: bridge setlink flags 7908 * @extack: netlink extended ack 7909 * 7910 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7911 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7912 * not already set for all VSIs connected to this switch. And also update the 7913 * unicast switch filter rules for the corresponding switch of the netdev. 7914 */ 7915 static int 7916 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7917 u16 __always_unused flags, 7918 struct netlink_ext_ack __always_unused *extack) 7919 { 7920 struct ice_netdev_priv *np = netdev_priv(dev); 7921 struct ice_pf *pf = np->vsi->back; 7922 struct nlattr *attr, *br_spec; 7923 struct ice_hw *hw = &pf->hw; 7924 struct ice_sw *pf_sw; 7925 int rem, v, err = 0; 7926 7927 pf_sw = pf->first_sw; 7928 /* find the attribute in the netlink message */ 7929 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7930 7931 nla_for_each_nested(attr, br_spec, rem) { 7932 __u16 mode; 7933 7934 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7935 continue; 7936 mode = nla_get_u16(attr); 7937 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7938 return -EINVAL; 7939 /* Continue if bridge mode is not being flipped */ 7940 if (mode == pf_sw->bridge_mode) 7941 continue; 7942 /* Iterates through the PF VSI list and update the loopback 7943 * mode of the VSI 7944 */ 7945 ice_for_each_vsi(pf, v) { 7946 if (!pf->vsi[v]) 7947 continue; 7948 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7949 if (err) 7950 return err; 7951 } 7952 7953 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7954 /* Update the unicast switch filter rules for the corresponding 7955 * switch of the netdev 7956 */ 7957 err = ice_update_sw_rule_bridge_mode(hw); 7958 if (err) { 7959 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7960 mode, err, 7961 ice_aq_str(hw->adminq.sq_last_status)); 7962 /* revert hw->evb_veb */ 7963 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7964 return err; 7965 } 7966 7967 pf_sw->bridge_mode = mode; 7968 } 7969 7970 return 0; 7971 } 7972 7973 /** 7974 * ice_tx_timeout - Respond to a Tx Hang 7975 * @netdev: network interface device structure 7976 * @txqueue: Tx queue 7977 */ 7978 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7979 { 7980 struct ice_netdev_priv *np = netdev_priv(netdev); 7981 struct ice_tx_ring *tx_ring = NULL; 7982 struct ice_vsi *vsi = np->vsi; 7983 struct ice_pf *pf = vsi->back; 7984 u32 i; 7985 7986 pf->tx_timeout_count++; 7987 7988 /* Check if PFC is enabled for the TC to which the queue belongs 7989 * to. If yes then Tx timeout is not caused by a hung queue, no 7990 * need to reset and rebuild 7991 */ 7992 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7993 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7994 txqueue); 7995 return; 7996 } 7997 7998 /* now that we have an index, find the tx_ring struct */ 7999 ice_for_each_txq(vsi, i) 8000 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8001 if (txqueue == vsi->tx_rings[i]->q_index) { 8002 tx_ring = vsi->tx_rings[i]; 8003 break; 8004 } 8005 8006 /* Reset recovery level if enough time has elapsed after last timeout. 8007 * Also ensure no new reset action happens before next timeout period. 8008 */ 8009 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8010 pf->tx_timeout_recovery_level = 1; 8011 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8012 netdev->watchdog_timeo))) 8013 return; 8014 8015 if (tx_ring) { 8016 struct ice_hw *hw = &pf->hw; 8017 u32 head, val = 0; 8018 8019 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 8020 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 8021 /* Read interrupt register */ 8022 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8023 8024 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8025 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8026 head, tx_ring->next_to_use, val); 8027 } 8028 8029 pf->tx_timeout_last_recovery = jiffies; 8030 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8031 pf->tx_timeout_recovery_level, txqueue); 8032 8033 switch (pf->tx_timeout_recovery_level) { 8034 case 1: 8035 set_bit(ICE_PFR_REQ, pf->state); 8036 break; 8037 case 2: 8038 set_bit(ICE_CORER_REQ, pf->state); 8039 break; 8040 case 3: 8041 set_bit(ICE_GLOBR_REQ, pf->state); 8042 break; 8043 default: 8044 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8045 set_bit(ICE_DOWN, pf->state); 8046 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8047 set_bit(ICE_SERVICE_DIS, pf->state); 8048 break; 8049 } 8050 8051 ice_service_task_schedule(pf); 8052 pf->tx_timeout_recovery_level++; 8053 } 8054 8055 /** 8056 * ice_setup_tc_cls_flower - flower classifier offloads 8057 * @np: net device to configure 8058 * @filter_dev: device on which filter is added 8059 * @cls_flower: offload data 8060 */ 8061 static int 8062 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8063 struct net_device *filter_dev, 8064 struct flow_cls_offload *cls_flower) 8065 { 8066 struct ice_vsi *vsi = np->vsi; 8067 8068 if (cls_flower->common.chain_index) 8069 return -EOPNOTSUPP; 8070 8071 switch (cls_flower->command) { 8072 case FLOW_CLS_REPLACE: 8073 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8074 case FLOW_CLS_DESTROY: 8075 return ice_del_cls_flower(vsi, cls_flower); 8076 default: 8077 return -EINVAL; 8078 } 8079 } 8080 8081 /** 8082 * ice_setup_tc_block_cb - callback handler registered for TC block 8083 * @type: TC SETUP type 8084 * @type_data: TC flower offload data that contains user input 8085 * @cb_priv: netdev private data 8086 */ 8087 static int 8088 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8089 { 8090 