xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 4cde72fead4cebb5b6b2fe9425904c2064739184)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "ice_devlink.h"
17 #include "ice_hwmon.h"
18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
19  * ice tracepoint functions. This must be done exactly once across the
20  * ice driver.
21  */
22 #define CREATE_TRACE_POINTS
23 #include "ice_trace.h"
24 #include "ice_eswitch.h"
25 #include "ice_tc_lib.h"
26 #include "ice_vsi_vlan_ops.h"
27 #include <net/xdp_sock_drv.h>
28 
29 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
30 static const char ice_driver_string[] = DRV_SUMMARY;
31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
32 
33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
34 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
35 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
36 
37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
38 MODULE_DESCRIPTION(DRV_SUMMARY);
39 MODULE_LICENSE("GPL v2");
40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
41 
42 static int debug = -1;
43 module_param(debug, int, 0644);
44 #ifndef CONFIG_DYNAMIC_DEBUG
45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
46 #else
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
48 #endif /* !CONFIG_DYNAMIC_DEBUG */
49 
50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
51 EXPORT_SYMBOL(ice_xdp_locking_key);
52 
53 /**
54  * ice_hw_to_dev - Get device pointer from the hardware structure
55  * @hw: pointer to the device HW structure
56  *
57  * Used to access the device pointer from compilation units which can't easily
58  * include the definition of struct ice_pf without leading to circular header
59  * dependencies.
60  */
61 struct device *ice_hw_to_dev(struct ice_hw *hw)
62 {
63 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
64 
65 	return &pf->pdev->dev;
66 }
67 
68 static struct workqueue_struct *ice_wq;
69 struct workqueue_struct *ice_lag_wq;
70 static const struct net_device_ops ice_netdev_safe_mode_ops;
71 static const struct net_device_ops ice_netdev_ops;
72 
73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
74 
75 static void ice_vsi_release_all(struct ice_pf *pf);
76 
77 static int ice_rebuild_channels(struct ice_pf *pf);
78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
79 
80 static int
81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
82 		     void *cb_priv, enum tc_setup_type type, void *type_data,
83 		     void *data,
84 		     void (*cleanup)(struct flow_block_cb *block_cb));
85 
86 bool netif_is_ice(const struct net_device *dev)
87 {
88 	return dev && (dev->netdev_ops == &ice_netdev_ops);
89 }
90 
91 /**
92  * ice_get_tx_pending - returns number of Tx descriptors not processed
93  * @ring: the ring of descriptors
94  */
95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
96 {
97 	u16 head, tail;
98 
99 	head = ring->next_to_clean;
100 	tail = ring->next_to_use;
101 
102 	if (head != tail)
103 		return (head < tail) ?
104 			tail - head : (tail + ring->count - head);
105 	return 0;
106 }
107 
108 /**
109  * ice_check_for_hang_subtask - check for and recover hung queues
110  * @pf: pointer to PF struct
111  */
112 static void ice_check_for_hang_subtask(struct ice_pf *pf)
113 {
114 	struct ice_vsi *vsi = NULL;
115 	struct ice_hw *hw;
116 	unsigned int i;
117 	int packets;
118 	u32 v;
119 
120 	ice_for_each_vsi(pf, v)
121 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
122 			vsi = pf->vsi[v];
123 			break;
124 		}
125 
126 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
127 		return;
128 
129 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
130 		return;
131 
132 	hw = &vsi->back->hw;
133 
134 	ice_for_each_txq(vsi, i) {
135 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
136 		struct ice_ring_stats *ring_stats;
137 
138 		if (!tx_ring)
139 			continue;
140 		if (ice_ring_ch_enabled(tx_ring))
141 			continue;
142 
143 		ring_stats = tx_ring->ring_stats;
144 		if (!ring_stats)
145 			continue;
146 
147 		if (tx_ring->desc) {
148 			/* If packet counter has not changed the queue is
149 			 * likely stalled, so force an interrupt for this
150 			 * queue.
151 			 *
152 			 * prev_pkt would be negative if there was no
153 			 * pending work.
154 			 */
155 			packets = ring_stats->stats.pkts & INT_MAX;
156 			if (ring_stats->tx_stats.prev_pkt == packets) {
157 				/* Trigger sw interrupt to revive the queue */
158 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
159 				continue;
160 			}
161 
162 			/* Memory barrier between read of packet count and call
163 			 * to ice_get_tx_pending()
164 			 */
165 			smp_rmb();
166 			ring_stats->tx_stats.prev_pkt =
167 			    ice_get_tx_pending(tx_ring) ? packets : -1;
168 		}
169 	}
170 }
171 
172 /**
173  * ice_init_mac_fltr - Set initial MAC filters
174  * @pf: board private structure
175  *
176  * Set initial set of MAC filters for PF VSI; configure filters for permanent
177  * address and broadcast address. If an error is encountered, netdevice will be
178  * unregistered.
179  */
180 static int ice_init_mac_fltr(struct ice_pf *pf)
181 {
182 	struct ice_vsi *vsi;
183 	u8 *perm_addr;
184 
185 	vsi = ice_get_main_vsi(pf);
186 	if (!vsi)
187 		return -EINVAL;
188 
189 	perm_addr = vsi->port_info->mac.perm_addr;
190 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
191 }
192 
193 /**
194  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
195  * @netdev: the net device on which the sync is happening
196  * @addr: MAC address to sync
197  *
198  * This is a callback function which is called by the in kernel device sync
199  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
200  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
201  * MAC filters from the hardware.
202  */
203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
204 {
205 	struct ice_netdev_priv *np = netdev_priv(netdev);
206 	struct ice_vsi *vsi = np->vsi;
207 
208 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
209 				     ICE_FWD_TO_VSI))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /**
216  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
217  * @netdev: the net device on which the unsync is happening
218  * @addr: MAC address to unsync
219  *
220  * This is a callback function which is called by the in kernel device unsync
221  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
222  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
223  * delete the MAC filters from the hardware.
224  */
225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
226 {
227 	struct ice_netdev_priv *np = netdev_priv(netdev);
228 	struct ice_vsi *vsi = np->vsi;
229 
230 	/* Under some circumstances, we might receive a request to delete our
231 	 * own device address from our uc list. Because we store the device
232 	 * address in the VSI's MAC filter list, we need to ignore such
233 	 * requests and not delete our device address from this list.
234 	 */
235 	if (ether_addr_equal(addr, netdev->dev_addr))
236 		return 0;
237 
238 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
239 				     ICE_FWD_TO_VSI))
240 		return -EINVAL;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_fltr_changed - check if filter state changed
247  * @vsi: VSI to be checked
248  *
249  * returns true if filter state has changed, false otherwise.
250  */
251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
252 {
253 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
254 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
255 }
256 
257 /**
258  * ice_set_promisc - Enable promiscuous mode for a given PF
259  * @vsi: the VSI being configured
260  * @promisc_m: mask of promiscuous config bits
261  *
262  */
263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
264 {
265 	int status;
266 
267 	if (vsi->type != ICE_VSI_PF)
268 		return 0;
269 
270 	if (ice_vsi_has_non_zero_vlans(vsi)) {
271 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
272 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
273 						       promisc_m);
274 	} else {
275 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
276 						  promisc_m, 0);
277 	}
278 	if (status && status != -EEXIST)
279 		return status;
280 
281 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
282 		   vsi->vsi_num, promisc_m);
283 	return 0;
284 }
285 
286 /**
287  * ice_clear_promisc - Disable promiscuous mode for a given PF
288  * @vsi: the VSI being configured
289  * @promisc_m: mask of promiscuous config bits
290  *
291  */
292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
293 {
294 	int status;
295 
296 	if (vsi->type != ICE_VSI_PF)
297 		return 0;
298 
299 	if (ice_vsi_has_non_zero_vlans(vsi)) {
300 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
301 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
302 							 promisc_m);
303 	} else {
304 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
305 						    promisc_m, 0);
306 	}
307 
308 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
309 		   vsi->vsi_num, promisc_m);
310 	return status;
311 }
312 
313 /**
314  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
315  * @vsi: ptr to the VSI
316  *
317  * Push any outstanding VSI filter changes through the AdminQ.
318  */
319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
320 {
321 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
322 	struct device *dev = ice_pf_to_dev(vsi->back);
323 	struct net_device *netdev = vsi->netdev;
324 	bool promisc_forced_on = false;
325 	struct ice_pf *pf = vsi->back;
326 	struct ice_hw *hw = &pf->hw;
327 	u32 changed_flags = 0;
328 	int err;
329 
330 	if (!vsi->netdev)
331 		return -EINVAL;
332 
333 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
334 		usleep_range(1000, 2000);
335 
336 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
337 	vsi->current_netdev_flags = vsi->netdev->flags;
338 
339 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
340 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
341 
342 	if (ice_vsi_fltr_changed(vsi)) {
343 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
344 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
345 
346 		/* grab the netdev's addr_list_lock */
347 		netif_addr_lock_bh(netdev);
348 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
349 			      ice_add_mac_to_unsync_list);
350 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
351 			      ice_add_mac_to_unsync_list);
352 		/* our temp lists are populated. release lock */
353 		netif_addr_unlock_bh(netdev);
354 	}
355 
356 	/* Remove MAC addresses in the unsync list */
357 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
358 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
359 	if (err) {
360 		netdev_err(netdev, "Failed to delete MAC filters\n");
361 		/* if we failed because of alloc failures, just bail */
362 		if (err == -ENOMEM)
363 			goto out;
364 	}
365 
366 	/* Add MAC addresses in the sync list */
367 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
368 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
369 	/* If filter is added successfully or already exists, do not go into
370 	 * 'if' condition and report it as error. Instead continue processing
371 	 * rest of the function.
372 	 */
373 	if (err && err != -EEXIST) {
374 		netdev_err(netdev, "Failed to add MAC filters\n");
375 		/* If there is no more space for new umac filters, VSI
376 		 * should go into promiscuous mode. There should be some
377 		 * space reserved for promiscuous filters.
378 		 */
379 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
380 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
381 				      vsi->state)) {
382 			promisc_forced_on = true;
383 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
384 				    vsi->vsi_num);
385 		} else {
386 			goto out;
387 		}
388 	}
389 	err = 0;
390 	/* check for changes in promiscuous modes */
391 	if (changed_flags & IFF_ALLMULTI) {
392 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
393 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
394 			if (err) {
395 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
396 				goto out_promisc;
397 			}
398 		} else {
399 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
400 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
401 			if (err) {
402 				vsi->current_netdev_flags |= IFF_ALLMULTI;
403 				goto out_promisc;
404 			}
405 		}
406 	}
407 
408 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
409 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
410 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
411 		if (vsi->current_netdev_flags & IFF_PROMISC) {
412 			/* Apply Rx filter rule to get traffic from wire */
413 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
414 				err = ice_set_dflt_vsi(vsi);
415 				if (err && err != -EEXIST) {
416 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
417 						   err, vsi->vsi_num);
418 					vsi->current_netdev_flags &=
419 						~IFF_PROMISC;
420 					goto out_promisc;
421 				}
422 				err = 0;
423 				vlan_ops->dis_rx_filtering(vsi);
424 
425 				/* promiscuous mode implies allmulticast so
426 				 * that VSIs that are in promiscuous mode are
427 				 * subscribed to multicast packets coming to
428 				 * the port
429 				 */
430 				err = ice_set_promisc(vsi,
431 						      ICE_MCAST_PROMISC_BITS);
432 				if (err)
433 					goto out_promisc;
434 			}
435 		} else {
436 			/* Clear Rx filter to remove traffic from wire */
437 			if (ice_is_vsi_dflt_vsi(vsi)) {
438 				err = ice_clear_dflt_vsi(vsi);
439 				if (err) {
440 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
441 						   err, vsi->vsi_num);
442 					vsi->current_netdev_flags |=
443 						IFF_PROMISC;
444 					goto out_promisc;
445 				}
446 				if (vsi->netdev->features &
447 				    NETIF_F_HW_VLAN_CTAG_FILTER)
448 					vlan_ops->ena_rx_filtering(vsi);
449 			}
450 
451 			/* disable allmulti here, but only if allmulti is not
452 			 * still enabled for the netdev
453 			 */
454 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
455 				err = ice_clear_promisc(vsi,
456 							ICE_MCAST_PROMISC_BITS);
457 				if (err) {
458 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
459 						   err, vsi->vsi_num);
460 				}
461 			}
462 		}
463 	}
464 	goto exit;
465 
466 out_promisc:
467 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
468 	goto exit;
469 out:
470 	/* if something went wrong then set the changed flag so we try again */
471 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
472 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
473 exit:
474 	clear_bit(ICE_CFG_BUSY, vsi->state);
475 	return err;
476 }
477 
478 /**
479  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
480  * @pf: board private structure
481  */
482 static void ice_sync_fltr_subtask(struct ice_pf *pf)
483 {
484 	int v;
485 
486 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
487 		return;
488 
489 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
490 
491 	ice_for_each_vsi(pf, v)
492 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
493 		    ice_vsi_sync_fltr(pf->vsi[v])) {
494 			/* come back and try again later */
495 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
496 			break;
497 		}
498 }
499 
500 /**
501  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
502  * @pf: the PF
503  * @locked: is the rtnl_lock already held
504  */
505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
506 {
507 	int node;
508 	int v;
509 
510 	ice_for_each_vsi(pf, v)
511 		if (pf->vsi[v])
512 			ice_dis_vsi(pf->vsi[v], locked);
513 
514 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
515 		pf->pf_agg_node[node].num_vsis = 0;
516 
517 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
518 		pf->vf_agg_node[node].num_vsis = 0;
519 }
520 
521 /**
522  * ice_clear_sw_switch_recipes - clear switch recipes
523  * @pf: board private structure
524  *
525  * Mark switch recipes as not created in sw structures. There are cases where
526  * rules (especially advanced rules) need to be restored, either re-read from
527  * hardware or added again. For example after the reset. 'recp_created' flag
528  * prevents from doing that and need to be cleared upfront.
529  */
530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
531 {
532 	struct ice_sw_recipe *recp;
533 	u8 i;
534 
535 	recp = pf->hw.switch_info->recp_list;
536 	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
537 		recp[i].recp_created = false;
538 }
539 
540 /**
541  * ice_prepare_for_reset - prep for reset
542  * @pf: board private structure
543  * @reset_type: reset type requested
544  *
545  * Inform or close all dependent features in prep for reset.
546  */
547 static void
548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
549 {
550 	struct ice_hw *hw = &pf->hw;
551 	struct ice_vsi *vsi;
552 	struct ice_vf *vf;
553 	unsigned int bkt;
554 
555 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
556 
557 	/* already prepared for reset */
558 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
559 		return;
560 
561 	ice_unplug_aux_dev(pf);
562 
563 	/* Notify VFs of impending reset */
564 	if (ice_check_sq_alive(hw, &hw->mailboxq))
565 		ice_vc_notify_reset(pf);
566 
567 	/* Disable VFs until reset is completed */
568 	mutex_lock(&pf->vfs.table_lock);
569 	ice_for_each_vf(pf, bkt, vf)
570 		ice_set_vf_state_dis(vf);
571 	mutex_unlock(&pf->vfs.table_lock);
572 
573 	if (ice_is_eswitch_mode_switchdev(pf)) {
574 		if (reset_type != ICE_RESET_PFR)
575 			ice_clear_sw_switch_recipes(pf);
576 	}
577 
578 	/* release ADQ specific HW and SW resources */
579 	vsi = ice_get_main_vsi(pf);
580 	if (!vsi)
581 		goto skip;
582 
583 	/* to be on safe side, reset orig_rss_size so that normal flow
584 	 * of deciding rss_size can take precedence
585 	 */
586 	vsi->orig_rss_size = 0;
587 
588 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
589 		if (reset_type == ICE_RESET_PFR) {
590 			vsi->old_ena_tc = vsi->all_enatc;
591 			vsi->old_numtc = vsi->all_numtc;
592 		} else {
593 			ice_remove_q_channels(vsi, true);
594 
595 			/* for other reset type, do not support channel rebuild
596 			 * hence reset needed info
597 			 */
598 			vsi->old_ena_tc = 0;
599 			vsi->all_enatc = 0;
600 			vsi->old_numtc = 0;
601 			vsi->all_numtc = 0;
602 			vsi->req_txq = 0;
603 			vsi->req_rxq = 0;
604 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
605 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
606 		}
607 	}
608 skip:
609 
610 	/* clear SW filtering DB */
611 	ice_clear_hw_tbls(hw);
612 	/* disable the VSIs and their queues that are not already DOWN */
613 	ice_pf_dis_all_vsi(pf, false);
614 
615 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
616 		ice_ptp_prepare_for_reset(pf);
617 
618 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
619 		ice_gnss_exit(pf);
620 
621 	if (hw->port_info)
622 		ice_sched_clear_port(hw->port_info);
623 
624 	ice_shutdown_all_ctrlq(hw);
625 
626 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
627 }
628 
629 /**
630  * ice_do_reset - Initiate one of many types of resets
631  * @pf: board private structure
632  * @reset_type: reset type requested before this function was called.
633  */
634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
635 {
636 	struct device *dev = ice_pf_to_dev(pf);
637 	struct ice_hw *hw = &pf->hw;
638 
639 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
640 
641 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
642 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
643 		reset_type = ICE_RESET_CORER;
644 	}
645 
646 	ice_prepare_for_reset(pf, reset_type);
647 
648 	/* trigger the reset */
649 	if (ice_reset(hw, reset_type)) {
650 		dev_err(dev, "reset %d failed\n", reset_type);
651 		set_bit(ICE_RESET_FAILED, pf->state);
652 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
653 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
654 		clear_bit(ICE_PFR_REQ, pf->state);
655 		clear_bit(ICE_CORER_REQ, pf->state);
656 		clear_bit(ICE_GLOBR_REQ, pf->state);
657 		wake_up(&pf->reset_wait_queue);
658 		return;
659 	}
660 
661 	/* PFR is a bit of a special case because it doesn't result in an OICR
662 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
663 	 * associated state bits.
664 	 */
665 	if (reset_type == ICE_RESET_PFR) {
666 		pf->pfr_count++;
667 		ice_rebuild(pf, reset_type);
668 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
669 		clear_bit(ICE_PFR_REQ, pf->state);
670 		wake_up(&pf->reset_wait_queue);
671 		ice_reset_all_vfs(pf);
672 	}
673 }
674 
675 /**
676  * ice_reset_subtask - Set up for resetting the device and driver
677  * @pf: board private structure
678  */
679 static void ice_reset_subtask(struct ice_pf *pf)
680 {
681 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
682 
683 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
684 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
685 	 * of reset is pending and sets bits in pf->state indicating the reset
686 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
687 	 * prepare for pending reset if not already (for PF software-initiated
688 	 * global resets the software should already be prepared for it as
689 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
690 	 * by firmware or software on other PFs, that bit is not set so prepare
691 	 * for the reset now), poll for reset done, rebuild and return.
692 	 */
693 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
694 		/* Perform the largest reset requested */
695 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
696 			reset_type = ICE_RESET_CORER;
697 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
698 			reset_type = ICE_RESET_GLOBR;
699 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
700 			reset_type = ICE_RESET_EMPR;
701 		/* return if no valid reset type requested */
702 		if (reset_type == ICE_RESET_INVAL)
703 			return;
704 		ice_prepare_for_reset(pf, reset_type);
705 
706 		/* make sure we are ready to rebuild */
707 		if (ice_check_reset(&pf->hw)) {
708 			set_bit(ICE_RESET_FAILED, pf->state);
709 		} else {
710 			/* done with reset. start rebuild */
711 			pf->hw.reset_ongoing = false;
712 			ice_rebuild(pf, reset_type);
713 			/* clear bit to resume normal operations, but
714 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
715 			 */
716 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
717 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
718 			clear_bit(ICE_PFR_REQ, pf->state);
719 			clear_bit(ICE_CORER_REQ, pf->state);
720 			clear_bit(ICE_GLOBR_REQ, pf->state);
721 			wake_up(&pf->reset_wait_queue);
722 			ice_reset_all_vfs(pf);
723 		}
724 
725 		return;
726 	}
727 
728 	/* No pending resets to finish processing. Check for new resets */
729 	if (test_bit(ICE_PFR_REQ, pf->state)) {
730 		reset_type = ICE_RESET_PFR;
731 		if (pf->lag && pf->lag->bonded) {
732 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
733 			reset_type = ICE_RESET_CORER;
734 		}
735 	}
736 	if (test_bit(ICE_CORER_REQ, pf->state))
737 		reset_type = ICE_RESET_CORER;
738 	if (test_bit(ICE_GLOBR_REQ, pf->state))
739 		reset_type = ICE_RESET_GLOBR;
740 	/* If no valid reset type requested just return */
741 	if (reset_type == ICE_RESET_INVAL)
742 		return;
743 
744 	/* reset if not already down or busy */
745 	if (!test_bit(ICE_DOWN, pf->state) &&
746 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
747 		ice_do_reset(pf, reset_type);
748 	}
749 }
750 
751 /**
752  * ice_print_topo_conflict - print topology conflict message
753  * @vsi: the VSI whose topology status is being checked
754  */
755 static void ice_print_topo_conflict(struct ice_vsi *vsi)
756 {
757 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
758 	case ICE_AQ_LINK_TOPO_CONFLICT:
759 	case ICE_AQ_LINK_MEDIA_CONFLICT:
760 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
761 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
762 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
763 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
764 		break;
765 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
766 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
767 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
768 		else
769 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
770 		break;
771 	default:
772 		break;
773 	}
774 }
775 
776 /**
777  * ice_print_link_msg - print link up or down message
778  * @vsi: the VSI whose link status is being queried
779  * @isup: boolean for if the link is now up or down
780  */
781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
782 {
783 	struct ice_aqc_get_phy_caps_data *caps;
784 	const char *an_advertised;
785 	const char *fec_req;
786 	const char *speed;
787 	const char *fec;
788 	const char *fc;
789 	const char *an;
790 	int status;
791 
792 	if (!vsi)
793 		return;
794 
795 	if (vsi->current_isup == isup)
796 		return;
797 
798 	vsi->current_isup = isup;
799 
800 	if (!isup) {
801 		netdev_info(vsi->netdev, "NIC Link is Down\n");
802 		return;
803 	}
804 
805 	switch (vsi->port_info->phy.link_info.link_speed) {
806 	case ICE_AQ_LINK_SPEED_100GB:
807 		speed = "100 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_50GB:
810 		speed = "50 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_40GB:
813 		speed = "40 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_25GB:
816 		speed = "25 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_20GB:
819 		speed = "20 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_10GB:
822 		speed = "10 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_5GB:
825 		speed = "5 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_2500MB:
828 		speed = "2.5 G";
829 		break;
830 	case ICE_AQ_LINK_SPEED_1000MB:
831 		speed = "1 G";
832 		break;
833 	case ICE_AQ_LINK_SPEED_100MB:
834 		speed = "100 M";
835 		break;
836 	default:
837 		speed = "Unknown ";
838 		break;
839 	}
840 
841 	switch (vsi->port_info->fc.current_mode) {
842 	case ICE_FC_FULL:
843 		fc = "Rx/Tx";
844 		break;
845 	case ICE_FC_TX_PAUSE:
846 		fc = "Tx";
847 		break;
848 	case ICE_FC_RX_PAUSE:
849 		fc = "Rx";
850 		break;
851 	case ICE_FC_NONE:
852 		fc = "None";
853 		break;
854 	default:
855 		fc = "Unknown";
856 		break;
857 	}
858 
859 	/* Get FEC mode based on negotiated link info */
860 	switch (vsi->port_info->phy.link_info.fec_info) {
861 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
862 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
863 		fec = "RS-FEC";
864 		break;
865 	case ICE_AQ_LINK_25G_KR_FEC_EN:
866 		fec = "FC-FEC/BASE-R";
867 		break;
868 	default:
869 		fec = "NONE";
870 		break;
871 	}
872 
873 	/* check if autoneg completed, might be false due to not supported */
874 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
875 		an = "True";
876 	else
877 		an = "False";
878 
879 	/* Get FEC mode requested based on PHY caps last SW configuration */
880 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
881 	if (!caps) {
882 		fec_req = "Unknown";
883 		an_advertised = "Unknown";
884 		goto done;
885 	}
886 
887 	status = ice_aq_get_phy_caps(vsi->port_info, false,
888 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
889 	if (status)
890 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
891 
892 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
893 
894 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
895 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
896 		fec_req = "RS-FEC";
897 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
898 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
899 		fec_req = "FC-FEC/BASE-R";
900 	else
901 		fec_req = "NONE";
902 
903 	kfree(caps);
904 
905 done:
906 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
907 		    speed, fec_req, fec, an_advertised, an, fc);
908 	ice_print_topo_conflict(vsi);
909 }
910 
911 /**
912  * ice_vsi_link_event - update the VSI's netdev
913  * @vsi: the VSI on which the link event occurred
914  * @link_up: whether or not the VSI needs to be set up or down
915  */
916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
917 {
918 	if (!vsi)
919 		return;
920 
921 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
922 		return;
923 
924 	if (vsi->type == ICE_VSI_PF) {
925 		if (link_up == netif_carrier_ok(vsi->netdev))
926 			return;
927 
928 		if (link_up) {
929 			netif_carrier_on(vsi->netdev);
930 			netif_tx_wake_all_queues(vsi->netdev);
931 		} else {
932 			netif_carrier_off(vsi->netdev);
933 			netif_tx_stop_all_queues(vsi->netdev);
934 		}
935 	}
936 }
937 
938 /**
939  * ice_set_dflt_mib - send a default config MIB to the FW
940  * @pf: private PF struct
941  *
942  * This function sends a default configuration MIB to the FW.
943  *
944  * If this function errors out at any point, the driver is still able to
945  * function.  The main impact is that LFC may not operate as expected.
946  * Therefore an error state in this function should be treated with a DBG
947  * message and continue on with driver rebuild/reenable.
948  */
949 static void ice_set_dflt_mib(struct ice_pf *pf)
950 {
951 	struct device *dev = ice_pf_to_dev(pf);
952 	u8 mib_type, *buf, *lldpmib = NULL;
953 	u16 len, typelen, offset = 0;
954 	struct ice_lldp_org_tlv *tlv;
955 	struct ice_hw *hw = &pf->hw;
956 	u32 ouisubtype;
957 
958 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
959 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
960 	if (!lldpmib) {
961 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
962 			__func__);
963 		return;
964 	}
965 
966 	/* Add ETS CFG TLV */
967 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
968 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
969 		   ICE_IEEE_ETS_TLV_LEN);
970 	tlv->typelen = htons(typelen);
971 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
972 		      ICE_IEEE_SUBTYPE_ETS_CFG);
973 	tlv->ouisubtype = htonl(ouisubtype);
974 
975 	buf = tlv->tlvinfo;
976 	buf[0] = 0;
977 
978 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
979 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
980 	 * Octets 13 - 20 are TSA values - leave as zeros
981 	 */
982 	buf[5] = 0x64;
983 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
984 	offset += len + 2;
985 	tlv = (struct ice_lldp_org_tlv *)
986 		((char *)tlv + sizeof(tlv->typelen) + len);
987 
988 	/* Add ETS REC TLV */
989 	buf = tlv->tlvinfo;
990 	tlv->typelen = htons(typelen);
991 
992 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
993 		      ICE_IEEE_SUBTYPE_ETS_REC);
994 	tlv->ouisubtype = htonl(ouisubtype);
995 
996 	/* First octet of buf is reserved
997 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
998 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
999 	 * Octets 13 - 20 are TSA value - leave as zeros
1000 	 */
1001 	buf[5] = 0x64;
1002 	offset += len + 2;
1003 	tlv = (struct ice_lldp_org_tlv *)
1004 		((char *)tlv + sizeof(tlv->typelen) + len);
1005 
1006 	/* Add PFC CFG TLV */
1007 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1008 		   ICE_IEEE_PFC_TLV_LEN);
1009 	tlv->typelen = htons(typelen);
1010 
1011 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1012 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1013 	tlv->ouisubtype = htonl(ouisubtype);
1014 
1015 	/* Octet 1 left as all zeros - PFC disabled */
1016 	buf[0] = 0x08;
1017 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1018 	offset += len + 2;
1019 
1020 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1021 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1022 
1023 	kfree(lldpmib);
1024 }
1025 
1026 /**
1027  * ice_check_phy_fw_load - check if PHY FW load failed
1028  * @pf: pointer to PF struct
1029  * @link_cfg_err: bitmap from the link info structure
1030  *
1031  * check if external PHY FW load failed and print an error message if it did
1032  */
1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1034 {
1035 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1036 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1037 		return;
1038 	}
1039 
1040 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1041 		return;
1042 
1043 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1044 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1045 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1046 	}
1047 }
1048 
1049 /**
1050  * ice_check_module_power
1051  * @pf: pointer to PF struct
1052  * @link_cfg_err: bitmap from the link info structure
1053  *
1054  * check module power level returned by a previous call to aq_get_link_info
1055  * and print error messages if module power level is not supported
1056  */
1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1058 {
1059 	/* if module power level is supported, clear the flag */
1060 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1061 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1062 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1063 		return;
1064 	}
1065 
1066 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1067 	 * above block didn't clear this bit, there's nothing to do
1068 	 */
1069 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1070 		return;
1071 
1072 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1073 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1074 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1075 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1076 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1077 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1078 	}
1079 }
1080 
1081 /**
1082  * ice_check_link_cfg_err - check if link configuration failed
1083  * @pf: pointer to the PF struct
1084  * @link_cfg_err: bitmap from the link info structure
1085  *
1086  * print if any link configuration failure happens due to the value in the
1087  * link_cfg_err parameter in the link info structure
1088  */
1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1090 {
1091 	ice_check_module_power(pf, link_cfg_err);
1092 	ice_check_phy_fw_load(pf, link_cfg_err);
1093 }
1094 
1095 /**
1096  * ice_link_event - process the link event
1097  * @pf: PF that the link event is associated with
1098  * @pi: port_info for the port that the link event is associated with
1099  * @link_up: true if the physical link is up and false if it is down
1100  * @link_speed: current link speed received from the link event
1101  *
1102  * Returns 0 on success and negative on failure
1103  */
1104 static int
1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1106 	       u16 link_speed)
1107 {
1108 	struct device *dev = ice_pf_to_dev(pf);
1109 	struct ice_phy_info *phy_info;
1110 	struct ice_vsi *vsi;
1111 	u16 old_link_speed;
1112 	bool old_link;
1113 	int status;
1114 
1115 	phy_info = &pi->phy;
1116 	phy_info->link_info_old = phy_info->link_info;
1117 
1118 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1119 	old_link_speed = phy_info->link_info_old.link_speed;
1120 
1121 	/* update the link info structures and re-enable link events,
1122 	 * don't bail on failure due to other book keeping needed
1123 	 */
1124 	status = ice_update_link_info(pi);
1125 	if (status)
1126 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1127 			pi->lport, status,
1128 			ice_aq_str(pi->hw->adminq.sq_last_status));
1129 
1130 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1131 
1132 	/* Check if the link state is up after updating link info, and treat
1133 	 * this event as an UP event since the link is actually UP now.
1134 	 */
1135 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1136 		link_up = true;
1137 
1138 	vsi = ice_get_main_vsi(pf);
1139 	if (!vsi || !vsi->port_info)
1140 		return -EINVAL;
1141 
1142 	/* turn off PHY if media was removed */
1143 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1144 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1145 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1146 		ice_set_link(vsi, false);
1147 	}
1148 
1149 	/* if the old link up/down and speed is the same as the new */
1150 	if (link_up == old_link && link_speed == old_link_speed)
1151 		return 0;
1152 
1153 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1154 
1155 	if (ice_is_dcb_active(pf)) {
1156 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1157 			ice_dcb_rebuild(pf);
1158 	} else {
1159 		if (link_up)
1160 			ice_set_dflt_mib(pf);
1161 	}
1162 	ice_vsi_link_event(vsi, link_up);
1163 	ice_print_link_msg(vsi, link_up);
1164 
1165 	ice_vc_notify_link_state(pf);
1166 
1167 	return 0;
1168 }
1169 
1170 /**
1171  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1172  * @pf: board private structure
1173  */
1174 static void ice_watchdog_subtask(struct ice_pf *pf)
1175 {
1176 	int i;
1177 
1178 	/* if interface is down do nothing */
1179 	if (test_bit(ICE_DOWN, pf->state) ||
1180 	    test_bit(ICE_CFG_BUSY, pf->state))
1181 		return;
1182 
1183 	/* make sure we don't do these things too often */
1184 	if (time_before(jiffies,
1185 			pf->serv_tmr_prev + pf->serv_tmr_period))
1186 		return;
1187 
1188 	pf->serv_tmr_prev = jiffies;
1189 
1190 	/* Update the stats for active netdevs so the network stack
1191 	 * can look at updated numbers whenever it cares to
1192 	 */
1193 	ice_update_pf_stats(pf);
1194 	ice_for_each_vsi(pf, i)
1195 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1196 			ice_update_vsi_stats(pf->vsi[i]);
1197 }
1198 
1199 /**
1200  * ice_init_link_events - enable/initialize link events
1201  * @pi: pointer to the port_info instance
1202  *
1203  * Returns -EIO on failure, 0 on success
1204  */
1205 static int ice_init_link_events(struct ice_port_info *pi)
1206 {
1207 	u16 mask;
1208 
1209 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1210 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1211 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1212 
1213 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1220 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1221 			pi->lport);
1222 		return -EIO;
1223 	}
1224 
1225 	return 0;
1226 }
1227 
1228 /**
1229  * ice_handle_link_event - handle link event via ARQ
1230  * @pf: PF that the link event is associated with
1231  * @event: event structure containing link status info
1232  */
1233 static int
1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1235 {
1236 	struct ice_aqc_get_link_status_data *link_data;
1237 	struct ice_port_info *port_info;
1238 	int status;
1239 
1240 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1241 	port_info = pf->hw.port_info;
1242 	if (!port_info)
1243 		return -EINVAL;
1244 
1245 	status = ice_link_event(pf, port_info,
1246 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1247 				le16_to_cpu(link_data->link_speed));
1248 	if (status)
1249 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1250 			status);
1251 
1252 	return status;
1253 }
1254 
1255 /**
1256  * ice_get_fwlog_data - copy the FW log data from ARQ event
1257  * @pf: PF that the FW log event is associated with
1258  * @event: event structure containing FW log data
1259  */
1260 static void
1261 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1262 {
1263 	struct ice_fwlog_data *fwlog;
1264 	struct ice_hw *hw = &pf->hw;
1265 
1266 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1267 
1268 	memset(fwlog->data, 0, PAGE_SIZE);
1269 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1270 
1271 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1272 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1273 
1274 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1275 		/* the rings are full so bump the head to create room */
1276 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1277 					 hw->fwlog_ring.size);
1278 	}
1279 }
1280 
1281 /**
1282  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1283  * @pf: pointer to the PF private structure
1284  * @task: intermediate helper storage and identifier for waiting
1285  * @opcode: the opcode to wait for
1286  *
1287  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1288  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1289  *
1290  * Calls are separated to allow caller registering for event before sending
1291  * the command, which mitigates a race between registering and FW responding.
