1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS(LIBIE); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops); 91 } 92 93 /** 94 * ice_get_tx_pending - returns number of Tx descriptors not processed 95 * @ring: the ring of descriptors 96 */ 97 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 98 { 99 u16 head, tail; 100 101 head = ring->next_to_clean; 102 tail = ring->next_to_use; 103 104 if (head != tail) 105 return (head < tail) ? 106 tail - head : (tail + ring->count - head); 107 return 0; 108 } 109 110 /** 111 * ice_check_for_hang_subtask - check for and recover hung queues 112 * @pf: pointer to PF struct 113 */ 114 static void ice_check_for_hang_subtask(struct ice_pf *pf) 115 { 116 struct ice_vsi *vsi = NULL; 117 struct ice_hw *hw; 118 unsigned int i; 119 int packets; 120 u32 v; 121 122 ice_for_each_vsi(pf, v) 123 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 124 vsi = pf->vsi[v]; 125 break; 126 } 127 128 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 129 return; 130 131 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 132 return; 133 134 hw = &vsi->back->hw; 135 136 ice_for_each_txq(vsi, i) { 137 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 138 struct ice_ring_stats *ring_stats; 139 140 if (!tx_ring) 141 continue; 142 if (ice_ring_ch_enabled(tx_ring)) 143 continue; 144 145 ring_stats = tx_ring->ring_stats; 146 if (!ring_stats) 147 continue; 148 149 if (tx_ring->desc) { 150 /* If packet counter has not changed the queue is 151 * likely stalled, so force an interrupt for this 152 * queue. 153 * 154 * prev_pkt would be negative if there was no 155 * pending work. 156 */ 157 packets = ring_stats->stats.pkts & INT_MAX; 158 if (ring_stats->tx_stats.prev_pkt == packets) { 159 /* Trigger sw interrupt to revive the queue */ 160 ice_trigger_sw_intr(hw, tx_ring->q_vector); 161 continue; 162 } 163 164 /* Memory barrier between read of packet count and call 165 * to ice_get_tx_pending() 166 */ 167 smp_rmb(); 168 ring_stats->tx_stats.prev_pkt = 169 ice_get_tx_pending(tx_ring) ? packets : -1; 170 } 171 } 172 } 173 174 /** 175 * ice_init_mac_fltr - Set initial MAC filters 176 * @pf: board private structure 177 * 178 * Set initial set of MAC filters for PF VSI; configure filters for permanent 179 * address and broadcast address. If an error is encountered, netdevice will be 180 * unregistered. 181 */ 182 static int ice_init_mac_fltr(struct ice_pf *pf) 183 { 184 struct ice_vsi *vsi; 185 u8 *perm_addr; 186 187 vsi = ice_get_main_vsi(pf); 188 if (!vsi) 189 return -EINVAL; 190 191 perm_addr = vsi->port_info->mac.perm_addr; 192 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 193 } 194 195 /** 196 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 197 * @netdev: the net device on which the sync is happening 198 * @addr: MAC address to sync 199 * 200 * This is a callback function which is called by the in kernel device sync 201 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 202 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 203 * MAC filters from the hardware. 204 */ 205 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 206 { 207 struct ice_netdev_priv *np = netdev_priv(netdev); 208 struct ice_vsi *vsi = np->vsi; 209 210 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 211 ICE_FWD_TO_VSI)) 212 return -EINVAL; 213 214 return 0; 215 } 216 217 /** 218 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 219 * @netdev: the net device on which the unsync is happening 220 * @addr: MAC address to unsync 221 * 222 * This is a callback function which is called by the in kernel device unsync 223 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 224 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 225 * delete the MAC filters from the hardware. 226 */ 227 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 228 { 229 struct ice_netdev_priv *np = netdev_priv(netdev); 230 struct ice_vsi *vsi = np->vsi; 231 232 /* Under some circumstances, we might receive a request to delete our 233 * own device address from our uc list. Because we store the device 234 * address in the VSI's MAC filter list, we need to ignore such 235 * requests and not delete our device address from this list. 236 */ 237 if (ether_addr_equal(addr, netdev->dev_addr)) 238 return 0; 239 240 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 241 ICE_FWD_TO_VSI)) 242 return -EINVAL; 243 244 return 0; 245 } 246 247 /** 248 * ice_vsi_fltr_changed - check if filter state changed 249 * @vsi: VSI to be checked 250 * 251 * returns true if filter state has changed, false otherwise. 252 */ 253 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 254 { 255 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 256 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 257 } 258 259 /** 260 * ice_set_promisc - Enable promiscuous mode for a given PF 261 * @vsi: the VSI being configured 262 * @promisc_m: mask of promiscuous config bits 263 * 264 */ 265 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 266 { 267 int status; 268 269 if (vsi->type != ICE_VSI_PF) 270 return 0; 271 272 if (ice_vsi_has_non_zero_vlans(vsi)) { 273 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 274 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 275 promisc_m); 276 } else { 277 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 278 promisc_m, 0); 279 } 280 if (status && status != -EEXIST) 281 return status; 282 283 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 284 vsi->vsi_num, promisc_m); 285 return 0; 286 } 287 288 /** 289 * ice_clear_promisc - Disable promiscuous mode for a given PF 290 * @vsi: the VSI being configured 291 * @promisc_m: mask of promiscuous config bits 292 * 293 */ 294 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 295 { 296 int status; 297 298 if (vsi->type != ICE_VSI_PF) 299 return 0; 300 301 if (ice_vsi_has_non_zero_vlans(vsi)) { 302 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 303 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 304 promisc_m); 305 } else { 306 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 307 promisc_m, 0); 308 } 309 310 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 311 vsi->vsi_num, promisc_m); 312 return status; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 427 /* promiscuous mode implies allmulticast so 428 * that VSIs that are in promiscuous mode are 429 * subscribed to multicast packets coming to 430 * the port 431 */ 432 err = ice_set_promisc(vsi, 433 ICE_MCAST_PROMISC_BITS); 434 if (err) 435 goto out_promisc; 436 } 437 } else { 438 /* Clear Rx filter to remove traffic from wire */ 439 if (ice_is_vsi_dflt_vsi(vsi)) { 440 err = ice_clear_dflt_vsi(vsi); 441 if (err) { 442 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 443 err, vsi->vsi_num); 444 vsi->current_netdev_flags |= 445 IFF_PROMISC; 446 goto out_promisc; 447 } 448 if (vsi->netdev->features & 449 NETIF_F_HW_VLAN_CTAG_FILTER) 450 vlan_ops->ena_rx_filtering(vsi); 451 } 452 453 /* disable allmulti here, but only if allmulti is not 454 * still enabled for the netdev 455 */ 456 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 457 err = ice_clear_promisc(vsi, 458 ICE_MCAST_PROMISC_BITS); 459 if (err) { 460 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 461 err, vsi->vsi_num); 462 } 463 } 464 } 465 } 466 goto exit; 467 468 out_promisc: 469 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 470 goto exit; 471 out: 472 /* if something went wrong then set the changed flag so we try again */ 473 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 474 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 475 exit: 476 clear_bit(ICE_CFG_BUSY, vsi->state); 477 return err; 478 } 479 480 /** 481 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 482 * @pf: board private structure 483 */ 484 static void ice_sync_fltr_subtask(struct ice_pf *pf) 485 { 486 int v; 487 488 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 489 return; 490 491 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 492 493 ice_for_each_vsi(pf, v) 494 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 495 ice_vsi_sync_fltr(pf->vsi[v])) { 496 /* come back and try again later */ 497 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 498 break; 499 } 500 } 501 502 /** 503 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 504 * @pf: the PF 505 * @locked: is the rtnl_lock already held 506 */ 507 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 508 { 509 int node; 510 int v; 511 512 ice_for_each_vsi(pf, v) 513 if (pf->vsi[v]) 514 ice_dis_vsi(pf->vsi[v], locked); 515 516 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 517 pf->pf_agg_node[node].num_vsis = 0; 518 519 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 520 pf->vf_agg_node[node].num_vsis = 0; 521 } 522 523 /** 524 * ice_clear_sw_switch_recipes - clear switch recipes 525 * @pf: board private structure 526 * 527 * Mark switch recipes as not created in sw structures. There are cases where 528 * rules (especially advanced rules) need to be restored, either re-read from 529 * hardware or added again. For example after the reset. 'recp_created' flag 530 * prevents from doing that and need to be cleared upfront. 531 */ 532 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 533 { 534 struct ice_sw_recipe *recp; 535 u8 i; 536 537 recp = pf->hw.switch_info->recp_list; 538 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 539 recp[i].recp_created = false; 540 } 541 542 /** 543 * ice_prepare_for_reset - prep for reset 544 * @pf: board private structure 545 * @reset_type: reset type requested 546 * 547 * Inform or close all dependent features in prep for reset. 548 */ 549 static void 550 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 551 { 552 struct ice_hw *hw = &pf->hw; 553 struct ice_vsi *vsi; 554 struct ice_vf *vf; 555 unsigned int bkt; 556 557 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 558 559 /* already prepared for reset */ 560 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 561 return; 562 563 ice_unplug_aux_dev(pf); 564 565 /* Notify VFs of impending reset */ 566 if (ice_check_sq_alive(hw, &hw->mailboxq)) 567 ice_vc_notify_reset(pf); 568 569 /* Disable VFs until reset is completed */ 570 mutex_lock(&pf->vfs.table_lock); 571 ice_for_each_vf(pf, bkt, vf) 572 ice_set_vf_state_dis(vf); 573 mutex_unlock(&pf->vfs.table_lock); 574 575 if (ice_is_eswitch_mode_switchdev(pf)) { 576 if (reset_type != ICE_RESET_PFR) 577 ice_clear_sw_switch_recipes(pf); 578 } 579 580 /* release ADQ specific HW and SW resources */ 581 vsi = ice_get_main_vsi(pf); 582 if (!vsi) 583 goto skip; 584 585 /* to be on safe side, reset orig_rss_size so that normal flow 586 * of deciding rss_size can take precedence 587 */ 588 vsi->orig_rss_size = 0; 589 590 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 591 if (reset_type == ICE_RESET_PFR) { 592 vsi->old_ena_tc = vsi->all_enatc; 593 vsi->old_numtc = vsi->all_numtc; 594 } else { 595 ice_remove_q_channels(vsi, true); 596 597 /* for other reset type, do not support channel rebuild 598 * hence reset needed info 599 */ 600 vsi->old_ena_tc = 0; 601 vsi->all_enatc = 0; 602 vsi->old_numtc = 0; 603 vsi->all_numtc = 0; 604 vsi->req_txq = 0; 605 vsi->req_rxq = 0; 606 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 607 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 608 } 609 } 610 skip: 611 612 /* clear SW filtering DB */ 613 ice_clear_hw_tbls(hw); 614 /* disable the VSIs and their queues that are not already DOWN */ 615 ice_pf_dis_all_vsi(pf, false); 616 617 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 618 ice_ptp_prepare_for_reset(pf, reset_type); 619 620 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 621 ice_gnss_exit(pf); 622 623 if (hw->port_info) 624 ice_sched_clear_port(hw->port_info); 625 626 ice_shutdown_all_ctrlq(hw); 627 628 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 } 630 631 /** 632 * ice_do_reset - Initiate one of many types of resets 633 * @pf: board private structure 634 * @reset_type: reset type requested before this function was called. 635 */ 636 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 637 { 638 struct device *dev = ice_pf_to_dev(pf); 639 struct ice_hw *hw = &pf->hw; 640 641 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 642 643 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 644 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 645 reset_type = ICE_RESET_CORER; 646 } 647 648 ice_prepare_for_reset(pf, reset_type); 649 650 /* trigger the reset */ 651 if (ice_reset(hw, reset_type)) { 652 dev_err(dev, "reset %d failed\n", reset_type); 653 set_bit(ICE_RESET_FAILED, pf->state); 654 clear_bit(ICE_RESET_OICR_RECV, pf->state); 655 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 656 clear_bit(ICE_PFR_REQ, pf->state); 657 clear_bit(ICE_CORER_REQ, pf->state); 658 clear_bit(ICE_GLOBR_REQ, pf->state); 659 wake_up(&pf->reset_wait_queue); 660 return; 661 } 662 663 /* PFR is a bit of a special case because it doesn't result in an OICR 664 * interrupt. So for PFR, rebuild after the reset and clear the reset- 665 * associated state bits. 666 */ 667 if (reset_type == ICE_RESET_PFR) { 668 pf->pfr_count++; 669 ice_rebuild(pf, reset_type); 670 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 671 clear_bit(ICE_PFR_REQ, pf->state); 672 wake_up(&pf->reset_wait_queue); 673 ice_reset_all_vfs(pf); 674 } 675 } 676 677 /** 678 * ice_reset_subtask - Set up for resetting the device and driver 679 * @pf: board private structure 680 */ 681 static void ice_reset_subtask(struct ice_pf *pf) 682 { 683 enum ice_reset_req reset_type = ICE_RESET_INVAL; 684 685 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 686 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 687 * of reset is pending and sets bits in pf->state indicating the reset 688 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 689 * prepare for pending reset if not already (for PF software-initiated 690 * global resets the software should already be prepared for it as 691 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 692 * by firmware or software on other PFs, that bit is not set so prepare 693 * for the reset now), poll for reset done, rebuild and return. 694 */ 695 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 696 /* Perform the largest reset requested */ 697 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 698 reset_type = ICE_RESET_CORER; 699 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 700 reset_type = ICE_RESET_GLOBR; 701 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 702 reset_type = ICE_RESET_EMPR; 703 /* return if no valid reset type requested */ 704 if (reset_type == ICE_RESET_INVAL) 705 return; 706 ice_prepare_for_reset(pf, reset_type); 707 708 /* make sure we are ready to rebuild */ 709 if (ice_check_reset(&pf->hw)) { 710 set_bit(ICE_RESET_FAILED, pf->state); 711 } else { 712 /* done with reset. start rebuild */ 713 pf->hw.reset_ongoing = false; 714 ice_rebuild(pf, reset_type); 715 /* clear bit to resume normal operations, but 716 * ICE_NEEDS_RESTART bit is set in case rebuild failed 717 */ 718 clear_bit(ICE_RESET_OICR_RECV, pf->state); 719 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 720 clear_bit(ICE_PFR_REQ, pf->state); 721 clear_bit(ICE_CORER_REQ, pf->state); 722 clear_bit(ICE_GLOBR_REQ, pf->state); 723 wake_up(&pf->reset_wait_queue); 724 ice_reset_all_vfs(pf); 725 } 726 727 return; 728 } 729 730 /* No pending resets to finish processing. Check for new resets */ 731 if (test_bit(ICE_PFR_REQ, pf->state)) { 732 reset_type = ICE_RESET_PFR; 733 if (pf->lag && pf->lag->bonded) { 734 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 735 reset_type = ICE_RESET_CORER; 736 } 737 } 738 if (test_bit(ICE_CORER_REQ, pf->state)) 739 reset_type = ICE_RESET_CORER; 740 if (test_bit(ICE_GLOBR_REQ, pf->state)) 741 reset_type = ICE_RESET_GLOBR; 742 /* If no valid reset type requested just return */ 743 if (reset_type == ICE_RESET_INVAL) 744 return; 745 746 /* reset if not already down or busy */ 747 if (!test_bit(ICE_DOWN, pf->state) && 748 !test_bit(ICE_CFG_BUSY, pf->state)) { 749 ice_do_reset(pf, reset_type); 750 } 751 } 752 753 /** 754 * ice_print_topo_conflict - print topology conflict message 755 * @vsi: the VSI whose topology status is being checked 756 */ 757 static void ice_print_topo_conflict(struct ice_vsi *vsi) 758 { 759 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 760 case ICE_AQ_LINK_TOPO_CONFLICT: 761 case ICE_AQ_LINK_MEDIA_CONFLICT: 762 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 764 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 765 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 766 break; 767 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 768 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 769 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 770 else 771 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 772 break; 773 default: 774 break; 775 } 776 } 777 778 /** 779 * ice_print_link_msg - print link up or down message 780 * @vsi: the VSI whose link status is being queried 781 * @isup: boolean for if the link is now up or down 782 */ 783 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 784 { 785 struct ice_aqc_get_phy_caps_data *caps; 786 const char *an_advertised; 787 const char *fec_req; 788 const char *speed; 789 const char *fec; 790 const char *fc; 791 const char *an; 792 int status; 793 794 if (!vsi) 795 return; 796 797 if (vsi->current_isup == isup) 798 return; 799 800 vsi->current_isup = isup; 801 802 if (!isup) { 803 netdev_info(vsi->netdev, "NIC Link is Down\n"); 804 return; 805 } 806 807 switch (vsi->port_info->phy.link_info.link_speed) { 808 case ICE_AQ_LINK_SPEED_200GB: 809 speed = "200 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_100GB: 812 speed = "100 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_50GB: 815 speed = "50 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_40GB: 818 speed = "40 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_25GB: 821 speed = "25 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_20GB: 824 speed = "20 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_10GB: 827 speed = "10 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_5GB: 830 speed = "5 G"; 831 break; 832 case ICE_AQ_LINK_SPEED_2500MB: 833 speed = "2.5 G"; 834 break; 835 case ICE_AQ_LINK_SPEED_1000MB: 836 speed = "1 G"; 837 break; 838 case ICE_AQ_LINK_SPEED_100MB: 839 speed = "100 M"; 840 break; 841 default: 842 speed = "Unknown "; 843 break; 844 } 845 846 switch (vsi->port_info->fc.current_mode) { 847 case ICE_FC_FULL: 848 fc = "Rx/Tx"; 849 break; 850 case ICE_FC_TX_PAUSE: 851 fc = "Tx"; 852 break; 853 case ICE_FC_RX_PAUSE: 854 fc = "Rx"; 855 break; 856 case ICE_FC_NONE: 857 fc = "None"; 858 break; 859 default: 860 fc = "Unknown"; 861 break; 862 } 863 864 /* Get FEC mode based on negotiated link info */ 865 switch (vsi->port_info->phy.link_info.fec_info) { 866 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 867 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 868 fec = "RS-FEC"; 869 break; 870 case ICE_AQ_LINK_25G_KR_FEC_EN: 871 fec = "FC-FEC/BASE-R"; 872 break; 873 default: 874 fec = "NONE"; 875 break; 876 } 877 878 /* check if autoneg completed, might be false due to not supported */ 879 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 880 an = "True"; 881 else 882 an = "False"; 883 884 /* Get FEC mode requested based on PHY caps last SW configuration */ 885 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 886 if (!caps) { 887 fec_req = "Unknown"; 888 an_advertised = "Unknown"; 889 goto done; 890 } 891 892 status = ice_aq_get_phy_caps(vsi->port_info, false, 893 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 894 if (status) 895 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 896 897 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 898 899 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 900 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 901 fec_req = "RS-FEC"; 902 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 903 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 904 fec_req = "FC-FEC/BASE-R"; 905 else 906 fec_req = "NONE"; 907 908 kfree(caps); 909 910 done: 911 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 912 speed, fec_req, fec, an_advertised, an, fc); 913 ice_print_topo_conflict(vsi); 914 } 915 916 /** 917 * ice_vsi_link_event - update the VSI's netdev 918 * @vsi: the VSI on which the link event occurred 919 * @link_up: whether or not the VSI needs to be set up or down 920 */ 921 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 922 { 923 if (!vsi) 924 return; 925 926 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 927 return; 928 929 if (vsi->type == ICE_VSI_PF) { 930 if (link_up == netif_carrier_ok(vsi->netdev)) 931 return; 932 933 if (link_up) { 934 netif_carrier_on(vsi->netdev); 935 netif_tx_wake_all_queues(vsi->netdev); 936 } else { 937 netif_carrier_off(vsi->netdev); 938 netif_tx_stop_all_queues(vsi->netdev); 939 } 940 } 941 } 942 943 /** 944 * ice_set_dflt_mib - send a default config MIB to the FW 945 * @pf: private PF struct 946 * 947 * This function sends a default configuration MIB to the FW. 948 * 949 * If this function errors out at any point, the driver is still able to 950 * function. The main impact is that LFC may not operate as expected. 951 * Therefore an error state in this function should be treated with a DBG 952 * message and continue on with driver rebuild/reenable. 953 */ 954 static void ice_set_dflt_mib(struct ice_pf *pf) 955 { 956 struct device *dev = ice_pf_to_dev(pf); 957 u8 mib_type, *buf, *lldpmib = NULL; 958 u16 len, typelen, offset = 0; 959 struct ice_lldp_org_tlv *tlv; 960 struct ice_hw *hw = &pf->hw; 961 u32 ouisubtype; 962 963 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 964 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 965 if (!lldpmib) { 966 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 967 __func__); 968 return; 969 } 970 971 /* Add ETS CFG TLV */ 972 tlv = (struct ice_lldp_org_tlv *)lldpmib; 973 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 974 ICE_IEEE_ETS_TLV_LEN); 975 tlv->typelen = htons(typelen); 976 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 977 ICE_IEEE_SUBTYPE_ETS_CFG); 978 tlv->ouisubtype = htonl(ouisubtype); 979 980 buf = tlv->tlvinfo; 981 buf[0] = 0; 982 983 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 984 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 985 * Octets 13 - 20 are TSA values - leave as zeros 986 */ 987 buf[5] = 0x64; 988 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add ETS REC TLV */ 994 buf = tlv->tlvinfo; 995 tlv->typelen = htons(typelen); 996 997 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 998 ICE_IEEE_SUBTYPE_ETS_REC); 999 tlv->ouisubtype = htonl(ouisubtype); 1000 1001 /* First octet of buf is reserved 1002 * Octets 1 - 4 map UP to TC - all UPs map to zero 1003 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1004 * Octets 13 - 20 are TSA value - leave as zeros 1005 */ 1006 buf[5] = 0x64; 1007 offset += len + 2; 1008 tlv = (struct ice_lldp_org_tlv *) 1009 ((char *)tlv + sizeof(tlv->typelen) + len); 1010 1011 /* Add PFC CFG TLV */ 1012 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1013 ICE_IEEE_PFC_TLV_LEN); 1014 tlv->typelen = htons(typelen); 1015 1016 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1017 ICE_IEEE_SUBTYPE_PFC_CFG); 1018 tlv->ouisubtype = htonl(ouisubtype); 1019 1020 /* Octet 1 left as all zeros - PFC disabled */ 1021 buf[0] = 0x08; 1022 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1023 offset += len + 2; 1024 1025 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1026 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1027 1028 kfree(lldpmib); 1029 } 1030 1031 /** 1032 * ice_check_phy_fw_load - check if PHY FW load failed 1033 * @pf: pointer to PF struct 1034 * @link_cfg_err: bitmap from the link info structure 1035 * 1036 * check if external PHY FW load failed and print an error message if it did 1037 */ 1038 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1039 { 1040 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1041 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1042 return; 1043 } 1044 1045 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1046 return; 1047 1048 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1049 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1050 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1051 } 1052 } 1053 1054 /** 1055 * ice_check_module_power 1056 * @pf: pointer to PF struct 1057 * @link_cfg_err: bitmap from the link info structure 1058 * 1059 * check module power level returned by a previous call to aq_get_link_info 1060 * and print error messages if module power level is not supported 1061 */ 1062 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1063 { 1064 /* if module power level is supported, clear the flag */ 1065 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1066 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1067 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1068 return; 1069 } 1070 1071 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1072 * above block didn't clear this bit, there's nothing to do 1073 */ 1074 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1075 return; 1076 1077 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1078 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1079 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1080 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1081 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1082 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1083 } 1084 } 1085 1086 /** 1087 * ice_check_link_cfg_err - check if link configuration failed 1088 * @pf: pointer to the PF struct 1089 * @link_cfg_err: bitmap from the link info structure 1090 * 1091 * print if any link configuration failure happens due to the value in the 1092 * link_cfg_err parameter in the link info structure 1093 */ 1094 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1095 { 1096 ice_check_module_power(pf, link_cfg_err); 1097 ice_check_phy_fw_load(pf, link_cfg_err); 1098 } 1099 1100 /** 1101 * ice_link_event - process the link event 1102 * @pf: PF that the link event is associated with 1103 * @pi: port_info for the port that the link event is associated with 1104 * @link_up: true if the physical link is up and false if it is down 1105 * @link_speed: current link speed received from the link event 1106 * 1107 * Returns 0 on success and negative on failure 1108 */ 1109 static int 1110 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1111 u16 link_speed) 1112 { 1113 struct device *dev = ice_pf_to_dev(pf); 1114 struct ice_phy_info *phy_info; 1115 struct ice_vsi *vsi; 1116 u16 old_link_speed; 1117 bool old_link; 1118 int status; 1119 1120 phy_info = &pi->phy; 1121 phy_info->link_info_old = phy_info->link_info; 1122 1123 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1124 old_link_speed = phy_info->link_info_old.link_speed; 1125 1126 /* update the link info structures and re-enable link events, 1127 * don't bail on failure due to other book keeping needed 1128 */ 1129 status = ice_update_link_info(pi); 1130 if (status) 1131 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1132 pi->lport, status, 1133 ice_aq_str(pi->hw->adminq.sq_last_status)); 1134 1135 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1136 1137 /* Check if the link state is up after updating link info, and treat 1138 * this event as an UP event since the link is actually UP now. 1139 */ 1140 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1141 link_up = true; 1142 1143 vsi = ice_get_main_vsi(pf); 1144 if (!vsi || !vsi->port_info) 1145 return -EINVAL; 1146 1147 /* turn off PHY if media was removed */ 1148 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1149 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1150 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1151 ice_set_link(vsi, false); 1152 } 1153 1154 /* if the old link up/down and speed is the same as the new */ 1155 if (link_up == old_link && link_speed == old_link_speed) 1156 return 0; 1157 1158 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1159 1160 if (ice_is_dcb_active(pf)) { 1161 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1162 ice_dcb_rebuild(pf); 1163 } else { 1164 if (link_up) 1165 ice_set_dflt_mib(pf); 1166 } 1167 ice_vsi_link_event(vsi, link_up); 1168 ice_print_link_msg(vsi, link_up); 1169 1170 ice_vc_notify_link_state(pf); 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1177 * @pf: board private structure 1178 */ 1179 static void ice_watchdog_subtask(struct ice_pf *pf) 1180 { 1181 int i; 1182 1183 /* if interface is down do nothing */ 1184 if (test_bit(ICE_DOWN, pf->state) || 1185 test_bit(ICE_CFG_BUSY, pf->state)) 1186 return; 1187 1188 /* make sure we don't do these things too often */ 1189 if (time_before(jiffies, 1190 pf->serv_tmr_prev + pf->serv_tmr_period)) 1191 return; 1192 1193 pf->serv_tmr_prev = jiffies; 1194 1195 /* Update the stats for active netdevs so the network stack 1196 * can look at updated numbers whenever it cares to 1197 */ 1198 ice_update_pf_stats(pf); 1199 ice_for_each_vsi(pf, i) 1200 if (pf->vsi[i] && pf->vsi[i]->netdev) 1201 ice_update_vsi_stats(pf->vsi[i]); 1202 } 1203 1204 /** 1205 * ice_init_link_events - enable/initialize link events 1206 * @pi: pointer to the port_info instance 1207 * 1208 * Returns -EIO on failure, 0 on success 1209 */ 1210 static int ice_init_link_events(struct ice_port_info *pi) 1211 { 1212 u16 mask; 1213 1214 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1215 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1216 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1217 1218 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1219 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1220 pi->lport); 1221 return -EIO; 1222 } 1223 1224 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1225 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1226 pi->lport); 1227 return -EIO; 1228 } 1229 1230 return 0; 1231 } 1232 1233 /** 1234 * ice_handle_link_event - handle link event via ARQ 1235 * @pf: PF that the link event is associated with 1236 * @event: event structure containing link status info 1237 */ 1238 static int 1239 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1240 { 1241 struct ice_aqc_get_link_status_data *link_data; 1242 struct ice_port_info *port_info; 1243 int status; 1244 1245 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1246 port_info = pf->hw.port_info; 1247 if (!port_info) 1248 return -EINVAL; 1249 1250 status = ice_link_event(pf, port_info, 1251 !!(link_data->link_info & ICE_AQ_LINK_UP), 1252 le16_to_cpu(link_data->link_speed)); 1253 if (status) 1254 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1255 status); 1256 1257 return status; 1258 } 1259 1260 /** 1261 * ice_get_fwlog_data - copy the FW log data from ARQ event 1262 * @pf: PF that the FW log event is associated with 1263 * @event: event structure containing FW log data 1264 */ 1265 static void 1266 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1267 { 1268 struct ice_fwlog_data *fwlog; 1269 struct ice_hw *hw = &pf->hw; 1270 1271 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1272 1273 memset(fwlog->data, 0, PAGE_SIZE); 1274 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1275 1276 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1277 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1278 1279 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1280 /* the rings are full so bump the head to create room */ 1281 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1282 hw->fwlog_ring.size); 1283 } 1284 } 1285 1286 /** 1287 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1288 * @pf: pointer to the PF private structure 1289 * @task: intermediate helper storage and identifier for waiting 1290 * @opcode: the opcode to wait for 1291 * 1292 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1293 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1294 * 1295 * Calls are separated to allow caller registering for event before sending 1296 * the command, which mitigates a race between registering and FW responding. 1297 * 1298 * To obtain only the descriptor contents, pass an task->event with null 1299 * msg_buf. If the complete data buffer is desired, allocate the 1300 * task->event.msg_buf with enough space ahead of time. 1301 */ 1302 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1303 u16 opcode) 1304 { 1305 INIT_HLIST_NODE(&task->entry); 1306 task->opcode = opcode; 1307 task->state = ICE_AQ_TASK_WAITING; 1308 1309 spin_lock_bh(&pf->aq_wait_lock); 1310 hlist_add_head(&task->entry, &pf->aq_wait_list); 1311 spin_unlock_bh(&pf->aq_wait_lock); 1312 } 1313 1314 /** 1315 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1316 * @pf: pointer to the PF private structure 1317 * @task: ptr prepared by ice_aq_prep_for_event() 1318 * @timeout: how long to wait, in jiffies 1319 * 1320 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1321 * current thread will be put to sleep until the specified event occurs or 1322 * until the given timeout is reached. 1323 * 1324 * Returns: zero on success, or a negative error code on failure. 1325 */ 1326 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1327 unsigned long timeout) 1328 { 1329 enum ice_aq_task_state *state = &task->state; 1330 struct device *dev = ice_pf_to_dev(pf); 1331 unsigned long start = jiffies; 1332 long ret; 1333 int err; 1334 1335 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1336 *state != ICE_AQ_TASK_WAITING, 1337 timeout); 1338 switch (*state) { 1339 case ICE_AQ_TASK_NOT_PREPARED: 1340 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1341 err = -EINVAL; 1342 break; 1343 case ICE_AQ_TASK_WAITING: 1344 err = ret < 0 ? ret : -ETIMEDOUT; 1345 break; 1346 case ICE_AQ_TASK_CANCELED: 1347 err = ret < 0 ? ret : -ECANCELED; 1348 break; 1349 case ICE_AQ_TASK_COMPLETE: 1350 err = ret < 0 ? ret : 0; 1351 break; 1352 default: 1353 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1354 err = -EINVAL; 1355 break; 1356 } 1357 1358 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1359 jiffies_to_msecs(jiffies - start), 1360 jiffies_to_msecs(timeout), 1361 task->opcode); 1362 1363 spin_lock_bh(&pf->aq_wait_lock); 1364 hlist_del(&task->entry); 1365 spin_unlock_bh(&pf->aq_wait_lock); 1366 1367 return err; 1368 } 1369 1370 /** 1371 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1372 * @pf: pointer to the PF private structure 1373 * @opcode: the opcode of the event 1374 * @event: the event to check 1375 * 1376 * Loops over the current list of pending threads waiting for an AdminQ event. 