1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 48 EXPORT_SYMBOL(ice_xdp_locking_key); 49 50 /** 51 * ice_hw_to_dev - Get device pointer from the hardware structure 52 * @hw: pointer to the device HW structure 53 * 54 * Used to access the device pointer from compilation units which can't easily 55 * include the definition of struct ice_pf without leading to circular header 56 * dependencies. 57 */ 58 struct device *ice_hw_to_dev(struct ice_hw *hw) 59 { 60 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 61 62 return &pf->pdev->dev; 63 } 64 65 static struct workqueue_struct *ice_wq; 66 static const struct net_device_ops ice_netdev_safe_mode_ops; 67 static const struct net_device_ops ice_netdev_ops; 68 69 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 70 71 static void ice_vsi_release_all(struct ice_pf *pf); 72 73 static int ice_rebuild_channels(struct ice_pf *pf); 74 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 75 76 static int 77 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 78 void *cb_priv, enum tc_setup_type type, void *type_data, 79 void *data, 80 void (*cleanup)(struct flow_block_cb *block_cb)); 81 82 bool netif_is_ice(struct net_device *dev) 83 { 84 return dev && (dev->netdev_ops == &ice_netdev_ops); 85 } 86 87 /** 88 * ice_get_tx_pending - returns number of Tx descriptors not processed 89 * @ring: the ring of descriptors 90 */ 91 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 92 { 93 u16 head, tail; 94 95 head = ring->next_to_clean; 96 tail = ring->next_to_use; 97 98 if (head != tail) 99 return (head < tail) ? 100 tail - head : (tail + ring->count - head); 101 return 0; 102 } 103 104 /** 105 * ice_check_for_hang_subtask - check for and recover hung queues 106 * @pf: pointer to PF struct 107 */ 108 static void ice_check_for_hang_subtask(struct ice_pf *pf) 109 { 110 struct ice_vsi *vsi = NULL; 111 struct ice_hw *hw; 112 unsigned int i; 113 int packets; 114 u32 v; 115 116 ice_for_each_vsi(pf, v) 117 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 118 vsi = pf->vsi[v]; 119 break; 120 } 121 122 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 123 return; 124 125 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 126 return; 127 128 hw = &vsi->back->hw; 129 130 ice_for_each_txq(vsi, i) { 131 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 132 struct ice_ring_stats *ring_stats; 133 134 if (!tx_ring) 135 continue; 136 if (ice_ring_ch_enabled(tx_ring)) 137 continue; 138 139 ring_stats = tx_ring->ring_stats; 140 if (!ring_stats) 141 continue; 142 143 if (tx_ring->desc) { 144 /* If packet counter has not changed the queue is 145 * likely stalled, so force an interrupt for this 146 * queue. 147 * 148 * prev_pkt would be negative if there was no 149 * pending work. 150 */ 151 packets = ring_stats->stats.pkts & INT_MAX; 152 if (ring_stats->tx_stats.prev_pkt == packets) { 153 /* Trigger sw interrupt to revive the queue */ 154 ice_trigger_sw_intr(hw, tx_ring->q_vector); 155 continue; 156 } 157 158 /* Memory barrier between read of packet count and call 159 * to ice_get_tx_pending() 160 */ 161 smp_rmb(); 162 ring_stats->tx_stats.prev_pkt = 163 ice_get_tx_pending(tx_ring) ? packets : -1; 164 } 165 } 166 } 167 168 /** 169 * ice_init_mac_fltr - Set initial MAC filters 170 * @pf: board private structure 171 * 172 * Set initial set of MAC filters for PF VSI; configure filters for permanent 173 * address and broadcast address. If an error is encountered, netdevice will be 174 * unregistered. 175 */ 176 static int ice_init_mac_fltr(struct ice_pf *pf) 177 { 178 struct ice_vsi *vsi; 179 u8 *perm_addr; 180 181 vsi = ice_get_main_vsi(pf); 182 if (!vsi) 183 return -EINVAL; 184 185 perm_addr = vsi->port_info->mac.perm_addr; 186 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 187 } 188 189 /** 190 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 191 * @netdev: the net device on which the sync is happening 192 * @addr: MAC address to sync 193 * 194 * This is a callback function which is called by the in kernel device sync 195 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 196 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 197 * MAC filters from the hardware. 198 */ 199 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 200 { 201 struct ice_netdev_priv *np = netdev_priv(netdev); 202 struct ice_vsi *vsi = np->vsi; 203 204 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 205 ICE_FWD_TO_VSI)) 206 return -EINVAL; 207 208 return 0; 209 } 210 211 /** 212 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 213 * @netdev: the net device on which the unsync is happening 214 * @addr: MAC address to unsync 215 * 216 * This is a callback function which is called by the in kernel device unsync 217 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 218 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 219 * delete the MAC filters from the hardware. 220 */ 221 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 222 { 223 struct ice_netdev_priv *np = netdev_priv(netdev); 224 struct ice_vsi *vsi = np->vsi; 225 226 /* Under some circumstances, we might receive a request to delete our 227 * own device address from our uc list. Because we store the device 228 * address in the VSI's MAC filter list, we need to ignore such 229 * requests and not delete our device address from this list. 230 */ 231 if (ether_addr_equal(addr, netdev->dev_addr)) 232 return 0; 233 234 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 235 ICE_FWD_TO_VSI)) 236 return -EINVAL; 237 238 return 0; 239 } 240 241 /** 242 * ice_vsi_fltr_changed - check if filter state changed 243 * @vsi: VSI to be checked 244 * 245 * returns true if filter state has changed, false otherwise. 246 */ 247 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 248 { 249 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 250 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 251 } 252 253 /** 254 * ice_set_promisc - Enable promiscuous mode for a given PF 255 * @vsi: the VSI being configured 256 * @promisc_m: mask of promiscuous config bits 257 * 258 */ 259 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 260 { 261 int status; 262 263 if (vsi->type != ICE_VSI_PF) 264 return 0; 265 266 if (ice_vsi_has_non_zero_vlans(vsi)) { 267 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 268 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 269 promisc_m); 270 } else { 271 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 272 promisc_m, 0); 273 } 274 if (status && status != -EEXIST) 275 return status; 276 277 return 0; 278 } 279 280 /** 281 * ice_clear_promisc - Disable promiscuous mode for a given PF 282 * @vsi: the VSI being configured 283 * @promisc_m: mask of promiscuous config bits 284 * 285 */ 286 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 287 { 288 int status; 289 290 if (vsi->type != ICE_VSI_PF) 291 return 0; 292 293 if (ice_vsi_has_non_zero_vlans(vsi)) { 294 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 295 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 296 promisc_m); 297 } else { 298 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 299 promisc_m, 0); 300 } 301 302 return status; 303 } 304 305 /** 306 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 307 * @vsi: ptr to the VSI 308 * 309 * Push any outstanding VSI filter changes through the AdminQ. 310 */ 311 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 312 { 313 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 314 struct device *dev = ice_pf_to_dev(vsi->back); 315 struct net_device *netdev = vsi->netdev; 316 bool promisc_forced_on = false; 317 struct ice_pf *pf = vsi->back; 318 struct ice_hw *hw = &pf->hw; 319 u32 changed_flags = 0; 320 int err; 321 322 if (!vsi->netdev) 323 return -EINVAL; 324 325 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 326 usleep_range(1000, 2000); 327 328 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 329 vsi->current_netdev_flags = vsi->netdev->flags; 330 331 INIT_LIST_HEAD(&vsi->tmp_sync_list); 332 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 333 334 if (ice_vsi_fltr_changed(vsi)) { 335 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 336 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 337 338 /* grab the netdev's addr_list_lock */ 339 netif_addr_lock_bh(netdev); 340 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 341 ice_add_mac_to_unsync_list); 342 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 343 ice_add_mac_to_unsync_list); 344 /* our temp lists are populated. release lock */ 345 netif_addr_unlock_bh(netdev); 346 } 347 348 /* Remove MAC addresses in the unsync list */ 349 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 350 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 351 if (err) { 352 netdev_err(netdev, "Failed to delete MAC filters\n"); 353 /* if we failed because of alloc failures, just bail */ 354 if (err == -ENOMEM) 355 goto out; 356 } 357 358 /* Add MAC addresses in the sync list */ 359 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 361 /* If filter is added successfully or already exists, do not go into 362 * 'if' condition and report it as error. Instead continue processing 363 * rest of the function. 364 */ 365 if (err && err != -EEXIST) { 366 netdev_err(netdev, "Failed to add MAC filters\n"); 367 /* If there is no more space for new umac filters, VSI 368 * should go into promiscuous mode. There should be some 369 * space reserved for promiscuous filters. 370 */ 371 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 372 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 373 vsi->state)) { 374 promisc_forced_on = true; 375 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 376 vsi->vsi_num); 377 } else { 378 goto out; 379 } 380 } 381 err = 0; 382 /* check for changes in promiscuous modes */ 383 if (changed_flags & IFF_ALLMULTI) { 384 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 385 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 386 if (err) { 387 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 388 goto out_promisc; 389 } 390 } else { 391 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 392 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 393 if (err) { 394 vsi->current_netdev_flags |= IFF_ALLMULTI; 395 goto out_promisc; 396 } 397 } 398 } 399 400 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 401 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 402 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 403 if (vsi->current_netdev_flags & IFF_PROMISC) { 404 /* Apply Rx filter rule to get traffic from wire */ 405 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 406 err = ice_set_dflt_vsi(vsi); 407 if (err && err != -EEXIST) { 408 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 409 err, vsi->vsi_num); 410 vsi->current_netdev_flags &= 411 ~IFF_PROMISC; 412 goto out_promisc; 413 } 414 err = 0; 415 vlan_ops->dis_rx_filtering(vsi); 416 } 417 } else { 418 /* Clear Rx filter to remove traffic from wire */ 419 if (ice_is_vsi_dflt_vsi(vsi)) { 420 err = ice_clear_dflt_vsi(vsi); 421 if (err) { 422 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 423 err, vsi->vsi_num); 424 vsi->current_netdev_flags |= 425 IFF_PROMISC; 426 goto out_promisc; 427 } 428 if (vsi->netdev->features & 429 NETIF_F_HW_VLAN_CTAG_FILTER) 430 vlan_ops->ena_rx_filtering(vsi); 431 } 432 } 433 } 434 goto exit; 435 436 out_promisc: 437 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 438 goto exit; 439 out: 440 /* if something went wrong then set the changed flag so we try again */ 441 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 442 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 443 exit: 444 clear_bit(ICE_CFG_BUSY, vsi->state); 445 return err; 446 } 447 448 /** 449 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 450 * @pf: board private structure 451 */ 452 static void ice_sync_fltr_subtask(struct ice_pf *pf) 453 { 454 int v; 455 456 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 457 return; 458 459 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 460 461 ice_for_each_vsi(pf, v) 462 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 463 ice_vsi_sync_fltr(pf->vsi[v])) { 464 /* come back and try again later */ 465 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 466 break; 467 } 468 } 469 470 /** 471 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 472 * @pf: the PF 473 * @locked: is the rtnl_lock already held 474 */ 475 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 476 { 477 int node; 478 int v; 479 480 ice_for_each_vsi(pf, v) 481 if (pf->vsi[v]) 482 ice_dis_vsi(pf->vsi[v], locked); 483 484 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 485 pf->pf_agg_node[node].num_vsis = 0; 486 487 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 488 pf->vf_agg_node[node].num_vsis = 0; 489 } 490 491 /** 492 * ice_clear_sw_switch_recipes - clear switch recipes 493 * @pf: board private structure 494 * 495 * Mark switch recipes as not created in sw structures. There are cases where 496 * rules (especially advanced rules) need to be restored, either re-read from 497 * hardware or added again. For example after the reset. 'recp_created' flag 498 * prevents from doing that and need to be cleared upfront. 499 */ 500 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 501 { 502 struct ice_sw_recipe *recp; 503 u8 i; 504 505 recp = pf->hw.switch_info->recp_list; 506 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 507 recp[i].recp_created = false; 508 } 509 510 /** 511 * ice_prepare_for_reset - prep for reset 512 * @pf: board private structure 513 * @reset_type: reset type requested 514 * 515 * Inform or close all dependent features in prep for reset. 516 */ 517 static void 518 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 519 { 520 struct ice_hw *hw = &pf->hw; 521 struct ice_vsi *vsi; 522 struct ice_vf *vf; 523 unsigned int bkt; 524 525 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 526 527 /* already prepared for reset */ 528 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 529 return; 530 531 ice_unplug_aux_dev(pf); 532 533 /* Notify VFs of impending reset */ 534 if (ice_check_sq_alive(hw, &hw->mailboxq)) 535 ice_vc_notify_reset(pf); 536 537 /* Disable VFs until reset is completed */ 538 mutex_lock(&pf->vfs.table_lock); 539 ice_for_each_vf(pf, bkt, vf) 540 ice_set_vf_state_dis(vf); 541 mutex_unlock(&pf->vfs.table_lock); 542 543 if (ice_is_eswitch_mode_switchdev(pf)) { 544 if (reset_type != ICE_RESET_PFR) 545 ice_clear_sw_switch_recipes(pf); 546 } 547 548 /* release ADQ specific HW and SW resources */ 549 vsi = ice_get_main_vsi(pf); 550 if (!vsi) 551 goto skip; 552 553 /* to be on safe side, reset orig_rss_size so that normal flow 554 * of deciding rss_size can take precedence 555 */ 556 vsi->orig_rss_size = 0; 557 558 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 559 if (reset_type == ICE_RESET_PFR) { 560 vsi->old_ena_tc = vsi->all_enatc; 561 vsi->old_numtc = vsi->all_numtc; 562 } else { 563 ice_remove_q_channels(vsi, true); 564 565 /* for other reset type, do not support channel rebuild 566 * hence reset needed info 567 */ 568 vsi->old_ena_tc = 0; 569 vsi->all_enatc = 0; 570 vsi->old_numtc = 0; 571 vsi->all_numtc = 0; 572 vsi->req_txq = 0; 573 vsi->req_rxq = 0; 574 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 575 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 576 } 577 } 578 skip: 579 580 /* clear SW filtering DB */ 581 ice_clear_hw_tbls(hw); 582 /* disable the VSIs and their queues that are not already DOWN */ 583 ice_pf_dis_all_vsi(pf, false); 584 585 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 586 ice_ptp_prepare_for_reset(pf); 587 588 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 589 ice_gnss_exit(pf); 590 591 if (hw->port_info) 592 ice_sched_clear_port(hw->port_info); 593 594 ice_shutdown_all_ctrlq(hw); 595 596 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 597 } 598 599 /** 600 * ice_do_reset - Initiate one of many types of resets 601 * @pf: board private structure 602 * @reset_type: reset type requested before this function was called. 603 */ 604 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 605 { 606 struct device *dev = ice_pf_to_dev(pf); 607 struct ice_hw *hw = &pf->hw; 608 609 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 610 611 ice_prepare_for_reset(pf, reset_type); 612 613 /* trigger the reset */ 614 if (ice_reset(hw, reset_type)) { 615 dev_err(dev, "reset %d failed\n", reset_type); 616 set_bit(ICE_RESET_FAILED, pf->state); 617 clear_bit(ICE_RESET_OICR_RECV, pf->state); 618 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 619 clear_bit(ICE_PFR_REQ, pf->state); 620 clear_bit(ICE_CORER_REQ, pf->state); 621 clear_bit(ICE_GLOBR_REQ, pf->state); 622 wake_up(&pf->reset_wait_queue); 623 return; 624 } 625 626 /* PFR is a bit of a special case because it doesn't result in an OICR 627 * interrupt. So for PFR, rebuild after the reset and clear the reset- 628 * associated state bits. 629 */ 630 if (reset_type == ICE_RESET_PFR) { 631 pf->pfr_count++; 632 ice_rebuild(pf, reset_type); 633 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 634 clear_bit(ICE_PFR_REQ, pf->state); 635 wake_up(&pf->reset_wait_queue); 636 ice_reset_all_vfs(pf); 637 } 638 } 639 640 /** 641 * ice_reset_subtask - Set up for resetting the device and driver 642 * @pf: board private structure 643 */ 644 static void ice_reset_subtask(struct ice_pf *pf) 645 { 646 enum ice_reset_req reset_type = ICE_RESET_INVAL; 647 648 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 649 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 650 * of reset is pending and sets bits in pf->state indicating the reset 651 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 652 * prepare for pending reset if not already (for PF software-initiated 653 * global resets the software should already be prepared for it as 654 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 655 * by firmware or software on other PFs, that bit is not set so prepare 656 * for the reset now), poll for reset done, rebuild and return. 657 */ 658 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 659 /* Perform the largest reset requested */ 660 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 661 reset_type = ICE_RESET_CORER; 662 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 663 reset_type = ICE_RESET_GLOBR; 664 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 665 reset_type = ICE_RESET_EMPR; 666 /* return if no valid reset type requested */ 667 if (reset_type == ICE_RESET_INVAL) 668 return; 669 ice_prepare_for_reset(pf, reset_type); 670 671 /* make sure we are ready to rebuild */ 672 if (ice_check_reset(&pf->hw)) { 673 set_bit(ICE_RESET_FAILED, pf->state); 674 } else { 675 /* done with reset. start rebuild */ 676 pf->hw.reset_ongoing = false; 677 ice_rebuild(pf, reset_type); 678 /* clear bit to resume normal operations, but 679 * ICE_NEEDS_RESTART bit is set in case rebuild failed 680 */ 681 clear_bit(ICE_RESET_OICR_RECV, pf->state); 682 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 683 clear_bit(ICE_PFR_REQ, pf->state); 684 clear_bit(ICE_CORER_REQ, pf->state); 685 clear_bit(ICE_GLOBR_REQ, pf->state); 686 wake_up(&pf->reset_wait_queue); 687 ice_reset_all_vfs(pf); 688 } 689 690 return; 691 } 692 693 /* No pending resets to finish processing. Check for new resets */ 694 if (test_bit(ICE_PFR_REQ, pf->state)) 695 reset_type = ICE_RESET_PFR; 696 if (test_bit(ICE_CORER_REQ, pf->state)) 697 reset_type = ICE_RESET_CORER; 698 if (test_bit(ICE_GLOBR_REQ, pf->state)) 699 reset_type = ICE_RESET_GLOBR; 700 /* If no valid reset type requested just return */ 701 if (reset_type == ICE_RESET_INVAL) 702 return; 703 704 /* reset if not already down or busy */ 705 if (!test_bit(ICE_DOWN, pf->state) && 706 !test_bit(ICE_CFG_BUSY, pf->state)) { 707 ice_do_reset(pf, reset_type); 708 } 709 } 710 711 /** 712 * ice_print_topo_conflict - print topology conflict message 713 * @vsi: the VSI whose topology status is being checked 714 */ 715 static void ice_print_topo_conflict(struct ice_vsi *vsi) 716 { 717 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 718 case ICE_AQ_LINK_TOPO_CONFLICT: 719 case ICE_AQ_LINK_MEDIA_CONFLICT: 720 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 721 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 722 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 723 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 724 break; 725 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 726 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 727 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 728 else 729 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 730 break; 731 default: 732 break; 733 } 734 } 735 736 /** 737 * ice_print_link_msg - print link up or down message 738 * @vsi: the VSI whose link status is being queried 739 * @isup: boolean for if the link is now up or down 740 */ 741 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 742 { 743 struct ice_aqc_get_phy_caps_data *caps; 744 const char *an_advertised; 745 const char *fec_req; 746 const char *speed; 747 const char *fec; 748 const char *fc; 749 const char *an; 750 int status; 751 752 if (!vsi) 753 return; 754 755 if (vsi->current_isup == isup) 756 return; 757 758 vsi->current_isup = isup; 759 760 if (!isup) { 761 netdev_info(vsi->netdev, "NIC Link is Down\n"); 762 return; 763 } 764 765 switch (vsi->port_info->phy.link_info.link_speed) { 766 case ICE_AQ_LINK_SPEED_100GB: 767 speed = "100 G"; 768 break; 769 case ICE_AQ_LINK_SPEED_50GB: 770 speed = "50 G"; 771 break; 772 case ICE_AQ_LINK_SPEED_40GB: 773 speed = "40 G"; 774 break; 775 case ICE_AQ_LINK_SPEED_25GB: 776 speed = "25 G"; 777 break; 778 case ICE_AQ_LINK_SPEED_20GB: 779 speed = "20 G"; 780 break; 781 case ICE_AQ_LINK_SPEED_10GB: 782 speed = "10 G"; 783 break; 784 case ICE_AQ_LINK_SPEED_5GB: 785 speed = "5 G"; 786 break; 787 case ICE_AQ_LINK_SPEED_2500MB: 788 speed = "2.5 G"; 789 break; 790 case ICE_AQ_LINK_SPEED_1000MB: 791 speed = "1 G"; 792 break; 793 case ICE_AQ_LINK_SPEED_100MB: 794 speed = "100 M"; 795 break; 796 default: 797 speed = "Unknown "; 798 break; 799 } 800 801 switch (vsi->port_info->fc.current_mode) { 802 case ICE_FC_FULL: 803 fc = "Rx/Tx"; 804 break; 805 case ICE_FC_TX_PAUSE: 806 fc = "Tx"; 807 break; 808 case ICE_FC_RX_PAUSE: 809 fc = "Rx"; 810 break; 811 case ICE_FC_NONE: 812 fc = "None"; 813 break; 814 default: 815 fc = "Unknown"; 816 break; 817 } 818 819 /* Get FEC mode based on negotiated link info */ 820 switch (vsi->port_info->phy.link_info.fec_info) { 821 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 822 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 823 fec = "RS-FEC"; 824 break; 825 case ICE_AQ_LINK_25G_KR_FEC_EN: 826 fec = "FC-FEC/BASE-R"; 827 break; 828 default: 829 fec = "NONE"; 830 break; 831 } 832 833 /* check if autoneg completed, might be false due to not supported */ 834 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 835 an = "True"; 836 else 837 an = "False"; 838 839 /* Get FEC mode requested based on PHY caps last SW configuration */ 840 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 841 if (!caps) { 842 fec_req = "Unknown"; 843 an_advertised = "Unknown"; 844 goto done; 845 } 846 847 status = ice_aq_get_phy_caps(vsi->port_info, false, 848 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 849 if (status) 850 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 851 852 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 853 854 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 855 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 856 fec_req = "RS-FEC"; 857 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 858 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 859 fec_req = "FC-FEC/BASE-R"; 860 else 861 fec_req = "NONE"; 862 863 kfree(caps); 864 865 done: 866 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 867 speed, fec_req, fec, an_advertised, an, fc); 868 ice_print_topo_conflict(vsi); 869 } 870 871 /** 872 * ice_vsi_link_event - update the VSI's netdev 873 * @vsi: the VSI on which the link event occurred 874 * @link_up: whether or not the VSI needs to be set up or down 875 */ 876 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 877 { 878 if (!vsi) 879 return; 880 881 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 882 return; 883 884 if (vsi->type == ICE_VSI_PF) { 885 if (link_up == netif_carrier_ok(vsi->netdev)) 886 return; 887 888 if (link_up) { 889 netif_carrier_on(vsi->netdev); 890 netif_tx_wake_all_queues(vsi->netdev); 891 } else { 892 netif_carrier_off(vsi->netdev); 893 netif_tx_stop_all_queues(vsi->netdev); 894 } 895 } 896 } 897 898 /** 899 * ice_set_dflt_mib - send a default config MIB to the FW 900 * @pf: private PF struct 901 * 902 * This function sends a default configuration MIB to the FW. 903 * 904 * If this function errors out at any point, the driver is still able to 905 * function. The main impact is that LFC may not operate as expected. 906 * Therefore an error state in this function should be treated with a DBG 907 * message and continue on with driver rebuild/reenable. 908 */ 909 static void ice_set_dflt_mib(struct ice_pf *pf) 910 { 911 struct device *dev = ice_pf_to_dev(pf); 912 u8 mib_type, *buf, *lldpmib = NULL; 913 u16 len, typelen, offset = 0; 914 struct ice_lldp_org_tlv *tlv; 915 struct ice_hw *hw = &pf->hw; 916 u32 ouisubtype; 917 918 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 919 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 920 if (!lldpmib) { 921 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 922 __func__); 923 return; 924 } 925 926 /* Add ETS CFG TLV */ 927 tlv = (struct ice_lldp_org_tlv *)lldpmib; 928 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 929 ICE_IEEE_ETS_TLV_LEN); 930 tlv->typelen = htons(typelen); 931 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 932 ICE_IEEE_SUBTYPE_ETS_CFG); 933 tlv->ouisubtype = htonl(ouisubtype); 934 935 buf = tlv->tlvinfo; 936 buf[0] = 0; 937 938 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 939 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 940 * Octets 13 - 20 are TSA values - leave as zeros 941 */ 942 buf[5] = 0x64; 943 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 944 offset += len + 2; 945 tlv = (struct ice_lldp_org_tlv *) 946 ((char *)tlv + sizeof(tlv->typelen) + len); 947 948 /* Add ETS REC TLV */ 949 buf = tlv->tlvinfo; 950 tlv->typelen = htons(typelen); 951 952 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 953 ICE_IEEE_SUBTYPE_ETS_REC); 954 tlv->ouisubtype = htonl(ouisubtype); 955 956 /* First octet of buf is reserved 957 * Octets 1 - 4 map UP to TC - all UPs map to zero 958 * Octets 5 - 12 are BW values - set TC 0 to 100%. 959 * Octets 13 - 20 are TSA value - leave as zeros 960 */ 961 buf[5] = 0x64; 962 offset += len + 2; 963 tlv = (struct ice_lldp_org_tlv *) 964 ((char *)tlv + sizeof(tlv->typelen) + len); 965 966 /* Add PFC CFG TLV */ 967 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 968 ICE_IEEE_PFC_TLV_LEN); 969 tlv->typelen = htons(typelen); 970 971 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 972 ICE_IEEE_SUBTYPE_PFC_CFG); 973 tlv->ouisubtype = htonl(ouisubtype); 974 975 /* Octet 1 left as all zeros - PFC disabled */ 976 buf[0] = 0x08; 977 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 978 offset += len + 2; 979 980 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 981 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 982 983 kfree(lldpmib); 984 } 985 986 /** 987 * ice_check_phy_fw_load - check if PHY FW load failed 988 * @pf: pointer to PF struct 989 * @link_cfg_err: bitmap from the link info structure 990 * 991 * check if external PHY FW load failed and print an error message if it did 992 */ 993 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 994 { 995 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 996 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 997 return; 998 } 999 1000 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1001 return; 1002 1003 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1004 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1005 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1006 } 1007 } 1008 1009 /** 1010 * ice_check_module_power 1011 * @pf: pointer to PF struct 1012 * @link_cfg_err: bitmap from the link info structure 1013 * 1014 * check module power level returned by a previous call to aq_get_link_info 1015 * and print error messages if module power level is not supported 1016 */ 1017 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1018 { 1019 /* if module power level is supported, clear the flag */ 1020 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1021 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1022 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1023 return; 1024 } 1025 1026 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1027 * above block didn't clear this bit, there's nothing to do 1028 */ 1029 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1030 return; 1031 1032 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1033 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1034 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1035 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1036 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1037 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1038 } 1039 } 1040 1041 /** 1042 * ice_check_link_cfg_err - check if link configuration failed 1043 * @pf: pointer to the PF struct 1044 * @link_cfg_err: bitmap from the link info structure 1045 * 1046 * print if any link configuration failure happens due to the value in the 1047 * link_cfg_err parameter in the link info structure 1048 */ 1049 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1050 { 1051 ice_check_module_power(pf, link_cfg_err); 1052 ice_check_phy_fw_load(pf, link_cfg_err); 1053 } 1054 1055 /** 1056 * ice_link_event - process the link event 1057 * @pf: PF that the link event is associated with 1058 * @pi: port_info for the port that the link event is associated with 1059 * @link_up: true if the physical link is up and false if it is down 1060 * @link_speed: current link speed received from the link event 1061 * 1062 * Returns 0 on success and negative on failure 1063 */ 1064 static int 1065 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1066 u16 link_speed) 1067 { 1068 struct device *dev = ice_pf_to_dev(pf); 1069 struct ice_phy_info *phy_info; 1070 struct ice_vsi *vsi; 1071 u16 old_link_speed; 1072 bool old_link; 1073 int status; 1074 1075 phy_info = &pi->phy; 1076 phy_info->link_info_old = phy_info->link_info; 1077 1078 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1079 old_link_speed = phy_info->link_info_old.link_speed; 1080 1081 /* update the link info structures and re-enable link events, 1082 * don't bail on failure due to other book keeping needed 1083 */ 1084 status = ice_update_link_info(pi); 1085 if (status) 1086 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1087 pi->lport, status, 1088 ice_aq_str(pi->hw->adminq.sq_last_status)); 1089 1090 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1091 1092 /* Check if the link state is up after updating link info, and treat 1093 * this event as an UP event since the link is actually UP now. 1094 */ 1095 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1096 link_up = true; 1097 1098 vsi = ice_get_main_vsi(pf); 1099 if (!vsi || !vsi->port_info) 1100 return -EINVAL; 1101 1102 /* turn off PHY if media was removed */ 1103 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1104 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1105 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1106 ice_set_link(vsi, false); 1107 } 1108 1109 /* if the old link up/down and speed is the same as the new */ 1110 if (link_up == old_link && link_speed == old_link_speed) 1111 return 0; 1112 1113 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1114 1115 if (ice_is_dcb_active(pf)) { 1116 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1117 ice_dcb_rebuild(pf); 1118 } else { 1119 if (link_up) 1120 ice_set_dflt_mib(pf); 1121 } 1122 ice_vsi_link_event(vsi, link_up); 1123 ice_print_link_msg(vsi, link_up); 1124 1125 ice_vc_notify_link_state(pf); 1126 1127 return 0; 1128 } 1129 1130 /** 1131 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1132 * @pf: board private structure 1133 */ 1134 static void ice_watchdog_subtask(struct ice_pf *pf) 1135 { 1136 int i; 1137 1138 /* if interface is down do nothing */ 1139 if (test_bit(ICE_DOWN, pf->state) || 1140 test_bit(ICE_CFG_BUSY, pf->state)) 1141 return; 1142 1143 /* make sure we don't do these things too often */ 1144 if (time_before(jiffies, 1145 pf->serv_tmr_prev + pf->serv_tmr_period)) 1146 return; 1147 1148 pf->serv_tmr_prev = jiffies; 1149 1150 /* Update the stats for active netdevs so the network stack 1151 * can look at updated numbers whenever it cares to 1152 */ 1153 ice_update_pf_stats(pf); 1154 ice_for_each_vsi(pf, i) 1155 if (pf->vsi[i] && pf->vsi[i]->netdev) 1156 ice_update_vsi_stats(pf->vsi[i]); 1157 } 1158 1159 /** 1160 * ice_init_link_events - enable/initialize link events 1161 * @pi: pointer to the port_info instance 1162 * 1163 * Returns -EIO on failure, 0 on success 1164 */ 1165 static int ice_init_link_events(struct ice_port_info *pi) 1166 { 1167 u16 mask; 1168 1169 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1170 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1171 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1172 1173 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1174 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1175 pi->lport); 1176 return -EIO; 1177 } 1178 1179 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1180 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1181 pi->lport); 1182 return -EIO; 1183 } 1184 1185 return 0; 1186 } 1187 1188 /** 1189 * ice_handle_link_event - handle link event via ARQ 1190 * @pf: PF that the link event is associated with 1191 * @event: event structure containing link status info 1192 */ 1193 static int 1194 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1195 { 1196 struct ice_aqc_get_link_status_data *link_data; 1197 struct ice_port_info *port_info; 1198 int status; 1199 1200 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1201 port_info = pf->hw.port_info; 1202 if (!port_info) 1203 return -EINVAL; 1204 1205 status = ice_link_event(pf, port_info, 1206 !!