xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 3494bec0f6ac8ac06e0ad7c35933db345b2c5a83)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "ice.h"
9 #include "ice_base.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include "ice_dcb_nl.h"
13 
14 #define DRV_VERSION_MAJOR 0
15 #define DRV_VERSION_MINOR 8
16 #define DRV_VERSION_BUILD 2
17 
18 #define DRV_VERSION	__stringify(DRV_VERSION_MAJOR) "." \
19 			__stringify(DRV_VERSION_MINOR) "." \
20 			__stringify(DRV_VERSION_BUILD) "-k"
21 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
22 const char ice_drv_ver[] = DRV_VERSION;
23 static const char ice_driver_string[] = DRV_SUMMARY;
24 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
25 
26 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
27 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
28 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
29 
30 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
31 MODULE_DESCRIPTION(DRV_SUMMARY);
32 MODULE_LICENSE("GPL v2");
33 MODULE_VERSION(DRV_VERSION);
34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
35 
36 static int debug = -1;
37 module_param(debug, int, 0644);
38 #ifndef CONFIG_DYNAMIC_DEBUG
39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
40 #else
41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
42 #endif /* !CONFIG_DYNAMIC_DEBUG */
43 
44 static struct workqueue_struct *ice_wq;
45 static const struct net_device_ops ice_netdev_safe_mode_ops;
46 static const struct net_device_ops ice_netdev_ops;
47 static int ice_vsi_open(struct ice_vsi *vsi);
48 
49 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
50 
51 static void ice_vsi_release_all(struct ice_pf *pf);
52 
53 /**
54  * ice_get_tx_pending - returns number of Tx descriptors not processed
55  * @ring: the ring of descriptors
56  */
57 static u16 ice_get_tx_pending(struct ice_ring *ring)
58 {
59 	u16 head, tail;
60 
61 	head = ring->next_to_clean;
62 	tail = ring->next_to_use;
63 
64 	if (head != tail)
65 		return (head < tail) ?
66 			tail - head : (tail + ring->count - head);
67 	return 0;
68 }
69 
70 /**
71  * ice_check_for_hang_subtask - check for and recover hung queues
72  * @pf: pointer to PF struct
73  */
74 static void ice_check_for_hang_subtask(struct ice_pf *pf)
75 {
76 	struct ice_vsi *vsi = NULL;
77 	struct ice_hw *hw;
78 	unsigned int i;
79 	int packets;
80 	u32 v;
81 
82 	ice_for_each_vsi(pf, v)
83 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
84 			vsi = pf->vsi[v];
85 			break;
86 		}
87 
88 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
89 		return;
90 
91 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
92 		return;
93 
94 	hw = &vsi->back->hw;
95 
96 	for (i = 0; i < vsi->num_txq; i++) {
97 		struct ice_ring *tx_ring = vsi->tx_rings[i];
98 
99 		if (tx_ring && tx_ring->desc) {
100 			/* If packet counter has not changed the queue is
101 			 * likely stalled, so force an interrupt for this
102 			 * queue.
103 			 *
104 			 * prev_pkt would be negative if there was no
105 			 * pending work.
106 			 */
107 			packets = tx_ring->stats.pkts & INT_MAX;
108 			if (tx_ring->tx_stats.prev_pkt == packets) {
109 				/* Trigger sw interrupt to revive the queue */
110 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
111 				continue;
112 			}
113 
114 			/* Memory barrier between read of packet count and call
115 			 * to ice_get_tx_pending()
116 			 */
117 			smp_rmb();
118 			tx_ring->tx_stats.prev_pkt =
119 			    ice_get_tx_pending(tx_ring) ? packets : -1;
120 		}
121 	}
122 }
123 
124 /**
125  * ice_init_mac_fltr - Set initial MAC filters
126  * @pf: board private structure
127  *
128  * Set initial set of MAC filters for PF VSI; configure filters for permanent
129  * address and broadcast address. If an error is encountered, netdevice will be
130  * unregistered.
131  */
132 static int ice_init_mac_fltr(struct ice_pf *pf)
133 {
134 	enum ice_status status;
135 	u8 broadcast[ETH_ALEN];
136 	struct ice_vsi *vsi;
137 
138 	vsi = ice_get_main_vsi(pf);
139 	if (!vsi)
140 		return -EINVAL;
141 
142 	/* To add a MAC filter, first add the MAC to a list and then
143 	 * pass the list to ice_add_mac.
144 	 */
145 
146 	 /* Add a unicast MAC filter so the VSI can get its packets */
147 	status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
148 	if (status)
149 		goto unregister;
150 
151 	/* VSI needs to receive broadcast traffic, so add the broadcast
152 	 * MAC address to the list as well.
153 	 */
154 	eth_broadcast_addr(broadcast);
155 	status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
156 	if (status)
157 		goto unregister;
158 
159 	return 0;
160 unregister:
161 	/* We aren't useful with no MAC filters, so unregister if we
162 	 * had an error
163 	 */
164 	if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
165 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %d. Unregistering device\n",
166 			status);
167 		unregister_netdev(vsi->netdev);
168 		free_netdev(vsi->netdev);
169 		vsi->netdev = NULL;
170 	}
171 
172 	return -EIO;
173 }
174 
175 /**
176  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
177  * @netdev: the net device on which the sync is happening
178  * @addr: MAC address to sync
179  *
180  * This is a callback function which is called by the in kernel device sync
181  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
182  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
183  * MAC filters from the hardware.
184  */
185 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
186 {
187 	struct ice_netdev_priv *np = netdev_priv(netdev);
188 	struct ice_vsi *vsi = np->vsi;
189 
190 	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /**
197  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
198  * @netdev: the net device on which the unsync is happening
199  * @addr: MAC address to unsync
200  *
201  * This is a callback function which is called by the in kernel device unsync
202  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
203  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
204  * delete the MAC filters from the hardware.
205  */
206 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
207 {
208 	struct ice_netdev_priv *np = netdev_priv(netdev);
209 	struct ice_vsi *vsi = np->vsi;
210 
211 	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
212 		return -EINVAL;
213 
214 	return 0;
215 }
216 
217 /**
218  * ice_vsi_fltr_changed - check if filter state changed
219  * @vsi: VSI to be checked
220  *
221  * returns true if filter state has changed, false otherwise.
222  */
223 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
224 {
225 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
226 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
227 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
228 }
229 
230 /**
231  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
232  * @vsi: the VSI being configured
233  * @promisc_m: mask of promiscuous config bits
234  * @set_promisc: enable or disable promisc flag request
235  *
236  */
237 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
238 {
239 	struct ice_hw *hw = &vsi->back->hw;
240 	enum ice_status status = 0;
241 
242 	if (vsi->type != ICE_VSI_PF)
243 		return 0;
244 
245 	if (vsi->vlan_ena) {
246 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
247 						  set_promisc);
248 	} else {
249 		if (set_promisc)
250 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
251 						     0);
252 		else
253 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
254 						       0);
255 	}
256 
257 	if (status)
258 		return -EIO;
259 
260 	return 0;
261 }
262 
263 /**
264  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
265  * @vsi: ptr to the VSI
266  *
267  * Push any outstanding VSI filter changes through the AdminQ.
268  */
269 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
270 {
271 	struct device *dev = ice_pf_to_dev(vsi->back);
272 	struct net_device *netdev = vsi->netdev;
273 	bool promisc_forced_on = false;
274 	struct ice_pf *pf = vsi->back;
275 	struct ice_hw *hw = &pf->hw;
276 	enum ice_status status = 0;
277 	u32 changed_flags = 0;
278 	u8 promisc_m;
279 	int err = 0;
280 
281 	if (!vsi->netdev)
282 		return -EINVAL;
283 
284 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
285 		usleep_range(1000, 2000);
286 
287 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
288 	vsi->current_netdev_flags = vsi->netdev->flags;
289 
290 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
291 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
292 
293 	if (ice_vsi_fltr_changed(vsi)) {
294 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
295 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
296 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
297 
298 		/* grab the netdev's addr_list_lock */
299 		netif_addr_lock_bh(netdev);
300 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
301 			      ice_add_mac_to_unsync_list);
302 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
303 			      ice_add_mac_to_unsync_list);
304 		/* our temp lists are populated. release lock */
305 		netif_addr_unlock_bh(netdev);
306 	}
307 
308 	/* Remove MAC addresses in the unsync list */
309 	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
310 	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
311 	if (status) {
312 		netdev_err(netdev, "Failed to delete MAC filters\n");
313 		/* if we failed because of alloc failures, just bail */
314 		if (status == ICE_ERR_NO_MEMORY) {
315 			err = -ENOMEM;
316 			goto out;
317 		}
318 	}
319 
320 	/* Add MAC addresses in the sync list */
321 	status = ice_add_mac(hw, &vsi->tmp_sync_list);
322 	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
323 	/* If filter is added successfully or already exists, do not go into
324 	 * 'if' condition and report it as error. Instead continue processing
325 	 * rest of the function.
326 	 */
327 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
328 		netdev_err(netdev, "Failed to add MAC filters\n");
329 		/* If there is no more space for new umac filters, VSI
330 		 * should go into promiscuous mode. There should be some
331 		 * space reserved for promiscuous filters.
332 		 */
333 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
334 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
335 				      vsi->state)) {
336 			promisc_forced_on = true;
337 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
338 				    vsi->vsi_num);
339 		} else {
340 			err = -EIO;
341 			goto out;
342 		}
343 	}
344 	/* check for changes in promiscuous modes */
345 	if (changed_flags & IFF_ALLMULTI) {
346 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
347 			if (vsi->vlan_ena)
348 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
349 			else
350 				promisc_m = ICE_MCAST_PROMISC_BITS;
351 
352 			err = ice_cfg_promisc(vsi, promisc_m, true);
353 			if (err) {
354 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
355 					   vsi->vsi_num);
356 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
357 				goto out_promisc;
358 			}
359 		} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
360 			if (vsi->vlan_ena)
361 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
362 			else
363 				promisc_m = ICE_MCAST_PROMISC_BITS;
364 
365 			err = ice_cfg_promisc(vsi, promisc_m, false);
366 			if (err) {
367 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
368 					   vsi->vsi_num);
369 				vsi->current_netdev_flags |= IFF_ALLMULTI;
370 				goto out_promisc;
371 			}
372 		}
373 	}
374 
375 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
376 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
377 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
378 		if (vsi->current_netdev_flags & IFF_PROMISC) {
379 			/* Apply Rx filter rule to get traffic from wire */
380 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
381 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
382 				if (err && err != -EEXIST) {
383 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
384 						   err, vsi->vsi_num);
385 					vsi->current_netdev_flags &=
386 						~IFF_PROMISC;
387 					goto out_promisc;
388 				}
389 			}
390 		} else {
391 			/* Clear Rx filter to remove traffic from wire */
392 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
393 				err = ice_clear_dflt_vsi(pf->first_sw);
394 				if (err) {
395 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
396 						   err, vsi->vsi_num);
397 					vsi->current_netdev_flags |=
398 						IFF_PROMISC;
399 					goto out_promisc;
400 				}
401 			}
402 		}
403 	}
404 	goto exit;
405 
406 out_promisc:
407 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
408 	goto exit;
409 out:
410 	/* if something went wrong then set the changed flag so we try again */
411 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
412 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
413 exit:
414 	clear_bit(__ICE_CFG_BUSY, vsi->state);
415 	return err;
416 }
417 
418 /**
419  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
420  * @pf: board private structure
421  */
422 static void ice_sync_fltr_subtask(struct ice_pf *pf)
423 {
424 	int v;
425 
426 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
427 		return;
428 
429 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 
431 	ice_for_each_vsi(pf, v)
432 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
433 		    ice_vsi_sync_fltr(pf->vsi[v])) {
434 			/* come back and try again later */
435 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
436 			break;
437 		}
438 }
439 
440 /**
441  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
442  * @pf: the PF
443  * @locked: is the rtnl_lock already held
444  */
445 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
446 {
447 	int v;
448 
449 	ice_for_each_vsi(pf, v)
450 		if (pf->vsi[v])
451 			ice_dis_vsi(pf->vsi[v], locked);
452 }
453 
454 /**
455  * ice_prepare_for_reset - prep for the core to reset
456  * @pf: board private structure
457  *
458  * Inform or close all dependent features in prep for reset.
459  */
460 static void
461 ice_prepare_for_reset(struct ice_pf *pf)
462 {
463 	struct ice_hw *hw = &pf->hw;
464 	int i;
465 
466 	/* already prepared for reset */
467 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
468 		return;
469 
470 	/* Notify VFs of impending reset */
471 	if (ice_check_sq_alive(hw, &hw->mailboxq))
472 		ice_vc_notify_reset(pf);
473 
474 	/* Disable VFs until reset is completed */
475 	ice_for_each_vf(pf, i)
476 		ice_set_vf_state_qs_dis(&pf->vf[i]);
477 
478 	/* clear SW filtering DB */
479 	ice_clear_hw_tbls(hw);
480 	/* disable the VSIs and their queues that are not already DOWN */
481 	ice_pf_dis_all_vsi(pf, false);
482 
483 	if (hw->port_info)
484 		ice_sched_clear_port(hw->port_info);
485 
486 	ice_shutdown_all_ctrlq(hw);
487 
488 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
489 }
490 
491 /**
492  * ice_do_reset - Initiate one of many types of resets
493  * @pf: board private structure
494  * @reset_type: reset type requested
495  * before this function was called.
496  */
497 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
498 {
499 	struct device *dev = ice_pf_to_dev(pf);
500 	struct ice_hw *hw = &pf->hw;
501 
502 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
503 	WARN_ON(in_interrupt());
504 
505 	ice_prepare_for_reset(pf);
506 
507 	/* trigger the reset */
508 	if (ice_reset(hw, reset_type)) {
509 		dev_err(dev, "reset %d failed\n", reset_type);
510 		set_bit(__ICE_RESET_FAILED, pf->state);
511 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
512 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
513 		clear_bit(__ICE_PFR_REQ, pf->state);
514 		clear_bit(__ICE_CORER_REQ, pf->state);
515 		clear_bit(__ICE_GLOBR_REQ, pf->state);
516 		return;
517 	}
518 
519 	/* PFR is a bit of a special case because it doesn't result in an OICR
520 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
521 	 * associated state bits.
522 	 */
523 	if (reset_type == ICE_RESET_PFR) {
524 		pf->pfr_count++;
525 		ice_rebuild(pf, reset_type);
526 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
527 		clear_bit(__ICE_PFR_REQ, pf->state);
528 		ice_reset_all_vfs(pf, true);
529 	}
530 }
531 
532 /**
533  * ice_reset_subtask - Set up for resetting the device and driver
534  * @pf: board private structure
535  */
536 static void ice_reset_subtask(struct ice_pf *pf)
537 {
538 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
539 
540 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
541 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
542 	 * of reset is pending and sets bits in pf->state indicating the reset
543 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
544 	 * prepare for pending reset if not already (for PF software-initiated
545 	 * global resets the software should already be prepared for it as
546 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
547 	 * by firmware or software on other PFs, that bit is not set so prepare
548 	 * for the reset now), poll for reset done, rebuild and return.
