1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS(LIBIE); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops); 91 } 92 93 /** 94 * ice_get_tx_pending - returns number of Tx descriptors not processed 95 * @ring: the ring of descriptors 96 */ 97 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 98 { 99 u16 head, tail; 100 101 head = ring->next_to_clean; 102 tail = ring->next_to_use; 103 104 if (head != tail) 105 return (head < tail) ? 106 tail - head : (tail + ring->count - head); 107 return 0; 108 } 109 110 /** 111 * ice_check_for_hang_subtask - check for and recover hung queues 112 * @pf: pointer to PF struct 113 */ 114 static void ice_check_for_hang_subtask(struct ice_pf *pf) 115 { 116 struct ice_vsi *vsi = NULL; 117 struct ice_hw *hw; 118 unsigned int i; 119 int packets; 120 u32 v; 121 122 ice_for_each_vsi(pf, v) 123 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 124 vsi = pf->vsi[v]; 125 break; 126 } 127 128 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 129 return; 130 131 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 132 return; 133 134 hw = &vsi->back->hw; 135 136 ice_for_each_txq(vsi, i) { 137 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 138 struct ice_ring_stats *ring_stats; 139 140 if (!tx_ring) 141 continue; 142 if (ice_ring_ch_enabled(tx_ring)) 143 continue; 144 145 ring_stats = tx_ring->ring_stats; 146 if (!ring_stats) 147 continue; 148 149 if (tx_ring->desc) { 150 /* If packet counter has not changed the queue is 151 * likely stalled, so force an interrupt for this 152 * queue. 153 * 154 * prev_pkt would be negative if there was no 155 * pending work. 156 */ 157 packets = ring_stats->stats.pkts & INT_MAX; 158 if (ring_stats->tx_stats.prev_pkt == packets) { 159 /* Trigger sw interrupt to revive the queue */ 160 ice_trigger_sw_intr(hw, tx_ring->q_vector); 161 continue; 162 } 163 164 /* Memory barrier between read of packet count and call 165 * to ice_get_tx_pending() 166 */ 167 smp_rmb(); 168 ring_stats->tx_stats.prev_pkt = 169 ice_get_tx_pending(tx_ring) ? packets : -1; 170 } 171 } 172 } 173 174 /** 175 * ice_init_mac_fltr - Set initial MAC filters 176 * @pf: board private structure 177 * 178 * Set initial set of MAC filters for PF VSI; configure filters for permanent 179 * address and broadcast address. If an error is encountered, netdevice will be 180 * unregistered. 181 */ 182 static int ice_init_mac_fltr(struct ice_pf *pf) 183 { 184 struct ice_vsi *vsi; 185 u8 *perm_addr; 186 187 vsi = ice_get_main_vsi(pf); 188 if (!vsi) 189 return -EINVAL; 190 191 perm_addr = vsi->port_info->mac.perm_addr; 192 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 193 } 194 195 /** 196 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 197 * @netdev: the net device on which the sync is happening 198 * @addr: MAC address to sync 199 * 200 * This is a callback function which is called by the in kernel device sync 201 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 202 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 203 * MAC filters from the hardware. 204 */ 205 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 206 { 207 struct ice_netdev_priv *np = netdev_priv(netdev); 208 struct ice_vsi *vsi = np->vsi; 209 210 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 211 ICE_FWD_TO_VSI)) 212 return -EINVAL; 213 214 return 0; 215 } 216 217 /** 218 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 219 * @netdev: the net device on which the unsync is happening 220 * @addr: MAC address to unsync 221 * 222 * This is a callback function which is called by the in kernel device unsync 223 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 224 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 225 * delete the MAC filters from the hardware. 226 */ 227 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 228 { 229 struct ice_netdev_priv *np = netdev_priv(netdev); 230 struct ice_vsi *vsi = np->vsi; 231 232 /* Under some circumstances, we might receive a request to delete our 233 * own device address from our uc list. Because we store the device 234 * address in the VSI's MAC filter list, we need to ignore such 235 * requests and not delete our device address from this list. 236 */ 237 if (ether_addr_equal(addr, netdev->dev_addr)) 238 return 0; 239 240 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 241 ICE_FWD_TO_VSI)) 242 return -EINVAL; 243 244 return 0; 245 } 246 247 /** 248 * ice_vsi_fltr_changed - check if filter state changed 249 * @vsi: VSI to be checked 250 * 251 * returns true if filter state has changed, false otherwise. 252 */ 253 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 254 { 255 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 256 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 257 } 258 259 /** 260 * ice_set_promisc - Enable promiscuous mode for a given PF 261 * @vsi: the VSI being configured 262 * @promisc_m: mask of promiscuous config bits 263 * 264 */ 265 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 266 { 267 int status; 268 269 if (vsi->type != ICE_VSI_PF) 270 return 0; 271 272 if (ice_vsi_has_non_zero_vlans(vsi)) { 273 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 274 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 275 promisc_m); 276 } else { 277 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 278 promisc_m, 0); 279 } 280 if (status && status != -EEXIST) 281 return status; 282 283 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 284 vsi->vsi_num, promisc_m); 285 return 0; 286 } 287 288 /** 289 * ice_clear_promisc - Disable promiscuous mode for a given PF 290 * @vsi: the VSI being configured 291 * @promisc_m: mask of promiscuous config bits 292 * 293 */ 294 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 295 { 296 int status; 297 298 if (vsi->type != ICE_VSI_PF) 299 return 0; 300 301 if (ice_vsi_has_non_zero_vlans(vsi)) { 302 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 303 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 304 promisc_m); 305 } else { 306 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 307 promisc_m, 0); 308 } 309 310 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 311 vsi->vsi_num, promisc_m); 312 return status; 313 } 314 315 /** 316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 317 * @vsi: ptr to the VSI 318 * 319 * Push any outstanding VSI filter changes through the AdminQ. 320 */ 321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 322 { 323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 324 struct device *dev = ice_pf_to_dev(vsi->back); 325 struct net_device *netdev = vsi->netdev; 326 bool promisc_forced_on = false; 327 struct ice_pf *pf = vsi->back; 328 struct ice_hw *hw = &pf->hw; 329 u32 changed_flags = 0; 330 int err; 331 332 if (!vsi->netdev) 333 return -EINVAL; 334 335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 336 usleep_range(1000, 2000); 337 338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 339 vsi->current_netdev_flags = vsi->netdev->flags; 340 341 INIT_LIST_HEAD(&vsi->tmp_sync_list); 342 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 343 344 if (ice_vsi_fltr_changed(vsi)) { 345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 347 348 /* grab the netdev's addr_list_lock */ 349 netif_addr_lock_bh(netdev); 350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 /* our temp lists are populated. release lock */ 355 netif_addr_unlock_bh(netdev); 356 } 357 358 /* Remove MAC addresses in the unsync list */ 359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 361 if (err) { 362 netdev_err(netdev, "Failed to delete MAC filters\n"); 363 /* if we failed because of alloc failures, just bail */ 364 if (err == -ENOMEM) 365 goto out; 366 } 367 368 /* Add MAC addresses in the sync list */ 369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 370 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 371 /* If filter is added successfully or already exists, do not go into 372 * 'if' condition and report it as error. Instead continue processing 373 * rest of the function. 374 */ 375 if (err && err != -EEXIST) { 376 netdev_err(netdev, "Failed to add MAC filters\n"); 377 /* If there is no more space for new umac filters, VSI 378 * should go into promiscuous mode. There should be some 379 * space reserved for promiscuous filters. 380 */ 381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 383 vsi->state)) { 384 promisc_forced_on = true; 385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 386 vsi->vsi_num); 387 } else { 388 goto out; 389 } 390 } 391 err = 0; 392 /* check for changes in promiscuous modes */ 393 if (changed_flags & IFF_ALLMULTI) { 394 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 396 if (err) { 397 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 398 goto out_promisc; 399 } 400 } else { 401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 403 if (err) { 404 vsi->current_netdev_flags |= IFF_ALLMULTI; 405 goto out_promisc; 406 } 407 } 408 } 409 410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 413 if (vsi->current_netdev_flags & IFF_PROMISC) { 414 /* Apply Rx filter rule to get traffic from wire */ 415 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 416 err = ice_set_dflt_vsi(vsi); 417 if (err && err != -EEXIST) { 418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 419 err, vsi->vsi_num); 420 vsi->current_netdev_flags &= 421 ~IFF_PROMISC; 422 goto out_promisc; 423 } 424 err = 0; 425 vlan_ops->dis_rx_filtering(vsi); 426 427 /* promiscuous mode implies allmulticast so 428 * that VSIs that are in promiscuous mode are 429 * subscribed to multicast packets coming to 430 * the port 431 */ 432 err = ice_set_promisc(vsi, 433 ICE_MCAST_PROMISC_BITS); 434 if (err) 435 goto out_promisc; 436 } 437 } else { 438 /* Clear Rx filter to remove traffic from wire */ 439 if (ice_is_vsi_dflt_vsi(vsi)) { 440 err = ice_clear_dflt_vsi(vsi); 441 if (err) { 442 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 443 err, vsi->vsi_num); 444 vsi->current_netdev_flags |= 445 IFF_PROMISC; 446 goto out_promisc; 447 } 448 if (vsi->netdev->features & 449 NETIF_F_HW_VLAN_CTAG_FILTER) 450 vlan_ops->ena_rx_filtering(vsi); 451 } 452 453 /* disable allmulti here, but only if allmulti is not 454 * still enabled for the netdev 455 */ 456 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 457 err = ice_clear_promisc(vsi, 458 ICE_MCAST_PROMISC_BITS); 459 if (err) { 460 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 461 err, vsi->vsi_num); 462 } 463 } 464 } 465 } 466 goto exit; 467 468 out_promisc: 469 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 470 goto exit; 471 out: 472 /* if something went wrong then set the changed flag so we try again */ 473 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 474 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 475 exit: 476 clear_bit(ICE_CFG_BUSY, vsi->state); 477 return err; 478 } 479 480 /** 481 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 482 * @pf: board private structure 483 */ 484 static void ice_sync_fltr_subtask(struct ice_pf *pf) 485 { 486 int v; 487 488 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 489 return; 490 491 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 492 493 ice_for_each_vsi(pf, v) 494 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 495 ice_vsi_sync_fltr(pf->vsi[v])) { 496 /* come back and try again later */ 497 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 498 break; 499 } 500 } 501 502 /** 503 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 504 * @pf: the PF 505 * @locked: is the rtnl_lock already held 506 */ 507 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 508 { 509 int node; 510 int v; 511 512 ice_for_each_vsi(pf, v) 513 if (pf->vsi[v]) 514 ice_dis_vsi(pf->vsi[v], locked); 515 516 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 517 pf->pf_agg_node[node].num_vsis = 0; 518 519 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 520 pf->vf_agg_node[node].num_vsis = 0; 521 } 522 523 /** 524 * ice_clear_sw_switch_recipes - clear switch recipes 525 * @pf: board private structure 526 * 527 * Mark switch recipes as not created in sw structures. There are cases where 528 * rules (especially advanced rules) need to be restored, either re-read from 529 * hardware or added again. For example after the reset. 'recp_created' flag 530 * prevents from doing that and need to be cleared upfront. 531 */ 532 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 533 { 534 struct ice_sw_recipe *recp; 535 u8 i; 536 537 recp = pf->hw.switch_info->recp_list; 538 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 539 recp[i].recp_created = false; 540 } 541 542 /** 543 * ice_prepare_for_reset - prep for reset 544 * @pf: board private structure 545 * @reset_type: reset type requested 546 * 547 * Inform or close all dependent features in prep for reset. 548 */ 549 static void 550 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 551 { 552 struct ice_hw *hw = &pf->hw; 553 struct ice_vsi *vsi; 554 struct ice_vf *vf; 555 unsigned int bkt; 556 557 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 558 559 /* already prepared for reset */ 560 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 561 return; 562 563 ice_unplug_aux_dev(pf); 564 565 /* Notify VFs of impending reset */ 566 if (ice_check_sq_alive(hw, &hw->mailboxq)) 567 ice_vc_notify_reset(pf); 568 569 /* Disable VFs until reset is completed */ 570 mutex_lock(&pf->vfs.table_lock); 571 ice_for_each_vf(pf, bkt, vf) 572 ice_set_vf_state_dis(vf); 573 mutex_unlock(&pf->vfs.table_lock); 574 575 if (ice_is_eswitch_mode_switchdev(pf)) { 576 if (reset_type != ICE_RESET_PFR) 577 ice_clear_sw_switch_recipes(pf); 578 } 579 580 /* release ADQ specific HW and SW resources */ 581 vsi = ice_get_main_vsi(pf); 582 if (!vsi) 583 goto skip; 584 585 /* to be on safe side, reset orig_rss_size so that normal flow 586 * of deciding rss_size can take precedence 587 */ 588 vsi->orig_rss_size = 0; 589 590 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 591 if (reset_type == ICE_RESET_PFR) { 592 vsi->old_ena_tc = vsi->all_enatc; 593 vsi->old_numtc = vsi->all_numtc; 594 } else { 595 ice_remove_q_channels(vsi, true); 596 597 /* for other reset type, do not support channel rebuild 598 * hence reset needed info 599 */ 600 vsi->old_ena_tc = 0; 601 vsi->all_enatc = 0; 602 vsi->old_numtc = 0; 603 vsi->all_numtc = 0; 604 vsi->req_txq = 0; 605 vsi->req_rxq = 0; 606 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 607 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 608 } 609 } 610 skip: 611 612 /* clear SW filtering DB */ 613 ice_clear_hw_tbls(hw); 614 /* disable the VSIs and their queues that are not already DOWN */ 615 ice_pf_dis_all_vsi(pf, false); 616 617 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 618 ice_ptp_prepare_for_reset(pf, reset_type); 619 620 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 621 ice_gnss_exit(pf); 622 623 if (hw->port_info) 624 ice_sched_clear_port(hw->port_info); 625 626 ice_shutdown_all_ctrlq(hw); 627 628 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 629 } 630 631 /** 632 * ice_do_reset - Initiate one of many types of resets 633 * @pf: board private structure 634 * @reset_type: reset type requested before this function was called. 635 */ 636 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 637 { 638 struct device *dev = ice_pf_to_dev(pf); 639 struct ice_hw *hw = &pf->hw; 640 641 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 642 643 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 644 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 645 reset_type = ICE_RESET_CORER; 646 } 647 648 ice_prepare_for_reset(pf, reset_type); 649 650 /* trigger the reset */ 651 if (ice_reset(hw, reset_type)) { 652 dev_err(dev, "reset %d failed\n", reset_type); 653 set_bit(ICE_RESET_FAILED, pf->state); 654 clear_bit(ICE_RESET_OICR_RECV, pf->state); 655 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 656 clear_bit(ICE_PFR_REQ, pf->state); 657 clear_bit(ICE_CORER_REQ, pf->state); 658 clear_bit(ICE_GLOBR_REQ, pf->state); 659 wake_up(&pf->reset_wait_queue); 660 return; 661 } 662 663 /* PFR is a bit of a special case because it doesn't result in an OICR 664 * interrupt. So for PFR, rebuild after the reset and clear the reset- 665 * associated state bits. 666 */ 667 if (reset_type == ICE_RESET_PFR) { 668 pf->pfr_count++; 669 ice_rebuild(pf, reset_type); 670 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 671 clear_bit(ICE_PFR_REQ, pf->state); 672 wake_up(&pf->reset_wait_queue); 673 ice_reset_all_vfs(pf); 674 } 675 } 676 677 /** 678 * ice_reset_subtask - Set up for resetting the device and driver 679 * @pf: board private structure 680 */ 681 static void ice_reset_subtask(struct ice_pf *pf) 682 { 683 enum ice_reset_req reset_type = ICE_RESET_INVAL; 684 685 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 686 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 687 * of reset is pending and sets bits in pf->state indicating the reset 688 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 689 * prepare for pending reset if not already (for PF software-initiated 690 * global resets the software should already be prepared for it as 691 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 692 * by firmware or software on other PFs, that bit is not set so prepare 693 * for the reset now), poll for reset done, rebuild and return. 694 */ 695 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 696 /* Perform the largest reset requested */ 697 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 698 reset_type = ICE_RESET_CORER; 699 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 700 reset_type = ICE_RESET_GLOBR; 701 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 702 reset_type = ICE_RESET_EMPR; 703 /* return if no valid reset type requested */ 704 if (reset_type == ICE_RESET_INVAL) 705 return; 706 ice_prepare_for_reset(pf, reset_type); 707 708 /* make sure we are ready to rebuild */ 709 if (ice_check_reset(&pf->hw)) { 710 set_bit(ICE_RESET_FAILED, pf->state); 711 } else { 712 /* done with reset. start rebuild */ 713 pf->hw.reset_ongoing = false; 714 ice_rebuild(pf, reset_type); 715 /* clear bit to resume normal operations, but 716 * ICE_NEEDS_RESTART bit is set in case rebuild failed 717 */ 718 clear_bit(ICE_RESET_OICR_RECV, pf->state); 719 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 720 clear_bit(ICE_PFR_REQ, pf->state); 721 clear_bit(ICE_CORER_REQ, pf->state); 722 clear_bit(ICE_GLOBR_REQ, pf->state); 723 wake_up(&pf->reset_wait_queue); 724 ice_reset_all_vfs(pf); 725 } 726 727 return; 728 } 729 730 /* No pending resets to finish processing. Check for new resets */ 731 if (test_bit(ICE_PFR_REQ, pf->state)) { 732 reset_type = ICE_RESET_PFR; 733 if (pf->lag && pf->lag->bonded) { 734 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 735 reset_type = ICE_RESET_CORER; 736 } 737 } 738 if (test_bit(ICE_CORER_REQ, pf->state)) 739 reset_type = ICE_RESET_CORER; 740 if (test_bit(ICE_GLOBR_REQ, pf->state)) 741 reset_type = ICE_RESET_GLOBR; 742 /* If no valid reset type requested just return */ 743 if (reset_type == ICE_RESET_INVAL) 744 return; 745 746 /* reset if not already down or busy */ 747 if (!test_bit(ICE_DOWN, pf->state) && 748 !test_bit(ICE_CFG_BUSY, pf->state)) { 749 ice_do_reset(pf, reset_type); 750 } 751 } 752 753 /** 754 * ice_print_topo_conflict - print topology conflict message 755 * @vsi: the VSI whose topology status is being checked 756 */ 757 static void ice_print_topo_conflict(struct ice_vsi *vsi) 758 { 759 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 760 case ICE_AQ_LINK_TOPO_CONFLICT: 761 case ICE_AQ_LINK_MEDIA_CONFLICT: 762 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 764 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 765 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 766 break; 767 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 768 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 769 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 770 else 771 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 772 break; 773 default: 774 break; 775 } 776 } 777 778 /** 779 * ice_print_link_msg - print link up or down message 780 * @vsi: the VSI whose link status is being queried 781 * @isup: boolean for if the link is now up or down 782 */ 783 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 784 { 785 struct ice_aqc_get_phy_caps_data *caps; 786 const char *an_advertised; 787 const char *fec_req; 788 const char *speed; 789 const char *fec; 790 const char *fc; 791 const char *an; 792 int status; 793 794 if (!vsi) 795 return; 796 797 if (vsi->current_isup == isup) 798 return; 799 800 vsi->current_isup = isup; 801 802 if (!isup) { 803 netdev_info(vsi->netdev, "NIC Link is Down\n"); 804 return; 805 } 806 807 switch (vsi->port_info->phy.link_info.link_speed) { 808 case ICE_AQ_LINK_SPEED_100GB: 809 speed = "100 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_50GB: 812 speed = "50 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_40GB: 815 speed = "40 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_25GB: 818 speed = "25 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_20GB: 821 speed = "20 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_10GB: 824 speed = "10 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_5GB: 827 speed = "5 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_2500MB: 830 speed = "2.5 G"; 831 break; 832 case ICE_AQ_LINK_SPEED_1000MB: 833 speed = "1 G"; 834 break; 835 case ICE_AQ_LINK_SPEED_100MB: 836 speed = "100 M"; 837 break; 838 default: 839 speed = "Unknown "; 840 break; 841 } 842 843 switch (vsi->port_info->fc.current_mode) { 844 case ICE_FC_FULL: 845 fc = "Rx/Tx"; 846 break; 847 case ICE_FC_TX_PAUSE: 848 fc = "Tx"; 849 break; 850 case ICE_FC_RX_PAUSE: 851 fc = "Rx"; 852 break; 853 case ICE_FC_NONE: 854 fc = "None"; 855 break; 856 default: 857 fc = "Unknown"; 858 break; 859 } 860 861 /* Get FEC mode based on negotiated link info */ 862 switch (vsi->port_info->phy.link_info.fec_info) { 863 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 864 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 865 fec = "RS-FEC"; 866 break; 867 case ICE_AQ_LINK_25G_KR_FEC_EN: 868 fec = "FC-FEC/BASE-R"; 869 break; 870 default: 871 fec = "NONE"; 872 break; 873 } 874 875 /* check if autoneg completed, might be false due to not supported */ 876 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 877 an = "True"; 878 else 879 an = "False"; 880 881 /* Get FEC mode requested based on PHY caps last SW configuration */ 882 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 883 if (!caps) { 884 fec_req = "Unknown"; 885 an_advertised = "Unknown"; 886 goto done; 887 } 888 889 status = ice_aq_get_phy_caps(vsi->port_info, false, 890 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 891 if (status) 892 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 893 894 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 895 896 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 897 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 898 fec_req = "RS-FEC"; 899 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 900 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 901 fec_req = "FC-FEC/BASE-R"; 902 else 903 fec_req = "NONE"; 904 905 kfree(caps); 906 907 done: 908 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 909 speed, fec_req, fec, an_advertised, an, fc); 910 ice_print_topo_conflict(vsi); 911 } 912 913 /** 914 * ice_vsi_link_event - update the VSI's netdev 915 * @vsi: the VSI on which the link event occurred 916 * @link_up: whether or not the VSI needs to be set up or down 917 */ 918 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 919 { 920 if (!vsi) 921 return; 922 923 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 924 return; 925 926 if (vsi->type == ICE_VSI_PF) { 927 if (link_up == netif_carrier_ok(vsi->netdev)) 928 return; 929 930 if (link_up) { 931 netif_carrier_on(vsi->netdev); 932 netif_tx_wake_all_queues(vsi->netdev); 933 } else { 934 netif_carrier_off(vsi->netdev); 935 netif_tx_stop_all_queues(vsi->netdev); 936 } 937 } 938 } 939 940 /** 941 * ice_set_dflt_mib - send a default config MIB to the FW 942 * @pf: private PF struct 943 * 944 * This function sends a default configuration MIB to the FW. 945 * 946 * If this function errors out at any point, the driver is still able to 947 * function. The main impact is that LFC may not operate as expected. 948 * Therefore an error state in this function should be treated with a DBG 949 * message and continue on with driver rebuild/reenable. 950 */ 951 static void ice_set_dflt_mib(struct ice_pf *pf) 952 { 953 struct device *dev = ice_pf_to_dev(pf); 954 u8 mib_type, *buf, *lldpmib = NULL; 955 u16 len, typelen, offset = 0; 956 struct ice_lldp_org_tlv *tlv; 957 struct ice_hw *hw = &pf->hw; 958 u32 ouisubtype; 959 960 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 961 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 962 if (!lldpmib) { 963 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 964 __func__); 965 return; 966 } 967 968 /* Add ETS CFG TLV */ 969 tlv = (struct ice_lldp_org_tlv *)lldpmib; 970 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 971 ICE_IEEE_ETS_TLV_LEN); 972 tlv->typelen = htons(typelen); 973 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 974 ICE_IEEE_SUBTYPE_ETS_CFG); 975 tlv->ouisubtype = htonl(ouisubtype); 976 977 buf = tlv->tlvinfo; 978 buf[0] = 0; 979 980 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 981 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 982 * Octets 13 - 20 are TSA values - leave as zeros 983 */ 984 buf[5] = 0x64; 985 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 986 offset += len + 2; 987 tlv = (struct ice_lldp_org_tlv *) 988 ((char *)tlv + sizeof(tlv->typelen) + len); 989 990 /* Add ETS REC TLV */ 991 buf = tlv->tlvinfo; 992 tlv->typelen = htons(typelen); 993 994 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 995 ICE_IEEE_SUBTYPE_ETS_REC); 996 tlv->ouisubtype = htonl(ouisubtype); 997 998 /* First octet of buf is reserved 999 * Octets 1 - 4 map UP to TC - all UPs map to zero 1000 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1001 * Octets 13 - 20 are TSA value - leave as zeros 1002 */ 1003 buf[5] = 0x64; 1004 offset += len + 2; 1005 tlv = (struct ice_lldp_org_tlv *) 1006 ((char *)tlv + sizeof(tlv->typelen) + len); 1007 1008 /* Add PFC CFG TLV */ 1009 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1010 ICE_IEEE_PFC_TLV_LEN); 1011 tlv->typelen = htons(typelen); 1012 1013 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1014 ICE_IEEE_SUBTYPE_PFC_CFG); 1015 tlv->ouisubtype = htonl(ouisubtype); 1016 1017 /* Octet 1 left as all zeros - PFC disabled */ 1018 buf[0] = 0x08; 1019 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1020 offset += len + 2; 1021 1022 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1023 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1024 1025 kfree(lldpmib); 1026 } 1027 1028 /** 1029 * ice_check_phy_fw_load - check if PHY FW load failed 1030 * @pf: pointer to PF struct 1031 * @link_cfg_err: bitmap from the link info structure 1032 * 1033 * check if external PHY FW load failed and print an error message if it did 1034 */ 1035 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1036 { 1037 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1038 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1039 return; 1040 } 1041 1042 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1043 return; 1044 1045 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1046 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1047 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1048 } 1049 } 1050 1051 /** 1052 * ice_check_module_power 1053 * @pf: pointer to PF struct 1054 * @link_cfg_err: bitmap from the link info structure 1055 * 1056 * check module power level returned by a previous call to aq_get_link_info 1057 * and print error messages if module power level is not supported 1058 */ 1059 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1060 { 1061 /* if module power level is supported, clear the flag */ 1062 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1063 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1064 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 return; 1066 } 1067 1068 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1069 * above block didn't clear this bit, there's nothing to do 1070 */ 1071 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1072 return; 1073 1074 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1075 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1076 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1077 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1078 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1079 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1080 } 1081 } 1082 1083 /** 1084 * ice_check_link_cfg_err - check if link configuration failed 1085 * @pf: pointer to the PF struct 1086 * @link_cfg_err: bitmap from the link info structure 1087 * 1088 * print if any link configuration failure happens due to the value in the 1089 * link_cfg_err parameter in the link info structure 1090 */ 1091 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1092 { 1093 ice_check_module_power(pf, link_cfg_err); 1094 ice_check_phy_fw_load(pf, link_cfg_err); 1095 } 1096 1097 /** 1098 * ice_link_event - process the link event 1099 * @pf: PF that the link event is associated with 1100 * @pi: port_info for the port that the link event is associated with 1101 * @link_up: true if the physical link is up and false if it is down 1102 * @link_speed: current link speed received from the link event 1103 * 1104 * Returns 0 on success and negative on failure 1105 */ 1106 static int 1107 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1108 u16 link_speed) 1109 { 1110 struct device *dev = ice_pf_to_dev(pf); 1111 struct ice_phy_info *phy_info; 1112 struct ice_vsi *vsi; 1113 u16 old_link_speed; 1114 bool old_link; 1115 int status; 1116 1117 phy_info = &pi->phy; 1118 phy_info->link_info_old = phy_info->link_info; 1119 1120 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1121 old_link_speed = phy_info->link_info_old.link_speed; 1122 1123 /* update the link info structures and re-enable link events, 1124 * don't bail on failure due to other book keeping needed 1125 */ 1126 status = ice_update_link_info(pi); 1127 if (status) 1128 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1129 pi->lport, status, 1130 ice_aq_str(pi->hw->adminq.sq_last_status)); 1131 1132 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1133 1134 /* Check if the link state is up after updating link info, and treat 1135 * this event as an UP event since the link is actually UP now. 1136 */ 1137 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1138 link_up = true; 1139 1140 vsi = ice_get_main_vsi(pf); 1141 if (!vsi || !vsi->port_info) 1142 return -EINVAL; 1143 1144 /* turn off PHY if media was removed */ 1145 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1146 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1147 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1148 ice_set_link(vsi, false); 1149 } 1150 1151 /* if the old link up/down and speed is the same as the new */ 1152 if (link_up == old_link && link_speed == old_link_speed) 1153 return 0; 1154 1155 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1156 1157 if (ice_is_dcb_active(pf)) { 1158 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1159 ice_dcb_rebuild(pf); 1160 } else { 1161 if (link_up) 1162 ice_set_dflt_mib(pf); 1163 } 1164 ice_vsi_link_event(vsi, link_up); 1165 ice_print_link_msg(vsi, link_up); 1166 1167 ice_vc_notify_link_state(pf); 1168 1169 return 0; 1170 } 1171 1172 /** 1173 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1174 * @pf: board private structure 1175 */ 1176 static void ice_watchdog_subtask(struct ice_pf *pf) 1177 { 1178 int i; 1179 1180 /* if interface is down do nothing */ 1181 if (test_bit(ICE_DOWN, pf->state) || 1182 test_bit(ICE_CFG_BUSY, pf->state)) 1183 return; 1184 1185 /* make sure we don't do these things too often */ 1186 if (time_before(jiffies, 1187 pf->serv_tmr_prev + pf->serv_tmr_period)) 1188 return; 1189 1190 pf->serv_tmr_prev = jiffies; 1191 1192 /* Update the stats for active netdevs so the network stack 1193 * can look at updated numbers whenever it cares to 1194 */ 1195 ice_update_pf_stats(pf); 1196 ice_for_each_vsi(pf, i) 1197 if (pf->vsi[i] && pf->vsi[i]->netdev) 1198 ice_update_vsi_stats(pf->vsi[i]); 1199 } 1200 1201 /** 1202 * ice_init_link_events - enable/initialize link events 1203 * @pi: pointer to the port_info instance 1204 * 1205 * Returns -EIO on failure, 0 on success 1206 */ 1207 static int ice_init_link_events(struct ice_port_info *pi) 1208 { 1209 u16 mask; 1210 1211 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1212 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1213 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1214 1215 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1216 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1217 pi->lport); 1218 return -EIO; 1219 } 1220 1221 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1222 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1223 pi->lport); 1224 return -EIO; 1225 } 1226 1227 return 0; 1228 } 1229 1230 /** 1231 * ice_handle_link_event - handle link event via ARQ 1232 * @pf: PF that the link event is associated with 1233 * @event: event structure containing link status info 1234 */ 1235 static int 1236 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1237 { 1238 struct ice_aqc_get_link_status_data *link_data; 1239 struct ice_port_info *port_info; 1240 int status; 1241 1242 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1243 port_info = pf->hw.port_info; 1244 if (!port_info) 1245 return -EINVAL; 1246 1247 status = ice_link_event(pf, port_info, 1248 !!(link_data->link_info & ICE_AQ_LINK_UP), 1249 le16_to_cpu(link_data->link_speed)); 1250 if (status) 1251 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1252 status); 1253 1254 return status; 1255 } 1256 1257 /** 1258 * ice_get_fwlog_data - copy the FW log data from ARQ event 1259 * @pf: PF that the FW log event is associated with 1260 * @event: event structure containing FW log data 1261 */ 1262 static void 1263 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1264 { 1265 struct ice_fwlog_data *fwlog; 1266 struct ice_hw *hw = &pf->hw; 1267 1268 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1269 1270 memset(fwlog->data, 0, PAGE_SIZE); 1271 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1272 1273 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1274 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1275 1276 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1277 /* the rings are full so bump the head to create room */ 1278 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1279 hw->fwlog_ring.size); 1280 } 1281 } 1282 1283 /** 1284 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1285 * @pf: pointer to the PF private structure 1286 * @task: intermediate helper storage and identifier for waiting 1287 * @opcode: the opcode to wait for 1288 * 1289 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1290 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1291 * 1292 * Calls are separated to allow caller registering for event before sending 1293 * the command, which mitigates a race between registering and FW responding. 