(link_data->link_info & ICE_AQ_LINK_UP), 1207 le16_to_cpu(link_data->link_speed)); 1208 if (status) 1209 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1210 status); 1211 1212 return status; 1213 } 1214 1215 enum ice_aq_task_state { 1216 ICE_AQ_TASK_WAITING = 0, 1217 ICE_AQ_TASK_COMPLETE, 1218 ICE_AQ_TASK_CANCELED, 1219 }; 1220 1221 struct ice_aq_task { 1222 struct hlist_node entry; 1223 1224 u16 opcode; 1225 struct ice_rq_event_info *event; 1226 enum ice_aq_task_state state; 1227 }; 1228 1229 /** 1230 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1231 * @pf: pointer to the PF private structure 1232 * @opcode: the opcode to wait for 1233 * @timeout: how long to wait, in jiffies 1234 * @event: storage for the event info 1235 * 1236 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1237 * current thread will be put to sleep until the specified event occurs or 1238 * until the given timeout is reached. 1239 * 1240 * To obtain only the descriptor contents, pass an event without an allocated 1241 * msg_buf. If the complete data buffer is desired, allocate the 1242 * event->msg_buf with enough space ahead of time. 1243 * 1244 * Returns: zero on success, or a negative error code on failure. 1245 */ 1246 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1247 struct ice_rq_event_info *event) 1248 { 1249 struct device *dev = ice_pf_to_dev(pf); 1250 struct ice_aq_task *task; 1251 unsigned long start; 1252 long ret; 1253 int err; 1254 1255 task = kzalloc(sizeof(*task), GFP_KERNEL); 1256 if (!task) 1257 return -ENOMEM; 1258 1259 INIT_HLIST_NODE(&task->entry); 1260 task->opcode = opcode; 1261 task->event = event; 1262 task->state = ICE_AQ_TASK_WAITING; 1263 1264 spin_lock_bh(&pf->aq_wait_lock); 1265 hlist_add_head(&task->entry, &pf->aq_wait_list); 1266 spin_unlock_bh(&pf->aq_wait_lock); 1267 1268 start = jiffies; 1269 1270 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1271 timeout); 1272 switch (task->state) { 1273 case ICE_AQ_TASK_WAITING: 1274 err = ret < 0 ? ret : -ETIMEDOUT; 1275 break; 1276 case ICE_AQ_TASK_CANCELED: 1277 err = ret < 0 ? ret : -ECANCELED; 1278 break; 1279 case ICE_AQ_TASK_COMPLETE: 1280 err = ret < 0 ? ret : 0; 1281 break; 1282 default: 1283 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1284 err = -EINVAL; 1285 break; 1286 } 1287 1288 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1289 jiffies_to_msecs(jiffies - start), 1290 jiffies_to_msecs(timeout), 1291 opcode); 1292 1293 spin_lock_bh(&pf->aq_wait_lock); 1294 hlist_del(&task->entry); 1295 spin_unlock_bh(&pf->aq_wait_lock); 1296 kfree(task); 1297 1298 return err; 1299 } 1300 1301 /** 1302 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1303 * @pf: pointer to the PF private structure 1304 * @opcode: the opcode of the event 1305 * @event: the event to check 1306 * 1307 * Loops over the current list of pending threads waiting for an AdminQ event. 1308 * For each matching task, copy the contents of the event into the task 1309 * structure and wake up the thread. 1310 * 1311 * If multiple threads wait for the same opcode, they will all be woken up. 1312 * 1313 * Note that event->msg_buf will only be duplicated if the event has a buffer 1314 * with enough space already allocated. Otherwise, only the descriptor and 1315 * message length will be copied. 1316 * 1317 * Returns: true if an event was found, false otherwise 1318 */ 1319 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1320 struct ice_rq_event_info *event) 1321 { 1322 struct ice_aq_task *task; 1323 bool found = false; 1324 1325 spin_lock_bh(&pf->aq_wait_lock); 1326 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1327 if (task->state || task->opcode != opcode) 1328 continue; 1329 1330 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1331 task->event->msg_len = event->msg_len; 1332 1333 /* Only copy the data buffer if a destination was set */ 1334 if (task->event->msg_buf && 1335 task->event->buf_len > event->buf_len) { 1336 memcpy(task->event->msg_buf, event->msg_buf, 1337 event->buf_len); 1338 task->event->buf_len = event->buf_len; 1339 } 1340 1341 task->state = ICE_AQ_TASK_COMPLETE; 1342 found = true; 1343 } 1344 spin_unlock_bh(&pf->aq_wait_lock); 1345 1346 if (found) 1347 wake_up(&pf->aq_wait_queue); 1348 } 1349 1350 /** 1351 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1352 * @pf: the PF private structure 1353 * 1354 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1355 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1356 */ 1357 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1358 { 1359 struct ice_aq_task *task; 1360 1361 spin_lock_bh(&pf->aq_wait_lock); 1362 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1363 task->state = ICE_AQ_TASK_CANCELED; 1364 spin_unlock_bh(&pf->aq_wait_lock); 1365 1366 wake_up(&pf->aq_wait_queue); 1367 } 1368 1369 /** 1370 * __ice_clean_ctrlq - helper function to clean controlq rings 1371 * @pf: ptr to struct ice_pf 1372 * @q_type: specific Control queue type 1373 */ 1374 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1375 { 1376 struct device *dev = ice_pf_to_dev(pf); 1377 struct ice_rq_event_info event; 1378 struct ice_hw *hw = &pf->hw; 1379 struct ice_ctl_q_info *cq; 1380 u16 pending, i = 0; 1381 const char *qtype; 1382 u32 oldval, val; 1383 1384 /* Do not clean control queue if/when PF reset fails */ 1385 if (test_bit(ICE_RESET_FAILED, pf->state)) 1386 return 0; 1387 1388 switch (q_type) { 1389 case ICE_CTL_Q_ADMIN: 1390 cq = &hw->adminq; 1391 qtype = "Admin"; 1392 break; 1393 case ICE_CTL_Q_SB: 1394 cq = &hw->sbq; 1395 qtype = "Sideband"; 1396 break; 1397 case ICE_CTL_Q_MAILBOX: 1398 cq = &hw->mailboxq; 1399 qtype = "Mailbox"; 1400 /* we are going to try to detect a malicious VF, so set the 1401 * state to begin detection 1402 */ 1403 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1404 break; 1405 default: 1406 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1407 return 0; 1408 } 1409 1410 /* check for error indications - PF_xx_AxQLEN register layout for 1411 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1412 */ 1413 val = rd32(hw, cq->rq.len); 1414 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1415 PF_FW_ARQLEN_ARQCRIT_M)) { 1416 oldval = val; 1417 if (val & PF_FW_ARQLEN_ARQVFE_M) 1418 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1419 qtype); 1420 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1421 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1422 qtype); 1423 } 1424 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1425 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1426 qtype); 1427 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1428 PF_FW_ARQLEN_ARQCRIT_M); 1429 if (oldval != val) 1430 wr32(hw, cq->rq.len, val); 1431 } 1432 1433 val = rd32(hw, cq->sq.len); 1434 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1435 PF_FW_ATQLEN_ATQCRIT_M)) { 1436 oldval = val; 1437 if (val & PF_FW_ATQLEN_ATQVFE_M) 1438 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1439 qtype); 1440 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1441 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1442 qtype); 1443 } 1444 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1445 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1446 qtype); 1447 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1448 PF_FW_ATQLEN_ATQCRIT_M); 1449 if (oldval != val) 1450 wr32(hw, cq->sq.len, val); 1451 } 1452 1453 event.buf_len = cq->rq_buf_size; 1454 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1455 if (!event.msg_buf) 1456 return 0; 1457 1458 do { 1459 u16 opcode; 1460 int ret; 1461 1462 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1463 if (ret == -EALREADY) 1464 break; 1465 if (ret) { 1466 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1467 ret); 1468 break; 1469 } 1470 1471 opcode = le16_to_cpu(event.desc.opcode); 1472 1473 /* Notify any thread that might be waiting for this event */ 1474 ice_aq_check_events(pf, opcode, &event); 1475 1476 switch (opcode) { 1477 case ice_aqc_opc_get_link_status: 1478 if (ice_handle_link_event(pf, &event)) 1479 dev_err(dev, "Could not handle link event\n"); 1480 break; 1481 case ice_aqc_opc_event_lan_overflow: 1482 ice_vf_lan_overflow_event(pf, &event); 1483 break; 1484 case ice_mbx_opc_send_msg_to_pf: 1485 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1486 ice_vc_process_vf_msg(pf, &event); 1487 break; 1488 case ice_aqc_opc_fw_logging: 1489 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1490 break; 1491 case ice_aqc_opc_lldp_set_mib_change: 1492 ice_dcb_process_lldp_set_mib_change(pf, &event); 1493 break; 1494 default: 1495 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1496 qtype, opcode); 1497 break; 1498 } 1499 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1500 1501 kfree(event.msg_buf); 1502 1503 return pending && (i == ICE_DFLT_IRQ_WORK); 1504 } 1505 1506 /** 1507 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1508 * @hw: pointer to hardware info 1509 * @cq: control queue information 1510 * 1511 * returns true if there are pending messages in a queue, false if there aren't 1512 */ 1513 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1514 { 1515 u16 ntu; 1516 1517 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1518 return cq->rq.next_to_clean != ntu; 1519 } 1520 1521 /** 1522 * ice_clean_adminq_subtask - clean the AdminQ rings 1523 * @pf: board private structure 1524 */ 1525 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1526 { 1527 struct ice_hw *hw = &pf->hw; 1528 1529 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1530 return; 1531 1532 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1533 return; 1534 1535 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1536 1537 /* There might be a situation where new messages arrive to a control 1538 * queue between processing the last message and clearing the 1539 * EVENT_PENDING bit. So before exiting, check queue head again (using 1540 * ice_ctrlq_pending) and process new messages if any. 1541 */ 1542 if (ice_ctrlq_pending(hw, &hw->adminq)) 1543 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1544 1545 ice_flush(hw); 1546 } 1547 1548 /** 1549 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1550 * @pf: board private structure 1551 */ 1552 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1553 { 1554 struct ice_hw *hw = &pf->hw; 1555 1556 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1557 return; 1558 1559 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1560 return; 1561 1562 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1563 1564 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1565 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1566 1567 ice_flush(hw); 1568 } 1569 1570 /** 1571 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1572 * @pf: board private structure 1573 */ 1574 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1575 { 1576 struct ice_hw *hw = &pf->hw; 1577 1578 /* Nothing to do here if sideband queue is not supported */ 1579 if (!ice_is_sbq_supported(hw)) { 1580 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1581 return; 1582 } 1583 1584 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1585 return; 1586 1587 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1588 return; 1589 1590 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1591 1592 if (ice_ctrlq_pending(hw, &hw->sbq)) 1593 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1594 1595 ice_flush(hw); 1596 } 1597 1598 /** 1599 * ice_service_task_schedule - schedule the service task to wake up 1600 * @pf: board private structure 1601 * 1602 * If not already scheduled, this puts the task into the work queue. 1603 */ 1604 void ice_service_task_schedule(struct ice_pf *pf) 1605 { 1606 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1607 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1608 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1609 queue_work(ice_wq, &pf->serv_task); 1610 } 1611 1612 /** 1613 * ice_service_task_complete - finish up the service task 1614 * @pf: board private structure 1615 */ 1616 static void ice_service_task_complete(struct ice_pf *pf) 1617 { 1618 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1619 1620 /* force memory (pf->state) to sync before next service task */ 1621 smp_mb__before_atomic(); 1622 clear_bit(ICE_SERVICE_SCHED, pf->state); 1623 } 1624 1625 /** 1626 * ice_service_task_stop - stop service task and cancel works 1627 * @pf: board private structure 1628 * 1629 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1630 * 1 otherwise. 1631 */ 1632 static int ice_service_task_stop(struct ice_pf *pf) 1633 { 1634 int ret; 1635 1636 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1637 1638 if (pf->serv_tmr.function) 1639 del_timer_sync(&pf->serv_tmr); 1640 if (pf->serv_task.func) 1641 cancel_work_sync(&pf->serv_task); 1642 1643 clear_bit(ICE_SERVICE_SCHED, pf->state); 1644 return ret; 1645 } 1646 1647 /** 1648 * ice_service_task_restart - restart service task and schedule works 1649 * @pf: board private structure 1650 * 1651 * This function is needed for suspend and resume works (e.g WoL scenario) 1652 */ 1653 static void ice_service_task_restart(struct ice_pf *pf) 1654 { 1655 clear_bit(ICE_SERVICE_DIS, pf->state); 1656 ice_service_task_schedule(pf); 1657 } 1658 1659 /** 1660 * ice_service_timer - timer callback to schedule service task 1661 * @t: pointer to timer_list 1662 */ 1663 static void ice_service_timer(struct timer_list *t) 1664 { 1665 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1666 1667 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1668 ice_service_task_schedule(pf); 1669 } 1670 1671 /** 1672 * ice_handle_mdd_event - handle malicious driver detect event 1673 * @pf: pointer to the PF structure 1674 * 1675 * Called from service task. OICR interrupt handler indicates MDD event. 1676 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1677 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1678 * disable the queue, the PF can be configured to reset the VF using ethtool 1679 * private flag mdd-auto-reset-vf. 1680 */ 1681 static void ice_handle_mdd_event(struct ice_pf *pf) 1682 { 1683 struct device *dev = ice_pf_to_dev(pf); 1684 struct ice_hw *hw = &pf->hw; 1685 struct ice_vf *vf; 1686 unsigned int bkt; 1687 u32 reg; 1688 1689 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1690 /* Since the VF MDD event logging is rate limited, check if 1691 * there are pending MDD events. 1692 */ 1693 ice_print_vfs_mdd_events(pf); 1694 return; 1695 } 1696 1697 /* find what triggered an MDD event */ 1698 reg = rd32(hw, GL_MDET_TX_PQM); 1699 if (reg & GL_MDET_TX_PQM_VALID_M) { 1700 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1701 GL_MDET_TX_PQM_PF_NUM_S; 1702 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1703 GL_MDET_TX_PQM_VF_NUM_S; 1704 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1705 GL_MDET_TX_PQM_MAL_TYPE_S; 1706 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1707 GL_MDET_TX_PQM_QNUM_S); 1708 1709 if (netif_msg_tx_err(pf)) 1710 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1711 event, queue, pf_num, vf_num); 1712 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1713 } 1714 1715 reg = rd32(hw, GL_MDET_TX_TCLAN); 1716 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1717 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1718 GL_MDET_TX_TCLAN_PF_NUM_S; 1719 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1720 GL_MDET_TX_TCLAN_VF_NUM_S; 1721 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1722 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1723 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1724 GL_MDET_TX_TCLAN_QNUM_S); 1725 1726 if (netif_msg_tx_err(pf)) 1727 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1728 event, queue, pf_num, vf_num); 1729 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1730 } 1731 1732 reg = rd32(hw, GL_MDET_RX); 1733 if (reg & GL_MDET_RX_VALID_M) { 1734 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1735 GL_MDET_RX_PF_NUM_S; 1736 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1737 GL_MDET_RX_VF_NUM_S; 1738 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1739 GL_MDET_RX_MAL_TYPE_S; 1740 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1741 GL_MDET_RX_QNUM_S); 1742 1743 if (netif_msg_rx_err(pf)) 1744 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1745 event, queue, pf_num, vf_num); 1746 wr32(hw, GL_MDET_RX, 0xffffffff); 1747 } 1748 1749 /* check to see if this PF caused an MDD event */ 1750 reg = rd32(hw, PF_MDET_TX_PQM); 1751 if (reg & PF_MDET_TX_PQM_VALID_M) { 1752 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1753 if (netif_msg_tx_err(pf)) 1754 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1755 } 1756 1757 reg = rd32(hw, PF_MDET_TX_TCLAN); 1758 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1759 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1760 if (netif_msg_tx_err(pf)) 1761 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1762 } 1763 1764 reg = rd32(hw, PF_MDET_RX); 1765 if (reg & PF_MDET_RX_VALID_M) { 1766 wr32(hw, PF_MDET_RX, 0xFFFF); 1767 if (netif_msg_rx_err(pf)) 1768 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1769 } 1770 1771 /* Check to see if one of the VFs caused an MDD event, and then 1772 * increment counters and set print pending 1773 */ 1774 mutex_lock(&pf->vfs.table_lock); 1775 ice_for_each_vf(pf, bkt, vf) { 1776 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1777 if (reg & VP_MDET_TX_PQM_VALID_M) { 1778 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1779 vf->mdd_tx_events.count++; 1780 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1781 if (netif_msg_tx_err(pf)) 1782 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1783 vf->vf_id); 1784 } 1785 1786 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1787 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1788 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1789 vf->mdd_tx_events.count++; 1790 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1791 if (netif_msg_tx_err(pf)) 1792 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1793 vf->vf_id); 1794 } 1795 1796 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1797 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1798 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1799 vf->mdd_tx_events.count++; 1800 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1801 if (netif_msg_tx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1803 vf->vf_id); 1804 } 1805 1806 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1807 if (reg & VP_MDET_RX_VALID_M) { 1808 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1809 vf->mdd_rx_events.count++; 1810 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1811 if (netif_msg_rx_err(pf)) 1812 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1813 vf->vf_id); 1814 1815 /* Since the queue is disabled on VF Rx MDD events, the 1816 * PF can be configured to reset the VF through ethtool 1817 * private flag mdd-auto-reset-vf. 1818 */ 1819 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1820 /* VF MDD event counters will be cleared by 1821 * reset, so print the event prior to reset. 1822 */ 1823 ice_print_vf_rx_mdd_event(vf); 1824 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1825 } 1826 } 1827 } 1828 mutex_unlock(&pf->vfs.table_lock); 1829 1830 ice_print_vfs_mdd_events(pf); 1831 } 1832 1833 /** 1834 * ice_force_phys_link_state - Force the physical link state 1835 * @vsi: VSI to force the physical link state to up/down 1836 * @link_up: true/false indicates to set the physical link to up/down 1837 * 1838 * Force the physical link state by getting the current PHY capabilities from 1839 * hardware and setting the PHY config based on the determined capabilities. If 1840 * link changes a link event will be triggered because both the Enable Automatic 1841 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1842 * 1843 * Returns 0 on success, negative on failure 1844 */ 1845 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1846 { 1847 struct ice_aqc_get_phy_caps_data *pcaps; 1848 struct ice_aqc_set_phy_cfg_data *cfg; 1849 struct ice_port_info *pi; 1850 struct device *dev; 1851 int retcode; 1852 1853 if (!vsi || !vsi->port_info || !vsi->back) 1854 return -EINVAL; 1855 if (vsi->type != ICE_VSI_PF) 1856 return 0; 1857 1858 dev = ice_pf_to_dev(vsi->back); 1859 1860 pi = vsi->port_info; 1861 1862 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1863 if (!pcaps) 1864 return -ENOMEM; 1865 1866 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1867 NULL); 1868 if (retcode) { 1869 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1870 vsi->vsi_num, retcode); 1871 retcode = -EIO; 1872 goto out; 1873 } 1874 1875 /* No change in link */ 1876 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1877 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1878 goto out; 1879 1880 /* Use the current user PHY configuration. The current user PHY 1881 * configuration is initialized during probe from PHY capabilities 1882 * software mode, and updated on set PHY configuration. 1883 */ 1884 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1885 if (!cfg) { 1886 retcode = -ENOMEM; 1887 goto out; 1888 } 1889 1890 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1891 if (link_up) 1892 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1893 else 1894 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1895 1896 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1897 if (retcode) { 1898 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1899 vsi->vsi_num, retcode); 1900 retcode = -EIO; 1901 } 1902 1903 kfree(cfg); 1904 out: 1905 kfree(pcaps); 1906 return retcode; 1907 } 1908 1909 /** 1910 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1911 * @pi: port info structure 1912 * 1913 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1914 */ 1915 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1916 { 1917 struct ice_aqc_get_phy_caps_data *pcaps; 1918 struct ice_pf *pf = pi->hw->back; 1919 int err; 1920 1921 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1922 if (!pcaps) 1923 return -ENOMEM; 1924 1925 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1926 pcaps, NULL); 1927 1928 if (err) { 1929 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1930 goto out; 1931 } 1932 1933 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1934 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1935 1936 out: 1937 kfree(pcaps); 1938 return err; 1939 } 1940 1941 /** 1942 * ice_init_link_dflt_override - Initialize link default override 1943 * @pi: port info structure 1944 * 1945 * Initialize link default override and PHY total port shutdown during probe 1946 */ 1947 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1948 { 1949 struct ice_link_default_override_tlv *ldo; 1950 struct ice_pf *pf = pi->hw->back; 1951 1952 ldo = &pf->link_dflt_override; 1953 if (ice_get_link_default_override(ldo, pi)) 1954 return; 1955 1956 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1957 return; 1958 1959 /* Enable Total Port Shutdown (override/replace link-down-on-close 1960 * ethtool private flag) for ports with Port Disable bit set. 1961 */ 1962 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1963 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1964 } 1965 1966 /** 1967 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1968 * @pi: port info structure 1969 * 1970 * If default override is enabled, initialize the user PHY cfg speed and FEC 1971 * settings using the default override mask from the NVM. 1972 * 1973 * The PHY should only be configured with the default override settings the 1974 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1975 * is used to indicate that the user PHY cfg default override is initialized 1976 * and the PHY has not been configured with the default override settings. The 1977 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1978 * configured. 1979 * 1980 * This function should be called only if the FW doesn't support default 1981 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1982 */ 1983 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1984 { 1985 struct ice_link_default_override_tlv *ldo; 1986 struct ice_aqc_set_phy_cfg_data *cfg; 1987 struct ice_phy_info *phy = &pi->phy; 1988 struct ice_pf *pf = pi->hw->back; 1989 1990 ldo = &pf->link_dflt_override; 1991 1992 /* If link default override is enabled, use to mask NVM PHY capabilities 1993 * for speed and FEC default configuration. 1994 */ 1995 cfg = &phy->curr_user_phy_cfg; 1996 1997 if (ldo->phy_type_low || ldo->phy_type_high) { 1998 cfg->phy_type_low = pf->nvm_phy_type_lo & 1999 cpu_to_le64(ldo->phy_type_low); 2000 cfg->phy_type_high = pf->nvm_phy_type_hi & 2001 cpu_to_le64(ldo->phy_type_high); 2002 } 2003 cfg->link_fec_opt = ldo->fec_options; 2004 phy->curr_user_fec_req = ICE_FEC_AUTO; 2005 2006 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2007 } 2008 2009 /** 2010 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2011 * @pi: port info structure 2012 * 2013 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2014 * mode to default. The PHY defaults are from get PHY capabilities topology 2015 * with media so call when media is first available. An error is returned if 2016 * called when media is not available. The PHY initialization completed state is 2017 * set here. 2018 * 2019 * These configurations are used when setting PHY 2020 * configuration. The user PHY configuration is updated on set PHY 2021 * configuration. Returns 0 on success, negative on failure 2022 */ 2023 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2024 { 2025 struct ice_aqc_get_phy_caps_data *pcaps; 2026 struct ice_phy_info *phy = &pi->phy; 2027 struct ice_pf *pf = pi->hw->back; 2028 int err; 2029 2030 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2031 return -EIO; 2032 2033 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2034 if (!pcaps) 2035 return -ENOMEM; 2036 2037 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2038 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2039 pcaps, NULL); 2040 else 2041 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2042 pcaps, NULL); 2043 if (err) { 2044 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2045 goto err_out; 2046 } 2047 2048 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2049 2050 /* check if lenient mode is supported and enabled */ 2051 if (ice_fw_supports_link_override(pi->hw) && 2052 !(pcaps->module_compliance_enforcement & 2053 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2054 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2055 2056 /* if the FW supports default PHY configuration mode, then the driver 2057 * does not have to apply link override settings. If not, 2058 * initialize user PHY configuration with link override values 2059 */ 2060 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2061 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2062 ice_init_phy_cfg_dflt_override(pi); 2063 goto out; 2064 } 2065 } 2066 2067 /* if link default override is not enabled, set user flow control and 2068 * FEC settings based on what get_phy_caps returned 2069 */ 2070 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2071 pcaps->link_fec_options); 2072 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2073 2074 out: 2075 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2076 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2077 err_out: 2078 kfree(pcaps); 2079 return err; 2080 } 2081 2082 /** 2083 * ice_configure_phy - configure PHY 2084 * @vsi: VSI of PHY 2085 * 2086 * Set the PHY configuration. If the current PHY configuration is the same as 2087 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2088 * configure the based get PHY capabilities for topology with media. 2089 */ 2090 static int ice_configure_phy(struct ice_vsi *vsi) 2091 { 2092 struct device *dev = ice_pf_to_dev(vsi->back); 2093 struct ice_port_info *pi = vsi->port_info; 2094 struct ice_aqc_get_phy_caps_data *pcaps; 2095 struct ice_aqc_set_phy_cfg_data *cfg; 2096 struct ice_phy_info *phy = &pi->phy; 2097 struct ice_pf *pf = vsi->back; 2098 int err; 2099 2100 /* Ensure we have media as we cannot configure a medialess port */ 2101 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2102 return -EPERM; 2103 2104 ice_print_topo_conflict(vsi); 2105 2106 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2107 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2108 return -EPERM; 2109 2110 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2111 return ice_force_phys_link_state(vsi, true); 2112 2113 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2114 if (!pcaps) 2115 return -ENOMEM; 2116 2117 /* Get current PHY config */ 2118 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2119 NULL); 2120 if (err) { 2121 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2122 vsi->vsi_num, err); 2123 goto done; 2124 } 2125 2126 /* If PHY enable link is configured and configuration has not changed, 2127 * there's nothing to do 2128 */ 2129 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2130 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2131 goto done; 2132 2133 /* Use PHY topology as baseline for configuration */ 2134 memset(pcaps, 0, sizeof(*pcaps)); 2135 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2136 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2137 pcaps, NULL); 2138 else 2139 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2140 pcaps, NULL); 2141 if (err) { 2142 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2143 vsi->vsi_num, err); 2144 goto done; 2145 } 2146 2147 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2148 if (!cfg) { 2149 err = -ENOMEM; 2150 goto done; 2151 } 2152 2153 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2154 2155 /* Speed - If default override pending, use curr_user_phy_cfg set in 2156 * ice_init_phy_user_cfg_ldo. 2157 */ 2158 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2159 vsi->back->state)) { 2160 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2161 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2162 } else { 2163 u64 phy_low = 0, phy_high = 0; 2164 2165 ice_update_phy_type(&phy_low, &phy_high, 2166 pi->phy.curr_user_speed_req); 2167 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2168 cfg->phy_type_high = pcaps->phy_type_high & 2169 cpu_to_le64(phy_high); 2170 } 2171 2172 /* Can't provide what was requested; use PHY capabilities */ 2173 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2174 cfg->phy_type_low = pcaps->phy_type_low; 2175 cfg->phy_type_high = pcaps->phy_type_high; 2176 } 2177 2178 /* FEC */ 2179 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2180 2181 /* Can't provide what was requested; use PHY capabilities */ 2182 if (cfg->link_fec_opt != 2183 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2184 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2185 cfg->link_fec_opt = pcaps->link_fec_options; 2186 } 2187 2188 /* Flow Control - always supported; no need to check against 2189 * capabilities 2190 */ 2191 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2192 2193 /* Enable link and link update */ 2194 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2195 2196 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2197 if (err) 2198 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2199 vsi->vsi_num, err); 2200 2201 kfree(cfg); 2202 done: 2203 kfree(pcaps); 2204 return err; 2205 } 2206 2207 /** 2208 * ice_check_media_subtask - Check for media 2209 * @pf: pointer to PF struct 2210 * 2211 * If media is available, then initialize PHY user configuration if it is not 2212 * been, and configure the PHY if the interface is up. 2213 */ 2214 static void ice_check_media_subtask(struct ice_pf *pf) 2215 { 2216 struct ice_port_info *pi; 2217 struct ice_vsi *vsi; 2218 int err; 2219 2220 /* No need to check for media if it's already present */ 2221 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2222 return; 2223 2224 vsi = ice_get_main_vsi(pf); 2225 if (!vsi) 2226 return; 2227 2228 /* Refresh link info and check if media is present */ 2229 pi = vsi->port_info; 2230 err = ice_update_link_info(pi); 2231 if (err) 2232 return; 2233 2234 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2235 2236 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2237 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2238 ice_init_phy_user_cfg(pi); 2239 2240 /* PHY settings are reset on media insertion, reconfigure 2241 * PHY to preserve settings. 2242 */ 2243 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2244 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2245 return; 2246 2247 err = ice_configure_phy(vsi); 2248 if (!err) 2249 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2250 2251 /* A Link Status Event will be generated; the event handler 2252 * will complete bringing the interface up 2253 */ 2254 } 2255 } 2256 2257 /** 2258 * ice_service_task - manage and run subtasks 2259 * @work: pointer to work_struct contained by the PF struct 2260 */ 2261 static void ice_service_task(struct work_struct *work) 2262 { 2263 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2264 unsigned long start_time = jiffies; 2265 2266 /* subtasks */ 2267 2268 /* process reset requests first */ 2269 ice_reset_subtask(pf); 2270 2271 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2272 if (ice_is_reset_in_progress(pf->state) || 2273 test_bit(ICE_SUSPENDED, pf->state) || 2274 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2275 ice_service_task_complete(pf); 2276 return; 2277 } 2278 2279 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2280 struct iidc_event *event; 2281 2282 event = kzalloc(sizeof(*event), GFP_KERNEL); 2283 if (event) { 2284 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2285 /* report the entire OICR value to AUX driver */ 2286 swap(event->reg, pf->oicr_err_reg); 2287 ice_send_event_to_aux(pf, event); 2288 kfree(event); 2289 } 2290 } 2291 2292 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) { 2293 /* Plug aux device per request */ 2294 ice_plug_aux_dev(pf); 2295 2296 /* Mark plugging as done but check whether unplug was 2297 * requested during ice_plug_aux_dev() call 2298 * (e.g. from ice_clear_rdma_cap()) and if so then 2299 * plug aux device. 