1377 * For each matching task, copy the contents of the event into the task 1378 * structure and wake up the thread. 1379 * 1380 * If multiple threads wait for the same opcode, they will all be woken up. 1381 * 1382 * Note that event->msg_buf will only be duplicated if the event has a buffer 1383 * with enough space already allocated. Otherwise, only the descriptor and 1384 * message length will be copied. 1385 * 1386 * Returns: true if an event was found, false otherwise 1387 */ 1388 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1389 struct ice_rq_event_info *event) 1390 { 1391 struct ice_rq_event_info *task_ev; 1392 struct ice_aq_task *task; 1393 bool found = false; 1394 1395 spin_lock_bh(&pf->aq_wait_lock); 1396 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1397 if (task->state != ICE_AQ_TASK_WAITING) 1398 continue; 1399 if (task->opcode != opcode) 1400 continue; 1401 1402 task_ev = &task->event; 1403 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1404 task_ev->msg_len = event->msg_len; 1405 1406 /* Only copy the data buffer if a destination was set */ 1407 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1408 memcpy(task_ev->msg_buf, event->msg_buf, 1409 event->buf_len); 1410 task_ev->buf_len = event->buf_len; 1411 } 1412 1413 task->state = ICE_AQ_TASK_COMPLETE; 1414 found = true; 1415 } 1416 spin_unlock_bh(&pf->aq_wait_lock); 1417 1418 if (found) 1419 wake_up(&pf->aq_wait_queue); 1420 } 1421 1422 /** 1423 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1424 * @pf: the PF private structure 1425 * 1426 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1427 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1428 */ 1429 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1430 { 1431 struct ice_aq_task *task; 1432 1433 spin_lock_bh(&pf->aq_wait_lock); 1434 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1435 task->state = ICE_AQ_TASK_CANCELED; 1436 spin_unlock_bh(&pf->aq_wait_lock); 1437 1438 wake_up(&pf->aq_wait_queue); 1439 } 1440 1441 #define ICE_MBX_OVERFLOW_WATERMARK 64 1442 1443 /** 1444 * __ice_clean_ctrlq - helper function to clean controlq rings 1445 * @pf: ptr to struct ice_pf 1446 * @q_type: specific Control queue type 1447 */ 1448 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1449 { 1450 struct device *dev = ice_pf_to_dev(pf); 1451 struct ice_rq_event_info event; 1452 struct ice_hw *hw = &pf->hw; 1453 struct ice_ctl_q_info *cq; 1454 u16 pending, i = 0; 1455 const char *qtype; 1456 u32 oldval, val; 1457 1458 /* Do not clean control queue if/when PF reset fails */ 1459 if (test_bit(ICE_RESET_FAILED, pf->state)) 1460 return 0; 1461 1462 switch (q_type) { 1463 case ICE_CTL_Q_ADMIN: 1464 cq = &hw->adminq; 1465 qtype = "Admin"; 1466 break; 1467 case ICE_CTL_Q_SB: 1468 cq = &hw->sbq; 1469 qtype = "Sideband"; 1470 break; 1471 case ICE_CTL_Q_MAILBOX: 1472 cq = &hw->mailboxq; 1473 qtype = "Mailbox"; 1474 /* we are going to try to detect a malicious VF, so set the 1475 * state to begin detection 1476 */ 1477 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1478 break; 1479 default: 1480 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1481 return 0; 1482 } 1483 1484 /* check for error indications - PF_xx_AxQLEN register layout for 1485 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1486 */ 1487 val = rd32(hw, cq->rq.len); 1488 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1489 PF_FW_ARQLEN_ARQCRIT_M)) { 1490 oldval = val; 1491 if (val & PF_FW_ARQLEN_ARQVFE_M) 1492 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1493 qtype); 1494 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1495 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1496 qtype); 1497 } 1498 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1499 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1500 qtype); 1501 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1502 PF_FW_ARQLEN_ARQCRIT_M); 1503 if (oldval != val) 1504 wr32(hw, cq->rq.len, val); 1505 } 1506 1507 val = rd32(hw, cq->sq.len); 1508 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1509 PF_FW_ATQLEN_ATQCRIT_M)) { 1510 oldval = val; 1511 if (val & PF_FW_ATQLEN_ATQVFE_M) 1512 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1513 qtype); 1514 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1515 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1516 qtype); 1517 } 1518 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1519 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1520 qtype); 1521 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1522 PF_FW_ATQLEN_ATQCRIT_M); 1523 if (oldval != val) 1524 wr32(hw, cq->sq.len, val); 1525 } 1526 1527 event.buf_len = cq->rq_buf_size; 1528 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1529 if (!event.msg_buf) 1530 return 0; 1531 1532 do { 1533 struct ice_mbx_data data = {}; 1534 u16 opcode; 1535 int ret; 1536 1537 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1538 if (ret == -EALREADY) 1539 break; 1540 if (ret) { 1541 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1542 ret); 1543 break; 1544 } 1545 1546 opcode = le16_to_cpu(event.desc.opcode); 1547 1548 /* Notify any thread that might be waiting for this event */ 1549 ice_aq_check_events(pf, opcode, &event); 1550 1551 switch (opcode) { 1552 case ice_aqc_opc_get_link_status: 1553 if (ice_handle_link_event(pf, &event)) 1554 dev_err(dev, "Could not handle link event\n"); 1555 break; 1556 case ice_aqc_opc_event_lan_overflow: 1557 ice_vf_lan_overflow_event(pf, &event); 1558 break; 1559 case ice_mbx_opc_send_msg_to_pf: 1560 data.num_msg_proc = i; 1561 data.num_pending_arq = pending; 1562 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1563 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1564 1565 ice_vc_process_vf_msg(pf, &event, &data); 1566 break; 1567 case ice_aqc_opc_fw_logs_event: 1568 ice_get_fwlog_data(pf, &event); 1569 break; 1570 case ice_aqc_opc_lldp_set_mib_change: 1571 ice_dcb_process_lldp_set_mib_change(pf, &event); 1572 break; 1573 default: 1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1575 qtype, opcode); 1576 break; 1577 } 1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1579 1580 kfree(event.msg_buf); 1581 1582 return pending && (i == ICE_DFLT_IRQ_WORK); 1583 } 1584 1585 /** 1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1587 * @hw: pointer to hardware info 1588 * @cq: control queue information 1589 * 1590 * returns true if there are pending messages in a queue, false if there aren't 1591 */ 1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1593 { 1594 u16 ntu; 1595 1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1597 return cq->rq.next_to_clean != ntu; 1598 } 1599 1600 /** 1601 * ice_clean_adminq_subtask - clean the AdminQ rings 1602 * @pf: board private structure 1603 */ 1604 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1605 { 1606 struct ice_hw *hw = &pf->hw; 1607 1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1609 return; 1610 1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1612 return; 1613 1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1615 1616 /* There might be a situation where new messages arrive to a control 1617 * queue between processing the last message and clearing the 1618 * EVENT_PENDING bit. So before exiting, check queue head again (using 1619 * ice_ctrlq_pending) and process new messages if any. 1620 */ 1621 if (ice_ctrlq_pending(hw, &hw->adminq)) 1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1623 1624 ice_flush(hw); 1625 } 1626 1627 /** 1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1629 * @pf: board private structure 1630 */ 1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1632 { 1633 struct ice_hw *hw = &pf->hw; 1634 1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1636 return; 1637 1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1639 return; 1640 1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1642 1643 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1645 1646 ice_flush(hw); 1647 } 1648 1649 /** 1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1651 * @pf: board private structure 1652 */ 1653 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1654 { 1655 struct ice_hw *hw = &pf->hw; 1656 1657 /* if mac_type is not generic, sideband is not supported 1658 * and there's nothing to do here 1659 */ 1660 if (!ice_is_generic_mac(hw)) { 1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1662 return; 1663 } 1664 1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1666 return; 1667 1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1669 return; 1670 1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1672 1673 if (ice_ctrlq_pending(hw, &hw->sbq)) 1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1675 1676 ice_flush(hw); 1677 } 1678 1679 /** 1680 * ice_service_task_schedule - schedule the service task to wake up 1681 * @pf: board private structure 1682 * 1683 * If not already scheduled, this puts the task into the work queue. 1684 */ 1685 void ice_service_task_schedule(struct ice_pf *pf) 1686 { 1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1689 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1690 queue_work(ice_wq, &pf->serv_task); 1691 } 1692 1693 /** 1694 * ice_service_task_complete - finish up the service task 1695 * @pf: board private structure 1696 */ 1697 static void ice_service_task_complete(struct ice_pf *pf) 1698 { 1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1700 1701 /* force memory (pf->state) to sync before next service task */ 1702 smp_mb__before_atomic(); 1703 clear_bit(ICE_SERVICE_SCHED, pf->state); 1704 } 1705 1706 /** 1707 * ice_service_task_stop - stop service task and cancel works 1708 * @pf: board private structure 1709 * 1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1711 * 1 otherwise. 1712 */ 1713 static int ice_service_task_stop(struct ice_pf *pf) 1714 { 1715 int ret; 1716 1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1718 1719 if (pf->serv_tmr.function) 1720 del_timer_sync(&pf->serv_tmr); 1721 if (pf->serv_task.func) 1722 cancel_work_sync(&pf->serv_task); 1723 1724 clear_bit(ICE_SERVICE_SCHED, pf->state); 1725 return ret; 1726 } 1727 1728 /** 1729 * ice_service_task_restart - restart service task and schedule works 1730 * @pf: board private structure 1731 * 1732 * This function is needed for suspend and resume works (e.g WoL scenario) 1733 */ 1734 static void ice_service_task_restart(struct ice_pf *pf) 1735 { 1736 clear_bit(ICE_SERVICE_DIS, pf->state); 1737 ice_service_task_schedule(pf); 1738 } 1739 1740 /** 1741 * ice_service_timer - timer callback to schedule service task 1742 * @t: pointer to timer_list 1743 */ 1744 static void ice_service_timer(struct timer_list *t) 1745 { 1746 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1747 1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1749 ice_service_task_schedule(pf); 1750 } 1751 1752 /** 1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1754 * @pf: pointer to the PF structure 1755 * @vf: pointer to the VF structure 1756 * @reset_vf_tx: whether Tx MDD has occurred 1757 * @reset_vf_rx: whether Rx MDD has occurred 1758 * 1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1760 * automatically reset the VF by enabling the private ethtool flag 1761 * mdd-auto-reset-vf. 1762 */ 1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1764 bool reset_vf_tx, bool reset_vf_rx) 1765 { 1766 struct device *dev = ice_pf_to_dev(pf); 1767 1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1769 return; 1770 1771 /* VF MDD event counters will be cleared by reset, so print the event 1772 * prior to reset. 1773 */ 1774 if (reset_vf_tx) 1775 ice_print_vf_tx_mdd_event(vf); 1776 1777 if (reset_vf_rx) 1778 ice_print_vf_rx_mdd_event(vf); 1779 1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1781 pf->hw.pf_id, vf->vf_id); 1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1783 } 1784 1785 /** 1786 * ice_handle_mdd_event - handle malicious driver detect event 1787 * @pf: pointer to the PF structure 1788 * 1789 * Called from service task. OICR interrupt handler indicates MDD event. 1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1792 * disable the queue, the PF can be configured to reset the VF using ethtool 1793 * private flag mdd-auto-reset-vf. 1794 */ 1795 static void ice_handle_mdd_event(struct ice_pf *pf) 1796 { 1797 struct device *dev = ice_pf_to_dev(pf); 1798 struct ice_hw *hw = &pf->hw; 1799 struct ice_vf *vf; 1800 unsigned int bkt; 1801 u32 reg; 1802 1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1804 /* Since the VF MDD event logging is rate limited, check if 1805 * there are pending MDD events. 1806 */ 1807 ice_print_vfs_mdd_events(pf); 1808 return; 1809 } 1810 1811 /* find what triggered an MDD event */ 1812 reg = rd32(hw, GL_MDET_TX_PQM); 1813 if (reg & GL_MDET_TX_PQM_VALID_M) { 1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1818 1819 if (netif_msg_tx_err(pf)) 1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1821 event, queue, pf_num, vf_num); 1822 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1823 } 1824 1825 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1826 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1827 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1828 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1829 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1830 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1831 1832 if (netif_msg_tx_err(pf)) 1833 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1834 event, queue, pf_num, vf_num); 1835 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1836 } 1837 1838 reg = rd32(hw, GL_MDET_RX); 1839 if (reg & GL_MDET_RX_VALID_M) { 1840 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1841 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1842 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1843 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1844 1845 if (netif_msg_rx_err(pf)) 1846 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1847 event, queue, pf_num, vf_num); 1848 wr32(hw, GL_MDET_RX, 0xffffffff); 1849 } 1850 1851 /* check to see if this PF caused an MDD event */ 1852 reg = rd32(hw, PF_MDET_TX_PQM); 1853 if (reg & PF_MDET_TX_PQM_VALID_M) { 1854 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1855 if (netif_msg_tx_err(pf)) 1856 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1857 } 1858 1859 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1860 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1861 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1862 if (netif_msg_tx_err(pf)) 1863 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1864 } 1865 1866 reg = rd32(hw, PF_MDET_RX); 1867 if (reg & PF_MDET_RX_VALID_M) { 1868 wr32(hw, PF_MDET_RX, 0xFFFF); 1869 if (netif_msg_rx_err(pf)) 1870 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1871 } 1872 1873 /* Check to see if one of the VFs caused an MDD event, and then 1874 * increment counters and set print pending 1875 */ 1876 mutex_lock(&pf->vfs.table_lock); 1877 ice_for_each_vf(pf, bkt, vf) { 1878 bool reset_vf_tx = false, reset_vf_rx = false; 1879 1880 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1881 if (reg & VP_MDET_TX_PQM_VALID_M) { 1882 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1883 vf->mdd_tx_events.count++; 1884 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1885 if (netif_msg_tx_err(pf)) 1886 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1887 vf->vf_id); 1888 1889 reset_vf_tx = true; 1890 } 1891 1892 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1893 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1894 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1895 vf->mdd_tx_events.count++; 1896 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1897 if (netif_msg_tx_err(pf)) 1898 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1899 vf->vf_id); 1900 1901 reset_vf_tx = true; 1902 } 1903 1904 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1905 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1906 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1907 vf->mdd_tx_events.count++; 1908 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1909 if (netif_msg_tx_err(pf)) 1910 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1911 vf->vf_id); 1912 1913 reset_vf_tx = true; 1914 } 1915 1916 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1917 if (reg & VP_MDET_RX_VALID_M) { 1918 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1919 vf->mdd_rx_events.count++; 1920 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1921 if (netif_msg_rx_err(pf)) 1922 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1923 vf->vf_id); 1924 1925 reset_vf_rx = true; 1926 } 1927 1928 if (reset_vf_tx || reset_vf_rx) 1929 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1930 reset_vf_rx); 1931 } 1932 mutex_unlock(&pf->vfs.table_lock); 1933 1934 ice_print_vfs_mdd_events(pf); 1935 } 1936 1937 /** 1938 * ice_force_phys_link_state - Force the physical link state 1939 * @vsi: VSI to force the physical link state to up/down 1940 * @link_up: true/false indicates to set the physical link to up/down 1941 * 1942 * Force the physical link state by getting the current PHY capabilities from 1943 * hardware and setting the PHY config based on the determined capabilities. If 1944 * link changes a link event will be triggered because both the Enable Automatic 1945 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1946 * 1947 * Returns 0 on success, negative on failure 1948 */ 1949 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1950 { 1951 struct ice_aqc_get_phy_caps_data *pcaps; 1952 struct ice_aqc_set_phy_cfg_data *cfg; 1953 struct ice_port_info *pi; 1954 struct device *dev; 1955 int retcode; 1956 1957 if (!vsi || !vsi->port_info || !vsi->back) 1958 return -EINVAL; 1959 if (vsi->type != ICE_VSI_PF) 1960 return 0; 1961 1962 dev = ice_pf_to_dev(vsi->back); 1963 1964 pi = vsi->port_info; 1965 1966 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1967 if (!pcaps) 1968 return -ENOMEM; 1969 1970 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1971 NULL); 1972 if (retcode) { 1973 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1974 vsi->vsi_num, retcode); 1975 retcode = -EIO; 1976 goto out; 1977 } 1978 1979 /* No change in link */ 1980 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1981 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1982 goto out; 1983 1984 /* Use the current user PHY configuration. The current user PHY 1985 * configuration is initialized during probe from PHY capabilities 1986 * software mode, and updated on set PHY configuration. 1987 */ 1988 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1989 if (!cfg) { 1990 retcode = -ENOMEM; 1991 goto out; 1992 } 1993 1994 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1995 if (link_up) 1996 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1997 else 1998 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1999 2000 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2001 if (retcode) { 2002 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2003 vsi->vsi_num, retcode); 2004 retcode = -EIO; 2005 } 2006 2007 kfree(cfg); 2008 out: 2009 kfree(pcaps); 2010 return retcode; 2011 } 2012 2013 /** 2014 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2015 * @pi: port info structure 2016 * 2017 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2018 */ 2019 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2020 { 2021 struct ice_aqc_get_phy_caps_data *pcaps; 2022 struct ice_pf *pf = pi->hw->back; 2023 int err; 2024 2025 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2026 if (!pcaps) 2027 return -ENOMEM; 2028 2029 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2030 pcaps, NULL); 2031 2032 if (err) { 2033 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2034 goto out; 2035 } 2036 2037 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2038 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2039 2040 out: 2041 kfree(pcaps); 2042 return err; 2043 } 2044 2045 /** 2046 * ice_init_link_dflt_override - Initialize link default override 2047 * @pi: port info structure 2048 * 2049 * Initialize link default override and PHY total port shutdown during probe 2050 */ 2051 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2052 { 2053 struct ice_link_default_override_tlv *ldo; 2054 struct ice_pf *pf = pi->hw->back; 2055 2056 ldo = &pf->link_dflt_override; 2057 if (ice_get_link_default_override(ldo, pi)) 2058 return; 2059 2060 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2061 return; 2062 2063 /* Enable Total Port Shutdown (override/replace link-down-on-close 2064 * ethtool private flag) for ports with Port Disable bit set. 2065 */ 2066 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2067 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2068 } 2069 2070 /** 2071 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2072 * @pi: port info structure 2073 * 2074 * If default override is enabled, initialize the user PHY cfg speed and FEC 2075 * settings using the default override mask from the NVM. 2076 * 2077 * The PHY should only be configured with the default override settings the 2078 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2079 * is used to indicate that the user PHY cfg default override is initialized 2080 * and the PHY has not been configured with the default override settings. The 2081 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2082 * configured. 2083 * 2084 * This function should be called only if the FW doesn't support default 2085 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2086 */ 2087 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2088 { 2089 struct ice_link_default_override_tlv *ldo; 2090 struct ice_aqc_set_phy_cfg_data *cfg; 2091 struct ice_phy_info *phy = &pi->phy; 2092 struct ice_pf *pf = pi->hw->back; 2093 2094 ldo = &pf->link_dflt_override; 2095 2096 /* If link default override is enabled, use to mask NVM PHY capabilities 2097 * for speed and FEC default configuration. 2098 */ 2099 cfg = &phy->curr_user_phy_cfg; 2100 2101 if (ldo->phy_type_low || ldo->phy_type_high) { 2102 cfg->phy_type_low = pf->nvm_phy_type_lo & 2103 cpu_to_le64(ldo->phy_type_low); 2104 cfg->phy_type_high = pf->nvm_phy_type_hi & 2105 cpu_to_le64(ldo->phy_type_high); 2106 } 2107 cfg->link_fec_opt = ldo->fec_options; 2108 phy->curr_user_fec_req = ICE_FEC_AUTO; 2109 2110 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2111 } 2112 2113 /** 2114 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2115 * @pi: port info structure 2116 * 2117 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2118 * mode to default. The PHY defaults are from get PHY capabilities topology 2119 * with media so call when media is first available. An error is returned if 2120 * called when media is not available. The PHY initialization completed state is 2121 * set here. 2122 * 2123 * These configurations are used when setting PHY 2124 * configuration. The user PHY configuration is updated on set PHY 2125 * configuration. Returns 0 on success, negative on failure 2126 */ 2127 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2128 { 2129 struct ice_aqc_get_phy_caps_data *pcaps; 2130 struct ice_phy_info *phy = &pi->phy; 2131 struct ice_pf *pf = pi->hw->back; 2132 int err; 2133 2134 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2135 return -EIO; 2136 2137 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2138 if (!pcaps) 2139 return -ENOMEM; 2140 2141 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2142 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2143 pcaps, NULL); 2144 else 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2146 pcaps, NULL); 2147 if (err) { 2148 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2149 goto err_out; 2150 } 2151 2152 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2153 2154 /* check if lenient mode is supported and enabled */ 2155 if (ice_fw_supports_link_override(pi->hw) && 2156 !(pcaps->module_compliance_enforcement & 2157 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2158 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2159 2160 /* if the FW supports default PHY configuration mode, then the driver 2161 * does not have to apply link override settings. If not, 2162 * initialize user PHY configuration with link override values 2163 */ 2164 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2165 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2166 ice_init_phy_cfg_dflt_override(pi); 2167 goto out; 2168 } 2169 } 2170 2171 /* if link default override is not enabled, set user flow control and 2172 * FEC settings based on what get_phy_caps returned 2173 */ 2174 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2175 pcaps->link_fec_options); 2176 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2177 2178 out: 2179 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2180 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2181 err_out: 2182 kfree(pcaps); 2183 return err; 2184 } 2185 2186 /** 2187 * ice_configure_phy - configure PHY 2188 * @vsi: VSI of PHY 2189 * 2190 * Set the PHY configuration. If the current PHY configuration is the same as 2191 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2192 * configure the based get PHY capabilities for topology with media. 2193 */ 2194 static int ice_configure_phy(struct ice_vsi *vsi) 2195 { 2196 struct device *dev = ice_pf_to_dev(vsi->back); 2197 struct ice_port_info *pi = vsi->port_info; 2198 struct ice_aqc_get_phy_caps_data *pcaps; 2199 struct ice_aqc_set_phy_cfg_data *cfg; 2200 struct ice_phy_info *phy = &pi->phy; 2201 struct ice_pf *pf = vsi->back; 2202 int err; 2203 2204 /* Ensure we have media as we cannot configure a medialess port */ 2205 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2206 return -ENOMEDIUM; 2207 2208 ice_print_topo_conflict(vsi); 2209 2210 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2211 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2212 return -EPERM; 2213 2214 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2215 return ice_force_phys_link_state(vsi, true); 2216 2217 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2218 if (!pcaps) 2219 return -ENOMEM; 2220 2221 /* Get current PHY config */ 2222 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2223 NULL); 2224 if (err) { 2225 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2226 vsi->vsi_num, err); 2227 goto done; 2228 } 2229 2230 /* If PHY enable link is configured and configuration has not changed, 2231 * there's nothing to do 2232 */ 2233 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2234 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2235 goto done; 2236 2237 /* Use PHY topology as baseline for configuration */ 2238 memset(pcaps, 0, sizeof(*pcaps)); 2239 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2240 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2241 pcaps, NULL); 2242 else 2243 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2244 pcaps, NULL); 2245 if (err) { 2246 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2247 vsi->vsi_num, err); 2248 goto done; 2249 } 2250 2251 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2252 if (!cfg) { 2253 err = -ENOMEM; 2254 goto done; 2255 } 2256 2257 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2258 2259 /* Speed - If default override pending, use curr_user_phy_cfg set in 2260 * ice_init_phy_user_cfg_ldo. 2261 */ 2262 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2263 vsi->back->state)) { 2264 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2265 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2266 } else { 2267 u64 phy_low = 0, phy_high = 0; 2268 2269 ice_update_phy_type(&phy_low, &phy_high, 2270 pi->phy.curr_user_speed_req); 2271 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2272 cfg->phy_type_high = pcaps->phy_type_high & 2273 cpu_to_le64(phy_high); 2274 } 2275 2276 /* Can't provide what was requested; use PHY capabilities */ 2277 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2278 cfg->phy_type_low = pcaps->phy_type_low; 2279 cfg->phy_type_high = pcaps->phy_type_high; 2280 } 2281 2282 /* FEC */ 2283 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2284 2285 /* Can't provide what was requested; use PHY capabilities */ 2286 if (cfg->link_fec_opt != 2287 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2288 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2289 cfg->link_fec_opt = pcaps->link_fec_options; 2290 } 2291 2292 /* Flow Control - always supported; no need to check against 2293 * capabilities 2294 */ 2295 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2296 2297 /* Enable link and link update */ 2298 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2299 2300 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2301 if (err) 2302 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2303 vsi->vsi_num, err); 2304 2305 kfree(cfg); 2306 done: 2307 kfree(pcaps); 2308 return err; 2309 } 2310 2311 /** 2312 * ice_check_media_subtask - Check for media 2313 * @pf: pointer to PF struct 2314 * 2315 * If media is available, then initialize PHY user configuration if it is not 2316 * been, and configure the PHY if the interface is up. 2317 */ 2318 static void ice_check_media_subtask(struct ice_pf *pf) 2319 { 2320 struct ice_port_info *pi; 2321 struct ice_vsi *vsi; 2322 int err; 2323 2324 /* No need to check for media if it's already present */ 2325 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2326 return; 2327 2328 vsi = ice_get_main_vsi(pf); 2329 if (!vsi) 2330 return; 2331 2332 /* Refresh link info and check if media is present */ 2333 pi = vsi->port_info; 2334 err = ice_update_link_info(pi); 2335 if (err) 2336 return; 2337 2338 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2339 2340 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2341 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2342 ice_init_phy_user_cfg(pi); 2343 2344 /* PHY settings are reset on media insertion, reconfigure 2345 * PHY to preserve settings. 2346 */ 2347 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2348 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2349 return; 2350 2351 err = ice_configure_phy(vsi); 2352 if (!err) 2353 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2354 2355 /* A Link Status Event will be generated; the event handler 2356 * will complete bringing the interface up 2357 */ 2358 } 2359 } 2360 2361 /** 2362 * ice_service_task - manage and run subtasks 2363 * @work: pointer to work_struct contained by the PF struct 2364 */ 2365 static void ice_service_task(struct work_struct *work) 2366 { 2367 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2368 unsigned long start_time = jiffies; 2369 2370 /* subtasks */ 2371 2372 /* process reset requests first */ 2373 ice_reset_subtask(pf); 2374 2375 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2376 if (ice_is_reset_in_progress(pf->state) || 2377 test_bit(ICE_SUSPENDED, pf->state) || 2378 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2379 ice_service_task_complete(pf); 2380 return; 2381 } 2382 2383 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2384 struct iidc_event *event; 2385 2386 event = kzalloc(sizeof(*event), GFP_KERNEL); 2387 if (event) { 2388 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2389 /* report the entire OICR value to AUX driver */ 2390 swap(event->reg, pf->oicr_err_reg); 2391 ice_send_event_to_aux(pf, event); 2392 kfree(event); 2393 } 2394 } 2395 2396 /* unplug aux dev per request, if an unplug request came in 2397 * while processing a plug request, this will handle it 2398 */ 2399 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2400 ice_unplug_aux_dev(pf); 2401 2402 /* Plug aux device per request */ 2403 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2404 ice_plug_aux_dev(pf); 2405 2406 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2407 struct iidc_event *event; 2408 2409 event = kzalloc(sizeof(*event), GFP_KERNEL); 2410 if (event) { 2411 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2412 ice_send_event_to_aux(pf, event); 2413 kfree(event); 2414 } 2415 } 2416 2417 ice_clean_adminq_subtask(pf); 2418 ice_check_media_subtask(pf); 2419 ice_check_for_hang_subtask(pf); 2420 ice_sync_fltr_subtask(pf); 2421 ice_handle_mdd_event(pf); 2422 ice_watchdog_subtask(pf); 2423 2424 if (ice_is_safe_mode(pf)) { 2425 ice_service_task_complete(pf); 2426 return; 2427 } 2428 2429 ice_process_vflr_event(pf); 2430 ice_clean_mailboxq_subtask(pf); 2431 ice_clean_sbq_subtask(pf); 2432 ice_sync_arfs_fltrs(pf); 2433 ice_flush_fdir_ctx(pf); 2434 2435 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2436 ice_service_task_complete(pf); 2437 2438 /* If the tasks have taken longer than one service timer period 2439 * or there is more work to be done, reset the service timer to 2440 * schedule the service task now. 2441 */ 2442 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2443 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2444 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2446 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2447 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2448 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2449 mod_timer(&pf->serv_tmr, jiffies); 2450 } 2451 2452 /** 2453 * ice_set_ctrlq_len - helper function to set controlq length 2454 * @hw: pointer to the HW instance 2455 */ 2456 static void ice_set_ctrlq_len(struct ice_hw *hw) 2457 { 2458 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2459 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2460 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2461 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2462 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2463 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2464 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2465 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2466 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2467 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2468 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2469 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2470 } 2471 2472 /** 2473 * ice_schedule_reset - schedule a reset 2474 * @pf: board private structure 2475 * @reset: reset being requested 2476 */ 2477 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2478 { 2479 struct device *dev = ice_pf_to_dev(pf); 2480 2481 /* bail out if earlier reset has failed */ 2482 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2483 dev_dbg(dev, "earlier reset has failed\n"); 2484 return -EIO; 2485 } 2486 /* bail if reset/recovery already in progress */ 2487 if (ice_is_reset_in_progress(pf->state)) { 2488 dev_dbg(dev, "Reset already in progress\n"); 2489 return -EBUSY; 2490 } 2491 2492 switch (reset) { 2493 case ICE_RESET_PFR: 2494 set_bit(ICE_PFR_REQ, pf->state); 2495 break; 2496 case ICE_RESET_CORER: 2497 set_bit(ICE_CORER_REQ, pf->state); 2498 break; 2499 case ICE_RESET_GLOBR: 2500 set_bit(ICE_GLOBR_REQ, pf->state); 2501 break; 2502 default: 2503 return -EINVAL; 2504 } 2505 2506 ice_service_task_schedule(pf); 2507 return 0; 2508 } 2509 2510 /** 2511 * ice_irq_affinity_notify - Callback for affinity changes 2512 * @notify: context as to what irq was changed 2513 * @mask: the new affinity mask 2514 * 2515 * This is a callback function used by the irq_set_affinity_notifier function 2516 * so that we may register to receive changes to the irq affinity masks. 