1294 * 1295 * To obtain only the descriptor contents, pass an task->event with null 1296 * msg_buf. If the complete data buffer is desired, allocate the 1297 * task->event.msg_buf with enough space ahead of time. 1298 */ 1299 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1300 u16 opcode) 1301 { 1302 INIT_HLIST_NODE(&task->entry); 1303 task->opcode = opcode; 1304 task->state = ICE_AQ_TASK_WAITING; 1305 1306 spin_lock_bh(&pf->aq_wait_lock); 1307 hlist_add_head(&task->entry, &pf->aq_wait_list); 1308 spin_unlock_bh(&pf->aq_wait_lock); 1309 } 1310 1311 /** 1312 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1313 * @pf: pointer to the PF private structure 1314 * @task: ptr prepared by ice_aq_prep_for_event() 1315 * @timeout: how long to wait, in jiffies 1316 * 1317 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1318 * current thread will be put to sleep until the specified event occurs or 1319 * until the given timeout is reached. 1320 * 1321 * Returns: zero on success, or a negative error code on failure. 1322 */ 1323 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1324 unsigned long timeout) 1325 { 1326 enum ice_aq_task_state *state = &task->state; 1327 struct device *dev = ice_pf_to_dev(pf); 1328 unsigned long start = jiffies; 1329 long ret; 1330 int err; 1331 1332 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1333 *state != ICE_AQ_TASK_WAITING, 1334 timeout); 1335 switch (*state) { 1336 case ICE_AQ_TASK_NOT_PREPARED: 1337 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1338 err = -EINVAL; 1339 break; 1340 case ICE_AQ_TASK_WAITING: 1341 err = ret < 0 ? ret : -ETIMEDOUT; 1342 break; 1343 case ICE_AQ_TASK_CANCELED: 1344 err = ret < 0 ? ret : -ECANCELED; 1345 break; 1346 case ICE_AQ_TASK_COMPLETE: 1347 err = ret < 0 ? ret : 0; 1348 break; 1349 default: 1350 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1351 err = -EINVAL; 1352 break; 1353 } 1354 1355 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1356 jiffies_to_msecs(jiffies - start), 1357 jiffies_to_msecs(timeout), 1358 task->opcode); 1359 1360 spin_lock_bh(&pf->aq_wait_lock); 1361 hlist_del(&task->entry); 1362 spin_unlock_bh(&pf->aq_wait_lock); 1363 1364 return err; 1365 } 1366 1367 /** 1368 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1369 * @pf: pointer to the PF private structure 1370 * @opcode: the opcode of the event 1371 * @event: the event to check 1372 * 1373 * Loops over the current list of pending threads waiting for an AdminQ event. 1374 * For each matching task, copy the contents of the event into the task 1375 * structure and wake up the thread. 1376 * 1377 * If multiple threads wait for the same opcode, they will all be woken up. 1378 * 1379 * Note that event->msg_buf will only be duplicated if the event has a buffer 1380 * with enough space already allocated. Otherwise, only the descriptor and 1381 * message length will be copied. 1382 * 1383 * Returns: true if an event was found, false otherwise 1384 */ 1385 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1386 struct ice_rq_event_info *event) 1387 { 1388 struct ice_rq_event_info *task_ev; 1389 struct ice_aq_task *task; 1390 bool found = false; 1391 1392 spin_lock_bh(&pf->aq_wait_lock); 1393 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1394 if (task->state != ICE_AQ_TASK_WAITING) 1395 continue; 1396 if (task->opcode != opcode) 1397 continue; 1398 1399 task_ev = &task->event; 1400 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1401 task_ev->msg_len = event->msg_len; 1402 1403 /* Only copy the data buffer if a destination was set */ 1404 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1405 memcpy(task_ev->msg_buf, event->msg_buf, 1406 event->buf_len); 1407 task_ev->buf_len = event->buf_len; 1408 } 1409 1410 task->state = ICE_AQ_TASK_COMPLETE; 1411 found = true; 1412 } 1413 spin_unlock_bh(&pf->aq_wait_lock); 1414 1415 if (found) 1416 wake_up(&pf->aq_wait_queue); 1417 } 1418 1419 /** 1420 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1421 * @pf: the PF private structure 1422 * 1423 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1424 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1425 */ 1426 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1427 { 1428 struct ice_aq_task *task; 1429 1430 spin_lock_bh(&pf->aq_wait_lock); 1431 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1432 task->state = ICE_AQ_TASK_CANCELED; 1433 spin_unlock_bh(&pf->aq_wait_lock); 1434 1435 wake_up(&pf->aq_wait_queue); 1436 } 1437 1438 #define ICE_MBX_OVERFLOW_WATERMARK 64 1439 1440 /** 1441 * __ice_clean_ctrlq - helper function to clean controlq rings 1442 * @pf: ptr to struct ice_pf 1443 * @q_type: specific Control queue type 1444 */ 1445 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1446 { 1447 struct device *dev = ice_pf_to_dev(pf); 1448 struct ice_rq_event_info event; 1449 struct ice_hw *hw = &pf->hw; 1450 struct ice_ctl_q_info *cq; 1451 u16 pending, i = 0; 1452 const char *qtype; 1453 u32 oldval, val; 1454 1455 /* Do not clean control queue if/when PF reset fails */ 1456 if (test_bit(ICE_RESET_FAILED, pf->state)) 1457 return 0; 1458 1459 switch (q_type) { 1460 case ICE_CTL_Q_ADMIN: 1461 cq = &hw->adminq; 1462 qtype = "Admin"; 1463 break; 1464 case ICE_CTL_Q_SB: 1465 cq = &hw->sbq; 1466 qtype = "Sideband"; 1467 break; 1468 case ICE_CTL_Q_MAILBOX: 1469 cq = &hw->mailboxq; 1470 qtype = "Mailbox"; 1471 /* we are going to try to detect a malicious VF, so set the 1472 * state to begin detection 1473 */ 1474 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1475 break; 1476 default: 1477 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1478 return 0; 1479 } 1480 1481 /* check for error indications - PF_xx_AxQLEN register layout for 1482 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1483 */ 1484 val = rd32(hw, cq->rq.len); 1485 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1486 PF_FW_ARQLEN_ARQCRIT_M)) { 1487 oldval = val; 1488 if (val & PF_FW_ARQLEN_ARQVFE_M) 1489 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1490 qtype); 1491 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1492 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1493 qtype); 1494 } 1495 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1496 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1497 qtype); 1498 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1499 PF_FW_ARQLEN_ARQCRIT_M); 1500 if (oldval != val) 1501 wr32(hw, cq->rq.len, val); 1502 } 1503 1504 val = rd32(hw, cq->sq.len); 1505 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1506 PF_FW_ATQLEN_ATQCRIT_M)) { 1507 oldval = val; 1508 if (val & PF_FW_ATQLEN_ATQVFE_M) 1509 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1510 qtype); 1511 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1512 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1513 qtype); 1514 } 1515 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1516 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1517 qtype); 1518 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1519 PF_FW_ATQLEN_ATQCRIT_M); 1520 if (oldval != val) 1521 wr32(hw, cq->sq.len, val); 1522 } 1523 1524 event.buf_len = cq->rq_buf_size; 1525 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1526 if (!event.msg_buf) 1527 return 0; 1528 1529 do { 1530 struct ice_mbx_data data = {}; 1531 u16 opcode; 1532 int ret; 1533 1534 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1535 if (ret == -EALREADY) 1536 break; 1537 if (ret) { 1538 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1539 ret); 1540 break; 1541 } 1542 1543 opcode = le16_to_cpu(event.desc.opcode); 1544 1545 /* Notify any thread that might be waiting for this event */ 1546 ice_aq_check_events(pf, opcode, &event); 1547 1548 switch (opcode) { 1549 case ice_aqc_opc_get_link_status: 1550 if (ice_handle_link_event(pf, &event)) 1551 dev_err(dev, "Could not handle link event\n"); 1552 break; 1553 case ice_aqc_opc_event_lan_overflow: 1554 ice_vf_lan_overflow_event(pf, &event); 1555 break; 1556 case ice_mbx_opc_send_msg_to_pf: 1557 data.num_msg_proc = i; 1558 data.num_pending_arq = pending; 1559 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1560 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1561 1562 ice_vc_process_vf_msg(pf, &event, &data); 1563 break; 1564 case ice_aqc_opc_fw_logs_event: 1565 ice_get_fwlog_data(pf, &event); 1566 break; 1567 case ice_aqc_opc_lldp_set_mib_change: 1568 ice_dcb_process_lldp_set_mib_change(pf, &event); 1569 break; 1570 default: 1571 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1572 qtype, opcode); 1573 break; 1574 } 1575 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1576 1577 kfree(event.msg_buf); 1578 1579 return pending && (i == ICE_DFLT_IRQ_WORK); 1580 } 1581 1582 /** 1583 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1584 * @hw: pointer to hardware info 1585 * @cq: control queue information 1586 * 1587 * returns true if there are pending messages in a queue, false if there aren't 1588 */ 1589 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1590 { 1591 u16 ntu; 1592 1593 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1594 return cq->rq.next_to_clean != ntu; 1595 } 1596 1597 /** 1598 * ice_clean_adminq_subtask - clean the AdminQ rings 1599 * @pf: board private structure 1600 */ 1601 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1602 { 1603 struct ice_hw *hw = &pf->hw; 1604 1605 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1606 return; 1607 1608 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1609 return; 1610 1611 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1612 1613 /* There might be a situation where new messages arrive to a control 1614 * queue between processing the last message and clearing the 1615 * EVENT_PENDING bit. So before exiting, check queue head again (using 1616 * ice_ctrlq_pending) and process new messages if any. 1617 */ 1618 if (ice_ctrlq_pending(hw, &hw->adminq)) 1619 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1620 1621 ice_flush(hw); 1622 } 1623 1624 /** 1625 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1626 * @pf: board private structure 1627 */ 1628 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1629 { 1630 struct ice_hw *hw = &pf->hw; 1631 1632 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1633 return; 1634 1635 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1636 return; 1637 1638 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1639 1640 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1641 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1642 1643 ice_flush(hw); 1644 } 1645 1646 /** 1647 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1648 * @pf: board private structure 1649 */ 1650 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1651 { 1652 struct ice_hw *hw = &pf->hw; 1653 1654 /* if mac_type is not generic, sideband is not supported 1655 * and there's nothing to do here 1656 */ 1657 if (!ice_is_generic_mac(hw)) { 1658 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1659 return; 1660 } 1661 1662 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1663 return; 1664 1665 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1666 return; 1667 1668 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1669 1670 if (ice_ctrlq_pending(hw, &hw->sbq)) 1671 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1672 1673 ice_flush(hw); 1674 } 1675 1676 /** 1677 * ice_service_task_schedule - schedule the service task to wake up 1678 * @pf: board private structure 1679 * 1680 * If not already scheduled, this puts the task into the work queue. 1681 */ 1682 void ice_service_task_schedule(struct ice_pf *pf) 1683 { 1684 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1685 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1686 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1687 queue_work(ice_wq, &pf->serv_task); 1688 } 1689 1690 /** 1691 * ice_service_task_complete - finish up the service task 1692 * @pf: board private structure 1693 */ 1694 static void ice_service_task_complete(struct ice_pf *pf) 1695 { 1696 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1697 1698 /* force memory (pf->state) to sync before next service task */ 1699 smp_mb__before_atomic(); 1700 clear_bit(ICE_SERVICE_SCHED, pf->state); 1701 } 1702 1703 /** 1704 * ice_service_task_stop - stop service task and cancel works 1705 * @pf: board private structure 1706 * 1707 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1708 * 1 otherwise. 1709 */ 1710 static int ice_service_task_stop(struct ice_pf *pf) 1711 { 1712 int ret; 1713 1714 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1715 1716 if (pf->serv_tmr.function) 1717 del_timer_sync(&pf->serv_tmr); 1718 if (pf->serv_task.func) 1719 cancel_work_sync(&pf->serv_task); 1720 1721 clear_bit(ICE_SERVICE_SCHED, pf->state); 1722 return ret; 1723 } 1724 1725 /** 1726 * ice_service_task_restart - restart service task and schedule works 1727 * @pf: board private structure 1728 * 1729 * This function is needed for suspend and resume works (e.g WoL scenario) 1730 */ 1731 static void ice_service_task_restart(struct ice_pf *pf) 1732 { 1733 clear_bit(ICE_SERVICE_DIS, pf->state); 1734 ice_service_task_schedule(pf); 1735 } 1736 1737 /** 1738 * ice_service_timer - timer callback to schedule service task 1739 * @t: pointer to timer_list 1740 */ 1741 static void ice_service_timer(struct timer_list *t) 1742 { 1743 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1744 1745 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1746 ice_service_task_schedule(pf); 1747 } 1748 1749 /** 1750 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1751 * @pf: pointer to the PF structure 1752 * @vf: pointer to the VF structure 1753 * @reset_vf_tx: whether Tx MDD has occurred 1754 * @reset_vf_rx: whether Rx MDD has occurred 1755 * 1756 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1757 * automatically reset the VF by enabling the private ethtool flag 1758 * mdd-auto-reset-vf. 1759 */ 1760 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1761 bool reset_vf_tx, bool reset_vf_rx) 1762 { 1763 struct device *dev = ice_pf_to_dev(pf); 1764 1765 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1766 return; 1767 1768 /* VF MDD event counters will be cleared by reset, so print the event 1769 * prior to reset. 1770 */ 1771 if (reset_vf_tx) 1772 ice_print_vf_tx_mdd_event(vf); 1773 1774 if (reset_vf_rx) 1775 ice_print_vf_rx_mdd_event(vf); 1776 1777 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1778 pf->hw.pf_id, vf->vf_id); 1779 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1780 } 1781 1782 /** 1783 * ice_handle_mdd_event - handle malicious driver detect event 1784 * @pf: pointer to the PF structure 1785 * 1786 * Called from service task. OICR interrupt handler indicates MDD event. 1787 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1788 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1789 * disable the queue, the PF can be configured to reset the VF using ethtool 1790 * private flag mdd-auto-reset-vf. 1791 */ 1792 static void ice_handle_mdd_event(struct ice_pf *pf) 1793 { 1794 struct device *dev = ice_pf_to_dev(pf); 1795 struct ice_hw *hw = &pf->hw; 1796 struct ice_vf *vf; 1797 unsigned int bkt; 1798 u32 reg; 1799 1800 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1801 /* Since the VF MDD event logging is rate limited, check if 1802 * there are pending MDD events. 1803 */ 1804 ice_print_vfs_mdd_events(pf); 1805 return; 1806 } 1807 1808 /* find what triggered an MDD event */ 1809 reg = rd32(hw, GL_MDET_TX_PQM); 1810 if (reg & GL_MDET_TX_PQM_VALID_M) { 1811 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1812 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1813 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1814 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1815 1816 if (netif_msg_tx_err(pf)) 1817 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1818 event, queue, pf_num, vf_num); 1819 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1820 } 1821 1822 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1823 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1824 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1825 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1826 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1827 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1828 1829 if (netif_msg_tx_err(pf)) 1830 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1831 event, queue, pf_num, vf_num); 1832 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1833 } 1834 1835 reg = rd32(hw, GL_MDET_RX); 1836 if (reg & GL_MDET_RX_VALID_M) { 1837 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1838 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1839 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1840 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1841 1842 if (netif_msg_rx_err(pf)) 1843 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1844 event, queue, pf_num, vf_num); 1845 wr32(hw, GL_MDET_RX, 0xffffffff); 1846 } 1847 1848 /* check to see if this PF caused an MDD event */ 1849 reg = rd32(hw, PF_MDET_TX_PQM); 1850 if (reg & PF_MDET_TX_PQM_VALID_M) { 1851 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1852 if (netif_msg_tx_err(pf)) 1853 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1854 } 1855 1856 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1857 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1858 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1859 if (netif_msg_tx_err(pf)) 1860 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1861 } 1862 1863 reg = rd32(hw, PF_MDET_RX); 1864 if (reg & PF_MDET_RX_VALID_M) { 1865 wr32(hw, PF_MDET_RX, 0xFFFF); 1866 if (netif_msg_rx_err(pf)) 1867 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1868 } 1869 1870 /* Check to see if one of the VFs caused an MDD event, and then 1871 * increment counters and set print pending 1872 */ 1873 mutex_lock(&pf->vfs.table_lock); 1874 ice_for_each_vf(pf, bkt, vf) { 1875 bool reset_vf_tx = false, reset_vf_rx = false; 1876 1877 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1878 if (reg & VP_MDET_TX_PQM_VALID_M) { 1879 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1880 vf->mdd_tx_events.count++; 1881 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1882 if (netif_msg_tx_err(pf)) 1883 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1884 vf->vf_id); 1885 1886 reset_vf_tx = true; 1887 } 1888 1889 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1890 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1891 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1892 vf->mdd_tx_events.count++; 1893 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1894 if (netif_msg_tx_err(pf)) 1895 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1896 vf->vf_id); 1897 1898 reset_vf_tx = true; 1899 } 1900 1901 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1902 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1903 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1904 vf->mdd_tx_events.count++; 1905 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1906 if (netif_msg_tx_err(pf)) 1907 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1908 vf->vf_id); 1909 1910 reset_vf_tx = true; 1911 } 1912 1913 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1914 if (reg & VP_MDET_RX_VALID_M) { 1915 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1916 vf->mdd_rx_events.count++; 1917 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1918 if (netif_msg_rx_err(pf)) 1919 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1920 vf->vf_id); 1921 1922 reset_vf_rx = true; 1923 } 1924 1925 if (reset_vf_tx || reset_vf_rx) 1926 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1927 reset_vf_rx); 1928 } 1929 mutex_unlock(&pf->vfs.table_lock); 1930 1931 ice_print_vfs_mdd_events(pf); 1932 } 1933 1934 /** 1935 * ice_force_phys_link_state - Force the physical link state 1936 * @vsi: VSI to force the physical link state to up/down 1937 * @link_up: true/false indicates to set the physical link to up/down 1938 * 1939 * Force the physical link state by getting the current PHY capabilities from 1940 * hardware and setting the PHY config based on the determined capabilities. If 1941 * link changes a link event will be triggered because both the Enable Automatic 1942 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1943 * 1944 * Returns 0 on success, negative on failure 1945 */ 1946 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1947 { 1948 struct ice_aqc_get_phy_caps_data *pcaps; 1949 struct ice_aqc_set_phy_cfg_data *cfg; 1950 struct ice_port_info *pi; 1951 struct device *dev; 1952 int retcode; 1953 1954 if (!vsi || !vsi->port_info || !vsi->back) 1955 return -EINVAL; 1956 if (vsi->type != ICE_VSI_PF) 1957 return 0; 1958 1959 dev = ice_pf_to_dev(vsi->back); 1960 1961 pi = vsi->port_info; 1962 1963 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1964 if (!pcaps) 1965 return -ENOMEM; 1966 1967 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1968 NULL); 1969 if (retcode) { 1970 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1971 vsi->vsi_num, retcode); 1972 retcode = -EIO; 1973 goto out; 1974 } 1975 1976 /* No change in link */ 1977 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1978 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1979 goto out; 1980 1981 /* Use the current user PHY configuration. The current user PHY 1982 * configuration is initialized during probe from PHY capabilities 1983 * software mode, and updated on set PHY configuration. 1984 */ 1985 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1986 if (!cfg) { 1987 retcode = -ENOMEM; 1988 goto out; 1989 } 1990 1991 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1992 if (link_up) 1993 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1994 else 1995 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1996 1997 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1998 if (retcode) { 1999 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2000 vsi->vsi_num, retcode); 2001 retcode = -EIO; 2002 } 2003 2004 kfree(cfg); 2005 out: 2006 kfree(pcaps); 2007 return retcode; 2008 } 2009 2010 /** 2011 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2012 * @pi: port info structure 2013 * 2014 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2015 */ 2016 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2017 { 2018 struct ice_aqc_get_phy_caps_data *pcaps; 2019 struct ice_pf *pf = pi->hw->back; 2020 int err; 2021 2022 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2023 if (!pcaps) 2024 return -ENOMEM; 2025 2026 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2027 pcaps, NULL); 2028 2029 if (err) { 2030 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2031 goto out; 2032 } 2033 2034 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2035 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2036 2037 out: 2038 kfree(pcaps); 2039 return err; 2040 } 2041 2042 /** 2043 * ice_init_link_dflt_override - Initialize link default override 2044 * @pi: port info structure 2045 * 2046 * Initialize link default override and PHY total port shutdown during probe 2047 */ 2048 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2049 { 2050 struct ice_link_default_override_tlv *ldo; 2051 struct ice_pf *pf = pi->hw->back; 2052 2053 ldo = &pf->link_dflt_override; 2054 if (ice_get_link_default_override(ldo, pi)) 2055 return; 2056 2057 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2058 return; 2059 2060 /* Enable Total Port Shutdown (override/replace link-down-on-close 2061 * ethtool private flag) for ports with Port Disable bit set. 2062 */ 2063 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2064 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2065 } 2066 2067 /** 2068 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2069 * @pi: port info structure 2070 * 2071 * If default override is enabled, initialize the user PHY cfg speed and FEC 2072 * settings using the default override mask from the NVM. 2073 * 2074 * The PHY should only be configured with the default override settings the 2075 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2076 * is used to indicate that the user PHY cfg default override is initialized 2077 * and the PHY has not been configured with the default override settings. The 2078 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2079 * configured. 2080 * 2081 * This function should be called only if the FW doesn't support default 2082 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2083 */ 2084 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2085 { 2086 struct ice_link_default_override_tlv *ldo; 2087 struct ice_aqc_set_phy_cfg_data *cfg; 2088 struct ice_phy_info *phy = &pi->phy; 2089 struct ice_pf *pf = pi->hw->back; 2090 2091 ldo = &pf->link_dflt_override; 2092 2093 /* If link default override is enabled, use to mask NVM PHY capabilities 2094 * for speed and FEC default configuration. 2095 */ 2096 cfg = &phy->curr_user_phy_cfg; 2097 2098 if (ldo->phy_type_low || ldo->phy_type_high) { 2099 cfg->phy_type_low = pf->nvm_phy_type_lo & 2100 cpu_to_le64(ldo->phy_type_low); 2101 cfg->phy_type_high = pf->nvm_phy_type_hi & 2102 cpu_to_le64(ldo->phy_type_high); 2103 } 2104 cfg->link_fec_opt = ldo->fec_options; 2105 phy->curr_user_fec_req = ICE_FEC_AUTO; 2106 2107 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2108 } 2109 2110 /** 2111 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2112 * @pi: port info structure 2113 * 2114 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2115 * mode to default. The PHY defaults are from get PHY capabilities topology 2116 * with media so call when media is first available. An error is returned if 2117 * called when media is not available. The PHY initialization completed state is 2118 * set here. 2119 * 2120 * These configurations are used when setting PHY 2121 * configuration. The user PHY configuration is updated on set PHY 2122 * configuration. Returns 0 on success, negative on failure 2123 */ 2124 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2125 { 2126 struct ice_aqc_get_phy_caps_data *pcaps; 2127 struct ice_phy_info *phy = &pi->phy; 2128 struct ice_pf *pf = pi->hw->back; 2129 int err; 2130 2131 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2132 return -EIO; 2133 2134 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2135 if (!pcaps) 2136 return -ENOMEM; 2137 2138 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2139 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2140 pcaps, NULL); 2141 else 2142 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2143 pcaps, NULL); 2144 if (err) { 2145 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2146 goto err_out; 2147 } 2148 2149 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2150 2151 /* check if lenient mode is supported and enabled */ 2152 if (ice_fw_supports_link_override(pi->hw) && 2153 !(pcaps->module_compliance_enforcement & 2154 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2155 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2156 2157 /* if the FW supports default PHY configuration mode, then the driver 2158 * does not have to apply link override settings. If not, 2159 * initialize user PHY configuration with link override values 2160 */ 2161 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2162 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2163 ice_init_phy_cfg_dflt_override(pi); 2164 goto out; 2165 } 2166 } 2167 2168 /* if link default override is not enabled, set user flow control and 2169 * FEC settings based on what get_phy_caps returned 2170 */ 2171 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2172 pcaps->link_fec_options); 2173 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2174 2175 out: 2176 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2177 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2178 err_out: 2179 kfree(pcaps); 2180 return err; 2181 } 2182 2183 /** 2184 * ice_configure_phy - configure PHY 2185 * @vsi: VSI of PHY 2186 * 2187 * Set the PHY configuration. If the current PHY configuration is the same as 2188 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2189 * configure the based get PHY capabilities for topology with media. 2190 */ 2191 static int ice_configure_phy(struct ice_vsi *vsi) 2192 { 2193 struct device *dev = ice_pf_to_dev(vsi->back); 2194 struct ice_port_info *pi = vsi->port_info; 2195 struct ice_aqc_get_phy_caps_data *pcaps; 2196 struct ice_aqc_set_phy_cfg_data *cfg; 2197 struct ice_phy_info *phy = &pi->phy; 2198 struct ice_pf *pf = vsi->back; 2199 int err; 2200 2201 /* Ensure we have media as we cannot configure a medialess port */ 2202 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2203 return -ENOMEDIUM; 2204 2205 ice_print_topo_conflict(vsi); 2206 2207 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2208 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2209 return -EPERM; 2210 2211 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2212 return ice_force_phys_link_state(vsi, true); 2213 2214 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2215 if (!pcaps) 2216 return -ENOMEM; 2217 2218 /* Get current PHY config */ 2219 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2220 NULL); 2221 if (err) { 2222 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2223 vsi->vsi_num, err); 2224 goto done; 2225 } 2226 2227 /* If PHY enable link is configured and configuration has not changed, 2228 * there's nothing to do 2229 */ 2230 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2231 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2232 goto done; 2233 2234 /* Use PHY topology as baseline for configuration */ 2235 memset(pcaps, 0, sizeof(*pcaps)); 2236 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2237 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2238 pcaps, NULL); 2239 else 2240 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2241 pcaps, NULL); 2242 if (err) { 2243 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2244 vsi->vsi_num, err); 2245 goto done; 2246 } 2247 2248 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2249 if (!cfg) { 2250 err = -ENOMEM; 2251 goto done; 2252 } 2253 2254 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2255 2256 /* Speed - If default override pending, use curr_user_phy_cfg set in 2257 * ice_init_phy_user_cfg_ldo. 2258 */ 2259 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2260 vsi->back->state)) { 2261 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2262 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2263 } else { 2264 u64 phy_low = 0, phy_high = 0; 2265 2266 ice_update_phy_type(&phy_low, &phy_high, 2267 pi->phy.curr_user_speed_req); 2268 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2269 cfg->phy_type_high = pcaps->phy_type_high & 2270 cpu_to_le64(phy_high); 2271 } 2272 2273 /* Can't provide what was requested; use PHY capabilities */ 2274 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2275 cfg->phy_type_low = pcaps->phy_type_low; 2276 cfg->phy_type_high = pcaps->phy_type_high; 2277 } 2278 2279 /* FEC */ 2280 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2281 2282 /* Can't provide what was requested; use PHY capabilities */ 2283 if (cfg->link_fec_opt != 2284 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2285 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2286 cfg->link_fec_opt = pcaps->link_fec_options; 2287 } 2288 2289 /* Flow Control - always supported; no need to check against 2290 * capabilities 2291 */ 2292 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2293 2294 /* Enable link and link update */ 2295 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2296 2297 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2298 if (err) 2299 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2300 vsi->vsi_num, err); 2301 2302 kfree(cfg); 2303 done: 2304 kfree(pcaps); 2305 return err; 2306 } 2307 2308 /** 2309 * ice_check_media_subtask - Check for media 2310 * @pf: pointer to PF struct 2311 * 2312 * If media is available, then initialize PHY user configuration if it is not 2313 * been, and configure the PHY if the interface is up. 2314 */ 2315 static void ice_check_media_subtask(struct ice_pf *pf) 2316 { 2317 struct ice_port_info *pi; 2318 struct ice_vsi *vsi; 2319 int err; 2320 2321 /* No need to check for media if it's already present */ 2322 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2323 return; 2324 2325 vsi = ice_get_main_vsi(pf); 2326 if (!vsi) 2327 return; 2328 2329 /* Refresh link info and check if media is present */ 2330 pi = vsi->port_info; 2331 err = ice_update_link_info(pi); 2332 if (err) 2333 return; 2334 2335 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2336 2337 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2338 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2339 ice_init_phy_user_cfg(pi); 2340 2341 /* PHY settings are reset on media insertion, reconfigure 2342 * PHY to preserve settings. 