2300 */ 2301 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2302 ice_unplug_aux_dev(pf); 2303 } 2304 2305 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2306 struct iidc_event *event; 2307 2308 event = kzalloc(sizeof(*event), GFP_KERNEL); 2309 if (event) { 2310 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2311 ice_send_event_to_aux(pf, event); 2312 kfree(event); 2313 } 2314 } 2315 2316 ice_clean_adminq_subtask(pf); 2317 ice_check_media_subtask(pf); 2318 ice_check_for_hang_subtask(pf); 2319 ice_sync_fltr_subtask(pf); 2320 ice_handle_mdd_event(pf); 2321 ice_watchdog_subtask(pf); 2322 2323 if (ice_is_safe_mode(pf)) { 2324 ice_service_task_complete(pf); 2325 return; 2326 } 2327 2328 ice_process_vflr_event(pf); 2329 ice_clean_mailboxq_subtask(pf); 2330 ice_clean_sbq_subtask(pf); 2331 ice_sync_arfs_fltrs(pf); 2332 ice_flush_fdir_ctx(pf); 2333 2334 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2335 ice_service_task_complete(pf); 2336 2337 /* If the tasks have taken longer than one service timer period 2338 * or there is more work to be done, reset the service timer to 2339 * schedule the service task now. 2340 */ 2341 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2342 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2343 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2344 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2345 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2346 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2347 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2348 mod_timer(&pf->serv_tmr, jiffies); 2349 } 2350 2351 /** 2352 * ice_set_ctrlq_len - helper function to set controlq length 2353 * @hw: pointer to the HW instance 2354 */ 2355 static void ice_set_ctrlq_len(struct ice_hw *hw) 2356 { 2357 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2358 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2359 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2360 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2361 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2362 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2363 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2364 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2365 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2366 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2367 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2368 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2369 } 2370 2371 /** 2372 * ice_schedule_reset - schedule a reset 2373 * @pf: board private structure 2374 * @reset: reset being requested 2375 */ 2376 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2377 { 2378 struct device *dev = ice_pf_to_dev(pf); 2379 2380 /* bail out if earlier reset has failed */ 2381 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2382 dev_dbg(dev, "earlier reset has failed\n"); 2383 return -EIO; 2384 } 2385 /* bail if reset/recovery already in progress */ 2386 if (ice_is_reset_in_progress(pf->state)) { 2387 dev_dbg(dev, "Reset already in progress\n"); 2388 return -EBUSY; 2389 } 2390 2391 switch (reset) { 2392 case ICE_RESET_PFR: 2393 set_bit(ICE_PFR_REQ, pf->state); 2394 break; 2395 case ICE_RESET_CORER: 2396 set_bit(ICE_CORER_REQ, pf->state); 2397 break; 2398 case ICE_RESET_GLOBR: 2399 set_bit(ICE_GLOBR_REQ, pf->state); 2400 break; 2401 default: 2402 return -EINVAL; 2403 } 2404 2405 ice_service_task_schedule(pf); 2406 return 0; 2407 } 2408 2409 /** 2410 * ice_irq_affinity_notify - Callback for affinity changes 2411 * @notify: context as to what irq was changed 2412 * @mask: the new affinity mask 2413 * 2414 * This is a callback function used by the irq_set_affinity_notifier function 2415 * so that we may register to receive changes to the irq affinity masks. 2416 */ 2417 static void 2418 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2419 const cpumask_t *mask) 2420 { 2421 struct ice_q_vector *q_vector = 2422 container_of(notify, struct ice_q_vector, affinity_notify); 2423 2424 cpumask_copy(&q_vector->affinity_mask, mask); 2425 } 2426 2427 /** 2428 * ice_irq_affinity_release - Callback for affinity notifier release 2429 * @ref: internal core kernel usage 2430 * 2431 * This is a callback function used by the irq_set_affinity_notifier function 2432 * to inform the current notification subscriber that they will no longer 2433 * receive notifications. 2434 */ 2435 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2436 2437 /** 2438 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2439 * @vsi: the VSI being configured 2440 */ 2441 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2442 { 2443 struct ice_hw *hw = &vsi->back->hw; 2444 int i; 2445 2446 ice_for_each_q_vector(vsi, i) 2447 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2448 2449 ice_flush(hw); 2450 return 0; 2451 } 2452 2453 /** 2454 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2455 * @vsi: the VSI being configured 2456 * @basename: name for the vector 2457 */ 2458 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2459 { 2460 int q_vectors = vsi->num_q_vectors; 2461 struct ice_pf *pf = vsi->back; 2462 int base = vsi->base_vector; 2463 struct device *dev; 2464 int rx_int_idx = 0; 2465 int tx_int_idx = 0; 2466 int vector, err; 2467 int irq_num; 2468 2469 dev = ice_pf_to_dev(pf); 2470 for (vector = 0; vector < q_vectors; vector++) { 2471 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2472 2473 irq_num = pf->msix_entries[base + vector].vector; 2474 2475 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2476 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2477 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2478 tx_int_idx++; 2479 } else if (q_vector->rx.rx_ring) { 2480 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2481 "%s-%s-%d", basename, "rx", rx_int_idx++); 2482 } else if (q_vector->tx.tx_ring) { 2483 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2484 "%s-%s-%d", basename, "tx", tx_int_idx++); 2485 } else { 2486 /* skip this unused q_vector */ 2487 continue; 2488 } 2489 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2490 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2491 IRQF_SHARED, q_vector->name, 2492 q_vector); 2493 else 2494 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2495 0, q_vector->name, q_vector); 2496 if (err) { 2497 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2498 err); 2499 goto free_q_irqs; 2500 } 2501 2502 /* register for affinity change notifications */ 2503 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2504 struct irq_affinity_notify *affinity_notify; 2505 2506 affinity_notify = &q_vector->affinity_notify; 2507 affinity_notify->notify = ice_irq_affinity_notify; 2508 affinity_notify->release = ice_irq_affinity_release; 2509 irq_set_affinity_notifier(irq_num, affinity_notify); 2510 } 2511 2512 /* assign the mask for this irq */ 2513 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2514 } 2515 2516 err = ice_set_cpu_rx_rmap(vsi); 2517 if (err) { 2518 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2519 vsi->vsi_num, ERR_PTR(err)); 2520 goto free_q_irqs; 2521 } 2522 2523 vsi->irqs_ready = true; 2524 return 0; 2525 2526 free_q_irqs: 2527 while (vector) { 2528 vector--; 2529 irq_num = pf->msix_entries[base + vector].vector; 2530 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2531 irq_set_affinity_notifier(irq_num, NULL); 2532 irq_set_affinity_hint(irq_num, NULL); 2533 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2534 } 2535 return err; 2536 } 2537 2538 /** 2539 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2540 * @vsi: VSI to setup Tx rings used by XDP 2541 * 2542 * Return 0 on success and negative value on error 2543 */ 2544 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2545 { 2546 struct device *dev = ice_pf_to_dev(vsi->back); 2547 struct ice_tx_desc *tx_desc; 2548 int i, j; 2549 2550 ice_for_each_xdp_txq(vsi, i) { 2551 u16 xdp_q_idx = vsi->alloc_txq + i; 2552 struct ice_ring_stats *ring_stats; 2553 struct ice_tx_ring *xdp_ring; 2554 2555 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2556 if (!xdp_ring) 2557 goto free_xdp_rings; 2558 2559 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2560 if (!ring_stats) { 2561 ice_free_tx_ring(xdp_ring); 2562 goto free_xdp_rings; 2563 } 2564 2565 xdp_ring->ring_stats = ring_stats; 2566 xdp_ring->q_index = xdp_q_idx; 2567 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2568 xdp_ring->vsi = vsi; 2569 xdp_ring->netdev = NULL; 2570 xdp_ring->dev = dev; 2571 xdp_ring->count = vsi->num_tx_desc; 2572 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2573 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2574 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2575 if (ice_setup_tx_ring(xdp_ring)) 2576 goto free_xdp_rings; 2577 ice_set_ring_xdp(xdp_ring); 2578 spin_lock_init(&xdp_ring->tx_lock); 2579 for (j = 0; j < xdp_ring->count; j++) { 2580 tx_desc = ICE_TX_DESC(xdp_ring, j); 2581 tx_desc->cmd_type_offset_bsz = 0; 2582 } 2583 } 2584 2585 return 0; 2586 2587 free_xdp_rings: 2588 for (; i >= 0; i--) { 2589 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2590 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2591 vsi->xdp_rings[i]->ring_stats = NULL; 2592 ice_free_tx_ring(vsi->xdp_rings[i]); 2593 } 2594 } 2595 return -ENOMEM; 2596 } 2597 2598 /** 2599 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2600 * @vsi: VSI to set the bpf prog on 2601 * @prog: the bpf prog pointer 2602 */ 2603 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2604 { 2605 struct bpf_prog *old_prog; 2606 int i; 2607 2608 old_prog = xchg(&vsi->xdp_prog, prog); 2609 if (old_prog) 2610 bpf_prog_put(old_prog); 2611 2612 ice_for_each_rxq(vsi, i) 2613 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2614 } 2615 2616 /** 2617 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2618 * @vsi: VSI to bring up Tx rings used by XDP 2619 * @prog: bpf program that will be assigned to VSI 2620 * 2621 * Return 0 on success and negative value on error 2622 */ 2623 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2624 { 2625 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2626 int xdp_rings_rem = vsi->num_xdp_txq; 2627 struct ice_pf *pf = vsi->back; 2628 struct ice_qs_cfg xdp_qs_cfg = { 2629 .qs_mutex = &pf->avail_q_mutex, 2630 .pf_map = pf->avail_txqs, 2631 .pf_map_size = pf->max_pf_txqs, 2632 .q_count = vsi->num_xdp_txq, 2633 .scatter_count = ICE_MAX_SCATTER_TXQS, 2634 .vsi_map = vsi->txq_map, 2635 .vsi_map_offset = vsi->alloc_txq, 2636 .mapping_mode = ICE_VSI_MAP_CONTIG 2637 }; 2638 struct device *dev; 2639 int i, v_idx; 2640 int status; 2641 2642 dev = ice_pf_to_dev(pf); 2643 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2644 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2645 if (!vsi->xdp_rings) 2646 return -ENOMEM; 2647 2648 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2649 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2650 goto err_map_xdp; 2651 2652 if (static_key_enabled(&ice_xdp_locking_key)) 2653 netdev_warn(vsi->netdev, 2654 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2655 2656 if (ice_xdp_alloc_setup_rings(vsi)) 2657 goto clear_xdp_rings; 2658 2659 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2660 ice_for_each_q_vector(vsi, v_idx) { 2661 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2662 int xdp_rings_per_v, q_id, q_base; 2663 2664 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2665 vsi->num_q_vectors - v_idx); 2666 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2667 2668 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2669 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2670 2671 xdp_ring->q_vector = q_vector; 2672 xdp_ring->next = q_vector->tx.tx_ring; 2673 q_vector->tx.tx_ring = xdp_ring; 2674 } 2675 xdp_rings_rem -= xdp_rings_per_v; 2676 } 2677 2678 ice_for_each_rxq(vsi, i) { 2679 if (static_key_enabled(&ice_xdp_locking_key)) { 2680 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2681 } else { 2682 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2683 struct ice_tx_ring *ring; 2684 2685 ice_for_each_tx_ring(ring, q_vector->tx) { 2686 if (ice_ring_is_xdp(ring)) { 2687 vsi->rx_rings[i]->xdp_ring = ring; 2688 break; 2689 } 2690 } 2691 } 2692 ice_tx_xsk_pool(vsi, i); 2693 } 2694 2695 /* omit the scheduler update if in reset path; XDP queues will be 2696 * taken into account at the end of ice_vsi_rebuild, where 2697 * ice_cfg_vsi_lan is being called 2698 */ 2699 if (ice_is_reset_in_progress(pf->state)) 2700 return 0; 2701 2702 /* tell the Tx scheduler that right now we have 2703 * additional queues 2704 */ 2705 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2706 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2707 2708 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2709 max_txqs); 2710 if (status) { 2711 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2712 status); 2713 goto clear_xdp_rings; 2714 } 2715 2716 /* assign the prog only when it's not already present on VSI; 2717 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2718 * VSI rebuild that happens under ethtool -L can expose us to 2719 * the bpf_prog refcount issues as we would be swapping same 2720 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2721 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2722 * this is not harmful as dev_xdp_install bumps the refcount 2723 * before calling the op exposed by the driver; 2724 */ 2725 if (!ice_is_xdp_ena_vsi(vsi)) 2726 ice_vsi_assign_bpf_prog(vsi, prog); 2727 2728 return 0; 2729 clear_xdp_rings: 2730 ice_for_each_xdp_txq(vsi, i) 2731 if (vsi->xdp_rings[i]) { 2732 kfree_rcu(vsi->xdp_rings[i], rcu); 2733 vsi->xdp_rings[i] = NULL; 2734 } 2735 2736 err_map_xdp: 2737 mutex_lock(&pf->avail_q_mutex); 2738 ice_for_each_xdp_txq(vsi, i) { 2739 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2740 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2741 } 2742 mutex_unlock(&pf->avail_q_mutex); 2743 2744 devm_kfree(dev, vsi->xdp_rings); 2745 return -ENOMEM; 2746 } 2747 2748 /** 2749 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2750 * @vsi: VSI to remove XDP rings 2751 * 2752 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2753 * resources 2754 */ 2755 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2756 { 2757 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2758 struct ice_pf *pf = vsi->back; 2759 int i, v_idx; 2760 2761 /* q_vectors are freed in reset path so there's no point in detaching 2762 * rings; in case of rebuild being triggered not from reset bits 2763 * in pf->state won't be set, so additionally check first q_vector 2764 * against NULL 2765 */ 2766 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2767 goto free_qmap; 2768 2769 ice_for_each_q_vector(vsi, v_idx) { 2770 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2771 struct ice_tx_ring *ring; 2772 2773 ice_for_each_tx_ring(ring, q_vector->tx) 2774 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2775 break; 2776 2777 /* restore the value of last node prior to XDP setup */ 2778 q_vector->tx.tx_ring = ring; 2779 } 2780 2781 free_qmap: 2782 mutex_lock(&pf->avail_q_mutex); 2783 ice_for_each_xdp_txq(vsi, i) { 2784 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2785 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2786 } 2787 mutex_unlock(&pf->avail_q_mutex); 2788 2789 ice_for_each_xdp_txq(vsi, i) 2790 if (vsi->xdp_rings[i]) { 2791 if (vsi->xdp_rings[i]->desc) { 2792 synchronize_rcu(); 2793 ice_free_tx_ring(vsi->xdp_rings[i]); 2794 } 2795 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2796 vsi->xdp_rings[i]->ring_stats = NULL; 2797 kfree_rcu(vsi->xdp_rings[i], rcu); 2798 vsi->xdp_rings[i] = NULL; 2799 } 2800 2801 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2802 vsi->xdp_rings = NULL; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 static_branch_dec(&ice_xdp_locking_key); 2806 2807 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2808 return 0; 2809 2810 ice_vsi_assign_bpf_prog(vsi, NULL); 2811 2812 /* notify Tx scheduler that we destroyed XDP queues and bring 2813 * back the old number of child nodes 2814 */ 2815 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2816 max_txqs[i] = vsi->num_txq; 2817 2818 /* change number of XDP Tx queues to 0 */ 2819 vsi->num_xdp_txq = 0; 2820 2821 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2822 max_txqs); 2823 } 2824 2825 /** 2826 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2827 * @vsi: VSI to schedule napi on 2828 */ 2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2830 { 2831 int i; 2832 2833 ice_for_each_rxq(vsi, i) { 2834 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2835 2836 if (rx_ring->xsk_pool) 2837 napi_schedule(&rx_ring->q_vector->napi); 2838 } 2839 } 2840 2841 /** 2842 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2843 * @vsi: VSI to determine the count of XDP Tx qs 2844 * 2845 * returns 0 if Tx qs count is higher than at least half of CPU count, 2846 * -ENOMEM otherwise 2847 */ 2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2849 { 2850 u16 avail = ice_get_avail_txq_count(vsi->back); 2851 u16 cpus = num_possible_cpus(); 2852 2853 if (avail < cpus / 2) 2854 return -ENOMEM; 2855 2856 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2857 2858 if (vsi->num_xdp_txq < cpus) 2859 static_branch_inc(&ice_xdp_locking_key); 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2866 * @vsi: VSI to setup XDP for 2867 * @prog: XDP program 2868 * @extack: netlink extended ack 2869 */ 2870 static int 2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2872 struct netlink_ext_ack *extack) 2873 { 2874 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2875 bool if_running = netif_running(vsi->netdev); 2876 int ret = 0, xdp_ring_err = 0; 2877 2878 if (frame_size > vsi->rx_buf_len) { 2879 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2880 return -EOPNOTSUPP; 2881 } 2882 2883 /* need to stop netdev while setting up the program for Rx rings */ 2884 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2885 ret = ice_down(vsi); 2886 if (ret) { 2887 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2888 return ret; 2889 } 2890 } 2891 2892 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2893 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2894 if (xdp_ring_err) { 2895 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2896 } else { 2897 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2898 if (xdp_ring_err) 2899 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2900 } 2901 /* reallocate Rx queues that are used for zero-copy */ 2902 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2903 if (xdp_ring_err) 2904 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2905 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2906 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2907 if (xdp_ring_err) 2908 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2909 /* reallocate Rx queues that were used for zero-copy */ 2910 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2911 if (xdp_ring_err) 2912 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2913 } else { 2914 /* safe to call even when prog == vsi->xdp_prog as 2915 * dev_xdp_install in net/core/dev.c incremented prog's 2916 * refcount so corresponding bpf_prog_put won't cause 2917 * underflow 2918 */ 2919 ice_vsi_assign_bpf_prog(vsi, prog); 2920 } 2921 2922 if (if_running) 2923 ret = ice_up(vsi); 2924 2925 if (!ret && prog) 2926 ice_vsi_rx_napi_schedule(vsi); 2927 2928 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2929 } 2930 2931 /** 2932 * ice_xdp_safe_mode - XDP handler for safe mode 2933 * @dev: netdevice 2934 * @xdp: XDP command 2935 */ 2936 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2937 struct netdev_bpf *xdp) 2938 { 2939 NL_SET_ERR_MSG_MOD(xdp->extack, 2940 "Please provide working DDP firmware package in order to use XDP\n" 2941 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2942 return -EOPNOTSUPP; 2943 } 2944 2945 /** 2946 * ice_xdp - implements XDP handler 2947 * @dev: netdevice 2948 * @xdp: XDP command 2949 */ 2950 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2951 { 2952 struct ice_netdev_priv *np = netdev_priv(dev); 2953 struct ice_vsi *vsi = np->vsi; 2954 2955 if (vsi->type != ICE_VSI_PF) { 2956 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2957 return -EINVAL; 2958 } 2959 2960 switch (xdp->command) { 2961 case XDP_SETUP_PROG: 2962 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2963 case XDP_SETUP_XSK_POOL: 2964 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2965 xdp->xsk.queue_id); 2966 default: 2967 return -EINVAL; 2968 } 2969 } 2970 2971 /** 2972 * ice_ena_misc_vector - enable the non-queue interrupts 2973 * @pf: board private structure 2974 */ 2975 static void ice_ena_misc_vector(struct ice_pf *pf) 2976 { 2977 struct ice_hw *hw = &pf->hw; 2978 u32 val; 2979 2980 /* Disable anti-spoof detection interrupt to prevent spurious event 2981 * interrupts during a function reset. Anti-spoof functionally is 2982 * still supported. 2983 */ 2984 val = rd32(hw, GL_MDCK_TX_TDPU); 2985 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2986 wr32(hw, GL_MDCK_TX_TDPU, val); 2987 2988 /* clear things first */ 2989 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2990 rd32(hw, PFINT_OICR); /* read to clear */ 2991 2992 val = (PFINT_OICR_ECC_ERR_M | 2993 PFINT_OICR_MAL_DETECT_M | 2994 PFINT_OICR_GRST_M | 2995 PFINT_OICR_PCI_EXCEPTION_M | 2996 PFINT_OICR_VFLR_M | 2997 PFINT_OICR_HMC_ERR_M | 2998 PFINT_OICR_PE_PUSH_M | 2999 PFINT_OICR_PE_CRITERR_M); 3000 3001 wr32(hw, PFINT_OICR_ENA, val); 3002 3003 /* SW_ITR_IDX = 0, but don't change INTENA */ 3004 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3005 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3006 } 3007 3008 /** 3009 * ice_misc_intr - misc interrupt handler 3010 * @irq: interrupt number 3011 * @data: pointer to a q_vector 3012 */ 3013 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3014 { 3015 struct ice_pf *pf = (struct ice_pf *)data; 3016 struct ice_hw *hw = &pf->hw; 3017 irqreturn_t ret = IRQ_NONE; 3018 struct device *dev; 3019 u32 oicr, ena_mask; 3020 3021 dev = ice_pf_to_dev(pf); 3022 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3023 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3024 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3025 3026 oicr = rd32(hw, PFINT_OICR); 3027 ena_mask = rd32(hw, PFINT_OICR_ENA); 3028 3029 if (oicr & PFINT_OICR_SWINT_M) { 3030 ena_mask &= ~PFINT_OICR_SWINT_M; 3031 pf->sw_int_count++; 3032 } 3033 3034 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3035 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3036 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3037 } 3038 if (oicr & PFINT_OICR_VFLR_M) { 3039 /* disable any further VFLR event notifications */ 3040 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3041 u32 reg = rd32(hw, PFINT_OICR_ENA); 3042 3043 reg &= ~PFINT_OICR_VFLR_M; 3044 wr32(hw, PFINT_OICR_ENA, reg); 3045 } else { 3046 ena_mask &= ~PFINT_OICR_VFLR_M; 3047 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3048 } 3049 } 3050 3051 if (oicr & PFINT_OICR_GRST_M) { 3052 u32 reset; 3053 3054 /* we have a reset warning */ 3055 ena_mask &= ~PFINT_OICR_GRST_M; 3056 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3057 GLGEN_RSTAT_RESET_TYPE_S; 3058 3059 if (reset == ICE_RESET_CORER) 3060 pf->corer_count++; 3061 else if (reset == ICE_RESET_GLOBR) 3062 pf->globr_count++; 3063 else if (reset == ICE_RESET_EMPR) 3064 pf->empr_count++; 3065 else 3066 dev_dbg(dev, "Invalid reset type %d\n", reset); 3067 3068 /* If a reset cycle isn't already in progress, we set a bit in 3069 * pf->state so that the service task can start a reset/rebuild. 3070 */ 3071 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3072 if (reset == ICE_RESET_CORER) 3073 set_bit(ICE_CORER_RECV, pf->state); 3074 else if (reset == ICE_RESET_GLOBR) 3075 set_bit(ICE_GLOBR_RECV, pf->state); 3076 else 3077 set_bit(ICE_EMPR_RECV, pf->state); 3078 3079 /* There are couple of different bits at play here. 3080 * hw->reset_ongoing indicates whether the hardware is 3081 * in reset. This is set to true when a reset interrupt 3082 * is received and set back to false after the driver 3083 * has determined that the hardware is out of reset. 3084 * 3085 * ICE_RESET_OICR_RECV in pf->state indicates 3086 * that a post reset rebuild is required before the 3087 * driver is operational again. This is set above. 3088 * 3089 * As this is the start of the reset/rebuild cycle, set 3090 * both to indicate that. 3091 */ 3092 hw->reset_ongoing = true; 3093 } 3094 } 3095 3096 if (oicr & PFINT_OICR_TSYN_TX_M) { 3097 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3098 if (!hw->reset_ongoing) 3099 ret = IRQ_WAKE_THREAD; 3100 } 3101 3102 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3103 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3104 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3105 3106 /* Save EVENTs from GTSYN register */ 3107 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3108 GLTSYN_STAT_EVENT1_M | 3109 GLTSYN_STAT_EVENT2_M); 3110 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3111 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3112 } 3113 3114 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3115 if (oicr & ICE_AUX_CRIT_ERR) { 3116 pf->oicr_err_reg |= oicr; 3117 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3118 ena_mask &= ~ICE_AUX_CRIT_ERR; 3119 } 3120 3121 /* Report any remaining unexpected interrupts */ 3122 oicr &= ena_mask; 3123 if (oicr) { 3124 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3125 /* If a critical error is pending there is no choice but to 3126 * reset the device. 3127 */ 3128 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3129 PFINT_OICR_ECC_ERR_M)) { 3130 set_bit(ICE_PFR_REQ, pf->state); 3131 ice_service_task_schedule(pf); 3132 } 3133 } 3134 if (!ret) 3135 ret = IRQ_HANDLED; 3136 3137 ice_service_task_schedule(pf); 3138 ice_irq_dynamic_ena(hw, NULL, NULL); 3139 3140 return ret; 3141 } 3142 3143 /** 3144 * ice_misc_intr_thread_fn - misc interrupt thread function 3145 * @irq: interrupt number 3146 * @data: pointer to a q_vector 3147 */ 3148 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3149 { 3150 struct ice_pf *pf = data; 3151 3152 if (ice_is_reset_in_progress(pf->state)) 3153 return IRQ_HANDLED; 3154 3155 while (!ice_ptp_process_ts(pf)) 3156 usleep_range(50, 100); 3157 3158 return IRQ_HANDLED; 3159 } 3160 3161 /** 3162 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3163 * @hw: pointer to HW structure 3164 */ 3165 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3166 { 3167 /* disable Admin queue Interrupt causes */ 3168 wr32(hw, PFINT_FW_CTL, 3169 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3170 3171 /* disable Mailbox queue Interrupt causes */ 3172 wr32(hw, PFINT_MBX_CTL, 3173 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3174 3175 wr32(hw, PFINT_SB_CTL, 3176 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3177 3178 /* disable Control queue Interrupt causes */ 3179 wr32(hw, PFINT_OICR_CTL, 3180 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3181 3182 ice_flush(hw); 3183 } 3184 3185 /** 3186 * ice_free_irq_msix_misc - Unroll misc vector setup 3187 * @pf: board private structure 3188 */ 3189 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3190 { 3191 struct ice_hw *hw = &pf->hw; 3192 3193 ice_dis_ctrlq_interrupts(hw); 3194 3195 /* disable OICR interrupt */ 3196 wr32(hw, PFINT_OICR_ENA, 0); 3197 ice_flush(hw); 3198 3199 if (pf->msix_entries) { 3200 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3201 devm_free_irq(ice_pf_to_dev(pf), 3202 pf->msix_entries[pf->oicr_idx].vector, pf); 3203 } 3204 3205 pf->num_avail_sw_msix += 1; 3206 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3207 } 3208 3209 /** 3210 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3211 * @hw: pointer to HW structure 3212 * @reg_idx: HW vector index to associate the control queue interrupts with 3213 */ 3214 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3215 { 3216 u32 val; 3217 3218 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3219 PFINT_OICR_CTL_CAUSE_ENA_M); 3220 wr32(hw, PFINT_OICR_CTL, val); 3221 3222 /* enable Admin queue Interrupt causes */ 3223 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3224 PFINT_FW_CTL_CAUSE_ENA_M); 3225 wr32(hw, PFINT_FW_CTL, val); 3226 3227 /* enable Mailbox queue Interrupt causes */ 3228 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3229 PFINT_MBX_CTL_CAUSE_ENA_M); 3230 wr32(hw, PFINT_MBX_CTL, val); 3231 3232 /* This enables Sideband queue Interrupt causes */ 3233 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3234 PFINT_SB_CTL_CAUSE_ENA_M); 3235 wr32(hw, PFINT_SB_CTL, val); 3236 3237 ice_flush(hw); 3238 } 3239 3240 /** 3241 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3242 * @pf: board private structure 3243 * 3244 * This sets up the handler for MSIX 0, which is used to manage the 3245 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3246 * when in MSI or Legacy interrupt mode. 3247 */ 3248 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3249 { 3250 struct device *dev = ice_pf_to_dev(pf); 3251 struct ice_hw *hw = &pf->hw; 3252 int oicr_idx, err = 0; 3253 3254 if (!pf->int_name[0]) 3255 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3256 dev_driver_string(dev), dev_name(dev)); 3257 3258 /* Do not request IRQ but do enable OICR interrupt since settings are 3259 * lost during reset. Note that this function is called only during 3260 * rebuild path and not while reset is in progress. 3261 */ 3262 if (ice_is_reset_in_progress(pf->state)) 3263 goto skip_req_irq; 3264 3265 /* reserve one vector in irq_tracker for misc interrupts */ 3266 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3267 if (oicr_idx < 0) 3268 return oicr_idx; 3269 3270 pf->num_avail_sw_msix -= 1; 3271 pf->oicr_idx = (u16)oicr_idx; 3272 3273 err = devm_request_threaded_irq(dev, 3274 pf->msix_entries[pf->oicr_idx].vector, 3275 ice_misc_intr, ice_misc_intr_thread_fn, 3276 0, pf->int_name, pf); 3277 if (err) { 3278 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3279 pf->int_name, err); 3280 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3281 pf->num_avail_sw_msix += 1; 3282 return err; 3283 } 3284 3285 skip_req_irq: 3286 ice_ena_misc_vector(pf); 3287 3288 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3289 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3290 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3291 3292 ice_flush(hw); 3293 ice_irq_dynamic_ena(hw, NULL, NULL); 3294 3295 return 0; 3296 } 3297 3298 /** 3299 * ice_napi_add - register NAPI handler for the VSI 3300 * @vsi: VSI for which NAPI handler is to be registered 3301 * 3302 * This function is only called in the driver's load path. Registering the NAPI 3303 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3304 * reset/rebuild, etc.) 3305 */ 3306 static void ice_napi_add(struct ice_vsi *vsi) 3307 { 3308 int v_idx; 3309 3310 if (!vsi->netdev) 3311 return; 3312 3313 ice_for_each_q_vector(vsi, v_idx) 3314 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3315 ice_napi_poll); 3316 } 3317 3318 /** 3319 * ice_set_ops - set netdev and ethtools ops for the given netdev 3320 * @netdev: netdev instance 3321 */ 3322 static void ice_set_ops(struct net_device *netdev) 3323 { 3324 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3325 3326 if (ice_is_safe_mode(pf)) { 3327 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3328 ice_set_ethtool_safe_mode_ops(netdev); 3329 return; 3330 } 3331 3332 netdev->netdev_ops = &ice_netdev_ops; 3333 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3334 ice_set_ethtool_ops(netdev); 3335 } 3336 3337 /** 3338 * ice_set_netdev_features - set features for the given netdev 3339 * @netdev: netdev instance 3340 */ 3341 static void ice_set_netdev_features(struct net_device *netdev) 3342 { 3343 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3344 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3345 netdev_features_t csumo_features; 3346 netdev_features_t vlano_features; 3347 netdev_features_t dflt_features; 3348 netdev_features_t tso_features; 3349 3350 if (ice_is_safe_mode(pf)) { 3351 /* safe mode */ 3352 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3353 netdev->hw_features = netdev->features; 3354 return; 3355 } 3356 3357 dflt_features = NETIF_F_SG | 3358 NETIF_F_HIGHDMA | 3359 NETIF_F_NTUPLE | 3360 NETIF_F_RXHASH; 3361 3362 csumo_features = NETIF_F_RXCSUM | 3363 NETIF_F_IP_CSUM | 3364 NETIF_F_SCTP_CRC | 3365 NETIF_F_IPV6_CSUM; 3366 3367 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3368 NETIF_F_HW_VLAN_CTAG_TX | 3369 NETIF_F_HW_VLAN_CTAG_RX; 3370 3371 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3372 if (is_dvm_ena) 3373 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3374 3375 tso_features = NETIF_F_TSO | 3376 NETIF_F_TSO_ECN | 3377 NETIF_F_TSO6 | 3378 NETIF_F_GSO_GRE | 3379 NETIF_F_GSO_UDP_TUNNEL | 3380 NETIF_F_GSO_GRE_CSUM | 3381 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3382 NETIF_F_GSO_PARTIAL | 3383 NETIF_F_GSO_IPXIP4 | 3384 NETIF_F_GSO_IPXIP6 | 3385 NETIF_F_GSO_UDP_L4; 3386 3387 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3388 NETIF_F_GSO_GRE_CSUM; 3389 /* set features that user can change */ 3390 netdev->hw_features = dflt_features | csumo_features | 3391 vlano_features | tso_features; 3392 3393 /* add support for HW_CSUM on packets with MPLS header */ 3394 netdev->mpls_features = NETIF_F_HW_CSUM | 3395 NETIF_F_TSO | 3396 NETIF_F_TSO6; 3397 3398 /* enable features */ 3399 netdev->features |= netdev->hw_features; 3400 3401 netdev->hw_features |= NETIF_F_HW_TC; 3402 netdev->hw_features |= NETIF_F_LOOPBACK; 3403 3404 /* encap and VLAN devices inherit default, csumo and tso features */ 3405 netdev->hw_enc_features |= dflt_features | csumo_features | 3406 tso_features; 3407 netdev->vlan_features |= dflt_features | csumo_features | 3408 tso_features; 3409 3410 /* advertise support but don't enable by default since only one type of 3411 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3412 * type turns on the other has to be turned off. This is enforced by the 3413 * ice_fix_features() ndo callback. 