549 	 */
550 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
551 		/* Perform the largest reset requested */
552 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
553 			reset_type = ICE_RESET_CORER;
554 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
555 			reset_type = ICE_RESET_GLOBR;
556 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
557 			reset_type = ICE_RESET_EMPR;
558 		/* return if no valid reset type requested */
559 		if (reset_type == ICE_RESET_INVAL)
560 			return;
561 		ice_prepare_for_reset(pf);
562 
563 		/* make sure we are ready to rebuild */
564 		if (ice_check_reset(&pf->hw)) {
565 			set_bit(__ICE_RESET_FAILED, pf->state);
566 		} else {
567 			/* done with reset. start rebuild */
568 			pf->hw.reset_ongoing = false;
569 			ice_rebuild(pf, reset_type);
570 			/* clear bit to resume normal operations, but
571 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
572 			 */
573 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
574 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
575 			clear_bit(__ICE_PFR_REQ, pf->state);
576 			clear_bit(__ICE_CORER_REQ, pf->state);
577 			clear_bit(__ICE_GLOBR_REQ, pf->state);
578 			ice_reset_all_vfs(pf, true);
579 		}
580 
581 		return;
582 	}
583 
584 	/* No pending resets to finish processing. Check for new resets */
585 	if (test_bit(__ICE_PFR_REQ, pf->state))
586 		reset_type = ICE_RESET_PFR;
587 	if (test_bit(__ICE_CORER_REQ, pf->state))
588 		reset_type = ICE_RESET_CORER;
589 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
590 		reset_type = ICE_RESET_GLOBR;
591 	/* If no valid reset type requested just return */
592 	if (reset_type == ICE_RESET_INVAL)
593 		return;
594 
595 	/* reset if not already down or busy */
596 	if (!test_bit(__ICE_DOWN, pf->state) &&
597 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
598 		ice_do_reset(pf, reset_type);
599 	}
600 }
601 
602 /**
603  * ice_print_topo_conflict - print topology conflict message
604  * @vsi: the VSI whose topology status is being checked
605  */
606 static void ice_print_topo_conflict(struct ice_vsi *vsi)
607 {
608 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
609 	case ICE_AQ_LINK_TOPO_CONFLICT:
610 	case ICE_AQ_LINK_MEDIA_CONFLICT:
611 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
612 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
613 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
614 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
615 		break;
616 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
617 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
618 		break;
619 	default:
620 		break;
621 	}
622 }
623 
624 /**
625  * ice_print_link_msg - print link up or down message
626  * @vsi: the VSI whose link status is being queried
627  * @isup: boolean for if the link is now up or down
628  */
629 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
630 {
631 	struct ice_aqc_get_phy_caps_data *caps;
632 	enum ice_status status;
633 	const char *fec_req;
634 	const char *speed;
635 	const char *fec;
636 	const char *fc;
637 	const char *an;
638 
639 	if (!vsi)
640 		return;
641 
642 	if (vsi->current_isup == isup)
643 		return;
644 
645 	vsi->current_isup = isup;
646 
647 	if (!isup) {
648 		netdev_info(vsi->netdev, "NIC Link is Down\n");
649 		return;
650 	}
651 
652 	switch (vsi->port_info->phy.link_info.link_speed) {
653 	case ICE_AQ_LINK_SPEED_100GB:
654 		speed = "100 G";
655 		break;
656 	case ICE_AQ_LINK_SPEED_50GB:
657 		speed = "50 G";
658 		break;
659 	case ICE_AQ_LINK_SPEED_40GB:
660 		speed = "40 G";
661 		break;
662 	case ICE_AQ_LINK_SPEED_25GB:
663 		speed = "25 G";
664 		break;
665 	case ICE_AQ_LINK_SPEED_20GB:
666 		speed = "20 G";
667 		break;
668 	case ICE_AQ_LINK_SPEED_10GB:
669 		speed = "10 G";
670 		break;
671 	case ICE_AQ_LINK_SPEED_5GB:
672 		speed = "5 G";
673 		break;
674 	case ICE_AQ_LINK_SPEED_2500MB:
675 		speed = "2.5 G";
676 		break;
677 	case ICE_AQ_LINK_SPEED_1000MB:
678 		speed = "1 G";
679 		break;
680 	case ICE_AQ_LINK_SPEED_100MB:
681 		speed = "100 M";
682 		break;
683 	default:
684 		speed = "Unknown";
685 		break;
686 	}
687 
688 	switch (vsi->port_info->fc.current_mode) {
689 	case ICE_FC_FULL:
690 		fc = "Rx/Tx";
691 		break;
692 	case ICE_FC_TX_PAUSE:
693 		fc = "Tx";
694 		break;
695 	case ICE_FC_RX_PAUSE:
696 		fc = "Rx";
697 		break;
698 	case ICE_FC_NONE:
699 		fc = "None";
700 		break;
701 	default:
702 		fc = "Unknown";
703 		break;
704 	}
705 
706 	/* Get FEC mode based on negotiated link info */
707 	switch (vsi->port_info->phy.link_info.fec_info) {
708 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
709 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
710 		fec = "RS-FEC";
711 		break;
712 	case ICE_AQ_LINK_25G_KR_FEC_EN:
713 		fec = "FC-FEC/BASE-R";
714 		break;
715 	default:
716 		fec = "NONE";
717 		break;
718 	}
719 
720 	/* check if autoneg completed, might be false due to not supported */
721 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
722 		an = "True";
723 	else
724 		an = "False";
725 
726 	/* Get FEC mode requested based on PHY caps last SW configuration */
727 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
728 	if (!caps) {
729 		fec_req = "Unknown";
730 		goto done;
731 	}
732 
733 	status = ice_aq_get_phy_caps(vsi->port_info, false,
734 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
735 	if (status)
736 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
737 
738 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
739 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
740 		fec_req = "RS-FEC";
741 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
742 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
743 		fec_req = "FC-FEC/BASE-R";
744 	else
745 		fec_req = "NONE";
746 
747 	kfree(caps);
748 
749 done:
750 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
751 		    speed, fec_req, fec, an, fc);
752 	ice_print_topo_conflict(vsi);
753 }
754 
755 /**
756  * ice_vsi_link_event - update the VSI's netdev
757  * @vsi: the VSI on which the link event occurred
758  * @link_up: whether or not the VSI needs to be set up or down
759  */
760 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
761 {
762 	if (!vsi)
763 		return;
764 
765 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
766 		return;
767 
768 	if (vsi->type == ICE_VSI_PF) {
769 		if (link_up == netif_carrier_ok(vsi->netdev))
770 			return;
771 
772 		if (link_up) {
773 			netif_carrier_on(vsi->netdev);
774 			netif_tx_wake_all_queues(vsi->netdev);
775 		} else {
776 			netif_carrier_off(vsi->netdev);
777 			netif_tx_stop_all_queues(vsi->netdev);
778 		}
779 	}
780 }
781 
782 /**
783  * ice_link_event - process the link event
784  * @pf: PF that the link event is associated with
785  * @pi: port_info for the port that the link event is associated with
786  * @link_up: true if the physical link is up and false if it is down
787  * @link_speed: current link speed received from the link event
788  *
789  * Returns 0 on success and negative on failure
790  */
791 static int
792 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
793 	       u16 link_speed)
794 {
795 	struct device *dev = ice_pf_to_dev(pf);
796 	struct ice_phy_info *phy_info;
797 	struct ice_vsi *vsi;
798 	u16 old_link_speed;
799 	bool old_link;
800 	int result;
801 
802 	phy_info = &pi->phy;
803 	phy_info->link_info_old = phy_info->link_info;
804 
805 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
806 	old_link_speed = phy_info->link_info_old.link_speed;
807 
808 	/* update the link info structures and re-enable link events,
809 	 * don't bail on failure due to other book keeping needed
810 	 */
811 	result = ice_update_link_info(pi);
812 	if (result)
813 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
814 			pi->lport);
815 
816 	/* if the old link up/down and speed is the same as the new */
817 	if (link_up == old_link && link_speed == old_link_speed)
818 		return result;
819 
820 	vsi = ice_get_main_vsi(pf);
821 	if (!vsi || !vsi->port_info)
822 		return -EINVAL;
823 
824 	/* turn off PHY if media was removed */
825 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
826 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
827 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
828 
829 		result = ice_aq_set_link_restart_an(pi, false, NULL);
830 		if (result) {
831 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
832 				vsi->vsi_num, result);
833 			return result;
834 		}
835 	}
836 
837 	ice_dcb_rebuild(pf);
838 	ice_vsi_link_event(vsi, link_up);
839 	ice_print_link_msg(vsi, link_up);
840 
841 	ice_vc_notify_link_state(pf);
842 
843 	return result;
844 }
845 
846 /**
847  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
848  * @pf: board private structure
849  */
850 static void ice_watchdog_subtask(struct ice_pf *pf)
851 {
852 	int i;
853 
854 	/* if interface is down do nothing */
855 	if (test_bit(__ICE_DOWN, pf->state) ||
856 	    test_bit(__ICE_CFG_BUSY, pf->state))
857 		return;
858 
859 	/* make sure we don't do these things too often */
860 	if (time_before(jiffies,
861 			pf->serv_tmr_prev + pf->serv_tmr_period))
862 		return;
863 
864 	pf->serv_tmr_prev = jiffies;
865 
866 	/* Update the stats for active netdevs so the network stack
867 	 * can look at updated numbers whenever it cares to
868 	 */
869 	ice_update_pf_stats(pf);
870 	ice_for_each_vsi(pf, i)
871 		if (pf->vsi[i] && pf->vsi[i]->netdev)
872 			ice_update_vsi_stats(pf->vsi[i]);
873 }
874 
875 /**
876  * ice_init_link_events - enable/initialize link events
877  * @pi: pointer to the port_info instance
878  *
879  * Returns -EIO on failure, 0 on success
880  */
881 static int ice_init_link_events(struct ice_port_info *pi)
882 {
883 	u16 mask;
884 
885 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
886 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
887 
888 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
889 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
890 			pi->lport);
891 		return -EIO;
892 	}
893 
894 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
895 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
896 			pi->lport);
897 		return -EIO;
898 	}
899 
900 	return 0;
901 }
902 
903 /**
904  * ice_handle_link_event - handle link event via ARQ
905  * @pf: PF that the link event is associated with
906  * @event: event structure containing link status info
907  */
908 static int
909 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
910 {
911 	struct ice_aqc_get_link_status_data *link_data;
912 	struct ice_port_info *port_info;
913 	int status;
914 
915 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
916 	port_info = pf->hw.port_info;
917 	if (!port_info)
918 		return -EINVAL;
919 
920 	status = ice_link_event(pf, port_info,
921 				!!(link_data->link_info & ICE_AQ_LINK_UP),
922 				le16_to_cpu(link_data->link_speed));
923 	if (status)
924 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
925 			status);
926 
927 	return status;
928 }
929 
930 /**
931  * __ice_clean_ctrlq - helper function to clean controlq rings
932  * @pf: ptr to struct ice_pf
933  * @q_type: specific Control queue type
934  */
935 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
936 {
937 	struct device *dev = ice_pf_to_dev(pf);
938 	struct ice_rq_event_info event;
939 	struct ice_hw *hw = &pf->hw;
940 	struct ice_ctl_q_info *cq;
941 	u16 pending, i = 0;
942 	const char *qtype;
943 	u32 oldval, val;
944 
945 	/* Do not clean control queue if/when PF reset fails */
946 	if (test_bit(__ICE_RESET_FAILED, pf->state))
947 		return 0;
948 
949 	switch (q_type) {
950 	case ICE_CTL_Q_ADMIN:
951 		cq = &hw->adminq;
952 		qtype = "Admin";
953 		break;
954 	case ICE_CTL_Q_MAILBOX:
955 		cq = &hw->mailboxq;
956 		qtype = "Mailbox";
957 		break;
958 	default:
959 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
960 		return 0;
961 	}
962 
963 	/* check for error indications - PF_xx_AxQLEN register layout for
964 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
965 	 */
966 	val = rd32(hw, cq->rq.len);
967 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
968 		   PF_FW_ARQLEN_ARQCRIT_M)) {
969 		oldval = val;
970 		if (val & PF_FW_ARQLEN_ARQVFE_M)
971 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
972 				qtype);
973 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
974 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
975 				qtype);
976 		}
977 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
978 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
979 				qtype);
980 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
981 			 PF_FW_ARQLEN_ARQCRIT_M);
982 		if (oldval != val)
983 			wr32(hw, cq->rq.len, val);
984 	}
985 
986 	val = rd32(hw, cq->sq.len);
987 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
988 		   PF_FW_ATQLEN_ATQCRIT_M)) {
989 		oldval = val;
990 		if (val & PF_FW_ATQLEN_ATQVFE_M)
991 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
992 				qtype);
993 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
994 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
995 				qtype);
996 		}
997 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
998 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
999 				qtype);
1000 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1001 			 PF_FW_ATQLEN_ATQCRIT_M);
1002 		if (oldval != val)
1003 			wr32(hw, cq->sq.len, val);
1004 	}
1005 
1006 	event.buf_len = cq->rq_buf_size;
1007 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1008 	if (!event.msg_buf)
1009 		return 0;
1010 
1011 	do {
1012 		enum ice_status ret;
1013 		u16 opcode;
1014 
1015 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1016 		if (ret == ICE_ERR_AQ_NO_WORK)
1017 			break;
1018 		if (ret) {
1019 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1020 				ret);
1021 			break;
1022 		}
1023 
1024 		opcode = le16_to_cpu(event.desc.opcode);
1025 
1026 		switch (opcode) {
1027 		case ice_aqc_opc_get_link_status:
1028 			if (ice_handle_link_event(pf, &event))
1029 				dev_err(dev, "Could not handle link event\n");
1030 			break;
1031 		case ice_aqc_opc_event_lan_overflow:
1032 			ice_vf_lan_overflow_event(pf, &event);
1033 			break;
1034 		case ice_mbx_opc_send_msg_to_pf:
1035 			ice_vc_process_vf_msg(pf, &event);
1036 			break;
1037 		case ice_aqc_opc_fw_logging:
1038 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1039 			break;
1040 		case ice_aqc_opc_lldp_set_mib_change:
1041 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1042 			break;
1043 		default:
1044 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1045 				qtype, opcode);
1046 			break;
1047 		}
1048 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1049 
1050 	kfree(event.msg_buf);
1051 
1052 	return pending && (i == ICE_DFLT_IRQ_WORK);
1053 }
1054 
1055 /**
1056  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1057  * @hw: pointer to hardware info
1058  * @cq: control queue information
1059  *
1060  * returns true if there are pending messages in a queue, false if there aren't
1061  */
1062 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1063 {
1064 	u16 ntu;
1065 
1066 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1067 	return cq->rq.next_to_clean != ntu;
1068 }
1069 
1070 /**
1071  * ice_clean_adminq_subtask - clean the AdminQ rings
1072  * @pf: board private structure
1073  */
1074 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1075 {
1076 	struct ice_hw *hw = &pf->hw;
1077 
1078 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1079 		return;
1080 
1081 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1082 		return;
1083 
1084 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1085 
1086 	/* There might be a situation where new messages arrive to a control
1087 	 * queue between processing the last message and clearing the
1088 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1089 	 * ice_ctrlq_pending) and process new messages if any.
1090 	 */
1091 	if (ice_ctrlq_pending(hw, &hw->adminq))
1092 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1093 
1094 	ice_flush(hw);
1095 }
1096 
1097 /**
1098  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1099  * @pf: board private structure
1100  */
1101 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1102 {
1103 	struct ice_hw *hw = &pf->hw;
1104 
1105 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1106 		return;
1107 
1108 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1109 		return;
1110 
1111 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1112 
1113 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1114 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1115 
1116 	ice_flush(hw);
1117 }
1118 
1119 /**
1120  * ice_service_task_schedule - schedule the service task to wake up
1121  * @pf: board private structure
1122  *
1123  * If not already scheduled, this puts the task into the work queue.
1124  */
1125 static void ice_service_task_schedule(struct ice_pf *pf)
1126 {
1127 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1128 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1129 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1130 		queue_work(ice_wq, &pf->serv_task);
1131 }
1132 
1133 /**
1134  * ice_service_task_complete - finish up the service task
1135  * @pf: board private structure
1136  */
1137 static void ice_service_task_complete(struct ice_pf *pf)
1138 {
1139 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1140 
1141 	/* force memory (pf->state) to sync before next service task */
1142 	smp_mb__before_atomic();
1143 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1144 }
1145 
1146 /**
1147  * ice_service_task_stop - stop service task and cancel works
1148  * @pf: board private structure
1149  */
1150 static void ice_service_task_stop(struct ice_pf *pf)
1151 {
1152 	set_bit(__ICE_SERVICE_DIS, pf->state);
1153 
1154 	if (pf->serv_tmr.function)
1155 		del_timer_sync(&pf->serv_tmr);
1156 	if (pf->serv_task.func)
1157 		cancel_work_sync(&pf->serv_task);
1158 
1159 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1160 }
1161 
1162 /**
1163  * ice_service_task_restart - restart service task and schedule works
1164  * @pf: board private structure
1165  *
1166  * This function is needed for suspend and resume works (e.g WoL scenario)
1167  */
1168 static void ice_service_task_restart(struct ice_pf *pf)
1169 {
1170 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1171 	ice_service_task_schedule(pf);
1172 }
1173 
1174 /**
1175  * ice_service_timer - timer callback to schedule service task
1176  * @t: pointer to timer_list
1177  */
1178 static void ice_service_timer(struct timer_list *t)
1179 {
1180 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1181 
1182 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1183 	ice_service_task_schedule(pf);
1184 }
1185 
1186 /**
1187  * ice_handle_mdd_event - handle malicious driver detect event
1188  * @pf: pointer to the PF structure
1189  *
1190  * Called from service task. OICR interrupt handler indicates MDD event.
1191  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1192  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1193  * disable the queue, the PF can be configured to reset the VF using ethtool
1194  * private flag mdd-auto-reset-vf.
1195  */
1196 static void ice_handle_mdd_event(struct ice_pf *pf)
1197 {
1198 	struct device *dev = ice_pf_to_dev(pf);
1199 	struct ice_hw *hw = &pf->hw;
1200 	u32 reg;
1201 	int i;
1202 
1203 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1204 		/* Since the VF MDD event logging is rate limited, check if
1205 		 * there are pending MDD events.
1206 		 */
1207 		ice_print_vfs_mdd_events(pf);
1208 		return;
1209 	}
1210 
1211 	/* find what triggered an MDD event */
1212 	reg = rd32(hw, GL_MDET_TX_PQM);
1213 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1214 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1215 				GL_MDET_TX_PQM_PF_NUM_S;
1216 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1217 				GL_MDET_TX_PQM_VF_NUM_S;
1218 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1219 				GL_MDET_TX_PQM_MAL_TYPE_S;
1220 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1221 				GL_MDET_TX_PQM_QNUM_S);
1222 
1223 		if (netif_msg_tx_err(pf))
1224 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1225 				 event, queue, pf_num, vf_num);
1226 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1227 	}
1228 
1229 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1230 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1231 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1232 				GL_MDET_TX_TCLAN_PF_NUM_S;
1233 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1234 				GL_MDET_TX_TCLAN_VF_NUM_S;
1235 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1236 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1237 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1238 				GL_MDET_TX_TCLAN_QNUM_S);
1239 
1240 		if (netif_msg_tx_err(pf))
1241 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1242 				 event, queue, pf_num, vf_num);
1243 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1244 	}
1245 
1246 	reg = rd32(hw, GL_MDET_RX);
1247 	if (reg & GL_MDET_RX_VALID_M) {
1248 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1249 				GL_MDET_RX_PF_NUM_S;
1250 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1251 				GL_MDET_RX_VF_NUM_S;
1252 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1253 				GL_MDET_RX_MAL_TYPE_S;
1254 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1255 				GL_MDET_RX_QNUM_S);
1256 
1257 		if (netif_msg_rx_err(pf))
1258 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1259 				 event, queue, pf_num, vf_num);
1260 		wr32(hw, GL_MDET_RX, 0xffffffff);
1261 	}
1262 
1263 	/* check to see if this PF caused an MDD event */
1264 	reg = rd32(hw, PF_MDET_TX_PQM);
1265 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1266 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1267 		if (netif_msg_tx_err(pf))
1268 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1269 	}
1270 
1271 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1272 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1273 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1274 		if (netif_msg_tx_err(pf))
1275 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1276 	}
1277 
1278 	reg = rd32(hw, PF_MDET_RX);
1279 	if (reg & PF_MDET_RX_VALID_M) {
1280 		wr32(hw, PF_MDET_RX, 0xFFFF);
1281 		if (netif_msg_rx_err(pf))
1282 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1283 	}
1284 
1285 	/* Check to see if one of the VFs caused an MDD event, and then
1286 	 * increment counters and set print pending
1287 	 */
1288 	ice_for_each_vf(pf, i) {
1289 		struct ice_vf *vf = &pf->vf[i];
1290 
1291 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1292 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1293 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1294 			vf->mdd_tx_events.count++;
1295 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1296 			if (netif_msg_tx_err(pf))
1297 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1298 					 i);
1299 		}
1300 
1301 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1302 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1303 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1304 			vf->mdd_tx_events.count++;
1305 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1306 			if (netif_msg_tx_err(pf))
1307 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1308 					 i);
1309 		}
1310 
1311 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1312 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1313 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1314 			vf->mdd_tx_events.count++;
1315 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1316 			if (netif_msg_tx_err(pf))
1317 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1318 					 i);
1319 		}
1320 
1321 		reg = rd32(hw, VP_MDET_RX(i));
1322 		if (reg & VP_MDET_RX_VALID_M) {
1323 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1324 			vf->mdd_rx_events.count++;
1325 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1326 			if (netif_msg_rx_err(pf))
1327 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1328 					 i);
1329 
1330 			/* Since the queue is disabled on VF Rx MDD events, the
1331 			 * PF can be configured to reset the VF through ethtool
1332 			 * private flag mdd-auto-reset-vf.
1333 			 */
1334 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1335 				ice_reset_vf(&pf->vf[i], false);
1336 		}
1337 	}
1338 
1339 	ice_print_vfs_mdd_events(pf);
1340 }
1341 
1342 /**
1343  * ice_force_phys_link_state - Force the physical link state
1344  * @vsi: VSI to force the physical link state to up/down
1345  * @link_up: true/false indicates to set the physical link to up/down
1346  *
1347  * Force the physical link state by getting the current PHY capabilities from
1348  * hardware and setting the PHY config based on the determined capabilities. If
1349  * link changes a link event will be triggered because both the Enable Automatic
1350  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1351  *
1352  * Returns 0 on success, negative on failure
1353  */
1354 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1355 {
1356 	struct ice_aqc_get_phy_caps_data *pcaps;
1357 	struct ice_aqc_set_phy_cfg_data *cfg;
1358 	struct ice_port_info *pi;
1359 	struct device *dev;
1360 	int retcode;
1361 
1362 	if (!vsi || !vsi->port_info || !vsi->back)
1363 		return -EINVAL;
1364 	if (vsi->type != ICE_VSI_PF)
1365 		return 0;
1366 
1367 	dev = ice_pf_to_dev(vsi->back);
1368 
1369 	pi = vsi->port_info;
1370 
1371 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1372 	if (!pcaps)
1373 		return -ENOMEM;
1374 
1375 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1376 				      NULL);
1377 	if (retcode) {
1378 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1379 			vsi->vsi_num, retcode);
1380 		retcode = -EIO;
1381 		goto out;
1382 	}
1383 
1384 	/* No change in link */
1385 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1386 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1387 		goto out;
1388 
1389 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1390 	if (!cfg) {
1391 		retcode = -ENOMEM;
1392 		goto out;
1393 	}
1394 
1395 	cfg->phy_type_low = pcaps->phy_type_low;
1396 	cfg->phy_type_high = pcaps->phy_type_high;
1397 	cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1398 	cfg->low_power_ctrl = pcaps->low_power_ctrl;
1399 	cfg->eee_cap = pcaps->eee_cap;
1400 	cfg->eeer_value = pcaps->eeer_value;
1401 	cfg->link_fec_opt = pcaps->link_fec_options;
1402 	if (link_up)
1403 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1404 	else
1405 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1406 
1407 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1408 	if (retcode) {
1409 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1410 			vsi->vsi_num, retcode);
1411 		retcode = -EIO;
1412 	}
1413 
1414 	kfree(cfg);
1415 out:
1416 	kfree(pcaps);
1417 	return retcode;
1418 }
1419 
1420 /**
1421  * ice_check_media_subtask - Check for media; bring link up if detected.