2343 */ 2344 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2345 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2346 return; 2347 2348 err = ice_configure_phy(vsi); 2349 if (!err) 2350 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2351 2352 /* A Link Status Event will be generated; the event handler 2353 * will complete bringing the interface up 2354 */ 2355 } 2356 } 2357 2358 /** 2359 * ice_service_task - manage and run subtasks 2360 * @work: pointer to work_struct contained by the PF struct 2361 */ 2362 static void ice_service_task(struct work_struct *work) 2363 { 2364 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2365 unsigned long start_time = jiffies; 2366 2367 /* subtasks */ 2368 2369 /* process reset requests first */ 2370 ice_reset_subtask(pf); 2371 2372 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2373 if (ice_is_reset_in_progress(pf->state) || 2374 test_bit(ICE_SUSPENDED, pf->state) || 2375 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2376 ice_service_task_complete(pf); 2377 return; 2378 } 2379 2380 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2381 struct iidc_event *event; 2382 2383 event = kzalloc(sizeof(*event), GFP_KERNEL); 2384 if (event) { 2385 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2386 /* report the entire OICR value to AUX driver */ 2387 swap(event->reg, pf->oicr_err_reg); 2388 ice_send_event_to_aux(pf, event); 2389 kfree(event); 2390 } 2391 } 2392 2393 /* unplug aux dev per request, if an unplug request came in 2394 * while processing a plug request, this will handle it 2395 */ 2396 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2397 ice_unplug_aux_dev(pf); 2398 2399 /* Plug aux device per request */ 2400 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2401 ice_plug_aux_dev(pf); 2402 2403 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2404 struct iidc_event *event; 2405 2406 event = kzalloc(sizeof(*event), GFP_KERNEL); 2407 if (event) { 2408 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2409 ice_send_event_to_aux(pf, event); 2410 kfree(event); 2411 } 2412 } 2413 2414 ice_clean_adminq_subtask(pf); 2415 ice_check_media_subtask(pf); 2416 ice_check_for_hang_subtask(pf); 2417 ice_sync_fltr_subtask(pf); 2418 ice_handle_mdd_event(pf); 2419 ice_watchdog_subtask(pf); 2420 2421 if (ice_is_safe_mode(pf)) { 2422 ice_service_task_complete(pf); 2423 return; 2424 } 2425 2426 ice_process_vflr_event(pf); 2427 ice_clean_mailboxq_subtask(pf); 2428 ice_clean_sbq_subtask(pf); 2429 ice_sync_arfs_fltrs(pf); 2430 ice_flush_fdir_ctx(pf); 2431 2432 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2433 ice_service_task_complete(pf); 2434 2435 /* If the tasks have taken longer than one service timer period 2436 * or there is more work to be done, reset the service timer to 2437 * schedule the service task now. 2438 */ 2439 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2440 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2441 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2442 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2443 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2444 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2446 mod_timer(&pf->serv_tmr, jiffies); 2447 } 2448 2449 /** 2450 * ice_set_ctrlq_len - helper function to set controlq length 2451 * @hw: pointer to the HW instance 2452 */ 2453 static void ice_set_ctrlq_len(struct ice_hw *hw) 2454 { 2455 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2456 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2457 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2458 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2459 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2460 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2461 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2462 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2463 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2464 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2465 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2466 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2467 } 2468 2469 /** 2470 * ice_schedule_reset - schedule a reset 2471 * @pf: board private structure 2472 * @reset: reset being requested 2473 */ 2474 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2475 { 2476 struct device *dev = ice_pf_to_dev(pf); 2477 2478 /* bail out if earlier reset has failed */ 2479 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2480 dev_dbg(dev, "earlier reset has failed\n"); 2481 return -EIO; 2482 } 2483 /* bail if reset/recovery already in progress */ 2484 if (ice_is_reset_in_progress(pf->state)) { 2485 dev_dbg(dev, "Reset already in progress\n"); 2486 return -EBUSY; 2487 } 2488 2489 switch (reset) { 2490 case ICE_RESET_PFR: 2491 set_bit(ICE_PFR_REQ, pf->state); 2492 break; 2493 case ICE_RESET_CORER: 2494 set_bit(ICE_CORER_REQ, pf->state); 2495 break; 2496 case ICE_RESET_GLOBR: 2497 set_bit(ICE_GLOBR_REQ, pf->state); 2498 break; 2499 default: 2500 return -EINVAL; 2501 } 2502 2503 ice_service_task_schedule(pf); 2504 return 0; 2505 } 2506 2507 /** 2508 * ice_irq_affinity_notify - Callback for affinity changes 2509 * @notify: context as to what irq was changed 2510 * @mask: the new affinity mask 2511 * 2512 * This is a callback function used by the irq_set_affinity_notifier function 2513 * so that we may register to receive changes to the irq affinity masks. 2514 */ 2515 static void 2516 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2517 const cpumask_t *mask) 2518 { 2519 struct ice_q_vector *q_vector = 2520 container_of(notify, struct ice_q_vector, affinity_notify); 2521 2522 cpumask_copy(&q_vector->affinity_mask, mask); 2523 } 2524 2525 /** 2526 * ice_irq_affinity_release - Callback for affinity notifier release 2527 * @ref: internal core kernel usage 2528 * 2529 * This is a callback function used by the irq_set_affinity_notifier function 2530 * to inform the current notification subscriber that they will no longer 2531 * receive notifications. 2532 */ 2533 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2534 2535 /** 2536 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2537 * @vsi: the VSI being configured 2538 */ 2539 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2540 { 2541 struct ice_hw *hw = &vsi->back->hw; 2542 int i; 2543 2544 ice_for_each_q_vector(vsi, i) 2545 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2546 2547 ice_flush(hw); 2548 return 0; 2549 } 2550 2551 /** 2552 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2553 * @vsi: the VSI being configured 2554 * @basename: name for the vector 2555 */ 2556 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2557 { 2558 int q_vectors = vsi->num_q_vectors; 2559 struct ice_pf *pf = vsi->back; 2560 struct device *dev; 2561 int rx_int_idx = 0; 2562 int tx_int_idx = 0; 2563 int vector, err; 2564 int irq_num; 2565 2566 dev = ice_pf_to_dev(pf); 2567 for (vector = 0; vector < q_vectors; vector++) { 2568 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2569 2570 irq_num = q_vector->irq.virq; 2571 2572 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2573 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2574 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2575 tx_int_idx++; 2576 } else if (q_vector->rx.rx_ring) { 2577 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2578 "%s-%s-%d", basename, "rx", rx_int_idx++); 2579 } else if (q_vector->tx.tx_ring) { 2580 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2581 "%s-%s-%d", basename, "tx", tx_int_idx++); 2582 } else { 2583 /* skip this unused q_vector */ 2584 continue; 2585 } 2586 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2587 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2588 IRQF_SHARED, q_vector->name, 2589 q_vector); 2590 else 2591 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2592 0, q_vector->name, q_vector); 2593 if (err) { 2594 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2595 err); 2596 goto free_q_irqs; 2597 } 2598 2599 /* register for affinity change notifications */ 2600 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2601 struct irq_affinity_notify *affinity_notify; 2602 2603 affinity_notify = &q_vector->affinity_notify; 2604 affinity_notify->notify = ice_irq_affinity_notify; 2605 affinity_notify->release = ice_irq_affinity_release; 2606 irq_set_affinity_notifier(irq_num, affinity_notify); 2607 } 2608 2609 /* assign the mask for this irq */ 2610 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2611 } 2612 2613 err = ice_set_cpu_rx_rmap(vsi); 2614 if (err) { 2615 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2616 vsi->vsi_num, ERR_PTR(err)); 2617 goto free_q_irqs; 2618 } 2619 2620 vsi->irqs_ready = true; 2621 return 0; 2622 2623 free_q_irqs: 2624 while (vector--) { 2625 irq_num = vsi->q_vectors[vector]->irq.virq; 2626 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2627 irq_set_affinity_notifier(irq_num, NULL); 2628 irq_set_affinity_hint(irq_num, NULL); 2629 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2630 } 2631 return err; 2632 } 2633 2634 /** 2635 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2636 * @vsi: VSI to setup Tx rings used by XDP 2637 * 2638 * Return 0 on success and negative value on error 2639 */ 2640 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2641 { 2642 struct device *dev = ice_pf_to_dev(vsi->back); 2643 struct ice_tx_desc *tx_desc; 2644 int i, j; 2645 2646 ice_for_each_xdp_txq(vsi, i) { 2647 u16 xdp_q_idx = vsi->alloc_txq + i; 2648 struct ice_ring_stats *ring_stats; 2649 struct ice_tx_ring *xdp_ring; 2650 2651 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2652 if (!xdp_ring) 2653 goto free_xdp_rings; 2654 2655 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2656 if (!ring_stats) { 2657 ice_free_tx_ring(xdp_ring); 2658 goto free_xdp_rings; 2659 } 2660 2661 xdp_ring->ring_stats = ring_stats; 2662 xdp_ring->q_index = xdp_q_idx; 2663 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2664 xdp_ring->vsi = vsi; 2665 xdp_ring->netdev = NULL; 2666 xdp_ring->dev = dev; 2667 xdp_ring->count = vsi->num_tx_desc; 2668 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2669 if (ice_setup_tx_ring(xdp_ring)) 2670 goto free_xdp_rings; 2671 ice_set_ring_xdp(xdp_ring); 2672 spin_lock_init(&xdp_ring->tx_lock); 2673 for (j = 0; j < xdp_ring->count; j++) { 2674 tx_desc = ICE_TX_DESC(xdp_ring, j); 2675 tx_desc->cmd_type_offset_bsz = 0; 2676 } 2677 } 2678 2679 return 0; 2680 2681 free_xdp_rings: 2682 for (; i >= 0; i--) { 2683 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2684 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2685 vsi->xdp_rings[i]->ring_stats = NULL; 2686 ice_free_tx_ring(vsi->xdp_rings[i]); 2687 } 2688 } 2689 return -ENOMEM; 2690 } 2691 2692 /** 2693 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2694 * @vsi: VSI to set the bpf prog on 2695 * @prog: the bpf prog pointer 2696 */ 2697 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2698 { 2699 struct bpf_prog *old_prog; 2700 int i; 2701 2702 old_prog = xchg(&vsi->xdp_prog, prog); 2703 ice_for_each_rxq(vsi, i) 2704 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2705 2706 if (old_prog) 2707 bpf_prog_put(old_prog); 2708 } 2709 2710 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2711 { 2712 struct ice_q_vector *q_vector; 2713 struct ice_tx_ring *ring; 2714 2715 if (static_key_enabled(&ice_xdp_locking_key)) 2716 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2717 2718 q_vector = vsi->rx_rings[qid]->q_vector; 2719 ice_for_each_tx_ring(ring, q_vector->tx) 2720 if (ice_ring_is_xdp(ring)) 2721 return ring; 2722 2723 return NULL; 2724 } 2725 2726 /** 2727 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2728 * @vsi: the VSI with XDP rings being configured 2729 * 2730 * Map XDP rings to interrupt vectors and perform the configuration steps 2731 * dependent on the mapping. 2732 */ 2733 void ice_map_xdp_rings(struct ice_vsi *vsi) 2734 { 2735 int xdp_rings_rem = vsi->num_xdp_txq; 2736 int v_idx, q_idx; 2737 2738 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2739 ice_for_each_q_vector(vsi, v_idx) { 2740 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2741 int xdp_rings_per_v, q_id, q_base; 2742 2743 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2744 vsi->num_q_vectors - v_idx); 2745 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2746 2747 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2748 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2749 2750 xdp_ring->q_vector = q_vector; 2751 xdp_ring->next = q_vector->tx.tx_ring; 2752 q_vector->tx.tx_ring = xdp_ring; 2753 } 2754 xdp_rings_rem -= xdp_rings_per_v; 2755 } 2756 2757 ice_for_each_rxq(vsi, q_idx) { 2758 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2759 q_idx); 2760 ice_tx_xsk_pool(vsi, q_idx); 2761 } 2762 } 2763 2764 /** 2765 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2766 * @vsi: VSI to bring up Tx rings used by XDP 2767 * @prog: bpf program that will be assigned to VSI 2768 * @cfg_type: create from scratch or restore the existing configuration 2769 * 2770 * Return 0 on success and negative value on error 2771 */ 2772 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2773 enum ice_xdp_cfg cfg_type) 2774 { 2775 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2776 struct ice_pf *pf = vsi->back; 2777 struct ice_qs_cfg xdp_qs_cfg = { 2778 .qs_mutex = &pf->avail_q_mutex, 2779 .pf_map = pf->avail_txqs, 2780 .pf_map_size = pf->max_pf_txqs, 2781 .q_count = vsi->num_xdp_txq, 2782 .scatter_count = ICE_MAX_SCATTER_TXQS, 2783 .vsi_map = vsi->txq_map, 2784 .vsi_map_offset = vsi->alloc_txq, 2785 .mapping_mode = ICE_VSI_MAP_CONTIG 2786 }; 2787 struct device *dev; 2788 int status, i; 2789 2790 dev = ice_pf_to_dev(pf); 2791 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2792 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2793 if (!vsi->xdp_rings) 2794 return -ENOMEM; 2795 2796 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2797 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2798 goto err_map_xdp; 2799 2800 if (static_key_enabled(&ice_xdp_locking_key)) 2801 netdev_warn(vsi->netdev, 2802 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2803 2804 if (ice_xdp_alloc_setup_rings(vsi)) 2805 goto clear_xdp_rings; 2806 2807 /* omit the scheduler update if in reset path; XDP queues will be 2808 * taken into account at the end of ice_vsi_rebuild, where 2809 * ice_cfg_vsi_lan is being called 2810 */ 2811 if (cfg_type == ICE_XDP_CFG_PART) 2812 return 0; 2813 2814 ice_map_xdp_rings(vsi); 2815 2816 /* tell the Tx scheduler that right now we have 2817 * additional queues 2818 */ 2819 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2820 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2821 2822 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2823 max_txqs); 2824 if (status) { 2825 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2826 status); 2827 goto clear_xdp_rings; 2828 } 2829 2830 /* assign the prog only when it's not already present on VSI; 2831 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2832 * VSI rebuild that happens under ethtool -L can expose us to 2833 * the bpf_prog refcount issues as we would be swapping same 2834 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2835 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2836 * this is not harmful as dev_xdp_install bumps the refcount 2837 * before calling the op exposed by the driver; 2838 */ 2839 if (!ice_is_xdp_ena_vsi(vsi)) 2840 ice_vsi_assign_bpf_prog(vsi, prog); 2841 2842 return 0; 2843 clear_xdp_rings: 2844 ice_for_each_xdp_txq(vsi, i) 2845 if (vsi->xdp_rings[i]) { 2846 kfree_rcu(vsi->xdp_rings[i], rcu); 2847 vsi->xdp_rings[i] = NULL; 2848 } 2849 2850 err_map_xdp: 2851 mutex_lock(&pf->avail_q_mutex); 2852 ice_for_each_xdp_txq(vsi, i) { 2853 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2854 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2855 } 2856 mutex_unlock(&pf->avail_q_mutex); 2857 2858 devm_kfree(dev, vsi->xdp_rings); 2859 return -ENOMEM; 2860 } 2861 2862 /** 2863 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2864 * @vsi: VSI to remove XDP rings 2865 * @cfg_type: disable XDP permanently or allow it to be restored later 2866 * 2867 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2868 * resources 2869 */ 2870 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2871 { 2872 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2873 struct ice_pf *pf = vsi->back; 2874 int i, v_idx; 2875 2876 /* q_vectors are freed in reset path so there's no point in detaching 2877 * rings 2878 */ 2879 if (cfg_type == ICE_XDP_CFG_PART) 2880 goto free_qmap; 2881 2882 ice_for_each_q_vector(vsi, v_idx) { 2883 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2884 struct ice_tx_ring *ring; 2885 2886 ice_for_each_tx_ring(ring, q_vector->tx) 2887 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2888 break; 2889 2890 /* restore the value of last node prior to XDP setup */ 2891 q_vector->tx.tx_ring = ring; 2892 } 2893 2894 free_qmap: 2895 mutex_lock(&pf->avail_q_mutex); 2896 ice_for_each_xdp_txq(vsi, i) { 2897 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2898 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2899 } 2900 mutex_unlock(&pf->avail_q_mutex); 2901 2902 ice_for_each_xdp_txq(vsi, i) 2903 if (vsi->xdp_rings[i]) { 2904 if (vsi->xdp_rings[i]->desc) { 2905 synchronize_rcu(); 2906 ice_free_tx_ring(vsi->xdp_rings[i]); 2907 } 2908 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2909 vsi->xdp_rings[i]->ring_stats = NULL; 2910 kfree_rcu(vsi->xdp_rings[i], rcu); 2911 vsi->xdp_rings[i] = NULL; 2912 } 2913 2914 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2915 vsi->xdp_rings = NULL; 2916 2917 if (static_key_enabled(&ice_xdp_locking_key)) 2918 static_branch_dec(&ice_xdp_locking_key); 2919 2920 if (cfg_type == ICE_XDP_CFG_PART) 2921 return 0; 2922 2923 ice_vsi_assign_bpf_prog(vsi, NULL); 2924 2925 /* notify Tx scheduler that we destroyed XDP queues and bring 2926 * back the old number of child nodes 2927 */ 2928 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2929 max_txqs[i] = vsi->num_txq; 2930 2931 /* change number of XDP Tx queues to 0 */ 2932 vsi->num_xdp_txq = 0; 2933 2934 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2935 max_txqs); 2936 } 2937 2938 /** 2939 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2940 * @vsi: VSI to schedule napi on 2941 */ 2942 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2943 { 2944 int i; 2945 2946 ice_for_each_rxq(vsi, i) { 2947 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2948 2949 if (rx_ring->xsk_pool) 2950 napi_schedule(&rx_ring->q_vector->napi); 2951 } 2952 } 2953 2954 /** 2955 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2956 * @vsi: VSI to determine the count of XDP Tx qs 2957 * 2958 * returns 0 if Tx qs count is higher than at least half of CPU count, 2959 * -ENOMEM otherwise 2960 */ 2961 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2962 { 2963 u16 avail = ice_get_avail_txq_count(vsi->back); 2964 u16 cpus = num_possible_cpus(); 2965 2966 if (avail < cpus / 2) 2967 return -ENOMEM; 2968 2969 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2970 2971 if (vsi->num_xdp_txq < cpus) 2972 static_branch_inc(&ice_xdp_locking_key); 2973 2974 return 0; 2975 } 2976 2977 /** 2978 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2979 * @vsi: Pointer to VSI structure 2980 */ 2981 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2982 { 2983 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2984 return ICE_RXBUF_1664; 2985 else 2986 return ICE_RXBUF_3072; 2987 } 2988 2989 /** 2990 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2991 * @vsi: VSI to setup XDP for 2992 * @prog: XDP program 2993 * @extack: netlink extended ack 2994 */ 2995 static int 2996 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2997 struct netlink_ext_ack *extack) 2998 { 2999 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3000 bool if_running = netif_running(vsi->netdev); 3001 int ret = 0, xdp_ring_err = 0; 3002 3003 if (prog && !prog->aux->xdp_has_frags) { 3004 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3005 NL_SET_ERR_MSG_MOD(extack, 3006 "MTU is too large for linear frames and XDP prog does not support frags"); 3007 return -EOPNOTSUPP; 3008 } 3009 } 3010 3011 /* hot swap progs and avoid toggling link */ 3012 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 3013 ice_vsi_assign_bpf_prog(vsi, prog); 3014 return 0; 3015 } 3016 3017 /* need to stop netdev while setting up the program for Rx rings */ 3018 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3019 ret = ice_down(vsi); 3020 if (ret) { 3021 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3022 return ret; 3023 } 3024 } 3025 3026 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3027 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3028 if (xdp_ring_err) { 3029 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3030 } else { 3031 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3032 ICE_XDP_CFG_FULL); 3033 if (xdp_ring_err) 3034 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3035 } 3036 xdp_features_set_redirect_target(vsi->netdev, true); 3037 /* reallocate Rx queues that are used for zero-copy */ 3038 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3039 if (xdp_ring_err) 3040 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3041 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3042 xdp_features_clear_redirect_target(vsi->netdev); 3043 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3044 if (xdp_ring_err) 3045 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3046 /* reallocate Rx queues that were used for zero-copy */ 3047 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3048 if (xdp_ring_err) 3049 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3050 } 3051 3052 if (if_running) 3053 ret = ice_up(vsi); 3054 3055 if (!ret && prog) 3056 ice_vsi_rx_napi_schedule(vsi); 3057 3058 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3059 } 3060 3061 /** 3062 * ice_xdp_safe_mode - XDP handler for safe mode 3063 * @dev: netdevice 3064 * @xdp: XDP command 3065 */ 3066 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3067 struct netdev_bpf *xdp) 3068 { 3069 NL_SET_ERR_MSG_MOD(xdp->extack, 3070 "Please provide working DDP firmware package in order to use XDP\n" 3071 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3072 return -EOPNOTSUPP; 3073 } 3074 3075 /** 3076 * ice_xdp - implements XDP handler 3077 * @dev: netdevice 3078 * @xdp: XDP command 3079 */ 3080 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3081 { 3082 struct ice_netdev_priv *np = netdev_priv(dev); 3083 struct ice_vsi *vsi = np->vsi; 3084 3085 if (vsi->type != ICE_VSI_PF) { 3086 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3087 return -EINVAL; 3088 } 3089 3090 switch (xdp->command) { 3091 case XDP_SETUP_PROG: 3092 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3093 case XDP_SETUP_XSK_POOL: 3094 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3095 xdp->xsk.queue_id); 3096 default: 3097 return -EINVAL; 3098 } 3099 } 3100 3101 /** 3102 * ice_ena_misc_vector - enable the non-queue interrupts 3103 * @pf: board private structure 3104 */ 3105 static void ice_ena_misc_vector(struct ice_pf *pf) 3106 { 3107 struct ice_hw *hw = &pf->hw; 3108 u32 pf_intr_start_offset; 3109 u32 val; 3110 3111 /* Disable anti-spoof detection interrupt to prevent spurious event 3112 * interrupts during a function reset. Anti-spoof functionally is 3113 * still supported. 3114 */ 3115 val = rd32(hw, GL_MDCK_TX_TDPU); 3116 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3117 wr32(hw, GL_MDCK_TX_TDPU, val); 3118 3119 /* clear things first */ 3120 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3121 rd32(hw, PFINT_OICR); /* read to clear */ 3122 3123 val = (PFINT_OICR_ECC_ERR_M | 3124 PFINT_OICR_MAL_DETECT_M | 3125 PFINT_OICR_GRST_M | 3126 PFINT_OICR_PCI_EXCEPTION_M | 3127 PFINT_OICR_VFLR_M | 3128 PFINT_OICR_HMC_ERR_M | 3129 PFINT_OICR_PE_PUSH_M | 3130 PFINT_OICR_PE_CRITERR_M); 3131 3132 wr32(hw, PFINT_OICR_ENA, val); 3133 3134 /* SW_ITR_IDX = 0, but don't change INTENA */ 3135 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3136 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3137 3138 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3139 return; 3140 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3141 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3142 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3143 } 3144 3145 /** 3146 * ice_ll_ts_intr - ll_ts interrupt handler 3147 * @irq: interrupt number 3148 * @data: pointer to a q_vector 3149 */ 3150 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3151 { 3152 struct ice_pf *pf = data; 3153 u32 pf_intr_start_offset; 3154 struct ice_ptp_tx *tx; 3155 unsigned long flags; 3156 struct ice_hw *hw; 3157 u32 val; 3158 u8 idx; 3159 3160 hw = &pf->hw; 3161 tx = &pf->ptp.port.tx; 3162 spin_lock_irqsave(&tx->lock, flags); 3163 ice_ptp_complete_tx_single_tstamp(tx); 3164 3165 idx = find_next_bit_wrap(tx->in_use, tx->len, 3166 tx->last_ll_ts_idx_read + 1); 3167 if (idx != tx->len) 3168 ice_ptp_req_tx_single_tstamp(tx, idx); 3169 spin_unlock_irqrestore(&tx->lock, flags); 3170 3171 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3172 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3173 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3174 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3175 val); 3176 3177 return IRQ_HANDLED; 3178 } 3179 3180 /** 3181 * ice_misc_intr - misc interrupt handler 3182 * @irq: interrupt number 3183 * @data: pointer to a q_vector 3184 */ 3185 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3186 { 3187 struct ice_pf *pf = (struct ice_pf *)data; 3188 irqreturn_t ret = IRQ_HANDLED; 3189 struct ice_hw *hw = &pf->hw; 3190 struct device *dev; 3191 u32 oicr, ena_mask; 3192 3193 dev = ice_pf_to_dev(pf); 3194 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3195 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3196 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3197 3198 oicr = rd32(hw, PFINT_OICR); 3199 ena_mask = rd32(hw, PFINT_OICR_ENA); 3200 3201 if (oicr & PFINT_OICR_SWINT_M) { 3202 ena_mask &= ~PFINT_OICR_SWINT_M; 3203 pf->sw_int_count++; 3204 } 3205 3206 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3207 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3208 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3209 } 3210 if (oicr & PFINT_OICR_VFLR_M) { 3211 /* disable any further VFLR event notifications */ 3212 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3213 u32 reg = rd32(hw, PFINT_OICR_ENA); 3214 3215 reg &= ~PFINT_OICR_VFLR_M; 3216 wr32(hw, PFINT_OICR_ENA, reg); 3217 } else { 3218 ena_mask &= ~PFINT_OICR_VFLR_M; 3219 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3220 } 3221 } 3222 3223 if (oicr & PFINT_OICR_GRST_M) { 3224 u32 reset; 3225 3226 /* we have a reset warning */ 3227 ena_mask &= ~PFINT_OICR_GRST_M; 3228 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3229 rd32(hw, GLGEN_RSTAT)); 3230 3231 if (reset == ICE_RESET_CORER) 3232 pf->corer_count++; 3233 else if (reset == ICE_RESET_GLOBR) 3234 pf->globr_count++; 3235 else if (reset == ICE_RESET_EMPR) 3236 pf->empr_count++; 3237 else 3238 dev_dbg(dev, "Invalid reset type %d\n", reset); 3239 3240 /* If a reset cycle isn't already in progress, we set a bit in 3241 * pf->state so that the service task can start a reset/rebuild. 3242 */ 3243 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3244 if (reset == ICE_RESET_CORER) 3245 set_bit(ICE_CORER_RECV, pf->state); 3246 else if (reset == ICE_RESET_GLOBR) 3247 set_bit(ICE_GLOBR_RECV, pf->state); 3248 else 3249 set_bit(ICE_EMPR_RECV, pf->state); 3250 3251 /* There are couple of different bits at play here. 3252 * hw->reset_ongoing indicates whether the hardware is 3253 * in reset. This is set to true when a reset interrupt 3254 * is received and set back to false after the driver 3255 * has determined that the hardware is out of reset. 3256 * 3257 * ICE_RESET_OICR_RECV in pf->state indicates 3258 * that a post reset rebuild is required before the 3259 * driver is operational again. This is set above. 3260 * 3261 * As this is the start of the reset/rebuild cycle, set 3262 * both to indicate that. 3263 */ 3264 hw->reset_ongoing = true; 3265 } 3266 } 3267 3268 if (oicr & PFINT_OICR_TSYN_TX_M) { 3269 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3270 if (ice_pf_state_is_nominal(pf) && 3271 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3272 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3273 unsigned long flags; 3274 u8 idx; 3275 3276 spin_lock_irqsave(&tx->lock, flags); 3277 idx = find_next_bit_wrap(tx->in_use, tx->len, 3278 tx->last_ll_ts_idx_read + 1); 3279 if (idx != tx->len) 3280 ice_ptp_req_tx_single_tstamp(tx, idx); 3281 spin_unlock_irqrestore(&tx->lock, flags); 3282 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3283 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3284 ret = IRQ_WAKE_THREAD; 3285 } 3286 } 3287 3288 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3289 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3290 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3291 3292 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3293 3294 if (ice_pf_src_tmr_owned(pf)) { 3295 /* Save EVENTs from GLTSYN register */ 3296 pf->ptp.ext_ts_irq |= gltsyn_stat & 3297 (GLTSYN_STAT_EVENT0_M | 3298 GLTSYN_STAT_EVENT1_M | 3299 GLTSYN_STAT_EVENT2_M); 3300 3301 ice_ptp_extts_event(pf); 3302 } 3303 } 3304 3305 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3306 if (oicr & ICE_AUX_CRIT_ERR) { 3307 pf->oicr_err_reg |= oicr; 3308 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3309 ena_mask &= ~ICE_AUX_CRIT_ERR; 3310 } 3311 3312 /* Report any remaining unexpected interrupts */ 3313 oicr &= ena_mask; 3314 if (oicr) { 3315 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3316 /* If a critical error is pending there is no choice but to 3317 * reset the device. 3318 */ 3319 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3320 PFINT_OICR_ECC_ERR_M)) { 3321 set_bit(ICE_PFR_REQ, pf->state); 3322 } 3323 } 3324 ice_service_task_schedule(pf); 3325 if (ret == IRQ_HANDLED) 3326 ice_irq_dynamic_ena(hw, NULL, NULL); 3327 3328 return ret; 3329 } 3330 3331 /** 3332 * ice_misc_intr_thread_fn - misc interrupt thread function 3333 * @irq: interrupt number 3334 * @data: pointer to a q_vector 3335 */ 3336 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3337 { 3338 struct ice_pf *pf = data; 3339 struct ice_hw *hw; 3340 3341 hw = &pf->hw; 3342 3343 if (ice_is_reset_in_progress(pf->state)) 3344 goto skip_irq; 3345 3346 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3347 /* Process outstanding Tx timestamps. If there is more work, 3348 * re-arm the interrupt to trigger again. 3349 */ 3350 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3351 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3352 ice_flush(hw); 3353 } 3354 } 3355 3356 skip_irq: 3357 ice_irq_dynamic_ena(hw, NULL, NULL); 3358 3359 return IRQ_HANDLED; 3360 } 3361 3362 /** 3363 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3364 * @hw: pointer to HW structure 3365 */ 3366 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3367 { 3368 /* disable Admin queue Interrupt causes */ 3369 wr32(hw, PFINT_FW_CTL, 3370 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3371 3372 /* disable Mailbox queue Interrupt causes */ 3373 wr32(hw, PFINT_MBX_CTL, 3374 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3375 3376 wr32(hw, PFINT_SB_CTL, 3377 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3378 3379 /* disable Control queue Interrupt causes */ 3380 wr32(hw, PFINT_OICR_CTL, 3381 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3382 3383 ice_flush(hw); 3384 } 3385 3386 /** 3387 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3388 * @pf: board private structure 3389 */ 3390 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3391 { 3392 int irq_num = pf->ll_ts_irq.virq; 3393 3394 synchronize_irq(irq_num); 3395 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3396 3397 ice_free_irq(pf, pf->ll_ts_irq); 3398 } 3399 3400 /** 3401 * ice_free_irq_msix_misc - Unroll misc vector setup 3402 * @pf: board private structure 3403 */ 3404 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3405 { 3406 int misc_irq_num = pf->oicr_irq.virq; 3407 struct ice_hw *hw = &pf->hw; 3408 3409 ice_dis_ctrlq_interrupts(hw); 3410 3411 /* disable OICR interrupt */ 3412 wr32(hw, PFINT_OICR_ENA, 0); 3413 ice_flush(hw); 3414 3415 synchronize_irq(misc_irq_num); 3416 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3417 3418 ice_free_irq(pf, pf->oicr_irq); 3419 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3420 ice_free_irq_msix_ll_ts(pf); 3421 } 3422 3423 /** 3424 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3425 * @hw: pointer to HW structure 3426 * @reg_idx: HW vector index to associate the control queue interrupts with 3427 */ 3428 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3429 { 3430 u32 val; 3431 3432 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3433 PFINT_OICR_CTL_CAUSE_ENA_M); 3434 wr32(hw, PFINT_OICR_CTL, val); 3435 3436 /* enable Admin queue Interrupt causes */ 3437 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3438 PFINT_FW_CTL_CAUSE_ENA_M); 3439 wr32(hw, PFINT_FW_CTL, val); 3440 3441 /* enable Mailbox queue Interrupt causes */ 3442 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3443 PFINT_MBX_CTL_CAUSE_ENA_M); 3444 wr32(hw, PFINT_MBX_CTL, val); 3445 3446 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3447 /* enable Sideband queue Interrupt causes */ 3448 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3449 PFINT_SB_CTL_CAUSE_ENA_M); 3450 wr32(hw, PFINT_SB_CTL, val); 3451 } 3452 3453 ice_flush(hw); 3454 } 3455 3456 /** 3457 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3458 * @pf: board private structure 3459 * 3460 * This sets up the handler for MSIX 0, which is used to manage the 3461 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3462 * when in MSI or Legacy interrupt mode. 3463 */ 3464 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3465 { 3466 struct device *dev = ice_pf_to_dev(pf); 3467 struct ice_hw *hw = &pf->hw; 3468 u32 pf_intr_start_offset; 3469 struct msi_map irq; 3470 int err = 0; 3471 3472 if (!pf->int_name[0]) 3473 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3474 dev_driver_string(dev), dev_name(dev)); 3475 3476 if (!pf->int_name_ll_ts[0]) 3477 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3478 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3479 /* Do not request IRQ but do enable OICR interrupt since settings are 3480 * lost during reset. Note that this function is called only during 3481 * rebuild path and not while reset is in progress. 