3414 */ 3415 if (is_dvm_ena) 3416 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3417 NETIF_F_HW_VLAN_STAG_TX; 3418 3419 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3420 * be changed at runtime 3421 */ 3422 netdev->hw_features |= NETIF_F_RXFCS; 3423 } 3424 3425 /** 3426 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3427 * @lut: Lookup table 3428 * @rss_table_size: Lookup table size 3429 * @rss_size: Range of queue number for hashing 3430 */ 3431 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3432 { 3433 u16 i; 3434 3435 for (i = 0; i < rss_table_size; i++) 3436 lut[i] = i % rss_size; 3437 } 3438 3439 /** 3440 * ice_pf_vsi_setup - Set up a PF VSI 3441 * @pf: board private structure 3442 * @pi: pointer to the port_info instance 3443 * 3444 * Returns pointer to the successfully allocated VSI software struct 3445 * on success, otherwise returns NULL on failure. 3446 */ 3447 static struct ice_vsi * 3448 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3449 { 3450 struct ice_vsi_cfg_params params = {}; 3451 3452 params.type = ICE_VSI_PF; 3453 params.pi = pi; 3454 params.flags = ICE_VSI_FLAG_INIT; 3455 3456 return ice_vsi_setup(pf, ¶ms); 3457 } 3458 3459 static struct ice_vsi * 3460 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3461 struct ice_channel *ch) 3462 { 3463 struct ice_vsi_cfg_params params = {}; 3464 3465 params.type = ICE_VSI_CHNL; 3466 params.pi = pi; 3467 params.ch = ch; 3468 params.flags = ICE_VSI_FLAG_INIT; 3469 3470 return ice_vsi_setup(pf, ¶ms); 3471 } 3472 3473 /** 3474 * ice_ctrl_vsi_setup - Set up a control VSI 3475 * @pf: board private structure 3476 * @pi: pointer to the port_info instance 3477 * 3478 * Returns pointer to the successfully allocated VSI software struct 3479 * on success, otherwise returns NULL on failure. 3480 */ 3481 static struct ice_vsi * 3482 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3483 { 3484 struct ice_vsi_cfg_params params = {}; 3485 3486 params.type = ICE_VSI_CTRL; 3487 params.pi = pi; 3488 params.flags = ICE_VSI_FLAG_INIT; 3489 3490 return ice_vsi_setup(pf, ¶ms); 3491 } 3492 3493 /** 3494 * ice_lb_vsi_setup - Set up a loopback VSI 3495 * @pf: board private structure 3496 * @pi: pointer to the port_info instance 3497 * 3498 * Returns pointer to the successfully allocated VSI software struct 3499 * on success, otherwise returns NULL on failure. 3500 */ 3501 struct ice_vsi * 3502 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3503 { 3504 struct ice_vsi_cfg_params params = {}; 3505 3506 params.type = ICE_VSI_LB; 3507 params.pi = pi; 3508 params.flags = ICE_VSI_FLAG_INIT; 3509 3510 return ice_vsi_setup(pf, ¶ms); 3511 } 3512 3513 /** 3514 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3515 * @netdev: network interface to be adjusted 3516 * @proto: VLAN TPID 3517 * @vid: VLAN ID to be added 3518 * 3519 * net_device_ops implementation for adding VLAN IDs 3520 */ 3521 static int 3522 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3523 { 3524 struct ice_netdev_priv *np = netdev_priv(netdev); 3525 struct ice_vsi_vlan_ops *vlan_ops; 3526 struct ice_vsi *vsi = np->vsi; 3527 struct ice_vlan vlan; 3528 int ret; 3529 3530 /* VLAN 0 is added by default during load/reset */ 3531 if (!vid) 3532 return 0; 3533 3534 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3535 usleep_range(1000, 2000); 3536 3537 /* Add multicast promisc rule for the VLAN ID to be added if 3538 * all-multicast is currently enabled. 3539 */ 3540 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3541 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3542 ICE_MCAST_VLAN_PROMISC_BITS, 3543 vid); 3544 if (ret) 3545 goto finish; 3546 } 3547 3548 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3549 3550 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3551 * packets aren't pruned by the device's internal switch on Rx 3552 */ 3553 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3554 ret = vlan_ops->add_vlan(vsi, &vlan); 3555 if (ret) 3556 goto finish; 3557 3558 /* If all-multicast is currently enabled and this VLAN ID is only one 3559 * besides VLAN-0 we have to update look-up type of multicast promisc 3560 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3561 */ 3562 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3563 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3564 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3565 ICE_MCAST_PROMISC_BITS, 0); 3566 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3567 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3568 } 3569 3570 finish: 3571 clear_bit(ICE_CFG_BUSY, vsi->state); 3572 3573 return ret; 3574 } 3575 3576 /** 3577 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3578 * @netdev: network interface to be adjusted 3579 * @proto: VLAN TPID 3580 * @vid: VLAN ID to be removed 3581 * 3582 * net_device_ops implementation for removing VLAN IDs 3583 */ 3584 static int 3585 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3586 { 3587 struct ice_netdev_priv *np = netdev_priv(netdev); 3588 struct ice_vsi_vlan_ops *vlan_ops; 3589 struct ice_vsi *vsi = np->vsi; 3590 struct ice_vlan vlan; 3591 int ret; 3592 3593 /* don't allow removal of VLAN 0 */ 3594 if (!vid) 3595 return 0; 3596 3597 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3598 usleep_range(1000, 2000); 3599 3600 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3601 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3602 if (ret) { 3603 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3604 vsi->vsi_num); 3605 vsi->current_netdev_flags |= IFF_ALLMULTI; 3606 } 3607 3608 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3609 3610 /* Make sure VLAN delete is successful before updating VLAN 3611 * information 3612 */ 3613 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3614 ret = vlan_ops->del_vlan(vsi, &vlan); 3615 if (ret) 3616 goto finish; 3617 3618 /* Remove multicast promisc rule for the removed VLAN ID if 3619 * all-multicast is enabled. 3620 */ 3621 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3622 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3623 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3624 3625 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3626 /* Update look-up type of multicast promisc rule for VLAN 0 3627 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3628 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3629 */ 3630 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3631 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3632 ICE_MCAST_VLAN_PROMISC_BITS, 3633 0); 3634 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3635 ICE_MCAST_PROMISC_BITS, 0); 3636 } 3637 } 3638 3639 finish: 3640 clear_bit(ICE_CFG_BUSY, vsi->state); 3641 3642 return ret; 3643 } 3644 3645 /** 3646 * ice_rep_indr_tc_block_unbind 3647 * @cb_priv: indirection block private data 3648 */ 3649 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3650 { 3651 struct ice_indr_block_priv *indr_priv = cb_priv; 3652 3653 list_del(&indr_priv->list); 3654 kfree(indr_priv); 3655 } 3656 3657 /** 3658 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3659 * @vsi: VSI struct which has the netdev 3660 */ 3661 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3662 { 3663 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3664 3665 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3666 ice_rep_indr_tc_block_unbind); 3667 } 3668 3669 /** 3670 * ice_tc_indir_block_register - Register TC indirect block notifications 3671 * @vsi: VSI struct which has the netdev 3672 * 3673 * Returns 0 on success, negative value on failure 3674 */ 3675 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3676 { 3677 struct ice_netdev_priv *np; 3678 3679 if (!vsi || !vsi->netdev) 3680 return -EINVAL; 3681 3682 np = netdev_priv(vsi->netdev); 3683 3684 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3685 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3686 } 3687 3688 /** 3689 * ice_get_avail_q_count - Get count of queues in use 3690 * @pf_qmap: bitmap to get queue use count from 3691 * @lock: pointer to a mutex that protects access to pf_qmap 3692 * @size: size of the bitmap 3693 */ 3694 static u16 3695 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3696 { 3697 unsigned long bit; 3698 u16 count = 0; 3699 3700 mutex_lock(lock); 3701 for_each_clear_bit(bit, pf_qmap, size) 3702 count++; 3703 mutex_unlock(lock); 3704 3705 return count; 3706 } 3707 3708 /** 3709 * ice_get_avail_txq_count - Get count of Tx queues in use 3710 * @pf: pointer to an ice_pf instance 3711 */ 3712 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3713 { 3714 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3715 pf->max_pf_txqs); 3716 } 3717 3718 /** 3719 * ice_get_avail_rxq_count - Get count of Rx queues in use 3720 * @pf: pointer to an ice_pf instance 3721 */ 3722 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3723 { 3724 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3725 pf->max_pf_rxqs); 3726 } 3727 3728 /** 3729 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3730 * @pf: board private structure to initialize 3731 */ 3732 static void ice_deinit_pf(struct ice_pf *pf) 3733 { 3734 ice_service_task_stop(pf); 3735 mutex_destroy(&pf->adev_mutex); 3736 mutex_destroy(&pf->sw_mutex); 3737 mutex_destroy(&pf->tc_mutex); 3738 mutex_destroy(&pf->avail_q_mutex); 3739 mutex_destroy(&pf->vfs.table_lock); 3740 3741 if (pf->avail_txqs) { 3742 bitmap_free(pf->avail_txqs); 3743 pf->avail_txqs = NULL; 3744 } 3745 3746 if (pf->avail_rxqs) { 3747 bitmap_free(pf->avail_rxqs); 3748 pf->avail_rxqs = NULL; 3749 } 3750 3751 if (pf->ptp.clock) 3752 ptp_clock_unregister(pf->ptp.clock); 3753 } 3754 3755 /** 3756 * ice_set_pf_caps - set PFs capability flags 3757 * @pf: pointer to the PF instance 3758 */ 3759 static void ice_set_pf_caps(struct ice_pf *pf) 3760 { 3761 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3762 3763 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3764 if (func_caps->common_cap.rdma) 3765 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3766 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3767 if (func_caps->common_cap.dcb) 3768 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3769 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3770 if (func_caps->common_cap.sr_iov_1_1) { 3771 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3772 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3773 ICE_MAX_SRIOV_VFS); 3774 } 3775 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3776 if (func_caps->common_cap.rss_table_size) 3777 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3778 3779 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3780 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3781 u16 unused; 3782 3783 /* ctrl_vsi_idx will be set to a valid value when flow director 3784 * is setup by ice_init_fdir 3785 */ 3786 pf->ctrl_vsi_idx = ICE_NO_VSI; 3787 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3788 /* force guaranteed filter pool for PF */ 3789 ice_alloc_fd_guar_item(&pf->hw, &unused, 3790 func_caps->fd_fltr_guar); 3791 /* force shared filter pool for PF */ 3792 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3793 func_caps->fd_fltr_best_effort); 3794 } 3795 3796 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3797 if (func_caps->common_cap.ieee_1588) 3798 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3799 3800 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3801 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3802 } 3803 3804 /** 3805 * ice_init_pf - Initialize general software structures (struct ice_pf) 3806 * @pf: board private structure to initialize 3807 */ 3808 static int ice_init_pf(struct ice_pf *pf) 3809 { 3810 ice_set_pf_caps(pf); 3811 3812 mutex_init(&pf->sw_mutex); 3813 mutex_init(&pf->tc_mutex); 3814 mutex_init(&pf->adev_mutex); 3815 3816 INIT_HLIST_HEAD(&pf->aq_wait_list); 3817 spin_lock_init(&pf->aq_wait_lock); 3818 init_waitqueue_head(&pf->aq_wait_queue); 3819 3820 init_waitqueue_head(&pf->reset_wait_queue); 3821 3822 /* setup service timer and periodic service task */ 3823 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3824 pf->serv_tmr_period = HZ; 3825 INIT_WORK(&pf->serv_task, ice_service_task); 3826 clear_bit(ICE_SERVICE_SCHED, pf->state); 3827 3828 mutex_init(&pf->avail_q_mutex); 3829 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3830 if (!pf->avail_txqs) 3831 return -ENOMEM; 3832 3833 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3834 if (!pf->avail_rxqs) { 3835 bitmap_free(pf->avail_txqs); 3836 pf->avail_txqs = NULL; 3837 return -ENOMEM; 3838 } 3839 3840 mutex_init(&pf->vfs.table_lock); 3841 hash_init(pf->vfs.table); 3842 3843 return 0; 3844 } 3845 3846 /** 3847 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3848 * @pf: board private structure 3849 * @v_remain: number of remaining MSI-X vectors to be distributed 3850 * 3851 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3852 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3853 * remaining vectors. 3854 */ 3855 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3856 { 3857 int v_rdma; 3858 3859 if (!ice_is_rdma_ena(pf)) { 3860 pf->num_lan_msix = v_remain; 3861 return; 3862 } 3863 3864 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3865 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3866 3867 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3868 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3869 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3870 3871 pf->num_rdma_msix = 0; 3872 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3873 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3874 (v_remain - v_rdma < v_rdma)) { 3875 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3876 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3877 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3878 } else { 3879 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3880 */ 3881 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3882 ICE_RDMA_NUM_AEQ_MSIX; 3883 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3884 } 3885 } 3886 3887 /** 3888 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3889 * @pf: board private structure 3890 * 3891 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3892 * device usage if there are not enough vectors. Return the number of vectors 3893 * reserved or negative on failure. 3894 */ 3895 static int ice_ena_msix_range(struct ice_pf *pf) 3896 { 3897 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 3898 struct device *dev = ice_pf_to_dev(pf); 3899 int err, i; 3900 3901 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 3902 num_cpus = num_online_cpus(); 3903 3904 /* LAN miscellaneous handler */ 3905 v_other = ICE_MIN_LAN_OICR_MSIX; 3906 3907 /* Flow Director */ 3908 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 3909 v_other += ICE_FDIR_MSIX; 3910 3911 /* switchdev */ 3912 v_other += ICE_ESWITCH_MSIX; 3913 3914 v_wanted = v_other; 3915 3916 /* LAN traffic */ 3917 pf->num_lan_msix = num_cpus; 3918 v_wanted += pf->num_lan_msix; 3919 3920 /* RDMA auxiliary driver */ 3921 if (ice_is_rdma_ena(pf)) { 3922 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3923 v_wanted += pf->num_rdma_msix; 3924 } 3925 3926 if (v_wanted > hw_num_msix) { 3927 int v_remain; 3928 3929 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 3930 v_wanted, hw_num_msix); 3931 3932 if (hw_num_msix < ICE_MIN_MSIX) { 3933 err = -ERANGE; 3934 goto exit_err; 3935 } 3936 3937 v_remain = hw_num_msix - v_other; 3938 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 3939 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 3940 v_remain = ICE_MIN_LAN_TXRX_MSIX; 3941 } 3942 3943 ice_reduce_msix_usage(pf, v_remain); 3944 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 3945 3946 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 3947 pf->num_lan_msix); 3948 if (ice_is_rdma_ena(pf)) 3949 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 3950 pf->num_rdma_msix); 3951 } 3952 3953 pf->msix_entries = devm_kcalloc(dev, v_wanted, 3954 sizeof(*pf->msix_entries), GFP_KERNEL); 3955 if (!pf->msix_entries) { 3956 err = -ENOMEM; 3957 goto exit_err; 3958 } 3959 3960 for (i = 0; i < v_wanted; i++) 3961 pf->msix_entries[i].entry = i; 3962 3963 /* actually reserve the vectors */ 3964 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3965 ICE_MIN_MSIX, v_wanted); 3966 if (v_actual < 0) { 3967 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3968 err = v_actual; 3969 goto msix_err; 3970 } 3971 3972 if (v_actual < v_wanted) { 3973 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3974 v_wanted, v_actual); 3975 3976 if (v_actual < ICE_MIN_MSIX) { 3977 /* error if we can't get minimum vectors */ 3978 pci_disable_msix(pf->pdev); 3979 err = -ERANGE; 3980 goto msix_err; 3981 } else { 3982 int v_remain = v_actual - v_other; 3983 3984 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 3985 v_remain = ICE_MIN_LAN_TXRX_MSIX; 3986 3987 ice_reduce_msix_usage(pf, v_remain); 3988 3989 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3990 pf->num_lan_msix); 3991 3992 if (ice_is_rdma_ena(pf)) 3993 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3994 pf->num_rdma_msix); 3995 } 3996 } 3997 3998 return v_actual; 3999 4000 msix_err: 4001 devm_kfree(dev, pf->msix_entries); 4002 4003 exit_err: 4004 pf->num_rdma_msix = 0; 4005 pf->num_lan_msix = 0; 4006 return err; 4007 } 4008 4009 /** 4010 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4011 * @pf: board private structure 4012 */ 4013 static void ice_dis_msix(struct ice_pf *pf) 4014 { 4015 pci_disable_msix(pf->pdev); 4016 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4017 pf->msix_entries = NULL; 4018 } 4019 4020 /** 4021 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4022 * @pf: board private structure 4023 */ 4024 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4025 { 4026 ice_dis_msix(pf); 4027 4028 if (pf->irq_tracker) { 4029 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4030 pf->irq_tracker = NULL; 4031 } 4032 } 4033 4034 /** 4035 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4036 * @pf: board private structure to initialize 4037 */ 4038 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4039 { 4040 int vectors; 4041 4042 vectors = ice_ena_msix_range(pf); 4043 4044 if (vectors < 0) 4045 return vectors; 4046 4047 /* set up vector assignment tracking */ 4048 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4049 struct_size(pf->irq_tracker, list, vectors), 4050 GFP_KERNEL); 4051 if (!pf->irq_tracker) { 4052 ice_dis_msix(pf); 4053 return -ENOMEM; 4054 } 4055 4056 /* populate SW interrupts pool with number of OS granted IRQs. */ 4057 pf->num_avail_sw_msix = (u16)vectors; 4058 pf->irq_tracker->num_entries = (u16)vectors; 4059 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4060 4061 return 0; 4062 } 4063 4064 /** 4065 * ice_is_wol_supported - check if WoL is supported 4066 * @hw: pointer to hardware info 4067 * 4068 * Check if WoL is supported based on the HW configuration. 4069 * Returns true if NVM supports and enables WoL for this port, false otherwise 4070 */ 4071 bool ice_is_wol_supported(struct ice_hw *hw) 4072 { 4073 u16 wol_ctrl; 4074 4075 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4076 * word) indicates WoL is not supported on the corresponding PF ID. 4077 */ 4078 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4079 return false; 4080 4081 return !(BIT(hw->port_info->lport) & wol_ctrl); 4082 } 4083 4084 /** 4085 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4086 * @vsi: VSI being changed 4087 * @new_rx: new number of Rx queues 4088 * @new_tx: new number of Tx queues 4089 * @locked: is adev device_lock held 4090 * 4091 * Only change the number of queues if new_tx, or new_rx is non-0. 4092 * 4093 * Returns 0 on success. 4094 */ 4095 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4096 { 4097 struct ice_pf *pf = vsi->back; 4098 int err = 0, timeout = 50; 4099 4100 if (!new_rx && !new_tx) 4101 return -EINVAL; 4102 4103 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4104 timeout--; 4105 if (!timeout) 4106 return -EBUSY; 4107 usleep_range(1000, 2000); 4108 } 4109 4110 if (new_tx) 4111 vsi->req_txq = (u16)new_tx; 4112 if (new_rx) 4113 vsi->req_rxq = (u16)new_rx; 4114 4115 /* set for the next time the netdev is started */ 4116 if (!netif_running(vsi->netdev)) { 4117 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4118 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4119 goto done; 4120 } 4121 4122 ice_vsi_close(vsi); 4123 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4124 ice_pf_dcb_recfg(pf, locked); 4125 ice_vsi_open(vsi); 4126 done: 4127 clear_bit(ICE_CFG_BUSY, pf->state); 4128 return err; 4129 } 4130 4131 /** 4132 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4133 * @pf: PF to configure 4134 * 4135 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4136 * VSI can still Tx/Rx VLAN tagged packets. 4137 */ 4138 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4139 { 4140 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4141 struct ice_vsi_ctx *ctxt; 4142 struct ice_hw *hw; 4143 int status; 4144 4145 if (!vsi) 4146 return; 4147 4148 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4149 if (!ctxt) 4150 return; 4151 4152 hw = &pf->hw; 4153 ctxt->info = vsi->info; 4154 4155 ctxt->info.valid_sections = 4156 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4157 ICE_AQ_VSI_PROP_SECURITY_VALID | 4158 ICE_AQ_VSI_PROP_SW_VALID); 4159 4160 /* disable VLAN anti-spoof */ 4161 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4162 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4163 4164 /* disable VLAN pruning and keep all other settings */ 4165 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4166 4167 /* allow all VLANs on Tx and don't strip on Rx */ 4168 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4169 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4170 4171 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4172 if (status) { 4173 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4174 status, ice_aq_str(hw->adminq.sq_last_status)); 4175 } else { 4176 vsi->info.sec_flags = ctxt->info.sec_flags; 4177 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4178 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4179 } 4180 4181 kfree(ctxt); 4182 } 4183 4184 /** 4185 * ice_log_pkg_init - log result of DDP package load 4186 * @hw: pointer to hardware info 4187 * @state: state of package load 4188 */ 4189 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4190 { 4191 struct ice_pf *pf = hw->back; 4192 struct device *dev; 4193 4194 dev = ice_pf_to_dev(pf); 4195 4196 switch (state) { 4197 case ICE_DDP_PKG_SUCCESS: 4198 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4199 hw->active_pkg_name, 4200 hw->active_pkg_ver.major, 4201 hw->active_pkg_ver.minor, 4202 hw->active_pkg_ver.update, 4203 hw->active_pkg_ver.draft); 4204 break; 4205 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4206 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4207 hw->active_pkg_name, 4208 hw->active_pkg_ver.major, 4209 hw->active_pkg_ver.minor, 4210 hw->active_pkg_ver.update, 4211 hw->active_pkg_ver.draft); 4212 break; 4213 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4214 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4215 hw->active_pkg_name, 4216 hw->active_pkg_ver.major, 4217 hw->active_pkg_ver.minor, 4218 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4219 break; 4220 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4221 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4222 hw->active_pkg_name, 4223 hw->active_pkg_ver.major, 4224 hw->active_pkg_ver.minor, 4225 hw->active_pkg_ver.update, 4226 hw->active_pkg_ver.draft, 4227 hw->pkg_name, 4228 hw->pkg_ver.major, 4229 hw->pkg_ver.minor, 4230 hw->pkg_ver.update, 4231 hw->pkg_ver.draft); 4232 break; 4233 case ICE_DDP_PKG_FW_MISMATCH: 4234 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4235 break; 4236 case ICE_DDP_PKG_INVALID_FILE: 4237 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4238 break; 4239 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4240 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4241 break; 4242 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4243 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4244 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4245 break; 4246 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4247 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4248 break; 4249 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4250 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4251 break; 4252 case ICE_DDP_PKG_LOAD_ERROR: 4253 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4254 /* poll for reset to complete */ 4255 if (ice_check_reset(hw)) 4256 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4257 break; 4258 case ICE_DDP_PKG_ERR: 4259 default: 4260 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4261 break; 4262 } 4263 } 4264 4265 /** 4266 * ice_load_pkg - load/reload the DDP Package file 4267 * @firmware: firmware structure when firmware requested or NULL for reload 4268 * @pf: pointer to the PF instance 4269 * 4270 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4271 * initialize HW tables. 4272 */ 4273 static void 4274 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4275 { 4276 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4277 struct device *dev = ice_pf_to_dev(pf); 4278 struct ice_hw *hw = &pf->hw; 4279 4280 /* Load DDP Package */ 4281 if (firmware && !hw->pkg_copy) { 4282 state = ice_copy_and_init_pkg(hw, firmware->data, 4283 firmware->size); 4284 ice_log_pkg_init(hw, state); 4285 } else if (!firmware && hw->pkg_copy) { 4286 /* Reload package during rebuild after CORER/GLOBR reset */ 4287 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4288 ice_log_pkg_init(hw, state); 4289 } else { 4290 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4291 } 4292 4293 if (!ice_is_init_pkg_successful(state)) { 4294 /* Safe Mode */ 4295 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4296 return; 4297 } 4298 4299 /* Successful download package is the precondition for advanced 4300 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4301 */ 4302 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4303 } 4304 4305 /** 4306 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4307 * @pf: pointer to the PF structure 4308 * 4309 * There is no error returned here because the driver should be able to handle 4310 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4311 * specifically with Tx. 4312 */ 4313 static void ice_verify_cacheline_size(struct ice_pf *pf) 4314 { 4315 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4316 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4317 ICE_CACHE_LINE_BYTES); 4318 } 4319 4320 /** 4321 * ice_send_version - update firmware with driver version 4322 * @pf: PF struct 4323 * 4324 * Returns 0 on success, else error code 4325 */ 4326 static int ice_send_version(struct ice_pf *pf) 4327 { 4328 struct ice_driver_ver dv; 4329 4330 dv.major_ver = 0xff; 4331 dv.minor_ver = 0xff; 4332 dv.build_ver = 0xff; 4333 dv.subbuild_ver = 0; 4334 strscpy((char *)dv.driver_string, UTS_RELEASE, 4335 sizeof(dv.driver_string)); 4336 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4337 } 4338 4339 /** 4340 * ice_init_fdir - Initialize flow director VSI and configuration 4341 * @pf: pointer to the PF instance 4342 * 4343 * returns 0 on success, negative on error 4344 */ 4345 static int ice_init_fdir(struct ice_pf *pf) 4346 { 4347 struct device *dev = ice_pf_to_dev(pf); 4348 struct ice_vsi *ctrl_vsi; 4349 int err; 4350 4351 /* Side Band Flow Director needs to have a control VSI. 4352 * Allocate it and store it in the PF. 4353 */ 4354 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4355 if (!ctrl_vsi) { 4356 dev_dbg(dev, "could not create control VSI\n"); 4357 return -ENOMEM; 4358 } 4359 4360 err = ice_vsi_open_ctrl(ctrl_vsi); 4361 if (err) { 4362 dev_dbg(dev, "could not open control VSI\n"); 4363 goto err_vsi_open; 4364 } 4365 4366 mutex_init(&pf->hw.fdir_fltr_lock); 4367 4368 err = ice_fdir_create_dflt_rules(pf); 4369 if (err) 4370 goto err_fdir_rule; 4371 4372 return 0; 4373 4374 err_fdir_rule: 4375 ice_fdir_release_flows(&pf->hw); 4376 ice_vsi_close(ctrl_vsi); 4377 err_vsi_open: 4378 ice_vsi_release(ctrl_vsi); 4379 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4380 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4381 pf->ctrl_vsi_idx = ICE_NO_VSI; 4382 } 4383 return err; 4384 } 4385 4386 static void ice_deinit_fdir(struct ice_pf *pf) 4387 { 4388 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4389 4390 if (!vsi) 4391 return; 4392 4393 ice_vsi_manage_fdir(vsi, false); 4394 ice_vsi_release(vsi); 4395 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4396 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4397 pf->ctrl_vsi_idx = ICE_NO_VSI; 4398 } 4399 4400 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4401 } 4402 4403 /** 4404 * ice_get_opt_fw_name - return optional firmware file name or NULL 4405 * @pf: pointer to the PF instance 4406 */ 4407 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4408 { 4409 /* Optional firmware name same as default with additional dash 4410 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4411 */ 4412 struct pci_dev *pdev = pf->pdev; 4413 char *opt_fw_filename; 4414 u64 dsn; 4415 4416 /* Determine the name of the optional file using the DSN (two 4417 * dwords following the start of the DSN Capability). 4418 */ 4419 dsn = pci_get_dsn(pdev); 4420 if (!dsn) 4421 return NULL; 4422 4423 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4424 if (!opt_fw_filename) 4425 return NULL; 4426 4427 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4428 ICE_DDP_PKG_PATH, dsn); 4429 4430 return opt_fw_filename; 4431 } 4432 4433 /** 4434 * ice_request_fw - Device initialization routine 4435 * @pf: pointer to the PF instance 4436 */ 4437 static void ice_request_fw(struct ice_pf *pf) 4438 { 4439 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4440 const struct firmware *firmware = NULL; 4441 struct device *dev = ice_pf_to_dev(pf); 4442 int err = 0; 4443 4444 /* optional device-specific DDP (if present) overrides the default DDP 4445 * package file. kernel logs a debug message if the file doesn't exist, 4446 * and warning messages for other errors. 