1422  * @pf: pointer to PF struct
1423  */
1424 static void ice_check_media_subtask(struct ice_pf *pf)
1425 {
1426 	struct ice_port_info *pi;
1427 	struct ice_vsi *vsi;
1428 	int err;
1429 
1430 	vsi = ice_get_main_vsi(pf);
1431 	if (!vsi)
1432 		return;
1433 
1434 	/* No need to check for media if it's already present or the interface
1435 	 * is down
1436 	 */
1437 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1438 	    test_bit(__ICE_DOWN, vsi->state))
1439 		return;
1440 
1441 	/* Refresh link info and check if media is present */
1442 	pi = vsi->port_info;
1443 	err = ice_update_link_info(pi);
1444 	if (err)
1445 		return;
1446 
1447 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1448 		err = ice_force_phys_link_state(vsi, true);
1449 		if (err)
1450 			return;
1451 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1452 
1453 		/* A Link Status Event will be generated; the event handler
1454 		 * will complete bringing the interface up
1455 		 */
1456 	}
1457 }
1458 
1459 /**
1460  * ice_service_task - manage and run subtasks
1461  * @work: pointer to work_struct contained by the PF struct
1462  */
1463 static void ice_service_task(struct work_struct *work)
1464 {
1465 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1466 	unsigned long start_time = jiffies;
1467 
1468 	/* subtasks */
1469 
1470 	/* process reset requests first */
1471 	ice_reset_subtask(pf);
1472 
1473 	/* bail if a reset/recovery cycle is pending or rebuild failed */
1474 	if (ice_is_reset_in_progress(pf->state) ||
1475 	    test_bit(__ICE_SUSPENDED, pf->state) ||
1476 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1477 		ice_service_task_complete(pf);
1478 		return;
1479 	}
1480 
1481 	ice_clean_adminq_subtask(pf);
1482 	ice_check_media_subtask(pf);
1483 	ice_check_for_hang_subtask(pf);
1484 	ice_sync_fltr_subtask(pf);
1485 	ice_handle_mdd_event(pf);
1486 	ice_watchdog_subtask(pf);
1487 
1488 	if (ice_is_safe_mode(pf)) {
1489 		ice_service_task_complete(pf);
1490 		return;
1491 	}
1492 
1493 	ice_process_vflr_event(pf);
1494 	ice_clean_mailboxq_subtask(pf);
1495 
1496 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1497 	ice_service_task_complete(pf);
1498 
1499 	/* If the tasks have taken longer than one service timer period
1500 	 * or there is more work to be done, reset the service timer to
1501 	 * schedule the service task now.
1502 	 */
1503 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1504 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1505 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1506 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1507 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1508 		mod_timer(&pf->serv_tmr, jiffies);
1509 }
1510 
1511 /**
1512  * ice_set_ctrlq_len - helper function to set controlq length
1513  * @hw: pointer to the HW instance
1514  */
1515 static void ice_set_ctrlq_len(struct ice_hw *hw)
1516 {
1517 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1518 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1519 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1520 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1521 	hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN;
1522 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
1523 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1524 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1525 }
1526 
1527 /**
1528  * ice_schedule_reset - schedule a reset
1529  * @pf: board private structure
1530  * @reset: reset being requested
1531  */
1532 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
1533 {
1534 	struct device *dev = ice_pf_to_dev(pf);
1535 
1536 	/* bail out if earlier reset has failed */
1537 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
1538 		dev_dbg(dev, "earlier reset has failed\n");
1539 		return -EIO;
1540 	}
1541 	/* bail if reset/recovery already in progress */
1542 	if (ice_is_reset_in_progress(pf->state)) {
1543 		dev_dbg(dev, "Reset already in progress\n");
1544 		return -EBUSY;
1545 	}
1546 
1547 	switch (reset) {
1548 	case ICE_RESET_PFR:
1549 		set_bit(__ICE_PFR_REQ, pf->state);
1550 		break;
1551 	case ICE_RESET_CORER:
1552 		set_bit(__ICE_CORER_REQ, pf->state);
1553 		break;
1554 	case ICE_RESET_GLOBR:
1555 		set_bit(__ICE_GLOBR_REQ, pf->state);
1556 		break;
1557 	default:
1558 		return -EINVAL;
1559 	}
1560 
1561 	ice_service_task_schedule(pf);
1562 	return 0;
1563 }
1564 
1565 /**
1566  * ice_irq_affinity_notify - Callback for affinity changes
1567  * @notify: context as to what irq was changed
1568  * @mask: the new affinity mask
1569  *
1570  * This is a callback function used by the irq_set_affinity_notifier function
1571  * so that we may register to receive changes to the irq affinity masks.
1572  */
1573 static void
1574 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1575 			const cpumask_t *mask)
1576 {
1577 	struct ice_q_vector *q_vector =
1578 		container_of(notify, struct ice_q_vector, affinity_notify);
1579 
1580 	cpumask_copy(&q_vector->affinity_mask, mask);
1581 }
1582 
1583 /**
1584  * ice_irq_affinity_release - Callback for affinity notifier release
1585  * @ref: internal core kernel usage
1586  *
1587  * This is a callback function used by the irq_set_affinity_notifier function
1588  * to inform the current notification subscriber that they will no longer
1589  * receive notifications.
1590  */
1591 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1592 
1593 /**
1594  * ice_vsi_ena_irq - Enable IRQ for the given VSI
1595  * @vsi: the VSI being configured
1596  */
1597 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1598 {
1599 	struct ice_hw *hw = &vsi->back->hw;
1600 	int i;
1601 
1602 	ice_for_each_q_vector(vsi, i)
1603 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1604 
1605 	ice_flush(hw);
1606 	return 0;
1607 }
1608 
1609 /**
1610  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1611  * @vsi: the VSI being configured
1612  * @basename: name for the vector
1613  */
1614 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1615 {
1616 	int q_vectors = vsi->num_q_vectors;
1617 	struct ice_pf *pf = vsi->back;
1618 	int base = vsi->base_vector;
1619 	struct device *dev;
1620 	int rx_int_idx = 0;
1621 	int tx_int_idx = 0;
1622 	int vector, err;
1623 	int irq_num;
1624 
1625 	dev = ice_pf_to_dev(pf);
1626 	for (vector = 0; vector < q_vectors; vector++) {
1627 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1628 
1629 		irq_num = pf->msix_entries[base + vector].vector;
1630 
1631 		if (q_vector->tx.ring && q_vector->rx.ring) {
1632 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1633 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1634 			tx_int_idx++;
1635 		} else if (q_vector->rx.ring) {
1636 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1637 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1638 		} else if (q_vector->tx.ring) {
1639 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1640 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1641 		} else {
1642 			/* skip this unused q_vector */
1643 			continue;
1644 		}
1645 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
1646 				       q_vector->name, q_vector);
1647 		if (err) {
1648 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
1649 				   err);
1650 			goto free_q_irqs;
1651 		}
1652 
1653 		/* register for affinity change notifications */
1654 		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1655 		q_vector->affinity_notify.release = ice_irq_affinity_release;
1656 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1657 
1658 		/* assign the mask for this irq */
1659 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1660 	}
1661 
1662 	vsi->irqs_ready = true;
1663 	return 0;
1664 
1665 free_q_irqs:
1666 	while (vector) {
1667 		vector--;
1668 		irq_num = pf->msix_entries[base + vector].vector,
1669 		irq_set_affinity_notifier(irq_num, NULL);
1670 		irq_set_affinity_hint(irq_num, NULL);
1671 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
1672 	}
1673 	return err;
1674 }
1675 
1676 /**
1677  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
1678  * @vsi: VSI to setup Tx rings used by XDP
1679  *
1680  * Return 0 on success and negative value on error
1681  */
1682 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
1683 {
1684 	struct device *dev = ice_pf_to_dev(vsi->back);
1685 	int i;
1686 
1687 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1688 		u16 xdp_q_idx = vsi->alloc_txq + i;
1689 		struct ice_ring *xdp_ring;
1690 
1691 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
1692 
1693 		if (!xdp_ring)
1694 			goto free_xdp_rings;
1695 
1696 		xdp_ring->q_index = xdp_q_idx;
1697 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
1698 		xdp_ring->ring_active = false;
1699 		xdp_ring->vsi = vsi;
1700 		xdp_ring->netdev = NULL;
1701 		xdp_ring->dev = dev;
1702 		xdp_ring->count = vsi->num_tx_desc;
1703 		vsi->xdp_rings[i] = xdp_ring;
1704 		if (ice_setup_tx_ring(xdp_ring))
1705 			goto free_xdp_rings;
1706 		ice_set_ring_xdp(xdp_ring);
1707 		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
1708 	}
1709 
1710 	return 0;
1711 
1712 free_xdp_rings:
1713 	for (; i >= 0; i--)
1714 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
1715 			ice_free_tx_ring(vsi->xdp_rings[i]);
1716 	return -ENOMEM;
1717 }
1718 
1719 /**
1720  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
1721  * @vsi: VSI to set the bpf prog on
1722  * @prog: the bpf prog pointer
1723  */
1724 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
1725 {
1726 	struct bpf_prog *old_prog;
1727 	int i;
1728 
1729 	old_prog = xchg(&vsi->xdp_prog, prog);
1730 	if (old_prog)
1731 		bpf_prog_put(old_prog);
1732 
1733 	ice_for_each_rxq(vsi, i)
1734 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
1735 }
1736 
1737 /**
1738  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
1739  * @vsi: VSI to bring up Tx rings used by XDP
1740  * @prog: bpf program that will be assigned to VSI
1741  *
1742  * Return 0 on success and negative value on error
1743  */
1744 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
1745 {
1746 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1747 	int xdp_rings_rem = vsi->num_xdp_txq;
1748 	struct ice_pf *pf = vsi->back;
1749 	struct ice_qs_cfg xdp_qs_cfg = {
1750 		.qs_mutex = &pf->avail_q_mutex,
1751 		.pf_map = pf->avail_txqs,
1752 		.pf_map_size = pf->max_pf_txqs,
1753 		.q_count = vsi->num_xdp_txq,
1754 		.scatter_count = ICE_MAX_SCATTER_TXQS,
1755 		.vsi_map = vsi->txq_map,
1756 		.vsi_map_offset = vsi->alloc_txq,
1757 		.mapping_mode = ICE_VSI_MAP_CONTIG
1758 	};
1759 	enum ice_status status;
1760 	struct device *dev;
1761 	int i, v_idx;
1762 
1763 	dev = ice_pf_to_dev(pf);
1764 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
1765 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
1766 	if (!vsi->xdp_rings)
1767 		return -ENOMEM;
1768 
1769 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
1770 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
1771 		goto err_map_xdp;
1772 
1773 	if (ice_xdp_alloc_setup_rings(vsi))
1774 		goto clear_xdp_rings;
1775 
1776 	/* follow the logic from ice_vsi_map_rings_to_vectors */
1777 	ice_for_each_q_vector(vsi, v_idx) {
1778 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1779 		int xdp_rings_per_v, q_id, q_base;
1780 
1781 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
1782 					       vsi->num_q_vectors - v_idx);
1783 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
1784 
1785 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
1786 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
1787 
1788 			xdp_ring->q_vector = q_vector;
1789 			xdp_ring->next = q_vector->tx.ring;
1790 			q_vector->tx.ring = xdp_ring;
1791 		}
1792 		xdp_rings_rem -= xdp_rings_per_v;
1793 	}
1794 
1795 	/* omit the scheduler update if in reset path; XDP queues will be
1796 	 * taken into account at the end of ice_vsi_rebuild, where
1797 	 * ice_cfg_vsi_lan is being called
1798 	 */
1799 	if (ice_is_reset_in_progress(pf->state))
1800 		return 0;
1801 
1802 	/* tell the Tx scheduler that right now we have
1803 	 * additional queues
1804 	 */
1805 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
1806 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
1807 
1808 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1809 				 max_txqs);
1810 	if (status) {
1811 		dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n",
1812 			status);
1813 		goto clear_xdp_rings;
1814 	}
1815 	ice_vsi_assign_bpf_prog(vsi, prog);
1816 
1817 	return 0;
1818 clear_xdp_rings:
1819 	for (i = 0; i < vsi->num_xdp_txq; i++)
1820 		if (vsi->xdp_rings[i]) {
1821 			kfree_rcu(vsi->xdp_rings[i], rcu);
1822 			vsi->xdp_rings[i] = NULL;
1823 		}
1824 
1825 err_map_xdp:
1826 	mutex_lock(&pf->avail_q_mutex);
1827 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1828 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1829 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1830 	}
1831 	mutex_unlock(&pf->avail_q_mutex);
1832 
1833 	devm_kfree(dev, vsi->xdp_rings);
1834 	return -ENOMEM;
1835 }
1836 
1837 /**
1838  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
1839  * @vsi: VSI to remove XDP rings
1840  *
1841  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
1842  * resources
1843  */
1844 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
1845 {
1846 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1847 	struct ice_pf *pf = vsi->back;
1848 	int i, v_idx;
1849 
1850 	/* q_vectors are freed in reset path so there's no point in detaching
1851 	 * rings; in case of rebuild being triggered not from reset reset bits
1852 	 * in pf->state won't be set, so additionally check first q_vector
1853 	 * against NULL
1854 	 */
1855 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1856 		goto free_qmap;
1857 
1858 	ice_for_each_q_vector(vsi, v_idx) {
1859 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1860 		struct ice_ring *ring;
1861 
1862 		ice_for_each_ring(ring, q_vector->tx)
1863 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
1864 				break;
1865 
1866 		/* restore the value of last node prior to XDP setup */
1867 		q_vector->tx.ring = ring;
1868 	}
1869 
1870 free_qmap:
1871 	mutex_lock(&pf->avail_q_mutex);
1872 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1873 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1874 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1875 	}
1876 	mutex_unlock(&pf->avail_q_mutex);
1877 
1878 	for (i = 0; i < vsi->num_xdp_txq; i++)
1879 		if (vsi->xdp_rings[i]) {
1880 			if (vsi->xdp_rings[i]->desc)
1881 				ice_free_tx_ring(vsi->xdp_rings[i]);
1882 			kfree_rcu(vsi->xdp_rings[i], rcu);
1883 			vsi->xdp_rings[i] = NULL;
1884 		}
1885 
1886 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
1887 	vsi->xdp_rings = NULL;
1888 
1889 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1890 		return 0;
1891 
1892 	ice_vsi_assign_bpf_prog(vsi, NULL);
1893 
1894 	/* notify Tx scheduler that we destroyed XDP queues and bring
1895 	 * back the old number of child nodes
1896 	 */
1897 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
1898 		max_txqs[i] = vsi->num_txq;
1899 
1900 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1901 			       max_txqs);
1902 }
1903 
1904 /**
1905  * ice_xdp_setup_prog - Add or remove XDP eBPF program
1906  * @vsi: VSI to setup XDP for
1907  * @prog: XDP program
1908  * @extack: netlink extended ack
1909  */
1910 static int
1911 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
1912 		   struct netlink_ext_ack *extack)
1913 {
1914 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
1915 	bool if_running = netif_running(vsi->netdev);
1916 	int ret = 0, xdp_ring_err = 0;
1917 
1918 	if (frame_size > vsi->rx_buf_len) {
1919 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
1920 		return -EOPNOTSUPP;
1921 	}
1922 
1923 	/* need to stop netdev while setting up the program for Rx rings */
1924 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
1925 		ret = ice_down(vsi);
1926 		if (ret) {
1927 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
1928 			return ret;
1929 		}
1930 	}
1931 
1932 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
1933 		vsi->num_xdp_txq = vsi->alloc_txq;
1934 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
1935 		if (xdp_ring_err)
1936 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
1937 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
1938 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
1939 		if (xdp_ring_err)
1940 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
1941 	} else {
1942 		ice_vsi_assign_bpf_prog(vsi, prog);
1943 	}
1944 
1945 	if (if_running)
1946 		ret = ice_up(vsi);
1947 
1948 	if (!ret && prog && vsi->xsk_umems) {
1949 		int i;
1950 
1951 		ice_for_each_rxq(vsi, i) {
1952 			struct ice_ring *rx_ring = vsi->rx_rings[i];
1953 
1954 			if (rx_ring->xsk_umem)
1955 				napi_schedule(&rx_ring->q_vector->napi);
1956 		}
1957 	}
1958 
1959 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
1960 }
1961 
1962 /**
1963  * ice_xdp - implements XDP handler
1964  * @dev: netdevice
1965  * @xdp: XDP command
1966  */
1967 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1968 {
1969 	struct ice_netdev_priv *np = netdev_priv(dev);
1970 	struct ice_vsi *vsi = np->vsi;
1971 
1972 	if (vsi->type != ICE_VSI_PF) {
1973 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
1974 		return -EINVAL;
1975 	}
1976 
1977 	switch (xdp->command) {
1978 	case XDP_SETUP_PROG:
1979 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
1980 	case XDP_QUERY_PROG:
1981 		xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
1982 		return 0;
1983 	case XDP_SETUP_XSK_UMEM:
1984 		return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
1985 					  xdp->xsk.queue_id);
1986 	default:
1987 		return -EINVAL;
1988 	}
1989 }
1990 
1991 /**
1992  * ice_ena_misc_vector - enable the non-queue interrupts
1993  * @pf: board private structure
1994  */
1995 static void ice_ena_misc_vector(struct ice_pf *pf)
1996 {
1997 	struct ice_hw *hw = &pf->hw;
1998 	u32 val;
1999 
2000 	/* Disable anti-spoof detection interrupt to prevent spurious event
2001 	 * interrupts during a function reset. Anti-spoof functionally is
2002 	 * still supported.
2003 	 */
2004 	val = rd32(hw, GL_MDCK_TX_TDPU);
2005 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2006 	wr32(hw, GL_MDCK_TX_TDPU, val);
2007 
2008 	/* clear things first */
2009 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2010 	rd32(hw, PFINT_OICR);		/* read to clear */
2011 
2012 	val = (PFINT_OICR_ECC_ERR_M |
2013 	       PFINT_OICR_MAL_DETECT_M |
2014 	       PFINT_OICR_GRST_M |
2015 	       PFINT_OICR_PCI_EXCEPTION_M |
2016 	       PFINT_OICR_VFLR_M |
2017 	       PFINT_OICR_HMC_ERR_M |
2018 	       PFINT_OICR_PE_CRITERR_M);
2019 
2020 	wr32(hw, PFINT_OICR_ENA, val);
2021 
2022 	/* SW_ITR_IDX = 0, but don't change INTENA */
2023 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2024 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2025 }
2026 
2027 /**
2028  * ice_misc_intr - misc interrupt handler
2029  * @irq: interrupt number
2030  * @data: pointer to a q_vector
2031  */
2032 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2033 {
2034 	struct ice_pf *pf = (struct ice_pf *)data;
2035 	struct ice_hw *hw = &pf->hw;
2036 	irqreturn_t ret = IRQ_NONE;
2037 	struct device *dev;
2038 	u32 oicr, ena_mask;
2039 
2040 	dev = ice_pf_to_dev(pf);
2041 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2042 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2043 
2044 	oicr = rd32(hw, PFINT_OICR);
2045 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2046 
2047 	if (oicr & PFINT_OICR_SWINT_M) {
2048 		ena_mask &= ~PFINT_OICR_SWINT_M;
2049 		pf->sw_int_count++;
2050 	}
2051 
2052 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2053 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2054 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2055 	}
2056 	if (oicr & PFINT_OICR_VFLR_M) {
2057 		ena_mask &= ~PFINT_OICR_VFLR_M;
2058 		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2059 	}
2060 
2061 	if (oicr & PFINT_OICR_GRST_M) {
2062 		u32 reset;
2063 
2064 		/* we have a reset warning */
2065 		ena_mask &= ~PFINT_OICR_GRST_M;
2066 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2067 			GLGEN_RSTAT_RESET_TYPE_S;
2068 
2069 		if (reset == ICE_RESET_CORER)
2070 			pf->corer_count++;
2071 		else if (reset == ICE_RESET_GLOBR)
2072 			pf->globr_count++;
2073 		else if (reset == ICE_RESET_EMPR)
2074 			pf->empr_count++;
2075 		else
2076 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2077 
2078 		/* If a reset cycle isn't already in progress, we set a bit in
2079 		 * pf->state so that the service task can start a reset/rebuild.