3482 */ 3483 if (ice_is_reset_in_progress(pf->state)) 3484 goto skip_req_irq; 3485 3486 /* reserve one vector in irq_tracker for misc interrupts */ 3487 irq = ice_alloc_irq(pf, false); 3488 if (irq.index < 0) 3489 return irq.index; 3490 3491 pf->oicr_irq = irq; 3492 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3493 ice_misc_intr_thread_fn, 0, 3494 pf->int_name, pf); 3495 if (err) { 3496 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3497 pf->int_name, err); 3498 ice_free_irq(pf, pf->oicr_irq); 3499 return err; 3500 } 3501 3502 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3503 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3504 goto skip_req_irq; 3505 3506 irq = ice_alloc_irq(pf, false); 3507 if (irq.index < 0) 3508 return irq.index; 3509 3510 pf->ll_ts_irq = irq; 3511 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3512 pf->int_name_ll_ts, pf); 3513 if (err) { 3514 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3515 pf->int_name_ll_ts, err); 3516 ice_free_irq(pf, pf->ll_ts_irq); 3517 return err; 3518 } 3519 3520 skip_req_irq: 3521 ice_ena_misc_vector(pf); 3522 3523 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3524 /* This enables LL TS interrupt */ 3525 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3526 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3527 wr32(hw, PFINT_SB_CTL, 3528 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3529 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3530 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3531 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3532 3533 ice_flush(hw); 3534 ice_irq_dynamic_ena(hw, NULL, NULL); 3535 3536 return 0; 3537 } 3538 3539 /** 3540 * ice_napi_add - register NAPI handler for the VSI 3541 * @vsi: VSI for which NAPI handler is to be registered 3542 * 3543 * This function is only called in the driver's load path. Registering the NAPI 3544 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3545 * reset/rebuild, etc.) 3546 */ 3547 static void ice_napi_add(struct ice_vsi *vsi) 3548 { 3549 int v_idx; 3550 3551 if (!vsi->netdev) 3552 return; 3553 3554 ice_for_each_q_vector(vsi, v_idx) { 3555 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3556 ice_napi_poll); 3557 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3558 } 3559 } 3560 3561 /** 3562 * ice_set_ops - set netdev and ethtools ops for the given netdev 3563 * @vsi: the VSI associated with the new netdev 3564 */ 3565 static void ice_set_ops(struct ice_vsi *vsi) 3566 { 3567 struct net_device *netdev = vsi->netdev; 3568 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3569 3570 if (ice_is_safe_mode(pf)) { 3571 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3572 ice_set_ethtool_safe_mode_ops(netdev); 3573 return; 3574 } 3575 3576 netdev->netdev_ops = &ice_netdev_ops; 3577 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3578 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3579 ice_set_ethtool_ops(netdev); 3580 3581 if (vsi->type != ICE_VSI_PF) 3582 return; 3583 3584 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3585 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3586 NETDEV_XDP_ACT_RX_SG; 3587 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3588 } 3589 3590 /** 3591 * ice_set_netdev_features - set features for the given netdev 3592 * @netdev: netdev instance 3593 */ 3594 static void ice_set_netdev_features(struct net_device *netdev) 3595 { 3596 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3597 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3598 netdev_features_t csumo_features; 3599 netdev_features_t vlano_features; 3600 netdev_features_t dflt_features; 3601 netdev_features_t tso_features; 3602 3603 if (ice_is_safe_mode(pf)) { 3604 /* safe mode */ 3605 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3606 netdev->hw_features = netdev->features; 3607 return; 3608 } 3609 3610 dflt_features = NETIF_F_SG | 3611 NETIF_F_HIGHDMA | 3612 NETIF_F_NTUPLE | 3613 NETIF_F_RXHASH; 3614 3615 csumo_features = NETIF_F_RXCSUM | 3616 NETIF_F_IP_CSUM | 3617 NETIF_F_SCTP_CRC | 3618 NETIF_F_IPV6_CSUM; 3619 3620 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3621 NETIF_F_HW_VLAN_CTAG_TX | 3622 NETIF_F_HW_VLAN_CTAG_RX; 3623 3624 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3625 if (is_dvm_ena) 3626 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3627 3628 tso_features = NETIF_F_TSO | 3629 NETIF_F_TSO_ECN | 3630 NETIF_F_TSO6 | 3631 NETIF_F_GSO_GRE | 3632 NETIF_F_GSO_UDP_TUNNEL | 3633 NETIF_F_GSO_GRE_CSUM | 3634 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3635 NETIF_F_GSO_PARTIAL | 3636 NETIF_F_GSO_IPXIP4 | 3637 NETIF_F_GSO_IPXIP6 | 3638 NETIF_F_GSO_UDP_L4; 3639 3640 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3641 NETIF_F_GSO_GRE_CSUM; 3642 /* set features that user can change */ 3643 netdev->hw_features = dflt_features | csumo_features | 3644 vlano_features | tso_features; 3645 3646 /* add support for HW_CSUM on packets with MPLS header */ 3647 netdev->mpls_features = NETIF_F_HW_CSUM | 3648 NETIF_F_TSO | 3649 NETIF_F_TSO6; 3650 3651 /* enable features */ 3652 netdev->features |= netdev->hw_features; 3653 3654 netdev->hw_features |= NETIF_F_HW_TC; 3655 netdev->hw_features |= NETIF_F_LOOPBACK; 3656 3657 /* encap and VLAN devices inherit default, csumo and tso features */ 3658 netdev->hw_enc_features |= dflt_features | csumo_features | 3659 tso_features; 3660 netdev->vlan_features |= dflt_features | csumo_features | 3661 tso_features; 3662 3663 /* advertise support but don't enable by default since only one type of 3664 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3665 * type turns on the other has to be turned off. This is enforced by the 3666 * ice_fix_features() ndo callback. 3667 */ 3668 if (is_dvm_ena) 3669 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3670 NETIF_F_HW_VLAN_STAG_TX; 3671 3672 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3673 * be changed at runtime 3674 */ 3675 netdev->hw_features |= NETIF_F_RXFCS; 3676 3677 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3678 } 3679 3680 /** 3681 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3682 * @lut: Lookup table 3683 * @rss_table_size: Lookup table size 3684 * @rss_size: Range of queue number for hashing 3685 */ 3686 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3687 { 3688 u16 i; 3689 3690 for (i = 0; i < rss_table_size; i++) 3691 lut[i] = i % rss_size; 3692 } 3693 3694 /** 3695 * ice_pf_vsi_setup - Set up a PF VSI 3696 * @pf: board private structure 3697 * @pi: pointer to the port_info instance 3698 * 3699 * Returns pointer to the successfully allocated VSI software struct 3700 * on success, otherwise returns NULL on failure. 3701 */ 3702 static struct ice_vsi * 3703 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3704 { 3705 struct ice_vsi_cfg_params params = {}; 3706 3707 params.type = ICE_VSI_PF; 3708 params.port_info = pi; 3709 params.flags = ICE_VSI_FLAG_INIT; 3710 3711 return ice_vsi_setup(pf, ¶ms); 3712 } 3713 3714 static struct ice_vsi * 3715 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3716 struct ice_channel *ch) 3717 { 3718 struct ice_vsi_cfg_params params = {}; 3719 3720 params.type = ICE_VSI_CHNL; 3721 params.port_info = pi; 3722 params.ch = ch; 3723 params.flags = ICE_VSI_FLAG_INIT; 3724 3725 return ice_vsi_setup(pf, ¶ms); 3726 } 3727 3728 /** 3729 * ice_ctrl_vsi_setup - Set up a control VSI 3730 * @pf: board private structure 3731 * @pi: pointer to the port_info instance 3732 * 3733 * Returns pointer to the successfully allocated VSI software struct 3734 * on success, otherwise returns NULL on failure. 3735 */ 3736 static struct ice_vsi * 3737 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3738 { 3739 struct ice_vsi_cfg_params params = {}; 3740 3741 params.type = ICE_VSI_CTRL; 3742 params.port_info = pi; 3743 params.flags = ICE_VSI_FLAG_INIT; 3744 3745 return ice_vsi_setup(pf, ¶ms); 3746 } 3747 3748 /** 3749 * ice_lb_vsi_setup - Set up a loopback VSI 3750 * @pf: board private structure 3751 * @pi: pointer to the port_info instance 3752 * 3753 * Returns pointer to the successfully allocated VSI software struct 3754 * on success, otherwise returns NULL on failure. 3755 */ 3756 struct ice_vsi * 3757 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3758 { 3759 struct ice_vsi_cfg_params params = {}; 3760 3761 params.type = ICE_VSI_LB; 3762 params.port_info = pi; 3763 params.flags = ICE_VSI_FLAG_INIT; 3764 3765 return ice_vsi_setup(pf, ¶ms); 3766 } 3767 3768 /** 3769 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3770 * @netdev: network interface to be adjusted 3771 * @proto: VLAN TPID 3772 * @vid: VLAN ID to be added 3773 * 3774 * net_device_ops implementation for adding VLAN IDs 3775 */ 3776 static int 3777 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3778 { 3779 struct ice_netdev_priv *np = netdev_priv(netdev); 3780 struct ice_vsi_vlan_ops *vlan_ops; 3781 struct ice_vsi *vsi = np->vsi; 3782 struct ice_vlan vlan; 3783 int ret; 3784 3785 /* VLAN 0 is added by default during load/reset */ 3786 if (!vid) 3787 return 0; 3788 3789 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3790 usleep_range(1000, 2000); 3791 3792 /* Add multicast promisc rule for the VLAN ID to be added if 3793 * all-multicast is currently enabled. 3794 */ 3795 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3796 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3797 ICE_MCAST_VLAN_PROMISC_BITS, 3798 vid); 3799 if (ret) 3800 goto finish; 3801 } 3802 3803 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3804 3805 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3806 * packets aren't pruned by the device's internal switch on Rx 3807 */ 3808 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3809 ret = vlan_ops->add_vlan(vsi, &vlan); 3810 if (ret) 3811 goto finish; 3812 3813 /* If all-multicast is currently enabled and this VLAN ID is only one 3814 * besides VLAN-0 we have to update look-up type of multicast promisc 3815 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3816 */ 3817 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3818 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3819 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3820 ICE_MCAST_PROMISC_BITS, 0); 3821 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3822 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3823 } 3824 3825 finish: 3826 clear_bit(ICE_CFG_BUSY, vsi->state); 3827 3828 return ret; 3829 } 3830 3831 /** 3832 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3833 * @netdev: network interface to be adjusted 3834 * @proto: VLAN TPID 3835 * @vid: VLAN ID to be removed 3836 * 3837 * net_device_ops implementation for removing VLAN IDs 3838 */ 3839 static int 3840 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3841 { 3842 struct ice_netdev_priv *np = netdev_priv(netdev); 3843 struct ice_vsi_vlan_ops *vlan_ops; 3844 struct ice_vsi *vsi = np->vsi; 3845 struct ice_vlan vlan; 3846 int ret; 3847 3848 /* don't allow removal of VLAN 0 */ 3849 if (!vid) 3850 return 0; 3851 3852 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3853 usleep_range(1000, 2000); 3854 3855 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3856 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3857 if (ret) { 3858 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3859 vsi->vsi_num); 3860 vsi->current_netdev_flags |= IFF_ALLMULTI; 3861 } 3862 3863 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3864 3865 /* Make sure VLAN delete is successful before updating VLAN 3866 * information 3867 */ 3868 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3869 ret = vlan_ops->del_vlan(vsi, &vlan); 3870 if (ret) 3871 goto finish; 3872 3873 /* Remove multicast promisc rule for the removed VLAN ID if 3874 * all-multicast is enabled. 3875 */ 3876 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3877 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3878 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3879 3880 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3881 /* Update look-up type of multicast promisc rule for VLAN 0 3882 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3883 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3884 */ 3885 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3886 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3887 ICE_MCAST_VLAN_PROMISC_BITS, 3888 0); 3889 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3890 ICE_MCAST_PROMISC_BITS, 0); 3891 } 3892 } 3893 3894 finish: 3895 clear_bit(ICE_CFG_BUSY, vsi->state); 3896 3897 return ret; 3898 } 3899 3900 /** 3901 * ice_rep_indr_tc_block_unbind 3902 * @cb_priv: indirection block private data 3903 */ 3904 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3905 { 3906 struct ice_indr_block_priv *indr_priv = cb_priv; 3907 3908 list_del(&indr_priv->list); 3909 kfree(indr_priv); 3910 } 3911 3912 /** 3913 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3914 * @vsi: VSI struct which has the netdev 3915 */ 3916 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3917 { 3918 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3919 3920 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3921 ice_rep_indr_tc_block_unbind); 3922 } 3923 3924 /** 3925 * ice_tc_indir_block_register - Register TC indirect block notifications 3926 * @vsi: VSI struct which has the netdev 3927 * 3928 * Returns 0 on success, negative value on failure 3929 */ 3930 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3931 { 3932 struct ice_netdev_priv *np; 3933 3934 if (!vsi || !vsi->netdev) 3935 return -EINVAL; 3936 3937 np = netdev_priv(vsi->netdev); 3938 3939 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3940 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3941 } 3942 3943 /** 3944 * ice_get_avail_q_count - Get count of queues in use 3945 * @pf_qmap: bitmap to get queue use count from 3946 * @lock: pointer to a mutex that protects access to pf_qmap 3947 * @size: size of the bitmap 3948 */ 3949 static u16 3950 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3951 { 3952 unsigned long bit; 3953 u16 count = 0; 3954 3955 mutex_lock(lock); 3956 for_each_clear_bit(bit, pf_qmap, size) 3957 count++; 3958 mutex_unlock(lock); 3959 3960 return count; 3961 } 3962 3963 /** 3964 * ice_get_avail_txq_count - Get count of Tx queues in use 3965 * @pf: pointer to an ice_pf instance 3966 */ 3967 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3968 { 3969 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3970 pf->max_pf_txqs); 3971 } 3972 3973 /** 3974 * ice_get_avail_rxq_count - Get count of Rx queues in use 3975 * @pf: pointer to an ice_pf instance 3976 */ 3977 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3978 { 3979 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3980 pf->max_pf_rxqs); 3981 } 3982 3983 /** 3984 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3985 * @pf: board private structure to initialize 3986 */ 3987 static void ice_deinit_pf(struct ice_pf *pf) 3988 { 3989 ice_service_task_stop(pf); 3990 mutex_destroy(&pf->lag_mutex); 3991 mutex_destroy(&pf->adev_mutex); 3992 mutex_destroy(&pf->sw_mutex); 3993 mutex_destroy(&pf->tc_mutex); 3994 mutex_destroy(&pf->avail_q_mutex); 3995 mutex_destroy(&pf->vfs.table_lock); 3996 3997 if (pf->avail_txqs) { 3998 bitmap_free(pf->avail_txqs); 3999 pf->avail_txqs = NULL; 4000 } 4001 4002 if (pf->avail_rxqs) { 4003 bitmap_free(pf->avail_rxqs); 4004 pf->avail_rxqs = NULL; 4005 } 4006 4007 if (pf->ptp.clock) 4008 ptp_clock_unregister(pf->ptp.clock); 4009 } 4010 4011 /** 4012 * ice_set_pf_caps - set PFs capability flags 4013 * @pf: pointer to the PF instance 4014 */ 4015 static void ice_set_pf_caps(struct ice_pf *pf) 4016 { 4017 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4018 4019 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4020 if (func_caps->common_cap.rdma) 4021 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4022 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4023 if (func_caps->common_cap.dcb) 4024 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4025 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4026 if (func_caps->common_cap.sr_iov_1_1) { 4027 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4028 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4029 ICE_MAX_SRIOV_VFS); 4030 } 4031 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4032 if (func_caps->common_cap.rss_table_size) 4033 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4034 4035 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4036 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4037 u16 unused; 4038 4039 /* ctrl_vsi_idx will be set to a valid value when flow director 4040 * is setup by ice_init_fdir 4041 */ 4042 pf->ctrl_vsi_idx = ICE_NO_VSI; 4043 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4044 /* force guaranteed filter pool for PF */ 4045 ice_alloc_fd_guar_item(&pf->hw, &unused, 4046 func_caps->fd_fltr_guar); 4047 /* force shared filter pool for PF */ 4048 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4049 func_caps->fd_fltr_best_effort); 4050 } 4051 4052 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4053 if (func_caps->common_cap.ieee_1588 && 4054 !(pf->hw.mac_type == ICE_MAC_E830)) 4055 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4056 4057 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4058 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4059 } 4060 4061 /** 4062 * ice_init_pf - Initialize general software structures (struct ice_pf) 4063 * @pf: board private structure to initialize 4064 */ 4065 static int ice_init_pf(struct ice_pf *pf) 4066 { 4067 ice_set_pf_caps(pf); 4068 4069 mutex_init(&pf->sw_mutex); 4070 mutex_init(&pf->tc_mutex); 4071 mutex_init(&pf->adev_mutex); 4072 mutex_init(&pf->lag_mutex); 4073 4074 INIT_HLIST_HEAD(&pf->aq_wait_list); 4075 spin_lock_init(&pf->aq_wait_lock); 4076 init_waitqueue_head(&pf->aq_wait_queue); 4077 4078 init_waitqueue_head(&pf->reset_wait_queue); 4079 4080 /* setup service timer and periodic service task */ 4081 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4082 pf->serv_tmr_period = HZ; 4083 INIT_WORK(&pf->serv_task, ice_service_task); 4084 clear_bit(ICE_SERVICE_SCHED, pf->state); 4085 4086 mutex_init(&pf->avail_q_mutex); 4087 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4088 if (!pf->avail_txqs) 4089 return -ENOMEM; 4090 4091 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4092 if (!pf->avail_rxqs) { 4093 bitmap_free(pf->avail_txqs); 4094 pf->avail_txqs = NULL; 4095 return -ENOMEM; 4096 } 4097 4098 mutex_init(&pf->vfs.table_lock); 4099 hash_init(pf->vfs.table); 4100 ice_mbx_init_snapshot(&pf->hw); 4101 4102 return 0; 4103 } 4104 4105 /** 4106 * ice_is_wol_supported - check if WoL is supported 4107 * @hw: pointer to hardware info 4108 * 4109 * Check if WoL is supported based on the HW configuration. 4110 * Returns true if NVM supports and enables WoL for this port, false otherwise 4111 */ 4112 bool ice_is_wol_supported(struct ice_hw *hw) 4113 { 4114 u16 wol_ctrl; 4115 4116 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4117 * word) indicates WoL is not supported on the corresponding PF ID. 4118 */ 4119 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4120 return false; 4121 4122 return !(BIT(hw->port_info->lport) & wol_ctrl); 4123 } 4124 4125 /** 4126 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4127 * @vsi: VSI being changed 4128 * @new_rx: new number of Rx queues 4129 * @new_tx: new number of Tx queues 4130 * @locked: is adev device_lock held 4131 * 4132 * Only change the number of queues if new_tx, or new_rx is non-0. 4133 * 4134 * Returns 0 on success. 4135 */ 4136 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4137 { 4138 struct ice_pf *pf = vsi->back; 4139 int err = 0, timeout = 50; 4140 4141 if (!new_rx && !new_tx) 4142 return -EINVAL; 4143 4144 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4145 timeout--; 4146 if (!timeout) 4147 return -EBUSY; 4148 usleep_range(1000, 2000); 4149 } 4150 4151 if (new_tx) 4152 vsi->req_txq = (u16)new_tx; 4153 if (new_rx) 4154 vsi->req_rxq = (u16)new_rx; 4155 4156 /* set for the next time the netdev is started */ 4157 if (!netif_running(vsi->netdev)) { 4158 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4159 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4160 goto done; 4161 } 4162 4163 ice_vsi_close(vsi); 4164 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4165 ice_pf_dcb_recfg(pf, locked); 4166 ice_vsi_open(vsi); 4167 done: 4168 clear_bit(ICE_CFG_BUSY, pf->state); 4169 return err; 4170 } 4171 4172 /** 4173 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4174 * @pf: PF to configure 4175 * 4176 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4177 * VSI can still Tx/Rx VLAN tagged packets. 4178 */ 4179 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4180 { 4181 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4182 struct ice_vsi_ctx *ctxt; 4183 struct ice_hw *hw; 4184 int status; 4185 4186 if (!vsi) 4187 return; 4188 4189 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4190 if (!ctxt) 4191 return; 4192 4193 hw = &pf->hw; 4194 ctxt->info = vsi->info; 4195 4196 ctxt->info.valid_sections = 4197 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4198 ICE_AQ_VSI_PROP_SECURITY_VALID | 4199 ICE_AQ_VSI_PROP_SW_VALID); 4200 4201 /* disable VLAN anti-spoof */ 4202 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4203 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4204 4205 /* disable VLAN pruning and keep all other settings */ 4206 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4207 4208 /* allow all VLANs on Tx and don't strip on Rx */ 4209 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4210 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4211 4212 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4213 if (status) { 4214 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4215 status, ice_aq_str(hw->adminq.sq_last_status)); 4216 } else { 4217 vsi->info.sec_flags = ctxt->info.sec_flags; 4218 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4219 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4220 } 4221 4222 kfree(ctxt); 4223 } 4224 4225 /** 4226 * ice_log_pkg_init - log result of DDP package load 4227 * @hw: pointer to hardware info 4228 * @state: state of package load 4229 */ 4230 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4231 { 4232 struct ice_pf *pf = hw->back; 4233 struct device *dev; 4234 4235 dev = ice_pf_to_dev(pf); 4236 4237 switch (state) { 4238 case ICE_DDP_PKG_SUCCESS: 4239 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4240 hw->active_pkg_name, 4241 hw->active_pkg_ver.major, 4242 hw->active_pkg_ver.minor, 4243 hw->active_pkg_ver.update, 4244 hw->active_pkg_ver.draft); 4245 break; 4246 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4247 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4248 hw->active_pkg_name, 4249 hw->active_pkg_ver.major, 4250 hw->active_pkg_ver.minor, 4251 hw->active_pkg_ver.update, 4252 hw->active_pkg_ver.draft); 4253 break; 4254 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4255 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4256 hw->active_pkg_name, 4257 hw->active_pkg_ver.major, 4258 hw->active_pkg_ver.minor, 4259 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4260 break; 4261 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4262 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4263 hw->active_pkg_name, 4264 hw->active_pkg_ver.major, 4265 hw->active_pkg_ver.minor, 4266 hw->active_pkg_ver.update, 4267 hw->active_pkg_ver.draft, 4268 hw->pkg_name, 4269 hw->pkg_ver.major, 4270 hw->pkg_ver.minor, 4271 hw->pkg_ver.update, 4272 hw->pkg_ver.draft); 4273 break; 4274 case ICE_DDP_PKG_FW_MISMATCH: 4275 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4276 break; 4277 case ICE_DDP_PKG_INVALID_FILE: 4278 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4279 break; 4280 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4281 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4282 break; 4283 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4284 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4285 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4286 break; 4287 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4288 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4289 break; 4290 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4291 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4292 break; 4293 case ICE_DDP_PKG_LOAD_ERROR: 4294 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4295 /* poll for reset to complete */ 4296 if (ice_check_reset(hw)) 4297 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4298 break; 4299 case ICE_DDP_PKG_ERR: 4300 default: 4301 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4302 break; 4303 } 4304 } 4305 4306 /** 4307 * ice_load_pkg - load/reload the DDP Package file 4308 * @firmware: firmware structure when firmware requested or NULL for reload 4309 * @pf: pointer to the PF instance 4310 * 4311 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4312 * initialize HW tables. 4313 */ 4314 static void 4315 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4316 { 4317 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4318 struct device *dev = ice_pf_to_dev(pf); 4319 struct ice_hw *hw = &pf->hw; 4320 4321 /* Load DDP Package */ 4322 if (firmware && !hw->pkg_copy) { 4323 state = ice_copy_and_init_pkg(hw, firmware->data, 4324 firmware->size); 4325 ice_log_pkg_init(hw, state); 4326 } else if (!firmware && hw->pkg_copy) { 4327 /* Reload package during rebuild after CORER/GLOBR reset */ 4328 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4329 ice_log_pkg_init(hw, state); 4330 } else { 4331 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4332 } 4333 4334 if (!ice_is_init_pkg_successful(state)) { 4335 /* Safe Mode */ 4336 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4337 return; 4338 } 4339 4340 /* Successful download package is the precondition for advanced 4341 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4342 */ 4343 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4344 } 4345 4346 /** 4347 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4348 * @pf: pointer to the PF structure 4349 * 4350 * There is no error returned here because the driver should be able to handle 4351 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4352 * specifically with Tx. 4353 */ 4354 static void ice_verify_cacheline_size(struct ice_pf *pf) 4355 { 4356 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4357 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4358 ICE_CACHE_LINE_BYTES); 4359 } 4360 4361 /** 4362 * ice_send_version - update firmware with driver version 4363 * @pf: PF struct 4364 * 4365 * Returns 0 on success, else error code 4366 */ 4367 static int ice_send_version(struct ice_pf *pf) 4368 { 4369 struct ice_driver_ver dv; 4370 4371 dv.major_ver = 0xff; 4372 dv.minor_ver = 0xff; 4373 dv.build_ver = 0xff; 4374 dv.subbuild_ver = 0; 4375 strscpy((char *)dv.driver_string, UTS_RELEASE, 4376 sizeof(dv.driver_string)); 4377 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4378 } 4379 4380 /** 4381 * ice_init_fdir - Initialize flow director VSI and configuration 4382 * @pf: pointer to the PF instance 4383 * 4384 * returns 0 on success, negative on error 4385 */ 4386 static int ice_init_fdir(struct ice_pf *pf) 4387 { 4388 struct device *dev = ice_pf_to_dev(pf); 4389 struct ice_vsi *ctrl_vsi; 4390 int err; 4391 4392 /* Side Band Flow Director needs to have a control VSI. 4393 * Allocate it and store it in the PF. 4394 */ 4395 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4396 if (!ctrl_vsi) { 4397 dev_dbg(dev, "could not create control VSI\n"); 4398 return -ENOMEM; 4399 } 4400 4401 err = ice_vsi_open_ctrl(ctrl_vsi); 4402 if (err) { 4403 dev_dbg(dev, "could not open control VSI\n"); 4404 goto err_vsi_open; 4405 } 4406 4407 mutex_init(&pf->hw.fdir_fltr_lock); 4408 4409 err = ice_fdir_create_dflt_rules(pf); 4410 if (err) 4411 goto err_fdir_rule; 4412 4413 return 0; 4414 4415 err_fdir_rule: 4416 ice_fdir_release_flows(&pf->hw); 4417 ice_vsi_close(ctrl_vsi); 4418 err_vsi_open: 4419 ice_vsi_release(ctrl_vsi); 4420 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4421 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4422 pf->ctrl_vsi_idx = ICE_NO_VSI; 4423 } 4424 return err; 4425 } 4426 4427 static void ice_deinit_fdir(struct ice_pf *pf) 4428 { 4429 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4430 4431 if (!vsi) 4432 return; 4433 4434 ice_vsi_manage_fdir(vsi, false); 4435 ice_vsi_release(vsi); 4436 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4437 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4438 pf->ctrl_vsi_idx = ICE_NO_VSI; 4439 } 4440 4441 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4442 } 4443 4444 /** 4445 * ice_get_opt_fw_name - return optional firmware file name or NULL 4446 * @pf: pointer to the PF instance 4447 */ 4448 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4449 { 4450 /* Optional firmware name same as default with additional dash 4451 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4452 */ 4453 struct pci_dev *pdev = pf->pdev; 4454 char *opt_fw_filename; 4455 u64 dsn; 4456 4457 /* Determine the name of the optional file using the DSN (two 4458 * dwords following the start of the DSN Capability). 4459 */ 4460 dsn = pci_get_dsn(pdev); 4461 if (!dsn) 4462 return NULL; 4463 4464 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4465 if (!opt_fw_filename) 4466 return NULL; 4467 4468 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4469 ICE_DDP_PKG_PATH, dsn); 4470 4471 return opt_fw_filename; 4472 } 4473 4474 /** 4475 * ice_request_fw - Device initialization routine 4476 * @pf: pointer to the PF instance 4477 * @firmware: double pointer to firmware struct 4478 * 4479 * Return: zero when successful, negative values otherwise. 4480 */ 4481 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4482 { 4483 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4484 struct device *dev = ice_pf_to_dev(pf); 4485 int err = 0; 4486 4487 /* optional device-specific DDP (if present) overrides the default DDP 4488 * package file. kernel logs a debug message if the file doesn't exist, 4489 * and warning messages for other errors. 4490 */ 4491 if (opt_fw_filename) { 4492 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4493 kfree(opt_fw_filename); 4494 if (!err) 4495 return err; 4496 } 4497 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4498 if (err) 4499 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4500 4501 return err; 4502 } 4503 4504 /** 4505 * ice_init_tx_topology - performs Tx topology initialization 4506 * @hw: pointer to the hardware structure 4507 * @firmware: pointer to firmware structure 4508 * 4509 * Return: zero when init was successful, negative values otherwise. 4510 */ 4511 static int 4512 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4513 { 4514 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4515 struct ice_pf *pf = hw->back; 4516 struct device *dev; 4517 u8 *buf_copy; 4518 int err; 4519 4520 dev = ice_pf_to_dev(pf); 4521 /* ice_cfg_tx_topo buf argument is not a constant, 4522 * so we have to make a copy 4523 */ 4524 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4525 4526 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4527 if (!err) { 4528 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4529 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4530 else 4531 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4532 /* if there was a change in topology ice_cfg_tx_topo triggered 4533 * a CORER and we need to re-init hw 4534 */ 4535 ice_deinit_hw(hw); 4536 err = ice_init_hw(hw); 4537 4538 return err; 4539 } else if (err == -EIO) { 4540 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4541 } 4542 4543 return 0; 4544 } 4545 4546 /** 4547 * ice_init_ddp_config - DDP related configuration 4548 * @hw: pointer to the hardware structure 4549 * @pf: pointer to pf structure 4550 * 4551 * This function loads DDP file from the disk, then initializes Tx 4552 * topology. At the end DDP package is loaded on the card. 4553 * 4554 * Return: zero when init was successful, negative values otherwise. 4555 */ 4556 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4557 { 4558 struct device *dev = ice_pf_to_dev(pf); 4559 const struct firmware *firmware = NULL; 4560 int err; 4561 4562 err = ice_request_fw(pf, &firmware); 4563 if (err) { 4564 dev_err(dev, "Fail during requesting FW: %d\n", err); 4565 return err; 4566 } 4567 4568 err = ice_init_tx_topology(hw, firmware); 4569 if (err) { 4570 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4571 err); 4572 release_firmware(firmware); 4573 return err; 4574 } 4575 4576 /* Download firmware to device */ 4577 ice_load_pkg(firmware, pf); 4578 release_firmware(firmware); 4579 4580 return 0; 4581 } 4582 4583 /** 4584 * ice_print_wake_reason - show the wake up cause in the log 4585 * @pf: pointer to the PF struct 4586 */ 4587 static void ice_print_wake_reason(struct ice_pf *pf) 4588 { 4589 u32 wus = pf->wakeup_reason; 4590 const char *wake_str; 4591 4592 /* if no wake event, nothing to print */ 4593 if (!wus) 4594 return; 4595 4596 if (wus & PFPM_WUS_LNKC_M) 4597 wake_str = "Link\n"; 4598 else if (wus & PFPM_WUS_MAG_M) 4599 wake_str = "Magic Packet\n"; 4600 else if (wus & PFPM_WUS_MNG_M) 4601 wake_str = "Management\n"; 4602 else if (wus & PFPM_WUS_FW_RST_WK_M) 4603 wake_str = "Firmware Reset\n"; 4604 else 4605 wake_str = "Unknown\n"; 4606 4607 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4608 } 4609 4610 /** 4611 * ice_pf_fwlog_update_module - update 1 module 4612 * @pf: pointer to the PF struct 4613 * @log_level: log_level to use for the @module 4614 * @module: module to update 4615 */ 4616 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4617 { 4618 struct ice_hw *hw = &pf->hw; 4619 4620 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4621 } 4622 4623 /** 4624 * ice_register_netdev - register netdev 4625 * @vsi: pointer to the VSI struct 4626 */ 4627 static int ice_register_netdev(struct ice_vsi *vsi) 4628 { 4629 int err; 4630 4631 if (!vsi || !vsi->netdev) 4632 return -EIO; 4633 4634 err = register_netdev(vsi->netdev); 4635 if (err) 4636 return err; 4637 4638 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4639 netif_carrier_off(vsi->netdev); 4640 netif_tx_stop_all_queues(vsi->netdev); 4641 4642 return 0; 4643 } 4644 4645 static void ice_unregister_netdev(struct ice_vsi *vsi) 4646 { 4647 if (!vsi || !vsi->netdev) 4648 return; 4649 4650 unregister_netdev(vsi->netdev); 4651 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4652 } 4653 4654 /** 4655 * ice_cfg_netdev - Allocate, configure and register a netdev 4656 * @vsi: the VSI associated with the new netdev 4657 * 4658 * Returns 0 on success, negative value on failure 4659 */ 4660 static int ice_cfg_netdev(struct ice_vsi *vsi) 4661 { 4662 struct ice_netdev_priv *np; 4663 struct net_device *netdev; 4664 u8 mac_addr[ETH_ALEN]; 4665 4666 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4667 vsi->alloc_rxq); 4668 if (!netdev) 4669 return -ENOMEM; 4670 4671 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4672 vsi->netdev = netdev; 4673 np = netdev_priv(netdev); 4674 np->vsi = vsi; 4675 4676 ice_set_netdev_features(netdev); 4677 ice_set_ops(vsi); 4678 4679 if (vsi->type == ICE_VSI_PF) { 4680 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4681 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4682 eth_hw_addr_set(netdev, mac_addr); 4683 } 4684 4685 netdev->priv_flags |= IFF_UNICAST_FLT; 4686 4687 /* Setup netdev TC information */ 4688 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4689 4690 netdev->max_mtu = ICE_MAX_MTU; 4691 4692 return 0; 4693 } 4694 4695 static void ice_decfg_netdev(struct ice_vsi *vsi) 4696 { 4697 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4698 free_netdev(vsi->netdev); 4699 vsi->netdev = NULL; 4700 } 4701 4702 /** 4703 * ice_wait_for_fw - wait for full FW readiness 4704 * @hw: pointer to the hardware structure 4705 * @timeout: milliseconds that can elapse before timing out 4706 */ 4707 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4708 { 4709 int fw_loading; 4710 u32 elapsed = 0; 4711 4712 while (elapsed <= timeout) { 4713 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4714 4715 /* firmware was not yet loaded, we have to wait more */ 4716 if (fw_loading) { 4717 elapsed += 100; 4718 msleep(100); 4719 continue; 4720 } 4721 return 0; 4722 } 4723 4724 return -ETIMEDOUT; 4725 } 4726 4727 int ice_init_dev(struct ice_pf *pf) 4728 { 4729 struct device *dev = ice_pf_to_dev(pf); 4730 struct ice_hw *hw = &pf->hw; 4731 int err; 4732 4733 err = ice_init_hw(hw); 4734 if (err) { 4735 dev_err(dev, "ice_init_hw failed: %d\n", err); 4736 return err; 4737 } 4738 4739 /* Some cards require longer initialization times 4740 * due to necessity of loading FW from an external source. 4741 * This can take even half a minute. 