4447 */ 4448 if (opt_fw_filename) { 4449 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4450 if (err) { 4451 kfree(opt_fw_filename); 4452 goto dflt_pkg_load; 4453 } 4454 4455 /* request for firmware was successful. Download to device */ 4456 ice_load_pkg(firmware, pf); 4457 kfree(opt_fw_filename); 4458 release_firmware(firmware); 4459 return; 4460 } 4461 4462 dflt_pkg_load: 4463 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4464 if (err) { 4465 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4466 return; 4467 } 4468 4469 /* request for firmware was successful. Download to device */ 4470 ice_load_pkg(firmware, pf); 4471 release_firmware(firmware); 4472 } 4473 4474 /** 4475 * ice_print_wake_reason - show the wake up cause in the log 4476 * @pf: pointer to the PF struct 4477 */ 4478 static void ice_print_wake_reason(struct ice_pf *pf) 4479 { 4480 u32 wus = pf->wakeup_reason; 4481 const char *wake_str; 4482 4483 /* if no wake event, nothing to print */ 4484 if (!wus) 4485 return; 4486 4487 if (wus & PFPM_WUS_LNKC_M) 4488 wake_str = "Link\n"; 4489 else if (wus & PFPM_WUS_MAG_M) 4490 wake_str = "Magic Packet\n"; 4491 else if (wus & PFPM_WUS_MNG_M) 4492 wake_str = "Management\n"; 4493 else if (wus & PFPM_WUS_FW_RST_WK_M) 4494 wake_str = "Firmware Reset\n"; 4495 else 4496 wake_str = "Unknown\n"; 4497 4498 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4499 } 4500 4501 /** 4502 * ice_register_netdev - register netdev 4503 * @vsi: pointer to the VSI struct 4504 */ 4505 static int ice_register_netdev(struct ice_vsi *vsi) 4506 { 4507 int err; 4508 4509 if (!vsi || !vsi->netdev) 4510 return -EIO; 4511 4512 err = register_netdev(vsi->netdev); 4513 if (err) 4514 return err; 4515 4516 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4517 netif_carrier_off(vsi->netdev); 4518 netif_tx_stop_all_queues(vsi->netdev); 4519 4520 return 0; 4521 } 4522 4523 static void ice_unregister_netdev(struct ice_vsi *vsi) 4524 { 4525 if (!vsi || !vsi->netdev) 4526 return; 4527 4528 unregister_netdev(vsi->netdev); 4529 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4530 } 4531 4532 /** 4533 * ice_cfg_netdev - Allocate, configure and register a netdev 4534 * @vsi: the VSI associated with the new netdev 4535 * 4536 * Returns 0 on success, negative value on failure 4537 */ 4538 static int ice_cfg_netdev(struct ice_vsi *vsi) 4539 { 4540 struct ice_netdev_priv *np; 4541 struct net_device *netdev; 4542 u8 mac_addr[ETH_ALEN]; 4543 4544 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4545 vsi->alloc_rxq); 4546 if (!netdev) 4547 return -ENOMEM; 4548 4549 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4550 vsi->netdev = netdev; 4551 np = netdev_priv(netdev); 4552 np->vsi = vsi; 4553 4554 ice_set_netdev_features(netdev); 4555 ice_set_ops(netdev); 4556 4557 if (vsi->type == ICE_VSI_PF) { 4558 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4559 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4560 eth_hw_addr_set(netdev, mac_addr); 4561 } 4562 4563 netdev->priv_flags |= IFF_UNICAST_FLT; 4564 4565 /* Setup netdev TC information */ 4566 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4567 4568 netdev->max_mtu = ICE_MAX_MTU; 4569 4570 return 0; 4571 } 4572 4573 static void ice_decfg_netdev(struct ice_vsi *vsi) 4574 { 4575 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4576 free_netdev(vsi->netdev); 4577 vsi->netdev = NULL; 4578 } 4579 4580 static int ice_start_eth(struct ice_vsi *vsi) 4581 { 4582 int err; 4583 4584 err = ice_init_mac_fltr(vsi->back); 4585 if (err) 4586 return err; 4587 4588 rtnl_lock(); 4589 err = ice_vsi_open(vsi); 4590 rtnl_unlock(); 4591 4592 return err; 4593 } 4594 4595 static int ice_init_eth(struct ice_pf *pf) 4596 { 4597 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4598 int err; 4599 4600 if (!vsi) 4601 return -EINVAL; 4602 4603 /* init channel list */ 4604 INIT_LIST_HEAD(&vsi->ch_list); 4605 4606 err = ice_cfg_netdev(vsi); 4607 if (err) 4608 return err; 4609 /* Setup DCB netlink interface */ 4610 ice_dcbnl_setup(vsi); 4611 4612 err = ice_init_mac_fltr(pf); 4613 if (err) 4614 goto err_init_mac_fltr; 4615 4616 err = ice_devlink_create_pf_port(pf); 4617 if (err) 4618 goto err_devlink_create_pf_port; 4619 4620 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4621 4622 err = ice_register_netdev(vsi); 4623 if (err) 4624 goto err_register_netdev; 4625 4626 err = ice_tc_indir_block_register(vsi); 4627 if (err) 4628 goto err_tc_indir_block_register; 4629 4630 ice_napi_add(vsi); 4631 4632 return 0; 4633 4634 err_tc_indir_block_register: 4635 ice_unregister_netdev(vsi); 4636 err_register_netdev: 4637 ice_devlink_destroy_pf_port(pf); 4638 err_devlink_create_pf_port: 4639 err_init_mac_fltr: 4640 ice_decfg_netdev(vsi); 4641 return err; 4642 } 4643 4644 static void ice_deinit_eth(struct ice_pf *pf) 4645 { 4646 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4647 4648 if (!vsi) 4649 return; 4650 4651 ice_vsi_close(vsi); 4652 ice_unregister_netdev(vsi); 4653 ice_devlink_destroy_pf_port(pf); 4654 ice_tc_indir_block_unregister(vsi); 4655 ice_decfg_netdev(vsi); 4656 } 4657 4658 static int ice_init_dev(struct ice_pf *pf) 4659 { 4660 struct device *dev = ice_pf_to_dev(pf); 4661 struct ice_hw *hw = &pf->hw; 4662 int err; 4663 4664 err = ice_init_hw(hw); 4665 if (err) { 4666 dev_err(dev, "ice_init_hw failed: %d\n", err); 4667 return err; 4668 } 4669 4670 ice_init_feature_support(pf); 4671 4672 ice_request_fw(pf); 4673 4674 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4675 * set in pf->state, which will cause ice_is_safe_mode to return 4676 * true 4677 */ 4678 if (ice_is_safe_mode(pf)) { 4679 /* we already got function/device capabilities but these don't 4680 * reflect what the driver needs to do in safe mode. Instead of 4681 * adding conditional logic everywhere to ignore these 4682 * device/function capabilities, override them. 4683 */ 4684 ice_set_safe_mode_caps(hw); 4685 } 4686 4687 err = ice_init_pf(pf); 4688 if (err) { 4689 dev_err(dev, "ice_init_pf failed: %d\n", err); 4690 goto err_init_pf; 4691 } 4692 4693 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4694 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4695 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4696 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4697 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4698 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4699 pf->hw.tnl.valid_count[TNL_VXLAN]; 4700 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4701 UDP_TUNNEL_TYPE_VXLAN; 4702 } 4703 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4704 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4705 pf->hw.tnl.valid_count[TNL_GENEVE]; 4706 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4707 UDP_TUNNEL_TYPE_GENEVE; 4708 } 4709 4710 err = ice_init_interrupt_scheme(pf); 4711 if (err) { 4712 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4713 err = -EIO; 4714 goto err_init_interrupt_scheme; 4715 } 4716 4717 /* In case of MSIX we are going to setup the misc vector right here 4718 * to handle admin queue events etc. In case of legacy and MSI 4719 * the misc functionality and queue processing is combined in 4720 * the same vector and that gets setup at open. 4721 */ 4722 err = ice_req_irq_msix_misc(pf); 4723 if (err) { 4724 dev_err(dev, "setup of misc vector failed: %d\n", err); 4725 goto err_req_irq_msix_misc; 4726 } 4727 4728 return 0; 4729 4730 err_req_irq_msix_misc: 4731 ice_clear_interrupt_scheme(pf); 4732 err_init_interrupt_scheme: 4733 ice_deinit_pf(pf); 4734 err_init_pf: 4735 ice_deinit_hw(hw); 4736 return err; 4737 } 4738 4739 static void ice_deinit_dev(struct ice_pf *pf) 4740 { 4741 ice_free_irq_msix_misc(pf); 4742 ice_clear_interrupt_scheme(pf); 4743 ice_deinit_pf(pf); 4744 ice_deinit_hw(&pf->hw); 4745 } 4746 4747 static void ice_init_features(struct ice_pf *pf) 4748 { 4749 struct device *dev = ice_pf_to_dev(pf); 4750 4751 if (ice_is_safe_mode(pf)) 4752 return; 4753 4754 /* initialize DDP driven features */ 4755 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4756 ice_ptp_init(pf); 4757 4758 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4759 ice_gnss_init(pf); 4760 4761 /* Note: Flow director init failure is non-fatal to load */ 4762 if (ice_init_fdir(pf)) 4763 dev_err(dev, "could not initialize flow director\n"); 4764 4765 /* Note: DCB init failure is non-fatal to load */ 4766 if (ice_init_pf_dcb(pf, false)) { 4767 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4768 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4769 } else { 4770 ice_cfg_lldp_mib_change(&pf->hw, true); 4771 } 4772 4773 if (ice_init_lag(pf)) 4774 dev_warn(dev, "Failed to init link aggregation support\n"); 4775 } 4776 4777 static void ice_deinit_features(struct ice_pf *pf) 4778 { 4779 ice_deinit_lag(pf); 4780 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4781 ice_cfg_lldp_mib_change(&pf->hw, false); 4782 ice_deinit_fdir(pf); 4783 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4784 ice_gnss_exit(pf); 4785 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4786 ice_ptp_release(pf); 4787 } 4788 4789 static void ice_init_wakeup(struct ice_pf *pf) 4790 { 4791 /* Save wakeup reason register for later use */ 4792 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4793 4794 /* check for a power management event */ 4795 ice_print_wake_reason(pf); 4796 4797 /* clear wake status, all bits */ 4798 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4799 4800 /* Disable WoL at init, wait for user to enable */ 4801 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4802 } 4803 4804 static int ice_init_link(struct ice_pf *pf) 4805 { 4806 struct device *dev = ice_pf_to_dev(pf); 4807 int err; 4808 4809 err = ice_init_link_events(pf->hw.port_info); 4810 if (err) { 4811 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4812 return err; 4813 } 4814 4815 /* not a fatal error if this fails */ 4816 err = ice_init_nvm_phy_type(pf->hw.port_info); 4817 if (err) 4818 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4819 4820 /* not a fatal error if this fails */ 4821 err = ice_update_link_info(pf->hw.port_info); 4822 if (err) 4823 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4824 4825 ice_init_link_dflt_override(pf->hw.port_info); 4826 4827 ice_check_link_cfg_err(pf, 4828 pf->hw.port_info->phy.link_info.link_cfg_err); 4829 4830 /* if media available, initialize PHY settings */ 4831 if (pf->hw.port_info->phy.link_info.link_info & 4832 ICE_AQ_MEDIA_AVAILABLE) { 4833 /* not a fatal error if this fails */ 4834 err = ice_init_phy_user_cfg(pf->hw.port_info); 4835 if (err) 4836 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4837 4838 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4839 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4840 4841 if (vsi) 4842 ice_configure_phy(vsi); 4843 } 4844 } else { 4845 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4846 } 4847 4848 return err; 4849 } 4850 4851 static int ice_init_pf_sw(struct ice_pf *pf) 4852 { 4853 bool dvm = ice_is_dvm_ena(&pf->hw); 4854 struct ice_vsi *vsi; 4855 int err; 4856 4857 /* create switch struct for the switch element created by FW on boot */ 4858 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4859 if (!pf->first_sw) 4860 return -ENOMEM; 4861 4862 if (pf->hw.evb_veb) 4863 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4864 else 4865 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4866 4867 pf->first_sw->pf = pf; 4868 4869 /* record the sw_id available for later use */ 4870 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4871 4872 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4873 if (err) 4874 goto err_aq_set_port_params; 4875 4876 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4877 if (!vsi) { 4878 err = -ENOMEM; 4879 goto err_pf_vsi_setup; 4880 } 4881 4882 return 0; 4883 4884 err_pf_vsi_setup: 4885 err_aq_set_port_params: 4886 kfree(pf->first_sw); 4887 return err; 4888 } 4889 4890 static void ice_deinit_pf_sw(struct ice_pf *pf) 4891 { 4892 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4893 4894 if (!vsi) 4895 return; 4896 4897 ice_vsi_release(vsi); 4898 kfree(pf->first_sw); 4899 } 4900 4901 static int ice_alloc_vsis(struct ice_pf *pf) 4902 { 4903 struct device *dev = ice_pf_to_dev(pf); 4904 4905 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4906 if (!pf->num_alloc_vsi) 4907 return -EIO; 4908 4909 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4910 dev_warn(dev, 4911 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4912 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4913 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4914 } 4915 4916 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4917 GFP_KERNEL); 4918 if (!pf->vsi) 4919 return -ENOMEM; 4920 4921 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4922 sizeof(*pf->vsi_stats), GFP_KERNEL); 4923 if (!pf->vsi_stats) { 4924 devm_kfree(dev, pf->vsi); 4925 return -ENOMEM; 4926 } 4927 4928 return 0; 4929 } 4930 4931 static void ice_dealloc_vsis(struct ice_pf *pf) 4932 { 4933 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4934 pf->vsi_stats = NULL; 4935 4936 pf->num_alloc_vsi = 0; 4937 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4938 pf->vsi = NULL; 4939 } 4940 4941 static int ice_init_devlink(struct ice_pf *pf) 4942 { 4943 int err; 4944 4945 err = ice_devlink_register_params(pf); 4946 if (err) 4947 return err; 4948 4949 ice_devlink_init_regions(pf); 4950 ice_devlink_register(pf); 4951 4952 return 0; 4953 } 4954 4955 static void ice_deinit_devlink(struct ice_pf *pf) 4956 { 4957 ice_devlink_unregister(pf); 4958 ice_devlink_destroy_regions(pf); 4959 ice_devlink_unregister_params(pf); 4960 } 4961 4962 static int ice_init(struct ice_pf *pf) 4963 { 4964 int err; 4965 4966 err = ice_init_dev(pf); 4967 if (err) 4968 return err; 4969 4970 err = ice_alloc_vsis(pf); 4971 if (err) 4972 goto err_alloc_vsis; 4973 4974 err = ice_init_pf_sw(pf); 4975 if (err) 4976 goto err_init_pf_sw; 4977 4978 ice_init_wakeup(pf); 4979 4980 err = ice_init_link(pf); 4981 if (err) 4982 goto err_init_link; 4983 4984 err = ice_send_version(pf); 4985 if (err) 4986 goto err_init_link; 4987 4988 ice_verify_cacheline_size(pf); 4989 4990 if (ice_is_safe_mode(pf)) 4991 ice_set_safe_mode_vlan_cfg(pf); 4992 else 4993 /* print PCI link speed and width */ 4994 pcie_print_link_status(pf->pdev); 4995 4996 /* ready to go, so clear down state bit */ 4997 clear_bit(ICE_DOWN, pf->state); 4998 clear_bit(ICE_SERVICE_DIS, pf->state); 4999 5000 /* since everything is good, start the service timer */ 5001 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5002 5003 return 0; 5004 5005 err_init_link: 5006 ice_deinit_pf_sw(pf); 5007 err_init_pf_sw: 5008 ice_dealloc_vsis(pf); 5009 err_alloc_vsis: 5010 ice_deinit_dev(pf); 5011 return err; 5012 } 5013 5014 static void ice_deinit(struct ice_pf *pf) 5015 { 5016 set_bit(ICE_SERVICE_DIS, pf->state); 5017 set_bit(ICE_DOWN, pf->state); 5018 5019 ice_deinit_pf_sw(pf); 5020 ice_dealloc_vsis(pf); 5021 ice_deinit_dev(pf); 5022 } 5023 5024 /** 5025 * ice_load - load pf by init hw and starting VSI 5026 * @pf: pointer to the pf instance 5027 */ 5028 int ice_load(struct ice_pf *pf) 5029 { 5030 struct ice_vsi_cfg_params params = {}; 5031 struct ice_vsi *vsi; 5032 int err; 5033 5034 err = ice_reset(&pf->hw, ICE_RESET_PFR); 5035 if (err) 5036 return err; 5037 5038 err = ice_init_dev(pf); 5039 if (err) 5040 return err; 5041 5042 vsi = ice_get_main_vsi(pf); 5043 5044 params = ice_vsi_to_params(vsi); 5045 params.flags = ICE_VSI_FLAG_INIT; 5046 5047 err = ice_vsi_cfg(vsi, ¶ms); 5048 if (err) 5049 goto err_vsi_cfg; 5050 5051 err = ice_start_eth(ice_get_main_vsi(pf)); 5052 if (err) 5053 goto err_start_eth; 5054 5055 err = ice_init_rdma(pf); 5056 if (err) 5057 goto err_init_rdma; 5058 5059 ice_init_features(pf); 5060 ice_service_task_restart(pf); 5061 5062 clear_bit(ICE_DOWN, pf->state); 5063 5064 return 0; 5065 5066 err_init_rdma: 5067 ice_vsi_close(ice_get_main_vsi(pf)); 5068 err_start_eth: 5069 ice_vsi_decfg(ice_get_main_vsi(pf)); 5070 err_vsi_cfg: 5071 ice_deinit_dev(pf); 5072 return err; 5073 } 5074 5075 /** 5076 * ice_unload - unload pf by stopping VSI and deinit hw 5077 * @pf: pointer to the pf instance 5078 */ 5079 void ice_unload(struct ice_pf *pf) 5080 { 5081 ice_deinit_features(pf); 5082 ice_deinit_rdma(pf); 5083 ice_vsi_close(ice_get_main_vsi(pf)); 5084 ice_vsi_decfg(ice_get_main_vsi(pf)); 5085 ice_deinit_dev(pf); 5086 } 5087 5088 /** 5089 * ice_probe - Device initialization routine 5090 * @pdev: PCI device information struct 5091 * @ent: entry in ice_pci_tbl 5092 * 5093 * Returns 0 on success, negative on failure 5094 */ 5095 static int 5096 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5097 { 5098 struct device *dev = &pdev->dev; 5099 struct ice_pf *pf; 5100 struct ice_hw *hw; 5101 int err; 5102 5103 if (pdev->is_virtfn) { 5104 dev_err(dev, "can't probe a virtual function\n"); 5105 return -EINVAL; 5106 } 5107 5108 /* this driver uses devres, see 5109 * Documentation/driver-api/driver-model/devres.rst 5110 */ 5111 err = pcim_enable_device(pdev); 5112 if (err) 5113 return err; 5114 5115 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5116 if (err) { 5117 dev_err(dev, "BAR0 I/O map error %d\n", err); 5118 return err; 5119 } 5120 5121 pf = ice_allocate_pf(dev); 5122 if (!pf) 5123 return -ENOMEM; 5124 5125 /* initialize Auxiliary index to invalid value */ 5126 pf->aux_idx = -1; 5127 5128 /* set up for high or low DMA */ 5129 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5130 if (err) { 5131 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5132 return err; 5133 } 5134 5135 pci_set_master(pdev); 5136 5137 pf->pdev = pdev; 5138 pci_set_drvdata(pdev, pf); 5139 set_bit(ICE_DOWN, pf->state); 5140 /* Disable service task until DOWN bit is cleared */ 5141 set_bit(ICE_SERVICE_DIS, pf->state); 5142 5143 hw = &pf->hw; 5144 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5145 pci_save_state(pdev); 5146 5147 hw->back = pf; 5148 hw->port_info = NULL; 5149 hw->vendor_id = pdev->vendor; 5150 hw->device_id = pdev->device; 5151 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5152 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5153 hw->subsystem_device_id = pdev->subsystem_device; 5154 hw->bus.device = PCI_SLOT(pdev->devfn); 5155 hw->bus.func = PCI_FUNC(pdev->devfn); 5156 ice_set_ctrlq_len(hw); 5157 5158 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5159 5160 #ifndef CONFIG_DYNAMIC_DEBUG 5161 if (debug < -1) 5162 hw->debug_mask = debug; 5163 #endif 5164 5165 err = ice_init(pf); 5166 if (err) 5167 goto err_init; 5168 5169 err = ice_init_eth(pf); 5170 if (err) 5171 goto err_init_eth; 5172 5173 err = ice_init_rdma(pf); 5174 if (err) 5175 goto err_init_rdma; 5176 5177 err = ice_init_devlink(pf); 5178 if (err) 5179 goto err_init_devlink; 5180 5181 ice_init_features(pf); 5182 5183 return 0; 5184 5185 err_init_devlink: 5186 ice_deinit_rdma(pf); 5187 err_init_rdma: 5188 ice_deinit_eth(pf); 5189 err_init_eth: 5190 ice_deinit(pf); 5191 err_init: 5192 pci_disable_device(pdev); 5193 return err; 5194 } 5195 5196 /** 5197 * ice_set_wake - enable or disable Wake on LAN 5198 * @pf: pointer to the PF struct 5199 * 5200 * Simple helper for WoL control 5201 */ 5202 static void ice_set_wake(struct ice_pf *pf) 5203 { 5204 struct ice_hw *hw = &pf->hw; 5205 bool wol = pf->wol_ena; 5206 5207 /* clear wake state, otherwise new wake events won't fire */ 5208 wr32(hw, PFPM_WUS, U32_MAX); 5209 5210 /* enable / disable APM wake up, no RMW needed */ 5211 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5212 5213 /* set magic packet filter enabled */ 5214 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5215 } 5216 5217 /** 5218 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5219 * @pf: pointer to the PF struct 5220 * 5221 * Issue firmware command to enable multicast magic wake, making 5222 * sure that any locally administered address (LAA) is used for 5223 * wake, and that PF reset doesn't undo the LAA. 5224 */ 5225 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5226 { 5227 struct device *dev = ice_pf_to_dev(pf); 5228 struct ice_hw *hw = &pf->hw; 5229 u8 mac_addr[ETH_ALEN]; 5230 struct ice_vsi *vsi; 5231 int status; 5232 u8 flags; 5233 5234 if (!pf->wol_ena) 5235 return; 5236 5237 vsi = ice_get_main_vsi(pf); 5238 if (!vsi) 5239 return; 5240 5241 /* Get current MAC address in case it's an LAA */ 5242 if (vsi->netdev) 5243 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5244 else 5245 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5246 5247 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5248 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5249 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5250 5251 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5252 if (status) 5253 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5254 status, ice_aq_str(hw->adminq.sq_last_status)); 5255 } 5256 5257 /** 5258 * ice_remove - Device removal routine 5259 * @pdev: PCI device information struct 5260 */ 5261 static void ice_remove(struct pci_dev *pdev) 5262 { 5263 struct ice_pf *pf = pci_get_drvdata(pdev); 5264 int i; 5265 5266 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5267 if (!ice_is_reset_in_progress(pf->state)) 5268 break; 5269 msleep(100); 5270 } 5271 5272 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5273 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5274 ice_free_vfs(pf); 5275 } 5276 5277 ice_service_task_stop(pf); 5278 ice_aq_cancel_waiting_tasks(pf); 5279 set_bit(ICE_DOWN, pf->state); 5280 5281 if (!ice_is_safe_mode(pf)) 5282 ice_remove_arfs(pf); 5283 ice_deinit_features(pf); 5284 ice_deinit_devlink(pf); 5285 ice_deinit_rdma(pf); 5286 ice_deinit_eth(pf); 5287 ice_deinit(pf); 5288 5289 ice_vsi_release_all(pf); 5290 5291 ice_setup_mc_magic_wake(pf); 5292 ice_set_wake(pf); 5293 5294 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5295 * do it via ice_schedule_reset() since there is no need to rebuild 5296 * and the service task is already stopped. 5297 */ 5298 ice_reset(&pf->hw, ICE_RESET_PFR); 5299 pci_wait_for_pending_transaction(pdev); 5300 pci_disable_device(pdev); 5301 } 5302 5303 /** 5304 * ice_shutdown - PCI callback for shutting down device 5305 * @pdev: PCI device information struct 5306 */ 5307 static void ice_shutdown(struct pci_dev *pdev) 5308 { 5309 struct ice_pf *pf = pci_get_drvdata(pdev); 5310 5311 ice_remove(pdev); 5312 5313 if (system_state == SYSTEM_POWER_OFF) { 5314 pci_wake_from_d3(pdev, pf->wol_ena); 5315 pci_set_power_state(pdev, PCI_D3hot); 5316 } 5317 } 5318 5319 #ifdef CONFIG_PM 5320 /** 5321 * ice_prepare_for_shutdown - prep for PCI shutdown 5322 * @pf: board private structure 5323 * 5324 * Inform or close all dependent features in prep for PCI device shutdown 5325 */ 5326 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5327 { 5328 struct ice_hw *hw = &pf->hw; 5329 u32 v; 5330 5331 /* Notify VFs of impending reset */ 5332 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5333 ice_vc_notify_reset(pf); 5334 5335 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5336 5337 /* disable the VSIs and their queues that are not already DOWN */ 5338 ice_pf_dis_all_vsi(pf, false); 5339 5340 ice_for_each_vsi(pf, v) 5341 if (pf->vsi[v]) 5342 pf->vsi[v]->vsi_num = 0; 5343 5344 ice_shutdown_all_ctrlq(hw); 5345 } 5346 5347 /** 5348 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5349 * @pf: board private structure to reinitialize 5350 * 5351 * This routine reinitialize interrupt scheme that was cleared during 5352 * power management suspend callback. 5353 * 5354 * This should be called during resume routine to re-allocate the q_vectors 5355 * and reacquire interrupts. 5356 */ 5357 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5358 { 5359 struct device *dev = ice_pf_to_dev(pf); 5360 int ret, v; 5361 5362 /* Since we clear MSIX flag during suspend, we need to 5363 * set it back during resume... 5364 */ 5365 5366 ret = ice_init_interrupt_scheme(pf); 5367 if (ret) { 5368 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5369 return ret; 5370 } 5371 5372 /* Remap vectors and rings, after successful re-init interrupts */ 5373 ice_for_each_vsi(pf, v) { 5374 if (!pf->vsi[v]) 5375 continue; 5376 5377 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5378 if (ret) 5379 goto err_reinit; 5380 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5381 } 5382 5383 ret = ice_req_irq_msix_misc(pf); 5384 if (ret) { 5385 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5386 ret); 5387 goto err_reinit; 5388 } 5389 5390 return 0; 5391 5392 err_reinit: 5393 while (v--) 5394 if (pf->vsi[v]) 5395 ice_vsi_free_q_vectors(pf->vsi[v]); 5396 5397 return ret; 5398 } 5399 5400 /** 5401 * ice_suspend 5402 * @dev: generic device information structure 5403 * 5404 * Power Management callback to quiesce the device and prepare 5405 * for D3 transition. 5406 */ 5407 static int __maybe_unused ice_suspend(struct device *dev) 5408 { 5409 struct pci_dev *pdev = to_pci_dev(dev); 5410 struct ice_pf *pf; 5411 int disabled, v; 5412 5413 pf = pci_get_drvdata(pdev); 5414 5415 if (!ice_pf_state_is_nominal(pf)) { 5416 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5417 return -EBUSY; 5418 } 5419 5420 /* Stop watchdog tasks until resume completion. 5421 * Even though it is most likely that the service task is 5422 * disabled if the device is suspended or down, the service task's 5423 * state is controlled by a different state bit, and we should 5424 * store and honor whatever state that bit is in at this point. 5425 */ 5426 disabled = ice_service_task_stop(pf); 5427 5428 ice_unplug_aux_dev(pf); 5429 5430 /* Already suspended?, then there is nothing to do */ 5431 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5432 if (!disabled) 5433 ice_service_task_restart(pf); 5434 return 0; 5435 } 5436 5437 if (test_bit(ICE_DOWN, pf->state) || 5438 ice_is_reset_in_progress(pf->state)) { 5439 dev_err(dev, "can't suspend device in reset or already down\n"); 5440 if (!disabled) 5441 ice_service_task_restart(pf); 5442 return 0; 5443 } 5444 5445 ice_setup_mc_magic_wake(pf); 5446 5447 ice_prepare_for_shutdown(pf); 5448 5449 ice_set_wake(pf); 5450 5451 /* Free vectors, clear the interrupt scheme and release IRQs 5452 * for proper hibernation, especially with large number of CPUs. 5453 * Otherwise hibernation might fail when mapping all the vectors back 5454 * to CPU0. 5455 */ 5456 ice_free_irq_msix_misc(pf); 5457 ice_for_each_vsi(pf, v) { 5458 if (!pf->vsi[v]) 5459 continue; 5460 ice_vsi_free_q_vectors(pf->vsi[v]); 5461 } 5462 ice_clear_interrupt_scheme(pf); 5463 5464 pci_save_state(pdev); 5465 pci_wake_from_d3(pdev, pf->wol_ena); 5466 pci_set_power_state(pdev, PCI_D3hot); 5467 return 0; 5468 } 5469 5470 /** 5471 * ice_resume - PM callback for waking up from D3 5472 * @dev: generic device information structure 5473 */ 5474 static int __maybe_unused ice_resume(struct device *dev) 5475 { 5476 struct pci_dev *pdev = to_pci_dev(dev); 5477 enum ice_reset_req reset_type; 5478 struct ice_pf *pf; 5479 struct ice_hw *hw; 5480 int ret; 5481 5482 pci_set_power_state(pdev, PCI_D0); 5483 pci_restore_state(pdev); 5484 pci_save_state(pdev); 5485 5486 if (!pci_device_is_present(pdev)) 5487 return -ENODEV; 5488 5489 ret = pci_enable_device_mem(pdev); 5490 if (ret) { 5491 dev_err(dev, "Cannot enable device after suspend\n"); 5492 return ret; 5493 } 5494 5495 pf = pci_get_drvdata(pdev); 5496 hw = &pf->hw; 5497 5498 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5499 ice_print_wake_reason(pf); 5500 5501 /* We cleared the interrupt scheme when we suspended, so we need to 5502 * restore it now to resume device functionality. 5503 */ 5504 ret = ice_reinit_interrupt_scheme(pf); 5505 if (ret) 5506 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5507 5508 clear_bit(ICE_DOWN, pf->state); 5509 /* Now perform PF reset and rebuild */ 5510 reset_type = ICE_RESET_PFR; 5511 /* re-enable service task for reset, but allow reset to schedule it */ 5512 clear_bit(ICE_SERVICE_DIS, pf->state); 5513 5514 if (ice_schedule_reset(pf, reset_type)) 5515 dev_err(dev, "Reset during resume failed.\n"); 5516 5517 clear_bit(ICE_SUSPENDED, pf->state); 5518 ice_service_task_restart(pf); 5519 5520 /* Restart the service task */ 5521 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5522 5523 return 0; 5524 } 5525 #endif /* CONFIG_PM */ 5526 5527 /** 5528 * ice_pci_err_detected - warning that PCI error has been detected 5529 * @pdev: PCI device information struct 5530 * @err: the type of PCI error 5531 * 5532 * Called to warn that something happened on the PCI bus and the error handling 5533 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5534 */ 5535 static pci_ers_result_t 5536 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5537 { 5538 struct ice_pf *pf = pci_get_drvdata(pdev); 5539 5540 if (!pf) { 5541 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5542 __func__, err); 5543 return PCI_ERS_RESULT_DISCONNECT; 5544 } 5545 5546 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5547 ice_service_task_stop(pf); 5548 5549 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5550 set_bit(ICE_PFR_REQ, pf->state); 5551 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5552 } 5553 } 5554 5555 return PCI_ERS_RESULT_NEED_RESET; 5556 } 5557 5558 /** 5559 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5560 * @pdev: PCI device information struct 5561 * 5562 * Called to determine if the driver can recover from the PCI slot reset by 5563 * using a register read to determine if the device is recoverable. 5564 */ 5565 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5566 { 5567 struct ice_pf *pf = pci_get_drvdata(pdev); 5568 pci_ers_result_t result; 5569 int err; 5570 u32 reg; 5571 5572 err = pci_enable_device_mem(pdev); 5573 if (err) { 5574 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5575 err); 5576 result = PCI_ERS_RESULT_DISCONNECT; 5577 } else { 5578 pci_set_master(pdev); 5579 pci_restore_state(pdev); 5580 pci_save_state(pdev); 5581 pci_wake_from_d3(pdev, false); 5582 5583 /* Check for life */ 5584 reg = rd32(&pf->hw, GLGEN_RTRIG); 5585 if (!reg) 5586 result = PCI_ERS_RESULT_RECOVERED; 5587 else 5588 result = PCI_ERS_RESULT_DISCONNECT; 5589 } 5590 5591 return result; 5592 } 5593 5594 /** 5595 * ice_pci_err_resume - restart operations after PCI error recovery 5596 * @pdev: PCI device information struct 5597 * 5598 * Called to allow the driver to bring things back up after PCI error and/or 5599 * reset recovery have finished 5600 */ 5601 static void ice_pci_err_resume(struct pci_dev *pdev) 5602 { 5603 struct ice_pf *pf = pci_get_drvdata(pdev); 5604 5605 if (!pf) { 5606 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5607 __func__); 5608 return; 5609 } 5610 5611 if (test_bit(ICE_SUSPENDED, pf->state)) { 5612 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5613 __func__); 5614 return; 5615 } 5616 5617 ice_restore_all_vfs_msi_state(pdev); 5618 5619 ice_do_reset(pf, ICE_RESET_PFR); 5620 ice_service_task_restart(pf); 5621 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5622 } 5623 5624 /** 5625 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5626 * @pdev: PCI device information struct 5627 */ 5628 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5629 { 5630 struct ice_pf *pf = pci_get_drvdata(pdev); 5631 5632 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5633 ice_service_task_stop(pf); 5634 5635 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5636 set_bit(ICE_PFR_REQ, pf->state); 5637 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5638 } 5639 } 5640 } 5641 5642 /** 5643 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5644 * @pdev: PCI device information struct 5645 */ 5646 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5647 { 5648 ice_pci_err_resume(pdev); 5649 } 5650 5651 /* ice_pci_tbl - PCI Device ID Table 5652 * 5653 * Wildcard entries (PCI_ANY_ID) should come last 5654 * Last entry must be all 0s 5655 * 5656 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5657 * Class, Class Mask, private data (not used) } 5658 */ 5659 static const struct pci_device_id ice_pci_tbl[] = { 5660 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5661 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5662 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5663 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5664 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5665 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5666 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5667 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5668 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5669 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5670 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5671 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5672 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5673 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5674 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5675 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5676 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5677 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5678 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5679 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5680 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5681 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5682 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5683 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5684 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5685 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5686 /* required last entry */ 5687 { 0, } 5688 }; 5689 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5690 5691 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5692 5693 static const struct pci_error_handlers ice_pci_err_handler = { 5694 .error_detected = ice_pci_err_detected, 5695 .slot_reset = ice_pci_err_slot_reset, 5696 .reset_prepare = ice_pci_err_reset_prepare, 5697 .reset_done = ice_pci_err_reset_done, 5698 .resume = ice_pci_err_resume 5699 }; 5700 5701 static struct pci_driver ice_driver = { 5702 .name = KBUILD_MODNAME, 5703 .id_table = ice_pci_tbl, 5704 .probe = ice_probe, 5705 .remove = ice_remove, 5706 #ifdef CONFIG_PM 5707 .driver.pm = &ice_pm_ops, 5708 #endif /* CONFIG_PM */ 5709 .shutdown = ice_shutdown, 5710 .sriov_configure = ice_sriov_configure, 5711 .err_handler = &ice_pci_err_handler 5712 }; 5713 5714 /** 5715 * ice_module_init - Driver registration routine 5716 * 5717 * ice_module_init is the first routine called when the driver is 5718 * loaded. All it does is register with the PCI subsystem. 5719 */ 5720 static int __init ice_module_init(void) 5721 { 5722 int status; 5723 5724 pr_info("%s\n", ice_driver_string); 5725 pr_info("%s\n", ice_copyright); 5726 5727 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5728 if (!ice_wq) { 5729 pr_err("Failed to create workqueue\n"); 5730 return -ENOMEM; 5731 } 5732 5733 status = pci_register_driver(&ice_driver); 5734 if (status) { 5735 pr_err("failed to register PCI driver, err %d\n", status); 5736 destroy_workqueue(ice_wq); 5737 } 5738 5739 return status; 5740 } 5741 module_init(ice_module_init); 5742 5743 /** 5744 * ice_module_exit - Driver exit cleanup routine 5745 * 5746 * ice_module_exit is called just before the driver is removed 5747 * from memory. 5748 */ 5749 static void __exit ice_module_exit(void) 5750 { 5751 pci_unregister_driver(&ice_driver); 5752 destroy_workqueue(ice_wq); 5753 pr_info("module unloaded\n"); 5754 } 5755 module_exit(ice_module_exit); 5756 5757 /** 5758 * ice_set_mac_address - NDO callback to set MAC address 5759 * @netdev: network interface device structure 5760 * @pi: pointer to an address structure 5761 * 5762 * Returns 0 on success, negative on failure 5763 */ 5764 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5765 { 5766 struct ice_netdev_priv *np = netdev_priv(netdev); 5767 struct ice_vsi *vsi = np->vsi; 5768 struct ice_pf *pf = vsi->back; 5769 struct ice_hw *hw = &pf->hw; 5770 struct sockaddr *addr = pi; 5771 u8 old_mac[ETH_ALEN]; 5772 u8 flags = 0; 5773 u8 *mac; 5774 int err; 5775 5776 mac = (u8 *)addr->sa_data; 5777 5778 if (!is_valid_ether_addr(mac)) 5779 return -EADDRNOTAVAIL; 5780 5781 if (ether_addr_equal(netdev->dev_addr, mac)) { 5782 netdev_dbg(netdev, "already using mac %pM\n", mac); 5783 return 0; 5784 } 5785 5786 if (test_bit(ICE_DOWN, pf->state) || 5787 ice_is_reset_in_progress(pf->state)) { 5788 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5789 mac); 5790 return -EBUSY; 5791 } 5792 5793 if (ice_chnl_dmac_fltr_cnt(pf)) { 5794 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5795 mac); 5796 return -EAGAIN; 5797 } 5798 5799 netif_addr_lock_bh(netdev); 5800 ether_addr_copy(old_mac, netdev->dev_addr); 5801 /* change the netdev's MAC address */ 5802 eth_hw_addr_set(netdev, mac); 5803 netif_addr_unlock_bh(netdev); 5804 5805 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5806 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5807 if (err && err != -ENOENT) { 5808 err = -EADDRNOTAVAIL; 5809 goto err_update_filters; 5810 } 5811 5812 /* Add filter for new MAC. If filter exists, return success */ 5813 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5814 if (err == -EEXIST) { 5815 /* Although this MAC filter is already present in hardware it's 5816 * possible in some cases (e.g. bonding) that dev_addr was 5817 * modified outside of the driver and needs to be restored back 5818 * to this value. 