struct ice_netdev_priv *np = cb_priv; 8091 8092 switch (type) { 8093 case TC_SETUP_CLSFLOWER: 8094 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8095 type_data); 8096 default: 8097 return -EOPNOTSUPP; 8098 } 8099 } 8100 8101 /** 8102 * ice_validate_mqprio_qopt - Validate TCF input parameters 8103 * @vsi: Pointer to VSI 8104 * @mqprio_qopt: input parameters for mqprio queue configuration 8105 * 8106 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8107 * needed), and make sure user doesn't specify qcount and BW rate limit 8108 * for TCs, which are more than "num_tc" 8109 */ 8110 static int 8111 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8112 struct tc_mqprio_qopt_offload *mqprio_qopt) 8113 { 8114 int non_power_of_2_qcount = 0; 8115 struct ice_pf *pf = vsi->back; 8116 int max_rss_q_cnt = 0; 8117 u64 sum_min_rate = 0; 8118 struct device *dev; 8119 int i, speed; 8120 u8 num_tc; 8121 8122 if (vsi->type != ICE_VSI_PF) 8123 return -EINVAL; 8124 8125 if (mqprio_qopt->qopt.offset[0] != 0 || 8126 mqprio_qopt->qopt.num_tc < 1 || 8127 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8128 return -EINVAL; 8129 8130 dev = ice_pf_to_dev(pf); 8131 vsi->ch_rss_size = 0; 8132 num_tc = mqprio_qopt->qopt.num_tc; 8133 speed = ice_get_link_speed_kbps(vsi); 8134 8135 for (i = 0; num_tc; i++) { 8136 int qcount = mqprio_qopt->qopt.count[i]; 8137 u64 max_rate, min_rate, rem; 8138 8139 if (!qcount) 8140 return -EINVAL; 8141 8142 if (is_power_of_2(qcount)) { 8143 if (non_power_of_2_qcount && 8144 qcount > non_power_of_2_qcount) { 8145 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8146 qcount, non_power_of_2_qcount); 8147 return -EINVAL; 8148 } 8149 if (qcount > max_rss_q_cnt) 8150 max_rss_q_cnt = qcount; 8151 } else { 8152 if (non_power_of_2_qcount && 8153 qcount != non_power_of_2_qcount) { 8154 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8155 qcount, non_power_of_2_qcount); 8156 return -EINVAL; 8157 } 8158 if (qcount < max_rss_q_cnt) { 8159 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8160 qcount, max_rss_q_cnt); 8161 return -EINVAL; 8162 } 8163 max_rss_q_cnt = qcount; 8164 non_power_of_2_qcount = qcount; 8165 } 8166 8167 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8168 * converts the bandwidth rate limit into Bytes/s when 8169 * passing it down to the driver. So convert input bandwidth 8170 * from Bytes/s to Kbps 8171 */ 8172 max_rate = mqprio_qopt->max_rate[i]; 8173 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8174 8175 /* min_rate is minimum guaranteed rate and it can't be zero */ 8176 min_rate = mqprio_qopt->min_rate[i]; 8177 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8178 sum_min_rate += min_rate; 8179 8180 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8181 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8182 min_rate, ICE_MIN_BW_LIMIT); 8183 return -EINVAL; 8184 } 8185 8186 if (max_rate && max_rate > speed) { 8187 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8188 i, max_rate, speed); 8189 return -EINVAL; 8190 } 8191 8192 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8193 if (rem) { 8194 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8195 i, ICE_MIN_BW_LIMIT); 8196 return -EINVAL; 8197 } 8198 8199 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8200 if (rem) { 8201 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8202 i, ICE_MIN_BW_LIMIT); 8203 return -EINVAL; 8204 } 8205 8206 /* min_rate can't be more than max_rate, except when max_rate 8207 * is zero (implies max_rate sought is max line rate). In such 8208 * a case min_rate can be more than max. 8209 */ 8210 if (max_rate && min_rate > max_rate) { 8211 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8212 min_rate, max_rate); 8213 return -EINVAL; 8214 } 8215 8216 if (i >= mqprio_qopt->qopt.num_tc - 1) 8217 break; 8218 if (mqprio_qopt->qopt.offset[i + 1] != 8219 (mqprio_qopt->qopt.offset[i] + qcount)) 8220 return -EINVAL; 8221 } 8222 if (vsi->num_rxq < 8223 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8224 return -EINVAL; 8225 if (vsi->num_txq < 8226 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8227 return -EINVAL; 8228 8229 if (sum_min_rate && sum_min_rate > (u64)speed) { 8230 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8231 sum_min_rate, speed); 8232 return -EINVAL; 8233 } 8234 8235 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8236 vsi->ch_rss_size = max_rss_q_cnt; 8237 8238 return 0; 8239 } 8240 8241 /** 8242 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8243 * @pf: ptr to PF device 8244 * @vsi: ptr to VSI 8245 */ 8246 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8247 { 8248 struct device *dev = ice_pf_to_dev(pf); 8249 bool added = false; 8250 struct ice_hw *hw; 8251 int flow; 8252 8253 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8254 return -EINVAL; 8255 8256 hw = &pf->hw; 8257 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8258 struct ice_fd_hw_prof *prof; 8259 int tun, status; 8260 u64 entry_h; 8261 8262 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8263 hw->fdir_prof[flow]->cnt)) 8264 continue; 8265 8266 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8267 enum ice_flow_priority prio; 8268 8269 /* add this VSI to FDir profile for this flow */ 8270 prio = ICE_FLOW_PRIO_NORMAL; 8271 prof = hw->fdir_prof[flow]; 8272 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8273 prof->prof_id[tun], 8274 prof->vsi_h[0], vsi->idx, 8275 prio, prof->fdir_seg[tun], 8276 &entry_h); 8277 if (status) { 8278 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8279 vsi->idx, flow); 8280 continue; 8281 } 8282 