4742 */ 4743 if (ice_is_pf_c827(hw)) { 4744 err = ice_wait_for_fw(hw, 30000); 4745 if (err) { 4746 dev_err(dev, "ice_wait_for_fw timed out"); 4747 return err; 4748 } 4749 } 4750 4751 ice_init_feature_support(pf); 4752 4753 err = ice_init_ddp_config(hw, pf); 4754 if (err) 4755 return err; 4756 4757 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4758 * set in pf->state, which will cause ice_is_safe_mode to return 4759 * true 4760 */ 4761 if (ice_is_safe_mode(pf)) { 4762 /* we already got function/device capabilities but these don't 4763 * reflect what the driver needs to do in safe mode. Instead of 4764 * adding conditional logic everywhere to ignore these 4765 * device/function capabilities, override them. 4766 */ 4767 ice_set_safe_mode_caps(hw); 4768 } 4769 4770 err = ice_init_pf(pf); 4771 if (err) { 4772 dev_err(dev, "ice_init_pf failed: %d\n", err); 4773 goto err_init_pf; 4774 } 4775 4776 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4777 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4778 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4779 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4780 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4781 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4782 pf->hw.tnl.valid_count[TNL_VXLAN]; 4783 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4784 UDP_TUNNEL_TYPE_VXLAN; 4785 } 4786 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4787 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4788 pf->hw.tnl.valid_count[TNL_GENEVE]; 4789 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4790 UDP_TUNNEL_TYPE_GENEVE; 4791 } 4792 4793 err = ice_init_interrupt_scheme(pf); 4794 if (err) { 4795 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4796 err = -EIO; 4797 goto err_init_interrupt_scheme; 4798 } 4799 4800 /* In case of MSIX we are going to setup the misc vector right here 4801 * to handle admin queue events etc. In case of legacy and MSI 4802 * the misc functionality and queue processing is combined in 4803 * the same vector and that gets setup at open. 4804 */ 4805 err = ice_req_irq_msix_misc(pf); 4806 if (err) { 4807 dev_err(dev, "setup of misc vector failed: %d\n", err); 4808 goto err_req_irq_msix_misc; 4809 } 4810 4811 return 0; 4812 4813 err_req_irq_msix_misc: 4814 ice_clear_interrupt_scheme(pf); 4815 err_init_interrupt_scheme: 4816 ice_deinit_pf(pf); 4817 err_init_pf: 4818 ice_deinit_hw(hw); 4819 return err; 4820 } 4821 4822 void ice_deinit_dev(struct ice_pf *pf) 4823 { 4824 ice_free_irq_msix_misc(pf); 4825 ice_deinit_pf(pf); 4826 ice_deinit_hw(&pf->hw); 4827 4828 /* Service task is already stopped, so call reset directly. */ 4829 ice_reset(&pf->hw, ICE_RESET_PFR); 4830 pci_wait_for_pending_transaction(pf->pdev); 4831 ice_clear_interrupt_scheme(pf); 4832 } 4833 4834 static void ice_init_features(struct ice_pf *pf) 4835 { 4836 struct device *dev = ice_pf_to_dev(pf); 4837 4838 if (ice_is_safe_mode(pf)) 4839 return; 4840 4841 /* initialize DDP driven features */ 4842 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4843 ice_ptp_init(pf); 4844 4845 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4846 ice_gnss_init(pf); 4847 4848 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4849 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4850 ice_dpll_init(pf); 4851 4852 /* Note: Flow director init failure is non-fatal to load */ 4853 if (ice_init_fdir(pf)) 4854 dev_err(dev, "could not initialize flow director\n"); 4855 4856 /* Note: DCB init failure is non-fatal to load */ 4857 if (ice_init_pf_dcb(pf, false)) { 4858 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4859 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4860 } else { 4861 ice_cfg_lldp_mib_change(&pf->hw, true); 4862 } 4863 4864 if (ice_init_lag(pf)) 4865 dev_warn(dev, "Failed to init link aggregation support\n"); 4866 4867 ice_hwmon_init(pf); 4868 } 4869 4870 static void ice_deinit_features(struct ice_pf *pf) 4871 { 4872 if (ice_is_safe_mode(pf)) 4873 return; 4874 4875 ice_deinit_lag(pf); 4876 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4877 ice_cfg_lldp_mib_change(&pf->hw, false); 4878 ice_deinit_fdir(pf); 4879 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4880 ice_gnss_exit(pf); 4881 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4882 ice_ptp_release(pf); 4883 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4884 ice_dpll_deinit(pf); 4885 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4886 xa_destroy(&pf->eswitch.reprs); 4887 } 4888 4889 static void ice_init_wakeup(struct ice_pf *pf) 4890 { 4891 /* Save wakeup reason register for later use */ 4892 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4893 4894 /* check for a power management event */ 4895 ice_print_wake_reason(pf); 4896 4897 /* clear wake status, all bits */ 4898 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4899 4900 /* Disable WoL at init, wait for user to enable */ 4901 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4902 } 4903 4904 static int ice_init_link(struct ice_pf *pf) 4905 { 4906 struct device *dev = ice_pf_to_dev(pf); 4907 int err; 4908 4909 err = ice_init_link_events(pf->hw.port_info); 4910 if (err) { 4911 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4912 return err; 4913 } 4914 4915 /* not a fatal error if this fails */ 4916 err = ice_init_nvm_phy_type(pf->hw.port_info); 4917 if (err) 4918 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4919 4920 /* not a fatal error if this fails */ 4921 err = ice_update_link_info(pf->hw.port_info); 4922 if (err) 4923 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4924 4925 ice_init_link_dflt_override(pf->hw.port_info); 4926 4927 ice_check_link_cfg_err(pf, 4928 pf->hw.port_info->phy.link_info.link_cfg_err); 4929 4930 /* if media available, initialize PHY settings */ 4931 if (pf->hw.port_info->phy.link_info.link_info & 4932 ICE_AQ_MEDIA_AVAILABLE) { 4933 /* not a fatal error if this fails */ 4934 err = ice_init_phy_user_cfg(pf->hw.port_info); 4935 if (err) 4936 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4937 4938 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4939 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4940 4941 if (vsi) 4942 ice_configure_phy(vsi); 4943 } 4944 } else { 4945 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4946 } 4947 4948 return err; 4949 } 4950 4951 static int ice_init_pf_sw(struct ice_pf *pf) 4952 { 4953 bool dvm = ice_is_dvm_ena(&pf->hw); 4954 struct ice_vsi *vsi; 4955 int err; 4956 4957 /* create switch struct for the switch element created by FW on boot */ 4958 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4959 if (!pf->first_sw) 4960 return -ENOMEM; 4961 4962 if (pf->hw.evb_veb) 4963 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4964 else 4965 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4966 4967 pf->first_sw->pf = pf; 4968 4969 /* record the sw_id available for later use */ 4970 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4971 4972 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4973 if (err) 4974 goto err_aq_set_port_params; 4975 4976 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4977 if (!vsi) { 4978 err = -ENOMEM; 4979 goto err_pf_vsi_setup; 4980 } 4981 4982 return 0; 4983 4984 err_pf_vsi_setup: 4985 err_aq_set_port_params: 4986 kfree(pf->first_sw); 4987 return err; 4988 } 4989 4990 static void ice_deinit_pf_sw(struct ice_pf *pf) 4991 { 4992 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4993 4994 if (!vsi) 4995 return; 4996 4997 ice_vsi_release(vsi); 4998 kfree(pf->first_sw); 4999 } 5000 5001 static int ice_alloc_vsis(struct ice_pf *pf) 5002 { 5003 struct device *dev = ice_pf_to_dev(pf); 5004 5005 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5006 if (!pf->num_alloc_vsi) 5007 return -EIO; 5008 5009 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5010 dev_warn(dev, 5011 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5012 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5013 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5014 } 5015 5016 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5017 GFP_KERNEL); 5018 if (!pf->vsi) 5019 return -ENOMEM; 5020 5021 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5022 sizeof(*pf->vsi_stats), GFP_KERNEL); 5023 if (!pf->vsi_stats) { 5024 devm_kfree(dev, pf->vsi); 5025 return -ENOMEM; 5026 } 5027 5028 return 0; 5029 } 5030 5031 static void ice_dealloc_vsis(struct ice_pf *pf) 5032 { 5033 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5034 pf->vsi_stats = NULL; 5035 5036 pf->num_alloc_vsi = 0; 5037 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5038 pf->vsi = NULL; 5039 } 5040 5041 static int ice_init_devlink(struct ice_pf *pf) 5042 { 5043 int err; 5044 5045 err = ice_devlink_register_params(pf); 5046 if (err) 5047 return err; 5048 5049 ice_devlink_init_regions(pf); 5050 ice_devlink_register(pf); 5051 5052 return 0; 5053 } 5054 5055 static void ice_deinit_devlink(struct ice_pf *pf) 5056 { 5057 ice_devlink_unregister(pf); 5058 ice_devlink_destroy_regions(pf); 5059 ice_devlink_unregister_params(pf); 5060 } 5061 5062 static int ice_init(struct ice_pf *pf) 5063 { 5064 int err; 5065 5066 err = ice_init_dev(pf); 5067 if (err) 5068 return err; 5069 5070 err = ice_alloc_vsis(pf); 5071 if (err) 5072 goto err_alloc_vsis; 5073 5074 err = ice_init_pf_sw(pf); 5075 if (err) 5076 goto err_init_pf_sw; 5077 5078 ice_init_wakeup(pf); 5079 5080 err = ice_init_link(pf); 5081 if (err) 5082 goto err_init_link; 5083 5084 err = ice_send_version(pf); 5085 if (err) 5086 goto err_init_link; 5087 5088 ice_verify_cacheline_size(pf); 5089 5090 if (ice_is_safe_mode(pf)) 5091 ice_set_safe_mode_vlan_cfg(pf); 5092 else 5093 /* print PCI link speed and width */ 5094 pcie_print_link_status(pf->pdev); 5095 5096 /* ready to go, so clear down state bit */ 5097 clear_bit(ICE_DOWN, pf->state); 5098 clear_bit(ICE_SERVICE_DIS, pf->state); 5099 5100 /* since everything is good, start the service timer */ 5101 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5102 5103 return 0; 5104 5105 err_init_link: 5106 ice_deinit_pf_sw(pf); 5107 err_init_pf_sw: 5108 ice_dealloc_vsis(pf); 5109 err_alloc_vsis: 5110 ice_deinit_dev(pf); 5111 return err; 5112 } 5113 5114 static void ice_deinit(struct ice_pf *pf) 5115 { 5116 set_bit(ICE_SERVICE_DIS, pf->state); 5117 set_bit(ICE_DOWN, pf->state); 5118 5119 ice_deinit_pf_sw(pf); 5120 ice_dealloc_vsis(pf); 5121 ice_deinit_dev(pf); 5122 } 5123 5124 /** 5125 * ice_load - load pf by init hw and starting VSI 5126 * @pf: pointer to the pf instance 5127 * 5128 * This function has to be called under devl_lock. 5129 */ 5130 int ice_load(struct ice_pf *pf) 5131 { 5132 struct ice_vsi *vsi; 5133 int err; 5134 5135 devl_assert_locked(priv_to_devlink(pf)); 5136 5137 vsi = ice_get_main_vsi(pf); 5138 5139 /* init channel list */ 5140 INIT_LIST_HEAD(&vsi->ch_list); 5141 5142 err = ice_cfg_netdev(vsi); 5143 if (err) 5144 return err; 5145 5146 /* Setup DCB netlink interface */ 5147 ice_dcbnl_setup(vsi); 5148 5149 err = ice_init_mac_fltr(pf); 5150 if (err) 5151 goto err_init_mac_fltr; 5152 5153 err = ice_devlink_create_pf_port(pf); 5154 if (err) 5155 goto err_devlink_create_pf_port; 5156 5157 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5158 5159 err = ice_register_netdev(vsi); 5160 if (err) 5161 goto err_register_netdev; 5162 5163 err = ice_tc_indir_block_register(vsi); 5164 if (err) 5165 goto err_tc_indir_block_register; 5166 5167 ice_napi_add(vsi); 5168 5169 err = ice_init_rdma(pf); 5170 if (err) 5171 goto err_init_rdma; 5172 5173 ice_init_features(pf); 5174 ice_service_task_restart(pf); 5175 5176 clear_bit(ICE_DOWN, pf->state); 5177 5178 return 0; 5179 5180 err_init_rdma: 5181 ice_tc_indir_block_unregister(vsi); 5182 err_tc_indir_block_register: 5183 ice_unregister_netdev(vsi); 5184 err_register_netdev: 5185 ice_devlink_destroy_pf_port(pf); 5186 err_devlink_create_pf_port: 5187 err_init_mac_fltr: 5188 ice_decfg_netdev(vsi); 5189 return err; 5190 } 5191 5192 /** 5193 * ice_unload - unload pf by stopping VSI and deinit hw 5194 * @pf: pointer to the pf instance 5195 * 5196 * This function has to be called under devl_lock. 5197 */ 5198 void ice_unload(struct ice_pf *pf) 5199 { 5200 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5201 5202 devl_assert_locked(priv_to_devlink(pf)); 5203 5204 ice_deinit_features(pf); 5205 ice_deinit_rdma(pf); 5206 ice_tc_indir_block_unregister(vsi); 5207 ice_unregister_netdev(vsi); 5208 ice_devlink_destroy_pf_port(pf); 5209 ice_decfg_netdev(vsi); 5210 } 5211 5212 /** 5213 * ice_probe - Device initialization routine 5214 * @pdev: PCI device information struct 5215 * @ent: entry in ice_pci_tbl 5216 * 5217 * Returns 0 on success, negative on failure 5218 */ 5219 static int 5220 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5221 { 5222 struct device *dev = &pdev->dev; 5223 struct ice_adapter *adapter; 5224 struct ice_pf *pf; 5225 struct ice_hw *hw; 5226 int err; 5227 5228 if (pdev->is_virtfn) { 5229 dev_err(dev, "can't probe a virtual function\n"); 5230 return -EINVAL; 5231 } 5232 5233 /* when under a kdump kernel initiate a reset before enabling the 5234 * device in order to clear out any pending DMA transactions. These 5235 * transactions can cause some systems to machine check when doing 5236 * the pcim_enable_device() below. 5237 */ 5238 if (is_kdump_kernel()) { 5239 pci_save_state(pdev); 5240 pci_clear_master(pdev); 5241 err = pcie_flr(pdev); 5242 if (err) 5243 return err; 5244 pci_restore_state(pdev); 5245 } 5246 5247 /* this driver uses devres, see 5248 * Documentation/driver-api/driver-model/devres.rst 5249 */ 5250 err = pcim_enable_device(pdev); 5251 if (err) 5252 return err; 5253 5254 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5255 if (err) { 5256 dev_err(dev, "BAR0 I/O map error %d\n", err); 5257 return err; 5258 } 5259 5260 pf = ice_allocate_pf(dev); 5261 if (!pf) 5262 return -ENOMEM; 5263 5264 /* initialize Auxiliary index to invalid value */ 5265 pf->aux_idx = -1; 5266 5267 /* set up for high or low DMA */ 5268 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5269 if (err) { 5270 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5271 return err; 5272 } 5273 5274 pci_set_master(pdev); 5275 5276 adapter = ice_adapter_get(pdev); 5277 if (IS_ERR(adapter)) 5278 return PTR_ERR(adapter); 5279 5280 pf->pdev = pdev; 5281 pf->adapter = adapter; 5282 pci_set_drvdata(pdev, pf); 5283 set_bit(ICE_DOWN, pf->state); 5284 /* Disable service task until DOWN bit is cleared */ 5285 set_bit(ICE_SERVICE_DIS, pf->state); 5286 5287 hw = &pf->hw; 5288 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5289 pci_save_state(pdev); 5290 5291 hw->back = pf; 5292 hw->port_info = NULL; 5293 hw->vendor_id = pdev->vendor; 5294 hw->device_id = pdev->device; 5295 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5296 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5297 hw->subsystem_device_id = pdev->subsystem_device; 5298 hw->bus.device = PCI_SLOT(pdev->devfn); 5299 hw->bus.func = PCI_FUNC(pdev->devfn); 5300 ice_set_ctrlq_len(hw); 5301 5302 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5303 5304 #ifndef CONFIG_DYNAMIC_DEBUG 5305 if (debug < -1) 5306 hw->debug_mask = debug; 5307 #endif 5308 5309 err = ice_init(pf); 5310 if (err) 5311 goto err_init; 5312 5313 devl_lock(priv_to_devlink(pf)); 5314 err = ice_load(pf); 5315 if (err) 5316 goto err_load; 5317 5318 err = ice_init_devlink(pf); 5319 if (err) 5320 goto err_init_devlink; 5321 devl_unlock(priv_to_devlink(pf)); 5322 5323 return 0; 5324 5325 err_init_devlink: 5326 ice_unload(pf); 5327 err_load: 5328 devl_unlock(priv_to_devlink(pf)); 5329 ice_deinit(pf); 5330 err_init: 5331 ice_adapter_put(pdev); 5332 pci_disable_device(pdev); 5333 return err; 5334 } 5335 5336 /** 5337 * ice_set_wake - enable or disable Wake on LAN 5338 * @pf: pointer to the PF struct 5339 * 5340 * Simple helper for WoL control 5341 */ 5342 static void ice_set_wake(struct ice_pf *pf) 5343 { 5344 struct ice_hw *hw = &pf->hw; 5345 bool wol = pf->wol_ena; 5346 5347 /* clear wake state, otherwise new wake events won't fire */ 5348 wr32(hw, PFPM_WUS, U32_MAX); 5349 5350 /* enable / disable APM wake up, no RMW needed */ 5351 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5352 5353 /* set magic packet filter enabled */ 5354 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5355 } 5356 5357 /** 5358 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5359 * @pf: pointer to the PF struct 5360 * 5361 * Issue firmware command to enable multicast magic wake, making 5362 * sure that any locally administered address (LAA) is used for 5363 * wake, and that PF reset doesn't undo the LAA. 5364 */ 5365 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5366 { 5367 struct device *dev = ice_pf_to_dev(pf); 5368 struct ice_hw *hw = &pf->hw; 5369 u8 mac_addr[ETH_ALEN]; 5370 struct ice_vsi *vsi; 5371 int status; 5372 u8 flags; 5373 5374 if (!pf->wol_ena) 5375 return; 5376 5377 vsi = ice_get_main_vsi(pf); 5378 if (!vsi) 5379 return; 5380 5381 /* Get current MAC address in case it's an LAA */ 5382 if (vsi->netdev) 5383 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5384 else 5385 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5386 5387 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5388 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5389 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5390 5391 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5392 if (status) 5393 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5394 status, ice_aq_str(hw->adminq.sq_last_status)); 5395 } 5396 5397 /** 5398 * ice_remove - Device removal routine 5399 * @pdev: PCI device information struct 5400 */ 5401 static void ice_remove(struct pci_dev *pdev) 5402 { 5403 struct ice_pf *pf = pci_get_drvdata(pdev); 5404 int i; 5405 5406 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5407 if (!ice_is_reset_in_progress(pf->state)) 5408 break; 5409 msleep(100); 5410 } 5411 5412 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5413 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5414 ice_free_vfs(pf); 5415 } 5416 5417 ice_hwmon_exit(pf); 5418 5419 ice_service_task_stop(pf); 5420 ice_aq_cancel_waiting_tasks(pf); 5421 set_bit(ICE_DOWN, pf->state); 5422 5423 if (!ice_is_safe_mode(pf)) 5424 ice_remove_arfs(pf); 5425 5426 devl_lock(priv_to_devlink(pf)); 5427 ice_deinit_devlink(pf); 5428 5429 ice_unload(pf); 5430 devl_unlock(priv_to_devlink(pf)); 5431 5432 ice_deinit(pf); 5433 ice_vsi_release_all(pf); 5434 5435 ice_setup_mc_magic_wake(pf); 5436 ice_set_wake(pf); 5437 5438 ice_adapter_put(pdev); 5439 pci_disable_device(pdev); 5440 } 5441 5442 /** 5443 * ice_shutdown - PCI callback for shutting down device 5444 * @pdev: PCI device information struct 5445 */ 5446 static void ice_shutdown(struct pci_dev *pdev) 5447 { 5448 struct ice_pf *pf = pci_get_drvdata(pdev); 5449 5450 ice_remove(pdev); 5451 5452 if (system_state == SYSTEM_POWER_OFF) { 5453 pci_wake_from_d3(pdev, pf->wol_ena); 5454 pci_set_power_state(pdev, PCI_D3hot); 5455 } 5456 } 5457 5458 /** 5459 * ice_prepare_for_shutdown - prep for PCI shutdown 5460 * @pf: board private structure 5461 * 5462 * Inform or close all dependent features in prep for PCI device shutdown 5463 */ 5464 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5465 { 5466 struct ice_hw *hw = &pf->hw; 5467 u32 v; 5468 5469 /* Notify VFs of impending reset */ 5470 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5471 ice_vc_notify_reset(pf); 5472 5473 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5474 5475 /* disable the VSIs and their queues that are not already DOWN */ 5476 ice_pf_dis_all_vsi(pf, false); 5477 5478 ice_for_each_vsi(pf, v) 5479 if (pf->vsi[v]) 5480 pf->vsi[v]->vsi_num = 0; 5481 5482 ice_shutdown_all_ctrlq(hw); 5483 } 5484 5485 /** 5486 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5487 * @pf: board private structure to reinitialize 5488 * 5489 * This routine reinitialize interrupt scheme that was cleared during 5490 * power management suspend callback. 5491 * 5492 * This should be called during resume routine to re-allocate the q_vectors 5493 * and reacquire interrupts. 5494 */ 5495 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5496 { 5497 struct device *dev = ice_pf_to_dev(pf); 5498 int ret, v; 5499 5500 /* Since we clear MSIX flag during suspend, we need to 5501 * set it back during resume... 5502 */ 5503 5504 ret = ice_init_interrupt_scheme(pf); 5505 if (ret) { 5506 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5507 return ret; 5508 } 5509 5510 /* Remap vectors and rings, after successful re-init interrupts */ 5511 ice_for_each_vsi(pf, v) { 5512 if (!pf->vsi[v]) 5513 continue; 5514 5515 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5516 if (ret) 5517 goto err_reinit; 5518 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5519 ice_vsi_set_napi_queues(pf->vsi[v]); 5520 } 5521 5522 ret = ice_req_irq_msix_misc(pf); 5523 if (ret) { 5524 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5525 ret); 5526 goto err_reinit; 5527 } 5528 5529 return 0; 5530 5531 err_reinit: 5532 while (v--) 5533 if (pf->vsi[v]) 5534 ice_vsi_free_q_vectors(pf->vsi[v]); 5535 5536 return ret; 5537 } 5538 5539 /** 5540 * ice_suspend 5541 * @dev: generic device information structure 5542 * 5543 * Power Management callback to quiesce the device and prepare 5544 * for D3 transition. 5545 */ 5546 static int ice_suspend(struct device *dev) 5547 { 5548 struct pci_dev *pdev = to_pci_dev(dev); 5549 struct ice_pf *pf; 5550 int disabled, v; 5551 5552 pf = pci_get_drvdata(pdev); 5553 5554 if (!ice_pf_state_is_nominal(pf)) { 5555 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5556 return -EBUSY; 5557 } 5558 5559 /* Stop watchdog tasks until resume completion. 5560 * Even though it is most likely that the service task is 5561 * disabled if the device is suspended or down, the service task's 5562 * state is controlled by a different state bit, and we should 5563 * store and honor whatever state that bit is in at this point. 5564 */ 5565 disabled = ice_service_task_stop(pf); 5566 5567 ice_unplug_aux_dev(pf); 5568 5569 /* Already suspended?, then there is nothing to do */ 5570 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5571 if (!disabled) 5572 ice_service_task_restart(pf); 5573 return 0; 5574 } 5575 5576 if (test_bit(ICE_DOWN, pf->state) || 5577 ice_is_reset_in_progress(pf->state)) { 5578 dev_err(dev, "can't suspend device in reset or already down\n"); 5579 if (!disabled) 5580 ice_service_task_restart(pf); 5581 return 0; 5582 } 5583 5584 ice_setup_mc_magic_wake(pf); 5585 5586 ice_prepare_for_shutdown(pf); 5587 5588 ice_set_wake(pf); 5589 5590 /* Free vectors, clear the interrupt scheme and release IRQs 5591 * for proper hibernation, especially with large number of CPUs. 5592 * Otherwise hibernation might fail when mapping all the vectors back 5593 * to CPU0. 5594 */ 5595 ice_free_irq_msix_misc(pf); 5596 ice_for_each_vsi(pf, v) { 5597 if (!pf->vsi[v]) 5598 continue; 5599 ice_vsi_free_q_vectors(pf->vsi[v]); 5600 } 5601 ice_clear_interrupt_scheme(pf); 5602 5603 pci_save_state(pdev); 5604 pci_wake_from_d3(pdev, pf->wol_ena); 5605 pci_set_power_state(pdev, PCI_D3hot); 5606 return 0; 5607 } 5608 5609 /** 5610 * ice_resume - PM callback for waking up from D3 5611 * @dev: generic device information structure 5612 */ 5613 static int ice_resume(struct device *dev) 5614 { 5615 struct pci_dev *pdev = to_pci_dev(dev); 5616 enum ice_reset_req reset_type; 5617 struct ice_pf *pf; 5618 struct ice_hw *hw; 5619 int ret; 5620 5621 pci_set_power_state(pdev, PCI_D0); 5622 pci_restore_state(pdev); 5623 pci_save_state(pdev); 5624 5625 if (!pci_device_is_present(pdev)) 5626 return -ENODEV; 5627 5628 ret = pci_enable_device_mem(pdev); 5629 if (ret) { 5630 dev_err(dev, "Cannot enable device after suspend\n"); 5631 return ret; 5632 } 5633 5634 pf = pci_get_drvdata(pdev); 5635 hw = &pf->hw; 5636 5637 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5638 ice_print_wake_reason(pf); 5639 5640 /* We cleared the interrupt scheme when we suspended, so we need to 5641 * restore it now to resume device functionality. 5642 */ 5643 ret = ice_reinit_interrupt_scheme(pf); 5644 if (ret) 5645 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5646 5647 clear_bit(ICE_DOWN, pf->state); 5648 /* Now perform PF reset and rebuild */ 5649 reset_type = ICE_RESET_PFR; 5650 /* re-enable service task for reset, but allow reset to schedule it */ 5651 clear_bit(ICE_SERVICE_DIS, pf->state); 5652 5653 if (ice_schedule_reset(pf, reset_type)) 5654 dev_err(dev, "Reset during resume failed.\n"); 5655 5656 clear_bit(ICE_SUSPENDED, pf->state); 5657 ice_service_task_restart(pf); 5658 5659 /* Restart the service task */ 5660 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5661 5662 return 0; 5663 } 5664 5665 /** 5666 * ice_pci_err_detected - warning that PCI error has been detected 5667 * @pdev: PCI device information struct 5668 * @err: the type of PCI error 5669 * 5670 * Called to warn that something happened on the PCI bus and the error handling 5671 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5672 */ 5673 static pci_ers_result_t 5674 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5675 { 5676 struct ice_pf *pf = pci_get_drvdata(pdev); 5677 5678 if (!pf) { 5679 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5680 __func__, err); 5681 return PCI_ERS_RESULT_DISCONNECT; 5682 } 5683 5684 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5685 ice_service_task_stop(pf); 5686 5687 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5688 set_bit(ICE_PFR_REQ, pf->state); 5689 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5690 } 5691 } 5692 5693 return PCI_ERS_RESULT_NEED_RESET; 5694 } 5695 5696 /** 5697 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5698 * @pdev: PCI device information struct 5699 * 5700 * Called to determine if the driver can recover from the PCI slot reset by 5701 * using a register read to determine if the device is recoverable. 5702 */ 5703 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5704 { 5705 struct ice_pf *pf = pci_get_drvdata(pdev); 5706 pci_ers_result_t result; 5707 int err; 5708 u32 reg; 5709 5710 err = pci_enable_device_mem(pdev); 5711 if (err) { 5712 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5713 err); 5714 result = PCI_ERS_RESULT_DISCONNECT; 5715 } else { 5716 pci_set_master(pdev); 5717 pci_restore_state(pdev); 5718 pci_save_state(pdev); 5719 pci_wake_from_d3(pdev, false); 5720 5721 /* Check for life */ 5722 reg = rd32(&pf->hw, GLGEN_RTRIG); 5723 if (!reg) 5724 result = PCI_ERS_RESULT_RECOVERED; 5725 else 5726 result = PCI_ERS_RESULT_DISCONNECT; 5727 } 5728 5729 return result; 5730 } 5731 5732 /** 5733 * ice_pci_err_resume - restart operations after PCI error recovery 5734 * @pdev: PCI device information struct 5735 * 5736 * Called to allow the driver to bring things back up after PCI error and/or 5737 * reset recovery have finished 5738 */ 5739 static void ice_pci_err_resume(struct pci_dev *pdev) 5740 { 5741 struct ice_pf *pf = pci_get_drvdata(pdev); 5742 5743 if (!pf) { 5744 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5745 __func__); 5746 return; 5747 } 5748 5749 if (test_bit(ICE_SUSPENDED, pf->state)) { 5750 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5751 __func__); 5752 return; 5753 } 5754 5755 ice_restore_all_vfs_msi_state(pf); 5756 5757 ice_do_reset(pf, ICE_RESET_PFR); 5758 ice_service_task_restart(pf); 5759 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5760 } 5761 5762 /** 5763 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5764 * @pdev: PCI device information struct 5765 */ 5766 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5767 { 5768 struct ice_pf *pf = pci_get_drvdata(pdev); 5769 5770 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5771 ice_service_task_stop(pf); 5772 5773 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5774 set_bit(ICE_PFR_REQ, pf->state); 5775 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5776 } 5777 } 5778 } 5779 5780 /** 5781 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5782 * @pdev: PCI device information struct 5783 */ 5784 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5785 { 5786 ice_pci_err_resume(pdev); 5787 } 5788 5789 /* ice_pci_tbl - PCI Device ID Table 5790 * 5791 * Wildcard entries (PCI_ANY_ID) should come last 5792 * Last entry must be all 0s 5793 * 5794 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5795 * Class, Class Mask, private data (not used) } 5796 */ 5797 static const struct pci_device_id ice_pci_tbl[] = { 5798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5801 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5802 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5803 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5804 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5805 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5811 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5812 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5813 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5814 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5815 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5816 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5817 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5818 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5819 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5820 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5821 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5822 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5823 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5838 /* required last entry */ 5839 {} 5840 }; 5841 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5842 5843 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5844 5845 static const struct pci_error_handlers ice_pci_err_handler = { 5846 .error_detected = ice_pci_err_detected, 5847 .slot_reset = ice_pci_err_slot_reset, 5848 .reset_prepare = ice_pci_err_reset_prepare, 5849 .reset_done = ice_pci_err_reset_done, 5850 .resume = ice_pci_err_resume 5851 }; 5852 5853 static struct pci_driver ice_driver = { 5854 .name = KBUILD_MODNAME, 5855 .id_table = ice_pci_tbl, 5856 .probe = ice_probe, 5857 .remove = ice_remove, 5858 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5859 .shutdown = ice_shutdown, 5860 .sriov_configure = ice_sriov_configure, 5861 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5862 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5863 .err_handler = &ice_pci_err_handler 5864 }; 5865 5866 /** 5867 * ice_module_init - Driver registration routine 5868 * 5869 * ice_module_init is the first routine called when the driver is 5870 * loaded. All it does is register with the PCI subsystem. 5871 */ 5872 static int __init ice_module_init(void) 5873 { 5874 int status = -ENOMEM; 5875 5876 pr_info("%s\n", ice_driver_string); 5877 pr_info("%s\n", ice_copyright); 5878 5879 ice_adv_lnk_speed_maps_init(); 5880 5881 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5882 if (!ice_wq) { 5883 pr_err("Failed to create workqueue\n"); 5884 return status; 5885 } 5886 5887 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5888 if (!ice_lag_wq) { 5889 pr_err("Failed to create LAG workqueue\n"); 5890 goto err_dest_wq; 5891 } 5892 5893 ice_debugfs_init(); 5894 5895 status = pci_register_driver(&ice_driver); 5896 if (status) { 5897 pr_err("failed to register PCI driver, err %d\n", status); 5898 goto err_dest_lag_wq; 5899 } 5900 5901 return 0; 5902 5903 err_dest_lag_wq: 5904 destroy_workqueue(ice_lag_wq); 5905 ice_debugfs_exit(); 5906 err_dest_wq: 5907 destroy_workqueue(ice_wq); 5908 return status; 5909 } 5910 module_init(ice_module_init); 5911 5912 /** 5913 * ice_module_exit - Driver exit cleanup routine 5914 * 5915 * ice_module_exit is called just before the driver is removed 5916 * from memory. 5917 */ 5918 static void __exit ice_module_exit(void) 5919 { 5920 pci_unregister_driver(&ice_driver); 5921 ice_debugfs_exit(); 5922 destroy_workqueue(ice_wq); 5923 destroy_workqueue(ice_lag_wq); 5924 pr_info("module unloaded\n"); 5925 } 5926 module_exit(ice_module_exit); 5927 5928 /** 5929 * ice_set_mac_address - NDO callback to set MAC address 5930 * @netdev: network interface device structure 5931 * @pi: pointer to an address structure 5932 * 5933 * Returns 0 on success, negative on failure 5934 */ 5935 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5936 { 5937 struct ice_netdev_priv *np = netdev_priv(netdev); 5938 struct ice_vsi *vsi = np->vsi; 5939 struct ice_pf *pf = vsi->back; 5940 struct ice_hw *hw = &pf->hw; 5941 struct sockaddr *addr = pi; 5942 u8 old_mac[ETH_ALEN]; 5943 u8 flags = 0; 5944 u8 *mac; 5945 int err; 5946 5947 mac = (u8 *)addr->sa_data; 5948 5949 if (!is_valid_ether_addr(mac)) 5950 return -EADDRNOTAVAIL; 5951 5952 if (test_bit(ICE_DOWN, pf->state) || 5953 ice_is_reset_in_progress(pf->state)) { 5954 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5955 mac); 5956 return -EBUSY; 5957 } 5958 5959 if (ice_chnl_dmac_fltr_cnt(pf)) { 5960 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5961 mac); 5962 return -EAGAIN; 5963 } 5964 5965 netif_addr_lock_bh(netdev); 5966 ether_addr_copy(old_mac, netdev->dev_addr); 5967 /* change the netdev's MAC address */ 5968 eth_hw_addr_set(netdev, mac); 5969 netif_addr_unlock_bh(netdev); 5970 5971 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5972 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5973 if (err && err != -ENOENT) { 5974 err = -EADDRNOTAVAIL; 5975 goto err_update_filters; 5976 } 5977 5978 /* Add filter for new MAC. If filter exists, return success */ 5979 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5980 if (err == -EEXIST) { 5981 /* Although this MAC filter is already present in hardware it's 5982 * possible in some cases (e.g. bonding) that dev_addr was 5983 * modified outside of the driver and needs to be restored back 5984 * to this value. 