2517 */ 2518 static void 2519 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2520 const cpumask_t *mask) 2521 { 2522 struct ice_q_vector *q_vector = 2523 container_of(notify, struct ice_q_vector, affinity_notify); 2524 2525 cpumask_copy(&q_vector->affinity_mask, mask); 2526 } 2527 2528 /** 2529 * ice_irq_affinity_release - Callback for affinity notifier release 2530 * @ref: internal core kernel usage 2531 * 2532 * This is a callback function used by the irq_set_affinity_notifier function 2533 * to inform the current notification subscriber that they will no longer 2534 * receive notifications. 2535 */ 2536 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2537 2538 /** 2539 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2540 * @vsi: the VSI being configured 2541 */ 2542 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2543 { 2544 struct ice_hw *hw = &vsi->back->hw; 2545 int i; 2546 2547 ice_for_each_q_vector(vsi, i) 2548 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2549 2550 ice_flush(hw); 2551 return 0; 2552 } 2553 2554 /** 2555 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2556 * @vsi: the VSI being configured 2557 * @basename: name for the vector 2558 */ 2559 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2560 { 2561 int q_vectors = vsi->num_q_vectors; 2562 struct ice_pf *pf = vsi->back; 2563 struct device *dev; 2564 int rx_int_idx = 0; 2565 int tx_int_idx = 0; 2566 int vector, err; 2567 int irq_num; 2568 2569 dev = ice_pf_to_dev(pf); 2570 for (vector = 0; vector < q_vectors; vector++) { 2571 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2572 2573 irq_num = q_vector->irq.virq; 2574 2575 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2578 tx_int_idx++; 2579 } else if (q_vector->rx.rx_ring) { 2580 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2581 "%s-%s-%d", basename, "rx", rx_int_idx++); 2582 } else if (q_vector->tx.tx_ring) { 2583 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2584 "%s-%s-%d", basename, "tx", tx_int_idx++); 2585 } else { 2586 /* skip this unused q_vector */ 2587 continue; 2588 } 2589 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 IRQF_SHARED, q_vector->name, 2592 q_vector); 2593 else 2594 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2595 0, q_vector->name, q_vector); 2596 if (err) { 2597 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2598 err); 2599 goto free_q_irqs; 2600 } 2601 2602 /* register for affinity change notifications */ 2603 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2604 struct irq_affinity_notify *affinity_notify; 2605 2606 affinity_notify = &q_vector->affinity_notify; 2607 affinity_notify->notify = ice_irq_affinity_notify; 2608 affinity_notify->release = ice_irq_affinity_release; 2609 irq_set_affinity_notifier(irq_num, affinity_notify); 2610 } 2611 2612 /* assign the mask for this irq */ 2613 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2614 } 2615 2616 err = ice_set_cpu_rx_rmap(vsi); 2617 if (err) { 2618 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2619 vsi->vsi_num, ERR_PTR(err)); 2620 goto free_q_irqs; 2621 } 2622 2623 vsi->irqs_ready = true; 2624 return 0; 2625 2626 free_q_irqs: 2627 while (vector--) { 2628 irq_num = vsi->q_vectors[vector]->irq.virq; 2629 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2630 irq_set_affinity_notifier(irq_num, NULL); 2631 irq_set_affinity_hint(irq_num, NULL); 2632 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2633 } 2634 return err; 2635 } 2636 2637 /** 2638 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2639 * @vsi: VSI to setup Tx rings used by XDP 2640 * 2641 * Return 0 on success and negative value on error 2642 */ 2643 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2644 { 2645 struct device *dev = ice_pf_to_dev(vsi->back); 2646 struct ice_tx_desc *tx_desc; 2647 int i, j; 2648 2649 ice_for_each_xdp_txq(vsi, i) { 2650 u16 xdp_q_idx = vsi->alloc_txq + i; 2651 struct ice_ring_stats *ring_stats; 2652 struct ice_tx_ring *xdp_ring; 2653 2654 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2655 if (!xdp_ring) 2656 goto free_xdp_rings; 2657 2658 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2659 if (!ring_stats) { 2660 ice_free_tx_ring(xdp_ring); 2661 goto free_xdp_rings; 2662 } 2663 2664 xdp_ring->ring_stats = ring_stats; 2665 xdp_ring->q_index = xdp_q_idx; 2666 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2667 xdp_ring->vsi = vsi; 2668 xdp_ring->netdev = NULL; 2669 xdp_ring->dev = dev; 2670 xdp_ring->count = vsi->num_tx_desc; 2671 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2672 if (ice_setup_tx_ring(xdp_ring)) 2673 goto free_xdp_rings; 2674 ice_set_ring_xdp(xdp_ring); 2675 spin_lock_init(&xdp_ring->tx_lock); 2676 for (j = 0; j < xdp_ring->count; j++) { 2677 tx_desc = ICE_TX_DESC(xdp_ring, j); 2678 tx_desc->cmd_type_offset_bsz = 0; 2679 } 2680 } 2681 2682 return 0; 2683 2684 free_xdp_rings: 2685 for (; i >= 0; i--) { 2686 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2687 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2688 vsi->xdp_rings[i]->ring_stats = NULL; 2689 ice_free_tx_ring(vsi->xdp_rings[i]); 2690 } 2691 } 2692 return -ENOMEM; 2693 } 2694 2695 /** 2696 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2697 * @vsi: VSI to set the bpf prog on 2698 * @prog: the bpf prog pointer 2699 */ 2700 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2701 { 2702 struct bpf_prog *old_prog; 2703 int i; 2704 2705 old_prog = xchg(&vsi->xdp_prog, prog); 2706 ice_for_each_rxq(vsi, i) 2707 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2708 2709 if (old_prog) 2710 bpf_prog_put(old_prog); 2711 } 2712 2713 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2714 { 2715 struct ice_q_vector *q_vector; 2716 struct ice_tx_ring *ring; 2717 2718 if (static_key_enabled(&ice_xdp_locking_key)) 2719 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2720 2721 q_vector = vsi->rx_rings[qid]->q_vector; 2722 ice_for_each_tx_ring(ring, q_vector->tx) 2723 if (ice_ring_is_xdp(ring)) 2724 return ring; 2725 2726 return NULL; 2727 } 2728 2729 /** 2730 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2731 * @vsi: the VSI with XDP rings being configured 2732 * 2733 * Map XDP rings to interrupt vectors and perform the configuration steps 2734 * dependent on the mapping. 2735 */ 2736 void ice_map_xdp_rings(struct ice_vsi *vsi) 2737 { 2738 int xdp_rings_rem = vsi->num_xdp_txq; 2739 int v_idx, q_idx; 2740 2741 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2742 ice_for_each_q_vector(vsi, v_idx) { 2743 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2744 int xdp_rings_per_v, q_id, q_base; 2745 2746 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2747 vsi->num_q_vectors - v_idx); 2748 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2749 2750 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2751 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2752 2753 xdp_ring->q_vector = q_vector; 2754 xdp_ring->next = q_vector->tx.tx_ring; 2755 q_vector->tx.tx_ring = xdp_ring; 2756 } 2757 xdp_rings_rem -= xdp_rings_per_v; 2758 } 2759 2760 ice_for_each_rxq(vsi, q_idx) { 2761 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2762 q_idx); 2763 ice_tx_xsk_pool(vsi, q_idx); 2764 } 2765 } 2766 2767 /** 2768 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2769 * @vsi: VSI to bring up Tx rings used by XDP 2770 * @prog: bpf program that will be assigned to VSI 2771 * @cfg_type: create from scratch or restore the existing configuration 2772 * 2773 * Return 0 on success and negative value on error 2774 */ 2775 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2776 enum ice_xdp_cfg cfg_type) 2777 { 2778 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2779 struct ice_pf *pf = vsi->back; 2780 struct ice_qs_cfg xdp_qs_cfg = { 2781 .qs_mutex = &pf->avail_q_mutex, 2782 .pf_map = pf->avail_txqs, 2783 .pf_map_size = pf->max_pf_txqs, 2784 .q_count = vsi->num_xdp_txq, 2785 .scatter_count = ICE_MAX_SCATTER_TXQS, 2786 .vsi_map = vsi->txq_map, 2787 .vsi_map_offset = vsi->alloc_txq, 2788 .mapping_mode = ICE_VSI_MAP_CONTIG 2789 }; 2790 struct device *dev; 2791 int status, i; 2792 2793 dev = ice_pf_to_dev(pf); 2794 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2795 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2796 if (!vsi->xdp_rings) 2797 return -ENOMEM; 2798 2799 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2800 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2801 goto err_map_xdp; 2802 2803 if (static_key_enabled(&ice_xdp_locking_key)) 2804 netdev_warn(vsi->netdev, 2805 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2806 2807 if (ice_xdp_alloc_setup_rings(vsi)) 2808 goto clear_xdp_rings; 2809 2810 /* omit the scheduler update if in reset path; XDP queues will be 2811 * taken into account at the end of ice_vsi_rebuild, where 2812 * ice_cfg_vsi_lan is being called 2813 */ 2814 if (cfg_type == ICE_XDP_CFG_PART) 2815 return 0; 2816 2817 ice_map_xdp_rings(vsi); 2818 2819 /* tell the Tx scheduler that right now we have 2820 * additional queues 2821 */ 2822 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2823 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2824 2825 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2826 max_txqs); 2827 if (status) { 2828 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2829 status); 2830 goto clear_xdp_rings; 2831 } 2832 2833 /* assign the prog only when it's not already present on VSI; 2834 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2835 * VSI rebuild that happens under ethtool -L can expose us to 2836 * the bpf_prog refcount issues as we would be swapping same 2837 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2838 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2839 * this is not harmful as dev_xdp_install bumps the refcount 2840 * before calling the op exposed by the driver; 2841 */ 2842 if (!ice_is_xdp_ena_vsi(vsi)) 2843 ice_vsi_assign_bpf_prog(vsi, prog); 2844 2845 return 0; 2846 clear_xdp_rings: 2847 ice_for_each_xdp_txq(vsi, i) 2848 if (vsi->xdp_rings[i]) { 2849 kfree_rcu(vsi->xdp_rings[i], rcu); 2850 vsi->xdp_rings[i] = NULL; 2851 } 2852 2853 err_map_xdp: 2854 mutex_lock(&pf->avail_q_mutex); 2855 ice_for_each_xdp_txq(vsi, i) { 2856 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2857 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2858 } 2859 mutex_unlock(&pf->avail_q_mutex); 2860 2861 devm_kfree(dev, vsi->xdp_rings); 2862 return -ENOMEM; 2863 } 2864 2865 /** 2866 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2867 * @vsi: VSI to remove XDP rings 2868 * @cfg_type: disable XDP permanently or allow it to be restored later 2869 * 2870 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2871 * resources 2872 */ 2873 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2874 { 2875 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2876 struct ice_pf *pf = vsi->back; 2877 int i, v_idx; 2878 2879 /* q_vectors are freed in reset path so there's no point in detaching 2880 * rings 2881 */ 2882 if (cfg_type == ICE_XDP_CFG_PART) 2883 goto free_qmap; 2884 2885 ice_for_each_q_vector(vsi, v_idx) { 2886 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2887 struct ice_tx_ring *ring; 2888 2889 ice_for_each_tx_ring(ring, q_vector->tx) 2890 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2891 break; 2892 2893 /* restore the value of last node prior to XDP setup */ 2894 q_vector->tx.tx_ring = ring; 2895 } 2896 2897 free_qmap: 2898 mutex_lock(&pf->avail_q_mutex); 2899 ice_for_each_xdp_txq(vsi, i) { 2900 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2901 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2902 } 2903 mutex_unlock(&pf->avail_q_mutex); 2904 2905 ice_for_each_xdp_txq(vsi, i) 2906 if (vsi->xdp_rings[i]) { 2907 if (vsi->xdp_rings[i]->desc) { 2908 synchronize_rcu(); 2909 ice_free_tx_ring(vsi->xdp_rings[i]); 2910 } 2911 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2912 vsi->xdp_rings[i]->ring_stats = NULL; 2913 kfree_rcu(vsi->xdp_rings[i], rcu); 2914 vsi->xdp_rings[i] = NULL; 2915 } 2916 2917 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2918 vsi->xdp_rings = NULL; 2919 2920 if (static_key_enabled(&ice_xdp_locking_key)) 2921 static_branch_dec(&ice_xdp_locking_key); 2922 2923 if (cfg_type == ICE_XDP_CFG_PART) 2924 return 0; 2925 2926 ice_vsi_assign_bpf_prog(vsi, NULL); 2927 2928 /* notify Tx scheduler that we destroyed XDP queues and bring 2929 * back the old number of child nodes 2930 */ 2931 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2932 max_txqs[i] = vsi->num_txq; 2933 2934 /* change number of XDP Tx queues to 0 */ 2935 vsi->num_xdp_txq = 0; 2936 2937 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2938 max_txqs); 2939 } 2940 2941 /** 2942 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2943 * @vsi: VSI to schedule napi on 2944 */ 2945 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2946 { 2947 int i; 2948 2949 ice_for_each_rxq(vsi, i) { 2950 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2951 2952 if (rx_ring->xsk_pool) 2953 napi_schedule(&rx_ring->q_vector->napi); 2954 } 2955 } 2956 2957 /** 2958 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2959 * @vsi: VSI to determine the count of XDP Tx qs 2960 * 2961 * returns 0 if Tx qs count is higher than at least half of CPU count, 2962 * -ENOMEM otherwise 2963 */ 2964 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2965 { 2966 u16 avail = ice_get_avail_txq_count(vsi->back); 2967 u16 cpus = num_possible_cpus(); 2968 2969 if (avail < cpus / 2) 2970 return -ENOMEM; 2971 2972 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2973 2974 if (vsi->num_xdp_txq < cpus) 2975 static_branch_inc(&ice_xdp_locking_key); 2976 2977 return 0; 2978 } 2979 2980 /** 2981 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2982 * @vsi: Pointer to VSI structure 2983 */ 2984 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2985 { 2986 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2987 return ICE_RXBUF_1664; 2988 else 2989 return ICE_RXBUF_3072; 2990 } 2991 2992 /** 2993 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2994 * @vsi: VSI to setup XDP for 2995 * @prog: XDP program 2996 * @extack: netlink extended ack 2997 */ 2998 static int 2999 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3000 struct netlink_ext_ack *extack) 3001 { 3002 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3003 bool if_running = netif_running(vsi->netdev); 3004 int ret = 0, xdp_ring_err = 0; 3005 3006 if (prog && !prog->aux->xdp_has_frags) { 3007 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3008 NL_SET_ERR_MSG_MOD(extack, 3009 "MTU is too large for linear frames and XDP prog does not support frags"); 3010 return -EOPNOTSUPP; 3011 } 3012 } 3013 3014 /* hot swap progs and avoid toggling link */ 3015 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 3016 ice_vsi_assign_bpf_prog(vsi, prog); 3017 return 0; 3018 } 3019 3020 /* need to stop netdev while setting up the program for Rx rings */ 3021 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3022 ret = ice_down(vsi); 3023 if (ret) { 3024 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3025 return ret; 3026 } 3027 } 3028 3029 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3030 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3031 if (xdp_ring_err) { 3032 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3033 } else { 3034 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3035 ICE_XDP_CFG_FULL); 3036 if (xdp_ring_err) 3037 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3038 } 3039 xdp_features_set_redirect_target(vsi->netdev, true); 3040 /* reallocate Rx queues that are used for zero-copy */ 3041 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3042 if (xdp_ring_err) 3043 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3044 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3045 xdp_features_clear_redirect_target(vsi->netdev); 3046 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3047 if (xdp_ring_err) 3048 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3049 /* reallocate Rx queues that were used for zero-copy */ 3050 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3053 } 3054 3055 if (if_running) 3056 ret = ice_up(vsi); 3057 3058 if (!ret && prog) 3059 ice_vsi_rx_napi_schedule(vsi); 3060 3061 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3062 } 3063 3064 /** 3065 * ice_xdp_safe_mode - XDP handler for safe mode 3066 * @dev: netdevice 3067 * @xdp: XDP command 3068 */ 3069 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3070 struct netdev_bpf *xdp) 3071 { 3072 NL_SET_ERR_MSG_MOD(xdp->extack, 3073 "Please provide working DDP firmware package in order to use XDP\n" 3074 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3075 return -EOPNOTSUPP; 3076 } 3077 3078 /** 3079 * ice_xdp - implements XDP handler 3080 * @dev: netdevice 3081 * @xdp: XDP command 3082 */ 3083 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3084 { 3085 struct ice_netdev_priv *np = netdev_priv(dev); 3086 struct ice_vsi *vsi = np->vsi; 3087 3088 if (vsi->type != ICE_VSI_PF) { 3089 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3090 return -EINVAL; 3091 } 3092 3093 switch (xdp->command) { 3094 case XDP_SETUP_PROG: 3095 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3096 case XDP_SETUP_XSK_POOL: 3097 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3098 xdp->xsk.queue_id); 3099 default: 3100 return -EINVAL; 3101 } 3102 } 3103 3104 /** 3105 * ice_ena_misc_vector - enable the non-queue interrupts 3106 * @pf: board private structure 3107 */ 3108 static void ice_ena_misc_vector(struct ice_pf *pf) 3109 { 3110 struct ice_hw *hw = &pf->hw; 3111 u32 pf_intr_start_offset; 3112 u32 val; 3113 3114 /* Disable anti-spoof detection interrupt to prevent spurious event 3115 * interrupts during a function reset. Anti-spoof functionally is 3116 * still supported. 3117 */ 3118 val = rd32(hw, GL_MDCK_TX_TDPU); 3119 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3120 wr32(hw, GL_MDCK_TX_TDPU, val); 3121 3122 /* clear things first */ 3123 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3124 rd32(hw, PFINT_OICR); /* read to clear */ 3125 3126 val = (PFINT_OICR_ECC_ERR_M | 3127 PFINT_OICR_MAL_DETECT_M | 3128 PFINT_OICR_GRST_M | 3129 PFINT_OICR_PCI_EXCEPTION_M | 3130 PFINT_OICR_VFLR_M | 3131 PFINT_OICR_HMC_ERR_M | 3132 PFINT_OICR_PE_PUSH_M | 3133 PFINT_OICR_PE_CRITERR_M); 3134 3135 wr32(hw, PFINT_OICR_ENA, val); 3136 3137 /* SW_ITR_IDX = 0, but don't change INTENA */ 3138 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3139 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3140 3141 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3142 return; 3143 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3144 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3145 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3146 } 3147 3148 /** 3149 * ice_ll_ts_intr - ll_ts interrupt handler 3150 * @irq: interrupt number 3151 * @data: pointer to a q_vector 3152 */ 3153 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3154 { 3155 struct ice_pf *pf = data; 3156 u32 pf_intr_start_offset; 3157 struct ice_ptp_tx *tx; 3158 unsigned long flags; 3159 struct ice_hw *hw; 3160 u32 val; 3161 u8 idx; 3162 3163 hw = &pf->hw; 3164 tx = &pf->ptp.port.tx; 3165 spin_lock_irqsave(&tx->lock, flags); 3166 ice_ptp_complete_tx_single_tstamp(tx); 3167 3168 idx = find_next_bit_wrap(tx->in_use, tx->len, 3169 tx->last_ll_ts_idx_read + 1); 3170 if (idx != tx->len) 3171 ice_ptp_req_tx_single_tstamp(tx, idx); 3172 spin_unlock_irqrestore(&tx->lock, flags); 3173 3174 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3175 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3176 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3177 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3178 val); 3179 3180 return IRQ_HANDLED; 3181 } 3182 3183 /** 3184 * ice_misc_intr - misc interrupt handler 3185 * @irq: interrupt number 3186 * @data: pointer to a q_vector 3187 */ 3188 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3189 { 3190 struct ice_pf *pf = (struct ice_pf *)data; 3191 irqreturn_t ret = IRQ_HANDLED; 3192 struct ice_hw *hw = &pf->hw; 3193 struct device *dev; 3194 u32 oicr, ena_mask; 3195 3196 dev = ice_pf_to_dev(pf); 3197 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3198 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3199 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3200 3201 oicr = rd32(hw, PFINT_OICR); 3202 ena_mask = rd32(hw, PFINT_OICR_ENA); 3203 3204 if (oicr & PFINT_OICR_SWINT_M) { 3205 ena_mask &= ~PFINT_OICR_SWINT_M; 3206 pf->sw_int_count++; 3207 } 3208 3209 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3210 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3211 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3212 } 3213 if (oicr & PFINT_OICR_VFLR_M) { 3214 /* disable any further VFLR event notifications */ 3215 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3216 u32 reg = rd32(hw, PFINT_OICR_ENA); 3217 3218 reg &= ~PFINT_OICR_VFLR_M; 3219 wr32(hw, PFINT_OICR_ENA, reg); 3220 } else { 3221 ena_mask &= ~PFINT_OICR_VFLR_M; 3222 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3223 } 3224 } 3225 3226 if (oicr & PFINT_OICR_GRST_M) { 3227 u32 reset; 3228 3229 /* we have a reset warning */ 3230 ena_mask &= ~PFINT_OICR_GRST_M; 3231 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3232 rd32(hw, GLGEN_RSTAT)); 3233 3234 if (reset == ICE_RESET_CORER) 3235 pf->corer_count++; 3236 else if (reset == ICE_RESET_GLOBR) 3237 pf->globr_count++; 3238 else if (reset == ICE_RESET_EMPR) 3239 pf->empr_count++; 3240 else 3241 dev_dbg(dev, "Invalid reset type %d\n", reset); 3242 3243 /* If a reset cycle isn't already in progress, we set a bit in 3244 * pf->state so that the service task can start a reset/rebuild. 3245 */ 3246 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3247 if (reset == ICE_RESET_CORER) 3248 set_bit(ICE_CORER_RECV, pf->state); 3249 else if (reset == ICE_RESET_GLOBR) 3250 set_bit(ICE_GLOBR_RECV, pf->state); 3251 else 3252 set_bit(ICE_EMPR_RECV, pf->state); 3253 3254 /* There are couple of different bits at play here. 3255 * hw->reset_ongoing indicates whether the hardware is 3256 * in reset. This is set to true when a reset interrupt 3257 * is received and set back to false after the driver 3258 * has determined that the hardware is out of reset. 3259 * 3260 * ICE_RESET_OICR_RECV in pf->state indicates 3261 * that a post reset rebuild is required before the 3262 * driver is operational again. This is set above. 3263 * 3264 * As this is the start of the reset/rebuild cycle, set 3265 * both to indicate that. 3266 */ 3267 hw->reset_ongoing = true; 3268 } 3269 } 3270 3271 if (oicr & PFINT_OICR_TSYN_TX_M) { 3272 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3273 if (ice_pf_state_is_nominal(pf) && 3274 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3275 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3276 unsigned long flags; 3277 u8 idx; 3278 3279 spin_lock_irqsave(&tx->lock, flags); 3280 idx = find_next_bit_wrap(tx->in_use, tx->len, 3281 tx->last_ll_ts_idx_read + 1); 3282 if (idx != tx->len) 3283 ice_ptp_req_tx_single_tstamp(tx, idx); 3284 spin_unlock_irqrestore(&tx->lock, flags); 3285 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3286 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3287 ret = IRQ_WAKE_THREAD; 3288 } 3289 } 3290 3291 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3292 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3293 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3294 3295 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3296 3297 if (ice_pf_src_tmr_owned(pf)) { 3298 /* Save EVENTs from GLTSYN register */ 3299 pf->ptp.ext_ts_irq |= gltsyn_stat & 3300 (GLTSYN_STAT_EVENT0_M | 3301 GLTSYN_STAT_EVENT1_M | 3302 GLTSYN_STAT_EVENT2_M); 3303 3304 ice_ptp_extts_event(pf); 3305 } 3306 } 3307 3308 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3309 if (oicr & ICE_AUX_CRIT_ERR) { 3310 pf->oicr_err_reg |= oicr; 3311 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3312 ena_mask &= ~ICE_AUX_CRIT_ERR; 3313 } 3314 3315 /* Report any remaining unexpected interrupts */ 3316 oicr &= ena_mask; 3317 if (oicr) { 3318 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3319 /* If a critical error is pending there is no choice but to 3320 * reset the device. 3321 */ 3322 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3323 PFINT_OICR_ECC_ERR_M)) { 3324 set_bit(ICE_PFR_REQ, pf->state); 3325 } 3326 } 3327 ice_service_task_schedule(pf); 3328 if (ret == IRQ_HANDLED) 3329 ice_irq_dynamic_ena(hw, NULL, NULL); 3330 3331 return ret; 3332 } 3333 3334 /** 3335 * ice_misc_intr_thread_fn - misc interrupt thread function 3336 * @irq: interrupt number 3337 * @data: pointer to a q_vector 3338 */ 3339 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3340 { 3341 struct ice_pf *pf = data; 3342 struct ice_hw *hw; 3343 3344 hw = &pf->hw; 3345 3346 if (ice_is_reset_in_progress(pf->state)) 3347 goto skip_irq; 3348 3349 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3350 /* Process outstanding Tx timestamps. If there is more work, 3351 * re-arm the interrupt to trigger again. 3352 */ 3353 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3354 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3355 ice_flush(hw); 3356 } 3357 } 3358 3359 skip_irq: 3360 ice_irq_dynamic_ena(hw, NULL, NULL); 3361 3362 return IRQ_HANDLED; 3363 } 3364 3365 /** 3366 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3367 * @hw: pointer to HW structure 3368 */ 3369 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3370 { 3371 /* disable Admin queue Interrupt causes */ 3372 wr32(hw, PFINT_FW_CTL, 3373 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3374 3375 /* disable Mailbox queue Interrupt causes */ 3376 wr32(hw, PFINT_MBX_CTL, 3377 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3378 3379 wr32(hw, PFINT_SB_CTL, 3380 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3381 3382 /* disable Control queue Interrupt causes */ 3383 wr32(hw, PFINT_OICR_CTL, 3384 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3385 3386 ice_flush(hw); 3387 } 3388 3389 /** 3390 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3391 * @pf: board private structure 3392 */ 3393 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3394 { 3395 int irq_num = pf->ll_ts_irq.virq; 3396 3397 synchronize_irq(irq_num); 3398 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3399 3400 ice_free_irq(pf, pf->ll_ts_irq); 3401 } 3402 3403 /** 3404 * ice_free_irq_msix_misc - Unroll misc vector setup 3405 * @pf: board private structure 3406 */ 3407 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3408 { 3409 int misc_irq_num = pf->oicr_irq.virq; 3410 struct ice_hw *hw = &pf->hw; 3411 3412 ice_dis_ctrlq_interrupts(hw); 3413 3414 /* disable OICR interrupt */ 3415 wr32(hw, PFINT_OICR_ENA, 0); 3416 ice_flush(hw); 3417 3418 synchronize_irq(misc_irq_num); 3419 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3420 3421 ice_free_irq(pf, pf->oicr_irq); 3422 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3423 ice_free_irq_msix_ll_ts(pf); 3424 } 3425 3426 /** 3427 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3428 * @hw: pointer to HW structure 3429 * @reg_idx: HW vector index to associate the control queue interrupts with 3430 */ 3431 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3432 { 3433 u32 val; 3434 3435 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3436 PFINT_OICR_CTL_CAUSE_ENA_M); 3437 wr32(hw, PFINT_OICR_CTL, val); 3438 3439 /* enable Admin queue Interrupt causes */ 3440 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3441 PFINT_FW_CTL_CAUSE_ENA_M); 3442 wr32(hw, PFINT_FW_CTL, val); 3443 3444 /* enable Mailbox queue Interrupt causes */ 3445 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3446 PFINT_MBX_CTL_CAUSE_ENA_M); 3447 wr32(hw, PFINT_MBX_CTL, val); 3448 3449 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3450 /* enable Sideband queue Interrupt causes */ 3451 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3452 PFINT_SB_CTL_CAUSE_ENA_M); 3453 wr32(hw, PFINT_SB_CTL, val); 3454 } 3455 3456 ice_flush(hw); 3457 } 3458 3459 /** 3460 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3461 * @pf: board private structure 3462 * 3463 * This sets up the handler for MSIX 0, which is used to manage the 3464 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3465 * when in MSI or Legacy interrupt mode. 3466 */ 3467 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3468 { 3469 struct device *dev = ice_pf_to_dev(pf); 3470 struct ice_hw *hw = &pf->hw; 3471 u32 pf_intr_start_offset; 3472 struct msi_map irq; 3473 int err = 0; 3474 3475 if (!pf->int_name[0]) 3476 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3477 dev_driver_string(dev), dev_name(dev)); 3478 3479 if (!pf->int_name_ll_ts[0]) 3480 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3481 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3482 /* Do not request IRQ but do enable OICR interrupt since settings are 3483 * lost during reset. Note that this function is called only during 3484 * rebuild path and not while reset is in progress. 3485 */ 3486 if (ice_is_reset_in_progress(pf->state)) 3487 goto skip_req_irq; 3488 3489 /* reserve one vector in irq_tracker for misc interrupts */ 3490 irq = ice_alloc_irq(pf, false); 3491 if (irq.index < 0) 3492 return irq.index; 3493 3494 pf->oicr_irq = irq; 3495 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3496 ice_misc_intr_thread_fn, 0, 3497 pf->int_name, pf); 3498 if (err) { 3499 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3500 pf->int_name, err); 3501 ice_free_irq(pf, pf->oicr_irq); 3502 return err; 3503 } 3504 3505 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3506 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3507 goto skip_req_irq; 3508 3509 irq = ice_alloc_irq(pf, false); 3510 if (irq.index < 0) 3511 return irq.index; 3512 3513 pf->ll_ts_irq = irq; 3514 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3515 pf->int_name_ll_ts, pf); 3516 if (err) { 3517 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3518 pf->int_name_ll_ts, err); 3519 ice_free_irq(pf, pf->ll_ts_irq); 3520 return err; 3521 } 3522 3523 skip_req_irq: 3524 ice_ena_misc_vector(pf); 3525 3526 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3527 /* This enables LL TS interrupt */ 3528 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3529 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3530 wr32(hw, PFINT_SB_CTL, 3531 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3532 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3533 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3534 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3535 3536 ice_flush(hw); 3537 ice_irq_dynamic_ena(hw, NULL, NULL); 3538 3539 return 0; 3540 } 3541 3542 /** 3543 * ice_napi_add - register NAPI handler for the VSI 3544 * @vsi: VSI for which NAPI handler is to be registered 3545 * 3546 * This function is only called in the driver's load path. Registering the NAPI 3547 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3548 * reset/rebuild, etc.) 3549 */ 3550 static void ice_napi_add(struct ice_vsi *vsi) 3551 { 3552 int v_idx; 3553 3554 if (!vsi->netdev) 3555 return; 3556 3557 ice_for_each_q_vector(vsi, v_idx) { 3558 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3559 ice_napi_poll); 3560 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3561 } 3562 } 3563 3564 /** 3565 * ice_set_ops - set netdev and ethtools ops for the given netdev 3566 * @vsi: the VSI associated with the new netdev 3567 */ 3568 static void ice_set_ops(struct ice_vsi *vsi) 3569 { 3570 struct net_device *netdev = vsi->netdev; 3571 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3572 3573 if (ice_is_safe_mode(pf)) { 3574 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3575 ice_set_ethtool_safe_mode_ops(netdev); 3576 return; 3577 } 3578 3579 netdev->netdev_ops = &ice_netdev_ops; 3580 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3581 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3582 ice_set_ethtool_ops(netdev); 3583 3584 if (vsi->type != ICE_VSI_PF) 3585 return; 3586 3587 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3588 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3589 NETDEV_XDP_ACT_RX_SG; 3590 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3591 } 3592 3593 /** 3594 * ice_set_netdev_features - set features for the given netdev 3595 * @netdev: netdev instance 3596 */ 3597 static void ice_set_netdev_features(struct net_device *netdev) 3598 { 3599 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3600 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3601 netdev_features_t csumo_features; 3602 netdev_features_t vlano_features; 3603 netdev_features_t dflt_features; 3604 netdev_features_t tso_features; 3605 3606 if (ice_is_safe_mode(pf)) { 3607 /* safe mode */ 3608 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3609 netdev->hw_features = netdev->features; 3610 return; 3611 } 3612 3613 dflt_features = NETIF_F_SG | 3614 NETIF_F_HIGHDMA | 3615 NETIF_F_NTUPLE | 3616 NETIF_F_RXHASH; 3617 3618 csumo_features = NETIF_F_RXCSUM | 3619 NETIF_F_IP_CSUM | 3620 NETIF_F_SCTP_CRC | 3621 NETIF_F_IPV6_CSUM; 3622 3623 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3624 NETIF_F_HW_VLAN_CTAG_TX | 3625 NETIF_F_HW_VLAN_CTAG_RX; 3626 3627 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3628 if (is_dvm_ena) 3629 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3630 3631 tso_features = NETIF_F_TSO | 3632 NETIF_F_TSO_ECN | 3633 NETIF_F_TSO6 | 3634 NETIF_F_GSO_GRE | 3635 NETIF_F_GSO_UDP_TUNNEL | 3636 NETIF_F_GSO_GRE_CSUM | 3637 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3638 NETIF_F_GSO_PARTIAL | 3639 NETIF_F_GSO_IPXIP4 | 3640 NETIF_F_GSO_IPXIP6 | 3641 NETIF_F_GSO_UDP_L4; 3642 3643 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3644 NETIF_F_GSO_GRE_CSUM; 3645 /* set features that user can change */ 3646 netdev->hw_features = dflt_features | csumo_features | 3647 vlano_features | tso_features; 3648 3649 /* add support for HW_CSUM on packets with MPLS header */ 3650 netdev->mpls_features = NETIF_F_HW_CSUM | 3651 NETIF_F_TSO | 3652 NETIF_F_TSO6; 3653 3654 /* enable features */ 3655 netdev->features |= netdev->hw_features; 3656 3657 netdev->hw_features |= NETIF_F_HW_TC; 3658 netdev->hw_features |= NETIF_F_LOOPBACK; 3659 3660 /* encap and VLAN devices inherit default, csumo and tso features */ 3661 netdev->hw_enc_features |= dflt_features | csumo_features | 3662 tso_features; 3663 netdev->vlan_features |= dflt_features | csumo_features | 3664 tso_features; 3665 3666 /* advertise support but don't enable by default since only one type of 3667 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3668 * type turns on the other has to be turned off. This is enforced by the 3669 * ice_fix_features() ndo callback. 