1292  *
1293  * To obtain only the descriptor contents, pass an task->event with null
1294  * msg_buf. If the complete data buffer is desired, allocate the
1295  * task->event.msg_buf with enough space ahead of time.
1296  */
1297 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1298 			   u16 opcode)
1299 {
1300 	INIT_HLIST_NODE(&task->entry);
1301 	task->opcode = opcode;
1302 	task->state = ICE_AQ_TASK_WAITING;
1303 
1304 	spin_lock_bh(&pf->aq_wait_lock);
1305 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1306 	spin_unlock_bh(&pf->aq_wait_lock);
1307 }
1308 
1309 /**
1310  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1311  * @pf: pointer to the PF private structure
1312  * @task: ptr prepared by ice_aq_prep_for_event()
1313  * @timeout: how long to wait, in jiffies
1314  *
1315  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1316  * current thread will be put to sleep until the specified event occurs or
1317  * until the given timeout is reached.
1318  *
1319  * Returns: zero on success, or a negative error code on failure.
1320  */
1321 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1322 			  unsigned long timeout)
1323 {
1324 	enum ice_aq_task_state *state = &task->state;
1325 	struct device *dev = ice_pf_to_dev(pf);
1326 	unsigned long start = jiffies;
1327 	long ret;
1328 	int err;
1329 
1330 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1331 					       *state != ICE_AQ_TASK_WAITING,
1332 					       timeout);
1333 	switch (*state) {
1334 	case ICE_AQ_TASK_NOT_PREPARED:
1335 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1336 		err = -EINVAL;
1337 		break;
1338 	case ICE_AQ_TASK_WAITING:
1339 		err = ret < 0 ? ret : -ETIMEDOUT;
1340 		break;
1341 	case ICE_AQ_TASK_CANCELED:
1342 		err = ret < 0 ? ret : -ECANCELED;
1343 		break;
1344 	case ICE_AQ_TASK_COMPLETE:
1345 		err = ret < 0 ? ret : 0;
1346 		break;
1347 	default:
1348 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1349 		err = -EINVAL;
1350 		break;
1351 	}
1352 
1353 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1354 		jiffies_to_msecs(jiffies - start),
1355 		jiffies_to_msecs(timeout),
1356 		task->opcode);
1357 
1358 	spin_lock_bh(&pf->aq_wait_lock);
1359 	hlist_del(&task->entry);
1360 	spin_unlock_bh(&pf->aq_wait_lock);
1361 
1362 	return err;
1363 }
1364 
1365 /**
1366  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1367  * @pf: pointer to the PF private structure
1368  * @opcode: the opcode of the event
1369  * @event: the event to check
1370  *
1371  * Loops over the current list of pending threads waiting for an AdminQ event.
1372  * For each matching task, copy the contents of the event into the task
1373  * structure and wake up the thread.
1374  *
1375  * If multiple threads wait for the same opcode, they will all be woken up.
1376  *
1377  * Note that event->msg_buf will only be duplicated if the event has a buffer
1378  * with enough space already allocated. Otherwise, only the descriptor and
1379  * message length will be copied.
1380  *
1381  * Returns: true if an event was found, false otherwise
1382  */
1383 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1384 				struct ice_rq_event_info *event)
1385 {
1386 	struct ice_rq_event_info *task_ev;
1387 	struct ice_aq_task *task;
1388 	bool found = false;
1389 
1390 	spin_lock_bh(&pf->aq_wait_lock);
1391 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1392 		if (task->state != ICE_AQ_TASK_WAITING)
1393 			continue;
1394 		if (task->opcode != opcode)
1395 			continue;
1396 
1397 		task_ev = &task->event;
1398 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1399 		task_ev->msg_len = event->msg_len;
1400 
1401 		/* Only copy the data buffer if a destination was set */
1402 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1403 			memcpy(task_ev->msg_buf, event->msg_buf,
1404 			       event->buf_len);
1405 			task_ev->buf_len = event->buf_len;
1406 		}
1407 
1408 		task->state = ICE_AQ_TASK_COMPLETE;
1409 		found = true;
1410 	}
1411 	spin_unlock_bh(&pf->aq_wait_lock);
1412 
1413 	if (found)
1414 		wake_up(&pf->aq_wait_queue);
1415 }
1416 
1417 /**
1418  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1419  * @pf: the PF private structure
1420  *
1421  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1422  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1423  */
1424 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1425 {
1426 	struct ice_aq_task *task;
1427 
1428 	spin_lock_bh(&pf->aq_wait_lock);
1429 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1430 		task->state = ICE_AQ_TASK_CANCELED;
1431 	spin_unlock_bh(&pf->aq_wait_lock);
1432 
1433 	wake_up(&pf->aq_wait_queue);
1434 }
1435 
1436 #define ICE_MBX_OVERFLOW_WATERMARK 64
1437 
1438 /**
1439  * __ice_clean_ctrlq - helper function to clean controlq rings
1440  * @pf: ptr to struct ice_pf
1441  * @q_type: specific Control queue type
1442  */
1443 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1444 {
1445 	struct device *dev = ice_pf_to_dev(pf);
1446 	struct ice_rq_event_info event;
1447 	struct ice_hw *hw = &pf->hw;
1448 	struct ice_ctl_q_info *cq;
1449 	u16 pending, i = 0;
1450 	const char *qtype;
1451 	u32 oldval, val;
1452 
1453 	/* Do not clean control queue if/when PF reset fails */
1454 	if (test_bit(ICE_RESET_FAILED, pf->state))
1455 		return 0;
1456 
1457 	switch (q_type) {
1458 	case ICE_CTL_Q_ADMIN:
1459 		cq = &hw->adminq;
1460 		qtype = "Admin";
1461 		break;
1462 	case ICE_CTL_Q_SB:
1463 		cq = &hw->sbq;
1464 		qtype = "Sideband";
1465 		break;
1466 	case ICE_CTL_Q_MAILBOX:
1467 		cq = &hw->mailboxq;
1468 		qtype = "Mailbox";
1469 		/* we are going to try to detect a malicious VF, so set the
1470 		 * state to begin detection
1471 		 */
1472 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1473 		break;
1474 	default:
1475 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1476 		return 0;
1477 	}
1478 
1479 	/* check for error indications - PF_xx_AxQLEN register layout for
1480 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1481 	 */
1482 	val = rd32(hw, cq->rq.len);
1483 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1484 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1485 		oldval = val;
1486 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1487 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1488 				qtype);
1489 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1490 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1491 				qtype);
1492 		}
1493 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1494 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1495 				qtype);
1496 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1497 			 PF_FW_ARQLEN_ARQCRIT_M);
1498 		if (oldval != val)
1499 			wr32(hw, cq->rq.len, val);
1500 	}
1501 
1502 	val = rd32(hw, cq->sq.len);
1503 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1504 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1505 		oldval = val;
1506 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1507 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1508 				qtype);
1509 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1510 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1511 				qtype);
1512 		}
1513 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1514 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1515 				qtype);
1516 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1517 			 PF_FW_ATQLEN_ATQCRIT_M);
1518 		if (oldval != val)
1519 			wr32(hw, cq->sq.len, val);
1520 	}
1521 
1522 	event.buf_len = cq->rq_buf_size;
1523 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1524 	if (!event.msg_buf)
1525 		return 0;
1526 
1527 	do {
1528 		struct ice_mbx_data data = {};
1529 		u16 opcode;
1530 		int ret;
1531 
1532 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1533 		if (ret == -EALREADY)
1534 			break;
1535 		if (ret) {
1536 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1537 				ret);
1538 			break;
1539 		}
1540 
1541 		opcode = le16_to_cpu(event.desc.opcode);
1542 
1543 		/* Notify any thread that might be waiting for this event */
1544 		ice_aq_check_events(pf, opcode, &event);
1545 
1546 		switch (opcode) {
1547 		case ice_aqc_opc_get_link_status:
1548 			if (ice_handle_link_event(pf, &event))
1549 				dev_err(dev, "Could not handle link event\n");
1550 			break;
1551 		case ice_aqc_opc_event_lan_overflow:
1552 			ice_vf_lan_overflow_event(pf, &event);
1553 			break;
1554 		case ice_mbx_opc_send_msg_to_pf:
1555 			data.num_msg_proc = i;
1556 			data.num_pending_arq = pending;
1557 			data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries;
1558 			data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
1559 
1560 			ice_vc_process_vf_msg(pf, &event, &data);
1561 			break;
1562 		case ice_aqc_opc_fw_logs_event:
1563 			ice_get_fwlog_data(pf, &event);
1564 			break;
1565 		case ice_aqc_opc_lldp_set_mib_change:
1566 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1567 			break;
1568 		default:
1569 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1570 				qtype, opcode);
1571 			break;
1572 		}
1573 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1574 
1575 	kfree(event.msg_buf);
1576 
1577 	return pending && (i == ICE_DFLT_IRQ_WORK);
1578 }
1579 
1580 /**
1581  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1582  * @hw: pointer to hardware info
1583  * @cq: control queue information
1584  *
1585  * returns true if there are pending messages in a queue, false if there aren't
1586  */
1587 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1588 {
1589 	u16 ntu;
1590 
1591 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1592 	return cq->rq.next_to_clean != ntu;
1593 }
1594 
1595 /**
1596  * ice_clean_adminq_subtask - clean the AdminQ rings
1597  * @pf: board private structure
1598  */
1599 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1600 {
1601 	struct ice_hw *hw = &pf->hw;
1602 
1603 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1604 		return;
1605 
1606 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1607 		return;
1608 
1609 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1610 
1611 	/* There might be a situation where new messages arrive to a control
1612 	 * queue between processing the last message and clearing the
1613 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1614 	 * ice_ctrlq_pending) and process new messages if any.
1615 	 */
1616 	if (ice_ctrlq_pending(hw, &hw->adminq))
1617 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1618 
1619 	ice_flush(hw);
1620 }
1621 
1622 /**
1623  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1624  * @pf: board private structure
1625  */
1626 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1627 {
1628 	struct ice_hw *hw = &pf->hw;
1629 
1630 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1631 		return;
1632 
1633 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1634 		return;
1635 
1636 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1637 
1638 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1639 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1640 
1641 	ice_flush(hw);
1642 }
1643 
1644 /**
1645  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1646  * @pf: board private structure
1647  */
1648 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1649 {
1650 	struct ice_hw *hw = &pf->hw;
1651 
1652 	/* Nothing to do here if sideband queue is not supported */
1653 	if (!ice_is_sbq_supported(hw)) {
1654 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1655 		return;
1656 	}
1657 
1658 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1659 		return;
1660 
1661 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1662 		return;
1663 
1664 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1665 
1666 	if (ice_ctrlq_pending(hw, &hw->sbq))
1667 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1668 
1669 	ice_flush(hw);
1670 }
1671 
1672 /**
1673  * ice_service_task_schedule - schedule the service task to wake up
1674  * @pf: board private structure
1675  *
1676  * If not already scheduled, this puts the task into the work queue.
1677  */
1678 void ice_service_task_schedule(struct ice_pf *pf)
1679 {
1680 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1681 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1682 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1683 		queue_work(ice_wq, &pf->serv_task);
1684 }
1685 
1686 /**
1687  * ice_service_task_complete - finish up the service task
1688  * @pf: board private structure
1689  */
1690 static void ice_service_task_complete(struct ice_pf *pf)
1691 {
1692 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1693 
1694 	/* force memory (pf->state) to sync before next service task */
1695 	smp_mb__before_atomic();
1696 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1697 }
1698 
1699 /**
1700  * ice_service_task_stop - stop service task and cancel works
1701  * @pf: board private structure
1702  *
1703  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1704  * 1 otherwise.
1705  */
1706 static int ice_service_task_stop(struct ice_pf *pf)
1707 {
1708 	int ret;
1709 
1710 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1711 
1712 	if (pf->serv_tmr.function)
1713 		del_timer_sync(&pf->serv_tmr);
1714 	if (pf->serv_task.func)
1715 		cancel_work_sync(&pf->serv_task);
1716 
1717 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1718 	return ret;
1719 }
1720 
1721 /**
1722  * ice_service_task_restart - restart service task and schedule works
1723  * @pf: board private structure
1724  *
1725  * This function is needed for suspend and resume works (e.g WoL scenario)
1726  */
1727 static void ice_service_task_restart(struct ice_pf *pf)
1728 {
1729 	clear_bit(ICE_SERVICE_DIS, pf->state);
1730 	ice_service_task_schedule(pf);
1731 }
1732 
1733 /**
1734  * ice_service_timer - timer callback to schedule service task
1735  * @t: pointer to timer_list
1736  */
1737 static void ice_service_timer(struct timer_list *t)
1738 {
1739 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1740 
1741 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1742 	ice_service_task_schedule(pf);
1743 }
1744 
1745 /**
1746  * ice_handle_mdd_event - handle malicious driver detect event
1747  * @pf: pointer to the PF structure
1748  *
1749  * Called from service task. OICR interrupt handler indicates MDD event.
1750  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1751  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1752  * disable the queue, the PF can be configured to reset the VF using ethtool
1753  * private flag mdd-auto-reset-vf.
1754  */
1755 static void ice_handle_mdd_event(struct ice_pf *pf)
1756 {
1757 	struct device *dev = ice_pf_to_dev(pf);
1758 	struct ice_hw *hw = &pf->hw;
1759 	struct ice_vf *vf;
1760 	unsigned int bkt;
1761 	u32 reg;
1762 
1763 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1764 		/* Since the VF MDD event logging is rate limited, check if
1765 		 * there are pending MDD events.
1766 		 */
1767 		ice_print_vfs_mdd_events(pf);
1768 		return;
1769 	}
1770 
1771 	/* find what triggered an MDD event */
1772 	reg = rd32(hw, GL_MDET_TX_PQM);
1773 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1774 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1775 				GL_MDET_TX_PQM_PF_NUM_S;
1776 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1777 				GL_MDET_TX_PQM_VF_NUM_S;
1778 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1779 				GL_MDET_TX_PQM_MAL_TYPE_S;
1780 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1781 				GL_MDET_TX_PQM_QNUM_S);
1782 
1783 		if (netif_msg_tx_err(pf))
1784 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1785 				 event, queue, pf_num, vf_num);
1786 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1787 	}
1788 
1789 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1790 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1791 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1792 				GL_MDET_TX_TCLAN_PF_NUM_S;
1793 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1794 				GL_MDET_TX_TCLAN_VF_NUM_S;
1795 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1796 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1797 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1798 				GL_MDET_TX_TCLAN_QNUM_S);
1799 
1800 		if (netif_msg_tx_err(pf))
1801 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1802 				 event, queue, pf_num, vf_num);
1803 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1804 	}
1805 
1806 	reg = rd32(hw, GL_MDET_RX);
1807 	if (reg & GL_MDET_RX_VALID_M) {
1808 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1809 				GL_MDET_RX_PF_NUM_S;
1810 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1811 				GL_MDET_RX_VF_NUM_S;
1812 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1813 				GL_MDET_RX_MAL_TYPE_S;
1814 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1815 				GL_MDET_RX_QNUM_S);
1816 
1817 		if (netif_msg_rx_err(pf))
1818 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1819 				 event, queue, pf_num, vf_num);
1820 		wr32(hw, GL_MDET_RX, 0xffffffff);
1821 	}
1822 
1823 	/* check to see if this PF caused an MDD event */
1824 	reg = rd32(hw, PF_MDET_TX_PQM);
1825 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1826 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1827 		if (netif_msg_tx_err(pf))
1828 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1829 	}
1830 
1831 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1832 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1833 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1834 		if (netif_msg_tx_err(pf))
1835 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1836 	}
1837 
1838 	reg = rd32(hw, PF_MDET_RX);
1839 	if (reg & PF_MDET_RX_VALID_M) {
1840 		wr32(hw, PF_MDET_RX, 0xFFFF);
1841 		if (netif_msg_rx_err(pf))
1842 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1843 	}
1844 
1845 	/* Check to see if one of the VFs caused an MDD event, and then
1846 	 * increment counters and set print pending
1847 	 */
1848 	mutex_lock(&pf->vfs.table_lock);
1849 	ice_for_each_vf(pf, bkt, vf) {
1850 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1851 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1852 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1853 			vf->mdd_tx_events.count++;
1854 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1855 			if (netif_msg_tx_err(pf))
1856 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1857 					 vf->vf_id);
1858 		}
1859 
1860 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1861 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1862 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1863 			vf->mdd_tx_events.count++;
1864 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1865 			if (netif_msg_tx_err(pf))
1866 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1867 					 vf->vf_id);
1868 		}
1869 
1870 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1871 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1872 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1873 			vf->mdd_tx_events.count++;
1874 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1875 			if (netif_msg_tx_err(pf))
1876 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1877 					 vf->vf_id);
1878 		}
1879 
1880 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1881 		if (reg & VP_MDET_RX_VALID_M) {
1882 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1883 			vf->mdd_rx_events.count++;
1884 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1885 			if (netif_msg_rx_err(pf))
1886 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1887 					 vf->vf_id);
1888 
1889 			/* Since the queue is disabled on VF Rx MDD events, the
1890 			 * PF can be configured to reset the VF through ethtool
1891 			 * private flag mdd-auto-reset-vf.
1892 			 */
1893 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1894 				/* VF MDD event counters will be cleared by
1895 				 * reset, so print the event prior to reset.
1896 				 */
1897 				ice_print_vf_rx_mdd_event(vf);
1898 				ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1899 			}
1900 		}
1901 	}
1902 	mutex_unlock(&pf->vfs.table_lock);
1903 
1904 	ice_print_vfs_mdd_events(pf);
1905 }
1906 
1907 /**
1908  * ice_force_phys_link_state - Force the physical link state
1909  * @vsi: VSI to force the physical link state to up/down
1910  * @link_up: true/false indicates to set the physical link to up/down
1911  *
1912  * Force the physical link state by getting the current PHY capabilities from
1913  * hardware and setting the PHY config based on the determined capabilities. If
1914  * link changes a link event will be triggered because both the Enable Automatic
1915  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1916  *
1917  * Returns 0 on success, negative on failure
1918  */
1919 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1920 {
1921 	struct ice_aqc_get_phy_caps_data *pcaps;
1922 	struct ice_aqc_set_phy_cfg_data *cfg;
1923 	struct ice_port_info *pi;
1924 	struct device *dev;
1925 	int retcode;
1926 
1927 	if (!vsi || !vsi->port_info || !vsi->back)
1928 		return -EINVAL;
1929 	if (vsi->type != ICE_VSI_PF)
1930 		return 0;
1931 
1932 	dev = ice_pf_to_dev(vsi->back);
1933 
1934 	pi = vsi->port_info;
1935 
1936 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1937 	if (!pcaps)
1938 		return -ENOMEM;
1939 
1940 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1941 				      NULL);
1942 	if (retcode) {
1943 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1944 			vsi->vsi_num, retcode);
1945 		retcode = -EIO;
1946 		goto out;
1947 	}
1948 
1949 	/* No change in link */
1950 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1951 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1952 		goto out;
1953 
1954 	/* Use the current user PHY configuration. The current user PHY
1955 	 * configuration is initialized during probe from PHY capabilities
1956 	 * software mode, and updated on set PHY configuration.
1957 	 */
1958 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1959 	if (!cfg) {
1960 		retcode = -ENOMEM;
1961 		goto out;
1962 	}
1963 
1964 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1965 	if (link_up)
1966 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1967 	else
1968 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1969 
1970 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1971 	if (retcode) {
1972 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1973 			vsi->vsi_num, retcode);
1974 		retcode = -EIO;
1975 	}
1976 
1977 	kfree(cfg);
1978 out:
1979 	kfree(pcaps);
1980 	return retcode;
1981 }
1982 
1983 /**
1984  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1985  * @pi: port info structure
1986  *
1987  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1988  */
1989 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1990 {
1991 	struct ice_aqc_get_phy_caps_data *pcaps;
1992 	struct ice_pf *pf = pi->hw->back;
1993 	int err;
1994 
1995 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1996 	if (!pcaps)
1997 		return -ENOMEM;
1998 
1999 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2000 				  pcaps, NULL);
2001 
2002 	if (err) {
2003 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2004 		goto out;
2005 	}
2006 
2007 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
2008 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
2009 
2010 out:
2011 	kfree(pcaps);
2012 	return err;
2013 }
2014 
2015 /**
2016  * ice_init_link_dflt_override - Initialize link default override
2017  * @pi: port info structure
2018  *
2019  * Initialize link default override and PHY total port shutdown during probe
2020  */
2021 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2022 {
2023 	struct ice_link_default_override_tlv *ldo;
2024 	struct ice_pf *pf = pi->hw->back;
2025 
2026 	ldo = &pf->link_dflt_override;
2027 	if (ice_get_link_default_override(ldo, pi))
2028 		return;
2029 
2030 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2031 		return;
2032 
2033 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2034 	 * ethtool private flag) for ports with Port Disable bit set.
2035 	 */
2036 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2037 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2038 }
2039 
2040 /**
2041  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2042  * @pi: port info structure
2043  *
2044  * If default override is enabled, initialize the user PHY cfg speed and FEC
2045  * settings using the default override mask from the NVM.
2046  *
2047  * The PHY should only be configured with the default override settings the
2048  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2049  * is used to indicate that the user PHY cfg default override is initialized
2050  * and the PHY has not been configured with the default override settings. The
2051  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2052  * configured.
2053  *
2054  * This function should be called only if the FW doesn't support default
2055  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2056  */
2057 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2058 {
2059 	struct ice_link_default_override_tlv *ldo;
2060 	struct ice_aqc_set_phy_cfg_data *cfg;
2061 	struct ice_phy_info *phy = &pi->phy;
2062 	struct ice_pf *pf = pi->hw->back;
2063 
2064 	ldo = &pf->link_dflt_override;
2065 
2066 	/* If link default override is enabled, use to mask NVM PHY capabilities
2067 	 * for speed and FEC default configuration.
2068 	 */
2069 	cfg = &phy->curr_user_phy_cfg;
2070 
2071 	if (ldo->phy_type_low || ldo->phy_type_high) {
2072 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2073 				    cpu_to_le64(ldo->phy_type_low);
2074 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2075 				     cpu_to_le64(ldo->phy_type_high);
2076 	}
2077 	cfg->link_fec_opt = ldo->fec_options;
2078 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2079 
2080 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2081 }
2082 
2083 /**
2084  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2085  * @pi: port info structure
2086  *
2087  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2088  * mode to default. The PHY defaults are from get PHY capabilities topology
2089  * with media so call when media is first available. An error is returned if
2090  * called when media is not available. The PHY initialization completed state is
2091  * set here.
2092  *
2093  * These configurations are used when setting PHY
2094  * configuration. The user PHY configuration is updated on set PHY
2095  * configuration. Returns 0 on success, negative on failure
2096  */
2097 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2098 {
2099 	struct ice_aqc_get_phy_caps_data *pcaps;
2100 	struct ice_phy_info *phy = &pi->phy;
2101 	struct ice_pf *pf = pi->hw->back;
2102 	int err;
2103 
2104 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2105 		return -EIO;
2106 
2107 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2108 	if (!pcaps)
2109 		return -ENOMEM;
2110 
2111 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2112 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2113 					  pcaps, NULL);
2114 	else
2115 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2116 					  pcaps, NULL);
2117 	if (err) {
2118 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2119 		goto err_out;
2120 	}
2121 
2122 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2123 
2124 	/* check if lenient mode is supported and enabled */
2125 	if (ice_fw_supports_link_override(pi->hw) &&
2126 	    !(pcaps->module_compliance_enforcement &
2127 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2128 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2129 
2130 		/* if the FW supports default PHY configuration mode, then the driver
2131 		 * does not have to apply link override settings. If not,
2132 		 * initialize user PHY configuration with link override values
2133 		 */
2134 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2135 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2136 			ice_init_phy_cfg_dflt_override(pi);
2137 			goto out;
2138 		}
2139 	}
2140 
2141 	/* if link default override is not enabled, set user flow control and
2142 	 * FEC settings based on what get_phy_caps returned
2143 	 */
2144 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2145 						      pcaps->link_fec_options);
2146 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2147 
2148 out:
2149 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2150 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2151 err_out:
2152 	kfree(pcaps);
2153 	return err;
2154 }
2155 
2156 /**
2157  * ice_configure_phy - configure PHY
2158  * @vsi: VSI of PHY
2159  *
2160  * Set the PHY configuration. If the current PHY configuration is the same as
2161  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2162  * configure the based get PHY capabilities for topology with media.
2163  */
2164 static int ice_configure_phy(struct ice_vsi *vsi)
2165 {
2166 	struct device *dev = ice_pf_to_dev(vsi->back);
2167 	struct ice_port_info *pi = vsi->port_info;
2168 	struct ice_aqc_get_phy_caps_data *pcaps;
2169 	struct ice_aqc_set_phy_cfg_data *cfg;
2170 	struct ice_phy_info *phy = &pi->phy;
2171 	struct ice_pf *pf = vsi->back;
2172 	int err;
2173 
2174 	/* Ensure we have media as we cannot configure a medialess port */
2175 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2176 		return -EPERM;
2177 
2178 	ice_print_topo_conflict(vsi);
2179 
2180 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2181 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2182 		return -EPERM;
2183 
2184 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2185 		return ice_force_phys_link_state(vsi, true);
2186 
2187 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2188 	if (!pcaps)
2189 		return -ENOMEM;
2190 
2191 	/* Get current PHY config */
2192 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2193 				  NULL);
2194 	if (err) {
2195 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2196 			vsi->vsi_num, err);
2197 		goto done;
2198 	}
2199 
2200 	/* If PHY enable link is configured and configuration has not changed,
2201 	 * there's nothing to do
2202 	 */
2203 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2204 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2205 		goto done;
2206 
2207 	/* Use PHY topology as baseline for configuration */
2208 	memset(pcaps, 0, sizeof(*pcaps));
2209 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2210 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2211 					  pcaps, NULL);
2212 	else
2213 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2214 					  pcaps, NULL);
2215 	if (err) {
2216 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2217 			vsi->vsi_num, err);
2218 		goto done;
2219 	}
2220 
2221 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2222 	if (!cfg) {
2223 		err = -ENOMEM;
2224 		goto done;
2225 	}
2226 
2227 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2228 
2229 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2230 	 * ice_init_phy_user_cfg_ldo.
2231 	 */
2232 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2233 			       vsi->back->state)) {
2234 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2235 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2236 	} else {
2237 		u64 phy_low = 0, phy_high = 0;
2238 
2239 		ice_update_phy_type(&phy_low, &phy_high,
2240 				    pi->phy.curr_user_speed_req);
2241 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2242 		cfg->phy_type_high = pcaps->phy_type_high &
2243 				     cpu_to_le64(phy_high);
2244 	}
2245 
2246 	/* Can't provide what was requested; use PHY capabilities */
2247 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2248 		cfg->phy_type_low = pcaps->phy_type_low;
2249 		cfg->phy_type_high = pcaps->phy_type_high;
2250 	}
2251 
2252 	/* FEC */
2253 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2254 
2255 	/* Can't provide what was requested; use PHY capabilities */
2256 	if (cfg->link_fec_opt !=
2257 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2258 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2259 		cfg->link_fec_opt = pcaps->link_fec_options;
2260 	}
2261 
2262 	/* Flow Control - always supported; no need to check against
2263 	 * capabilities
2264 	 */
2265 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2266 
2267 	/* Enable link and link update */
2268 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2269 
2270 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2271 	if (err)
2272 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2273 			vsi->vsi_num, err);
2274 
2275 	kfree(cfg);
2276 done:
2277 	kfree(pcaps);
2278 	return err;
2279 }
2280 
2281 /**
2282  * ice_check_media_subtask - Check for media
2283  * @pf: pointer to PF struct
2284  *
2285  * If media is available, then initialize PHY user configuration if it is not
2286  * been, and configure the PHY if the interface is up.
2287  */
2288 static void ice_check_media_subtask(struct ice_pf *pf)
2289 {
2290 	struct ice_port_info *pi;
2291 	struct ice_vsi *vsi;
2292 	int err;
2293 
2294 	/* No need to check for media if it's already present */
2295 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2296 		return;
2297 
2298 	vsi = ice_get_main_vsi(pf);
2299 	if (!vsi)
2300 		return;
2301 
2302 	/* Refresh link info and check if media is present */
2303 	pi = vsi->port_info;
2304 	err = ice_update_link_info(pi);
2305 	if (err)
2306 		return;
2307 
2308 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2309 
2310 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2311 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2312 			ice_init_phy_user_cfg(pi);
2313 
2314 		/* PHY settings are reset on media insertion, reconfigure
2315 		 * PHY to preserve settings.
2316 		 */
2317 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2318 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2319 			return;
2320 
2321 		err = ice_configure_phy(vsi);
2322 		if (!err)
2323 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2324 
2325 		/* A Link Status Event will be generated; the event handler
2326 		 * will complete bringing the interface up
2327 		 */
2328 	}
2329 }
2330 
2331 /**
2332  * ice_service_task - manage and run subtasks
2333  * @work: pointer to work_struct contained by the PF struct
2334  */
2335 static void ice_service_task(struct work_struct *work)
2336 {
2337 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2338 	unsigned long start_time = jiffies;
2339 
2340 	/* subtasks */
2341 
2342 	/* process reset requests first */
2343 	ice_reset_subtask(pf);
2344 
2345 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2346 	if (ice_is_reset_in_progress(pf->state) ||
2347 	    test_bit(ICE_SUSPENDED, pf->state) ||
2348 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2349 		ice_service_task_complete(pf);
2350 		return;
2351 	}
2352 
2353 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2354 		struct iidc_event *event;
2355 
2356 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2357 		if (event) {
2358 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2359 			/* report the entire OICR value to AUX driver */
2360 			swap(event->reg, pf->oicr_err_reg);
2361 			ice_send_event_to_aux(pf, event);
2362 			kfree(event);
2363 		}
2364 	}
2365 
2366 	/* unplug aux dev per request, if an unplug request came in
2367 	 * while processing a plug request, this will handle it
2368 	 */
2369 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2370 		ice_unplug_aux_dev(pf);
2371 
2372 	/* Plug aux device per request */
2373 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2374 		ice_plug_aux_dev(pf);
2375 
2376 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2377 		struct iidc_event *event;
2378 
2379 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2380 		if (event) {
2381 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2382 			ice_send_event_to_aux(pf, event);
2383 			kfree(event);
2384 		}
2385 	}
2386 
2387 	ice_clean_adminq_subtask(pf);
2388 	ice_check_media_subtask(pf);
2389 	ice_check_for_hang_subtask(pf);
2390 	ice_sync_fltr_subtask(pf);
2391 	ice_handle_mdd_event(pf);
2392 	ice_watchdog_subtask(pf);
2393 
2394 	if (ice_is_safe_mode(pf)) {
2395 		ice_service_task_complete(pf);
2396 		return;
2397 	}
2398 
2399 	ice_process_vflr_event(pf);
2400 	ice_clean_mailboxq_subtask(pf);
2401 	ice_clean_sbq_subtask(pf);
2402 	ice_sync_arfs_fltrs(pf);
2403 	ice_flush_fdir_ctx(pf);
2404 
2405 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2406 	ice_service_task_complete(pf);
2407 
2408 	/* If the tasks have taken longer than one service timer period
2409 	 * or there is more work to be done, reset the service timer to
2410 	 * schedule the service task now.
2411 	 */
2412 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2413 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2414 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2415 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2416 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2417 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2418 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2419 		mod_timer(&pf->serv_tmr, jiffies);
2420 }
2421 
2422 /**
2423  * ice_set_ctrlq_len - helper function to set controlq length
2424  * @hw: pointer to the HW instance
2425  */
2426 static void ice_set_ctrlq_len(struct ice_hw *hw)
2427 {
2428 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2429 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2430 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2431 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2432 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2433 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2434 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2435 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2436 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2437 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2438 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2439 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2440 }
2441 
2442 /**
2443  * ice_schedule_reset - schedule a reset
2444  * @pf: board private structure
2445  * @reset: reset being requested
2446  */
2447 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2448 {
2449 	struct device *dev = ice_pf_to_dev(pf);
2450 
2451 	/* bail out if earlier reset has failed */
2452 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2453 		dev_dbg(dev, "earlier reset has failed\n");
2454 		return -EIO;
2455 	}
2456 	/* bail if reset/recovery already in progress */
2457 	if (ice_is_reset_in_progress(pf->state)) {
2458 		dev_dbg(dev, "Reset already in progress\n");
2459 		return -EBUSY;
2460 	}
2461 
2462 	switch (reset) {
2463 	case ICE_RESET_PFR:
2464 		set_bit(ICE_PFR_REQ, pf->state);
2465 		break;
2466 	case ICE_RESET_CORER:
2467 		set_bit(ICE_CORER_REQ, pf->state);
2468 		break;
2469 	case ICE_RESET_GLOBR:
2470 		set_bit(ICE_GLOBR_REQ, pf->state);
2471 		break;
2472 	default:
2473 		return -EINVAL;
2474 	}
2475 
2476 	ice_service_task_schedule(pf);
2477 	return 0;
2478 }
2479 
2480 /**
2481  * ice_irq_affinity_notify - Callback for affinity changes
2482  * @notify: context as to what irq was changed
2483  * @mask: the new affinity mask
2484  *
2485  * This is a callback function used by the irq_set_affinity_notifier function
2486  * so that we may register to receive changes to the irq affinity masks.
2487  */
2488 static void
2489 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2490 			const cpumask_t *mask)
2491 {
2492 	struct ice_q_vector *q_vector =
2493 		container_of(notify, struct ice_q_vector, affinity_notify);
2494 
2495 	cpumask_copy(&q_vector->affinity_mask, mask);
2496 }
2497 
2498 /**
2499  * ice_irq_affinity_release - Callback for affinity notifier release
2500  * @ref: internal core kernel usage
2501  *
2502  * This is a callback function used by the irq_set_affinity_notifier function
2503  * to inform the current notification subscriber that they will no longer
2504  * receive notifications.