5985 */ 5986 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5987 5988 return 0; 5989 } else if (err) { 5990 /* error if the new filter addition failed */ 5991 err = -EADDRNOTAVAIL; 5992 } 5993 5994 err_update_filters: 5995 if (err) { 5996 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5997 mac); 5998 netif_addr_lock_bh(netdev); 5999 eth_hw_addr_set(netdev, old_mac); 6000 netif_addr_unlock_bh(netdev); 6001 return err; 6002 } 6003 6004 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6005 netdev->dev_addr); 6006 6007 /* write new MAC address to the firmware */ 6008 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6009 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6010 if (err) { 6011 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6012 mac, err); 6013 } 6014 return 0; 6015 } 6016 6017 /** 6018 * ice_set_rx_mode - NDO callback to set the netdev filters 6019 * @netdev: network interface device structure 6020 */ 6021 static void ice_set_rx_mode(struct net_device *netdev) 6022 { 6023 struct ice_netdev_priv *np = netdev_priv(netdev); 6024 struct ice_vsi *vsi = np->vsi; 6025 6026 if (!vsi || ice_is_switchdev_running(vsi->back)) 6027 return; 6028 6029 /* Set the flags to synchronize filters 6030 * ndo_set_rx_mode may be triggered even without a change in netdev 6031 * flags 6032 */ 6033 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6034 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6035 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6036 6037 /* schedule our worker thread which will take care of 6038 * applying the new filter changes 6039 */ 6040 ice_service_task_schedule(vsi->back); 6041 } 6042 6043 /** 6044 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6045 * @netdev: network interface device structure 6046 * @queue_index: Queue ID 6047 * @maxrate: maximum bandwidth in Mbps 6048 */ 6049 static int 6050 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6051 { 6052 struct ice_netdev_priv *np = netdev_priv(netdev); 6053 struct ice_vsi *vsi = np->vsi; 6054 u16 q_handle; 6055 int status; 6056 u8 tc; 6057 6058 /* Validate maxrate requested is within permitted range */ 6059 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6060 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6061 maxrate, queue_index); 6062 return -EINVAL; 6063 } 6064 6065 q_handle = vsi->tx_rings[queue_index]->q_handle; 6066 tc = ice_dcb_get_tc(vsi, queue_index); 6067 6068 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6069 if (!vsi) { 6070 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6071 queue_index); 6072 return -EINVAL; 6073 } 6074 6075 /* Set BW back to default, when user set maxrate to 0 */ 6076 if (!maxrate) 6077 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6078 q_handle, ICE_MAX_BW); 6079 else 6080 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6081 q_handle, ICE_MAX_BW, maxrate * 1000); 6082 if (status) 6083 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6084 status); 6085 6086 return status; 6087 } 6088 6089 /** 6090 * ice_fdb_add - add an entry to the hardware database 6091 * @ndm: the input from the stack 6092 * @tb: pointer to array of nladdr (unused) 6093 * @dev: the net device pointer 6094 * @addr: the MAC address entry being added 6095 * @vid: VLAN ID 6096 * @flags: instructions from stack about fdb operation 6097 * @extack: netlink extended ack 6098 */ 6099 static int 6100 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6101 struct net_device *dev, const unsigned char *addr, u16 vid, 6102 u16 flags, struct netlink_ext_ack __always_unused *extack) 6103 { 6104 int err; 6105 6106 if (vid) { 6107 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6108 return -EINVAL; 6109 } 6110 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6111 netdev_err(dev, "FDB only supports static addresses\n"); 6112 return -EINVAL; 6113 } 6114 6115 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6116 err = dev_uc_add_excl(dev, addr); 6117 else if (is_multicast_ether_addr(addr)) 6118 err = dev_mc_add_excl(dev, addr); 6119 else 6120 err = -EINVAL; 6121 6122 /* Only return duplicate errors if NLM_F_EXCL is set */ 6123 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6124 err = 0; 6125 6126 return err; 6127 } 6128 6129 /** 6130 * ice_fdb_del - delete an entry from the hardware database 6131 * @ndm: the input from the stack 6132 * @tb: pointer to array of nladdr (unused) 6133 * @dev: the net device pointer 6134 * @addr: the MAC address entry being added 6135 * @vid: VLAN ID 6136 * @extack: netlink extended ack 6137 */ 6138 static int 6139 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6140 struct net_device *dev, const unsigned char *addr, 6141 __always_unused u16 vid, struct netlink_ext_ack *extack) 6142 { 6143 int err; 6144 6145 if (ndm->ndm_state & NUD_PERMANENT) { 6146 netdev_err(dev, "FDB only supports static addresses\n"); 6147 return -EINVAL; 6148 } 6149 6150 if (is_unicast_ether_addr(addr)) 6151 err = dev_uc_del(dev, addr); 6152 else if (is_multicast_ether_addr(addr)) 6153 err = dev_mc_del(dev, addr); 6154 else 6155 err = -EINVAL; 6156 6157 return err; 6158 } 6159 6160 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6161 NETIF_F_HW_VLAN_CTAG_TX | \ 6162 NETIF_F_HW_VLAN_STAG_RX | \ 6163 NETIF_F_HW_VLAN_STAG_TX) 6164 6165 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6166 NETIF_F_HW_VLAN_STAG_RX) 6167 6168 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6169 NETIF_F_HW_VLAN_STAG_FILTER) 6170 6171 /** 6172 * ice_fix_features - fix the netdev features flags based on device limitations 6173 * @netdev: ptr to the netdev that flags are being fixed on 6174 * @features: features that need to be checked and possibly fixed 6175 * 6176 * Make sure any fixups are made to features in this callback. This enables the 6177 * driver to not have to check unsupported configurations throughout the driver 6178 * because that's the responsiblity of this callback. 6179 * 6180 * Single VLAN Mode (SVM) Supported Features: 6181 * NETIF_F_HW_VLAN_CTAG_FILTER 6182 * NETIF_F_HW_VLAN_CTAG_RX 6183 * NETIF_F_HW_VLAN_CTAG_TX 6184 * 6185 * Double VLAN Mode (DVM) Supported Features: 6186 * NETIF_F_HW_VLAN_CTAG_FILTER 6187 * NETIF_F_HW_VLAN_CTAG_RX 6188 * NETIF_F_HW_VLAN_CTAG_TX 6189 * 6190 * NETIF_F_HW_VLAN_STAG_FILTER 6191 * NETIF_HW_VLAN_STAG_RX 6192 * NETIF_HW_VLAN_STAG_TX 6193 * 6194 * Features that need fixing: 6195 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6196 * These are mutually exlusive as the VSI context cannot support multiple 6197 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6198 * is not done, then default to clearing the requested STAG offload 6199 * settings. 6200 * 6201 * All supported filtering has to be enabled or disabled together. For 6202 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6203 * together. If this is not done, then default to VLAN filtering disabled. 6204 * These are mutually exclusive as there is currently no way to 6205 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6206 * prune rules. 6207 */ 6208 static netdev_features_t 6209 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6210 { 6211 struct ice_netdev_priv *np = netdev_priv(netdev); 6212 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6213 bool cur_ctag, cur_stag, req_ctag, req_stag; 6214 6215 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6216 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6217 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6218 6219 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6220 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6221 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6222 6223 if (req_vlan_fltr != cur_vlan_fltr) { 6224 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6225 if (req_ctag && req_stag) { 6226 features |= NETIF_VLAN_FILTERING_FEATURES; 6227 } else if (!req_ctag && !req_stag) { 6228 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6229 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6230 (!cur_stag && req_stag && !cur_ctag)) { 6231 features |= NETIF_VLAN_FILTERING_FEATURES; 6232 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6233 } else if ((cur_ctag && !req_ctag && cur_stag) || 6234 (cur_stag && !req_stag && cur_ctag)) { 6235 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6236 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6237 } 6238 } else { 6239 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6240 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6241 6242 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6243 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6244 } 6245 } 6246 6247 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6248 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6249 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6250 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6251 NETIF_F_HW_VLAN_STAG_TX); 6252 } 6253 6254 if (!(netdev->features & NETIF_F_RXFCS) && 6255 (features & NETIF_F_RXFCS) && 6256 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6257 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6258 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6259 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6260 } 6261 6262 return features; 6263 } 6264 6265 /** 6266 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6267 * @vsi: PF's VSI 6268 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6269 * 6270 * Store current stripped VLAN proto in ring packet context, 6271 * so it can be accessed more efficiently by packet processing code. 6272 */ 6273 static void 6274 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6275 { 6276 u16 i; 6277 6278 ice_for_each_alloc_rxq(vsi, i) 6279 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6280 } 6281 6282 /** 6283 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6284 * @vsi: PF's VSI 6285 * @features: features used to determine VLAN offload settings 6286 * 6287 * First, determine the vlan_ethertype based on the VLAN offload bits in 6288 * features. Then determine if stripping and insertion should be enabled or 6289 * disabled. Finally enable or disable VLAN stripping and insertion. 6290 */ 6291 static int 6292 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6293 { 6294 bool enable_stripping = true, enable_insertion = true; 6295 struct ice_vsi_vlan_ops *vlan_ops; 6296 int strip_err = 0, insert_err = 0; 6297 u16 vlan_ethertype = 0; 6298 6299 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6300 6301 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6302 vlan_ethertype = ETH_P_8021AD; 6303 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6304 vlan_ethertype = ETH_P_8021Q; 6305 6306 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6307 enable_stripping = false; 6308 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6309 enable_insertion = false; 6310 6311 if (enable_stripping) 6312 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6313 else 6314 strip_err = vlan_ops->dis_stripping(vsi); 6315 6316 if (enable_insertion) 6317 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6318 else 6319 insert_err = vlan_ops->dis_insertion(vsi); 6320 6321 if (strip_err || insert_err) 6322 return -EIO; 6323 6324 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6325 htons(vlan_ethertype) : 0); 6326 6327 return 0; 6328 } 6329 6330 /** 6331 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6332 * @vsi: PF's VSI 6333 * @features: features used to determine VLAN filtering settings 6334 * 6335 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6336 * features. 6337 */ 6338 static int 6339 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6340 { 6341 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6342 int err = 0; 6343 6344 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6345 * if either bit is set 6346 */ 6347 if (features & 6348 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6349 err = vlan_ops->ena_rx_filtering(vsi); 6350 else 6351 err = vlan_ops->dis_rx_filtering(vsi); 6352 6353 return err; 6354 } 6355 6356 /** 6357 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6358 * @netdev: ptr to the netdev being adjusted 6359 * @features: the feature set that the stack is suggesting 6360 * 6361 * Only update VLAN settings if the requested_vlan_features are different than 6362 * the current_vlan_features. 6363 */ 6364 static int 6365 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6366 { 6367 netdev_features_t current_vlan_features, requested_vlan_features; 6368 struct ice_netdev_priv *np = netdev_priv(netdev); 6369 struct ice_vsi *vsi = np->vsi; 6370 int err; 6371 6372 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6373 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6374 if (current_vlan_features ^ requested_vlan_features) { 6375 if ((features & NETIF_F_RXFCS) && 6376 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6377 dev_err(ice_pf_to_dev(vsi->back), 6378 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6379 return -EIO; 6380 } 6381 6382 err = ice_set_vlan_offload_features(vsi, features); 6383 if (err) 6384 return err; 6385 } 6386 6387 current_vlan_features = netdev->features & 6388 NETIF_VLAN_FILTERING_FEATURES; 6389 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6390 if (current_vlan_features ^ requested_vlan_features) { 6391 err = ice_set_vlan_filtering_features(vsi, features); 6392 if (err) 6393 return err; 6394 } 6395 6396 return 0; 6397 } 6398 6399 /** 6400 * ice_set_loopback - turn on/off loopback mode on underlying PF 6401 * @vsi: ptr to VSI 6402 * @ena: flag to indicate the on/off setting 6403 */ 6404 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6405 { 6406 bool if_running = netif_running(vsi->netdev); 6407 int ret; 6408 6409 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6410 ret = ice_down(vsi); 6411 if (ret) { 6412 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6413 return ret; 6414 } 6415 } 6416 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6417 if (ret) 6418 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6419 if (if_running) 6420 ret = ice_up(vsi); 6421 6422 return ret; 6423 } 6424 6425 /** 6426 * ice_set_features - set the netdev feature flags 6427 * @netdev: ptr to the netdev being adjusted 6428 * @features: the feature set that the stack is suggesting 6429 */ 6430 static int 6431 ice_set_features(struct net_device *netdev, netdev_features_t features) 6432 { 6433 netdev_features_t changed = netdev->features ^ features; 6434 struct ice_netdev_priv *np = netdev_priv(netdev); 6435 struct ice_vsi *vsi = np->vsi; 6436 struct ice_pf *pf = vsi->back; 6437 int ret = 0; 6438 6439 /* Don't set any netdev advanced features with device in Safe Mode */ 6440 if (ice_is_safe_mode(pf)) { 6441 dev_err(ice_pf_to_dev(pf), 6442 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6443 return ret; 6444 } 6445 6446 /* Do not change setting during reset */ 6447 if (ice_is_reset_in_progress(pf->state)) { 6448 dev_err(ice_pf_to_dev(pf), 6449 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6450 return -EBUSY; 6451 } 6452 6453 /* Multiple features can be changed in one call so keep features in 6454 * separate if/else statements to guarantee each feature is checked 6455 */ 6456 if (changed & NETIF_F_RXHASH) 6457 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6458 6459 ret = ice_set_vlan_features(netdev, features); 6460 if (ret) 6461 return ret; 6462 6463 /* Turn on receive of FCS aka CRC, and after setting this 6464 * flag the packet data will have the 4 byte CRC appended 6465 */ 6466 if (changed & NETIF_F_RXFCS) { 6467 if ((features & NETIF_F_RXFCS) && 6468 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6469 dev_err(ice_pf_to_dev(vsi->back), 6470 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6471 return -EIO; 6472 } 6473 6474 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6475 ret = ice_down_up(vsi); 6476 if (ret) 6477 return ret; 6478 } 6479 6480 if (changed & NETIF_F_NTUPLE) { 6481 bool ena = !!(features & NETIF_F_NTUPLE); 6482 6483 ice_vsi_manage_fdir(vsi, ena); 6484 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6485 } 6486 6487 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6488 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6489 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6490 return -EACCES; 6491 } 6492 6493 if (changed & NETIF_F_HW_TC) { 6494 bool ena = !!(features & NETIF_F_HW_TC); 6495 6496 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6497 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6498 } 6499 6500 if (changed & NETIF_F_LOOPBACK) 6501 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6502 6503 return ret; 6504 } 6505 6506 /** 6507 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6508 * @vsi: VSI to setup VLAN properties for 6509 */ 6510 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6511 { 6512 int err; 6513 6514 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6515 if (err) 6516 return err; 6517 6518 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6519 if (err) 6520 return err; 6521 6522 return ice_vsi_add_vlan_zero(vsi); 6523 } 6524 6525 /** 6526 * ice_vsi_cfg_lan - Setup the VSI lan related config 6527 * @vsi: the VSI being configured 6528 * 6529 * Return 0 on success and negative value on error 6530 */ 6531 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6532 { 6533 int err; 6534 6535 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6536 ice_set_rx_mode(vsi->netdev); 6537 6538 err = ice_vsi_vlan_setup(vsi); 6539 if (err) 6540 return err; 6541 } 6542 ice_vsi_cfg_dcb_rings(vsi); 6543 6544 err = ice_vsi_cfg_lan_txqs(vsi); 6545 if (!err && ice_is_xdp_ena_vsi(vsi)) 6546 err = ice_vsi_cfg_xdp_txqs(vsi); 6547 if (!err) 6548 err = ice_vsi_cfg_rxqs(vsi); 6549 6550 return err; 6551 } 6552 6553 /* THEORY OF MODERATION: 6554 * The ice driver hardware works differently than the hardware that DIMLIB was 6555 * originally made for. ice hardware doesn't have packet count limits that 6556 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6557 * which is hard-coded to a limit of 250,000 ints/second. 6558 * If not using dynamic moderation, the INTRL value can be modified 6559 * by ethtool rx-usecs-high. 6560 */ 6561 struct ice_dim { 6562 /* the throttle rate for interrupts, basically worst case delay before 6563 * an initial interrupt fires, value is stored in microseconds. 6564 */ 6565 u16 itr; 6566 }; 6567 6568 /* Make a different profile for Rx that doesn't allow quite so aggressive 6569 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6570 * second. 6571 */ 6572 static const struct ice_dim rx_profile[] = { 6573 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6574 {8}, /* 125,000 ints/s */ 6575 {16}, /* 62,500 ints/s */ 6576 {62}, /* 16,129 ints/s */ 6577 {126} /* 7,936 ints/s */ 6578 }; 6579 6580 /* The transmit profile, which has the same sorts of values 6581 * as the previous struct 6582 */ 6583 static const struct ice_dim tx_profile[] = { 6584 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6585 {8}, /* 125,000 ints/s */ 6586 {40}, /* 16,125 ints/s */ 6587 {128}, /* 7,812 ints/s */ 6588 {256} /* 3,906 ints/s */ 6589 }; 6590 6591 static void ice_tx_dim_work(struct work_struct *work) 6592 { 6593 struct ice_ring_container *rc; 6594 struct dim *dim; 6595 u16 itr; 6596 6597 dim = container_of(work, struct dim, work); 6598 rc = dim->priv; 6599 6600 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6601 6602 /* look up the values in our local table */ 6603 itr = tx_profile[dim->profile_ix].itr; 6604 6605 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6606 ice_write_itr(rc, itr); 6607 6608 dim->state = DIM_START_MEASURE; 6609 } 6610 6611 static void ice_rx_dim_work(struct work_struct *work) 6612 { 6613 struct ice_ring_container *rc; 6614 struct dim *dim; 6615 u16 itr; 6616 6617 dim = container_of(work, struct dim, work); 6618 rc = dim->priv; 6619 6620 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6621 6622 /* look up the values in our local table */ 6623 itr = rx_profile[dim->profile_ix].itr; 6624 6625 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6626 ice_write_itr(rc, itr); 6627 6628 dim->state = DIM_START_MEASURE; 6629 } 6630 6631 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6632 6633 /** 6634 * ice_init_moderation - set up interrupt moderation 6635 * @q_vector: the vector containing rings to be configured 6636 * 6637 * Set up interrupt moderation registers, with the intent to do the right thing 6638 * when called from reset or from probe, and whether or not dynamic moderation 6639 * is enabled or not. Take special care to write all the registers in both 6640 * dynamic moderation mode or not in order to make sure hardware is in a known 6641 * state. 6642 */ 6643 static void ice_init_moderation(struct ice_q_vector *q_vector) 6644 { 6645 struct ice_ring_container *rc; 6646 bool tx_dynamic, rx_dynamic; 6647 6648 rc = &q_vector->tx; 6649 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6650 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6651 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6652 rc->dim.priv = rc; 6653 tx_dynamic = ITR_IS_DYNAMIC(rc); 6654 6655 /* set the initial TX ITR to match the above */ 6656 ice_write_itr(rc, tx_dynamic ? 6657 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6658 6659 rc = &q_vector->rx; 6660 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6661 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6662 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6663 rc->dim.priv = rc; 6664 rx_dynamic = ITR_IS_DYNAMIC(rc); 6665 6666 /* set the initial RX ITR to match the above */ 6667 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6668 rc->itr_setting); 6669 6670 ice_set_q_vector_intrl(q_vector); 6671 } 6672 6673 /** 6674 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6675 * @vsi: the VSI being configured 6676 */ 6677 static void ice_napi_enable_all(struct ice_vsi *vsi) 6678 { 6679 int q_idx; 6680 6681 if (!vsi->netdev) 6682 return; 6683 6684 ice_for_each_q_vector(vsi, q_idx) { 6685 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6686 6687 ice_init_moderation(q_vector); 6688 6689 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6690 napi_enable(&q_vector->napi); 6691 } 6692 } 6693 6694 /** 6695 * ice_up_complete - Finish the last steps of bringing up a connection 6696 * @vsi: The VSI being configured 6697 * 6698 * Return 0 on success and negative value on error 6699 */ 6700 static int ice_up_complete(struct ice_vsi *vsi) 6701 { 6702 struct ice_pf *pf = vsi->back; 6703 int err; 6704 6705 ice_vsi_cfg_msix(vsi); 6706 6707 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6708 * Tx queue group list was configured and the context bits were 6709 * programmed using ice_vsi_cfg_txqs 6710 */ 6711 err = ice_vsi_start_all_rx_rings(vsi); 6712 if (err) 6713 return err; 6714 6715 clear_bit(ICE_VSI_DOWN, vsi->state); 6716 ice_napi_enable_all(vsi); 6717 ice_vsi_ena_irq(vsi); 6718 6719 if (vsi->port_info && 6720 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6721 vsi->netdev && vsi->type == ICE_VSI_PF) { 6722 ice_print_link_msg(vsi, true); 6723 netif_tx_start_all_queues(vsi->netdev); 6724 netif_carrier_on(vsi->netdev); 6725 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6726 } 6727 6728 /* Perform an initial read of the statistics registers now to 6729 * set the baseline so counters are ready when interface is up 6730 */ 6731 ice_update_eth_stats(vsi); 6732 6733 if (vsi->type == ICE_VSI_PF) 6734 ice_service_task_schedule(pf); 6735 6736 return 0; 6737 } 6738 6739 /** 6740 * ice_up - Bring the connection back up after being down 6741 * @vsi: VSI being configured 6742 */ 6743 int ice_up(struct ice_vsi *vsi) 6744 { 6745 int err; 6746 6747 err = ice_vsi_cfg_lan(vsi); 6748 if (!err) 6749 err = ice_up_complete(vsi); 6750 6751 return err; 6752 } 6753 6754 /** 6755 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6756 * @syncp: pointer to u64_stats_sync 6757 * @stats: stats that pkts and bytes count will be taken from 6758 * @pkts: packets stats counter 6759 * @bytes: bytes stats counter 6760 * 6761 * This function fetches stats from the ring considering the atomic operations 6762 * that needs to be performed to read u64 values in 32 bit machine. 6763 */ 6764 void 6765 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6766 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6767 { 6768 unsigned int start; 6769 6770 do { 6771 start = u64_stats_fetch_begin(syncp); 6772 *pkts = stats.pkts; 6773 *bytes = stats.bytes; 6774 } while (u64_stats_fetch_retry(syncp, start)); 6775 } 6776 6777 /** 6778 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6779 * @vsi: the VSI to be updated 6780 * @vsi_stats: the stats struct to be updated 6781 * @rings: rings to work on 6782 * @count: number of rings 6783 */ 6784 static void 6785 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6786 struct rtnl_link_stats64 *vsi_stats, 6787 struct ice_tx_ring **rings, u16 count) 6788 { 6789 u16 i; 6790 6791 for (i = 0; i < count; i++) { 6792 struct ice_tx_ring *ring; 6793 u64 pkts = 0, bytes = 0; 6794 6795 ring = READ_ONCE(rings[i]); 6796 if (!ring || !ring->ring_stats) 6797 continue; 6798 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6799 ring->ring_stats->stats, &pkts, 6800 &bytes); 6801 vsi_stats->tx_packets += pkts; 6802 vsi_stats->tx_bytes += bytes; 6803 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6804 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6805 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6806 } 6807 } 6808 6809 /** 6810 * ice_update_vsi_ring_stats - Update VSI stats counters 6811 * @vsi: the VSI to be updated 6812 */ 6813 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6814 { 6815 struct rtnl_link_stats64 *net_stats, *stats_prev; 6816 struct rtnl_link_stats64 *vsi_stats; 6817 struct ice_pf *pf = vsi->back; 6818 u64 pkts, bytes; 6819 int i; 6820 6821 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6822 if (!vsi_stats) 6823 return; 6824 6825 /* reset non-netdev (extended) stats */ 6826 vsi->tx_restart = 0; 6827 vsi->tx_busy = 0; 6828 vsi->tx_linearize = 0; 6829 vsi->rx_buf_failed = 0; 6830 vsi->rx_page_failed = 0; 6831 6832 rcu_read_lock(); 6833 6834 /* update Tx rings counters */ 6835 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6836 vsi->num_txq); 6837 6838 /* update Rx rings counters */ 6839 ice_for_each_rxq(vsi, i) { 6840 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6841 struct ice_ring_stats *ring_stats; 6842 6843 ring_stats = ring->ring_stats; 6844 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6845 ring_stats->stats, &pkts, 6846 &bytes); 6847 vsi_stats->rx_packets += pkts; 6848 vsi_stats->rx_bytes += bytes; 6849 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6850 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6851 } 6852 6853 /* update XDP Tx rings counters */ 6854 if (ice_is_xdp_ena_vsi(vsi)) 6855 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6856 vsi->num_xdp_txq); 6857 6858 rcu_read_unlock(); 6859 6860 net_stats = &vsi->net_stats; 6861 stats_prev = &vsi->net_stats_prev; 6862 6863 /* Update netdev counters, but keep in mind that values could start at 6864 * random value after PF reset. And as we increase the reported stat by 6865 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6866 * let's skip this round. 6867 */ 6868 if (likely(pf->stat_prev_loaded)) { 6869 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6870 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6871 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6872 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6873 } 6874 6875 stats_prev->tx_packets = vsi_stats->tx_packets; 6876 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6877 stats_prev->rx_packets = vsi_stats->rx_packets; 6878 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6879 6880 kfree(vsi_stats); 6881 } 6882 6883 /** 6884 * ice_update_vsi_stats - Update VSI stats counters 6885 * @vsi: the VSI to be updated 6886 */ 6887 void ice_update_vsi_stats(struct ice_vsi *vsi) 6888 { 6889 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6890 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6891 struct ice_pf *pf = vsi->back; 6892 6893 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6894 test_bit(ICE_CFG_BUSY, pf->state)) 6895 return; 6896 6897 /* get stats as recorded by Tx/Rx rings */ 6898 ice_update_vsi_ring_stats(vsi); 6899 6900 /* get VSI stats as recorded by the hardware */ 6901 ice_update_eth_stats(vsi); 6902 6903 cur_ns->tx_errors = cur_es->tx_errors; 6904 cur_ns->rx_dropped = cur_es->rx_discards; 6905 cur_ns->tx_dropped = cur_es->tx_discards; 6906 cur_ns->multicast = cur_es->rx_multicast; 6907 6908 /* update some more netdev stats if this is main VSI */ 6909 if (vsi->type == ICE_VSI_PF) { 6910 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6911 cur_ns->rx_errors = pf->stats.crc_errors + 6912 pf->stats.illegal_bytes + 6913 pf->stats.rx_undersize + 6914 pf->hw_csum_rx_error + 6915 pf->stats.rx_jabber + 6916 pf->stats.rx_fragments + 6917 pf->stats.rx_oversize; 6918 /* record drops from the port level */ 6919 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6920 } 6921 } 6922 6923 /** 6924 * ice_update_pf_stats - Update PF port stats counters 6925 * @pf: PF whose stats needs to be updated 6926 */ 6927 void ice_update_pf_stats(struct ice_pf *pf) 6928 { 6929 struct ice_hw_port_stats *prev_ps, *cur_ps; 6930 struct ice_hw *hw = &pf->hw; 6931 u16 fd_ctr_base; 6932 u8 port; 6933 6934 port = hw->port_info->lport; 6935 prev_ps = &pf->stats_prev; 6936 cur_ps = &pf->stats; 6937 6938 if (ice_is_reset_in_progress(pf->state)) 6939 pf->stat_prev_loaded = false; 6940 6941 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6942 &prev_ps->eth.rx_bytes, 6943 &cur_ps->eth.rx_bytes); 6944 6945 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6946 &prev_ps->eth.rx_unicast, 6947 &cur_ps->eth.rx_unicast); 6948 6949 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6950 &prev_ps->eth.rx_multicast, 6951 &cur_ps->eth.rx_multicast); 6952 6953 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6954 &prev_ps->eth.rx_broadcast, 6955 &cur_ps->eth.rx_broadcast); 6956 6957 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6958 &prev_ps->eth.rx_discards, 6959 &cur_ps->eth.rx_discards); 6960 6961 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6962 &prev_ps->eth.tx_bytes, 6963 &cur_ps->eth.tx_bytes); 6964 6965 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6966 &prev_ps->eth.tx_unicast, 6967 &cur_ps->eth.tx_unicast); 6968 6969 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6970 &prev_ps->eth.tx_multicast, 6971 &cur_ps->eth.tx_multicast); 6972 6973 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6974 &prev_ps->eth.tx_broadcast, 6975 &cur_ps->eth.tx_broadcast); 6976 6977 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6978 &prev_ps->tx_dropped_link_down, 6979 &cur_ps->tx_dropped_link_down); 6980 6981 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6982 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6983 6984 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6985 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6986 6987 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6988 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6989 6990 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6991 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6992 6993 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6994 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6995 6996 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6997 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6998 6999 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7000 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7001 7002 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7003 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7004 7005 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7006 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7007 7008 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7009 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7010 7011 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7012 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7013 7014 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7015 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7016 7017 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7018 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7019 7020 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7021 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7022 7023 fd_ctr_base = hw->fd_ctr_base; 7024 7025 ice_stat_update40(hw, 7026 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7027 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7028 &cur_ps->fd_sb_match); 7029 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7030 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7031 7032 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7033 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7034 7035 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7036 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7037 7038 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7039 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7040 7041 ice_update_dcb_stats(pf); 7042 7043 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7044 &prev_ps->crc_errors, &cur_ps->crc_errors); 7045 7046 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7047 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7048 7049 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7050 &prev_ps->mac_local_faults, 7051 &cur_ps->mac_local_faults); 7052 7053 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7054 &prev_ps->mac_remote_faults, 7055 &cur_ps->mac_remote_faults); 7056 7057 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7058 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7059 7060 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7061 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7062 7063 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7064 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7065 7066 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7067 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7068 7069 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7070 7071 pf->stat_prev_loaded = true; 7072 } 7073 7074 /** 7075 * ice_get_stats64 - get statistics for network device structure 7076 * @netdev: network interface device structure 7077 * @stats: main device statistics structure 7078 */ 7079 static 7080 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7081 { 7082 struct ice_netdev_priv *np = netdev_priv(netdev); 7083 struct rtnl_link_stats64 *vsi_stats; 7084 struct ice_vsi *vsi = np->vsi; 7085 7086 vsi_stats = &vsi->net_stats; 7087 7088 if (!vsi->num_txq || !vsi->num_rxq) 7089 return; 7090 7091 /* netdev packet/byte stats come from ring counter. These are obtained 7092 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7093 * But, only call the update routine and read the registers if VSI is 7094 * not down. 7095 */ 7096 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7097 ice_update_vsi_ring_stats(vsi); 7098 stats->tx_packets = vsi_stats->tx_packets; 7099 stats->tx_bytes = vsi_stats->tx_bytes; 7100 stats->rx_packets = vsi_stats->rx_packets; 7101 stats->rx_bytes = vsi_stats->rx_bytes; 7102 7103 /* The rest of the stats can be read from the hardware but instead we 7104 * just return values that the watchdog task has already obtained from 7105 * the hardware. 