3670 */ 3671 if (is_dvm_ena) 3672 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3673 NETIF_F_HW_VLAN_STAG_TX; 3674 3675 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3676 * be changed at runtime 3677 */ 3678 netdev->hw_features |= NETIF_F_RXFCS; 3679 3680 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3681 } 3682 3683 /** 3684 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3685 * @lut: Lookup table 3686 * @rss_table_size: Lookup table size 3687 * @rss_size: Range of queue number for hashing 3688 */ 3689 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3690 { 3691 u16 i; 3692 3693 for (i = 0; i < rss_table_size; i++) 3694 lut[i] = i % rss_size; 3695 } 3696 3697 /** 3698 * ice_pf_vsi_setup - Set up a PF VSI 3699 * @pf: board private structure 3700 * @pi: pointer to the port_info instance 3701 * 3702 * Returns pointer to the successfully allocated VSI software struct 3703 * on success, otherwise returns NULL on failure. 3704 */ 3705 static struct ice_vsi * 3706 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3707 { 3708 struct ice_vsi_cfg_params params = {}; 3709 3710 params.type = ICE_VSI_PF; 3711 params.port_info = pi; 3712 params.flags = ICE_VSI_FLAG_INIT; 3713 3714 return ice_vsi_setup(pf, ¶ms); 3715 } 3716 3717 static struct ice_vsi * 3718 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3719 struct ice_channel *ch) 3720 { 3721 struct ice_vsi_cfg_params params = {}; 3722 3723 params.type = ICE_VSI_CHNL; 3724 params.port_info = pi; 3725 params.ch = ch; 3726 params.flags = ICE_VSI_FLAG_INIT; 3727 3728 return ice_vsi_setup(pf, ¶ms); 3729 } 3730 3731 /** 3732 * ice_ctrl_vsi_setup - Set up a control VSI 3733 * @pf: board private structure 3734 * @pi: pointer to the port_info instance 3735 * 3736 * Returns pointer to the successfully allocated VSI software struct 3737 * on success, otherwise returns NULL on failure. 3738 */ 3739 static struct ice_vsi * 3740 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3741 { 3742 struct ice_vsi_cfg_params params = {}; 3743 3744 params.type = ICE_VSI_CTRL; 3745 params.port_info = pi; 3746 params.flags = ICE_VSI_FLAG_INIT; 3747 3748 return ice_vsi_setup(pf, ¶ms); 3749 } 3750 3751 /** 3752 * ice_lb_vsi_setup - Set up a loopback VSI 3753 * @pf: board private structure 3754 * @pi: pointer to the port_info instance 3755 * 3756 * Returns pointer to the successfully allocated VSI software struct 3757 * on success, otherwise returns NULL on failure. 3758 */ 3759 struct ice_vsi * 3760 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3761 { 3762 struct ice_vsi_cfg_params params = {}; 3763 3764 params.type = ICE_VSI_LB; 3765 params.port_info = pi; 3766 params.flags = ICE_VSI_FLAG_INIT; 3767 3768 return ice_vsi_setup(pf, ¶ms); 3769 } 3770 3771 /** 3772 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3773 * @netdev: network interface to be adjusted 3774 * @proto: VLAN TPID 3775 * @vid: VLAN ID to be added 3776 * 3777 * net_device_ops implementation for adding VLAN IDs 3778 */ 3779 static int 3780 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3781 { 3782 struct ice_netdev_priv *np = netdev_priv(netdev); 3783 struct ice_vsi_vlan_ops *vlan_ops; 3784 struct ice_vsi *vsi = np->vsi; 3785 struct ice_vlan vlan; 3786 int ret; 3787 3788 /* VLAN 0 is added by default during load/reset */ 3789 if (!vid) 3790 return 0; 3791 3792 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3793 usleep_range(1000, 2000); 3794 3795 /* Add multicast promisc rule for the VLAN ID to be added if 3796 * all-multicast is currently enabled. 3797 */ 3798 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3799 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3800 ICE_MCAST_VLAN_PROMISC_BITS, 3801 vid); 3802 if (ret) 3803 goto finish; 3804 } 3805 3806 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3807 3808 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3809 * packets aren't pruned by the device's internal switch on Rx 3810 */ 3811 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3812 ret = vlan_ops->add_vlan(vsi, &vlan); 3813 if (ret) 3814 goto finish; 3815 3816 /* If all-multicast is currently enabled and this VLAN ID is only one 3817 * besides VLAN-0 we have to update look-up type of multicast promisc 3818 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3819 */ 3820 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3821 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3822 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3823 ICE_MCAST_PROMISC_BITS, 0); 3824 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3825 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3826 } 3827 3828 finish: 3829 clear_bit(ICE_CFG_BUSY, vsi->state); 3830 3831 return ret; 3832 } 3833 3834 /** 3835 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3836 * @netdev: network interface to be adjusted 3837 * @proto: VLAN TPID 3838 * @vid: VLAN ID to be removed 3839 * 3840 * net_device_ops implementation for removing VLAN IDs 3841 */ 3842 static int 3843 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3844 { 3845 struct ice_netdev_priv *np = netdev_priv(netdev); 3846 struct ice_vsi_vlan_ops *vlan_ops; 3847 struct ice_vsi *vsi = np->vsi; 3848 struct ice_vlan vlan; 3849 int ret; 3850 3851 /* don't allow removal of VLAN 0 */ 3852 if (!vid) 3853 return 0; 3854 3855 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3856 usleep_range(1000, 2000); 3857 3858 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3859 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3860 if (ret) { 3861 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3862 vsi->vsi_num); 3863 vsi->current_netdev_flags |= IFF_ALLMULTI; 3864 } 3865 3866 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3867 3868 /* Make sure VLAN delete is successful before updating VLAN 3869 * information 3870 */ 3871 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3872 ret = vlan_ops->del_vlan(vsi, &vlan); 3873 if (ret) 3874 goto finish; 3875 3876 /* Remove multicast promisc rule for the removed VLAN ID if 3877 * all-multicast is enabled. 3878 */ 3879 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3880 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3881 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3882 3883 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3884 /* Update look-up type of multicast promisc rule for VLAN 0 3885 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3886 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3887 */ 3888 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3889 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3890 ICE_MCAST_VLAN_PROMISC_BITS, 3891 0); 3892 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3893 ICE_MCAST_PROMISC_BITS, 0); 3894 } 3895 } 3896 3897 finish: 3898 clear_bit(ICE_CFG_BUSY, vsi->state); 3899 3900 return ret; 3901 } 3902 3903 /** 3904 * ice_rep_indr_tc_block_unbind 3905 * @cb_priv: indirection block private data 3906 */ 3907 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3908 { 3909 struct ice_indr_block_priv *indr_priv = cb_priv; 3910 3911 list_del(&indr_priv->list); 3912 kfree(indr_priv); 3913 } 3914 3915 /** 3916 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3917 * @vsi: VSI struct which has the netdev 3918 */ 3919 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3920 { 3921 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3922 3923 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3924 ice_rep_indr_tc_block_unbind); 3925 } 3926 3927 /** 3928 * ice_tc_indir_block_register - Register TC indirect block notifications 3929 * @vsi: VSI struct which has the netdev 3930 * 3931 * Returns 0 on success, negative value on failure 3932 */ 3933 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3934 { 3935 struct ice_netdev_priv *np; 3936 3937 if (!vsi || !vsi->netdev) 3938 return -EINVAL; 3939 3940 np = netdev_priv(vsi->netdev); 3941 3942 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3943 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3944 } 3945 3946 /** 3947 * ice_get_avail_q_count - Get count of queues in use 3948 * @pf_qmap: bitmap to get queue use count from 3949 * @lock: pointer to a mutex that protects access to pf_qmap 3950 * @size: size of the bitmap 3951 */ 3952 static u16 3953 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3954 { 3955 unsigned long bit; 3956 u16 count = 0; 3957 3958 mutex_lock(lock); 3959 for_each_clear_bit(bit, pf_qmap, size) 3960 count++; 3961 mutex_unlock(lock); 3962 3963 return count; 3964 } 3965 3966 /** 3967 * ice_get_avail_txq_count - Get count of Tx queues in use 3968 * @pf: pointer to an ice_pf instance 3969 */ 3970 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3971 { 3972 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3973 pf->max_pf_txqs); 3974 } 3975 3976 /** 3977 * ice_get_avail_rxq_count - Get count of Rx queues in use 3978 * @pf: pointer to an ice_pf instance 3979 */ 3980 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3981 { 3982 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3983 pf->max_pf_rxqs); 3984 } 3985 3986 /** 3987 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3988 * @pf: board private structure to initialize 3989 */ 3990 static void ice_deinit_pf(struct ice_pf *pf) 3991 { 3992 ice_service_task_stop(pf); 3993 mutex_destroy(&pf->lag_mutex); 3994 mutex_destroy(&pf->adev_mutex); 3995 mutex_destroy(&pf->sw_mutex); 3996 mutex_destroy(&pf->tc_mutex); 3997 mutex_destroy(&pf->avail_q_mutex); 3998 mutex_destroy(&pf->vfs.table_lock); 3999 4000 if (pf->avail_txqs) { 4001 bitmap_free(pf->avail_txqs); 4002 pf->avail_txqs = NULL; 4003 } 4004 4005 if (pf->avail_rxqs) { 4006 bitmap_free(pf->avail_rxqs); 4007 pf->avail_rxqs = NULL; 4008 } 4009 4010 if (pf->ptp.clock) 4011 ptp_clock_unregister(pf->ptp.clock); 4012 } 4013 4014 /** 4015 * ice_set_pf_caps - set PFs capability flags 4016 * @pf: pointer to the PF instance 4017 */ 4018 static void ice_set_pf_caps(struct ice_pf *pf) 4019 { 4020 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4021 4022 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4023 if (func_caps->common_cap.rdma) 4024 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4025 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4026 if (func_caps->common_cap.dcb) 4027 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4028 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4029 if (func_caps->common_cap.sr_iov_1_1) { 4030 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4031 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4032 ICE_MAX_SRIOV_VFS); 4033 } 4034 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4035 if (func_caps->common_cap.rss_table_size) 4036 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4037 4038 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4039 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4040 u16 unused; 4041 4042 /* ctrl_vsi_idx will be set to a valid value when flow director 4043 * is setup by ice_init_fdir 4044 */ 4045 pf->ctrl_vsi_idx = ICE_NO_VSI; 4046 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4047 /* force guaranteed filter pool for PF */ 4048 ice_alloc_fd_guar_item(&pf->hw, &unused, 4049 func_caps->fd_fltr_guar); 4050 /* force shared filter pool for PF */ 4051 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4052 func_caps->fd_fltr_best_effort); 4053 } 4054 4055 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4056 if (func_caps->common_cap.ieee_1588 && 4057 !(pf->hw.mac_type == ICE_MAC_E830)) 4058 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4059 4060 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4061 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4062 } 4063 4064 /** 4065 * ice_init_pf - Initialize general software structures (struct ice_pf) 4066 * @pf: board private structure to initialize 4067 */ 4068 static int ice_init_pf(struct ice_pf *pf) 4069 { 4070 ice_set_pf_caps(pf); 4071 4072 mutex_init(&pf->sw_mutex); 4073 mutex_init(&pf->tc_mutex); 4074 mutex_init(&pf->adev_mutex); 4075 mutex_init(&pf->lag_mutex); 4076 4077 INIT_HLIST_HEAD(&pf->aq_wait_list); 4078 spin_lock_init(&pf->aq_wait_lock); 4079 init_waitqueue_head(&pf->aq_wait_queue); 4080 4081 init_waitqueue_head(&pf->reset_wait_queue); 4082 4083 /* setup service timer and periodic service task */ 4084 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4085 pf->serv_tmr_period = HZ; 4086 INIT_WORK(&pf->serv_task, ice_service_task); 4087 clear_bit(ICE_SERVICE_SCHED, pf->state); 4088 4089 mutex_init(&pf->avail_q_mutex); 4090 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4091 if (!pf->avail_txqs) 4092 return -ENOMEM; 4093 4094 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4095 if (!pf->avail_rxqs) { 4096 bitmap_free(pf->avail_txqs); 4097 pf->avail_txqs = NULL; 4098 return -ENOMEM; 4099 } 4100 4101 mutex_init(&pf->vfs.table_lock); 4102 hash_init(pf->vfs.table); 4103 ice_mbx_init_snapshot(&pf->hw); 4104 4105 return 0; 4106 } 4107 4108 /** 4109 * ice_is_wol_supported - check if WoL is supported 4110 * @hw: pointer to hardware info 4111 * 4112 * Check if WoL is supported based on the HW configuration. 4113 * Returns true if NVM supports and enables WoL for this port, false otherwise 4114 */ 4115 bool ice_is_wol_supported(struct ice_hw *hw) 4116 { 4117 u16 wol_ctrl; 4118 4119 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4120 * word) indicates WoL is not supported on the corresponding PF ID. 4121 */ 4122 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4123 return false; 4124 4125 return !(BIT(hw->port_info->lport) & wol_ctrl); 4126 } 4127 4128 /** 4129 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4130 * @vsi: VSI being changed 4131 * @new_rx: new number of Rx queues 4132 * @new_tx: new number of Tx queues 4133 * @locked: is adev device_lock held 4134 * 4135 * Only change the number of queues if new_tx, or new_rx is non-0. 4136 * 4137 * Returns 0 on success. 4138 */ 4139 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4140 { 4141 struct ice_pf *pf = vsi->back; 4142 int err = 0, timeout = 50; 4143 4144 if (!new_rx && !new_tx) 4145 return -EINVAL; 4146 4147 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4148 timeout--; 4149 if (!timeout) 4150 return -EBUSY; 4151 usleep_range(1000, 2000); 4152 } 4153 4154 if (new_tx) 4155 vsi->req_txq = (u16)new_tx; 4156 if (new_rx) 4157 vsi->req_rxq = (u16)new_rx; 4158 4159 /* set for the next time the netdev is started */ 4160 if (!netif_running(vsi->netdev)) { 4161 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4162 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4163 goto done; 4164 } 4165 4166 ice_vsi_close(vsi); 4167 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4168 ice_pf_dcb_recfg(pf, locked); 4169 ice_vsi_open(vsi); 4170 done: 4171 clear_bit(ICE_CFG_BUSY, pf->state); 4172 return err; 4173 } 4174 4175 /** 4176 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4177 * @pf: PF to configure 4178 * 4179 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4180 * VSI can still Tx/Rx VLAN tagged packets. 4181 */ 4182 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4183 { 4184 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4185 struct ice_vsi_ctx *ctxt; 4186 struct ice_hw *hw; 4187 int status; 4188 4189 if (!vsi) 4190 return; 4191 4192 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4193 if (!ctxt) 4194 return; 4195 4196 hw = &pf->hw; 4197 ctxt->info = vsi->info; 4198 4199 ctxt->info.valid_sections = 4200 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4201 ICE_AQ_VSI_PROP_SECURITY_VALID | 4202 ICE_AQ_VSI_PROP_SW_VALID); 4203 4204 /* disable VLAN anti-spoof */ 4205 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4206 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4207 4208 /* disable VLAN pruning and keep all other settings */ 4209 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4210 4211 /* allow all VLANs on Tx and don't strip on Rx */ 4212 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4213 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4214 4215 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4216 if (status) { 4217 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4218 status, ice_aq_str(hw->adminq.sq_last_status)); 4219 } else { 4220 vsi->info.sec_flags = ctxt->info.sec_flags; 4221 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4222 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4223 } 4224 4225 kfree(ctxt); 4226 } 4227 4228 /** 4229 * ice_log_pkg_init - log result of DDP package load 4230 * @hw: pointer to hardware info 4231 * @state: state of package load 4232 */ 4233 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4234 { 4235 struct ice_pf *pf = hw->back; 4236 struct device *dev; 4237 4238 dev = ice_pf_to_dev(pf); 4239 4240 switch (state) { 4241 case ICE_DDP_PKG_SUCCESS: 4242 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4243 hw->active_pkg_name, 4244 hw->active_pkg_ver.major, 4245 hw->active_pkg_ver.minor, 4246 hw->active_pkg_ver.update, 4247 hw->active_pkg_ver.draft); 4248 break; 4249 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4250 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4251 hw->active_pkg_name, 4252 hw->active_pkg_ver.major, 4253 hw->active_pkg_ver.minor, 4254 hw->active_pkg_ver.update, 4255 hw->active_pkg_ver.draft); 4256 break; 4257 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4258 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4259 hw->active_pkg_name, 4260 hw->active_pkg_ver.major, 4261 hw->active_pkg_ver.minor, 4262 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4263 break; 4264 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4265 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4266 hw->active_pkg_name, 4267 hw->active_pkg_ver.major, 4268 hw->active_pkg_ver.minor, 4269 hw->active_pkg_ver.update, 4270 hw->active_pkg_ver.draft, 4271 hw->pkg_name, 4272 hw->pkg_ver.major, 4273 hw->pkg_ver.minor, 4274 hw->pkg_ver.update, 4275 hw->pkg_ver.draft); 4276 break; 4277 case ICE_DDP_PKG_FW_MISMATCH: 4278 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4279 break; 4280 case ICE_DDP_PKG_INVALID_FILE: 4281 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4282 break; 4283 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4284 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4285 break; 4286 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4287 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4288 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4289 break; 4290 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4291 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4292 break; 4293 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4294 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4295 break; 4296 case ICE_DDP_PKG_LOAD_ERROR: 4297 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4298 /* poll for reset to complete */ 4299 if (ice_check_reset(hw)) 4300 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4301 break; 4302 case ICE_DDP_PKG_ERR: 4303 default: 4304 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4305 break; 4306 } 4307 } 4308 4309 /** 4310 * ice_load_pkg - load/reload the DDP Package file 4311 * @firmware: firmware structure when firmware requested or NULL for reload 4312 * @pf: pointer to the PF instance 4313 * 4314 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4315 * initialize HW tables. 4316 */ 4317 static void 4318 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4319 { 4320 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4321 struct device *dev = ice_pf_to_dev(pf); 4322 struct ice_hw *hw = &pf->hw; 4323 4324 /* Load DDP Package */ 4325 if (firmware && !hw->pkg_copy) { 4326 state = ice_copy_and_init_pkg(hw, firmware->data, 4327 firmware->size); 4328 ice_log_pkg_init(hw, state); 4329 } else if (!firmware && hw->pkg_copy) { 4330 /* Reload package during rebuild after CORER/GLOBR reset */ 4331 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4332 ice_log_pkg_init(hw, state); 4333 } else { 4334 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4335 } 4336 4337 if (!ice_is_init_pkg_successful(state)) { 4338 /* Safe Mode */ 4339 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4340 return; 4341 } 4342 4343 /* Successful download package is the precondition for advanced 4344 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4345 */ 4346 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4347 } 4348 4349 /** 4350 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4351 * @pf: pointer to the PF structure 4352 * 4353 * There is no error returned here because the driver should be able to handle 4354 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4355 * specifically with Tx. 4356 */ 4357 static void ice_verify_cacheline_size(struct ice_pf *pf) 4358 { 4359 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4360 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4361 ICE_CACHE_LINE_BYTES); 4362 } 4363 4364 /** 4365 * ice_send_version - update firmware with driver version 4366 * @pf: PF struct 4367 * 4368 * Returns 0 on success, else error code 4369 */ 4370 static int ice_send_version(struct ice_pf *pf) 4371 { 4372 struct ice_driver_ver dv; 4373 4374 dv.major_ver = 0xff; 4375 dv.minor_ver = 0xff; 4376 dv.build_ver = 0xff; 4377 dv.subbuild_ver = 0; 4378 strscpy((char *)dv.driver_string, UTS_RELEASE, 4379 sizeof(dv.driver_string)); 4380 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4381 } 4382 4383 /** 4384 * ice_init_fdir - Initialize flow director VSI and configuration 4385 * @pf: pointer to the PF instance 4386 * 4387 * returns 0 on success, negative on error 4388 */ 4389 static int ice_init_fdir(struct ice_pf *pf) 4390 { 4391 struct device *dev = ice_pf_to_dev(pf); 4392 struct ice_vsi *ctrl_vsi; 4393 int err; 4394 4395 /* Side Band Flow Director needs to have a control VSI. 4396 * Allocate it and store it in the PF. 4397 */ 4398 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4399 if (!ctrl_vsi) { 4400 dev_dbg(dev, "could not create control VSI\n"); 4401 return -ENOMEM; 4402 } 4403 4404 err = ice_vsi_open_ctrl(ctrl_vsi); 4405 if (err) { 4406 dev_dbg(dev, "could not open control VSI\n"); 4407 goto err_vsi_open; 4408 } 4409 4410 mutex_init(&pf->hw.fdir_fltr_lock); 4411 4412 err = ice_fdir_create_dflt_rules(pf); 4413 if (err) 4414 goto err_fdir_rule; 4415 4416 return 0; 4417 4418 err_fdir_rule: 4419 ice_fdir_release_flows(&pf->hw); 4420 ice_vsi_close(ctrl_vsi); 4421 err_vsi_open: 4422 ice_vsi_release(ctrl_vsi); 4423 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4424 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4425 pf->ctrl_vsi_idx = ICE_NO_VSI; 4426 } 4427 return err; 4428 } 4429 4430 static void ice_deinit_fdir(struct ice_pf *pf) 4431 { 4432 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4433 4434 if (!vsi) 4435 return; 4436 4437 ice_vsi_manage_fdir(vsi, false); 4438 ice_vsi_release(vsi); 4439 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4440 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4441 pf->ctrl_vsi_idx = ICE_NO_VSI; 4442 } 4443 4444 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4445 } 4446 4447 /** 4448 * ice_get_opt_fw_name - return optional firmware file name or NULL 4449 * @pf: pointer to the PF instance 4450 */ 4451 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4452 { 4453 /* Optional firmware name same as default with additional dash 4454 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4455 */ 4456 struct pci_dev *pdev = pf->pdev; 4457 char *opt_fw_filename; 4458 u64 dsn; 4459 4460 /* Determine the name of the optional file using the DSN (two 4461 * dwords following the start of the DSN Capability). 4462 */ 4463 dsn = pci_get_dsn(pdev); 4464 if (!dsn) 4465 return NULL; 4466 4467 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4468 if (!opt_fw_filename) 4469 return NULL; 4470 4471 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4472 ICE_DDP_PKG_PATH, dsn); 4473 4474 return opt_fw_filename; 4475 } 4476 4477 /** 4478 * ice_request_fw - Device initialization routine 4479 * @pf: pointer to the PF instance 4480 * @firmware: double pointer to firmware struct 4481 * 4482 * Return: zero when successful, negative values otherwise. 4483 */ 4484 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4485 { 4486 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4487 struct device *dev = ice_pf_to_dev(pf); 4488 int err = 0; 4489 4490 /* optional device-specific DDP (if present) overrides the default DDP 4491 * package file. kernel logs a debug message if the file doesn't exist, 4492 * and warning messages for other errors. 4493 */ 4494 if (opt_fw_filename) { 4495 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4496 kfree(opt_fw_filename); 4497 if (!err) 4498 return err; 4499 } 4500 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4501 if (err) 4502 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4503 4504 return err; 4505 } 4506 4507 /** 4508 * ice_init_tx_topology - performs Tx topology initialization 4509 * @hw: pointer to the hardware structure 4510 * @firmware: pointer to firmware structure 4511 * 4512 * Return: zero when init was successful, negative values otherwise. 4513 */ 4514 static int 4515 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4516 { 4517 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4518 struct ice_pf *pf = hw->back; 4519 struct device *dev; 4520 u8 *buf_copy; 4521 int err; 4522 4523 dev = ice_pf_to_dev(pf); 4524 /* ice_cfg_tx_topo buf argument is not a constant, 4525 * so we have to make a copy 4526 */ 4527 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4528 4529 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4530 if (!err) { 4531 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4532 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4533 else 4534 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4535 /* if there was a change in topology ice_cfg_tx_topo triggered 4536 * a CORER and we need to re-init hw 4537 */ 4538 ice_deinit_hw(hw); 4539 err = ice_init_hw(hw); 4540 4541 return err; 4542 } else if (err == -EIO) { 4543 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4544 } 4545 4546 return 0; 4547 } 4548 4549 /** 4550 * ice_init_ddp_config - DDP related configuration 4551 * @hw: pointer to the hardware structure 4552 * @pf: pointer to pf structure 4553 * 4554 * This function loads DDP file from the disk, then initializes Tx 4555 * topology. At the end DDP package is loaded on the card. 4556 * 4557 * Return: zero when init was successful, negative values otherwise. 4558 */ 4559 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4560 { 4561 struct device *dev = ice_pf_to_dev(pf); 4562 const struct firmware *firmware = NULL; 4563 int err; 4564 4565 err = ice_request_fw(pf, &firmware); 4566 if (err) { 4567 dev_err(dev, "Fail during requesting FW: %d\n", err); 4568 return err; 4569 } 4570 4571 err = ice_init_tx_topology(hw, firmware); 4572 if (err) { 4573 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4574 err); 4575 release_firmware(firmware); 4576 return err; 4577 } 4578 4579 /* Download firmware to device */ 4580 ice_load_pkg(firmware, pf); 4581 release_firmware(firmware); 4582 4583 return 0; 4584 } 4585 4586 /** 4587 * ice_print_wake_reason - show the wake up cause in the log 4588 * @pf: pointer to the PF struct 4589 */ 4590 static void ice_print_wake_reason(struct ice_pf *pf) 4591 { 4592 u32 wus = pf->wakeup_reason; 4593 const char *wake_str; 4594 4595 /* if no wake event, nothing to print */ 4596 if (!wus) 4597 return; 4598 4599 if (wus & PFPM_WUS_LNKC_M) 4600 wake_str = "Link\n"; 4601 else if (wus & PFPM_WUS_MAG_M) 4602 wake_str = "Magic Packet\n"; 4603 else if (wus & PFPM_WUS_MNG_M) 4604 wake_str = "Management\n"; 4605 else if (wus & PFPM_WUS_FW_RST_WK_M) 4606 wake_str = "Firmware Reset\n"; 4607 else 4608 wake_str = "Unknown\n"; 4609 4610 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4611 } 4612 4613 /** 4614 * ice_pf_fwlog_update_module - update 1 module 4615 * @pf: pointer to the PF struct 4616 * @log_level: log_level to use for the @module 4617 * @module: module to update 4618 */ 4619 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4620 { 4621 struct ice_hw *hw = &pf->hw; 4622 4623 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4624 } 4625 4626 /** 4627 * ice_register_netdev - register netdev 4628 * @vsi: pointer to the VSI struct 4629 */ 4630 static int ice_register_netdev(struct ice_vsi *vsi) 4631 { 4632 int err; 4633 4634 if (!vsi || !vsi->netdev) 4635 return -EIO; 4636 4637 err = register_netdev(vsi->netdev); 4638 if (err) 4639 return err; 4640 4641 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4642 netif_carrier_off(vsi->netdev); 4643 netif_tx_stop_all_queues(vsi->netdev); 4644 4645 return 0; 4646 } 4647 4648 static void ice_unregister_netdev(struct ice_vsi *vsi) 4649 { 4650 if (!vsi || !vsi->netdev) 4651 return; 4652 4653 unregister_netdev(vsi->netdev); 4654 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4655 } 4656 4657 /** 4658 * ice_cfg_netdev - Allocate, configure and register a netdev 4659 * @vsi: the VSI associated with the new netdev 4660 * 4661 * Returns 0 on success, negative value on failure 4662 */ 4663 static int ice_cfg_netdev(struct ice_vsi *vsi) 4664 { 4665 struct ice_netdev_priv *np; 4666 struct net_device *netdev; 4667 u8 mac_addr[ETH_ALEN]; 4668 4669 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4670 vsi->alloc_rxq); 4671 if (!netdev) 4672 return -ENOMEM; 4673 4674 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4675 vsi->netdev = netdev; 4676 np = netdev_priv(netdev); 4677 np->vsi = vsi; 4678 4679 ice_set_netdev_features(netdev); 4680 ice_set_ops(vsi); 4681 4682 if (vsi->type == ICE_VSI_PF) { 4683 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4684 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4685 eth_hw_addr_set(netdev, mac_addr); 4686 } 4687 4688 netdev->priv_flags |= IFF_UNICAST_FLT; 4689 4690 /* Setup netdev TC information */ 4691 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4692 4693 netdev->max_mtu = ICE_MAX_MTU; 4694 4695 return 0; 4696 } 4697 4698 static void ice_decfg_netdev(struct ice_vsi *vsi) 4699 { 4700 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4701 free_netdev(vsi->netdev); 4702 vsi->netdev = NULL; 4703 } 4704 4705 /** 4706 * ice_wait_for_fw - wait for full FW readiness 4707 * @hw: pointer to the hardware structure 4708 * @timeout: milliseconds that can elapse before timing out 4709 */ 4710 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4711 { 4712 int fw_loading; 4713 u32 elapsed = 0; 4714 4715 while (elapsed <= timeout) { 4716 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4717 4718 /* firmware was not yet loaded, we have to wait more */ 4719 if (fw_loading) { 4720 elapsed += 100; 4721 msleep(100); 4722 continue; 4723 } 4724 return 0; 4725 } 4726 4727 return -ETIMEDOUT; 4728 } 4729 4730 int ice_init_dev(struct ice_pf *pf) 4731 { 4732 struct device *dev = ice_pf_to_dev(pf); 4733 struct ice_hw *hw = &pf->hw; 4734 int err; 4735 4736 err = ice_init_hw(hw); 4737 if (err) { 4738 dev_err(dev, "ice_init_hw failed: %d\n", err); 4739 return err; 4740 } 4741 4742 /* Some cards require longer initialization times 4743 * due to necessity of loading FW from an external source. 4744 * This can take even half a minute. 