8283 prof->entry_h[prof->cnt][tun] = entry_h; 8284 } 8285 8286 /* store VSI for filter replay and delete */ 8287 prof->vsi_h[prof->cnt] = vsi->idx; 8288 prof->cnt++; 8289 8290 added = true; 8291 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8292 flow); 8293 } 8294 8295 if (!added) 8296 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8297 8298 return 0; 8299 } 8300 8301 /** 8302 * ice_add_channel - add a channel by adding VSI 8303 * @pf: ptr to PF device 8304 * @sw_id: underlying HW switching element ID 8305 * @ch: ptr to channel structure 8306 * 8307 * Add a channel (VSI) using add_vsi and queue_map 8308 */ 8309 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8310 { 8311 struct device *dev = ice_pf_to_dev(pf); 8312 struct ice_vsi *vsi; 8313 8314 if (ch->type != ICE_VSI_CHNL) { 8315 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8316 return -EINVAL; 8317 } 8318 8319 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8320 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8321 dev_err(dev, "create chnl VSI failure\n"); 8322 return -EINVAL; 8323 } 8324 8325 ice_add_vsi_to_fdir(pf, vsi); 8326 8327 ch->sw_id = sw_id; 8328 ch->vsi_num = vsi->vsi_num; 8329 ch->info.mapping_flags = vsi->info.mapping_flags; 8330 ch->ch_vsi = vsi; 8331 /* set the back pointer of channel for newly created VSI */ 8332 vsi->ch = ch; 8333 8334 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8335 sizeof(vsi->info.q_mapping)); 8336 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8337 sizeof(vsi->info.tc_mapping)); 8338 8339 return 0; 8340 } 8341 8342 /** 8343 * ice_chnl_cfg_res 8344 * @vsi: the VSI being setup 8345 * @ch: ptr to channel structure 8346 * 8347 * Configure channel specific resources such as rings, vector. 8348 */ 8349 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8350 { 8351 int i; 8352 8353 for (i = 0; i < ch->num_txq; i++) { 8354 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8355 struct ice_ring_container *rc; 8356 struct ice_tx_ring *tx_ring; 8357 struct ice_rx_ring *rx_ring; 8358 8359 tx_ring = vsi->tx_rings[ch->base_q + i]; 8360 rx_ring = vsi->rx_rings[ch->base_q + i]; 8361 if (!tx_ring || !rx_ring) 8362 continue; 8363 8364 /* setup ring being channel enabled */ 8365 tx_ring->ch = ch; 8366 rx_ring->ch = ch; 8367 8368 /* following code block sets up vector specific attributes */ 8369 tx_q_vector = tx_ring->q_vector; 8370 rx_q_vector = rx_ring->q_vector; 8371 if (!tx_q_vector && !rx_q_vector) 8372 continue; 8373 8374 if (tx_q_vector) { 8375 tx_q_vector->ch = ch; 8376 /* setup Tx and Rx ITR setting if DIM is off */ 8377 rc = &tx_q_vector->tx; 8378 if (!ITR_IS_DYNAMIC(rc)) 8379 ice_write_itr(rc, rc->itr_setting); 8380 } 8381 if (rx_q_vector) { 8382 rx_q_vector->ch = ch; 8383 /* setup Tx and Rx ITR setting if DIM is off */ 8384 rc = &rx_q_vector->rx; 8385 if (!ITR_IS_DYNAMIC(rc)) 8386 ice_write_itr(rc, rc->itr_setting); 8387 } 8388 } 8389 8390 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8391 * GLINT_ITR register would have written to perform in-context 8392 * update, hence perform flush 8393 */ 8394 if (ch->num_txq || ch->num_rxq) 8395 ice_flush(&vsi->back->hw); 8396 } 8397 8398 /** 8399 * ice_cfg_chnl_all_res - configure channel resources 8400 * @vsi: pte to main_vsi 8401 * @ch: ptr to channel structure 8402 * 8403 * This function configures channel specific resources such as flow-director 8404 * counter index, and other resources such as queues, vectors, ITR settings 8405 */ 8406 static void 8407 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8408 { 8409 /* configure channel (aka ADQ) resources such as queues, vectors, 8410 * ITR settings for channel specific vectors and anything else 8411 */ 8412 ice_chnl_cfg_res(vsi, ch); 8413 } 8414 8415 /** 8416 * ice_setup_hw_channel - setup new channel 8417 * @pf: ptr to PF device 8418 * @vsi: the VSI being setup 8419 * @ch: ptr to channel structure 8420 * @sw_id: underlying HW switching element ID 8421 * @type: type of channel to be created (VMDq2/VF) 8422 * 8423 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8424 * and configures Tx rings accordingly 8425 */ 8426 static int 8427 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8428 struct ice_channel *ch, u16 sw_id, u8 type) 8429 { 8430 struct device *dev = ice_pf_to_dev(pf); 8431 int ret; 8432 8433 ch->base_q = vsi->next_base_q; 8434 ch->type = type; 8435 8436 ret = ice_add_channel(pf, sw_id, ch); 8437 if (ret) { 8438 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8439 return ret; 8440 } 8441 8442 /* configure/setup ADQ specific resources */ 8443 ice_cfg_chnl_all_res(vsi, ch); 8444 8445 /* make sure to update the next_base_q so that subsequent channel's 8446 * (aka ADQ) VSI queue map is correct 8447 */ 8448 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8449 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8450 ch->num_rxq); 8451 8452 return 0; 8453 } 8454 8455 /** 8456 * ice_setup_channel - setup new channel using uplink element 8457 * @pf: ptr to PF device 8458 * @vsi: the VSI being setup 8459 * @ch: ptr to channel structure 8460 * 8461 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8462 * and uplink switching element 8463 */ 8464 static bool 8465 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8466 struct ice_channel *ch) 8467 { 8468 struct device *dev = ice_pf_to_dev(pf); 8469 u16 sw_id; 8470 int ret; 8471 8472 if (vsi->type != ICE_VSI_PF) { 8473 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8474 return false; 8475 } 8476 8477 sw_id = pf->first_sw->sw_id; 8478 8479 /* create channel (VSI) */ 8480 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8481 