1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_IMPORT_NS(LIBIE); 40 MODULE_LICENSE("GPL v2"); 41 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 42 43 static int debug = -1; 44 module_param(debug, int, 0644); 45 #ifndef CONFIG_DYNAMIC_DEBUG 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 47 #else 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 49 #endif /* !CONFIG_DYNAMIC_DEBUG */ 50 51 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 52 EXPORT_SYMBOL(ice_xdp_locking_key); 53 54 /** 55 * ice_hw_to_dev - Get device pointer from the hardware structure 56 * @hw: pointer to the device HW structure 57 * 58 * Used to access the device pointer from compilation units which can't easily 59 * include the definition of struct ice_pf without leading to circular header 60 * dependencies. 61 */ 62 struct device *ice_hw_to_dev(struct ice_hw *hw) 63 { 64 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 65 66 return &pf->pdev->dev; 67 } 68 69 static struct workqueue_struct *ice_wq; 70 struct workqueue_struct *ice_lag_wq; 71 static const struct net_device_ops ice_netdev_safe_mode_ops; 72 static const struct net_device_ops ice_netdev_ops; 73 74 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 75 76 static void ice_vsi_release_all(struct ice_pf *pf); 77 78 static int ice_rebuild_channels(struct ice_pf *pf); 79 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 80 81 static int 82 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 83 void *cb_priv, enum tc_setup_type type, void *type_data, 84 void *data, 85 void (*cleanup)(struct flow_block_cb *block_cb)); 86 87 bool netif_is_ice(const struct net_device *dev) 88 { 89 return dev && (dev->netdev_ops == &ice_netdev_ops); 90 } 91 92 /** 93 * ice_get_tx_pending - returns number of Tx descriptors not processed 94 * @ring: the ring of descriptors 95 */ 96 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 97 { 98 u16 head, tail; 99 100 head = ring->next_to_clean; 101 tail = ring->next_to_use; 102 103 if (head != tail) 104 return (head < tail) ? 105 tail - head : (tail + ring->count - head); 106 return 0; 107 } 108 109 /** 110 * ice_check_for_hang_subtask - check for and recover hung queues 111 * @pf: pointer to PF struct 112 */ 113 static void ice_check_for_hang_subtask(struct ice_pf *pf) 114 { 115 struct ice_vsi *vsi = NULL; 116 struct ice_hw *hw; 117 unsigned int i; 118 int packets; 119 u32 v; 120 121 ice_for_each_vsi(pf, v) 122 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 123 vsi = pf->vsi[v]; 124 break; 125 } 126 127 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 128 return; 129 130 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 131 return; 132 133 hw = &vsi->back->hw; 134 135 ice_for_each_txq(vsi, i) { 136 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 137 struct ice_ring_stats *ring_stats; 138 139 if (!tx_ring) 140 continue; 141 if (ice_ring_ch_enabled(tx_ring)) 142 continue; 143 144 ring_stats = tx_ring->ring_stats; 145 if (!ring_stats) 146 continue; 147 148 if (tx_ring->desc) { 149 /* If packet counter has not changed the queue is 150 * likely stalled, so force an interrupt for this 151 * queue. 152 * 153 * prev_pkt would be negative if there was no 154 * pending work. 155 */ 156 packets = ring_stats->stats.pkts & INT_MAX; 157 if (ring_stats->tx_stats.prev_pkt == packets) { 158 /* Trigger sw interrupt to revive the queue */ 159 ice_trigger_sw_intr(hw, tx_ring->q_vector); 160 continue; 161 } 162 163 /* Memory barrier between read of packet count and call 164 * to ice_get_tx_pending() 165 */ 166 smp_rmb(); 167 ring_stats->tx_stats.prev_pkt = 168 ice_get_tx_pending(tx_ring) ? packets : -1; 169 } 170 } 171 } 172 173 /** 174 * ice_init_mac_fltr - Set initial MAC filters 175 * @pf: board private structure 176 * 177 * Set initial set of MAC filters for PF VSI; configure filters for permanent 178 * address and broadcast address. If an error is encountered, netdevice will be 179 * unregistered. 