1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 25 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 26 static const char ice_driver_string[] = DRV_SUMMARY; 27 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 28 29 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 30 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 31 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 32 33 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 34 MODULE_DESCRIPTION(DRV_SUMMARY); 35 MODULE_LICENSE("GPL v2"); 36 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 37 38 static int debug = -1; 39 module_param(debug, int, 0644); 40 #ifndef CONFIG_DYNAMIC_DEBUG 41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 42 #else 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 44 #endif /* !CONFIG_DYNAMIC_DEBUG */ 45 46 static DEFINE_IDA(ice_aux_ida); 47 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 48 EXPORT_SYMBOL(ice_xdp_locking_key); 49 50 static struct workqueue_struct *ice_wq; 51 static const struct net_device_ops ice_netdev_safe_mode_ops; 52 static const struct net_device_ops ice_netdev_ops; 53 54 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 55 56 static void ice_vsi_release_all(struct ice_pf *pf); 57 58 static int ice_rebuild_channels(struct ice_pf *pf); 59 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 60 61 static int 62 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 63 void *cb_priv, enum tc_setup_type type, void *type_data, 64 void *data, 65 void (*cleanup)(struct flow_block_cb *block_cb)); 66 67 bool netif_is_ice(struct net_device *dev) 68 { 69 return dev && (dev->netdev_ops == &ice_netdev_ops); 70 } 71 72 /** 73 * ice_get_tx_pending - returns number of Tx descriptors not processed 74 * @ring: the ring of descriptors 75 */ 76 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 77 { 78 u16 head, tail; 79 80 head = ring->next_to_clean; 81 tail = ring->next_to_use; 82 83 if (head != tail) 84 return (head < tail) ? 85 tail - head : (tail + ring->count - head); 86 return 0; 87 } 88 89 /** 90 * ice_check_for_hang_subtask - check for and recover hung queues 91 * @pf: pointer to PF struct 92 */ 93 static void ice_check_for_hang_subtask(struct ice_pf *pf) 94 { 95 struct ice_vsi *vsi = NULL; 96 struct ice_hw *hw; 97 unsigned int i; 98 int packets; 99 u32 v; 100 101 ice_for_each_vsi(pf, v) 102 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 103 vsi = pf->vsi[v]; 104 break; 105 } 106 107 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 108 return; 109 110 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 111 return; 112 113 hw = &vsi->back->hw; 114 115 ice_for_each_txq(vsi, i) { 116 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 117 118 if (!tx_ring) 119 continue; 120 if (ice_ring_ch_enabled(tx_ring)) 121 continue; 122 123 if (tx_ring->desc) { 124 /* If packet counter has not changed the queue is 125 * likely stalled, so force an interrupt for this 126 * queue. 127 * 128 * prev_pkt would be negative if there was no 129 * pending work. 130 */ 131 packets = tx_ring->stats.pkts & INT_MAX; 132 if (tx_ring->tx_stats.prev_pkt == packets) { 133 /* Trigger sw interrupt to revive the queue */ 134 ice_trigger_sw_intr(hw, tx_ring->q_vector); 135 continue; 136 } 137 138 /* Memory barrier between read of packet count and call 139 * to ice_get_tx_pending() 140 */ 141 smp_rmb(); 142 tx_ring->tx_stats.prev_pkt = 143 ice_get_tx_pending(tx_ring) ? packets : -1; 144 } 145 } 146 } 147 148 /** 149 * ice_init_mac_fltr - Set initial MAC filters 150 * @pf: board private structure 151 * 152 * Set initial set of MAC filters for PF VSI; configure filters for permanent 153 * address and broadcast address. If an error is encountered, netdevice will be 154 * unregistered. 155 */ 156 static int ice_init_mac_fltr(struct ice_pf *pf) 157 { 158 enum ice_status status; 159 struct ice_vsi *vsi; 160 u8 *perm_addr; 161 162 vsi = ice_get_main_vsi(pf); 163 if (!vsi) 164 return -EINVAL; 165 166 perm_addr = vsi->port_info->mac.perm_addr; 167 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 168 if (status) 169 return -EIO; 170 171 return 0; 172 } 173 174 /** 175 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 176 * @netdev: the net device on which the sync is happening 177 * @addr: MAC address to sync 178 * 179 * This is a callback function which is called by the in kernel device sync 180 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 181 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 182 * MAC filters from the hardware. 183 */ 184 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 185 { 186 struct ice_netdev_priv *np = netdev_priv(netdev); 187 struct ice_vsi *vsi = np->vsi; 188 189 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 190 ICE_FWD_TO_VSI)) 191 return -EINVAL; 192 193 return 0; 194 } 195 196 /** 197 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 198 * @netdev: the net device on which the unsync is happening 199 * @addr: MAC address to unsync 200 * 201 * This is a callback function which is called by the in kernel device unsync 202 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 203 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 204 * delete the MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 /* Under some circumstances, we might receive a request to delete our 212 * own device address from our uc list. Because we store the device 213 * address in the VSI's MAC filter list, we need to ignore such 214 * requests and not delete our device address from this list. 215 */ 216 if (ether_addr_equal(addr, netdev->dev_addr)) 217 return 0; 218 219 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 220 ICE_FWD_TO_VSI)) 221 return -EINVAL; 222 223 return 0; 224 } 225 226 /** 227 * ice_vsi_fltr_changed - check if filter state changed 228 * @vsi: VSI to be checked 229 * 230 * returns true if filter state has changed, false otherwise. 231 */ 232 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 233 { 234 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 235 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 236 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 237 } 238 239 /** 240 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 241 * @vsi: the VSI being configured 242 * @promisc_m: mask of promiscuous config bits 243 * @set_promisc: enable or disable promisc flag request 244 * 245 */ 246 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 247 { 248 struct ice_hw *hw = &vsi->back->hw; 249 enum ice_status status = 0; 250 251 if (vsi->type != ICE_VSI_PF) 252 return 0; 253 254 if (vsi->num_vlan > 1) { 255 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 256 set_promisc); 257 } else { 258 if (set_promisc) 259 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 260 0); 261 else 262 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 263 0); 264 } 265 266 if (status) 267 return -EIO; 268 269 return 0; 270 } 271 272 /** 273 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 274 * @vsi: ptr to the VSI 275 * 276 * Push any outstanding VSI filter changes through the AdminQ. 277 */ 278 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 279 { 280 struct device *dev = ice_pf_to_dev(vsi->back); 281 struct net_device *netdev = vsi->netdev; 282 bool promisc_forced_on = false; 283 struct ice_pf *pf = vsi->back; 284 struct ice_hw *hw = &pf->hw; 285 enum ice_status status = 0; 286 u32 changed_flags = 0; 287 u8 promisc_m; 288 int err = 0; 289 290 if (!vsi->netdev) 291 return -EINVAL; 292 293 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 294 usleep_range(1000, 2000); 295 296 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 297 vsi->current_netdev_flags = vsi->netdev->flags; 298 299 INIT_LIST_HEAD(&vsi->tmp_sync_list); 300 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 301 302 if (ice_vsi_fltr_changed(vsi)) { 303 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 304 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 305 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 306 307 /* grab the netdev's addr_list_lock */ 308 netif_addr_lock_bh(netdev); 309 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 310 ice_add_mac_to_unsync_list); 311 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 312 ice_add_mac_to_unsync_list); 313 /* our temp lists are populated. release lock */ 314 netif_addr_unlock_bh(netdev); 315 } 316 317 /* Remove MAC addresses in the unsync list */ 318 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 319 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 320 if (status) { 321 netdev_err(netdev, "Failed to delete MAC filters\n"); 322 /* if we failed because of alloc failures, just bail */ 323 if (status == ICE_ERR_NO_MEMORY) { 324 err = -ENOMEM; 325 goto out; 326 } 327 } 328 329 /* Add MAC addresses in the sync list */ 330 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 331 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 332 /* If filter is added successfully or already exists, do not go into 333 * 'if' condition and report it as error. Instead continue processing 334 * rest of the function. 335 */ 336 if (status && status != ICE_ERR_ALREADY_EXISTS) { 337 netdev_err(netdev, "Failed to add MAC filters\n"); 338 /* If there is no more space for new umac filters, VSI 339 * should go into promiscuous mode. There should be some 340 * space reserved for promiscuous filters. 341 */ 342 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 343 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 344 vsi->state)) { 345 promisc_forced_on = true; 346 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 347 vsi->vsi_num); 348 } else { 349 err = -EIO; 350 goto out; 351 } 352 } 353 /* check for changes in promiscuous modes */ 354 if (changed_flags & IFF_ALLMULTI) { 355 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 356 if (vsi->num_vlan > 1) 357 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 358 else 359 promisc_m = ICE_MCAST_PROMISC_BITS; 360 361 err = ice_cfg_promisc(vsi, promisc_m, true); 362 if (err) { 363 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 364 vsi->vsi_num); 365 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 366 goto out_promisc; 367 } 368 } else { 369 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 370 if (vsi->num_vlan > 1) 371 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 372 else 373 promisc_m = ICE_MCAST_PROMISC_BITS; 374 375 err = ice_cfg_promisc(vsi, promisc_m, false); 376 if (err) { 377 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 378 vsi->vsi_num); 379 vsi->current_netdev_flags |= IFF_ALLMULTI; 380 goto out_promisc; 381 } 382 } 383 } 384 385 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 386 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 387 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 388 if (vsi->current_netdev_flags & IFF_PROMISC) { 389 /* Apply Rx filter rule to get traffic from wire */ 390 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 391 err = ice_set_dflt_vsi(pf->first_sw, vsi); 392 if (err && err != -EEXIST) { 393 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 394 err, vsi->vsi_num); 395 vsi->current_netdev_flags &= 396 ~IFF_PROMISC; 397 goto out_promisc; 398 } 399 ice_cfg_vlan_pruning(vsi, false); 400 } 401 } else { 402 /* Clear Rx filter to remove traffic from wire */ 403 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 404 err = ice_clear_dflt_vsi(pf->first_sw); 405 if (err) { 406 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 407 err, vsi->vsi_num); 408 vsi->current_netdev_flags |= 409 IFF_PROMISC; 410 goto out_promisc; 411 } 412 if (vsi->num_vlan > 1) 413 ice_cfg_vlan_pruning(vsi, true); 414 } 415 } 416 } 417 goto exit; 418 419 out_promisc: 420 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 421 goto exit; 422 out: 423 /* if something went wrong then set the changed flag so we try again */ 424 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 425 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 426 exit: 427 clear_bit(ICE_CFG_BUSY, vsi->state); 428 return err; 429 } 430 431 /** 432 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 433 * @pf: board private structure 434 */ 435 static void ice_sync_fltr_subtask(struct ice_pf *pf) 436 { 437 int v; 438 439 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 440 return; 441 442 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 443 444 ice_for_each_vsi(pf, v) 445 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 446 ice_vsi_sync_fltr(pf->vsi[v])) { 447 /* come back and try again later */ 448 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 449 break; 450 } 451 } 452 453 /** 454 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 455 * @pf: the PF 456 * @locked: is the rtnl_lock already held 457 */ 458 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 459 { 460 int node; 461 int v; 462 463 ice_for_each_vsi(pf, v) 464 if (pf->vsi[v]) 465 ice_dis_vsi(pf->vsi[v], locked); 466 467 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 468 pf->pf_agg_node[node].num_vsis = 0; 469 470 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 471 pf->vf_agg_node[node].num_vsis = 0; 472 } 473 474 /** 475 * ice_prepare_for_reset - prep for reset 476 * @pf: board private structure 477 * @reset_type: reset type requested 478 * 479 * Inform or close all dependent features in prep for reset. 480 */ 481 static void 482 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 483 { 484 struct ice_hw *hw = &pf->hw; 485 struct ice_vsi *vsi; 486 unsigned int i; 487 488 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 489 490 /* already prepared for reset */ 491 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 492 return; 493 494 ice_unplug_aux_dev(pf); 495 496 /* Notify VFs of impending reset */ 497 if (ice_check_sq_alive(hw, &hw->mailboxq)) 498 ice_vc_notify_reset(pf); 499 500 /* Disable VFs until reset is completed */ 501 ice_for_each_vf(pf, i) 502 ice_set_vf_state_qs_dis(&pf->vf[i]); 503 504 /* release ADQ specific HW and SW resources */ 505 vsi = ice_get_main_vsi(pf); 506 if (!vsi) 507 goto skip; 508 509 /* to be on safe side, reset orig_rss_size so that normal flow 510 * of deciding rss_size can take precedence 511 */ 512 vsi->orig_rss_size = 0; 513 514 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 515 if (reset_type == ICE_RESET_PFR) { 516 vsi->old_ena_tc = vsi->all_enatc; 517 vsi->old_numtc = vsi->all_numtc; 518 } else { 519 ice_remove_q_channels(vsi, true); 520 521 /* for other reset type, do not support channel rebuild 522 * hence reset needed info 523 */ 524 vsi->old_ena_tc = 0; 525 vsi->all_enatc = 0; 526 vsi->old_numtc = 0; 527 vsi->all_numtc = 0; 528 vsi->req_txq = 0; 529 vsi->req_rxq = 0; 530 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 531 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 532 } 533 } 534 skip: 535 536 /* clear SW filtering DB */ 537 ice_clear_hw_tbls(hw); 538 /* disable the VSIs and their queues that are not already DOWN */ 539 ice_pf_dis_all_vsi(pf, false); 540 541 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 542 ice_ptp_release(pf); 543 544 if (hw->port_info) 545 ice_sched_clear_port(hw->port_info); 546 547 ice_shutdown_all_ctrlq(hw); 548 549 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 550 } 551 552 /** 553 * ice_do_reset - Initiate one of many types of resets 554 * @pf: board private structure 555 * @reset_type: reset type requested before this function was called. 556 */ 557 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 558 { 559 struct device *dev = ice_pf_to_dev(pf); 560 struct ice_hw *hw = &pf->hw; 561 562 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 563 564 ice_prepare_for_reset(pf, reset_type); 565 566 /* trigger the reset */ 567 if (ice_reset(hw, reset_type)) { 568 dev_err(dev, "reset %d failed\n", reset_type); 569 set_bit(ICE_RESET_FAILED, pf->state); 570 clear_bit(ICE_RESET_OICR_RECV, pf->state); 571 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 572 clear_bit(ICE_PFR_REQ, pf->state); 573 clear_bit(ICE_CORER_REQ, pf->state); 574 clear_bit(ICE_GLOBR_REQ, pf->state); 575 wake_up(&pf->reset_wait_queue); 576 return; 577 } 578 579 /* PFR is a bit of a special case because it doesn't result in an OICR 580 * interrupt. So for PFR, rebuild after the reset and clear the reset- 581 * associated state bits. 582 */ 583 if (reset_type == ICE_RESET_PFR) { 584 pf->pfr_count++; 585 ice_rebuild(pf, reset_type); 586 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 587 clear_bit(ICE_PFR_REQ, pf->state); 588 wake_up(&pf->reset_wait_queue); 589 ice_reset_all_vfs(pf, true); 590 } 591 } 592 593 /** 594 * ice_reset_subtask - Set up for resetting the device and driver 595 * @pf: board private structure 596 */ 597 static void ice_reset_subtask(struct ice_pf *pf) 598 { 599 enum ice_reset_req reset_type = ICE_RESET_INVAL; 600 601 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 602 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 603 * of reset is pending and sets bits in pf->state indicating the reset 604 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 605 * prepare for pending reset if not already (for PF software-initiated 606 * global resets the software should already be prepared for it as 607 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 608 * by firmware or software on other PFs, that bit is not set so prepare 609 * for the reset now), poll for reset done, rebuild and return. 610 */ 611 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 612 /* Perform the largest reset requested */ 613 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 614 reset_type = ICE_RESET_CORER; 615 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 616 reset_type = ICE_RESET_GLOBR; 617 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 618 reset_type = ICE_RESET_EMPR; 619 /* return if no valid reset type requested */ 620 if (reset_type == ICE_RESET_INVAL) 621 return; 622 ice_prepare_for_reset(pf, reset_type); 623 624 /* make sure we are ready to rebuild */ 625 if (ice_check_reset(&pf->hw)) { 626 set_bit(ICE_RESET_FAILED, pf->state); 627 } else { 628 /* done with reset. start rebuild */ 629 pf->hw.reset_ongoing = false; 630 ice_rebuild(pf, reset_type); 631 /* clear bit to resume normal operations, but 632 * ICE_NEEDS_RESTART bit is set in case rebuild failed 633 */ 634 clear_bit(ICE_RESET_OICR_RECV, pf->state); 635 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 636 clear_bit(ICE_PFR_REQ, pf->state); 637 clear_bit(ICE_CORER_REQ, pf->state); 638 clear_bit(ICE_GLOBR_REQ, pf->state); 639 wake_up(&pf->reset_wait_queue); 640 ice_reset_all_vfs(pf, true); 641 } 642 643 return; 644 } 645 646 /* No pending resets to finish processing. Check for new resets */ 647 if (test_bit(ICE_PFR_REQ, pf->state)) 648 reset_type = ICE_RESET_PFR; 649 if (test_bit(ICE_CORER_REQ, pf->state)) 650 reset_type = ICE_RESET_CORER; 651 if (test_bit(ICE_GLOBR_REQ, pf->state)) 652 reset_type = ICE_RESET_GLOBR; 653 /* If no valid reset type requested just return */ 654 if (reset_type == ICE_RESET_INVAL) 655 return; 656 657 /* reset if not already down or busy */ 658 if (!test_bit(ICE_DOWN, pf->state) && 659 !test_bit(ICE_CFG_BUSY, pf->state)) { 660 ice_do_reset(pf, reset_type); 661 } 662 } 663 664 /** 665 * ice_print_topo_conflict - print topology conflict message 666 * @vsi: the VSI whose topology status is being checked 667 */ 668 static void ice_print_topo_conflict(struct ice_vsi *vsi) 669 { 670 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 671 case ICE_AQ_LINK_TOPO_CONFLICT: 672 case ICE_AQ_LINK_MEDIA_CONFLICT: 673 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 674 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 675 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 676 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 677 break; 678 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 679 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 680 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 681 else 682 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 683 break; 684 default: 685 break; 686 } 687 } 688 689 /** 690 * ice_print_link_msg - print link up or down message 691 * @vsi: the VSI whose link status is being queried 692 * @isup: boolean for if the link is now up or down 693 */ 694 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 695 { 696 struct ice_aqc_get_phy_caps_data *caps; 697 const char *an_advertised; 698 enum ice_status status; 699 const char *fec_req; 700 const char *speed; 701 const char *fec; 702 const char *fc; 703 const char *an; 704 705 if (!vsi) 706 return; 707 708 if (vsi->current_isup == isup) 709 return; 710 711 vsi->current_isup = isup; 712 713 if (!isup) { 714 netdev_info(vsi->netdev, "NIC Link is Down\n"); 715 return; 716 } 717 718 switch (vsi->port_info->phy.link_info.link_speed) { 719 case ICE_AQ_LINK_SPEED_100GB: 720 speed = "100 G"; 721 break; 722 case ICE_AQ_LINK_SPEED_50GB: 723 speed = "50 G"; 724 break; 725 case ICE_AQ_LINK_SPEED_40GB: 726 speed = "40 G"; 727 break; 728 case ICE_AQ_LINK_SPEED_25GB: 729 speed = "25 G"; 730 break; 731 case ICE_AQ_LINK_SPEED_20GB: 732 speed = "20 G"; 733 break; 734 case ICE_AQ_LINK_SPEED_10GB: 735 speed = "10 G"; 736 break; 737 case ICE_AQ_LINK_SPEED_5GB: 738 speed = "5 G"; 739 break; 740 case ICE_AQ_LINK_SPEED_2500MB: 741 speed = "2.5 G"; 742 break; 743 case ICE_AQ_LINK_SPEED_1000MB: 744 speed = "1 G"; 745 break; 746 case ICE_AQ_LINK_SPEED_100MB: 747 speed = "100 M"; 748 break; 749 default: 750 speed = "Unknown "; 751 break; 752 } 753 754 switch (vsi->port_info->fc.current_mode) { 755 case ICE_FC_FULL: 756 fc = "Rx/Tx"; 757 break; 758 case ICE_FC_TX_PAUSE: 759 fc = "Tx"; 760 break; 761 case ICE_FC_RX_PAUSE: 762 fc = "Rx"; 763 break; 764 case ICE_FC_NONE: 765 fc = "None"; 766 break; 767 default: 768 fc = "Unknown"; 769 break; 770 } 771 772 /* Get FEC mode based on negotiated link info */ 773 switch (vsi->port_info->phy.link_info.fec_info) { 774 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 775 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 776 fec = "RS-FEC"; 777 break; 778 case ICE_AQ_LINK_25G_KR_FEC_EN: 779 fec = "FC-FEC/BASE-R"; 780 break; 781 default: 782 fec = "NONE"; 783 break; 784 } 785 786 /* check if autoneg completed, might be false due to not supported */ 787 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 788 an = "True"; 789 else 790 an = "False"; 791 792 /* Get FEC mode requested based on PHY caps last SW configuration */ 793 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 794 if (!caps) { 795 fec_req = "Unknown"; 796 an_advertised = "Unknown"; 797 goto done; 798 } 799 800 status = ice_aq_get_phy_caps(vsi->port_info, false, 801 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 802 if (status) 803 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 804 805 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 806 807 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 808 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 809 fec_req = "RS-FEC"; 810 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 811 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 812 fec_req = "FC-FEC/BASE-R"; 813 else 814 fec_req = "NONE"; 815 816 kfree(caps); 817 818 done: 819 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 820 speed, fec_req, fec, an_advertised, an, fc); 821 ice_print_topo_conflict(vsi); 822 } 823 824 /** 825 * ice_vsi_link_event - update the VSI's netdev 826 * @vsi: the VSI on which the link event occurred 827 * @link_up: whether or not the VSI needs to be set up or down 828 */ 829 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 830 { 831 if (!vsi) 832 return; 833 834 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 835 return; 836 837 if (vsi->type == ICE_VSI_PF) { 838 if (link_up == netif_carrier_ok(vsi->netdev)) 839 return; 840 841 if (link_up) { 842 netif_carrier_on(vsi->netdev); 843 netif_tx_wake_all_queues(vsi->netdev); 844 } else { 845 netif_carrier_off(vsi->netdev); 846 netif_tx_stop_all_queues(vsi->netdev); 847 } 848 } 849 } 850 851 /** 852 * ice_set_dflt_mib - send a default config MIB to the FW 853 * @pf: private PF struct 854 * 855 * This function sends a default configuration MIB to the FW. 856 * 857 * If this function errors out at any point, the driver is still able to 858 * function. The main impact is that LFC may not operate as expected. 859 * Therefore an error state in this function should be treated with a DBG 860 * message and continue on with driver rebuild/reenable. 861 */ 862 static void ice_set_dflt_mib(struct ice_pf *pf) 863 { 864 struct device *dev = ice_pf_to_dev(pf); 865 u8 mib_type, *buf, *lldpmib = NULL; 866 u16 len, typelen, offset = 0; 867 struct ice_lldp_org_tlv *tlv; 868 struct ice_hw *hw = &pf->hw; 869 u32 ouisubtype; 870 871 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 872 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 873 if (!lldpmib) { 874 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 875 __func__); 876 return; 877 } 878 879 /* Add ETS CFG TLV */ 880 tlv = (struct ice_lldp_org_tlv *)lldpmib; 881 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 882 ICE_IEEE_ETS_TLV_LEN); 883 tlv->typelen = htons(typelen); 884 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 885 ICE_IEEE_SUBTYPE_ETS_CFG); 886 tlv->ouisubtype = htonl(ouisubtype); 887 888 buf = tlv->tlvinfo; 889 buf[0] = 0; 890 891 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 892 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 893 * Octets 13 - 20 are TSA values - leave as zeros 894 */ 895 buf[5] = 0x64; 896 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 897 offset += len + 2; 898 tlv = (struct ice_lldp_org_tlv *) 899 ((char *)tlv + sizeof(tlv->typelen) + len); 900 901 /* Add ETS REC TLV */ 902 buf = tlv->tlvinfo; 903 tlv->typelen = htons(typelen); 904 905 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 906 ICE_IEEE_SUBTYPE_ETS_REC); 907 tlv->ouisubtype = htonl(ouisubtype); 908 909 /* First octet of buf is reserved 910 * Octets 1 - 4 map UP to TC - all UPs map to zero 911 * Octets 5 - 12 are BW values - set TC 0 to 100%. 912 * Octets 13 - 20 are TSA value - leave as zeros 913 */ 914 buf[5] = 0x64; 915 offset += len + 2; 916 tlv = (struct ice_lldp_org_tlv *) 917 ((char *)tlv + sizeof(tlv->typelen) + len); 918 919 /* Add PFC CFG TLV */ 920 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 921 ICE_IEEE_PFC_TLV_LEN); 922 tlv->typelen = htons(typelen); 923 924 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 925 ICE_IEEE_SUBTYPE_PFC_CFG); 926 tlv->ouisubtype = htonl(ouisubtype); 927 928 /* Octet 1 left as all zeros - PFC disabled */ 929 buf[0] = 0x08; 930 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 931 offset += len + 2; 932 933 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 934 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 935 936 kfree(lldpmib); 937 } 938 939 /** 940 * ice_check_phy_fw_load - check if PHY FW load failed 941 * @pf: pointer to PF struct 942 * @link_cfg_err: bitmap from the link info structure 943 * 944 * check if external PHY FW load failed and print an error message if it did 945 */ 946 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 947 { 948 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 949 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 950 return; 951 } 952 953 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 954 return; 955 956 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 957 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 958 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 959 } 960 } 961 962 /** 963 * ice_check_module_power 964 * @pf: pointer to PF struct 965 * @link_cfg_err: bitmap from the link info structure 966 * 967 * check module power level returned by a previous call to aq_get_link_info 968 * and print error messages if module power level is not supported 969 */ 970 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 971 { 972 /* if module power level is supported, clear the flag */ 973 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 974 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 975 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 976 return; 977 } 978 979 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 980 * above block didn't clear this bit, there's nothing to do 981 */ 982 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 983 return; 984 985 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 986 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 987 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 988 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 989 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 990 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 991 } 992 } 993 994 /** 995 * ice_check_link_cfg_err - check if link configuration failed 996 * @pf: pointer to the PF struct 997 * @link_cfg_err: bitmap from the link info structure 998 * 999 * print if any link configuration failure happens due to the value in the 1000 * link_cfg_err parameter in the link info structure 1001 */ 1002 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1003 { 1004 ice_check_module_power(pf, link_cfg_err); 1005 ice_check_phy_fw_load(pf, link_cfg_err); 1006 } 1007 1008 /** 1009 * ice_link_event - process the link event 1010 * @pf: PF that the link event is associated with 1011 * @pi: port_info for the port that the link event is associated with 1012 * @link_up: true if the physical link is up and false if it is down 1013 * @link_speed: current link speed received from the link event 1014 * 1015 * Returns 0 on success and negative on failure 1016 */ 1017 static int 1018 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1019 u16 link_speed) 1020 { 1021 struct device *dev = ice_pf_to_dev(pf); 1022 struct ice_phy_info *phy_info; 1023 enum ice_status status; 1024 struct ice_vsi *vsi; 1025 u16 old_link_speed; 1026 bool old_link; 1027 1028 phy_info = &pi->phy; 1029 phy_info->link_info_old = phy_info->link_info; 1030 1031 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1032 old_link_speed = phy_info->link_info_old.link_speed; 1033 1034 /* update the link info structures and re-enable link events, 1035 * don't bail on failure due to other book keeping needed 1036 */ 1037 status = ice_update_link_info(pi); 1038 if (status) 1039 dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n", 1040 pi->lport, ice_stat_str(status), 1041 ice_aq_str(pi->hw->adminq.sq_last_status)); 1042 1043 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1044 1045 /* Check if the link state is up after updating link info, and treat 1046 * this event as an UP event since the link is actually UP now. 1047 */ 1048 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1049 link_up = true; 1050 1051 vsi = ice_get_main_vsi(pf); 1052 if (!vsi || !vsi->port_info) 1053 return -EINVAL; 1054 1055 /* turn off PHY if media was removed */ 1056 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1057 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1058 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1059 ice_set_link(vsi, false); 1060 } 1061 1062 /* if the old link up/down and speed is the same as the new */ 1063 if (link_up == old_link && link_speed == old_link_speed) 1064 return 0; 1065 1066 if (ice_is_dcb_active(pf)) { 1067 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1068 ice_dcb_rebuild(pf); 1069 } else { 1070 if (link_up) 1071 ice_set_dflt_mib(pf); 1072 } 1073 ice_vsi_link_event(vsi, link_up); 1074 ice_print_link_msg(vsi, link_up); 1075 1076 ice_vc_notify_link_state(pf); 1077 1078 return 0; 1079 } 1080 1081 /** 1082 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1083 * @pf: board private structure 1084 */ 1085 static void ice_watchdog_subtask(struct ice_pf *pf) 1086 { 1087 int i; 1088 1089 /* if interface is down do nothing */ 1090 if (test_bit(ICE_DOWN, pf->state) || 1091 test_bit(ICE_CFG_BUSY, pf->state)) 1092 return; 1093 1094 /* make sure we don't do these things too often */ 1095 if (time_before(jiffies, 1096 pf->serv_tmr_prev + pf->serv_tmr_period)) 1097 return; 1098 1099 pf->serv_tmr_prev = jiffies; 1100 1101 /* Update the stats for active netdevs so the network stack 1102 * can look at updated numbers whenever it cares to 1103 */ 1104 ice_update_pf_stats(pf); 1105 ice_for_each_vsi(pf, i) 1106 if (pf->vsi[i] && pf->vsi[i]->netdev) 1107 ice_update_vsi_stats(pf->vsi[i]); 1108 } 1109 1110 /** 1111 * ice_init_link_events - enable/initialize link events 1112 * @pi: pointer to the port_info instance 1113 * 1114 * Returns -EIO on failure, 0 on success 1115 */ 1116 static int ice_init_link_events(struct ice_port_info *pi) 1117 { 1118 u16 mask; 1119 1120 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1121 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1122 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1123 1124 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1125 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1126 pi->lport); 1127 return -EIO; 1128 } 1129 1130 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1131 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1132 pi->lport); 1133 return -EIO; 1134 } 1135 1136 return 0; 1137 } 1138 1139 /** 1140 * ice_handle_link_event - handle link event via ARQ 1141 * @pf: PF that the link event is associated with 1142 * @event: event structure containing link status info 1143 */ 1144 static int 1145 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1146 { 1147 struct ice_aqc_get_link_status_data *link_data; 1148 struct ice_port_info *port_info; 1149 int status; 1150 1151 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1152 port_info = pf->hw.port_info; 1153 if (!port_info) 1154 return -EINVAL; 1155 1156 status = ice_link_event(pf, port_info, 1157 !!