2080 		 * We also make note of which reset happened so that peer
2081 		 * devices/drivers can be informed.
2082 		 */
2083 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2084 			if (reset == ICE_RESET_CORER)
2085 				set_bit(__ICE_CORER_RECV, pf->state);
2086 			else if (reset == ICE_RESET_GLOBR)
2087 				set_bit(__ICE_GLOBR_RECV, pf->state);
2088 			else
2089 				set_bit(__ICE_EMPR_RECV, pf->state);
2090 
2091 			/* There are couple of different bits at play here.
2092 			 * hw->reset_ongoing indicates whether the hardware is
2093 			 * in reset. This is set to true when a reset interrupt
2094 			 * is received and set back to false after the driver
2095 			 * has determined that the hardware is out of reset.
2096 			 *
2097 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2098 			 * that a post reset rebuild is required before the
2099 			 * driver is operational again. This is set above.
2100 			 *
2101 			 * As this is the start of the reset/rebuild cycle, set
2102 			 * both to indicate that.
2103 			 */
2104 			hw->reset_ongoing = true;
2105 		}
2106 	}
2107 
2108 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2109 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2110 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2111 			rd32(hw, PFHMC_ERRORINFO),
2112 			rd32(hw, PFHMC_ERRORDATA));
2113 	}
2114 
2115 	/* Report any remaining unexpected interrupts */
2116 	oicr &= ena_mask;
2117 	if (oicr) {
2118 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2119 		/* If a critical error is pending there is no choice but to
2120 		 * reset the device.
2121 		 */
2122 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2123 			    PFINT_OICR_PCI_EXCEPTION_M |
2124 			    PFINT_OICR_ECC_ERR_M)) {
2125 			set_bit(__ICE_PFR_REQ, pf->state);
2126 			ice_service_task_schedule(pf);
2127 		}
2128 	}
2129 	ret = IRQ_HANDLED;
2130 
2131 	if (!test_bit(__ICE_DOWN, pf->state)) {
2132 		ice_service_task_schedule(pf);
2133 		ice_irq_dynamic_ena(hw, NULL, NULL);
2134 	}
2135 
2136 	return ret;
2137 }
2138 
2139 /**
2140  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2141  * @hw: pointer to HW structure
2142  */
2143 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2144 {
2145 	/* disable Admin queue Interrupt causes */
2146 	wr32(hw, PFINT_FW_CTL,
2147 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2148 
2149 	/* disable Mailbox queue Interrupt causes */
2150 	wr32(hw, PFINT_MBX_CTL,
2151 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2152 
2153 	/* disable Control queue Interrupt causes */
2154 	wr32(hw, PFINT_OICR_CTL,
2155 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2156 
2157 	ice_flush(hw);
2158 }
2159 
2160 /**
2161  * ice_free_irq_msix_misc - Unroll misc vector setup
2162  * @pf: board private structure
2163  */
2164 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2165 {
2166 	struct ice_hw *hw = &pf->hw;
2167 
2168 	ice_dis_ctrlq_interrupts(hw);
2169 
2170 	/* disable OICR interrupt */
2171 	wr32(hw, PFINT_OICR_ENA, 0);
2172 	ice_flush(hw);
2173 
2174 	if (pf->msix_entries) {
2175 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2176 		devm_free_irq(ice_pf_to_dev(pf),
2177 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2178 	}
2179 
2180 	pf->num_avail_sw_msix += 1;
2181 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2182 }
2183 
2184 /**
2185  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2186  * @hw: pointer to HW structure
2187  * @reg_idx: HW vector index to associate the control queue interrupts with
2188  */
2189 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2190 {
2191 	u32 val;
2192 
2193 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2194 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2195 	wr32(hw, PFINT_OICR_CTL, val);
2196 
2197 	/* enable Admin queue Interrupt causes */
2198 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2199 	       PFINT_FW_CTL_CAUSE_ENA_M);
2200 	wr32(hw, PFINT_FW_CTL, val);
2201 
2202 	/* enable Mailbox queue Interrupt causes */
2203 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2204 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2205 	wr32(hw, PFINT_MBX_CTL, val);
2206 
2207 	ice_flush(hw);
2208 }
2209 
2210 /**
2211  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2212  * @pf: board private structure
2213  *
2214  * This sets up the handler for MSIX 0, which is used to manage the
2215  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2216  * when in MSI or Legacy interrupt mode.
2217  */
2218 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2219 {
2220 	struct device *dev = ice_pf_to_dev(pf);
2221 	struct ice_hw *hw = &pf->hw;
2222 	int oicr_idx, err = 0;
2223 
2224 	if (!pf->int_name[0])
2225 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2226 			 dev_driver_string(dev), dev_name(dev));
2227 
2228 	/* Do not request IRQ but do enable OICR interrupt since settings are
2229 	 * lost during reset. Note that this function is called only during
2230 	 * rebuild path and not while reset is in progress.
2231 	 */
2232 	if (ice_is_reset_in_progress(pf->state))
2233 		goto skip_req_irq;
2234 
2235 	/* reserve one vector in irq_tracker for misc interrupts */
2236 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2237 	if (oicr_idx < 0)
2238 		return oicr_idx;
2239 
2240 	pf->num_avail_sw_msix -= 1;
2241 	pf->oicr_idx = oicr_idx;
2242 
2243 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2244 			       ice_misc_intr, 0, pf->int_name, pf);
2245 	if (err) {
2246 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2247 			pf->int_name, err);
2248 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2249 		pf->num_avail_sw_msix += 1;
2250 		return err;
2251 	}
2252 
2253 skip_req_irq:
2254 	ice_ena_misc_vector(pf);
2255 
2256 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2257 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2258 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2259 
2260 	ice_flush(hw);
2261 	ice_irq_dynamic_ena(hw, NULL, NULL);
2262 
2263 	return 0;
2264 }
2265 
2266 /**
2267  * ice_napi_add - register NAPI handler for the VSI
2268  * @vsi: VSI for which NAPI handler is to be registered
2269  *
2270  * This function is only called in the driver's load path. Registering the NAPI
2271  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2272  * reset/rebuild, etc.)
2273  */
2274 static void ice_napi_add(struct ice_vsi *vsi)
2275 {
2276 	int v_idx;
2277 
2278 	if (!vsi->netdev)
2279 		return;
2280 
2281 	ice_for_each_q_vector(vsi, v_idx)
2282 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2283 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2284 }
2285 
2286 /**
2287  * ice_set_ops - set netdev and ethtools ops for the given netdev
2288  * @netdev: netdev instance
2289  */
2290 static void ice_set_ops(struct net_device *netdev)
2291 {
2292 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2293 
2294 	if (ice_is_safe_mode(pf)) {
2295 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2296 		ice_set_ethtool_safe_mode_ops(netdev);
2297 		return;
2298 	}
2299 
2300 	netdev->netdev_ops = &ice_netdev_ops;
2301 	ice_set_ethtool_ops(netdev);
2302 }
2303 
2304 /**
2305  * ice_set_netdev_features - set features for the given netdev
2306  * @netdev: netdev instance
2307  */
2308 static void ice_set_netdev_features(struct net_device *netdev)
2309 {
2310 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2311 	netdev_features_t csumo_features;
2312 	netdev_features_t vlano_features;
2313 	netdev_features_t dflt_features;
2314 	netdev_features_t tso_features;
2315 
2316 	if (ice_is_safe_mode(pf)) {
2317 		/* safe mode */
2318 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2319 		netdev->hw_features = netdev->features;
2320 		return;
2321 	}
2322 
2323 	dflt_features = NETIF_F_SG	|
2324 			NETIF_F_HIGHDMA	|
2325 			NETIF_F_RXHASH;
2326 
2327 	csumo_features = NETIF_F_RXCSUM	  |
2328 			 NETIF_F_IP_CSUM  |
2329 			 NETIF_F_SCTP_CRC |
2330 			 NETIF_F_IPV6_CSUM;
2331 
2332 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2333 			 NETIF_F_HW_VLAN_CTAG_TX     |
2334 			 NETIF_F_HW_VLAN_CTAG_RX;
2335 
2336 	tso_features = NETIF_F_TSO		|
2337 		       NETIF_F_GSO_UDP_L4;
2338 
2339 	/* set features that user can change */
2340 	netdev->hw_features = dflt_features | csumo_features |
2341 			      vlano_features | tso_features;
2342 
2343 	/* enable features */
2344 	netdev->features |= netdev->hw_features;
2345 	/* encap and VLAN devices inherit default, csumo and tso features */
2346 	netdev->hw_enc_features |= dflt_features | csumo_features |
2347 				   tso_features;
2348 	netdev->vlan_features |= dflt_features | csumo_features |
2349 				 tso_features;
2350 }
2351 
2352 /**
2353  * ice_cfg_netdev - Allocate, configure and register a netdev
2354  * @vsi: the VSI associated with the new netdev
2355  *
2356  * Returns 0 on success, negative value on failure
2357  */
2358 static int ice_cfg_netdev(struct ice_vsi *vsi)
2359 {
2360 	struct ice_pf *pf = vsi->back;
2361 	struct ice_netdev_priv *np;
2362 	struct net_device *netdev;
2363 	u8 mac_addr[ETH_ALEN];
2364 	int err;
2365 
2366 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2367 				    vsi->alloc_rxq);
2368 	if (!netdev)
2369 		return -ENOMEM;
2370 
2371 	vsi->netdev = netdev;
2372 	np = netdev_priv(netdev);
2373 	np->vsi = vsi;
2374 
2375 	ice_set_netdev_features(netdev);
2376 
2377 	ice_set_ops(netdev);
2378 
2379 	if (vsi->type == ICE_VSI_PF) {
2380 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2381 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2382 		ether_addr_copy(netdev->dev_addr, mac_addr);
2383 		ether_addr_copy(netdev->perm_addr, mac_addr);
2384 	}
2385 
2386 	netdev->priv_flags |= IFF_UNICAST_FLT;
2387 
2388 	/* Setup netdev TC information */
2389 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2390 
2391 	/* setup watchdog timeout value to be 5 second */
2392 	netdev->watchdog_timeo = 5 * HZ;
2393 
2394 	netdev->min_mtu = ETH_MIN_MTU;
2395 	netdev->max_mtu = ICE_MAX_MTU;
2396 
2397 	err = register_netdev(vsi->netdev);
2398 	if (err)
2399 		return err;
2400 
2401 	netif_carrier_off(vsi->netdev);
2402 
2403 	/* make sure transmit queues start off as stopped */
2404 	netif_tx_stop_all_queues(vsi->netdev);
2405 
2406 	return 0;
2407 }
2408 
2409 /**
2410  * ice_fill_rss_lut - Fill the RSS lookup table with default values
2411  * @lut: Lookup table
2412  * @rss_table_size: Lookup table size
2413  * @rss_size: Range of queue number for hashing
2414  */
2415 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2416 {
2417 	u16 i;
2418 
2419 	for (i = 0; i < rss_table_size; i++)
2420 		lut[i] = i % rss_size;
2421 }
2422 
2423 /**
2424  * ice_pf_vsi_setup - Set up a PF VSI
2425  * @pf: board private structure
2426  * @pi: pointer to the port_info instance
2427  *
2428  * Returns pointer to the successfully allocated VSI software struct
2429  * on success, otherwise returns NULL on failure.
2430  */
2431 static struct ice_vsi *
2432 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2433 {
2434 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2435 }
2436 
2437 /**
2438  * ice_lb_vsi_setup - Set up a loopback VSI
2439  * @pf: board private structure
2440  * @pi: pointer to the port_info instance
2441  *
2442  * Returns pointer to the successfully allocated VSI software struct
2443  * on success, otherwise returns NULL on failure.
2444  */
2445 struct ice_vsi *
2446 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2447 {
2448 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2449 }
2450 
2451 /**
2452  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2453  * @netdev: network interface to be adjusted
2454  * @proto: unused protocol
2455  * @vid: VLAN ID to be added
2456  *
2457  * net_device_ops implementation for adding VLAN IDs
2458  */
2459 static int
2460 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2461 		    u16 vid)
2462 {
2463 	struct ice_netdev_priv *np = netdev_priv(netdev);
2464 	struct ice_vsi *vsi = np->vsi;
2465 	int ret;
2466 
2467 	if (vid >= VLAN_N_VID) {
2468 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2469 			   vid, VLAN_N_VID);
2470 		return -EINVAL;
2471 	}
2472 
2473 	if (vsi->info.pvid)
2474 		return -EINVAL;
2475 
2476 	/* VLAN 0 is added by default during load/reset */
2477 	if (!vid)
2478 		return 0;
2479 
2480 	/* Enable VLAN pruning when a VLAN other than 0 is added */
2481 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
2482 		ret = ice_cfg_vlan_pruning(vsi, true, false);
2483 		if (ret)
2484 			return ret;
2485 	}
2486 
2487 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
2488 	 * packets aren't pruned by the device's internal switch on Rx
2489 	 */
2490 	ret = ice_vsi_add_vlan(vsi, vid);
2491 	if (!ret) {
2492 		vsi->vlan_ena = true;
2493 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2494 	}
2495 
2496 	return ret;
2497 }
2498 
2499 /**
2500  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2501  * @netdev: network interface to be adjusted
2502  * @proto: unused protocol
2503  * @vid: VLAN ID to be removed
2504  *
2505  * net_device_ops implementation for removing VLAN IDs
2506  */
2507 static int
2508 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2509 		     u16 vid)
2510 {
2511 	struct ice_netdev_priv *np = netdev_priv(netdev);
2512 	struct ice_vsi *vsi = np->vsi;
2513 	int ret;
2514 
2515 	if (vsi->info.pvid)
2516 		return -EINVAL;
2517 
2518 	/* don't allow removal of VLAN 0 */
2519 	if (!vid)
2520 		return 0;
2521 
2522 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2523 	 * information
2524 	 */
2525 	ret = ice_vsi_kill_vlan(vsi, vid);
2526 	if (ret)
2527 		return ret;
2528 
2529 	/* Disable pruning when VLAN 0 is the only VLAN rule */
2530 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
2531 		ret = ice_cfg_vlan_pruning(vsi, false, false);
2532 
2533 	vsi->vlan_ena = false;
2534 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2535 	return ret;
2536 }
2537 
2538 /**
2539  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2540  * @pf: board private structure
2541  *
2542  * Returns 0 on success, negative value on failure
2543  */
2544 static int ice_setup_pf_sw(struct ice_pf *pf)
2545 {
2546 	struct ice_vsi *vsi;
2547 	int status = 0;
2548 
2549 	if (ice_is_reset_in_progress(pf->state))
2550 		return -EBUSY;
2551 
2552 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2553 	if (!vsi) {
2554 		status = -ENOMEM;
2555 		goto unroll_vsi_setup;
2556 	}
2557 
2558 	status = ice_cfg_netdev(vsi);
2559 	if (status) {
2560 		status = -ENODEV;
2561 		goto unroll_vsi_setup;
2562 	}
2563 	/* netdev has to be configured before setting frame size */
2564 	ice_vsi_cfg_frame_size(vsi);
2565 
2566 	/* Setup DCB netlink interface */
2567 	ice_dcbnl_setup(vsi);
2568 
2569 	/* registering the NAPI handler requires both the queues and
2570 	 * netdev to be created, which are done in ice_pf_vsi_setup()
2571 	 * and ice_cfg_netdev() respectively
2572 	 */
2573 	ice_napi_add(vsi);
2574 
2575 	status = ice_init_mac_fltr(pf);
2576 	if (status)
2577 		goto unroll_napi_add;
2578 
2579 	return status;
2580 
2581 unroll_napi_add:
2582 	if (vsi) {
2583 		ice_napi_del(vsi);
2584 		if (vsi->netdev) {
2585 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
2586 				unregister_netdev(vsi->netdev);
2587 			free_netdev(vsi->netdev);
2588 			vsi->netdev = NULL;
2589 		}
2590 	}
2591 
2592 unroll_vsi_setup:
2593 	if (vsi) {
2594 		ice_vsi_free_q_vectors(vsi);
2595 		ice_vsi_delete(vsi);
2596 		ice_vsi_put_qs(vsi);
2597 		ice_vsi_clear(vsi);
2598 	}
2599 	return status;
2600 }
2601 
2602 /**
2603  * ice_get_avail_q_count - Get count of queues in use
2604  * @pf_qmap: bitmap to get queue use count from
2605  * @lock: pointer to a mutex that protects access to pf_qmap
2606  * @size: size of the bitmap
2607  */
2608 static u16
2609 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
2610 {
2611 	u16 count = 0, bit;
2612 
2613 	mutex_lock(lock);
2614 	for_each_clear_bit(bit, pf_qmap, size)
2615 		count++;
2616 	mutex_unlock(lock);
2617 
2618 	return count;
2619 }
2620 
2621 /**
2622  * ice_get_avail_txq_count - Get count of Tx queues in use
2623  * @pf: pointer to an ice_pf instance
2624  */
2625 u16 ice_get_avail_txq_count(struct ice_pf *pf)
2626 {
2627 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
2628 				     pf->max_pf_txqs);
2629 }
2630 
2631 /**
2632  * ice_get_avail_rxq_count - Get count of Rx queues in use
2633  * @pf: pointer to an ice_pf instance
2634  */
2635 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
2636 {
2637 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
2638 				     pf->max_pf_rxqs);
2639 }
2640 
2641 /**
2642  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2643  * @pf: board private structure to initialize
2644  */
2645 static void ice_deinit_pf(struct ice_pf *pf)
2646 {
2647 	ice_service_task_stop(pf);
2648 	mutex_destroy(&pf->sw_mutex);
2649 	mutex_destroy(&pf->tc_mutex);
2650 	mutex_destroy(&pf->avail_q_mutex);
2651 
2652 	if (pf->avail_txqs) {
2653 		bitmap_free(pf->avail_txqs);
2654 		pf->avail_txqs = NULL;
2655 	}
2656 
2657 	if (pf->avail_rxqs) {
2658 		bitmap_free(pf->avail_rxqs);
2659 		pf->avail_rxqs = NULL;
2660 	}
2661 }
2662 
2663 /**
2664  * ice_set_pf_caps - set PFs capability flags
2665  * @pf: pointer to the PF instance
2666  */
2667 static void ice_set_pf_caps(struct ice_pf *pf)
2668 {
2669 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
2670 
2671 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2672 	if (func_caps->common_cap.dcb)
2673 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2674 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2675 	if (func_caps->common_cap.sr_iov_1_1) {
2676 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2677 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
2678 					      ICE_MAX_VF_COUNT);
2679 	}
2680 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
2681 	if (func_caps->common_cap.rss_table_size)
2682 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2683 
2684 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
2685 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
2686 }
2687 
2688 /**
2689  * ice_init_pf - Initialize general software structures (struct ice_pf)
2690  * @pf: board private structure to initialize
2691  */
2692 static int ice_init_pf(struct ice_pf *pf)
2693 {
2694 	ice_set_pf_caps(pf);
2695 
2696 	mutex_init(&pf->sw_mutex);
2697 	mutex_init(&pf->tc_mutex);
2698 
2699 	/* setup service timer and periodic service task */
2700 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2701 	pf->serv_tmr_period = HZ;
2702 	INIT_WORK(&pf->serv_task, ice_service_task);
2703 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
2704 
2705 	mutex_init(&pf->avail_q_mutex);
2706 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
2707 	if (!pf->avail_txqs)
2708 		return -ENOMEM;
2709 
2710 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
2711 	if (!pf->avail_rxqs) {
2712 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
2713 		pf->avail_txqs = NULL;
2714 		return -ENOMEM;
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 /**
2721  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2722  * @pf: board private structure
2723  *
2724  * compute the number of MSIX vectors required (v_budget) and request from
2725  * the OS. Return the number of vectors reserved or negative on failure
2726  */
2727 static int ice_ena_msix_range(struct ice_pf *pf)
2728 {
2729 	struct device *dev = ice_pf_to_dev(pf);
2730 	int v_left, v_actual, v_budget = 0;
2731 	int needed, err, i;
2732 
2733 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2734 
2735 	/* reserve one vector for miscellaneous handler */
2736 	needed = 1;
2737 	if (v_left < needed)
2738 		goto no_hw_vecs_left_err;
2739 	v_budget += needed;
2740 	v_left -= needed;
2741 
2742 	/* reserve vectors for LAN traffic */
2743 	needed = min_t(int, num_online_cpus(), v_left);
2744 	if (v_left < needed)
2745 		goto no_hw_vecs_left_err;
2746 	pf->num_lan_msix = needed;
2747 	v_budget += needed;
2748 	v_left -= needed;
2749 
2750 	pf->msix_entries = devm_kcalloc(dev, v_budget,
2751 					sizeof(*pf->msix_entries), GFP_KERNEL);
2752 
2753 	if (!pf->msix_entries) {
2754 		err = -ENOMEM;
2755 		goto exit_err;
2756 	}
2757 
2758 	for (i = 0; i < v_budget; i++)
2759 		pf->msix_entries[i].entry = i;
2760 
2761 	/* actually reserve the vectors */
2762 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2763 					 ICE_MIN_MSIX, v_budget);
2764 
2765 	if (v_actual < 0) {
2766 		dev_err(dev, "unable to reserve MSI-X vectors\n");
2767 		err = v_actual;
2768 		goto msix_err;
2769 	}
2770 
2771 	if (v_actual < v_budget) {
2772 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
2773 			 v_budget, v_actual);
2774 /* 2 vectors for LAN (traffic + OICR) */
2775 #define ICE_MIN_LAN_VECS 2
2776 
2777 		if (v_actual < ICE_MIN_LAN_VECS) {
2778 			/* error if we can't get minimum vectors */
2779 			pci_disable_msix(pf->pdev);
2780 			err = -ERANGE;
2781 			goto msix_err;
2782 		} else {
2783 			pf->num_lan_msix = ICE_MIN_LAN_VECS;
2784 		}
2785 	}
2786 
2787 	return v_actual;
2788 
2789 msix_err:
2790 	devm_kfree(dev, pf->msix_entries);
2791 	goto exit_err;
2792 
2793 no_hw_vecs_left_err:
2794 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
2795 		needed, v_left);
2796 	err = -ERANGE;
2797 exit_err:
2798 	pf->num_lan_msix = 0;
2799 	return err;
2800 }
2801 
2802 /**
2803  * ice_dis_msix - Disable MSI-X interrupt setup in OS
2804  * @pf: board private structure
2805  */
2806 static void ice_dis_msix(struct ice_pf *pf)
2807 {
2808 	pci_disable_msix(pf->pdev);
2809 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
2810 	pf->msix_entries = NULL;
2811 }
2812 
2813 /**
2814  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2815  * @pf: board private structure
2816  */
2817 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2818 {
2819 	ice_dis_msix(pf);
2820 
2821 	if (pf->irq_tracker) {
2822 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
2823 		pf->irq_tracker = NULL;
2824 	}
2825 }
2826 
2827 /**
2828  * ice_init_interrupt_scheme - Determine proper interrupt scheme
2829  * @pf: board private structure to initialize
2830  */
2831 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2832 {
2833 	int vectors;
2834 
2835 	vectors = ice_ena_msix_range(pf);
2836 
2837 	if (vectors < 0)
2838 		return vectors;
2839 
2840 	/* set up vector assignment tracking */
2841 	pf->irq_tracker =
2842 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
2843 			     (sizeof(u16) * vectors), GFP_KERNEL);
2844 	if (!pf->irq_tracker) {
2845 		ice_dis_msix(pf);
2846 		return -ENOMEM;
2847 	}
2848 
2849 	/* populate SW interrupts pool with number of OS granted IRQs. */
2850 	pf->num_avail_sw_msix = vectors;
2851 	pf->irq_tracker->num_entries = vectors;
2852 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
2853 
2854 	return 0;
2855 }
2856 
2857 /**
2858  * ice_vsi_recfg_qs - Change the number of queues on a VSI
2859  * @vsi: VSI being changed
2860  * @new_rx: new number of Rx queues
2861  * @new_tx: new number of Tx queues
2862  *
2863  * Only change the number of queues if new_tx, or new_rx is non-0.