2505  */
2506 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2507 
2508 /**
2509  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2510  * @vsi: the VSI being configured
2511  */
2512 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2513 {
2514 	struct ice_hw *hw = &vsi->back->hw;
2515 	int i;
2516 
2517 	ice_for_each_q_vector(vsi, i)
2518 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2519 
2520 	ice_flush(hw);
2521 	return 0;
2522 }
2523 
2524 /**
2525  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2526  * @vsi: the VSI being configured
2527  * @basename: name for the vector
2528  */
2529 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2530 {
2531 	int q_vectors = vsi->num_q_vectors;
2532 	struct ice_pf *pf = vsi->back;
2533 	struct device *dev;
2534 	int rx_int_idx = 0;
2535 	int tx_int_idx = 0;
2536 	int vector, err;
2537 	int irq_num;
2538 
2539 	dev = ice_pf_to_dev(pf);
2540 	for (vector = 0; vector < q_vectors; vector++) {
2541 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2542 
2543 		irq_num = q_vector->irq.virq;
2544 
2545 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2546 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2547 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2548 			tx_int_idx++;
2549 		} else if (q_vector->rx.rx_ring) {
2550 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2551 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2552 		} else if (q_vector->tx.tx_ring) {
2553 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2554 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2555 		} else {
2556 			/* skip this unused q_vector */
2557 			continue;
2558 		}
2559 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2560 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2561 					       IRQF_SHARED, q_vector->name,
2562 					       q_vector);
2563 		else
2564 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2565 					       0, q_vector->name, q_vector);
2566 		if (err) {
2567 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2568 				   err);
2569 			goto free_q_irqs;
2570 		}
2571 
2572 		/* register for affinity change notifications */
2573 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2574 			struct irq_affinity_notify *affinity_notify;
2575 
2576 			affinity_notify = &q_vector->affinity_notify;
2577 			affinity_notify->notify = ice_irq_affinity_notify;
2578 			affinity_notify->release = ice_irq_affinity_release;
2579 			irq_set_affinity_notifier(irq_num, affinity_notify);
2580 		}
2581 
2582 		/* assign the mask for this irq */
2583 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2584 	}
2585 
2586 	err = ice_set_cpu_rx_rmap(vsi);
2587 	if (err) {
2588 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2589 			   vsi->vsi_num, ERR_PTR(err));
2590 		goto free_q_irqs;
2591 	}
2592 
2593 	vsi->irqs_ready = true;
2594 	return 0;
2595 
2596 free_q_irqs:
2597 	while (vector--) {
2598 		irq_num = vsi->q_vectors[vector]->irq.virq;
2599 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2600 			irq_set_affinity_notifier(irq_num, NULL);
2601 		irq_set_affinity_hint(irq_num, NULL);
2602 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2603 	}
2604 	return err;
2605 }
2606 
2607 /**
2608  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2609  * @vsi: VSI to setup Tx rings used by XDP
2610  *
2611  * Return 0 on success and negative value on error
2612  */
2613 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2614 {
2615 	struct device *dev = ice_pf_to_dev(vsi->back);
2616 	struct ice_tx_desc *tx_desc;
2617 	int i, j;
2618 
2619 	ice_for_each_xdp_txq(vsi, i) {
2620 		u16 xdp_q_idx = vsi->alloc_txq + i;
2621 		struct ice_ring_stats *ring_stats;
2622 		struct ice_tx_ring *xdp_ring;
2623 
2624 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2625 		if (!xdp_ring)
2626 			goto free_xdp_rings;
2627 
2628 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2629 		if (!ring_stats) {
2630 			ice_free_tx_ring(xdp_ring);
2631 			goto free_xdp_rings;
2632 		}
2633 
2634 		xdp_ring->ring_stats = ring_stats;
2635 		xdp_ring->q_index = xdp_q_idx;
2636 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2637 		xdp_ring->vsi = vsi;
2638 		xdp_ring->netdev = NULL;
2639 		xdp_ring->dev = dev;
2640 		xdp_ring->count = vsi->num_tx_desc;
2641 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2642 		if (ice_setup_tx_ring(xdp_ring))
2643 			goto free_xdp_rings;
2644 		ice_set_ring_xdp(xdp_ring);
2645 		spin_lock_init(&xdp_ring->tx_lock);
2646 		for (j = 0; j < xdp_ring->count; j++) {
2647 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2648 			tx_desc->cmd_type_offset_bsz = 0;
2649 		}
2650 	}
2651 
2652 	return 0;
2653 
2654 free_xdp_rings:
2655 	for (; i >= 0; i--) {
2656 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2657 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2658 			vsi->xdp_rings[i]->ring_stats = NULL;
2659 			ice_free_tx_ring(vsi->xdp_rings[i]);
2660 		}
2661 	}
2662 	return -ENOMEM;
2663 }
2664 
2665 /**
2666  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2667  * @vsi: VSI to set the bpf prog on
2668  * @prog: the bpf prog pointer
2669  */
2670 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2671 {
2672 	struct bpf_prog *old_prog;
2673 	int i;
2674 
2675 	old_prog = xchg(&vsi->xdp_prog, prog);
2676 	ice_for_each_rxq(vsi, i)
2677 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2678 
2679 	if (old_prog)
2680 		bpf_prog_put(old_prog);
2681 }
2682 
2683 /**
2684  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2685  * @vsi: VSI to bring up Tx rings used by XDP
2686  * @prog: bpf program that will be assigned to VSI
2687  *
2688  * Return 0 on success and negative value on error
2689  */
2690 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2691 {
2692 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2693 	int xdp_rings_rem = vsi->num_xdp_txq;
2694 	struct ice_pf *pf = vsi->back;
2695 	struct ice_qs_cfg xdp_qs_cfg = {
2696 		.qs_mutex = &pf->avail_q_mutex,
2697 		.pf_map = pf->avail_txqs,
2698 		.pf_map_size = pf->max_pf_txqs,
2699 		.q_count = vsi->num_xdp_txq,
2700 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2701 		.vsi_map = vsi->txq_map,
2702 		.vsi_map_offset = vsi->alloc_txq,
2703 		.mapping_mode = ICE_VSI_MAP_CONTIG
2704 	};
2705 	struct device *dev;
2706 	int i, v_idx;
2707 	int status;
2708 
2709 	dev = ice_pf_to_dev(pf);
2710 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2711 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2712 	if (!vsi->xdp_rings)
2713 		return -ENOMEM;
2714 
2715 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2716 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2717 		goto err_map_xdp;
2718 
2719 	if (static_key_enabled(&ice_xdp_locking_key))
2720 		netdev_warn(vsi->netdev,
2721 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2722 
2723 	if (ice_xdp_alloc_setup_rings(vsi))
2724 		goto clear_xdp_rings;
2725 
2726 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2727 	ice_for_each_q_vector(vsi, v_idx) {
2728 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2729 		int xdp_rings_per_v, q_id, q_base;
2730 
2731 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2732 					       vsi->num_q_vectors - v_idx);
2733 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2734 
2735 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2736 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2737 
2738 			xdp_ring->q_vector = q_vector;
2739 			xdp_ring->next = q_vector->tx.tx_ring;
2740 			q_vector->tx.tx_ring = xdp_ring;
2741 		}
2742 		xdp_rings_rem -= xdp_rings_per_v;
2743 	}
2744 
2745 	ice_for_each_rxq(vsi, i) {
2746 		if (static_key_enabled(&ice_xdp_locking_key)) {
2747 			vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2748 		} else {
2749 			struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2750 			struct ice_tx_ring *ring;
2751 
2752 			ice_for_each_tx_ring(ring, q_vector->tx) {
2753 				if (ice_ring_is_xdp(ring)) {
2754 					vsi->rx_rings[i]->xdp_ring = ring;
2755 					break;
2756 				}
2757 			}
2758 		}
2759 		ice_tx_xsk_pool(vsi, i);
2760 	}
2761 
2762 	/* omit the scheduler update if in reset path; XDP queues will be
2763 	 * taken into account at the end of ice_vsi_rebuild, where
2764 	 * ice_cfg_vsi_lan is being called
2765 	 */
2766 	if (ice_is_reset_in_progress(pf->state))
2767 		return 0;
2768 
2769 	/* tell the Tx scheduler that right now we have
2770 	 * additional queues
2771 	 */
2772 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2773 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2774 
2775 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2776 				 max_txqs);
2777 	if (status) {
2778 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2779 			status);
2780 		goto clear_xdp_rings;
2781 	}
2782 
2783 	/* assign the prog only when it's not already present on VSI;
2784 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2785 	 * VSI rebuild that happens under ethtool -L can expose us to
2786 	 * the bpf_prog refcount issues as we would be swapping same
2787 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2788 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2789 	 * this is not harmful as dev_xdp_install bumps the refcount
2790 	 * before calling the op exposed by the driver;
2791 	 */
2792 	if (!ice_is_xdp_ena_vsi(vsi))
2793 		ice_vsi_assign_bpf_prog(vsi, prog);
2794 
2795 	return 0;
2796 clear_xdp_rings:
2797 	ice_for_each_xdp_txq(vsi, i)
2798 		if (vsi->xdp_rings[i]) {
2799 			kfree_rcu(vsi->xdp_rings[i], rcu);
2800 			vsi->xdp_rings[i] = NULL;
2801 		}
2802 
2803 err_map_xdp:
2804 	mutex_lock(&pf->avail_q_mutex);
2805 	ice_for_each_xdp_txq(vsi, i) {
2806 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2807 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2808 	}
2809 	mutex_unlock(&pf->avail_q_mutex);
2810 
2811 	devm_kfree(dev, vsi->xdp_rings);
2812 	return -ENOMEM;
2813 }
2814 
2815 /**
2816  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2817  * @vsi: VSI to remove XDP rings
2818  *
2819  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2820  * resources
2821  */
2822 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2823 {
2824 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2825 	struct ice_pf *pf = vsi->back;
2826 	int i, v_idx;
2827 
2828 	/* q_vectors are freed in reset path so there's no point in detaching
2829 	 * rings; in case of rebuild being triggered not from reset bits
2830 	 * in pf->state won't be set, so additionally check first q_vector
2831 	 * against NULL
2832 	 */
2833 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2834 		goto free_qmap;
2835 
2836 	ice_for_each_q_vector(vsi, v_idx) {
2837 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2838 		struct ice_tx_ring *ring;
2839 
2840 		ice_for_each_tx_ring(ring, q_vector->tx)
2841 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2842 				break;
2843 
2844 		/* restore the value of last node prior to XDP setup */
2845 		q_vector->tx.tx_ring = ring;
2846 	}
2847 
2848 free_qmap:
2849 	mutex_lock(&pf->avail_q_mutex);
2850 	ice_for_each_xdp_txq(vsi, i) {
2851 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2852 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2853 	}
2854 	mutex_unlock(&pf->avail_q_mutex);
2855 
2856 	ice_for_each_xdp_txq(vsi, i)
2857 		if (vsi->xdp_rings[i]) {
2858 			if (vsi->xdp_rings[i]->desc) {
2859 				synchronize_rcu();
2860 				ice_free_tx_ring(vsi->xdp_rings[i]);
2861 			}
2862 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2863 			vsi->xdp_rings[i]->ring_stats = NULL;
2864 			kfree_rcu(vsi->xdp_rings[i], rcu);
2865 			vsi->xdp_rings[i] = NULL;
2866 		}
2867 
2868 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2869 	vsi->xdp_rings = NULL;
2870 
2871 	if (static_key_enabled(&ice_xdp_locking_key))
2872 		static_branch_dec(&ice_xdp_locking_key);
2873 
2874 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2875 		return 0;
2876 
2877 	ice_vsi_assign_bpf_prog(vsi, NULL);
2878 
2879 	/* notify Tx scheduler that we destroyed XDP queues and bring
2880 	 * back the old number of child nodes
2881 	 */
2882 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2883 		max_txqs[i] = vsi->num_txq;
2884 
2885 	/* change number of XDP Tx queues to 0 */
2886 	vsi->num_xdp_txq = 0;
2887 
2888 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2889 			       max_txqs);
2890 }
2891 
2892 /**
2893  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2894  * @vsi: VSI to schedule napi on
2895  */
2896 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2897 {
2898 	int i;
2899 
2900 	ice_for_each_rxq(vsi, i) {
2901 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2902 
2903 		if (rx_ring->xsk_pool)
2904 			napi_schedule(&rx_ring->q_vector->napi);
2905 	}
2906 }
2907 
2908 /**
2909  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2910  * @vsi: VSI to determine the count of XDP Tx qs
2911  *
2912  * returns 0 if Tx qs count is higher than at least half of CPU count,
2913  * -ENOMEM otherwise
2914  */
2915 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2916 {
2917 	u16 avail = ice_get_avail_txq_count(vsi->back);
2918 	u16 cpus = num_possible_cpus();
2919 
2920 	if (avail < cpus / 2)
2921 		return -ENOMEM;
2922 
2923 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2924 
2925 	if (vsi->num_xdp_txq < cpus)
2926 		static_branch_inc(&ice_xdp_locking_key);
2927 
2928 	return 0;
2929 }
2930 
2931 /**
2932  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2933  * @vsi: Pointer to VSI structure
2934  */
2935 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2936 {
2937 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2938 		return ICE_RXBUF_1664;
2939 	else
2940 		return ICE_RXBUF_3072;
2941 }
2942 
2943 /**
2944  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2945  * @vsi: VSI to setup XDP for
2946  * @prog: XDP program
2947  * @extack: netlink extended ack
2948  */
2949 static int
2950 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2951 		   struct netlink_ext_ack *extack)
2952 {
2953 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2954 	bool if_running = netif_running(vsi->netdev);
2955 	int ret = 0, xdp_ring_err = 0;
2956 
2957 	if (prog && !prog->aux->xdp_has_frags) {
2958 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
2959 			NL_SET_ERR_MSG_MOD(extack,
2960 					   "MTU is too large for linear frames and XDP prog does not support frags");
2961 			return -EOPNOTSUPP;
2962 		}
2963 	}
2964 
2965 	/* hot swap progs and avoid toggling link */
2966 	if (ice_is_xdp_ena_vsi(vsi) == !!prog) {
2967 		ice_vsi_assign_bpf_prog(vsi, prog);
2968 		return 0;
2969 	}
2970 
2971 	/* need to stop netdev while setting up the program for Rx rings */
2972 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2973 		ret = ice_down(vsi);
2974 		if (ret) {
2975 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2976 			return ret;
2977 		}
2978 	}
2979 
2980 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2981 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2982 		if (xdp_ring_err) {
2983 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2984 		} else {
2985 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2986 			if (xdp_ring_err)
2987 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2988 		}
2989 		xdp_features_set_redirect_target(vsi->netdev, true);
2990 		/* reallocate Rx queues that are used for zero-copy */
2991 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2992 		if (xdp_ring_err)
2993 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2994 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2995 		xdp_features_clear_redirect_target(vsi->netdev);
2996 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2997 		if (xdp_ring_err)
2998 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2999 		/* reallocate Rx queues that were used for zero-copy */
3000 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3001 		if (xdp_ring_err)
3002 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3003 	}
3004 
3005 	if (if_running)
3006 		ret = ice_up(vsi);
3007 
3008 	if (!ret && prog)
3009 		ice_vsi_rx_napi_schedule(vsi);
3010 
3011 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3012 }
3013 
3014 /**
3015  * ice_xdp_safe_mode - XDP handler for safe mode
3016  * @dev: netdevice
3017  * @xdp: XDP command
3018  */
3019 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3020 			     struct netdev_bpf *xdp)
3021 {
3022 	NL_SET_ERR_MSG_MOD(xdp->extack,
3023 			   "Please provide working DDP firmware package in order to use XDP\n"
3024 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3025 	return -EOPNOTSUPP;
3026 }
3027 
3028 /**
3029  * ice_xdp - implements XDP handler
3030  * @dev: netdevice
3031  * @xdp: XDP command
3032  */
3033 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3034 {
3035 	struct ice_netdev_priv *np = netdev_priv(dev);
3036 	struct ice_vsi *vsi = np->vsi;
3037 
3038 	if (vsi->type != ICE_VSI_PF) {
3039 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
3040 		return -EINVAL;
3041 	}
3042 
3043 	switch (xdp->command) {
3044 	case XDP_SETUP_PROG:
3045 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3046 	case XDP_SETUP_XSK_POOL:
3047 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
3048 					  xdp->xsk.queue_id);
3049 	default:
3050 		return -EINVAL;
3051 	}
3052 }
3053 
3054 /**
3055  * ice_ena_misc_vector - enable the non-queue interrupts
3056  * @pf: board private structure
3057  */
3058 static void ice_ena_misc_vector(struct ice_pf *pf)
3059 {
3060 	struct ice_hw *hw = &pf->hw;
3061 	u32 val;
3062 
3063 	/* Disable anti-spoof detection interrupt to prevent spurious event
3064 	 * interrupts during a function reset. Anti-spoof functionally is
3065 	 * still supported.
3066 	 */
3067 	val = rd32(hw, GL_MDCK_TX_TDPU);
3068 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3069 	wr32(hw, GL_MDCK_TX_TDPU, val);
3070 
3071 	/* clear things first */
3072 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3073 	rd32(hw, PFINT_OICR);		/* read to clear */
3074 
3075 	val = (PFINT_OICR_ECC_ERR_M |
3076 	       PFINT_OICR_MAL_DETECT_M |
3077 	       PFINT_OICR_GRST_M |
3078 	       PFINT_OICR_PCI_EXCEPTION_M |
3079 	       PFINT_OICR_VFLR_M |
3080 	       PFINT_OICR_HMC_ERR_M |
3081 	       PFINT_OICR_PE_PUSH_M |
3082 	       PFINT_OICR_PE_CRITERR_M);
3083 
3084 	wr32(hw, PFINT_OICR_ENA, val);
3085 
3086 	/* SW_ITR_IDX = 0, but don't change INTENA */
3087 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3088 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3089 }
3090 
3091 /**
3092  * ice_misc_intr - misc interrupt handler
3093  * @irq: interrupt number
3094  * @data: pointer to a q_vector
3095  */
3096 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3097 {
3098 	struct ice_pf *pf = (struct ice_pf *)data;
3099 	struct ice_hw *hw = &pf->hw;
3100 	struct device *dev;
3101 	u32 oicr, ena_mask;
3102 
3103 	dev = ice_pf_to_dev(pf);
3104 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3105 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3106 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3107 
3108 	oicr = rd32(hw, PFINT_OICR);
3109 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3110 
3111 	if (oicr & PFINT_OICR_SWINT_M) {
3112 		ena_mask &= ~PFINT_OICR_SWINT_M;
3113 		pf->sw_int_count++;
3114 	}
3115 
3116 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3117 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3118 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3119 	}
3120 	if (oicr & PFINT_OICR_VFLR_M) {
3121 		/* disable any further VFLR event notifications */
3122 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3123 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3124 
3125 			reg &= ~PFINT_OICR_VFLR_M;
3126 			wr32(hw, PFINT_OICR_ENA, reg);
3127 		} else {
3128 			ena_mask &= ~PFINT_OICR_VFLR_M;
3129 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3130 		}
3131 	}
3132 
3133 	if (oicr & PFINT_OICR_GRST_M) {
3134 		u32 reset;
3135 
3136 		/* we have a reset warning */
3137 		ena_mask &= ~PFINT_OICR_GRST_M;
3138 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3139 			GLGEN_RSTAT_RESET_TYPE_S;
3140 
3141 		if (reset == ICE_RESET_CORER)
3142 			pf->corer_count++;
3143 		else if (reset == ICE_RESET_GLOBR)
3144 			pf->globr_count++;
3145 		else if (reset == ICE_RESET_EMPR)
3146 			pf->empr_count++;
3147 		else
3148 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3149 
3150 		/* If a reset cycle isn't already in progress, we set a bit in
3151 		 * pf->state so that the service task can start a reset/rebuild.
3152 		 */
3153 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3154 			if (reset == ICE_RESET_CORER)
3155 				set_bit(ICE_CORER_RECV, pf->state);
3156 			else if (reset == ICE_RESET_GLOBR)
3157 				set_bit(ICE_GLOBR_RECV, pf->state);
3158 			else
3159 				set_bit(ICE_EMPR_RECV, pf->state);
3160 
3161 			/* There are couple of different bits at play here.
3162 			 * hw->reset_ongoing indicates whether the hardware is
3163 			 * in reset. This is set to true when a reset interrupt
3164 			 * is received and set back to false after the driver
3165 			 * has determined that the hardware is out of reset.
3166 			 *
3167 			 * ICE_RESET_OICR_RECV in pf->state indicates
3168 			 * that a post reset rebuild is required before the
3169 			 * driver is operational again. This is set above.
3170 			 *
3171 			 * As this is the start of the reset/rebuild cycle, set
3172 			 * both to indicate that.
3173 			 */
3174 			hw->reset_ongoing = true;
3175 		}
3176 	}
3177 
3178 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3179 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3180 		if (ice_ptp_pf_handles_tx_interrupt(pf))
3181 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3182 	}
3183 
3184 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3185 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3186 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3187 
3188 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3189 
3190 		if (ice_pf_src_tmr_owned(pf)) {
3191 			/* Save EVENTs from GLTSYN register */
3192 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3193 					      (GLTSYN_STAT_EVENT0_M |
3194 					       GLTSYN_STAT_EVENT1_M |
3195 					       GLTSYN_STAT_EVENT2_M);
3196 
3197 			set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread);
3198 		}
3199 	}
3200 
3201 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3202 	if (oicr & ICE_AUX_CRIT_ERR) {
3203 		pf->oicr_err_reg |= oicr;
3204 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3205 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3206 	}
3207 
3208 	/* Report any remaining unexpected interrupts */
3209 	oicr &= ena_mask;
3210 	if (oicr) {
3211 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3212 		/* If a critical error is pending there is no choice but to
3213 		 * reset the device.
3214 		 */
3215 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3216 			    PFINT_OICR_ECC_ERR_M)) {
3217 			set_bit(ICE_PFR_REQ, pf->state);
3218 		}
3219 	}
3220 
3221 	return IRQ_WAKE_THREAD;
3222 }
3223 
3224 /**
3225  * ice_misc_intr_thread_fn - misc interrupt thread function
3226  * @irq: interrupt number
3227  * @data: pointer to a q_vector
3228  */
3229 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3230 {
3231 	struct ice_pf *pf = data;
3232 	struct ice_hw *hw;
3233 
3234 	hw = &pf->hw;
3235 
3236 	if (ice_is_reset_in_progress(pf->state))
3237 		return IRQ_HANDLED;
3238 
3239 	ice_service_task_schedule(pf);
3240 
3241 	if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread))
3242 		ice_ptp_extts_event(pf);
3243 
3244 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3245 		/* Process outstanding Tx timestamps. If there is more work,
3246 		 * re-arm the interrupt to trigger again.
3247 		 */
3248 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3249 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3250 			ice_flush(hw);
3251 		}
3252 	}
3253 
3254 	ice_irq_dynamic_ena(hw, NULL, NULL);
3255 
3256 	return IRQ_HANDLED;
3257 }
3258 
3259 /**
3260  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3261  * @hw: pointer to HW structure
3262  */
3263 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3264 {
3265 	/* disable Admin queue Interrupt causes */
3266 	wr32(hw, PFINT_FW_CTL,
3267 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3268 
3269 	/* disable Mailbox queue Interrupt causes */
3270 	wr32(hw, PFINT_MBX_CTL,
3271 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3272 
3273 	wr32(hw, PFINT_SB_CTL,
3274 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3275 
3276 	/* disable Control queue Interrupt causes */
3277 	wr32(hw, PFINT_OICR_CTL,
3278 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3279 
3280 	ice_flush(hw);
3281 }
3282 
3283 /**
3284  * ice_free_irq_msix_misc - Unroll misc vector setup
3285  * @pf: board private structure
3286  */
3287 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3288 {
3289 	int misc_irq_num = pf->oicr_irq.virq;
3290 	struct ice_hw *hw = &pf->hw;
3291 
3292 	ice_dis_ctrlq_interrupts(hw);
3293 
3294 	/* disable OICR interrupt */
3295 	wr32(hw, PFINT_OICR_ENA, 0);
3296 	ice_flush(hw);
3297 
3298 	synchronize_irq(misc_irq_num);
3299 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3300 
3301 	ice_free_irq(pf, pf->oicr_irq);
3302 }
3303 
3304 /**
3305  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3306  * @hw: pointer to HW structure
3307  * @reg_idx: HW vector index to associate the control queue interrupts with
3308  */
3309 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3310 {
3311 	u32 val;
3312 
3313 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3314 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3315 	wr32(hw, PFINT_OICR_CTL, val);
3316 
3317 	/* enable Admin queue Interrupt causes */
3318 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3319 	       PFINT_FW_CTL_CAUSE_ENA_M);
3320 	wr32(hw, PFINT_FW_CTL, val);
3321 
3322 	/* enable Mailbox queue Interrupt causes */
3323 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3324 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3325 	wr32(hw, PFINT_MBX_CTL, val);
3326 
3327 	/* This enables Sideband queue Interrupt causes */
3328 	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3329 	       PFINT_SB_CTL_CAUSE_ENA_M);
3330 	wr32(hw, PFINT_SB_CTL, val);
3331 
3332 	ice_flush(hw);
3333 }
3334 
3335 /**
3336  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3337  * @pf: board private structure
3338  *
3339  * This sets up the handler for MSIX 0, which is used to manage the
3340  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3341  * when in MSI or Legacy interrupt mode.
3342  */
3343 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3344 {
3345 	struct device *dev = ice_pf_to_dev(pf);
3346 	struct ice_hw *hw = &pf->hw;
3347 	struct msi_map oicr_irq;
3348 	int err = 0;
3349 
3350 	if (!pf->int_name[0])
3351 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3352 			 dev_driver_string(dev), dev_name(dev));
3353 
3354 	/* Do not request IRQ but do enable OICR interrupt since settings are
3355 	 * lost during reset. Note that this function is called only during
3356 	 * rebuild path and not while reset is in progress.
3357 	 */
3358 	if (ice_is_reset_in_progress(pf->state))
3359 		goto skip_req_irq;
3360 
3361 	/* reserve one vector in irq_tracker for misc interrupts */
3362 	oicr_irq = ice_alloc_irq(pf, false);
3363 	if (oicr_irq.index < 0)
3364 		return oicr_irq.index;
3365 
3366 	pf->oicr_irq = oicr_irq;
3367 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3368 					ice_misc_intr_thread_fn, 0,
3369 					pf->int_name, pf);
3370 	if (err) {
3371 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3372 			pf->int_name, err);
3373 		ice_free_irq(pf, pf->oicr_irq);
3374 		return err;
3375 	}
3376 
3377 skip_req_irq:
3378 	ice_ena_misc_vector(pf);
3379 
3380 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3381 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3382 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3383 
3384 	ice_flush(hw);
3385 	ice_irq_dynamic_ena(hw, NULL, NULL);
3386 
3387 	return 0;
3388 }
3389 
3390 /**
3391  * ice_napi_add - register NAPI handler for the VSI
3392  * @vsi: VSI for which NAPI handler is to be registered
3393  *
3394  * This function is only called in the driver's load path. Registering the NAPI
3395  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3396  * reset/rebuild, etc.)
3397  */
3398 static void ice_napi_add(struct ice_vsi *vsi)
3399 {
3400 	int v_idx;
3401 
3402 	if (!vsi->netdev)
3403 		return;
3404 
3405 	ice_for_each_q_vector(vsi, v_idx) {
3406 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3407 			       ice_napi_poll);
3408 		ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false);
3409 	}
3410 }
3411 
3412 /**
3413  * ice_set_ops - set netdev and ethtools ops for the given netdev
3414  * @vsi: the VSI associated with the new netdev
3415  */
3416 static void ice_set_ops(struct ice_vsi *vsi)
3417 {
3418 	struct net_device *netdev = vsi->netdev;
3419 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3420 
3421 	if (ice_is_safe_mode(pf)) {
3422 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3423 		ice_set_ethtool_safe_mode_ops(netdev);
3424 		return;
3425 	}
3426 
3427 	netdev->netdev_ops = &ice_netdev_ops;
3428 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3429 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3430 	ice_set_ethtool_ops(netdev);
3431 
3432 	if (vsi->type != ICE_VSI_PF)
3433 		return;
3434 
3435 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3436 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3437 			       NETDEV_XDP_ACT_RX_SG;
3438 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3439 }
3440 
3441 /**
3442  * ice_set_netdev_features - set features for the given netdev
3443  * @netdev: netdev instance
3444  */
3445 static void ice_set_netdev_features(struct net_device *netdev)
3446 {
3447 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3448 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3449 	netdev_features_t csumo_features;
3450 	netdev_features_t vlano_features;
3451 	netdev_features_t dflt_features;
3452 	netdev_features_t tso_features;
3453 
3454 	if (ice_is_safe_mode(pf)) {
3455 		/* safe mode */
3456 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3457 		netdev->hw_features = netdev->features;
3458 		return;
3459 	}
3460 
3461 	dflt_features = NETIF_F_SG	|
3462 			NETIF_F_HIGHDMA	|
3463 			NETIF_F_NTUPLE	|
3464 			NETIF_F_RXHASH;
3465 
3466 	csumo_features = NETIF_F_RXCSUM	  |
3467 			 NETIF_F_IP_CSUM  |
3468 			 NETIF_F_SCTP_CRC |
3469 			 NETIF_F_IPV6_CSUM;
3470 
3471 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3472 			 NETIF_F_HW_VLAN_CTAG_TX     |
3473 			 NETIF_F_HW_VLAN_CTAG_RX;
3474 
3475 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3476 	if (is_dvm_ena)
3477 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3478 
3479 	tso_features = NETIF_F_TSO			|
3480 		       NETIF_F_TSO_ECN			|
3481 		       NETIF_F_TSO6			|
3482 		       NETIF_F_GSO_GRE			|
3483 		       NETIF_F_GSO_UDP_TUNNEL		|
3484 		       NETIF_F_GSO_GRE_CSUM		|
3485 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3486 		       NETIF_F_GSO_PARTIAL		|
3487 		       NETIF_F_GSO_IPXIP4		|
3488 		       NETIF_F_GSO_IPXIP6		|
3489 		       NETIF_F_GSO_UDP_L4;
3490 
3491 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3492 					NETIF_F_GSO_GRE_CSUM;
3493 	/* set features that user can change */
3494 	netdev->hw_features = dflt_features | csumo_features |
3495 			      vlano_features | tso_features;
3496 
3497 	/* add support for HW_CSUM on packets with MPLS header */
3498 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3499 				 NETIF_F_TSO     |
3500 				 NETIF_F_TSO6;
3501 
3502 	/* enable features */
3503 	netdev->features |= netdev->hw_features;
3504 
3505 	netdev->hw_features |= NETIF_F_HW_TC;
3506 	netdev->hw_features |= NETIF_F_LOOPBACK;
3507 
3508 	/* encap and VLAN devices inherit default, csumo and tso features */
3509 	netdev->hw_enc_features |= dflt_features | csumo_features |
3510 				   tso_features;
3511 	netdev->vlan_features |= dflt_features | csumo_features |
3512 				 tso_features;
3513 
3514 	/* advertise support but don't enable by default since only one type of
3515 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3516 	 * type turns on the other has to be turned off. This is enforced by the
3517 	 * ice_fix_features() ndo callback.
3518 	 */
3519 	if (is_dvm_ena)
3520 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3521 			NETIF_F_HW_VLAN_STAG_TX;
3522 
3523 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3524 	 * be changed at runtime
3525 	 */
3526 	netdev->hw_features |= NETIF_F_RXFCS;
3527 
3528 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3529 }
3530 
3531 /**
3532  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3533  * @lut: Lookup table
3534  * @rss_table_size: Lookup table size
3535  * @rss_size: Range of queue number for hashing
3536  */
3537 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3538 {
3539 	u16 i;
3540 
3541 	for (i = 0; i < rss_table_size; i++)
3542 		lut[i] = i % rss_size;
3543 }
3544 
3545 /**
3546  * ice_pf_vsi_setup - Set up a PF VSI
3547  * @pf: board private structure
3548  * @pi: pointer to the port_info instance
3549  *
3550  * Returns pointer to the successfully allocated VSI software struct
3551  * on success, otherwise returns NULL on failure.
3552  */
3553 static struct ice_vsi *
3554 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3555 {
3556 	struct ice_vsi_cfg_params params = {};
3557 
3558 	params.type = ICE_VSI_PF;
3559 	params.pi = pi;
3560 	params.flags = ICE_VSI_FLAG_INIT;
3561 
3562 	return ice_vsi_setup(pf, &params);
3563 }
3564 
3565 static struct ice_vsi *
3566 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3567 		   struct ice_channel *ch)
3568 {
3569 	struct ice_vsi_cfg_params params = {};
3570 
3571 	params.type = ICE_VSI_CHNL;
3572 	params.pi = pi;
3573 	params.ch = ch;
3574 	params.flags = ICE_VSI_FLAG_INIT;
3575 
3576 	return ice_vsi_setup(pf, &params);
3577 }
3578 
3579 /**
3580  * ice_ctrl_vsi_setup - Set up a control VSI
3581  * @pf: board private structure
3582  * @pi: pointer to the port_info instance
3583  *
3584  * Returns pointer to the successfully allocated VSI software struct
3585  * on success, otherwise returns NULL on failure.
3586  */
3587 static struct ice_vsi *
3588 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3589 {
3590 	struct ice_vsi_cfg_params params = {};
3591 
3592 	params.type = ICE_VSI_CTRL;
3593 	params.pi = pi;
3594 	params.flags = ICE_VSI_FLAG_INIT;
3595 
3596 	return ice_vsi_setup(pf, &params);
3597 }
3598 
3599 /**
3600  * ice_lb_vsi_setup - Set up a loopback VSI
3601  * @pf: board private structure
3602  * @pi: pointer to the port_info instance
3603  *
3604  * Returns pointer to the successfully allocated VSI software struct
3605  * on success, otherwise returns NULL on failure.