(link_data->link_info & ICE_AQ_LINK_UP), 1158 le16_to_cpu(link_data->link_speed)); 1159 if (status) 1160 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1161 status); 1162 1163 return status; 1164 } 1165 1166 enum ice_aq_task_state { 1167 ICE_AQ_TASK_WAITING = 0, 1168 ICE_AQ_TASK_COMPLETE, 1169 ICE_AQ_TASK_CANCELED, 1170 }; 1171 1172 struct ice_aq_task { 1173 struct hlist_node entry; 1174 1175 u16 opcode; 1176 struct ice_rq_event_info *event; 1177 enum ice_aq_task_state state; 1178 }; 1179 1180 /** 1181 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1182 * @pf: pointer to the PF private structure 1183 * @opcode: the opcode to wait for 1184 * @timeout: how long to wait, in jiffies 1185 * @event: storage for the event info 1186 * 1187 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1188 * current thread will be put to sleep until the specified event occurs or 1189 * until the given timeout is reached. 1190 * 1191 * To obtain only the descriptor contents, pass an event without an allocated 1192 * msg_buf. If the complete data buffer is desired, allocate the 1193 * event->msg_buf with enough space ahead of time. 1194 * 1195 * Returns: zero on success, or a negative error code on failure. 1196 */ 1197 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1198 struct ice_rq_event_info *event) 1199 { 1200 struct device *dev = ice_pf_to_dev(pf); 1201 struct ice_aq_task *task; 1202 unsigned long start; 1203 long ret; 1204 int err; 1205 1206 task = kzalloc(sizeof(*task), GFP_KERNEL); 1207 if (!task) 1208 return -ENOMEM; 1209 1210 INIT_HLIST_NODE(&task->entry); 1211 task->opcode = opcode; 1212 task->event = event; 1213 task->state = ICE_AQ_TASK_WAITING; 1214 1215 spin_lock_bh(&pf->aq_wait_lock); 1216 hlist_add_head(&task->entry, &pf->aq_wait_list); 1217 spin_unlock_bh(&pf->aq_wait_lock); 1218 1219 start = jiffies; 1220 1221 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1222 timeout); 1223 switch (task->state) { 1224 case ICE_AQ_TASK_WAITING: 1225 err = ret < 0 ? ret : -ETIMEDOUT; 1226 break; 1227 case ICE_AQ_TASK_CANCELED: 1228 err = ret < 0 ? ret : -ECANCELED; 1229 break; 1230 case ICE_AQ_TASK_COMPLETE: 1231 err = ret < 0 ? ret : 0; 1232 break; 1233 default: 1234 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1235 err = -EINVAL; 1236 break; 1237 } 1238 1239 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1240 jiffies_to_msecs(jiffies - start), 1241 jiffies_to_msecs(timeout), 1242 opcode); 1243 1244 spin_lock_bh(&pf->aq_wait_lock); 1245 hlist_del(&task->entry); 1246 spin_unlock_bh(&pf->aq_wait_lock); 1247 kfree(task); 1248 1249 return err; 1250 } 1251 1252 /** 1253 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1254 * @pf: pointer to the PF private structure 1255 * @opcode: the opcode of the event 1256 * @event: the event to check 1257 * 1258 * Loops over the current list of pending threads waiting for an AdminQ event. 1259 * For each matching task, copy the contents of the event into the task 1260 * structure and wake up the thread. 1261 * 1262 * If multiple threads wait for the same opcode, they will all be woken up. 1263 * 1264 * Note that event->msg_buf will only be duplicated if the event has a buffer 1265 * with enough space already allocated. Otherwise, only the descriptor and 1266 * message length will be copied. 1267 * 1268 * Returns: true if an event was found, false otherwise 1269 */ 1270 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1271 struct ice_rq_event_info *event) 1272 { 1273 struct ice_aq_task *task; 1274 bool found = false; 1275 1276 spin_lock_bh(&pf->aq_wait_lock); 1277 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1278 if (task->state || task->opcode != opcode) 1279 continue; 1280 1281 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1282 task->event->msg_len = event->msg_len; 1283 1284 /* Only copy the data buffer if a destination was set */ 1285 if (task->event->msg_buf && 1286 task->event->buf_len > event->buf_len) { 1287 memcpy(task->event->msg_buf, event->msg_buf, 1288 event->buf_len); 1289 task->event->buf_len = event->buf_len; 1290 } 1291 1292 task->state = ICE_AQ_TASK_COMPLETE; 1293 found = true; 1294 } 1295 spin_unlock_bh(&pf->aq_wait_lock); 1296 1297 if (found) 1298 wake_up(&pf->aq_wait_queue); 1299 } 1300 1301 /** 1302 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1303 * @pf: the PF private structure 1304 * 1305 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1306 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1307 */ 1308 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1309 { 1310 struct ice_aq_task *task; 1311 1312 spin_lock_bh(&pf->aq_wait_lock); 1313 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1314 task->state = ICE_AQ_TASK_CANCELED; 1315 spin_unlock_bh(&pf->aq_wait_lock); 1316 1317 wake_up(&pf->aq_wait_queue); 1318 } 1319 1320 /** 1321 * __ice_clean_ctrlq - helper function to clean controlq rings 1322 * @pf: ptr to struct ice_pf 1323 * @q_type: specific Control queue type 1324 */ 1325 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1326 { 1327 struct device *dev = ice_pf_to_dev(pf); 1328 struct ice_rq_event_info event; 1329 struct ice_hw *hw = &pf->hw; 1330 struct ice_ctl_q_info *cq; 1331 u16 pending, i = 0; 1332 const char *qtype; 1333 u32 oldval, val; 1334 1335 /* Do not clean control queue if/when PF reset fails */ 1336 if (test_bit(ICE_RESET_FAILED, pf->state)) 1337 return 0; 1338 1339 switch (q_type) { 1340 case ICE_CTL_Q_ADMIN: 1341 cq = &hw->adminq; 1342 qtype = "Admin"; 1343 break; 1344 case ICE_CTL_Q_SB: 1345 cq = &hw->sbq; 1346 qtype = "Sideband"; 1347 break; 1348 case ICE_CTL_Q_MAILBOX: 1349 cq = &hw->mailboxq; 1350 qtype = "Mailbox"; 1351 /* we are going to try to detect a malicious VF, so set the 1352 * state to begin detection 1353 */ 1354 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1355 break; 1356 default: 1357 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1358 return 0; 1359 } 1360 1361 /* check for error indications - PF_xx_AxQLEN register layout for 1362 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1363 */ 1364 val = rd32(hw, cq->rq.len); 1365 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1366 PF_FW_ARQLEN_ARQCRIT_M)) { 1367 oldval = val; 1368 if (val & PF_FW_ARQLEN_ARQVFE_M) 1369 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1370 qtype); 1371 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1372 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1373 qtype); 1374 } 1375 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1376 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1377 qtype); 1378 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1379 PF_FW_ARQLEN_ARQCRIT_M); 1380 if (oldval != val) 1381 wr32(hw, cq->rq.len, val); 1382 } 1383 1384 val = rd32(hw, cq->sq.len); 1385 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1386 PF_FW_ATQLEN_ATQCRIT_M)) { 1387 oldval = val; 1388 if (val & PF_FW_ATQLEN_ATQVFE_M) 1389 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1390 qtype); 1391 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1392 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1393 qtype); 1394 } 1395 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1396 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1397 qtype); 1398 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1399 PF_FW_ATQLEN_ATQCRIT_M); 1400 if (oldval != val) 1401 wr32(hw, cq->sq.len, val); 1402 } 1403 1404 event.buf_len = cq->rq_buf_size; 1405 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1406 if (!event.msg_buf) 1407 return 0; 1408 1409 do { 1410 enum ice_status ret; 1411 u16 opcode; 1412 1413 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1414 if (ret == ICE_ERR_AQ_NO_WORK) 1415 break; 1416 if (ret) { 1417 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1418 ice_stat_str(ret)); 1419 break; 1420 } 1421 1422 opcode = le16_to_cpu(event.desc.opcode); 1423 1424 /* Notify any thread that might be waiting for this event */ 1425 ice_aq_check_events(pf, opcode, &event); 1426 1427 switch (opcode) { 1428 case ice_aqc_opc_get_link_status: 1429 if (ice_handle_link_event(pf, &event)) 1430 dev_err(dev, "Could not handle link event\n"); 1431 break; 1432 case ice_aqc_opc_event_lan_overflow: 1433 ice_vf_lan_overflow_event(pf, &event); 1434 break; 1435 case ice_mbx_opc_send_msg_to_pf: 1436 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1437 ice_vc_process_vf_msg(pf, &event); 1438 break; 1439 case ice_aqc_opc_fw_logging: 1440 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1441 break; 1442 case ice_aqc_opc_lldp_set_mib_change: 1443 ice_dcb_process_lldp_set_mib_change(pf, &event); 1444 break; 1445 default: 1446 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1447 qtype, opcode); 1448 break; 1449 } 1450 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1451 1452 kfree(event.msg_buf); 1453 1454 return pending && (i == ICE_DFLT_IRQ_WORK); 1455 } 1456 1457 /** 1458 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1459 * @hw: pointer to hardware info 1460 * @cq: control queue information 1461 * 1462 * returns true if there are pending messages in a queue, false if there aren't 1463 */ 1464 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1465 { 1466 u16 ntu; 1467 1468 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1469 return cq->rq.next_to_clean != ntu; 1470 } 1471 1472 /** 1473 * ice_clean_adminq_subtask - clean the AdminQ rings 1474 * @pf: board private structure 1475 */ 1476 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1477 { 1478 struct ice_hw *hw = &pf->hw; 1479 1480 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1481 return; 1482 1483 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1484 return; 1485 1486 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1487 1488 /* There might be a situation where new messages arrive to a control 1489 * queue between processing the last message and clearing the 1490 * EVENT_PENDING bit. So before exiting, check queue head again (using 1491 * ice_ctrlq_pending) and process new messages if any. 1492 */ 1493 if (ice_ctrlq_pending(hw, &hw->adminq)) 1494 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1495 1496 ice_flush(hw); 1497 } 1498 1499 /** 1500 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1501 * @pf: board private structure 1502 */ 1503 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1504 { 1505 struct ice_hw *hw = &pf->hw; 1506 1507 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1508 return; 1509 1510 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1511 return; 1512 1513 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1514 1515 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1516 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1517 1518 ice_flush(hw); 1519 } 1520 1521 /** 1522 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1523 * @pf: board private structure 1524 */ 1525 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1526 { 1527 struct ice_hw *hw = &pf->hw; 1528 1529 /* Nothing to do here if sideband queue is not supported */ 1530 if (!ice_is_sbq_supported(hw)) { 1531 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1532 return; 1533 } 1534 1535 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1536 return; 1537 1538 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1539 return; 1540 1541 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1542 1543 if (ice_ctrlq_pending(hw, &hw->sbq)) 1544 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1545 1546 ice_flush(hw); 1547 } 1548 1549 /** 1550 * ice_service_task_schedule - schedule the service task to wake up 1551 * @pf: board private structure 1552 * 1553 * If not already scheduled, this puts the task into the work queue. 1554 */ 1555 void ice_service_task_schedule(struct ice_pf *pf) 1556 { 1557 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1558 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1559 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1560 queue_work(ice_wq, &pf->serv_task); 1561 } 1562 1563 /** 1564 * ice_service_task_complete - finish up the service task 1565 * @pf: board private structure 1566 */ 1567 static void ice_service_task_complete(struct ice_pf *pf) 1568 { 1569 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1570 1571 /* force memory (pf->state) to sync before next service task */ 1572 smp_mb__before_atomic(); 1573 clear_bit(ICE_SERVICE_SCHED, pf->state); 1574 } 1575 1576 /** 1577 * ice_service_task_stop - stop service task and cancel works 1578 * @pf: board private structure 1579 * 1580 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1581 * 1 otherwise. 1582 */ 1583 static int ice_service_task_stop(struct ice_pf *pf) 1584 { 1585 int ret; 1586 1587 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1588 1589 if (pf->serv_tmr.function) 1590 del_timer_sync(&pf->serv_tmr); 1591 if (pf->serv_task.func) 1592 cancel_work_sync(&pf->serv_task); 1593 1594 clear_bit(ICE_SERVICE_SCHED, pf->state); 1595 return ret; 1596 } 1597 1598 /** 1599 * ice_service_task_restart - restart service task and schedule works 1600 * @pf: board private structure 1601 * 1602 * This function is needed for suspend and resume works (e.g WoL scenario) 1603 */ 1604 static void ice_service_task_restart(struct ice_pf *pf) 1605 { 1606 clear_bit(ICE_SERVICE_DIS, pf->state); 1607 ice_service_task_schedule(pf); 1608 } 1609 1610 /** 1611 * ice_service_timer - timer callback to schedule service task 1612 * @t: pointer to timer_list 1613 */ 1614 static void ice_service_timer(struct timer_list *t) 1615 { 1616 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1617 1618 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1619 ice_service_task_schedule(pf); 1620 } 1621 1622 /** 1623 * ice_handle_mdd_event - handle malicious driver detect event 1624 * @pf: pointer to the PF structure 1625 * 1626 * Called from service task. OICR interrupt handler indicates MDD event. 1627 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1628 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1629 * disable the queue, the PF can be configured to reset the VF using ethtool 1630 * private flag mdd-auto-reset-vf. 1631 */ 1632 static void ice_handle_mdd_event(struct ice_pf *pf) 1633 { 1634 struct device *dev = ice_pf_to_dev(pf); 1635 struct ice_hw *hw = &pf->hw; 1636 unsigned int i; 1637 u32 reg; 1638 1639 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1640 /* Since the VF MDD event logging is rate limited, check if 1641 * there are pending MDD events. 1642 */ 1643 ice_print_vfs_mdd_events(pf); 1644 return; 1645 } 1646 1647 /* find what triggered an MDD event */ 1648 reg = rd32(hw, GL_MDET_TX_PQM); 1649 if (reg & GL_MDET_TX_PQM_VALID_M) { 1650 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1651 GL_MDET_TX_PQM_PF_NUM_S; 1652 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1653 GL_MDET_TX_PQM_VF_NUM_S; 1654 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1655 GL_MDET_TX_PQM_MAL_TYPE_S; 1656 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1657 GL_MDET_TX_PQM_QNUM_S); 1658 1659 if (netif_msg_tx_err(pf)) 1660 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1661 event, queue, pf_num, vf_num); 1662 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1663 } 1664 1665 reg = rd32(hw, GL_MDET_TX_TCLAN); 1666 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1667 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1668 GL_MDET_TX_TCLAN_PF_NUM_S; 1669 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1670 GL_MDET_TX_TCLAN_VF_NUM_S; 1671 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1672 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1673 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1674 GL_MDET_TX_TCLAN_QNUM_S); 1675 1676 if (netif_msg_tx_err(pf)) 1677 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1678 event, queue, pf_num, vf_num); 1679 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1680 } 1681 1682 reg = rd32(hw, GL_MDET_RX); 1683 if (reg & GL_MDET_RX_VALID_M) { 1684 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1685 GL_MDET_RX_PF_NUM_S; 1686 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1687 GL_MDET_RX_VF_NUM_S; 1688 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1689 GL_MDET_RX_MAL_TYPE_S; 1690 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1691 GL_MDET_RX_QNUM_S); 1692 1693 if (netif_msg_rx_err(pf)) 1694 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1695 event, queue, pf_num, vf_num); 1696 wr32(hw, GL_MDET_RX, 0xffffffff); 1697 } 1698 1699 /* check to see if this PF caused an MDD event */ 1700 reg = rd32(hw, PF_MDET_TX_PQM); 1701 if (reg & PF_MDET_TX_PQM_VALID_M) { 1702 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1703 if (netif_msg_tx_err(pf)) 1704 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1705 } 1706 1707 reg = rd32(hw, PF_MDET_TX_TCLAN); 1708 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1709 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1710 if (netif_msg_tx_err(pf)) 1711 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1712 } 1713 1714 reg = rd32(hw, PF_MDET_RX); 1715 if (reg & PF_MDET_RX_VALID_M) { 1716 wr32(hw, PF_MDET_RX, 0xFFFF); 1717 if (netif_msg_rx_err(pf)) 1718 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1719 } 1720 1721 /* Check to see if one of the VFs caused an MDD event, and then 1722 * increment counters and set print pending 1723 */ 1724 ice_for_each_vf(pf, i) { 1725 struct ice_vf *vf = &pf->vf[i]; 1726 1727 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1728 if (reg & VP_MDET_TX_PQM_VALID_M) { 1729 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1730 vf->mdd_tx_events.count++; 1731 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1732 if (netif_msg_tx_err(pf)) 1733 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1734 i); 1735 } 1736 1737 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1738 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1739 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1740 vf->mdd_tx_events.count++; 1741 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1742 if (netif_msg_tx_err(pf)) 1743 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1744 i); 1745 } 1746 1747 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1748 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1749 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1750 vf->mdd_tx_events.count++; 1751 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1752 if (netif_msg_tx_err(pf)) 1753 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1754 i); 1755 } 1756 1757 reg = rd32(hw, VP_MDET_RX(i)); 1758 if (reg & VP_MDET_RX_VALID_M) { 1759 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1760 vf->mdd_rx_events.count++; 1761 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1762 if (netif_msg_rx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1764 i); 1765 1766 /* Since the queue is disabled on VF Rx MDD events, the 1767 * PF can be configured to reset the VF through ethtool 1768 * private flag mdd-auto-reset-vf. 1769 */ 1770 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1771 /* VF MDD event counters will be cleared by 1772 * reset, so print the event prior to reset. 1773 */ 1774 ice_print_vf_rx_mdd_event(vf); 1775 ice_reset_vf(&pf->vf[i], false); 1776 } 1777 } 1778 } 1779 1780 ice_print_vfs_mdd_events(pf); 1781 } 1782 1783 /** 1784 * ice_force_phys_link_state - Force the physical link state 1785 * @vsi: VSI to force the physical link state to up/down 1786 * @link_up: true/false indicates to set the physical link to up/down 1787 * 1788 * Force the physical link state by getting the current PHY capabilities from 1789 * hardware and setting the PHY config based on the determined capabilities. If 1790 * link changes a link event will be triggered because both the Enable Automatic 1791 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1792 * 1793 * Returns 0 on success, negative on failure 1794 */ 1795 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1796 { 1797 struct ice_aqc_get_phy_caps_data *pcaps; 1798 struct ice_aqc_set_phy_cfg_data *cfg; 1799 struct ice_port_info *pi; 1800 struct device *dev; 1801 int retcode; 1802 1803 if (!vsi || !vsi->port_info || !vsi->back) 1804 return -EINVAL; 1805 if (vsi->type != ICE_VSI_PF) 1806 return 0; 1807 1808 dev = ice_pf_to_dev(vsi->back); 1809 1810 pi = vsi->port_info; 1811 1812 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1813 if (!pcaps) 1814 return -ENOMEM; 1815 1816 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1817 NULL); 1818 if (retcode) { 1819 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1820 vsi->vsi_num, retcode); 1821 retcode = -EIO; 1822 goto out; 1823 } 1824 1825 /* No change in link */ 1826 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1827 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1828 goto out; 1829 1830 /* Use the current user PHY configuration. The current user PHY 1831 * configuration is initialized during probe from PHY capabilities 1832 * software mode, and updated on set PHY configuration. 1833 */ 1834 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1835 if (!cfg) { 1836 retcode = -ENOMEM; 1837 goto out; 1838 } 1839 1840 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1841 if (link_up) 1842 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1843 else 1844 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1845 1846 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1847 if (retcode) { 1848 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1849 vsi->vsi_num, retcode); 1850 retcode = -EIO; 1851 } 1852 1853 kfree(cfg); 1854 out: 1855 kfree(pcaps); 1856 return retcode; 1857 } 1858 1859 /** 1860 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1861 * @pi: port info structure 1862 * 1863 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1864 */ 1865 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1866 { 1867 struct ice_aqc_get_phy_caps_data *pcaps; 1868 struct ice_pf *pf = pi->hw->back; 1869 enum ice_status status; 1870 int err = 0; 1871 1872 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1873 if (!pcaps) 1874 return -ENOMEM; 1875 1876 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps, 1877 NULL); 1878 1879 if (status) { 1880 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1881 err = -EIO; 1882 goto out; 1883 } 1884 1885 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1886 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1887 1888 out: 1889 kfree(pcaps); 1890 return err; 1891 } 1892 1893 /** 1894 * ice_init_link_dflt_override - Initialize link default override 1895 * @pi: port info structure 1896 * 1897 * Initialize link default override and PHY total port shutdown during probe 1898 */ 1899 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1900 { 1901 struct ice_link_default_override_tlv *ldo; 1902 struct ice_pf *pf = pi->hw->back; 1903 1904 ldo = &pf->link_dflt_override; 1905 if (ice_get_link_default_override(ldo, pi)) 1906 return; 1907 1908 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1909 return; 1910 1911 /* Enable Total Port Shutdown (override/replace link-down-on-close 1912 * ethtool private flag) for ports with Port Disable bit set. 1913 */ 1914 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1915 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1916 } 1917 1918 /** 1919 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1920 * @pi: port info structure 1921 * 1922 * If default override is enabled, initialize the user PHY cfg speed and FEC 1923 * settings using the default override mask from the NVM. 1924 * 1925 * The PHY should only be configured with the default override settings the 1926 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1927 * is used to indicate that the user PHY cfg default override is initialized 1928 * and the PHY has not been configured with the default override settings. The 1929 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1930 * configured. 1931 * 1932 * This function should be called only if the FW doesn't support default 1933 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1934 */ 1935 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1936 { 1937 struct ice_link_default_override_tlv *ldo; 1938 struct ice_aqc_set_phy_cfg_data *cfg; 1939 struct ice_phy_info *phy = &pi->phy; 1940 struct ice_pf *pf = pi->hw->back; 1941 1942 ldo = &pf->link_dflt_override; 1943 1944 /* If link default override is enabled, use to mask NVM PHY capabilities 1945 * for speed and FEC default configuration. 1946 */ 1947 cfg = &phy->curr_user_phy_cfg; 1948 1949 if (ldo->phy_type_low || ldo->phy_type_high) { 1950 cfg->phy_type_low = pf->nvm_phy_type_lo & 1951 cpu_to_le64(ldo->phy_type_low); 1952 cfg->phy_type_high = pf->nvm_phy_type_hi & 1953 cpu_to_le64(ldo->phy_type_high); 1954 } 1955 cfg->link_fec_opt = ldo->fec_options; 1956 phy->curr_user_fec_req = ICE_FEC_AUTO; 1957 1958 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1959 } 1960 1961 /** 1962 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1963 * @pi: port info structure 1964 * 1965 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1966 * mode to default. The PHY defaults are from get PHY capabilities topology 1967 * with media so call when media is first available. An error is returned if 1968 * called when media is not available. The PHY initialization completed state is 1969 * set here. 1970 * 1971 * These configurations are used when setting PHY 1972 * configuration. The user PHY configuration is updated on set PHY 1973 * configuration. Returns 0 on success, negative on failure 1974 */ 1975 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1976 { 1977 struct ice_aqc_get_phy_caps_data *pcaps; 1978 struct ice_phy_info *phy = &pi->phy; 1979 struct ice_pf *pf = pi->hw->back; 1980 enum ice_status status; 1981 int err = 0; 1982 1983 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1984 return -EIO; 1985 1986 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1987 if (!pcaps) 1988 return -ENOMEM; 1989 1990 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 1991 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 1992 pcaps, NULL); 1993 else 1994 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 1995 pcaps, NULL); 1996 if (status) { 1997 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1998 err = -EIO; 1999 goto err_out; 2000 } 2001 2002 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2003 2004 /* check if lenient mode is supported and enabled */ 2005 if (ice_fw_supports_link_override(pi->hw) && 2006 !(pcaps->module_compliance_enforcement & 2007 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2008 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2009 2010 /* if the FW supports default PHY configuration mode, then the driver 2011 * does not have to apply link override settings. If not, 2012 * initialize user PHY configuration with link override values 2013 */ 2014 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2015 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2016 ice_init_phy_cfg_dflt_override(pi); 2017 goto out; 2018 } 2019 } 2020 2021 /* if link default override is not enabled, set user flow control and 2022 * FEC settings based on what get_phy_caps returned 2023 */ 2024 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2025 pcaps->link_fec_options); 2026 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2027 2028 out: 2029 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2030 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2031 err_out: 2032 kfree(pcaps); 2033 return err; 2034 } 2035 2036 /** 2037 * ice_configure_phy - configure PHY 2038 * @vsi: VSI of PHY 2039 * 2040 * Set the PHY configuration. If the current PHY configuration is the same as 2041 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2042 * configure the based get PHY capabilities for topology with media. 