2864  *
2865  * Returns 0 on success.
2866  */
2867 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
2868 {
2869 	struct ice_pf *pf = vsi->back;
2870 	int err = 0, timeout = 50;
2871 
2872 	if (!new_rx && !new_tx)
2873 		return -EINVAL;
2874 
2875 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
2876 		timeout--;
2877 		if (!timeout)
2878 			return -EBUSY;
2879 		usleep_range(1000, 2000);
2880 	}
2881 
2882 	if (new_tx)
2883 		vsi->req_txq = new_tx;
2884 	if (new_rx)
2885 		vsi->req_rxq = new_rx;
2886 
2887 	/* set for the next time the netdev is started */
2888 	if (!netif_running(vsi->netdev)) {
2889 		ice_vsi_rebuild(vsi, false);
2890 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
2891 		goto done;
2892 	}
2893 
2894 	ice_vsi_close(vsi);
2895 	ice_vsi_rebuild(vsi, false);
2896 	ice_pf_dcb_recfg(pf);
2897 	ice_vsi_open(vsi);
2898 done:
2899 	clear_bit(__ICE_CFG_BUSY, pf->state);
2900 	return err;
2901 }
2902 
2903 /**
2904  * ice_log_pkg_init - log result of DDP package load
2905  * @hw: pointer to hardware info
2906  * @status: status of package load
2907  */
2908 static void
2909 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
2910 {
2911 	struct ice_pf *pf = (struct ice_pf *)hw->back;
2912 	struct device *dev = ice_pf_to_dev(pf);
2913 
2914 	switch (*status) {
2915 	case ICE_SUCCESS:
2916 		/* The package download AdminQ command returned success because
2917 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
2918 		 * already a package loaded on the device.
2919 		 */
2920 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
2921 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
2922 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
2923 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
2924 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
2925 			    sizeof(hw->pkg_name))) {
2926 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
2927 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
2928 					 hw->active_pkg_name,
2929 					 hw->active_pkg_ver.major,
2930 					 hw->active_pkg_ver.minor,
2931 					 hw->active_pkg_ver.update,
2932 					 hw->active_pkg_ver.draft);
2933 			else
2934 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
2935 					 hw->active_pkg_name,
2936 					 hw->active_pkg_ver.major,
2937 					 hw->active_pkg_ver.minor,
2938 					 hw->active_pkg_ver.update,
2939 					 hw->active_pkg_ver.draft);
2940 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
2941 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
2942 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
2943 				hw->active_pkg_name,
2944 				hw->active_pkg_ver.major,
2945 				hw->active_pkg_ver.minor,
2946 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2947 			*status = ICE_ERR_NOT_SUPPORTED;
2948 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2949 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
2950 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
2951 				 hw->active_pkg_name,
2952 				 hw->active_pkg_ver.major,
2953 				 hw->active_pkg_ver.minor,
2954 				 hw->active_pkg_ver.update,
2955 				 hw->active_pkg_ver.draft,
2956 				 hw->pkg_name,
2957 				 hw->pkg_ver.major,
2958 				 hw->pkg_ver.minor,
2959 				 hw->pkg_ver.update,
2960 				 hw->pkg_ver.draft);
2961 		} else {
2962 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
2963 			*status = ICE_ERR_NOT_SUPPORTED;
2964 		}
2965 		break;
2966 	case ICE_ERR_BUF_TOO_SHORT:
2967 	case ICE_ERR_CFG:
2968 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
2969 		break;
2970 	case ICE_ERR_NOT_SUPPORTED:
2971 		/* Package File version not supported */
2972 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
2973 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2974 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
2975 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
2976 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
2977 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2978 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
2979 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
2980 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2981 		break;
2982 	case ICE_ERR_AQ_ERROR:
2983 		switch (hw->pkg_dwnld_status) {
2984 		case ICE_AQ_RC_ENOSEC:
2985 		case ICE_AQ_RC_EBADSIG:
2986 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
2987 			return;
2988 		case ICE_AQ_RC_ESVN:
2989 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
2990 			return;
2991 		case ICE_AQ_RC_EBADMAN:
2992 		case ICE_AQ_RC_EBADBUF:
2993 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
2994 			return;
2995 		default:
2996 			break;
2997 		}
2998 		fallthrough;
2999 	default:
3000 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3001 			*status);
3002 		break;
3003 	}
3004 }
3005 
3006 /**
3007  * ice_load_pkg - load/reload the DDP Package file
3008  * @firmware: firmware structure when firmware requested or NULL for reload
3009  * @pf: pointer to the PF instance
3010  *
3011  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3012  * initialize HW tables.
3013  */
3014 static void
3015 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3016 {
3017 	enum ice_status status = ICE_ERR_PARAM;
3018 	struct device *dev = ice_pf_to_dev(pf);
3019 	struct ice_hw *hw = &pf->hw;
3020 
3021 	/* Load DDP Package */
3022 	if (firmware && !hw->pkg_copy) {
3023 		status = ice_copy_and_init_pkg(hw, firmware->data,
3024 					       firmware->size);
3025 		ice_log_pkg_init(hw, &status);
3026 	} else if (!firmware && hw->pkg_copy) {
3027 		/* Reload package during rebuild after CORER/GLOBR reset */
3028 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3029 		ice_log_pkg_init(hw, &status);
3030 	} else {
3031 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3032 	}
3033 
3034 	if (status) {
3035 		/* Safe Mode */
3036 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3037 		return;
3038 	}
3039 
3040 	/* Successful download package is the precondition for advanced
3041 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3042 	 */
3043 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3044 }
3045 
3046 /**
3047  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3048  * @pf: pointer to the PF structure
3049  *
3050  * There is no error returned here because the driver should be able to handle
3051  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3052  * specifically with Tx.
3053  */
3054 static void ice_verify_cacheline_size(struct ice_pf *pf)
3055 {
3056 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3057 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3058 			 ICE_CACHE_LINE_BYTES);
3059 }
3060 
3061 /**
3062  * ice_send_version - update firmware with driver version
3063  * @pf: PF struct
3064  *
3065  * Returns ICE_SUCCESS on success, else error code
3066  */
3067 static enum ice_status ice_send_version(struct ice_pf *pf)
3068 {
3069 	struct ice_driver_ver dv;
3070 
3071 	dv.major_ver = DRV_VERSION_MAJOR;
3072 	dv.minor_ver = DRV_VERSION_MINOR;
3073 	dv.build_ver = DRV_VERSION_BUILD;
3074 	dv.subbuild_ver = 0;
3075 	strscpy((char *)dv.driver_string, DRV_VERSION,
3076 		sizeof(dv.driver_string));
3077 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3078 }
3079 
3080 /**
3081  * ice_get_opt_fw_name - return optional firmware file name or NULL
3082  * @pf: pointer to the PF instance
3083  */
3084 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3085 {
3086 	/* Optional firmware name same as default with additional dash
3087 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3088 	 */
3089 	struct pci_dev *pdev = pf->pdev;
3090 	char *opt_fw_filename = NULL;
3091 	u32 dword;
3092 	u8 dsn[8];
3093 	int pos;
3094 
3095 	/* Determine the name of the optional file using the DSN (two
3096 	 * dwords following the start of the DSN Capability).
3097 	 */
3098 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
3099 	if (pos) {
3100 		opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3101 		if (!opt_fw_filename)
3102 			return NULL;
3103 
3104 		pci_read_config_dword(pdev, pos + 4, &dword);
3105 		put_unaligned_le32(dword, &dsn[0]);
3106 		pci_read_config_dword(pdev, pos + 8, &dword);
3107 		put_unaligned_le32(dword, &dsn[4]);
3108 		snprintf(opt_fw_filename, NAME_MAX,
3109 			 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg",
3110 			 ICE_DDP_PKG_PATH,
3111 			 dsn[7], dsn[6], dsn[5], dsn[4],
3112 			 dsn[3], dsn[2], dsn[1], dsn[0]);
3113 	}
3114 
3115 	return opt_fw_filename;
3116 }
3117 
3118 /**
3119  * ice_request_fw - Device initialization routine
3120  * @pf: pointer to the PF instance
3121  */
3122 static void ice_request_fw(struct ice_pf *pf)
3123 {
3124 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3125 	const struct firmware *firmware = NULL;
3126 	struct device *dev = ice_pf_to_dev(pf);
3127 	int err = 0;
3128 
3129 	/* optional device-specific DDP (if present) overrides the default DDP
3130 	 * package file. kernel logs a debug message if the file doesn't exist,
3131 	 * and warning messages for other errors.
3132 	 */
3133 	if (opt_fw_filename) {
3134 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3135 		if (err) {
3136 			kfree(opt_fw_filename);
3137 			goto dflt_pkg_load;
3138 		}
3139 
3140 		/* request for firmware was successful. Download to device */
3141 		ice_load_pkg(firmware, pf);
3142 		kfree(opt_fw_filename);
3143 		release_firmware(firmware);
3144 		return;
3145 	}
3146 
3147 dflt_pkg_load:
3148 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3149 	if (err) {
3150 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3151 		return;
3152 	}
3153 
3154 	/* request for firmware was successful. Download to device */
3155 	ice_load_pkg(firmware, pf);
3156 	release_firmware(firmware);
3157 }
3158 
3159 /**
3160  * ice_probe - Device initialization routine
3161  * @pdev: PCI device information struct
3162  * @ent: entry in ice_pci_tbl
3163  *
3164  * Returns 0 on success, negative on failure
3165  */
3166 static int
3167 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3168 {
3169 	struct device *dev = &pdev->dev;
3170 	struct ice_pf *pf;
3171 	struct ice_hw *hw;
3172 	int err;
3173 
3174 	/* this driver uses devres, see
3175 	 * Documentation/driver-api/driver-model/devres.rst
3176 	 */
3177 	err = pcim_enable_device(pdev);
3178 	if (err)
3179 		return err;
3180 
3181 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3182 	if (err) {
3183 		dev_err(dev, "BAR0 I/O map error %d\n", err);
3184 		return err;
3185 	}
3186 
3187 	pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
3188 	if (!pf)
3189 		return -ENOMEM;
3190 
3191 	/* set up for high or low DMA */
3192 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3193 	if (err)
3194 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3195 	if (err) {
3196 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3197 		return err;
3198 	}
3199 
3200 	pci_enable_pcie_error_reporting(pdev);
3201 	pci_set_master(pdev);
3202 
3203 	pf->pdev = pdev;
3204 	pci_set_drvdata(pdev, pf);
3205 	set_bit(__ICE_DOWN, pf->state);
3206 	/* Disable service task until DOWN bit is cleared */
3207 	set_bit(__ICE_SERVICE_DIS, pf->state);
3208 
3209 	hw = &pf->hw;
3210 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
3211 	pci_save_state(pdev);
3212 
3213 	hw->back = pf;
3214 	hw->vendor_id = pdev->vendor;
3215 	hw->device_id = pdev->device;
3216 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3217 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3218 	hw->subsystem_device_id = pdev->subsystem_device;
3219 	hw->bus.device = PCI_SLOT(pdev->devfn);
3220 	hw->bus.func = PCI_FUNC(pdev->devfn);
3221 	ice_set_ctrlq_len(hw);
3222 
3223 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3224 
3225 #ifndef CONFIG_DYNAMIC_DEBUG
3226 	if (debug < -1)
3227 		hw->debug_mask = debug;
3228 #endif
3229 
3230 	err = ice_init_hw(hw);
3231 	if (err) {
3232 		dev_err(dev, "ice_init_hw failed: %d\n", err);
3233 		err = -EIO;
3234 		goto err_exit_unroll;
3235 	}
3236 
3237 	ice_request_fw(pf);
3238 
3239 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
3240 	 * set in pf->state, which will cause ice_is_safe_mode to return
3241 	 * true
3242 	 */
3243 	if (ice_is_safe_mode(pf)) {
3244 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
3245 		/* we already got function/device capabilities but these don't
3246 		 * reflect what the driver needs to do in safe mode. Instead of
3247 		 * adding conditional logic everywhere to ignore these
3248 		 * device/function capabilities, override them.
3249 		 */
3250 		ice_set_safe_mode_caps(hw);
3251 	}
3252 
3253 	err = ice_init_pf(pf);
3254 	if (err) {
3255 		dev_err(dev, "ice_init_pf failed: %d\n", err);
3256 		goto err_init_pf_unroll;
3257 	}
3258 
3259 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
3260 	if (!pf->num_alloc_vsi) {
3261 		err = -EIO;
3262 		goto err_init_pf_unroll;
3263 	}
3264 
3265 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
3266 			       GFP_KERNEL);
3267 	if (!pf->vsi) {
3268 		err = -ENOMEM;
3269 		goto err_init_pf_unroll;
3270 	}
3271 
3272 	err = ice_init_interrupt_scheme(pf);
3273 	if (err) {
3274 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
3275 		err = -EIO;
3276 		goto err_init_interrupt_unroll;
3277 	}
3278 
3279 	/* Driver is mostly up */
3280 	clear_bit(__ICE_DOWN, pf->state);
3281 
3282 	/* In case of MSIX we are going to setup the misc vector right here
3283 	 * to handle admin queue events etc. In case of legacy and MSI
3284 	 * the misc functionality and queue processing is combined in
3285 	 * the same vector and that gets setup at open.