3606  */
3607 struct ice_vsi *
3608 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3609 {
3610 	struct ice_vsi_cfg_params params = {};
3611 
3612 	params.type = ICE_VSI_LB;
3613 	params.pi = pi;
3614 	params.flags = ICE_VSI_FLAG_INIT;
3615 
3616 	return ice_vsi_setup(pf, &params);
3617 }
3618 
3619 /**
3620  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3621  * @netdev: network interface to be adjusted
3622  * @proto: VLAN TPID
3623  * @vid: VLAN ID to be added
3624  *
3625  * net_device_ops implementation for adding VLAN IDs
3626  */
3627 static int
3628 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3629 {
3630 	struct ice_netdev_priv *np = netdev_priv(netdev);
3631 	struct ice_vsi_vlan_ops *vlan_ops;
3632 	struct ice_vsi *vsi = np->vsi;
3633 	struct ice_vlan vlan;
3634 	int ret;
3635 
3636 	/* VLAN 0 is added by default during load/reset */
3637 	if (!vid)
3638 		return 0;
3639 
3640 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3641 		usleep_range(1000, 2000);
3642 
3643 	/* Add multicast promisc rule for the VLAN ID to be added if
3644 	 * all-multicast is currently enabled.
3645 	 */
3646 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3647 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3648 					       ICE_MCAST_VLAN_PROMISC_BITS,
3649 					       vid);
3650 		if (ret)
3651 			goto finish;
3652 	}
3653 
3654 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3655 
3656 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3657 	 * packets aren't pruned by the device's internal switch on Rx
3658 	 */
3659 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3660 	ret = vlan_ops->add_vlan(vsi, &vlan);
3661 	if (ret)
3662 		goto finish;
3663 
3664 	/* If all-multicast is currently enabled and this VLAN ID is only one
3665 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3666 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3667 	 */
3668 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3669 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3670 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3671 					   ICE_MCAST_PROMISC_BITS, 0);
3672 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3673 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3674 	}
3675 
3676 finish:
3677 	clear_bit(ICE_CFG_BUSY, vsi->state);
3678 
3679 	return ret;
3680 }
3681 
3682 /**
3683  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3684  * @netdev: network interface to be adjusted
3685  * @proto: VLAN TPID
3686  * @vid: VLAN ID to be removed
3687  *
3688  * net_device_ops implementation for removing VLAN IDs
3689  */
3690 static int
3691 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3692 {
3693 	struct ice_netdev_priv *np = netdev_priv(netdev);
3694 	struct ice_vsi_vlan_ops *vlan_ops;
3695 	struct ice_vsi *vsi = np->vsi;
3696 	struct ice_vlan vlan;
3697 	int ret;
3698 
3699 	/* don't allow removal of VLAN 0 */
3700 	if (!vid)
3701 		return 0;
3702 
3703 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3704 		usleep_range(1000, 2000);
3705 
3706 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3707 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3708 	if (ret) {
3709 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3710 			   vsi->vsi_num);
3711 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3712 	}
3713 
3714 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3715 
3716 	/* Make sure VLAN delete is successful before updating VLAN
3717 	 * information
3718 	 */
3719 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3720 	ret = vlan_ops->del_vlan(vsi, &vlan);
3721 	if (ret)
3722 		goto finish;
3723 
3724 	/* Remove multicast promisc rule for the removed VLAN ID if
3725 	 * all-multicast is enabled.
3726 	 */
3727 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3728 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3729 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3730 
3731 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3732 		/* Update look-up type of multicast promisc rule for VLAN 0
3733 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3734 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3735 		 */
3736 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3737 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3738 						   ICE_MCAST_VLAN_PROMISC_BITS,
3739 						   0);
3740 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3741 						 ICE_MCAST_PROMISC_BITS, 0);
3742 		}
3743 	}
3744 
3745 finish:
3746 	clear_bit(ICE_CFG_BUSY, vsi->state);
3747 
3748 	return ret;
3749 }
3750 
3751 /**
3752  * ice_rep_indr_tc_block_unbind
3753  * @cb_priv: indirection block private data
3754  */
3755 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3756 {
3757 	struct ice_indr_block_priv *indr_priv = cb_priv;
3758 
3759 	list_del(&indr_priv->list);
3760 	kfree(indr_priv);
3761 }
3762 
3763 /**
3764  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3765  * @vsi: VSI struct which has the netdev
3766  */
3767 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3768 {
3769 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3770 
3771 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3772 				 ice_rep_indr_tc_block_unbind);
3773 }
3774 
3775 /**
3776  * ice_tc_indir_block_register - Register TC indirect block notifications
3777  * @vsi: VSI struct which has the netdev
3778  *
3779  * Returns 0 on success, negative value on failure
3780  */
3781 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3782 {
3783 	struct ice_netdev_priv *np;
3784 
3785 	if (!vsi || !vsi->netdev)
3786 		return -EINVAL;
3787 
3788 	np = netdev_priv(vsi->netdev);
3789 
3790 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3791 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3792 }
3793 
3794 /**
3795  * ice_get_avail_q_count - Get count of queues in use
3796  * @pf_qmap: bitmap to get queue use count from
3797  * @lock: pointer to a mutex that protects access to pf_qmap
3798  * @size: size of the bitmap
3799  */
3800 static u16
3801 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3802 {
3803 	unsigned long bit;
3804 	u16 count = 0;
3805 
3806 	mutex_lock(lock);
3807 	for_each_clear_bit(bit, pf_qmap, size)
3808 		count++;
3809 	mutex_unlock(lock);
3810 
3811 	return count;
3812 }
3813 
3814 /**
3815  * ice_get_avail_txq_count - Get count of Tx queues in use
3816  * @pf: pointer to an ice_pf instance
3817  */
3818 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3819 {
3820 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3821 				     pf->max_pf_txqs);
3822 }
3823 
3824 /**
3825  * ice_get_avail_rxq_count - Get count of Rx queues in use
3826  * @pf: pointer to an ice_pf instance
3827  */
3828 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3829 {
3830 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3831 				     pf->max_pf_rxqs);
3832 }
3833 
3834 /**
3835  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3836  * @pf: board private structure to initialize
3837  */
3838 static void ice_deinit_pf(struct ice_pf *pf)
3839 {
3840 	ice_service_task_stop(pf);
3841 	mutex_destroy(&pf->lag_mutex);
3842 	mutex_destroy(&pf->adev_mutex);
3843 	mutex_destroy(&pf->sw_mutex);
3844 	mutex_destroy(&pf->tc_mutex);
3845 	mutex_destroy(&pf->avail_q_mutex);
3846 	mutex_destroy(&pf->vfs.table_lock);
3847 
3848 	if (pf->avail_txqs) {
3849 		bitmap_free(pf->avail_txqs);
3850 		pf->avail_txqs = NULL;
3851 	}
3852 
3853 	if (pf->avail_rxqs) {
3854 		bitmap_free(pf->avail_rxqs);
3855 		pf->avail_rxqs = NULL;
3856 	}
3857 
3858 	if (pf->ptp.clock)
3859 		ptp_clock_unregister(pf->ptp.clock);
3860 }
3861 
3862 /**
3863  * ice_set_pf_caps - set PFs capability flags
3864  * @pf: pointer to the PF instance
3865  */
3866 static void ice_set_pf_caps(struct ice_pf *pf)
3867 {
3868 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3869 
3870 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3871 	if (func_caps->common_cap.rdma)
3872 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3873 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3874 	if (func_caps->common_cap.dcb)
3875 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3876 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3877 	if (func_caps->common_cap.sr_iov_1_1) {
3878 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3879 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3880 					      ICE_MAX_SRIOV_VFS);
3881 	}
3882 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3883 	if (func_caps->common_cap.rss_table_size)
3884 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3885 
3886 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3887 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3888 		u16 unused;
3889 
3890 		/* ctrl_vsi_idx will be set to a valid value when flow director
3891 		 * is setup by ice_init_fdir
3892 		 */
3893 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3894 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3895 		/* force guaranteed filter pool for PF */
3896 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3897 				       func_caps->fd_fltr_guar);
3898 		/* force shared filter pool for PF */
3899 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3900 				       func_caps->fd_fltr_best_effort);
3901 	}
3902 
3903 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3904 	if (func_caps->common_cap.ieee_1588 &&
3905 	    !(pf->hw.mac_type == ICE_MAC_E830))
3906 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3907 
3908 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3909 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3910 }
3911 
3912 /**
3913  * ice_init_pf - Initialize general software structures (struct ice_pf)
3914  * @pf: board private structure to initialize
3915  */
3916 static int ice_init_pf(struct ice_pf *pf)
3917 {
3918 	ice_set_pf_caps(pf);
3919 
3920 	mutex_init(&pf->sw_mutex);
3921 	mutex_init(&pf->tc_mutex);
3922 	mutex_init(&pf->adev_mutex);
3923 	mutex_init(&pf->lag_mutex);
3924 
3925 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3926 	spin_lock_init(&pf->aq_wait_lock);
3927 	init_waitqueue_head(&pf->aq_wait_queue);
3928 
3929 	init_waitqueue_head(&pf->reset_wait_queue);
3930 
3931 	/* setup service timer and periodic service task */
3932 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3933 	pf->serv_tmr_period = HZ;
3934 	INIT_WORK(&pf->serv_task, ice_service_task);
3935 	clear_bit(ICE_SERVICE_SCHED, pf->state);
3936 
3937 	mutex_init(&pf->avail_q_mutex);
3938 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3939 	if (!pf->avail_txqs)
3940 		return -ENOMEM;
3941 
3942 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3943 	if (!pf->avail_rxqs) {
3944 		bitmap_free(pf->avail_txqs);
3945 		pf->avail_txqs = NULL;
3946 		return -ENOMEM;
3947 	}
3948 
3949 	mutex_init(&pf->vfs.table_lock);
3950 	hash_init(pf->vfs.table);
3951 	ice_mbx_init_snapshot(&pf->hw);
3952 
3953 	return 0;
3954 }
3955 
3956 /**
3957  * ice_is_wol_supported - check if WoL is supported
3958  * @hw: pointer to hardware info
3959  *
3960  * Check if WoL is supported based on the HW configuration.
3961  * Returns true if NVM supports and enables WoL for this port, false otherwise
3962  */
3963 bool ice_is_wol_supported(struct ice_hw *hw)
3964 {
3965 	u16 wol_ctrl;
3966 
3967 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3968 	 * word) indicates WoL is not supported on the corresponding PF ID.
3969 	 */
3970 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3971 		return false;
3972 
3973 	return !(BIT(hw->port_info->lport) & wol_ctrl);
3974 }
3975 
3976 /**
3977  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3978  * @vsi: VSI being changed
3979  * @new_rx: new number of Rx queues
3980  * @new_tx: new number of Tx queues
3981  * @locked: is adev device_lock held
3982  *
3983  * Only change the number of queues if new_tx, or new_rx is non-0.
3984  *
3985  * Returns 0 on success.
3986  */
3987 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
3988 {
3989 	struct ice_pf *pf = vsi->back;
3990 	int err = 0, timeout = 50;
3991 
3992 	if (!new_rx && !new_tx)
3993 		return -EINVAL;
3994 
3995 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3996 		timeout--;
3997 		if (!timeout)
3998 			return -EBUSY;
3999 		usleep_range(1000, 2000);
4000 	}
4001 
4002 	if (new_tx)
4003 		vsi->req_txq = (u16)new_tx;
4004 	if (new_rx)
4005 		vsi->req_rxq = (u16)new_rx;
4006 
4007 	/* set for the next time the netdev is started */
4008 	if (!netif_running(vsi->netdev)) {
4009 		ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4010 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4011 		goto done;
4012 	}
4013 
4014 	ice_vsi_close(vsi);
4015 	ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4016 	ice_pf_dcb_recfg(pf, locked);
4017 	ice_vsi_open(vsi);
4018 done:
4019 	clear_bit(ICE_CFG_BUSY, pf->state);
4020 	return err;
4021 }
4022 
4023 /**
4024  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4025  * @pf: PF to configure
4026  *
4027  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4028  * VSI can still Tx/Rx VLAN tagged packets.
4029  */
4030 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4031 {
4032 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4033 	struct ice_vsi_ctx *ctxt;
4034 	struct ice_hw *hw;
4035 	int status;
4036 
4037 	if (!vsi)
4038 		return;
4039 
4040 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4041 	if (!ctxt)
4042 		return;
4043 
4044 	hw = &pf->hw;
4045 	ctxt->info = vsi->info;
4046 
4047 	ctxt->info.valid_sections =
4048 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4049 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4050 			    ICE_AQ_VSI_PROP_SW_VALID);
4051 
4052 	/* disable VLAN anti-spoof */
4053 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4054 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4055 
4056 	/* disable VLAN pruning and keep all other settings */
4057 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4058 
4059 	/* allow all VLANs on Tx and don't strip on Rx */
4060 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4061 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4062 
4063 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4064 	if (status) {
4065 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4066 			status, ice_aq_str(hw->adminq.sq_last_status));
4067 	} else {
4068 		vsi->info.sec_flags = ctxt->info.sec_flags;
4069 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4070 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4071 	}
4072 
4073 	kfree(ctxt);
4074 }
4075 
4076 /**
4077  * ice_log_pkg_init - log result of DDP package load
4078  * @hw: pointer to hardware info
4079  * @state: state of package load
4080  */
4081 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4082 {
4083 	struct ice_pf *pf = hw->back;
4084 	struct device *dev;
4085 
4086 	dev = ice_pf_to_dev(pf);
4087 
4088 	switch (state) {
4089 	case ICE_DDP_PKG_SUCCESS:
4090 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4091 			 hw->active_pkg_name,
4092 			 hw->active_pkg_ver.major,
4093 			 hw->active_pkg_ver.minor,
4094 			 hw->active_pkg_ver.update,
4095 			 hw->active_pkg_ver.draft);
4096 		break;
4097 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4098 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4099 			 hw->active_pkg_name,
4100 			 hw->active_pkg_ver.major,
4101 			 hw->active_pkg_ver.minor,
4102 			 hw->active_pkg_ver.update,
4103 			 hw->active_pkg_ver.draft);
4104 		break;
4105 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4106 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4107 			hw->active_pkg_name,
4108 			hw->active_pkg_ver.major,
4109 			hw->active_pkg_ver.minor,
4110 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4111 		break;
4112 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4113 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4114 			 hw->active_pkg_name,
4115 			 hw->active_pkg_ver.major,
4116 			 hw->active_pkg_ver.minor,
4117 			 hw->active_pkg_ver.update,
4118 			 hw->active_pkg_ver.draft,
4119 			 hw->pkg_name,
4120 			 hw->pkg_ver.major,
4121 			 hw->pkg_ver.minor,
4122 			 hw->pkg_ver.update,
4123 			 hw->pkg_ver.draft);
4124 		break;
4125 	case ICE_DDP_PKG_FW_MISMATCH:
4126 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4127 		break;
4128 	case ICE_DDP_PKG_INVALID_FILE:
4129 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4130 		break;
4131 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4132 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4133 		break;
4134 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4135 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4136 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4137 		break;
4138 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4139 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4140 		break;
4141 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4142 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4143 		break;
4144 	case ICE_DDP_PKG_LOAD_ERROR:
4145 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4146 		/* poll for reset to complete */
4147 		if (ice_check_reset(hw))
4148 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4149 		break;
4150 	case ICE_DDP_PKG_ERR:
4151 	default:
4152 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4153 		break;
4154 	}
4155 }
4156 
4157 /**
4158  * ice_load_pkg - load/reload the DDP Package file
4159  * @firmware: firmware structure when firmware requested or NULL for reload
4160  * @pf: pointer to the PF instance
4161  *
4162  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4163  * initialize HW tables.
4164  */
4165 static void
4166 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4167 {
4168 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4169 	struct device *dev = ice_pf_to_dev(pf);
4170 	struct ice_hw *hw = &pf->hw;
4171 
4172 	/* Load DDP Package */
4173 	if (firmware && !hw->pkg_copy) {
4174 		state = ice_copy_and_init_pkg(hw, firmware->data,
4175 					      firmware->size);
4176 		ice_log_pkg_init(hw, state);
4177 	} else if (!firmware && hw->pkg_copy) {
4178 		/* Reload package during rebuild after CORER/GLOBR reset */
4179 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4180 		ice_log_pkg_init(hw, state);
4181 	} else {
4182 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4183 	}
4184 
4185 	if (!ice_is_init_pkg_successful(state)) {
4186 		/* Safe Mode */
4187 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4188 		return;
4189 	}
4190 
4191 	/* Successful download package is the precondition for advanced
4192 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4193 	 */
4194 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4195 }
4196 
4197 /**
4198  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4199  * @pf: pointer to the PF structure
4200  *
4201  * There is no error returned here because the driver should be able to handle
4202  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4203  * specifically with Tx.
4204  */
4205 static void ice_verify_cacheline_size(struct ice_pf *pf)
4206 {
4207 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4208 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4209 			 ICE_CACHE_LINE_BYTES);
4210 }
4211 
4212 /**
4213  * ice_send_version - update firmware with driver version
4214  * @pf: PF struct
4215  *
4216  * Returns 0 on success, else error code
4217  */
4218 static int ice_send_version(struct ice_pf *pf)
4219 {
4220 	struct ice_driver_ver dv;
4221 
4222 	dv.major_ver = 0xff;
4223 	dv.minor_ver = 0xff;
4224 	dv.build_ver = 0xff;
4225 	dv.subbuild_ver = 0;
4226 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4227 		sizeof(dv.driver_string));
4228 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4229 }
4230 
4231 /**
4232  * ice_init_fdir - Initialize flow director VSI and configuration
4233  * @pf: pointer to the PF instance
4234  *
4235  * returns 0 on success, negative on error
4236  */
4237 static int ice_init_fdir(struct ice_pf *pf)
4238 {
4239 	struct device *dev = ice_pf_to_dev(pf);
4240 	struct ice_vsi *ctrl_vsi;
4241 	int err;
4242 
4243 	/* Side Band Flow Director needs to have a control VSI.
4244 	 * Allocate it and store it in the PF.
4245 	 */
4246 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4247 	if (!ctrl_vsi) {
4248 		dev_dbg(dev, "could not create control VSI\n");
4249 		return -ENOMEM;
4250 	}
4251 
4252 	err = ice_vsi_open_ctrl(ctrl_vsi);
4253 	if (err) {
4254 		dev_dbg(dev, "could not open control VSI\n");
4255 		goto err_vsi_open;
4256 	}
4257 
4258 	mutex_init(&pf->hw.fdir_fltr_lock);
4259 
4260 	err = ice_fdir_create_dflt_rules(pf);
4261 	if (err)
4262 		goto err_fdir_rule;
4263 
4264 	return 0;
4265 
4266 err_fdir_rule:
4267 	ice_fdir_release_flows(&pf->hw);
4268 	ice_vsi_close(ctrl_vsi);
4269 err_vsi_open:
4270 	ice_vsi_release(ctrl_vsi);
4271 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4272 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4273 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4274 	}
4275 	return err;
4276 }
4277 
4278 static void ice_deinit_fdir(struct ice_pf *pf)
4279 {
4280 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4281 
4282 	if (!vsi)
4283 		return;
4284 
4285 	ice_vsi_manage_fdir(vsi, false);
4286 	ice_vsi_release(vsi);
4287 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4288 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4289 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4290 	}
4291 
4292 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4293 }
4294 
4295 /**
4296  * ice_get_opt_fw_name - return optional firmware file name or NULL
4297  * @pf: pointer to the PF instance
4298  */
4299 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4300 {
4301 	/* Optional firmware name same as default with additional dash
4302 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4303 	 */
4304 	struct pci_dev *pdev = pf->pdev;
4305 	char *opt_fw_filename;
4306 	u64 dsn;
4307 
4308 	/* Determine the name of the optional file using the DSN (two
4309 	 * dwords following the start of the DSN Capability).
4310 	 */
4311 	dsn = pci_get_dsn(pdev);
4312 	if (!dsn)
4313 		return NULL;
4314 
4315 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4316 	if (!opt_fw_filename)
4317 		return NULL;
4318 
4319 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4320 		 ICE_DDP_PKG_PATH, dsn);
4321 
4322 	return opt_fw_filename;
4323 }
4324 
4325 /**
4326  * ice_request_fw - Device initialization routine
4327  * @pf: pointer to the PF instance
4328  */
4329 static void ice_request_fw(struct ice_pf *pf)
4330 {
4331 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4332 	const struct firmware *firmware = NULL;
4333 	struct device *dev = ice_pf_to_dev(pf);
4334 	int err = 0;
4335 
4336 	/* optional device-specific DDP (if present) overrides the default DDP
4337 	 * package file. kernel logs a debug message if the file doesn't exist,
4338 	 * and warning messages for other errors.
4339 	 */
4340 	if (opt_fw_filename) {
4341 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4342 		if (err) {
4343 			kfree(opt_fw_filename);
4344 			goto dflt_pkg_load;
4345 		}
4346 
4347 		/* request for firmware was successful. Download to device */
4348 		ice_load_pkg(firmware, pf);
4349 		kfree(opt_fw_filename);
4350 		release_firmware(firmware);
4351 		return;
4352 	}
4353 
4354 dflt_pkg_load:
4355 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4356 	if (err) {
4357 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4358 		return;
4359 	}
4360 
4361 	/* request for firmware was successful. Download to device */
4362 	ice_load_pkg(firmware, pf);
4363 	release_firmware(firmware);
4364 }
4365 
4366 /**
4367  * ice_print_wake_reason - show the wake up cause in the log
4368  * @pf: pointer to the PF struct
4369  */
4370 static void ice_print_wake_reason(struct ice_pf *pf)
4371 {
4372 	u32 wus = pf->wakeup_reason;
4373 	const char *wake_str;
4374 
4375 	/* if no wake event, nothing to print */
4376 	if (!wus)
4377 		return;
4378 
4379 	if (wus & PFPM_WUS_LNKC_M)
4380 		wake_str = "Link\n";
4381 	else if (wus & PFPM_WUS_MAG_M)
4382 		wake_str = "Magic Packet\n";
4383 	else if (wus & PFPM_WUS_MNG_M)
4384 		wake_str = "Management\n";
4385 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4386 		wake_str = "Firmware Reset\n";
4387 	else
4388 		wake_str = "Unknown\n";
4389 
4390 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4391 }
4392 
4393 /**
4394  * ice_pf_fwlog_update_module - update 1 module
4395  * @pf: pointer to the PF struct
4396  * @log_level: log_level to use for the @module
4397  * @module: module to update
4398  */
4399 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4400 {
4401 	struct ice_hw *hw = &pf->hw;
4402 
4403 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4404 }
4405 
4406 /**
4407  * ice_register_netdev - register netdev
4408  * @vsi: pointer to the VSI struct
4409  */
4410 static int ice_register_netdev(struct ice_vsi *vsi)
4411 {
4412 	int err;
4413 
4414 	if (!vsi || !vsi->netdev)
4415 		return -EIO;
4416 
4417 	err = register_netdev(vsi->netdev);
4418 	if (err)
4419 		return err;
4420 
4421 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4422 	netif_carrier_off(vsi->netdev);
4423 	netif_tx_stop_all_queues(vsi->netdev);
4424 
4425 	return 0;
4426 }
4427 
4428 static void ice_unregister_netdev(struct ice_vsi *vsi)
4429 {
4430 	if (!vsi || !vsi->netdev)
4431 		return;
4432 
4433 	unregister_netdev(vsi->netdev);
4434 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4435 }
4436 
4437 /**
4438  * ice_cfg_netdev - Allocate, configure and register a netdev
4439  * @vsi: the VSI associated with the new netdev
4440  *
4441  * Returns 0 on success, negative value on failure
4442  */
4443 static int ice_cfg_netdev(struct ice_vsi *vsi)
4444 {
4445 	struct ice_netdev_priv *np;
4446 	struct net_device *netdev;
4447 	u8 mac_addr[ETH_ALEN];
4448 
4449 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4450 				    vsi->alloc_rxq);
4451 	if (!netdev)
4452 		return -ENOMEM;
4453 
4454 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4455 	vsi->netdev = netdev;
4456 	np = netdev_priv(netdev);
4457 	np->vsi = vsi;
4458 
4459 	ice_set_netdev_features(netdev);
4460 	ice_set_ops(vsi);
4461 
4462 	if (vsi->type == ICE_VSI_PF) {
4463 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4464 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4465 		eth_hw_addr_set(netdev, mac_addr);
4466 	}
4467 
4468 	netdev->priv_flags |= IFF_UNICAST_FLT;
4469 
4470 	/* Setup netdev TC information */
4471 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4472 
4473 	netdev->max_mtu = ICE_MAX_MTU;
4474 
4475 	return 0;
4476 }
4477 
4478 static void ice_decfg_netdev(struct ice_vsi *vsi)
4479 {
4480 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4481 	free_netdev(vsi->netdev);
4482 	vsi->netdev = NULL;
4483 }
4484 
4485 static int ice_start_eth(struct ice_vsi *vsi)
4486 {
4487 	int err;
4488 
4489 	err = ice_init_mac_fltr(vsi->back);
4490 	if (err)
4491 		return err;
4492 
4493 	err = ice_vsi_open(vsi);
4494 	if (err)
4495 		ice_fltr_remove_all(vsi);
4496 
4497 	return err;
4498 }
4499 
4500 static void ice_stop_eth(struct ice_vsi *vsi)
4501 {
4502 	ice_fltr_remove_all(vsi);
4503 	ice_vsi_close(vsi);
4504 }
4505 
4506 static int ice_init_eth(struct ice_pf *pf)
4507 {
4508 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4509 	int err;
4510 
4511 	if (!vsi)
4512 		return -EINVAL;
4513 
4514 	/* init channel list */
4515 	INIT_LIST_HEAD(&vsi->ch_list);
4516 
4517 	err = ice_cfg_netdev(vsi);
4518 	if (err)
4519 		return err;
4520 	/* Setup DCB netlink interface */
4521 	ice_dcbnl_setup(vsi);
4522 
4523 	err = ice_init_mac_fltr(pf);
4524 	if (err)
4525 		goto err_init_mac_fltr;
4526 
4527 	err = ice_devlink_create_pf_port(pf);
4528 	if (err)
4529 		goto err_devlink_create_pf_port;
4530 
4531 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4532 
4533 	err = ice_register_netdev(vsi);
4534 	if (err)
4535 		goto err_register_netdev;
4536 
4537 	err = ice_tc_indir_block_register(vsi);
4538 	if (err)
4539 		goto err_tc_indir_block_register;
4540 
4541 	ice_napi_add(vsi);
4542 
4543 	return 0;
4544 
4545 err_tc_indir_block_register:
4546 	ice_unregister_netdev(vsi);
4547 err_register_netdev:
4548 	ice_devlink_destroy_pf_port(pf);
4549 err_devlink_create_pf_port:
4550 err_init_mac_fltr:
4551 	ice_decfg_netdev(vsi);
4552 	return err;
4553 }
4554 
4555 static void ice_deinit_eth(struct ice_pf *pf)
4556 {
4557 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4558 
4559 	if (!vsi)
4560 		return;
4561 
4562 	ice_vsi_close(vsi);
4563 	ice_unregister_netdev(vsi);
4564 	ice_devlink_destroy_pf_port(pf);
4565 	ice_tc_indir_block_unregister(vsi);
4566 	ice_decfg_netdev(vsi);
4567 }
4568 
4569 /**
4570  * ice_wait_for_fw - wait for full FW readiness
4571  * @hw: pointer to the hardware structure
4572  * @timeout: milliseconds that can elapse before timing out
4573  */
4574 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4575 {
4576 	int fw_loading;
4577 	u32 elapsed = 0;
4578 
4579 	while (elapsed <= timeout) {
4580 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4581 
4582 		/* firmware was not yet loaded, we have to wait more */
4583 		if (fw_loading) {
4584 			elapsed += 100;
4585 			msleep(100);
4586 			continue;
4587 		}
4588 		return 0;
4589 	}
4590 
4591 	return -ETIMEDOUT;
4592 }
4593 
4594 static int ice_init_dev(struct ice_pf *pf)
4595 {
4596 	struct device *dev = ice_pf_to_dev(pf);
4597 	struct ice_hw *hw = &pf->hw;
4598 	int err;
4599 
4600 	err = ice_init_hw(hw);
4601 	if (err) {
4602 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4603 		return err;
4604 	}
4605 
4606 	/* Some cards require longer initialization times
4607 	 * due to necessity of loading FW from an external source.
4608 	 * This can take even half a minute.
4609 	 */
4610 	if (ice_is_pf_c827(hw)) {
4611 		err = ice_wait_for_fw(hw, 30000);
4612 		if (err) {
4613 			dev_err(dev, "ice_wait_for_fw timed out");
4614 			return err;
4615 		}
4616 	}
4617 
4618 	ice_init_feature_support(pf);
4619 
4620 	ice_request_fw(pf);
4621 
4622 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4623 	 * set in pf->state, which will cause ice_is_safe_mode to return
4624 	 * true
4625 	 */
4626 	if (ice_is_safe_mode(pf)) {
4627 		/* we already got function/device capabilities but these don't
4628 		 * reflect what the driver needs to do in safe mode. Instead of
4629 		 * adding conditional logic everywhere to ignore these
4630 		 * device/function capabilities, override them.
4631 		 */
4632 		ice_set_safe_mode_caps(hw);
4633 	}
4634 
4635 	err = ice_init_pf(pf);
4636 	if (err) {
4637 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4638 		goto err_init_pf;
4639 	}
4640 
4641 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4642 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4643 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4644 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4645 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4646 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4647 			pf->hw.tnl.valid_count[TNL_VXLAN];
4648 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4649 			UDP_TUNNEL_TYPE_VXLAN;
4650 	}
4651 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4652 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4653 			pf->hw.tnl.valid_count[TNL_GENEVE];
4654 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4655 			UDP_TUNNEL_TYPE_GENEVE;
4656 	}
4657 
4658 	err = ice_init_interrupt_scheme(pf);
4659 	if (err) {
4660 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4661 		err = -EIO;
4662 		goto err_init_interrupt_scheme;
4663 	}
4664 
4665 	/* In case of MSIX we are going to setup the misc vector right here
4666 	 * to handle admin queue events etc. In case of legacy and MSI
4667 	 * the misc functionality and queue processing is combined in
4668 	 * the same vector and that gets setup at open.