180 */ 181 static int ice_init_mac_fltr(struct ice_pf *pf) 182 { 183 struct ice_vsi *vsi; 184 u8 *perm_addr; 185 186 vsi = ice_get_main_vsi(pf); 187 if (!vsi) 188 return -EINVAL; 189 190 perm_addr = vsi->port_info->mac.perm_addr; 191 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 192 } 193 194 /** 195 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 196 * @netdev: the net device on which the sync is happening 197 * @addr: MAC address to sync 198 * 199 * This is a callback function which is called by the in kernel device sync 200 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 201 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 202 * MAC filters from the hardware. 203 */ 204 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 205 { 206 struct ice_netdev_priv *np = netdev_priv(netdev); 207 struct ice_vsi *vsi = np->vsi; 208 209 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 210 ICE_FWD_TO_VSI)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 /** 217 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 218 * @netdev: the net device on which the unsync is happening 219 * @addr: MAC address to unsync 220 * 221 * This is a callback function which is called by the in kernel device unsync 222 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 223 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 224 * delete the MAC filters from the hardware. 225 */ 226 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 227 { 228 struct ice_netdev_priv *np = netdev_priv(netdev); 229 struct ice_vsi *vsi = np->vsi; 230 231 /* Under some circumstances, we might receive a request to delete our 232 * own device address from our uc list. Because we store the device 233 * address in the VSI's MAC filter list, we need to ignore such 234 * requests and not delete our device address from this list. 235 */ 236 if (ether_addr_equal(addr, netdev->dev_addr)) 237 return 0; 238 239 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 240 ICE_FWD_TO_VSI)) 241 return -EINVAL; 242 243 return 0; 244 } 245 246 /** 247 * ice_vsi_fltr_changed - check if filter state changed 248 * @vsi: VSI to be checked 249 * 250 * returns true if filter state has changed, false otherwise. 251 */ 252 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 253 { 254 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 255 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 256 } 257 258 /** 259 * ice_set_promisc - Enable promiscuous mode for a given PF 260 * @vsi: the VSI being configured 261 * @promisc_m: mask of promiscuous config bits 262 * 263 */ 264 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 265 { 266 int status; 267 268 if (vsi->type != ICE_VSI_PF) 269 return 0; 270 271 if (ice_vsi_has_non_zero_vlans(vsi)) { 272 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 273 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 274 promisc_m); 275 } else { 276 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 277 promisc_m, 0); 278 } 279 if (status && status != -EEXIST) 280 return status; 281 282 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 283 vsi->vsi_num, promisc_m); 284 return 0; 285 } 286 287 /** 288 * ice_clear_promisc - Disable promiscuous mode for a given PF 289 * @vsi: the VSI being configured 290 * @promisc_m: mask of promiscuous config bits 291 * 292 */ 293 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 294 { 295 int status; 296 297 if (vsi->type != ICE_VSI_PF) 298 return 0; 299 300 if (ice_vsi_has_non_zero_vlans(vsi)) { 301 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 302 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 303 promisc_m); 304 } else { 305 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 306 promisc_m, 0); 307 } 308 309 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 310 vsi->vsi_num, promisc_m); 311 return status; 312 } 313 314 /** 315 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 316 * @vsi: ptr to the VSI 317 * 318 * Push any outstanding VSI filter changes through the AdminQ. 