3286 	 */
3287 	err = ice_req_irq_msix_misc(pf);
3288 	if (err) {
3289 		dev_err(dev, "setup of misc vector failed: %d\n", err);
3290 		goto err_init_interrupt_unroll;
3291 	}
3292 
3293 	/* create switch struct for the switch element created by FW on boot */
3294 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
3295 	if (!pf->first_sw) {
3296 		err = -ENOMEM;
3297 		goto err_msix_misc_unroll;
3298 	}
3299 
3300 	if (hw->evb_veb)
3301 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
3302 	else
3303 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
3304 
3305 	pf->first_sw->pf = pf;
3306 
3307 	/* record the sw_id available for later use */
3308 	pf->first_sw->sw_id = hw->port_info->sw_id;
3309 
3310 	err = ice_setup_pf_sw(pf);
3311 	if (err) {
3312 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
3313 		goto err_alloc_sw_unroll;
3314 	}
3315 
3316 	clear_bit(__ICE_SERVICE_DIS, pf->state);
3317 
3318 	/* tell the firmware we are up */
3319 	err = ice_send_version(pf);
3320 	if (err) {
3321 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
3322 			ice_drv_ver, err);
3323 		goto err_alloc_sw_unroll;
3324 	}
3325 
3326 	/* since everything is good, start the service timer */
3327 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3328 
3329 	err = ice_init_link_events(pf->hw.port_info);
3330 	if (err) {
3331 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
3332 		goto err_alloc_sw_unroll;
3333 	}
3334 
3335 	ice_verify_cacheline_size(pf);
3336 
3337 	/* If no DDP driven features have to be setup, return here */
3338 	if (ice_is_safe_mode(pf))
3339 		return 0;
3340 
3341 	/* initialize DDP driven features */
3342 
3343 	/* Note: DCB init failure is non-fatal to load */
3344 	if (ice_init_pf_dcb(pf, false)) {
3345 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3346 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
3347 	} else {
3348 		ice_cfg_lldp_mib_change(&pf->hw, true);
3349 	}
3350 
3351 	/* print PCI link speed and width */
3352 	pcie_print_link_status(pf->pdev);
3353 
3354 	return 0;
3355 
3356 err_alloc_sw_unroll:
3357 	set_bit(__ICE_SERVICE_DIS, pf->state);
3358 	set_bit(__ICE_DOWN, pf->state);
3359 	devm_kfree(dev, pf->first_sw);
3360 err_msix_misc_unroll:
3361 	ice_free_irq_msix_misc(pf);
3362 err_init_interrupt_unroll:
3363 	ice_clear_interrupt_scheme(pf);
3364 	devm_kfree(dev, pf->vsi);
3365 err_init_pf_unroll:
3366 	ice_deinit_pf(pf);
3367 	ice_deinit_hw(hw);
3368 err_exit_unroll:
3369 	pci_disable_pcie_error_reporting(pdev);
3370 	return err;
3371 }
3372 
3373 /**
3374  * ice_remove - Device removal routine
3375  * @pdev: PCI device information struct
3376  */
3377 static void ice_remove(struct pci_dev *pdev)
3378 {
3379 	struct ice_pf *pf = pci_get_drvdata(pdev);
3380 	int i;
3381 
3382 	if (!pf)
3383 		return;
3384 
3385 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
3386 		if (!ice_is_reset_in_progress(pf->state))
3387 			break;
3388 		msleep(100);
3389 	}
3390 
3391 	set_bit(__ICE_DOWN, pf->state);
3392 	ice_service_task_stop(pf);
3393 
3394 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
3395 		ice_free_vfs(pf);
3396 	ice_vsi_release_all(pf);
3397 	ice_free_irq_msix_misc(pf);
3398 	ice_for_each_vsi(pf, i) {
3399 		if (!pf->vsi[i])
3400 			continue;
3401 		ice_vsi_free_q_vectors(pf->vsi[i]);
3402 	}
3403 	ice_deinit_pf(pf);
3404 	ice_deinit_hw(&pf->hw);
3405 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
3406 	 * do it via ice_schedule_reset() since there is no need to rebuild
3407 	 * and the service task is already stopped.
3408 	 */
3409 	ice_reset(&pf->hw, ICE_RESET_PFR);
3410 	pci_wait_for_pending_transaction(pdev);
3411 	ice_clear_interrupt_scheme(pf);
3412 	pci_disable_pcie_error_reporting(pdev);
3413 }
3414 
3415 /**
3416  * ice_pci_err_detected - warning that PCI error has been detected
3417  * @pdev: PCI device information struct
3418  * @err: the type of PCI error
3419  *
3420  * Called to warn that something happened on the PCI bus and the error handling
3421  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
3422  */
3423 static pci_ers_result_t
3424 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
3425 {
3426 	struct ice_pf *pf = pci_get_drvdata(pdev);
3427 
3428 	if (!pf) {
3429 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
3430 			__func__, err);
3431 		return PCI_ERS_RESULT_DISCONNECT;
3432 	}
3433 
3434 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3435 		ice_service_task_stop(pf);
3436 
3437 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3438 			set_bit(__ICE_PFR_REQ, pf->state);
3439 			ice_prepare_for_reset(pf);
3440 		}
3441 	}
3442 
3443 	return PCI_ERS_RESULT_NEED_RESET;
3444 }
3445 
3446 /**
3447  * ice_pci_err_slot_reset - a PCI slot reset has just happened
3448  * @pdev: PCI device information struct
3449  *
3450  * Called to determine if the driver can recover from the PCI slot reset by
3451  * using a register read to determine if the device is recoverable.
3452  */
3453 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
3454 {
3455 	struct ice_pf *pf = pci_get_drvdata(pdev);
3456 	pci_ers_result_t result;
3457 	int err;
3458 	u32 reg;
3459 
3460 	err = pci_enable_device_mem(pdev);
3461 	if (err) {
3462 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
3463 			err);
3464 		result = PCI_ERS_RESULT_DISCONNECT;
3465 	} else {
3466 		pci_set_master(pdev);
3467 		pci_restore_state(pdev);
3468 		pci_save_state(pdev);
3469 		pci_wake_from_d3(pdev, false);
3470 
3471 		/* Check for life */
3472 		reg = rd32(&pf->hw, GLGEN_RTRIG);
3473 		if (!reg)
3474 			result = PCI_ERS_RESULT_RECOVERED;
3475 		else
3476 			result = PCI_ERS_RESULT_DISCONNECT;
3477 	}
3478 
3479 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
3480 	if (err)
3481 		dev_dbg(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
3482 			err);
3483 		/* non-fatal, continue */
3484 
3485 	return result;
3486 }
3487 
3488 /**
3489  * ice_pci_err_resume - restart operations after PCI error recovery
3490  * @pdev: PCI device information struct
3491  *
3492  * Called to allow the driver to bring things back up after PCI error and/or
3493  * reset recovery have finished
3494  */
3495 static void ice_pci_err_resume(struct pci_dev *pdev)
3496 {
3497 	struct ice_pf *pf = pci_get_drvdata(pdev);
3498 
3499 	if (!pf) {
3500 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
3501 			__func__);
3502 		return;
3503 	}
3504 
3505 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
3506 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
3507 			__func__);
3508 		return;
3509 	}
3510 
3511 	ice_do_reset(pf, ICE_RESET_PFR);
3512 	ice_service_task_restart(pf);
3513 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3514 }
3515 
3516 /**
3517  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
3518  * @pdev: PCI device information struct
3519  */
3520 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
3521 {
3522 	struct ice_pf *pf = pci_get_drvdata(pdev);
3523 
3524 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3525 		ice_service_task_stop(pf);
3526 
3527 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3528 			set_bit(__ICE_PFR_REQ, pf->state);
3529 			ice_prepare_for_reset(pf);
3530 		}
3531 	}
3532 }
3533 
3534 /**
3535  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
3536  * @pdev: PCI device information struct
3537  */
3538 static void ice_pci_err_reset_done(struct pci_dev *pdev)
3539 {
3540 	ice_pci_err_resume(pdev);
3541 }
3542 
3543 /* ice_pci_tbl - PCI Device ID Table
3544  *
3545  * Wildcard entries (PCI_ANY_ID) should come last
3546  * Last entry must be all 0s
3547  *
3548  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3549  *   Class, Class Mask, private data (not used) }
3550  */
3551 static const struct pci_device_id ice_pci_tbl[] = {
3552 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
3553 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
3554 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
3555 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
3556 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
3557 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
3558 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
3559 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
3560 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
3561 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
3562 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
3563 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
3564 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
3565 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
3566 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
3567 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
3568 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
3569 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
3570 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
3571 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
3572 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
3573 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
3574 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
3575 	/* required last entry */
3576 	{ 0, }
3577 };
3578 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3579 
3580 static const struct pci_error_handlers ice_pci_err_handler = {
3581 	.error_detected = ice_pci_err_detected,
3582 	.slot_reset = ice_pci_err_slot_reset,
3583 	.reset_prepare = ice_pci_err_reset_prepare,
3584 	.reset_done = ice_pci_err_reset_done,
3585 	.resume = ice_pci_err_resume
3586 };
3587 
3588 static struct pci_driver ice_driver = {
3589 	.name = KBUILD_MODNAME,
3590 	.id_table = ice_pci_tbl,
3591 	.probe = ice_probe,
3592 	.remove = ice_remove,
3593 	.sriov_configure = ice_sriov_configure,
3594 	.err_handler = &ice_pci_err_handler
3595 };
3596 
3597 /**
3598  * ice_module_init - Driver registration routine
3599  *
3600  * ice_module_init is the first routine called when the driver is
3601  * loaded. All it does is register with the PCI subsystem.
3602  */
3603 static int __init ice_module_init(void)
3604 {
3605 	int status;
3606 
3607 	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3608 	pr_info("%s\n", ice_copyright);
3609 
3610 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
3611 	if (!ice_wq) {
3612 		pr_err("Failed to create workqueue\n");
3613 		return -ENOMEM;
3614 	}
3615 
3616 	status = pci_register_driver(&ice_driver);
3617 	if (status) {
3618 		pr_err("failed to register PCI driver, err %d\n", status);
3619 		destroy_workqueue(ice_wq);
3620 	}
3621 
3622 	return status;
3623 }
3624 module_init(ice_module_init);
3625 
3626 /**
3627  * ice_module_exit - Driver exit cleanup routine
3628  *
3629  * ice_module_exit is called just before the driver is removed
3630  * from memory.
3631  */
3632 static void __exit ice_module_exit(void)
3633 {
3634 	pci_unregister_driver(&ice_driver);
3635 	destroy_workqueue(ice_wq);
3636 	pr_info("module unloaded\n");
3637 }
3638 module_exit(ice_module_exit);
3639 
3640 /**
3641  * ice_set_mac_address - NDO callback to set MAC address
3642  * @netdev: network interface device structure
3643  * @pi: pointer to an address structure
3644  *
3645  * Returns 0 on success, negative on failure
3646  */
3647 static int ice_set_mac_address(struct net_device *netdev, void *pi)
3648 {
3649 	struct ice_netdev_priv *np = netdev_priv(netdev);
3650 	struct ice_vsi *vsi = np->vsi;
3651 	struct ice_pf *pf = vsi->back;
3652 	struct ice_hw *hw = &pf->hw;
3653 	struct sockaddr *addr = pi;
3654 	enum ice_status status;
3655 	u8 flags = 0;
3656 	int err = 0;
3657 	u8 *mac;
3658 
3659 	mac = (u8 *)addr->sa_data;
3660 
3661 	if (!is_valid_ether_addr(mac))
3662 		return -EADDRNOTAVAIL;
3663 
3664 	if (ether_addr_equal(netdev->dev_addr, mac)) {
3665 		netdev_warn(netdev, "already using mac %pM\n", mac);
3666 		return 0;
3667 	}
3668 
3669 	if (test_bit(__ICE_DOWN, pf->state) ||
3670 	    ice_is_reset_in_progress(pf->state)) {
3671 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
3672 			   mac);
3673 		return -EBUSY;
3674 	}
3675 
3676 	/* When we change the MAC address we also have to change the MAC address
3677 	 * based filter rules that were created previously for the old MAC
3678 	 * address. So first, we remove the old filter rule using ice_remove_mac
3679 	 * and then create a new filter rule using ice_add_mac via
3680 	 * ice_vsi_cfg_mac_fltr function call for both add and/or remove
3681 	 * filters.
3682 	 */
3683 	status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false);
3684 	if (status) {
3685 		err = -EADDRNOTAVAIL;
3686 		goto err_update_filters;
3687 	}
3688 
3689 	status = ice_vsi_cfg_mac_fltr(vsi, mac, true);
3690 	if (status) {
3691 		err = -EADDRNOTAVAIL;
3692 		goto err_update_filters;
3693 	}
3694 
3695 err_update_filters:
3696 	if (err) {
3697 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
3698 			   mac);
3699 		return err;
3700 	}
3701 
3702 	/* change the netdev's MAC address */
3703 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
3704 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
3705 		   netdev->dev_addr);
3706 
3707 	/* write new MAC address to the firmware */
3708 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3709 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3710 	if (status) {
3711 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
3712 			   mac, status);
3713 	}
3714 	return 0;
3715 }
3716 
3717 /**
3718  * ice_set_rx_mode - NDO callback to set the netdev filters
3719  * @netdev: network interface device structure
3720  */
3721 static void ice_set_rx_mode(struct net_device *netdev)
3722 {
3723 	struct ice_netdev_priv *np = netdev_priv(netdev);
3724 	struct ice_vsi *vsi = np->vsi;
3725 
3726 	if (!vsi)
3727 		return;
3728 
3729 	/* Set the flags to synchronize filters
3730 	 * ndo_set_rx_mode may be triggered even without a change in netdev
3731 	 * flags
3732 	 */
3733 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3734 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3735 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3736 
3737 	/* schedule our worker thread which will take care of
3738 	 * applying the new filter changes
3739 	 */
3740 	ice_service_task_schedule(vsi->back);
3741 }
3742 
3743 /**
3744  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
3745  * @netdev: network interface device structure
3746  * @queue_index: Queue ID
3747  * @maxrate: maximum bandwidth in Mbps
3748  */
3749 static int
3750 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
3751 {
3752 	struct ice_netdev_priv *np = netdev_priv(netdev);
3753 	struct ice_vsi *vsi = np->vsi;
3754 	enum ice_status status;
3755 	u16 q_handle;
3756 	u8 tc;
3757 
3758 	/* Validate maxrate requested is within permitted range */
3759 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
3760 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
3761 			   maxrate, queue_index);
3762 		return -EINVAL;
3763 	}
3764 
3765 	q_handle = vsi->tx_rings[queue_index]->q_handle;
3766 	tc = ice_dcb_get_tc(vsi, queue_index);
3767 
3768 	/* Set BW back to default, when user set maxrate to 0 */
3769 	if (!maxrate)
3770 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
3771 					       q_handle, ICE_MAX_BW);
3772 	else
3773 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
3774 					  q_handle, ICE_MAX_BW, maxrate * 1000);
3775 	if (status) {
3776 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
3777 			   status);
3778 		return -EIO;
3779 	}
3780 
3781 	return 0;
3782 }
3783 
3784 /**
3785  * ice_fdb_add - add an entry to the hardware database
3786  * @ndm: the input from the stack
3787  * @tb: pointer to array of nladdr (unused)
3788  * @dev: the net device pointer
3789  * @addr: the MAC address entry being added
3790  * @vid: VLAN ID
3791  * @flags: instructions from stack about fdb operation
3792  * @extack: netlink extended ack
3793  */
3794 static int
3795 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3796 	    struct net_device *dev, const unsigned char *addr, u16 vid,
3797 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
3798 {
3799 	int err;
3800 
3801 	if (vid) {
3802 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3803 		return -EINVAL;
3804 	}
3805 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3806 		netdev_err(dev, "FDB only supports static addresses\n");
3807 		return -EINVAL;
3808 	}
3809 
3810 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3811 		err = dev_uc_add_excl(dev, addr);
3812 	else if (is_multicast_ether_addr(addr))
3813 		err = dev_mc_add_excl(dev, addr);
3814 	else
3815 		err = -EINVAL;
3816 
3817 	/* Only return duplicate errors if NLM_F_EXCL is set */
3818 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
3819 		err = 0;
3820 
3821 	return err;
3822 }
3823 
3824 /**
3825  * ice_fdb_del - delete an entry from the hardware database
3826  * @ndm: the input from the stack
3827  * @tb: pointer to array of nladdr (unused)
3828  * @dev: the net device pointer
3829  * @addr: the MAC address entry being added
3830  * @vid: VLAN ID
3831  */
3832 static int
3833 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3834 	    struct net_device *dev, const unsigned char *addr,
3835 	    __always_unused u16 vid)
3836 {
3837 	int err;
3838 
3839 	if (ndm->ndm_state & NUD_PERMANENT) {
3840 		netdev_err(dev, "FDB only supports static addresses\n");
3841 		return -EINVAL;
3842 	}
3843 
3844 	if (is_unicast_ether_addr(addr))
3845 		err = dev_uc_del(dev, addr);
3846 	else if (is_multicast_ether_addr(addr))
3847 		err = dev_mc_del(dev, addr);
3848 	else
3849 		err = -EINVAL;
3850 
3851 	return err;
3852 }
3853 
3854 /**
3855  * ice_set_features - set the netdev feature flags
3856  * @netdev: ptr to the netdev being adjusted
3857  * @features: the feature set that the stack is suggesting
3858  */
3859 static int
3860 ice_set_features(struct net_device *netdev, netdev_features_t features)
3861 {
3862 	struct ice_netdev_priv *np = netdev_priv(netdev);
3863 	struct ice_vsi *vsi = np->vsi;
3864 	struct ice_pf *pf = vsi->back;
3865 	int ret = 0;
3866 
3867 	/* Don't set any netdev advanced features with device in Safe Mode */
3868 	if (ice_is_safe_mode(vsi->back)) {
3869 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
3870 		return ret;
3871 	}
3872 
3873 	/* Do not change setting during reset */
3874 	if (ice_is_reset_in_progress(pf->state)) {
3875 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
3876 		return -EBUSY;
3877 	}
3878 
3879 	/* Multiple features can be changed in one call so keep features in
3880 	 * separate if/else statements to guarantee each feature is checked
3881 	 */
3882 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3883 		ret = ice_vsi_manage_rss_lut(vsi, true);
3884 	else if (!(features & NETIF_F_RXHASH) &&
3885 		 netdev->features & NETIF_F_RXHASH)
3886 		ret = ice_vsi_manage_rss_lut(vsi, false);
3887 
3888 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3889 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3890 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3891 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3892 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3893 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
3894 
3895 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3896 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3897 		ret = ice_vsi_manage_vlan_insertion(vsi);
3898 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3899 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3900 		ret = ice_vsi_manage_vlan_insertion(vsi);
3901 
3902 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3903 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3904 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3905 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3906 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3907 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3908 
3909 	return ret;
3910 }
3911 
3912 /**
3913  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3914  * @vsi: VSI to setup VLAN properties for
3915  */
3916 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3917 {
3918 	int ret = 0;
3919 
3920 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3921 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3922 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3923 		ret = ice_vsi_manage_vlan_insertion(vsi);
3924 
3925 	return ret;
3926 }
3927 
3928 /**
3929  * ice_vsi_cfg - Setup the VSI
3930  * @vsi: the VSI being configured
3931  *
3932  * Return 0 on success and negative value on error
3933  */
3934 int ice_vsi_cfg(struct ice_vsi *vsi)
3935 {
3936 	int err;
3937 
3938 	if (vsi->netdev) {
3939 		ice_set_rx_mode(vsi->netdev);
3940 
3941 		err = ice_vsi_vlan_setup(vsi);
3942 
3943 		if (err)
3944 			return err;
3945 	}
3946 	ice_vsi_cfg_dcb_rings(vsi);
3947 
3948 	err = ice_vsi_cfg_lan_txqs(vsi);
3949 	if (!err && ice_is_xdp_ena_vsi(vsi))
3950 		err = ice_vsi_cfg_xdp_txqs(vsi);
3951 	if (!err)
3952 		err = ice_vsi_cfg_rxqs(vsi);
3953 
3954 	return err;
3955 }
3956 
3957 /**
3958  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3959  * @vsi: the VSI being configured
3960  */
3961 static void ice_napi_enable_all(struct ice_vsi *vsi)
3962 {
3963 	int q_idx;
3964 
3965 	if (!vsi->netdev)
3966 		return;
3967 
3968 	ice_for_each_q_vector(vsi, q_idx) {
3969 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3970 
3971 		if (q_vector->rx.ring || q_vector->tx.ring)
3972 			napi_enable(&q_vector->napi);
3973 	}
3974 }
3975 
3976 /**
3977  * ice_up_complete - Finish the last steps of bringing up a connection
3978  * @vsi: The VSI being configured
3979  *
3980  * Return 0 on success and negative value on error
3981  */
3982 static int ice_up_complete(struct ice_vsi *vsi)
3983 {
3984 	struct ice_pf *pf = vsi->back;
3985 	int err;
3986 
3987 	ice_vsi_cfg_msix(vsi);
3988 
3989 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
3990 	 * Tx queue group list was configured and the context bits were
3991 	 * programmed using ice_vsi_cfg_txqs
3992 	 */
3993 	err = ice_vsi_start_all_rx_rings(vsi);
3994 	if (err)
3995 		return err;
3996 
3997 	clear_bit(__ICE_DOWN, vsi->state);
3998 	ice_napi_enable_all(vsi);
3999 	ice_vsi_ena_irq(vsi);
4000 
4001 	if (vsi->port_info &&
4002 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
4003 	    vsi->netdev) {
4004 		ice_print_link_msg(vsi, true);
4005 		netif_tx_start_all_queues(vsi->netdev);
4006 		netif_carrier_on(vsi->netdev);
4007 	}
4008 
4009 	ice_service_task_schedule(pf);
4010 
4011 	return 0;
4012 }
4013 
4014 /**
4015  * ice_up - Bring the connection back up after being down
4016  * @vsi: VSI being configured
4017  */
4018 int ice_up(struct ice_vsi *vsi)
4019 {
4020 	int err;
4021 
4022 	err = ice_vsi_cfg(vsi);
4023 	if (!err)
4024 		err = ice_up_complete(vsi);
4025 
4026 	return err;
4027 }
4028 
4029 /**
4030  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4031  * @ring: Tx or Rx ring to read stats from
4032  * @pkts: packets stats counter
4033  * @bytes: bytes stats counter
4034  *
4035  * This function fetches stats from the ring considering the atomic operations
4036  * that needs to be performed to read u64 values in 32 bit machine.