4669 	 */
4670 	err = ice_req_irq_msix_misc(pf);
4671 	if (err) {
4672 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4673 		goto err_req_irq_msix_misc;
4674 	}
4675 
4676 	return 0;
4677 
4678 err_req_irq_msix_misc:
4679 	ice_clear_interrupt_scheme(pf);
4680 err_init_interrupt_scheme:
4681 	ice_deinit_pf(pf);
4682 err_init_pf:
4683 	ice_deinit_hw(hw);
4684 	return err;
4685 }
4686 
4687 static void ice_deinit_dev(struct ice_pf *pf)
4688 {
4689 	ice_free_irq_msix_misc(pf);
4690 	ice_deinit_pf(pf);
4691 	ice_deinit_hw(&pf->hw);
4692 
4693 	/* Service task is already stopped, so call reset directly. */
4694 	ice_reset(&pf->hw, ICE_RESET_PFR);
4695 	pci_wait_for_pending_transaction(pf->pdev);
4696 	ice_clear_interrupt_scheme(pf);
4697 }
4698 
4699 static void ice_init_features(struct ice_pf *pf)
4700 {
4701 	struct device *dev = ice_pf_to_dev(pf);
4702 
4703 	if (ice_is_safe_mode(pf))
4704 		return;
4705 
4706 	/* initialize DDP driven features */
4707 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4708 		ice_ptp_init(pf);
4709 
4710 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4711 		ice_gnss_init(pf);
4712 
4713 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4714 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4715 		ice_dpll_init(pf);
4716 
4717 	/* Note: Flow director init failure is non-fatal to load */
4718 	if (ice_init_fdir(pf))
4719 		dev_err(dev, "could not initialize flow director\n");
4720 
4721 	/* Note: DCB init failure is non-fatal to load */
4722 	if (ice_init_pf_dcb(pf, false)) {
4723 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4724 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4725 	} else {
4726 		ice_cfg_lldp_mib_change(&pf->hw, true);
4727 	}
4728 
4729 	if (ice_init_lag(pf))
4730 		dev_warn(dev, "Failed to init link aggregation support\n");
4731 
4732 	ice_hwmon_init(pf);
4733 }
4734 
4735 static void ice_deinit_features(struct ice_pf *pf)
4736 {
4737 	if (ice_is_safe_mode(pf))
4738 		return;
4739 
4740 	ice_deinit_lag(pf);
4741 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4742 		ice_cfg_lldp_mib_change(&pf->hw, false);
4743 	ice_deinit_fdir(pf);
4744 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4745 		ice_gnss_exit(pf);
4746 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4747 		ice_ptp_release(pf);
4748 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4749 		ice_dpll_deinit(pf);
4750 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4751 		xa_destroy(&pf->eswitch.reprs);
4752 }
4753 
4754 static void ice_init_wakeup(struct ice_pf *pf)
4755 {
4756 	/* Save wakeup reason register for later use */
4757 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4758 
4759 	/* check for a power management event */
4760 	ice_print_wake_reason(pf);
4761 
4762 	/* clear wake status, all bits */
4763 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4764 
4765 	/* Disable WoL at init, wait for user to enable */
4766 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4767 }
4768 
4769 static int ice_init_link(struct ice_pf *pf)
4770 {
4771 	struct device *dev = ice_pf_to_dev(pf);
4772 	int err;
4773 
4774 	err = ice_init_link_events(pf->hw.port_info);
4775 	if (err) {
4776 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4777 		return err;
4778 	}
4779 
4780 	/* not a fatal error if this fails */
4781 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4782 	if (err)
4783 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4784 
4785 	/* not a fatal error if this fails */
4786 	err = ice_update_link_info(pf->hw.port_info);
4787 	if (err)
4788 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4789 
4790 	ice_init_link_dflt_override(pf->hw.port_info);
4791 
4792 	ice_check_link_cfg_err(pf,
4793 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4794 
4795 	/* if media available, initialize PHY settings */
4796 	if (pf->hw.port_info->phy.link_info.link_info &
4797 	    ICE_AQ_MEDIA_AVAILABLE) {
4798 		/* not a fatal error if this fails */
4799 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4800 		if (err)
4801 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4802 
4803 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4804 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4805 
4806 			if (vsi)
4807 				ice_configure_phy(vsi);
4808 		}
4809 	} else {
4810 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4811 	}
4812 
4813 	return err;
4814 }
4815 
4816 static int ice_init_pf_sw(struct ice_pf *pf)
4817 {
4818 	bool dvm = ice_is_dvm_ena(&pf->hw);
4819 	struct ice_vsi *vsi;
4820 	int err;
4821 
4822 	/* create switch struct for the switch element created by FW on boot */
4823 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4824 	if (!pf->first_sw)
4825 		return -ENOMEM;
4826 
4827 	if (pf->hw.evb_veb)
4828 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4829 	else
4830 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4831 
4832 	pf->first_sw->pf = pf;
4833 
4834 	/* record the sw_id available for later use */
4835 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4836 
4837 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4838 	if (err)
4839 		goto err_aq_set_port_params;
4840 
4841 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4842 	if (!vsi) {
4843 		err = -ENOMEM;
4844 		goto err_pf_vsi_setup;
4845 	}
4846 
4847 	return 0;
4848 
4849 err_pf_vsi_setup:
4850 err_aq_set_port_params:
4851 	kfree(pf->first_sw);
4852 	return err;
4853 }
4854 
4855 static void ice_deinit_pf_sw(struct ice_pf *pf)
4856 {
4857 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4858 
4859 	if (!vsi)
4860 		return;
4861 
4862 	ice_vsi_release(vsi);
4863 	kfree(pf->first_sw);
4864 }
4865 
4866 static int ice_alloc_vsis(struct ice_pf *pf)
4867 {
4868 	struct device *dev = ice_pf_to_dev(pf);
4869 
4870 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
4871 	if (!pf->num_alloc_vsi)
4872 		return -EIO;
4873 
4874 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4875 		dev_warn(dev,
4876 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4877 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4878 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4879 	}
4880 
4881 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4882 			       GFP_KERNEL);
4883 	if (!pf->vsi)
4884 		return -ENOMEM;
4885 
4886 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4887 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
4888 	if (!pf->vsi_stats) {
4889 		devm_kfree(dev, pf->vsi);
4890 		return -ENOMEM;
4891 	}
4892 
4893 	return 0;
4894 }
4895 
4896 static void ice_dealloc_vsis(struct ice_pf *pf)
4897 {
4898 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
4899 	pf->vsi_stats = NULL;
4900 
4901 	pf->num_alloc_vsi = 0;
4902 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
4903 	pf->vsi = NULL;
4904 }
4905 
4906 static int ice_init_devlink(struct ice_pf *pf)
4907 {
4908 	int err;
4909 
4910 	err = ice_devlink_register_params(pf);
4911 	if (err)
4912 		return err;
4913 
4914 	ice_devlink_init_regions(pf);
4915 	ice_devlink_register(pf);
4916 
4917 	return 0;
4918 }
4919 
4920 static void ice_deinit_devlink(struct ice_pf *pf)
4921 {
4922 	ice_devlink_unregister(pf);
4923 	ice_devlink_destroy_regions(pf);
4924 	ice_devlink_unregister_params(pf);
4925 }
4926 
4927 static int ice_init(struct ice_pf *pf)
4928 {
4929 	int err;
4930 
4931 	err = ice_init_dev(pf);
4932 	if (err)
4933 		return err;
4934 
4935 	err = ice_alloc_vsis(pf);
4936 	if (err)
4937 		goto err_alloc_vsis;
4938 
4939 	err = ice_init_pf_sw(pf);
4940 	if (err)
4941 		goto err_init_pf_sw;
4942 
4943 	ice_init_wakeup(pf);
4944 
4945 	err = ice_init_link(pf);
4946 	if (err)
4947 		goto err_init_link;
4948 
4949 	err = ice_send_version(pf);
4950 	if (err)
4951 		goto err_init_link;
4952 
4953 	ice_verify_cacheline_size(pf);
4954 
4955 	if (ice_is_safe_mode(pf))
4956 		ice_set_safe_mode_vlan_cfg(pf);
4957 	else
4958 		/* print PCI link speed and width */
4959 		pcie_print_link_status(pf->pdev);
4960 
4961 	/* ready to go, so clear down state bit */
4962 	clear_bit(ICE_DOWN, pf->state);
4963 	clear_bit(ICE_SERVICE_DIS, pf->state);
4964 
4965 	/* since everything is good, start the service timer */
4966 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4967 
4968 	return 0;
4969 
4970 err_init_link:
4971 	ice_deinit_pf_sw(pf);
4972 err_init_pf_sw:
4973 	ice_dealloc_vsis(pf);
4974 err_alloc_vsis:
4975 	ice_deinit_dev(pf);
4976 	return err;
4977 }
4978 
4979 static void ice_deinit(struct ice_pf *pf)
4980 {
4981 	set_bit(ICE_SERVICE_DIS, pf->state);
4982 	set_bit(ICE_DOWN, pf->state);
4983 
4984 	ice_deinit_pf_sw(pf);
4985 	ice_dealloc_vsis(pf);
4986 	ice_deinit_dev(pf);
4987 }
4988 
4989 /**
4990  * ice_load - load pf by init hw and starting VSI
4991  * @pf: pointer to the pf instance
4992  */
4993 int ice_load(struct ice_pf *pf)
4994 {
4995 	struct ice_vsi_cfg_params params = {};
4996 	struct ice_vsi *vsi;
4997 	int err;
4998 
4999 	err = ice_init_dev(pf);
5000 	if (err)
5001 		return err;
5002 
5003 	vsi = ice_get_main_vsi(pf);
5004 
5005 	params = ice_vsi_to_params(vsi);
5006 	params.flags = ICE_VSI_FLAG_INIT;
5007 
5008 	rtnl_lock();
5009 	err = ice_vsi_cfg(vsi, &params);
5010 	if (err)
5011 		goto err_vsi_cfg;
5012 
5013 	err = ice_start_eth(ice_get_main_vsi(pf));
5014 	if (err)
5015 		goto err_start_eth;
5016 	rtnl_unlock();
5017 
5018 	err = ice_init_rdma(pf);
5019 	if (err)
5020 		goto err_init_rdma;
5021 
5022 	ice_init_features(pf);
5023 	ice_service_task_restart(pf);
5024 
5025 	clear_bit(ICE_DOWN, pf->state);
5026 
5027 	return 0;
5028 
5029 err_init_rdma:
5030 	ice_vsi_close(ice_get_main_vsi(pf));
5031 	rtnl_lock();
5032 err_start_eth:
5033 	ice_vsi_decfg(ice_get_main_vsi(pf));
5034 err_vsi_cfg:
5035 	rtnl_unlock();
5036 	ice_deinit_dev(pf);
5037 	return err;
5038 }
5039 
5040 /**
5041  * ice_unload - unload pf by stopping VSI and deinit hw
5042  * @pf: pointer to the pf instance
5043  */
5044 void ice_unload(struct ice_pf *pf)
5045 {
5046 	ice_deinit_features(pf);
5047 	ice_deinit_rdma(pf);
5048 	rtnl_lock();
5049 	ice_stop_eth(ice_get_main_vsi(pf));
5050 	ice_vsi_decfg(ice_get_main_vsi(pf));
5051 	rtnl_unlock();
5052 	ice_deinit_dev(pf);
5053 }
5054 
5055 /**
5056  * ice_probe - Device initialization routine
5057  * @pdev: PCI device information struct
5058  * @ent: entry in ice_pci_tbl
5059  *
5060  * Returns 0 on success, negative on failure
5061  */
5062 static int
5063 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5064 {
5065 	struct device *dev = &pdev->dev;
5066 	struct ice_pf *pf;
5067 	struct ice_hw *hw;
5068 	int err;
5069 
5070 	if (pdev->is_virtfn) {
5071 		dev_err(dev, "can't probe a virtual function\n");
5072 		return -EINVAL;
5073 	}
5074 
5075 	/* when under a kdump kernel initiate a reset before enabling the
5076 	 * device in order to clear out any pending DMA transactions. These
5077 	 * transactions can cause some systems to machine check when doing
5078 	 * the pcim_enable_device() below.
5079 	 */
5080 	if (is_kdump_kernel()) {
5081 		pci_save_state(pdev);
5082 		pci_clear_master(pdev);
5083 		err = pcie_flr(pdev);
5084 		if (err)
5085 			return err;
5086 		pci_restore_state(pdev);
5087 	}
5088 
5089 	/* this driver uses devres, see
5090 	 * Documentation/driver-api/driver-model/devres.rst
5091 	 */
5092 	err = pcim_enable_device(pdev);
5093 	if (err)
5094 		return err;
5095 
5096 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5097 	if (err) {
5098 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5099 		return err;
5100 	}
5101 
5102 	pf = ice_allocate_pf(dev);
5103 	if (!pf)
5104 		return -ENOMEM;
5105 
5106 	/* initialize Auxiliary index to invalid value */
5107 	pf->aux_idx = -1;
5108 
5109 	/* set up for high or low DMA */
5110 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5111 	if (err) {
5112 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5113 		return err;
5114 	}
5115 
5116 	pci_set_master(pdev);
5117 
5118 	pf->pdev = pdev;
5119 	pci_set_drvdata(pdev, pf);
5120 	set_bit(ICE_DOWN, pf->state);
5121 	/* Disable service task until DOWN bit is cleared */
5122 	set_bit(ICE_SERVICE_DIS, pf->state);
5123 
5124 	hw = &pf->hw;
5125 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5126 	pci_save_state(pdev);
5127 
5128 	hw->back = pf;
5129 	hw->port_info = NULL;
5130 	hw->vendor_id = pdev->vendor;
5131 	hw->device_id = pdev->device;
5132 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5133 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5134 	hw->subsystem_device_id = pdev->subsystem_device;
5135 	hw->bus.device = PCI_SLOT(pdev->devfn);
5136 	hw->bus.func = PCI_FUNC(pdev->devfn);
5137 	ice_set_ctrlq_len(hw);
5138 
5139 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5140 
5141 #ifndef CONFIG_DYNAMIC_DEBUG
5142 	if (debug < -1)
5143 		hw->debug_mask = debug;
5144 #endif
5145 
5146 	err = ice_init(pf);
5147 	if (err)
5148 		goto err_init;
5149 
5150 	err = ice_init_eth(pf);
5151 	if (err)
5152 		goto err_init_eth;
5153 
5154 	err = ice_init_rdma(pf);
5155 	if (err)
5156 		goto err_init_rdma;
5157 
5158 	err = ice_init_devlink(pf);
5159 	if (err)
5160 		goto err_init_devlink;
5161 
5162 	ice_init_features(pf);
5163 
5164 	return 0;
5165 
5166 err_init_devlink:
5167 	ice_deinit_rdma(pf);
5168 err_init_rdma:
5169 	ice_deinit_eth(pf);
5170 err_init_eth:
5171 	ice_deinit(pf);
5172 err_init:
5173 	pci_disable_device(pdev);
5174 	return err;
5175 }
5176 
5177 /**
5178  * ice_set_wake - enable or disable Wake on LAN
5179  * @pf: pointer to the PF struct
5180  *
5181  * Simple helper for WoL control
5182  */
5183 static void ice_set_wake(struct ice_pf *pf)
5184 {
5185 	struct ice_hw *hw = &pf->hw;
5186 	bool wol = pf->wol_ena;
5187 
5188 	/* clear wake state, otherwise new wake events won't fire */
5189 	wr32(hw, PFPM_WUS, U32_MAX);
5190 
5191 	/* enable / disable APM wake up, no RMW needed */
5192 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5193 
5194 	/* set magic packet filter enabled */
5195 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5196 }
5197 
5198 /**
5199  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5200  * @pf: pointer to the PF struct
5201  *
5202  * Issue firmware command to enable multicast magic wake, making
5203  * sure that any locally administered address (LAA) is used for
5204  * wake, and that PF reset doesn't undo the LAA.
5205  */
5206 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5207 {
5208 	struct device *dev = ice_pf_to_dev(pf);
5209 	struct ice_hw *hw = &pf->hw;
5210 	u8 mac_addr[ETH_ALEN];
5211 	struct ice_vsi *vsi;
5212 	int status;
5213 	u8 flags;
5214 
5215 	if (!pf->wol_ena)
5216 		return;
5217 
5218 	vsi = ice_get_main_vsi(pf);
5219 	if (!vsi)
5220 		return;
5221 
5222 	/* Get current MAC address in case it's an LAA */
5223 	if (vsi->netdev)
5224 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5225 	else
5226 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5227 
5228 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5229 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5230 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5231 
5232 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5233 	if (status)
5234 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5235 			status, ice_aq_str(hw->adminq.sq_last_status));
5236 }
5237 
5238 /**
5239  * ice_remove - Device removal routine
5240  * @pdev: PCI device information struct
5241  */
5242 static void ice_remove(struct pci_dev *pdev)
5243 {
5244 	struct ice_pf *pf = pci_get_drvdata(pdev);
5245 	int i;
5246 
5247 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5248 		if (!ice_is_reset_in_progress(pf->state))
5249 			break;
5250 		msleep(100);
5251 	}
5252 
5253 	ice_debugfs_exit();
5254 
5255 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5256 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5257 		ice_free_vfs(pf);
5258 	}
5259 
5260 	ice_hwmon_exit(pf);
5261 
5262 	ice_service_task_stop(pf);
5263 	ice_aq_cancel_waiting_tasks(pf);
5264 	set_bit(ICE_DOWN, pf->state);
5265 
5266 	if (!ice_is_safe_mode(pf))
5267 		ice_remove_arfs(pf);
5268 	ice_deinit_features(pf);
5269 	ice_deinit_devlink(pf);
5270 	ice_deinit_rdma(pf);
5271 	ice_deinit_eth(pf);
5272 	ice_deinit(pf);
5273 
5274 	ice_vsi_release_all(pf);
5275 
5276 	ice_setup_mc_magic_wake(pf);
5277 	ice_set_wake(pf);
5278 
5279 	pci_disable_device(pdev);
5280 }
5281 
5282 /**
5283  * ice_shutdown - PCI callback for shutting down device
5284  * @pdev: PCI device information struct
5285  */
5286 static void ice_shutdown(struct pci_dev *pdev)
5287 {
5288 	struct ice_pf *pf = pci_get_drvdata(pdev);
5289 
5290 	ice_remove(pdev);
5291 
5292 	if (system_state == SYSTEM_POWER_OFF) {
5293 		pci_wake_from_d3(pdev, pf->wol_ena);
5294 		pci_set_power_state(pdev, PCI_D3hot);
5295 	}
5296 }
5297 
5298 #ifdef CONFIG_PM
5299 /**
5300  * ice_prepare_for_shutdown - prep for PCI shutdown
5301  * @pf: board private structure
5302  *
5303  * Inform or close all dependent features in prep for PCI device shutdown
5304  */
5305 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5306 {
5307 	struct ice_hw *hw = &pf->hw;
5308 	u32 v;
5309 
5310 	/* Notify VFs of impending reset */
5311 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5312 		ice_vc_notify_reset(pf);
5313 
5314 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5315 
5316 	/* disable the VSIs and their queues that are not already DOWN */
5317 	ice_pf_dis_all_vsi(pf, false);
5318 
5319 	ice_for_each_vsi(pf, v)
5320 		if (pf->vsi[v])
5321 			pf->vsi[v]->vsi_num = 0;
5322 
5323 	ice_shutdown_all_ctrlq(hw);
5324 }
5325 
5326 /**
5327  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5328  * @pf: board private structure to reinitialize
5329  *
5330  * This routine reinitialize interrupt scheme that was cleared during
5331  * power management suspend callback.
5332  *
5333  * This should be called during resume routine to re-allocate the q_vectors
5334  * and reacquire interrupts.
5335  */
5336 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5337 {
5338 	struct device *dev = ice_pf_to_dev(pf);
5339 	int ret, v;
5340 
5341 	/* Since we clear MSIX flag during suspend, we need to
5342 	 * set it back during resume...
5343 	 */
5344 
5345 	ret = ice_init_interrupt_scheme(pf);
5346 	if (ret) {
5347 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5348 		return ret;
5349 	}
5350 
5351 	/* Remap vectors and rings, after successful re-init interrupts */
5352 	ice_for_each_vsi(pf, v) {
5353 		if (!pf->vsi[v])
5354 			continue;
5355 
5356 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5357 		if (ret)
5358 			goto err_reinit;
5359 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5360 	}
5361 
5362 	ret = ice_req_irq_msix_misc(pf);
5363 	if (ret) {
5364 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5365 			ret);
5366 		goto err_reinit;
5367 	}
5368 
5369 	return 0;
5370 
5371 err_reinit:
5372 	while (v--)
5373 		if (pf->vsi[v])
5374 			ice_vsi_free_q_vectors(pf->vsi[v]);
5375 
5376 	return ret;
5377 }
5378 
5379 /**
5380  * ice_suspend
5381  * @dev: generic device information structure
5382  *
5383  * Power Management callback to quiesce the device and prepare
5384  * for D3 transition.
5385  */
5386 static int __maybe_unused ice_suspend(struct device *dev)
5387 {
5388 	struct pci_dev *pdev = to_pci_dev(dev);
5389 	struct ice_pf *pf;
5390 	int disabled, v;
5391 
5392 	pf = pci_get_drvdata(pdev);
5393 
5394 	if (!ice_pf_state_is_nominal(pf)) {
5395 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5396 		return -EBUSY;
5397 	}
5398 
5399 	/* Stop watchdog tasks until resume completion.
5400 	 * Even though it is most likely that the service task is
5401 	 * disabled if the device is suspended or down, the service task's
5402 	 * state is controlled by a different state bit, and we should
5403 	 * store and honor whatever state that bit is in at this point.
5404 	 */
5405 	disabled = ice_service_task_stop(pf);
5406 
5407 	ice_unplug_aux_dev(pf);
5408 
5409 	/* Already suspended?, then there is nothing to do */
5410 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5411 		if (!disabled)
5412 			ice_service_task_restart(pf);
5413 		return 0;
5414 	}
5415 
5416 	if (test_bit(ICE_DOWN, pf->state) ||
5417 	    ice_is_reset_in_progress(pf->state)) {
5418 		dev_err(dev, "can't suspend device in reset or already down\n");
5419 		if (!disabled)
5420 			ice_service_task_restart(pf);
5421 		return 0;
5422 	}
5423 
5424 	ice_setup_mc_magic_wake(pf);
5425 
5426 	ice_prepare_for_shutdown(pf);
5427 
5428 	ice_set_wake(pf);
5429 
5430 	/* Free vectors, clear the interrupt scheme and release IRQs
5431 	 * for proper hibernation, especially with large number of CPUs.
5432 	 * Otherwise hibernation might fail when mapping all the vectors back
5433 	 * to CPU0.
5434 	 */
5435 	ice_free_irq_msix_misc(pf);
5436 	ice_for_each_vsi(pf, v) {
5437 		if (!pf->vsi[v])
5438 			continue;
5439 		ice_vsi_free_q_vectors(pf->vsi[v]);
5440 	}
5441 	ice_clear_interrupt_scheme(pf);
5442 
5443 	pci_save_state(pdev);
5444 	pci_wake_from_d3(pdev, pf->wol_ena);
5445 	pci_set_power_state(pdev, PCI_D3hot);
5446 	return 0;
5447 }
5448 
5449 /**
5450  * ice_resume - PM callback for waking up from D3
5451  * @dev: generic device information structure
5452  */
5453 static int __maybe_unused ice_resume(struct device *dev)
5454 {
5455 	struct pci_dev *pdev = to_pci_dev(dev);
5456 	enum ice_reset_req reset_type;
5457 	struct ice_pf *pf;
5458 	struct ice_hw *hw;
5459 	int ret;
5460 
5461 	pci_set_power_state(pdev, PCI_D0);
5462 	pci_restore_state(pdev);
5463 	pci_save_state(pdev);
5464 
5465 	if (!pci_device_is_present(pdev))
5466 		return -ENODEV;
5467 
5468 	ret = pci_enable_device_mem(pdev);
5469 	if (ret) {
5470 		dev_err(dev, "Cannot enable device after suspend\n");
5471 		return ret;
5472 	}
5473 
5474 	pf = pci_get_drvdata(pdev);
5475 	hw = &pf->hw;
5476 
5477 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5478 	ice_print_wake_reason(pf);
5479 
5480 	/* We cleared the interrupt scheme when we suspended, so we need to
5481 	 * restore it now to resume device functionality.
5482 	 */
5483 	ret = ice_reinit_interrupt_scheme(pf);
5484 	if (ret)
5485 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5486 
5487 	clear_bit(ICE_DOWN, pf->state);
5488 	/* Now perform PF reset and rebuild */
5489 	reset_type = ICE_RESET_PFR;
5490 	/* re-enable service task for reset, but allow reset to schedule it */
5491 	clear_bit(ICE_SERVICE_DIS, pf->state);
5492 
5493 	if (ice_schedule_reset(pf, reset_type))
5494 		dev_err(dev, "Reset during resume failed.\n");
5495 
5496 	clear_bit(ICE_SUSPENDED, pf->state);
5497 	ice_service_task_restart(pf);
5498 
5499 	/* Restart the service task */
5500 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5501 
5502 	return 0;
5503 }
5504 #endif /* CONFIG_PM */
5505 
5506 /**
5507  * ice_pci_err_detected - warning that PCI error has been detected
5508  * @pdev: PCI device information struct
5509  * @err: the type of PCI error
5510  *
5511  * Called to warn that something happened on the PCI bus and the error handling
5512  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5513  */
5514 static pci_ers_result_t
5515 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5516 {
5517 	struct ice_pf *pf = pci_get_drvdata(pdev);
5518 
5519 	if (!pf) {
5520 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5521 			__func__, err);
5522 		return PCI_ERS_RESULT_DISCONNECT;
5523 	}
5524 
5525 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5526 		ice_service_task_stop(pf);
5527 
5528 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5529 			set_bit(ICE_PFR_REQ, pf->state);
5530 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5531 		}
5532 	}
5533 
5534 	return PCI_ERS_RESULT_NEED_RESET;
5535 }
5536 
5537 /**
5538  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5539  * @pdev: PCI device information struct
5540  *
5541  * Called to determine if the driver can recover from the PCI slot reset by
5542  * using a register read to determine if the device is recoverable.
5543  */
5544 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5545 {
5546 	struct ice_pf *pf = pci_get_drvdata(pdev);
5547 	pci_ers_result_t result;
5548 	int err;
5549 	u32 reg;
5550 
5551 	err = pci_enable_device_mem(pdev);
5552 	if (err) {
5553 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5554 			err);
5555 		result = PCI_ERS_RESULT_DISCONNECT;
5556 	} else {
5557 		pci_set_master(pdev);
5558 		pci_restore_state(pdev);
5559 		pci_save_state(pdev);
5560 		pci_wake_from_d3(pdev, false);
5561 
5562 		/* Check for life */
5563 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5564 		if (!reg)
5565 			result = PCI_ERS_RESULT_RECOVERED;
5566 		else
5567 			result = PCI_ERS_RESULT_DISCONNECT;
5568 	}
5569 
5570 	return result;
5571 }
5572 
5573 /**
5574  * ice_pci_err_resume - restart operations after PCI error recovery
5575  * @pdev: PCI device information struct
5576  *
5577  * Called to allow the driver to bring things back up after PCI error and/or
5578  * reset recovery have finished
5579  */
5580 static void ice_pci_err_resume(struct pci_dev *pdev)
5581 {
5582 	struct ice_pf *pf = pci_get_drvdata(pdev);
5583 
5584 	if (!pf) {
5585 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5586 			__func__);
5587 		return;
5588 	}
5589 
5590 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5591 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5592 			__func__);
5593 		return;
5594 	}
5595 
5596 	ice_restore_all_vfs_msi_state(pf);
5597 
5598 	ice_do_reset(pf, ICE_RESET_PFR);
5599 	ice_service_task_restart(pf);
5600 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5601 }
5602 
5603 /**
5604  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5605  * @pdev: PCI device information struct
5606  */
5607 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5608 {
5609 	struct ice_pf *pf = pci_get_drvdata(pdev);
5610 
5611 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5612 		ice_service_task_stop(pf);
5613 
5614 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5615 			set_bit(ICE_PFR_REQ, pf->state);
5616 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5617 		}
5618 	}
5619 }
5620 
5621 /**
5622  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5623  * @pdev: PCI device information struct
5624  */
5625 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5626 {
5627 	ice_pci_err_resume(pdev);
5628 }
5629 
5630 /* ice_pci_tbl - PCI Device ID Table
5631  *
5632  * Wildcard entries (PCI_ANY_ID) should come last
5633  * Last entry must be all 0s
5634  *
5635  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5636  *   Class, Class Mask, private data (not used) }
5637  */
5638 static const struct pci_device_id ice_pci_tbl[] = {
5639 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5640 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5641 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5642 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5643 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5644 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5645 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5646 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5647 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5648 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5649 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5650 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5651 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5652 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5653 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5654 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5655 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5656 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5657 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5658 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5659 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5660 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5661 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5662 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5663 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5664 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5665 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) },
5666 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) },
5667 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) },
5668 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) },
5669 	/* required last entry */
5670 	{}
5671 };
5672 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5673 
5674 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5675 
5676 static const struct pci_error_handlers ice_pci_err_handler = {
5677 	.error_detected = ice_pci_err_detected,
5678 	.slot_reset = ice_pci_err_slot_reset,
5679 	.reset_prepare = ice_pci_err_reset_prepare,
5680 	.reset_done = ice_pci_err_reset_done,
5681 	.resume = ice_pci_err_resume
5682 };
5683 
5684 static struct pci_driver ice_driver = {
5685 	.name = KBUILD_MODNAME,
5686 	.id_table = ice_pci_tbl,
5687 	.probe = ice_probe,
5688 	.remove = ice_remove,
5689 #ifdef CONFIG_PM
5690 	.driver.pm = &ice_pm_ops,
5691 #endif /* CONFIG_PM */
5692 	.shutdown = ice_shutdown,
5693 	.sriov_configure = ice_sriov_configure,
5694 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5695 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5696 	.err_handler = &ice_pci_err_handler
5697 };
5698 
5699 /**
5700  * ice_module_init - Driver registration routine
5701  *
5702  * ice_module_init is the first routine called when the driver is
5703  * loaded. All it does is register with the PCI subsystem.
5704  */
5705 static int __init ice_module_init(void)
5706 {
5707 	int status = -ENOMEM;
5708 
5709 	pr_info("%s\n", ice_driver_string);
5710 	pr_info("%s\n", ice_copyright);
5711 
5712 	ice_adv_lnk_speed_maps_init();
5713 
5714 	ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5715 	if (!ice_wq) {
5716 		pr_err("Failed to create workqueue\n");
5717 		return status;
5718 	}
5719 
5720 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5721 	if (!ice_lag_wq) {
5722 		pr_err("Failed to create LAG workqueue\n");
5723 		goto err_dest_wq;
5724 	}
5725 
5726 	ice_debugfs_init();
5727 
5728 	status = pci_register_driver(&ice_driver);
5729 	if (status) {
5730 		pr_err("failed to register PCI driver, err %d\n", status);
5731 		goto err_dest_lag_wq;
5732 	}
5733 
5734 	return 0;
5735 
5736 err_dest_lag_wq:
5737 	destroy_workqueue(ice_lag_wq);
5738 	ice_debugfs_exit();
5739 err_dest_wq:
5740 	destroy_workqueue(ice_wq);
5741 	return status;
5742 }
5743 module_init(ice_module_init);
5744 
5745 /**
5746  * ice_module_exit - Driver exit cleanup routine
5747  *
5748  * ice_module_exit is called just before the driver is removed
5749  * from memory.
5750  */
5751 static void __exit ice_module_exit(void)
5752 {
5753 	pci_unregister_driver(&ice_driver);
5754 	destroy_workqueue(ice_wq);
5755 	destroy_workqueue(ice_lag_wq);
5756 	pr_info("module unloaded\n");
5757 }
5758 module_exit(ice_module_exit);
5759 
5760 /**
5761  * ice_set_mac_address - NDO callback to set MAC address
5762  * @netdev: network interface device structure
5763  * @pi: pointer to an address structure
5764  *
5765  * Returns 0 on success, negative on failure
5766  */
5767 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5768 {
5769 	struct ice_netdev_priv *np = netdev_priv(netdev);
5770 	struct ice_vsi *vsi = np->vsi;
5771 	struct ice_pf *pf = vsi->back;
5772 	struct ice_hw *hw = &pf->hw;
5773 	struct sockaddr *addr = pi;
5774 	u8 old_mac[ETH_ALEN];
5775 	u8 flags = 0;
5776 	u8 *mac;
5777 	int err;
5778 
5779 	mac = (u8 *)addr->sa_data;
5780 
5781 	if (!is_valid_ether_addr(mac))
5782 		return -EADDRNOTAVAIL;
5783 
5784 	if (test_bit(ICE_DOWN, pf->state) ||
5785 	    ice_is_reset_in_progress(pf->state)) {
5786 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5787 			   mac);
5788 		return -EBUSY;
5789 	}
5790 
5791 	if (ice_chnl_dmac_fltr_cnt(pf)) {
5792 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5793 			   mac);
5794 		return -EAGAIN;
5795 	}
5796 
5797 	netif_addr_lock_bh(netdev);
5798 	ether_addr_copy(old_mac, netdev->dev_addr);
5799 	/* change the netdev's MAC address */
5800 	eth_hw_addr_set(netdev, mac);
5801 	netif_addr_unlock_bh(netdev);
5802 
5803 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5804 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5805 	if (err && err != -ENOENT) {
5806 		err = -EADDRNOTAVAIL;
5807 		goto err_update_filters;
5808 	}
5809 
5810 	/* Add filter for new MAC. If filter exists, return success */
5811 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5812 	if (err == -EEXIST) {
5813 		/* Although this MAC filter is already present in hardware it's
5814 		 * possible in some cases (e.g. bonding) that dev_addr was
5815 		 * modified outside of the driver and needs to be restored back
5816 		 * to this value.
5817 		 */
5818 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5819 
5820 		return 0;
5821 	} else if (err) {
5822 		/* error if the new filter addition failed */
5823 		err = -EADDRNOTAVAIL;
5824 	}
5825 
5826 err_update_filters:
5827 	if (err) {
5828 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5829 			   mac);
5830 		netif_addr_lock_bh(netdev);
5831 		eth_hw_addr_set(netdev, old_mac);
5832 		netif_addr_unlock_bh(netdev);
5833 		return err;
5834 	}
5835 
5836 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5837 		   netdev->dev_addr);
5838 
5839 	/* write new MAC address to the firmware */
5840 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5841 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5842 	if (err) {
5843 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5844 			   mac, err);
5845 	}
5846 	return 0;
5847 }
5848 
5849 /**
5850  * ice_set_rx_mode - NDO callback to set the netdev filters
5851  * @netdev: network interface device structure
5852  */
5853 static void ice_set_rx_mode(struct net_device *netdev)
5854 {
5855 	struct ice_netdev_priv *np = netdev_priv(netdev);
5856 	struct ice_vsi *vsi = np->vsi;
5857 
5858 	if (!vsi || ice_is_switchdev_running(vsi->back))
5859 		return;
5860 
5861 	/* Set the flags to synchronize filters
5862 	 * ndo_set_rx_mode may be triggered even without a change in netdev
5863 	 * flags
5864 	 */
5865 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5866 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5867 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5868 
5869 	/* schedule our worker thread which will take care of
5870 	 * applying the new filter changes
5871 	 */
5872 	ice_service_task_schedule(vsi->back);
5873 }
5874 
5875 /**
5876  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5877  * @netdev: network interface device structure
5878  * @queue_index: Queue ID
5879  * @maxrate: maximum bandwidth in Mbps
5880  */
5881 static int
5882 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5883 {
5884 	struct ice_netdev_priv *np = netdev_priv(netdev);
5885 	struct ice_vsi *vsi = np->vsi;
5886 	u16 q_handle;
5887 	int status;
5888 	u8 tc;
5889 
5890 	/* Validate maxrate requested is within permitted range */
5891 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5892 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5893 			   maxrate, queue_index);
5894 		return -EINVAL;
5895 	}
5896 
5897 	q_handle = vsi->tx_rings[queue_index]->q_handle;
5898 	tc = ice_dcb_get_tc(vsi, queue_index);
5899 
5900 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
5901 	if (!vsi) {
5902 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
5903 			   queue_index);
5904 		return -EINVAL;
5905 	}
5906 
5907 	/* Set BW back to default, when user set maxrate to 0 */
5908 	if (!maxrate)
5909 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5910 					       q_handle, ICE_MAX_BW);
5911 	else
5912 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5913 					  q_handle, ICE_MAX_BW, maxrate * 1000);
5914 	if (status)
5915 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5916 			   status);
5917 
5918 	return status;
5919 }
5920 
5921 /**
5922  * ice_fdb_add - add an entry to the hardware database
5923  * @ndm: the input from the stack
5924  * @tb: pointer to array of nladdr (unused)
5925  * @dev: the net device pointer
5926  * @addr: the MAC address entry being added
5927  * @vid: VLAN ID
5928  * @flags: instructions from stack about fdb operation
5929  * @extack: netlink extended ack
5930  */
5931 static int
5932 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5933 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5934 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5935 {
5936 	int err;
5937 
5938 	if (vid) {
5939 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5940 		return -EINVAL;
5941 	}
5942 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5943 		netdev_err(dev, "FDB only supports static addresses\n");
5944 		return -EINVAL;
5945 	}
5946 
5947 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5948 		err = dev_uc_add_excl(dev, addr);
5949 	else if (is_multicast_ether_addr(addr))
5950 		err = dev_mc_add_excl(dev, addr);
5951 	else
5952 		err = -EINVAL;
5953 
5954 	/* Only return duplicate errors if NLM_F_EXCL is set */
5955 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5956 		err = 0;
5957 
5958 	return err;
5959 }
5960 
5961 /**
5962  * ice_fdb_del - delete an entry from the hardware database
5963  * @ndm: the input from the stack
5964  * @tb: pointer to array of nladdr (unused)
5965  * @dev: the net device pointer
5966  * @addr: the MAC address entry being added
5967  * @vid: VLAN ID
5968  * @extack: netlink extended ack
5969  */
5970 static int
5971 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5972 	    struct net_device *dev, const unsigned char *addr,
5973 	    __always_unused u16 vid, struct netlink_ext_ack *extack)
5974 {
5975 	int err;
5976 
5977 	if (ndm->ndm_state & NUD_PERMANENT) {
5978 		netdev_err(dev, "FDB only supports static addresses\n");
5979 		return -EINVAL;
5980 	}
5981 
5982 	if (is_unicast_ether_addr(addr))
5983 		err = dev_uc_del(dev, addr);
5984 	else if (is_multicast_ether_addr(addr))
5985 		err = dev_mc_del(dev, addr);
5986 	else
5987 		err = -EINVAL;
5988 
5989 	return err;
5990 }
5991 
5992 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5993 					 NETIF_F_HW_VLAN_CTAG_TX | \
5994 					 NETIF_F_HW_VLAN_STAG_RX | \
5995 					 NETIF_F_HW_VLAN_STAG_TX)
5996 
5997 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
5998 					 NETIF_F_HW_VLAN_STAG_RX)
5999 
6000 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6001 					 NETIF_F_HW_VLAN_STAG_FILTER)
6002 
6003 /**
6004  * ice_fix_features - fix the netdev features flags based on device limitations
6005  * @netdev: ptr to the netdev that flags are being fixed on
6006  * @features: features that need to be checked and possibly fixed
6007  *
6008  * Make sure any fixups are made to features in this callback. This enables the
6009  * driver to not have to check unsupported configurations throughout the driver
6010  * because that's the responsiblity of this callback.