2043 */ 2044 static int ice_configure_phy(struct ice_vsi *vsi) 2045 { 2046 struct device *dev = ice_pf_to_dev(vsi->back); 2047 struct ice_port_info *pi = vsi->port_info; 2048 struct ice_aqc_get_phy_caps_data *pcaps; 2049 struct ice_aqc_set_phy_cfg_data *cfg; 2050 struct ice_phy_info *phy = &pi->phy; 2051 struct ice_pf *pf = vsi->back; 2052 enum ice_status status; 2053 int err = 0; 2054 2055 /* Ensure we have media as we cannot configure a medialess port */ 2056 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2057 return -EPERM; 2058 2059 ice_print_topo_conflict(vsi); 2060 2061 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2062 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2063 return -EPERM; 2064 2065 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2066 return ice_force_phys_link_state(vsi, true); 2067 2068 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2069 if (!pcaps) 2070 return -ENOMEM; 2071 2072 /* Get current PHY config */ 2073 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2074 NULL); 2075 if (status) { 2076 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 2077 vsi->vsi_num, ice_stat_str(status)); 2078 err = -EIO; 2079 goto done; 2080 } 2081 2082 /* If PHY enable link is configured and configuration has not changed, 2083 * there's nothing to do 2084 */ 2085 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2086 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2087 goto done; 2088 2089 /* Use PHY topology as baseline for configuration */ 2090 memset(pcaps, 0, sizeof(*pcaps)); 2091 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2092 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2093 pcaps, NULL); 2094 else 2095 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2096 pcaps, NULL); 2097 if (status) { 2098 dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n", 2099 vsi->vsi_num, ice_stat_str(status)); 2100 err = -EIO; 2101 goto done; 2102 } 2103 2104 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2105 if (!cfg) { 2106 err = -ENOMEM; 2107 goto done; 2108 } 2109 2110 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2111 2112 /* Speed - If default override pending, use curr_user_phy_cfg set in 2113 * ice_init_phy_user_cfg_ldo. 2114 */ 2115 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2116 vsi->back->state)) { 2117 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2118 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2119 } else { 2120 u64 phy_low = 0, phy_high = 0; 2121 2122 ice_update_phy_type(&phy_low, &phy_high, 2123 pi->phy.curr_user_speed_req); 2124 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2125 cfg->phy_type_high = pcaps->phy_type_high & 2126 cpu_to_le64(phy_high); 2127 } 2128 2129 /* Can't provide what was requested; use PHY capabilities */ 2130 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2131 cfg->phy_type_low = pcaps->phy_type_low; 2132 cfg->phy_type_high = pcaps->phy_type_high; 2133 } 2134 2135 /* FEC */ 2136 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2137 2138 /* Can't provide what was requested; use PHY capabilities */ 2139 if (cfg->link_fec_opt != 2140 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2141 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2142 cfg->link_fec_opt = pcaps->link_fec_options; 2143 } 2144 2145 /* Flow Control - always supported; no need to check against 2146 * capabilities 2147 */ 2148 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2149 2150 /* Enable link and link update */ 2151 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2152 2153 status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2154 if (status) { 2155 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 2156 vsi->vsi_num, ice_stat_str(status)); 2157 err = -EIO; 2158 } 2159 2160 kfree(cfg); 2161 done: 2162 kfree(pcaps); 2163 return err; 2164 } 2165 2166 /** 2167 * ice_check_media_subtask - Check for media 2168 * @pf: pointer to PF struct 2169 * 2170 * If media is available, then initialize PHY user configuration if it is not 2171 * been, and configure the PHY if the interface is up. 2172 */ 2173 static void ice_check_media_subtask(struct ice_pf *pf) 2174 { 2175 struct ice_port_info *pi; 2176 struct ice_vsi *vsi; 2177 int err; 2178 2179 /* No need to check for media if it's already present */ 2180 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2181 return; 2182 2183 vsi = ice_get_main_vsi(pf); 2184 if (!vsi) 2185 return; 2186 2187 /* Refresh link info and check if media is present */ 2188 pi = vsi->port_info; 2189 err = ice_update_link_info(pi); 2190 if (err) 2191 return; 2192 2193 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2194 2195 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2196 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2197 ice_init_phy_user_cfg(pi); 2198 2199 /* PHY settings are reset on media insertion, reconfigure 2200 * PHY to preserve settings. 2201 */ 2202 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2203 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2204 return; 2205 2206 err = ice_configure_phy(vsi); 2207 if (!err) 2208 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2209 2210 /* A Link Status Event will be generated; the event handler 2211 * will complete bringing the interface up 2212 */ 2213 } 2214 } 2215 2216 /** 2217 * ice_service_task - manage and run subtasks 2218 * @work: pointer to work_struct contained by the PF struct 2219 */ 2220 static void ice_service_task(struct work_struct *work) 2221 { 2222 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2223 unsigned long start_time = jiffies; 2224 2225 /* subtasks */ 2226 2227 /* process reset requests first */ 2228 ice_reset_subtask(pf); 2229 2230 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2231 if (ice_is_reset_in_progress(pf->state) || 2232 test_bit(ICE_SUSPENDED, pf->state) || 2233 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2234 ice_service_task_complete(pf); 2235 return; 2236 } 2237 2238 ice_clean_adminq_subtask(pf); 2239 ice_check_media_subtask(pf); 2240 ice_check_for_hang_subtask(pf); 2241 ice_sync_fltr_subtask(pf); 2242 ice_handle_mdd_event(pf); 2243 ice_watchdog_subtask(pf); 2244 2245 if (ice_is_safe_mode(pf)) { 2246 ice_service_task_complete(pf); 2247 return; 2248 } 2249 2250 ice_process_vflr_event(pf); 2251 ice_clean_mailboxq_subtask(pf); 2252 ice_clean_sbq_subtask(pf); 2253 ice_sync_arfs_fltrs(pf); 2254 ice_flush_fdir_ctx(pf); 2255 2256 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2257 ice_service_task_complete(pf); 2258 2259 /* If the tasks have taken longer than one service timer period 2260 * or there is more work to be done, reset the service timer to 2261 * schedule the service task now. 2262 */ 2263 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2264 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2265 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2266 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2267 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2268 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2269 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2270 mod_timer(&pf->serv_tmr, jiffies); 2271 } 2272 2273 /** 2274 * ice_set_ctrlq_len - helper function to set controlq length 2275 * @hw: pointer to the HW instance 2276 */ 2277 static void ice_set_ctrlq_len(struct ice_hw *hw) 2278 { 2279 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2280 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2281 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2282 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2283 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2284 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2285 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2286 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2287 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2288 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2289 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2290 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2291 } 2292 2293 /** 2294 * ice_schedule_reset - schedule a reset 2295 * @pf: board private structure 2296 * @reset: reset being requested 2297 */ 2298 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2299 { 2300 struct device *dev = ice_pf_to_dev(pf); 2301 2302 /* bail out if earlier reset has failed */ 2303 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2304 dev_dbg(dev, "earlier reset has failed\n"); 2305 return -EIO; 2306 } 2307 /* bail if reset/recovery already in progress */ 2308 if (ice_is_reset_in_progress(pf->state)) { 2309 dev_dbg(dev, "Reset already in progress\n"); 2310 return -EBUSY; 2311 } 2312 2313 ice_unplug_aux_dev(pf); 2314 2315 switch (reset) { 2316 case ICE_RESET_PFR: 2317 set_bit(ICE_PFR_REQ, pf->state); 2318 break; 2319 case ICE_RESET_CORER: 2320 set_bit(ICE_CORER_REQ, pf->state); 2321 break; 2322 case ICE_RESET_GLOBR: 2323 set_bit(ICE_GLOBR_REQ, pf->state); 2324 break; 2325 default: 2326 return -EINVAL; 2327 } 2328 2329 ice_service_task_schedule(pf); 2330 return 0; 2331 } 2332 2333 /** 2334 * ice_irq_affinity_notify - Callback for affinity changes 2335 * @notify: context as to what irq was changed 2336 * @mask: the new affinity mask 2337 * 2338 * This is a callback function used by the irq_set_affinity_notifier function 2339 * so that we may register to receive changes to the irq affinity masks. 2340 */ 2341 static void 2342 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2343 const cpumask_t *mask) 2344 { 2345 struct ice_q_vector *q_vector = 2346 container_of(notify, struct ice_q_vector, affinity_notify); 2347 2348 cpumask_copy(&q_vector->affinity_mask, mask); 2349 } 2350 2351 /** 2352 * ice_irq_affinity_release - Callback for affinity notifier release 2353 * @ref: internal core kernel usage 2354 * 2355 * This is a callback function used by the irq_set_affinity_notifier function 2356 * to inform the current notification subscriber that they will no longer 2357 * receive notifications. 2358 */ 2359 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2360 2361 /** 2362 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2363 * @vsi: the VSI being configured 2364 */ 2365 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2366 { 2367 struct ice_hw *hw = &vsi->back->hw; 2368 int i; 2369 2370 ice_for_each_q_vector(vsi, i) 2371 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2372 2373 ice_flush(hw); 2374 return 0; 2375 } 2376 2377 /** 2378 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2379 * @vsi: the VSI being configured 2380 * @basename: name for the vector 2381 */ 2382 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2383 { 2384 int q_vectors = vsi->num_q_vectors; 2385 struct ice_pf *pf = vsi->back; 2386 int base = vsi->base_vector; 2387 struct device *dev; 2388 int rx_int_idx = 0; 2389 int tx_int_idx = 0; 2390 int vector, err; 2391 int irq_num; 2392 2393 dev = ice_pf_to_dev(pf); 2394 for (vector = 0; vector < q_vectors; vector++) { 2395 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2396 2397 irq_num = pf->msix_entries[base + vector].vector; 2398 2399 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2400 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2401 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2402 tx_int_idx++; 2403 } else if (q_vector->rx.rx_ring) { 2404 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2405 "%s-%s-%d", basename, "rx", rx_int_idx++); 2406 } else if (q_vector->tx.tx_ring) { 2407 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2408 "%s-%s-%d", basename, "tx", tx_int_idx++); 2409 } else { 2410 /* skip this unused q_vector */ 2411 continue; 2412 } 2413 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2414 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2415 IRQF_SHARED, q_vector->name, 2416 q_vector); 2417 else 2418 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2419 0, q_vector->name, q_vector); 2420 if (err) { 2421 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2422 err); 2423 goto free_q_irqs; 2424 } 2425 2426 /* register for affinity change notifications */ 2427 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2428 struct irq_affinity_notify *affinity_notify; 2429 2430 affinity_notify = &q_vector->affinity_notify; 2431 affinity_notify->notify = ice_irq_affinity_notify; 2432 affinity_notify->release = ice_irq_affinity_release; 2433 irq_set_affinity_notifier(irq_num, affinity_notify); 2434 } 2435 2436 /* assign the mask for this irq */ 2437 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2438 } 2439 2440 vsi->irqs_ready = true; 2441 return 0; 2442 2443 free_q_irqs: 2444 while (vector) { 2445 vector--; 2446 irq_num = pf->msix_entries[base + vector].vector; 2447 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2448 irq_set_affinity_notifier(irq_num, NULL); 2449 irq_set_affinity_hint(irq_num, NULL); 2450 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2451 } 2452 return err; 2453 } 2454 2455 /** 2456 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2457 * @vsi: VSI to setup Tx rings used by XDP 2458 * 2459 * Return 0 on success and negative value on error 2460 */ 2461 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2462 { 2463 struct device *dev = ice_pf_to_dev(vsi->back); 2464 struct ice_tx_desc *tx_desc; 2465 int i, j; 2466 2467 ice_for_each_xdp_txq(vsi, i) { 2468 u16 xdp_q_idx = vsi->alloc_txq + i; 2469 struct ice_tx_ring *xdp_ring; 2470 2471 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2472 2473 if (!xdp_ring) 2474 goto free_xdp_rings; 2475 2476 xdp_ring->q_index = xdp_q_idx; 2477 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2478 xdp_ring->vsi = vsi; 2479 xdp_ring->netdev = NULL; 2480 xdp_ring->next_dd = ICE_TX_THRESH - 1; 2481 xdp_ring->next_rs = ICE_TX_THRESH - 1; 2482 xdp_ring->dev = dev; 2483 xdp_ring->count = vsi->num_tx_desc; 2484 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2485 if (ice_setup_tx_ring(xdp_ring)) 2486 goto free_xdp_rings; 2487 ice_set_ring_xdp(xdp_ring); 2488 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2489 spin_lock_init(&xdp_ring->tx_lock); 2490 for (j = 0; j < xdp_ring->count; j++) { 2491 tx_desc = ICE_TX_DESC(xdp_ring, j); 2492 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2493 } 2494 } 2495 2496 ice_for_each_rxq(vsi, i) { 2497 if (static_key_enabled(&ice_xdp_locking_key)) 2498 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2499 else 2500 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2501 } 2502 2503 return 0; 2504 2505 free_xdp_rings: 2506 for (; i >= 0; i--) 2507 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2508 ice_free_tx_ring(vsi->xdp_rings[i]); 2509 return -ENOMEM; 2510 } 2511 2512 /** 2513 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2514 * @vsi: VSI to set the bpf prog on 2515 * @prog: the bpf prog pointer 2516 */ 2517 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2518 { 2519 struct bpf_prog *old_prog; 2520 int i; 2521 2522 old_prog = xchg(&vsi->xdp_prog, prog); 2523 if (old_prog) 2524 bpf_prog_put(old_prog); 2525 2526 ice_for_each_rxq(vsi, i) 2527 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2528 } 2529 2530 /** 2531 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2532 * @vsi: VSI to bring up Tx rings used by XDP 2533 * @prog: bpf program that will be assigned to VSI 2534 * 2535 * Return 0 on success and negative value on error 2536 */ 2537 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2538 { 2539 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2540 int xdp_rings_rem = vsi->num_xdp_txq; 2541 struct ice_pf *pf = vsi->back; 2542 struct ice_qs_cfg xdp_qs_cfg = { 2543 .qs_mutex = &pf->avail_q_mutex, 2544 .pf_map = pf->avail_txqs, 2545 .pf_map_size = pf->max_pf_txqs, 2546 .q_count = vsi->num_xdp_txq, 2547 .scatter_count = ICE_MAX_SCATTER_TXQS, 2548 .vsi_map = vsi->txq_map, 2549 .vsi_map_offset = vsi->alloc_txq, 2550 .mapping_mode = ICE_VSI_MAP_CONTIG 2551 }; 2552 enum ice_status status; 2553 struct device *dev; 2554 int i, v_idx; 2555 2556 dev = ice_pf_to_dev(pf); 2557 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2558 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2559 if (!vsi->xdp_rings) 2560 return -ENOMEM; 2561 2562 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2563 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2564 goto err_map_xdp; 2565 2566 if (static_key_enabled(&ice_xdp_locking_key)) 2567 netdev_warn(vsi->netdev, 2568 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2569 2570 if (ice_xdp_alloc_setup_rings(vsi)) 2571 goto clear_xdp_rings; 2572 2573 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2574 ice_for_each_q_vector(vsi, v_idx) { 2575 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2576 int xdp_rings_per_v, q_id, q_base; 2577 2578 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2579 vsi->num_q_vectors - v_idx); 2580 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2581 2582 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2583 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2584 2585 xdp_ring->q_vector = q_vector; 2586 xdp_ring->next = q_vector->tx.tx_ring; 2587 q_vector->tx.tx_ring = xdp_ring; 2588 } 2589 xdp_rings_rem -= xdp_rings_per_v; 2590 } 2591 2592 /* omit the scheduler update if in reset path; XDP queues will be 2593 * taken into account at the end of ice_vsi_rebuild, where 2594 * ice_cfg_vsi_lan is being called 2595 */ 2596 if (ice_is_reset_in_progress(pf->state)) 2597 return 0; 2598 2599 /* tell the Tx scheduler that right now we have 2600 * additional queues 2601 */ 2602 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2603 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2604 2605 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2606 max_txqs); 2607 if (status) { 2608 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2609 ice_stat_str(status)); 2610 goto clear_xdp_rings; 2611 } 2612 2613 /* assign the prog only when it's not already present on VSI; 2614 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2615 * VSI rebuild that happens under ethtool -L can expose us to 2616 * the bpf_prog refcount issues as we would be swapping same 2617 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2618 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2619 * this is not harmful as dev_xdp_install bumps the refcount 2620 * before calling the op exposed by the driver; 2621 */ 2622 if (!ice_is_xdp_ena_vsi(vsi)) 2623 ice_vsi_assign_bpf_prog(vsi, prog); 2624 2625 return 0; 2626 clear_xdp_rings: 2627 ice_for_each_xdp_txq(vsi, i) 2628 if (vsi->xdp_rings[i]) { 2629 kfree_rcu(vsi->xdp_rings[i], rcu); 2630 vsi->xdp_rings[i] = NULL; 2631 } 2632 2633 err_map_xdp: 2634 mutex_lock(&pf->avail_q_mutex); 2635 ice_for_each_xdp_txq(vsi, i) { 2636 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2637 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2638 } 2639 mutex_unlock(&pf->avail_q_mutex); 2640 2641 devm_kfree(dev, vsi->xdp_rings); 2642 return -ENOMEM; 2643 } 2644 2645 /** 2646 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2647 * @vsi: VSI to remove XDP rings 2648 * 2649 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2650 * resources 2651 */ 2652 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2653 { 2654 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2655 struct ice_pf *pf = vsi->back; 2656 int i, v_idx; 2657 2658 /* q_vectors are freed in reset path so there's no point in detaching 2659 * rings; in case of rebuild being triggered not from reset bits 2660 * in pf->state won't be set, so additionally check first q_vector 2661 * against NULL 2662 */ 2663 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2664 goto free_qmap; 2665 2666 ice_for_each_q_vector(vsi, v_idx) { 2667 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2668 struct ice_tx_ring *ring; 2669 2670 ice_for_each_tx_ring(ring, q_vector->tx) 2671 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2672 break; 2673 2674 /* restore the value of last node prior to XDP setup */ 2675 q_vector->tx.tx_ring = ring; 2676 } 2677 2678 free_qmap: 2679 mutex_lock(&pf->avail_q_mutex); 2680 ice_for_each_xdp_txq(vsi, i) { 2681 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2682 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2683 } 2684 mutex_unlock(&pf->avail_q_mutex); 2685 2686 ice_for_each_xdp_txq(vsi, i) 2687 if (vsi->xdp_rings[i]) { 2688 if (vsi->xdp_rings[i]->desc) 2689 ice_free_tx_ring(vsi->xdp_rings[i]); 2690 kfree_rcu(vsi->xdp_rings[i], rcu); 2691 vsi->xdp_rings[i] = NULL; 2692 } 2693 2694 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2695 vsi->xdp_rings = NULL; 2696 2697 if (static_key_enabled(&ice_xdp_locking_key)) 2698 static_branch_dec(&ice_xdp_locking_key); 2699 2700 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2701 return 0; 2702 2703 ice_vsi_assign_bpf_prog(vsi, NULL); 2704 2705 /* notify Tx scheduler that we destroyed XDP queues and bring 2706 * back the old number of child nodes 2707 */ 2708 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2709 max_txqs[i] = vsi->num_txq; 2710 2711 /* change number of XDP Tx queues to 0 */ 2712 vsi->num_xdp_txq = 0; 2713 2714 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2715 max_txqs); 2716 } 2717 2718 /** 2719 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2720 * @vsi: VSI to schedule napi on 2721 */ 2722 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2723 { 2724 int i; 2725 2726 ice_for_each_rxq(vsi, i) { 2727 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2728 2729 if (rx_ring->xsk_pool) 2730 napi_schedule(&rx_ring->q_vector->napi); 2731 } 2732 } 2733 2734 /** 2735 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2736 * @vsi: VSI to determine the count of XDP Tx qs 2737 * 2738 * returns 0 if Tx qs count is higher than at least half of CPU count, 2739 * -ENOMEM otherwise 2740 */ 2741 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2742 { 2743 u16 avail = ice_get_avail_txq_count(vsi->back); 2744 u16 cpus = num_possible_cpus(); 2745 2746 if (avail < cpus / 2) 2747 return -ENOMEM; 2748 2749 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2750 2751 if (vsi->num_xdp_txq < cpus) 2752 static_branch_inc(&ice_xdp_locking_key); 2753 2754 return 0; 2755 } 2756 2757 /** 2758 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2759 * @vsi: VSI to setup XDP for 2760 * @prog: XDP program 2761 * @extack: netlink extended ack 2762 */ 2763 static int 2764 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2765 struct netlink_ext_ack *extack) 2766 { 2767 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2768 bool if_running = netif_running(vsi->netdev); 2769 int ret = 0, xdp_ring_err = 0; 2770 2771 if (frame_size > vsi->rx_buf_len) { 2772 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2773 return -EOPNOTSUPP; 2774 } 2775 2776 /* need to stop netdev while setting up the program for Rx rings */ 2777 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2778 ret = ice_down(vsi); 2779 if (ret) { 2780 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2781 return ret; 2782 } 2783 } 2784 2785 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2786 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2787 if (xdp_ring_err) { 2788 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2789 } else { 2790 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2791 if (xdp_ring_err) 2792 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2793 } 2794 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2795 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2796 if (xdp_ring_err) 2797 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2798 } else { 2799 /* safe to call even when prog == vsi->xdp_prog as 2800 * dev_xdp_install in net/core/dev.c incremented prog's 2801 * refcount so corresponding bpf_prog_put won't cause 2802 * underflow 2803 */ 2804 ice_vsi_assign_bpf_prog(vsi, prog); 2805 } 2806 2807 if (if_running) 2808 ret = ice_up(vsi); 2809 2810 if (!ret && prog) 2811 ice_vsi_rx_napi_schedule(vsi); 2812 2813 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2814 } 2815 2816 /** 2817 * ice_xdp_safe_mode - XDP handler for safe mode 2818 * @dev: netdevice 2819 * @xdp: XDP command 2820 */ 2821 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2822 struct netdev_bpf *xdp) 2823 { 2824 NL_SET_ERR_MSG_MOD(xdp->extack, 2825 "Please provide working DDP firmware package in order to use XDP\n" 2826 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2827 return -EOPNOTSUPP; 2828 } 2829 2830 /** 2831 * ice_xdp - implements XDP handler 2832 * @dev: netdevice 2833 * @xdp: XDP command 2834 */ 2835 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2836 { 2837 struct ice_netdev_priv *np = netdev_priv(dev); 2838 struct ice_vsi *vsi = np->vsi; 2839 2840 if (vsi->type != ICE_VSI_PF) { 2841 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2842 return -EINVAL; 2843 } 2844 2845 switch (xdp->command) { 2846 case XDP_SETUP_PROG: 2847 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2848 case XDP_SETUP_XSK_POOL: 2849 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2850 xdp->xsk.queue_id); 2851 default: 2852 return -EINVAL; 2853 } 2854 } 2855 2856 /** 2857 * ice_ena_misc_vector - enable the non-queue interrupts 2858 * @pf: board private structure 2859 */ 2860 static void ice_ena_misc_vector(struct ice_pf *pf) 2861 { 2862 struct ice_hw *hw = &pf->hw; 2863 u32 val; 2864 2865 /* Disable anti-spoof detection interrupt to prevent spurious event 2866 * interrupts during a function reset. Anti-spoof functionally is 2867 * still supported. 2868 */ 2869 val = rd32(hw, GL_MDCK_TX_TDPU); 2870 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2871 wr32(hw, GL_MDCK_TX_TDPU, val); 2872 2873 /* clear things first */ 2874 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2875 rd32(hw, PFINT_OICR); /* read to clear */ 2876 2877 val = (PFINT_OICR_ECC_ERR_M | 2878 PFINT_OICR_MAL_DETECT_M | 2879 PFINT_OICR_GRST_M | 2880 PFINT_OICR_PCI_EXCEPTION_M | 2881 PFINT_OICR_VFLR_M | 2882 PFINT_OICR_HMC_ERR_M | 2883 PFINT_OICR_PE_PUSH_M | 2884 PFINT_OICR_PE_CRITERR_M); 2885 2886 wr32(hw, PFINT_OICR_ENA, val); 2887 2888 /* SW_ITR_IDX = 0, but don't change INTENA */ 2889 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2890 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2891 } 2892 2893 /** 2894 * ice_misc_intr - misc interrupt handler 2895 * @irq: interrupt number 2896 * @data: pointer to a q_vector 2897 */ 2898 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2899 { 2900 struct ice_pf *pf = (struct ice_pf *)data; 2901 struct ice_hw *hw = &pf->hw; 2902 irqreturn_t ret = IRQ_NONE; 2903 struct device *dev; 2904 u32 oicr, ena_mask; 2905 2906 dev = ice_pf_to_dev(pf); 2907 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2908 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2909 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2910 2911 oicr = rd32(hw, PFINT_OICR); 2912 ena_mask = rd32(hw, PFINT_OICR_ENA); 2913 2914 if (oicr & PFINT_OICR_SWINT_M) { 2915 ena_mask &= ~PFINT_OICR_SWINT_M; 2916 pf->sw_int_count++; 2917 } 2918 2919 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2920 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2921 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2922 } 2923 if (oicr & PFINT_OICR_VFLR_M) { 2924 /* disable any further VFLR event notifications */ 2925 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2926 u32 reg = rd32(hw, PFINT_OICR_ENA); 2927 2928 reg &= ~PFINT_OICR_VFLR_M; 2929 wr32(hw, PFINT_OICR_ENA, reg); 2930 } else { 2931 ena_mask &= ~PFINT_OICR_VFLR_M; 2932 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2933 } 2934 } 2935 2936 if (oicr & PFINT_OICR_GRST_M) { 2937 u32 reset; 2938 2939 /* we have a reset warning */ 2940 ena_mask &= ~PFINT_OICR_GRST_M; 2941 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2942 GLGEN_RSTAT_RESET_TYPE_S; 2943 2944 if (reset == ICE_RESET_CORER) 2945 pf->corer_count++; 2946 else if (reset == ICE_RESET_GLOBR) 2947 pf->globr_count++; 2948 else if (reset == ICE_RESET_EMPR) 2949 pf->empr_count++; 2950 else 2951 dev_dbg(dev, "Invalid reset type %d\n", reset); 2952 2953 /* If a reset cycle isn't already in progress, we set a bit in 2954 * pf->state so that the service task can start a reset/rebuild. 2955 */ 2956 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2957 if (reset == ICE_RESET_CORER) 2958 set_bit(ICE_CORER_RECV, pf->state); 2959 else if (reset == ICE_RESET_GLOBR) 2960 set_bit(ICE_GLOBR_RECV, pf->state); 2961 else 2962 set_bit(ICE_EMPR_RECV, pf->state); 2963 2964 /* There are couple of different bits at play here. 2965 * hw->reset_ongoing indicates whether the hardware is 2966 * in reset. This is set to true when a reset interrupt 2967 * is received and set back to false after the driver 2968 * has determined that the hardware is out of reset. 2969 * 2970 * ICE_RESET_OICR_RECV in pf->state indicates 2971 * that a post reset rebuild is required before the 2972 * driver is operational again. This is set above. 2973 * 2974 * As this is the start of the reset/rebuild cycle, set 2975 * both to indicate that. 2976 */ 2977 hw->reset_ongoing = true; 2978 } 2979 } 2980 2981 if (oicr & PFINT_OICR_TSYN_TX_M) { 2982 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 2983 ice_ptp_process_ts(pf); 2984 } 2985 2986 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 2987 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 2988 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 2989 2990 /* Save EVENTs from GTSYN register */ 2991 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 2992 GLTSYN_STAT_EVENT1_M | 2993 GLTSYN_STAT_EVENT2_M); 2994 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 2995 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 2996 } 2997 2998 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 2999 if (oicr & ICE_AUX_CRIT_ERR) { 3000 struct iidc_event *event; 3001 3002 ena_mask &= ~ICE_AUX_CRIT_ERR; 3003 event = kzalloc(sizeof(*event), GFP_KERNEL); 3004 if (event) { 3005 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3006 /* report the entire OICR value to AUX driver */ 3007 event->reg = oicr; 3008 ice_send_event_to_aux(pf, event); 3009 kfree(event); 3010 } 3011 } 3012 3013 /* Report any remaining unexpected interrupts */ 3014 oicr &= ena_mask; 3015 if (oicr) { 3016 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3017 /* If a critical error is pending there is no choice but to 3018 * reset the device. 3019 */ 3020 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3021 PFINT_OICR_ECC_ERR_M)) { 3022 set_bit(ICE_PFR_REQ, pf->state); 3023 ice_service_task_schedule(pf); 3024 } 3025 } 3026 ret = IRQ_HANDLED; 3027 3028 ice_service_task_schedule(pf); 3029 ice_irq_dynamic_ena(hw, NULL, NULL); 3030 3031 return ret; 3032 } 3033 3034 /** 3035 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3036 * @hw: pointer to HW structure 3037 */ 3038 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3039 { 3040 /* disable Admin queue Interrupt causes */ 3041 wr32(hw, PFINT_FW_CTL, 3042 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3043 3044 /* disable Mailbox queue Interrupt causes */ 3045 wr32(hw, PFINT_MBX_CTL, 3046 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3047 3048 wr32(hw, PFINT_SB_CTL, 3049 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3050 3051 /* disable Control queue Interrupt causes */ 3052 wr32(hw, PFINT_OICR_CTL, 3053 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3054 3055 ice_flush(hw); 3056 } 3057 3058 /** 3059 * ice_free_irq_msix_misc - Unroll misc vector setup 3060 * @pf: board private structure 3061 */ 3062 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3063 { 3064 struct ice_hw *hw = &pf->hw; 3065 3066 ice_dis_ctrlq_interrupts(hw); 3067 3068 /* disable OICR interrupt */ 3069 wr32(hw, PFINT_OICR_ENA, 0); 3070 ice_flush(hw); 3071 3072 if (pf->msix_entries) { 3073 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3074 devm_free_irq(ice_pf_to_dev(pf), 3075 pf->msix_entries[pf->oicr_idx].vector, pf); 3076 } 3077 3078 pf->num_avail_sw_msix += 1; 3079 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3080 } 3081 3082 /** 3083 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3084 * @hw: pointer to HW structure 3085 * @reg_idx: HW vector index to associate the control queue interrupts with 3086 */ 3087 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3088 { 3089 u32 val; 3090 3091 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3092 PFINT_OICR_CTL_CAUSE_ENA_M); 3093 wr32(hw, PFINT_OICR_CTL, val); 3094 3095 /* enable Admin queue Interrupt causes */ 3096 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3097 PFINT_FW_CTL_CAUSE_ENA_M); 3098 wr32(hw, PFINT_FW_CTL, val); 3099 3100 /* enable Mailbox queue Interrupt causes */ 3101 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3102 PFINT_MBX_CTL_CAUSE_ENA_M); 3103 wr32(hw, PFINT_MBX_CTL, val); 3104 3105 /* This enables Sideband queue Interrupt causes */ 3106 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3107 PFINT_SB_CTL_CAUSE_ENA_M); 3108 wr32(hw, PFINT_SB_CTL, val); 3109 3110 ice_flush(hw); 3111 } 3112 3113 /** 3114 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3115 * @pf: board private structure 3116 * 3117 * This sets up the handler for MSIX 0, which is used to manage the 3118 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3119 * when in MSI or Legacy interrupt mode. 3120 */ 3121 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3122 { 3123 struct device *dev = ice_pf_to_dev(pf); 3124 struct ice_hw *hw = &pf->hw; 3125 int oicr_idx, err = 0; 3126 3127 if (!pf->int_name[0]) 3128 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3129 dev_driver_string(dev), dev_name(dev)); 3130 3131 /* Do not request IRQ but do enable OICR interrupt since settings are 3132 * lost during reset. Note that this function is called only during 3133 * rebuild path and not while reset is in progress. 