319 */ 320 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 321 { 322 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 323 struct device *dev = ice_pf_to_dev(vsi->back); 324 struct net_device *netdev = vsi->netdev; 325 bool promisc_forced_on = false; 326 struct ice_pf *pf = vsi->back; 327 struct ice_hw *hw = &pf->hw; 328 u32 changed_flags = 0; 329 int err; 330 331 if (!vsi->netdev) 332 return -EINVAL; 333 334 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 335 usleep_range(1000, 2000); 336 337 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 338 vsi->current_netdev_flags = vsi->netdev->flags; 339 340 INIT_LIST_HEAD(&vsi->tmp_sync_list); 341 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 342 343 if (ice_vsi_fltr_changed(vsi)) { 344 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 345 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 346 347 /* grab the netdev's addr_list_lock */ 348 netif_addr_lock_bh(netdev); 349 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 /* our temp lists are populated. release lock */ 354 netif_addr_unlock_bh(netdev); 355 } 356 357 /* Remove MAC addresses in the unsync list */ 358 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 359 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 360 if (err) { 361 netdev_err(netdev, "Failed to delete MAC filters\n"); 362 /* if we failed because of alloc failures, just bail */ 363 if (err == -ENOMEM) 364 goto out; 365 } 366 367 /* Add MAC addresses in the sync list */ 368 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 369 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 370 /* If filter is added successfully or already exists, do not go into 371 * 'if' condition and report it as error. Instead continue processing 372 * rest of the function. 373 */ 374 if (err && err != -EEXIST) { 375 netdev_err(netdev, "Failed to add MAC filters\n"); 376 /* If there is no more space for new umac filters, VSI 377 * should go into promiscuous mode. There should be some 378 * space reserved for promiscuous filters. 379 */ 380 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 381 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 382 vsi->state)) { 383 promisc_forced_on = true; 384 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 385 vsi->vsi_num); 386 } else { 387 goto out; 388 } 389 } 390 err = 0; 391 /* check for changes in promiscuous modes */ 392 if (changed_flags & IFF_ALLMULTI) { 393 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 394 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 395 if (err) { 396 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 397 goto out_promisc; 398 } 399 } else { 400 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 401 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 402 if (err) { 403 vsi->current_netdev_flags |= IFF_ALLMULTI; 404 goto out_promisc; 405 } 406 } 407 } 408 409 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 410 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 411 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 412 if (vsi->current_netdev_flags & IFF_PROMISC) { 413 /* Apply Rx filter rule to get traffic from wire */ 414 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 415 err = ice_set_dflt_vsi(vsi); 416 if (err && err != -EEXIST) { 417 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 418 err, vsi->vsi_num); 419 vsi->current_netdev_flags &= 420 ~IFF_PROMISC; 421 goto out_promisc; 422 } 423 err = 0; 424 vlan_ops->dis_rx_filtering(vsi); 425 426 /* promiscuous mode implies allmulticast so 427 * that VSIs that are in promiscuous mode are 428 * subscribed to multicast packets coming to 429 * the port 430 */ 431 err = ice_set_promisc(vsi, 432 ICE_MCAST_PROMISC_BITS); 433 if (err) 434 goto out_promisc; 435 } 436 } else { 437 /* Clear Rx filter to remove traffic from wire */ 438 if (ice_is_vsi_dflt_vsi(vsi)) { 439 err = ice_clear_dflt_vsi(vsi); 440 if (err) { 441 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 442 err, vsi->vsi_num); 443 vsi->current_netdev_flags |= 444 IFF_PROMISC; 445 goto out_promisc; 446 } 447 if (vsi->netdev->features & 448 NETIF_F_HW_VLAN_CTAG_FILTER) 449 vlan_ops->ena_rx_filtering(vsi); 450 } 451 452 /* disable allmulti here, but only if allmulti is not 453 * still enabled for the netdev 454 */ 455 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 456 err = ice_clear_promisc(vsi, 457 ICE_MCAST_PROMISC_BITS); 458 if (err) { 459 