6011  *
6012  * Single VLAN Mode (SVM) Supported Features:
6013  *	NETIF_F_HW_VLAN_CTAG_FILTER
6014  *	NETIF_F_HW_VLAN_CTAG_RX
6015  *	NETIF_F_HW_VLAN_CTAG_TX
6016  *
6017  * Double VLAN Mode (DVM) Supported Features:
6018  *	NETIF_F_HW_VLAN_CTAG_FILTER
6019  *	NETIF_F_HW_VLAN_CTAG_RX
6020  *	NETIF_F_HW_VLAN_CTAG_TX
6021  *
6022  *	NETIF_F_HW_VLAN_STAG_FILTER
6023  *	NETIF_HW_VLAN_STAG_RX
6024  *	NETIF_HW_VLAN_STAG_TX
6025  *
6026  * Features that need fixing:
6027  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6028  *	These are mutually exlusive as the VSI context cannot support multiple
6029  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6030  *	is not done, then default to clearing the requested STAG offload
6031  *	settings.
6032  *
6033  *	All supported filtering has to be enabled or disabled together. For
6034  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6035  *	together. If this is not done, then default to VLAN filtering disabled.
6036  *	These are mutually exclusive as there is currently no way to
6037  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6038  *	prune rules.
6039  */
6040 static netdev_features_t
6041 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6042 {
6043 	struct ice_netdev_priv *np = netdev_priv(netdev);
6044 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6045 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6046 
6047 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6048 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6049 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6050 
6051 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6052 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6053 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6054 
6055 	if (req_vlan_fltr != cur_vlan_fltr) {
6056 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6057 			if (req_ctag && req_stag) {
6058 				features |= NETIF_VLAN_FILTERING_FEATURES;
6059 			} else if (!req_ctag && !req_stag) {
6060 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6061 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6062 				   (!cur_stag && req_stag && !cur_ctag)) {
6063 				features |= NETIF_VLAN_FILTERING_FEATURES;
6064 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6065 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6066 				   (cur_stag && !req_stag && cur_ctag)) {
6067 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6068 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6069 			}
6070 		} else {
6071 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6072 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6073 
6074 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6075 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6076 		}
6077 	}
6078 
6079 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6080 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6081 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6082 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6083 			      NETIF_F_HW_VLAN_STAG_TX);
6084 	}
6085 
6086 	if (!(netdev->features & NETIF_F_RXFCS) &&
6087 	    (features & NETIF_F_RXFCS) &&
6088 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6089 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6090 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6091 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6092 	}
6093 
6094 	return features;
6095 }
6096 
6097 /**
6098  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6099  * @vsi: PF's VSI
6100  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6101  *
6102  * Store current stripped VLAN proto in ring packet context,
6103  * so it can be accessed more efficiently by packet processing code.
6104  */
6105 static void
6106 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6107 {
6108 	u16 i;
6109 
6110 	ice_for_each_alloc_rxq(vsi, i)
6111 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6112 }
6113 
6114 /**
6115  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6116  * @vsi: PF's VSI
6117  * @features: features used to determine VLAN offload settings
6118  *
6119  * First, determine the vlan_ethertype based on the VLAN offload bits in
6120  * features. Then determine if stripping and insertion should be enabled or
6121  * disabled. Finally enable or disable VLAN stripping and insertion.
6122  */
6123 static int
6124 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6125 {
6126 	bool enable_stripping = true, enable_insertion = true;
6127 	struct ice_vsi_vlan_ops *vlan_ops;
6128 	int strip_err = 0, insert_err = 0;
6129 	u16 vlan_ethertype = 0;
6130 
6131 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6132 
6133 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6134 		vlan_ethertype = ETH_P_8021AD;
6135 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6136 		vlan_ethertype = ETH_P_8021Q;
6137 
6138 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6139 		enable_stripping = false;
6140 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6141 		enable_insertion = false;
6142 
6143 	if (enable_stripping)
6144 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6145 	else
6146 		strip_err = vlan_ops->dis_stripping(vsi);
6147 
6148 	if (enable_insertion)
6149 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6150 	else
6151 		insert_err = vlan_ops->dis_insertion(vsi);
6152 
6153 	if (strip_err || insert_err)
6154 		return -EIO;
6155 
6156 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6157 				    htons(vlan_ethertype) : 0);
6158 
6159 	return 0;
6160 }
6161 
6162 /**
6163  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6164  * @vsi: PF's VSI
6165  * @features: features used to determine VLAN filtering settings
6166  *
6167  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6168  * features.
6169  */
6170 static int
6171 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6172 {
6173 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6174 	int err = 0;
6175 
6176 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6177 	 * if either bit is set
6178 	 */
6179 	if (features &
6180 	    (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
6181 		err = vlan_ops->ena_rx_filtering(vsi);
6182 	else
6183 		err = vlan_ops->dis_rx_filtering(vsi);
6184 
6185 	return err;
6186 }
6187 
6188 /**
6189  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6190  * @netdev: ptr to the netdev being adjusted
6191  * @features: the feature set that the stack is suggesting
6192  *
6193  * Only update VLAN settings if the requested_vlan_features are different than
6194  * the current_vlan_features.
6195  */
6196 static int
6197 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6198 {
6199 	netdev_features_t current_vlan_features, requested_vlan_features;
6200 	struct ice_netdev_priv *np = netdev_priv(netdev);
6201 	struct ice_vsi *vsi = np->vsi;
6202 	int err;
6203 
6204 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6205 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6206 	if (current_vlan_features ^ requested_vlan_features) {
6207 		if ((features & NETIF_F_RXFCS) &&
6208 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6209 			dev_err(ice_pf_to_dev(vsi->back),
6210 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6211 			return -EIO;
6212 		}
6213 
6214 		err = ice_set_vlan_offload_features(vsi, features);
6215 		if (err)
6216 			return err;
6217 	}
6218 
6219 	current_vlan_features = netdev->features &
6220 		NETIF_VLAN_FILTERING_FEATURES;
6221 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6222 	if (current_vlan_features ^ requested_vlan_features) {
6223 		err = ice_set_vlan_filtering_features(vsi, features);
6224 		if (err)
6225 			return err;
6226 	}
6227 
6228 	return 0;
6229 }
6230 
6231 /**
6232  * ice_set_loopback - turn on/off loopback mode on underlying PF
6233  * @vsi: ptr to VSI
6234  * @ena: flag to indicate the on/off setting
6235  */
6236 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6237 {
6238 	bool if_running = netif_running(vsi->netdev);
6239 	int ret;
6240 
6241 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6242 		ret = ice_down(vsi);
6243 		if (ret) {
6244 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6245 			return ret;
6246 		}
6247 	}
6248 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6249 	if (ret)
6250 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6251 	if (if_running)
6252 		ret = ice_up(vsi);
6253 
6254 	return ret;
6255 }
6256 
6257 /**
6258  * ice_set_features - set the netdev feature flags
6259  * @netdev: ptr to the netdev being adjusted
6260  * @features: the feature set that the stack is suggesting
6261  */
6262 static int
6263 ice_set_features(struct net_device *netdev, netdev_features_t features)
6264 {
6265 	netdev_features_t changed = netdev->features ^ features;
6266 	struct ice_netdev_priv *np = netdev_priv(netdev);
6267 	struct ice_vsi *vsi = np->vsi;
6268 	struct ice_pf *pf = vsi->back;
6269 	int ret = 0;
6270 
6271 	/* Don't set any netdev advanced features with device in Safe Mode */
6272 	if (ice_is_safe_mode(pf)) {
6273 		dev_err(ice_pf_to_dev(pf),
6274 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6275 		return ret;
6276 	}
6277 
6278 	/* Do not change setting during reset */
6279 	if (ice_is_reset_in_progress(pf->state)) {
6280 		dev_err(ice_pf_to_dev(pf),
6281 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6282 		return -EBUSY;
6283 	}
6284 
6285 	/* Multiple features can be changed in one call so keep features in
6286 	 * separate if/else statements to guarantee each feature is checked
6287 	 */
6288 	if (changed & NETIF_F_RXHASH)
6289 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6290 
6291 	ret = ice_set_vlan_features(netdev, features);
6292 	if (ret)
6293 		return ret;
6294 
6295 	/* Turn on receive of FCS aka CRC, and after setting this
6296 	 * flag the packet data will have the 4 byte CRC appended
6297 	 */
6298 	if (changed & NETIF_F_RXFCS) {
6299 		if ((features & NETIF_F_RXFCS) &&
6300 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6301 			dev_err(ice_pf_to_dev(vsi->back),
6302 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6303 			return -EIO;
6304 		}
6305 
6306 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6307 		ret = ice_down_up(vsi);
6308 		if (ret)
6309 			return ret;
6310 	}
6311 
6312 	if (changed & NETIF_F_NTUPLE) {
6313 		bool ena = !!(features & NETIF_F_NTUPLE);
6314 
6315 		ice_vsi_manage_fdir(vsi, ena);
6316 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6317 	}
6318 
6319 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6320 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6321 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6322 		return -EACCES;
6323 	}
6324 
6325 	if (changed & NETIF_F_HW_TC) {
6326 		bool ena = !!(features & NETIF_F_HW_TC);
6327 
6328 		ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6329 		      clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6330 	}
6331 
6332 	if (changed & NETIF_F_LOOPBACK)
6333 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6334 
6335 	return ret;
6336 }
6337 
6338 /**
6339  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6340  * @vsi: VSI to setup VLAN properties for
6341  */
6342 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6343 {
6344 	int err;
6345 
6346 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6347 	if (err)
6348 		return err;
6349 
6350 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6351 	if (err)
6352 		return err;
6353 
6354 	return ice_vsi_add_vlan_zero(vsi);
6355 }
6356 
6357 /**
6358  * ice_vsi_cfg_lan - Setup the VSI lan related config
6359  * @vsi: the VSI being configured
6360  *
6361  * Return 0 on success and negative value on error
6362  */
6363 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6364 {
6365 	int err;
6366 
6367 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6368 		ice_set_rx_mode(vsi->netdev);
6369 
6370 		err = ice_vsi_vlan_setup(vsi);
6371 		if (err)
6372 			return err;
6373 	}
6374 	ice_vsi_cfg_dcb_rings(vsi);
6375 
6376 	err = ice_vsi_cfg_lan_txqs(vsi);
6377 	if (!err && ice_is_xdp_ena_vsi(vsi))
6378 		err = ice_vsi_cfg_xdp_txqs(vsi);
6379 	if (!err)
6380 		err = ice_vsi_cfg_rxqs(vsi);
6381 
6382 	return err;
6383 }
6384 
6385 /* THEORY OF MODERATION:
6386  * The ice driver hardware works differently than the hardware that DIMLIB was
6387  * originally made for. ice hardware doesn't have packet count limits that
6388  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6389  * which is hard-coded to a limit of 250,000 ints/second.
6390  * If not using dynamic moderation, the INTRL value can be modified
6391  * by ethtool rx-usecs-high.
6392  */
6393 struct ice_dim {
6394 	/* the throttle rate for interrupts, basically worst case delay before
6395 	 * an initial interrupt fires, value is stored in microseconds.
6396 	 */
6397 	u16 itr;
6398 };
6399 
6400 /* Make a different profile for Rx that doesn't allow quite so aggressive
6401  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6402  * second.
6403  */
6404 static const struct ice_dim rx_profile[] = {
6405 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6406 	{8},    /* 125,000 ints/s */
6407 	{16},   /*  62,500 ints/s */
6408 	{62},   /*  16,129 ints/s */
6409 	{126}   /*   7,936 ints/s */
6410 };
6411 
6412 /* The transmit profile, which has the same sorts of values
6413  * as the previous struct
6414  */
6415 static const struct ice_dim tx_profile[] = {
6416 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6417 	{8},    /* 125,000 ints/s */
6418 	{40},   /*  16,125 ints/s */
6419 	{128},  /*   7,812 ints/s */
6420 	{256}   /*   3,906 ints/s */
6421 };
6422 
6423 static void ice_tx_dim_work(struct work_struct *work)
6424 {
6425 	struct ice_ring_container *rc;
6426 	struct dim *dim;
6427 	u16 itr;
6428 
6429 	dim = container_of(work, struct dim, work);
6430 	rc = dim->priv;
6431 
6432 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6433 
6434 	/* look up the values in our local table */
6435 	itr = tx_profile[dim->profile_ix].itr;
6436 
6437 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6438 	ice_write_itr(rc, itr);
6439 
6440 	dim->state = DIM_START_MEASURE;
6441 }
6442 
6443 static void ice_rx_dim_work(struct work_struct *work)
6444 {
6445 	struct ice_ring_container *rc;
6446 	struct dim *dim;
6447 	u16 itr;
6448 
6449 	dim = container_of(work, struct dim, work);
6450 	rc = dim->priv;
6451 
6452 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6453 
6454 	/* look up the values in our local table */
6455 	itr = rx_profile[dim->profile_ix].itr;
6456 
6457 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6458 	ice_write_itr(rc, itr);
6459 
6460 	dim->state = DIM_START_MEASURE;
6461 }
6462 
6463 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6464 
6465 /**
6466  * ice_init_moderation - set up interrupt moderation
6467  * @q_vector: the vector containing rings to be configured
6468  *
6469  * Set up interrupt moderation registers, with the intent to do the right thing
6470  * when called from reset or from probe, and whether or not dynamic moderation
6471  * is enabled or not. Take special care to write all the registers in both
6472  * dynamic moderation mode or not in order to make sure hardware is in a known
6473  * state.
6474  */
6475 static void ice_init_moderation(struct ice_q_vector *q_vector)
6476 {
6477 	struct ice_ring_container *rc;
6478 	bool tx_dynamic, rx_dynamic;
6479 
6480 	rc = &q_vector->tx;
6481 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6482 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6483 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6484 	rc->dim.priv = rc;
6485 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6486 
6487 	/* set the initial TX ITR to match the above */
6488 	ice_write_itr(rc, tx_dynamic ?
6489 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6490 
6491 	rc = &q_vector->rx;
6492 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6493 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6494 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6495 	rc->dim.priv = rc;
6496 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6497 
6498 	/* set the initial RX ITR to match the above */
6499 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6500 				       rc->itr_setting);
6501 
6502 	ice_set_q_vector_intrl(q_vector);
6503 }
6504 
6505 /**
6506  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6507  * @vsi: the VSI being configured
6508  */
6509 static void ice_napi_enable_all(struct ice_vsi *vsi)
6510 {
6511 	int q_idx;
6512 
6513 	if (!vsi->netdev)
6514 		return;
6515 
6516 	ice_for_each_q_vector(vsi, q_idx) {
6517 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6518 
6519 		ice_init_moderation(q_vector);
6520 
6521 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6522 			napi_enable(&q_vector->napi);
6523 	}
6524 }
6525 
6526 /**
6527  * ice_up_complete - Finish the last steps of bringing up a connection
6528  * @vsi: The VSI being configured
6529  *
6530  * Return 0 on success and negative value on error
6531  */
6532 static int ice_up_complete(struct ice_vsi *vsi)
6533 {
6534 	struct ice_pf *pf = vsi->back;
6535 	int err;
6536 
6537 	ice_vsi_cfg_msix(vsi);
6538 
6539 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6540 	 * Tx queue group list was configured and the context bits were
6541 	 * programmed using ice_vsi_cfg_txqs
6542 	 */
6543 	err = ice_vsi_start_all_rx_rings(vsi);
6544 	if (err)
6545 		return err;
6546 
6547 	clear_bit(ICE_VSI_DOWN, vsi->state);
6548 	ice_napi_enable_all(vsi);
6549 	ice_vsi_ena_irq(vsi);
6550 
6551 	if (vsi->port_info &&
6552 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6553 	    vsi->netdev && vsi->type == ICE_VSI_PF) {
6554 		ice_print_link_msg(vsi, true);
6555 		netif_tx_start_all_queues(vsi->netdev);
6556 		netif_carrier_on(vsi->netdev);
6557 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6558 	}
6559 
6560 	/* Perform an initial read of the statistics registers now to
6561 	 * set the baseline so counters are ready when interface is up
6562 	 */
6563 	ice_update_eth_stats(vsi);
6564 
6565 	if (vsi->type == ICE_VSI_PF)
6566 		ice_service_task_schedule(pf);
6567 
6568 	return 0;
6569 }
6570 
6571 /**
6572  * ice_up - Bring the connection back up after being down
6573  * @vsi: VSI being configured
6574  */
6575 int ice_up(struct ice_vsi *vsi)
6576 {
6577 	int err;
6578 
6579 	err = ice_vsi_cfg_lan(vsi);
6580 	if (!err)
6581 		err = ice_up_complete(vsi);
6582 
6583 	return err;
6584 }
6585 
6586 /**
6587  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6588  * @syncp: pointer to u64_stats_sync
6589  * @stats: stats that pkts and bytes count will be taken from
6590  * @pkts: packets stats counter
6591  * @bytes: bytes stats counter
6592  *
6593  * This function fetches stats from the ring considering the atomic operations
6594  * that needs to be performed to read u64 values in 32 bit machine.
6595  */
6596 void
6597 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6598 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6599 {
6600 	unsigned int start;
6601 
6602 	do {
6603 		start = u64_stats_fetch_begin(syncp);
6604 		*pkts = stats.pkts;
6605 		*bytes = stats.bytes;
6606 	} while (u64_stats_fetch_retry(syncp, start));
6607 }
6608 
6609 /**
6610  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6611  * @vsi: the VSI to be updated
6612  * @vsi_stats: the stats struct to be updated
6613  * @rings: rings to work on
6614  * @count: number of rings
6615  */
6616 static void
6617 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6618 			     struct rtnl_link_stats64 *vsi_stats,
6619 			     struct ice_tx_ring **rings, u16 count)
6620 {
6621 	u16 i;
6622 
6623 	for (i = 0; i < count; i++) {
6624 		struct ice_tx_ring *ring;
6625 		u64 pkts = 0, bytes = 0;
6626 
6627 		ring = READ_ONCE(rings[i]);
6628 		if (!ring || !ring->ring_stats)
6629 			continue;
6630 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6631 					     ring->ring_stats->stats, &pkts,
6632 					     &bytes);
6633 		vsi_stats->tx_packets += pkts;
6634 		vsi_stats->tx_bytes += bytes;
6635 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6636 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6637 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6638 	}
6639 }
6640 
6641 /**
6642  * ice_update_vsi_ring_stats - Update VSI stats counters
6643  * @vsi: the VSI to be updated
6644  */
6645 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6646 {
6647 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6648 	struct rtnl_link_stats64 *vsi_stats;
6649 	u64 pkts, bytes;
6650 	int i;
6651 
6652 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6653 	if (!vsi_stats)
6654 		return;
6655 
6656 	/* reset non-netdev (extended) stats */
6657 	vsi->tx_restart = 0;
6658 	vsi->tx_busy = 0;
6659 	vsi->tx_linearize = 0;
6660 	vsi->rx_buf_failed = 0;
6661 	vsi->rx_page_failed = 0;
6662 
6663 	rcu_read_lock();
6664 
6665 	/* update Tx rings counters */
6666 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6667 				     vsi->num_txq);
6668 
6669 	/* update Rx rings counters */
6670 	ice_for_each_rxq(vsi, i) {
6671 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6672 		struct ice_ring_stats *ring_stats;
6673 
6674 		ring_stats = ring->ring_stats;
6675 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6676 					     ring_stats->stats, &pkts,
6677 					     &bytes);
6678 		vsi_stats->rx_packets += pkts;
6679 		vsi_stats->rx_bytes += bytes;
6680 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6681 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6682 	}
6683 
6684 	/* update XDP Tx rings counters */
6685 	if (ice_is_xdp_ena_vsi(vsi))
6686 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6687 					     vsi->num_xdp_txq);
6688 
6689 	rcu_read_unlock();
6690 
6691 	net_stats = &vsi->net_stats;
6692 	stats_prev = &vsi->net_stats_prev;
6693 
6694 	/* clear prev counters after reset */
6695 	if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6696 	    vsi_stats->rx_packets < stats_prev->rx_packets) {
6697 		stats_prev->tx_packets = 0;
6698 		stats_prev->tx_bytes = 0;
6699 		stats_prev->rx_packets = 0;
6700 		stats_prev->rx_bytes = 0;
6701 	}
6702 
6703 	/* update netdev counters */
6704 	net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6705 	net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6706 	net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6707 	net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6708 
6709 	stats_prev->tx_packets = vsi_stats->tx_packets;
6710 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6711 	stats_prev->rx_packets = vsi_stats->rx_packets;
6712 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6713 
6714 	kfree(vsi_stats);
6715 }
6716 
6717 /**
6718  * ice_update_vsi_stats - Update VSI stats counters
6719  * @vsi: the VSI to be updated
6720  */
6721 void ice_update_vsi_stats(struct ice_vsi *vsi)
6722 {
6723 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6724 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6725 	struct ice_pf *pf = vsi->back;
6726 
6727 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6728 	    test_bit(ICE_CFG_BUSY, pf->state))
6729 		return;
6730 
6731 	/* get stats as recorded by Tx/Rx rings */
6732 	ice_update_vsi_ring_stats(vsi);
6733 
6734 	/* get VSI stats as recorded by the hardware */
6735 	ice_update_eth_stats(vsi);
6736 
6737 	cur_ns->tx_errors = cur_es->tx_errors;
6738 	cur_ns->rx_dropped = cur_es->rx_discards;
6739 	cur_ns->tx_dropped = cur_es->tx_discards;
6740 	cur_ns->multicast = cur_es->rx_multicast;
6741 
6742 	/* update some more netdev stats if this is main VSI */
6743 	if (vsi->type == ICE_VSI_PF) {
6744 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6745 		cur_ns->rx_errors = pf->stats.crc_errors +
6746 				    pf->stats.illegal_bytes +
6747 				    pf->stats.rx_len_errors +
6748 				    pf->stats.rx_undersize +
6749 				    pf->hw_csum_rx_error +
6750 				    pf->stats.rx_jabber +
6751 				    pf->stats.rx_fragments +
6752 				    pf->stats.rx_oversize;
6753 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6754 		/* record drops from the port level */
6755 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6756 	}
6757 }
6758 
6759 /**
6760  * ice_update_pf_stats - Update PF port stats counters
6761  * @pf: PF whose stats needs to be updated
6762  */
6763 void ice_update_pf_stats(struct ice_pf *pf)
6764 {
6765 	struct ice_hw_port_stats *prev_ps, *cur_ps;
6766 	struct ice_hw *hw = &pf->hw;
6767 	u16 fd_ctr_base;
6768 	u8 port;
6769 
6770 	port = hw->port_info->lport;
6771 	prev_ps = &pf->stats_prev;
6772 	cur_ps = &pf->stats;
6773 
6774 	if (ice_is_reset_in_progress(pf->state))
6775 		pf->stat_prev_loaded = false;
6776 
6777 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6778 			  &prev_ps->eth.rx_bytes,
6779 			  &cur_ps->eth.rx_bytes);
6780 
6781 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6782 			  &prev_ps->eth.rx_unicast,
6783 			  &cur_ps->eth.rx_unicast);
6784 
6785 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6786 			  &prev_ps->eth.rx_multicast,
6787 			  &cur_ps->eth.rx_multicast);
6788 
6789 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6790 			  &prev_ps->eth.rx_broadcast,
6791 			  &cur_ps->eth.rx_broadcast);
6792 
6793 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6794 			  &prev_ps->eth.rx_discards,
6795 			  &cur_ps->eth.rx_discards);
6796 
6797 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6798 			  &prev_ps->eth.tx_bytes,
6799 			  &cur_ps->eth.tx_bytes);
6800 
6801 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6802 			  &prev_ps->eth.tx_unicast,
6803 			  &cur_ps->eth.tx_unicast);
6804 
6805 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6806 			  &prev_ps->eth.tx_multicast,
6807 			  &cur_ps->eth.tx_multicast);
6808 
6809 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6810 			  &prev_ps->eth.tx_broadcast,
6811 			  &cur_ps->eth.tx_broadcast);
6812 
6813 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6814 			  &prev_ps->tx_dropped_link_down,
6815 			  &cur_ps->tx_dropped_link_down);
6816 
6817 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6818 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6819 
6820 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6821 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6822 
6823 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6824 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6825 
6826 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6827 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6828 
6829 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6830 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6831 
6832 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6833 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6834 
6835 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6836 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6837 
6838 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6839 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6840 
6841 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6842 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6843 
6844 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6845 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6846 
6847 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6848 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6849 
6850 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6851 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6852 
6853 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6854 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6855 
6856 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6857 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6858 
6859 	fd_ctr_base = hw->fd_ctr_base;
6860 
6861 	ice_stat_update40(hw,
6862 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6863 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6864 			  &cur_ps->fd_sb_match);
6865 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6866 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6867 
6868 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6869 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6870 
6871 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6872 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6873 
6874 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6875 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6876 
6877 	ice_update_dcb_stats(pf);
6878 
6879 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6880 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
6881 
6882 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6883 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6884 
6885 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6886 			  &prev_ps->mac_local_faults,
6887 			  &cur_ps->mac_local_faults);
6888 
6889 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6890 			  &prev_ps->mac_remote_faults,
6891 			  &cur_ps->mac_remote_faults);
6892 
6893 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6894 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6895 
6896 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6897 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6898 
6899 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6900 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6901 
6902 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6903 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6904 
6905 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6906 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6907 
6908 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6909 
6910 	pf->stat_prev_loaded = true;
6911 }
6912 
6913 /**
6914  * ice_get_stats64 - get statistics for network device structure
6915  * @netdev: network interface device structure
6916  * @stats: main device statistics structure
6917  */
6918 static
6919 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6920 {
6921 	struct ice_netdev_priv *np = netdev_priv(netdev);
6922 	struct rtnl_link_stats64 *vsi_stats;
6923 	struct ice_vsi *vsi = np->vsi;
6924 
6925 	vsi_stats = &vsi->net_stats;
6926 
6927 	if (!vsi->num_txq || !vsi->num_rxq)
6928 		return;
6929 
6930 	/* netdev packet/byte stats come from ring counter. These are obtained
6931 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6932 	 * But, only call the update routine and read the registers if VSI is
6933 	 * not down.
6934 	 */
6935 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
6936 		ice_update_vsi_ring_stats(vsi);
6937 	stats->tx_packets = vsi_stats->tx_packets;
6938 	stats->tx_bytes = vsi_stats->tx_bytes;
6939 	stats->rx_packets = vsi_stats->rx_packets;
6940 	stats->rx_bytes = vsi_stats->rx_bytes;
6941 
6942 	/* The rest of the stats can be read from the hardware but instead we
6943 	 * just return values that the watchdog task has already obtained from
6944 	 * the hardware.
6945 	 */
6946 	stats->multicast = vsi_stats->multicast;
6947 	stats->tx_errors = vsi_stats->tx_errors;
6948 	stats->tx_dropped = vsi_stats->tx_dropped;
6949 	stats->rx_errors = vsi_stats->rx_errors;
6950 	stats->rx_dropped = vsi_stats->rx_dropped;
6951 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6952 	stats->rx_length_errors = vsi_stats->rx_length_errors;
6953 }
6954 
6955 /**
6956  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6957  * @vsi: VSI having NAPI disabled
6958  */
6959 static void ice_napi_disable_all(struct ice_vsi *vsi)
6960 {
6961 	int q_idx;
6962 
6963 	if (!vsi->netdev)
6964 		return;
6965 
6966 	ice_for_each_q_vector(vsi, q_idx) {
6967 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6968 
6969 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6970 			napi_disable(&q_vector->napi);
6971 
6972 		cancel_work_sync(&q_vector->tx.dim.work);
6973 		cancel_work_sync(&q_vector->rx.dim.work);
6974 	}
6975 }
6976 
6977 /**
6978  * ice_down - Shutdown the connection
6979  * @vsi: The VSI being stopped
6980  *
6981  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6982  */
6983 int ice_down(struct ice_vsi *vsi)
6984 {
6985 	int i, tx_err, rx_err, vlan_err = 0;
6986 
6987 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6988 
6989 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6990 		vlan_err = ice_vsi_del_vlan_zero(vsi);
6991 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6992 		netif_carrier_off(vsi->netdev);
6993 		netif_tx_disable(vsi->netdev);
6994 	} else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6995 		ice_eswitch_stop_all_tx_queues(vsi->back);
6996 	}
6997 
6998 	ice_vsi_dis_irq(vsi);
6999 
7000 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7001 	if (tx_err)
7002 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7003 			   vsi->vsi_num, tx_err);
7004 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
7005 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7006 		if (tx_err)
7007 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7008 				   vsi->vsi_num, tx_err);
7009 	}
7010 
7011 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7012 	if (rx_err)
7013 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7014 			   vsi->vsi_num, rx_err);
7015 
7016 	ice_napi_disable_all(vsi);
7017 
7018 	ice_for_each_txq(vsi, i)
7019 		ice_clean_tx_ring(vsi->tx_rings[i]);
7020 
7021 	if (ice_is_xdp_ena_vsi(vsi))
7022 		ice_for_each_xdp_txq(vsi, i)
7023 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7024 
7025 	ice_for_each_rxq(vsi, i)
7026 		ice_clean_rx_ring(vsi->rx_rings[i]);
7027 
7028 	if (tx_err || rx_err || vlan_err) {
7029 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7030 			   vsi->vsi_num, vsi->vsw->sw_id);
7031 		return -EIO;
7032 	}
7033 
7034 	return 0;
7035 }
7036 
7037 /**
7038  * ice_down_up - shutdown the VSI connection and bring it up
7039  * @vsi: the VSI to be reconnected
7040  */
7041 int ice_down_up(struct ice_vsi *vsi)
7042 {
7043 	int ret;
7044 
7045 	/* if DOWN already set, nothing to do */
7046 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7047 		return 0;
7048 
7049 	ret = ice_down(vsi);
7050 	if (ret)
7051 		return ret;
7052 
7053 	ret = ice_up(vsi);
7054 	if (ret) {
7055 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7056 		return ret;
7057 	}
7058 
7059 	return 0;
7060 }
7061 
7062 /**
7063  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7064  * @vsi: VSI having resources allocated
7065  *
7066  * Return 0 on success, negative on failure
7067  */
7068 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7069 {
7070 	int i, err = 0;
7071 
7072 	if (!vsi->num_txq) {
7073 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7074 			vsi->vsi_num);
7075 		return -EINVAL;
7076 	}
7077 
7078 	ice_for_each_txq(vsi, i) {
7079 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7080 
7081 		if (!ring)
7082 			return -EINVAL;
7083 
7084 		if (vsi->netdev)
7085 			ring->netdev = vsi->netdev;
7086 		err = ice_setup_tx_ring(ring);
7087 		if (err)
7088 			break;
7089 	}
7090 
7091 	return err;
7092 }
7093 
7094 /**
7095  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7096  * @vsi: VSI having resources allocated
7097  *
7098  * Return 0 on success, negative on failure
7099  */
7100 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7101 {
7102 	int i, err = 0;
7103 
7104 	if (!vsi->num_rxq) {
7105 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7106 			vsi->vsi_num);
7107 		return -EINVAL;
7108 	}
7109 
7110 	ice_for_each_rxq(vsi, i) {
7111 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7112 
7113 		if (!ring)
7114 			return -EINVAL;
7115 
7116 		if (vsi->netdev)
7117 			ring->netdev = vsi->netdev;
7118 		err = ice_setup_rx_ring(ring);
7119 		if (err)
7120 			break;
7121 	}
7122 
7123 	return err;
7124 }
7125 
7126 /**
7127  * ice_vsi_open_ctrl - open control VSI for use
7128  * @vsi: the VSI to open
7129  *
7130  * Initialization of the Control VSI
7131  *
7132  * Returns 0 on success, negative value on error
7133  */
7134 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7135 {
7136 	char int_name[ICE_INT_NAME_STR_LEN];
7137 	struct ice_pf *pf = vsi->back;
7138 	struct device *dev;
7139 	int err;
7140 
7141 	dev = ice_pf_to_dev(pf);
7142 	/* allocate descriptors */
7143 	err = ice_vsi_setup_tx_rings(vsi);
7144 	if (err)
7145 		goto err_setup_tx;
7146 
7147 	err = ice_vsi_setup_rx_rings(vsi);
7148 	if (err)
7149 		goto err_setup_rx;
7150 
7151 	err = ice_vsi_cfg_lan(vsi);
7152 	if (err)
7153 		goto err_setup_rx;
7154 
7155 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7156 		 dev_driver_string(dev), dev_name(dev));
7157 	err = ice_vsi_req_irq_msix(vsi, int_name);
7158 	if (err)
7159 		goto err_setup_rx;
7160 
7161 	ice_vsi_cfg_msix(vsi);
7162 
7163 	err = ice_vsi_start_all_rx_rings(vsi);
7164 	if (err)
7165 		goto err_up_complete;
7166 
7167 	clear_bit(ICE_VSI_DOWN, vsi->state);
7168 	ice_vsi_ena_irq(vsi);
7169 
7170 	return 0;
7171 
7172 err_up_complete:
7173 	ice_down(vsi);
7174 err_setup_rx:
7175 	ice_vsi_free_rx_rings(vsi);
7176 err_setup_tx:
7177 	ice_vsi_free_tx_rings(vsi);
7178 
7179 	return err;
7180 }
7181 
7182 /**
7183  * ice_vsi_open - Called when a network interface is made active
7184  * @vsi: the VSI to open
7185  *
7186  * Initialization of the VSI
7187  *
7188  * Returns 0 on success, negative value on error
7189  */
7190 int ice_vsi_open(struct ice_vsi *vsi)
7191 {
7192 	char int_name[ICE_INT_NAME_STR_LEN];
7193 	struct ice_pf *pf = vsi->back;
7194 	int err;
7195 
7196 	/* allocate descriptors */
7197 	err = ice_vsi_setup_tx_rings(vsi);
7198 	if (err)
7199 		goto err_setup_tx;
7200 
7201 	err = ice_vsi_setup_rx_rings(vsi);
7202 	if (err)
7203 		goto err_setup_rx;
7204 
7205 	err = ice_vsi_cfg_lan(vsi);
7206 	if (err)
7207 		goto err_setup_rx;
7208 
7209 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7210 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7211 	err = ice_vsi_req_irq_msix(vsi, int_name);
7212 	if (err)
7213 		goto err_setup_rx;
7214 
7215 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7216 
7217 	if (vsi->type == ICE_VSI_PF) {
7218 		/* Notify the stack of the actual queue counts. */
7219 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7220 		if (err)
7221 			goto err_set_qs;
7222 
7223 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7224 		if (err)
7225 			goto err_set_qs;
7226 	}
7227 
7228 	err = ice_up_complete(vsi);
7229 	if (err)
7230 		goto err_up_complete;
7231 
7232 	return 0;
7233 
7234 err_up_complete:
7235 	ice_down(vsi);
7236 err_set_qs:
7237 	ice_vsi_free_irq(vsi);
7238 err_setup_rx:
7239 	ice_vsi_free_rx_rings(vsi);
7240 err_setup_tx:
7241 	ice_vsi_free_tx_rings(vsi);
7242 
7243 	return err;
7244 }
7245 
7246 /**
7247  * ice_vsi_release_all - Delete all VSIs
7248  * @pf: PF from which all VSIs are being removed
7249  */
7250 static void ice_vsi_release_all(struct ice_pf *pf)
7251 {
7252 	int err, i;
7253 
7254 	if (!pf->vsi)
7255 		return;
7256 
7257 	ice_for_each_vsi(pf, i) {
7258 		if (!pf->vsi[i])
7259 			continue;
7260 
7261 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7262 			continue;
7263 
7264 		err = ice_vsi_release(pf->vsi[i]);
7265 		if (err)
7266 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7267 				i, err, pf->vsi[i]->vsi_num);
7268 	}
7269 }
7270 
7271 /**
7272  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7273  * @pf: pointer to the PF instance
7274  * @type: VSI type to rebuild
7275  *
7276  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7277  */
7278 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7279 {
7280 	struct device *dev = ice_pf_to_dev(pf);
7281 	int i, err;
7282 
7283 	ice_for_each_vsi(pf, i) {
7284 		struct ice_vsi *vsi = pf->vsi[i];
7285 
7286 		if (!vsi || vsi->type != type)
7287 			continue;
7288 
7289 		/* rebuild the VSI */
7290 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7291 		if (err) {
7292 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7293 				err, vsi->idx, ice_vsi_type_str(type));
7294 			return err;
7295 		}
7296 
7297 		/* replay filters for the VSI */
7298 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7299 		if (err) {
7300 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7301 				err, vsi->idx, ice_vsi_type_str(type));
7302 			return err;
7303 		}
7304 
7305 		/* Re-map HW VSI number, using VSI handle that has been
7306 		 * previously validated in ice_replay_vsi() call above
7307 		 */
7308 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7309 
7310 		/* enable the VSI */
7311 		err = ice_ena_vsi(vsi, false);
7312 		if (err) {
7313 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7314 				err, vsi->idx, ice_vsi_type_str(type));
7315 			return err;
7316 		}
7317 
7318 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7319 			 ice_vsi_type_str(type));
7320 	}
7321 
7322 	return 0;
7323 }
7324 
7325 /**
7326  * ice_update_pf_netdev_link - Update PF netdev link status
7327  * @pf: pointer to the PF instance
7328  */
7329 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7330 {
7331 	bool link_up;
7332 	int i;
7333 
7334 	ice_for_each_vsi(pf, i) {
7335 		struct ice_vsi *vsi = pf->vsi[i];
7336 
7337 		if (!vsi || vsi->type != ICE_VSI_PF)
7338 			return;
7339 
7340 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7341 		if (link_up) {
7342 			netif_carrier_on(pf->vsi[i]->netdev);
7343 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7344 		} else {
7345 			netif_carrier_off(pf->vsi[i]->netdev);
7346 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7347 		}
7348 	}
7349 }
7350 
7351 /**
7352  * ice_rebuild - rebuild after reset
7353  * @pf: PF to rebuild
7354  * @reset_type: type of reset
7355  *
7356  * Do not rebuild VF VSI in this flow because that is already handled via
7357  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7358  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7359  * to reset/rebuild all the VF VSI twice.