3134 */ 3135 if (ice_is_reset_in_progress(pf->state)) 3136 goto skip_req_irq; 3137 3138 /* reserve one vector in irq_tracker for misc interrupts */ 3139 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3140 if (oicr_idx < 0) 3141 return oicr_idx; 3142 3143 pf->num_avail_sw_msix -= 1; 3144 pf->oicr_idx = (u16)oicr_idx; 3145 3146 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3147 ice_misc_intr, 0, pf->int_name, pf); 3148 if (err) { 3149 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3150 pf->int_name, err); 3151 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3152 pf->num_avail_sw_msix += 1; 3153 return err; 3154 } 3155 3156 skip_req_irq: 3157 ice_ena_misc_vector(pf); 3158 3159 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3160 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3161 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3162 3163 ice_flush(hw); 3164 ice_irq_dynamic_ena(hw, NULL, NULL); 3165 3166 return 0; 3167 } 3168 3169 /** 3170 * ice_napi_add - register NAPI handler for the VSI 3171 * @vsi: VSI for which NAPI handler is to be registered 3172 * 3173 * This function is only called in the driver's load path. Registering the NAPI 3174 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3175 * reset/rebuild, etc.) 3176 */ 3177 static void ice_napi_add(struct ice_vsi *vsi) 3178 { 3179 int v_idx; 3180 3181 if (!vsi->netdev) 3182 return; 3183 3184 ice_for_each_q_vector(vsi, v_idx) 3185 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3186 ice_napi_poll, NAPI_POLL_WEIGHT); 3187 } 3188 3189 /** 3190 * ice_set_ops - set netdev and ethtools ops for the given netdev 3191 * @netdev: netdev instance 3192 */ 3193 static void ice_set_ops(struct net_device *netdev) 3194 { 3195 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3196 3197 if (ice_is_safe_mode(pf)) { 3198 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3199 ice_set_ethtool_safe_mode_ops(netdev); 3200 return; 3201 } 3202 3203 netdev->netdev_ops = &ice_netdev_ops; 3204 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3205 ice_set_ethtool_ops(netdev); 3206 } 3207 3208 /** 3209 * ice_set_netdev_features - set features for the given netdev 3210 * @netdev: netdev instance 3211 */ 3212 static void ice_set_netdev_features(struct net_device *netdev) 3213 { 3214 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3215 netdev_features_t csumo_features; 3216 netdev_features_t vlano_features; 3217 netdev_features_t dflt_features; 3218 netdev_features_t tso_features; 3219 3220 if (ice_is_safe_mode(pf)) { 3221 /* safe mode */ 3222 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3223 netdev->hw_features = netdev->features; 3224 return; 3225 } 3226 3227 dflt_features = NETIF_F_SG | 3228 NETIF_F_HIGHDMA | 3229 NETIF_F_NTUPLE | 3230 NETIF_F_RXHASH; 3231 3232 csumo_features = NETIF_F_RXCSUM | 3233 NETIF_F_IP_CSUM | 3234 NETIF_F_SCTP_CRC | 3235 NETIF_F_IPV6_CSUM; 3236 3237 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3238 NETIF_F_HW_VLAN_CTAG_TX | 3239 NETIF_F_HW_VLAN_CTAG_RX; 3240 3241 tso_features = NETIF_F_TSO | 3242 NETIF_F_TSO_ECN | 3243 NETIF_F_TSO6 | 3244 NETIF_F_GSO_GRE | 3245 NETIF_F_GSO_UDP_TUNNEL | 3246 NETIF_F_GSO_GRE_CSUM | 3247 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3248 NETIF_F_GSO_PARTIAL | 3249 NETIF_F_GSO_IPXIP4 | 3250 NETIF_F_GSO_IPXIP6 | 3251 NETIF_F_GSO_UDP_L4; 3252 3253 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3254 NETIF_F_GSO_GRE_CSUM; 3255 /* set features that user can change */ 3256 netdev->hw_features = dflt_features | csumo_features | 3257 vlano_features | tso_features; 3258 3259 /* add support for HW_CSUM on packets with MPLS header */ 3260 netdev->mpls_features = NETIF_F_HW_CSUM; 3261 3262 /* enable features */ 3263 netdev->features |= netdev->hw_features; 3264 3265 netdev->hw_features |= NETIF_F_HW_TC; 3266 3267 /* encap and VLAN devices inherit default, csumo and tso features */ 3268 netdev->hw_enc_features |= dflt_features | csumo_features | 3269 tso_features; 3270 netdev->vlan_features |= dflt_features | csumo_features | 3271 tso_features; 3272 } 3273 3274 /** 3275 * ice_cfg_netdev - Allocate, configure and register a netdev 3276 * @vsi: the VSI associated with the new netdev 3277 * 3278 * Returns 0 on success, negative value on failure 3279 */ 3280 static int ice_cfg_netdev(struct ice_vsi *vsi) 3281 { 3282 struct ice_netdev_priv *np; 3283 struct net_device *netdev; 3284 u8 mac_addr[ETH_ALEN]; 3285 3286 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3287 vsi->alloc_rxq); 3288 if (!netdev) 3289 return -ENOMEM; 3290 3291 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3292 vsi->netdev = netdev; 3293 np = netdev_priv(netdev); 3294 np->vsi = vsi; 3295 3296 ice_set_netdev_features(netdev); 3297 3298 ice_set_ops(netdev); 3299 3300 if (vsi->type == ICE_VSI_PF) { 3301 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3302 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3303 eth_hw_addr_set(netdev, mac_addr); 3304 ether_addr_copy(netdev->perm_addr, mac_addr); 3305 } 3306 3307 netdev->priv_flags |= IFF_UNICAST_FLT; 3308 3309 /* Setup netdev TC information */ 3310 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3311 3312 /* setup watchdog timeout value to be 5 second */ 3313 netdev->watchdog_timeo = 5 * HZ; 3314 3315 netdev->min_mtu = ETH_MIN_MTU; 3316 netdev->max_mtu = ICE_MAX_MTU; 3317 3318 return 0; 3319 } 3320 3321 /** 3322 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3323 * @lut: Lookup table 3324 * @rss_table_size: Lookup table size 3325 * @rss_size: Range of queue number for hashing 3326 */ 3327 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3328 { 3329 u16 i; 3330 3331 for (i = 0; i < rss_table_size; i++) 3332 lut[i] = i % rss_size; 3333 } 3334 3335 /** 3336 * ice_pf_vsi_setup - Set up a PF VSI 3337 * @pf: board private structure 3338 * @pi: pointer to the port_info instance 3339 * 3340 * Returns pointer to the successfully allocated VSI software struct 3341 * on success, otherwise returns NULL on failure. 3342 */ 3343 static struct ice_vsi * 3344 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3345 { 3346 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3347 } 3348 3349 static struct ice_vsi * 3350 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3351 struct ice_channel *ch) 3352 { 3353 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3354 } 3355 3356 /** 3357 * ice_ctrl_vsi_setup - Set up a control VSI 3358 * @pf: board private structure 3359 * @pi: pointer to the port_info instance 3360 * 3361 * Returns pointer to the successfully allocated VSI software struct 3362 * on success, otherwise returns NULL on failure. 3363 */ 3364 static struct ice_vsi * 3365 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3366 { 3367 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3368 } 3369 3370 /** 3371 * ice_lb_vsi_setup - Set up a loopback VSI 3372 * @pf: board private structure 3373 * @pi: pointer to the port_info instance 3374 * 3375 * Returns pointer to the successfully allocated VSI software struct 3376 * on success, otherwise returns NULL on failure. 3377 */ 3378 struct ice_vsi * 3379 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3380 { 3381 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3382 } 3383 3384 /** 3385 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3386 * @netdev: network interface to be adjusted 3387 * @proto: unused protocol 3388 * @vid: VLAN ID to be added 3389 * 3390 * net_device_ops implementation for adding VLAN IDs 3391 */ 3392 static int 3393 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3394 u16 vid) 3395 { 3396 struct ice_netdev_priv *np = netdev_priv(netdev); 3397 struct ice_vsi *vsi = np->vsi; 3398 int ret; 3399 3400 /* VLAN 0 is added by default during load/reset */ 3401 if (!vid) 3402 return 0; 3403 3404 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3405 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3406 ret = ice_cfg_vlan_pruning(vsi, true); 3407 if (ret) 3408 return ret; 3409 } 3410 3411 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3412 * packets aren't pruned by the device's internal switch on Rx 3413 */ 3414 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3415 if (!ret) 3416 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3417 3418 return ret; 3419 } 3420 3421 /** 3422 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3423 * @netdev: network interface to be adjusted 3424 * @proto: unused protocol 3425 * @vid: VLAN ID to be removed 3426 * 3427 * net_device_ops implementation for removing VLAN IDs 3428 */ 3429 static int 3430 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3431 u16 vid) 3432 { 3433 struct ice_netdev_priv *np = netdev_priv(netdev); 3434 struct ice_vsi *vsi = np->vsi; 3435 int ret; 3436 3437 /* don't allow removal of VLAN 0 */ 3438 if (!vid) 3439 return 0; 3440 3441 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3442 * information 3443 */ 3444 ret = ice_vsi_kill_vlan(vsi, vid); 3445 if (ret) 3446 return ret; 3447 3448 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3449 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3450 ret = ice_cfg_vlan_pruning(vsi, false); 3451 3452 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3453 return ret; 3454 } 3455 3456 /** 3457 * ice_rep_indr_tc_block_unbind 3458 * @cb_priv: indirection block private data 3459 */ 3460 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3461 { 3462 struct ice_indr_block_priv *indr_priv = cb_priv; 3463 3464 list_del(&indr_priv->list); 3465 kfree(indr_priv); 3466 } 3467 3468 /** 3469 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3470 * @vsi: VSI struct which has the netdev 3471 */ 3472 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3473 { 3474 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3475 3476 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3477 ice_rep_indr_tc_block_unbind); 3478 } 3479 3480 /** 3481 * ice_tc_indir_block_remove - clean indirect TC block notifications 3482 * @pf: PF structure 3483 */ 3484 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3485 { 3486 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3487 3488 if (!pf_vsi) 3489 return; 3490 3491 ice_tc_indir_block_unregister(pf_vsi); 3492 } 3493 3494 /** 3495 * ice_tc_indir_block_register - Register TC indirect block notifications 3496 * @vsi: VSI struct which has the netdev 3497 * 3498 * Returns 0 on success, negative value on failure 3499 */ 3500 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3501 { 3502 struct ice_netdev_priv *np; 3503 3504 if (!vsi || !vsi->netdev) 3505 return -EINVAL; 3506 3507 np = netdev_priv(vsi->netdev); 3508 3509 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3510 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3511 } 3512 3513 /** 3514 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3515 * @pf: board private structure 3516 * 3517 * Returns 0 on success, negative value on failure 3518 */ 3519 static int ice_setup_pf_sw(struct ice_pf *pf) 3520 { 3521 struct device *dev = ice_pf_to_dev(pf); 3522 struct ice_vsi *vsi; 3523 int status = 0; 3524 3525 if (ice_is_reset_in_progress(pf->state)) 3526 return -EBUSY; 3527 3528 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3529 if (!vsi) 3530 return -ENOMEM; 3531 3532 /* init channel list */ 3533 INIT_LIST_HEAD(&vsi->ch_list); 3534 3535 status = ice_cfg_netdev(vsi); 3536 if (status) { 3537 status = -ENODEV; 3538 goto unroll_vsi_setup; 3539 } 3540 /* netdev has to be configured before setting frame size */ 3541 ice_vsi_cfg_frame_size(vsi); 3542 3543 /* init indirect block notifications */ 3544 status = ice_tc_indir_block_register(vsi); 3545 if (status) { 3546 dev_err(dev, "Failed to register netdev notifier\n"); 3547 goto unroll_cfg_netdev; 3548 } 3549 3550 /* Setup DCB netlink interface */ 3551 ice_dcbnl_setup(vsi); 3552 3553 /* registering the NAPI handler requires both the queues and 3554 * netdev to be created, which are done in ice_pf_vsi_setup() 3555 * and ice_cfg_netdev() respectively 3556 */ 3557 ice_napi_add(vsi); 3558 3559 status = ice_set_cpu_rx_rmap(vsi); 3560 if (status) { 3561 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3562 vsi->vsi_num, status); 3563 status = -EINVAL; 3564 goto unroll_napi_add; 3565 } 3566 status = ice_init_mac_fltr(pf); 3567 if (status) 3568 goto free_cpu_rx_map; 3569 3570 return status; 3571 3572 free_cpu_rx_map: 3573 ice_free_cpu_rx_rmap(vsi); 3574 unroll_napi_add: 3575 ice_tc_indir_block_unregister(vsi); 3576 unroll_cfg_netdev: 3577 if (vsi) { 3578 ice_napi_del(vsi); 3579 if (vsi->netdev) { 3580 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3581 free_netdev(vsi->netdev); 3582 vsi->netdev = NULL; 3583 } 3584 } 3585 3586 unroll_vsi_setup: 3587 ice_vsi_release(vsi); 3588 return status; 3589 } 3590 3591 /** 3592 * ice_get_avail_q_count - Get count of queues in use 3593 * @pf_qmap: bitmap to get queue use count from 3594 * @lock: pointer to a mutex that protects access to pf_qmap 3595 * @size: size of the bitmap 3596 */ 3597 static u16 3598 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3599 { 3600 unsigned long bit; 3601 u16 count = 0; 3602 3603 mutex_lock(lock); 3604 for_each_clear_bit(bit, pf_qmap, size) 3605 count++; 3606 mutex_unlock(lock); 3607 3608 return count; 3609 } 3610 3611 /** 3612 * ice_get_avail_txq_count - Get count of Tx queues in use 3613 * @pf: pointer to an ice_pf instance 3614 */ 3615 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3616 { 3617 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3618 pf->max_pf_txqs); 3619 } 3620 3621 /** 3622 * ice_get_avail_rxq_count - Get count of Rx queues in use 3623 * @pf: pointer to an ice_pf instance 3624 */ 3625 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3626 { 3627 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3628 pf->max_pf_rxqs); 3629 } 3630 3631 /** 3632 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3633 * @pf: board private structure to initialize 3634 */ 3635 static void ice_deinit_pf(struct ice_pf *pf) 3636 { 3637 ice_service_task_stop(pf); 3638 mutex_destroy(&pf->sw_mutex); 3639 mutex_destroy(&pf->tc_mutex); 3640 mutex_destroy(&pf->avail_q_mutex); 3641 3642 if (pf->avail_txqs) { 3643 bitmap_free(pf->avail_txqs); 3644 pf->avail_txqs = NULL; 3645 } 3646 3647 if (pf->avail_rxqs) { 3648 bitmap_free(pf->avail_rxqs); 3649 pf->avail_rxqs = NULL; 3650 } 3651 3652 if (pf->ptp.clock) 3653 ptp_clock_unregister(pf->ptp.clock); 3654 } 3655 3656 /** 3657 * ice_set_pf_caps - set PFs capability flags 3658 * @pf: pointer to the PF instance 3659 */ 3660 static void ice_set_pf_caps(struct ice_pf *pf) 3661 { 3662 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3663 3664 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3665 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3666 if (func_caps->common_cap.rdma) { 3667 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3668 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3669 } 3670 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3671 if (func_caps->common_cap.dcb) 3672 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3673 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3674 if (func_caps->common_cap.sr_iov_1_1) { 3675 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3676 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3677 ICE_MAX_VF_COUNT); 3678 } 3679 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3680 if (func_caps->common_cap.rss_table_size) 3681 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3682 3683 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3684 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3685 u16 unused; 3686 3687 /* ctrl_vsi_idx will be set to a valid value when flow director 3688 * is setup by ice_init_fdir 3689 */ 3690 pf->ctrl_vsi_idx = ICE_NO_VSI; 3691 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3692 /* force guaranteed filter pool for PF */ 3693 ice_alloc_fd_guar_item(&pf->hw, &unused, 3694 func_caps->fd_fltr_guar); 3695 /* force shared filter pool for PF */ 3696 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3697 func_caps->fd_fltr_best_effort); 3698 } 3699 3700 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3701 if (func_caps->common_cap.ieee_1588) 3702 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3703 3704 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3705 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3706 } 3707 3708 /** 3709 * ice_init_pf - Initialize general software structures (struct ice_pf) 3710 * @pf: board private structure to initialize 3711 */ 3712 static int ice_init_pf(struct ice_pf *pf) 3713 { 3714 ice_set_pf_caps(pf); 3715 3716 mutex_init(&pf->sw_mutex); 3717 mutex_init(&pf->tc_mutex); 3718 3719 INIT_HLIST_HEAD(&pf->aq_wait_list); 3720 spin_lock_init(&pf->aq_wait_lock); 3721 init_waitqueue_head(&pf->aq_wait_queue); 3722 3723 init_waitqueue_head(&pf->reset_wait_queue); 3724 3725 /* setup service timer and periodic service task */ 3726 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3727 pf->serv_tmr_period = HZ; 3728 INIT_WORK(&pf->serv_task, ice_service_task); 3729 clear_bit(ICE_SERVICE_SCHED, pf->state); 3730 3731 mutex_init(&pf->avail_q_mutex); 3732 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3733 if (!pf->avail_txqs) 3734 return -ENOMEM; 3735 3736 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3737 if (!pf->avail_rxqs) { 3738 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3739 pf->avail_txqs = NULL; 3740 return -ENOMEM; 3741 } 3742 3743 return 0; 3744 } 3745 3746 /** 3747 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3748 * @pf: board private structure 3749 * 3750 * compute the number of MSIX vectors required (v_budget) and request from 3751 * the OS. Return the number of vectors reserved or negative on failure 3752 */ 3753 static int ice_ena_msix_range(struct ice_pf *pf) 3754 { 3755 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3756 struct device *dev = ice_pf_to_dev(pf); 3757 int needed, err, i; 3758 3759 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3760 num_cpus = num_online_cpus(); 3761 3762 /* reserve for LAN miscellaneous handler */ 3763 needed = ICE_MIN_LAN_OICR_MSIX; 3764 if (v_left < needed) 3765 goto no_hw_vecs_left_err; 3766 v_budget += needed; 3767 v_left -= needed; 3768 3769 /* reserve for flow director */ 3770 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3771 needed = ICE_FDIR_MSIX; 3772 if (v_left < needed) 3773 goto no_hw_vecs_left_err; 3774 v_budget += needed; 3775 v_left -= needed; 3776 } 3777 3778 /* reserve for switchdev */ 3779 needed = ICE_ESWITCH_MSIX; 3780 if (v_left < needed) 3781 goto no_hw_vecs_left_err; 3782 v_budget += needed; 3783 v_left -= needed; 3784 3785 /* total used for non-traffic vectors */ 3786 v_other = v_budget; 3787 3788 /* reserve vectors for LAN traffic */ 3789 needed = num_cpus; 3790 if (v_left < needed) 3791 goto no_hw_vecs_left_err; 3792 pf->num_lan_msix = needed; 3793 v_budget += needed; 3794 v_left -= needed; 3795 3796 /* reserve vectors for RDMA auxiliary driver */ 3797 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3798 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3799 if (v_left < needed) 3800 goto no_hw_vecs_left_err; 3801 pf->num_rdma_msix = needed; 3802 v_budget += needed; 3803 v_left -= needed; 3804 } 3805 3806 pf->msix_entries = devm_kcalloc(dev, v_budget, 3807 sizeof(*pf->msix_entries), GFP_KERNEL); 3808 if (!pf->msix_entries) { 3809 err = -ENOMEM; 3810 goto exit_err; 3811 } 3812 3813 for (i = 0; i < v_budget; i++) 3814 pf->msix_entries[i].entry = i; 3815 3816 /* actually reserve the vectors */ 3817 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3818 ICE_MIN_MSIX, v_budget); 3819 if (v_actual < 0) { 3820 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3821 err = v_actual; 3822 goto msix_err; 3823 } 3824 3825 if (v_actual < v_budget) { 3826 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3827 v_budget, v_actual); 3828 3829 if (v_actual < ICE_MIN_MSIX) { 3830 /* error if we can't get minimum vectors */ 3831 pci_disable_msix(pf->pdev); 3832 err = -ERANGE; 3833 goto msix_err; 3834 } else { 3835 int v_remain = v_actual - v_other; 3836 int v_rdma = 0, v_min_rdma = 0; 3837 3838 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3839 /* Need at least 1 interrupt in addition to 3840 * AEQ MSIX 3841 */ 3842 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3843 v_min_rdma = ICE_MIN_RDMA_MSIX; 3844 } 3845 3846 if (v_actual == ICE_MIN_MSIX || 3847 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3848 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3849 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3850 3851 pf->num_rdma_msix = 0; 3852 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3853 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3854 (v_remain - v_rdma < v_rdma)) { 3855 /* Support minimum RDMA and give remaining 3856 * vectors to LAN MSIX 3857 */ 3858 pf->num_rdma_msix = v_min_rdma; 3859 pf->num_lan_msix = v_remain - v_min_rdma; 3860 } else { 3861 /* Split remaining MSIX with RDMA after 3862 * accounting for AEQ MSIX 3863 */ 3864 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3865 ICE_RDMA_NUM_AEQ_MSIX; 3866 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3867 } 3868 3869 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3870 pf->num_lan_msix); 3871 3872 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3873 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3874 pf->num_rdma_msix); 3875 } 3876 } 3877 3878 return v_actual; 3879 3880 msix_err: 3881 devm_kfree(dev, pf->msix_entries); 3882 goto exit_err; 3883 3884 no_hw_vecs_left_err: 3885 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3886 needed, v_left); 3887 err = -ERANGE; 3888 exit_err: 3889 pf->num_rdma_msix = 0; 3890 pf->num_lan_msix = 0; 3891 return err; 3892 } 3893 3894 /** 3895 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3896 * @pf: board private structure 3897 */ 3898 static void ice_dis_msix(struct ice_pf *pf) 3899 { 3900 pci_disable_msix(pf->pdev); 3901 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3902 pf->msix_entries = NULL; 3903 } 3904 3905 /** 3906 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3907 * @pf: board private structure 3908 */ 3909 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3910 { 3911 ice_dis_msix(pf); 3912 3913 if (pf->irq_tracker) { 3914 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3915 pf->irq_tracker = NULL; 3916 } 3917 } 3918 3919 /** 3920 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3921 * @pf: board private structure to initialize 3922 */ 3923 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3924 { 3925 int vectors; 3926 3927 vectors = ice_ena_msix_range(pf); 3928 3929 if (vectors < 0) 3930 return vectors; 3931 3932 /* set up vector assignment tracking */ 3933 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3934 struct_size(pf->irq_tracker, list, vectors), 3935 GFP_KERNEL); 3936 if (!pf->irq_tracker) { 3937 ice_dis_msix(pf); 3938 return -ENOMEM; 3939 } 3940 3941 /* populate SW interrupts pool with number of OS granted IRQs. */ 3942 pf->num_avail_sw_msix = (u16)vectors; 3943 pf->irq_tracker->num_entries = (u16)vectors; 3944 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3945 3946 return 0; 3947 } 3948 3949 /** 3950 * ice_is_wol_supported - check if WoL is supported 3951 * @hw: pointer to hardware info 3952 * 3953 * Check if WoL is supported based on the HW configuration. 3954 * Returns true if NVM supports and enables WoL for this port, false otherwise 3955 */ 3956 bool ice_is_wol_supported(struct ice_hw *hw) 3957 { 3958 u16 wol_ctrl; 3959 3960 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3961 * word) indicates WoL is not supported on the corresponding PF ID. 3962 */ 3963 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3964 return false; 3965 3966 return !(BIT(hw->port_info->lport) & wol_ctrl); 3967 } 3968 3969 /** 3970 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3971 * @vsi: VSI being changed 3972 * @new_rx: new number of Rx queues 3973 * @new_tx: new number of Tx queues 3974 * 3975 * Only change the number of queues if new_tx, or new_rx is non-0. 3976 * 3977 * Returns 0 on success. 3978 */ 3979 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3980 { 3981 struct ice_pf *pf = vsi->back; 3982 int err = 0, timeout = 50; 3983 3984 if (!new_rx && !new_tx) 3985 return -EINVAL; 3986 3987 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3988 timeout--; 3989 if (!timeout) 3990 return -EBUSY; 3991 usleep_range(1000, 2000); 3992 } 3993 3994 if (new_tx) 3995 vsi->req_txq = (u16)new_tx; 3996 if (new_rx) 3997 vsi->req_rxq = (u16)new_rx; 3998 3999 /* set for the next time the netdev is started */ 4000 if (!netif_running(vsi->netdev)) { 4001 ice_vsi_rebuild(vsi, false); 4002 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4003 goto done; 4004 } 4005 4006 ice_vsi_close(vsi); 4007 ice_vsi_rebuild(vsi, false); 4008 ice_pf_dcb_recfg(pf); 4009 ice_vsi_open(vsi); 4010 done: 4011 clear_bit(ICE_CFG_BUSY, pf->state); 4012 return err; 4013 } 4014 4015 /** 4016 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4017 * @pf: PF to configure 4018 * 4019 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4020 * VSI can still Tx/Rx VLAN tagged packets. 4021 */ 4022 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4023 { 4024 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4025 struct ice_vsi_ctx *ctxt; 4026 enum ice_status status; 4027 struct ice_hw *hw; 4028 4029 if (!vsi) 4030 return; 4031 4032 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4033 if (!ctxt) 4034 return; 4035 4036 hw = &pf->hw; 4037 ctxt->info = vsi->info; 4038 4039 ctxt->info.valid_sections = 4040 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4041 ICE_AQ_VSI_PROP_SECURITY_VALID | 4042 ICE_AQ_VSI_PROP_SW_VALID); 4043 4044 /* disable VLAN anti-spoof */ 4045 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4046 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4047 4048 /* disable VLAN pruning and keep all other settings */ 4049 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4050 4051 /* allow all VLANs on Tx and don't strip on Rx */ 4052 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 4053 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 4054 4055 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4056 if (status) { 4057 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 4058 ice_stat_str(status), 4059 ice_aq_str(hw->adminq.sq_last_status)); 4060 } else { 4061 vsi->info.sec_flags = ctxt->info.sec_flags; 4062 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4063 vsi->info.vlan_flags = ctxt->info.vlan_flags; 4064 } 4065 4066 kfree(ctxt); 4067 } 4068 4069 /** 4070 * ice_log_pkg_init - log result of DDP package load 4071 * @hw: pointer to hardware info 4072 * @status: status of package load 4073 */ 4074 static void 4075 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 4076 { 4077 struct ice_pf *pf = (struct ice_pf *)hw->back; 4078 struct device *dev = ice_pf_to_dev(pf); 4079 4080 switch (*status) { 4081 case ICE_SUCCESS: 4082 /* The package download AdminQ command returned success because 4083 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 4084 * already a package loaded on the device. 4085 */ 4086 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 4087 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 4088 hw->pkg_ver.update == hw->active_pkg_ver.update && 4089 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 4090 !memcmp(hw->pkg_name, hw->active_pkg_name, 4091 sizeof(hw->pkg_name))) { 4092 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 4093 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4094 hw->active_pkg_name, 4095 hw->active_pkg_ver.major, 4096 hw->active_pkg_ver.minor, 4097 hw->active_pkg_ver.update, 4098 hw->active_pkg_ver.draft); 4099 else 4100 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4101 hw->active_pkg_name, 4102 hw->active_pkg_ver.major, 4103 hw->active_pkg_ver.minor, 4104 hw->active_pkg_ver.update, 4105 hw->active_pkg_ver.draft); 4106 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 4107 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 4108 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4109 hw->active_pkg_name, 4110 hw->active_pkg_ver.major, 4111 hw->active_pkg_ver.minor, 4112 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4113 *status = ICE_ERR_NOT_SUPPORTED; 4114 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 4115 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 4116 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4117 hw->active_pkg_name, 4118 hw->active_pkg_ver.major, 4119 hw->active_pkg_ver.minor, 4120 hw->active_pkg_ver.update, 4121 hw->active_pkg_ver.draft, 4122 hw->pkg_name, 4123 hw->pkg_ver.major, 4124 hw->pkg_ver.minor, 4125 hw->pkg_ver.update, 4126 hw->pkg_ver.draft); 4127 } else { 4128 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 4129 *status = ICE_ERR_NOT_SUPPORTED; 4130 } 4131 break; 4132 case ICE_ERR_FW_DDP_MISMATCH: 4133 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4134 break; 4135 case ICE_ERR_BUF_TOO_SHORT: 4136 case ICE_ERR_CFG: 4137 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4138 break; 4139 case ICE_ERR_NOT_SUPPORTED: 4140 /* Package File version not supported */ 4141 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 4142 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 4143 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 4144 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4145 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 4146 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 4147 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 4148 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4149 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4150 break; 4151 case ICE_ERR_AQ_ERROR: 4152 switch (hw->pkg_dwnld_status) { 4153 case ICE_AQ_RC_ENOSEC: 4154 case ICE_AQ_RC_EBADSIG: 4155 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4156 return; 4157 case ICE_AQ_RC_ESVN: 4158 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4159 return; 4160 case ICE_AQ_RC_EBADMAN: 4161 case ICE_AQ_RC_EBADBUF: 4162 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4163 /* poll for reset to complete */ 4164 if (ice_check_reset(hw)) 4165 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4166 return; 4167 default: 4168 break; 4169 } 4170 fallthrough; 4171 default: 4172 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 4173 *status); 4174 break; 4175 } 4176 } 4177 4178 /** 4179 * ice_load_pkg - load/reload the DDP Package file 4180 * @firmware: firmware structure when firmware requested or NULL for reload 4181 * @pf: pointer to the PF instance 4182 * 4183 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4184 * initialize HW tables. 