5819 */ 5820 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5821 5822 return 0; 5823 } else if (err) { 5824 /* error if the new filter addition failed */ 5825 err = -EADDRNOTAVAIL; 5826 } 5827 5828 err_update_filters: 5829 if (err) { 5830 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5831 mac); 5832 netif_addr_lock_bh(netdev); 5833 eth_hw_addr_set(netdev, old_mac); 5834 netif_addr_unlock_bh(netdev); 5835 return err; 5836 } 5837 5838 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5839 netdev->dev_addr); 5840 5841 /* write new MAC address to the firmware */ 5842 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5843 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5844 if (err) { 5845 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5846 mac, err); 5847 } 5848 return 0; 5849 } 5850 5851 /** 5852 * ice_set_rx_mode - NDO callback to set the netdev filters 5853 * @netdev: network interface device structure 5854 */ 5855 static void ice_set_rx_mode(struct net_device *netdev) 5856 { 5857 struct ice_netdev_priv *np = netdev_priv(netdev); 5858 struct ice_vsi *vsi = np->vsi; 5859 5860 if (!vsi) 5861 return; 5862 5863 /* Set the flags to synchronize filters 5864 * ndo_set_rx_mode may be triggered even without a change in netdev 5865 * flags 5866 */ 5867 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5868 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5869 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5870 5871 /* schedule our worker thread which will take care of 5872 * applying the new filter changes 5873 */ 5874 ice_service_task_schedule(vsi->back); 5875 } 5876 5877 /** 5878 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5879 * @netdev: network interface device structure 5880 * @queue_index: Queue ID 5881 * @maxrate: maximum bandwidth in Mbps 5882 */ 5883 static int 5884 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5885 { 5886 struct ice_netdev_priv *np = netdev_priv(netdev); 5887 struct ice_vsi *vsi = np->vsi; 5888 u16 q_handle; 5889 int status; 5890 u8 tc; 5891 5892 /* Validate maxrate requested is within permitted range */ 5893 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5894 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5895 maxrate, queue_index); 5896 return -EINVAL; 5897 } 5898 5899 q_handle = vsi->tx_rings[queue_index]->q_handle; 5900 tc = ice_dcb_get_tc(vsi, queue_index); 5901 5902 /* Set BW back to default, when user set maxrate to 0 */ 5903 if (!maxrate) 5904 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5905 q_handle, ICE_MAX_BW); 5906 else 5907 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5908 q_handle, ICE_MAX_BW, maxrate * 1000); 5909 if (status) 5910 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5911 status); 5912 5913 return status; 5914 } 5915 5916 /** 5917 * ice_fdb_add - add an entry to the hardware database 5918 * @ndm: the input from the stack 5919 * @tb: pointer to array of nladdr (unused) 5920 * @dev: the net device pointer 5921 * @addr: the MAC address entry being added 5922 * @vid: VLAN ID 5923 * @flags: instructions from stack about fdb operation 5924 * @extack: netlink extended ack 5925 */ 5926 static int 5927 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5928 struct net_device *dev, const unsigned char *addr, u16 vid, 5929 u16 flags, struct netlink_ext_ack __always_unused *extack) 5930 { 5931 int err; 5932 5933 if (vid) { 5934 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5935 return -EINVAL; 5936 } 5937 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5938 netdev_err(dev, "FDB only supports static addresses\n"); 5939 return -EINVAL; 5940 } 5941 5942 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5943 err = dev_uc_add_excl(dev, addr); 5944 else if (is_multicast_ether_addr(addr)) 5945 err = dev_mc_add_excl(dev, addr); 5946 else 5947 err = -EINVAL; 5948 5949 /* Only return duplicate errors if NLM_F_EXCL is set */ 5950 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5951 err = 0; 5952 5953 return err; 5954 } 5955 5956 /** 5957 * ice_fdb_del - delete an entry from the hardware database 5958 * @ndm: the input from the stack 5959 * @tb: pointer to array of nladdr (unused) 5960 * @dev: the net device pointer 5961 * @addr: the MAC address entry being added 5962 * @vid: VLAN ID 5963 * @extack: netlink extended ack 5964 */ 5965 static int 5966 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5967 struct net_device *dev, const unsigned char *addr, 5968 __always_unused u16 vid, struct netlink_ext_ack *extack) 5969 { 5970 int err; 5971 5972 if (ndm->ndm_state & NUD_PERMANENT) { 5973 netdev_err(dev, "FDB only supports static addresses\n"); 5974 return -EINVAL; 5975 } 5976 5977 if (is_unicast_ether_addr(addr)) 5978 err = dev_uc_del(dev, addr); 5979 else if (is_multicast_ether_addr(addr)) 5980 err = dev_mc_del(dev, addr); 5981 else 5982 err = -EINVAL; 5983 5984 return err; 5985 } 5986 5987 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5988 NETIF_F_HW_VLAN_CTAG_TX | \ 5989 NETIF_F_HW_VLAN_STAG_RX | \ 5990 NETIF_F_HW_VLAN_STAG_TX) 5991 5992 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5993 NETIF_F_HW_VLAN_STAG_RX) 5994 5995 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5996 NETIF_F_HW_VLAN_STAG_FILTER) 5997 5998 /** 5999 * ice_fix_features - fix the netdev features flags based on device limitations 6000 * @netdev: ptr to the netdev that flags are being fixed on 6001 * @features: features that need to be checked and possibly fixed 6002 * 6003 * Make sure any fixups are made to features in this callback. This enables the 6004 * driver to not have to check unsupported configurations throughout the driver 6005 * because that's the responsiblity of this callback. 6006 * 6007 * Single VLAN Mode (SVM) Supported Features: 6008 * NETIF_F_HW_VLAN_CTAG_FILTER 6009 * NETIF_F_HW_VLAN_CTAG_RX 6010 * NETIF_F_HW_VLAN_CTAG_TX 6011 * 6012 * Double VLAN Mode (DVM) Supported Features: 6013 * NETIF_F_HW_VLAN_CTAG_FILTER 6014 * NETIF_F_HW_VLAN_CTAG_RX 6015 * NETIF_F_HW_VLAN_CTAG_TX 6016 * 6017 * NETIF_F_HW_VLAN_STAG_FILTER 6018 * NETIF_HW_VLAN_STAG_RX 6019 * NETIF_HW_VLAN_STAG_TX 6020 * 6021 * Features that need fixing: 6022 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6023 * These are mutually exlusive as the VSI context cannot support multiple 6024 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6025 * is not done, then default to clearing the requested STAG offload 6026 * settings. 6027 * 6028 * All supported filtering has to be enabled or disabled together. For 6029 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6030 * together. If this is not done, then default to VLAN filtering disabled. 6031 * These are mutually exclusive as there is currently no way to 6032 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6033 * prune rules. 6034 */ 6035 static netdev_features_t 6036 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6037 { 6038 struct ice_netdev_priv *np = netdev_priv(netdev); 6039 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6040 bool cur_ctag, cur_stag, req_ctag, req_stag; 6041 6042 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6043 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6044 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6045 6046 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6047 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6048 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6049 6050 if (req_vlan_fltr != cur_vlan_fltr) { 6051 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6052 if (req_ctag && req_stag) { 6053 features |= NETIF_VLAN_FILTERING_FEATURES; 6054 } else if (!req_ctag && !req_stag) { 6055 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6056 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6057 (!cur_stag && req_stag && !cur_ctag)) { 6058 features |= NETIF_VLAN_FILTERING_FEATURES; 6059 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6060 } else if ((cur_ctag && !req_ctag && cur_stag) || 6061 (cur_stag && !req_stag && cur_ctag)) { 6062 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6063 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6064 } 6065 } else { 6066 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6067 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6068 6069 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6070 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6071 } 6072 } 6073 6074 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6075 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6076 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6077 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6078 NETIF_F_HW_VLAN_STAG_TX); 6079 } 6080 6081 if (!(netdev->features & NETIF_F_RXFCS) && 6082 (features & NETIF_F_RXFCS) && 6083 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6084 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6085 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6086 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6087 } 6088 6089 return features; 6090 } 6091 6092 /** 6093 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6094 * @vsi: PF's VSI 6095 * @features: features used to determine VLAN offload settings 6096 * 6097 * First, determine the vlan_ethertype based on the VLAN offload bits in 6098 * features. Then determine if stripping and insertion should be enabled or 6099 * disabled. Finally enable or disable VLAN stripping and insertion. 6100 */ 6101 static int 6102 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6103 { 6104 bool enable_stripping = true, enable_insertion = true; 6105 struct ice_vsi_vlan_ops *vlan_ops; 6106 int strip_err = 0, insert_err = 0; 6107 u16 vlan_ethertype = 0; 6108 6109 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6110 6111 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6112 vlan_ethertype = ETH_P_8021AD; 6113 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6114 vlan_ethertype = ETH_P_8021Q; 6115 6116 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6117 enable_stripping = false; 6118 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6119 enable_insertion = false; 6120 6121 if (enable_stripping) 6122 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6123 else 6124 strip_err = vlan_ops->dis_stripping(vsi); 6125 6126 if (enable_insertion) 6127 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6128 else 6129 insert_err = vlan_ops->dis_insertion(vsi); 6130 6131 if (strip_err || insert_err) 6132 return -EIO; 6133 6134 return 0; 6135 } 6136 6137 /** 6138 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6139 * @vsi: PF's VSI 6140 * @features: features used to determine VLAN filtering settings 6141 * 6142 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6143 * features. 6144 */ 6145 static int 6146 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6147 { 6148 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6149 int err = 0; 6150 6151 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6152 * if either bit is set 6153 */ 6154 if (features & 6155 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6156 err = vlan_ops->ena_rx_filtering(vsi); 6157 else 6158 err = vlan_ops->dis_rx_filtering(vsi); 6159 6160 return err; 6161 } 6162 6163 /** 6164 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6165 * @netdev: ptr to the netdev being adjusted 6166 * @features: the feature set that the stack is suggesting 6167 * 6168 * Only update VLAN settings if the requested_vlan_features are different than 6169 * the current_vlan_features. 6170 */ 6171 static int 6172 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6173 { 6174 netdev_features_t current_vlan_features, requested_vlan_features; 6175 struct ice_netdev_priv *np = netdev_priv(netdev); 6176 struct ice_vsi *vsi = np->vsi; 6177 int err; 6178 6179 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6180 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6181 if (current_vlan_features ^ requested_vlan_features) { 6182 if ((features & NETIF_F_RXFCS) && 6183 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6184 dev_err(ice_pf_to_dev(vsi->back), 6185 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6186 return -EIO; 6187 } 6188 6189 err = ice_set_vlan_offload_features(vsi, features); 6190 if (err) 6191 return err; 6192 } 6193 6194 current_vlan_features = netdev->features & 6195 NETIF_VLAN_FILTERING_FEATURES; 6196 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6197 if (current_vlan_features ^ requested_vlan_features) { 6198 err = ice_set_vlan_filtering_features(vsi, features); 6199 if (err) 6200 return err; 6201 } 6202 6203 return 0; 6204 } 6205 6206 /** 6207 * ice_set_loopback - turn on/off loopback mode on underlying PF 6208 * @vsi: ptr to VSI 6209 * @ena: flag to indicate the on/off setting 6210 */ 6211 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6212 { 6213 bool if_running = netif_running(vsi->netdev); 6214 int ret; 6215 6216 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6217 ret = ice_down(vsi); 6218 if (ret) { 6219 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6220 return ret; 6221 } 6222 } 6223 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6224 if (ret) 6225 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6226 if (if_running) 6227 ret = ice_up(vsi); 6228 6229 return ret; 6230 } 6231 6232 /** 6233 * ice_set_features - set the netdev feature flags 6234 * @netdev: ptr to the netdev being adjusted 6235 * @features: the feature set that the stack is suggesting 6236 */ 6237 static int 6238 ice_set_features(struct net_device *netdev, netdev_features_t features) 6239 { 6240 netdev_features_t changed = netdev->features ^ features; 6241 struct ice_netdev_priv *np = netdev_priv(netdev); 6242 struct ice_vsi *vsi = np->vsi; 6243 struct ice_pf *pf = vsi->back; 6244 int ret = 0; 6245 6246 /* Don't set any netdev advanced features with device in Safe Mode */ 6247 if (ice_is_safe_mode(pf)) { 6248 dev_err(ice_pf_to_dev(pf), 6249 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6250 return ret; 6251 } 6252 6253 /* Do not change setting during reset */ 6254 if (ice_is_reset_in_progress(pf->state)) { 6255 dev_err(ice_pf_to_dev(pf), 6256 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6257 return -EBUSY; 6258 } 6259 6260 /* Multiple features can be changed in one call so keep features in 6261 * separate if/else statements to guarantee each feature is checked 6262 */ 6263 if (changed & NETIF_F_RXHASH) 6264 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6265 6266 ret = ice_set_vlan_features(netdev, features); 6267 if (ret) 6268 return ret; 6269 6270 /* Turn on receive of FCS aka CRC, and after setting this 6271 * flag the packet data will have the 4 byte CRC appended 6272 */ 6273 if (changed & NETIF_F_RXFCS) { 6274 if ((features & NETIF_F_RXFCS) && 6275 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6276 dev_err(ice_pf_to_dev(vsi->back), 6277 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6278 return -EIO; 6279 } 6280 6281 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6282 ret = ice_down_up(vsi); 6283 if (ret) 6284 return ret; 6285 } 6286 6287 if (changed & NETIF_F_NTUPLE) { 6288 bool ena = !!(features & NETIF_F_NTUPLE); 6289 6290 ice_vsi_manage_fdir(vsi, ena); 6291 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6292 } 6293 6294 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6295 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6296 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6297 return -EACCES; 6298 } 6299 6300 if (changed & NETIF_F_HW_TC) { 6301 bool ena = !!(features & NETIF_F_HW_TC); 6302 6303 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6304 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6305 } 6306 6307 if (changed & NETIF_F_LOOPBACK) 6308 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6309 6310 return ret; 6311 } 6312 6313 /** 6314 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6315 * @vsi: VSI to setup VLAN properties for 6316 */ 6317 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6318 { 6319 int err; 6320 6321 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6322 if (err) 6323 return err; 6324 6325 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6326 if (err) 6327 return err; 6328 6329 return ice_vsi_add_vlan_zero(vsi); 6330 } 6331 6332 /** 6333 * ice_vsi_cfg_lan - Setup the VSI lan related config 6334 * @vsi: the VSI being configured 6335 * 6336 * Return 0 on success and negative value on error 6337 */ 6338 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6339 { 6340 int err; 6341 6342 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6343 ice_set_rx_mode(vsi->netdev); 6344 6345 err = ice_vsi_vlan_setup(vsi); 6346 if (err) 6347 return err; 6348 } 6349 ice_vsi_cfg_dcb_rings(vsi); 6350 6351 err = ice_vsi_cfg_lan_txqs(vsi); 6352 if (!err && ice_is_xdp_ena_vsi(vsi)) 6353 err = ice_vsi_cfg_xdp_txqs(vsi); 6354 if (!err) 6355 err = ice_vsi_cfg_rxqs(vsi); 6356 6357 return err; 6358 } 6359 6360 /* THEORY OF MODERATION: 6361 * The ice driver hardware works differently than the hardware that DIMLIB was 6362 * originally made for. ice hardware doesn't have packet count limits that 6363 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6364 * which is hard-coded to a limit of 250,000 ints/second. 6365 * If not using dynamic moderation, the INTRL value can be modified 6366 * by ethtool rx-usecs-high. 6367 */ 6368 struct ice_dim { 6369 /* the throttle rate for interrupts, basically worst case delay before 6370 * an initial interrupt fires, value is stored in microseconds. 6371 */ 6372 u16 itr; 6373 }; 6374 6375 /* Make a different profile for Rx that doesn't allow quite so aggressive 6376 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6377 * second. 6378 */ 6379 static const struct ice_dim rx_profile[] = { 6380 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6381 {8}, /* 125,000 ints/s */ 6382 {16}, /* 62,500 ints/s */ 6383 {62}, /* 16,129 ints/s */ 6384 {126} /* 7,936 ints/s */ 6385 }; 6386 6387 /* The transmit profile, which has the same sorts of values 6388 * as the previous struct 6389 */ 6390 static const struct ice_dim tx_profile[] = { 6391 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6392 {8}, /* 125,000 ints/s */ 6393 {40}, /* 16,125 ints/s */ 6394 {128}, /* 7,812 ints/s */ 6395 {256} /* 3,906 ints/s */ 6396 }; 6397 6398 static void ice_tx_dim_work(struct work_struct *work) 6399 { 6400 struct ice_ring_container *rc; 6401 struct dim *dim; 6402 u16 itr; 6403 6404 dim = container_of(work, struct dim, work); 6405 rc = (struct ice_ring_container *)dim->priv; 6406 6407 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6408 6409 /* look up the values in our local table */ 6410 itr = tx_profile[dim->profile_ix].itr; 6411 6412 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6413 ice_write_itr(rc, itr); 6414 6415 dim->state = DIM_START_MEASURE; 6416 } 6417 6418 static void ice_rx_dim_work(struct work_struct *work) 6419 { 6420 struct ice_ring_container *rc; 6421 struct dim *dim; 6422 u16 itr; 6423 6424 dim = container_of(work, struct dim, work); 6425 rc = (struct ice_ring_container *)dim->priv; 6426 6427 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6428 6429 /* look up the values in our local table */ 6430 itr = rx_profile[dim->profile_ix].itr; 6431 6432 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6433 ice_write_itr(rc, itr); 6434 6435 dim->state = DIM_START_MEASURE; 6436 } 6437 6438 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6439 6440 /** 6441 * ice_init_moderation - set up interrupt moderation 6442 * @q_vector: the vector containing rings to be configured 6443 * 6444 * Set up interrupt moderation registers, with the intent to do the right thing 6445 * when called from reset or from probe, and whether or not dynamic moderation 6446 * is enabled or not. Take special care to write all the registers in both 6447 * dynamic moderation mode or not in order to make sure hardware is in a known 6448 * state. 6449 */ 6450 static void ice_init_moderation(struct ice_q_vector *q_vector) 6451 { 6452 struct ice_ring_container *rc; 6453 bool tx_dynamic, rx_dynamic; 6454 6455 rc = &q_vector->tx; 6456 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6457 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6458 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6459 rc->dim.priv = rc; 6460 tx_dynamic = ITR_IS_DYNAMIC(rc); 6461 6462 /* set the initial TX ITR to match the above */ 6463 ice_write_itr(rc, tx_dynamic ? 6464 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6465 6466 rc = &q_vector->rx; 6467 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6468 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6469 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6470 rc->dim.priv = rc; 6471 rx_dynamic = ITR_IS_DYNAMIC(rc); 6472 6473 /* set the initial RX ITR to match the above */ 6474 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6475 rc->itr_setting); 6476 6477 ice_set_q_vector_intrl(q_vector); 6478 } 6479 6480 /** 6481 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6482 * @vsi: the VSI being configured 6483 */ 6484 static void ice_napi_enable_all(struct ice_vsi *vsi) 6485 { 6486 int q_idx; 6487 6488 if (!vsi->netdev) 6489 return; 6490 6491 ice_for_each_q_vector(vsi, q_idx) { 6492 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6493 6494 ice_init_moderation(q_vector); 6495 6496 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6497 napi_enable(&q_vector->napi); 6498 } 6499 } 6500 6501 /** 6502 * ice_up_complete - Finish the last steps of bringing up a connection 6503 * @vsi: The VSI being configured 6504 * 6505 * Return 0 on success and negative value on error 6506 */ 6507 static int ice_up_complete(struct ice_vsi *vsi) 6508 { 6509 struct ice_pf *pf = vsi->back; 6510 int err; 6511 6512 ice_vsi_cfg_msix(vsi); 6513 6514 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6515 * Tx queue group list was configured and the context bits were 6516 * programmed using ice_vsi_cfg_txqs 6517 */ 6518 err = ice_vsi_start_all_rx_rings(vsi); 6519 if (err) 6520 return err; 6521 6522 clear_bit(ICE_VSI_DOWN, vsi->state); 6523 ice_napi_enable_all(vsi); 6524 ice_vsi_ena_irq(vsi); 6525 6526 if (vsi->port_info && 6527 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6528 vsi->netdev && vsi->type == ICE_VSI_PF) { 6529 ice_print_link_msg(vsi, true); 6530 netif_tx_start_all_queues(vsi->netdev); 6531 netif_carrier_on(vsi->netdev); 6532 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6533 } 6534 6535 /* Perform an initial read of the statistics registers now to 6536 * set the baseline so counters are ready when interface is up 6537 */ 6538 ice_update_eth_stats(vsi); 6539 6540 if (vsi->type == ICE_VSI_PF) 6541 ice_service_task_schedule(pf); 6542 6543 return 0; 6544 } 6545 6546 /** 6547 * ice_up - Bring the connection back up after being down 6548 * @vsi: VSI being configured 6549 */ 6550 int ice_up(struct ice_vsi *vsi) 6551 { 6552 int err; 6553 6554 err = ice_vsi_cfg_lan(vsi); 6555 if (!err) 6556 err = ice_up_complete(vsi); 6557 6558 return err; 6559 } 6560 6561 /** 6562 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6563 * @syncp: pointer to u64_stats_sync 6564 * @stats: stats that pkts and bytes count will be taken from 6565 * @pkts: packets stats counter 6566 * @bytes: bytes stats counter 6567 * 6568 * This function fetches stats from the ring considering the atomic operations 6569 * that needs to be performed to read u64 values in 32 bit machine. 6570 */ 6571 void 6572 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6573 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6574 { 6575 unsigned int start; 6576 6577 do { 6578 start = u64_stats_fetch_begin(syncp); 6579 *pkts = stats.pkts; 6580 *bytes = stats.bytes; 6581 } while (u64_stats_fetch_retry(syncp, start)); 6582 } 6583 6584 /** 6585 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6586 * @vsi: the VSI to be updated 6587 * @vsi_stats: the stats struct to be updated 6588 * @rings: rings to work on 6589 * @count: number of rings 6590 */ 6591 static void 6592 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6593 struct rtnl_link_stats64 *vsi_stats, 6594 struct ice_tx_ring **rings, u16 count) 6595 { 6596 u16 i; 6597 6598 for (i = 0; i < count; i++) { 6599 struct ice_tx_ring *ring; 6600 u64 pkts = 0, bytes = 0; 6601 6602 ring = READ_ONCE(rings[i]); 6603 if (!ring || !ring->ring_stats) 6604 continue; 6605 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6606 ring->ring_stats->stats, &pkts, 6607 &bytes); 6608 vsi_stats->tx_packets += pkts; 6609 vsi_stats->tx_bytes += bytes; 6610 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6611 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6612 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6613 } 6614 } 6615 6616 /** 6617 * ice_update_vsi_ring_stats - Update VSI stats counters 6618 * @vsi: the VSI to be updated 6619 */ 6620 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6621 { 6622 struct rtnl_link_stats64 *net_stats, *stats_prev; 6623 struct rtnl_link_stats64 *vsi_stats; 6624 u64 pkts, bytes; 6625 int i; 6626 6627 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6628 if (!vsi_stats) 6629 return; 6630 6631 /* reset non-netdev (extended) stats */ 6632 vsi->tx_restart = 0; 6633 vsi->tx_busy = 0; 6634 vsi->tx_linearize = 0; 6635 vsi->rx_buf_failed = 0; 6636 vsi->rx_page_failed = 0; 6637 6638 rcu_read_lock(); 6639 6640 /* update Tx rings counters */ 6641 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6642 vsi->num_txq); 6643 6644 /* update Rx rings counters */ 6645 ice_for_each_rxq(vsi, i) { 6646 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6647 struct ice_ring_stats *ring_stats; 6648 6649 ring_stats = ring->ring_stats; 6650 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6651 ring_stats->stats, &pkts, 6652 &bytes); 6653 vsi_stats->rx_packets += pkts; 6654 vsi_stats->rx_bytes += bytes; 6655 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6656 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6657 } 6658 6659 /* update XDP Tx rings counters */ 6660 if (ice_is_xdp_ena_vsi(vsi)) 6661 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6662 vsi->num_xdp_txq); 6663 6664 rcu_read_unlock(); 6665 6666 net_stats = &vsi->net_stats; 6667 stats_prev = &vsi->net_stats_prev; 6668 6669 /* clear prev counters after reset */ 6670 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6671 vsi_stats->rx_packets < stats_prev->rx_packets) { 6672 stats_prev->tx_packets = 0; 6673 stats_prev->tx_bytes = 0; 6674 stats_prev->rx_packets = 0; 6675 stats_prev->rx_bytes = 0; 6676 } 6677 6678 /* update netdev counters */ 6679 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6680 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6681 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6682 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6683 6684 stats_prev->tx_packets = vsi_stats->tx_packets; 6685 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6686 stats_prev->rx_packets = vsi_stats->rx_packets; 6687 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6688 6689 kfree(vsi_stats); 6690 } 6691 6692 /** 6693 * ice_update_vsi_stats - Update VSI stats counters 6694 * @vsi: the VSI to be updated 6695 */ 6696 void ice_update_vsi_stats(struct ice_vsi *vsi) 6697 { 6698 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6699 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6700 struct ice_pf *pf = vsi->back; 6701 6702 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6703 test_bit(ICE_CFG_BUSY, pf->state)) 6704 return; 6705 6706 /* get stats as recorded by Tx/Rx rings */ 6707 ice_update_vsi_ring_stats(vsi); 6708 6709 /* get VSI stats as recorded by the hardware */ 6710 ice_update_eth_stats(vsi); 6711 6712 cur_ns->tx_errors = cur_es->tx_errors; 6713 cur_ns->rx_dropped = cur_es->rx_discards; 6714 cur_ns->tx_dropped = cur_es->tx_discards; 6715 cur_ns->multicast = cur_es->rx_multicast; 6716 6717 /* update some more netdev stats if this is main VSI */ 6718 if (vsi->type == ICE_VSI_PF) { 6719 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6720 cur_ns->rx_errors = pf->stats.crc_errors + 6721 pf->stats.illegal_bytes + 6722 pf->stats.rx_len_errors + 6723 pf->stats.rx_undersize + 6724 pf->hw_csum_rx_error + 6725 pf->stats.rx_jabber + 6726 pf->stats.rx_fragments + 6727 pf->stats.rx_oversize; 6728 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6729 /* record drops from the port level */ 6730 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6731 } 6732 } 6733 6734 /** 6735 * ice_update_pf_stats - Update PF port stats counters 6736 * @pf: PF whose stats needs to be updated 6737 */ 6738 void ice_update_pf_stats(struct ice_pf *pf) 6739 { 6740 struct ice_hw_port_stats *prev_ps, *cur_ps; 6741 struct ice_hw *hw = &pf->hw; 6742 u16 fd_ctr_base; 6743 u8 port; 6744 6745 port = hw->port_info->lport; 6746 prev_ps = &pf->stats_prev; 6747 cur_ps = &pf->stats; 6748 6749 if (ice_is_reset_in_progress(pf->state)) 6750 pf->stat_prev_loaded = false; 6751 6752 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6753 &prev_ps->eth.rx_bytes, 6754 &cur_ps->eth.rx_bytes); 6755 6756 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6757 &prev_ps->eth.rx_unicast, 6758 &cur_ps->eth.rx_unicast); 6759 6760 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6761 &prev_ps->eth.rx_multicast, 6762 &cur_ps->eth.rx_multicast); 6763 6764 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6765 &prev_ps->eth.rx_broadcast, 6766 &cur_ps->eth.rx_broadcast); 6767 6768 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6769 &prev_ps->eth.rx_discards, 6770 &cur_ps->eth.rx_discards); 6771 6772 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6773 &prev_ps->eth.tx_bytes, 6774 &cur_ps->eth.tx_bytes); 6775 6776 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6777 &prev_ps->eth.tx_unicast, 6778 &cur_ps->eth.tx_unicast); 6779 6780 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6781 &prev_ps->eth.tx_multicast, 6782 &cur_ps->eth.tx_multicast); 6783 6784 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6785 &prev_ps->eth.tx_broadcast, 6786 &cur_ps->eth.tx_broadcast); 6787 6788 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6789 &prev_ps->tx_dropped_link_down, 6790 &cur_ps->tx_dropped_link_down); 6791 6792 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6793 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6794 6795 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6796 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6797 6798 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6799 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6800 6801 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6802 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6803 6804 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6805 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6806 6807 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6808 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6809 6810 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6811 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6812 6813 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6814 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6815 6816 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6817 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6818 6819 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6820 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6821 6822 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6823 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6824 6825 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6826 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6827 6828 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6829 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6830 6831 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6832 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6833 6834 fd_ctr_base = hw->fd_ctr_base; 6835 6836 ice_stat_update40(hw, 6837 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6838 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6839 &cur_ps->fd_sb_match); 6840 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6841 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6842 6843 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6844 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6845 6846 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6847 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6848 6849 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6850 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6851 6852 ice_update_dcb_stats(pf); 6853 6854 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6855 &prev_ps->crc_errors, &cur_ps->crc_errors); 6856 6857 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6858 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6859 6860 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6861 &prev_ps->mac_local_faults, 6862 &cur_ps->mac_local_faults); 6863 6864 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6865 &prev_ps->mac_remote_faults, 6866 &cur_ps->mac_remote_faults); 6867 6868 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6869 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6870 6871 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6872 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6873 6874 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6875 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6876 6877 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6878 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6879 6880 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6881 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6882 6883 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6884 6885 pf->stat_prev_loaded = true; 6886 } 6887 6888 /** 6889 * ice_get_stats64 - get statistics for network device structure 6890 * @netdev: network interface device structure 6891 * @stats: main device statistics structure 6892 */ 6893 static 6894 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6895 { 6896 struct ice_netdev_priv *np = netdev_priv(netdev); 6897 struct rtnl_link_stats64 *vsi_stats; 6898 struct ice_vsi *vsi = np->vsi; 6899 6900 vsi_stats = &vsi->net_stats; 6901 6902 if (!vsi->num_txq || !vsi->num_rxq) 6903 return; 6904 6905 /* netdev packet/byte stats come from ring counter. These are obtained 6906 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6907 * But, only call the update routine and read the registers if VSI is 6908 * not down. 6909 */ 6910 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6911 ice_update_vsi_ring_stats(vsi); 6912 stats->tx_packets = vsi_stats->tx_packets; 6913 stats->tx_bytes = vsi_stats->tx_bytes; 6914 stats->rx_packets = vsi_stats->rx_packets; 6915 stats->rx_bytes = vsi_stats->rx_bytes; 6916 6917 /* The rest of the stats can be read from the hardware but instead we 6918 * just return values that the watchdog task has already obtained from 6919 * the hardware. 