4745 */ 4746 if (ice_is_pf_c827(hw)) { 4747 err = ice_wait_for_fw(hw, 30000); 4748 if (err) { 4749 dev_err(dev, "ice_wait_for_fw timed out"); 4750 return err; 4751 } 4752 } 4753 4754 ice_init_feature_support(pf); 4755 4756 err = ice_init_ddp_config(hw, pf); 4757 if (err) 4758 return err; 4759 4760 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4761 * set in pf->state, which will cause ice_is_safe_mode to return 4762 * true 4763 */ 4764 if (ice_is_safe_mode(pf)) { 4765 /* we already got function/device capabilities but these don't 4766 * reflect what the driver needs to do in safe mode. Instead of 4767 * adding conditional logic everywhere to ignore these 4768 * device/function capabilities, override them. 4769 */ 4770 ice_set_safe_mode_caps(hw); 4771 } 4772 4773 err = ice_init_pf(pf); 4774 if (err) { 4775 dev_err(dev, "ice_init_pf failed: %d\n", err); 4776 goto err_init_pf; 4777 } 4778 4779 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4780 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4781 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4782 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4783 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4784 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4785 pf->hw.tnl.valid_count[TNL_VXLAN]; 4786 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4787 UDP_TUNNEL_TYPE_VXLAN; 4788 } 4789 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4790 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4791 pf->hw.tnl.valid_count[TNL_GENEVE]; 4792 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4793 UDP_TUNNEL_TYPE_GENEVE; 4794 } 4795 4796 err = ice_init_interrupt_scheme(pf); 4797 if (err) { 4798 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4799 err = -EIO; 4800 goto err_init_interrupt_scheme; 4801 } 4802 4803 /* In case of MSIX we are going to setup the misc vector right here 4804 * to handle admin queue events etc. In case of legacy and MSI 4805 * the misc functionality and queue processing is combined in 4806 * the same vector and that gets setup at open. 4807 */ 4808 err = ice_req_irq_msix_misc(pf); 4809 if (err) { 4810 dev_err(dev, "setup of misc vector failed: %d\n", err); 4811 goto err_req_irq_msix_misc; 4812 } 4813 4814 return 0; 4815 4816 err_req_irq_msix_misc: 4817 ice_clear_interrupt_scheme(pf); 4818 err_init_interrupt_scheme: 4819 ice_deinit_pf(pf); 4820 err_init_pf: 4821 ice_deinit_hw(hw); 4822 return err; 4823 } 4824 4825 void ice_deinit_dev(struct ice_pf *pf) 4826 { 4827 ice_free_irq_msix_misc(pf); 4828 ice_deinit_pf(pf); 4829 ice_deinit_hw(&pf->hw); 4830 4831 /* Service task is already stopped, so call reset directly. */ 4832 ice_reset(&pf->hw, ICE_RESET_PFR); 4833 pci_wait_for_pending_transaction(pf->pdev); 4834 ice_clear_interrupt_scheme(pf); 4835 } 4836 4837 static void ice_init_features(struct ice_pf *pf) 4838 { 4839 struct device *dev = ice_pf_to_dev(pf); 4840 4841 if (ice_is_safe_mode(pf)) 4842 return; 4843 4844 /* initialize DDP driven features */ 4845 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4846 ice_ptp_init(pf); 4847 4848 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4849 ice_gnss_init(pf); 4850 4851 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4852 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4853 ice_dpll_init(pf); 4854 4855 /* Note: Flow director init failure is non-fatal to load */ 4856 if (ice_init_fdir(pf)) 4857 dev_err(dev, "could not initialize flow director\n"); 4858 4859 /* Note: DCB init failure is non-fatal to load */ 4860 if (ice_init_pf_dcb(pf, false)) { 4861 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4862 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4863 } else { 4864 ice_cfg_lldp_mib_change(&pf->hw, true); 4865 } 4866 4867 if (ice_init_lag(pf)) 4868 dev_warn(dev, "Failed to init link aggregation support\n"); 4869 4870 ice_hwmon_init(pf); 4871 } 4872 4873 static void ice_deinit_features(struct ice_pf *pf) 4874 { 4875 if (ice_is_safe_mode(pf)) 4876 return; 4877 4878 ice_deinit_lag(pf); 4879 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4880 ice_cfg_lldp_mib_change(&pf->hw, false); 4881 ice_deinit_fdir(pf); 4882 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4883 ice_gnss_exit(pf); 4884 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4885 ice_ptp_release(pf); 4886 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4887 ice_dpll_deinit(pf); 4888 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4889 xa_destroy(&pf->eswitch.reprs); 4890 } 4891 4892 static void ice_init_wakeup(struct ice_pf *pf) 4893 { 4894 /* Save wakeup reason register for later use */ 4895 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4896 4897 /* check for a power management event */ 4898 ice_print_wake_reason(pf); 4899 4900 /* clear wake status, all bits */ 4901 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4902 4903 /* Disable WoL at init, wait for user to enable */ 4904 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4905 } 4906 4907 static int ice_init_link(struct ice_pf *pf) 4908 { 4909 struct device *dev = ice_pf_to_dev(pf); 4910 int err; 4911 4912 err = ice_init_link_events(pf->hw.port_info); 4913 if (err) { 4914 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4915 return err; 4916 } 4917 4918 /* not a fatal error if this fails */ 4919 err = ice_init_nvm_phy_type(pf->hw.port_info); 4920 if (err) 4921 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4922 4923 /* not a fatal error if this fails */ 4924 err = ice_update_link_info(pf->hw.port_info); 4925 if (err) 4926 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4927 4928 ice_init_link_dflt_override(pf->hw.port_info); 4929 4930 ice_check_link_cfg_err(pf, 4931 pf->hw.port_info->phy.link_info.link_cfg_err); 4932 4933 /* if media available, initialize PHY settings */ 4934 if (pf->hw.port_info->phy.link_info.link_info & 4935 ICE_AQ_MEDIA_AVAILABLE) { 4936 /* not a fatal error if this fails */ 4937 err = ice_init_phy_user_cfg(pf->hw.port_info); 4938 if (err) 4939 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4940 4941 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4942 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4943 4944 if (vsi) 4945 ice_configure_phy(vsi); 4946 } 4947 } else { 4948 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4949 } 4950 4951 return err; 4952 } 4953 4954 static int ice_init_pf_sw(struct ice_pf *pf) 4955 { 4956 bool dvm = ice_is_dvm_ena(&pf->hw); 4957 struct ice_vsi *vsi; 4958 int err; 4959 4960 /* create switch struct for the switch element created by FW on boot */ 4961 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4962 if (!pf->first_sw) 4963 return -ENOMEM; 4964 4965 if (pf->hw.evb_veb) 4966 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4967 else 4968 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4969 4970 pf->first_sw->pf = pf; 4971 4972 /* record the sw_id available for later use */ 4973 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4974 4975 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4976 if (err) 4977 goto err_aq_set_port_params; 4978 4979 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4980 if (!vsi) { 4981 err = -ENOMEM; 4982 goto err_pf_vsi_setup; 4983 } 4984 4985 return 0; 4986 4987 err_pf_vsi_setup: 4988 err_aq_set_port_params: 4989 kfree(pf->first_sw); 4990 return err; 4991 } 4992 4993 static void ice_deinit_pf_sw(struct ice_pf *pf) 4994 { 4995 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4996 4997 if (!vsi) 4998 return; 4999 5000 ice_vsi_release(vsi); 5001 kfree(pf->first_sw); 5002 } 5003 5004 static int ice_alloc_vsis(struct ice_pf *pf) 5005 { 5006 struct device *dev = ice_pf_to_dev(pf); 5007 5008 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5009 if (!pf->num_alloc_vsi) 5010 return -EIO; 5011 5012 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5013 dev_warn(dev, 5014 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5015 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5016 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5017 } 5018 5019 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5020 GFP_KERNEL); 5021 if (!pf->vsi) 5022 return -ENOMEM; 5023 5024 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5025 sizeof(*pf->vsi_stats), GFP_KERNEL); 5026 if (!pf->vsi_stats) { 5027 devm_kfree(dev, pf->vsi); 5028 return -ENOMEM; 5029 } 5030 5031 return 0; 5032 } 5033 5034 static void ice_dealloc_vsis(struct ice_pf *pf) 5035 { 5036 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5037 pf->vsi_stats = NULL; 5038 5039 pf->num_alloc_vsi = 0; 5040 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5041 pf->vsi = NULL; 5042 } 5043 5044 static int ice_init_devlink(struct ice_pf *pf) 5045 { 5046 int err; 5047 5048 err = ice_devlink_register_params(pf); 5049 if (err) 5050 return err; 5051 5052 ice_devlink_init_regions(pf); 5053 ice_devlink_register(pf); 5054 5055 return 0; 5056 } 5057 5058 static void ice_deinit_devlink(struct ice_pf *pf) 5059 { 5060 ice_devlink_unregister(pf); 5061 ice_devlink_destroy_regions(pf); 5062 ice_devlink_unregister_params(pf); 5063 } 5064 5065 static int ice_init(struct ice_pf *pf) 5066 { 5067 int err; 5068 5069 err = ice_init_dev(pf); 5070 if (err) 5071 return err; 5072 5073 err = ice_alloc_vsis(pf); 5074 if (err) 5075 goto err_alloc_vsis; 5076 5077 err = ice_init_pf_sw(pf); 5078 if (err) 5079 goto err_init_pf_sw; 5080 5081 ice_init_wakeup(pf); 5082 5083 err = ice_init_link(pf); 5084 if (err) 5085 goto err_init_link; 5086 5087 err = ice_send_version(pf); 5088 if (err) 5089 goto err_init_link; 5090 5091 ice_verify_cacheline_size(pf); 5092 5093 if (ice_is_safe_mode(pf)) 5094 ice_set_safe_mode_vlan_cfg(pf); 5095 else 5096 /* print PCI link speed and width */ 5097 pcie_print_link_status(pf->pdev); 5098 5099 /* ready to go, so clear down state bit */ 5100 clear_bit(ICE_DOWN, pf->state); 5101 clear_bit(ICE_SERVICE_DIS, pf->state); 5102 5103 /* since everything is good, start the service timer */ 5104 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5105 5106 return 0; 5107 5108 err_init_link: 5109 ice_deinit_pf_sw(pf); 5110 err_init_pf_sw: 5111 ice_dealloc_vsis(pf); 5112 err_alloc_vsis: 5113 ice_deinit_dev(pf); 5114 return err; 5115 } 5116 5117 static void ice_deinit(struct ice_pf *pf) 5118 { 5119 set_bit(ICE_SERVICE_DIS, pf->state); 5120 set_bit(ICE_DOWN, pf->state); 5121 5122 ice_deinit_pf_sw(pf); 5123 ice_dealloc_vsis(pf); 5124 ice_deinit_dev(pf); 5125 } 5126 5127 /** 5128 * ice_load - load pf by init hw and starting VSI 5129 * @pf: pointer to the pf instance 5130 * 5131 * This function has to be called under devl_lock. 5132 */ 5133 int ice_load(struct ice_pf *pf) 5134 { 5135 struct ice_vsi *vsi; 5136 int err; 5137 5138 devl_assert_locked(priv_to_devlink(pf)); 5139 5140 vsi = ice_get_main_vsi(pf); 5141 5142 /* init channel list */ 5143 INIT_LIST_HEAD(&vsi->ch_list); 5144 5145 err = ice_cfg_netdev(vsi); 5146 if (err) 5147 return err; 5148 5149 /* Setup DCB netlink interface */ 5150 ice_dcbnl_setup(vsi); 5151 5152 err = ice_init_mac_fltr(pf); 5153 if (err) 5154 goto err_init_mac_fltr; 5155 5156 err = ice_devlink_create_pf_port(pf); 5157 if (err) 5158 goto err_devlink_create_pf_port; 5159 5160 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5161 5162 err = ice_register_netdev(vsi); 5163 if (err) 5164 goto err_register_netdev; 5165 5166 err = ice_tc_indir_block_register(vsi); 5167 if (err) 5168 goto err_tc_indir_block_register; 5169 5170 ice_napi_add(vsi); 5171 5172 err = ice_init_rdma(pf); 5173 if (err) 5174 goto err_init_rdma; 5175 5176 ice_init_features(pf); 5177 ice_service_task_restart(pf); 5178 5179 clear_bit(ICE_DOWN, pf->state); 5180 5181 return 0; 5182 5183 err_init_rdma: 5184 ice_tc_indir_block_unregister(vsi); 5185 err_tc_indir_block_register: 5186 ice_unregister_netdev(vsi); 5187 err_register_netdev: 5188 ice_devlink_destroy_pf_port(pf); 5189 err_devlink_create_pf_port: 5190 err_init_mac_fltr: 5191 ice_decfg_netdev(vsi); 5192 return err; 5193 } 5194 5195 /** 5196 * ice_unload - unload pf by stopping VSI and deinit hw 5197 * @pf: pointer to the pf instance 5198 * 5199 * This function has to be called under devl_lock. 5200 */ 5201 void ice_unload(struct ice_pf *pf) 5202 { 5203 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5204 5205 devl_assert_locked(priv_to_devlink(pf)); 5206 5207 ice_deinit_features(pf); 5208 ice_deinit_rdma(pf); 5209 ice_tc_indir_block_unregister(vsi); 5210 ice_unregister_netdev(vsi); 5211 ice_devlink_destroy_pf_port(pf); 5212 ice_decfg_netdev(vsi); 5213 } 5214 5215 /** 5216 * ice_probe - Device initialization routine 5217 * @pdev: PCI device information struct 5218 * @ent: entry in ice_pci_tbl 5219 * 5220 * Returns 0 on success, negative on failure 5221 */ 5222 static int 5223 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5224 { 5225 struct device *dev = &pdev->dev; 5226 struct ice_adapter *adapter; 5227 struct ice_pf *pf; 5228 struct ice_hw *hw; 5229 int err; 5230 5231 if (pdev->is_virtfn) { 5232 dev_err(dev, "can't probe a virtual function\n"); 5233 return -EINVAL; 5234 } 5235 5236 /* when under a kdump kernel initiate a reset before enabling the 5237 * device in order to clear out any pending DMA transactions. These 5238 * transactions can cause some systems to machine check when doing 5239 * the pcim_enable_device() below. 5240 */ 5241 if (is_kdump_kernel()) { 5242 pci_save_state(pdev); 5243 pci_clear_master(pdev); 5244 err = pcie_flr(pdev); 5245 if (err) 5246 return err; 5247 pci_restore_state(pdev); 5248 } 5249 5250 /* this driver uses devres, see 5251 * Documentation/driver-api/driver-model/devres.rst 5252 */ 5253 err = pcim_enable_device(pdev); 5254 if (err) 5255 return err; 5256 5257 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5258 if (err) { 5259 dev_err(dev, "BAR0 I/O map error %d\n", err); 5260 return err; 5261 } 5262 5263 pf = ice_allocate_pf(dev); 5264 if (!pf) 5265 return -ENOMEM; 5266 5267 /* initialize Auxiliary index to invalid value */ 5268 pf->aux_idx = -1; 5269 5270 /* set up for high or low DMA */ 5271 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5272 if (err) { 5273 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5274 return err; 5275 } 5276 5277 pci_set_master(pdev); 5278 5279 adapter = ice_adapter_get(pdev); 5280 if (IS_ERR(adapter)) 5281 return PTR_ERR(adapter); 5282 5283 pf->pdev = pdev; 5284 pf->adapter = adapter; 5285 pci_set_drvdata(pdev, pf); 5286 set_bit(ICE_DOWN, pf->state); 5287 /* Disable service task until DOWN bit is cleared */ 5288 set_bit(ICE_SERVICE_DIS, pf->state); 5289 5290 hw = &pf->hw; 5291 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5292 pci_save_state(pdev); 5293 5294 hw->back = pf; 5295 hw->port_info = NULL; 5296 hw->vendor_id = pdev->vendor; 5297 hw->device_id = pdev->device; 5298 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5299 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5300 hw->subsystem_device_id = pdev->subsystem_device; 5301 hw->bus.device = PCI_SLOT(pdev->devfn); 5302 hw->bus.func = PCI_FUNC(pdev->devfn); 5303 ice_set_ctrlq_len(hw); 5304 5305 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5306 5307 #ifndef CONFIG_DYNAMIC_DEBUG 5308 if (debug < -1) 5309 hw->debug_mask = debug; 5310 #endif 5311 5312 err = ice_init(pf); 5313 if (err) 5314 goto err_init; 5315 5316 devl_lock(priv_to_devlink(pf)); 5317 err = ice_load(pf); 5318 if (err) 5319 goto err_load; 5320 5321 err = ice_init_devlink(pf); 5322 if (err) 5323 goto err_init_devlink; 5324 devl_unlock(priv_to_devlink(pf)); 5325 5326 return 0; 5327 5328 err_init_devlink: 5329 ice_unload(pf); 5330 err_load: 5331 devl_unlock(priv_to_devlink(pf)); 5332 ice_deinit(pf); 5333 err_init: 5334 ice_adapter_put(pdev); 5335 pci_disable_device(pdev); 5336 return err; 5337 } 5338 5339 /** 5340 * ice_set_wake - enable or disable Wake on LAN 5341 * @pf: pointer to the PF struct 5342 * 5343 * Simple helper for WoL control 5344 */ 5345 static void ice_set_wake(struct ice_pf *pf) 5346 { 5347 struct ice_hw *hw = &pf->hw; 5348 bool wol = pf->wol_ena; 5349 5350 /* clear wake state, otherwise new wake events won't fire */ 5351 wr32(hw, PFPM_WUS, U32_MAX); 5352 5353 /* enable / disable APM wake up, no RMW needed */ 5354 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5355 5356 /* set magic packet filter enabled */ 5357 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5358 } 5359 5360 /** 5361 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5362 * @pf: pointer to the PF struct 5363 * 5364 * Issue firmware command to enable multicast magic wake, making 5365 * sure that any locally administered address (LAA) is used for 5366 * wake, and that PF reset doesn't undo the LAA. 5367 */ 5368 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5369 { 5370 struct device *dev = ice_pf_to_dev(pf); 5371 struct ice_hw *hw = &pf->hw; 5372 u8 mac_addr[ETH_ALEN]; 5373 struct ice_vsi *vsi; 5374 int status; 5375 u8 flags; 5376 5377 if (!pf->wol_ena) 5378 return; 5379 5380 vsi = ice_get_main_vsi(pf); 5381 if (!vsi) 5382 return; 5383 5384 /* Get current MAC address in case it's an LAA */ 5385 if (vsi->netdev) 5386 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5387 else 5388 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5389 5390 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5391 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5392 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5393 5394 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5395 if (status) 5396 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5397 status, ice_aq_str(hw->adminq.sq_last_status)); 5398 } 5399 5400 /** 5401 * ice_remove - Device removal routine 5402 * @pdev: PCI device information struct 5403 */ 5404 static void ice_remove(struct pci_dev *pdev) 5405 { 5406 struct ice_pf *pf = pci_get_drvdata(pdev); 5407 int i; 5408 5409 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5410 if (!ice_is_reset_in_progress(pf->state)) 5411 break; 5412 msleep(100); 5413 } 5414 5415 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5416 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5417 ice_free_vfs(pf); 5418 } 5419 5420 ice_hwmon_exit(pf); 5421 5422 ice_service_task_stop(pf); 5423 ice_aq_cancel_waiting_tasks(pf); 5424 set_bit(ICE_DOWN, pf->state); 5425 5426 if (!ice_is_safe_mode(pf)) 5427 ice_remove_arfs(pf); 5428 5429 devl_lock(priv_to_devlink(pf)); 5430 ice_deinit_devlink(pf); 5431 5432 ice_unload(pf); 5433 devl_unlock(priv_to_devlink(pf)); 5434 5435 ice_deinit(pf); 5436 ice_vsi_release_all(pf); 5437 5438 ice_setup_mc_magic_wake(pf); 5439 ice_set_wake(pf); 5440 5441 ice_adapter_put(pdev); 5442 pci_disable_device(pdev); 5443 } 5444 5445 /** 5446 * ice_shutdown - PCI callback for shutting down device 5447 * @pdev: PCI device information struct 5448 */ 5449 static void ice_shutdown(struct pci_dev *pdev) 5450 { 5451 struct ice_pf *pf = pci_get_drvdata(pdev); 5452 5453 ice_remove(pdev); 5454 5455 if (system_state == SYSTEM_POWER_OFF) { 5456 pci_wake_from_d3(pdev, pf->wol_ena); 5457 pci_set_power_state(pdev, PCI_D3hot); 5458 } 5459 } 5460 5461 /** 5462 * ice_prepare_for_shutdown - prep for PCI shutdown 5463 * @pf: board private structure 5464 * 5465 * Inform or close all dependent features in prep for PCI device shutdown 5466 */ 5467 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5468 { 5469 struct ice_hw *hw = &pf->hw; 5470 u32 v; 5471 5472 /* Notify VFs of impending reset */ 5473 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5474 ice_vc_notify_reset(pf); 5475 5476 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5477 5478 /* disable the VSIs and their queues that are not already DOWN */ 5479 ice_pf_dis_all_vsi(pf, false); 5480 5481 ice_for_each_vsi(pf, v) 5482 if (pf->vsi[v]) 5483 pf->vsi[v]->vsi_num = 0; 5484 5485 ice_shutdown_all_ctrlq(hw); 5486 } 5487 5488 /** 5489 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5490 * @pf: board private structure to reinitialize 5491 * 5492 * This routine reinitialize interrupt scheme that was cleared during 5493 * power management suspend callback. 5494 * 5495 * This should be called during resume routine to re-allocate the q_vectors 5496 * and reacquire interrupts. 5497 */ 5498 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5499 { 5500 struct device *dev = ice_pf_to_dev(pf); 5501 int ret, v; 5502 5503 /* Since we clear MSIX flag during suspend, we need to 5504 * set it back during resume... 5505 */ 5506 5507 ret = ice_init_interrupt_scheme(pf); 5508 if (ret) { 5509 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5510 return ret; 5511 } 5512 5513 /* Remap vectors and rings, after successful re-init interrupts */ 5514 ice_for_each_vsi(pf, v) { 5515 if (!pf->vsi[v]) 5516 continue; 5517 5518 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5519 if (ret) 5520 goto err_reinit; 5521 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5522 ice_vsi_set_napi_queues(pf->vsi[v]); 5523 } 5524 5525 ret = ice_req_irq_msix_misc(pf); 5526 if (ret) { 5527 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5528 ret); 5529 goto err_reinit; 5530 } 5531 5532 return 0; 5533 5534 err_reinit: 5535 while (v--) 5536 if (pf->vsi[v]) 5537 ice_vsi_free_q_vectors(pf->vsi[v]); 5538 5539 return ret; 5540 } 5541 5542 /** 5543 * ice_suspend 5544 * @dev: generic device information structure 5545 * 5546 * Power Management callback to quiesce the device and prepare 5547 * for D3 transition. 5548 */ 5549 static int ice_suspend(struct device *dev) 5550 { 5551 struct pci_dev *pdev = to_pci_dev(dev); 5552 struct ice_pf *pf; 5553 int disabled, v; 5554 5555 pf = pci_get_drvdata(pdev); 5556 5557 if (!ice_pf_state_is_nominal(pf)) { 5558 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5559 return -EBUSY; 5560 } 5561 5562 /* Stop watchdog tasks until resume completion. 5563 * Even though it is most likely that the service task is 5564 * disabled if the device is suspended or down, the service task's 5565 * state is controlled by a different state bit, and we should 5566 * store and honor whatever state that bit is in at this point. 5567 */ 5568 disabled = ice_service_task_stop(pf); 5569 5570 ice_deinit_rdma(pf); 5571 5572 /* Already suspended?, then there is nothing to do */ 5573 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5574 if (!disabled) 5575 ice_service_task_restart(pf); 5576 return 0; 5577 } 5578 5579 if (test_bit(ICE_DOWN, pf->state) || 5580 ice_is_reset_in_progress(pf->state)) { 5581 dev_err(dev, "can't suspend device in reset or already down\n"); 5582 if (!disabled) 5583 ice_service_task_restart(pf); 5584 return 0; 5585 } 5586 5587 ice_setup_mc_magic_wake(pf); 5588 5589 ice_prepare_for_shutdown(pf); 5590 5591 ice_set_wake(pf); 5592 5593 /* Free vectors, clear the interrupt scheme and release IRQs 5594 * for proper hibernation, especially with large number of CPUs. 5595 * Otherwise hibernation might fail when mapping all the vectors back 5596 * to CPU0. 5597 */ 5598 ice_free_irq_msix_misc(pf); 5599 ice_for_each_vsi(pf, v) { 5600 if (!pf->vsi[v]) 5601 continue; 5602 ice_vsi_free_q_vectors(pf->vsi[v]); 5603 } 5604 ice_clear_interrupt_scheme(pf); 5605 5606 pci_save_state(pdev); 5607 pci_wake_from_d3(pdev, pf->wol_ena); 5608 pci_set_power_state(pdev, PCI_D3hot); 5609 return 0; 5610 } 5611 5612 /** 5613 * ice_resume - PM callback for waking up from D3 5614 * @dev: generic device information structure 5615 */ 5616 static int ice_resume(struct device *dev) 5617 { 5618 struct pci_dev *pdev = to_pci_dev(dev); 5619 enum ice_reset_req reset_type; 5620 struct ice_pf *pf; 5621 struct ice_hw *hw; 5622 int ret; 5623 5624 pci_set_power_state(pdev, PCI_D0); 5625 pci_restore_state(pdev); 5626 pci_save_state(pdev); 5627 5628 if (!pci_device_is_present(pdev)) 5629 return -ENODEV; 5630 5631 ret = pci_enable_device_mem(pdev); 5632 if (ret) { 5633 dev_err(dev, "Cannot enable device after suspend\n"); 5634 return ret; 5635 } 5636 5637 pf = pci_get_drvdata(pdev); 5638 hw = &pf->hw; 5639 5640 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5641 ice_print_wake_reason(pf); 5642 5643 /* We cleared the interrupt scheme when we suspended, so we need to 5644 * restore it now to resume device functionality. 5645 */ 5646 ret = ice_reinit_interrupt_scheme(pf); 5647 if (ret) 5648 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5649 5650 ret = ice_init_rdma(pf); 5651 if (ret) 5652 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5653 ret); 5654 5655 clear_bit(ICE_DOWN, pf->state); 5656 /* Now perform PF reset and rebuild */ 5657 reset_type = ICE_RESET_PFR; 5658 /* re-enable service task for reset, but allow reset to schedule it */ 5659 clear_bit(ICE_SERVICE_DIS, pf->state); 5660 5661 if (ice_schedule_reset(pf, reset_type)) 5662 dev_err(dev, "Reset during resume failed.\n"); 5663 5664 clear_bit(ICE_SUSPENDED, pf->state); 5665 ice_service_task_restart(pf); 5666 5667 /* Restart the service task */ 5668 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5669 5670 return 0; 5671 } 5672 5673 /** 5674 * ice_pci_err_detected - warning that PCI error has been detected 5675 * @pdev: PCI device information struct 5676 * @err: the type of PCI error 5677 * 5678 * Called to warn that something happened on the PCI bus and the error handling 5679 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5680 */ 5681 static pci_ers_result_t 5682 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5683 { 5684 struct ice_pf *pf = pci_get_drvdata(pdev); 5685 5686 if (!pf) { 5687 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5688 __func__, err); 5689 return PCI_ERS_RESULT_DISCONNECT; 5690 } 5691 5692 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5693 ice_service_task_stop(pf); 5694 5695 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5696 set_bit(ICE_PFR_REQ, pf->state); 5697 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5698 } 5699 } 5700 5701 return PCI_ERS_RESULT_NEED_RESET; 5702 } 5703 5704 /** 5705 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5706 * @pdev: PCI device information struct 5707 * 5708 * Called to determine if the driver can recover from the PCI slot reset by 5709 * using a register read to determine if the device is recoverable. 5710 */ 5711 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5712 { 5713 struct ice_pf *pf = pci_get_drvdata(pdev); 5714 pci_ers_result_t result; 5715 int err; 5716 u32 reg; 5717 5718 err = pci_enable_device_mem(pdev); 5719 if (err) { 5720 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5721 err); 5722 result = PCI_ERS_RESULT_DISCONNECT; 5723 } else { 5724 pci_set_master(pdev); 5725 pci_restore_state(pdev); 5726 pci_save_state(pdev); 5727 pci_wake_from_d3(pdev, false); 5728 5729 /* Check for life */ 5730 reg = rd32(&pf->hw, GLGEN_RTRIG); 5731 if (!reg) 5732 result = PCI_ERS_RESULT_RECOVERED; 5733 else 5734 result = PCI_ERS_RESULT_DISCONNECT; 5735 } 5736 5737 return result; 5738 } 5739 5740 /** 5741 * ice_pci_err_resume - restart operations after PCI error recovery 5742 * @pdev: PCI device information struct 5743 * 5744 * Called to allow the driver to bring things back up after PCI error and/or 5745 * reset recovery have finished 5746 */ 5747 static void ice_pci_err_resume(struct pci_dev *pdev) 5748 { 5749 struct ice_pf *pf = pci_get_drvdata(pdev); 5750 5751 if (!pf) { 5752 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5753 __func__); 5754 return; 5755 } 5756 5757 if (test_bit(ICE_SUSPENDED, pf->state)) { 5758 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5759 __func__); 5760 return; 5761 } 5762 5763 ice_restore_all_vfs_msi_state(pf); 5764 5765 ice_do_reset(pf, ICE_RESET_PFR); 5766 ice_service_task_restart(pf); 5767 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5768 } 5769 5770 /** 5771 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5772 * @pdev: PCI device information struct 5773 */ 5774 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5775 { 5776 struct ice_pf *pf = pci_get_drvdata(pdev); 5777 5778 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5779 ice_service_task_stop(pf); 5780 5781 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5782 set_bit(ICE_PFR_REQ, pf->state); 5783 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5784 } 5785 } 5786 } 5787 5788 /** 5789 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5790 * @pdev: PCI device information struct 5791 */ 5792 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5793 { 5794 ice_pci_err_resume(pdev); 5795 } 5796 5797 /* ice_pci_tbl - PCI Device ID Table 5798 * 5799 * Wildcard entries (PCI_ANY_ID) should come last 5800 * Last entry must be all 0s 5801 * 5802 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5803 * Class, Class Mask, private data (not used) } 5804 */ 5805 static const struct pci_device_id ice_pci_tbl[] = { 5806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5815 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5816 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5817 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5818 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5819 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5820 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5821 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5846 /* required last entry */ 5847 {} 5848 }; 5849 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5850 5851 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5852 5853 static const struct pci_error_handlers ice_pci_err_handler = { 5854 .error_detected = ice_pci_err_detected, 5855 .slot_reset = ice_pci_err_slot_reset, 5856 .reset_prepare = ice_pci_err_reset_prepare, 5857 .reset_done = ice_pci_err_reset_done, 5858 .resume = ice_pci_err_resume 5859 }; 5860 5861 static struct pci_driver ice_driver = { 5862 .name = KBUILD_MODNAME, 5863 .id_table = ice_pci_tbl, 5864 .probe = ice_probe, 5865 .remove = ice_remove, 5866 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5867 .shutdown = ice_shutdown, 5868 .sriov_configure = ice_sriov_configure, 5869 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5870 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5871 .err_handler = &ice_pci_err_handler 5872 }; 5873 5874 /** 5875 * ice_module_init - Driver registration routine 5876 * 5877 * ice_module_init is the first routine called when the driver is 5878 * loaded. All it does is register with the PCI subsystem. 5879 */ 5880 static int __init ice_module_init(void) 5881 { 5882 int status = -ENOMEM; 5883 5884 pr_info("%s\n", ice_driver_string); 5885 pr_info("%s\n", ice_copyright); 5886 5887 ice_adv_lnk_speed_maps_init(); 5888 5889 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5890 if (!ice_wq) { 5891 pr_err("Failed to create workqueue\n"); 5892 return status; 5893 } 5894 5895 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5896 if (!ice_lag_wq) { 5897 pr_err("Failed to create LAG workqueue\n"); 5898 goto err_dest_wq; 5899 } 5900 5901 ice_debugfs_init(); 5902 5903 status = pci_register_driver(&ice_driver); 5904 if (status) { 5905 pr_err("failed to register PCI driver, err %d\n", status); 5906 goto err_dest_lag_wq; 5907 } 5908 5909 return 0; 5910 5911 err_dest_lag_wq: 5912 destroy_workqueue(ice_lag_wq); 5913 ice_debugfs_exit(); 5914 err_dest_wq: 5915 destroy_workqueue(ice_wq); 5916 return status; 5917 } 5918 module_init(ice_module_init); 5919 5920 /** 5921 * ice_module_exit - Driver exit cleanup routine 5922 * 5923 * ice_module_exit is called just before the driver is removed 5924 * from memory. 5925 */ 5926 static void __exit ice_module_exit(void) 5927 { 5928 pci_unregister_driver(&ice_driver); 5929 ice_debugfs_exit(); 5930 destroy_workqueue(ice_wq); 5931 destroy_workqueue(ice_lag_wq); 5932 pr_info("module unloaded\n"); 5933 } 5934 module_exit(ice_module_exit); 5935 5936 /** 5937 * ice_set_mac_address - NDO callback to set MAC address 5938 * @netdev: network interface device structure 5939 * @pi: pointer to an address structure 5940 * 5941 * Returns 0 on success, negative on failure 5942 */ 5943 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5944 { 5945 struct ice_netdev_priv *np = netdev_priv(netdev); 5946 struct ice_vsi *vsi = np->vsi; 5947 struct ice_pf *pf = vsi->back; 5948 struct ice_hw *hw = &pf->hw; 5949 struct sockaddr *addr = pi; 5950 u8 old_mac[ETH_ALEN]; 5951 u8 flags = 0; 5952 u8 *mac; 5953 int err; 5954 5955 mac = (u8 *)addr->sa_data; 5956 5957 if (!is_valid_ether_addr(mac)) 5958 return -EADDRNOTAVAIL; 5959 5960 if (test_bit(ICE_DOWN, pf->state) || 5961 ice_is_reset_in_progress(pf->state)) { 5962 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5963 mac); 5964 return -EBUSY; 5965 } 5966 5967 if (ice_chnl_dmac_fltr_cnt(pf)) { 5968 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5969 mac); 5970 return -EAGAIN; 5971 } 5972 5973 netif_addr_lock_bh(netdev); 5974 ether_addr_copy(old_mac, netdev->dev_addr); 5975 /* change the netdev's MAC address */ 5976 eth_hw_addr_set(netdev, mac); 5977 netif_addr_unlock_bh(netdev); 5978 5979 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5980 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5981 if (err && err != -ENOENT) { 5982 err = -EADDRNOTAVAIL; 5983 goto err_update_filters; 5984 } 5985 5986 /* Add filter for new MAC. If filter exists, return success */ 5987 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5988 if (err == -EEXIST) { 5989 /* Although this MAC filter is already present in hardware it's 5990 * possible in some cases (e.g. bonding) that dev_addr was 5991 * modified outside of the driver and needs to be restored back 5992 * to this value. 5993 */ 5994 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5995 5996 return 0; 5997 } else if (err) { 5998 /* error if the new filter addition failed */ 5999 err = -EADDRNOTAVAIL; 6000 } 6001 6002 err_update_filters: 6003 if (err) { 6004 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6005 mac); 6006 netif_addr_lock_bh(netdev); 6007 eth_hw_addr_set(netdev, old_mac); 6008 netif_addr_unlock_bh(netdev); 6009 return err; 6010 } 6011 6012 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6013 netdev->dev_addr); 6014 6015 /* write new MAC address to the firmware */ 6016 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6017 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6018 if (err) { 6019 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6020 mac, err); 6021 } 6022 return 0; 6023 } 6024 6025 /** 6026 * ice_set_rx_mode - NDO callback to set the netdev filters 6027 * @netdev: network interface device structure 6028 */ 6029 static void ice_set_rx_mode(struct net_device *netdev) 6030 { 6031 struct ice_netdev_priv *np = netdev_priv(netdev); 6032 struct ice_vsi *vsi = np->vsi; 6033 6034 if (!vsi || ice_is_switchdev_running(vsi->back)) 6035 return; 6036 6037 /* Set the flags to synchronize filters 6038 * ndo_set_rx_mode may be triggered even without a change in netdev 6039 * flags 6040 */ 6041 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6042 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6043 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6044 6045 /* schedule our worker thread which will take care of 6046 * applying the new filter changes 6047 */ 6048 ice_service_task_schedule(vsi->back); 6049 } 6050 6051 /** 6052 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6053 * @netdev: network interface device structure 6054 * @queue_index: Queue ID 6055 * @maxrate: maximum bandwidth in Mbps 6056 */ 6057 static int 6058 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6059 { 6060 struct ice_netdev_priv *np = netdev_priv(netdev); 6061 struct ice_vsi *vsi = np->vsi; 6062 u16 q_handle; 6063 int status; 6064 u8 tc; 6065 6066 /* Validate maxrate requested is within permitted range */ 6067 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6068 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6069 maxrate, queue_index); 6070 return -EINVAL; 6071 } 6072 6073 q_handle = vsi->tx_rings[queue_index]->q_handle; 6074 tc = ice_dcb_get_tc(vsi, queue_index); 6075 6076 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6077 if (!vsi) { 6078 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6079 queue_index); 6080 return -EINVAL; 6081 } 6082 6083 /* Set BW back to default, when user set maxrate to 0 */ 6084 if (!maxrate) 6085 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6086 q_handle, ICE_MAX_BW); 6087 else 6088 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6089 q_handle, ICE_MAX_BW, maxrate * 1000); 6090 if (status) 6091 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6092 status); 6093 6094 return status; 6095 } 6096 6097 /** 6098 * ice_fdb_add - add an entry to the hardware database 6099 * @ndm: the input from the stack 6100 * @tb: pointer to array of nladdr (unused) 6101 * @dev: the net device pointer 6102 * @addr: the MAC address entry being added 6103 * @vid: VLAN ID 6104 * @flags: instructions from stack about fdb operation 6105 * @extack: netlink extended ack 6106 */ 6107 static int 6108 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6109 struct net_device *dev, const unsigned char *addr, u16 vid, 6110 u16 flags, struct netlink_ext_ack __always_unused *extack) 6111 { 6112 int err; 6113 6114 if (vid) { 6115 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6116 return -EINVAL; 6117 } 6118 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6119 netdev_err(dev, "FDB only supports static addresses\n"); 6120 return -EINVAL; 6121 } 6122 6123 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6124 err = dev_uc_add_excl(dev, addr); 6125 else if (is_multicast_ether_addr(addr)) 6126 err = dev_mc_add_excl(dev, addr); 6127 else 6128 err = -EINVAL; 6129 6130 /* Only return duplicate errors if NLM_F_EXCL is set */ 6131 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6132 err = 0; 6133 6134 return err; 6135 } 6136 6137 /** 6138 * ice_fdb_del - delete an entry from the hardware database 6139 * @ndm: the input from the stack 6140 * @tb: pointer to array of nladdr (unused) 6141 * @dev: the net device pointer 6142 * @addr: the MAC address entry being added 6143 * @vid: VLAN ID 6144 * @extack: netlink extended ack 6145 */ 6146 static int 6147 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6148 struct net_device *dev, const unsigned char *addr, 6149 __always_unused u16 vid, struct netlink_ext_ack *extack) 6150 { 6151 int err; 6152 6153 if (ndm->ndm_state & NUD_PERMANENT) { 6154 netdev_err(dev, "FDB only supports static addresses\n"); 6155 return -EINVAL; 6156 } 6157 6158 if (is_unicast_ether_addr(addr)) 6159 err = dev_uc_del(dev, addr); 6160 else if (is_multicast_ether_addr(addr)) 6161 err = dev_mc_del(dev, addr); 6162 else 6163 err = -EINVAL; 6164 6165 return err; 6166 } 6167 6168 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6169 NETIF_F_HW_VLAN_CTAG_TX | \ 6170 NETIF_F_HW_VLAN_STAG_RX | \ 6171 NETIF_F_HW_VLAN_STAG_TX) 6172 6173 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6174 NETIF_F_HW_VLAN_STAG_RX) 6175 6176 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6177 NETIF_F_HW_VLAN_STAG_FILTER) 6178 6179 /** 6180 * ice_fix_features - fix the netdev features flags based on device limitations 6181 * @netdev: ptr to the netdev that flags are being fixed on 6182 * @features: features that need to be checked and possibly fixed 6183 * 6184 * Make sure any fixups are made to features in this callback. This enables the 6185 * driver to not have to check unsupported configurations throughout the driver 6186 * because that's the responsiblity of this callback. 