4037  */
4038 static void
4039 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
4040 {
4041 	unsigned int start;
4042 	*pkts = 0;
4043 	*bytes = 0;
4044 
4045 	if (!ring)
4046 		return;
4047 	do {
4048 		start = u64_stats_fetch_begin_irq(&ring->syncp);
4049 		*pkts = ring->stats.pkts;
4050 		*bytes = ring->stats.bytes;
4051 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4052 }
4053 
4054 /**
4055  * ice_update_vsi_ring_stats - Update VSI stats counters
4056  * @vsi: the VSI to be updated
4057  */
4058 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4059 {
4060 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4061 	struct ice_ring *ring;
4062 	u64 pkts, bytes;
4063 	int i;
4064 
4065 	/* reset netdev stats */
4066 	vsi_stats->tx_packets = 0;
4067 	vsi_stats->tx_bytes = 0;
4068 	vsi_stats->rx_packets = 0;
4069 	vsi_stats->rx_bytes = 0;
4070 
4071 	/* reset non-netdev (extended) stats */
4072 	vsi->tx_restart = 0;
4073 	vsi->tx_busy = 0;
4074 	vsi->tx_linearize = 0;
4075 	vsi->rx_buf_failed = 0;
4076 	vsi->rx_page_failed = 0;
4077 
4078 	rcu_read_lock();
4079 
4080 	/* update Tx rings counters */
4081 	ice_for_each_txq(vsi, i) {
4082 		ring = READ_ONCE(vsi->tx_rings[i]);
4083 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4084 		vsi_stats->tx_packets += pkts;
4085 		vsi_stats->tx_bytes += bytes;
4086 		vsi->tx_restart += ring->tx_stats.restart_q;
4087 		vsi->tx_busy += ring->tx_stats.tx_busy;
4088 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
4089 	}
4090 
4091 	/* update Rx rings counters */
4092 	ice_for_each_rxq(vsi, i) {
4093 		ring = READ_ONCE(vsi->rx_rings[i]);
4094 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4095 		vsi_stats->rx_packets += pkts;
4096 		vsi_stats->rx_bytes += bytes;
4097 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4098 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
4099 	}
4100 
4101 	rcu_read_unlock();
4102 }
4103 
4104 /**
4105  * ice_update_vsi_stats - Update VSI stats counters
4106  * @vsi: the VSI to be updated
4107  */
4108 void ice_update_vsi_stats(struct ice_vsi *vsi)
4109 {
4110 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4111 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
4112 	struct ice_pf *pf = vsi->back;
4113 
4114 	if (test_bit(__ICE_DOWN, vsi->state) ||
4115 	    test_bit(__ICE_CFG_BUSY, pf->state))
4116 		return;
4117 
4118 	/* get stats as recorded by Tx/Rx rings */
4119 	ice_update_vsi_ring_stats(vsi);
4120 
4121 	/* get VSI stats as recorded by the hardware */
4122 	ice_update_eth_stats(vsi);
4123 
4124 	cur_ns->tx_errors = cur_es->tx_errors;
4125 	cur_ns->rx_dropped = cur_es->rx_discards;
4126 	cur_ns->tx_dropped = cur_es->tx_discards;
4127 	cur_ns->multicast = cur_es->rx_multicast;
4128 
4129 	/* update some more netdev stats if this is main VSI */
4130 	if (vsi->type == ICE_VSI_PF) {
4131 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
4132 		cur_ns->rx_errors = pf->stats.crc_errors +
4133 				    pf->stats.illegal_bytes;
4134 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
4135 		/* record drops from the port level */
4136 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
4137 	}
4138 }
4139 
4140 /**
4141  * ice_update_pf_stats - Update PF port stats counters
4142  * @pf: PF whose stats needs to be updated
4143  */
4144 void ice_update_pf_stats(struct ice_pf *pf)
4145 {
4146 	struct ice_hw_port_stats *prev_ps, *cur_ps;
4147 	struct ice_hw *hw = &pf->hw;
4148 	u8 port;
4149 
4150 	port = hw->port_info->lport;
4151 	prev_ps = &pf->stats_prev;
4152 	cur_ps = &pf->stats;
4153 
4154 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
4155 			  &prev_ps->eth.rx_bytes,
4156 			  &cur_ps->eth.rx_bytes);
4157 
4158 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
4159 			  &prev_ps->eth.rx_unicast,
4160 			  &cur_ps->eth.rx_unicast);
4161 
4162 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
4163 			  &prev_ps->eth.rx_multicast,
4164 			  &cur_ps->eth.rx_multicast);
4165 
4166 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
4167 			  &prev_ps->eth.rx_broadcast,
4168 			  &cur_ps->eth.rx_broadcast);
4169 
4170 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
4171 			  &prev_ps->eth.rx_discards,
4172 			  &cur_ps->eth.rx_discards);
4173 
4174 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
4175 			  &prev_ps->eth.tx_bytes,
4176 			  &cur_ps->eth.tx_bytes);
4177 
4178 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
4179 			  &prev_ps->eth.tx_unicast,
4180 			  &cur_ps->eth.tx_unicast);
4181 
4182 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
4183 			  &prev_ps->eth.tx_multicast,
4184 			  &cur_ps->eth.tx_multicast);
4185 
4186 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
4187 			  &prev_ps->eth.tx_broadcast,
4188 			  &cur_ps->eth.tx_broadcast);
4189 
4190 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
4191 			  &prev_ps->tx_dropped_link_down,
4192 			  &cur_ps->tx_dropped_link_down);
4193 
4194 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
4195 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
4196 
4197 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
4198 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
4199 
4200 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
4201 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
4202 
4203 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
4204 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
4205 
4206 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
4207 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4208 
4209 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
4210 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4211 
4212 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
4213 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4214 
4215 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
4216 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
4217 
4218 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
4219 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
4220 
4221 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
4222 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
4223 
4224 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
4225 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
4226 
4227 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
4228 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4229 
4230 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
4231 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4232 
4233 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
4234 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4235 
4236 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
4237 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4238 
4239 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
4240 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4241 
4242 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
4243 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4244 
4245 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
4246 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4247 
4248 	ice_update_dcb_stats(pf);
4249 
4250 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
4251 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
4252 
4253 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
4254 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4255 
4256 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
4257 			  &prev_ps->mac_local_faults,
4258 			  &cur_ps->mac_local_faults);
4259 
4260 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
4261 			  &prev_ps->mac_remote_faults,
4262 			  &cur_ps->mac_remote_faults);
4263 
4264 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
4265 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4266 
4267 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
4268 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4269 
4270 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
4271 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4272 
4273 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
4274 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4275 
4276 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
4277 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4278 
4279 	pf->stat_prev_loaded = true;
4280 }
4281 
4282 /**
4283  * ice_get_stats64 - get statistics for network device structure
4284  * @netdev: network interface device structure
4285  * @stats: main device statistics structure
4286  */
4287 static
4288 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4289 {
4290 	struct ice_netdev_priv *np = netdev_priv(netdev);
4291 	struct rtnl_link_stats64 *vsi_stats;
4292 	struct ice_vsi *vsi = np->vsi;
4293 
4294 	vsi_stats = &vsi->net_stats;
4295 
4296 	if (!vsi->num_txq || !vsi->num_rxq)
4297 		return;
4298 
4299 	/* netdev packet/byte stats come from ring counter. These are obtained
4300 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
4301 	 * But, only call the update routine and read the registers if VSI is
4302 	 * not down.
4303 	 */
4304 	if (!test_bit(__ICE_DOWN, vsi->state))
4305 		ice_update_vsi_ring_stats(vsi);
4306 	stats->tx_packets = vsi_stats->tx_packets;
4307 	stats->tx_bytes = vsi_stats->tx_bytes;
4308 	stats->rx_packets = vsi_stats->rx_packets;
4309 	stats->rx_bytes = vsi_stats->rx_bytes;
4310 
4311 	/* The rest of the stats can be read from the hardware but instead we
4312 	 * just return values that the watchdog task has already obtained from
4313 	 * the hardware.
4314 	 */
4315 	stats->multicast = vsi_stats->multicast;
4316 	stats->tx_errors = vsi_stats->tx_errors;
4317 	stats->tx_dropped = vsi_stats->tx_dropped;
4318 	stats->rx_errors = vsi_stats->rx_errors;
4319 	stats->rx_dropped = vsi_stats->rx_dropped;
4320 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4321 	stats->rx_length_errors = vsi_stats->rx_length_errors;
4322 }
4323 
4324 /**
4325  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4326  * @vsi: VSI having NAPI disabled
4327  */
4328 static void ice_napi_disable_all(struct ice_vsi *vsi)
4329 {
4330 	int q_idx;
4331 
4332 	if (!vsi->netdev)
4333 		return;
4334 
4335 	ice_for_each_q_vector(vsi, q_idx) {
4336 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
4337 
4338 		if (q_vector->rx.ring || q_vector->tx.ring)
4339 			napi_disable(&q_vector->napi);
4340 	}
4341 }
4342 
4343 /**
4344  * ice_down - Shutdown the connection
4345  * @vsi: The VSI being stopped
4346  */
4347 int ice_down(struct ice_vsi *vsi)
4348 {
4349 	int i, tx_err, rx_err, link_err = 0;
4350 
4351 	/* Caller of this function is expected to set the
4352 	 * vsi->state __ICE_DOWN bit
4353 	 */
4354 	if (vsi->netdev) {
4355 		netif_carrier_off(vsi->netdev);
4356 		netif_tx_disable(vsi->netdev);
4357 	}
4358 
4359 	ice_vsi_dis_irq(vsi);
4360 
4361 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
4362 	if (tx_err)
4363 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
4364 			   vsi->vsi_num, tx_err);
4365 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
4366 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
4367 		if (tx_err)
4368 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
4369 				   vsi->vsi_num, tx_err);
4370 	}
4371 
4372 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
4373 	if (rx_err)
4374 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
4375 			   vsi->vsi_num, rx_err);
4376 
4377 	ice_napi_disable_all(vsi);
4378 
4379 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
4380 		link_err = ice_force_phys_link_state(vsi, false);
4381 		if (link_err)
4382 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
4383 				   vsi->vsi_num, link_err);
4384 	}
4385 
4386 	ice_for_each_txq(vsi, i)
4387 		ice_clean_tx_ring(vsi->tx_rings[i]);
4388 
4389 	ice_for_each_rxq(vsi, i)
4390 		ice_clean_rx_ring(vsi->rx_rings[i]);
4391 
4392 	if (tx_err || rx_err || link_err) {
4393 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
4394 			   vsi->vsi_num, vsi->vsw->sw_id);
4395 		return -EIO;
4396 	}
4397 
4398 	return 0;
4399 }
4400 
4401 /**
4402  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4403  * @vsi: VSI having resources allocated
4404  *
4405  * Return 0 on success, negative on failure
4406  */
4407 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4408 {
4409 	int i, err = 0;
4410 
4411 	if (!vsi->num_txq) {
4412 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
4413 			vsi->vsi_num);
4414 		return -EINVAL;
4415 	}
4416 
4417 	ice_for_each_txq(vsi, i) {
4418 		struct ice_ring *ring = vsi->tx_rings[i];
4419 
4420 		if (!ring)
4421 			return -EINVAL;
4422 
4423 		ring->netdev = vsi->netdev;
4424 		err = ice_setup_tx_ring(ring);
4425 		if (err)
4426 			break;
4427 	}
4428 
4429 	return err;
4430 }
4431 
4432 /**
4433  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4434  * @vsi: VSI having resources allocated
4435  *
4436  * Return 0 on success, negative on failure
4437  */
4438 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4439 {
4440 	int i, err = 0;
4441 
4442 	if (!vsi->num_rxq) {
4443 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
4444 			vsi->vsi_num);
4445 		return -EINVAL;
4446 	}
4447 
4448 	ice_for_each_rxq(vsi, i) {
4449 		struct ice_ring *ring = vsi->rx_rings[i];
4450 
4451 		if (!ring)
4452 			return -EINVAL;
4453 
4454 		ring->netdev = vsi->netdev;
4455 		err = ice_setup_rx_ring(ring);
4456 		if (err)
4457 			break;
4458 	}
4459 
4460 	return err;
4461 }
4462 
4463 /**
4464  * ice_vsi_open - Called when a network interface is made active
4465  * @vsi: the VSI to open
4466  *
4467  * Initialization of the VSI
4468  *
4469  * Returns 0 on success, negative value on error
4470  */
4471 static int ice_vsi_open(struct ice_vsi *vsi)
4472 {
4473 	char int_name[ICE_INT_NAME_STR_LEN];
4474 	struct ice_pf *pf = vsi->back;
4475 	int err;
4476 
4477 	/* allocate descriptors */
4478 	err = ice_vsi_setup_tx_rings(vsi);
4479 	if (err)
4480 		goto err_setup_tx;
4481 
4482 	err = ice_vsi_setup_rx_rings(vsi);
4483 	if (err)
4484 		goto err_setup_rx;
4485 
4486 	err = ice_vsi_cfg(vsi);
4487 	if (err)
4488 		goto err_setup_rx;
4489 
4490 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4491 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
4492 	err = ice_vsi_req_irq_msix(vsi, int_name);
4493 	if (err)
4494 		goto err_setup_rx;
4495 
4496 	/* Notify the stack of the actual queue counts. */
4497 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4498 	if (err)
4499 		goto err_set_qs;
4500 
4501 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
4502 	if (err)
4503 		goto err_set_qs;
4504 
4505 	err = ice_up_complete(vsi);
4506 	if (err)
4507 		goto err_up_complete;
4508 
4509 	return 0;
4510 
4511 err_up_complete:
4512 	ice_down(vsi);
4513 err_set_qs:
4514 	ice_vsi_free_irq(vsi);
4515 err_setup_rx:
4516 	ice_vsi_free_rx_rings(vsi);
4517 err_setup_tx:
4518 	ice_vsi_free_tx_rings(vsi);
4519 
4520 	return err;
4521 }
4522 
4523 /**
4524  * ice_vsi_release_all - Delete all VSIs
4525  * @pf: PF from which all VSIs are being removed
4526  */
4527 static void ice_vsi_release_all(struct ice_pf *pf)
4528 {
4529 	int err, i;
4530 
4531 	if (!pf->vsi)
4532 		return;
4533 
4534 	ice_for_each_vsi(pf, i) {
4535 		if (!pf->vsi[i])
4536 			continue;
4537 
4538 		err = ice_vsi_release(pf->vsi[i]);
4539 		if (err)
4540 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
4541 				i, err, pf->vsi[i]->vsi_num);
4542 	}
4543 }
4544 
4545 /**
4546  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
4547  * @pf: pointer to the PF instance
4548  * @type: VSI type to rebuild
4549  *
4550  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
4551  */
4552 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
4553 {
4554 	struct device *dev = ice_pf_to_dev(pf);
4555 	enum ice_status status;
4556 	int i, err;
4557 
4558 	ice_for_each_vsi(pf, i) {
4559 		struct ice_vsi *vsi = pf->vsi[i];
4560 
4561 		if (!vsi || vsi->type != type)
4562 			continue;
4563 
4564 		/* rebuild the VSI */
4565 		err = ice_vsi_rebuild(vsi, true);
4566 		if (err) {
4567 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
4568 				err, vsi->idx, ice_vsi_type_str(type));
4569 			return err;
4570 		}
4571 
4572 		/* replay filters for the VSI */
4573 		status = ice_replay_vsi(&pf->hw, vsi->idx);
4574 		if (status) {
4575 			dev_err(dev, "replay VSI failed, status %d, VSI index %d, type %s\n",
4576 				status, vsi->idx, ice_vsi_type_str(type));
4577 			return -EIO;
4578 		}
4579 
4580 		/* Re-map HW VSI number, using VSI handle that has been
4581 		 * previously validated in ice_replay_vsi() call above
4582 		 */
4583 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
4584 
4585 		/* enable the VSI */
4586 		err = ice_ena_vsi(vsi, false);
4587 		if (err) {
4588 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
4589 				err, vsi->idx, ice_vsi_type_str(type));
4590 			return err;
4591 		}
4592 
4593 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
4594 			 ice_vsi_type_str(type));
4595 	}
4596 
4597 	return 0;
4598 }
4599 
4600 /**
4601  * ice_update_pf_netdev_link - Update PF netdev link status
4602  * @pf: pointer to the PF instance
4603  */
4604 static void ice_update_pf_netdev_link(struct ice_pf *pf)
4605 {
4606 	bool link_up;
4607 	int i;
4608 
4609 	ice_for_each_vsi(pf, i) {
4610 		struct ice_vsi *vsi = pf->vsi[i];
4611 
4612 		if (!vsi || vsi->type != ICE_VSI_PF)
4613 			return;
4614 
4615 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
4616 		if (link_up) {
4617 			netif_carrier_on(pf->vsi[i]->netdev);
4618 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
4619 		} else {
4620 			netif_carrier_off(pf->vsi[i]->netdev);
4621 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
4622 		}
4623 	}
4624 }
4625 
4626 /**
4627  * ice_rebuild - rebuild after reset
4628  * @pf: PF to rebuild
4629  * @reset_type: type of reset
4630  */
4631 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
4632 {
4633 	struct device *dev = ice_pf_to_dev(pf);
4634 	struct ice_hw *hw = &pf->hw;
4635 	enum ice_status ret;
4636 	int err;
4637 
4638 	if (test_bit(__ICE_DOWN, pf->state))
4639 		goto clear_recovery;
4640 
4641 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
4642 
4643 	ret = ice_init_all_ctrlq(hw);
4644 	if (ret) {
4645 		dev_err(dev, "control queues init failed %d\n", ret);
4646 		goto err_init_ctrlq;
4647 	}
4648 
4649 	/* if DDP was previously loaded successfully */
4650 	if (!ice_is_safe_mode(pf)) {
4651 		/* reload the SW DB of filter tables */
4652 		if (reset_type == ICE_RESET_PFR)
4653 			ice_fill_blk_tbls(hw);
4654 		else
4655 			/* Reload DDP Package after CORER/GLOBR reset */
4656 			ice_load_pkg(NULL, pf);
4657 	}
4658 
4659 	ret = ice_clear_pf_cfg(hw);
4660 	if (ret) {
4661 		dev_err(dev, "clear PF configuration failed %d\n", ret);
4662 		goto err_init_ctrlq;
4663 	}
4664 
4665 	if (pf->first_sw->dflt_vsi_ena)
4666 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
4667 	/* clear the default VSI configuration if it exists */
4668 	pf->first_sw->dflt_vsi = NULL;
4669 	pf->first_sw->dflt_vsi_ena = false;
4670 
4671 	ice_clear_pxe_mode(hw);
4672 
4673 	ret = ice_get_caps(hw);
4674 	if (ret) {
4675 		dev_err(dev, "ice_get_caps failed %d\n", ret);