if (ret) { 8482 dev_err(dev, "failed to setup hw_channel\n"); 8483 return false; 8484 } 8485 dev_dbg(dev, "successfully created channel()\n"); 8486 8487 return ch->ch_vsi ? true : false; 8488 } 8489 8490 /** 8491 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8492 * @vsi: VSI to be configured 8493 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8494 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8495 */ 8496 static int 8497 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8498 { 8499 int err; 8500 8501 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8502 if (err) 8503 return err; 8504 8505 return ice_set_max_bw_limit(vsi, max_tx_rate); 8506 } 8507 8508 /** 8509 * ice_create_q_channel - function to create channel 8510 * @vsi: VSI to be configured 8511 * @ch: ptr to channel (it contains channel specific params) 8512 * 8513 * This function creates channel (VSI) using num_queues specified by user, 8514 * reconfigs RSS if needed. 8515 */ 8516 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8517 { 8518 struct ice_pf *pf = vsi->back; 8519 struct device *dev; 8520 8521 if (!ch) 8522 return -EINVAL; 8523 8524 dev = ice_pf_to_dev(pf); 8525 if (!ch->num_txq || !ch->num_rxq) { 8526 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8527 return -EINVAL; 8528 } 8529 8530 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8531 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8532 vsi->cnt_q_avail, ch->num_txq); 8533 return -EINVAL; 8534 } 8535 8536 if (!ice_setup_channel(pf, vsi, ch)) { 8537 dev_info(dev, "Failed to setup channel\n"); 8538 return -EINVAL; 8539 } 8540 /* configure BW rate limit */ 8541 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8542 int ret; 8543 8544 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8545 ch->min_tx_rate); 8546 if (ret) 8547 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8548 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8549 else 8550 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8551 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8552 } 8553 8554 vsi->cnt_q_avail -= ch->num_txq; 8555 8556 return 0; 8557 } 8558 8559 /** 8560 * ice_rem_all_chnl_fltrs - removes all channel filters 8561 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8562 * 8563 * Remove all advanced switch filters only if they are channel specific 8564 * tc-flower based filter 8565 */ 8566 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8567 { 8568 struct ice_tc_flower_fltr *fltr; 8569 struct hlist_node *node; 8570 8571 /* to remove all channel filters, iterate an ordered list of filters */ 8572 hlist_for_each_entry_safe(fltr, node, 8573 &pf->tc_flower_fltr_list, 8574 tc_flower_node) { 8575 struct ice_rule_query_data rule; 8576 int status; 8577 8578 /* for now process only channel specific filters */ 8579 if (!ice_is_chnl_fltr(fltr)) 8580 continue; 8581 8582 rule.rid = fltr->rid; 8583 rule.rule_id = fltr->rule_id; 8584 rule.vsi_handle = fltr->dest_vsi_handle; 8585 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8586 if (status) { 8587 if (status == -ENOENT) 8588 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8589 rule.rule_id); 8590 else 8591 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8592 status); 8593 } else if (fltr->dest_vsi) { 8594 /* update advanced switch filter count */ 8595 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8596 u32 flags = fltr->flags; 8597 8598 fltr->dest_vsi->num_chnl_fltr--; 8599 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8600 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8601 pf->num_dmac_chnl_fltrs--; 8602 } 8603 } 8604 8605 hlist_del(&fltr->tc_flower_node); 8606 kfree(fltr); 8607 } 8608 } 8609 8610 /** 8611 * ice_remove_q_channels - Remove queue channels for the TCs 8612 * @vsi: VSI to be configured 8613 * @rem_fltr: delete advanced switch filter or not 8614 * 8615 * Remove queue channels for the TCs 8616 */ 8617 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8618 { 8619 struct ice_channel *ch, *ch_tmp; 8620 struct ice_pf *pf = vsi->back; 8621 int i; 8622 8623 /* remove all tc-flower based filter if they are channel filters only */ 8624 if (rem_fltr) 8625 ice_rem_all_chnl_fltrs(pf); 8626 8627 /* remove ntuple filters since queue configuration is being changed */ 8628 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8629 struct ice_hw *hw = &pf->hw; 8630 8631 mutex_lock(&hw->fdir_fltr_lock); 8632 ice_fdir_del_all_fltrs(vsi); 8633 mutex_unlock(&hw->fdir_fltr_lock); 8634 } 8635 8636 /* perform cleanup for channels if they exist */ 8637 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8638 struct ice_vsi *ch_vsi; 8639 8640 list_del(&ch->list); 8641 ch_vsi = ch->ch_vsi; 8642 if (!ch_vsi) { 8643 kfree(ch); 8644 continue; 8645 } 8646 8647 /* Reset queue contexts */ 8648 for (i = 0; i < ch->num_rxq; i++) { 8649 struct ice_tx_ring *tx_ring; 8650 struct ice_rx_ring *rx_ring; 8651 8652 tx_ring = vsi->tx_rings[ch->base_q + i]; 8653 rx_ring = vsi->rx_rings[ch->base_q + i]; 8654 if (tx_ring) { 8655 tx_ring->ch = NULL; 8656 if (tx_ring->q_vector) 8657 tx_ring->q_vector->ch = NULL; 8658 } 8659 if (rx_ring) { 8660 rx_ring->ch = NULL; 8661 if (rx_ring->q_vector) 8662 rx_ring->q_vector->ch = NULL; 8663 } 8664 } 8665 8666 /* Release FD resources for the channel VSI */ 8667 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8668 8669 /* clear the VSI from scheduler tree */ 8670 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8671 8672 /* Delete VSI from FW, PF and HW VSI arrays */ 8673 ice_vsi_delete(ch->ch_vsi); 8674 8675 /* free the channel */ 8676 