7360  */
7361 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7362 {
7363 	struct device *dev = ice_pf_to_dev(pf);
7364 	struct ice_hw *hw = &pf->hw;
7365 	bool dvm;
7366 	int err;
7367 
7368 	if (test_bit(ICE_DOWN, pf->state))
7369 		goto clear_recovery;
7370 
7371 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7372 
7373 #define ICE_EMP_RESET_SLEEP_MS 5000
7374 	if (reset_type == ICE_RESET_EMPR) {
7375 		/* If an EMP reset has occurred, any previously pending flash
7376 		 * update will have completed. We no longer know whether or
7377 		 * not the NVM update EMP reset is restricted.
7378 		 */
7379 		pf->fw_emp_reset_disabled = false;
7380 
7381 		msleep(ICE_EMP_RESET_SLEEP_MS);
7382 	}
7383 
7384 	err = ice_init_all_ctrlq(hw);
7385 	if (err) {
7386 		dev_err(dev, "control queues init failed %d\n", err);
7387 		goto err_init_ctrlq;
7388 	}
7389 
7390 	/* if DDP was previously loaded successfully */
7391 	if (!ice_is_safe_mode(pf)) {
7392 		/* reload the SW DB of filter tables */
7393 		if (reset_type == ICE_RESET_PFR)
7394 			ice_fill_blk_tbls(hw);
7395 		else
7396 			/* Reload DDP Package after CORER/GLOBR reset */
7397 			ice_load_pkg(NULL, pf);
7398 	}
7399 
7400 	err = ice_clear_pf_cfg(hw);
7401 	if (err) {
7402 		dev_err(dev, "clear PF configuration failed %d\n", err);
7403 		goto err_init_ctrlq;
7404 	}
7405 
7406 	ice_clear_pxe_mode(hw);
7407 
7408 	err = ice_init_nvm(hw);
7409 	if (err) {
7410 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7411 		goto err_init_ctrlq;
7412 	}
7413 
7414 	err = ice_get_caps(hw);
7415 	if (err) {
7416 		dev_err(dev, "ice_get_caps failed %d\n", err);
7417 		goto err_init_ctrlq;
7418 	}
7419 
7420 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7421 	if (err) {
7422 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7423 		goto err_init_ctrlq;
7424 	}
7425 
7426 	dvm = ice_is_dvm_ena(hw);
7427 
7428 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7429 	if (err)
7430 		goto err_init_ctrlq;
7431 
7432 	err = ice_sched_init_port(hw->port_info);
7433 	if (err)
7434 		goto err_sched_init_port;
7435 
7436 	/* start misc vector */
7437 	err = ice_req_irq_msix_misc(pf);
7438 	if (err) {
7439 		dev_err(dev, "misc vector setup failed: %d\n", err);
7440 		goto err_sched_init_port;
7441 	}
7442 
7443 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7444 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7445 		if (!rd32(hw, PFQF_FD_SIZE)) {
7446 			u16 unused, guar, b_effort;
7447 
7448 			guar = hw->func_caps.fd_fltr_guar;
7449 			b_effort = hw->func_caps.fd_fltr_best_effort;
7450 
7451 			/* force guaranteed filter pool for PF */
7452 			ice_alloc_fd_guar_item(hw, &unused, guar);
7453 			/* force shared filter pool for PF */
7454 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7455 		}
7456 	}
7457 
7458 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7459 		ice_dcb_rebuild(pf);
7460 
7461 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7462 	 * the VSI rebuild. If not, this causes the PTP link status events to
7463 	 * fail.
7464 	 */
7465 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7466 		ice_ptp_reset(pf);
7467 
7468 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7469 		ice_gnss_init(pf);
7470 
7471 	/* rebuild PF VSI */
7472 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7473 	if (err) {
7474 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7475 		goto err_vsi_rebuild;
7476 	}
7477 
7478 	err = ice_eswitch_rebuild(pf);
7479 	if (err) {
7480 		dev_err(dev, "Switchdev rebuild failed: %d\n", err);
7481 		goto err_vsi_rebuild;
7482 	}
7483 
7484 	if (reset_type == ICE_RESET_PFR) {
7485 		err = ice_rebuild_channels(pf);
7486 		if (err) {
7487 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7488 				err);
7489 			goto err_vsi_rebuild;
7490 		}
7491 	}
7492 
7493 	/* If Flow Director is active */
7494 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7495 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7496 		if (err) {
7497 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7498 			goto err_vsi_rebuild;
7499 		}
7500 
7501 		/* replay HW Flow Director recipes */
7502 		if (hw->fdir_prof)
7503 			ice_fdir_replay_flows(hw);
7504 
7505 		/* replay Flow Director filters */
7506 		ice_fdir_replay_fltrs(pf);
7507 
7508 		ice_rebuild_arfs(pf);
7509 	}
7510 
7511 	ice_update_pf_netdev_link(pf);
7512 
7513 	/* tell the firmware we are up */
7514 	err = ice_send_version(pf);
7515 	if (err) {
7516 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7517 			err);
7518 		goto err_vsi_rebuild;
7519 	}
7520 
7521 	ice_replay_post(hw);
7522 
7523 	/* if we get here, reset flow is successful */
7524 	clear_bit(ICE_RESET_FAILED, pf->state);
7525 
7526 	ice_plug_aux_dev(pf);
7527 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7528 		ice_lag_rebuild(pf);
7529 
7530 	/* Restore timestamp mode settings after VSI rebuild */
7531 	ice_ptp_restore_timestamp_mode(pf);
7532 	return;
7533 
7534 err_vsi_rebuild:
7535 err_sched_init_port:
7536 	ice_sched_cleanup_all(hw);
7537 err_init_ctrlq:
7538 	ice_shutdown_all_ctrlq(hw);
7539 	set_bit(ICE_RESET_FAILED, pf->state);
7540 clear_recovery:
7541 	/* set this bit in PF state to control service task scheduling */
7542 	set_bit(ICE_NEEDS_RESTART, pf->state);
7543 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7544 }
7545 
7546 /**
7547  * ice_change_mtu - NDO callback to change the MTU
7548  * @netdev: network interface device structure
7549  * @new_mtu: new value for maximum frame size
7550  *
7551  * Returns 0 on success, negative on failure
7552  */
7553 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7554 {
7555 	struct ice_netdev_priv *np = netdev_priv(netdev);
7556 	struct ice_vsi *vsi = np->vsi;
7557 	struct ice_pf *pf = vsi->back;
7558 	struct bpf_prog *prog;
7559 	u8 count = 0;
7560 	int err = 0;
7561 
7562 	if (new_mtu == (int)netdev->mtu) {
7563 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7564 		return 0;
7565 	}
7566 
7567 	prog = vsi->xdp_prog;
7568 	if (prog && !prog->aux->xdp_has_frags) {
7569 		int frame_size = ice_max_xdp_frame_size(vsi);
7570 
7571 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7572 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7573 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7574 			return -EINVAL;
7575 		}
7576 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7577 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7578 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7579 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7580 			return -EINVAL;
7581 		}
7582 	}
7583 
7584 	/* if a reset is in progress, wait for some time for it to complete */
7585 	do {
7586 		if (ice_is_reset_in_progress(pf->state)) {
7587 			count++;
7588 			usleep_range(1000, 2000);
7589 		} else {
7590 			break;
7591 		}
7592 
7593 	} while (count < 100);
7594 
7595 	if (count == 100) {
7596 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7597 		return -EBUSY;
7598 	}
7599 
7600 	netdev->mtu = (unsigned int)new_mtu;
7601 	err = ice_down_up(vsi);
7602 	if (err)
7603 		return err;
7604 
7605 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7606 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7607 
7608 	return err;
7609 }
7610 
7611 /**
7612  * ice_eth_ioctl - Access the hwtstamp interface
7613  * @netdev: network interface device structure
7614  * @ifr: interface request data
7615  * @cmd: ioctl command
7616  */
7617 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7618 {
7619 	struct ice_netdev_priv *np = netdev_priv(netdev);
7620 	struct ice_pf *pf = np->vsi->back;
7621 
7622 	switch (cmd) {
7623 	case SIOCGHWTSTAMP:
7624 		return ice_ptp_get_ts_config(pf, ifr);
7625 	case SIOCSHWTSTAMP:
7626 		return ice_ptp_set_ts_config(pf, ifr);
7627 	default:
7628 		return -EOPNOTSUPP;
7629 	}
7630 }
7631 
7632 /**
7633  * ice_aq_str - convert AQ err code to a string
7634  * @aq_err: the AQ error code to convert
7635  */
7636 const char *ice_aq_str(enum ice_aq_err aq_err)
7637 {
7638 	switch (aq_err) {
7639 	case ICE_AQ_RC_OK:
7640 		return "OK";
7641 	case ICE_AQ_RC_EPERM:
7642 		return "ICE_AQ_RC_EPERM";
7643 	case ICE_AQ_RC_ENOENT:
7644 		return "ICE_AQ_RC_ENOENT";
7645 	case ICE_AQ_RC_ENOMEM:
7646 		return "ICE_AQ_RC_ENOMEM";
7647 	case ICE_AQ_RC_EBUSY:
7648 		return "ICE_AQ_RC_EBUSY";
7649 	case ICE_AQ_RC_EEXIST:
7650 		return "ICE_AQ_RC_EEXIST";
7651 	case ICE_AQ_RC_EINVAL:
7652 		return "ICE_AQ_RC_EINVAL";
7653 	case ICE_AQ_RC_ENOSPC:
7654 		return "ICE_AQ_RC_ENOSPC";
7655 	case ICE_AQ_RC_ENOSYS:
7656 		return "ICE_AQ_RC_ENOSYS";
7657 	case ICE_AQ_RC_EMODE:
7658 		return "ICE_AQ_RC_EMODE";
7659 	case ICE_AQ_RC_ENOSEC:
7660 		return "ICE_AQ_RC_ENOSEC";
7661 	case ICE_AQ_RC_EBADSIG:
7662 		return "ICE_AQ_RC_EBADSIG";
7663 	case ICE_AQ_RC_ESVN:
7664 		return "ICE_AQ_RC_ESVN";
7665 	case ICE_AQ_RC_EBADMAN:
7666 		return "ICE_AQ_RC_EBADMAN";
7667 	case ICE_AQ_RC_EBADBUF:
7668 		return "ICE_AQ_RC_EBADBUF";
7669 	}
7670 
7671 	return "ICE_AQ_RC_UNKNOWN";
7672 }
7673 
7674 /**
7675  * ice_set_rss_lut - Set RSS LUT
7676  * @vsi: Pointer to VSI structure
7677  * @lut: Lookup table
7678  * @lut_size: Lookup table size
7679  *
7680  * Returns 0 on success, negative on failure
7681  */
7682 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7683 {
7684 	struct ice_aq_get_set_rss_lut_params params = {};
7685 	struct ice_hw *hw = &vsi->back->hw;
7686 	int status;
7687 
7688 	if (!lut)
7689 		return -EINVAL;
7690 
7691 	params.vsi_handle = vsi->idx;
7692 	params.lut_size = lut_size;
7693 	params.lut_type = vsi->rss_lut_type;
7694 	params.lut = lut;
7695 
7696 	status = ice_aq_set_rss_lut(hw, &params);
7697 	if (status)
7698 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7699 			status, ice_aq_str(hw->adminq.sq_last_status));
7700 
7701 	return status;
7702 }
7703 
7704 /**
7705  * ice_set_rss_key - Set RSS key
7706  * @vsi: Pointer to the VSI structure
7707  * @seed: RSS hash seed
7708  *
7709  * Returns 0 on success, negative on failure
7710  */
7711 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7712 {
7713 	struct ice_hw *hw = &vsi->back->hw;
7714 	int status;
7715 
7716 	if (!seed)
7717 		return -EINVAL;
7718 
7719 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7720 	if (status)
7721 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7722 			status, ice_aq_str(hw->adminq.sq_last_status));
7723 
7724 	return status;
7725 }
7726 
7727 /**
7728  * ice_get_rss_lut - Get RSS LUT
7729  * @vsi: Pointer to VSI structure
7730  * @lut: Buffer to store the lookup table entries
7731  * @lut_size: Size of buffer to store the lookup table entries
7732  *
7733  * Returns 0 on success, negative on failure
7734  */
7735 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7736 {
7737 	struct ice_aq_get_set_rss_lut_params params = {};
7738 	struct ice_hw *hw = &vsi->back->hw;
7739 	int status;
7740 
7741 	if (!lut)
7742 		return -EINVAL;
7743 
7744 	params.vsi_handle = vsi->idx;
7745 	params.lut_size = lut_size;
7746 	params.lut_type = vsi->rss_lut_type;
7747 	params.lut = lut;
7748 
7749 	status = ice_aq_get_rss_lut(hw, &params);
7750 	if (status)
7751 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7752 			status, ice_aq_str(hw->adminq.sq_last_status));
7753 
7754 	return status;
7755 }
7756 
7757 /**
7758  * ice_get_rss_key - Get RSS key
7759  * @vsi: Pointer to VSI structure
7760  * @seed: Buffer to store the key in
7761  *
7762  * Returns 0 on success, negative on failure
7763  */
7764 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7765 {
7766 	struct ice_hw *hw = &vsi->back->hw;
7767 	int status;
7768 
7769 	if (!seed)
7770 		return -EINVAL;
7771 
7772 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7773 	if (status)
7774 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7775 			status, ice_aq_str(hw->adminq.sq_last_status));
7776 
7777 	return status;
7778 }
7779 
7780 /**
7781  * ice_set_rss_hfunc - Set RSS HASH function
7782  * @vsi: Pointer to VSI structure
7783  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
7784  *
7785  * Returns 0 on success, negative on failure
7786  */
7787 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
7788 {
7789 	struct ice_hw *hw = &vsi->back->hw;
7790 	struct ice_vsi_ctx *ctx;
7791 	bool symm;
7792 	int err;
7793 
7794 	if (hfunc == vsi->rss_hfunc)
7795 		return 0;
7796 
7797 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
7798 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
7799 		return -EOPNOTSUPP;
7800 
7801 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
7802 	if (!ctx)
7803 		return -ENOMEM;
7804 
7805 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
7806 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
7807 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
7808 	ctx->info.q_opt_rss |=
7809 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
7810 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
7811 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
7812 
7813 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
7814 	if (err) {
7815 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
7816 			vsi->vsi_num, err);
7817 	} else {
7818 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
7819 		vsi->rss_hfunc = hfunc;
7820 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
7821 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
7822 			    "Symmetric " : "");
7823 	}
7824 	kfree(ctx);
7825 	if (err)
7826 		return err;
7827 
7828 	/* Fix the symmetry setting for all existing RSS configurations */
7829 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
7830 	return ice_set_rss_cfg_symm(hw, vsi, symm);
7831 }
7832 
7833 /**
7834  * ice_bridge_getlink - Get the hardware bridge mode
7835  * @skb: skb buff
7836  * @pid: process ID
7837  * @seq: RTNL message seq
7838  * @dev: the netdev being configured
7839  * @filter_mask: filter mask passed in
7840  * @nlflags: netlink flags passed in
7841  *
7842  * Return the bridge mode (VEB/VEPA)
7843  */
7844 static int
7845 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7846 		   struct net_device *dev, u32 filter_mask, int nlflags)
7847 {
7848 	struct ice_netdev_priv *np = netdev_priv(dev);
7849 	struct ice_vsi *vsi = np->vsi;
7850 	struct ice_pf *pf = vsi->back;
7851 	u16 bmode;
7852 
7853 	bmode = pf->first_sw->bridge_mode;
7854 
7855 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7856 				       filter_mask, NULL);
7857 }
7858 
7859 /**
7860  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7861  * @vsi: Pointer to VSI structure
7862  * @bmode: Hardware bridge mode (VEB/VEPA)
7863  *
7864  * Returns 0 on success, negative on failure
7865  */
7866 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7867 {
7868 	struct ice_aqc_vsi_props *vsi_props;
7869 	struct ice_hw *hw = &vsi->back->hw;
7870 	struct ice_vsi_ctx *ctxt;
7871 	int ret;
7872 
7873 	vsi_props = &vsi->info;
7874 
7875 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7876 	if (!ctxt)
7877 		return -ENOMEM;
7878 
7879 	ctxt->info = vsi->info;
7880 
7881 	if (bmode == BRIDGE_MODE_VEB)
7882 		/* change from VEPA to VEB mode */
7883 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7884 	else
7885 		/* change from VEB to VEPA mode */
7886 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7887 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7888 
7889 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7890 	if (ret) {
7891 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7892 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7893 		goto out;
7894 	}
7895 	/* Update sw flags for book keeping */
7896 	vsi_props->sw_flags = ctxt->info.sw_flags;
7897 
7898 out:
7899 	kfree(ctxt);
7900 	return ret;
7901 }
7902 
7903 /**
7904  * ice_bridge_setlink - Set the hardware bridge mode
7905  * @dev: the netdev being configured
7906  * @nlh: RTNL message
7907  * @flags: bridge setlink flags
7908  * @extack: netlink extended ack
7909  *
7910  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7911  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7912  * not already set for all VSIs connected to this switch. And also update the
7913  * unicast switch filter rules for the corresponding switch of the netdev.
7914  */
7915 static int
7916 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7917 		   u16 __always_unused flags,
7918 		   struct netlink_ext_ack __always_unused *extack)
7919 {
7920 	struct ice_netdev_priv *np = netdev_priv(dev);
7921 	struct ice_pf *pf = np->vsi->back;
7922 	struct nlattr *attr, *br_spec;
7923 	struct ice_hw *hw = &pf->hw;
7924 	struct ice_sw *pf_sw;
7925 	int rem, v, err = 0;
7926 
7927 	pf_sw = pf->first_sw;
7928 	/* find the attribute in the netlink message */
7929 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7930 
7931 	nla_for_each_nested(attr, br_spec, rem) {
7932 		__u16 mode;
7933 
7934 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
7935 			continue;
7936 		mode = nla_get_u16(attr);
7937 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7938 			return -EINVAL;
7939 		/* Continue  if bridge mode is not being flipped */
7940 		if (mode == pf_sw->bridge_mode)
7941 			continue;
7942 		/* Iterates through the PF VSI list and update the loopback
7943 		 * mode of the VSI
7944 		 */
7945 		ice_for_each_vsi(pf, v) {
7946 			if (!pf->vsi[v])
7947 				continue;
7948 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7949 			if (err)
7950 				return err;
7951 		}
7952 
7953 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7954 		/* Update the unicast switch filter rules for the corresponding
7955 		 * switch of the netdev
7956 		 */
7957 		err = ice_update_sw_rule_bridge_mode(hw);
7958 		if (err) {
7959 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7960 				   mode, err,
7961 				   ice_aq_str(hw->adminq.sq_last_status));
7962 			/* revert hw->evb_veb */
7963 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7964 			return err;
7965 		}
7966 
7967 		pf_sw->bridge_mode = mode;
7968 	}
7969 
7970 	return 0;
7971 }
7972 
7973 /**
7974  * ice_tx_timeout - Respond to a Tx Hang
7975  * @netdev: network interface device structure
7976  * @txqueue: Tx queue
7977  */
7978 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7979 {
7980 	struct ice_netdev_priv *np = netdev_priv(netdev);
7981 	struct ice_tx_ring *tx_ring = NULL;
7982 	struct ice_vsi *vsi = np->vsi;
7983 	struct ice_pf *pf = vsi->back;
7984 	u32 i;
7985 
7986 	pf->tx_timeout_count++;
7987 
7988 	/* Check if PFC is enabled for the TC to which the queue belongs
7989 	 * to. If yes then Tx timeout is not caused by a hung queue, no
7990 	 * need to reset and rebuild
7991 	 */
7992 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7993 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7994 			 txqueue);
7995 		return;
7996 	}
7997 
7998 	/* now that we have an index, find the tx_ring struct */
7999 	ice_for_each_txq(vsi, i)
8000 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8001 			if (txqueue == vsi->tx_rings[i]->q_index) {
8002 				tx_ring = vsi->tx_rings[i];
8003 				break;
8004 			}
8005 
8006 	/* Reset recovery level if enough time has elapsed after last timeout.
8007 	 * Also ensure no new reset action happens before next timeout period.
8008 	 */
8009 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8010 		pf->tx_timeout_recovery_level = 1;
8011 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8012 				       netdev->watchdog_timeo)))
8013 		return;
8014 
8015 	if (tx_ring) {
8016 		struct ice_hw *hw = &pf->hw;
8017 		u32 head, val = 0;
8018 
8019 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
8020 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
8021 		/* Read interrupt register */
8022 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8023 
8024 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8025 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8026 			    head, tx_ring->next_to_use, val);
8027 	}
8028 
8029 	pf->tx_timeout_last_recovery = jiffies;
8030 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8031 		    pf->tx_timeout_recovery_level, txqueue);
8032 
8033 	switch (pf->tx_timeout_recovery_level) {
8034 	case 1:
8035 		set_bit(ICE_PFR_REQ, pf->state);
8036 		break;
8037 	case 2:
8038 		set_bit(ICE_CORER_REQ, pf->state);
8039 		break;
8040 	case 3:
8041 		set_bit(ICE_GLOBR_REQ, pf->state);
8042 		break;
8043 	default:
8044 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8045 		set_bit(ICE_DOWN, pf->state);
8046 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8047 		set_bit(ICE_SERVICE_DIS, pf->state);
8048 		break;
8049 	}
8050 
8051 	ice_service_task_schedule(pf);
8052 	pf->tx_timeout_recovery_level++;
8053 }
8054 
8055 /**
8056  * ice_setup_tc_cls_flower - flower classifier offloads
8057  * @np: net device to configure
8058  * @filter_dev: device on which filter is added
8059  * @cls_flower: offload data
8060  */
8061 static int
8062 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8063 			struct net_device *filter_dev,
8064 			struct flow_cls_offload *cls_flower)
8065 {
8066 	struct ice_vsi *vsi = np->vsi;
8067 
8068 	if (cls_flower->common.chain_index)
8069 		return -EOPNOTSUPP;
8070 
8071 	switch (cls_flower->command) {
8072 	case FLOW_CLS_REPLACE:
8073 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8074 	case FLOW_CLS_DESTROY:
8075 		return ice_del_cls_flower(vsi, cls_flower);
8076 	default:
8077 		return -EINVAL;
8078 	}
8079 }
8080 
8081 /**
8082  * ice_setup_tc_block_cb - callback handler registered for TC block
8083  * @type: TC SETUP type
8084  * @type_data: TC flower offload data that contains user input
8085  * @cb_priv: netdev private data
8086  */
8087 static int
8088 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8089 {
8090 	struct ice_netdev_priv *np = cb_priv;
8091 
8092 	switch (type) {
8093 	case TC_SETUP_CLSFLOWER:
8094 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8095 					       type_data);
8096 	default:
8097 		return -EOPNOTSUPP;
8098 	}
8099 }
8100 
8101 /**
8102  * ice_validate_mqprio_qopt - Validate TCF input parameters
8103  * @vsi: Pointer to VSI
8104  * @mqprio_qopt: input parameters for mqprio queue configuration
8105  *
8106  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8107  * needed), and make sure user doesn't specify qcount and BW rate limit
8108  * for TCs, which are more than "num_tc"
8109  */
8110 static int
8111 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8112 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8113 {
8114 	int non_power_of_2_qcount = 0;
8115 	struct ice_pf *pf = vsi->back;
8116 	int max_rss_q_cnt = 0;
8117 	u64 sum_min_rate = 0;
8118 	struct device *dev;
8119 	int i, speed;
8120 	u8 num_tc;
8121 
8122 	if (vsi->type != ICE_VSI_PF)
8123 		return -EINVAL;
8124 
8125 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8126 	    mqprio_qopt->qopt.num_tc < 1 ||
8127 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8128 		return -EINVAL;
8129 
8130 	dev = ice_pf_to_dev(pf);
8131 	vsi->ch_rss_size = 0;
8132 	num_tc = mqprio_qopt->qopt.num_tc;
8133 	speed = ice_get_link_speed_kbps(vsi);
8134 
8135 	for (i = 0; num_tc; i++) {
8136 		int qcount = mqprio_qopt->qopt.count[i];
8137 		u64 max_rate, min_rate, rem;
8138 
8139 		if (!qcount)
8140 			return -EINVAL;
8141 
8142 		if (is_power_of_2(qcount)) {
8143 			if (non_power_of_2_qcount &&
8144 			    qcount > non_power_of_2_qcount) {
8145 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8146 					qcount, non_power_of_2_qcount);
8147 				return -EINVAL;
8148 			}
8149 			if (qcount > max_rss_q_cnt)
8150 				max_rss_q_cnt = qcount;
8151 		} else {
8152 			if (non_power_of_2_qcount &&
8153 			    qcount != non_power_of_2_qcount) {
8154 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8155 					qcount, non_power_of_2_qcount);
8156 				return -EINVAL;
8157 			}
8158 			if (qcount < max_rss_q_cnt) {
8159 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8160 					qcount, max_rss_q_cnt);
8161 				return -EINVAL;
8162 			}
8163 			max_rss_q_cnt = qcount;
8164 			non_power_of_2_qcount = qcount;
8165 		}
8166 
8167 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8168 		 * converts the bandwidth rate limit into Bytes/s when
8169 		 * passing it down to the driver. So convert input bandwidth
8170 		 * from Bytes/s to Kbps
8171 		 */
8172 		max_rate = mqprio_qopt->max_rate[i];
8173 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8174 
8175 		/* min_rate is minimum guaranteed rate and it can't be zero */
8176 		min_rate = mqprio_qopt->min_rate[i];
8177 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8178 		sum_min_rate += min_rate;
8179 
8180 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8181 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8182 				min_rate, ICE_MIN_BW_LIMIT);
8183 			return -EINVAL;
8184 		}
8185 
8186 		if (max_rate && max_rate > speed) {
8187 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8188 				i, max_rate, speed);
8189 			return -EINVAL;
8190 		}
8191 
8192 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8193 		if (rem) {
8194 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8195 				i, ICE_MIN_BW_LIMIT);
8196 			return -EINVAL;
8197 		}
8198 
8199 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8200 		if (rem) {
8201 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8202 				i, ICE_MIN_BW_LIMIT);
8203 			return -EINVAL;
8204 		}
8205 
8206 		/* min_rate can't be more than max_rate, except when max_rate
8207 		 * is zero (implies max_rate sought is max line rate). In such
8208 		 * a case min_rate can be more than max.
8209 		 */
8210 		if (max_rate && min_rate > max_rate) {
8211 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8212 				min_rate, max_rate);
8213 			return -EINVAL;
8214 		}
8215 
8216 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8217 			break;
8218 		if (mqprio_qopt->qopt.offset[i + 1] !=
8219 		    (mqprio_qopt->qopt.offset[i] + qcount))
8220 			return -EINVAL;
8221 	}
8222 	if (vsi->num_rxq <
8223 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8224 		return -EINVAL;
8225 	if (vsi->num_txq <
8226 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8227 		return -EINVAL;
8228 
8229 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8230 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8231 			sum_min_rate, speed);
8232 		return -EINVAL;
8233 	}
8234 
8235 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8236 	vsi->ch_rss_size = max_rss_q_cnt;
8237 
8238 	return 0;
8239 }
8240 
8241 /**
8242  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8243  * @pf: ptr to PF device
8244  * @vsi: ptr to VSI
8245  */
8246 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8247 {
8248 	struct device *dev = ice_pf_to_dev(pf);
8249 	bool added = false;
8250 	struct ice_hw *hw;
8251 	int flow;
8252 
8253 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8254 		return -EINVAL;
8255 
8256 	hw = &pf->hw;
8257 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8258 		struct ice_fd_hw_prof *prof;
8259 		int tun, status;
8260 		u64 entry_h;
8261 
8262 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8263 		      hw->fdir_prof[flow]->cnt))
8264 			continue;
8265 
8266 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8267 			enum ice_flow_priority prio;
8268 
8269 			/* add this VSI to FDir profile for this flow */
8270 			prio = ICE_FLOW_PRIO_NORMAL;
8271 			prof = hw->fdir_prof[flow];
8272 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8273 						    prof->prof_id[tun],
8274 						    prof->vsi_h[0], vsi->idx,
8275 						    prio, prof->fdir_seg[tun],
8276 						    &entry_h);
8277 			if (status) {
8278 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8279 					vsi->idx, flow);
8280 				continue;
8281 			}
8282 
8283 			prof->entry_h[prof->cnt][tun] = entry_h;
8284 		}
8285 
8286 		/* store VSI for filter replay and delete */
8287 		prof->vsi_h[prof->cnt] = vsi->idx;
8288 		prof->cnt++;
8289 
8290 		added = true;
8291 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8292 			flow);
8293 	}
8294 
8295 	if (!added)
8296 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8297 
8298 	return 0;
8299 }
8300 
8301 /**
8302  * ice_add_channel - add a channel by adding VSI
8303  * @pf: ptr to PF device
8304  * @sw_id: underlying HW switching element ID
8305  * @ch: ptr to channel structure
8306  *
8307  * Add a channel (VSI) using add_vsi and queue_map
8308  */
8309 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8310 {
8311 	struct device *dev = ice_pf_to_dev(pf);
8312 	struct ice_vsi *vsi;
8313 
8314 	if (ch->type != ICE_VSI_CHNL) {
8315 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8316 		return -EINVAL;
8317 	}
8318 
8319 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8320 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8321 		dev_err(dev, "create chnl VSI failure\n");
8322 		return -EINVAL;
8323 	}
8324 
8325 	ice_add_vsi_to_fdir(pf, vsi);
8326 
8327 	ch->sw_id = sw_id;
8328 	ch->vsi_num = vsi->vsi_num;
8329 	ch->info.mapping_flags = vsi->info.mapping_flags;
8330 	ch->ch_vsi = vsi;
8331 	/* set the back pointer of channel for newly created VSI */
8332 	vsi->ch = ch;
8333 
8334 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8335 	       sizeof(vsi->info.q_mapping));
8336 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8337 	       sizeof(vsi->info.tc_mapping));
8338 
8339 	return 0;
8340 }
8341 
8342 /**
8343  * ice_chnl_cfg_res
8344  * @vsi: the VSI being setup
8345  * @ch: ptr to channel structure
8346  *
8347  * Configure channel specific resources such as rings, vector.