4185 */ 4186 static void 4187 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4188 { 4189 enum ice_status status = ICE_ERR_PARAM; 4190 struct device *dev = ice_pf_to_dev(pf); 4191 struct ice_hw *hw = &pf->hw; 4192 4193 /* Load DDP Package */ 4194 if (firmware && !hw->pkg_copy) { 4195 status = ice_copy_and_init_pkg(hw, firmware->data, 4196 firmware->size); 4197 ice_log_pkg_init(hw, &status); 4198 } else if (!firmware && hw->pkg_copy) { 4199 /* Reload package during rebuild after CORER/GLOBR reset */ 4200 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4201 ice_log_pkg_init(hw, &status); 4202 } else { 4203 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4204 } 4205 4206 if (status) { 4207 /* Safe Mode */ 4208 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4209 return; 4210 } 4211 4212 /* Successful download package is the precondition for advanced 4213 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4214 */ 4215 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4216 } 4217 4218 /** 4219 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4220 * @pf: pointer to the PF structure 4221 * 4222 * There is no error returned here because the driver should be able to handle 4223 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4224 * specifically with Tx. 4225 */ 4226 static void ice_verify_cacheline_size(struct ice_pf *pf) 4227 { 4228 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4229 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4230 ICE_CACHE_LINE_BYTES); 4231 } 4232 4233 /** 4234 * ice_send_version - update firmware with driver version 4235 * @pf: PF struct 4236 * 4237 * Returns ICE_SUCCESS on success, else error code 4238 */ 4239 static enum ice_status ice_send_version(struct ice_pf *pf) 4240 { 4241 struct ice_driver_ver dv; 4242 4243 dv.major_ver = 0xff; 4244 dv.minor_ver = 0xff; 4245 dv.build_ver = 0xff; 4246 dv.subbuild_ver = 0; 4247 strscpy((char *)dv.driver_string, UTS_RELEASE, 4248 sizeof(dv.driver_string)); 4249 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4250 } 4251 4252 /** 4253 * ice_init_fdir - Initialize flow director VSI and configuration 4254 * @pf: pointer to the PF instance 4255 * 4256 * returns 0 on success, negative on error 4257 */ 4258 static int ice_init_fdir(struct ice_pf *pf) 4259 { 4260 struct device *dev = ice_pf_to_dev(pf); 4261 struct ice_vsi *ctrl_vsi; 4262 int err; 4263 4264 /* Side Band Flow Director needs to have a control VSI. 4265 * Allocate it and store it in the PF. 4266 */ 4267 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4268 if (!ctrl_vsi) { 4269 dev_dbg(dev, "could not create control VSI\n"); 4270 return -ENOMEM; 4271 } 4272 4273 err = ice_vsi_open_ctrl(ctrl_vsi); 4274 if (err) { 4275 dev_dbg(dev, "could not open control VSI\n"); 4276 goto err_vsi_open; 4277 } 4278 4279 mutex_init(&pf->hw.fdir_fltr_lock); 4280 4281 err = ice_fdir_create_dflt_rules(pf); 4282 if (err) 4283 goto err_fdir_rule; 4284 4285 return 0; 4286 4287 err_fdir_rule: 4288 ice_fdir_release_flows(&pf->hw); 4289 ice_vsi_close(ctrl_vsi); 4290 err_vsi_open: 4291 ice_vsi_release(ctrl_vsi); 4292 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4293 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4294 pf->ctrl_vsi_idx = ICE_NO_VSI; 4295 } 4296 return err; 4297 } 4298 4299 /** 4300 * ice_get_opt_fw_name - return optional firmware file name or NULL 4301 * @pf: pointer to the PF instance 4302 */ 4303 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4304 { 4305 /* Optional firmware name same as default with additional dash 4306 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4307 */ 4308 struct pci_dev *pdev = pf->pdev; 4309 char *opt_fw_filename; 4310 u64 dsn; 4311 4312 /* Determine the name of the optional file using the DSN (two 4313 * dwords following the start of the DSN Capability). 4314 */ 4315 dsn = pci_get_dsn(pdev); 4316 if (!dsn) 4317 return NULL; 4318 4319 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4320 if (!opt_fw_filename) 4321 return NULL; 4322 4323 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4324 ICE_DDP_PKG_PATH, dsn); 4325 4326 return opt_fw_filename; 4327 } 4328 4329 /** 4330 * ice_request_fw - Device initialization routine 4331 * @pf: pointer to the PF instance 4332 */ 4333 static void ice_request_fw(struct ice_pf *pf) 4334 { 4335 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4336 const struct firmware *firmware = NULL; 4337 struct device *dev = ice_pf_to_dev(pf); 4338 int err = 0; 4339 4340 /* optional device-specific DDP (if present) overrides the default DDP 4341 * package file. kernel logs a debug message if the file doesn't exist, 4342 * and warning messages for other errors. 4343 */ 4344 if (opt_fw_filename) { 4345 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4346 if (err) { 4347 kfree(opt_fw_filename); 4348 goto dflt_pkg_load; 4349 } 4350 4351 /* request for firmware was successful. Download to device */ 4352 ice_load_pkg(firmware, pf); 4353 kfree(opt_fw_filename); 4354 release_firmware(firmware); 4355 return; 4356 } 4357 4358 dflt_pkg_load: 4359 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4360 if (err) { 4361 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4362 return; 4363 } 4364 4365 /* request for firmware was successful. Download to device */ 4366 ice_load_pkg(firmware, pf); 4367 release_firmware(firmware); 4368 } 4369 4370 /** 4371 * ice_print_wake_reason - show the wake up cause in the log 4372 * @pf: pointer to the PF struct 4373 */ 4374 static void ice_print_wake_reason(struct ice_pf *pf) 4375 { 4376 u32 wus = pf->wakeup_reason; 4377 const char *wake_str; 4378 4379 /* if no wake event, nothing to print */ 4380 if (!wus) 4381 return; 4382 4383 if (wus & PFPM_WUS_LNKC_M) 4384 wake_str = "Link\n"; 4385 else if (wus & PFPM_WUS_MAG_M) 4386 wake_str = "Magic Packet\n"; 4387 else if (wus & PFPM_WUS_MNG_M) 4388 wake_str = "Management\n"; 4389 else if (wus & PFPM_WUS_FW_RST_WK_M) 4390 wake_str = "Firmware Reset\n"; 4391 else 4392 wake_str = "Unknown\n"; 4393 4394 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4395 } 4396 4397 /** 4398 * ice_register_netdev - register netdev and devlink port 4399 * @pf: pointer to the PF struct 4400 */ 4401 static int ice_register_netdev(struct ice_pf *pf) 4402 { 4403 struct ice_vsi *vsi; 4404 int err = 0; 4405 4406 vsi = ice_get_main_vsi(pf); 4407 if (!vsi || !vsi->netdev) 4408 return -EIO; 4409 4410 err = register_netdev(vsi->netdev); 4411 if (err) 4412 goto err_register_netdev; 4413 4414 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4415 netif_carrier_off(vsi->netdev); 4416 netif_tx_stop_all_queues(vsi->netdev); 4417 err = ice_devlink_create_pf_port(pf); 4418 if (err) 4419 goto err_devlink_create; 4420 4421 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4422 4423 return 0; 4424 err_devlink_create: 4425 unregister_netdev(vsi->netdev); 4426 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4427 err_register_netdev: 4428 free_netdev(vsi->netdev); 4429 vsi->netdev = NULL; 4430 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4431 return err; 4432 } 4433 4434 /** 4435 * ice_probe - Device initialization routine 4436 * @pdev: PCI device information struct 4437 * @ent: entry in ice_pci_tbl 4438 * 4439 * Returns 0 on success, negative on failure 4440 */ 4441 static int 4442 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4443 { 4444 struct device *dev = &pdev->dev; 4445 struct ice_pf *pf; 4446 struct ice_hw *hw; 4447 int i, err; 4448 4449 if (pdev->is_virtfn) { 4450 dev_err(dev, "can't probe a virtual function\n"); 4451 return -EINVAL; 4452 } 4453 4454 /* this driver uses devres, see 4455 * Documentation/driver-api/driver-model/devres.rst 4456 */ 4457 err = pcim_enable_device(pdev); 4458 if (err) 4459 return err; 4460 4461 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4462 if (err) { 4463 dev_err(dev, "BAR0 I/O map error %d\n", err); 4464 return err; 4465 } 4466 4467 pf = ice_allocate_pf(dev); 4468 if (!pf) 4469 return -ENOMEM; 4470 4471 /* initialize Auxiliary index to invalid value */ 4472 pf->aux_idx = -1; 4473 4474 /* set up for high or low DMA */ 4475 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4476 if (err) 4477 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4478 if (err) { 4479 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4480 return err; 4481 } 4482 4483 pci_enable_pcie_error_reporting(pdev); 4484 pci_set_master(pdev); 4485 4486 pf->pdev = pdev; 4487 pci_set_drvdata(pdev, pf); 4488 set_bit(ICE_DOWN, pf->state); 4489 /* Disable service task until DOWN bit is cleared */ 4490 set_bit(ICE_SERVICE_DIS, pf->state); 4491 4492 hw = &pf->hw; 4493 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4494 pci_save_state(pdev); 4495 4496 hw->back = pf; 4497 hw->vendor_id = pdev->vendor; 4498 hw->device_id = pdev->device; 4499 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4500 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4501 hw->subsystem_device_id = pdev->subsystem_device; 4502 hw->bus.device = PCI_SLOT(pdev->devfn); 4503 hw->bus.func = PCI_FUNC(pdev->devfn); 4504 ice_set_ctrlq_len(hw); 4505 4506 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4507 4508 #ifndef CONFIG_DYNAMIC_DEBUG 4509 if (debug < -1) 4510 hw->debug_mask = debug; 4511 #endif 4512 4513 err = ice_init_hw(hw); 4514 if (err) { 4515 dev_err(dev, "ice_init_hw failed: %d\n", err); 4516 err = -EIO; 4517 goto err_exit_unroll; 4518 } 4519 4520 ice_init_feature_support(pf); 4521 4522 ice_request_fw(pf); 4523 4524 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4525 * set in pf->state, which will cause ice_is_safe_mode to return 4526 * true 4527 */ 4528 if (ice_is_safe_mode(pf)) { 4529 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4530 /* we already got function/device capabilities but these don't 4531 * reflect what the driver needs to do in safe mode. Instead of 4532 * adding conditional logic everywhere to ignore these 4533 * device/function capabilities, override them. 4534 */ 4535 ice_set_safe_mode_caps(hw); 4536 } 4537 4538 err = ice_init_pf(pf); 4539 if (err) { 4540 dev_err(dev, "ice_init_pf failed: %d\n", err); 4541 goto err_init_pf_unroll; 4542 } 4543 4544 ice_devlink_init_regions(pf); 4545 4546 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4547 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4548 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4549 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4550 i = 0; 4551 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4552 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4553 pf->hw.tnl.valid_count[TNL_VXLAN]; 4554 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4555 UDP_TUNNEL_TYPE_VXLAN; 4556 i++; 4557 } 4558 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4559 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4560 pf->hw.tnl.valid_count[TNL_GENEVE]; 4561 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4562 UDP_TUNNEL_TYPE_GENEVE; 4563 i++; 4564 } 4565 4566 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4567 if (!pf->num_alloc_vsi) { 4568 err = -EIO; 4569 goto err_init_pf_unroll; 4570 } 4571 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4572 dev_warn(&pf->pdev->dev, 4573 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4574 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4575 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4576 } 4577 4578 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4579 GFP_KERNEL); 4580 if (!pf->vsi) { 4581 err = -ENOMEM; 4582 goto err_init_pf_unroll; 4583 } 4584 4585 err = ice_init_interrupt_scheme(pf); 4586 if (err) { 4587 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4588 err = -EIO; 4589 goto err_init_vsi_unroll; 4590 } 4591 4592 /* In case of MSIX we are going to setup the misc vector right here 4593 * to handle admin queue events etc. In case of legacy and MSI 4594 * the misc functionality and queue processing is combined in 4595 * the same vector and that gets setup at open. 4596 */ 4597 err = ice_req_irq_msix_misc(pf); 4598 if (err) { 4599 dev_err(dev, "setup of misc vector failed: %d\n", err); 4600 goto err_init_interrupt_unroll; 4601 } 4602 4603 /* create switch struct for the switch element created by FW on boot */ 4604 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4605 if (!pf->first_sw) { 4606 err = -ENOMEM; 4607 goto err_msix_misc_unroll; 4608 } 4609 4610 if (hw->evb_veb) 4611 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4612 else 4613 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4614 4615 pf->first_sw->pf = pf; 4616 4617 /* record the sw_id available for later use */ 4618 pf->first_sw->sw_id = hw->port_info->sw_id; 4619 4620 err = ice_setup_pf_sw(pf); 4621 if (err) { 4622 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4623 goto err_alloc_sw_unroll; 4624 } 4625 4626 clear_bit(ICE_SERVICE_DIS, pf->state); 4627 4628 /* tell the firmware we are up */ 4629 err = ice_send_version(pf); 4630 if (err) { 4631 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4632 UTS_RELEASE, err); 4633 goto err_send_version_unroll; 4634 } 4635 4636 /* since everything is good, start the service timer */ 4637 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4638 4639 err = ice_init_link_events(pf->hw.port_info); 4640 if (err) { 4641 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4642 goto err_send_version_unroll; 4643 } 4644 4645 /* not a fatal error if this fails */ 4646 err = ice_init_nvm_phy_type(pf->hw.port_info); 4647 if (err) 4648 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4649 4650 /* not a fatal error if this fails */ 4651 err = ice_update_link_info(pf->hw.port_info); 4652 if (err) 4653 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4654 4655 ice_init_link_dflt_override(pf->hw.port_info); 4656 4657 ice_check_link_cfg_err(pf, 4658 pf->hw.port_info->phy.link_info.link_cfg_err); 4659 4660 /* if media available, initialize PHY settings */ 4661 if (pf->hw.port_info->phy.link_info.link_info & 4662 ICE_AQ_MEDIA_AVAILABLE) { 4663 /* not a fatal error if this fails */ 4664 err = ice_init_phy_user_cfg(pf->hw.port_info); 4665 if (err) 4666 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4667 4668 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4669 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4670 4671 if (vsi) 4672 ice_configure_phy(vsi); 4673 } 4674 } else { 4675 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4676 } 4677 4678 ice_verify_cacheline_size(pf); 4679 4680 /* Save wakeup reason register for later use */ 4681 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4682 4683 /* check for a power management event */ 4684 ice_print_wake_reason(pf); 4685 4686 /* clear wake status, all bits */ 4687 wr32(hw, PFPM_WUS, U32_MAX); 4688 4689 /* Disable WoL at init, wait for user to enable */ 4690 device_set_wakeup_enable(dev, false); 4691 4692 if (ice_is_safe_mode(pf)) { 4693 ice_set_safe_mode_vlan_cfg(pf); 4694 goto probe_done; 4695 } 4696 4697 /* initialize DDP driven features */ 4698 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4699 ice_ptp_init(pf); 4700 4701 /* Note: Flow director init failure is non-fatal to load */ 4702 if (ice_init_fdir(pf)) 4703 dev_err(dev, "could not initialize flow director\n"); 4704 4705 /* Note: DCB init failure is non-fatal to load */ 4706 if (ice_init_pf_dcb(pf, false)) { 4707 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4708 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4709 } else { 4710 ice_cfg_lldp_mib_change(&pf->hw, true); 4711 } 4712 4713 if (ice_init_lag(pf)) 4714 dev_warn(dev, "Failed to init link aggregation support\n"); 4715 4716 /* print PCI link speed and width */ 4717 pcie_print_link_status(pf->pdev); 4718 4719 probe_done: 4720 err = ice_register_netdev(pf); 4721 if (err) 4722 goto err_netdev_reg; 4723 4724 err = ice_devlink_register_params(pf); 4725 if (err) 4726 goto err_netdev_reg; 4727 4728 /* ready to go, so clear down state bit */ 4729 clear_bit(ICE_DOWN, pf->state); 4730 if (ice_is_aux_ena(pf)) { 4731 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4732 if (pf->aux_idx < 0) { 4733 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4734 err = -ENOMEM; 4735 goto err_devlink_reg_param; 4736 } 4737 4738 err = ice_init_rdma(pf); 4739 if (err) { 4740 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4741 err = -EIO; 4742 goto err_init_aux_unroll; 4743 } 4744 } else { 4745 dev_warn(dev, "RDMA is not supported on this device\n"); 4746 } 4747 4748 ice_devlink_register(pf); 4749 return 0; 4750 4751 err_init_aux_unroll: 4752 pf->adev = NULL; 4753 ida_free(&ice_aux_ida, pf->aux_idx); 4754 err_devlink_reg_param: 4755 ice_devlink_unregister_params(pf); 4756 err_netdev_reg: 4757 err_send_version_unroll: 4758 ice_vsi_release_all(pf); 4759 err_alloc_sw_unroll: 4760 set_bit(ICE_SERVICE_DIS, pf->state); 4761 set_bit(ICE_DOWN, pf->state); 4762 devm_kfree(dev, pf->first_sw); 4763 err_msix_misc_unroll: 4764 ice_free_irq_msix_misc(pf); 4765 err_init_interrupt_unroll: 4766 ice_clear_interrupt_scheme(pf); 4767 err_init_vsi_unroll: 4768 devm_kfree(dev, pf->vsi); 4769 err_init_pf_unroll: 4770 ice_deinit_pf(pf); 4771 ice_devlink_destroy_regions(pf); 4772 ice_deinit_hw(hw); 4773 err_exit_unroll: 4774 pci_disable_pcie_error_reporting(pdev); 4775 pci_disable_device(pdev); 4776 return err; 4777 } 4778 4779 /** 4780 * ice_set_wake - enable or disable Wake on LAN 4781 * @pf: pointer to the PF struct 4782 * 4783 * Simple helper for WoL control 4784 */ 4785 static void ice_set_wake(struct ice_pf *pf) 4786 { 4787 struct ice_hw *hw = &pf->hw; 4788 bool wol = pf->wol_ena; 4789 4790 /* clear wake state, otherwise new wake events won't fire */ 4791 wr32(hw, PFPM_WUS, U32_MAX); 4792 4793 /* enable / disable APM wake up, no RMW needed */ 4794 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4795 4796 /* set magic packet filter enabled */ 4797 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4798 } 4799 4800 /** 4801 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4802 * @pf: pointer to the PF struct 4803 * 4804 * Issue firmware command to enable multicast magic wake, making 4805 * sure that any locally administered address (LAA) is used for 4806 * wake, and that PF reset doesn't undo the LAA. 4807 */ 4808 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4809 { 4810 struct device *dev = ice_pf_to_dev(pf); 4811 struct ice_hw *hw = &pf->hw; 4812 enum ice_status status; 4813 u8 mac_addr[ETH_ALEN]; 4814 struct ice_vsi *vsi; 4815 u8 flags; 4816 4817 if (!pf->wol_ena) 4818 return; 4819 4820 vsi = ice_get_main_vsi(pf); 4821 if (!vsi) 4822 return; 4823 4824 /* Get current MAC address in case it's an LAA */ 4825 if (vsi->netdev) 4826 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4827 else 4828 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4829 4830 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4831 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4832 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4833 4834 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4835 if (status) 4836 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4837 ice_stat_str(status), 4838 ice_aq_str(hw->adminq.sq_last_status)); 4839 } 4840 4841 /** 4842 * ice_remove - Device removal routine 4843 * @pdev: PCI device information struct 4844 */ 4845 static void ice_remove(struct pci_dev *pdev) 4846 { 4847 struct ice_pf *pf = pci_get_drvdata(pdev); 4848 int i; 4849 4850 ice_devlink_unregister(pf); 4851 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4852 if (!ice_is_reset_in_progress(pf->state)) 4853 break; 4854 msleep(100); 4855 } 4856 4857 ice_tc_indir_block_remove(pf); 4858 4859 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4860 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4861 ice_free_vfs(pf); 4862 } 4863 4864 ice_service_task_stop(pf); 4865 4866 ice_aq_cancel_waiting_tasks(pf); 4867 ice_unplug_aux_dev(pf); 4868 if (pf->aux_idx >= 0) 4869 ida_free(&ice_aux_ida, pf->aux_idx); 4870 ice_devlink_unregister_params(pf); 4871 set_bit(ICE_DOWN, pf->state); 4872 4873 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4874 ice_deinit_lag(pf); 4875 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4876 ice_ptp_release(pf); 4877 if (!ice_is_safe_mode(pf)) 4878 ice_remove_arfs(pf); 4879 ice_setup_mc_magic_wake(pf); 4880 ice_vsi_release_all(pf); 4881 ice_set_wake(pf); 4882 ice_free_irq_msix_misc(pf); 4883 ice_for_each_vsi(pf, i) { 4884 if (!pf->vsi[i]) 4885 continue; 4886 ice_vsi_free_q_vectors(pf->vsi[i]); 4887 } 4888 ice_deinit_pf(pf); 4889 ice_devlink_destroy_regions(pf); 4890 ice_deinit_hw(&pf->hw); 4891 4892 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4893 * do it via ice_schedule_reset() since there is no need to rebuild 4894 * and the service task is already stopped. 4895 */ 4896 ice_reset(&pf->hw, ICE_RESET_PFR); 4897 pci_wait_for_pending_transaction(pdev); 4898 ice_clear_interrupt_scheme(pf); 4899 pci_disable_pcie_error_reporting(pdev); 4900 pci_disable_device(pdev); 4901 } 4902 4903 /** 4904 * ice_shutdown - PCI callback for shutting down device 4905 * @pdev: PCI device information struct 4906 */ 4907 static void ice_shutdown(struct pci_dev *pdev) 4908 { 4909 struct ice_pf *pf = pci_get_drvdata(pdev); 4910 4911 ice_remove(pdev); 4912 4913 if (system_state == SYSTEM_POWER_OFF) { 4914 pci_wake_from_d3(pdev, pf->wol_ena); 4915 pci_set_power_state(pdev, PCI_D3hot); 4916 } 4917 } 4918 4919 #ifdef CONFIG_PM 4920 /** 4921 * ice_prepare_for_shutdown - prep for PCI shutdown 4922 * @pf: board private structure 4923 * 4924 * Inform or close all dependent features in prep for PCI device shutdown 4925 */ 4926 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4927 { 4928 struct ice_hw *hw = &pf->hw; 4929 u32 v; 4930 4931 /* Notify VFs of impending reset */ 4932 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4933 ice_vc_notify_reset(pf); 4934 4935 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4936 4937 /* disable the VSIs and their queues that are not already DOWN */ 4938 ice_pf_dis_all_vsi(pf, false); 4939 4940 ice_for_each_vsi(pf, v) 4941 if (pf->vsi[v]) 4942 pf->vsi[v]->vsi_num = 0; 4943 4944 ice_shutdown_all_ctrlq(hw); 4945 } 4946 4947 /** 4948 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4949 * @pf: board private structure to reinitialize 4950 * 4951 * This routine reinitialize interrupt scheme that was cleared during 4952 * power management suspend callback. 4953 * 4954 * This should be called during resume routine to re-allocate the q_vectors 4955 * and reacquire interrupts. 4956 */ 4957 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4958 { 4959 struct device *dev = ice_pf_to_dev(pf); 4960 int ret, v; 4961 4962 /* Since we clear MSIX flag during suspend, we need to 4963 * set it back during resume... 4964 */ 4965 4966 ret = ice_init_interrupt_scheme(pf); 4967 if (ret) { 4968 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4969 return ret; 4970 } 4971 4972 /* Remap vectors and rings, after successful re-init interrupts */ 4973 ice_for_each_vsi(pf, v) { 4974 if (!pf->vsi[v]) 4975 continue; 4976 4977 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4978 if (ret) 4979 goto err_reinit; 4980 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4981 } 4982 4983 ret = ice_req_irq_msix_misc(pf); 4984 if (ret) { 4985 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4986 ret); 4987 goto err_reinit; 4988 } 4989 4990 return 0; 4991 4992 err_reinit: 4993 while (v--) 4994 if (pf->vsi[v]) 4995 ice_vsi_free_q_vectors(pf->vsi[v]); 4996 4997 return ret; 4998 } 4999 5000 /** 5001 * ice_suspend 5002 * @dev: generic device information structure 5003 * 5004 * Power Management callback to quiesce the device and prepare 5005 * for D3 transition. 5006 */ 5007 static int __maybe_unused ice_suspend(struct device *dev) 5008 { 5009 struct pci_dev *pdev = to_pci_dev(dev); 5010 struct ice_pf *pf; 5011 int disabled, v; 5012 5013 pf = pci_get_drvdata(pdev); 5014 5015 if (!ice_pf_state_is_nominal(pf)) { 5016 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5017 return -EBUSY; 5018 } 5019 5020 /* Stop watchdog tasks until resume completion. 5021 * Even though it is most likely that the service task is 5022 * disabled if the device is suspended or down, the service task's 5023 * state is controlled by a different state bit, and we should 5024 * store and honor whatever state that bit is in at this point. 5025 */ 5026 disabled = ice_service_task_stop(pf); 5027 5028 ice_unplug_aux_dev(pf); 5029 5030 /* Already suspended?, then there is nothing to do */ 5031 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5032 if (!disabled) 5033 ice_service_task_restart(pf); 5034 return 0; 5035 } 5036 5037 if (test_bit(ICE_DOWN, pf->state) || 5038 ice_is_reset_in_progress(pf->state)) { 5039 dev_err(dev, "can't suspend device in reset or already down\n"); 5040 if (!disabled) 5041 ice_service_task_restart(pf); 5042 return 0; 5043 } 5044 5045 ice_setup_mc_magic_wake(pf); 5046 5047 ice_prepare_for_shutdown(pf); 5048 5049 ice_set_wake(pf); 5050 5051 /* Free vectors, clear the interrupt scheme and release IRQs 5052 * for proper hibernation, especially with large number of CPUs. 5053 * Otherwise hibernation might fail when mapping all the vectors back 5054 * to CPU0. 5055 */ 5056 ice_free_irq_msix_misc(pf); 5057 ice_for_each_vsi(pf, v) { 5058 if (!pf->vsi[v]) 5059 continue; 5060 ice_vsi_free_q_vectors(pf->vsi[v]); 5061 } 5062 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5063 ice_clear_interrupt_scheme(pf); 5064 5065 pci_save_state(pdev); 5066 pci_wake_from_d3(pdev, pf->wol_ena); 5067 pci_set_power_state(pdev, PCI_D3hot); 5068 return 0; 5069 } 5070 5071 /** 5072 * ice_resume - PM callback for waking up from D3 5073 * @dev: generic device information structure 5074 */ 5075 static int __maybe_unused ice_resume(struct device *dev) 5076 { 5077 struct pci_dev *pdev = to_pci_dev(dev); 5078 enum ice_reset_req reset_type; 5079 struct ice_pf *pf; 5080 struct ice_hw *hw; 5081 int ret; 5082 5083 pci_set_power_state(pdev, PCI_D0); 5084 pci_restore_state(pdev); 5085 pci_save_state(pdev); 5086 5087 if (!pci_device_is_present(pdev)) 5088 return -ENODEV; 5089 5090 ret = pci_enable_device_mem(pdev); 5091 if (ret) { 5092 dev_err(dev, "Cannot enable device after suspend\n"); 5093 return ret; 5094 } 5095 5096 pf = pci_get_drvdata(pdev); 5097 hw = &pf->hw; 5098 5099 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5100 ice_print_wake_reason(pf); 5101 5102 /* We cleared the interrupt scheme when we suspended, so we need to 5103 * restore it now to resume device functionality. 5104 */ 5105 ret = ice_reinit_interrupt_scheme(pf); 5106 if (ret) 5107 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5108 5109 clear_bit(ICE_DOWN, pf->state); 5110 /* Now perform PF reset and rebuild */ 5111 reset_type = ICE_RESET_PFR; 5112 /* re-enable service task for reset, but allow reset to schedule it */ 5113 clear_bit(ICE_SERVICE_DIS, pf->state); 5114 5115 if (ice_schedule_reset(pf, reset_type)) 5116 dev_err(dev, "Reset during resume failed.\n"); 5117 5118 clear_bit(ICE_SUSPENDED, pf->state); 5119 ice_service_task_restart(pf); 5120 5121 /* Restart the service task */ 5122 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5123 5124 return 0; 5125 } 5126 #endif /* CONFIG_PM */ 5127 5128 /** 5129 * ice_pci_err_detected - warning that PCI error has been detected 5130 * @pdev: PCI device information struct 5131 * @err: the type of PCI error 5132 * 5133 * Called to warn that something happened on the PCI bus and the error handling 5134 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5135 */ 5136 static pci_ers_result_t 5137 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5138 { 5139 struct ice_pf *pf = pci_get_drvdata(pdev); 5140 5141 if (!pf) { 5142 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5143 __func__, err); 5144 return PCI_ERS_RESULT_DISCONNECT; 5145 } 5146 5147 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5148 ice_service_task_stop(pf); 5149 5150 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5151 set_bit(ICE_PFR_REQ, pf->state); 5152 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5153 } 5154 } 5155 5156 return PCI_ERS_RESULT_NEED_RESET; 5157 } 5158 5159 /** 5160 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5161 * @pdev: PCI device information struct 5162 * 5163 * Called to determine if the driver can recover from the PCI slot reset by 5164 * using a register read to determine if the device is recoverable. 5165 */ 5166 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5167 { 5168 struct ice_pf *pf = pci_get_drvdata(pdev); 5169 pci_ers_result_t result; 5170 int err; 5171 u32 reg; 5172 5173 err = pci_enable_device_mem(pdev); 5174 if (err) { 5175 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5176 err); 5177 result = PCI_ERS_RESULT_DISCONNECT; 5178 } else { 5179 pci_set_master(pdev); 5180 pci_restore_state(pdev); 5181 pci_save_state(pdev); 5182 pci_wake_from_d3(pdev, false); 5183 5184 /* Check for life */ 5185 reg = rd32(&pf->hw, GLGEN_RTRIG); 5186 if (!reg) 5187 result = PCI_ERS_RESULT_RECOVERED; 5188 else 5189 result = PCI_ERS_RESULT_DISCONNECT; 5190 } 5191 5192 err = pci_aer_clear_nonfatal_status(pdev); 5193 if (err) 5194 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5195 err); 5196 /* non-fatal, continue */ 5197 5198 return result; 5199 } 5200 5201 /** 5202 * ice_pci_err_resume - restart operations after PCI error recovery 5203 * @pdev: PCI device information struct 5204 * 5205 * Called to allow the driver to bring things back up after PCI error and/or 5206 * reset recovery have finished 5207 */ 5208 static void ice_pci_err_resume(struct pci_dev *pdev) 5209 { 5210 struct ice_pf *pf = pci_get_drvdata(pdev); 5211 5212 if (!pf) { 5213 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5214 __func__); 5215 return; 5216 } 5217 5218 if (test_bit(ICE_SUSPENDED, pf->state)) { 5219 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5220 __func__); 5221 return; 5222 } 5223 5224 ice_restore_all_vfs_msi_state(pdev); 5225 5226 ice_do_reset(pf, ICE_RESET_PFR); 5227 ice_service_task_restart(pf); 5228 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5229 } 5230 5231 /** 5232 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5233 * @pdev: PCI device information struct 5234 */ 5235 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5236 { 5237 struct ice_pf *pf = pci_get_drvdata(pdev); 5238 5239 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5240 ice_service_task_stop(pf); 5241 5242 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5243 set_bit(ICE_PFR_REQ, pf->state); 5244 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5245 } 5246 } 5247 } 5248 5249 /** 5250 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5251 * @pdev: PCI device information struct 5252 */ 5253 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5254 { 5255 ice_pci_err_resume(pdev); 5256 } 5257 5258 /* ice_pci_tbl - PCI Device ID Table 5259 * 5260 * Wildcard entries (PCI_ANY_ID) should come last 5261 * Last entry must be all 0s 5262 * 5263 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5264 * Class, Class Mask, private data (not used) } 5265 */ 5266 static const struct pci_device_id ice_pci_tbl[] = { 5267 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5268 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5269 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5270 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5271 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5272 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5273 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5274 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5275 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5276 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5277 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5278 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5279 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5280 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5281 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5282 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5283 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5284 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5285 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5286 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5287 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5288 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5289 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5290 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5291 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5292 /* required last entry */ 5293 { 0, } 5294 }; 5295 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5296 5297 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5298 5299 static const struct pci_error_handlers ice_pci_err_handler = { 5300 .error_detected = ice_pci_err_detected, 5301 .slot_reset = ice_pci_err_slot_reset, 5302 .reset_prepare = ice_pci_err_reset_prepare, 5303 .reset_done = ice_pci_err_reset_done, 5304 .resume = ice_pci_err_resume 5305 }; 5306 5307 static struct pci_driver ice_driver = { 5308 .name = KBUILD_MODNAME, 5309 .id_table = ice_pci_tbl, 5310 .probe = ice_probe, 5311 .remove = ice_remove, 5312 #ifdef CONFIG_PM 5313 .driver.pm = &ice_pm_ops, 5314 #endif /* CONFIG_PM */ 5315 .shutdown = ice_shutdown, 5316 .sriov_configure = ice_sriov_configure, 5317 .err_handler = &ice_pci_err_handler 5318 }; 5319 5320 /** 5321 * ice_module_init - Driver registration routine 5322 * 5323 * ice_module_init is the first routine called when the driver is 5324 * loaded. All it does is register with the PCI subsystem. 