4676 		goto err_init_ctrlq;
4677 	}
4678 
4679 	err = ice_sched_init_port(hw->port_info);
4680 	if (err)
4681 		goto err_sched_init_port;
4682 
4683 	err = ice_update_link_info(hw->port_info);
4684 	if (err)
4685 		dev_err(dev, "Get link status error %d\n", err);
4686 
4687 	/* start misc vector */
4688 	err = ice_req_irq_msix_misc(pf);
4689 	if (err) {
4690 		dev_err(dev, "misc vector setup failed: %d\n", err);
4691 		goto err_sched_init_port;
4692 	}
4693 
4694 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
4695 		ice_dcb_rebuild(pf);
4696 
4697 	/* rebuild PF VSI */
4698 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
4699 	if (err) {
4700 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
4701 		goto err_vsi_rebuild;
4702 	}
4703 
4704 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4705 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
4706 		if (err) {
4707 			dev_err(dev, "VF VSI rebuild failed: %d\n", err);
4708 			goto err_vsi_rebuild;
4709 		}
4710 	}
4711 
4712 	ice_update_pf_netdev_link(pf);
4713 
4714 	/* tell the firmware we are up */
4715 	ret = ice_send_version(pf);
4716 	if (ret) {
4717 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
4718 			ret);
4719 		goto err_vsi_rebuild;
4720 	}
4721 
4722 	ice_replay_post(hw);
4723 
4724 	/* if we get here, reset flow is successful */
4725 	clear_bit(__ICE_RESET_FAILED, pf->state);
4726 	return;
4727 
4728 err_vsi_rebuild:
4729 err_sched_init_port:
4730 	ice_sched_cleanup_all(hw);
4731 err_init_ctrlq:
4732 	ice_shutdown_all_ctrlq(hw);
4733 	set_bit(__ICE_RESET_FAILED, pf->state);
4734 clear_recovery:
4735 	/* set this bit in PF state to control service task scheduling */
4736 	set_bit(__ICE_NEEDS_RESTART, pf->state);
4737 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
4738 }
4739 
4740 /**
4741  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
4742  * @vsi: Pointer to VSI structure
4743  */
4744 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
4745 {
4746 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
4747 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
4748 	else
4749 		return ICE_RXBUF_3072;
4750 }
4751 
4752 /**
4753  * ice_change_mtu - NDO callback to change the MTU
4754  * @netdev: network interface device structure
4755  * @new_mtu: new value for maximum frame size
4756  *
4757  * Returns 0 on success, negative on failure
4758  */
4759 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
4760 {
4761 	struct ice_netdev_priv *np = netdev_priv(netdev);
4762 	struct ice_vsi *vsi = np->vsi;
4763 	struct ice_pf *pf = vsi->back;
4764 	u8 count = 0;
4765 
4766 	if (new_mtu == netdev->mtu) {
4767 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
4768 		return 0;
4769 	}
4770 
4771 	if (ice_is_xdp_ena_vsi(vsi)) {
4772 		int frame_size = ice_max_xdp_frame_size(vsi);
4773 
4774 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
4775 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
4776 				   frame_size - ICE_ETH_PKT_HDR_PAD);
4777 			return -EINVAL;
4778 		}
4779 	}
4780 
4781 	if (new_mtu < netdev->min_mtu) {
4782 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
4783 			   netdev->min_mtu);
4784 		return -EINVAL;
4785 	} else if (new_mtu > netdev->max_mtu) {
4786 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
4787 			   netdev->min_mtu);
4788 		return -EINVAL;
4789 	}
4790 	/* if a reset is in progress, wait for some time for it to complete */
4791 	do {
4792 		if (ice_is_reset_in_progress(pf->state)) {
4793 			count++;
4794 			usleep_range(1000, 2000);
4795 		} else {
4796 			break;
4797 		}
4798 
4799 	} while (count < 100);
4800 
4801 	if (count == 100) {
4802 		netdev_err(netdev, "can't change MTU. Device is busy\n");
4803 		return -EBUSY;
4804 	}
4805 
4806 	netdev->mtu = new_mtu;
4807 
4808 	/* if VSI is up, bring it down and then back up */
4809 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
4810 		int err;
4811 
4812 		err = ice_down(vsi);
4813 		if (err) {
4814 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4815 			return err;
4816 		}
4817 
4818 		err = ice_up(vsi);
4819 		if (err) {
4820 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4821 			return err;
4822 		}
4823 	}
4824 
4825 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
4826 	return 0;
4827 }
4828 
4829 /**
4830  * ice_set_rss - Set RSS keys and lut
4831  * @vsi: Pointer to VSI structure
4832  * @seed: RSS hash seed
4833  * @lut: Lookup table
4834  * @lut_size: Lookup table size
4835  *
4836  * Returns 0 on success, negative on failure
4837  */
4838 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4839 {
4840 	struct ice_pf *pf = vsi->back;
4841 	struct ice_hw *hw = &pf->hw;
4842 	enum ice_status status;
4843 	struct device *dev;
4844 
4845 	dev = ice_pf_to_dev(pf);
4846 	if (seed) {
4847 		struct ice_aqc_get_set_rss_keys *buf =
4848 				  (struct ice_aqc_get_set_rss_keys *)seed;
4849 
4850 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
4851 
4852 		if (status) {
4853 			dev_err(dev, "Cannot set RSS key, err %d aq_err %d\n",
4854 				status, hw->adminq.rq_last_status);
4855 			return -EIO;
4856 		}
4857 	}
4858 
4859 	if (lut) {
4860 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4861 					    lut, lut_size);
4862 		if (status) {
4863 			dev_err(dev, "Cannot set RSS lut, err %d aq_err %d\n",
4864 				status, hw->adminq.rq_last_status);
4865 			return -EIO;
4866 		}
4867 	}
4868 
4869 	return 0;
4870 }
4871 
4872 /**
4873  * ice_get_rss - Get RSS keys and lut
4874  * @vsi: Pointer to VSI structure
4875  * @seed: Buffer to store the keys
4876  * @lut: Buffer to store the lookup table entries
4877  * @lut_size: Size of buffer to store the lookup table entries
4878  *
4879  * Returns 0 on success, negative on failure
4880  */
4881 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4882 {
4883 	struct ice_pf *pf = vsi->back;
4884 	struct ice_hw *hw = &pf->hw;
4885 	enum ice_status status;
4886 	struct device *dev;
4887 
4888 	dev = ice_pf_to_dev(pf);
4889 	if (seed) {
4890 		struct ice_aqc_get_set_rss_keys *buf =
4891 				  (struct ice_aqc_get_set_rss_keys *)seed;
4892 
4893 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4894 		if (status) {
4895 			dev_err(dev, "Cannot get RSS key, err %d aq_err %d\n",
4896 				status, hw->adminq.rq_last_status);
4897 			return -EIO;
4898 		}
4899 	}
4900 
4901 	if (lut) {
4902 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4903 					    lut, lut_size);
4904 		if (status) {
4905 			dev_err(dev, "Cannot get RSS lut, err %d aq_err %d\n",
4906 				status, hw->adminq.rq_last_status);
4907 			return -EIO;
4908 		}
4909 	}
4910 
4911 	return 0;
4912 }
4913 
4914 /**
4915  * ice_bridge_getlink - Get the hardware bridge mode
4916  * @skb: skb buff
4917  * @pid: process ID
4918  * @seq: RTNL message seq
4919  * @dev: the netdev being configured
4920  * @filter_mask: filter mask passed in
4921  * @nlflags: netlink flags passed in
4922  *
4923  * Return the bridge mode (VEB/VEPA)
4924  */
4925 static int
4926 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4927 		   struct net_device *dev, u32 filter_mask, int nlflags)
4928 {
4929 	struct ice_netdev_priv *np = netdev_priv(dev);
4930 	struct ice_vsi *vsi = np->vsi;
4931 	struct ice_pf *pf = vsi->back;
4932 	u16 bmode;
4933 
4934 	bmode = pf->first_sw->bridge_mode;
4935 
4936 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4937 				       filter_mask, NULL);
4938 }
4939 
4940 /**
4941  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4942  * @vsi: Pointer to VSI structure
4943  * @bmode: Hardware bridge mode (VEB/VEPA)
4944  *
4945  * Returns 0 on success, negative on failure
4946  */
4947 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4948 {
4949 	struct ice_aqc_vsi_props *vsi_props;
4950 	struct ice_hw *hw = &vsi->back->hw;
4951 	struct ice_vsi_ctx *ctxt;
4952 	enum ice_status status;
4953 	int ret = 0;
4954 
4955 	vsi_props = &vsi->info;
4956 
4957 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4958 	if (!ctxt)
4959 		return -ENOMEM;
4960 
4961 	ctxt->info = vsi->info;
4962 
4963 	if (bmode == BRIDGE_MODE_VEB)
4964 		/* change from VEPA to VEB mode */
4965 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4966 	else
4967 		/* change from VEB to VEPA mode */
4968 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4969 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4970 
4971 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4972 	if (status) {
4973 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4974 			bmode, status, hw->adminq.sq_last_status);
4975 		ret = -EIO;
4976 		goto out;
4977 	}
4978 	/* Update sw flags for book keeping */
4979 	vsi_props->sw_flags = ctxt->info.sw_flags;
4980 
4981 out:
4982 	kfree(ctxt);
4983 	return ret;
4984 }
4985 
4986 /**
4987  * ice_bridge_setlink - Set the hardware bridge mode
4988  * @dev: the netdev being configured
4989  * @nlh: RTNL message
4990  * @flags: bridge setlink flags
4991  * @extack: netlink extended ack
4992  *
4993  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
4994  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
4995  * not already set for all VSIs connected to this switch. And also update the
4996  * unicast switch filter rules for the corresponding switch of the netdev.
4997  */
4998 static int
4999 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
5000 		   u16 __always_unused flags,
5001 		   struct netlink_ext_ack __always_unused *extack)
5002 {
5003 	struct ice_netdev_priv *np = netdev_priv(dev);
5004 	struct ice_pf *pf = np->vsi->back;
5005 	struct nlattr *attr, *br_spec;
5006 	struct ice_hw *hw = &pf->hw;
5007 	enum ice_status status;
5008 	struct ice_sw *pf_sw;
5009 	int rem, v, err = 0;
5010 
5011 	pf_sw = pf->first_sw;
5012 	/* find the attribute in the netlink message */
5013 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
5014 
5015 	nla_for_each_nested(attr, br_spec, rem) {
5016 		__u16 mode;
5017 
5018 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
5019 			continue;
5020 		mode = nla_get_u16(attr);
5021 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
5022 			return -EINVAL;
5023 		/* Continue  if bridge mode is not being flipped */
5024 		if (mode == pf_sw->bridge_mode)
5025 			continue;
5026 		/* Iterates through the PF VSI list and update the loopback
5027 		 * mode of the VSI
5028 		 */
5029 		ice_for_each_vsi(pf, v) {
5030 			if (!pf->vsi[v])
5031 				continue;
5032 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
5033 			if (err)
5034 				return err;
5035 		}
5036 
5037 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
5038 		/* Update the unicast switch filter rules for the corresponding
5039 		 * switch of the netdev
5040 		 */
5041 		status = ice_update_sw_rule_bridge_mode(hw);
5042 		if (status) {
5043 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
5044 				   mode, status, hw->adminq.sq_last_status);
5045 			/* revert hw->evb_veb */
5046 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
5047 			return -EIO;
5048 		}
5049 
5050 		pf_sw->bridge_mode = mode;
5051 	}
5052 
5053 	return 0;
5054 }
5055 
5056 /**
5057  * ice_tx_timeout - Respond to a Tx Hang
5058  * @netdev: network interface device structure
5059  * @txqueue: Tx queue
5060  */
5061 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5062 {
5063 	struct ice_netdev_priv *np = netdev_priv(netdev);
5064 	struct ice_ring *tx_ring = NULL;
5065 	struct ice_vsi *vsi = np->vsi;
5066 	struct ice_pf *pf = vsi->back;
5067 	u32 i;
5068 
5069 	pf->tx_timeout_count++;
5070 
5071 	/* now that we have an index, find the tx_ring struct */
5072 	for (i = 0; i < vsi->num_txq; i++)
5073 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
5074 			if (txqueue == vsi->tx_rings[i]->q_index) {
5075 				tx_ring = vsi->tx_rings[i];
5076 				break;
5077 			}
5078 
5079 	/* Reset recovery level if enough time has elapsed after last timeout.
5080 	 * Also ensure no new reset action happens before next timeout period.
5081 	 */
5082 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
5083 		pf->tx_timeout_recovery_level = 1;
5084 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
5085 				       netdev->watchdog_timeo)))
5086 		return;
5087 
5088 	if (tx_ring) {
5089 		struct ice_hw *hw = &pf->hw;
5090 		u32 head, val = 0;
5091 
5092 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
5093 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
5094 		/* Read interrupt register */
5095 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
5096 
5097 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
5098 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
5099 			    head, tx_ring->next_to_use, val);
5100 	}
5101 
5102 	pf->tx_timeout_last_recovery = jiffies;
5103 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n",
5104 		    pf->tx_timeout_recovery_level, txqueue);
5105 
5106 	switch (pf->tx_timeout_recovery_level) {
5107 	case 1:
5108 		set_bit(__ICE_PFR_REQ, pf->state);
5109 		break;
5110 	case 2:
5111 		set_bit(__ICE_CORER_REQ, pf->state);
5112 		break;
5113 	case 3:
5114 		set_bit(__ICE_GLOBR_REQ, pf->state);
5115 		break;
5116 	default:
5117 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
5118 		set_bit(__ICE_DOWN, pf->state);
5119 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
5120 		set_bit(__ICE_SERVICE_DIS, pf->state);
5121 		break;
5122 	}
5123 
5124 	ice_service_task_schedule(pf);
5125 	pf->tx_timeout_recovery_level++;
5126 }
5127 
5128 /**
5129  * ice_open - Called when a network interface becomes active
5130  * @netdev: network interface device structure
5131  *
5132  * The open entry point is called when a network interface is made
5133  * active by the system (IFF_UP). At this point all resources needed
5134  * for transmit and receive operations are allocated, the interrupt
5135  * handler is registered with the OS, the netdev watchdog is enabled,
5136  * and the stack is notified that the interface is ready.
5137  *
5138  * Returns 0 on success, negative value on failure
5139  */
5140 int ice_open(struct net_device *netdev)
5141 {
5142 	struct ice_netdev_priv *np = netdev_priv(netdev);
5143 	struct ice_vsi *vsi = np->vsi;
5144 	struct ice_port_info *pi;
5145 	int err;
5146 
5147 	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
5148 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
5149 		return -EIO;
5150 	}
5151 
5152 	netif_carrier_off(netdev);
5153 
5154 	pi = vsi->port_info;
5155 	err = ice_update_link_info(pi);
5156 	if (err) {
5157 		netdev_err(netdev, "Failed to get link info, error %d\n",
5158 			   err);
5159 		return err;
5160 	}
5161 
5162 	/* Set PHY if there is media, otherwise, turn off PHY */
5163 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
5164 		err = ice_force_phys_link_state(vsi, true);
5165 		if (err) {
5166 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
5167 				   err);
5168 			return err;
5169 		}
5170 	} else {
5171 		err = ice_aq_set_link_restart_an(pi, false, NULL);
5172 		if (err) {
5173 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
5174 				   vsi->vsi_num, err);
5175 			return err;
5176 		}
5177 		set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
5178 	}
5179 
5180 	err = ice_vsi_open(vsi);
5181 	if (err)
5182 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5183 			   vsi->vsi_num, vsi->vsw->sw_id);
5184 	return err;
5185 }
5186 
5187 /**
5188  * ice_stop - Disables a network interface
5189  * @netdev: network interface device structure
5190  *
5191  * The stop entry point is called when an interface is de-activated by the OS,
5192  * and the netdevice enters the DOWN state. The hardware is still under the
5193  * driver's control, but the netdev interface is disabled.
5194  *
5195  * Returns success only - not allowed to fail
5196  */
5197 int ice_stop(struct net_device *netdev)
5198 {
5199 	struct ice_netdev_priv *np = netdev_priv(netdev);
5200 	struct ice_vsi *vsi = np->vsi;
5201 
5202 	ice_vsi_close(vsi);
5203 
5204 	return 0;
5205 }
5206 
5207 /**
5208  * ice_features_check - Validate encapsulated packet conforms to limits
5209  * @skb: skb buffer
5210  * @netdev: This port's netdev
5211  * @features: Offload features that the stack believes apply
5212  */
5213 static netdev_features_t
5214 ice_features_check(struct sk_buff *skb,
5215 		   struct net_device __always_unused *netdev,
5216 		   netdev_features_t features)
5217 {
5218 	size_t len;
5219 
5220 	/* No point in doing any of this if neither checksum nor GSO are
5221 	 * being requested for this frame. We can rule out both by just
5222 	 * checking for CHECKSUM_PARTIAL
5223 	 */
5224 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5225 		return features;
5226 
5227 	/* We cannot support GSO if the MSS is going to be less than
5228 	 * 64 bytes. If it is then we need to drop support for GSO.
5229 	 */
5230 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5231 		features &= ~NETIF_F_GSO_MASK;
5232 
5233 	len = skb_network_header(skb) - skb->data;
5234 	if (len & ~(ICE_TXD_MACLEN_MAX))
5235 		goto out_rm_features;
5236 
5237 	len = skb_transport_header(skb) - skb_network_header(skb);
5238 	if (len & ~(ICE_TXD_IPLEN_MAX))
5239 		goto out_rm_features;
5240 
5241 	if (skb->encapsulation) {
5242 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
5243 		if (len & ~(ICE_TXD_L4LEN_MAX))
5244 			goto out_rm_features;
5245 
5246 		len = skb_inner_transport_header(skb) -
5247 		      skb_inner_network_header(skb);
5248 		if (len & ~(ICE_TXD_IPLEN_MAX))
5249 			goto out_rm_features;
5250 	}
5251 
5252 	return features;
5253 out_rm_features:
5254 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5255 }
5256 
5257 static const struct net_device_ops ice_netdev_safe_mode_ops = {
5258 	.ndo_open = ice_open,
5259 	.ndo_stop = ice_stop,
5260 	.ndo_start_xmit = ice_start_xmit,
5261 	.ndo_set_mac_address = ice_set_mac_address,
5262 	.ndo_validate_addr = eth_validate_addr,
5263 	.ndo_change_mtu = ice_change_mtu,
5264 	.ndo_get_stats64 = ice_get_stats64,
5265 	.ndo_tx_timeout = ice_tx_timeout,
5266 };
5267 
5268 static const struct net_device_ops ice_netdev_ops = {
5269 	.ndo_open = ice_open,
5270 	.ndo_stop = ice_stop,
5271 	.ndo_start_xmit = ice_start_xmit,
5272 	.ndo_features_check = ice_features_check,
5273 	.ndo_set_rx_mode = ice_set_rx_mode,
5274 	.ndo_set_mac_address = ice_set_mac_address,
5275 	.ndo_validate_addr = eth_validate_addr,
5276 	.ndo_change_mtu = ice_change_mtu,
5277 	.ndo_get_stats64 = ice_get_stats64,
5278 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
5279 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
5280 	.ndo_set_vf_mac = ice_set_vf_mac,
5281 	.ndo_get_vf_config = ice_get_vf_cfg,
5282 	.ndo_set_vf_trust = ice_set_vf_trust,
5283 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
5284 	.ndo_set_vf_link_state = ice_set_vf_link_state,
5285 	.ndo_get_vf_stats = ice_get_vf_stats,
5286 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5287 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5288 	.ndo_set_features = ice_set_features,
5289 	.ndo_bridge_getlink = ice_bridge_getlink,
5290 	.ndo_bridge_setlink = ice_bridge_setlink,
5291 	.ndo_fdb_add = ice_fdb_add,
5292 	.ndo_fdb_del = ice_fdb_del,
5293 	.ndo_tx_timeout = ice_tx_timeout,
5294 	.ndo_bpf = ice_xdp,
5295 	.ndo_xdp_xmit = ice_xdp_xmit,
5296 	.ndo_xsk_wakeup = ice_xsk_wakeup,
5297 };
5298