8348  */
8349 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8350 {
8351 	int i;
8352 
8353 	for (i = 0; i < ch->num_txq; i++) {
8354 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8355 		struct ice_ring_container *rc;
8356 		struct ice_tx_ring *tx_ring;
8357 		struct ice_rx_ring *rx_ring;
8358 
8359 		tx_ring = vsi->tx_rings[ch->base_q + i];
8360 		rx_ring = vsi->rx_rings[ch->base_q + i];
8361 		if (!tx_ring || !rx_ring)
8362 			continue;
8363 
8364 		/* setup ring being channel enabled */
8365 		tx_ring->ch = ch;
8366 		rx_ring->ch = ch;
8367 
8368 		/* following code block sets up vector specific attributes */
8369 		tx_q_vector = tx_ring->q_vector;
8370 		rx_q_vector = rx_ring->q_vector;
8371 		if (!tx_q_vector && !rx_q_vector)
8372 			continue;
8373 
8374 		if (tx_q_vector) {
8375 			tx_q_vector->ch = ch;
8376 			/* setup Tx and Rx ITR setting if DIM is off */
8377 			rc = &tx_q_vector->tx;
8378 			if (!ITR_IS_DYNAMIC(rc))
8379 				ice_write_itr(rc, rc->itr_setting);
8380 		}
8381 		if (rx_q_vector) {
8382 			rx_q_vector->ch = ch;
8383 			/* setup Tx and Rx ITR setting if DIM is off */
8384 			rc = &rx_q_vector->rx;
8385 			if (!ITR_IS_DYNAMIC(rc))
8386 				ice_write_itr(rc, rc->itr_setting);
8387 		}
8388 	}
8389 
8390 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8391 	 * GLINT_ITR register would have written to perform in-context
8392 	 * update, hence perform flush
8393 	 */
8394 	if (ch->num_txq || ch->num_rxq)
8395 		ice_flush(&vsi->back->hw);
8396 }
8397 
8398 /**
8399  * ice_cfg_chnl_all_res - configure channel resources
8400  * @vsi: pte to main_vsi
8401  * @ch: ptr to channel structure
8402  *
8403  * This function configures channel specific resources such as flow-director
8404  * counter index, and other resources such as queues, vectors, ITR settings
8405  */
8406 static void
8407 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8408 {
8409 	/* configure channel (aka ADQ) resources such as queues, vectors,
8410 	 * ITR settings for channel specific vectors and anything else
8411 	 */
8412 	ice_chnl_cfg_res(vsi, ch);
8413 }
8414 
8415 /**
8416  * ice_setup_hw_channel - setup new channel
8417  * @pf: ptr to PF device
8418  * @vsi: the VSI being setup
8419  * @ch: ptr to channel structure
8420  * @sw_id: underlying HW switching element ID
8421  * @type: type of channel to be created (VMDq2/VF)
8422  *
8423  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8424  * and configures Tx rings accordingly
8425  */
8426 static int
8427 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8428 		     struct ice_channel *ch, u16 sw_id, u8 type)
8429 {
8430 	struct device *dev = ice_pf_to_dev(pf);
8431 	int ret;
8432 
8433 	ch->base_q = vsi->next_base_q;
8434 	ch->type = type;
8435 
8436 	ret = ice_add_channel(pf, sw_id, ch);
8437 	if (ret) {
8438 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8439 		return ret;
8440 	}
8441 
8442 	/* configure/setup ADQ specific resources */
8443 	ice_cfg_chnl_all_res(vsi, ch);
8444 
8445 	/* make sure to update the next_base_q so that subsequent channel's
8446 	 * (aka ADQ) VSI queue map is correct
8447 	 */
8448 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8449 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8450 		ch->num_rxq);
8451 
8452 	return 0;
8453 }
8454 
8455 /**
8456  * ice_setup_channel - setup new channel using uplink element
8457  * @pf: ptr to PF device
8458  * @vsi: the VSI being setup
8459  * @ch: ptr to channel structure
8460  *
8461  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8462  * and uplink switching element
8463  */
8464 static bool
8465 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8466 		  struct ice_channel *ch)
8467 {
8468 	struct device *dev = ice_pf_to_dev(pf);
8469 	u16 sw_id;
8470 	int ret;
8471 
8472 	if (vsi->type != ICE_VSI_PF) {
8473 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8474 		return false;
8475 	}
8476 
8477 	sw_id = pf->first_sw->sw_id;
8478 
8479 	/* create channel (VSI) */
8480 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8481 	if (ret) {
8482 		dev_err(dev, "failed to setup hw_channel\n");
8483 		return false;
8484 	}
8485 	dev_dbg(dev, "successfully created channel()\n");
8486 
8487 	return ch->ch_vsi ? true : false;
8488 }
8489 
8490 /**
8491  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8492  * @vsi: VSI to be configured
8493  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8494  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8495  */
8496 static int
8497 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8498 {
8499 	int err;
8500 
8501 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8502 	if (err)
8503 		return err;
8504 
8505 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8506 }
8507 
8508 /**
8509  * ice_create_q_channel - function to create channel
8510  * @vsi: VSI to be configured
8511  * @ch: ptr to channel (it contains channel specific params)
8512  *
8513  * This function creates channel (VSI) using num_queues specified by user,
8514  * reconfigs RSS if needed.
8515  */
8516 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8517 {
8518 	struct ice_pf *pf = vsi->back;
8519 	struct device *dev;
8520 
8521 	if (!ch)
8522 		return -EINVAL;
8523 
8524 	dev = ice_pf_to_dev(pf);
8525 	if (!ch->num_txq || !ch->num_rxq) {
8526 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8527 		return -EINVAL;
8528 	}
8529 
8530 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8531 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8532 			vsi->cnt_q_avail, ch->num_txq);
8533 		return -EINVAL;
8534 	}
8535 
8536 	if (!ice_setup_channel(pf, vsi, ch)) {
8537 		dev_info(dev, "Failed to setup channel\n");
8538 		return -EINVAL;
8539 	}
8540 	/* configure BW rate limit */
8541 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8542 		int ret;
8543 
8544 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8545 				       ch->min_tx_rate);
8546 		if (ret)
8547 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8548 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8549 		else
8550 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8551 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8552 	}
8553 
8554 	vsi->cnt_q_avail -= ch->num_txq;
8555 
8556 	return 0;
8557 }
8558 
8559 /**
8560  * ice_rem_all_chnl_fltrs - removes all channel filters
8561  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8562  *
8563  * Remove all advanced switch filters only if they are channel specific
8564  * tc-flower based filter
8565  */
8566 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8567 {
8568 	struct ice_tc_flower_fltr *fltr;
8569 	struct hlist_node *node;
8570 
8571 	/* to remove all channel filters, iterate an ordered list of filters */
8572 	hlist_for_each_entry_safe(fltr, node,
8573 				  &pf->tc_flower_fltr_list,
8574 				  tc_flower_node) {
8575 		struct ice_rule_query_data rule;
8576 		int status;
8577 
8578 		/* for now process only channel specific filters */
8579 		if (!ice_is_chnl_fltr(fltr))
8580 			continue;
8581 
8582 		rule.rid = fltr->rid;
8583 		rule.rule_id = fltr->rule_id;
8584 		rule.vsi_handle = fltr->dest_vsi_handle;
8585 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8586 		if (status) {
8587 			if (status == -ENOENT)
8588 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8589 					rule.rule_id);
8590 			else
8591 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8592 					status);
8593 		} else if (fltr->dest_vsi) {
8594 			/* update advanced switch filter count */
8595 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8596 				u32 flags = fltr->flags;
8597 
8598 				fltr->dest_vsi->num_chnl_fltr--;
8599 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8600 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8601 					pf->num_dmac_chnl_fltrs--;
8602 			}
8603 		}
8604 
8605 		hlist_del(&fltr->tc_flower_node);
8606 		kfree(fltr);
8607 	}
8608 }
8609 
8610 /**
8611  * ice_remove_q_channels - Remove queue channels for the TCs
8612  * @vsi: VSI to be configured
8613  * @rem_fltr: delete advanced switch filter or not
8614  *
8615  * Remove queue channels for the TCs
8616  */
8617 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8618 {
8619 	struct ice_channel *ch, *ch_tmp;
8620 	struct ice_pf *pf = vsi->back;
8621 	int i;
8622 
8623 	/* remove all tc-flower based filter if they are channel filters only */
8624 	if (rem_fltr)
8625 		ice_rem_all_chnl_fltrs(pf);
8626 
8627 	/* remove ntuple filters since queue configuration is being changed */
8628 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8629 		struct ice_hw *hw = &pf->hw;
8630 
8631 		mutex_lock(&hw->fdir_fltr_lock);
8632 		ice_fdir_del_all_fltrs(vsi);
8633 		mutex_unlock(&hw->fdir_fltr_lock);
8634 	}
8635 
8636 	/* perform cleanup for channels if they exist */
8637 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8638 		struct ice_vsi *ch_vsi;
8639 
8640 		list_del(&ch->list);
8641 		ch_vsi = ch->ch_vsi;
8642 		if (!ch_vsi) {
8643 			kfree(ch);
8644 			continue;
8645 		}
8646 
8647 		/* Reset queue contexts */
8648 		for (i = 0; i < ch->num_rxq; i++) {
8649 			struct ice_tx_ring *tx_ring;
8650 			struct ice_rx_ring *rx_ring;
8651 
8652 			tx_ring = vsi->tx_rings[ch->base_q + i];
8653 			rx_ring = vsi->rx_rings[ch->base_q + i];
8654 			if (tx_ring) {
8655 				tx_ring->ch = NULL;
8656 				if (tx_ring->q_vector)
8657 					tx_ring->q_vector->ch = NULL;
8658 			}
8659 			if (rx_ring) {
8660 				rx_ring->ch = NULL;
8661 				if (rx_ring->q_vector)
8662 					rx_ring->q_vector->ch = NULL;
8663 			}
8664 		}
8665 
8666 		/* Release FD resources for the channel VSI */
8667 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8668 
8669 		/* clear the VSI from scheduler tree */
8670 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8671 
8672 		/* Delete VSI from FW, PF and HW VSI arrays */
8673 		ice_vsi_delete(ch->ch_vsi);
8674 
8675 		/* free the channel */
8676 		kfree(ch);
8677 	}
8678 
8679 	/* clear the channel VSI map which is stored in main VSI */
8680 	ice_for_each_chnl_tc(i)
8681 		vsi->tc_map_vsi[i] = NULL;
8682 
8683 	/* reset main VSI's all TC information */
8684 	vsi->all_enatc = 0;
8685 	vsi->all_numtc = 0;
8686 }
8687 
8688 /**
8689  * ice_rebuild_channels - rebuild channel
8690  * @pf: ptr to PF
8691  *
8692  * Recreate channel VSIs and replay filters
8693  */
8694 static int ice_rebuild_channels(struct ice_pf *pf)
8695 {
8696 	struct device *dev = ice_pf_to_dev(pf);
8697 	struct ice_vsi *main_vsi;
8698 	bool rem_adv_fltr = true;
8699 	struct ice_channel *ch;
8700 	struct ice_vsi *vsi;
8701 	int tc_idx = 1;
8702 	int i, err;
8703 
8704 	main_vsi = ice_get_main_vsi(pf);
8705 	if (!main_vsi)
8706 		return 0;
8707 
8708 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8709 	    main_vsi->old_numtc == 1)
8710 		return 0; /* nothing to be done */
8711 
8712 	/* reconfigure main VSI based on old value of TC and cached values
8713 	 * for MQPRIO opts
8714 	 */
8715 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8716 	if (err) {
8717 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8718 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8719 		return err;
8720 	}
8721 
8722 	/* rebuild ADQ VSIs */
8723 	ice_for_each_vsi(pf, i) {
8724 		enum ice_vsi_type type;
8725 
8726 		vsi = pf->vsi[i];
8727 		if (!vsi || vsi->type != ICE_VSI_CHNL)
8728 			continue;
8729 
8730 		type = vsi->type;
8731 
8732 		/* rebuild ADQ VSI */
8733 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
8734 		if (err) {
8735 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8736 				ice_vsi_type_str(type), vsi->idx, err);
8737 			goto cleanup;
8738 		}
8739 
8740 		/* Re-map HW VSI number, using VSI handle that has been
8741 		 * previously validated in ice_replay_vsi() call above
8742 		 */
8743 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8744 
8745 		/* replay filters for the VSI */
8746 		err = ice_replay_vsi(&pf->hw, vsi->idx);
8747 		if (err) {
8748 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8749 				ice_vsi_type_str(type), err, vsi->idx);
8750 			rem_adv_fltr = false;
8751 			goto cleanup;
8752 		}
8753 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8754 			 ice_vsi_type_str(type), vsi->idx);
8755 
8756 		/* store ADQ VSI at correct TC index in main VSI's
8757 		 * map of TC to VSI
8758 		 */
8759 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
8760 	}
8761 
8762 	/* ADQ VSI(s) has been rebuilt successfully, so setup
8763 	 * channel for main VSI's Tx and Rx rings
8764 	 */
8765 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
8766 		struct ice_vsi *ch_vsi;
8767 
8768 		ch_vsi = ch->ch_vsi;
8769 		if (!ch_vsi)
8770 			continue;
8771 
8772 		/* reconfig channel resources */
8773 		ice_cfg_chnl_all_res(main_vsi, ch);
8774 
8775 		/* replay BW rate limit if it is non-zero */
8776 		if (!ch->max_tx_rate && !ch->min_tx_rate)
8777 			continue;
8778 
8779 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8780 				       ch->min_tx_rate);
8781 		if (err)
8782 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8783 				err, ch->max_tx_rate, ch->min_tx_rate,
8784 				ch_vsi->vsi_num);
8785 		else
8786 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8787 				ch->max_tx_rate, ch->min_tx_rate,
8788 				ch_vsi->vsi_num);
8789 	}
8790 
8791 	/* reconfig RSS for main VSI */
8792 	if (main_vsi->ch_rss_size)
8793 		ice_vsi_cfg_rss_lut_key(main_vsi);
8794 
8795 	return 0;
8796 
8797 cleanup:
8798 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
8799 	return err;
8800 }
8801 
8802 /**
8803  * ice_create_q_channels - Add queue channel for the given TCs
8804  * @vsi: VSI to be configured
8805  *
8806  * Configures queue channel mapping to the given TCs
8807  */
8808 static int ice_create_q_channels(struct ice_vsi *vsi)
8809 {
8810 	struct ice_pf *pf = vsi->back;
8811 	struct ice_channel *ch;
8812 	int ret = 0, i;
8813 
8814 	ice_for_each_chnl_tc(i) {
8815 		if (!(vsi->all_enatc & BIT(i)))
8816 			continue;
8817 
8818 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8819 		if (!ch) {
8820 			ret = -ENOMEM;
8821 			goto err_free;
8822 		}
8823 		INIT_LIST_HEAD(&ch->list);
8824 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8825 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8826 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8827 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8828 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8829 
8830 		/* convert to Kbits/s */
8831 		if (ch->max_tx_rate)
8832 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
8833 						  ICE_BW_KBPS_DIVISOR);
8834 		if (ch->min_tx_rate)
8835 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
8836 						  ICE_BW_KBPS_DIVISOR);
8837 
8838 		ret = ice_create_q_channel(vsi, ch);
8839 		if (ret) {
8840 			dev_err(ice_pf_to_dev(pf),
8841 				"failed creating channel TC:%d\n", i);
8842 			kfree(ch);
8843 			goto err_free;
8844 		}
8845 		list_add_tail(&ch->list, &vsi->ch_list);
8846 		vsi->tc_map_vsi[i] = ch->ch_vsi;
8847 		dev_dbg(ice_pf_to_dev(pf),
8848 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
8849 	}
8850 	return 0;
8851 
8852 err_free:
8853 	ice_remove_q_channels(vsi, false);
8854 
8855 	return ret;
8856 }
8857 
8858 /**
8859  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8860  * @netdev: net device to configure
8861  * @type_data: TC offload data
8862  */
8863 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8864 {
8865 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8866 	struct ice_netdev_priv *np = netdev_priv(netdev);
8867 	struct ice_vsi *vsi = np->vsi;
8868 	struct ice_pf *pf = vsi->back;
8869 	u16 mode, ena_tc_qdisc = 0;
8870 	int cur_txq, cur_rxq;
8871 	u8 hw = 0, num_tcf;
8872 	struct device *dev;
8873 	int ret, i;
8874 
8875 	dev = ice_pf_to_dev(pf);
8876 	num_tcf = mqprio_qopt->qopt.num_tc;
8877 	hw = mqprio_qopt->qopt.hw;
8878 	mode = mqprio_qopt->mode;
8879 	if (!hw) {
8880 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8881 		vsi->ch_rss_size = 0;
8882 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8883 		goto config_tcf;
8884 	}
8885 
8886 	/* Generate queue region map for number of TCF requested */
8887 	for (i = 0; i < num_tcf; i++)
8888 		ena_tc_qdisc |= BIT(i);
8889 
8890 	switch (mode) {
8891 	case TC_MQPRIO_MODE_CHANNEL:
8892 
8893 		if (pf->hw.port_info->is_custom_tx_enabled) {
8894 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8895 			return -EBUSY;
8896 		}
8897 		ice_tear_down_devlink_rate_tree(pf);
8898 
8899 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8900 		if (ret) {
8901 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8902 				   ret);
8903 			return ret;
8904 		}
8905 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8906 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8907 		/* don't assume state of hw_tc_offload during driver load
8908 		 * and set the flag for TC flower filter if hw_tc_offload
8909 		 * already ON
8910 		 */
8911 		if (vsi->netdev->features & NETIF_F_HW_TC)
8912 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8913 		break;
8914 	default:
8915 		return -EINVAL;
8916 	}
8917 
8918 config_tcf:
8919 
8920 	/* Requesting same TCF configuration as already enabled */
8921 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8922 	    mode != TC_MQPRIO_MODE_CHANNEL)
8923 		return 0;
8924 
8925 	/* Pause VSI queues */
8926 	ice_dis_vsi(vsi, true);
8927 
8928 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8929 		ice_remove_q_channels(vsi, true);
8930 
8931 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8932 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8933 				     num_online_cpus());
8934 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8935 				     num_online_cpus());
8936 	} else {
8937 		/* logic to rebuild VSI, same like ethtool -L */
8938 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8939 
8940 		for (i = 0; i < num_tcf; i++) {
8941 			if (!(ena_tc_qdisc & BIT(i)))
8942 				continue;
8943 
8944 			offset = vsi->mqprio_qopt.qopt.offset[i];
8945 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8946 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8947 		}
8948 		vsi->req_txq = offset + qcount_tx;
8949 		vsi->req_rxq = offset + qcount_rx;
8950 
8951 		/* store away original rss_size info, so that it gets reused
8952 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8953 		 * determine, what should be the rss_sizefor main VSI
8954 		 */
8955 		vsi->orig_rss_size = vsi->rss_size;
8956 	}
8957 
8958 	/* save current values of Tx and Rx queues before calling VSI rebuild
8959 	 * for fallback option
8960 	 */
8961 	cur_txq = vsi->num_txq;
8962 	cur_rxq = vsi->num_rxq;
8963 
8964 	/* proceed with rebuild main VSI using correct number of queues */
8965 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
8966 	if (ret) {
8967 		/* fallback to current number of queues */
8968 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8969 		vsi->req_txq = cur_txq;
8970 		vsi->req_rxq = cur_rxq;
8971 		clear_bit(ICE_RESET_FAILED, pf->state);
8972 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
8973 			dev_err(dev, "Rebuild of main VSI failed again\n");
8974 			return ret;
8975 		}
8976 	}
8977 
8978 	vsi->all_numtc = num_tcf;
8979 	vsi->all_enatc = ena_tc_qdisc;
8980 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8981 	if (ret) {
8982 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8983 			   vsi->vsi_num);
8984 		goto exit;
8985 	}
8986 
8987 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8988 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8989 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8990 
8991 		/* set TC0 rate limit if specified */
8992 		if (max_tx_rate || min_tx_rate) {
8993 			/* convert to Kbits/s */
8994 			if (max_tx_rate)
8995 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8996 			if (min_tx_rate)
8997 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8998 
8999 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9000 			if (!ret) {
9001 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9002 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9003 			} else {
9004 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9005 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9006 				goto exit;
9007 			}
9008 		}
9009 		ret = ice_create_q_channels(vsi);
9010 		if (ret) {
9011 			netdev_err(netdev, "failed configuring queue channels\n");
9012 			goto exit;
9013 		} else {
9014 			netdev_dbg(netdev, "successfully configured channels\n");
9015 		}
9016 	}
9017 
9018 	if (vsi->ch_rss_size)
9019 		ice_vsi_cfg_rss_lut_key(vsi);
9020 
9021 exit:
9022 	/* if error, reset the all_numtc and all_enatc */
9023 	if (ret) {
9024 		vsi->all_numtc = 0;
9025 		vsi->all_enatc = 0;
9026 	}
9027 	/* resume VSI */
9028 	ice_ena_vsi(vsi, true);
9029 
9030 	return ret;
9031 }
9032 
9033 static LIST_HEAD(ice_block_cb_list);
9034 
9035 static int
9036 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9037 	     void *type_data)
9038 {
9039 	struct ice_netdev_priv *np = netdev_priv(netdev);
9040 	struct ice_pf *pf = np->vsi->back;
9041 	bool locked = false;
9042 	int err;
9043 
9044 	switch (type) {
9045 	case TC_SETUP_BLOCK:
9046 		return flow_block_cb_setup_simple(type_data,
9047 						  &ice_block_cb_list,
9048 						  ice_setup_tc_block_cb,
9049 						  np, np, true);
9050 	case TC_SETUP_QDISC_MQPRIO:
9051 		if (ice_is_eswitch_mode_switchdev(pf)) {
9052 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9053 			return -EOPNOTSUPP;
9054 		}
9055 
9056 		if (pf->adev) {
9057 			mutex_lock(&pf->adev_mutex);
9058 			device_lock(&pf->adev->dev);
9059 			locked = true;
9060 			if (pf->adev->dev.driver) {
9061 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9062 				err = -EBUSY;
9063 				goto adev_unlock;
9064 			}
9065 		}
9066 
9067 		/* setup traffic classifier for receive side */
9068 		mutex_lock(&pf->tc_mutex);
9069 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9070 		mutex_unlock(&pf->tc_mutex);
9071 
9072 adev_unlock:
9073 		if (locked) {
9074 			device_unlock(&pf->adev->dev);
9075 			mutex_unlock(&pf->adev_mutex);
9076 		}
9077 		return err;
9078 	default:
9079 		return -EOPNOTSUPP;
9080 	}
9081 	return -EOPNOTSUPP;
9082 }
9083 
9084 static struct ice_indr_block_priv *
9085 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9086 			   struct net_device *netdev)
9087 {
9088 	struct ice_indr_block_priv *cb_priv;
9089 
9090 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9091 		if (!cb_priv->netdev)
9092 			return NULL;
9093 		if (cb_priv->netdev == netdev)
9094 			return cb_priv;
9095 	}
9096 	return NULL;
9097 }
9098 
9099 static int
9100 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9101 			void *indr_priv)
9102 {
9103 	struct ice_indr_block_priv *priv = indr_priv;
9104 	struct ice_netdev_priv *np = priv->np;
9105 
9106 	switch (type) {
9107 	case TC_SETUP_CLSFLOWER:
9108 		return ice_setup_tc_cls_flower(np, priv->netdev,
9109 					       (struct flow_cls_offload *)
9110 					       type_data);
9111 	default:
9112 		return -EOPNOTSUPP;
9113 	}
9114 }
9115 
9116 static int
9117 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9118 			struct ice_netdev_priv *np,
9119 			struct flow_block_offload *f, void *data,
9120 			void (*cleanup)(struct flow_block_cb *block_cb))
9121 {
9122 	struct ice_indr_block_priv *indr_priv;
9123 	struct flow_block_cb *block_cb;
9124 
9125 	if (!ice_is_tunnel_supported(netdev) &&
9126 	    !(is_vlan_dev(netdev) &&
9127 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9128 		return -EOPNOTSUPP;
9129 
9130 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9131 		return -EOPNOTSUPP;
9132 
9133 	switch (f->command) {
9134 	case FLOW_BLOCK_BIND:
9135 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9136 		if (indr_priv)
9137 			return -EEXIST;
9138 
9139 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9140 		if (!indr_priv)
9141 			return -ENOMEM;
9142 
9143 		indr_priv->netdev = netdev;
9144 		indr_priv->np = np;
9145 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9146 
9147 		block_cb =
9148 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9149 						 indr_priv, indr_priv,
9150 						 ice_rep_indr_tc_block_unbind,
9151 						 f, netdev, sch, data, np,
9152 						 cleanup);
9153 
9154 		if (IS_ERR(block_cb)) {
9155 			list_del(&indr_priv->list);
9156 			kfree(indr_priv);
9157 			return PTR_ERR(block_cb);
9158 		}
9159 		flow_block_cb_add(block_cb, f);
9160 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9161 		break;
9162 	case FLOW_BLOCK_UNBIND:
9163 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9164 		if (!indr_priv)
9165 			return -ENOENT;
9166 
9167 		block_cb = flow_block_cb_lookup(f->block,
9168 						ice_indr_setup_block_cb,
9169 						indr_priv);
9170 		if (!block_cb)
9171 			return -ENOENT;
9172 
9173 		flow_indr_block_cb_remove(block_cb, f);
9174 
9175 		list_del(&block_cb->driver_list);
9176 		break;
9177 	default:
9178 		return -EOPNOTSUPP;
9179 	}
9180 	return 0;
9181 }
9182 
9183 static int
9184 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9185 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9186 		     void *data,
9187 		     void (*cleanup)(struct flow_block_cb *block_cb))
9188 {
9189 	switch (type) {
9190 	case TC_SETUP_BLOCK:
9191 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9192 					       data, cleanup);
9193 
9194 	default:
9195 		return -EOPNOTSUPP;
9196 	}
9197 }
9198 
9199 /**
9200  * ice_open - Called when a network interface becomes active
9201  * @netdev: network interface device structure
9202  *
9203  * The open entry point is called when a network interface is made
9204  * active by the system (IFF_UP). At this point all resources needed
9205  * for transmit and receive operations are allocated, the interrupt
9206  * handler is registered with the OS, the netdev watchdog is enabled,
9207  * and the stack is notified that the interface is ready.
9208  *
9209  * Returns 0 on success, negative value on failure
9210  */
9211 int ice_open(struct net_device *netdev)
9212 {
9213 	struct ice_netdev_priv *np = netdev_priv(netdev);
9214 	struct ice_pf *pf = np->vsi->back;
9215 
9216 	if (ice_is_reset_in_progress(pf->state)) {
9217 		netdev_err(netdev, "can't open net device while reset is in progress");
9218 		return -EBUSY;
9219 	}
9220 
9221 	return ice_open_internal(netdev);
9222 }
9223 
9224 /**
9225  * ice_open_internal - Called when a network interface becomes active
9226  * @netdev: network interface device structure
9227  *
9228  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9229  * handling routine
9230  *
9231  * Returns 0 on success, negative value on failure
9232  */
9233 int ice_open_internal(struct net_device *netdev)
9234 {
9235 	struct ice_netdev_priv *np = netdev_priv(netdev);
9236 	struct ice_vsi *vsi = np->vsi;
9237 	struct ice_pf *pf = vsi->back;
9238 	struct ice_port_info *pi;
9239 	int err;
9240 
9241 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9242 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9243 		return -EIO;
9244 	}
9245 
9246 	netif_carrier_off(netdev);
9247 
9248 	pi = vsi->port_info;
9249 	err = ice_update_link_info(pi);
9250 	if (err) {
9251 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9252 		return err;
9253 	}
9254 
9255 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9256 
9257 	/* Set PHY if there is media, otherwise, turn off PHY */
9258 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9259 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9260 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9261 			err = ice_init_phy_user_cfg(pi);
9262 			if (err) {
9263 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9264 					   err);
9265 				return err;
9266 			}
9267 		}
9268 
9269 		err = ice_configure_phy(vsi);
9270 		if (err) {
9271 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9272 				   err);
9273 			return err;
9274 		}
9275 	} else {
9276 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9277 		ice_set_link(vsi, false);
9278 	}
9279 
9280 	err = ice_vsi_open(vsi);
9281 	if (err)
9282 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9283 			   vsi->vsi_num, vsi->vsw->sw_id);
9284 
9285 	/* Update existing tunnels information */
9286 	udp_tunnel_get_rx_info(netdev);
9287 
9288 	return err;
9289 }
9290 
9291 /**
9292  * ice_stop - Disables a network interface
9293  * @netdev: network interface device structure
9294  *
9295  * The stop entry point is called when an interface is de-activated by the OS,
9296  * and the netdevice enters the DOWN state. The hardware is still under the
9297  * driver's control, but the netdev interface is disabled.
9298  *
9299  * Returns success only - not allowed to fail
9300  */
9301 int ice_stop(struct net_device *netdev)
9302 {
9303 	struct ice_netdev_priv *np = netdev_priv(netdev);
9304 	struct ice_vsi *vsi = np->vsi;
9305 	struct ice_pf *pf = vsi->back;
9306 
9307 	if (ice_is_reset_in_progress(pf->state)) {
9308 		netdev_err(netdev, "can't stop net device while reset is in progress");
9309 		return -EBUSY;
9310 	}
9311 
9312 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9313 		int link_err = ice_force_phys_link_state(vsi, false);
9314 
9315 		if (link_err) {
9316 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9317 				   vsi->vsi_num, link_err);
9318 			return -EIO;
9319 		}
9320 	}
9321 
9322 	ice_vsi_close(vsi);
9323 
9324 	return 0;
9325 }
9326 
9327 /**
9328  * ice_features_check - Validate encapsulated packet conforms to limits
9329  * @skb: skb buffer
9330  * @netdev: This port's netdev
9331  * @features: Offload features that the stack believes apply
9332  */
9333 static netdev_features_t
9334 ice_features_check(struct sk_buff *skb,
9335 		   struct net_device __always_unused *netdev,
9336 		   netdev_features_t features)
9337 {
9338 	bool gso = skb_is_gso(skb);
9339 	size_t len;
9340 
9341 	/* No point in doing any of this if neither checksum nor GSO are
9342 	 * being requested for this frame. We can rule out both by just
9343 	 * checking for CHECKSUM_PARTIAL
9344 	 */
9345 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9346 		return features;
9347 
9348 	/* We cannot support GSO if the MSS is going to be less than
9349 	 * 64 bytes. If it is then we need to drop support for GSO.
9350 	 */
9351 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9352 		features &= ~NETIF_F_GSO_MASK;
9353 
9354 	len = skb_network_offset(skb);
9355 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9356 		goto out_rm_features;
9357 
9358 	len = skb_network_header_len(skb);
9359 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9360 		goto out_rm_features;
9361 
9362 	if (skb->encapsulation) {
9363 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9364 		 * the case of IPIP frames, the transport header pointer is
9365 		 * after the inner header! So check to make sure that this
9366 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9367 		 */
9368 		if (gso && (skb_shinfo(skb)->gso_type &
9369 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9370 			len = skb_inner_network_header(skb) -
9371 			      skb_transport_header(skb);
9372 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9373 				goto out_rm_features;
9374 		}
9375 
9376 		len = skb_inner_network_header_len(skb);
9377 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9378 			goto out_rm_features;
9379 	}
9380 
9381 	return features;
9382 out_rm_features:
9383 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9384 }
9385 
9386 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9387 	.ndo_open = ice_open,
9388 	.ndo_stop = ice_stop,
9389 	.ndo_start_xmit = ice_start_xmit,
9390 	.ndo_set_mac_address = ice_set_mac_address,
9391 	.ndo_validate_addr = eth_validate_addr,
9392 	.ndo_change_mtu = ice_change_mtu,
9393 	.ndo_get_stats64 = ice_get_stats64,
9394 	.ndo_tx_timeout = ice_tx_timeout,
9395 	.ndo_bpf = ice_xdp_safe_mode,
9396 };
9397 
9398 static const struct net_device_ops ice_netdev_ops = {
9399 	.ndo_open = ice_open,
9400 	.ndo_stop = ice_stop,
9401 	.ndo_start_xmit = ice_start_xmit,
9402 	.ndo_select_queue = ice_select_queue,
9403 	.ndo_features_check = ice_features_check,
9404 	.ndo_fix_features = ice_fix_features,
9405 	.ndo_set_rx_mode = ice_set_rx_mode,
9406 	.ndo_set_mac_address = ice_set_mac_address,
9407 	.ndo_validate_addr = eth_validate_addr,
9408 	.ndo_change_mtu = ice_change_mtu,
9409 	.ndo_get_stats64 = ice_get_stats64,
9410 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9411 	.ndo_eth_ioctl = ice_eth_ioctl,
9412 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9413 	.ndo_set_vf_mac = ice_set_vf_mac,
9414 	.ndo_get_vf_config = ice_get_vf_cfg,
9415 	.ndo_set_vf_trust = ice_set_vf_trust,
9416 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9417 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9418 	.ndo_get_vf_stats = ice_get_vf_stats,
9419 	.ndo_set_vf_rate = ice_set_vf_bw,
9420 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9421 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9422 	.ndo_setup_tc = ice_setup_tc,
9423 	.ndo_set_features = ice_set_features,
9424 	.ndo_bridge_getlink = ice_bridge_getlink,
9425 	.ndo_bridge_setlink = ice_bridge_setlink,
9426 	.ndo_fdb_add = ice_fdb_add,
9427 	.ndo_fdb_del = ice_fdb_del,
9428 #ifdef CONFIG_RFS_ACCEL
9429 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9430 #endif
9431 	.ndo_tx_timeout = ice_tx_timeout,
9432 	.ndo_bpf = ice_xdp,
9433 	.ndo_xdp_xmit = ice_xdp_xmit,
9434 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9435 };
9436