kfree(ch); 8677 } 8678 8679 /* clear the channel VSI map which is stored in main VSI */ 8680 ice_for_each_chnl_tc(i) 8681 vsi->tc_map_vsi[i] = NULL; 8682 8683 /* reset main VSI's all TC information */ 8684 vsi->all_enatc = 0; 8685 vsi->all_numtc = 0; 8686 } 8687 8688 /** 8689 * ice_rebuild_channels - rebuild channel 8690 * @pf: ptr to PF 8691 * 8692 * Recreate channel VSIs and replay filters 8693 */ 8694 static int ice_rebuild_channels(struct ice_pf *pf) 8695 { 8696 struct device *dev = ice_pf_to_dev(pf); 8697 struct ice_vsi *main_vsi; 8698 bool rem_adv_fltr = true; 8699 struct ice_channel *ch; 8700 struct ice_vsi *vsi; 8701 int tc_idx = 1; 8702 int i, err; 8703 8704 main_vsi = ice_get_main_vsi(pf); 8705 if (!main_vsi) 8706 return 0; 8707 8708 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8709 main_vsi->old_numtc == 1) 8710 return 0; /* nothing to be done */ 8711 8712 /* reconfigure main VSI based on old value of TC and cached values 8713 * for MQPRIO opts 8714 */ 8715 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8716 if (err) { 8717 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8718 main_vsi->old_ena_tc, main_vsi->vsi_num); 8719 return err; 8720 } 8721 8722 /* rebuild ADQ VSIs */ 8723 ice_for_each_vsi(pf, i) { 8724 enum ice_vsi_type type; 8725 8726 vsi = pf->vsi[i]; 8727 if (!vsi || vsi->type != ICE_VSI_CHNL) 8728 continue; 8729 8730 type = vsi->type; 8731 8732 /* rebuild ADQ VSI */ 8733 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8734 if (err) { 8735 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8736 ice_vsi_type_str(type), vsi->idx, err); 8737 goto cleanup; 8738 } 8739 8740 /* Re-map HW VSI number, using VSI handle that has been 8741 * previously validated in ice_replay_vsi() call above 8742 */ 8743 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8744 8745 /* replay filters for the VSI */ 8746 err = ice_replay_vsi(&pf->hw, vsi->idx); 8747 if (err) { 8748 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8749 ice_vsi_type_str(type), err, vsi->idx); 8750 rem_adv_fltr = false; 8751 goto cleanup; 8752 } 8753 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8754 ice_vsi_type_str(type), vsi->idx); 8755 8756 /* store ADQ VSI at correct TC index in main VSI's 8757 * map of TC to VSI 8758 */ 8759 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8760 } 8761 8762 /* ADQ VSI(s) has been rebuilt successfully, so setup 8763 * channel for main VSI's Tx and Rx rings 8764 */ 8765 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8766 struct ice_vsi *ch_vsi; 8767 8768 ch_vsi = ch->ch_vsi; 8769 if (!ch_vsi) 8770 continue; 8771 8772 /* reconfig channel resources */ 8773 ice_cfg_chnl_all_res(main_vsi, ch); 8774 8775 /* replay BW rate limit if it is non-zero */ 8776 if (!ch->max_tx_rate && !ch->min_tx_rate) 8777 continue; 8778 8779 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8780 ch->min_tx_rate); 8781 if (err) 8782 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8783 err, ch->max_tx_rate, ch->min_tx_rate, 8784 ch_vsi->vsi_num); 8785 else 8786 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8787 ch->max_tx_rate, ch->min_tx_rate, 8788 ch_vsi->vsi_num); 8789 } 8790 8791 /* reconfig RSS for main VSI */ 8792 if (main_vsi->ch_rss_size) 8793 ice_vsi_cfg_rss_lut_key(main_vsi); 8794 8795 return 0; 8796 8797 cleanup: 8798 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8799 return err; 8800 } 8801 8802 /** 8803 * ice_create_q_channels - Add queue channel for the given TCs 8804 * @vsi: VSI to be configured 8805 * 8806 * Configures queue channel mapping to the given TCs 8807 */ 8808 static int ice_create_q_channels(struct ice_vsi *vsi) 8809 { 8810 struct ice_pf *pf = vsi->back; 8811 struct ice_channel *ch; 8812 int ret = 0, i; 8813 8814 ice_for_each_chnl_tc(i) { 8815 if (!(vsi->all_enatc & BIT(i))) 8816 continue; 8817 8818 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8819 if (!ch) { 8820 ret = -ENOMEM; 8821 goto err_free; 8822 } 8823 INIT_LIST_HEAD(&ch->list); 8824 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8825 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8826 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8827 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8828 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8829 8830 /* convert to Kbits/s */ 8831 if (ch->max_tx_rate) 8832 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8833 ICE_BW_KBPS_DIVISOR); 8834 if (ch->min_tx_rate) 8835 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8836 ICE_BW_KBPS_DIVISOR); 8837 8838 ret = ice_create_q_channel(vsi, ch); 8839 if (ret) { 8840 dev_err(ice_pf_to_dev(pf), 8841 "failed creating channel TC:%d\n", i); 8842 kfree(ch); 8843 goto err_free; 8844 } 8845 list_add_tail(&ch->list, &vsi->ch_list); 8846 vsi->tc_map_vsi[i] = ch->ch_vsi; 8847 dev_dbg(ice_pf_to_dev(pf), 8848 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8849 } 8850 return 0; 8851 8852 err_free: 8853 ice_remove_q_channels(vsi, false); 8854 8855 return ret; 8856 } 8857 8858 /** 8859 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8860 * @netdev: net device to configure 8861 * @type_data: TC offload data 8862 */ 8863 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8864 { 8865 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8866 struct ice_netdev_priv *np = netdev_priv(netdev); 8867 struct ice_vsi *vsi = np->vsi; 8868 struct ice_pf *pf = vsi->back; 8869 u16 mode, ena_tc_qdisc = 0; 8870 int cur_txq, cur_rxq; 8871 u8 hw = 0, num_tcf; 8872 struct device *dev; 8873 int ret, i; 8874 8875 dev = ice_pf_to_dev(pf); 8876 num_tcf = mqprio_qopt->qopt.num_tc; 8877 hw = mqprio_qopt->qopt.hw; 8878 mode = mqprio_qopt->mode; 8879 if (!hw) { 8880 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8881 vsi->ch_rss_size = 0; 8882 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8883 goto config_tcf; 8884 } 8885 8886 /* Generate queue region map for number of TCF requested */ 8887 for (i = 0; i < num_tcf; i++) 8888 ena_tc_qdisc |= BIT(i); 8889 8890 switch (mode) { 8891 case TC_MQPRIO_MODE_CHANNEL: 8892 8893 if (pf->hw.port_info->is_custom_tx_enabled) { 8894 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8895 return -EBUSY; 8896 } 8897 ice_tear_down_devlink_rate_tree(pf); 8898 8899 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8900 if (ret) { 8901 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8902 ret); 8903 return ret; 8904 } 8905 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8906 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8907 /* don't assume state of hw_tc_offload during driver load 8908 * and set the flag for TC flower filter if hw_tc_offload 8909 * already ON 8910 */ 8911 if (vsi->netdev->features & NETIF_F_HW_TC) 8912 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8913 break; 8914 default: 8915 return -EINVAL; 8916 } 8917 8918 config_tcf: 8919 8920 /* Requesting same TCF configuration as already enabled */ 8921 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8922 mode != TC_MQPRIO_MODE_CHANNEL) 8923 return 0; 8924 8925 /* Pause VSI queues */ 8926 ice_dis_vsi(vsi, true); 8927 8928 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8929 ice_remove_q_channels(vsi, true); 8930 8931 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8932 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8933 num_online_cpus()); 8934 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8935 num_online_cpus()); 8936 } else { 8937 /* logic to rebuild VSI, same like ethtool -L */ 8938 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8939 8940 for (i = 0; i < num_tcf; i++) { 8941 if (!(ena_tc_qdisc & BIT(i))) 8942 continue; 8943 8944 offset = vsi->mqprio_qopt.qopt.offset[i]; 8945 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8946 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8947 } 8948 vsi->req_txq = offset + qcount_tx; 8949 vsi->req_rxq = offset + qcount_rx; 8950 8951 /* store away original rss_size info, so that it gets reused 8952 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8953 * determine, what should be the rss_sizefor main VSI 8954 */ 8955 vsi->orig_rss_size = vsi->rss_size; 8956 } 8957 8958 /* save current values of Tx and Rx queues before calling VSI rebuild 8959 * for fallback option 8960 */ 8961 cur_txq = vsi->num_txq; 8962 cur_rxq = vsi->num_rxq; 8963 8964 /* proceed with rebuild main VSI using correct number of queues */ 8965 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8966 if (ret) { 8967 /* fallback to current number of queues */ 8968 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8969 vsi->req_txq = cur_txq; 8970 vsi->req_rxq = cur_rxq; 8971 clear_bit(ICE_RESET_FAILED, pf->state); 8972 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8973 dev_err(dev, "Rebuild of main VSI failed again\n"); 8974 return ret; 8975 } 8976 } 8977 8978 vsi->all_numtc = num_tcf; 8979 vsi->all_enatc = ena_tc_qdisc; 8980 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8981 if (ret) { 8982 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8983 vsi->vsi_num); 8984 goto exit; 8985 } 8986 8987 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8988 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8989 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8990 8991 /* set TC0 rate limit if specified */ 8992 if (max_tx_rate || min_tx_rate) { 8993 /* convert to Kbits/s */ 8994 if (max_tx_rate) 8995 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8996 if (min_tx_rate) 8997 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8998 8999 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9000 if (!ret) { 9001 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9002 max_tx_rate, min_tx_rate, vsi->vsi_num); 9003 } else { 9004 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9005 max_tx_rate, min_tx_rate, vsi->vsi_num); 9006 goto exit; 9007 } 9008 } 9009 ret = ice_create_q_channels(vsi); 9010 if (ret) { 9011 netdev_err(netdev, "failed configuring queue channels\n"); 9012 goto exit; 9013 } else { 9014 netdev_dbg(netdev, "successfully configured channels\n"); 9015 } 9016 } 9017 9018 if (vsi->ch_rss_size) 9019 ice_vsi_cfg_rss_lut_key(vsi); 9020 9021 exit: 9022 /* if error, reset the all_numtc and all_enatc */ 9023 if (ret) { 9024 vsi->all_numtc = 0; 9025 vsi->all_enatc = 0; 9026 } 9027 /* resume VSI */ 9028 ice_ena_vsi(vsi, true); 9029 9030 return ret; 9031 } 9032 9033 static LIST_HEAD(ice_block_cb_list); 9034 9035 static int 9036 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9037 void *type_data) 9038 { 9039 struct ice_netdev_priv *np = netdev_priv(netdev); 9040 struct ice_pf *pf = np->vsi->back; 9041 bool locked = false; 9042 int err; 9043 9044 switch (type) { 9045 case TC_SETUP_BLOCK: 9046 return flow_block_cb_setup_simple(type_data, 9047 &ice_block_cb_list, 9048 ice_setup_tc_block_cb, 9049 np, np, true); 9050 case TC_SETUP_QDISC_MQPRIO: 9051 if (ice_is_eswitch_mode_switchdev(pf)) { 9052 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9053 return -EOPNOTSUPP; 9054 } 9055 9056 if (pf->adev) { 9057 mutex_lock(&pf->adev_mutex); 9058 device_lock(&pf->adev->dev); 9059 locked = true; 9060 if (pf->adev->dev.driver) { 9061 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9062 err = -EBUSY; 9063 goto