6187 * 6188 * Single VLAN Mode (SVM) Supported Features: 6189 * NETIF_F_HW_VLAN_CTAG_FILTER 6190 * NETIF_F_HW_VLAN_CTAG_RX 6191 * NETIF_F_HW_VLAN_CTAG_TX 6192 * 6193 * Double VLAN Mode (DVM) Supported Features: 6194 * NETIF_F_HW_VLAN_CTAG_FILTER 6195 * NETIF_F_HW_VLAN_CTAG_RX 6196 * NETIF_F_HW_VLAN_CTAG_TX 6197 * 6198 * NETIF_F_HW_VLAN_STAG_FILTER 6199 * NETIF_HW_VLAN_STAG_RX 6200 * NETIF_HW_VLAN_STAG_TX 6201 * 6202 * Features that need fixing: 6203 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6204 * These are mutually exlusive as the VSI context cannot support multiple 6205 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6206 * is not done, then default to clearing the requested STAG offload 6207 * settings. 6208 * 6209 * All supported filtering has to be enabled or disabled together. For 6210 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6211 * together. If this is not done, then default to VLAN filtering disabled. 6212 * These are mutually exclusive as there is currently no way to 6213 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6214 * prune rules. 6215 */ 6216 static netdev_features_t 6217 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6218 { 6219 struct ice_netdev_priv *np = netdev_priv(netdev); 6220 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6221 bool cur_ctag, cur_stag, req_ctag, req_stag; 6222 6223 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6224 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6225 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6226 6227 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6228 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6229 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6230 6231 if (req_vlan_fltr != cur_vlan_fltr) { 6232 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6233 if (req_ctag && req_stag) { 6234 features |= NETIF_VLAN_FILTERING_FEATURES; 6235 } else if (!req_ctag && !req_stag) { 6236 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6237 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6238 (!cur_stag && req_stag && !cur_ctag)) { 6239 features |= NETIF_VLAN_FILTERING_FEATURES; 6240 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6241 } else if ((cur_ctag && !req_ctag && cur_stag) || 6242 (cur_stag && !req_stag && cur_ctag)) { 6243 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6244 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6245 } 6246 } else { 6247 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6248 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6249 6250 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6251 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6252 } 6253 } 6254 6255 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6256 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6257 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6258 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6259 NETIF_F_HW_VLAN_STAG_TX); 6260 } 6261 6262 if (!(netdev->features & NETIF_F_RXFCS) && 6263 (features & NETIF_F_RXFCS) && 6264 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6265 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6266 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6267 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6268 } 6269 6270 return features; 6271 } 6272 6273 /** 6274 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6275 * @vsi: PF's VSI 6276 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6277 * 6278 * Store current stripped VLAN proto in ring packet context, 6279 * so it can be accessed more efficiently by packet processing code. 6280 */ 6281 static void 6282 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6283 { 6284 u16 i; 6285 6286 ice_for_each_alloc_rxq(vsi, i) 6287 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6288 } 6289 6290 /** 6291 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6292 * @vsi: PF's VSI 6293 * @features: features used to determine VLAN offload settings 6294 * 6295 * First, determine the vlan_ethertype based on the VLAN offload bits in 6296 * features. Then determine if stripping and insertion should be enabled or 6297 * disabled. Finally enable or disable VLAN stripping and insertion. 6298 */ 6299 static int 6300 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6301 { 6302 bool enable_stripping = true, enable_insertion = true; 6303 struct ice_vsi_vlan_ops *vlan_ops; 6304 int strip_err = 0, insert_err = 0; 6305 u16 vlan_ethertype = 0; 6306 6307 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6308 6309 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6310 vlan_ethertype = ETH_P_8021AD; 6311 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6312 vlan_ethertype = ETH_P_8021Q; 6313 6314 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6315 enable_stripping = false; 6316 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6317 enable_insertion = false; 6318 6319 if (enable_stripping) 6320 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6321 else 6322 strip_err = vlan_ops->dis_stripping(vsi); 6323 6324 if (enable_insertion) 6325 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6326 else 6327 insert_err = vlan_ops->dis_insertion(vsi); 6328 6329 if (strip_err || insert_err) 6330 return -EIO; 6331 6332 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6333 htons(vlan_ethertype) : 0); 6334 6335 return 0; 6336 } 6337 6338 /** 6339 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6340 * @vsi: PF's VSI 6341 * @features: features used to determine VLAN filtering settings 6342 * 6343 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6344 * features. 6345 */ 6346 static int 6347 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6348 { 6349 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6350 int err = 0; 6351 6352 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6353 * if either bit is set 6354 */ 6355 if (features & 6356 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6357 err = vlan_ops->ena_rx_filtering(vsi); 6358 else 6359 err = vlan_ops->dis_rx_filtering(vsi); 6360 6361 return err; 6362 } 6363 6364 /** 6365 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6366 * @netdev: ptr to the netdev being adjusted 6367 * @features: the feature set that the stack is suggesting 6368 * 6369 * Only update VLAN settings if the requested_vlan_features are different than 6370 * the current_vlan_features. 6371 */ 6372 static int 6373 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6374 { 6375 netdev_features_t current_vlan_features, requested_vlan_features; 6376 struct ice_netdev_priv *np = netdev_priv(netdev); 6377 struct ice_vsi *vsi = np->vsi; 6378 int err; 6379 6380 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6381 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6382 if (current_vlan_features ^ requested_vlan_features) { 6383 if ((features & NETIF_F_RXFCS) && 6384 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6385 dev_err(ice_pf_to_dev(vsi->back), 6386 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6387 return -EIO; 6388 } 6389 6390 err = ice_set_vlan_offload_features(vsi, features); 6391 if (err) 6392 return err; 6393 } 6394 6395 current_vlan_features = netdev->features & 6396 NETIF_VLAN_FILTERING_FEATURES; 6397 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6398 if (current_vlan_features ^ requested_vlan_features) { 6399 err = ice_set_vlan_filtering_features(vsi, features); 6400 if (err) 6401 return err; 6402 } 6403 6404 return 0; 6405 } 6406 6407 /** 6408 * ice_set_loopback - turn on/off loopback mode on underlying PF 6409 * @vsi: ptr to VSI 6410 * @ena: flag to indicate the on/off setting 6411 */ 6412 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6413 { 6414 bool if_running = netif_running(vsi->netdev); 6415 int ret; 6416 6417 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6418 ret = ice_down(vsi); 6419 if (ret) { 6420 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6421 return ret; 6422 } 6423 } 6424 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6425 if (ret) 6426 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6427 if (if_running) 6428 ret = ice_up(vsi); 6429 6430 return ret; 6431 } 6432 6433 /** 6434 * ice_set_features - set the netdev feature flags 6435 * @netdev: ptr to the netdev being adjusted 6436 * @features: the feature set that the stack is suggesting 6437 */ 6438 static int 6439 ice_set_features(struct net_device *netdev, netdev_features_t features) 6440 { 6441 netdev_features_t changed = netdev->features ^ features; 6442 struct ice_netdev_priv *np = netdev_priv(netdev); 6443 struct ice_vsi *vsi = np->vsi; 6444 struct ice_pf *pf = vsi->back; 6445 int ret = 0; 6446 6447 /* Don't set any netdev advanced features with device in Safe Mode */ 6448 if (ice_is_safe_mode(pf)) { 6449 dev_err(ice_pf_to_dev(pf), 6450 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6451 return ret; 6452 } 6453 6454 /* Do not change setting during reset */ 6455 if (ice_is_reset_in_progress(pf->state)) { 6456 dev_err(ice_pf_to_dev(pf), 6457 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6458 return -EBUSY; 6459 } 6460 6461 /* Multiple features can be changed in one call so keep features in 6462 * separate if/else statements to guarantee each feature is checked 6463 */ 6464 if (changed & NETIF_F_RXHASH) 6465 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6466 6467 ret = ice_set_vlan_features(netdev, features); 6468 if (ret) 6469 return ret; 6470 6471 /* Turn on receive of FCS aka CRC, and after setting this 6472 * flag the packet data will have the 4 byte CRC appended 6473 */ 6474 if (changed & NETIF_F_RXFCS) { 6475 if ((features & NETIF_F_RXFCS) && 6476 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6477 dev_err(ice_pf_to_dev(vsi->back), 6478 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6479 return -EIO; 6480 } 6481 6482 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6483 ret = ice_down_up(vsi); 6484 if (ret) 6485 return ret; 6486 } 6487 6488 if (changed & NETIF_F_NTUPLE) { 6489 bool ena = !!(features & NETIF_F_NTUPLE); 6490 6491 ice_vsi_manage_fdir(vsi, ena); 6492 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6493 } 6494 6495 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6496 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6497 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6498 return -EACCES; 6499 } 6500 6501 if (changed & NETIF_F_HW_TC) { 6502 bool ena = !!(features & NETIF_F_HW_TC); 6503 6504 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6505 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6506 } 6507 6508 if (changed & NETIF_F_LOOPBACK) 6509 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6510 6511 return ret; 6512 } 6513 6514 /** 6515 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6516 * @vsi: VSI to setup VLAN properties for 6517 */ 6518 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6519 { 6520 int err; 6521 6522 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6523 if (err) 6524 return err; 6525 6526 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6527 if (err) 6528 return err; 6529 6530 return ice_vsi_add_vlan_zero(vsi); 6531 } 6532 6533 /** 6534 * ice_vsi_cfg_lan - Setup the VSI lan related config 6535 * @vsi: the VSI being configured 6536 * 6537 * Return 0 on success and negative value on error 6538 */ 6539 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6540 { 6541 int err; 6542 6543 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6544 ice_set_rx_mode(vsi->netdev); 6545 6546 err = ice_vsi_vlan_setup(vsi); 6547 if (err) 6548 return err; 6549 } 6550 ice_vsi_cfg_dcb_rings(vsi); 6551 6552 err = ice_vsi_cfg_lan_txqs(vsi); 6553 if (!err && ice_is_xdp_ena_vsi(vsi)) 6554 err = ice_vsi_cfg_xdp_txqs(vsi); 6555 if (!err) 6556 err = ice_vsi_cfg_rxqs(vsi); 6557 6558 return err; 6559 } 6560 6561 /* THEORY OF MODERATION: 6562 * The ice driver hardware works differently than the hardware that DIMLIB was 6563 * originally made for. ice hardware doesn't have packet count limits that 6564 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6565 * which is hard-coded to a limit of 250,000 ints/second. 6566 * If not using dynamic moderation, the INTRL value can be modified 6567 * by ethtool rx-usecs-high. 6568 */ 6569 struct ice_dim { 6570 /* the throttle rate for interrupts, basically worst case delay before 6571 * an initial interrupt fires, value is stored in microseconds. 6572 */ 6573 u16 itr; 6574 }; 6575 6576 /* Make a different profile for Rx that doesn't allow quite so aggressive 6577 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6578 * second. 6579 */ 6580 static const struct ice_dim rx_profile[] = { 6581 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6582 {8}, /* 125,000 ints/s */ 6583 {16}, /* 62,500 ints/s */ 6584 {62}, /* 16,129 ints/s */ 6585 {126} /* 7,936 ints/s */ 6586 }; 6587 6588 /* The transmit profile, which has the same sorts of values 6589 * as the previous struct 6590 */ 6591 static const struct ice_dim tx_profile[] = { 6592 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6593 {8}, /* 125,000 ints/s */ 6594 {40}, /* 16,125 ints/s */ 6595 {128}, /* 7,812 ints/s */ 6596 {256} /* 3,906 ints/s */ 6597 }; 6598 6599 static void ice_tx_dim_work(struct work_struct *work) 6600 { 6601 struct ice_ring_container *rc; 6602 struct dim *dim; 6603 u16 itr; 6604 6605 dim = container_of(work, struct dim, work); 6606 rc = dim->priv; 6607 6608 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6609 6610 /* look up the values in our local table */ 6611 itr = tx_profile[dim->profile_ix].itr; 6612 6613 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6614 ice_write_itr(rc, itr); 6615 6616 dim->state = DIM_START_MEASURE; 6617 } 6618 6619 static void ice_rx_dim_work(struct work_struct *work) 6620 { 6621 struct ice_ring_container *rc; 6622 struct dim *dim; 6623 u16 itr; 6624 6625 dim = container_of(work, struct dim, work); 6626 rc = dim->priv; 6627 6628 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6629 6630 /* look up the values in our local table */ 6631 itr = rx_profile[dim->profile_ix].itr; 6632 6633 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6634 ice_write_itr(rc, itr); 6635 6636 dim->state = DIM_START_MEASURE; 6637 } 6638 6639 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6640 6641 /** 6642 * ice_init_moderation - set up interrupt moderation 6643 * @q_vector: the vector containing rings to be configured 6644 * 6645 * Set up interrupt moderation registers, with the intent to do the right thing 6646 * when called from reset or from probe, and whether or not dynamic moderation 6647 * is enabled or not. Take special care to write all the registers in both 6648 * dynamic moderation mode or not in order to make sure hardware is in a known 6649 * state. 6650 */ 6651 static void ice_init_moderation(struct ice_q_vector *q_vector) 6652 { 6653 struct ice_ring_container *rc; 6654 bool tx_dynamic, rx_dynamic; 6655 6656 rc = &q_vector->tx; 6657 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6658 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6659 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6660 rc->dim.priv = rc; 6661 tx_dynamic = ITR_IS_DYNAMIC(rc); 6662 6663 /* set the initial TX ITR to match the above */ 6664 ice_write_itr(rc, tx_dynamic ? 6665 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6666 6667 rc = &q_vector->rx; 6668 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6669 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6670 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6671 rc->dim.priv = rc; 6672 rx_dynamic = ITR_IS_DYNAMIC(rc); 6673 6674 /* set the initial RX ITR to match the above */ 6675 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6676 rc->itr_setting); 6677 6678 ice_set_q_vector_intrl(q_vector); 6679 } 6680 6681 /** 6682 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6683 * @vsi: the VSI being configured 6684 */ 6685 static void ice_napi_enable_all(struct ice_vsi *vsi) 6686 { 6687 int q_idx; 6688 6689 if (!vsi->netdev) 6690 return; 6691 6692 ice_for_each_q_vector(vsi, q_idx) { 6693 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6694 6695 ice_init_moderation(q_vector); 6696 6697 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6698 napi_enable(&q_vector->napi); 6699 } 6700 } 6701 6702 /** 6703 * ice_up_complete - Finish the last steps of bringing up a connection 6704 * @vsi: The VSI being configured 6705 * 6706 * Return 0 on success and negative value on error 6707 */ 6708 static int ice_up_complete(struct ice_vsi *vsi) 6709 { 6710 struct ice_pf *pf = vsi->back; 6711 int err; 6712 6713 ice_vsi_cfg_msix(vsi); 6714 6715 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6716 * Tx queue group list was configured and the context bits were 6717 * programmed using ice_vsi_cfg_txqs 6718 */ 6719 err = ice_vsi_start_all_rx_rings(vsi); 6720 if (err) 6721 return err; 6722 6723 clear_bit(ICE_VSI_DOWN, vsi->state); 6724 ice_napi_enable_all(vsi); 6725 ice_vsi_ena_irq(vsi); 6726 6727 if (vsi->port_info && 6728 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6729 vsi->netdev && vsi->type == ICE_VSI_PF) { 6730 ice_print_link_msg(vsi, true); 6731 netif_tx_start_all_queues(vsi->netdev); 6732 netif_carrier_on(vsi->netdev); 6733 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6734 } 6735 6736 /* Perform an initial read of the statistics registers now to 6737 * set the baseline so counters are ready when interface is up 6738 */ 6739 ice_update_eth_stats(vsi); 6740 6741 if (vsi->type == ICE_VSI_PF) 6742 ice_service_task_schedule(pf); 6743 6744 return 0; 6745 } 6746 6747 /** 6748 * ice_up - Bring the connection back up after being down 6749 * @vsi: VSI being configured 6750 */ 6751 int ice_up(struct ice_vsi *vsi) 6752 { 6753 int err; 6754 6755 err = ice_vsi_cfg_lan(vsi); 6756 if (!err) 6757 err = ice_up_complete(vsi); 6758 6759 return err; 6760 } 6761 6762 /** 6763 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6764 * @syncp: pointer to u64_stats_sync 6765 * @stats: stats that pkts and bytes count will be taken from 6766 * @pkts: packets stats counter 6767 * @bytes: bytes stats counter 6768 * 6769 * This function fetches stats from the ring considering the atomic operations 6770 * that needs to be performed to read u64 values in 32 bit machine. 6771 */ 6772 void 6773 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6774 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6775 { 6776 unsigned int start; 6777 6778 do { 6779 start = u64_stats_fetch_begin(syncp); 6780 *pkts = stats.pkts; 6781 *bytes = stats.bytes; 6782 } while (u64_stats_fetch_retry(syncp, start)); 6783 } 6784 6785 /** 6786 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6787 * @vsi: the VSI to be updated 6788 * @vsi_stats: the stats struct to be updated 6789 * @rings: rings to work on 6790 * @count: number of rings 6791 */ 6792 static void 6793 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6794 struct rtnl_link_stats64 *vsi_stats, 6795 struct ice_tx_ring **rings, u16 count) 6796 { 6797 u16 i; 6798 6799 for (i = 0; i < count; i++) { 6800 struct ice_tx_ring *ring; 6801 u64 pkts = 0, bytes = 0; 6802 6803 ring = READ_ONCE(rings[i]); 6804 if (!ring || !ring->ring_stats) 6805 continue; 6806 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6807 ring->ring_stats->stats, &pkts, 6808 &bytes); 6809 vsi_stats->tx_packets += pkts; 6810 vsi_stats->tx_bytes += bytes; 6811 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6812 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6813 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6814 } 6815 } 6816 6817 /** 6818 * ice_update_vsi_ring_stats - Update VSI stats counters 6819 * @vsi: the VSI to be updated 6820 */ 6821 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6822 { 6823 struct rtnl_link_stats64 *net_stats, *stats_prev; 6824 struct rtnl_link_stats64 *vsi_stats; 6825 struct ice_pf *pf = vsi->back; 6826 u64 pkts, bytes; 6827 int i; 6828 6829 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6830 if (!vsi_stats) 6831 return; 6832 6833 /* reset non-netdev (extended) stats */ 6834 vsi->tx_restart = 0; 6835 vsi->tx_busy = 0; 6836 vsi->tx_linearize = 0; 6837 vsi->rx_buf_failed = 0; 6838 vsi->rx_page_failed = 0; 6839 6840 rcu_read_lock(); 6841 6842 /* update Tx rings counters */ 6843 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6844 vsi->num_txq); 6845 6846 /* update Rx rings counters */ 6847 ice_for_each_rxq(vsi, i) { 6848 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6849 struct ice_ring_stats *ring_stats; 6850 6851 ring_stats = ring->ring_stats; 6852 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6853 ring_stats->stats, &pkts, 6854 &bytes); 6855 vsi_stats->rx_packets += pkts; 6856 vsi_stats->rx_bytes += bytes; 6857 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6858 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6859 } 6860 6861 /* update XDP Tx rings counters */ 6862 if (ice_is_xdp_ena_vsi(vsi)) 6863 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6864 vsi->num_xdp_txq); 6865 6866 rcu_read_unlock(); 6867 6868 net_stats = &vsi->net_stats; 6869 stats_prev = &vsi->net_stats_prev; 6870 6871 /* Update netdev counters, but keep in mind that values could start at 6872 * random value after PF reset. And as we increase the reported stat by 6873 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6874 * let's skip this round. 6875 */ 6876 if (likely(pf->stat_prev_loaded)) { 6877 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6878 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6879 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6880 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6881 } 6882 6883 stats_prev->tx_packets = vsi_stats->tx_packets; 6884 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6885 stats_prev->rx_packets = vsi_stats->rx_packets; 6886 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6887 6888 kfree(vsi_stats); 6889 } 6890 6891 /** 6892 * ice_update_vsi_stats - Update VSI stats counters 6893 * @vsi: the VSI to be updated 6894 */ 6895 void ice_update_vsi_stats(struct ice_vsi *vsi) 6896 { 6897 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6898 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6899 struct ice_pf *pf = vsi->back; 6900 6901 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6902 test_bit(ICE_CFG_BUSY, pf->state)) 6903 return; 6904 6905 /* get stats as recorded by Tx/Rx rings */ 6906 ice_update_vsi_ring_stats(vsi); 6907 6908 /* get VSI stats as recorded by the hardware */ 6909 ice_update_eth_stats(vsi); 6910 6911 cur_ns->tx_errors = cur_es->tx_errors; 6912 cur_ns->rx_dropped = cur_es->rx_discards; 6913 cur_ns->tx_dropped = cur_es->tx_discards; 6914 cur_ns->multicast = cur_es->rx_multicast; 6915 6916 /* update some more netdev stats if this is main VSI */ 6917 if (vsi->type == ICE_VSI_PF) { 6918 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6919 cur_ns->rx_errors = pf->stats.crc_errors + 6920 pf->stats.illegal_bytes + 6921 pf->stats.rx_undersize + 6922 pf->hw_csum_rx_error + 6923 pf->stats.rx_jabber + 6924 pf->stats.rx_fragments + 6925 pf->stats.rx_oversize; 6926 /* record drops from the port level */ 6927 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6928 } 6929 } 6930 6931 /** 6932 * ice_update_pf_stats - Update PF port stats counters 6933 * @pf: PF whose stats needs to be updated 6934 */ 6935 void ice_update_pf_stats(struct ice_pf *pf) 6936 { 6937 struct ice_hw_port_stats *prev_ps, *cur_ps; 6938 struct ice_hw *hw = &pf->hw; 6939 u16 fd_ctr_base; 6940 u8 port; 6941 6942 port = hw->port_info->lport; 6943 prev_ps = &pf->stats_prev; 6944 cur_ps = &pf->stats; 6945 6946 if (ice_is_reset_in_progress(pf->state)) 6947 pf->stat_prev_loaded = false; 6948 6949 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6950 &prev_ps->eth.rx_bytes, 6951 &cur_ps->eth.rx_bytes); 6952 6953 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6954 &prev_ps->eth.rx_unicast, 6955 &cur_ps->eth.rx_unicast); 6956 6957 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6958 &prev_ps->eth.rx_multicast, 6959 &cur_ps->eth.rx_multicast); 6960 6961 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6962 &prev_ps->eth.rx_broadcast, 6963 &cur_ps->eth.rx_broadcast); 6964 6965 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6966 &prev_ps->eth.rx_discards, 6967 &cur_ps->eth.rx_discards); 6968 6969 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6970 &prev_ps->eth.tx_bytes, 6971 &cur_ps->eth.tx_bytes); 6972 6973 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6974 &prev_ps->eth.tx_unicast, 6975 &cur_ps->eth.tx_unicast); 6976 6977 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6978 &prev_ps->eth.tx_multicast, 6979 &cur_ps->eth.tx_multicast); 6980 6981 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6982 &prev_ps->eth.tx_broadcast, 6983 &cur_ps->eth.tx_broadcast); 6984 6985 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6986 &prev_ps->tx_dropped_link_down, 6987 &cur_ps->tx_dropped_link_down); 6988 6989 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6990 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6991 6992 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6993 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6994 6995 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6996 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6997 6998 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6999 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7000 7001 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7002 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7003 7004 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7005 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7006 7007 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7008 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7009 7010 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7011 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7012 7013 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7014 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7015 7016 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7017 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7018 7019 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7020 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7021 7022 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7023 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7024 7025 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7026 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7027 7028 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7029 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7030 7031 fd_ctr_base = hw->fd_ctr_base; 7032 7033 ice_stat_update40(hw, 7034 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7035 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7036 &cur_ps->fd_sb_match); 7037 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7038 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7039 7040 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7041 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7042 7043 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7044 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7045 7046 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7047 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7048 7049 ice_update_dcb_stats(pf); 7050 7051 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7052 &prev_ps->crc_errors, &cur_ps->crc_errors); 7053 7054 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7055 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7056 7057 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7058 &prev_ps->mac_local_faults, 7059 &cur_ps->mac_local_faults); 7060 7061 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7062 &prev_ps->mac_remote_faults, 7063 &cur_ps->mac_remote_faults); 7064 7065 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7066 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7067 7068 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7069 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7070 7071 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7072 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7073 7074 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7075 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7076 7077 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7078 7079 pf->stat_prev_loaded = true; 7080 } 7081 7082 /** 7083 * ice_get_stats64 - get statistics for network device structure 7084 * @netdev: network interface device structure 7085 * @stats: main device statistics structure 7086 */ 7087 static 7088 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7089 { 7090 struct ice_netdev_priv *np = netdev_priv(netdev); 7091 struct rtnl_link_stats64 *vsi_stats; 7092 struct ice_vsi *vsi = np->vsi; 7093 7094 vsi_stats = &vsi->net_stats; 7095 7096 if (!vsi->num_txq || !vsi->num_rxq) 7097 return; 7098 7099 /* netdev packet/byte stats come from ring counter. These are obtained 7100 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7101 * But, only call the update routine and read the registers if VSI is 7102 * not down. 7103 */ 7104 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7105 ice_update_vsi_ring_stats(vsi); 7106 stats->tx_packets = vsi_stats->tx_packets; 7107 stats->tx_bytes = vsi_stats->tx_bytes; 7108 stats->rx_packets = vsi_stats->rx_packets; 7109 stats->rx_bytes = vsi_stats->rx_bytes; 7110 7111 /* The rest of the stats can be read from the hardware but instead we 7112 * just return values that the watchdog task has already obtained from 7113 * the hardware. 