6920 */ 6921 stats->multicast = vsi_stats->multicast; 6922 stats->tx_errors = vsi_stats->tx_errors; 6923 stats->tx_dropped = vsi_stats->tx_dropped; 6924 stats->rx_errors = vsi_stats->rx_errors; 6925 stats->rx_dropped = vsi_stats->rx_dropped; 6926 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6927 stats->rx_length_errors = vsi_stats->rx_length_errors; 6928 } 6929 6930 /** 6931 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6932 * @vsi: VSI having NAPI disabled 6933 */ 6934 static void ice_napi_disable_all(struct ice_vsi *vsi) 6935 { 6936 int q_idx; 6937 6938 if (!vsi->netdev) 6939 return; 6940 6941 ice_for_each_q_vector(vsi, q_idx) { 6942 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6943 6944 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6945 napi_disable(&q_vector->napi); 6946 6947 cancel_work_sync(&q_vector->tx.dim.work); 6948 cancel_work_sync(&q_vector->rx.dim.work); 6949 } 6950 } 6951 6952 /** 6953 * ice_down - Shutdown the connection 6954 * @vsi: The VSI being stopped 6955 * 6956 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6957 */ 6958 int ice_down(struct ice_vsi *vsi) 6959 { 6960 int i, tx_err, rx_err, vlan_err = 0; 6961 6962 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6963 6964 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6965 vlan_err = ice_vsi_del_vlan_zero(vsi); 6966 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6967 netif_carrier_off(vsi->netdev); 6968 netif_tx_disable(vsi->netdev); 6969 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6970 ice_eswitch_stop_all_tx_queues(vsi->back); 6971 } 6972 6973 ice_vsi_dis_irq(vsi); 6974 6975 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6976 if (tx_err) 6977 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6978 vsi->vsi_num, tx_err); 6979 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6980 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6981 if (tx_err) 6982 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6983 vsi->vsi_num, tx_err); 6984 } 6985 6986 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6987 if (rx_err) 6988 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6989 vsi->vsi_num, rx_err); 6990 6991 ice_napi_disable_all(vsi); 6992 6993 ice_for_each_txq(vsi, i) 6994 ice_clean_tx_ring(vsi->tx_rings[i]); 6995 6996 ice_for_each_rxq(vsi, i) 6997 ice_clean_rx_ring(vsi->rx_rings[i]); 6998 6999 if (tx_err || rx_err || vlan_err) { 7000 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7001 vsi->vsi_num, vsi->vsw->sw_id); 7002 return -EIO; 7003 } 7004 7005 return 0; 7006 } 7007 7008 /** 7009 * ice_down_up - shutdown the VSI connection and bring it up 7010 * @vsi: the VSI to be reconnected 7011 */ 7012 int ice_down_up(struct ice_vsi *vsi) 7013 { 7014 int ret; 7015 7016 /* if DOWN already set, nothing to do */ 7017 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7018 return 0; 7019 7020 ret = ice_down(vsi); 7021 if (ret) 7022 return ret; 7023 7024 ret = ice_up(vsi); 7025 if (ret) { 7026 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7027 return ret; 7028 } 7029 7030 return 0; 7031 } 7032 7033 /** 7034 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7035 * @vsi: VSI having resources allocated 7036 * 7037 * Return 0 on success, negative on failure 7038 */ 7039 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7040 { 7041 int i, err = 0; 7042 7043 if (!vsi->num_txq) { 7044 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7045 vsi->vsi_num); 7046 return -EINVAL; 7047 } 7048 7049 ice_for_each_txq(vsi, i) { 7050 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7051 7052 if (!ring) 7053 return -EINVAL; 7054 7055 if (vsi->netdev) 7056 ring->netdev = vsi->netdev; 7057 err = ice_setup_tx_ring(ring); 7058 if (err) 7059 break; 7060 } 7061 7062 return err; 7063 } 7064 7065 /** 7066 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7067 * @vsi: VSI having resources allocated 7068 * 7069 * Return 0 on success, negative on failure 7070 */ 7071 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7072 { 7073 int i, err = 0; 7074 7075 if (!vsi->num_rxq) { 7076 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7077 vsi->vsi_num); 7078 return -EINVAL; 7079 } 7080 7081 ice_for_each_rxq(vsi, i) { 7082 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7083 7084 if (!ring) 7085 return -EINVAL; 7086 7087 if (vsi->netdev) 7088 ring->netdev = vsi->netdev; 7089 err = ice_setup_rx_ring(ring); 7090 if (err) 7091 break; 7092 } 7093 7094 return err; 7095 } 7096 7097 /** 7098 * ice_vsi_open_ctrl - open control VSI for use 7099 * @vsi: the VSI to open 7100 * 7101 * Initialization of the Control VSI 7102 * 7103 * Returns 0 on success, negative value on error 7104 */ 7105 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7106 { 7107 char int_name[ICE_INT_NAME_STR_LEN]; 7108 struct ice_pf *pf = vsi->back; 7109 struct device *dev; 7110 int err; 7111 7112 dev = ice_pf_to_dev(pf); 7113 /* allocate descriptors */ 7114 err = ice_vsi_setup_tx_rings(vsi); 7115 if (err) 7116 goto err_setup_tx; 7117 7118 err = ice_vsi_setup_rx_rings(vsi); 7119 if (err) 7120 goto err_setup_rx; 7121 7122 err = ice_vsi_cfg_lan(vsi); 7123 if (err) 7124 goto err_setup_rx; 7125 7126 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7127 dev_driver_string(dev), dev_name(dev)); 7128 err = ice_vsi_req_irq_msix(vsi, int_name); 7129 if (err) 7130 goto err_setup_rx; 7131 7132 ice_vsi_cfg_msix(vsi); 7133 7134 err = ice_vsi_start_all_rx_rings(vsi); 7135 if (err) 7136 goto err_up_complete; 7137 7138 clear_bit(ICE_VSI_DOWN, vsi->state); 7139 ice_vsi_ena_irq(vsi); 7140 7141 return 0; 7142 7143 err_up_complete: 7144 ice_down(vsi); 7145 err_setup_rx: 7146 ice_vsi_free_rx_rings(vsi); 7147 err_setup_tx: 7148 ice_vsi_free_tx_rings(vsi); 7149 7150 return err; 7151 } 7152 7153 /** 7154 * ice_vsi_open - Called when a network interface is made active 7155 * @vsi: the VSI to open 7156 * 7157 * Initialization of the VSI 7158 * 7159 * Returns 0 on success, negative value on error 7160 */ 7161 int ice_vsi_open(struct ice_vsi *vsi) 7162 { 7163 char int_name[ICE_INT_NAME_STR_LEN]; 7164 struct ice_pf *pf = vsi->back; 7165 int err; 7166 7167 /* allocate descriptors */ 7168 err = ice_vsi_setup_tx_rings(vsi); 7169 if (err) 7170 goto err_setup_tx; 7171 7172 err = ice_vsi_setup_rx_rings(vsi); 7173 if (err) 7174 goto err_setup_rx; 7175 7176 err = ice_vsi_cfg_lan(vsi); 7177 if (err) 7178 goto err_setup_rx; 7179 7180 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7181 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7182 err = ice_vsi_req_irq_msix(vsi, int_name); 7183 if (err) 7184 goto err_setup_rx; 7185 7186 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7187 7188 if (vsi->type == ICE_VSI_PF) { 7189 /* Notify the stack of the actual queue counts. */ 7190 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7191 if (err) 7192 goto err_set_qs; 7193 7194 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7195 if (err) 7196 goto err_set_qs; 7197 } 7198 7199 err = ice_up_complete(vsi); 7200 if (err) 7201 goto err_up_complete; 7202 7203 return 0; 7204 7205 err_up_complete: 7206 ice_down(vsi); 7207 err_set_qs: 7208 ice_vsi_free_irq(vsi); 7209 err_setup_rx: 7210 ice_vsi_free_rx_rings(vsi); 7211 err_setup_tx: 7212 ice_vsi_free_tx_rings(vsi); 7213 7214 return err; 7215 } 7216 7217 /** 7218 * ice_vsi_release_all - Delete all VSIs 7219 * @pf: PF from which all VSIs are being removed 7220 */ 7221 static void ice_vsi_release_all(struct ice_pf *pf) 7222 { 7223 int err, i; 7224 7225 if (!pf->vsi) 7226 return; 7227 7228 ice_for_each_vsi(pf, i) { 7229 if (!pf->vsi[i]) 7230 continue; 7231 7232 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7233 continue; 7234 7235 err = ice_vsi_release(pf->vsi[i]); 7236 if (err) 7237 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7238 i, err, pf->vsi[i]->vsi_num); 7239 } 7240 } 7241 7242 /** 7243 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7244 * @pf: pointer to the PF instance 7245 * @type: VSI type to rebuild 7246 * 7247 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7248 */ 7249 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7250 { 7251 struct device *dev = ice_pf_to_dev(pf); 7252 int i, err; 7253 7254 ice_for_each_vsi(pf, i) { 7255 struct ice_vsi *vsi = pf->vsi[i]; 7256 7257 if (!vsi || vsi->type != type) 7258 continue; 7259 7260 /* rebuild the VSI */ 7261 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7262 if (err) { 7263 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7264 err, vsi->idx, ice_vsi_type_str(type)); 7265 return err; 7266 } 7267 7268 /* replay filters for the VSI */ 7269 err = ice_replay_vsi(&pf->hw, vsi->idx); 7270 if (err) { 7271 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7272 err, vsi->idx, ice_vsi_type_str(type)); 7273 return err; 7274 } 7275 7276 /* Re-map HW VSI number, using VSI handle that has been 7277 * previously validated in ice_replay_vsi() call above 7278 */ 7279 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7280 7281 /* enable the VSI */ 7282 err = ice_ena_vsi(vsi, false); 7283 if (err) { 7284 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7285 err, vsi->idx, ice_vsi_type_str(type)); 7286 return err; 7287 } 7288 7289 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7290 ice_vsi_type_str(type)); 7291 } 7292 7293 return 0; 7294 } 7295 7296 /** 7297 * ice_update_pf_netdev_link - Update PF netdev link status 7298 * @pf: pointer to the PF instance 7299 */ 7300 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7301 { 7302 bool link_up; 7303 int i; 7304 7305 ice_for_each_vsi(pf, i) { 7306 struct ice_vsi *vsi = pf->vsi[i]; 7307 7308 if (!vsi || vsi->type != ICE_VSI_PF) 7309 return; 7310 7311 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7312 if (link_up) { 7313 netif_carrier_on(pf->vsi[i]->netdev); 7314 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7315 } else { 7316 netif_carrier_off(pf->vsi[i]->netdev); 7317 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7318 } 7319 } 7320 } 7321 7322 /** 7323 * ice_rebuild - rebuild after reset 7324 * @pf: PF to rebuild 7325 * @reset_type: type of reset 7326 * 7327 * Do not rebuild VF VSI in this flow because that is already handled via 7328 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7329 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7330 * to reset/rebuild all the VF VSI twice. 7331 */ 7332 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7333 { 7334 struct device *dev = ice_pf_to_dev(pf); 7335 struct ice_hw *hw = &pf->hw; 7336 bool dvm; 7337 int err; 7338 7339 if (test_bit(ICE_DOWN, pf->state)) 7340 goto clear_recovery; 7341 7342 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7343 7344 #define ICE_EMP_RESET_SLEEP_MS 5000 7345 if (reset_type == ICE_RESET_EMPR) { 7346 /* If an EMP reset has occurred, any previously pending flash 7347 * update will have completed. We no longer know whether or 7348 * not the NVM update EMP reset is restricted. 7349 */ 7350 pf->fw_emp_reset_disabled = false; 7351 7352 msleep(ICE_EMP_RESET_SLEEP_MS); 7353 } 7354 7355 err = ice_init_all_ctrlq(hw); 7356 if (err) { 7357 dev_err(dev, "control queues init failed %d\n", err); 7358 goto err_init_ctrlq; 7359 } 7360 7361 /* if DDP was previously loaded successfully */ 7362 if (!ice_is_safe_mode(pf)) { 7363 /* reload the SW DB of filter tables */ 7364 if (reset_type == ICE_RESET_PFR) 7365 ice_fill_blk_tbls(hw); 7366 else 7367 /* Reload DDP Package after CORER/GLOBR reset */ 7368 ice_load_pkg(NULL, pf); 7369 } 7370 7371 err = ice_clear_pf_cfg(hw); 7372 if (err) { 7373 dev_err(dev, "clear PF configuration failed %d\n", err); 7374 goto err_init_ctrlq; 7375 } 7376 7377 ice_clear_pxe_mode(hw); 7378 7379 err = ice_init_nvm(hw); 7380 if (err) { 7381 dev_err(dev, "ice_init_nvm failed %d\n", err); 7382 goto err_init_ctrlq; 7383 } 7384 7385 err = ice_get_caps(hw); 7386 if (err) { 7387 dev_err(dev, "ice_get_caps failed %d\n", err); 7388 goto err_init_ctrlq; 7389 } 7390 7391 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7392 if (err) { 7393 dev_err(dev, "set_mac_cfg failed %d\n", err); 7394 goto err_init_ctrlq; 7395 } 7396 7397 dvm = ice_is_dvm_ena(hw); 7398 7399 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7400 if (err) 7401 goto err_init_ctrlq; 7402 7403 err = ice_sched_init_port(hw->port_info); 7404 if (err) 7405 goto err_sched_init_port; 7406 7407 /* start misc vector */ 7408 err = ice_req_irq_msix_misc(pf); 7409 if (err) { 7410 dev_err(dev, "misc vector setup failed: %d\n", err); 7411 goto err_sched_init_port; 7412 } 7413 7414 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7415 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7416 if (!rd32(hw, PFQF_FD_SIZE)) { 7417 u16 unused, guar, b_effort; 7418 7419 guar = hw->func_caps.fd_fltr_guar; 7420 b_effort = hw->func_caps.fd_fltr_best_effort; 7421 7422 /* force guaranteed filter pool for PF */ 7423 ice_alloc_fd_guar_item(hw, &unused, guar); 7424 /* force shared filter pool for PF */ 7425 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7426 } 7427 } 7428 7429 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7430 ice_dcb_rebuild(pf); 7431 7432 /* If the PF previously had enabled PTP, PTP init needs to happen before 7433 * the VSI rebuild. If not, this causes the PTP link status events to 7434 * fail. 7435 */ 7436 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7437 ice_ptp_reset(pf); 7438 7439 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7440 ice_gnss_init(pf); 7441 7442 /* rebuild PF VSI */ 7443 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7444 if (err) { 7445 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7446 goto err_vsi_rebuild; 7447 } 7448 7449 /* configure PTP timestamping after VSI rebuild */ 7450 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7451 ice_ptp_cfg_timestamp(pf, false); 7452 7453 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7454 if (err) { 7455 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7456 goto err_vsi_rebuild; 7457 } 7458 7459 if (reset_type == ICE_RESET_PFR) { 7460 err = ice_rebuild_channels(pf); 7461 if (err) { 7462 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7463 err); 7464 goto err_vsi_rebuild; 7465 } 7466 } 7467 7468 /* If Flow Director is active */ 7469 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7470 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7471 if (err) { 7472 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7473 goto err_vsi_rebuild; 7474 } 7475 7476 /* replay HW Flow Director recipes */ 7477 if (hw->fdir_prof) 7478 ice_fdir_replay_flows(hw); 7479 7480 /* replay Flow Director filters */ 7481 ice_fdir_replay_fltrs(pf); 7482 7483 ice_rebuild_arfs(pf); 7484 } 7485 7486 ice_update_pf_netdev_link(pf); 7487 7488 /* tell the firmware we are up */ 7489 err = ice_send_version(pf); 7490 if (err) { 7491 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7492 err); 7493 goto err_vsi_rebuild; 7494 } 7495 7496 ice_replay_post(hw); 7497 7498 /* if we get here, reset flow is successful */ 7499 clear_bit(ICE_RESET_FAILED, pf->state); 7500 7501 ice_plug_aux_dev(pf); 7502 return; 7503 7504 err_vsi_rebuild: 7505 err_sched_init_port: 7506 ice_sched_cleanup_all(hw); 7507 err_init_ctrlq: 7508 ice_shutdown_all_ctrlq(hw); 7509 set_bit(ICE_RESET_FAILED, pf->state); 7510 clear_recovery: 7511 /* set this bit in PF state to control service task scheduling */ 7512 set_bit(ICE_NEEDS_RESTART, pf->state); 7513 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7514 } 7515 7516 /** 7517 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 7518 * @vsi: Pointer to VSI structure 7519 */ 7520 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7521 { 7522 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7523 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7524 else 7525 return ICE_RXBUF_3072; 7526 } 7527 7528 /** 7529 * ice_change_mtu - NDO callback to change the MTU 7530 * @netdev: network interface device structure 7531 * @new_mtu: new value for maximum frame size 7532 * 7533 * Returns 0 on success, negative on failure 7534 */ 7535 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7536 { 7537 struct ice_netdev_priv *np = netdev_priv(netdev); 7538 struct ice_vsi *vsi = np->vsi; 7539 struct ice_pf *pf = vsi->back; 7540 u8 count = 0; 7541 int err = 0; 7542 7543 if (new_mtu == (int)netdev->mtu) { 7544 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7545 return 0; 7546 } 7547 7548 if (ice_is_xdp_ena_vsi(vsi)) { 7549 int frame_size = ice_max_xdp_frame_size(vsi); 7550 7551 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7552 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7553 frame_size - ICE_ETH_PKT_HDR_PAD); 7554 return -EINVAL; 7555 } 7556 } 7557 7558 /* if a reset is in progress, wait for some time for it to complete */ 7559 do { 7560 if (ice_is_reset_in_progress(pf->state)) { 7561 count++; 7562 usleep_range(1000, 2000); 7563 } else { 7564 break; 7565 } 7566 7567 } while (count < 100); 7568 7569 if (count == 100) { 7570 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7571 return -EBUSY; 7572 } 7573 7574 netdev->mtu = (unsigned int)new_mtu; 7575 7576 /* if VSI is up, bring it down and then back up */ 7577 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7578 err = ice_down(vsi); 7579 if (err) { 7580 netdev_err(netdev, "change MTU if_down err %d\n", err); 7581 return err; 7582 } 7583 7584 err = ice_up(vsi); 7585 if (err) { 7586 netdev_err(netdev, "change MTU if_up err %d\n", err); 7587 return err; 7588 } 7589 } 7590 7591 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7592 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7593 7594 return err; 7595 } 7596 7597 /** 7598 * ice_eth_ioctl - Access the hwtstamp interface 7599 * @netdev: network interface device structure 7600 * @ifr: interface request data 7601 * @cmd: ioctl command 7602 */ 7603 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7604 { 7605 struct ice_netdev_priv *np = netdev_priv(netdev); 7606 struct ice_pf *pf = np->vsi->back; 7607 7608 switch (cmd) { 7609 case SIOCGHWTSTAMP: 7610 return ice_ptp_get_ts_config(pf, ifr); 7611 case SIOCSHWTSTAMP: 7612 return ice_ptp_set_ts_config(pf, ifr); 7613 default: 7614 return -EOPNOTSUPP; 7615 } 7616 } 7617 7618 /** 7619 * ice_aq_str - convert AQ err code to a string 7620 * @aq_err: the AQ error code to convert 7621 */ 7622 const char *ice_aq_str(enum ice_aq_err aq_err) 7623 { 7624 switch (aq_err) { 7625 case ICE_AQ_RC_OK: 7626 return "OK"; 7627 case ICE_AQ_RC_EPERM: 7628 return "ICE_AQ_RC_EPERM"; 7629 case ICE_AQ_RC_ENOENT: 7630 return "ICE_AQ_RC_ENOENT"; 7631 case ICE_AQ_RC_ENOMEM: 7632 return "ICE_AQ_RC_ENOMEM"; 7633 case ICE_AQ_RC_EBUSY: 7634 return "ICE_AQ_RC_EBUSY"; 7635 case ICE_AQ_RC_EEXIST: 7636 return "ICE_AQ_RC_EEXIST"; 7637 case ICE_AQ_RC_EINVAL: 7638 return "ICE_AQ_RC_EINVAL"; 7639 case ICE_AQ_RC_ENOSPC: 7640 return "ICE_AQ_RC_ENOSPC"; 7641 case ICE_AQ_RC_ENOSYS: 7642 return "ICE_AQ_RC_ENOSYS"; 7643 case ICE_AQ_RC_EMODE: 7644 return "ICE_AQ_RC_EMODE"; 7645 case ICE_AQ_RC_ENOSEC: 7646 return "ICE_AQ_RC_ENOSEC"; 7647 case ICE_AQ_RC_EBADSIG: 7648 return "ICE_AQ_RC_EBADSIG"; 7649 case ICE_AQ_RC_ESVN: 7650 return "ICE_AQ_RC_ESVN"; 7651 case ICE_AQ_RC_EBADMAN: 7652 return "ICE_AQ_RC_EBADMAN"; 7653 case ICE_AQ_RC_EBADBUF: 7654 return "ICE_AQ_RC_EBADBUF"; 7655 } 7656 7657 return "ICE_AQ_RC_UNKNOWN"; 7658 } 7659 7660 /** 7661 * ice_set_rss_lut - Set RSS LUT 7662 * @vsi: Pointer to VSI structure 7663 * @lut: Lookup table 7664 * @lut_size: Lookup table size 7665 * 7666 * Returns 0 on success, negative on failure 7667 */ 7668 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7669 { 7670 struct ice_aq_get_set_rss_lut_params params = {}; 7671 struct ice_hw *hw = &vsi->back->hw; 7672 int status; 7673 7674 if (!lut) 7675 return -EINVAL; 7676 7677 params.vsi_handle = vsi->idx; 7678 params.lut_size = lut_size; 7679 params.lut_type = vsi->rss_lut_type; 7680 params.lut = lut; 7681 7682 status = ice_aq_set_rss_lut(hw, ¶ms); 7683 if (status) 7684 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7685 status, ice_aq_str(hw->adminq.sq_last_status)); 7686 7687 return status; 7688 } 7689 7690 /** 7691 * ice_set_rss_key - Set RSS key 7692 * @vsi: Pointer to the VSI structure 7693 * @seed: RSS hash seed 7694 * 7695 * Returns 0 on success, negative on failure 7696 */ 7697 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7698 { 7699 struct ice_hw *hw = &vsi->back->hw; 7700 int status; 7701 7702 if (!seed) 7703 return -EINVAL; 7704 7705 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7706 if (status) 7707 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7708 status, ice_aq_str(hw->adminq.sq_last_status)); 7709 7710 return status; 7711 } 7712 7713 /** 7714 * ice_get_rss_lut - Get RSS LUT 7715 * @vsi: Pointer to VSI structure 7716 * @lut: Buffer to store the lookup table entries 7717 * @lut_size: Size of buffer to store the lookup table entries 7718 * 7719 * Returns 0 on success, negative on failure 7720 */ 7721 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7722 { 7723 struct ice_aq_get_set_rss_lut_params params = {}; 7724 struct ice_hw *hw = &vsi->back->hw; 7725 int status; 7726 7727 if (!lut) 7728 return -EINVAL; 7729 7730 params.vsi_handle = vsi->idx; 7731 params.lut_size = lut_size; 7732 params.lut_type = vsi->rss_lut_type; 7733 params.lut = lut; 7734 7735 status = ice_aq_get_rss_lut(hw, ¶ms); 7736 if (status) 7737 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7738 status, ice_aq_str(hw->adminq.sq_last_status)); 7739 7740 return status; 7741 } 7742 7743 /** 7744 * ice_get_rss_key - Get RSS key 7745 * @vsi: Pointer to VSI structure 7746 * @seed: Buffer to store the key in 7747 * 7748 * Returns 0 on success, negative on failure 7749 */ 7750 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7751 { 7752 struct ice_hw *hw = &vsi->back->hw; 7753 int status; 7754 7755 if (!seed) 7756 return -EINVAL; 7757 7758 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7759 if (status) 7760 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7761 status, ice_aq_str(hw->adminq.sq_last_status)); 7762 7763 return status; 7764 } 7765 7766 /** 7767 * ice_bridge_getlink - Get the hardware bridge mode 7768 * @skb: skb buff 7769 * @pid: process ID 7770 * @seq: RTNL message seq 7771 * @dev: the netdev being configured 7772 * @filter_mask: filter mask passed in 7773 * @nlflags: netlink flags passed in 7774 * 7775 * Return the bridge mode (VEB/VEPA) 7776 */ 7777 static int 7778 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7779 struct net_device *dev, u32 filter_mask, int nlflags) 7780 { 7781 struct ice_netdev_priv *np = netdev_priv(dev); 7782 struct ice_vsi *vsi = np->vsi; 7783 struct ice_pf *pf = vsi->back; 7784 u16 bmode; 7785 7786 bmode = pf->first_sw->bridge_mode; 7787 7788 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7789 filter_mask, NULL); 7790 } 7791 7792 /** 7793 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7794 * @vsi: Pointer to VSI structure 7795 * @bmode: Hardware bridge mode (VEB/VEPA) 7796 * 7797 * Returns 0 on success, negative on failure 7798 */ 7799 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7800 { 7801 struct ice_aqc_vsi_props *vsi_props; 7802 struct ice_hw *hw = &vsi->back->hw; 7803 struct ice_vsi_ctx *ctxt; 7804 int ret; 7805 7806 vsi_props = &vsi->info; 7807 7808 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7809 if (!ctxt) 7810 return -ENOMEM; 7811 7812 ctxt->info = vsi->info; 7813 7814 if (bmode == BRIDGE_MODE_VEB) 7815 /* change from VEPA to VEB mode */ 7816 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7817 else 7818 /* change from VEB to VEPA mode */ 7819 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7820 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7821 7822 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7823 if (ret) { 7824 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7825 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7826 goto out; 7827 } 7828 /* Update sw flags for book keeping */ 7829 vsi_props->sw_flags = ctxt->info.sw_flags; 7830 7831 out: 7832 kfree(ctxt); 7833 return ret; 7834 } 7835 7836 /** 7837 * ice_bridge_setlink - Set the hardware bridge mode 7838 * @dev: the netdev being configured 7839 * @nlh: RTNL message 7840 * @flags: bridge setlink flags 7841 * @extack: netlink extended ack 7842 * 7843 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7844 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7845 * not already set for all VSIs connected to this switch. And also update the 7846 * unicast switch filter rules for the corresponding switch of the netdev. 7847 */ 7848 static int 7849 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7850 u16 __always_unused flags, 7851 struct netlink_ext_ack __always_unused *extack) 7852 { 7853 struct ice_netdev_priv *np = netdev_priv(dev); 7854 struct ice_pf *pf = np->vsi->back; 7855 struct nlattr *attr, *br_spec; 7856 struct ice_hw *hw = &pf->hw; 7857 struct ice_sw *pf_sw; 7858 int rem, v, err = 0; 7859 7860 pf_sw = pf->first_sw; 7861 /* find the attribute in the netlink message */ 7862 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7863 7864 nla_for_each_nested(attr, br_spec, rem) { 7865 __u16 mode; 7866 7867 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7868 continue; 7869 mode = nla_get_u16(attr); 7870 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7871 return -EINVAL; 7872 /* Continue if bridge mode is not being flipped */ 7873 if (mode == pf_sw->bridge_mode) 7874 continue; 7875 /* Iterates through the PF VSI list and update the loopback 7876 * mode of the VSI 7877 */ 7878 ice_for_each_vsi(pf, v) { 7879 if (!pf->vsi[v]) 7880 continue; 7881 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7882 if (err) 7883 return err; 7884 } 7885 7886 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7887 /* Update the unicast switch filter rules for the corresponding 7888 * switch of the netdev 7889 */ 7890 err = ice_update_sw_rule_bridge_mode(hw); 7891 if (err) { 7892 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7893 mode, err, 7894 ice_aq_str(hw->adminq.sq_last_status)); 7895 /* revert hw->evb_veb */ 7896 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7897 return err; 7898 } 7899 7900 pf_sw->bridge_mode = mode; 7901 } 7902 7903 return 0; 7904 } 7905 7906 /** 7907 * ice_tx_timeout - Respond to a Tx Hang 7908 * @netdev: network interface device structure 7909 * @txqueue: Tx queue 7910 */ 7911 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7912 { 7913 struct ice_netdev_priv *np = netdev_priv(netdev); 7914 struct ice_tx_ring *tx_ring = NULL; 7915 struct ice_vsi *vsi = np->vsi; 7916 struct ice_pf *pf = vsi->back; 7917 u32 i; 7918 7919 pf->tx_timeout_count++; 7920 7921 /* Check if PFC is enabled for the TC to which the queue belongs 7922 * to. If yes then Tx timeout is not caused by a hung queue, no 7923 * need to reset and rebuild 7924 */ 7925 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7926 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7927 txqueue); 7928 return; 7929 } 7930 7931 /* now that we have an index, find the tx_ring struct */ 7932 ice_for_each_txq(vsi, i) 7933 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7934 if (txqueue == vsi->tx_rings[i]->q_index) { 7935 tx_ring = vsi->tx_rings[i]; 7936 break; 7937 } 7938 7939 /* Reset recovery level if enough time has elapsed after last timeout. 7940 * Also ensure no new reset action happens before next timeout period. 7941 */ 7942 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7943 pf->tx_timeout_recovery_level = 1; 7944 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7945 netdev->watchdog_timeo))) 7946 return; 7947 7948 if (tx_ring) { 7949 struct ice_hw *hw = &pf->hw; 7950 u32 head, val = 0; 7951 7952 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7953 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7954 /* Read interrupt register */ 7955 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7956 7957 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7958 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7959 head, tx_ring->next_to_use, val); 7960 } 7961 7962 pf->tx_timeout_last_recovery = jiffies; 7963 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7964 pf->tx_timeout_recovery_level, txqueue); 7965 7966 switch (pf->tx_timeout_recovery_level) { 7967 case 1: 7968 set_bit(ICE_PFR_REQ, pf->state); 7969 break; 7970 case 2: 7971 set_bit(ICE_CORER_REQ, pf->state); 7972 break; 7973 case 3: 7974 set_bit(ICE_GLOBR_REQ, pf->state); 7975 break; 7976 default: 7977 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7978 set_bit(ICE_DOWN, pf->state); 7979 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7980 set_bit(ICE_SERVICE_DIS, pf->state); 7981 break; 7982 } 7983 7984 ice_service_task_schedule(pf); 7985 pf->tx_timeout_recovery_level++; 7986 } 7987 7988 /** 7989 * ice_setup_tc_cls_flower - flower classifier offloads 7990 * @np: net device to configure 7991 * @filter_dev: device on which filter is added 7992 * @cls_flower: offload data 7993 */ 7994 static int 7995 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7996 struct net_device *filter_dev, 7997 struct flow_cls_offload *cls_flower) 7998 { 7999 struct ice_vsi *vsi = np->vsi; 8000 8001 if (cls_flower->common.chain_index) 8002 return -EOPNOTSUPP; 8003 8004 switch (cls_flower->command) { 8005 case FLOW_CLS_REPLACE: 8006 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8007 case FLOW_CLS_DESTROY: 8008 return ice_del_cls_flower(vsi, cls_flower); 8009 default: 8010 return -EINVAL; 8011 } 8012 } 8013 8014 /** 8015 * ice_setup_tc_block_cb - callback handler registered for TC block 8016 * @type: TC SETUP type 8017 * @type_data: TC flower offload data that contains user input 8018 * @cb_priv: netdev private data 8019 */ 8020 static int 8021 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8022 { 8023 struct ice_netdev_priv *np = cb_priv; 8024 8025 switch (type) { 8026 case TC_SETUP_CLSFLOWER: 8027 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8028 type_data); 8029 default: 8030 return -EOPNOTSUPP; 8031 } 8032 } 8033 8034 /** 8035 * ice_validate_mqprio_qopt - Validate TCF input parameters 8036 * @vsi: Pointer to VSI 8037 * @mqprio_qopt: input parameters for mqprio queue configuration 8038 * 8039 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8040 * needed), and make sure user doesn't specify qcount and BW rate limit 8041 * for TCs, which are more than "num_tc" 8042 */ 8043 static int 8044 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8045 struct tc_mqprio_qopt_offload *mqprio_qopt) 8046 { 8047 u64 sum_max_rate = 0, sum_min_rate = 0; 8048 int non_power_of_2_qcount = 0; 8049 struct ice_pf *pf = vsi->back; 8050 int max_rss_q_cnt = 0; 8051 struct device *dev; 8052 int i, speed; 8053 u8 num_tc; 8054 8055 if (vsi->type != ICE_VSI_PF) 8056 return -EINVAL; 8057 8058 if (mqprio_qopt->qopt.offset[0] != 0 || 8059 mqprio_qopt->qopt.num_tc < 1 || 8060 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8061 return -EINVAL; 8062 8063 dev = ice_pf_to_dev(pf); 8064 vsi->ch_rss_size = 0; 8065 num_tc = mqprio_qopt->qopt.num_tc; 8066 8067 for (i = 0; num_tc; i++) { 8068 int qcount = mqprio_qopt->qopt.count[i]; 8069 u64 max_rate, min_rate, rem; 8070 8071 if (!qcount) 8072 return -EINVAL; 8073 8074 if (is_power_of_2(qcount)) { 8075 if (non_power_of_2_qcount && 8076 qcount > non_power_of_2_qcount) { 8077 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8078 qcount, non_power_of_2_qcount); 8079 return -EINVAL; 8080 } 8081 if (qcount > max_rss_q_cnt) 8082 max_rss_q_cnt = qcount; 8083 } else { 8084 if (non_power_of_2_qcount && 8085 qcount != non_power_of_2_qcount) { 8086 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8087 qcount, non_power_of_2_qcount); 8088 return -EINVAL; 8089 } 8090 if (qcount < max_rss_q_cnt) { 8091 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8092 qcount, max_rss_q_cnt); 8093 return -EINVAL; 8094 } 8095 max_rss_q_cnt = qcount; 8096 non_power_of_2_qcount = qcount; 8097 } 8098 8099 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8100 * converts the bandwidth rate limit into Bytes/s when 8101 * passing it down to the driver. So convert input bandwidth 8102 * from Bytes/s to Kbps 8103 */ 8104 max_rate = mqprio_qopt->max_rate[i]; 8105 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8106 sum_max_rate += max_rate; 8107 8108 /* min_rate is minimum guaranteed rate and it can't be zero */ 8109 min_rate = mqprio_qopt->min_rate[i]; 8110 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8111 sum_min_rate += min_rate; 8112 8113 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8114 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8115 min_rate, ICE_MIN_BW_LIMIT); 8116 return -EINVAL; 8117 } 8118 8119 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8120 if (rem) { 8121 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8122 i, ICE_MIN_BW_LIMIT); 8123 return -EINVAL; 8124 } 8125 8126 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8127 if (rem) { 8128 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8129 i, ICE_MIN_BW_LIMIT); 8130 return -EINVAL; 8131 } 8132 8133 /* min_rate can't be more than max_rate, except when max_rate 8134 * is zero (implies max_rate sought is max line rate). In such 8135 * a case min_rate can be more than max. 8136 */ 8137 if (max_rate && min_rate > max_rate) { 8138 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8139 min_rate, max_rate); 8140 return -EINVAL; 8141 } 8142 8143 if (i >= mqprio_qopt->qopt.num_tc - 1) 8144 break; 8145 if (mqprio_qopt->qopt.offset[i + 1] != 8146 (mqprio_qopt->qopt.offset[i] + qcount)) 8147 return -EINVAL; 8148 } 8149 if (vsi->num_rxq < 8150 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8151 return -EINVAL; 8152 if (vsi->num_txq < 8153 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8154 return -EINVAL; 8155 8156 speed = ice_get_link_speed_kbps(vsi); 8157 if (sum_max_rate && sum_max_rate > (u64)speed) { 8158 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 8159 sum_max_rate, speed); 8160 return -EINVAL; 8161 } 8162 if (sum_min_rate && sum_min_rate > (u64)speed) { 8163 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8164 sum_min_rate, speed); 8165 return -EINVAL; 8166 } 8167 8168 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8169 vsi->ch_rss_size = max_rss_q_cnt; 8170 8171 return 0; 8172 } 8173 8174 /** 8175 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8176 * @pf: ptr to PF device 8177 * @vsi: ptr to VSI 8178 */ 8179 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8180 { 8181 struct device *dev = ice_pf_to_dev(pf); 8182 bool added = false; 8183 struct ice_hw *hw; 8184 int flow; 8185 8186 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8187 return -EINVAL; 8188 8189 hw = &pf->hw; 8190 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8191 struct ice_fd_hw_prof *prof; 8192 int tun, status; 8193 u64 entry_h; 8194 8195 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8196 hw->fdir_prof[flow]->cnt)) 8197 continue; 8198 8199 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8200 enum ice_flow_priority prio; 8201 u64 prof_id; 8202 8203 /* add this VSI to FDir profile for this flow */ 8204 prio = ICE_FLOW_PRIO_NORMAL; 8205 prof = hw->fdir_prof[flow]; 8206 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8207 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8208 prof->vsi_h[0], vsi->idx, 8209 prio, prof->fdir_seg[tun], 8210 &entry_h); 8211 if (status) { 8212 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8213 vsi->idx, flow); 8214 continue; 8215 } 8216 8217 prof->entry_h[prof->cnt][tun] = entry_h; 8218 } 8219 8220 /* store VSI for filter replay and delete */ 8221 prof->vsi_h[prof->cnt] = vsi->idx; 8222 prof->cnt++; 8223 8224 added = true; 8225 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8226 flow); 8227 } 8228 8229 if (!added) 8230 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8231 8232 return 0; 8233 } 8234 8235 /** 8236 * ice_add_channel - add a channel by adding VSI 8237 * @pf: ptr to PF device 8238 * @sw_id: underlying HW switching element ID 8239 * @ch: ptr to channel structure 8240 * 8241 * Add a channel (VSI) using add_vsi and queue_map 8242 */ 8243 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8244 { 8245 struct device *dev = ice_pf_to_dev(pf); 8246 struct ice_vsi *vsi; 8247 8248 if (ch->type != ICE_VSI_CHNL) { 8249 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8250 return -EINVAL; 8251 } 8252 8253 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8254 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8255 dev_err(dev, "create chnl VSI failure\n"); 8256 return -EINVAL; 8257 } 8258 8259 ice_add_vsi_to_fdir(pf, vsi); 8260 8261 ch->sw_id = sw_id; 8262 ch->vsi_num = vsi->vsi_num; 8263 ch->info.mapping_flags = vsi->info.mapping_flags; 8264 ch->ch_vsi = vsi; 8265 /* set the back pointer of channel for newly created VSI */ 8266 vsi->ch = ch; 8267 8268 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8269 sizeof(vsi->info.q_mapping)); 8270 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8271 sizeof(vsi->info.tc_mapping)); 8272 8273 return 0; 8274 } 8275 8276 /** 8277 * ice_chnl_cfg_res 8278 * @vsi: the VSI being setup 8279 * @ch: ptr to channel structure 8280 * 8281 * Configure channel specific resources such as rings, vector. 