5325 */ 5326 static int __init ice_module_init(void) 5327 { 5328 int status; 5329 5330 pr_info("%s\n", ice_driver_string); 5331 pr_info("%s\n", ice_copyright); 5332 5333 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5334 if (!ice_wq) { 5335 pr_err("Failed to create workqueue\n"); 5336 return -ENOMEM; 5337 } 5338 5339 status = pci_register_driver(&ice_driver); 5340 if (status) { 5341 pr_err("failed to register PCI driver, err %d\n", status); 5342 destroy_workqueue(ice_wq); 5343 } 5344 5345 return status; 5346 } 5347 module_init(ice_module_init); 5348 5349 /** 5350 * ice_module_exit - Driver exit cleanup routine 5351 * 5352 * ice_module_exit is called just before the driver is removed 5353 * from memory. 5354 */ 5355 static void __exit ice_module_exit(void) 5356 { 5357 pci_unregister_driver(&ice_driver); 5358 destroy_workqueue(ice_wq); 5359 pr_info("module unloaded\n"); 5360 } 5361 module_exit(ice_module_exit); 5362 5363 /** 5364 * ice_set_mac_address - NDO callback to set MAC address 5365 * @netdev: network interface device structure 5366 * @pi: pointer to an address structure 5367 * 5368 * Returns 0 on success, negative on failure 5369 */ 5370 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5371 { 5372 struct ice_netdev_priv *np = netdev_priv(netdev); 5373 struct ice_vsi *vsi = np->vsi; 5374 struct ice_pf *pf = vsi->back; 5375 struct ice_hw *hw = &pf->hw; 5376 struct sockaddr *addr = pi; 5377 enum ice_status status; 5378 u8 old_mac[ETH_ALEN]; 5379 u8 flags = 0; 5380 int err = 0; 5381 u8 *mac; 5382 5383 mac = (u8 *)addr->sa_data; 5384 5385 if (!is_valid_ether_addr(mac)) 5386 return -EADDRNOTAVAIL; 5387 5388 if (ether_addr_equal(netdev->dev_addr, mac)) { 5389 netdev_dbg(netdev, "already using mac %pM\n", mac); 5390 return 0; 5391 } 5392 5393 if (test_bit(ICE_DOWN, pf->state) || 5394 ice_is_reset_in_progress(pf->state)) { 5395 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5396 mac); 5397 return -EBUSY; 5398 } 5399 5400 if (ice_chnl_dmac_fltr_cnt(pf)) { 5401 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5402 mac); 5403 return -EAGAIN; 5404 } 5405 5406 netif_addr_lock_bh(netdev); 5407 ether_addr_copy(old_mac, netdev->dev_addr); 5408 /* change the netdev's MAC address */ 5409 eth_hw_addr_set(netdev, mac); 5410 netif_addr_unlock_bh(netdev); 5411 5412 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5413 status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5414 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 5415 err = -EADDRNOTAVAIL; 5416 goto err_update_filters; 5417 } 5418 5419 /* Add filter for new MAC. If filter exists, return success */ 5420 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5421 if (status == ICE_ERR_ALREADY_EXISTS) 5422 /* Although this MAC filter is already present in hardware it's 5423 * possible in some cases (e.g. bonding) that dev_addr was 5424 * modified outside of the driver and needs to be restored back 5425 * to this value. 5426 */ 5427 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5428 else if (status) 5429 /* error if the new filter addition failed */ 5430 err = -EADDRNOTAVAIL; 5431 5432 err_update_filters: 5433 if (err) { 5434 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5435 mac); 5436 netif_addr_lock_bh(netdev); 5437 eth_hw_addr_set(netdev, old_mac); 5438 netif_addr_unlock_bh(netdev); 5439 return err; 5440 } 5441 5442 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5443 netdev->dev_addr); 5444 5445 /* write new MAC address to the firmware */ 5446 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5447 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5448 if (status) { 5449 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 5450 mac, ice_stat_str(status)); 5451 } 5452 return 0; 5453 } 5454 5455 /** 5456 * ice_set_rx_mode - NDO callback to set the netdev filters 5457 * @netdev: network interface device structure 5458 */ 5459 static void ice_set_rx_mode(struct net_device *netdev) 5460 { 5461 struct ice_netdev_priv *np = netdev_priv(netdev); 5462 struct ice_vsi *vsi = np->vsi; 5463 5464 if (!vsi) 5465 return; 5466 5467 /* Set the flags to synchronize filters 5468 * ndo_set_rx_mode may be triggered even without a change in netdev 5469 * flags 5470 */ 5471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5473 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5474 5475 /* schedule our worker thread which will take care of 5476 * applying the new filter changes 5477 */ 5478 ice_service_task_schedule(vsi->back); 5479 } 5480 5481 /** 5482 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5483 * @netdev: network interface device structure 5484 * @queue_index: Queue ID 5485 * @maxrate: maximum bandwidth in Mbps 5486 */ 5487 static int 5488 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5489 { 5490 struct ice_netdev_priv *np = netdev_priv(netdev); 5491 struct ice_vsi *vsi = np->vsi; 5492 enum ice_status status; 5493 u16 q_handle; 5494 u8 tc; 5495 5496 /* Validate maxrate requested is within permitted range */ 5497 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5498 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5499 maxrate, queue_index); 5500 return -EINVAL; 5501 } 5502 5503 q_handle = vsi->tx_rings[queue_index]->q_handle; 5504 tc = ice_dcb_get_tc(vsi, queue_index); 5505 5506 /* Set BW back to default, when user set maxrate to 0 */ 5507 if (!maxrate) 5508 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5509 q_handle, ICE_MAX_BW); 5510 else 5511 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5512 q_handle, ICE_MAX_BW, maxrate * 1000); 5513 if (status) { 5514 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 5515 ice_stat_str(status)); 5516 return -EIO; 5517 } 5518 5519 return 0; 5520 } 5521 5522 /** 5523 * ice_fdb_add - add an entry to the hardware database 5524 * @ndm: the input from the stack 5525 * @tb: pointer to array of nladdr (unused) 5526 * @dev: the net device pointer 5527 * @addr: the MAC address entry being added 5528 * @vid: VLAN ID 5529 * @flags: instructions from stack about fdb operation 5530 * @extack: netlink extended ack 5531 */ 5532 static int 5533 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5534 struct net_device *dev, const unsigned char *addr, u16 vid, 5535 u16 flags, struct netlink_ext_ack __always_unused *extack) 5536 { 5537 int err; 5538 5539 if (vid) { 5540 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5541 return -EINVAL; 5542 } 5543 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5544 netdev_err(dev, "FDB only supports static addresses\n"); 5545 return -EINVAL; 5546 } 5547 5548 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5549 err = dev_uc_add_excl(dev, addr); 5550 else if (is_multicast_ether_addr(addr)) 5551 err = dev_mc_add_excl(dev, addr); 5552 else 5553 err = -EINVAL; 5554 5555 /* Only return duplicate errors if NLM_F_EXCL is set */ 5556 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5557 err = 0; 5558 5559 return err; 5560 } 5561 5562 /** 5563 * ice_fdb_del - delete an entry from the hardware database 5564 * @ndm: the input from the stack 5565 * @tb: pointer to array of nladdr (unused) 5566 * @dev: the net device pointer 5567 * @addr: the MAC address entry being added 5568 * @vid: VLAN ID 5569 */ 5570 static int 5571 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5572 struct net_device *dev, const unsigned char *addr, 5573 __always_unused u16 vid) 5574 { 5575 int err; 5576 5577 if (ndm->ndm_state & NUD_PERMANENT) { 5578 netdev_err(dev, "FDB only supports static addresses\n"); 5579 return -EINVAL; 5580 } 5581 5582 if (is_unicast_ether_addr(addr)) 5583 err = dev_uc_del(dev, addr); 5584 else if (is_multicast_ether_addr(addr)) 5585 err = dev_mc_del(dev, addr); 5586 else 5587 err = -EINVAL; 5588 5589 return err; 5590 } 5591 5592 /** 5593 * ice_set_features - set the netdev feature flags 5594 * @netdev: ptr to the netdev being adjusted 5595 * @features: the feature set that the stack is suggesting 5596 */ 5597 static int 5598 ice_set_features(struct net_device *netdev, netdev_features_t features) 5599 { 5600 struct ice_netdev_priv *np = netdev_priv(netdev); 5601 struct ice_vsi *vsi = np->vsi; 5602 struct ice_pf *pf = vsi->back; 5603 int ret = 0; 5604 5605 /* Don't set any netdev advanced features with device in Safe Mode */ 5606 if (ice_is_safe_mode(vsi->back)) { 5607 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5608 return ret; 5609 } 5610 5611 /* Do not change setting during reset */ 5612 if (ice_is_reset_in_progress(pf->state)) { 5613 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5614 return -EBUSY; 5615 } 5616 5617 /* Multiple features can be changed in one call so keep features in 5618 * separate if/else statements to guarantee each feature is checked 5619 */ 5620 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5621 ice_vsi_manage_rss_lut(vsi, true); 5622 else if (!(features & NETIF_F_RXHASH) && 5623 netdev->features & NETIF_F_RXHASH) 5624 ice_vsi_manage_rss_lut(vsi, false); 5625 5626 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5627 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5628 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5629 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5630 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5631 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5632 5633 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5634 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5635 ret = ice_vsi_manage_vlan_insertion(vsi); 5636 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5637 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5638 ret = ice_vsi_manage_vlan_insertion(vsi); 5639 5640 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5641 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5642 ret = ice_cfg_vlan_pruning(vsi, true); 5643 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5644 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5645 ret = ice_cfg_vlan_pruning(vsi, false); 5646 5647 if ((features & NETIF_F_NTUPLE) && 5648 !(netdev->features & NETIF_F_NTUPLE)) { 5649 ice_vsi_manage_fdir(vsi, true); 5650 ice_init_arfs(vsi); 5651 } else if (!(features & NETIF_F_NTUPLE) && 5652 (netdev->features & NETIF_F_NTUPLE)) { 5653 ice_vsi_manage_fdir(vsi, false); 5654 ice_clear_arfs(vsi); 5655 } 5656 5657 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5658 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5659 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5660 return -EACCES; 5661 } 5662 5663 if ((features & NETIF_F_HW_TC) && 5664 !(netdev->features & NETIF_F_HW_TC)) 5665 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5666 else 5667 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5668 5669 return ret; 5670 } 5671 5672 /** 5673 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5674 * @vsi: VSI to setup VLAN properties for 5675 */ 5676 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5677 { 5678 int ret = 0; 5679 5680 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5681 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5682 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5683 ret = ice_vsi_manage_vlan_insertion(vsi); 5684 5685 return ret; 5686 } 5687 5688 /** 5689 * ice_vsi_cfg - Setup the VSI 5690 * @vsi: the VSI being configured 5691 * 5692 * Return 0 on success and negative value on error 5693 */ 5694 int ice_vsi_cfg(struct ice_vsi *vsi) 5695 { 5696 int err; 5697 5698 if (vsi->netdev) { 5699 ice_set_rx_mode(vsi->netdev); 5700 5701 err = ice_vsi_vlan_setup(vsi); 5702 5703 if (err) 5704 return err; 5705 } 5706 ice_vsi_cfg_dcb_rings(vsi); 5707 5708 err = ice_vsi_cfg_lan_txqs(vsi); 5709 if (!err && ice_is_xdp_ena_vsi(vsi)) 5710 err = ice_vsi_cfg_xdp_txqs(vsi); 5711 if (!err) 5712 err = ice_vsi_cfg_rxqs(vsi); 5713 5714 return err; 5715 } 5716 5717 /* THEORY OF MODERATION: 5718 * The ice driver hardware works differently than the hardware that DIMLIB was 5719 * originally made for. ice hardware doesn't have packet count limits that 5720 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5721 * which is hard-coded to a limit of 250,000 ints/second. 5722 * If not using dynamic moderation, the INTRL value can be modified 5723 * by ethtool rx-usecs-high. 5724 */ 5725 struct ice_dim { 5726 /* the throttle rate for interrupts, basically worst case delay before 5727 * an initial interrupt fires, value is stored in microseconds. 5728 */ 5729 u16 itr; 5730 }; 5731 5732 /* Make a different profile for Rx that doesn't allow quite so aggressive 5733 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5734 * second. 5735 */ 5736 static const struct ice_dim rx_profile[] = { 5737 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5738 {8}, /* 125,000 ints/s */ 5739 {16}, /* 62,500 ints/s */ 5740 {62}, /* 16,129 ints/s */ 5741 {126} /* 7,936 ints/s */ 5742 }; 5743 5744 /* The transmit profile, which has the same sorts of values 5745 * as the previous struct 5746 */ 5747 static const struct ice_dim tx_profile[] = { 5748 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5749 {8}, /* 125,000 ints/s */ 5750 {40}, /* 16,125 ints/s */ 5751 {128}, /* 7,812 ints/s */ 5752 {256} /* 3,906 ints/s */ 5753 }; 5754 5755 static void ice_tx_dim_work(struct work_struct *work) 5756 { 5757 struct ice_ring_container *rc; 5758 struct dim *dim; 5759 u16 itr; 5760 5761 dim = container_of(work, struct dim, work); 5762 rc = (struct ice_ring_container *)dim->priv; 5763 5764 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5765 5766 /* look up the values in our local table */ 5767 itr = tx_profile[dim->profile_ix].itr; 5768 5769 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5770 ice_write_itr(rc, itr); 5771 5772 dim->state = DIM_START_MEASURE; 5773 } 5774 5775 static void ice_rx_dim_work(struct work_struct *work) 5776 { 5777 struct ice_ring_container *rc; 5778 struct dim *dim; 5779 u16 itr; 5780 5781 dim = container_of(work, struct dim, work); 5782 rc = (struct ice_ring_container *)dim->priv; 5783 5784 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5785 5786 /* look up the values in our local table */ 5787 itr = rx_profile[dim->profile_ix].itr; 5788 5789 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5790 ice_write_itr(rc, itr); 5791 5792 dim->state = DIM_START_MEASURE; 5793 } 5794 5795 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5796 5797 /** 5798 * ice_init_moderation - set up interrupt moderation 5799 * @q_vector: the vector containing rings to be configured 5800 * 5801 * Set up interrupt moderation registers, with the intent to do the right thing 5802 * when called from reset or from probe, and whether or not dynamic moderation 5803 * is enabled or not. Take special care to write all the registers in both 5804 * dynamic moderation mode or not in order to make sure hardware is in a known 5805 * state. 5806 */ 5807 static void ice_init_moderation(struct ice_q_vector *q_vector) 5808 { 5809 struct ice_ring_container *rc; 5810 bool tx_dynamic, rx_dynamic; 5811 5812 rc = &q_vector->tx; 5813 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5814 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5815 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5816 rc->dim.priv = rc; 5817 tx_dynamic = ITR_IS_DYNAMIC(rc); 5818 5819 /* set the initial TX ITR to match the above */ 5820 ice_write_itr(rc, tx_dynamic ? 5821 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5822 5823 rc = &q_vector->rx; 5824 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5825 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5826 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5827 rc->dim.priv = rc; 5828 rx_dynamic = ITR_IS_DYNAMIC(rc); 5829 5830 /* set the initial RX ITR to match the above */ 5831 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 5832 rc->itr_setting); 5833 5834 ice_set_q_vector_intrl(q_vector); 5835 } 5836 5837 /** 5838 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5839 * @vsi: the VSI being configured 5840 */ 5841 static void ice_napi_enable_all(struct ice_vsi *vsi) 5842 { 5843 int q_idx; 5844 5845 if (!vsi->netdev) 5846 return; 5847 5848 ice_for_each_q_vector(vsi, q_idx) { 5849 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5850 5851 ice_init_moderation(q_vector); 5852 5853 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 5854 napi_enable(&q_vector->napi); 5855 } 5856 } 5857 5858 /** 5859 * ice_up_complete - Finish the last steps of bringing up a connection 5860 * @vsi: The VSI being configured 5861 * 5862 * Return 0 on success and negative value on error 5863 */ 5864 static int ice_up_complete(struct ice_vsi *vsi) 5865 { 5866 struct ice_pf *pf = vsi->back; 5867 int err; 5868 5869 ice_vsi_cfg_msix(vsi); 5870 5871 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5872 * Tx queue group list was configured and the context bits were 5873 * programmed using ice_vsi_cfg_txqs 5874 */ 5875 err = ice_vsi_start_all_rx_rings(vsi); 5876 if (err) 5877 return err; 5878 5879 clear_bit(ICE_VSI_DOWN, vsi->state); 5880 ice_napi_enable_all(vsi); 5881 ice_vsi_ena_irq(vsi); 5882 5883 if (vsi->port_info && 5884 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5885 vsi->netdev) { 5886 ice_print_link_msg(vsi, true); 5887 netif_tx_start_all_queues(vsi->netdev); 5888 netif_carrier_on(vsi->netdev); 5889 } 5890 5891 ice_service_task_schedule(pf); 5892 5893 return 0; 5894 } 5895 5896 /** 5897 * ice_up - Bring the connection back up after being down 5898 * @vsi: VSI being configured 5899 */ 5900 int ice_up(struct ice_vsi *vsi) 5901 { 5902 int err; 5903 5904 err = ice_vsi_cfg(vsi); 5905 if (!err) 5906 err = ice_up_complete(vsi); 5907 5908 return err; 5909 } 5910 5911 /** 5912 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5913 * @syncp: pointer to u64_stats_sync 5914 * @stats: stats that pkts and bytes count will be taken from 5915 * @pkts: packets stats counter 5916 * @bytes: bytes stats counter 5917 * 5918 * This function fetches stats from the ring considering the atomic operations 5919 * that needs to be performed to read u64 values in 32 bit machine. 5920 */ 5921 static void 5922 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 5923 u64 *pkts, u64 *bytes) 5924 { 5925 unsigned int start; 5926 5927 do { 5928 start = u64_stats_fetch_begin_irq(syncp); 5929 *pkts = stats.pkts; 5930 *bytes = stats.bytes; 5931 } while (u64_stats_fetch_retry_irq(syncp, start)); 5932 } 5933 5934 /** 5935 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5936 * @vsi: the VSI to be updated 5937 * @rings: rings to work on 5938 * @count: number of rings 5939 */ 5940 static void 5941 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_tx_ring **rings, 5942 u16 count) 5943 { 5944 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5945 u16 i; 5946 5947 for (i = 0; i < count; i++) { 5948 struct ice_tx_ring *ring; 5949 u64 pkts = 0, bytes = 0; 5950 5951 ring = READ_ONCE(rings[i]); 5952 if (ring) 5953 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5954 vsi_stats->tx_packets += pkts; 5955 vsi_stats->tx_bytes += bytes; 5956 vsi->tx_restart += ring->tx_stats.restart_q; 5957 vsi->tx_busy += ring->tx_stats.tx_busy; 5958 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5959 } 5960 } 5961 5962 /** 5963 * ice_update_vsi_ring_stats - Update VSI stats counters 5964 * @vsi: the VSI to be updated 5965 */ 5966 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5967 { 5968 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5969 u64 pkts, bytes; 5970 int i; 5971 5972 /* reset netdev stats */ 5973 vsi_stats->tx_packets = 0; 5974 vsi_stats->tx_bytes = 0; 5975 vsi_stats->rx_packets = 0; 5976 vsi_stats->rx_bytes = 0; 5977 5978 /* reset non-netdev (extended) stats */ 5979 vsi->tx_restart = 0; 5980 vsi->tx_busy = 0; 5981 vsi->tx_linearize = 0; 5982 vsi->rx_buf_failed = 0; 5983 vsi->rx_page_failed = 0; 5984 5985 rcu_read_lock(); 5986 5987 /* update Tx rings counters */ 5988 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5989 5990 /* update Rx rings counters */ 5991 ice_for_each_rxq(vsi, i) { 5992 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 5993 5994 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 5995 vsi_stats->rx_packets += pkts; 5996 vsi_stats->rx_bytes += bytes; 5997 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5998 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5999 } 6000 6001 /* update XDP Tx rings counters */ 6002 if (ice_is_xdp_ena_vsi(vsi)) 6003 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 6004 vsi->num_xdp_txq); 6005 6006 rcu_read_unlock(); 6007 } 6008 6009 /** 6010 * ice_update_vsi_stats - Update VSI stats counters 6011 * @vsi: the VSI to be updated 6012 */ 6013 void ice_update_vsi_stats(struct ice_vsi *vsi) 6014 { 6015 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6016 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6017 struct ice_pf *pf = vsi->back; 6018 6019 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6020 test_bit(ICE_CFG_BUSY, pf->state)) 6021 return; 6022 6023 /* get stats as recorded by Tx/Rx rings */ 6024 ice_update_vsi_ring_stats(vsi); 6025 6026 /* get VSI stats as recorded by the hardware */ 6027 ice_update_eth_stats(vsi); 6028 6029 cur_ns->tx_errors = cur_es->tx_errors; 6030 cur_ns->rx_dropped = cur_es->rx_discards; 6031 cur_ns->tx_dropped = cur_es->tx_discards; 6032 cur_ns->multicast = cur_es->rx_multicast; 6033 6034 /* update some more netdev stats if this is main VSI */ 6035 if (vsi->type == ICE_VSI_PF) { 6036 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6037 cur_ns->rx_errors = pf->stats.crc_errors + 6038 pf->stats.illegal_bytes + 6039 pf->stats.rx_len_errors + 6040 pf->stats.rx_undersize + 6041 pf->hw_csum_rx_error + 6042 pf->stats.rx_jabber + 6043 pf->stats.rx_fragments + 6044 pf->stats.rx_oversize; 6045 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6046 /* record drops from the port level */ 6047 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6048 } 6049 } 6050 6051 /** 6052 * ice_update_pf_stats - Update PF port stats counters 6053 * @pf: PF whose stats needs to be updated 6054 */ 6055 void ice_update_pf_stats(struct ice_pf *pf) 6056 { 6057 struct ice_hw_port_stats *prev_ps, *cur_ps; 6058 struct ice_hw *hw = &pf->hw; 6059 u16 fd_ctr_base; 6060 u8 port; 6061 6062 port = hw->port_info->lport; 6063 prev_ps = &pf->stats_prev; 6064 cur_ps = &pf->stats; 6065 6066 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6067 &prev_ps->eth.rx_bytes, 6068 &cur_ps->eth.rx_bytes); 6069 6070 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6071 &prev_ps->eth.rx_unicast, 6072 &cur_ps->eth.rx_unicast); 6073 6074 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6075 &prev_ps->eth.rx_multicast, 6076 &cur_ps->eth.rx_multicast); 6077 6078 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6079 &prev_ps->eth.rx_broadcast, 6080 &cur_ps->eth.rx_broadcast); 6081 6082 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6083 &prev_ps->eth.rx_discards, 6084 &cur_ps->eth.rx_discards); 6085 6086 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6087 &prev_ps->eth.tx_bytes, 6088 &cur_ps->eth.tx_bytes); 6089 6090 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6091 &prev_ps->eth.tx_unicast, 6092 &cur_ps->eth.tx_unicast); 6093 6094 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6095 &prev_ps->eth.tx_multicast, 6096 &cur_ps->eth.tx_multicast); 6097 6098 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6099 &prev_ps->eth.tx_broadcast, 6100 &cur_ps->eth.tx_broadcast); 6101 6102 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6103 &prev_ps->tx_dropped_link_down, 6104 &cur_ps->tx_dropped_link_down); 6105 6106 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6107 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6108 6109 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6110 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6111 6112 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6113 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6114 6115 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6116 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6117 6118 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6119 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6120 6121 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6122 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6123 6124 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6125 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6126 6127 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6128 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6129 6130 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6131 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6132 6133 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6134 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6135 6136 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6137 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6138 6139 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6140 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6141 6142 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6143 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6144 6145 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6146 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6147 6148 fd_ctr_base = hw->fd_ctr_base; 6149 6150 ice_stat_update40(hw, 6151 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6152 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6153 &cur_ps->fd_sb_match); 6154 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6155 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6156 6157 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6158 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6159 6160 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6161 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6162 6163 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6164 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6165 6166 ice_update_dcb_stats(pf); 6167 6168 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6169 &prev_ps->crc_errors, &cur_ps->crc_errors); 6170 6171 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6172 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6173 6174 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6175 &prev_ps->mac_local_faults, 6176 &cur_ps->mac_local_faults); 6177 6178 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6179 &prev_ps->mac_remote_faults, 6180 &cur_ps->mac_remote_faults); 6181 6182 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6183 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6184 6185 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6186 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6187 6188 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6189 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6190 6191 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6192 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6193 6194 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6195 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6196 6197 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6198 6199 pf->stat_prev_loaded = true; 6200 } 6201 6202 /** 6203 * ice_get_stats64 - get statistics for network device structure 6204 * @netdev: network interface device structure 6205 * @stats: main device statistics structure 6206 */ 6207 static 6208 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6209 { 6210 struct ice_netdev_priv *np = netdev_priv(netdev); 6211 struct rtnl_link_stats64 *vsi_stats; 6212 struct ice_vsi *vsi = np->vsi; 6213 6214 vsi_stats = &vsi->net_stats; 6215 6216 if (!vsi->num_txq || !vsi->num_rxq) 6217 return; 6218 6219 /* netdev packet/byte stats come from ring counter. These are obtained 6220 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6221 * But, only call the update routine and read the registers if VSI is 6222 * not down. 6223 */ 6224 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6225 ice_update_vsi_ring_stats(vsi); 6226 stats->tx_packets = vsi_stats->tx_packets; 6227 stats->tx_bytes = vsi_stats->tx_bytes; 6228 stats->rx_packets = vsi_stats->rx_packets; 6229 stats->rx_bytes = vsi_stats->rx_bytes; 6230 6231 /* The rest of the stats can be read from the hardware but instead we 6232 * just return values that the watchdog task has already obtained from 6233 * the hardware. 