7106 */ 7107 stats->multicast = vsi_stats->multicast; 7108 stats->tx_errors = vsi_stats->tx_errors; 7109 stats->tx_dropped = vsi_stats->tx_dropped; 7110 stats->rx_errors = vsi_stats->rx_errors; 7111 stats->rx_dropped = vsi_stats->rx_dropped; 7112 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7113 stats->rx_length_errors = vsi_stats->rx_length_errors; 7114 } 7115 7116 /** 7117 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7118 * @vsi: VSI having NAPI disabled 7119 */ 7120 static void ice_napi_disable_all(struct ice_vsi *vsi) 7121 { 7122 int q_idx; 7123 7124 if (!vsi->netdev) 7125 return; 7126 7127 ice_for_each_q_vector(vsi, q_idx) { 7128 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7129 7130 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7131 napi_disable(&q_vector->napi); 7132 7133 cancel_work_sync(&q_vector->tx.dim.work); 7134 cancel_work_sync(&q_vector->rx.dim.work); 7135 } 7136 } 7137 7138 /** 7139 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7140 * @vsi: the VSI being un-configured 7141 */ 7142 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7143 { 7144 struct ice_pf *pf = vsi->back; 7145 struct ice_hw *hw = &pf->hw; 7146 u32 val; 7147 int i; 7148 7149 /* disable interrupt causation from each Rx queue; Tx queues are 7150 * handled in ice_vsi_stop_tx_ring() 7151 */ 7152 if (vsi->rx_rings) { 7153 ice_for_each_rxq(vsi, i) { 7154 if (vsi->rx_rings[i]) { 7155 u16 reg; 7156 7157 reg = vsi->rx_rings[i]->reg_idx; 7158 val = rd32(hw, QINT_RQCTL(reg)); 7159 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7160 wr32(hw, QINT_RQCTL(reg), val); 7161 } 7162 } 7163 } 7164 7165 /* disable each interrupt */ 7166 ice_for_each_q_vector(vsi, i) { 7167 if (!vsi->q_vectors[i]) 7168 continue; 7169 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7170 } 7171 7172 ice_flush(hw); 7173 7174 /* don't call synchronize_irq() for VF's from the host */ 7175 if (vsi->type == ICE_VSI_VF) 7176 return; 7177 7178 ice_for_each_q_vector(vsi, i) 7179 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7180 } 7181 7182 /** 7183 * ice_down - Shutdown the connection 7184 * @vsi: The VSI being stopped 7185 * 7186 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7187 */ 7188 int ice_down(struct ice_vsi *vsi) 7189 { 7190 int i, tx_err, rx_err, vlan_err = 0; 7191 7192 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7193 7194 if (vsi->netdev) { 7195 vlan_err = ice_vsi_del_vlan_zero(vsi); 7196 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7197 netif_carrier_off(vsi->netdev); 7198 netif_tx_disable(vsi->netdev); 7199 } 7200 7201 ice_vsi_dis_irq(vsi); 7202 7203 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7204 if (tx_err) 7205 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7206 vsi->vsi_num, tx_err); 7207 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7208 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7209 if (tx_err) 7210 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7211 vsi->vsi_num, tx_err); 7212 } 7213 7214 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7215 if (rx_err) 7216 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7217 vsi->vsi_num, rx_err); 7218 7219 ice_napi_disable_all(vsi); 7220 7221 ice_for_each_txq(vsi, i) 7222 ice_clean_tx_ring(vsi->tx_rings[i]); 7223 7224 if (ice_is_xdp_ena_vsi(vsi)) 7225 ice_for_each_xdp_txq(vsi, i) 7226 ice_clean_tx_ring(vsi->xdp_rings[i]); 7227 7228 ice_for_each_rxq(vsi, i) 7229 ice_clean_rx_ring(vsi->rx_rings[i]); 7230 7231 if (tx_err || rx_err || vlan_err) { 7232 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7233 vsi->vsi_num, vsi->vsw->sw_id); 7234 return -EIO; 7235 } 7236 7237 return 0; 7238 } 7239 7240 /** 7241 * ice_down_up - shutdown the VSI connection and bring it up 7242 * @vsi: the VSI to be reconnected 7243 */ 7244 int ice_down_up(struct ice_vsi *vsi) 7245 { 7246 int ret; 7247 7248 /* if DOWN already set, nothing to do */ 7249 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7250 return 0; 7251 7252 ret = ice_down(vsi); 7253 if (ret) 7254 return ret; 7255 7256 ret = ice_up(vsi); 7257 if (ret) { 7258 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7259 return ret; 7260 } 7261 7262 return 0; 7263 } 7264 7265 /** 7266 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7267 * @vsi: VSI having resources allocated 7268 * 7269 * Return 0 on success, negative on failure 7270 */ 7271 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7272 { 7273 int i, err = 0; 7274 7275 if (!vsi->num_txq) { 7276 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7277 vsi->vsi_num); 7278 return -EINVAL; 7279 } 7280 7281 ice_for_each_txq(vsi, i) { 7282 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7283 7284 if (!ring) 7285 return -EINVAL; 7286 7287 if (vsi->netdev) 7288 ring->netdev = vsi->netdev; 7289 err = ice_setup_tx_ring(ring); 7290 if (err) 7291 break; 7292 } 7293 7294 return err; 7295 } 7296 7297 /** 7298 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7299 * @vsi: VSI having resources allocated 7300 * 7301 * Return 0 on success, negative on failure 7302 */ 7303 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7304 { 7305 int i, err = 0; 7306 7307 if (!vsi->num_rxq) { 7308 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7309 vsi->vsi_num); 7310 return -EINVAL; 7311 } 7312 7313 ice_for_each_rxq(vsi, i) { 7314 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7315 7316 if (!ring) 7317 return -EINVAL; 7318 7319 if (vsi->netdev) 7320 ring->netdev = vsi->netdev; 7321 err = ice_setup_rx_ring(ring); 7322 if (err) 7323 break; 7324 } 7325 7326 return err; 7327 } 7328 7329 /** 7330 * ice_vsi_open_ctrl - open control VSI for use 7331 * @vsi: the VSI to open 7332 * 7333 * Initialization of the Control VSI 7334 * 7335 * Returns 0 on success, negative value on error 7336 */ 7337 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7338 { 7339 char int_name[ICE_INT_NAME_STR_LEN]; 7340 struct ice_pf *pf = vsi->back; 7341 struct device *dev; 7342 int err; 7343 7344 dev = ice_pf_to_dev(pf); 7345 /* allocate descriptors */ 7346 err = ice_vsi_setup_tx_rings(vsi); 7347 if (err) 7348 goto err_setup_tx; 7349 7350 err = ice_vsi_setup_rx_rings(vsi); 7351 if (err) 7352 goto err_setup_rx; 7353 7354 err = ice_vsi_cfg_lan(vsi); 7355 if (err) 7356 goto err_setup_rx; 7357 7358 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7359 dev_driver_string(dev), dev_name(dev)); 7360 err = ice_vsi_req_irq_msix(vsi, int_name); 7361 if (err) 7362 goto err_setup_rx; 7363 7364 ice_vsi_cfg_msix(vsi); 7365 7366 err = ice_vsi_start_all_rx_rings(vsi); 7367 if (err) 7368 goto err_up_complete; 7369 7370 clear_bit(ICE_VSI_DOWN, vsi->state); 7371 ice_vsi_ena_irq(vsi); 7372 7373 return 0; 7374 7375 err_up_complete: 7376 ice_down(vsi); 7377 err_setup_rx: 7378 ice_vsi_free_rx_rings(vsi); 7379 err_setup_tx: 7380 ice_vsi_free_tx_rings(vsi); 7381 7382 return err; 7383 } 7384 7385 /** 7386 * ice_vsi_open - Called when a network interface is made active 7387 * @vsi: the VSI to open 7388 * 7389 * Initialization of the VSI 7390 * 7391 * Returns 0 on success, negative value on error 7392 */ 7393 int ice_vsi_open(struct ice_vsi *vsi) 7394 { 7395 char int_name[ICE_INT_NAME_STR_LEN]; 7396 struct ice_pf *pf = vsi->back; 7397 int err; 7398 7399 /* allocate descriptors */ 7400 err = ice_vsi_setup_tx_rings(vsi); 7401 if (err) 7402 goto err_setup_tx; 7403 7404 err = ice_vsi_setup_rx_rings(vsi); 7405 if (err) 7406 goto err_setup_rx; 7407 7408 err = ice_vsi_cfg_lan(vsi); 7409 if (err) 7410 goto err_setup_rx; 7411 7412 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7413 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7414 err = ice_vsi_req_irq_msix(vsi, int_name); 7415 if (err) 7416 goto err_setup_rx; 7417 7418 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7419 7420 if (vsi->type == ICE_VSI_PF) { 7421 /* Notify the stack of the actual queue counts. */ 7422 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7423 if (err) 7424 goto err_set_qs; 7425 7426 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7427 if (err) 7428 goto err_set_qs; 7429 } 7430 7431 err = ice_up_complete(vsi); 7432 if (err) 7433 goto err_up_complete; 7434 7435 return 0; 7436 7437 err_up_complete: 7438 ice_down(vsi); 7439 err_set_qs: 7440 ice_vsi_free_irq(vsi); 7441 err_setup_rx: 7442 ice_vsi_free_rx_rings(vsi); 7443 err_setup_tx: 7444 ice_vsi_free_tx_rings(vsi); 7445 7446 return err; 7447 } 7448 7449 /** 7450 * ice_vsi_release_all - Delete all VSIs 7451 * @pf: PF from which all VSIs are being removed 7452 */ 7453 static void ice_vsi_release_all(struct ice_pf *pf) 7454 { 7455 int err, i; 7456 7457 if (!pf->vsi) 7458 return; 7459 7460 ice_for_each_vsi(pf, i) { 7461 if (!pf->vsi[i]) 7462 continue; 7463 7464 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7465 continue; 7466 7467 err = ice_vsi_release(pf->vsi[i]); 7468 if (err) 7469 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7470 i, err, pf->vsi[i]->vsi_num); 7471 } 7472 } 7473 7474 /** 7475 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7476 * @pf: pointer to the PF instance 7477 * @type: VSI type to rebuild 7478 * 7479 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7480 */ 7481 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7482 { 7483 struct device *dev = ice_pf_to_dev(pf); 7484 int i, err; 7485 7486 ice_for_each_vsi(pf, i) { 7487 struct ice_vsi *vsi = pf->vsi[i]; 7488 7489 if (!vsi || vsi->type != type) 7490 continue; 7491 7492 /* rebuild the VSI */ 7493 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7494 if (err) { 7495 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7496 err, vsi->idx, ice_vsi_type_str(type)); 7497 return err; 7498 } 7499 7500 /* replay filters for the VSI */ 7501 err = ice_replay_vsi(&pf->hw, vsi->idx); 7502 if (err) { 7503 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7504 err, vsi->idx, ice_vsi_type_str(type)); 7505 return err; 7506 } 7507 7508 /* Re-map HW VSI number, using VSI handle that has been 7509 * previously validated in ice_replay_vsi() call above 7510 */ 7511 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7512 7513 /* enable the VSI */ 7514 err = ice_ena_vsi(vsi, false); 7515 if (err) { 7516 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7517 err, vsi->idx, ice_vsi_type_str(type)); 7518 return err; 7519 } 7520 7521 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7522 ice_vsi_type_str(type)); 7523 } 7524 7525 return 0; 7526 } 7527 7528 /** 7529 * ice_update_pf_netdev_link - Update PF netdev link status 7530 * @pf: pointer to the PF instance 7531 */ 7532 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7533 { 7534 bool link_up; 7535 int i; 7536 7537 ice_for_each_vsi(pf, i) { 7538 struct ice_vsi *vsi = pf->vsi[i]; 7539 7540 if (!vsi || vsi->type != ICE_VSI_PF) 7541 return; 7542 7543 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7544 if (link_up) { 7545 netif_carrier_on(pf->vsi[i]->netdev); 7546 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7547 } else { 7548 netif_carrier_off(pf->vsi[i]->netdev); 7549 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7550 } 7551 } 7552 } 7553 7554 /** 7555 * ice_rebuild - rebuild after reset 7556 * @pf: PF to rebuild 7557 * @reset_type: type of reset 7558 * 7559 * Do not rebuild VF VSI in this flow because that is already handled via 7560 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7561 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7562 * to reset/rebuild all the VF VSI twice. 7563 */ 7564 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7565 { 7566 struct device *dev = ice_pf_to_dev(pf); 7567 struct ice_hw *hw = &pf->hw; 7568 bool dvm; 7569 int err; 7570 7571 if (test_bit(ICE_DOWN, pf->state)) 7572 goto clear_recovery; 7573 7574 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7575 7576 #define ICE_EMP_RESET_SLEEP_MS 5000 7577 if (reset_type == ICE_RESET_EMPR) { 7578 /* If an EMP reset has occurred, any previously pending flash 7579 * update will have completed. We no longer know whether or 7580 * not the NVM update EMP reset is restricted. 7581 */ 7582 pf->fw_emp_reset_disabled = false; 7583 7584 msleep(ICE_EMP_RESET_SLEEP_MS); 7585 } 7586 7587 err = ice_init_all_ctrlq(hw); 7588 if (err) { 7589 dev_err(dev, "control queues init failed %d\n", err); 7590 goto err_init_ctrlq; 7591 } 7592 7593 /* if DDP was previously loaded successfully */ 7594 if (!ice_is_safe_mode(pf)) { 7595 /* reload the SW DB of filter tables */ 7596 if (reset_type == ICE_RESET_PFR) 7597 ice_fill_blk_tbls(hw); 7598 else 7599 /* Reload DDP Package after CORER/GLOBR reset */ 7600 ice_load_pkg(NULL, pf); 7601 } 7602 7603 err = ice_clear_pf_cfg(hw); 7604 if (err) { 7605 dev_err(dev, "clear PF configuration failed %d\n", err); 7606 goto err_init_ctrlq; 7607 } 7608 7609 ice_clear_pxe_mode(hw); 7610 7611 err = ice_init_nvm(hw); 7612 if (err) { 7613 dev_err(dev, "ice_init_nvm failed %d\n", err); 7614 goto err_init_ctrlq; 7615 } 7616 7617 err = ice_get_caps(hw); 7618 if (err) { 7619 dev_err(dev, "ice_get_caps failed %d\n", err); 7620 goto err_init_ctrlq; 7621 } 7622 7623 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7624 if (err) { 7625 dev_err(dev, "set_mac_cfg failed %d\n", err); 7626 goto err_init_ctrlq; 7627 } 7628 7629 dvm = ice_is_dvm_ena(hw); 7630 7631 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7632 if (err) 7633 goto err_init_ctrlq; 7634 7635 err = ice_sched_init_port(hw->port_info); 7636 if (err) 7637 goto err_sched_init_port; 7638 7639 /* start misc vector */ 7640 err = ice_req_irq_msix_misc(pf); 7641 if (err) { 7642 dev_err(dev, "misc vector setup failed: %d\n", err); 7643 goto err_sched_init_port; 7644 } 7645 7646 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7647 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7648 if (!rd32(hw, PFQF_FD_SIZE)) { 7649 u16 unused, guar, b_effort; 7650 7651 guar = hw->func_caps.fd_fltr_guar; 7652 b_effort = hw->func_caps.fd_fltr_best_effort; 7653 7654 /* force guaranteed filter pool for PF */ 7655 ice_alloc_fd_guar_item(hw, &unused, guar); 7656 /* force shared filter pool for PF */ 7657 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7658 } 7659 } 7660 7661 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7662 ice_dcb_rebuild(pf); 7663 7664 /* If the PF previously had enabled PTP, PTP init needs to happen before 7665 * the VSI rebuild. If not, this causes the PTP link status events to 7666 * fail. 7667 */ 7668 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7669 ice_ptp_rebuild(pf, reset_type); 7670 7671 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7672 ice_gnss_init(pf); 7673 7674 /* rebuild PF VSI */ 7675 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7676 if (err) { 7677 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7678 goto err_vsi_rebuild; 7679 } 7680 7681 ice_eswitch_rebuild(pf); 7682 7683 if (reset_type == ICE_RESET_PFR) { 7684 err = ice_rebuild_channels(pf); 7685 if (err) { 7686 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7687 err); 7688 goto err_vsi_rebuild; 7689 } 7690 } 7691 7692 /* If Flow Director is active */ 7693 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7694 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7695 if (err) { 7696 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7697 goto err_vsi_rebuild; 7698 } 7699 7700 /* replay HW Flow Director recipes */ 7701 if (hw->fdir_prof) 7702 ice_fdir_replay_flows(hw); 7703 7704 /* replay Flow Director filters */ 7705 ice_fdir_replay_fltrs(pf); 7706 7707 ice_rebuild_arfs(pf); 7708 } 7709 7710 ice_update_pf_netdev_link(pf); 7711 7712 /* tell the firmware we are up */ 7713 err = ice_send_version(pf); 7714 if (err) { 7715 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7716 err); 7717 goto err_vsi_rebuild; 7718 } 7719 7720 ice_replay_post(hw); 7721 7722 /* if we get here, reset flow is successful */ 7723 clear_bit(ICE_RESET_FAILED, pf->state); 7724 7725 ice_plug_aux_dev(pf); 7726 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7727 ice_lag_rebuild(pf); 7728 7729 /* Restore timestamp mode settings after VSI rebuild */ 7730 ice_ptp_restore_timestamp_mode(pf); 7731 return; 7732 7733 err_vsi_rebuild: 7734 err_sched_init_port: 7735 ice_sched_cleanup_all(hw); 7736 err_init_ctrlq: 7737 ice_shutdown_all_ctrlq(hw); 7738 set_bit(ICE_RESET_FAILED, pf->state); 7739 clear_recovery: 7740 /* set this bit in PF state to control service task scheduling */ 7741 set_bit(ICE_NEEDS_RESTART, pf->state); 7742 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7743 } 7744 7745 /** 7746 * ice_change_mtu - NDO callback to change the MTU 7747 * @netdev: network interface device structure 7748 * @new_mtu: new value for maximum frame size 7749 * 7750 * Returns 0 on success, negative on failure 7751 */ 7752 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7753 { 7754 struct ice_netdev_priv *np = netdev_priv(netdev); 7755 struct ice_vsi *vsi = np->vsi; 7756 struct ice_pf *pf = vsi->back; 7757 struct bpf_prog *prog; 7758 u8 count = 0; 7759 int err = 0; 7760 7761 if (new_mtu == (int)netdev->mtu) { 7762 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7763 return 0; 7764 } 7765 7766 prog = vsi->xdp_prog; 7767 if (prog && !prog->aux->xdp_has_frags) { 7768 int frame_size = ice_max_xdp_frame_size(vsi); 7769 7770 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7771 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7772 frame_size - ICE_ETH_PKT_HDR_PAD); 7773 return -EINVAL; 7774 } 7775 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7776 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7777 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7778 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7779 return -EINVAL; 7780 } 7781 } 7782 7783 /* if a reset is in progress, wait for some time for it to complete */ 7784 do { 7785 if (ice_is_reset_in_progress(pf->state)) { 7786 count++; 7787 usleep_range(1000, 2000); 7788 } else { 7789 break; 7790 } 7791 7792 } while (count < 100); 7793 7794 if (count == 100) { 7795 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7796 return -EBUSY; 7797 } 7798 7799 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7800 err = ice_down_up(vsi); 7801 if (err) 7802 return err; 7803 7804 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7805 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7806 7807 return err; 7808 } 7809 7810 /** 7811 * ice_eth_ioctl - Access the hwtstamp interface 7812 * @netdev: network interface device structure 7813 * @ifr: interface request data 7814 * @cmd: ioctl command 7815 */ 7816 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7817 { 7818 struct ice_netdev_priv *np = netdev_priv(netdev); 7819 struct ice_pf *pf = np->vsi->back; 7820 7821 switch (cmd) { 7822 case SIOCGHWTSTAMP: 7823 return ice_ptp_get_ts_config(pf, ifr); 7824 case SIOCSHWTSTAMP: 7825 return ice_ptp_set_ts_config(pf, ifr); 7826 default: 7827 return -EOPNOTSUPP; 7828 } 7829 } 7830 7831 /** 7832 * ice_aq_str - convert AQ err code to a string 7833 * @aq_err: the AQ error code to convert 7834 */ 7835 const char *ice_aq_str(enum ice_aq_err aq_err) 7836 { 7837 switch (aq_err) { 7838 case ICE_AQ_RC_OK: 7839 return "OK"; 7840 case ICE_AQ_RC_EPERM: 7841 return "ICE_AQ_RC_EPERM"; 7842 case ICE_AQ_RC_ENOENT: 7843 return "ICE_AQ_RC_ENOENT"; 7844 case ICE_AQ_RC_ENOMEM: 7845 return "ICE_AQ_RC_ENOMEM"; 7846 case ICE_AQ_RC_EBUSY: 7847 return "ICE_AQ_RC_EBUSY"; 7848 case ICE_AQ_RC_EEXIST: 7849 return "ICE_AQ_RC_EEXIST"; 7850 case ICE_AQ_RC_EINVAL: 7851 return "ICE_AQ_RC_EINVAL"; 7852 case ICE_AQ_RC_ENOSPC: 7853 return "ICE_AQ_RC_ENOSPC"; 7854 case ICE_AQ_RC_ENOSYS: 7855 return "ICE_AQ_RC_ENOSYS"; 7856 case ICE_AQ_RC_EMODE: 7857 return "ICE_AQ_RC_EMODE"; 7858 case ICE_AQ_RC_ENOSEC: 7859 return "ICE_AQ_RC_ENOSEC"; 7860 case ICE_AQ_RC_EBADSIG: 7861 return "ICE_AQ_RC_EBADSIG"; 7862 case ICE_AQ_RC_ESVN: 7863 return "ICE_AQ_RC_ESVN"; 7864 case ICE_AQ_RC_EBADMAN: 7865 return "ICE_AQ_RC_EBADMAN"; 7866 case ICE_AQ_RC_EBADBUF: 7867 return "ICE_AQ_RC_EBADBUF"; 7868 } 7869 7870 return "ICE_AQ_RC_UNKNOWN"; 7871 } 7872 7873 /** 7874 * ice_set_rss_lut - Set RSS LUT 7875 * @vsi: Pointer to VSI structure 7876 * @lut: Lookup table 7877 * @lut_size: Lookup table size 7878 * 7879 * Returns 0 on success, negative on failure 7880 */ 7881 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7882 { 7883 struct ice_aq_get_set_rss_lut_params params = {}; 7884 struct ice_hw *hw = &vsi->back->hw; 7885 int status; 7886 7887 if (!lut) 7888 return -EINVAL; 7889 7890 params.vsi_handle = vsi->idx; 7891 params.lut_size = lut_size; 7892 params.lut_type = vsi->rss_lut_type; 7893 params.lut = lut; 7894 7895 status = ice_aq_set_rss_lut(hw, ¶ms); 7896 if (status) 7897 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7898 status, ice_aq_str(hw->adminq.sq_last_status)); 7899 7900 return status; 7901 } 7902 7903 /** 7904 * ice_set_rss_key - Set RSS key 7905 * @vsi: Pointer to the VSI structure 7906 * @seed: RSS hash seed 7907 * 7908 * Returns 0 on success, negative on failure 7909 */ 7910 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7911 { 7912 struct ice_hw *hw = &vsi->back->hw; 7913 int status; 7914 7915 if (!seed) 7916 return -EINVAL; 7917 7918 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7919 if (status) 7920 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7921 status, ice_aq_str(hw->adminq.sq_last_status)); 7922 7923 return status; 7924 } 7925 7926 /** 7927 * ice_get_rss_lut - Get RSS LUT 7928 * @vsi: Pointer to VSI structure 7929 * @lut: Buffer to store the lookup table entries 7930 * @lut_size: Size of buffer to store the lookup table entries 7931 * 7932 * Returns 0 on success, negative on failure 7933 */ 7934 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7935 { 7936 struct ice_aq_get_set_rss_lut_params params = {}; 7937 struct ice_hw *hw = &vsi->back->hw; 7938 int status; 7939 7940 if (!lut) 7941 return -EINVAL; 7942 7943 params.vsi_handle = vsi->idx; 7944 params.lut_size = lut_size; 7945 params.lut_type = vsi->rss_lut_type; 7946 params.lut = lut; 7947 7948 status = ice_aq_get_rss_lut(hw, ¶ms); 7949 if (status) 7950 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7951 status, ice_aq_str(hw->adminq.sq_last_status)); 7952 7953 return status; 7954 } 7955 7956 /** 7957 * ice_get_rss_key - Get RSS key 7958 * @vsi: Pointer to VSI structure 7959 * @seed: Buffer to store the key in 7960 * 7961 * Returns 0 on success, negative on failure 7962 */ 7963 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7964 { 7965 struct ice_hw *hw = &vsi->back->hw; 7966 int status; 7967 7968 if (!seed) 7969 return -EINVAL; 7970 7971 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7972 if (status) 7973 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7974 status, ice_aq_str(hw->adminq.sq_last_status)); 7975 7976 return status; 7977 } 7978 7979 /** 7980 * ice_set_rss_hfunc - Set RSS HASH function 7981 * @vsi: Pointer to VSI structure 7982 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7983 * 7984 * Returns 0 on success, negative on failure 7985 */ 7986 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7987 { 7988 struct ice_hw *hw = &vsi->back->hw; 7989 struct ice_vsi_ctx *ctx; 7990 bool symm; 7991 int err; 7992 7993 if (hfunc == vsi->rss_hfunc) 7994 return 0; 7995 7996 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7997 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7998 return -EOPNOTSUPP; 7999 8000 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8001 if (!ctx) 8002 return -ENOMEM; 8003 8004 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8005 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8006 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8007 ctx->info.q_opt_rss |= 8008 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8009 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8010 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8011 8012 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8013 if (err) { 8014 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8015 vsi->vsi_num, err); 8016 } else { 8017 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8018 vsi->rss_hfunc = hfunc; 8019 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8020 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8021 "Symmetric " : ""); 8022 } 8023 kfree(ctx); 8024 if (err) 8025 return err; 8026 8027 /* Fix the symmetry setting for all existing RSS configurations */ 8028 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8029 return ice_set_rss_cfg_symm(hw, vsi, symm); 8030 } 8031 8032 /** 8033 * ice_bridge_getlink - Get the hardware bridge mode 8034 * @skb: skb buff 8035 * @pid: process ID 8036 * @seq: RTNL message seq 8037 * @dev: the netdev being configured 8038 * @filter_mask: filter mask passed in 8039 * @nlflags: netlink flags passed in 8040 * 8041 * Return the bridge mode (VEB/VEPA) 8042 */ 8043 static int 8044 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8045 struct net_device *dev, u32 filter_mask, int nlflags) 8046 { 8047 struct ice_netdev_priv *np = netdev_priv(dev); 8048 struct ice_vsi *vsi = np->vsi; 8049 struct ice_pf *pf = vsi->back; 8050 u16 bmode; 8051 8052 bmode = pf->first_sw->bridge_mode; 8053 8054 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8055 filter_mask, NULL); 8056 } 8057 8058 /** 8059 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8060 * @vsi: Pointer to VSI structure 8061 * @bmode: Hardware bridge mode (VEB/VEPA) 8062 * 8063 * Returns 0 on success, negative on failure 8064 */ 8065 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8066 { 8067 struct ice_aqc_vsi_props *vsi_props; 8068 struct ice_hw *hw = &vsi->back->hw; 8069 struct ice_vsi_ctx *ctxt; 8070 int ret; 8071 8072 vsi_props = &vsi->info; 8073 8074 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8075 if (!ctxt) 8076 return -ENOMEM; 8077 8078 ctxt->info = vsi->info; 8079 8080 if (bmode == BRIDGE_MODE_VEB) 8081 /* change from VEPA to VEB mode */ 8082 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8083 else 8084 /* change from VEB to VEPA mode */ 8085 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8086 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8087 8088 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8089 if (ret) { 8090 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8091 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8092 goto out; 8093 } 8094 /* Update sw flags for book keeping */ 8095 vsi_props->sw_flags = ctxt->info.sw_flags; 8096 8097 out: 8098 kfree(ctxt); 8099 return ret; 8100 } 8101 8102 /** 8103 * ice_bridge_setlink - Set the hardware bridge mode 8104 * @dev: the netdev being configured 8105 * @nlh: RTNL message 8106 * @flags: bridge setlink flags 8107 * @extack: netlink extended ack 8108 * 8109 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8110 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8111 * not already set for all VSIs connected to this switch. And also update the 8112 * unicast switch filter rules for the corresponding switch of the netdev. 8113 */ 8114 static int 8115 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8116 u16 __always_unused flags, 8117 struct netlink_ext_ack __always_unused *extack) 8118 { 8119 struct ice_netdev_priv *np = netdev_priv(dev); 8120 struct ice_pf *pf = np->vsi->back; 8121 struct nlattr *attr, *br_spec; 8122 struct ice_hw *hw = &pf->hw; 8123 struct ice_sw *pf_sw; 8124 int rem, v, err = 0; 8125 8126 pf_sw = pf->first_sw; 8127 /* find the attribute in the netlink message */ 8128 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8129 if (!br_spec) 8130 return -EINVAL; 8131 8132 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8133 __u16 mode = nla_get_u16(attr); 8134 8135 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8136 return -EINVAL; 8137 /* Continue if bridge mode is not being flipped */ 8138 if (mode == pf_sw->bridge_mode) 8139 continue; 8140 /* Iterates through the PF VSI list and update the loopback 8141 * mode of the VSI 8142 */ 8143 ice_for_each_vsi(pf, v) { 8144 if (!pf->vsi[v]) 8145 continue; 8146 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8147 if (err) 8148 return err; 8149 } 8150 8151 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8152 /* Update the unicast switch filter rules for the corresponding 8153 * switch of the netdev 8154 */ 8155 err = ice_update_sw_rule_bridge_mode(hw); 8156 if (err) { 8157 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8158 mode, err, 8159 ice_aq_str(hw->adminq.sq_last_status)); 8160 /* revert hw->evb_veb */ 8161 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8162 return err; 8163 } 8164 8165 pf_sw->bridge_mode = mode; 8166 } 8167 8168 return 0; 8169 } 8170 8171 /** 8172 * ice_tx_timeout - Respond to a Tx Hang 8173 * @netdev: network interface device structure 8174 * @txqueue: Tx queue 8175 */ 8176 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8177 { 8178 struct ice_netdev_priv *np = netdev_priv(netdev); 8179 struct ice_tx_ring *tx_ring = NULL; 8180 struct ice_vsi *vsi = np->vsi; 8181 struct ice_pf *pf = vsi->back; 8182 u32 i; 8183 8184 pf->tx_timeout_count++; 8185 8186 /* Check if PFC is enabled for the TC to which the queue belongs 8187 * to. If yes then Tx timeout is not caused by a hung queue, no 8188 * need to reset and rebuild 8189 */ 8190 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8191 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8192 txqueue); 8193 return; 8194 } 8195 8196 /* now that we have an index, find the tx_ring struct */ 8197 ice_for_each_txq(vsi, i) 8198 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8199 if (txqueue == vsi->tx_rings[i]->q_index) { 8200 tx_ring = vsi->tx_rings[i]; 8201 break; 8202 } 8203 8204 /* Reset recovery level if enough time has elapsed after last timeout. 8205 * Also ensure no new reset action happens before next timeout period. 8206 */ 8207 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8208 pf->tx_timeout_recovery_level = 1; 8209 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8210 netdev->watchdog_timeo))) 8211 return; 8212 8213 if (tx_ring) { 8214 struct ice_hw *hw = &pf->hw; 8215 u32 head, val = 0; 8216 8217 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8218 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8219 /* Read interrupt register */ 8220 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8221 8222 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8223 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8224 head, tx_ring->next_to_use, val); 8225 } 8226 8227 pf->tx_timeout_last_recovery = jiffies; 8228 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8229 pf->tx_timeout_recovery_level, txqueue); 8230 8231 switch (pf->tx_timeout_recovery_level) { 8232 case 1: 8233 set_bit(ICE_PFR_REQ, pf->state); 8234 break; 8235 case 2: 8236 set_bit(ICE_CORER_REQ, pf->state); 8237 break; 8238 case 3: 8239 set_bit(ICE_GLOBR_REQ, pf->state); 8240 break; 8241 default: 8242 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8243 set_bit(ICE_DOWN, pf->state); 8244 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8245 set_bit(ICE_SERVICE_DIS, pf->state); 8246 break; 8247 } 8248 8249 ice_service_task_schedule(pf); 8250 pf->tx_timeout_recovery_level++; 8251 } 8252 8253 /** 8254 * ice_setup_tc_cls_flower - flower classifier offloads 8255 * @np: net device to configure 8256 * @filter_dev: device on which filter is added 8257 * @cls_flower: offload data 8258 */ 8259 static int 8260 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8261 struct net_device *filter_dev, 8262 struct flow_cls_offload *cls_flower) 8263 { 8264 struct ice_vsi *vsi = np->vsi; 8265 8266 if (cls_flower->common.chain_index) 8267 return -EOPNOTSUPP; 8268 8269 switch (cls_flower->command) { 8270 case FLOW_CLS_REPLACE: 8271 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8272 case FLOW_CLS_DESTROY: 8273 return ice_del_cls_flower(vsi, cls_flower); 8274 default: 8275 return -EINVAL; 8276 } 8277 } 8278 8279 /** 8280 * ice_setup_tc_block_cb - callback handler registered for TC block 8281 * @type: TC SETUP type 8282 * @type_data: TC flower offload data that contains user input 8283 * @cb_priv: netdev private data 8284 */ 8285 static int 8286 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8287 { 8288 struct ice_netdev_priv *np = cb_priv; 8289 8290 switch (type) { 8291 case TC_SETUP_CLSFLOWER: 8292 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8293 type_data); 8294 default: 8295 return -EOPNOTSUPP; 8296 } 8297 } 8298 8299 /** 8300 * ice_validate_mqprio_qopt - Validate TCF input parameters 8301 * @vsi: Pointer to VSI 8302 * @mqprio_qopt: input parameters for mqprio queue configuration 8303 * 8304 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8305 * needed), and make sure user doesn't specify qcount and BW rate limit 8306 * for TCs, which are more than "num_tc" 8307 */ 8308 static int 8309 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8310 struct tc_mqprio_qopt_offload *mqprio_qopt) 8311 { 8312 int non_power_of_2_qcount = 0; 8313 struct ice_pf *pf = vsi->back; 8314 int max_rss_q_cnt = 0; 8315 u64 sum_min_rate = 0; 8316 struct device *dev; 8317 int i, speed; 8318 u8 num_tc; 8319 8320 if (vsi->type != ICE_VSI_PF) 8321 return -EINVAL; 8322 8323 if (mqprio_qopt->qopt.offset[0] != 0 || 8324 mqprio_qopt->qopt.num_tc < 1 || 8325 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8326 return -EINVAL; 8327 8328 dev = ice_pf_to_dev(pf); 8329 vsi->ch_rss_size = 0; 8330 num_tc = mqprio_qopt->qopt.num_tc; 8331 speed = ice_get_link_speed_kbps(vsi); 8332 8333 for (i = 0; num_tc; i++) { 8334 int qcount = mqprio_qopt->qopt.count[i]; 8335 u64 max_rate, min_rate, rem; 8336 8337 if (!qcount) 8338 return -EINVAL; 8339 8340 if (is_power_of_2(qcount)) { 8341 if (non_power_of_2_qcount && 8342 qcount > non_power_of_2_qcount) { 8343 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8344 qcount, non_power_of_2_qcount); 8345 return -EINVAL; 8346 } 8347 if (qcount > max_rss_q_cnt) 8348 max_rss_q_cnt = qcount; 8349 } else { 8350 if (non_power_of_2_qcount && 8351 qcount != non_power_of_2_qcount) { 8352 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8353 qcount, non_power_of_2_qcount); 8354 return -EINVAL; 8355 } 8356 if (qcount < max_rss_q_cnt) { 8357 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8358 qcount, max_rss_q_cnt); 8359 return -EINVAL; 8360 } 8361 max_rss_q_cnt = qcount; 8362 non_power_of_2_qcount = qcount; 8363 } 8364 8365 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8366 * converts the bandwidth rate limit into Bytes/s when 8367 * passing it down to the driver. So convert input bandwidth 8368 * from Bytes/s to Kbps 8369 */ 8370 max_rate = mqprio_qopt->max_rate[i]; 8371 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8372 8373 /* min_rate is minimum guaranteed rate and it can't be zero */ 8374 min_rate = mqprio_qopt->min_rate[i]; 8375 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8376 sum_min_rate += min_rate; 8377 8378 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8379 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8380 min_rate, ICE_MIN_BW_LIMIT); 8381 return -EINVAL; 8382 } 8383 8384 if (max_rate && max_rate > speed) { 8385 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8386 i, max_rate, speed); 8387 return -EINVAL; 8388 } 8389 8390 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8391 if (rem) { 8392 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8393 i, ICE_MIN_BW_LIMIT); 8394 return -EINVAL; 8395 } 8396 8397 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8398 if (rem) { 8399 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8400 i, ICE_MIN_BW_LIMIT); 8401 return -EINVAL; 8402 } 8403 8404 /* min_rate can't be more than max_rate, except when max_rate 8405 * is zero (implies max_rate sought is max line rate). In such 8406 * a case min_rate can be more than max. 8407 */ 8408 if (max_rate && min_rate > max_rate) { 8409 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8410 min_rate, max_rate); 8411 return -EINVAL; 8412 } 8413 8414 if (i >= mqprio_qopt->qopt.num_tc - 1) 8415 break; 8416 if (mqprio_qopt->qopt.offset[i + 1] != 8417 (mqprio_qopt->qopt.offset[i] + qcount)) 8418 return -EINVAL; 8419 } 8420 if (vsi->num_rxq < 8421 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8422 return -EINVAL; 8423 if (vsi->num_txq < 8424 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8425 return -EINVAL; 8426 8427 if (sum_min_rate && sum_min_rate > (u64)speed) { 8428 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8429 sum_min_rate, speed); 8430 return -EINVAL; 8431 } 8432 8433 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8434 vsi->ch_rss_size = max_rss_q_cnt; 8435 8436 return 0; 8437 } 8438 8439 /** 8440 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8441 * @pf: ptr to PF device 8442 * @vsi: ptr to VSI 8443 */ 8444 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8445 { 8446 struct device *dev = ice_pf_to_dev(pf); 8447 bool added = false; 8448 struct ice_hw *hw; 8449 int flow; 8450 8451 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8452 return -EINVAL; 8453 8454 hw = &pf->hw; 8455 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8456 struct ice_fd_hw_prof *prof; 8457 int tun, status; 8458 u64 entry_h; 8459 8460 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8461 hw->fdir_prof[flow]->cnt)) 8462 continue; 8463 8464 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8465 enum ice_flow_priority prio; 8466 8467 /* add this VSI to FDir profile for this flow */ 8468 prio = ICE_FLOW_PRIO_NORMAL; 8469 prof = hw->fdir_prof[flow]; 8470 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8471 prof->prof_id[tun], 8472 prof->vsi_h[0], vsi->idx, 8473 prio, prof->fdir_seg[tun], 8474 &entry_h); 8475 if (status) { 8476 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8477 vsi->idx, flow); 8478 continue; 8479 } 8480 8481 prof->entry_h[prof->cnt][tun] = entry_h; 8482 } 8483 8484 /* store VSI for filter replay and delete */ 8485 prof->vsi_h[prof->cnt] = vsi->idx; 8486 prof->cnt++; 8487 8488 added = true; 8489 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8490 flow); 8491 } 8492 8493 if (!added) 8494 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8495 8496 return 0; 8497 } 8498 8499 /** 8500 * ice_add_channel - add a channel by adding VSI 8501 * @pf: ptr to PF device 8502 * @sw_id: underlying HW switching element ID 8503 * @ch: ptr to channel structure 8504 * 8505 * Add a channel (VSI) using add_vsi and queue_map 8506 */ 8507 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8508 { 8509 struct device *dev = ice_pf_to_dev(pf); 8510 struct ice_vsi *vsi; 8511 8512 if (ch->type != ICE_VSI_CHNL) { 8513 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8514 return -EINVAL; 8515 } 8516 8517 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8518 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8519 dev_err(dev, "create chnl VSI failure\n"); 8520 return -EINVAL; 8521 } 8522 8523 ice_add_vsi_to_fdir(pf, vsi); 8524 8525 ch->sw_id = sw_id; 8526 ch->vsi_num = vsi->vsi_num; 8527 ch->info.mapping_flags = vsi->info.mapping_flags; 8528 ch->ch_vsi = vsi; 8529 /* set the back pointer of channel for newly created VSI */ 8530 vsi->ch = ch; 8531 8532 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8533 sizeof(vsi->info.q_mapping)); 8534 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8535 sizeof(vsi->info.tc_mapping)); 8536 8537 return 0; 8538 } 8539 8540 /** 8541 * ice_chnl_cfg_res 8542 * @vsi: the VSI being setup 8543 * @ch: ptr to channel structure 8544 * 8545 * Configure channel specific resources such as rings, vector. 