8282 */ 8283 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8284 { 8285 int i; 8286 8287 for (i = 0; i < ch->num_txq; i++) { 8288 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8289 struct ice_ring_container *rc; 8290 struct ice_tx_ring *tx_ring; 8291 struct ice_rx_ring *rx_ring; 8292 8293 tx_ring = vsi->tx_rings[ch->base_q + i]; 8294 rx_ring = vsi->rx_rings[ch->base_q + i]; 8295 if (!tx_ring || !rx_ring) 8296 continue; 8297 8298 /* setup ring being channel enabled */ 8299 tx_ring->ch = ch; 8300 rx_ring->ch = ch; 8301 8302 /* following code block sets up vector specific attributes */ 8303 tx_q_vector = tx_ring->q_vector; 8304 rx_q_vector = rx_ring->q_vector; 8305 if (!tx_q_vector && !rx_q_vector) 8306 continue; 8307 8308 if (tx_q_vector) { 8309 tx_q_vector->ch = ch; 8310 /* setup Tx and Rx ITR setting if DIM is off */ 8311 rc = &tx_q_vector->tx; 8312 if (!ITR_IS_DYNAMIC(rc)) 8313 ice_write_itr(rc, rc->itr_setting); 8314 } 8315 if (rx_q_vector) { 8316 rx_q_vector->ch = ch; 8317 /* setup Tx and Rx ITR setting if DIM is off */ 8318 rc = &rx_q_vector->rx; 8319 if (!ITR_IS_DYNAMIC(rc)) 8320 ice_write_itr(rc, rc->itr_setting); 8321 } 8322 } 8323 8324 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8325 * GLINT_ITR register would have written to perform in-context 8326 * update, hence perform flush 8327 */ 8328 if (ch->num_txq || ch->num_rxq) 8329 ice_flush(&vsi->back->hw); 8330 } 8331 8332 /** 8333 * ice_cfg_chnl_all_res - configure channel resources 8334 * @vsi: pte to main_vsi 8335 * @ch: ptr to channel structure 8336 * 8337 * This function configures channel specific resources such as flow-director 8338 * counter index, and other resources such as queues, vectors, ITR settings 8339 */ 8340 static void 8341 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8342 { 8343 /* configure channel (aka ADQ) resources such as queues, vectors, 8344 * ITR settings for channel specific vectors and anything else 8345 */ 8346 ice_chnl_cfg_res(vsi, ch); 8347 } 8348 8349 /** 8350 * ice_setup_hw_channel - setup new channel 8351 * @pf: ptr to PF device 8352 * @vsi: the VSI being setup 8353 * @ch: ptr to channel structure 8354 * @sw_id: underlying HW switching element ID 8355 * @type: type of channel to be created (VMDq2/VF) 8356 * 8357 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8358 * and configures Tx rings accordingly 8359 */ 8360 static int 8361 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8362 struct ice_channel *ch, u16 sw_id, u8 type) 8363 { 8364 struct device *dev = ice_pf_to_dev(pf); 8365 int ret; 8366 8367 ch->base_q = vsi->next_base_q; 8368 ch->type = type; 8369 8370 ret = ice_add_channel(pf, sw_id, ch); 8371 if (ret) { 8372 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8373 return ret; 8374 } 8375 8376 /* configure/setup ADQ specific resources */ 8377 ice_cfg_chnl_all_res(vsi, ch); 8378 8379 /* make sure to update the next_base_q so that subsequent channel's 8380 * (aka ADQ) VSI queue map is correct 8381 */ 8382 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8383 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8384 ch->num_rxq); 8385 8386 return 0; 8387 } 8388 8389 /** 8390 * ice_setup_channel - setup new channel using uplink element 8391 * @pf: ptr to PF device 8392 * @vsi: the VSI being setup 8393 * @ch: ptr to channel structure 8394 * 8395 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8396 * and uplink switching element 8397 */ 8398 static bool 8399 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8400 struct ice_channel *ch) 8401 { 8402 struct device *dev = ice_pf_to_dev(pf); 8403 u16 sw_id; 8404 int ret; 8405 8406 if (vsi->type != ICE_VSI_PF) { 8407 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8408 return false; 8409 } 8410 8411 sw_id = pf->first_sw->sw_id; 8412 8413 /* create channel (VSI) */ 8414 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8415 if (ret) { 8416 dev_err(dev, "failed to setup hw_channel\n"); 8417 return false; 8418 } 8419 dev_dbg(dev, "successfully created channel()\n"); 8420 8421 return ch->ch_vsi ? true : false; 8422 } 8423 8424 /** 8425 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8426 * @vsi: VSI to be configured 8427 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8428 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8429 */ 8430 static int 8431 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8432 { 8433 int err; 8434 8435 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8436 if (err) 8437 return err; 8438 8439 return ice_set_max_bw_limit(vsi, max_tx_rate); 8440 } 8441 8442 /** 8443 * ice_create_q_channel - function to create channel 8444 * @vsi: VSI to be configured 8445 * @ch: ptr to channel (it contains channel specific params) 8446 * 8447 * This function creates channel (VSI) using num_queues specified by user, 8448 * reconfigs RSS if needed. 8449 */ 8450 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8451 { 8452 struct ice_pf *pf = vsi->back; 8453 struct device *dev; 8454 8455 if (!ch) 8456 return -EINVAL; 8457 8458 dev = ice_pf_to_dev(pf); 8459 if (!ch->num_txq || !ch->num_rxq) { 8460 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8461 return -EINVAL; 8462 } 8463 8464 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8465 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8466 vsi->cnt_q_avail, ch->num_txq); 8467 return -EINVAL; 8468 } 8469 8470 if (!ice_setup_channel(pf, vsi, ch)) { 8471 dev_info(dev, "Failed to setup channel\n"); 8472 return -EINVAL; 8473 } 8474 /* configure BW rate limit */ 8475 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8476 int ret; 8477 8478 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8479 ch->min_tx_rate); 8480 if (ret) 8481 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8482 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8483 else 8484 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8485 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8486 } 8487 8488 vsi->cnt_q_avail -= ch->num_txq; 8489 8490 return 0; 8491 } 8492 8493 /** 8494 * ice_rem_all_chnl_fltrs - removes all channel filters 8495 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8496 * 8497 * Remove all advanced switch filters only if they are channel specific 8498 * tc-flower based filter 8499 */ 8500 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8501 { 8502 struct ice_tc_flower_fltr *fltr; 8503 struct hlist_node *node; 8504 8505 /* to remove all channel filters, iterate an ordered list of filters */ 8506 hlist_for_each_entry_safe(fltr, node, 8507 &pf->tc_flower_fltr_list, 8508 tc_flower_node) { 8509 struct ice_rule_query_data rule; 8510 int status; 8511 8512 /* for now process only channel specific filters */ 8513 if (!ice_is_chnl_fltr(fltr)) 8514 continue; 8515 8516 rule.rid = fltr->rid; 8517 rule.rule_id = fltr->rule_id; 8518 rule.vsi_handle = fltr->dest_vsi_handle; 8519 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8520 if (status) { 8521 if (status == -ENOENT) 8522 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8523 rule.rule_id); 8524 else 8525 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8526 status); 8527 } else if (fltr->dest_vsi) { 8528 /* update advanced switch filter count */ 8529 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8530 u32 flags = fltr->flags; 8531 8532 fltr->dest_vsi->num_chnl_fltr--; 8533 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8534 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8535 pf->num_dmac_chnl_fltrs--; 8536 } 8537 } 8538 8539 hlist_del(&fltr->tc_flower_node); 8540 kfree(fltr); 8541 } 8542 } 8543 8544 /** 8545 * ice_remove_q_channels - Remove queue channels for the TCs 8546 * @vsi: VSI to be configured 8547 * @rem_fltr: delete advanced switch filter or not 8548 * 8549 * Remove queue channels for the TCs 8550 */ 8551 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8552 { 8553 struct ice_channel *ch, *ch_tmp; 8554 struct ice_pf *pf = vsi->back; 8555 int i; 8556 8557 /* remove all tc-flower based filter if they are channel filters only */ 8558 if (rem_fltr) 8559 ice_rem_all_chnl_fltrs(pf); 8560 8561 /* remove ntuple filters since queue configuration is being changed */ 8562 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8563 struct ice_hw *hw = &pf->hw; 8564 8565 mutex_lock(&hw->fdir_fltr_lock); 8566 ice_fdir_del_all_fltrs(vsi); 8567 mutex_unlock(&hw->fdir_fltr_lock); 8568 } 8569 8570 /* perform cleanup for channels if they exist */ 8571 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8572 struct ice_vsi *ch_vsi; 8573 8574 list_del(&ch->list); 8575 ch_vsi = ch->ch_vsi; 8576 if (!ch_vsi) { 8577 kfree(ch); 8578 continue; 8579 } 8580 8581 /* Reset queue contexts */ 8582 for (i = 0; i < ch->num_rxq; i++) { 8583 struct ice_tx_ring *tx_ring; 8584 struct ice_rx_ring *rx_ring; 8585 8586 tx_ring = vsi->tx_rings[ch->base_q + i]; 8587 rx_ring = vsi->rx_rings[ch->base_q + i]; 8588 if (tx_ring) { 8589 tx_ring->ch = NULL; 8590 if (tx_ring->q_vector) 8591 tx_ring->q_vector->ch = NULL; 8592 } 8593 if (rx_ring) { 8594 rx_ring->ch = NULL; 8595 if (rx_ring->q_vector) 8596 rx_ring->q_vector->ch = NULL; 8597 } 8598 } 8599 8600 /* Release FD resources for the channel VSI */ 8601 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8602 8603 /* clear the VSI from scheduler tree */ 8604 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8605 8606 /* Delete VSI from FW, PF and HW VSI arrays */ 8607 ice_vsi_delete(ch->ch_vsi); 8608 8609 /* free the channel */ 8610 kfree(ch); 8611 } 8612 8613 /* clear the channel VSI map which is stored in main VSI */ 8614 ice_for_each_chnl_tc(i) 8615 vsi->tc_map_vsi[i] = NULL; 8616 8617 /* reset main VSI's all TC information */ 8618 vsi->all_enatc = 0; 8619 vsi->all_numtc = 0; 8620 } 8621 8622 /** 8623 * ice_rebuild_channels - rebuild channel 8624 * @pf: ptr to PF 8625 * 8626 * Recreate channel VSIs and replay filters 8627 */ 8628 static int ice_rebuild_channels(struct ice_pf *pf) 8629 { 8630 struct device *dev = ice_pf_to_dev(pf); 8631 struct ice_vsi *main_vsi; 8632 bool rem_adv_fltr = true; 8633 struct ice_channel *ch; 8634 struct ice_vsi *vsi; 8635 int tc_idx = 1; 8636 int i, err; 8637 8638 main_vsi = ice_get_main_vsi(pf); 8639 if (!main_vsi) 8640 return 0; 8641 8642 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8643 main_vsi->old_numtc == 1) 8644 return 0; /* nothing to be done */ 8645 8646 /* reconfigure main VSI based on old value of TC and cached values 8647 * for MQPRIO opts 8648 */ 8649 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8650 if (err) { 8651 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8652 main_vsi->old_ena_tc, main_vsi->vsi_num); 8653 return err; 8654 } 8655 8656 /* rebuild ADQ VSIs */ 8657 ice_for_each_vsi(pf, i) { 8658 enum ice_vsi_type type; 8659 8660 vsi = pf->vsi[i]; 8661 if (!vsi || vsi->type != ICE_VSI_CHNL) 8662 continue; 8663 8664 type = vsi->type; 8665 8666 /* rebuild ADQ VSI */ 8667 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8668 if (err) { 8669 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8670 ice_vsi_type_str(type), vsi->idx, err); 8671 goto cleanup; 8672 } 8673 8674 /* Re-map HW VSI number, using VSI handle that has been 8675 * previously validated in ice_replay_vsi() call above 8676 */ 8677 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8678 8679 /* replay filters for the VSI */ 8680 err = ice_replay_vsi(&pf->hw, vsi->idx); 8681 if (err) { 8682 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8683 ice_vsi_type_str(type), err, vsi->idx); 8684 rem_adv_fltr = false; 8685 goto cleanup; 8686 } 8687 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8688 ice_vsi_type_str(type), vsi->idx); 8689 8690 /* store ADQ VSI at correct TC index in main VSI's 8691 * map of TC to VSI 8692 */ 8693 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8694 } 8695 8696 /* ADQ VSI(s) has been rebuilt successfully, so setup 8697 * channel for main VSI's Tx and Rx rings 8698 */ 8699 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8700 struct ice_vsi *ch_vsi; 8701 8702 ch_vsi = ch->ch_vsi; 8703 if (!ch_vsi) 8704 continue; 8705 8706 /* reconfig channel resources */ 8707 ice_cfg_chnl_all_res(main_vsi, ch); 8708 8709 /* replay BW rate limit if it is non-zero */ 8710 if (!ch->max_tx_rate && !ch->min_tx_rate) 8711 continue; 8712 8713 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8714 ch->min_tx_rate); 8715 if (err) 8716 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8717 err, ch->max_tx_rate, ch->min_tx_rate, 8718 ch_vsi->vsi_num); 8719 else 8720 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8721 ch->max_tx_rate, ch->min_tx_rate, 8722 ch_vsi->vsi_num); 8723 } 8724 8725 /* reconfig RSS for main VSI */ 8726 if (main_vsi->ch_rss_size) 8727 ice_vsi_cfg_rss_lut_key(main_vsi); 8728 8729 return 0; 8730 8731 cleanup: 8732 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8733 return err; 8734 } 8735 8736 /** 8737 * ice_create_q_channels - Add queue channel for the given TCs 8738 * @vsi: VSI to be configured 8739 * 8740 * Configures queue channel mapping to the given TCs 8741 */ 8742 static int ice_create_q_channels(struct ice_vsi *vsi) 8743 { 8744 struct ice_pf *pf = vsi->back; 8745 struct ice_channel *ch; 8746 int ret = 0, i; 8747 8748 ice_for_each_chnl_tc(i) { 8749 if (!(vsi->all_enatc & BIT(i))) 8750 continue; 8751 8752 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8753 if (!ch) { 8754 ret = -ENOMEM; 8755 goto err_free; 8756 } 8757 INIT_LIST_HEAD(&ch->list); 8758 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8759 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8760 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8761 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8762 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8763 8764 /* convert to Kbits/s */ 8765 if (ch->max_tx_rate) 8766 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8767 ICE_BW_KBPS_DIVISOR); 8768 if (ch->min_tx_rate) 8769 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8770 ICE_BW_KBPS_DIVISOR); 8771 8772 ret = ice_create_q_channel(vsi, ch); 8773 if (ret) { 8774 dev_err(ice_pf_to_dev(pf), 8775 "failed creating channel TC:%d\n", i); 8776 kfree(ch); 8777 goto err_free; 8778 } 8779 list_add_tail(&ch->list, &vsi->ch_list); 8780 vsi->tc_map_vsi[i] = ch->ch_vsi; 8781 dev_dbg(ice_pf_to_dev(pf), 8782 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8783 } 8784 return 0; 8785 8786 err_free: 8787 ice_remove_q_channels(vsi, false); 8788 8789 return ret; 8790 } 8791 8792 /** 8793 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8794 * @netdev: net device to configure 8795 * @type_data: TC offload data 8796 */ 8797 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8798 { 8799 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8800 struct ice_netdev_priv *np = netdev_priv(netdev); 8801 struct ice_vsi *vsi = np->vsi; 8802 struct ice_pf *pf = vsi->back; 8803 u16 mode, ena_tc_qdisc = 0; 8804 int cur_txq, cur_rxq; 8805 u8 hw = 0, num_tcf; 8806 struct device *dev; 8807 int ret, i; 8808 8809 dev = ice_pf_to_dev(pf); 8810 num_tcf = mqprio_qopt->qopt.num_tc; 8811 hw = mqprio_qopt->qopt.hw; 8812 mode = mqprio_qopt->mode; 8813 if (!hw) { 8814 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8815 vsi->ch_rss_size = 0; 8816 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8817 goto config_tcf; 8818 } 8819 8820 /* Generate queue region map for number of TCF requested */ 8821 for (i = 0; i < num_tcf; i++) 8822 ena_tc_qdisc |= BIT(i); 8823 8824 switch (mode) { 8825 case TC_MQPRIO_MODE_CHANNEL: 8826 8827 if (pf->hw.port_info->is_custom_tx_enabled) { 8828 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8829 return -EBUSY; 8830 } 8831 ice_tear_down_devlink_rate_tree(pf); 8832 8833 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8834 if (ret) { 8835 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8836 ret); 8837 return ret; 8838 } 8839 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8840 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8841 /* don't assume state of hw_tc_offload during driver load 8842 * and set the flag for TC flower filter if hw_tc_offload 8843 * already ON 8844 */ 8845 if (vsi->netdev->features & NETIF_F_HW_TC) 8846 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8847 break; 8848 default: 8849 return -EINVAL; 8850 } 8851 8852 config_tcf: 8853 8854 /* Requesting same TCF configuration as already enabled */ 8855 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8856 mode != TC_MQPRIO_MODE_CHANNEL) 8857 return 0; 8858 8859 /* Pause VSI queues */ 8860 ice_dis_vsi(vsi, true); 8861 8862 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8863 ice_remove_q_channels(vsi, true); 8864 8865 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8866 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8867 num_online_cpus()); 8868 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8869 num_online_cpus()); 8870 } else { 8871 /* logic to rebuild VSI, same like ethtool -L */ 8872 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8873 8874 for (i = 0; i < num_tcf; i++) { 8875 if (!(ena_tc_qdisc & BIT(i))) 8876 continue; 8877 8878 offset = vsi->mqprio_qopt.qopt.offset[i]; 8879 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8880 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8881 } 8882 vsi->req_txq = offset + qcount_tx; 8883 vsi->req_rxq = offset + qcount_rx; 8884 8885 /* store away original rss_size info, so that it gets reused 8886 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8887 * determine, what should be the rss_sizefor main VSI 8888 */ 8889 vsi->orig_rss_size = vsi->rss_size; 8890 } 8891 8892 /* save current values of Tx and Rx queues before calling VSI rebuild 8893 * for fallback option 8894 */ 8895 cur_txq = vsi->num_txq; 8896 cur_rxq = vsi->num_rxq; 8897 8898 /* proceed with rebuild main VSI using correct number of queues */ 8899 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8900 if (ret) { 8901 /* fallback to current number of queues */ 8902 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8903 vsi->req_txq = cur_txq; 8904 vsi->req_rxq = cur_rxq; 8905 clear_bit(ICE_RESET_FAILED, pf->state); 8906 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8907 dev_err(dev, "Rebuild of main VSI failed again\n"); 8908 return ret; 8909 } 8910 } 8911 8912 vsi->all_numtc = num_tcf; 8913 vsi->all_enatc = ena_tc_qdisc; 8914 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8915 if (ret) { 8916 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8917 vsi->vsi_num); 8918 goto exit; 8919 } 8920 8921 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8922 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8923 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8924 8925 /* set TC0 rate limit if specified */ 8926 if (max_tx_rate || min_tx_rate) { 8927 /* convert to Kbits/s */ 8928 if (max_tx_rate) 8929 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8930 if (min_tx_rate) 8931 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8932 8933 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8934 if (!ret) { 8935 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8936 max_tx_rate, min_tx_rate, vsi->vsi_num); 8937 } else { 8938 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8939 max_tx_rate, min_tx_rate, vsi->vsi_num); 8940 goto exit; 8941 } 8942 } 8943 ret = ice_create_q_channels(vsi); 8944 if (ret) { 8945 netdev_err(netdev, "failed configuring queue channels\n"); 8946 goto exit; 8947 } else { 8948 netdev_dbg(netdev, "successfully configured channels\n"); 8949 } 8950 } 8951 8952 if (vsi->ch_rss_size) 8953 ice_vsi_cfg_rss_lut_key(vsi); 8954 8955 exit: 8956 /* if error, reset the all_numtc and all_enatc */ 8957 if (ret) { 8958 vsi->all_numtc = 0; 8959 vsi->all_enatc = 0; 8960 } 8961 /* resume VSI */ 8962 ice_ena_vsi(vsi, true); 8963 8964 return ret; 8965 } 8966 8967 static LIST_HEAD(ice_block_cb_list); 8968 8969 static int 8970 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8971 void *type_data) 8972 { 8973 struct ice_netdev_priv *np = netdev_priv(netdev); 8974 struct ice_pf *pf = np->vsi->back; 8975 int err; 8976 8977 switch (type) { 8978 case TC_SETUP_BLOCK: 8979 return flow_block_cb_setup_simple(type_data, 8980 &ice_block_cb_list, 8981 ice_setup_tc_block_cb, 8982 np, np, true); 8983 case TC_SETUP_QDISC_MQPRIO: 8984 /* setup traffic classifier for receive side */ 8985 mutex_lock(&pf->tc_mutex); 8986 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8987 mutex_unlock(&pf->tc_mutex); 8988 return err; 8989 default: 8990 return -EOPNOTSUPP; 8991 } 8992 return -EOPNOTSUPP; 8993 } 8994 8995 static struct ice_indr_block_priv * 8996 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8997 struct net_device *netdev) 8998 { 8999 struct ice_indr_block_priv *cb_priv; 9000 9001 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9002 if (!cb_priv->netdev) 9003 return NULL; 9004 if (cb_priv->netdev == netdev) 9005 return cb_priv; 9006 } 9007 return NULL; 9008 } 9009 9010 static int 9011 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9012 void *indr_priv) 9013 { 9014 struct ice_indr_block_priv *priv = indr_priv; 9015 struct ice_netdev_priv *np = priv->np; 9016 9017 switch (type) { 9018 case TC_SETUP_CLSFLOWER: 9019 return ice_setup_tc_cls_flower(np, priv->netdev, 9020 (struct flow_cls_offload *) 9021 type_data); 9022 default: 9023 return -EOPNOTSUPP; 9024 } 9025 } 9026 9027 static int 9028 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9029 struct ice_netdev_priv *np, 9030 struct flow_block_offload *f, void *data, 9031 void (*cleanup)(struct flow_block_cb *block_cb)) 9032 { 9033 struct ice_indr_block_priv *indr_priv; 9034 struct flow_block_cb *block_cb; 9035 9036 if (!ice_is_tunnel_supported(netdev) && 9037 !(is_vlan_dev(netdev) && 9038 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9039 return -EOPNOTSUPP; 9040 9041 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9042 return -EOPNOTSUPP; 9043 9044 switch (f->command) { 9045 case FLOW_BLOCK_BIND: 9046 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9047 if (indr_priv) 9048 return -EEXIST; 9049 9050 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9051 if (!indr_priv) 9052 return -ENOMEM; 9053 9054 indr_priv->netdev = netdev; 9055 indr_priv->np = np; 9056 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9057 9058 block_cb = 9059 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9060 indr_priv, indr_priv, 9061 ice_rep_indr_tc_block_unbind, 9062 f, netdev, sch, data, np, 9063 cleanup); 9064 9065 if (IS_ERR(block_cb)) { 9066 list_del(&indr_priv->list); 9067 kfree(indr_priv); 9068 return PTR_ERR(block_cb); 9069 } 9070 flow_block_cb_add(block_cb, f); 9071 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9072 break; 9073 case FLOW_BLOCK_UNBIND: 9074 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9075 if (!indr_priv) 9076 return -ENOENT; 9077 9078 block_cb = flow_block_cb_lookup(f->block, 9079 ice_indr_setup_block_cb, 9080 indr_priv); 9081 if (!block_cb) 9082 return -ENOENT; 9083 9084 flow_indr_block_cb_remove(block_cb, f); 9085 9086 list_del(&block_cb->driver_list); 9087 break; 9088 default: 9089 return -EOPNOTSUPP; 9090 } 9091 return 0; 9092 } 9093 9094 static int 9095 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9096 void *cb_priv, enum tc_setup_type type, void *type_data, 9097 void *data, 9098 void (*cleanup)(struct flow_block_cb *block_cb)) 9099 { 9100 switch (type) { 9101 case TC_SETUP_BLOCK: 9102 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9103 data, cleanup); 9104 9105 default: 9106 return -EOPNOTSUPP; 9107 } 9108 } 9109 9110 /** 9111 * ice_open - Called when a network interface becomes active 9112 * @netdev: network interface device structure 9113 * 9114 * The open entry point is called when a network interface is made 9115 * active by the system (IFF_UP). At this point all resources needed 9116 * for transmit and receive operations are allocated, the interrupt 9117 * handler is registered with the OS, the netdev watchdog is enabled, 9118 * and the stack is notified that the interface is ready. 9119 * 9120 * Returns 0 on success, negative value on failure 9121 */ 9122 int ice_open(struct net_device *netdev) 9123 { 9124 struct ice_netdev_priv *np = netdev_priv(netdev); 9125 struct ice_pf *pf = np->vsi->back; 9126 9127 if (ice_is_reset_in_progress(pf->state)) { 9128 netdev_err(netdev, "can't open net device while reset is in progress"); 9129 return -EBUSY; 9130 } 9131 9132 return ice_open_internal(netdev); 9133 } 9134 9135 /** 9136 * ice_open_internal - Called when a network interface becomes active 9137 * @netdev: network interface device structure 9138 * 9139 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9140 * handling routine 9141 * 9142 * Returns 0 on success, negative value on failure 9143 */ 9144 int ice_open_internal(struct net_device *netdev) 9145 { 9146 struct ice_netdev_priv *np = netdev_priv(netdev); 9147 struct ice_vsi *vsi = np->vsi; 9148 struct ice_pf *pf = vsi->back; 9149 struct ice_port_info *pi; 9150 int err; 9151 9152 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9153 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9154 return -EIO; 9155 } 9156 9157 netif_carrier_off(netdev); 9158 9159 pi = vsi->port_info; 9160 err = ice_update_link_info(pi); 9161 if (err) { 9162 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9163 return err; 9164 } 9165 9166 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9167 9168 /* Set PHY if there is media, otherwise, turn off PHY */ 9169 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9170 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9171 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9172 err = ice_init_phy_user_cfg(pi); 9173 if (err) { 9174 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9175 err); 9176 return err; 9177 } 9178 } 9179 9180 err = ice_configure_phy(vsi); 9181 if (err) { 9182 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9183 err); 9184 return err; 9185 } 9186 } else { 9187 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9188 ice_set_link(vsi, false); 9189 } 9190 9191 err = ice_vsi_open(vsi); 9192 if (err) 9193 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9194 vsi->vsi_num, vsi->vsw->sw_id); 9195 9196 /* Update existing tunnels information */ 9197 udp_tunnel_get_rx_info(netdev); 9198 9199 return err; 9200 } 9201 9202 /** 9203 * ice_stop - Disables a network interface 9204 * @netdev: network interface device structure 9205 * 9206 * The stop entry point is called when an interface is de-activated by the OS, 9207 * and the netdevice enters the DOWN state. The hardware is still under the 9208 * driver's control, but the netdev interface is disabled. 9209 * 9210 * Returns success only - not allowed to fail 9211 */ 9212 int ice_stop(struct net_device *netdev) 9213 { 9214 struct ice_netdev_priv *np = netdev_priv(netdev); 9215 struct ice_vsi *vsi = np->vsi; 9216 struct ice_pf *pf = vsi->back; 9217 9218 if (ice_is_reset_in_progress(pf->state)) { 9219 netdev_err(netdev, "can't stop net device while reset is in progress"); 9220 return -EBUSY; 9221 } 9222 9223 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9224 int link_err = ice_force_phys_link_state(vsi, false); 9225 9226 if (link_err) { 9227 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9228 vsi->vsi_num, link_err); 9229 return -EIO; 9230 } 9231 } 9232 9233 ice_vsi_close(vsi); 9234 9235 return 0; 9236 } 9237 9238 /** 9239 * ice_features_check - Validate encapsulated packet conforms to limits 9240 * @skb: skb buffer 9241 * @netdev: This port's netdev 9242 * @features: Offload features that the stack believes apply 9243 */ 9244 static netdev_features_t 9245 ice_features_check(struct sk_buff *skb, 9246 struct net_device __always_unused *netdev, 9247 netdev_features_t features) 9248 { 9249 bool gso = skb_is_gso(skb); 9250 size_t len; 9251 9252 /* No point in doing any of this if neither checksum nor GSO are 9253 * being requested for this frame. We can rule out both by just 9254 * checking for CHECKSUM_PARTIAL 9255 */ 9256 if (skb->ip_summed != CHECKSUM_PARTIAL) 9257 return features; 9258 9259 /* We cannot support GSO if the MSS is going to be less than 9260 * 64 bytes. If it is then we need to drop support for GSO. 9261 */ 9262 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9263 features &= ~NETIF_F_GSO_MASK; 9264 9265 len = skb_network_offset(skb); 9266 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9267 goto out_rm_features; 9268 9269 len = skb_network_header_len(skb); 9270 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9271 goto out_rm_features; 9272 9273 if (skb->encapsulation) { 9274 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9275 * the case of IPIP frames, the transport header pointer is 9276 * after the inner header! So check to make sure that this 9277 * is a GRE or UDP_TUNNEL frame before doing that math. 9278 */ 9279 if (gso && (skb_shinfo(skb)->gso_type & 9280 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9281 len = skb_inner_network_header(skb) - 9282 skb_transport_header(skb); 9283 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9284 goto out_rm_features; 9285 } 9286 9287 len = skb_inner_network_header_len(skb); 9288 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9289 goto out_rm_features; 9290 } 9291 9292 return features; 9293 out_rm_features: 9294 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9295 } 9296 9297 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9298 .ndo_open = ice_open, 9299 .ndo_stop = ice_stop, 9300 .ndo_start_xmit = ice_start_xmit, 9301 .ndo_set_mac_address = ice_set_mac_address, 9302 .ndo_validate_addr = eth_validate_addr, 9303 .ndo_change_mtu = ice_change_mtu, 9304 .ndo_get_stats64 = ice_get_stats64, 9305 .ndo_tx_timeout = ice_tx_timeout, 9306 .ndo_bpf = ice_xdp_safe_mode, 9307 }; 9308 9309 static const struct net_device_ops ice_netdev_ops = { 9310 .ndo_open = ice_open, 9311 .ndo_stop = ice_stop, 9312 .ndo_start_xmit = ice_start_xmit, 9313 .ndo_select_queue = ice_select_queue, 9314 .ndo_features_check = ice_features_check, 9315 .ndo_fix_features = ice_fix_features, 9316 .ndo_set_rx_mode = ice_set_rx_mode, 9317 .ndo_set_mac_address = ice_set_mac_address, 9318 .ndo_validate_addr = eth_validate_addr, 9319 .ndo_change_mtu = ice_change_mtu, 9320 .ndo_get_stats64 = ice_get_stats64, 9321 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9322 .ndo_eth_ioctl = ice_eth_ioctl, 9323 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9324 .ndo_set_vf_mac = ice_set_vf_mac, 9325 .ndo_get_vf_config = ice_get_vf_cfg, 9326 .ndo_set_vf_trust = ice_set_vf_trust, 9327 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9328 .ndo_set_vf_link_state = ice_set_vf_link_state, 9329 .ndo_get_vf_stats = ice_get_vf_stats, 9330 .ndo_set_vf_rate = ice_set_vf_bw, 9331 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9332 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9333 .ndo_setup_tc = ice_setup_tc, 9334 .ndo_set_features = ice_set_features, 9335 .ndo_bridge_getlink = ice_bridge_getlink, 9336 .ndo_bridge_setlink = ice_bridge_setlink, 9337 .ndo_fdb_add = ice_fdb_add, 9338 .ndo_fdb_del = ice_fdb_del, 9339 #ifdef CONFIG_RFS_ACCEL 9340 .ndo_rx_flow_steer = ice_rx_flow_steer, 9341 #endif 9342 .ndo_tx_timeout = ice_tx_timeout, 9343 .ndo_bpf = ice_xdp, 9344 .ndo_xdp_xmit = ice_xdp_xmit, 9345 .ndo_xsk_wakeup = ice_xsk_wakeup, 9346 }; 9347