adev_unlock; 9064 } 9065 } 9066 9067 /* setup traffic classifier for receive side */ 9068 mutex_lock(&pf->tc_mutex); 9069 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9070 mutex_unlock(&pf->tc_mutex); 9071 9072 adev_unlock: 9073 if (locked) { 9074 device_unlock(&pf->adev->dev); 9075 mutex_unlock(&pf->adev_mutex); 9076 } 9077 return err; 9078 default: 9079 return -EOPNOTSUPP; 9080 } 9081 return -EOPNOTSUPP; 9082 } 9083 9084 static struct ice_indr_block_priv * 9085 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9086 struct net_device *netdev) 9087 { 9088 struct ice_indr_block_priv *cb_priv; 9089 9090 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9091 if (!cb_priv->netdev) 9092 return NULL; 9093 if (cb_priv->netdev == netdev) 9094 return cb_priv; 9095 } 9096 return NULL; 9097 } 9098 9099 static int 9100 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9101 void *indr_priv) 9102 { 9103 struct ice_indr_block_priv *priv = indr_priv; 9104 struct ice_netdev_priv *np = priv->np; 9105 9106 switch (type) { 9107 case TC_SETUP_CLSFLOWER: 9108 return ice_setup_tc_cls_flower(np, priv->netdev, 9109 (struct flow_cls_offload *) 9110 type_data); 9111 default: 9112 return -EOPNOTSUPP; 9113 } 9114 } 9115 9116 static int 9117 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9118 struct ice_netdev_priv *np, 9119 struct flow_block_offload *f, void *data, 9120 void (*cleanup)(struct flow_block_cb *block_cb)) 9121 { 9122 struct ice_indr_block_priv *indr_priv; 9123 struct flow_block_cb *block_cb; 9124 9125 if (!ice_is_tunnel_supported(netdev) && 9126 !(is_vlan_dev(netdev) && 9127 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9128 return -EOPNOTSUPP; 9129 9130 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9131 return -EOPNOTSUPP; 9132 9133 switch (f->command) { 9134 case FLOW_BLOCK_BIND: 9135 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9136 if (indr_priv) 9137 return -EEXIST; 9138 9139 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9140 if (!indr_priv) 9141 return -ENOMEM; 9142 9143 indr_priv->netdev = netdev; 9144 indr_priv->np = np; 9145 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9146 9147 block_cb = 9148 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9149 indr_priv, indr_priv, 9150 ice_rep_indr_tc_block_unbind, 9151 f, netdev, sch, data, np, 9152 cleanup); 9153 9154 if (IS_ERR(block_cb)) { 9155 list_del(&indr_priv->list); 9156 kfree(indr_priv); 9157 return PTR_ERR(block_cb); 9158 } 9159 flow_block_cb_add(block_cb, f); 9160 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9161 break; 9162 case FLOW_BLOCK_UNBIND: 9163 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9164 if (!indr_priv) 9165 return -ENOENT; 9166 9167 block_cb = flow_block_cb_lookup(f->block, 9168 ice_indr_setup_block_cb, 9169 indr_priv); 9170 if (!block_cb) 9171 return -ENOENT; 9172 9173 flow_indr_block_cb_remove(block_cb, f); 9174 9175 list_del(&block_cb->driver_list); 9176 break; 9177 default: 9178 return -EOPNOTSUPP; 9179 } 9180 return 0; 9181 } 9182 9183 static int 9184 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9185 void *cb_priv, enum tc_setup_type type, void *type_data, 9186 void *data, 9187 void (*cleanup)(struct flow_block_cb *block_cb)) 9188 { 9189 switch (type) { 9190 case TC_SETUP_BLOCK: 9191 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9192 data, cleanup); 9193 9194 default: 9195 return -EOPNOTSUPP; 9196 } 9197 } 9198 9199 /** 9200 * ice_open - Called when a network interface becomes active 9201 * @netdev: network interface device structure 9202 * 9203 * The open entry point is called when a network interface is made 9204 * active by the system (IFF_UP). At this point all resources needed 9205 * for transmit and receive operations are allocated, the interrupt 9206 * handler is registered with the OS, the netdev watchdog is enabled, 9207 * and the stack is notified that the interface is ready. 9208 * 9209 * Returns 0 on success, negative value on failure 9210 */ 9211 int ice_open(struct net_device *netdev) 9212 { 9213 struct ice_netdev_priv *np = netdev_priv(netdev); 9214 struct ice_pf *pf = np->vsi->back; 9215 9216 if (ice_is_reset_in_progress(pf->state)) { 9217 netdev_err(netdev, "can't open net device while reset is in progress"); 9218 return -EBUSY; 9219 } 9220 9221 return ice_open_internal(netdev); 9222 } 9223 9224 /** 9225 * ice_open_internal - Called when a network interface becomes active 9226 * @netdev: network interface device structure 9227 * 9228 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9229 * handling routine 9230 * 9231 * Returns 0 on success, negative value on failure 9232 */ 9233 int ice_open_internal(struct net_device *netdev) 9234 { 9235 struct ice_netdev_priv *np = netdev_priv(netdev); 9236 struct ice_vsi *vsi = np->vsi; 9237 struct ice_pf *pf = vsi->back; 9238 struct ice_port_info *pi; 9239 int err; 9240 9241 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9242 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9243 return -EIO; 9244 } 9245 9246 netif_carrier_off(netdev); 9247 9248 pi = vsi->port_info; 9249 err = ice_update_link_info(pi); 9250 if (err) { 9251 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9252 return err; 9253 } 9254 9255 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9256 9257 /* Set PHY if there is media, otherwise, turn off PHY */ 9258 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9259 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9260 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9261 err = ice_init_phy_user_cfg(pi); 9262 if (err) { 9263 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9264 