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 460 err, vsi->vsi_num); 461 } 462 } 463 } 464 } 465 goto exit; 466 467 out_promisc: 468 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 469 goto exit; 470 out: 471 /* if something went wrong then set the changed flag so we try again */ 472 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 473 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 474 exit: 475 clear_bit(ICE_CFG_BUSY, vsi->state); 476 return err; 477 } 478 479 /** 480 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 481 * @pf: board private structure 482 */ 483 static void ice_sync_fltr_subtask(struct ice_pf *pf) 484 { 485 int v; 486 487 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 488 return; 489 490 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 491 492 ice_for_each_vsi(pf, v) 493 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 494 ice_vsi_sync_fltr(pf->vsi[v])) { 495 /* come back and try again later */ 496 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 497 break; 498 } 499 } 500 501 /** 502 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 503 * @pf: the PF 504 * @locked: is the rtnl_lock already held 505 */ 506 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 507 { 508 int node; 509 int v; 510 511 ice_for_each_vsi(pf, v) 512 if (pf->vsi[v]) 513 ice_dis_vsi(pf->vsi[v], locked); 514 515 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 516 pf->pf_agg_node[node].num_vsis = 0; 517 518 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 519 pf->vf_agg_node[node].num_vsis = 0; 520 } 521 522 /** 523 * ice_clear_sw_switch_recipes - clear switch recipes 524 * @pf: board private structure 525 * 526 * Mark switch recipes as not created in sw structures. There are cases where 527 * rules (especially advanced rules) need to be restored, either re-read from 528 * hardware or added again. For example after the reset. 'recp_created' flag 529 * prevents from doing that and need to be cleared upfront. 530 */ 531 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 532 { 533 struct ice_sw_recipe *recp; 534 u8 i; 535 536 recp = pf->hw.switch_info->recp_list; 537 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 538 recp[i].recp_created = false; 539 } 540 541 /** 542 * ice_prepare_for_reset - prep for reset 543 * @pf: board private structure 544 * @reset_type: reset type requested 545 * 546 * Inform or close all dependent features in prep for reset. 547 */ 548 static void 549 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 550 { 551 struct ice_hw *hw = &pf->hw; 552 struct ice_vsi *vsi; 553 struct ice_vf *vf; 554 unsigned int bkt; 555 556 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 557 558 /* already prepared for reset */ 559 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 560 return; 561 562 synchronize_irq(pf->oicr_irq.virq); 563 564 ice_unplug_aux_dev(pf); 565 566 /* Notify VFs of impending reset */ 567 if (ice_check_sq_alive(hw, &hw->mailboxq)) 568 ice_vc_notify_reset(pf); 569 570 /* Disable VFs until reset is completed */ 571 mutex_lock(&pf->vfs.table_lock); 572 ice_for_each_vf(pf, bkt, vf) 573 ice_set_vf_state_dis(vf); 574 mutex_unlock(&pf->vfs.table_lock); 575 576 if (ice_is_eswitch_mode_switchdev(pf)) { 577 if (reset_type != ICE_RESET_PFR) 578 ice_clear_sw_switch_recipes(pf); 579 } 580 581 /* release ADQ specific HW and SW resources */ 582 vsi = ice_get_main_vsi(pf); 583 if (!vsi) 584 goto skip; 585 586 /* to be on safe side, reset orig_rss_size so that normal flow 587 * of deciding rss_size can take precedence 588 */ 589 vsi->orig_rss_size = 0; 590 591 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 592 if (reset_type == ICE_RESET_PFR) { 593 vsi->old_ena_tc = vsi->all_enatc; 594 vsi->old_numtc = vsi->all_numtc; 595 } else { 596 ice_remove_q_channels(vsi, true); 597 598 /* for other reset type, do not support channel rebuild 599 * hence reset needed info 600 */ 601 vsi->old_ena_tc = 0; 602 vsi->all_enatc = 0; 603 vsi->old_numtc = 0; 604 vsi->all_numtc = 0; 605 vsi->req_txq = 0; 606 vsi->req_rxq = 0; 607 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 608 