7114 */ 7115 stats->multicast = vsi_stats->multicast; 7116 stats->tx_errors = vsi_stats->tx_errors; 7117 stats->tx_dropped = vsi_stats->tx_dropped; 7118 stats->rx_errors = vsi_stats->rx_errors; 7119 stats->rx_dropped = vsi_stats->rx_dropped; 7120 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7121 stats->rx_length_errors = vsi_stats->rx_length_errors; 7122 } 7123 7124 /** 7125 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7126 * @vsi: VSI having NAPI disabled 7127 */ 7128 static void ice_napi_disable_all(struct ice_vsi *vsi) 7129 { 7130 int q_idx; 7131 7132 if (!vsi->netdev) 7133 return; 7134 7135 ice_for_each_q_vector(vsi, q_idx) { 7136 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7137 7138 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7139 napi_disable(&q_vector->napi); 7140 7141 cancel_work_sync(&q_vector->tx.dim.work); 7142 cancel_work_sync(&q_vector->rx.dim.work); 7143 } 7144 } 7145 7146 /** 7147 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7148 * @vsi: the VSI being un-configured 7149 */ 7150 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7151 { 7152 struct ice_pf *pf = vsi->back; 7153 struct ice_hw *hw = &pf->hw; 7154 u32 val; 7155 int i; 7156 7157 /* disable interrupt causation from each Rx queue; Tx queues are 7158 * handled in ice_vsi_stop_tx_ring() 7159 */ 7160 if (vsi->rx_rings) { 7161 ice_for_each_rxq(vsi, i) { 7162 if (vsi->rx_rings[i]) { 7163 u16 reg; 7164 7165 reg = vsi->rx_rings[i]->reg_idx; 7166 val = rd32(hw, QINT_RQCTL(reg)); 7167 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7168 wr32(hw, QINT_RQCTL(reg), val); 7169 } 7170 } 7171 } 7172 7173 /* disable each interrupt */ 7174 ice_for_each_q_vector(vsi, i) { 7175 if (!vsi->q_vectors[i]) 7176 continue; 7177 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7178 } 7179 7180 ice_flush(hw); 7181 7182 /* don't call synchronize_irq() for VF's from the host */ 7183 if (vsi->type == ICE_VSI_VF) 7184 return; 7185 7186 ice_for_each_q_vector(vsi, i) 7187 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7188 } 7189 7190 /** 7191 * ice_down - Shutdown the connection 7192 * @vsi: The VSI being stopped 7193 * 7194 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7195 */ 7196 int ice_down(struct ice_vsi *vsi) 7197 { 7198 int i, tx_err, rx_err, vlan_err = 0; 7199 7200 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7201 7202 if (vsi->netdev) { 7203 vlan_err = ice_vsi_del_vlan_zero(vsi); 7204 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7205 netif_carrier_off(vsi->netdev); 7206 netif_tx_disable(vsi->netdev); 7207 } 7208 7209 ice_vsi_dis_irq(vsi); 7210 7211 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7212 if (tx_err) 7213 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7214 vsi->vsi_num, tx_err); 7215 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7216 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7217 if (tx_err) 7218 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7219 vsi->vsi_num, tx_err); 7220 } 7221 7222 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7223 if (rx_err) 7224 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7225 vsi->vsi_num, rx_err); 7226 7227 ice_napi_disable_all(vsi); 7228 7229 ice_for_each_txq(vsi, i) 7230 ice_clean_tx_ring(vsi->tx_rings[i]); 7231 7232 if (ice_is_xdp_ena_vsi(vsi)) 7233 ice_for_each_xdp_txq(vsi, i) 7234 ice_clean_tx_ring(vsi->xdp_rings[i]); 7235 7236 ice_for_each_rxq(vsi, i) 7237 ice_clean_rx_ring(vsi->rx_rings[i]); 7238 7239 if (tx_err || rx_err || vlan_err) { 7240 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7241 vsi->vsi_num, vsi->vsw->sw_id); 7242 return -EIO; 7243 } 7244 7245 return 0; 7246 } 7247 7248 /** 7249 * ice_down_up - shutdown the VSI connection and bring it up 7250 * @vsi: the VSI to be reconnected 7251 */ 7252 int ice_down_up(struct ice_vsi *vsi) 7253 { 7254 int ret; 7255 7256 /* if DOWN already set, nothing to do */ 7257 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7258 return 0; 7259 7260 ret = ice_down(vsi); 7261 if (ret) 7262 return ret; 7263 7264 ret = ice_up(vsi); 7265 if (ret) { 7266 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7267 return ret; 7268 } 7269 7270 return 0; 7271 } 7272 7273 /** 7274 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7275 * @vsi: VSI having resources allocated 7276 * 7277 * Return 0 on success, negative on failure 7278 */ 7279 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7280 { 7281 int i, err = 0; 7282 7283 if (!vsi->num_txq) { 7284 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7285 vsi->vsi_num); 7286 return -EINVAL; 7287 } 7288 7289 ice_for_each_txq(vsi, i) { 7290 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7291 7292 if (!ring) 7293 return -EINVAL; 7294 7295 if (vsi->netdev) 7296 ring->netdev = vsi->netdev; 7297 err = ice_setup_tx_ring(ring); 7298 if (err) 7299 break; 7300 } 7301 7302 return err; 7303 } 7304 7305 /** 7306 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7307 * @vsi: VSI having resources allocated 7308 * 7309 * Return 0 on success, negative on failure 7310 */ 7311 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7312 { 7313 int i, err = 0; 7314 7315 if (!vsi->num_rxq) { 7316 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7317 vsi->vsi_num); 7318 return -EINVAL; 7319 } 7320 7321 ice_for_each_rxq(vsi, i) { 7322 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7323 7324 if (!ring) 7325 return -EINVAL; 7326 7327 if (vsi->netdev) 7328 ring->netdev = vsi->netdev; 7329 err = ice_setup_rx_ring(ring); 7330 if (err) 7331 break; 7332 } 7333 7334 return err; 7335 } 7336 7337 /** 7338 * ice_vsi_open_ctrl - open control VSI for use 7339 * @vsi: the VSI to open 7340 * 7341 * Initialization of the Control VSI 7342 * 7343 * Returns 0 on success, negative value on error 7344 */ 7345 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7346 { 7347 char int_name[ICE_INT_NAME_STR_LEN]; 7348 struct ice_pf *pf = vsi->back; 7349 struct device *dev; 7350 int err; 7351 7352 dev = ice_pf_to_dev(pf); 7353 /* allocate descriptors */ 7354 err = ice_vsi_setup_tx_rings(vsi); 7355 if (err) 7356 goto err_setup_tx; 7357 7358 err = ice_vsi_setup_rx_rings(vsi); 7359 if (err) 7360 goto err_setup_rx; 7361 7362 err = ice_vsi_cfg_lan(vsi); 7363 if (err) 7364 goto err_setup_rx; 7365 7366 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7367 dev_driver_string(dev), dev_name(dev)); 7368 err = ice_vsi_req_irq_msix(vsi, int_name); 7369 if (err) 7370 goto err_setup_rx; 7371 7372 ice_vsi_cfg_msix(vsi); 7373 7374 err = ice_vsi_start_all_rx_rings(vsi); 7375 if (err) 7376 goto err_up_complete; 7377 7378 clear_bit(ICE_VSI_DOWN, vsi->state); 7379 ice_vsi_ena_irq(vsi); 7380 7381 return 0; 7382 7383 err_up_complete: 7384 ice_down(vsi); 7385 err_setup_rx: 7386 ice_vsi_free_rx_rings(vsi); 7387 err_setup_tx: 7388 ice_vsi_free_tx_rings(vsi); 7389 7390 return err; 7391 } 7392 7393 /** 7394 * ice_vsi_open - Called when a network interface is made active 7395 * @vsi: the VSI to open 7396 * 7397 * Initialization of the VSI 7398 * 7399 * Returns 0 on success, negative value on error 7400 */ 7401 int ice_vsi_open(struct ice_vsi *vsi) 7402 { 7403 char int_name[ICE_INT_NAME_STR_LEN]; 7404 struct ice_pf *pf = vsi->back; 7405 int err; 7406 7407 /* allocate descriptors */ 7408 err = ice_vsi_setup_tx_rings(vsi); 7409 if (err) 7410 goto err_setup_tx; 7411 7412 err = ice_vsi_setup_rx_rings(vsi); 7413 if (err) 7414 goto err_setup_rx; 7415 7416 err = ice_vsi_cfg_lan(vsi); 7417 if (err) 7418 goto err_setup_rx; 7419 7420 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7421 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7422 err = ice_vsi_req_irq_msix(vsi, int_name); 7423 if (err) 7424 goto err_setup_rx; 7425 7426 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7427 7428 if (vsi->type == ICE_VSI_PF) { 7429 /* Notify the stack of the actual queue counts. */ 7430 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7431 if (err) 7432 goto err_set_qs; 7433 7434 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7435 if (err) 7436 goto err_set_qs; 7437 } 7438 7439 err = ice_up_complete(vsi); 7440 if (err) 7441 goto err_up_complete; 7442 7443 return 0; 7444 7445 err_up_complete: 7446 ice_down(vsi); 7447 err_set_qs: 7448 ice_vsi_free_irq(vsi); 7449 err_setup_rx: 7450 ice_vsi_free_rx_rings(vsi); 7451 err_setup_tx: 7452 ice_vsi_free_tx_rings(vsi); 7453 7454 return err; 7455 } 7456 7457 /** 7458 * ice_vsi_release_all - Delete all VSIs 7459 * @pf: PF from which all VSIs are being removed 7460 */ 7461 static void ice_vsi_release_all(struct ice_pf *pf) 7462 { 7463 int err, i; 7464 7465 if (!pf->vsi) 7466 return; 7467 7468 ice_for_each_vsi(pf, i) { 7469 if (!pf->vsi[i]) 7470 continue; 7471 7472 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7473 continue; 7474 7475 err = ice_vsi_release(pf->vsi[i]); 7476 if (err) 7477 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7478 i, err, pf->vsi[i]->vsi_num); 7479 } 7480 } 7481 7482 /** 7483 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7484 * @pf: pointer to the PF instance 7485 * @type: VSI type to rebuild 7486 * 7487 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7488 */ 7489 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7490 { 7491 struct device *dev = ice_pf_to_dev(pf); 7492 int i, err; 7493 7494 ice_for_each_vsi(pf, i) { 7495 struct ice_vsi *vsi = pf->vsi[i]; 7496 7497 if (!vsi || vsi->type != type) 7498 continue; 7499 7500 /* rebuild the VSI */ 7501 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7502 if (err) { 7503 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7504 err, vsi->idx, ice_vsi_type_str(type)); 7505 return err; 7506 } 7507 7508 /* replay filters for the VSI */ 7509 err = ice_replay_vsi(&pf->hw, vsi->idx); 7510 if (err) { 7511 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7512 err, vsi->idx, ice_vsi_type_str(type)); 7513 return err; 7514 } 7515 7516 /* Re-map HW VSI number, using VSI handle that has been 7517 * previously validated in ice_replay_vsi() call above 7518 */ 7519 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7520 7521 /* enable the VSI */ 7522 err = ice_ena_vsi(vsi, false); 7523 if (err) { 7524 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7525 err, vsi->idx, ice_vsi_type_str(type)); 7526 return err; 7527 } 7528 7529 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7530 ice_vsi_type_str(type)); 7531 } 7532 7533 return 0; 7534 } 7535 7536 /** 7537 * ice_update_pf_netdev_link - Update PF netdev link status 7538 * @pf: pointer to the PF instance 7539 */ 7540 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7541 { 7542 bool link_up; 7543 int i; 7544 7545 ice_for_each_vsi(pf, i) { 7546 struct ice_vsi *vsi = pf->vsi[i]; 7547 7548 if (!vsi || vsi->type != ICE_VSI_PF) 7549 return; 7550 7551 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7552 if (link_up) { 7553 netif_carrier_on(pf->vsi[i]->netdev); 7554 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7555 } else { 7556 netif_carrier_off(pf->vsi[i]->netdev); 7557 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7558 } 7559 } 7560 } 7561 7562 /** 7563 * ice_rebuild - rebuild after reset 7564 * @pf: PF to rebuild 7565 * @reset_type: type of reset 7566 * 7567 * Do not rebuild VF VSI in this flow because that is already handled via 7568 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7569 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7570 * to reset/rebuild all the VF VSI twice. 7571 */ 7572 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7573 { 7574 struct device *dev = ice_pf_to_dev(pf); 7575 struct ice_hw *hw = &pf->hw; 7576 bool dvm; 7577 int err; 7578 7579 if (test_bit(ICE_DOWN, pf->state)) 7580 goto clear_recovery; 7581 7582 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7583 7584 #define ICE_EMP_RESET_SLEEP_MS 5000 7585 if (reset_type == ICE_RESET_EMPR) { 7586 /* If an EMP reset has occurred, any previously pending flash 7587 * update will have completed. We no longer know whether or 7588 * not the NVM update EMP reset is restricted. 7589 */ 7590 pf->fw_emp_reset_disabled = false; 7591 7592 msleep(ICE_EMP_RESET_SLEEP_MS); 7593 } 7594 7595 err = ice_init_all_ctrlq(hw); 7596 if (err) { 7597 dev_err(dev, "control queues init failed %d\n", err); 7598 goto err_init_ctrlq; 7599 } 7600 7601 /* if DDP was previously loaded successfully */ 7602 if (!ice_is_safe_mode(pf)) { 7603 /* reload the SW DB of filter tables */ 7604 if (reset_type == ICE_RESET_PFR) 7605 ice_fill_blk_tbls(hw); 7606 else 7607 /* Reload DDP Package after CORER/GLOBR reset */ 7608 ice_load_pkg(NULL, pf); 7609 } 7610 7611 err = ice_clear_pf_cfg(hw); 7612 if (err) { 7613 dev_err(dev, "clear PF configuration failed %d\n", err); 7614 goto err_init_ctrlq; 7615 } 7616 7617 ice_clear_pxe_mode(hw); 7618 7619 err = ice_init_nvm(hw); 7620 if (err) { 7621 dev_err(dev, "ice_init_nvm failed %d\n", err); 7622 goto err_init_ctrlq; 7623 } 7624 7625 err = ice_get_caps(hw); 7626 if (err) { 7627 dev_err(dev, "ice_get_caps failed %d\n", err); 7628 goto err_init_ctrlq; 7629 } 7630 7631 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7632 if (err) { 7633 dev_err(dev, "set_mac_cfg failed %d\n", err); 7634 goto err_init_ctrlq; 7635 } 7636 7637 dvm = ice_is_dvm_ena(hw); 7638 7639 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7640 if (err) 7641 goto err_init_ctrlq; 7642 7643 err = ice_sched_init_port(hw->port_info); 7644 if (err) 7645 goto err_sched_init_port; 7646 7647 /* start misc vector */ 7648 err = ice_req_irq_msix_misc(pf); 7649 if (err) { 7650 dev_err(dev, "misc vector setup failed: %d\n", err); 7651 goto err_sched_init_port; 7652 } 7653 7654 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7655 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7656 if (!rd32(hw, PFQF_FD_SIZE)) { 7657 u16 unused, guar, b_effort; 7658 7659 guar = hw->func_caps.fd_fltr_guar; 7660 b_effort = hw->func_caps.fd_fltr_best_effort; 7661 7662 /* force guaranteed filter pool for PF */ 7663 ice_alloc_fd_guar_item(hw, &unused, guar); 7664 /* force shared filter pool for PF */ 7665 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7666 } 7667 } 7668 7669 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7670 ice_dcb_rebuild(pf); 7671 7672 /* If the PF previously had enabled PTP, PTP init needs to happen before 7673 * the VSI rebuild. If not, this causes the PTP link status events to 7674 * fail. 7675 */ 7676 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7677 ice_ptp_rebuild(pf, reset_type); 7678 7679 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7680 ice_gnss_init(pf); 7681 7682 /* rebuild PF VSI */ 7683 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7684 if (err) { 7685 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7686 goto err_vsi_rebuild; 7687 } 7688 7689 ice_eswitch_rebuild(pf); 7690 7691 if (reset_type == ICE_RESET_PFR) { 7692 err = ice_rebuild_channels(pf); 7693 if (err) { 7694 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7695 err); 7696 goto err_vsi_rebuild; 7697 } 7698 } 7699 7700 /* If Flow Director is active */ 7701 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7702 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7703 if (err) { 7704 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7705 goto err_vsi_rebuild; 7706 } 7707 7708 /* replay HW Flow Director recipes */ 7709 if (hw->fdir_prof) 7710 ice_fdir_replay_flows(hw); 7711 7712 /* replay Flow Director filters */ 7713 ice_fdir_replay_fltrs(pf); 7714 7715 ice_rebuild_arfs(pf); 7716 } 7717 7718 ice_update_pf_netdev_link(pf); 7719 7720 /* tell the firmware we are up */ 7721 err = ice_send_version(pf); 7722 if (err) { 7723 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7724 err); 7725 goto err_vsi_rebuild; 7726 } 7727 7728 ice_replay_post(hw); 7729 7730 /* if we get here, reset flow is successful */ 7731 clear_bit(ICE_RESET_FAILED, pf->state); 7732 7733 ice_plug_aux_dev(pf); 7734 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7735 ice_lag_rebuild(pf); 7736 7737 /* Restore timestamp mode settings after VSI rebuild */ 7738 ice_ptp_restore_timestamp_mode(pf); 7739 return; 7740 7741 err_vsi_rebuild: 7742 err_sched_init_port: 7743 ice_sched_cleanup_all(hw); 7744 err_init_ctrlq: 7745 ice_shutdown_all_ctrlq(hw); 7746 set_bit(ICE_RESET_FAILED, pf->state); 7747 clear_recovery: 7748 /* set this bit in PF state to control service task scheduling */ 7749 set_bit(ICE_NEEDS_RESTART, pf->state); 7750 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7751 } 7752 7753 /** 7754 * ice_change_mtu - NDO callback to change the MTU 7755 * @netdev: network interface device structure 7756 * @new_mtu: new value for maximum frame size 7757 * 7758 * Returns 0 on success, negative on failure 7759 */ 7760 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7761 { 7762 struct ice_netdev_priv *np = netdev_priv(netdev); 7763 struct ice_vsi *vsi = np->vsi; 7764 struct ice_pf *pf = vsi->back; 7765 struct bpf_prog *prog; 7766 u8 count = 0; 7767 int err = 0; 7768 7769 if (new_mtu == (int)netdev->mtu) { 7770 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7771 return 0; 7772 } 7773 7774 prog = vsi->xdp_prog; 7775 if (prog && !prog->aux->xdp_has_frags) { 7776 int frame_size = ice_max_xdp_frame_size(vsi); 7777 7778 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7779 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7780 frame_size - ICE_ETH_PKT_HDR_PAD); 7781 return -EINVAL; 7782 } 7783 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7784 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7785 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7786 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7787 return -EINVAL; 7788 } 7789 } 7790 7791 /* if a reset is in progress, wait for some time for it to complete */ 7792 do { 7793 if (ice_is_reset_in_progress(pf->state)) { 7794 count++; 7795 usleep_range(1000, 2000); 7796 } else { 7797 break; 7798 } 7799 7800 } while (count < 100); 7801 7802 if (count == 100) { 7803 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7804 return -EBUSY; 7805 } 7806 7807 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7808 err = ice_down_up(vsi); 7809 if (err) 7810 return err; 7811 7812 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7813 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7814 7815 return err; 7816 } 7817 7818 /** 7819 * ice_eth_ioctl - Access the hwtstamp interface 7820 * @netdev: network interface device structure 7821 * @ifr: interface request data 7822 * @cmd: ioctl command 7823 */ 7824 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7825 { 7826 struct ice_netdev_priv *np = netdev_priv(netdev); 7827 struct ice_pf *pf = np->vsi->back; 7828 7829 switch (cmd) { 7830 case SIOCGHWTSTAMP: 7831 return ice_ptp_get_ts_config(pf, ifr); 7832 case SIOCSHWTSTAMP: 7833 return ice_ptp_set_ts_config(pf, ifr); 7834 default: 7835 return -EOPNOTSUPP; 7836 } 7837 } 7838 7839 /** 7840 * ice_aq_str - convert AQ err code to a string 7841 * @aq_err: the AQ error code to convert 7842 */ 7843 const char *ice_aq_str(enum ice_aq_err aq_err) 7844 { 7845 switch (aq_err) { 7846 case ICE_AQ_RC_OK: 7847 return "OK"; 7848 case ICE_AQ_RC_EPERM: 7849 return "ICE_AQ_RC_EPERM"; 7850 case ICE_AQ_RC_ENOENT: 7851 return "ICE_AQ_RC_ENOENT"; 7852 case ICE_AQ_RC_ENOMEM: 7853 return "ICE_AQ_RC_ENOMEM"; 7854 case ICE_AQ_RC_EBUSY: 7855 return "ICE_AQ_RC_EBUSY"; 7856 case ICE_AQ_RC_EEXIST: 7857 return "ICE_AQ_RC_EEXIST"; 7858 case ICE_AQ_RC_EINVAL: 7859 return "ICE_AQ_RC_EINVAL"; 7860 case ICE_AQ_RC_ENOSPC: 7861 return "ICE_AQ_RC_ENOSPC"; 7862 case ICE_AQ_RC_ENOSYS: 7863 return "ICE_AQ_RC_ENOSYS"; 7864 case ICE_AQ_RC_EMODE: 7865 return "ICE_AQ_RC_EMODE"; 7866 case ICE_AQ_RC_ENOSEC: 7867 return "ICE_AQ_RC_ENOSEC"; 7868 case ICE_AQ_RC_EBADSIG: 7869 return "ICE_AQ_RC_EBADSIG"; 7870 case ICE_AQ_RC_ESVN: 7871 return "ICE_AQ_RC_ESVN"; 7872 case ICE_AQ_RC_EBADMAN: 7873 return "ICE_AQ_RC_EBADMAN"; 7874 case ICE_AQ_RC_EBADBUF: 7875 return "ICE_AQ_RC_EBADBUF"; 7876 } 7877 7878 return "ICE_AQ_RC_UNKNOWN"; 7879 } 7880 7881 /** 7882 * ice_set_rss_lut - Set RSS LUT 7883 * @vsi: Pointer to VSI structure 7884 * @lut: Lookup table 7885 * @lut_size: Lookup table size 7886 * 7887 * Returns 0 on success, negative on failure 7888 */ 7889 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7890 { 7891 struct ice_aq_get_set_rss_lut_params params = {}; 7892 struct ice_hw *hw = &vsi->back->hw; 7893 int status; 7894 7895 if (!lut) 7896 return -EINVAL; 7897 7898 params.vsi_handle = vsi->idx; 7899 params.lut_size = lut_size; 7900 params.lut_type = vsi->rss_lut_type; 7901 params.lut = lut; 7902 7903 status = ice_aq_set_rss_lut(hw, ¶ms); 7904 if (status) 7905 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7906 status, ice_aq_str(hw->adminq.sq_last_status)); 7907 7908 return status; 7909 } 7910 7911 /** 7912 * ice_set_rss_key - Set RSS key 7913 * @vsi: Pointer to the VSI structure 7914 * @seed: RSS hash seed 7915 * 7916 * Returns 0 on success, negative on failure 7917 */ 7918 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7919 { 7920 struct ice_hw *hw = &vsi->back->hw; 7921 int status; 7922 7923 if (!seed) 7924 return -EINVAL; 7925 7926 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7927 if (status) 7928 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7929 status, ice_aq_str(hw->adminq.sq_last_status)); 7930 7931 return status; 7932 } 7933 7934 /** 7935 * ice_get_rss_lut - Get RSS LUT 7936 * @vsi: Pointer to VSI structure 7937 * @lut: Buffer to store the lookup table entries 7938 * @lut_size: Size of buffer to store the lookup table entries 7939 * 7940 * Returns 0 on success, negative on failure 7941 */ 7942 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7943 { 7944 struct ice_aq_get_set_rss_lut_params params = {}; 7945 struct ice_hw *hw = &vsi->back->hw; 7946 int status; 7947 7948 if (!lut) 7949 return -EINVAL; 7950 7951 params.vsi_handle = vsi->idx; 7952 params.lut_size = lut_size; 7953 params.lut_type = vsi->rss_lut_type; 7954 params.lut = lut; 7955 7956 status = ice_aq_get_rss_lut(hw, ¶ms); 7957 if (status) 7958 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7959 status, ice_aq_str(hw->adminq.sq_last_status)); 7960 7961 return status; 7962 } 7963 7964 /** 7965 * ice_get_rss_key - Get RSS key 7966 * @vsi: Pointer to VSI structure 7967 * @seed: Buffer to store the key in 7968 * 7969 * Returns 0 on success, negative on failure 7970 */ 7971 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7972 { 7973 struct ice_hw *hw = &vsi->back->hw; 7974 int status; 7975 7976 if (!seed) 7977 return -EINVAL; 7978 7979 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7980 if (status) 7981 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7982 status, ice_aq_str(hw->adminq.sq_last_status)); 7983 7984 return status; 7985 } 7986 7987 /** 7988 * ice_set_rss_hfunc - Set RSS HASH function 7989 * @vsi: Pointer to VSI structure 7990 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7991 * 7992 * Returns 0 on success, negative on failure 7993 */ 7994 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7995 { 7996 struct ice_hw *hw = &vsi->back->hw; 7997 struct ice_vsi_ctx *ctx; 7998 bool symm; 7999 int err; 8000 8001 if (hfunc == vsi->rss_hfunc) 8002 return 0; 8003 8004 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8005 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8006 return -EOPNOTSUPP; 8007 8008 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8009 if (!ctx) 8010 return -ENOMEM; 8011 8012 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8013 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8014 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8015 ctx->info.q_opt_rss |= 8016 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8017 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8018 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8019 8020 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8021 if (err) { 8022 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8023 vsi->vsi_num, err); 8024 } else { 8025 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8026 vsi->rss_hfunc = hfunc; 8027 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8028 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8029 "Symmetric " : ""); 8030 } 8031 kfree(ctx); 8032 if (err) 8033 return err; 8034 8035 /* Fix the symmetry setting for all existing RSS configurations */ 8036 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8037 return ice_set_rss_cfg_symm(hw, vsi, symm); 8038 } 8039 8040 /** 8041 * ice_bridge_getlink - Get the hardware bridge mode 8042 * @skb: skb buff 8043 * @pid: process ID 8044 * @seq: RTNL message seq 8045 * @dev: the netdev being configured 8046 * @filter_mask: filter mask passed in 8047 * @nlflags: netlink flags passed in 8048 * 8049 * Return the bridge mode (VEB/VEPA) 8050 */ 8051 static int 8052 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8053 struct net_device *dev, u32 filter_mask, int nlflags) 8054 { 8055 struct ice_netdev_priv *np = netdev_priv(dev); 8056 struct ice_vsi *vsi = np->vsi; 8057 struct ice_pf *pf = vsi->back; 8058 u16 bmode; 8059 8060 bmode = pf->first_sw->bridge_mode; 8061 8062 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8063 filter_mask, NULL); 8064 } 8065 8066 /** 8067 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8068 * @vsi: Pointer to VSI structure 8069 * @bmode: Hardware bridge mode (VEB/VEPA) 8070 * 8071 * Returns 0 on success, negative on failure 8072 */ 8073 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8074 { 8075 struct ice_aqc_vsi_props *vsi_props; 8076 struct ice_hw *hw = &vsi->back->hw; 8077 struct ice_vsi_ctx *ctxt; 8078 int ret; 8079 8080 vsi_props = &vsi->info; 8081 8082 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8083 if (!ctxt) 8084 return -ENOMEM; 8085 8086 ctxt->info = vsi->info; 8087 8088 if (bmode == BRIDGE_MODE_VEB) 8089 /* change from VEPA to VEB mode */ 8090 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8091 else 8092 /* change from VEB to VEPA mode */ 8093 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8094 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8095 8096 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8097 if (ret) { 8098 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8099 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8100 goto out; 8101 } 8102 /* Update sw flags for book keeping */ 8103 vsi_props->sw_flags = ctxt->info.sw_flags; 8104 8105 out: 8106 kfree(ctxt); 8107 return ret; 8108 } 8109 8110 /** 8111 * ice_bridge_setlink - Set the hardware bridge mode 8112 * @dev: the netdev being configured 8113 * @nlh: RTNL message 8114 * @flags: bridge setlink flags 8115 * @extack: netlink extended ack 8116 * 8117 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8118 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8119 * not already set for all VSIs connected to this switch. And also update the 8120 * unicast switch filter rules for the corresponding switch of the netdev. 8121 */ 8122 static int 8123 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8124 u16 __always_unused flags, 8125 struct netlink_ext_ack __always_unused *extack) 8126 { 8127 struct ice_netdev_priv *np = netdev_priv(dev); 8128 struct ice_pf *pf = np->vsi->back; 8129 struct nlattr *attr, *br_spec; 8130 struct ice_hw *hw = &pf->hw; 8131 struct ice_sw *pf_sw; 8132 int rem, v, err = 0; 8133 8134 pf_sw = pf->first_sw; 8135 /* find the attribute in the netlink message */ 8136 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8137 if (!br_spec) 8138 return -EINVAL; 8139 8140 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8141 __u16 mode = nla_get_u16(attr); 8142 8143 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8144 return -EINVAL; 8145 /* Continue if bridge mode is not being flipped */ 8146 if (mode == pf_sw->bridge_mode) 8147 continue; 8148 /* Iterates through the PF VSI list and update the loopback 8149 * mode of the VSI 8150 */ 8151 ice_for_each_vsi(pf, v) { 8152 if (!pf->vsi[v]) 8153 continue; 8154 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8155 if (err) 8156 return err; 8157 } 8158 8159 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8160 /* Update the unicast switch filter rules for the corresponding 8161 * switch of the netdev 8162 */ 8163 err = ice_update_sw_rule_bridge_mode(hw); 8164 if (err) { 8165 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8166 mode, err, 8167 ice_aq_str(hw->adminq.sq_last_status)); 8168 /* revert hw->evb_veb */ 8169 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8170 return err; 8171 } 8172 8173 pf_sw->bridge_mode = mode; 8174 } 8175 8176 return 0; 8177 } 8178 8179 /** 8180 * ice_tx_timeout - Respond to a Tx Hang 8181 * @netdev: network interface device structure 8182 * @txqueue: Tx queue 8183 */ 8184 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8185 { 8186 struct ice_netdev_priv *np = netdev_priv(netdev); 8187 struct ice_tx_ring *tx_ring = NULL; 8188 struct ice_vsi *vsi = np->vsi; 8189 struct ice_pf *pf = vsi->back; 8190 u32 i; 8191 8192 pf->tx_timeout_count++; 8193 8194 /* Check if PFC is enabled for the TC to which the queue belongs 8195 * to. If yes then Tx timeout is not caused by a hung queue, no 8196 * need to reset and rebuild 8197 */ 8198 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8199 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8200 txqueue); 8201 return; 8202 } 8203 8204 /* now that we have an index, find the tx_ring struct */ 8205 ice_for_each_txq(vsi, i) 8206 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8207 if (txqueue == vsi->tx_rings[i]->q_index) { 8208 tx_ring = vsi->tx_rings[i]; 8209 break; 8210 } 8211 8212 /* Reset recovery level if enough time has elapsed after last timeout. 8213 * Also ensure no new reset action happens before next timeout period. 8214 */ 8215 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8216 pf->tx_timeout_recovery_level = 1; 8217 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8218 netdev->watchdog_timeo))) 8219 return; 8220 8221 if (tx_ring) { 8222 struct ice_hw *hw = &pf->hw; 8223 u32 head, val = 0; 8224 8225 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8226 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8227 /* Read interrupt register */ 8228 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8229 8230 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8231 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8232 head, tx_ring->next_to_use, val); 8233 } 8234 8235 pf->tx_timeout_last_recovery = jiffies; 8236 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8237 pf->tx_timeout_recovery_level, txqueue); 8238 8239 switch (pf->tx_timeout_recovery_level) { 8240 case 1: 8241 set_bit(ICE_PFR_REQ, pf->state); 8242 break; 8243 case 2: 8244 set_bit(ICE_CORER_REQ, pf->state); 8245 break; 8246 case 3: 8247 set_bit(ICE_GLOBR_REQ, pf->state); 8248 break; 8249 default: 8250 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8251 set_bit(ICE_DOWN, pf->state); 8252 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8253 set_bit(ICE_SERVICE_DIS, pf->state); 8254 break; 8255 } 8256 8257 ice_service_task_schedule(pf); 8258 pf->tx_timeout_recovery_level++; 8259 } 8260 8261 /** 8262 * ice_setup_tc_cls_flower - flower classifier offloads 8263 * @np: net device to configure 8264 * @filter_dev: device on which filter is added 8265 * @cls_flower: offload data 8266 */ 8267 static int 8268 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8269 struct net_device *filter_dev, 8270 struct flow_cls_offload *cls_flower) 8271 { 8272 struct ice_vsi *vsi = np->vsi; 8273 8274 if (cls_flower->common.chain_index) 8275 return -EOPNOTSUPP; 8276 8277 switch (cls_flower->command) { 8278 case FLOW_CLS_REPLACE: 8279 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8280 case FLOW_CLS_DESTROY: 8281 return ice_del_cls_flower(vsi, cls_flower); 8282 default: 8283 return -EINVAL; 8284 } 8285 } 8286 8287 /** 8288 * ice_setup_tc_block_cb - callback handler registered for TC block 8289 * @type: TC SETUP type 8290 * @type_data: TC flower offload data that contains user input 8291 * @cb_priv: netdev private data 8292 */ 8293 static int 8294 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8295 { 8296 struct ice_netdev_priv *np = cb_priv; 8297 8298 switch (type) { 8299 case TC_SETUP_CLSFLOWER: 8300 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8301 type_data); 8302 default: 8303 return -EOPNOTSUPP; 8304 } 8305 } 8306 8307 /** 8308 * ice_validate_mqprio_qopt - Validate TCF input parameters 8309 * @vsi: Pointer to VSI 8310 * @mqprio_qopt: input parameters for mqprio queue configuration 8311 * 8312 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8313 * needed), and make sure user doesn't specify qcount and BW rate limit 8314 * for TCs, which are more than "num_tc" 8315 */ 8316 static int 8317 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8318 struct tc_mqprio_qopt_offload *mqprio_qopt) 8319 { 8320 int non_power_of_2_qcount = 0; 8321 struct ice_pf *pf = vsi->back; 8322 int max_rss_q_cnt = 0; 8323 u64 sum_min_rate = 0; 8324 struct device *dev; 8325 int i, speed; 8326 u8 num_tc; 8327 8328 if (vsi->type != ICE_VSI_PF) 8329 return -EINVAL; 8330 8331 if (mqprio_qopt->qopt.offset[0] != 0 || 8332 mqprio_qopt->qopt.num_tc < 1 || 8333 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8334 return -EINVAL; 8335 8336 dev = ice_pf_to_dev(pf); 8337 vsi->ch_rss_size = 0; 8338 num_tc = mqprio_qopt->qopt.num_tc; 8339 speed = ice_get_link_speed_kbps(vsi); 8340 8341 for (i = 0; num_tc; i++) { 8342 int qcount = mqprio_qopt->qopt.count[i]; 8343 u64 max_rate, min_rate, rem; 8344 8345 if (!qcount) 8346 return -EINVAL; 8347 8348 if (is_power_of_2(qcount)) { 8349 if (non_power_of_2_qcount && 8350 qcount > non_power_of_2_qcount) { 8351 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8352 qcount, non_power_of_2_qcount); 8353 return -EINVAL; 8354 } 8355 if (qcount > max_rss_q_cnt) 8356 max_rss_q_cnt = qcount; 8357 } else { 8358 if (non_power_of_2_qcount && 8359 qcount != non_power_of_2_qcount) { 8360 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8361 qcount, non_power_of_2_qcount); 8362 return -EINVAL; 8363 } 8364 if (qcount < max_rss_q_cnt) { 8365 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8366 qcount, max_rss_q_cnt); 8367 return -EINVAL; 8368 } 8369 max_rss_q_cnt = qcount; 8370 non_power_of_2_qcount = qcount; 8371 } 8372 8373 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8374 * converts the bandwidth rate limit into Bytes/s when 8375 * passing it down to the driver. So convert input bandwidth 8376 * from Bytes/s to Kbps 8377 */ 8378 max_rate = mqprio_qopt->max_rate[i]; 8379 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8380 8381 /* min_rate is minimum guaranteed rate and it can't be zero */ 8382 min_rate = mqprio_qopt->min_rate[i]; 8383 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8384 sum_min_rate += min_rate; 8385 8386 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8387 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8388 min_rate, ICE_MIN_BW_LIMIT); 8389 return -EINVAL; 8390 } 8391 8392 if (max_rate && max_rate > speed) { 8393 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8394 i, max_rate, speed); 8395 return -EINVAL; 8396 } 8397 8398 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8399 if (rem) { 8400 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8401 i, ICE_MIN_BW_LIMIT); 8402 return -EINVAL; 8403 } 8404 8405 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8406 if (rem) { 8407 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8408 i, ICE_MIN_BW_LIMIT); 8409 return -EINVAL; 8410 } 8411 8412 /* min_rate can't be more than max_rate, except when max_rate 8413 * is zero (implies max_rate sought is max line rate). In such 8414 * a case min_rate can be more than max. 8415 */ 8416 if (max_rate && min_rate > max_rate) { 8417 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8418 min_rate, max_rate); 8419 return -EINVAL; 8420 } 8421 8422 if (i >= mqprio_qopt->qopt.num_tc - 1) 8423 break; 8424 if (mqprio_qopt->qopt.offset[i + 1] != 8425 (mqprio_qopt->qopt.offset[i] + qcount)) 8426 return -EINVAL; 8427 } 8428 if (vsi->num_rxq < 8429 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8430 return -EINVAL; 8431 if (vsi->num_txq < 8432 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8433 return -EINVAL; 8434 8435 if (sum_min_rate && sum_min_rate > (u64)speed) { 8436 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8437 sum_min_rate, speed); 8438 return -EINVAL; 8439 } 8440 8441 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8442 vsi->ch_rss_size = max_rss_q_cnt; 8443 8444 return 0; 8445 } 8446 8447 /** 8448 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8449 * @pf: ptr to PF device 8450 * @vsi: ptr to VSI 8451 */ 8452 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8453 { 8454 struct device *dev = ice_pf_to_dev(pf); 8455 bool added = false; 8456 struct ice_hw *hw; 8457 int flow; 8458 8459 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8460 return -EINVAL; 8461 8462 hw = &pf->hw; 8463 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8464 struct ice_fd_hw_prof *prof; 8465 int tun, status; 8466 u64 entry_h; 8467 8468 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8469 hw->fdir_prof[flow]->cnt)) 8470 continue; 8471 8472 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8473 enum ice_flow_priority prio; 8474 8475 /* add this VSI to FDir profile for this flow */ 8476 prio = ICE_FLOW_PRIO_NORMAL; 8477 prof = hw->fdir_prof[flow]; 8478 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8479 prof->prof_id[tun], 8480 prof->vsi_h[0], vsi->idx, 8481 prio, prof->fdir_seg[tun], 8482 &entry_h); 8483 if (status) { 8484 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8485 vsi->idx, flow); 8486 continue; 8487 } 8488 8489 prof->entry_h[prof->cnt][tun] = entry_h; 8490 } 8491 8492 /* store VSI for filter replay and delete */ 8493 prof->vsi_h[prof->cnt] = vsi->idx; 8494 prof->cnt++; 8495 8496 added = true; 8497 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8498 flow); 8499 } 8500 8501 if (!added) 8502 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8503 8504 return 0; 8505 } 8506 8507 /** 8508 * ice_add_channel - add a channel by adding VSI 8509 * @pf: ptr to PF device 8510 * @sw_id: underlying HW switching element ID 8511 * @ch: ptr to channel structure 8512 * 8513 * Add a channel (VSI) using add_vsi and queue_map 8514 */ 8515 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8516 { 8517 struct device *dev = ice_pf_to_dev(pf); 8518 struct ice_vsi *vsi; 8519 8520 if (ch->type != ICE_VSI_CHNL) { 8521 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8522 return -EINVAL; 8523 } 8524 8525 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8526 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8527 dev_err(dev, "create chnl VSI failure\n"); 8528 return -EINVAL; 8529 } 8530 8531 ice_add_vsi_to_fdir(pf, vsi); 8532 8533 ch->sw_id = sw_id; 8534 ch->vsi_num = vsi->vsi_num; 8535 ch->info.mapping_flags = vsi->info.mapping_flags; 8536 ch->ch_vsi = vsi; 8537 /* set the back pointer of channel for newly created VSI */ 8538 vsi->ch = ch; 8539 8540 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8541 sizeof(vsi->info.q_mapping)); 8542 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8543 sizeof(vsi->info.tc_mapping)); 8544 8545 return 0; 8546 } 8547 8548 /** 8549 * ice_chnl_cfg_res 8550 * @vsi: the VSI being setup 8551 * @ch: ptr to channel structure 8552 * 8553 * Configure channel specific resources such as rings, vector. 