8546 */ 8547 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8548 { 8549 int i; 8550 8551 for (i = 0; i < ch->num_txq; i++) { 8552 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8553 struct ice_ring_container *rc; 8554 struct ice_tx_ring *tx_ring; 8555 struct ice_rx_ring *rx_ring; 8556 8557 tx_ring = vsi->tx_rings[ch->base_q + i]; 8558 rx_ring = vsi->rx_rings[ch->base_q + i]; 8559 if (!tx_ring || !rx_ring) 8560 continue; 8561 8562 /* setup ring being channel enabled */ 8563 tx_ring->ch = ch; 8564 rx_ring->ch = ch; 8565 8566 /* following code block sets up vector specific attributes */ 8567 tx_q_vector = tx_ring->q_vector; 8568 rx_q_vector = rx_ring->q_vector; 8569 if (!tx_q_vector && !rx_q_vector) 8570 continue; 8571 8572 if (tx_q_vector) { 8573 tx_q_vector->ch = ch; 8574 /* setup Tx and Rx ITR setting if DIM is off */ 8575 rc = &tx_q_vector->tx; 8576 if (!ITR_IS_DYNAMIC(rc)) 8577 ice_write_itr(rc, rc->itr_setting); 8578 } 8579 if (rx_q_vector) { 8580 rx_q_vector->ch = ch; 8581 /* setup Tx and Rx ITR setting if DIM is off */ 8582 rc = &rx_q_vector->rx; 8583 if (!ITR_IS_DYNAMIC(rc)) 8584 ice_write_itr(rc, rc->itr_setting); 8585 } 8586 } 8587 8588 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8589 * GLINT_ITR register would have written to perform in-context 8590 * update, hence perform flush 8591 */ 8592 if (ch->num_txq || ch->num_rxq) 8593 ice_flush(&vsi->back->hw); 8594 } 8595 8596 /** 8597 * ice_cfg_chnl_all_res - configure channel resources 8598 * @vsi: pte to main_vsi 8599 * @ch: ptr to channel structure 8600 * 8601 * This function configures channel specific resources such as flow-director 8602 * counter index, and other resources such as queues, vectors, ITR settings 8603 */ 8604 static void 8605 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8606 { 8607 /* configure channel (aka ADQ) resources such as queues, vectors, 8608 * ITR settings for channel specific vectors and anything else 8609 */ 8610 ice_chnl_cfg_res(vsi, ch); 8611 } 8612 8613 /** 8614 * ice_setup_hw_channel - setup new channel 8615 * @pf: ptr to PF device 8616 * @vsi: the VSI being setup 8617 * @ch: ptr to channel structure 8618 * @sw_id: underlying HW switching element ID 8619 * @type: type of channel to be created (VMDq2/VF) 8620 * 8621 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8622 * and configures Tx rings accordingly 8623 */ 8624 static int 8625 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8626 struct ice_channel *ch, u16 sw_id, u8 type) 8627 { 8628 struct device *dev = ice_pf_to_dev(pf); 8629 int ret; 8630 8631 ch->base_q = vsi->next_base_q; 8632 ch->type = type; 8633 8634 ret = ice_add_channel(pf, sw_id, ch); 8635 if (ret) { 8636 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8637 return ret; 8638 } 8639 8640 /* configure/setup ADQ specific resources */ 8641 ice_cfg_chnl_all_res(vsi, ch); 8642 8643 /* make sure to update the next_base_q so that subsequent channel's 8644 * (aka ADQ) VSI queue map is correct 8645 */ 8646 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8647 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8648 ch->num_rxq); 8649 8650 return 0; 8651 } 8652 8653 /** 8654 * ice_setup_channel - setup new channel using uplink element 8655 * @pf: ptr to PF device 8656 * @vsi: the VSI being setup 8657 * @ch: ptr to channel structure 8658 * 8659 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8660 * and uplink switching element 8661 */ 8662 static bool 8663 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8664 struct ice_channel *ch) 8665 { 8666 struct device *dev = ice_pf_to_dev(pf); 8667 u16 sw_id; 8668 int ret; 8669 8670 if (vsi->type != ICE_VSI_PF) { 8671 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8672 return false; 8673 } 8674 8675 sw_id = pf->first_sw->sw_id; 8676 8677 /* create channel (VSI) */ 8678 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8679 if (ret) { 8680 dev_err(dev, "failed to setup hw_channel\n"); 8681 return false; 8682 } 8683 dev_dbg(dev, "successfully created channel()\n"); 8684 8685 return ch->ch_vsi ? true : false; 8686 } 8687 8688 /** 8689 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8690 * @vsi: VSI to be configured 8691 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8692 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8693 */ 8694 static int 8695 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8696 { 8697 int err; 8698 8699 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8700 if (err) 8701 return err; 8702 8703 return ice_set_max_bw_limit(vsi, max_tx_rate); 8704 } 8705 8706 /** 8707 * ice_create_q_channel - function to create channel 8708 * @vsi: VSI to be configured 8709 * @ch: ptr to channel (it contains channel specific params) 8710 * 8711 * This function creates channel (VSI) using num_queues specified by user, 8712 * reconfigs RSS if needed. 8713 */ 8714 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8715 { 8716 struct ice_pf *pf = vsi->back; 8717 struct device *dev; 8718 8719 if (!ch) 8720 return -EINVAL; 8721 8722 dev = ice_pf_to_dev(pf); 8723 if (!ch->num_txq || !ch->num_rxq) { 8724 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8725 return -EINVAL; 8726 } 8727 8728 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8729 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8730 vsi->cnt_q_avail, ch->num_txq); 8731 return -EINVAL; 8732 } 8733 8734 if (!ice_setup_channel(pf, vsi, ch)) { 8735 dev_info(dev, "Failed to setup channel\n"); 8736 return -EINVAL; 8737 } 8738 /* configure BW rate limit */ 8739 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8740 int ret; 8741 8742 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8743 ch->min_tx_rate); 8744 if (ret) 8745 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8746 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8747 else 8748 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8749 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8750 } 8751 8752 vsi->cnt_q_avail -= ch->num_txq; 8753 8754 return 0; 8755 } 8756 8757 /** 8758 * ice_rem_all_chnl_fltrs - removes all channel filters 8759 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8760 * 8761 * Remove all advanced switch filters only if they are channel specific 8762 * tc-flower based filter 8763 */ 8764 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8765 { 8766 struct ice_tc_flower_fltr *fltr; 8767 struct hlist_node *node; 8768 8769 /* to remove all channel filters, iterate an ordered list of filters */ 8770 hlist_for_each_entry_safe(fltr, node, 8771 &pf->tc_flower_fltr_list, 8772 tc_flower_node) { 8773 struct ice_rule_query_data rule; 8774 int status; 8775 8776 /* for now process only channel specific filters */ 8777 if (!ice_is_chnl_fltr(fltr)) 8778 continue; 8779 8780 rule.rid = fltr->rid; 8781 rule.rule_id = fltr->rule_id; 8782 rule.vsi_handle = fltr->dest_vsi_handle; 8783 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8784 if (status) { 8785 if (status == -ENOENT) 8786 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8787 rule.rule_id); 8788 else 8789 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8790 status); 8791 } else if (fltr->dest_vsi) { 8792 /* update advanced switch filter count */ 8793 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8794 u32 flags = fltr->flags; 8795 8796 fltr->dest_vsi->num_chnl_fltr--; 8797 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8798 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8799 pf->num_dmac_chnl_fltrs--; 8800 } 8801 } 8802 8803 hlist_del(&fltr->tc_flower_node); 8804 kfree(fltr); 8805 } 8806 } 8807 8808 /** 8809 * ice_remove_q_channels - Remove queue channels for the TCs 8810 * @vsi: VSI to be configured 8811 * @rem_fltr: delete advanced switch filter or not 8812 * 8813 * Remove queue channels for the TCs 8814 */ 8815 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8816 { 8817 struct ice_channel *ch, *ch_tmp; 8818 struct ice_pf *pf = vsi->back; 8819 int i; 8820 8821 /* remove all tc-flower based filter if they are channel filters only */ 8822 if (rem_fltr) 8823 ice_rem_all_chnl_fltrs(pf); 8824 8825 /* remove ntuple filters since queue configuration is being changed */ 8826 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8827 struct ice_hw *hw = &pf->hw; 8828 8829 mutex_lock(&hw->fdir_fltr_lock); 8830 ice_fdir_del_all_fltrs(vsi); 8831 mutex_unlock(&hw->fdir_fltr_lock); 8832 } 8833 8834 /* perform cleanup for channels if they exist */ 8835 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8836 struct ice_vsi *ch_vsi; 8837 8838 list_del(&ch->list); 8839 ch_vsi = ch->ch_vsi; 8840 if (!ch_vsi) { 8841 kfree(ch); 8842 continue; 8843 } 8844 8845 /* Reset queue contexts */ 8846 for (i = 0; i < ch->num_rxq; i++) { 8847 struct ice_tx_ring *tx_ring; 8848 struct ice_rx_ring *rx_ring; 8849 8850 tx_ring = vsi->tx_rings[ch->base_q + i]; 8851 rx_ring = vsi->rx_rings[ch->base_q + i]; 8852 if (tx_ring) { 8853 tx_ring->ch = NULL; 8854 if (tx_ring->q_vector) 8855 tx_ring->q_vector->ch = NULL; 8856 } 8857 if (rx_ring) { 8858 rx_ring->ch = NULL; 8859 if (rx_ring->q_vector) 8860 rx_ring->q_vector->ch = NULL; 8861 } 8862 } 8863 8864 /* Release FD resources for the channel VSI */ 8865 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8866 8867 /* clear the VSI from scheduler tree */ 8868 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8869 8870 /* Delete VSI from FW, PF and HW VSI arrays */ 8871 ice_vsi_delete(ch->ch_vsi); 8872 8873 /* free the channel */ 8874 kfree(ch); 8875 } 8876 8877 /* clear the channel VSI map which is stored in main VSI */ 8878 ice_for_each_chnl_tc(i) 8879 vsi->tc_map_vsi[i] = NULL; 8880 8881 /* reset main VSI's all TC information */ 8882 vsi->all_enatc = 0; 8883 vsi->all_numtc = 0; 8884 } 8885 8886 /** 8887 * ice_rebuild_channels - rebuild channel 8888 * @pf: ptr to PF 8889 * 8890 * Recreate channel VSIs and replay filters 8891 */ 8892 static int ice_rebuild_channels(struct ice_pf *pf) 8893 { 8894 struct device *dev = ice_pf_to_dev(pf); 8895 struct ice_vsi *main_vsi; 8896 bool rem_adv_fltr = true; 8897 struct ice_channel *ch; 8898 struct ice_vsi *vsi; 8899 int tc_idx = 1; 8900 int i, err; 8901 8902 main_vsi = ice_get_main_vsi(pf); 8903 if (!main_vsi) 8904 return 0; 8905 8906 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8907 main_vsi->old_numtc == 1) 8908 return 0; /* nothing to be done */ 8909 8910 /* reconfigure main VSI based on old value of TC and cached values 8911 * for MQPRIO opts 8912 */ 8913 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8914 if (err) { 8915 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8916 main_vsi->old_ena_tc, main_vsi->vsi_num); 8917 return err; 8918 } 8919 8920 /* rebuild ADQ VSIs */ 8921 ice_for_each_vsi(pf, i) { 8922 enum ice_vsi_type type; 8923 8924 vsi = pf->vsi[i]; 8925 if (!vsi || vsi->type != ICE_VSI_CHNL) 8926 continue; 8927 8928 type = vsi->type; 8929 8930 /* rebuild ADQ VSI */ 8931 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8932 if (err) { 8933 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8934 ice_vsi_type_str(type), vsi->idx, err); 8935 goto cleanup; 8936 } 8937 8938 /* Re-map HW VSI number, using VSI handle that has been 8939 * previously validated in ice_replay_vsi() call above 8940 */ 8941 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8942 8943 /* replay filters for the VSI */ 8944 err = ice_replay_vsi(&pf->hw, vsi->idx); 8945 if (err) { 8946 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8947 ice_vsi_type_str(type), err, vsi->idx); 8948 rem_adv_fltr = false; 8949 goto cleanup; 8950 } 8951 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8952 ice_vsi_type_str(type), vsi->idx); 8953 8954 /* store ADQ VSI at correct TC index in main VSI's 8955 * map of TC to VSI 8956 */ 8957 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8958 } 8959 8960 /* ADQ VSI(s) has been rebuilt successfully, so setup 8961 * channel for main VSI's Tx and Rx rings 8962 */ 8963 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8964 struct ice_vsi *ch_vsi; 8965 8966 ch_vsi = ch->ch_vsi; 8967 if (!ch_vsi) 8968 continue; 8969 8970 /* reconfig channel resources */ 8971 ice_cfg_chnl_all_res(main_vsi, ch); 8972 8973 /* replay BW rate limit if it is non-zero */ 8974 if (!ch->max_tx_rate && !ch->min_tx_rate) 8975 continue; 8976 8977 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8978 ch->min_tx_rate); 8979 if (err) 8980 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8981 err, ch->max_tx_rate, ch->min_tx_rate, 8982 ch_vsi->vsi_num); 8983 else 8984 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8985 ch->max_tx_rate, ch->min_tx_rate, 8986 ch_vsi->vsi_num); 8987 } 8988 8989 /* reconfig RSS for main VSI */ 8990 if (main_vsi->ch_rss_size) 8991 ice_vsi_cfg_rss_lut_key(main_vsi); 8992 8993 return 0; 8994 8995 cleanup: 8996 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8997 return err; 8998 } 8999 9000 /** 9001 * ice_create_q_channels - Add queue channel for the given TCs 9002 * @vsi: VSI to be configured 9003 * 9004 * Configures queue channel mapping to the given TCs 9005 */ 9006 static int ice_create_q_channels(struct ice_vsi *vsi) 9007 { 9008 struct ice_pf *pf = vsi->back; 9009 struct ice_channel *ch; 9010 int ret = 0, i; 9011 9012 ice_for_each_chnl_tc(i) { 9013 if (!(vsi->all_enatc & BIT(i))) 9014 continue; 9015 9016 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9017 if (!ch) { 9018 ret = -ENOMEM; 9019 goto err_free; 9020 } 9021 INIT_LIST_HEAD(&ch->list); 9022 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9023 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9024 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9025 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9026 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9027 9028 /* convert to Kbits/s */ 9029 if (ch->max_tx_rate) 9030 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9031 ICE_BW_KBPS_DIVISOR); 9032 if (ch->min_tx_rate) 9033 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9034 ICE_BW_KBPS_DIVISOR); 9035 9036 ret = ice_create_q_channel(vsi, ch); 9037 if (ret) { 9038 dev_err(ice_pf_to_dev(pf), 9039 "failed creating channel TC:%d\n", i); 9040 kfree(ch); 9041 goto err_free; 9042 } 9043 list_add_tail(&ch->list, &vsi->ch_list); 9044 vsi->tc_map_vsi[i] = ch->ch_vsi; 9045 dev_dbg(ice_pf_to_dev(pf), 9046 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9047 } 9048 return 0; 9049 9050 err_free: 9051 ice_remove_q_channels(vsi, false); 9052 9053 return ret; 9054 } 9055 9056 /** 9057 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9058 * @netdev: net device to configure 9059 * @type_data: TC offload data 9060 */ 9061 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9062 { 9063 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9064 struct ice_netdev_priv *np = netdev_priv(netdev); 9065 struct ice_vsi *vsi = np->vsi; 9066 struct ice_pf *pf = vsi->back; 9067 u16 mode, ena_tc_qdisc = 0; 9068 int cur_txq, cur_rxq; 9069 u8 hw = 0, num_tcf; 9070 struct device *dev; 9071 int ret, i; 9072 9073 dev = ice_pf_to_dev(pf); 9074 num_tcf = mqprio_qopt->qopt.num_tc; 9075 hw = mqprio_qopt->qopt.hw; 9076 mode = mqprio_qopt->mode; 9077 if (!hw) { 9078 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9079 vsi->ch_rss_size = 0; 9080 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9081 goto config_tcf; 9082 } 9083 9084 /* Generate queue region map for number of TCF requested */ 9085 for (i = 0; i < num_tcf; i++) 9086 ena_tc_qdisc |= BIT(i); 9087 9088 switch (mode) { 9089 case TC_MQPRIO_MODE_CHANNEL: 9090 9091 if (pf->hw.port_info->is_custom_tx_enabled) { 9092 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9093 return -EBUSY; 9094 } 9095 ice_tear_down_devlink_rate_tree(pf); 9096 9097 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9098 if (ret) { 9099 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9100 ret); 9101 return ret; 9102 } 9103 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9104 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9105 /* don't assume state of hw_tc_offload during driver load 9106 * and set the flag for TC flower filter if hw_tc_offload 9107 * already ON 9108 */ 9109 if (vsi->netdev->features & NETIF_F_HW_TC) 9110 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9111 break; 9112 default: 9113 return -EINVAL; 9114 } 9115 9116 config_tcf: 9117 9118 /* Requesting same TCF configuration as already enabled */ 9119 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9120 mode != TC_MQPRIO_MODE_CHANNEL) 9121 return 0; 9122 9123 /* Pause VSI queues */ 9124 ice_dis_vsi(vsi, true); 9125 9126 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9127 ice_remove_q_channels(vsi, true); 9128 9129 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9130 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9131 num_online_cpus()); 9132 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9133 num_online_cpus()); 9134 } else { 9135 /* logic to rebuild VSI, same like ethtool -L */ 9136 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9137 9138 for (i = 0; i < num_tcf; i++) { 9139 if (!(ena_tc_qdisc & BIT(i))) 9140 continue; 9141 9142 offset = vsi->mqprio_qopt.qopt.offset[i]; 9143 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9144 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9145 } 9146 vsi->req_txq = offset + qcount_tx; 9147 vsi->req_rxq = offset + qcount_rx; 9148 9149 /* store away original rss_size info, so that it gets reused 9150 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9151 * determine, what should be the rss_sizefor main VSI 9152 */ 9153 vsi->orig_rss_size = vsi->rss_size; 9154 } 9155 9156 /* save current values of Tx and Rx queues before calling VSI rebuild 9157 * for fallback option 9158 */ 9159 cur_txq = vsi->num_txq; 9160 cur_rxq = vsi->num_rxq; 9161 9162 /* proceed with rebuild main VSI using correct number of queues */ 9163 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9164 if (ret) { 9165 /* fallback to current number of queues */ 9166 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9167 vsi->req_txq = cur_txq; 9168 vsi->req_rxq = cur_rxq; 9169 clear_bit(ICE_RESET_FAILED, pf->state); 9170 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9171 dev_err(dev, "Rebuild of main VSI failed again\n"); 9172 return ret; 9173 } 9174 } 9175 9176 vsi->all_numtc = num_tcf; 9177 vsi->all_enatc = ena_tc_qdisc; 9178 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9179 if (ret) { 9180 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9181 vsi->vsi_num); 9182 goto exit; 9183 } 9184 9185 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9186 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9187 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9188 9189 /* set TC0 rate limit if specified */ 9190 if (max_tx_rate || min_tx_rate) { 9191 /* convert to Kbits/s */ 9192 if (max_tx_rate) 9193 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9194 if (min_tx_rate) 9195 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9196 9197 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9198 if (!ret) { 9199 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9200 max_tx_rate, min_tx_rate, vsi->vsi_num); 9201 } else { 9202 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9203 max_tx_rate, min_tx_rate, vsi->vsi_num); 9204 goto exit; 9205 } 9206 } 9207 ret = ice_create_q_channels(vsi); 9208 if (ret) { 9209 netdev_err(netdev, "failed configuring queue channels\n"); 9210 goto exit; 9211 } else { 9212 netdev_dbg(netdev, "successfully configured channels\n"); 9213 } 9214 } 9215 9216 if (vsi->ch_rss_size) 9217 ice_vsi_cfg_rss_lut_key(vsi); 9218 9219 exit: 9220 /* if error, reset the all_numtc and all_enatc */ 9221 if (ret) { 9222 vsi->all_numtc = 0; 9223 vsi->all_enatc = 0; 9224 } 9225 /* resume VSI */ 9226 ice_ena_vsi(vsi, true); 9227 9228 return ret; 9229 } 9230 9231 static LIST_HEAD(ice_block_cb_list); 9232 9233 static int 9234 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9235 void *type_data) 9236 { 9237 struct ice_netdev_priv *np = netdev_priv(netdev); 9238 struct ice_pf *pf = np->vsi->back; 9239 bool locked = false; 9240 int err; 9241 9242 switch (type) { 9243 case TC_SETUP_BLOCK: 9244 return flow_block_cb_setup_simple(type_data, 9245 &ice_block_cb_list, 9246 ice_setup_tc_block_cb, 9247 np, np, true); 9248 case TC_SETUP_QDISC_MQPRIO: 9249 if (ice_is_eswitch_mode_switchdev(pf)) { 9250 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9251 return -EOPNOTSUPP; 9252 } 9253 9254 if (pf->adev) { 9255 mutex_lock(&pf->adev_mutex); 9256 device_lock(&pf->adev->dev); 9257 locked = true; 9258 if (pf->adev->dev.driver) { 9259 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9260 err = -EBUSY; 9261 goto adev_unlock; 9262 } 9263 } 9264 9265 /* setup traffic classifier for receive side */ 9266 mutex_lock(&pf->tc_mutex); 9267 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9268 mutex_unlock(&pf->tc_mutex); 9269 9270 adev_unlock: 9271 if (locked) { 9272 device_unlock(&pf->adev->dev); 9273 mutex_unlock(&pf->adev_mutex); 9274 } 9275 return err; 9276 default: 9277 return -EOPNOTSUPP; 9278 } 9279 return -EOPNOTSUPP; 9280 } 9281 9282 static struct ice_indr_block_priv * 9283 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9284 struct net_device *netdev) 9285 { 9286 struct ice_indr_block_priv *cb_priv; 9287 9288 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9289 if (!cb_priv->netdev) 9290 return NULL; 9291 if (cb_priv->netdev == netdev) 9292 return cb_priv; 9293 } 9294 return NULL; 9295 } 9296 9297 static int 9298 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9299 void *indr_priv) 9300 { 9301 struct ice_indr_block_priv *priv = indr_priv; 9302 struct ice_netdev_priv *np = priv->np; 9303 9304 switch (type) { 9305 case TC_SETUP_CLSFLOWER: 9306 return ice_setup_tc_cls_flower(np, priv->netdev, 9307 (struct flow_cls_offload *) 9308 type_data); 9309 default: 9310 return -EOPNOTSUPP; 9311 } 9312 } 9313 9314 static int 9315 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9316 struct ice_netdev_priv *np, 9317 struct flow_block_offload *f, void *data, 9318 void (*cleanup)(struct flow_block_cb *block_cb)) 9319 { 9320 struct ice_indr_block_priv *indr_priv; 9321 struct flow_block_cb *block_cb; 9322 9323 if (!ice_is_tunnel_supported(netdev) && 9324 !(is_vlan_dev(netdev) && 9325 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9326 return -EOPNOTSUPP; 9327 9328 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9329 return -EOPNOTSUPP; 9330 9331 switch (f->command) { 9332 case FLOW_BLOCK_BIND: 9333 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9334 if (indr_priv) 9335 return -EEXIST; 9336 9337 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9338 if (!indr_priv) 9339 return -ENOMEM; 9340 9341 indr_priv->netdev = netdev; 9342 indr_priv->np = np; 9343 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9344 9345 block_cb = 9346 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9347 indr_priv, indr_priv, 9348 ice_rep_indr_tc_block_unbind, 9349 f, netdev, sch, data, np, 9350 cleanup); 9351 9352 if (IS_ERR(block_cb)) { 9353 list_del(&indr_priv->list); 9354 kfree(indr_priv); 9355 return PTR_ERR(block_cb); 9356 } 9357 flow_block_cb_add(block_cb, f); 9358 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9359 break; 9360 case FLOW_BLOCK_UNBIND: 9361 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9362 if (!indr_priv) 9363 return -ENOENT; 9364 9365 block_cb = flow_block_cb_lookup(f->block, 9366 ice_indr_setup_block_cb, 9367 indr_priv); 9368 if (!block_cb) 9369 return -ENOENT; 9370 9371 flow_indr_block_cb_remove(block_cb, f); 9372 9373 list_del(&block_cb->driver_list); 9374 break; 9375 default: 9376 return -EOPNOTSUPP; 9377 } 9378 return 0; 9379 } 9380 9381 static int 9382 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9383 void *cb_priv, enum tc_setup_type type, void *type_data, 9384 void *data, 9385 void (*cleanup)(struct flow_block_cb *block_cb)) 9386 { 9387 switch (type) { 9388 case TC_SETUP_BLOCK: 9389 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9390 data, cleanup); 9391 9392 default: 9393 return -EOPNOTSUPP; 9394 } 9395 } 9396 9397 /** 9398 * ice_open - Called when a network interface becomes active 9399 * @netdev: network interface device structure 9400 * 9401 * The open entry point is called when a network interface is made 9402 * active by the system (IFF_UP). At this point all resources needed 9403 * for transmit and receive operations are allocated, the interrupt 9404 * handler is registered with the OS, the netdev watchdog is enabled, 9405 * and the stack is notified that the interface is ready. 9406 * 9407 * Returns 0 on success, negative value on failure 9408 */ 9409 int ice_open(struct net_device *netdev) 9410 { 9411 struct ice_netdev_priv *np = netdev_priv(netdev); 9412 struct ice_pf *pf = np->vsi->back; 9413 9414 if (ice_is_reset_in_progress(pf->state)) { 9415 netdev_err(netdev, "can't open net device while reset is in progress"); 9416 return -EBUSY; 9417 } 9418 9419 return ice_open_internal(netdev); 9420 } 9421 9422 /** 9423 * ice_open_internal - Called when a network interface becomes active 9424 * @netdev: network interface device structure 9425 * 9426 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9427 * handling routine 9428 * 9429 * Returns 0 on success, negative value on failure 9430 */ 9431 int ice_open_internal(struct net_device *netdev) 9432 { 9433 struct ice_netdev_priv *np = netdev_priv(netdev); 9434 struct ice_vsi *vsi = np->vsi; 9435 struct ice_pf *pf = vsi->back; 9436 struct ice_port_info *pi; 9437 int err; 9438 9439 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9440 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9441 return -EIO; 9442 } 9443 9444 netif_carrier_off(netdev); 9445 9446 pi = vsi->port_info; 9447 err = ice_update_link_info(pi); 9448 if (err) { 9449 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9450 return err; 9451 } 9452 9453 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9454 9455 /* Set PHY if there is media, otherwise, turn off PHY */ 9456 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9457 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9458 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9459 err = ice_init_phy_user_cfg(pi); 9460 if (err) { 9461 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9462 err); 9463 return err; 9464 } 9465 } 9466 9467 err = ice_configure_phy(vsi); 9468 if (err) { 9469 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9470 err); 9471 return err; 9472 } 9473 } else { 9474 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9475 ice_set_link(vsi, false); 9476 } 9477 9478 err = ice_vsi_open(vsi); 9479 if (err) 9480 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9481 vsi->vsi_num, vsi->vsw->sw_id); 9482 9483 /* Update existing tunnels information */ 9484 udp_tunnel_get_rx_info(netdev); 9485 9486 return err; 9487 } 9488 9489 /** 9490 * ice_stop - Disables a network interface 9491 * @netdev: network interface device structure 9492 * 9493 * The stop entry point is called when an interface is de-activated by the OS, 9494 * and the netdevice enters the DOWN state. The hardware is still under the 9495 * driver's control, but the netdev interface is disabled. 9496 * 9497 * Returns success only - not allowed to fail 9498 */ 9499 int ice_stop(struct net_device *netdev) 9500 { 9501 struct ice_netdev_priv *np = netdev_priv(netdev); 9502 struct ice_vsi *vsi = np->vsi; 9503 struct ice_pf *pf = vsi->back; 9504 9505 if (ice_is_reset_in_progress(pf->state)) { 9506 netdev_err(netdev, "can't stop net device while reset is in progress"); 9507 return -EBUSY; 9508 } 9509 9510 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9511 int link_err = ice_force_phys_link_state(vsi, false); 9512 9513 if (link_err) { 9514 if (link_err == -ENOMEDIUM) 9515 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9516 vsi->vsi_num); 9517 else 9518 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9519 vsi->vsi_num, link_err); 9520 9521 ice_vsi_close(vsi); 9522 return -EIO; 9523 } 9524 } 9525 9526 ice_vsi_close(vsi); 9527 9528 return 0; 9529 } 9530 9531 /** 9532 * ice_features_check - Validate encapsulated packet conforms to limits 9533 * @skb: skb buffer 9534 * @netdev: This port's netdev 9535 * @features: Offload features that the stack believes apply 9536 */ 9537 static netdev_features_t 9538 ice_features_check(struct sk_buff *skb, 9539 struct net_device __always_unused *netdev, 9540 netdev_features_t features) 9541 { 9542 bool gso = skb_is_gso(skb); 9543 size_t len; 9544 9545 /* No point in doing any of this if neither checksum nor GSO are 9546 * being requested for this frame. We can rule out both by just 9547 * checking for CHECKSUM_PARTIAL 9548 */ 9549 if (skb->ip_summed != CHECKSUM_PARTIAL) 9550 return features; 9551 9552 /* We cannot support GSO if the MSS is going to be less than 9553 * 64 bytes. If it is then we need to drop support for GSO. 9554 */ 9555 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9556 features &= ~NETIF_F_GSO_MASK; 9557 9558 len = skb_network_offset(skb); 9559 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9560 goto out_rm_features; 9561 9562 len = skb_network_header_len(skb); 9563 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9564 goto out_rm_features; 9565 9566 if (skb->encapsulation) { 9567 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9568 * the case of IPIP frames, the transport header pointer is 9569 * after the inner header! So check to make sure that this 9570 * is a GRE or UDP_TUNNEL frame before doing that math. 9571 */ 9572 if (gso && (skb_shinfo(skb)->gso_type & 9573 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9574 len = skb_inner_network_header(skb) - 9575 skb_transport_header(skb); 9576 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9577 goto out_rm_features; 9578 } 9579 9580 len = skb_inner_network_header_len(skb); 9581 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9582 goto out_rm_features; 9583 } 9584 9585 return features; 9586 out_rm_features: 9587 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9588 } 9589 9590 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9591 .ndo_open = ice_open, 9592 .ndo_stop = ice_stop, 9593 .ndo_start_xmit = ice_start_xmit, 9594 .ndo_set_mac_address = ice_set_mac_address, 9595 .ndo_validate_addr = eth_validate_addr, 9596 .ndo_change_mtu = ice_change_mtu, 9597 .ndo_get_stats64 = ice_get_stats64, 9598 .ndo_tx_timeout = ice_tx_timeout, 9599 .ndo_bpf = ice_xdp_safe_mode, 9600 }; 9601 9602 static const struct net_device_ops ice_netdev_ops = { 9603 .ndo_open = ice_open, 9604 .ndo_stop = ice_stop, 9605 .ndo_start_xmit = ice_start_xmit, 9606 .ndo_select_queue = ice_select_queue, 9607 .ndo_features_check = ice_features_check, 9608 .ndo_fix_features = ice_fix_features, 9609 .ndo_set_rx_mode = ice_set_rx_mode, 9610 .ndo_set_mac_address = ice_set_mac_address, 9611 .ndo_validate_addr = eth_validate_addr, 9612 .ndo_change_mtu = ice_change_mtu, 9613 .ndo_get_stats64 = ice_get_stats64, 9614 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9615 .ndo_eth_ioctl = ice_eth_ioctl, 9616 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9617 .ndo_set_vf_mac = ice_set_vf_mac, 9618 .ndo_get_vf_config = ice_get_vf_cfg, 9619 .ndo_set_vf_trust = ice_set_vf_trust, 9620 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9621 .ndo_set_vf_link_state = ice_set_vf_link_state, 9622 .ndo_get_vf_stats = ice_get_vf_stats, 9623 .ndo_set_vf_rate = ice_set_vf_bw, 9624 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9625 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9626 .ndo_setup_tc = ice_setup_tc, 9627 .ndo_set_features = ice_set_features, 9628 .ndo_bridge_getlink = ice_bridge_getlink, 9629 .ndo_bridge_setlink = ice_bridge_setlink, 9630 .ndo_fdb_add = ice_fdb_add, 9631 .ndo_fdb_del = ice_fdb_del, 9632 #ifdef CONFIG_RFS_ACCEL 9633 .ndo_rx_flow_steer = ice_rx_flow_steer, 9634 #endif 9635 .ndo_tx_timeout = ice_tx_timeout, 9636 .ndo_bpf = ice_xdp, 9637 .ndo_xdp_xmit = ice_xdp_xmit, 9638 .ndo_xsk_wakeup = ice_xsk_wakeup, 9639 }; 9640