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 609 } 610 } 611 skip: 612 613 /* clear SW filtering DB */ 614 ice_clear_hw_tbls(hw); 615 /* disable the VSIs and their queues that are not already DOWN */ 616 ice_pf_dis_all_vsi(pf, false); 617 618 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 619 ice_ptp_prepare_for_reset(pf, reset_type); 620 621 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 622 ice_gnss_exit(pf); 623 624 if (hw->port_info) 625 ice_sched_clear_port(hw->port_info); 626 627 ice_shutdown_all_ctrlq(hw, false); 628 629 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 630 } 631 632 /** 633 * ice_do_reset - Initiate one of many types of resets 634 * @pf: board private structure 635 * @reset_type: reset type requested before this function was called. 636 */ 637 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 638 { 639 struct device *dev = ice_pf_to_dev(pf); 640 struct ice_hw *hw = &pf->hw; 641 642 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 643 644 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 645 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 646 reset_type = ICE_RESET_CORER; 647 } 648 649 ice_prepare_for_reset(pf, reset_type); 650 651 /* trigger the reset */ 652 if (ice_reset(hw, reset_type)) { 653 dev_err(dev, "reset %d failed\n", reset_type); 654 set_bit(ICE_RESET_FAILED, pf->state); 655 clear_bit(ICE_RESET_OICR_RECV, pf->state); 656 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 657 clear_bit(ICE_PFR_REQ, pf->state); 658 clear_bit(ICE_CORER_REQ, pf->state); 659 clear_bit(ICE_GLOBR_REQ, pf->state); 660 wake_up(&pf->reset_wait_queue); 661 return; 662 } 663 664 /* PFR is a bit of a special case because it doesn't result in an OICR 665 * interrupt. So for PFR, rebuild after the reset and clear the reset- 666 * associated state bits. 667 */ 668 if (reset_type == ICE_RESET_PFR) { 669 pf->pfr_count++; 670 ice_rebuild(pf, reset_type); 671 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 672 clear_bit(ICE_PFR_REQ, pf->state); 673 wake_up(&pf->reset_wait_queue); 674 ice_reset_all_vfs(pf); 675 } 676 } 677 678 /** 679 * ice_reset_subtask - Set up for resetting the device and driver 680 * @pf: board private structure 681 */ 682 static void ice_reset_subtask(struct ice_pf *pf) 683 { 684 enum ice_reset_req reset_type = ICE_RESET_INVAL; 685 686 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 687 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 688 * of reset is pending and sets bits in pf->state indicating the reset 689 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 690 * prepare for pending reset if not already (for PF software-initiated 691 * global resets the software should already be prepared for it as 692 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 693 * by firmware or software on other PFs, that bit is not set so prepare 694 * for the reset now), poll for reset done, rebuild and return. 695 */ 696 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 697 /* Perform the largest reset requested */ 698 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 699 reset_type = ICE_RESET_CORER; 700 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 701 reset_type = ICE_RESET_GLOBR; 702 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 703 reset_type = ICE_RESET_EMPR; 704 /* return if no valid reset type requested */ 705 if (reset_type == ICE_RESET_INVAL) 706 return; 707 ice_prepare_for_reset(pf, reset_type); 708 709 /* make sure we are ready to rebuild */ 710 if (ice_check_reset(&pf->hw)) { 711 set_bit(ICE_RESET_FAILED, pf->state); 712 } else { 713 /* done with reset. start rebuild */ 714 pf->hw.reset_ongoing = false; 715 ice_rebuild(pf, reset_type); 716 /* clear bit to resume normal operations, but 717 * ICE_NEEDS_RESTART bit is set in case rebuild failed 718 */ 719 clear_bit(ICE_RESET_OICR_RECV, pf->state); 720 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 721 clear_bit(ICE_PFR_REQ, pf->state); 722 clear_bit(ICE_CORER_REQ, pf->state); 723 clear_bit(ICE_GLOBR_REQ, pf->state); 724 wake_up(&pf->reset_wait_queue); 725 ice_reset_all_vfs(pf); 726 } 727 728 return; 729 } 730 731 /* No