err); 9265 return err; 9266 } 9267 } 9268 9269 err = ice_configure_phy(vsi); 9270 if (err) { 9271 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9272 err); 9273 return err; 9274 } 9275 } else { 9276 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9277 ice_set_link(vsi, false); 9278 } 9279 9280 err = ice_vsi_open(vsi); 9281 if (err) 9282 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9283 vsi->vsi_num, vsi->vsw->sw_id); 9284 9285 /* Update existing tunnels information */ 9286 udp_tunnel_get_rx_info(netdev); 9287 9288 return err; 9289 } 9290 9291 /** 9292 * ice_stop - Disables a network interface 9293 * @netdev: network interface device structure 9294 * 9295 * The stop entry point is called when an interface is de-activated by the OS, 9296 * and the netdevice enters the DOWN state. The hardware is still under the 9297 * driver's control, but the netdev interface is disabled. 9298 * 9299 * Returns success only - not allowed to fail 9300 */ 9301 int ice_stop(struct net_device *netdev) 9302 { 9303 struct ice_netdev_priv *np = netdev_priv(netdev); 9304 struct ice_vsi *vsi = np->vsi; 9305 struct ice_pf *pf = vsi->back; 9306 9307 if (ice_is_reset_in_progress(pf->state)) { 9308 netdev_err(netdev, "can't stop net device while reset is in progress"); 9309 return -EBUSY; 9310 } 9311 9312 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9313 int link_err = ice_force_phys_link_state(vsi, false); 9314 9315 if (link_err) { 9316 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9317 vsi->vsi_num, link_err); 9318 return -EIO; 9319 } 9320 } 9321 9322 ice_vsi_close(vsi); 9323 9324 return 0; 9325 } 9326 9327 /** 9328 * ice_features_check - Validate encapsulated packet conforms to limits 9329 * @skb: skb buffer 9330 * @netdev: This port's netdev 9331 * @features: Offload features that the stack believes apply 9332 */ 9333 static netdev_features_t 9334 ice_features_check(struct sk_buff *skb, 9335 struct net_device __always_unused *netdev, 9336 netdev_features_t features) 9337 { 9338 bool gso = skb_is_gso(skb); 9339 size_t len; 9340 9341 /* No point in doing any of this if neither checksum nor GSO are 9342 * being requested for this frame. We can rule out both by just 9343 * checking for CHECKSUM_PARTIAL 9344 */ 9345 if (skb->ip_summed != CHECKSUM_PARTIAL) 9346 return features; 9347 9348 /* We cannot support GSO if the MSS is going to be less than 9349 * 64 bytes. If it is then we need to drop support for GSO. 9350 */ 9351 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9352 features &= ~NETIF_F_GSO_MASK; 9353 9354 len = skb_network_offset(skb); 9355 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9356 goto out_rm_features; 9357 9358 len = skb_network_header_len(skb); 9359 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9360 goto out_rm_features; 9361 9362 if (skb->encapsulation) { 9363 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9364 * the case of IPIP frames, the transport header pointer is 9365 * after the inner header! So check to make sure that this 9366 * is a GRE or UDP_TUNNEL frame before doing that math. 9367 */ 9368 if (gso && (skb_shinfo(skb)->gso_type & 9369 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9370 len = skb_inner_network_header(skb) - 9371 skb_transport_header(skb); 9372 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9373 goto out_rm_features; 9374 } 9375 9376 len = skb_inner_network_header_len(skb); 9377 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9378 goto out_rm_features; 9379 } 9380 9381 return features; 9382 out_rm_features: 9383 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9384 } 9385 9386 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9387 .ndo_open = ice_open, 9388 .ndo_stop = ice_stop, 9389 .ndo_start_xmit = ice_start_xmit, 9390 .ndo_set_mac_address = ice_set_mac_address, 9391 .ndo_validate_addr = eth_validate_addr, 9392 .ndo_change_mtu = ice_change_mtu, 9393 .ndo_get_stats64 = ice_get_stats64, 9394 .ndo_tx_timeout = ice_tx_timeout, 9395 .ndo_bpf = ice_xdp_safe_mode, 9396 }; 9397 9398 static const struct net_device_ops ice_netdev_ops = { 9399 .ndo_open = ice_open, 9400 .ndo_stop = ice_stop, 9401 .ndo_start_xmit = ice_start_xmit, 9402 .ndo_select_queue = ice_select_queue, 9403 .ndo_features_check = ice_features_check, 9404 .ndo_fix_features = ice_fix_features, 9405 .ndo_set_rx_mode = ice_set_rx_mode, 9406 .ndo_set_mac_address = ice_set_mac_address, 9407 .ndo_validate_addr = eth_validate_addr, 9408 .ndo_change_mtu = ice_change_mtu, 9409 .ndo_get_stats64 = ice_get_stats64, 9410 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9411 .ndo_eth_ioctl = ice_eth_ioctl, 9412 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9413 .ndo_set_vf_mac = ice_set_vf_mac, 9414 .ndo_get_vf_config = ice_get_vf_cfg, 9415 .ndo_set_vf_trust = ice_set_vf_trust, 9416 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9417 .ndo_set_vf_link_state = ice_set_vf_link_state, 9418 .ndo_get_vf_stats = ice_get_vf_stats, 9419 .ndo_set_vf_rate = ice_set_vf_bw, 9420 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9421 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9422 .ndo_setup_tc = ice_setup_tc, 9423 .ndo_set_features = ice_set_features, 9424 .ndo_bridge_getlink = ice_bridge_getlink, 9425 .ndo_bridge_setlink = ice_bridge_setlink, 9426 .ndo_fdb_add = ice_fdb_add, 9427 .ndo_fdb_del = ice_fdb_del, 9428 #ifdef CONFIG_RFS_ACCEL 9429 .ndo_rx_flow_steer = ice_rx_flow_steer, 9430 #endif 9431 .ndo_tx_timeout = ice_tx_timeout, 9432 .ndo_bpf = ice_xdp, 9433 .ndo_xdp_xmit = ice_xdp_xmit, 9434 .ndo_xsk_wakeup = ice_xsk_wakeup, 9435 }; 9436