8554 */ 8555 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8556 { 8557 int i; 8558 8559 for (i = 0; i < ch->num_txq; i++) { 8560 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8561 struct ice_ring_container *rc; 8562 struct ice_tx_ring *tx_ring; 8563 struct ice_rx_ring *rx_ring; 8564 8565 tx_ring = vsi->tx_rings[ch->base_q + i]; 8566 rx_ring = vsi->rx_rings[ch->base_q + i]; 8567 if (!tx_ring || !rx_ring) 8568 continue; 8569 8570 /* setup ring being channel enabled */ 8571 tx_ring->ch = ch; 8572 rx_ring->ch = ch; 8573 8574 /* following code block sets up vector specific attributes */ 8575 tx_q_vector = tx_ring->q_vector; 8576 rx_q_vector = rx_ring->q_vector; 8577 if (!tx_q_vector && !rx_q_vector) 8578 continue; 8579 8580 if (tx_q_vector) { 8581 tx_q_vector->ch = ch; 8582 /* setup Tx and Rx ITR setting if DIM is off */ 8583 rc = &tx_q_vector->tx; 8584 if (!ITR_IS_DYNAMIC(rc)) 8585 ice_write_itr(rc, rc->itr_setting); 8586 } 8587 if (rx_q_vector) { 8588 rx_q_vector->ch = ch; 8589 /* setup Tx and Rx ITR setting if DIM is off */ 8590 rc = &rx_q_vector->rx; 8591 if (!ITR_IS_DYNAMIC(rc)) 8592 ice_write_itr(rc, rc->itr_setting); 8593 } 8594 } 8595 8596 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8597 * GLINT_ITR register would have written to perform in-context 8598 * update, hence perform flush 8599 */ 8600 if (ch->num_txq || ch->num_rxq) 8601 ice_flush(&vsi->back->hw); 8602 } 8603 8604 /** 8605 * ice_cfg_chnl_all_res - configure channel resources 8606 * @vsi: pte to main_vsi 8607 * @ch: ptr to channel structure 8608 * 8609 * This function configures channel specific resources such as flow-director 8610 * counter index, and other resources such as queues, vectors, ITR settings 8611 */ 8612 static void 8613 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8614 { 8615 /* configure channel (aka ADQ) resources such as queues, vectors, 8616 * ITR settings for channel specific vectors and anything else 8617 */ 8618 ice_chnl_cfg_res(vsi, ch); 8619 } 8620 8621 /** 8622 * ice_setup_hw_channel - setup new channel 8623 * @pf: ptr to PF device 8624 * @vsi: the VSI being setup 8625 * @ch: ptr to channel structure 8626 * @sw_id: underlying HW switching element ID 8627 * @type: type of channel to be created (VMDq2/VF) 8628 * 8629 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8630 * and configures Tx rings accordingly 8631 */ 8632 static int 8633 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8634 struct ice_channel *ch, u16 sw_id, u8 type) 8635 { 8636 struct device *dev = ice_pf_to_dev(pf); 8637 int ret; 8638 8639 ch->base_q = vsi->next_base_q; 8640 ch->type = type; 8641 8642 ret = ice_add_channel(pf, sw_id, ch); 8643 if (ret) { 8644 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8645 return ret; 8646 } 8647 8648 /* configure/setup ADQ specific resources */ 8649 ice_cfg_chnl_all_res(vsi, ch); 8650 8651 /* make sure to update the next_base_q so that subsequent channel's 8652 * (aka ADQ) VSI queue map is correct 8653 */ 8654 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8655 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8656 ch->num_rxq); 8657 8658 return 0; 8659 } 8660 8661 /** 8662 * ice_setup_channel - setup new channel using uplink element 8663 * @pf: ptr to PF device 8664 * @vsi: the VSI being setup 8665 * @ch: ptr to channel structure 8666 * 8667 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8668 * and uplink switching element 8669 */ 8670 static bool 8671 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8672 struct ice_channel *ch) 8673 { 8674 struct device *dev = ice_pf_to_dev(pf); 8675 u16 sw_id; 8676 int ret; 8677 8678 if (vsi->type != ICE_VSI_PF) { 8679 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8680 return false; 8681 } 8682 8683 sw_id = pf->first_sw->sw_id; 8684 8685 /* create channel (VSI) */ 8686 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8687 if (ret) { 8688 dev_err(dev, "failed to setup hw_channel\n"); 8689 return false; 8690 } 8691 dev_dbg(dev, "successfully created channel()\n"); 8692 8693 return ch->ch_vsi ? true : false; 8694 } 8695 8696 /** 8697 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8698 * @vsi: VSI to be configured 8699 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8700 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8701 */ 8702 static int 8703 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8704 { 8705 int err; 8706 8707 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8708 if (err) 8709 return err; 8710 8711 return ice_set_max_bw_limit(vsi, max_tx_rate); 8712 } 8713 8714 /** 8715 * ice_create_q_channel - function to create channel 8716 * @vsi: VSI to be configured 8717 * @ch: ptr to channel (it contains channel specific params) 8718 * 8719 * This function creates channel (VSI) using num_queues specified by user, 8720 * reconfigs RSS if needed. 8721 */ 8722 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8723 { 8724 struct ice_pf *pf = vsi->back; 8725 struct device *dev; 8726 8727 if (!ch) 8728 return -EINVAL; 8729 8730 dev = ice_pf_to_dev(pf); 8731 if (!ch->num_txq || !ch->num_rxq) { 8732 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8733 return -EINVAL; 8734 } 8735 8736 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8737 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8738 vsi->cnt_q_avail, ch->num_txq); 8739 return -EINVAL; 8740 } 8741 8742 if (!ice_setup_channel(pf, vsi, ch)) { 8743 dev_info(dev, "Failed to setup channel\n"); 8744 return -EINVAL; 8745 } 8746 /* configure BW rate limit */ 8747 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8748 int ret; 8749 8750 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8751 ch->min_tx_rate); 8752 if (ret) 8753 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8754 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8755 else 8756 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8757 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8758 } 8759 8760 vsi->cnt_q_avail -= ch->num_txq; 8761 8762 return 0; 8763 } 8764 8765 /** 8766 * ice_rem_all_chnl_fltrs - removes all channel filters 8767 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8768 * 8769 * Remove all advanced switch filters only if they are channel specific 8770 * tc-flower based filter 8771 */ 8772 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8773 { 8774 struct ice_tc_flower_fltr *fltr; 8775 struct hlist_node *node; 8776 8777 /* to remove all channel filters, iterate an ordered list of filters */ 8778 hlist_for_each_entry_safe(fltr, node, 8779 &pf->tc_flower_fltr_list, 8780 tc_flower_node) { 8781 struct ice_rule_query_data rule; 8782 int status; 8783 8784 /* for now process only channel specific filters */ 8785 if (!ice_is_chnl_fltr(fltr)) 8786 continue; 8787 8788 rule.rid = fltr->rid; 8789 rule.rule_id = fltr->rule_id; 8790 rule.vsi_handle = fltr->dest_vsi_handle; 8791 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8792 if (status) { 8793 if (status == -ENOENT) 8794 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8795 rule.rule_id); 8796 else 8797 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8798 status); 8799 } else if (fltr->dest_vsi) { 8800 /* update advanced switch filter count */ 8801 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8802 u32 flags = fltr->flags; 8803 8804 fltr->dest_vsi->num_chnl_fltr--; 8805 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8806 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8807 pf->num_dmac_chnl_fltrs--; 8808 } 8809 } 8810 8811 hlist_del(&fltr->tc_flower_node); 8812 kfree(fltr); 8813 } 8814 } 8815 8816 /** 8817 * ice_remove_q_channels - Remove queue channels for the TCs 8818 * @vsi: VSI to be configured 8819 * @rem_fltr: delete advanced switch filter or not 8820 * 8821 * Remove queue channels for the TCs 8822 */ 8823 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8824 { 8825 struct ice_channel *ch, *ch_tmp; 8826 struct ice_pf *pf = vsi->back; 8827 int i; 8828 8829 /* remove all tc-flower based filter if they are channel filters only */ 8830 if (rem_fltr) 8831 ice_rem_all_chnl_fltrs(pf); 8832 8833 /* remove ntuple filters since queue configuration is being changed */ 8834 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8835 struct ice_hw *hw = &pf->hw; 8836 8837 mutex_lock(&hw->fdir_fltr_lock); 8838 ice_fdir_del_all_fltrs(vsi); 8839 mutex_unlock(&hw->fdir_fltr_lock); 8840 } 8841 8842 /* perform cleanup for channels if they exist */ 8843 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8844 struct ice_vsi *ch_vsi; 8845 8846 list_del(&ch->list); 8847 ch_vsi = ch->ch_vsi; 8848 if (!ch_vsi) { 8849 kfree(ch); 8850 continue; 8851 } 8852 8853 /* Reset queue contexts */ 8854 for (i = 0; i < ch->num_rxq; i++) { 8855 struct ice_tx_ring *tx_ring; 8856 struct ice_rx_ring *rx_ring; 8857 8858 tx_ring = vsi->tx_rings[ch->base_q + i]; 8859 rx_ring = vsi->rx_rings[ch->base_q + i]; 8860 if (tx_ring) { 8861 tx_ring->ch = NULL; 8862 if (tx_ring->q_vector) 8863 tx_ring->q_vector->ch = NULL; 8864 } 8865 if (rx_ring) { 8866 rx_ring->ch = NULL; 8867 if (rx_ring->q_vector) 8868 rx_ring->q_vector->ch = NULL; 8869 } 8870 } 8871 8872 /* Release FD resources for the channel VSI */ 8873 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8874 8875 /* clear the VSI from scheduler tree */ 8876 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8877 8878 /* Delete VSI from FW, PF and HW VSI arrays */ 8879 ice_vsi_delete(ch->ch_vsi); 8880 8881 /* free the channel */ 8882 kfree(ch); 8883 } 8884 8885 /* clear the channel VSI map which is stored in main VSI */ 8886 ice_for_each_chnl_tc(i) 8887 vsi->tc_map_vsi[i] = NULL; 8888 8889 /* reset main VSI's all TC information */ 8890 vsi->all_enatc = 0; 8891 vsi->all_numtc = 0; 8892 } 8893 8894 /** 8895 * ice_rebuild_channels - rebuild channel 8896 * @pf: ptr to PF 8897 * 8898 * Recreate channel VSIs and replay filters 8899 */ 8900 static int ice_rebuild_channels(struct ice_pf *pf) 8901 { 8902 struct device *dev = ice_pf_to_dev(pf); 8903 struct ice_vsi *main_vsi; 8904 bool rem_adv_fltr = true; 8905 struct ice_channel *ch; 8906 struct ice_vsi *vsi; 8907 int tc_idx = 1; 8908 int i, err; 8909 8910 main_vsi = ice_get_main_vsi(pf); 8911 if (!main_vsi) 8912 return 0; 8913 8914 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8915 main_vsi->old_numtc == 1) 8916 return 0; /* nothing to be done */ 8917 8918 /* reconfigure main VSI based on old value of TC and cached values 8919 * for MQPRIO opts 8920 */ 8921 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8922 if (err) { 8923 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8924 main_vsi->old_ena_tc, main_vsi->vsi_num); 8925 return err; 8926 } 8927 8928 /* rebuild ADQ VSIs */ 8929 ice_for_each_vsi(pf, i) { 8930 enum ice_vsi_type type; 8931 8932 vsi = pf->vsi[i]; 8933 if (!vsi || vsi->type != ICE_VSI_CHNL) 8934 continue; 8935 8936 type = vsi->type; 8937 8938 /* rebuild ADQ VSI */ 8939 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8940 if (err) { 8941 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8942 ice_vsi_type_str(type), vsi->idx, err); 8943 goto cleanup; 8944 } 8945 8946 /* Re-map HW VSI number, using VSI handle that has been 8947 * previously validated in ice_replay_vsi() call above 8948 */ 8949 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8950 8951 /* replay filters for the VSI */ 8952 err = ice_replay_vsi(&pf->hw, vsi->idx); 8953 if (err) { 8954 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8955 ice_vsi_type_str(type), err, vsi->idx); 8956 rem_adv_fltr = false; 8957 goto cleanup; 8958 } 8959 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8960 ice_vsi_type_str(type), vsi->idx); 8961 8962 /* store ADQ VSI at correct TC index in main VSI's 8963 * map of TC to VSI 8964 */ 8965 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8966 } 8967 8968 /* ADQ VSI(s) has been rebuilt successfully, so setup 8969 * channel for main VSI's Tx and Rx rings 8970 */ 8971 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8972 struct ice_vsi *ch_vsi; 8973 8974 ch_vsi = ch->ch_vsi; 8975 if (!ch_vsi) 8976 continue; 8977 8978 /* reconfig channel resources */ 8979 ice_cfg_chnl_all_res(main_vsi, ch); 8980 8981 /* replay BW rate limit if it is non-zero */ 8982 if (!ch->max_tx_rate && !ch->min_tx_rate) 8983 continue; 8984 8985 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8986 ch->min_tx_rate); 8987 if (err) 8988 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8989 err, ch->max_tx_rate, ch->min_tx_rate, 8990 ch_vsi->vsi_num); 8991 else 8992 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8993 ch->max_tx_rate, ch->min_tx_rate, 8994 ch_vsi->vsi_num); 8995 } 8996 8997 /* reconfig RSS for main VSI */ 8998 if (main_vsi->ch_rss_size) 8999 ice_vsi_cfg_rss_lut_key(main_vsi); 9000 9001 return 0; 9002 9003 cleanup: 9004 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9005 return err; 9006 } 9007 9008 /** 9009 * ice_create_q_channels - Add queue channel for the given TCs 9010 * @vsi: VSI to be configured 9011 * 9012 * Configures queue channel mapping to the given TCs 9013 */ 9014 static int ice_create_q_channels(struct ice_vsi *vsi) 9015 { 9016 struct ice_pf *pf = vsi->back; 9017 struct ice_channel *ch; 9018 int ret = 0, i; 9019 9020 ice_for_each_chnl_tc(i) { 9021 if (!(vsi->all_enatc & BIT(i))) 9022 continue; 9023 9024 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9025 if (!ch) { 9026 ret = -ENOMEM; 9027 goto err_free; 9028 } 9029 INIT_LIST_HEAD(&ch->list); 9030 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9031 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9032 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9033 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9034 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9035 9036 /* convert to Kbits/s */ 9037 if (ch->max_tx_rate) 9038 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9039 ICE_BW_KBPS_DIVISOR); 9040 if (ch->min_tx_rate) 9041 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9042 ICE_BW_KBPS_DIVISOR); 9043 9044 ret = ice_create_q_channel(vsi, ch); 9045 if (ret) { 9046 dev_err(ice_pf_to_dev(pf), 9047 "failed creating channel TC:%d\n", i); 9048 kfree(ch); 9049 goto err_free; 9050 } 9051 list_add_tail(&ch->list, &vsi->ch_list); 9052 vsi->tc_map_vsi[i] = ch->ch_vsi; 9053 dev_dbg(ice_pf_to_dev(pf), 9054 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9055 } 9056 return 0; 9057 9058 err_free: 9059 ice_remove_q_channels(vsi, false); 9060 9061 return ret; 9062 } 9063 9064 /** 9065 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9066 * @netdev: net device to configure 9067 * @type_data: TC offload data 9068 */ 9069 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9070 { 9071 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9072 struct ice_netdev_priv *np = netdev_priv(netdev); 9073 struct ice_vsi *vsi = np->vsi; 9074 struct ice_pf *pf = vsi->back; 9075 u16 mode, ena_tc_qdisc = 0; 9076 int cur_txq, cur_rxq; 9077 u8 hw = 0, num_tcf; 9078 struct device *dev; 9079 int ret, i; 9080 9081 dev = ice_pf_to_dev(pf); 9082 num_tcf = mqprio_qopt->qopt.num_tc; 9083 hw = mqprio_qopt->qopt.hw; 9084 mode = mqprio_qopt->mode; 9085 if (!hw) { 9086 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9087 vsi->ch_rss_size = 0; 9088 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9089 goto config_tcf; 9090 } 9091 9092 /* Generate queue region map for number of TCF requested */ 9093 for (i = 0; i < num_tcf; i++) 9094 ena_tc_qdisc |= BIT(i); 9095 9096 switch (mode) { 9097 case TC_MQPRIO_MODE_CHANNEL: 9098 9099 if (pf->hw.port_info->is_custom_tx_enabled) { 9100 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9101 return -EBUSY; 9102 } 9103 ice_tear_down_devlink_rate_tree(pf); 9104 9105 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9106 if (ret) { 9107 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9108 ret); 9109 return ret; 9110 } 9111 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9112 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9113 /* don't assume state of hw_tc_offload during driver load 9114 * and set the flag for TC flower filter if hw_tc_offload 9115 * already ON 9116 */ 9117 if (vsi->netdev->features & NETIF_F_HW_TC) 9118 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9119 break; 9120 default: 9121 return -EINVAL; 9122 } 9123 9124 config_tcf: 9125 9126 /* Requesting same TCF configuration as already enabled */ 9127 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9128 mode != TC_MQPRIO_MODE_CHANNEL) 9129 return 0; 9130 9131 /* Pause VSI queues */ 9132 ice_dis_vsi(vsi, true); 9133 9134 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9135 ice_remove_q_channels(vsi, true); 9136 9137 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9138 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9139 num_online_cpus()); 9140 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9141 num_online_cpus()); 9142 } else { 9143 /* logic to rebuild VSI, same like ethtool -L */ 9144 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9145 9146 for (i = 0; i < num_tcf; i++) { 9147 if (!(ena_tc_qdisc & BIT(i))) 9148 continue; 9149 9150 offset = vsi->mqprio_qopt.qopt.offset[i]; 9151 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9152 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9153 } 9154 vsi->req_txq = offset + qcount_tx; 9155 vsi->req_rxq = offset + qcount_rx; 9156 9157 /* store away original rss_size info, so that it gets reused 9158 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9159 * determine, what should be the rss_sizefor main VSI 9160 */ 9161 vsi->orig_rss_size = vsi->rss_size; 9162 } 9163 9164 /* save current values of Tx and Rx queues before calling VSI rebuild 9165 * for fallback option 9166 */ 9167 cur_txq = vsi->num_txq; 9168 cur_rxq = vsi->num_rxq; 9169 9170 /* proceed with rebuild main VSI using correct number of queues */ 9171 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9172 if (ret) { 9173 /* fallback to current number of queues */ 9174 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9175 vsi->req_txq = cur_txq; 9176 vsi->req_rxq = cur_rxq; 9177 clear_bit(ICE_RESET_FAILED, pf->state); 9178 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9179 dev_err(dev, "Rebuild of main VSI failed again\n"); 9180 return ret; 9181 } 9182 } 9183 9184 vsi->all_numtc = num_tcf; 9185 vsi->all_enatc = ena_tc_qdisc; 9186 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9187 if (ret) { 9188 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9189 vsi->vsi_num); 9190 goto exit; 9191 } 9192 9193 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9194 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9195 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9196 9197 /* set TC0 rate limit if specified */ 9198 if (max_tx_rate || min_tx_rate) { 9199 /* convert to Kbits/s */ 9200 if (max_tx_rate) 9201 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9202 if (min_tx_rate) 9203 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9204 9205 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9206 if (!ret) { 9207 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9208 max_tx_rate, min_tx_rate, vsi->vsi_num); 9209 } else { 9210 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9211 max_tx_rate, min_tx_rate, vsi->vsi_num); 9212 goto exit; 9213 } 9214 } 9215 ret = ice_create_q_channels(vsi); 9216 if (ret) { 9217 netdev_err(netdev, "failed configuring queue channels\n"); 9218 goto exit; 9219 } else { 9220 netdev_dbg(netdev, "successfully configured channels\n"); 9221 } 9222 } 9223 9224 if (vsi->ch_rss_size) 9225 ice_vsi_cfg_rss_lut_key(vsi); 9226 9227 exit: 9228 /* if error, reset the all_numtc and all_enatc */ 9229 if (ret) { 9230 vsi->all_numtc = 0; 9231 vsi->all_enatc = 0; 9232 } 9233 /* resume VSI */ 9234 ice_ena_vsi(vsi, true); 9235 9236 return ret; 9237 } 9238 9239 static LIST_HEAD(ice_block_cb_list); 9240 9241 static int 9242 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9243 void *type_data) 9244 { 9245 struct ice_netdev_priv *np = netdev_priv(netdev); 9246 struct ice_pf *pf = np->vsi->back; 9247 bool locked = false; 9248 int err; 9249 9250 switch (type) { 9251 case TC_SETUP_BLOCK: 9252 return flow_block_cb_setup_simple(type_data, 9253 &ice_block_cb_list, 9254 ice_setup_tc_block_cb, 9255 np, np, true); 9256 case TC_SETUP_QDISC_MQPRIO: 9257 if (ice_is_eswitch_mode_switchdev(pf)) { 9258 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9259 return -EOPNOTSUPP; 9260 } 9261 9262 if (pf->adev) { 9263 mutex_lock(&pf->adev_mutex); 9264 device_lock(&pf->adev->dev); 9265 locked = true; 9266 if (pf->adev->dev.driver) { 9267 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9268 err = -EBUSY; 9269 goto adev_unlock; 9270 } 9271 } 9272 9273 /* setup traffic classifier for receive side */ 9274 mutex_lock(&pf->tc_mutex); 9275 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9276 mutex_unlock(&pf->tc_mutex); 9277 9278 adev_unlock: 9279 if (locked) { 9280 device_unlock(&pf->adev->dev); 9281 mutex_unlock(&pf->adev_mutex); 9282 } 9283 return err; 9284 default: 9285 return -EOPNOTSUPP; 9286 } 9287 return -EOPNOTSUPP; 9288 } 9289 9290 static struct ice_indr_block_priv * 9291 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9292 struct net_device *netdev) 9293 { 9294 struct ice_indr_block_priv *cb_priv; 9295 9296 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9297 if (!cb_priv->netdev) 9298 return NULL; 9299 if (cb_priv->netdev == netdev) 9300 return cb_priv; 9301 } 9302 return NULL; 9303 } 9304 9305 static int 9306 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9307 void *indr_priv) 9308 { 9309 struct ice_indr_block_priv *priv = indr_priv; 9310 struct ice_netdev_priv *np = priv->np; 9311 9312 switch (type) { 9313 case TC_SETUP_CLSFLOWER: 9314 return ice_setup_tc_cls_flower(np, priv->netdev, 9315 (struct flow_cls_offload *) 9316 type_data); 9317 default: 9318 return -EOPNOTSUPP; 9319 } 9320 } 9321 9322 static int 9323 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9324 struct ice_netdev_priv *np, 9325 struct flow_block_offload *f, void *data, 9326 void (*cleanup)(struct flow_block_cb *block_cb)) 9327 { 9328 struct ice_indr_block_priv *indr_priv; 9329 struct flow_block_cb *block_cb; 9330 9331 if (!ice_is_tunnel_supported(netdev) && 9332 !(is_vlan_dev(netdev) && 9333 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9334 return -EOPNOTSUPP; 9335 9336 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9337 return -EOPNOTSUPP; 9338 9339 switch (f->command) { 9340 case FLOW_BLOCK_BIND: 9341 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9342 if (indr_priv) 9343 return -EEXIST; 9344 9345 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9346 if (!indr_priv) 9347 return -ENOMEM; 9348 9349 indr_priv->netdev = netdev; 9350 indr_priv->np = np; 9351 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9352 9353 block_cb = 9354 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9355 indr_priv, indr_priv, 9356 ice_rep_indr_tc_block_unbind, 9357 f, netdev, sch, data, np, 9358 cleanup); 9359 9360 if (IS_ERR(block_cb)) { 9361 list_del(&indr_priv->list); 9362 kfree(indr_priv); 9363 return PTR_ERR(block_cb); 9364 } 9365 flow_block_cb_add(block_cb, f); 9366 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9367 break; 9368 case FLOW_BLOCK_UNBIND: 9369 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9370 if (!indr_priv) 9371 return -ENOENT; 9372 9373 block_cb = flow_block_cb_lookup(f->block, 9374 ice_indr_setup_block_cb, 9375 indr_priv); 9376 if (!block_cb) 9377 return -ENOENT; 9378 9379 flow_indr_block_cb_remove(block_cb, f); 9380 9381 list_del(&block_cb->driver_list); 9382 break; 9383 default: 9384 return -EOPNOTSUPP; 9385 } 9386 return 0; 9387 } 9388 9389 static int 9390 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9391 void *cb_priv, enum tc_setup_type type, void *type_data, 9392 void *data, 9393 void (*cleanup)(struct flow_block_cb *block_cb)) 9394 { 9395 switch (type) { 9396 case TC_SETUP_BLOCK: 9397 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9398 data, cleanup); 9399 9400 default: 9401 return -EOPNOTSUPP; 9402 } 9403 } 9404 9405 /** 9406 * ice_open - Called when a network interface becomes active 9407 * @netdev: network interface device structure 9408 * 9409 * The open entry point is called when a network interface is made 9410 * active by the system (IFF_UP). At this point all resources needed 9411 * for transmit and receive operations are allocated, the interrupt 9412 * handler is registered with the OS, the netdev watchdog is enabled, 9413 * and the stack is notified that the interface is ready. 9414 * 9415 * Returns 0 on success, negative value on failure 9416 */ 9417 int ice_open(struct net_device *netdev) 9418 { 9419 struct ice_netdev_priv *np = netdev_priv(netdev); 9420 struct ice_pf *pf = np->vsi->back; 9421 9422 if (ice_is_reset_in_progress(pf->state)) { 9423 netdev_err(netdev, "can't open net device while reset is in progress"); 9424 return -EBUSY; 9425 } 9426 9427 return ice_open_internal(netdev); 9428 } 9429 9430 /** 9431 * ice_open_internal - Called when a network interface becomes active 9432 * @netdev: network interface device structure 9433 * 9434 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9435 * handling routine 9436 * 9437 * Returns 0 on success, negative value on failure 9438 */ 9439 int ice_open_internal(struct net_device *netdev) 9440 { 9441 struct ice_netdev_priv *np = netdev_priv(netdev); 9442 struct ice_vsi *vsi = np->vsi; 9443 struct ice_pf *pf = vsi->back; 9444 struct ice_port_info *pi; 9445 int err; 9446 9447 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9448 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9449 return -EIO; 9450 } 9451 9452 netif_carrier_off(netdev); 9453 9454 pi = vsi->port_info; 9455 err = ice_update_link_info(pi); 9456 if (err) { 9457 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9458 return err; 9459 } 9460 9461 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9462 9463 /* Set PHY if there is media, otherwise, turn off PHY */ 9464 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9465 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9466 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9467 err = ice_init_phy_user_cfg(pi); 9468 if (err) { 9469 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9470 err); 9471 return err; 9472 } 9473 } 9474 9475 err = ice_configure_phy(vsi); 9476 if (err) { 9477 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9478 err); 9479 return err; 9480 } 9481 } else { 9482 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9483 ice_set_link(vsi, false); 9484 } 9485 9486 err = ice_vsi_open(vsi); 9487 if (err) 9488 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9489 vsi->vsi_num, vsi->vsw->sw_id); 9490 9491 /* Update existing tunnels information */ 9492 udp_tunnel_get_rx_info(netdev); 9493 9494 return err; 9495 } 9496 9497 /** 9498 * ice_stop - Disables a network interface 9499 * @netdev: network interface device structure 9500 * 9501 * The stop entry point is called when an interface is de-activated by the OS, 9502 * and the netdevice enters the DOWN state. The hardware is still under the 9503 * driver's control, but the netdev interface is disabled. 9504 * 9505 * Returns success only - not allowed to fail 9506 */ 9507 int ice_stop(struct net_device *netdev) 9508 { 9509 struct ice_netdev_priv *np = netdev_priv(netdev); 9510 struct ice_vsi *vsi = np->vsi; 9511 struct ice_pf *pf = vsi->back; 9512 9513 if (ice_is_reset_in_progress(pf->state)) { 9514 netdev_err(netdev, "can't stop net device while reset is in progress"); 9515 return -EBUSY; 9516 } 9517 9518 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9519 int link_err = ice_force_phys_link_state(vsi, false); 9520 9521 if (link_err) { 9522 if (link_err == -ENOMEDIUM) 9523 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9524 vsi->vsi_num); 9525 else 9526 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9527 vsi->vsi_num, link_err); 9528 9529 ice_vsi_close(vsi); 9530 return -EIO; 9531 } 9532 } 9533 9534 ice_vsi_close(vsi); 9535 9536 return 0; 9537 } 9538 9539 /** 9540 * ice_features_check - Validate encapsulated packet conforms to limits 9541 * @skb: skb buffer 9542 * @netdev: This port's netdev 9543 * @features: Offload features that the stack believes apply 9544 */ 9545 static netdev_features_t 9546 ice_features_check(struct sk_buff *skb, 9547 struct net_device __always_unused *netdev, 9548 netdev_features_t features) 9549 { 9550 bool gso = skb_is_gso(skb); 9551 size_t len; 9552 9553 /* No point in doing any of this if neither checksum nor GSO are 9554 * being requested for this frame. We can rule out both by just 9555 * checking for CHECKSUM_PARTIAL 9556 */ 9557 if (skb->ip_summed != CHECKSUM_PARTIAL) 9558 return features; 9559 9560 /* We cannot support GSO if the MSS is going to be less than 9561 * 64 bytes. If it is then we need to drop support for GSO. 9562 */ 9563 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9564 features &= ~NETIF_F_GSO_MASK; 9565 9566 len = skb_network_offset(skb); 9567 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9568 goto out_rm_features; 9569 9570 len = skb_network_header_len(skb); 9571 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9572 goto out_rm_features; 9573 9574 if (skb->encapsulation) { 9575 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9576 * the case of IPIP frames, the transport header pointer is 9577 * after the inner header! So check to make sure that this 9578 * is a GRE or UDP_TUNNEL frame before doing that math. 9579 */ 9580 if (gso && (skb_shinfo(skb)->gso_type & 9581 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9582 len = skb_inner_network_header(skb) - 9583 skb_transport_header(skb); 9584 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9585 goto out_rm_features; 9586 } 9587 9588 len = skb_inner_network_header_len(skb); 9589 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9590 goto out_rm_features; 9591 } 9592 9593 return features; 9594 out_rm_features: 9595 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9596 } 9597 9598 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9599 .ndo_open = ice_open, 9600 .ndo_stop = ice_stop, 9601 .ndo_start_xmit = ice_start_xmit, 9602 .ndo_set_mac_address = ice_set_mac_address, 9603 .ndo_validate_addr = eth_validate_addr, 9604 .ndo_change_mtu = ice_change_mtu, 9605 .ndo_get_stats64 = ice_get_stats64, 9606 .ndo_tx_timeout = ice_tx_timeout, 9607 .ndo_bpf = ice_xdp_safe_mode, 9608 }; 9609 9610 static const struct net_device_ops ice_netdev_ops = { 9611 .ndo_open = ice_open, 9612 .ndo_stop = ice_stop, 9613 .ndo_start_xmit = ice_start_xmit, 9614 .ndo_select_queue = ice_select_queue, 9615 .ndo_features_check = ice_features_check, 9616 .ndo_fix_features = ice_fix_features, 9617 .ndo_set_rx_mode = ice_set_rx_mode, 9618 .ndo_set_mac_address = ice_set_mac_address, 9619 .ndo_validate_addr = eth_validate_addr, 9620 .ndo_change_mtu = ice_change_mtu, 9621 .ndo_get_stats64 = ice_get_stats64, 9622 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9623 .ndo_eth_ioctl = ice_eth_ioctl, 9624 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9625 .ndo_set_vf_mac = ice_set_vf_mac, 9626 .ndo_get_vf_config = ice_get_vf_cfg, 9627 .ndo_set_vf_trust = ice_set_vf_trust, 9628 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9629 .ndo_set_vf_link_state = ice_set_vf_link_state, 9630 .ndo_get_vf_stats = ice_get_vf_stats, 9631 .ndo_set_vf_rate = ice_set_vf_bw, 9632 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9633 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9634 .ndo_setup_tc = ice_setup_tc, 9635 .ndo_set_features = ice_set_features, 9636 .ndo_bridge_getlink = ice_bridge_getlink, 9637 .ndo_bridge_setlink = ice_bridge_setlink, 9638 .ndo_fdb_add = ice_fdb_add, 9639 .ndo_fdb_del = ice_fdb_del, 9640 #ifdef CONFIG_RFS_ACCEL 9641 .ndo_rx_flow_steer = ice_rx_flow_steer, 9642 #endif 9643 .ndo_tx_timeout = ice_tx_timeout, 9644 .ndo_bpf = ice_xdp, 9645 .ndo_xdp_xmit = ice_xdp_xmit, 9646 .ndo_xsk_wakeup = ice_xsk_wakeup, 9647 }; 9648