6234 */ 6235 stats->multicast = vsi_stats->multicast; 6236 stats->tx_errors = vsi_stats->tx_errors; 6237 stats->tx_dropped = vsi_stats->tx_dropped; 6238 stats->rx_errors = vsi_stats->rx_errors; 6239 stats->rx_dropped = vsi_stats->rx_dropped; 6240 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6241 stats->rx_length_errors = vsi_stats->rx_length_errors; 6242 } 6243 6244 /** 6245 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6246 * @vsi: VSI having NAPI disabled 6247 */ 6248 static void ice_napi_disable_all(struct ice_vsi *vsi) 6249 { 6250 int q_idx; 6251 6252 if (!vsi->netdev) 6253 return; 6254 6255 ice_for_each_q_vector(vsi, q_idx) { 6256 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6257 6258 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6259 napi_disable(&q_vector->napi); 6260 6261 cancel_work_sync(&q_vector->tx.dim.work); 6262 cancel_work_sync(&q_vector->rx.dim.work); 6263 } 6264 } 6265 6266 /** 6267 * ice_down - Shutdown the connection 6268 * @vsi: The VSI being stopped 6269 */ 6270 int ice_down(struct ice_vsi *vsi) 6271 { 6272 int i, tx_err, rx_err, link_err = 0; 6273 6274 /* Caller of this function is expected to set the 6275 * vsi->state ICE_DOWN bit 6276 */ 6277 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6278 netif_carrier_off(vsi->netdev); 6279 netif_tx_disable(vsi->netdev); 6280 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6281 ice_eswitch_stop_all_tx_queues(vsi->back); 6282 } 6283 6284 ice_vsi_dis_irq(vsi); 6285 6286 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6287 if (tx_err) 6288 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6289 vsi->vsi_num, tx_err); 6290 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6291 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6292 if (tx_err) 6293 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6294 vsi->vsi_num, tx_err); 6295 } 6296 6297 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6298 if (rx_err) 6299 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6300 vsi->vsi_num, rx_err); 6301 6302 ice_napi_disable_all(vsi); 6303 6304 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6305 link_err = ice_force_phys_link_state(vsi, false); 6306 if (link_err) 6307 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6308 vsi->vsi_num, link_err); 6309 } 6310 6311 ice_for_each_txq(vsi, i) 6312 ice_clean_tx_ring(vsi->tx_rings[i]); 6313 6314 ice_for_each_rxq(vsi, i) 6315 ice_clean_rx_ring(vsi->rx_rings[i]); 6316 6317 if (tx_err || rx_err || link_err) { 6318 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6319 vsi->vsi_num, vsi->vsw->sw_id); 6320 return -EIO; 6321 } 6322 6323 return 0; 6324 } 6325 6326 /** 6327 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6328 * @vsi: VSI having resources allocated 6329 * 6330 * Return 0 on success, negative on failure 6331 */ 6332 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6333 { 6334 int i, err = 0; 6335 6336 if (!vsi->num_txq) { 6337 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6338 vsi->vsi_num); 6339 return -EINVAL; 6340 } 6341 6342 ice_for_each_txq(vsi, i) { 6343 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6344 6345 if (!ring) 6346 return -EINVAL; 6347 6348 if (vsi->netdev) 6349 ring->netdev = vsi->netdev; 6350 err = ice_setup_tx_ring(ring); 6351 if (err) 6352 break; 6353 } 6354 6355 return err; 6356 } 6357 6358 /** 6359 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6360 * @vsi: VSI having resources allocated 6361 * 6362 * Return 0 on success, negative on failure 6363 */ 6364 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6365 { 6366 int i, err = 0; 6367 6368 if (!vsi->num_rxq) { 6369 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6370 vsi->vsi_num); 6371 return -EINVAL; 6372 } 6373 6374 ice_for_each_rxq(vsi, i) { 6375 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6376 6377 if (!ring) 6378 return -EINVAL; 6379 6380 if (vsi->netdev) 6381 ring->netdev = vsi->netdev; 6382 err = ice_setup_rx_ring(ring); 6383 if (err) 6384 break; 6385 } 6386 6387 return err; 6388 } 6389 6390 /** 6391 * ice_vsi_open_ctrl - open control VSI for use 6392 * @vsi: the VSI to open 6393 * 6394 * Initialization of the Control VSI 6395 * 6396 * Returns 0 on success, negative value on error 6397 */ 6398 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6399 { 6400 char int_name[ICE_INT_NAME_STR_LEN]; 6401 struct ice_pf *pf = vsi->back; 6402 struct device *dev; 6403 int err; 6404 6405 dev = ice_pf_to_dev(pf); 6406 /* allocate descriptors */ 6407 err = ice_vsi_setup_tx_rings(vsi); 6408 if (err) 6409 goto err_setup_tx; 6410 6411 err = ice_vsi_setup_rx_rings(vsi); 6412 if (err) 6413 goto err_setup_rx; 6414 6415 err = ice_vsi_cfg(vsi); 6416 if (err) 6417 goto err_setup_rx; 6418 6419 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6420 dev_driver_string(dev), dev_name(dev)); 6421 err = ice_vsi_req_irq_msix(vsi, int_name); 6422 if (err) 6423 goto err_setup_rx; 6424 6425 ice_vsi_cfg_msix(vsi); 6426 6427 err = ice_vsi_start_all_rx_rings(vsi); 6428 if (err) 6429 goto err_up_complete; 6430 6431 clear_bit(ICE_VSI_DOWN, vsi->state); 6432 ice_vsi_ena_irq(vsi); 6433 6434 return 0; 6435 6436 err_up_complete: 6437 ice_down(vsi); 6438 err_setup_rx: 6439 ice_vsi_free_rx_rings(vsi); 6440 err_setup_tx: 6441 ice_vsi_free_tx_rings(vsi); 6442 6443 return err; 6444 } 6445 6446 /** 6447 * ice_vsi_open - Called when a network interface is made active 6448 * @vsi: the VSI to open 6449 * 6450 * Initialization of the VSI 6451 * 6452 * Returns 0 on success, negative value on error 6453 */ 6454 int ice_vsi_open(struct ice_vsi *vsi) 6455 { 6456 char int_name[ICE_INT_NAME_STR_LEN]; 6457 struct ice_pf *pf = vsi->back; 6458 int err; 6459 6460 /* allocate descriptors */ 6461 err = ice_vsi_setup_tx_rings(vsi); 6462 if (err) 6463 goto err_setup_tx; 6464 6465 err = ice_vsi_setup_rx_rings(vsi); 6466 if (err) 6467 goto err_setup_rx; 6468 6469 err = ice_vsi_cfg(vsi); 6470 if (err) 6471 goto err_setup_rx; 6472 6473 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6474 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6475 err = ice_vsi_req_irq_msix(vsi, int_name); 6476 if (err) 6477 goto err_setup_rx; 6478 6479 if (vsi->type == ICE_VSI_PF) { 6480 /* Notify the stack of the actual queue counts. */ 6481 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6482 if (err) 6483 goto err_set_qs; 6484 6485 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6486 if (err) 6487 goto err_set_qs; 6488 } 6489 6490 err = ice_up_complete(vsi); 6491 if (err) 6492 goto err_up_complete; 6493 6494 return 0; 6495 6496 err_up_complete: 6497 ice_down(vsi); 6498 err_set_qs: 6499 ice_vsi_free_irq(vsi); 6500 err_setup_rx: 6501 ice_vsi_free_rx_rings(vsi); 6502 err_setup_tx: 6503 ice_vsi_free_tx_rings(vsi); 6504 6505 return err; 6506 } 6507 6508 /** 6509 * ice_vsi_release_all - Delete all VSIs 6510 * @pf: PF from which all VSIs are being removed 6511 */ 6512 static void ice_vsi_release_all(struct ice_pf *pf) 6513 { 6514 int err, i; 6515 6516 if (!pf->vsi) 6517 return; 6518 6519 ice_for_each_vsi(pf, i) { 6520 if (!pf->vsi[i]) 6521 continue; 6522 6523 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6524 continue; 6525 6526 err = ice_vsi_release(pf->vsi[i]); 6527 if (err) 6528 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6529 i, err, pf->vsi[i]->vsi_num); 6530 } 6531 } 6532 6533 /** 6534 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6535 * @pf: pointer to the PF instance 6536 * @type: VSI type to rebuild 6537 * 6538 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6539 */ 6540 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6541 { 6542 struct device *dev = ice_pf_to_dev(pf); 6543 enum ice_status status; 6544 int i, err; 6545 6546 ice_for_each_vsi(pf, i) { 6547 struct ice_vsi *vsi = pf->vsi[i]; 6548 6549 if (!vsi || vsi->type != type) 6550 continue; 6551 6552 /* rebuild the VSI */ 6553 err = ice_vsi_rebuild(vsi, true); 6554 if (err) { 6555 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6556 err, vsi->idx, ice_vsi_type_str(type)); 6557 return err; 6558 } 6559 6560 /* replay filters for the VSI */ 6561 status = ice_replay_vsi(&pf->hw, vsi->idx); 6562 if (status) { 6563 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 6564 ice_stat_str(status), vsi->idx, 6565 ice_vsi_type_str(type)); 6566 return -EIO; 6567 } 6568 6569 /* Re-map HW VSI number, using VSI handle that has been 6570 * previously validated in ice_replay_vsi() call above 6571 */ 6572 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6573 6574 /* enable the VSI */ 6575 err = ice_ena_vsi(vsi, false); 6576 if (err) { 6577 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6578 err, vsi->idx, ice_vsi_type_str(type)); 6579 return err; 6580 } 6581 6582 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6583 ice_vsi_type_str(type)); 6584 } 6585 6586 return 0; 6587 } 6588 6589 /** 6590 * ice_update_pf_netdev_link - Update PF netdev link status 6591 * @pf: pointer to the PF instance 6592 */ 6593 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6594 { 6595 bool link_up; 6596 int i; 6597 6598 ice_for_each_vsi(pf, i) { 6599 struct ice_vsi *vsi = pf->vsi[i]; 6600 6601 if (!vsi || vsi->type != ICE_VSI_PF) 6602 return; 6603 6604 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6605 if (link_up) { 6606 netif_carrier_on(pf->vsi[i]->netdev); 6607 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6608 } else { 6609 netif_carrier_off(pf->vsi[i]->netdev); 6610 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6611 } 6612 } 6613 } 6614 6615 /** 6616 * ice_rebuild - rebuild after reset 6617 * @pf: PF to rebuild 6618 * @reset_type: type of reset 6619 * 6620 * Do not rebuild VF VSI in this flow because that is already handled via 6621 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6622 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6623 * to reset/rebuild all the VF VSI twice. 6624 */ 6625 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6626 { 6627 struct device *dev = ice_pf_to_dev(pf); 6628 struct ice_hw *hw = &pf->hw; 6629 enum ice_status ret; 6630 int err; 6631 6632 if (test_bit(ICE_DOWN, pf->state)) 6633 goto clear_recovery; 6634 6635 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6636 6637 ret = ice_init_all_ctrlq(hw); 6638 if (ret) { 6639 dev_err(dev, "control queues init failed %s\n", 6640 ice_stat_str(ret)); 6641 goto err_init_ctrlq; 6642 } 6643 6644 /* if DDP was previously loaded successfully */ 6645 if (!ice_is_safe_mode(pf)) { 6646 /* reload the SW DB of filter tables */ 6647 if (reset_type == ICE_RESET_PFR) 6648 ice_fill_blk_tbls(hw); 6649 else 6650 /* Reload DDP Package after CORER/GLOBR reset */ 6651 ice_load_pkg(NULL, pf); 6652 } 6653 6654 ret = ice_clear_pf_cfg(hw); 6655 if (ret) { 6656 dev_err(dev, "clear PF configuration failed %s\n", 6657 ice_stat_str(ret)); 6658 goto err_init_ctrlq; 6659 } 6660 6661 if (pf->first_sw->dflt_vsi_ena) 6662 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6663 /* clear the default VSI configuration if it exists */ 6664 pf->first_sw->dflt_vsi = NULL; 6665 pf->first_sw->dflt_vsi_ena = false; 6666 6667 ice_clear_pxe_mode(hw); 6668 6669 ret = ice_init_nvm(hw); 6670 if (ret) { 6671 dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret)); 6672 goto err_init_ctrlq; 6673 } 6674 6675 ret = ice_get_caps(hw); 6676 if (ret) { 6677 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 6678 goto err_init_ctrlq; 6679 } 6680 6681 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6682 if (ret) { 6683 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6684 goto err_init_ctrlq; 6685 } 6686 6687 err = ice_sched_init_port(hw->port_info); 6688 if (err) 6689 goto err_sched_init_port; 6690 6691 /* start misc vector */ 6692 err = ice_req_irq_msix_misc(pf); 6693 if (err) { 6694 dev_err(dev, "misc vector setup failed: %d\n", err); 6695 goto err_sched_init_port; 6696 } 6697 6698 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6699 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6700 if (!rd32(hw, PFQF_FD_SIZE)) { 6701 u16 unused, guar, b_effort; 6702 6703 guar = hw->func_caps.fd_fltr_guar; 6704 b_effort = hw->func_caps.fd_fltr_best_effort; 6705 6706 /* force guaranteed filter pool for PF */ 6707 ice_alloc_fd_guar_item(hw, &unused, guar); 6708 /* force shared filter pool for PF */ 6709 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6710 } 6711 } 6712 6713 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6714 ice_dcb_rebuild(pf); 6715 6716 /* If the PF previously had enabled PTP, PTP init needs to happen before 6717 * the VSI rebuild. If not, this causes the PTP link status events to 6718 * fail. 6719 */ 6720 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6721 ice_ptp_init(pf); 6722 6723 /* rebuild PF VSI */ 6724 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6725 if (err) { 6726 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6727 goto err_vsi_rebuild; 6728 } 6729 6730 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6731 if (err) { 6732 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6733 goto err_vsi_rebuild; 6734 } 6735 6736 if (reset_type == ICE_RESET_PFR) { 6737 err = ice_rebuild_channels(pf); 6738 if (err) { 6739 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6740 err); 6741 goto err_vsi_rebuild; 6742 } 6743 } 6744 6745 /* If Flow Director is active */ 6746 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6747 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6748 if (err) { 6749 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6750 goto err_vsi_rebuild; 6751 } 6752 6753 /* replay HW Flow Director recipes */ 6754 if (hw->fdir_prof) 6755 ice_fdir_replay_flows(hw); 6756 6757 /* replay Flow Director filters */ 6758 ice_fdir_replay_fltrs(pf); 6759 6760 ice_rebuild_arfs(pf); 6761 } 6762 6763 ice_update_pf_netdev_link(pf); 6764 6765 /* tell the firmware we are up */ 6766 ret = ice_send_version(pf); 6767 if (ret) { 6768 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6769 ice_stat_str(ret)); 6770 goto err_vsi_rebuild; 6771 } 6772 6773 ice_replay_post(hw); 6774 6775 /* if we get here, reset flow is successful */ 6776 clear_bit(ICE_RESET_FAILED, pf->state); 6777 6778 ice_plug_aux_dev(pf); 6779 return; 6780 6781 err_vsi_rebuild: 6782 err_sched_init_port: 6783 ice_sched_cleanup_all(hw); 6784 err_init_ctrlq: 6785 ice_shutdown_all_ctrlq(hw); 6786 set_bit(ICE_RESET_FAILED, pf->state); 6787 clear_recovery: 6788 /* set this bit in PF state to control service task scheduling */ 6789 set_bit(ICE_NEEDS_RESTART, pf->state); 6790 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6791 } 6792 6793 /** 6794 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6795 * @vsi: Pointer to VSI structure 6796 */ 6797 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6798 { 6799 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6800 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6801 else 6802 return ICE_RXBUF_3072; 6803 } 6804 6805 /** 6806 * ice_change_mtu - NDO callback to change the MTU 6807 * @netdev: network interface device structure 6808 * @new_mtu: new value for maximum frame size 6809 * 6810 * Returns 0 on success, negative on failure 6811 */ 6812 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6813 { 6814 struct ice_netdev_priv *np = netdev_priv(netdev); 6815 struct ice_vsi *vsi = np->vsi; 6816 struct ice_pf *pf = vsi->back; 6817 struct iidc_event *event; 6818 u8 count = 0; 6819 int err = 0; 6820 6821 if (new_mtu == (int)netdev->mtu) { 6822 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6823 return 0; 6824 } 6825 6826 if (ice_is_xdp_ena_vsi(vsi)) { 6827 int frame_size = ice_max_xdp_frame_size(vsi); 6828 6829 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6830 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6831 frame_size - ICE_ETH_PKT_HDR_PAD); 6832 return -EINVAL; 6833 } 6834 } 6835 6836 /* if a reset is in progress, wait for some time for it to complete */ 6837 do { 6838 if (ice_is_reset_in_progress(pf->state)) { 6839 count++; 6840 usleep_range(1000, 2000); 6841 } else { 6842 break; 6843 } 6844 6845 } while (count < 100); 6846 6847 if (count == 100) { 6848 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6849 return -EBUSY; 6850 } 6851 6852 event = kzalloc(sizeof(*event), GFP_KERNEL); 6853 if (!event) 6854 return -ENOMEM; 6855 6856 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6857 ice_send_event_to_aux(pf, event); 6858 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 6859 6860 netdev->mtu = (unsigned int)new_mtu; 6861 6862 /* if VSI is up, bring it down and then back up */ 6863 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6864 err = ice_down(vsi); 6865 if (err) { 6866 netdev_err(netdev, "change MTU if_down err %d\n", err); 6867 goto event_after; 6868 } 6869 6870 err = ice_up(vsi); 6871 if (err) { 6872 netdev_err(netdev, "change MTU if_up err %d\n", err); 6873 goto event_after; 6874 } 6875 } 6876 6877 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6878 event_after: 6879 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 6880 ice_send_event_to_aux(pf, event); 6881 kfree(event); 6882 6883 return err; 6884 } 6885 6886 /** 6887 * ice_eth_ioctl - Access the hwtstamp interface 6888 * @netdev: network interface device structure 6889 * @ifr: interface request data 6890 * @cmd: ioctl command 6891 */ 6892 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6893 { 6894 struct ice_netdev_priv *np = netdev_priv(netdev); 6895 struct ice_pf *pf = np->vsi->back; 6896 6897 switch (cmd) { 6898 case SIOCGHWTSTAMP: 6899 return ice_ptp_get_ts_config(pf, ifr); 6900 case SIOCSHWTSTAMP: 6901 return ice_ptp_set_ts_config(pf, ifr); 6902 default: 6903 return -EOPNOTSUPP; 6904 } 6905 } 6906 6907 /** 6908 * ice_aq_str - convert AQ err code to a string 6909 * @aq_err: the AQ error code to convert 6910 */ 6911 const char *ice_aq_str(enum ice_aq_err aq_err) 6912 { 6913 switch (aq_err) { 6914 case ICE_AQ_RC_OK: 6915 return "OK"; 6916 case ICE_AQ_RC_EPERM: 6917 return "ICE_AQ_RC_EPERM"; 6918 case ICE_AQ_RC_ENOENT: 6919 return "ICE_AQ_RC_ENOENT"; 6920 case ICE_AQ_RC_ENOMEM: 6921 return "ICE_AQ_RC_ENOMEM"; 6922 case ICE_AQ_RC_EBUSY: 6923 return "ICE_AQ_RC_EBUSY"; 6924 case ICE_AQ_RC_EEXIST: 6925 return "ICE_AQ_RC_EEXIST"; 6926 case ICE_AQ_RC_EINVAL: 6927 return "ICE_AQ_RC_EINVAL"; 6928 case ICE_AQ_RC_ENOSPC: 6929 return "ICE_AQ_RC_ENOSPC"; 6930 case ICE_AQ_RC_ENOSYS: 6931 return "ICE_AQ_RC_ENOSYS"; 6932 case ICE_AQ_RC_EMODE: 6933 return "ICE_AQ_RC_EMODE"; 6934 case ICE_AQ_RC_ENOSEC: 6935 return "ICE_AQ_RC_ENOSEC"; 6936 case ICE_AQ_RC_EBADSIG: 6937 return "ICE_AQ_RC_EBADSIG"; 6938 case ICE_AQ_RC_ESVN: 6939 return "ICE_AQ_RC_ESVN"; 6940 case ICE_AQ_RC_EBADMAN: 6941 return "ICE_AQ_RC_EBADMAN"; 6942 case ICE_AQ_RC_EBADBUF: 6943 return "ICE_AQ_RC_EBADBUF"; 6944 } 6945 6946 return "ICE_AQ_RC_UNKNOWN"; 6947 } 6948 6949 /** 6950 * ice_stat_str - convert status err code to a string 6951 * @stat_err: the status error code to convert 6952 */ 6953 const char *ice_stat_str(enum ice_status stat_err) 6954 { 6955 switch (stat_err) { 6956 case ICE_SUCCESS: 6957 return "OK"; 6958 case ICE_ERR_PARAM: 6959 return "ICE_ERR_PARAM"; 6960 case ICE_ERR_NOT_IMPL: 6961 return "ICE_ERR_NOT_IMPL"; 6962 case ICE_ERR_NOT_READY: 6963 return "ICE_ERR_NOT_READY"; 6964 case ICE_ERR_NOT_SUPPORTED: 6965 return "ICE_ERR_NOT_SUPPORTED"; 6966 case ICE_ERR_BAD_PTR: 6967 return "ICE_ERR_BAD_PTR"; 6968 case ICE_ERR_INVAL_SIZE: 6969 return "ICE_ERR_INVAL_SIZE"; 6970 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6971 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6972 case ICE_ERR_RESET_FAILED: 6973 return "ICE_ERR_RESET_FAILED"; 6974 case ICE_ERR_FW_API_VER: 6975 return "ICE_ERR_FW_API_VER"; 6976 case ICE_ERR_NO_MEMORY: 6977 return "ICE_ERR_NO_MEMORY"; 6978 case ICE_ERR_CFG: 6979 return "ICE_ERR_CFG"; 6980 case ICE_ERR_OUT_OF_RANGE: 6981 return "ICE_ERR_OUT_OF_RANGE"; 6982 case ICE_ERR_ALREADY_EXISTS: 6983 return "ICE_ERR_ALREADY_EXISTS"; 6984 case ICE_ERR_NVM: 6985 return "ICE_ERR_NVM"; 6986 case ICE_ERR_NVM_CHECKSUM: 6987 return "ICE_ERR_NVM_CHECKSUM"; 6988 case ICE_ERR_BUF_TOO_SHORT: 6989 return "ICE_ERR_BUF_TOO_SHORT"; 6990 case ICE_ERR_NVM_BLANK_MODE: 6991 return "ICE_ERR_NVM_BLANK_MODE"; 6992 case ICE_ERR_IN_USE: 6993 return "ICE_ERR_IN_USE"; 6994 case ICE_ERR_MAX_LIMIT: 6995 return "ICE_ERR_MAX_LIMIT"; 6996 case ICE_ERR_RESET_ONGOING: 6997 return "ICE_ERR_RESET_ONGOING"; 6998 case ICE_ERR_HW_TABLE: 6999 return "ICE_ERR_HW_TABLE"; 7000 case ICE_ERR_DOES_NOT_EXIST: 7001 return "ICE_ERR_DOES_NOT_EXIST"; 7002 case ICE_ERR_FW_DDP_MISMATCH: 7003 return "ICE_ERR_FW_DDP_MISMATCH"; 7004 case ICE_ERR_AQ_ERROR: 7005 return "ICE_ERR_AQ_ERROR"; 7006 case ICE_ERR_AQ_TIMEOUT: 7007 return "ICE_ERR_AQ_TIMEOUT"; 7008 case ICE_ERR_AQ_FULL: 7009 return "ICE_ERR_AQ_FULL"; 7010 case ICE_ERR_AQ_NO_WORK: 7011 return "ICE_ERR_AQ_NO_WORK"; 7012 case ICE_ERR_AQ_EMPTY: 7013 return "ICE_ERR_AQ_EMPTY"; 7014 case ICE_ERR_AQ_FW_CRITICAL: 7015 return "ICE_ERR_AQ_FW_CRITICAL"; 7016 } 7017 7018 return "ICE_ERR_UNKNOWN"; 7019 } 7020 7021 /** 7022 * ice_set_rss_lut - Set RSS LUT 7023 * @vsi: Pointer to VSI structure 7024 * @lut: Lookup table 7025 * @lut_size: Lookup table size 7026 * 7027 * Returns 0 on success, negative on failure 7028 */ 7029 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7030 { 7031 struct ice_aq_get_set_rss_lut_params params = {}; 7032 struct ice_hw *hw = &vsi->back->hw; 7033 enum ice_status status; 7034 7035 if (!lut) 7036 return -EINVAL; 7037 7038 params.vsi_handle = vsi->idx; 7039 params.lut_size = lut_size; 7040 params.lut_type = vsi->rss_lut_type; 7041 params.lut = lut; 7042 7043 status = ice_aq_set_rss_lut(hw, ¶ms); 7044 if (status) { 7045 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n", 7046 ice_stat_str(status), 7047 ice_aq_str(hw->adminq.sq_last_status)); 7048 return -EIO; 7049 } 7050 7051 return 0; 7052 } 7053 7054 /** 7055 * ice_set_rss_key - Set RSS key 7056 * @vsi: Pointer to the VSI structure 7057 * @seed: RSS hash seed 7058 * 7059 * Returns 0 on success, negative on failure 7060 */ 7061 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7062 { 7063 struct ice_hw *hw = &vsi->back->hw; 7064 enum ice_status status; 7065 7066 if (!seed) 7067 return -EINVAL; 7068 7069 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7070 if (status) { 7071 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n", 7072 ice_stat_str(status), 7073 ice_aq_str(hw->adminq.sq_last_status)); 7074 return -EIO; 7075 } 7076 7077 return 0; 7078 } 7079 7080 /** 7081 * ice_get_rss_lut - Get RSS LUT 7082 * @vsi: Pointer to VSI structure 7083 * @lut: Buffer to store the lookup table entries 7084 * @lut_size: Size of buffer to store the lookup table entries 7085 * 7086 * Returns 0 on success, negative on failure 7087 */ 7088 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7089 { 7090 struct ice_aq_get_set_rss_lut_params params = {}; 7091 struct ice_hw *hw = &vsi->back->hw; 7092 enum ice_status status; 7093 7094 if (!lut) 7095 return -EINVAL; 7096 7097 params.vsi_handle = vsi->idx; 7098 params.lut_size = lut_size; 7099 params.lut_type = vsi->rss_lut_type; 7100 params.lut = lut; 7101 7102 status = ice_aq_get_rss_lut(hw, ¶ms); 7103 if (status) { 7104 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n", 7105 ice_stat_str(status), 7106 ice_aq_str(hw->adminq.sq_last_status)); 7107 return -EIO; 7108 } 7109 7110 return 0; 7111 } 7112 7113 /** 7114 * ice_get_rss_key - Get RSS key 7115 * @vsi: Pointer to VSI structure 7116 * @seed: Buffer to store the key in 7117 * 7118 * Returns 0 on success, negative on failure 7119 */ 7120 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7121 { 7122 struct ice_hw *hw = &vsi->back->hw; 7123 enum ice_status status; 7124 7125 if (!seed) 7126 return -EINVAL; 7127 7128 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7129 if (status) { 7130 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n", 7131 ice_stat_str(status), 7132 ice_aq_str(hw->adminq.sq_last_status)); 7133 return -EIO; 7134 } 7135 7136 return 0; 7137 } 7138 7139 /** 7140 * ice_bridge_getlink - Get the hardware bridge mode 7141 * @skb: skb buff 7142 * @pid: process ID 7143 * @seq: RTNL message seq 7144 * @dev: the netdev being configured 7145 * @filter_mask: filter mask passed in 7146 * @nlflags: netlink flags passed in 7147 * 7148 * Return the bridge mode (VEB/VEPA) 7149 */ 7150 static int 7151 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7152 struct net_device *dev, u32 filter_mask, int nlflags) 7153 { 7154 struct ice_netdev_priv *np = netdev_priv(dev); 7155 struct ice_vsi *vsi = np->vsi; 7156 struct ice_pf *pf = vsi->back; 7157 u16 bmode; 7158 7159 bmode = pf->first_sw->bridge_mode; 7160 7161 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7162 filter_mask, NULL); 7163 } 7164 7165 /** 7166 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7167 * @vsi: Pointer to VSI structure 7168 * @bmode: Hardware bridge mode (VEB/VEPA) 7169 * 7170 * Returns 0 on success, negative on failure 7171 */ 7172 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7173 { 7174 struct ice_aqc_vsi_props *vsi_props; 7175 struct ice_hw *hw = &vsi->back->hw; 7176 struct ice_vsi_ctx *ctxt; 7177 enum ice_status status; 7178 int ret = 0; 7179 7180 vsi_props = &vsi->info; 7181 7182 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7183 if (!ctxt) 7184 return -ENOMEM; 7185 7186 ctxt->info = vsi->info; 7187 7188 if (bmode == BRIDGE_MODE_VEB) 7189 /* change from VEPA to VEB mode */ 7190 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7191 else 7192 /* change from VEB to VEPA mode */ 7193 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7194 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7195 7196 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7197 if (status) { 7198 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 7199 bmode, ice_stat_str(status), 7200 ice_aq_str(hw->adminq.sq_last_status)); 7201 ret = -EIO; 7202 goto out; 7203 } 7204 /* Update sw flags for book keeping */ 7205 vsi_props->sw_flags = ctxt->info.sw_flags; 7206 7207 out: 7208 kfree(ctxt); 7209 return ret; 7210 } 7211 7212 /** 7213 * ice_bridge_setlink - Set the hardware bridge mode 7214 * @dev: the netdev being configured 7215 * @nlh: RTNL message 7216 * @flags: bridge setlink flags 7217 * @extack: netlink extended ack 7218 * 7219 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7220 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7221 * not already set for all VSIs connected to this switch. And also update the 7222 * unicast switch filter rules for the corresponding switch of the netdev. 7223 */ 7224 static int 7225 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7226 u16 __always_unused flags, 7227 struct netlink_ext_ack __always_unused *extack) 7228 { 7229 struct ice_netdev_priv *np = netdev_priv(dev); 7230 struct ice_pf *pf = np->vsi->back; 7231 struct nlattr *attr, *br_spec; 7232 struct ice_hw *hw = &pf->hw; 7233 enum ice_status status; 7234 struct ice_sw *pf_sw; 7235 int rem, v, err = 0; 7236 7237 pf_sw = pf->first_sw; 7238 /* find the attribute in the netlink message */ 7239 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7240 7241 nla_for_each_nested(attr, br_spec, rem) { 7242 __u16 mode; 7243 7244 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7245 continue; 7246 mode = nla_get_u16(attr); 7247 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7248 return -EINVAL; 7249 /* Continue if bridge mode is not being flipped */ 7250 if (mode == pf_sw->bridge_mode) 7251 continue; 7252 /* Iterates through the PF VSI list and update the loopback 7253 * mode of the VSI 7254 */ 7255 ice_for_each_vsi(pf, v) { 7256 if (!pf->vsi[v]) 7257 continue; 7258 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7259 if (err) 7260 return err; 7261 } 7262 7263 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7264 /* Update the unicast switch filter rules for the corresponding 7265 * switch of the netdev 7266 */ 7267 status = ice_update_sw_rule_bridge_mode(hw); 7268 if (status) { 7269 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 7270 mode, ice_stat_str(status), 7271 ice_aq_str(hw->adminq.sq_last_status)); 7272 /* revert hw->evb_veb */ 7273 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7274 return -EIO; 7275 } 7276 7277 pf_sw->bridge_mode = mode; 7278 } 7279 7280 return 0; 7281 } 7282 7283 /** 7284 * ice_tx_timeout - Respond to a Tx Hang 7285 * @netdev: network interface device structure 7286 * @txqueue: Tx queue 7287 */ 7288 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7289 { 7290 struct ice_netdev_priv *np = netdev_priv(netdev); 7291 struct ice_tx_ring *tx_ring = NULL; 7292 struct ice_vsi *vsi = np->vsi; 7293 struct ice_pf *pf = vsi->back; 7294 u32 i; 7295 7296 pf->tx_timeout_count++; 7297 7298 /* Check if PFC is enabled for the TC to which the queue belongs 7299 * to. If yes then Tx timeout is not caused by a hung queue, no 7300 * need to reset and rebuild 7301 */ 7302 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7303 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7304 txqueue); 7305 return; 7306 } 7307 7308 /* now that we have an index, find the tx_ring struct */ 7309 ice_for_each_txq(vsi, i) 7310 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7311 if (txqueue == vsi->tx_rings[i]->q_index) { 7312 tx_ring = vsi->tx_rings[i]; 7313 break; 7314 } 7315 7316 /* Reset recovery level if enough time has elapsed after last timeout. 7317 * Also ensure no new reset action happens before next timeout period. 7318 */ 7319 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7320 pf->tx_timeout_recovery_level = 1; 7321 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7322 netdev->watchdog_timeo))) 7323 return; 7324 7325 if (tx_ring) { 7326 struct ice_hw *hw = &pf->hw; 7327 u32 head, val = 0; 7328 7329 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7330 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7331 /* Read interrupt register */ 7332 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7333 7334 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7335 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7336 head, tx_ring->next_to_use, val); 7337 } 7338 7339 pf->tx_timeout_last_recovery = jiffies; 7340 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7341 pf->tx_timeout_recovery_level, txqueue); 7342 7343 switch (pf->tx_timeout_recovery_level) { 7344 case 1: 7345 set_bit(ICE_PFR_REQ, pf->state); 7346 break; 7347 case 2: 7348 set_bit(ICE_CORER_REQ, pf->state); 7349 break; 7350 case 3: 7351 set_bit(ICE_GLOBR_REQ, pf->state); 7352 break; 7353 default: 7354 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7355 set_bit(ICE_DOWN, pf->state); 7356 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7357 set_bit(ICE_SERVICE_DIS, pf->state); 7358 break; 7359 } 7360 7361 ice_service_task_schedule(pf); 7362 pf->tx_timeout_recovery_level++; 7363 } 7364 7365 /** 7366 * ice_setup_tc_cls_flower - flower classifier offloads 7367 * @np: net device to configure 7368 * @filter_dev: device on which filter is added 7369 * @cls_flower: offload data 7370 */ 7371 static int 7372 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7373 struct net_device *filter_dev, 7374 struct flow_cls_offload *cls_flower) 7375 { 7376 struct ice_vsi *vsi = np->vsi; 7377 7378 if (cls_flower->common.chain_index) 7379 return -EOPNOTSUPP; 7380 7381 switch (cls_flower->command) { 7382 case FLOW_CLS_REPLACE: 7383 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7384 case FLOW_CLS_DESTROY: 7385 return ice_del_cls_flower(vsi, cls_flower); 7386 default: 7387 return -EINVAL; 7388 } 7389 } 7390 7391 /** 7392 * ice_setup_tc_block_cb - callback handler registered for TC block 7393 * @type: TC SETUP type 7394 * @type_data: TC flower offload data that contains user input 7395 * @cb_priv: netdev private data 7396 */ 7397 static int 7398 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7399 { 7400 struct ice_netdev_priv *np = cb_priv; 7401 7402 switch (type) { 7403 case TC_SETUP_CLSFLOWER: 7404 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7405 type_data); 7406 default: 7407 return -EOPNOTSUPP; 7408 } 7409 } 7410 7411 /** 7412 * ice_validate_mqprio_qopt - Validate TCF input parameters 7413 * @vsi: Pointer to VSI 7414 * @mqprio_qopt: input parameters for mqprio queue configuration 7415 * 7416 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7417 * needed), and make sure user doesn't specify qcount and BW rate limit 7418 * for TCs, which are more than "num_tc" 7419 */ 7420 static int 7421 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7422 struct tc_mqprio_qopt_offload *mqprio_qopt) 7423 { 7424 u64 sum_max_rate = 0, sum_min_rate = 0; 7425 int non_power_of_2_qcount = 0; 7426 struct ice_pf *pf = vsi->back; 7427 int max_rss_q_cnt = 0; 7428 struct device *dev; 7429 int i, speed; 7430 u8 num_tc; 7431 7432 if (vsi->type != ICE_VSI_PF) 7433 return -EINVAL; 7434 7435 if (mqprio_qopt->qopt.offset[0] != 0 || 7436 mqprio_qopt->qopt.num_tc < 1 || 7437 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7438 return -EINVAL; 7439 7440 dev = ice_pf_to_dev(pf); 7441 vsi->ch_rss_size = 0; 7442 num_tc = mqprio_qopt->qopt.num_tc; 7443 7444 for (i = 0; num_tc; i++) { 7445 int qcount = mqprio_qopt->qopt.count[i]; 7446 u64 max_rate, min_rate, rem; 7447 7448 if (!qcount) 7449 return -EINVAL; 7450 7451 if (is_power_of_2(qcount)) { 7452 if (non_power_of_2_qcount && 7453 qcount > non_power_of_2_qcount) { 7454 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7455 qcount, non_power_of_2_qcount); 7456 return -EINVAL; 7457 } 7458 if (qcount > max_rss_q_cnt) 7459 max_rss_q_cnt = qcount; 7460 } else { 7461 if (non_power_of_2_qcount && 7462 qcount != non_power_of_2_qcount) { 7463 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7464 qcount, non_power_of_2_qcount); 7465 return -EINVAL; 7466 } 7467 if (qcount < max_rss_q_cnt) { 7468 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7469 qcount, max_rss_q_cnt); 7470 return -EINVAL; 7471 } 7472 max_rss_q_cnt = qcount; 7473 non_power_of_2_qcount = qcount; 7474 } 7475 7476 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7477 * converts the bandwidth rate limit into Bytes/s when 7478 * passing it down to the driver. So convert input bandwidth 7479 * from Bytes/s to Kbps 7480 */ 7481 max_rate = mqprio_qopt->max_rate[i]; 7482 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7483 sum_max_rate += max_rate; 7484 7485 /* min_rate is minimum guaranteed rate and it can't be zero */ 7486 min_rate = mqprio_qopt->min_rate[i]; 7487 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7488 sum_min_rate += min_rate; 7489 7490 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7491 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7492 min_rate, ICE_MIN_BW_LIMIT); 7493 return -EINVAL; 7494 } 7495 7496 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7497 if (rem) { 7498 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7499 i, ICE_MIN_BW_LIMIT); 7500 return -EINVAL; 7501 } 7502 7503 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7504 if (rem) { 7505 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7506 i, ICE_MIN_BW_LIMIT); 7507 return -EINVAL; 7508 } 7509 7510 /* min_rate can't be more than max_rate, except when max_rate 7511 * is zero (implies max_rate sought is max line rate). In such 7512 * a case min_rate can be more than max. 7513 */ 7514 if (max_rate && min_rate > max_rate) { 7515 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7516 min_rate, max_rate); 7517 return -EINVAL; 7518 } 7519 7520 if (i >= mqprio_qopt->qopt.num_tc - 1) 7521 break; 7522 if (mqprio_qopt->qopt.offset[i + 1] != 7523 (mqprio_qopt->qopt.offset[i] + qcount)) 7524 return -EINVAL; 7525 } 7526 if (vsi->num_rxq < 7527 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7528 return -EINVAL; 7529 if (vsi->num_txq < 7530 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7531 return -EINVAL; 7532 7533 speed = ice_get_link_speed_kbps(vsi); 7534 if (sum_max_rate && sum_max_rate > (u64)speed) { 7535 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7536 sum_max_rate, speed); 7537 return -EINVAL; 7538 } 7539 if (sum_min_rate && sum_min_rate > (u64)speed) { 7540 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7541 sum_min_rate, speed); 7542 return -EINVAL; 7543 } 7544 7545 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7546 vsi->ch_rss_size = max_rss_q_cnt; 7547 7548 return 0; 7549 } 7550 7551 /** 7552 * ice_add_channel - add a channel by adding VSI 7553 * @pf: ptr to PF device 7554 * @sw_id: underlying HW switching element ID 7555 * @ch: ptr to channel structure 7556 * 7557 * Add a channel (VSI) using add_vsi and queue_map 7558 */ 7559 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7560 { 7561 struct device *dev = ice_pf_to_dev(pf); 7562 struct ice_vsi *vsi; 7563 7564 if (ch->type != ICE_VSI_CHNL) { 7565 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7566 return -EINVAL; 7567 } 7568 7569 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7570 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7571 dev_err(dev, "create chnl VSI failure\n"); 7572 return -EINVAL; 7573 } 7574 7575 ch->sw_id = sw_id; 7576 ch->vsi_num = vsi->vsi_num; 7577 ch->info.mapping_flags = vsi->info.mapping_flags; 7578 ch->ch_vsi = vsi; 7579 /* set the back pointer of channel for newly created VSI */ 7580 vsi->ch = ch; 7581 7582 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7583 sizeof(vsi->info.q_mapping)); 7584 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7585 sizeof(vsi->info.tc_mapping)); 7586 7587 return 0; 7588 } 7589 7590 /** 7591 * ice_chnl_cfg_res 7592 * @vsi: the VSI being setup 7593 * @ch: ptr to channel structure 7594 * 7595 * Configure channel specific resources such as rings, vector. 7596 */ 7597 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7598 { 7599 int i; 7600 7601 for (i = 0; i < ch->num_txq; i++) { 7602 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7603 struct ice_ring_container *rc; 7604 struct ice_tx_ring *tx_ring; 7605 struct ice_rx_ring *rx_ring; 7606 7607 tx_ring = vsi->tx_rings[ch->base_q + i]; 7608 rx_ring = vsi->rx_rings[ch->base_q + i]; 7609 if (!tx_ring || !rx_ring) 7610 continue; 7611 7612 /* setup ring being channel enabled */ 7613 tx_ring->ch = ch; 7614 rx_ring->ch = ch; 7615 7616 /* following code block sets up vector specific attributes */ 7617 tx_q_vector = tx_ring->q_vector; 7618 rx_q_vector = rx_ring->q_vector; 7619 if (!tx_q_vector && !rx_q_vector) 7620 continue; 7621 7622 if (tx_q_vector) { 7623 tx_q_vector->ch = ch; 7624 /* setup Tx and Rx ITR setting if DIM is off */ 7625 rc = &tx_q_vector->tx; 7626 if (!ITR_IS_DYNAMIC(rc)) 7627 ice_write_itr(rc, rc->itr_setting); 7628 } 7629 if (rx_q_vector) { 7630 rx_q_vector->ch = ch; 7631 /* setup Tx and Rx ITR setting if DIM is off */ 7632 rc = &rx_q_vector->rx; 7633 if (!ITR_IS_DYNAMIC(rc)) 7634 ice_write_itr(rc, rc->itr_setting); 7635 } 7636 } 7637 7638 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7639 * GLINT_ITR register would have written to perform in-context 7640 * update, hence perform flush 7641 */ 7642 if (ch->num_txq || ch->num_rxq) 7643 ice_flush(&vsi->back->hw); 7644 } 7645 7646 /** 7647 * ice_cfg_chnl_all_res - configure channel resources 7648 * @vsi: pte to main_vsi 7649 * @ch: ptr to channel structure 7650 * 7651 * This function configures channel specific resources such as flow-director 7652 * counter index, and other resources such as queues, vectors, ITR settings 7653 */ 7654 static void 7655 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7656 { 7657 /* configure channel (aka ADQ) resources such as queues, vectors, 7658 * ITR settings for channel specific vectors and anything else 7659 */ 7660 ice_chnl_cfg_res(vsi, ch); 7661 } 7662 7663 /** 7664 * ice_setup_hw_channel - setup new channel 7665 * @pf: ptr to PF device 7666 * @vsi: the VSI being setup 7667 * @ch: ptr to channel structure 7668 * @sw_id: underlying HW switching element ID 7669 * @type: type of channel to be created (VMDq2/VF) 7670 * 7671 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7672 * and configures Tx rings accordingly 7673 */ 7674 static int 7675 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7676 struct ice_channel *ch, u16 sw_id, u8 type) 7677 { 7678 struct device *dev = ice_pf_to_dev(pf); 7679 int ret; 7680 7681 ch->base_q = vsi->next_base_q; 7682 ch->type = type; 7683 7684 ret = ice_add_channel(pf, sw_id, ch); 7685 if (ret) { 7686 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7687 return ret; 7688 } 7689 7690 /* configure/setup ADQ specific resources */ 7691 ice_cfg_chnl_all_res(vsi, ch); 7692 7693 /* make sure to update the next_base_q so that subsequent channel's 7694 * (aka ADQ) VSI queue map is correct 7695 */ 7696 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7697 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7698 ch->num_rxq); 7699 7700 return 0; 7701 } 7702 7703 /** 7704 * ice_setup_channel - setup new channel using uplink element 7705 * @pf: ptr to PF device 7706 * @vsi: the VSI being setup 7707 * @ch: ptr to channel structure 7708 * 7709 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7710 * and uplink switching element 7711 */ 7712 static bool 7713 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7714 struct ice_channel *ch) 7715 { 7716 struct device *dev = ice_pf_to_dev(pf); 7717 u16 sw_id; 7718 int ret; 7719 7720 if (vsi->type != ICE_VSI_PF) { 7721 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7722 return false; 7723 } 7724 7725 sw_id = pf->first_sw->sw_id; 7726 7727 /* create channel (VSI) */ 7728 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7729 if (ret) { 7730 dev_err(dev, "failed to setup hw_channel\n"); 7731 return false; 7732 } 7733 dev_dbg(dev, "successfully created channel()\n"); 7734 7735 return ch->ch_vsi ? true : false; 7736 } 7737 7738 /** 7739 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7740 * @vsi: VSI to be configured 7741 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7742 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7743 */ 7744 static int 7745 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7746 { 7747 int err; 7748 7749 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7750 if (err) 7751 return err; 7752 7753 return ice_set_max_bw_limit(vsi, max_tx_rate); 7754 } 7755 7756 /** 7757 * ice_create_q_channel - function to create channel 7758 * @vsi: VSI to be configured 7759 * @ch: ptr to channel (it contains channel specific params) 7760 * 7761 * This function creates channel (VSI) using num_queues specified by user, 7762 * reconfigs RSS if needed. 7763 */ 7764 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7765 { 7766 struct ice_pf *pf = vsi->back; 7767 struct device *dev; 7768 7769 if (!ch) 7770 return -EINVAL; 7771 7772 dev = ice_pf_to_dev(pf); 7773 if (!ch->num_txq || !ch->num_rxq) { 7774 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7775 return -EINVAL; 7776 } 7777 7778 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7779 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7780 vsi->cnt_q_avail, ch->num_txq); 7781 return -EINVAL; 7782 } 7783 7784 if (!ice_setup_channel(pf, vsi, ch)) { 7785 dev_info(dev, "Failed to setup channel\n"); 7786 return -EINVAL; 7787 } 7788 /* configure BW rate limit */ 7789 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7790 int ret; 7791 7792 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7793 ch->min_tx_rate); 7794 if (ret) 7795 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7796 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7797 else 7798 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7799 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7800 } 7801 7802 vsi->cnt_q_avail -= ch->num_txq; 7803 7804 return 0; 7805 } 7806 7807 /** 7808 * ice_rem_all_chnl_fltrs - removes all channel filters 7809 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7810 * 7811 * Remove all advanced switch filters only if they are channel specific 7812 * tc-flower based filter 7813 */ 7814 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7815 { 7816 struct ice_tc_flower_fltr *fltr; 7817 struct hlist_node *node; 7818 7819 /* to remove all channel filters, iterate an ordered list of filters */ 7820 hlist_for_each_entry_safe(fltr, node, 7821 &pf->tc_flower_fltr_list, 7822 tc_flower_node) { 7823 struct ice_rule_query_data rule; 7824 int status; 7825 7826 /* for now process only channel specific filters */ 7827 if (!ice_is_chnl_fltr(fltr)) 7828 continue; 7829 7830 rule.rid = fltr->rid; 7831 rule.rule_id = fltr->rule_id; 7832 rule.vsi_handle = fltr->dest_id; 7833 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 7834 if (status) { 7835 if (status == -ENOENT) 7836 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 7837 rule.rule_id); 7838 else 7839 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 7840 status); 7841 } else if (fltr->dest_vsi) { 7842 /* update advanced switch filter count */ 7843 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 7844 u32 flags = fltr->flags; 7845 7846 fltr->dest_vsi->num_chnl_fltr--; 7847 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 7848 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 7849 pf->num_dmac_chnl_fltrs--; 7850 } 7851 } 7852 7853 hlist_del(&fltr->tc_flower_node); 7854 kfree(fltr); 7855 } 7856 } 7857 7858 /** 7859 * ice_remove_q_channels - Remove queue channels for the TCs 7860 * @vsi: VSI to be configured 7861 * @rem_fltr: delete advanced switch filter or not 7862 * 7863 * Remove queue channels for the TCs 7864 */ 7865 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 7866 { 7867 struct ice_channel *ch, *ch_tmp; 7868 struct ice_pf *pf = vsi->back; 7869 int i; 7870 7871 /* remove all tc-flower based filter if they are channel filters only */ 7872 if (rem_fltr) 7873 ice_rem_all_chnl_fltrs(pf); 7874 7875 /* perform cleanup for channels if they exist */ 7876 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 7877 struct ice_vsi *ch_vsi; 7878 7879 list_del(&ch->list); 7880 ch_vsi = ch->ch_vsi; 7881 if (!ch_vsi) { 7882 kfree(ch); 7883 continue; 7884 } 7885 7886 /* Reset queue contexts */ 7887 for (i = 0; i < ch->num_rxq; i++) { 7888 struct ice_tx_ring *tx_ring; 7889 struct ice_rx_ring *rx_ring; 7890 7891 tx_ring = vsi->tx_rings[ch->base_q + i]; 7892 rx_ring = vsi->rx_rings[ch->base_q + i]; 7893 if (tx_ring) { 7894 tx_ring->ch = NULL; 7895 if (tx_ring->q_vector) 7896 tx_ring->q_vector->ch = NULL; 7897 } 7898 if (rx_ring) { 7899 rx_ring->ch = NULL; 7900 if (rx_ring->q_vector) 7901 rx_ring->q_vector->ch = NULL; 7902 } 7903 } 7904 7905 /* clear the VSI from scheduler tree */ 7906 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 7907 7908 /* Delete VSI from FW */ 7909 ice_vsi_delete(ch->ch_vsi); 7910 7911 /* Delete VSI from PF and HW VSI arrays */ 7912 ice_vsi_clear(ch->ch_vsi); 7913 7914 /* free the channel */ 7915 kfree(ch); 7916 } 7917 7918 /* clear the channel VSI map which is stored in main VSI */ 7919 ice_for_each_chnl_tc(i) 7920 vsi->tc_map_vsi[i] = NULL; 7921 7922 /* reset main VSI's all TC information */ 7923 vsi->all_enatc = 0; 7924 vsi->all_numtc = 0; 7925 } 7926 7927 /** 7928 * ice_rebuild_channels - rebuild channel 7929 * @pf: ptr to PF 7930 * 7931 * Recreate channel VSIs and replay filters 7932 */ 7933 static int ice_rebuild_channels(struct ice_pf *pf) 7934 { 7935 struct device *dev = ice_pf_to_dev(pf); 7936 struct ice_vsi *main_vsi; 7937 bool rem_adv_fltr = true; 7938 struct ice_channel *ch; 7939 struct ice_vsi *vsi; 7940 int tc_idx = 1; 7941 int i, err; 7942 7943 main_vsi = ice_get_main_vsi(pf); 7944 if (!main_vsi) 7945 return 0; 7946 7947 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 7948 main_vsi->old_numtc == 1) 7949 return 0; /* nothing to be done */ 7950 7951 /* reconfigure main VSI based on old value of TC and cached values 7952 * for MQPRIO opts 7953 */ 7954 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 7955 if (err) { 7956 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 7957 main_vsi->old_ena_tc, main_vsi->vsi_num); 7958 return err; 7959 } 7960 7961 /* rebuild ADQ VSIs */ 7962 ice_for_each_vsi(pf, i) { 7963 enum ice_vsi_type type; 7964 7965 vsi = pf->vsi[i]; 7966 if (!vsi || vsi->type != ICE_VSI_CHNL) 7967 continue; 7968 7969 type = vsi->type; 7970 7971 /* rebuild ADQ VSI */ 7972 err = ice_vsi_rebuild(vsi, true); 7973 if (err) { 7974 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 7975 ice_vsi_type_str(type), vsi->idx, err); 7976 goto cleanup; 7977 } 7978 7979 /* Re-map HW VSI number, using VSI handle that has been 7980 * previously validated in ice_replay_vsi() call above 7981 */ 7982 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7983 7984 /* replay filters for the VSI */ 7985 err = ice_replay_vsi(&pf->hw, vsi->idx); 7986 if (err) { 7987 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 7988 ice_vsi_type_str(type), err, vsi->idx); 7989 rem_adv_fltr = false; 7990 goto cleanup; 7991 } 7992 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 7993 ice_vsi_type_str(type), vsi->idx); 7994 7995 /* store ADQ VSI at correct TC index in main VSI's 7996 * map of TC to VSI 7997 */ 7998 main_vsi->tc_map_vsi[tc_idx++] = vsi; 7999 } 8000 8001 /* ADQ VSI(s) has been rebuilt successfully, so setup 8002 * channel for main VSI's Tx and Rx rings 8003 */ 8004 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8005 struct ice_vsi *ch_vsi; 8006 8007 ch_vsi = ch->ch_vsi; 8008 if (!ch_vsi) 8009 continue; 8010 8011 /* reconfig channel resources */ 8012 ice_cfg_chnl_all_res(main_vsi, ch); 8013 8014 /* replay BW rate limit if it is non-zero */ 8015 if (!ch->max_tx_rate && !ch->min_tx_rate) 8016 continue; 8017 8018 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8019 ch->min_tx_rate); 8020 if (err) 8021 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8022 err, ch->max_tx_rate, ch->min_tx_rate, 8023 ch_vsi->vsi_num); 8024 else 8025 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8026 ch->max_tx_rate, ch->min_tx_rate, 8027 ch_vsi->vsi_num); 8028 } 8029 8030 /* reconfig RSS for main VSI */ 8031 if (main_vsi->ch_rss_size) 8032 ice_vsi_cfg_rss_lut_key(main_vsi); 8033 8034 return 0; 8035 8036 cleanup: 8037 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8038 return err; 8039 } 8040 8041 /** 8042 * ice_create_q_channels - Add queue channel for the given TCs 8043 * @vsi: VSI to be configured 8044 * 8045 * Configures queue channel mapping to the given TCs 8046 */ 8047 static int ice_create_q_channels(struct ice_vsi *vsi) 8048 { 8049 struct ice_pf *pf = vsi->back; 8050 struct ice_channel *ch; 8051 int ret = 0, i; 8052 8053 ice_for_each_chnl_tc(i) { 8054 if (!(vsi->all_enatc & BIT(i))) 8055 continue; 8056 8057 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8058 if (!ch) { 8059 ret = -ENOMEM; 8060 goto err_free; 8061 } 8062 INIT_LIST_HEAD(&ch->list); 8063 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8064 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8065 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8066 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8067 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8068 8069 /* convert to Kbits/s */ 8070 if (ch->max_tx_rate) 8071 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8072 ICE_BW_KBPS_DIVISOR); 8073 if (ch->min_tx_rate) 8074 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8075 ICE_BW_KBPS_DIVISOR); 8076 8077 ret = ice_create_q_channel(vsi, ch); 8078 if (ret) { 8079 dev_err(ice_pf_to_dev(pf), 8080 "failed creating channel TC:%d\n", i); 8081 kfree(ch); 8082 goto err_free; 8083 } 8084 list_add_tail(&ch->list, &vsi->ch_list); 8085 vsi->tc_map_vsi[i] = ch->ch_vsi; 8086 dev_dbg(ice_pf_to_dev(pf), 8087 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8088 } 8089 return 0; 8090 8091 err_free: 8092 ice_remove_q_channels(vsi, false); 8093 8094 return ret; 8095 } 8096 8097 /** 8098 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8099 * @netdev: net device to configure 8100 * @type_data: TC offload data 8101 */ 8102 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8103 { 8104 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8105 struct ice_netdev_priv *np = netdev_priv(netdev); 8106 struct ice_vsi *vsi = np->vsi; 8107 struct ice_pf *pf = vsi->back; 8108 u16 mode, ena_tc_qdisc = 0; 8109 int cur_txq, cur_rxq; 8110 u8 hw = 0, num_tcf; 8111 struct device *dev; 8112 int ret, i; 8113 8114 dev = ice_pf_to_dev(pf); 8115 num_tcf = mqprio_qopt->qopt.num_tc; 8116 hw = mqprio_qopt->qopt.hw; 8117 mode = mqprio_qopt->mode; 8118 if (!hw) { 8119 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8120 vsi->ch_rss_size = 0; 8121 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8122 goto config_tcf; 8123 } 8124 8125 /* Generate queue region map for number of TCF requested */ 8126 for (i = 0; i < num_tcf; i++) 8127 ena_tc_qdisc |= BIT(i); 8128 8129 switch (mode) { 8130 case TC_MQPRIO_MODE_CHANNEL: 8131 8132 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8133 if (ret) { 8134 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8135 ret); 8136 return ret; 8137 } 8138 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8139 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8140 /* don't assume state of hw_tc_offload during driver load 8141 * and set the flag for TC flower filter if hw_tc_offload 8142 * already ON 8143 */ 8144 if (vsi->netdev->features & NETIF_F_HW_TC) 8145 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8146 break; 8147 default: 8148 return -EINVAL; 8149 } 8150 8151 config_tcf: 8152 8153 /* Requesting same TCF configuration as already enabled */ 8154 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8155 mode != TC_MQPRIO_MODE_CHANNEL) 8156 return 0; 8157 8158 /* Pause VSI queues */ 8159 ice_dis_vsi(vsi, true); 8160 8161 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8162 ice_remove_q_channels(vsi, true); 8163 8164 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8165 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8166 num_online_cpus()); 8167 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8168 num_online_cpus()); 8169 } else { 8170 /* logic to rebuild VSI, same like ethtool -L */ 8171 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8172 8173 for (i = 0; i < num_tcf; i++) { 8174 if (!(ena_tc_qdisc & BIT(i))) 8175 continue; 8176 8177 offset = vsi->mqprio_qopt.qopt.offset[i]; 8178 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8179 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8180 } 8181 vsi->req_txq = offset + qcount_tx; 8182 vsi->req_rxq = offset + qcount_rx; 8183 8184 /* store away original rss_size info, so that it gets reused 8185 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8186 * determine, what should be the rss_sizefor main VSI 8187 */ 8188 vsi->orig_rss_size = vsi->rss_size; 8189 } 8190 8191 /* save current values of Tx and Rx queues before calling VSI rebuild 8192 * for fallback option 8193 */ 8194 cur_txq = vsi->num_txq; 8195 cur_rxq = vsi->num_rxq; 8196 8197 /* proceed with rebuild main VSI using correct number of queues */ 8198 ret = ice_vsi_rebuild(vsi, false); 8199 if (ret) { 8200 /* fallback to current number of queues */ 8201 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8202 vsi->req_txq = cur_txq; 8203 vsi->req_rxq = cur_rxq; 8204 clear_bit(ICE_RESET_FAILED, pf->state); 8205 if (ice_vsi_rebuild(vsi, false)) { 8206 dev_err(dev, "Rebuild of main VSI failed again\n"); 8207 return ret; 8208 } 8209 } 8210 8211 vsi->all_numtc = num_tcf; 8212 vsi->all_enatc = ena_tc_qdisc; 8213 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8214 if (ret) { 8215 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8216 vsi->vsi_num); 8217 goto exit; 8218 } 8219 8220 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8221 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8222 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8223 8224 /* set TC0 rate limit if specified */ 8225 if (max_tx_rate || min_tx_rate) { 8226 /* convert to Kbits/s */ 8227 if (max_tx_rate) 8228 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8229 if (min_tx_rate) 8230 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8231 8232 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8233 if (!ret) { 8234 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8235 max_tx_rate, min_tx_rate, vsi->vsi_num); 8236 } else { 8237 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8238 max_tx_rate, min_tx_rate, vsi->vsi_num); 8239 goto exit; 8240 } 8241 } 8242 ret = ice_create_q_channels(vsi); 8243 if (ret) { 8244 netdev_err(netdev, "failed configuring queue channels\n"); 8245 goto exit; 8246 } else { 8247 netdev_dbg(netdev, "successfully configured channels\n"); 8248 } 8249 } 8250 8251 if (vsi->ch_rss_size) 8252 ice_vsi_cfg_rss_lut_key(vsi); 8253 8254 exit: 8255 /* if error, reset the all_numtc and all_enatc */ 8256 if (ret) { 8257 vsi->all_numtc = 0; 8258 vsi->all_enatc = 0; 8259 } 8260 /* resume VSI */ 8261 ice_ena_vsi(vsi, true); 8262 8263 return ret; 8264 } 8265 8266 static LIST_HEAD(ice_block_cb_list); 8267 8268 static int 8269 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8270 void *type_data) 8271 { 8272 struct ice_netdev_priv *np = netdev_priv(netdev); 8273 struct ice_pf *pf = np->vsi->back; 8274 int err; 8275 8276 switch (type) { 8277 case TC_SETUP_BLOCK: 8278 return flow_block_cb_setup_simple(type_data, 8279 &ice_block_cb_list, 8280 ice_setup_tc_block_cb, 8281 np, np, true); 8282 case TC_SETUP_QDISC_MQPRIO: 8283 /* setup traffic classifier for receive side */ 8284 mutex_lock(&pf->tc_mutex); 8285 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8286 mutex_unlock(&pf->tc_mutex); 8287 return err; 8288 default: 8289 return -EOPNOTSUPP; 8290 } 8291 return -EOPNOTSUPP; 8292 } 8293 8294 static struct ice_indr_block_priv * 8295 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8296 struct net_device *netdev) 8297 { 8298 struct ice_indr_block_priv *cb_priv; 8299 8300 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8301 if (!cb_priv->netdev) 8302 return NULL; 8303 if (cb_priv->netdev == netdev) 8304 return cb_priv; 8305 } 8306 return NULL; 8307 } 8308 8309 static int 8310 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8311 void *indr_priv) 8312 { 8313 struct ice_indr_block_priv *priv = indr_priv; 8314 struct ice_netdev_priv *np = priv->np; 8315 8316 switch (type) { 8317 case TC_SETUP_CLSFLOWER: 8318 return ice_setup_tc_cls_flower(np, priv->netdev, 8319 (struct flow_cls_offload *) 8320 type_data); 8321 default: 8322 return -EOPNOTSUPP; 8323 } 8324 } 8325 8326 static int 8327 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8328 struct ice_netdev_priv *np, 8329 struct flow_block_offload *f, void *data, 8330 void (*cleanup)(struct flow_block_cb *block_cb)) 8331 { 8332 struct ice_indr_block_priv *indr_priv; 8333 struct flow_block_cb *block_cb; 8334 8335 if (!ice_is_tunnel_supported(netdev) && 8336 !(is_vlan_dev(netdev) && 8337 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8338 return -EOPNOTSUPP; 8339 8340 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8341 return -EOPNOTSUPP; 8342 8343 switch (f->command) { 8344 case FLOW_BLOCK_BIND: 8345 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8346 if (indr_priv) 8347 return -EEXIST; 8348 8349 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8350 if (!indr_priv) 8351 return -ENOMEM; 8352 8353 indr_priv->netdev = netdev; 8354 indr_priv->np = np; 8355 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8356 8357 block_cb = 8358 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8359 indr_priv, indr_priv, 8360 ice_rep_indr_tc_block_unbind, 8361 f, netdev, sch, data, np, 8362 cleanup); 8363 8364 if (IS_ERR(block_cb)) { 8365 list_del(&indr_priv->list); 8366 kfree(indr_priv); 8367 return PTR_ERR(block_cb); 8368 } 8369 flow_block_cb_add(block_cb, f); 8370 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8371 break; 8372 case FLOW_BLOCK_UNBIND: 8373 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8374 if (!indr_priv) 8375 return -ENOENT; 8376 8377 block_cb = flow_block_cb_lookup(f->block, 8378 ice_indr_setup_block_cb, 8379 indr_priv); 8380 if (!block_cb) 8381 return -ENOENT; 8382 8383 flow_indr_block_cb_remove(block_cb, f); 8384 8385 list_del(&block_cb->driver_list); 8386 break; 8387 default: 8388 return -EOPNOTSUPP; 8389 } 8390 return 0; 8391 } 8392 8393 static int 8394 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8395 void *cb_priv, enum tc_setup_type type, void *type_data, 8396 void *data, 8397 void (*cleanup)(struct flow_block_cb *block_cb)) 8398 { 8399 switch (type) { 8400 case TC_SETUP_BLOCK: 8401 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8402 data, cleanup); 8403 8404 default: 8405 return -EOPNOTSUPP; 8406 } 8407 } 8408 8409 /** 8410 * ice_open - Called when a network interface becomes active 8411 * @netdev: network interface device structure 8412 * 8413 * The open entry point is called when a network interface is made 8414 * active by the system (IFF_UP). At this point all resources needed 8415 * for transmit and receive operations are allocated, the interrupt 8416 * handler is registered with the OS, the netdev watchdog is enabled, 8417 * and the stack is notified that the interface is ready. 8418 * 8419 * Returns 0 on success, negative value on failure 8420 */ 8421 int ice_open(struct net_device *netdev) 8422 { 8423 struct ice_netdev_priv *np = netdev_priv(netdev); 8424 struct ice_pf *pf = np->vsi->back; 8425 8426 if (ice_is_reset_in_progress(pf->state)) { 8427 netdev_err(netdev, "can't open net device while reset is in progress"); 8428 return -EBUSY; 8429 } 8430 8431 return ice_open_internal(netdev); 8432 } 8433 8434 /** 8435 * ice_open_internal - Called when a network interface becomes active 8436 * @netdev: network interface device structure 8437 * 8438 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8439 * handling routine 8440 * 8441 * Returns 0 on success, negative value on failure 8442 */ 8443 int ice_open_internal(struct net_device *netdev) 8444 { 8445 struct ice_netdev_priv *np = netdev_priv(netdev); 8446 struct ice_vsi *vsi = np->vsi; 8447 struct ice_pf *pf = vsi->back; 8448 struct ice_port_info *pi; 8449 enum ice_status status; 8450 int err; 8451 8452 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8453 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8454 return -EIO; 8455 } 8456 8457 netif_carrier_off(netdev); 8458 8459 pi = vsi->port_info; 8460 status = ice_update_link_info(pi); 8461 if (status) { 8462 netdev_err(netdev, "Failed to get link info, error %s\n", 8463 ice_stat_str(status)); 8464 return -EIO; 8465 } 8466 8467 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8468 8469 /* Set PHY if there is media, otherwise, turn off PHY */ 8470 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8471 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8472 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8473 err = ice_init_phy_user_cfg(pi); 8474 if (err) { 8475 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8476 err); 8477 return err; 8478 } 8479 } 8480 8481 err = ice_configure_phy(vsi); 8482 if (err) { 8483 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8484 err); 8485 return err; 8486 } 8487 } else { 8488 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8489 ice_set_link(vsi, false); 8490 } 8491 8492 err = ice_vsi_open(vsi); 8493 if (err) 8494 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8495 vsi->vsi_num, vsi->vsw->sw_id); 8496 8497 /* Update existing tunnels information */ 8498 udp_tunnel_get_rx_info(netdev); 8499 8500 return err; 8501 } 8502 8503 /** 8504 * ice_stop - Disables a network interface 8505 * @netdev: network interface device structure 8506 * 8507 * The stop entry point is called when an interface is de-activated by the OS, 8508 * and the netdevice enters the DOWN state. The hardware is still under the 8509 * driver's control, but the netdev interface is disabled. 8510 * 8511 * Returns success only - not allowed to fail 8512 */ 8513 int ice_stop(struct net_device *netdev) 8514 { 8515 struct ice_netdev_priv *np = netdev_priv(netdev); 8516 struct ice_vsi *vsi = np->vsi; 8517 struct ice_pf *pf = vsi->back; 8518 8519 if (ice_is_reset_in_progress(pf->state)) { 8520 netdev_err(netdev, "can't stop net device while reset is in progress"); 8521 return -EBUSY; 8522 } 8523 8524 ice_vsi_close(vsi); 8525 8526 return 0; 8527 } 8528 8529 /** 8530 * ice_features_check - Validate encapsulated packet conforms to limits 8531 * @skb: skb buffer 8532 * @netdev: This port's netdev 8533 * @features: Offload features that the stack believes apply 8534 */ 8535 static netdev_features_t 8536 ice_features_check(struct sk_buff *skb, 8537 struct net_device __always_unused *netdev, 8538 netdev_features_t features) 8539 { 8540 size_t len; 8541 8542 /* No point in doing any of this if neither checksum nor GSO are 8543 * being requested for this frame. We can rule out both by just 8544 * checking for CHECKSUM_PARTIAL 8545 */ 8546 if (skb->ip_summed != CHECKSUM_PARTIAL) 8547 return features; 8548 8549 /* We cannot support GSO if the MSS is going to be less than 8550 * 64 bytes. If it is then we need to drop support for GSO. 8551 */ 8552 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 8553 features &= ~NETIF_F_GSO_MASK; 8554 8555 len = skb_network_header(skb) - skb->data; 8556 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8557 goto out_rm_features; 8558 8559 len = skb_transport_header(skb) - skb_network_header(skb); 8560 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8561 goto out_rm_features; 8562 8563 if (skb->encapsulation) { 8564 len = skb_inner_network_header(skb) - skb_transport_header(skb); 8565 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8566 goto out_rm_features; 8567 8568 len = skb_inner_transport_header(skb) - 8569 skb_inner_network_header(skb); 8570 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8571 goto out_rm_features; 8572 } 8573 8574 return features; 8575 out_rm_features: 8576 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8577 } 8578 8579 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8580 .ndo_open = ice_open, 8581 .ndo_stop = ice_stop, 8582 .ndo_start_xmit = ice_start_xmit, 8583 .ndo_set_mac_address = ice_set_mac_address, 8584 .ndo_validate_addr = eth_validate_addr, 8585 .ndo_change_mtu = ice_change_mtu, 8586 .ndo_get_stats64 = ice_get_stats64, 8587 .ndo_tx_timeout = ice_tx_timeout, 8588 .ndo_bpf = ice_xdp_safe_mode, 8589 }; 8590 8591 static const struct net_device_ops ice_netdev_ops = { 8592 .ndo_open = ice_open, 8593 .ndo_stop = ice_stop, 8594 .ndo_start_xmit = ice_start_xmit, 8595 .ndo_select_queue = ice_select_queue, 8596 .ndo_features_check = ice_features_check, 8597 .ndo_set_rx_mode = ice_set_rx_mode, 8598 .ndo_set_mac_address = ice_set_mac_address, 8599 .ndo_validate_addr = eth_validate_addr, 8600 .ndo_change_mtu = ice_change_mtu, 8601 .ndo_get_stats64 = ice_get_stats64, 8602 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8603 .ndo_eth_ioctl = ice_eth_ioctl, 8604 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8605 .ndo_set_vf_mac = ice_set_vf_mac, 8606 .ndo_get_vf_config = ice_get_vf_cfg, 8607 .ndo_set_vf_trust = ice_set_vf_trust, 8608 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8609 .ndo_set_vf_link_state = ice_set_vf_link_state, 8610 .ndo_get_vf_stats = ice_get_vf_stats, 8611 .ndo_set_vf_rate = ice_set_vf_bw, 8612 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8613 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8614 .ndo_setup_tc = ice_setup_tc, 8615 .ndo_set_features = ice_set_features, 8616 .ndo_bridge_getlink = ice_bridge_getlink, 8617 .ndo_bridge_setlink = ice_bridge_setlink, 8618 .ndo_fdb_add = ice_fdb_add, 8619 .ndo_fdb_del = ice_fdb_del, 8620 #ifdef CONFIG_RFS_ACCEL 8621 .ndo_rx_flow_steer = ice_rx_flow_steer, 8622 #endif 8623 .ndo_tx_timeout = ice_tx_timeout, 8624 .ndo_bpf = ice_xdp, 8625 .ndo_xdp_xmit = ice_xdp_xmit, 8626 .ndo_xsk_wakeup = ice_xsk_wakeup, 8627 }; 8628