pending resets to finish processing. Check for new resets */ 732 if (test_bit(ICE_PFR_REQ, pf->state)) { 733 reset_type = ICE_RESET_PFR; 734 if (pf->lag && pf->lag->bonded) { 735 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 736 reset_type = ICE_RESET_CORER; 737 } 738 } 739 if (test_bit(ICE_CORER_REQ, pf->state)) 740 reset_type = ICE_RESET_CORER; 741 if (test_bit(ICE_GLOBR_REQ, pf->state)) 742 reset_type = ICE_RESET_GLOBR; 743 /* If no valid reset type requested just return */ 744 if (reset_type == ICE_RESET_INVAL) 745 return; 746 747 /* reset if not already down or busy */ 748 if (!test_bit(ICE_DOWN, pf->state) && 749 !test_bit(ICE_CFG_BUSY, pf->state)) { 750 ice_do_reset(pf, reset_type); 751 } 752 } 753 754 /** 755 * ice_print_topo_conflict - print topology conflict message 756 * @vsi: the VSI whose topology status is being checked 757 */ 758 static void ice_print_topo_conflict(struct ice_vsi *vsi) 759 { 760 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 761 case ICE_AQ_LINK_TOPO_CONFLICT: 762 case ICE_AQ_LINK_MEDIA_CONFLICT: 763 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 764 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 765 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 766 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 767 break; 768 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 769 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 770 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 771 else 772 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 773 break; 774 default: 775 break; 776 } 777 } 778 779 /** 780 * ice_print_link_msg - print link up or down message 781 * @vsi: the VSI whose link status is being queried 782 * @isup: boolean for if the link is now up or down 783 */ 784 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 785 { 786 struct ice_aqc_get_phy_caps_data *caps; 787 const char *an_advertised; 788 const char *fec_req; 789 const char *speed; 790 const char *fec; 791 const char *fc; 792 const char *an; 793 int status; 794 795 if (!vsi) 796 return; 797 798 if (vsi->current_isup == isup) 799 return; 800 801 vsi->current_isup = isup; 802 803 if (!isup) { 804 netdev_info(vsi->netdev, "NIC Link is Down\n"); 805 return; 806 } 807 808 switch (vsi->port_info->phy.link_info.link_speed) { 809 case ICE_AQ_LINK_SPEED_200GB: 810 speed = "200 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_100GB: 813 speed = "100 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_50GB: 816 speed = "50 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_40GB: 819 speed = "40 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_25GB: 822 speed = "25 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_20GB: 825 speed = "20 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_10GB: 828 speed = "10 G"; 829 break; 830 case ICE_AQ_LINK_SPEED_5GB: 831 speed = "5 G"; 832 break; 833 case ICE_AQ_LINK_SPEED_2500MB: 834 speed = "2.5 G"; 835 break; 836 case ICE_AQ_LINK_SPEED_1000MB: 837 speed = "1 G"; 838 break; 839 case ICE_AQ_LINK_SPEED_100MB: 840 speed = "100 M"; 841 break; 842 default: 843 speed = "Unknown "; 844 break; 845 } 846 847 switch (vsi->port_info->fc.current_mode) { 848 case ICE_FC_FULL: 849 fc = "Rx/Tx"; 850 break; 851 case ICE_FC_TX_PAUSE: 852 fc = "Tx"; 853 break; 854 case ICE_FC_RX_PAUSE: 855 fc = "Rx"; 856 break; 857 case ICE_FC_NONE: 858 fc = "None"; 859 break; 860 default: 861 fc = "Unknown"; 862 break; 863 } 864 865 /* Get FEC mode based on negotiated link info */ 866 switch (vsi->port_info->phy.link_info.fec_info) { 867 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 868 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 869 fec = "RS-FEC"; 870 break; 871 case ICE_AQ_LINK_25G_KR_FEC_EN: 872 fec = "FC-FEC/BASE-R"; 873 break; 874 default: 875 fec = "NONE"; 876 break; 877 } 878 879 /* check if autoneg completed, might be false due to not supported */ 880 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 881 an = "True"; 882 else 883 an = "False"; 884 885 /* Get FEC mode requested based on PHY caps last SW configuration */ 886 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 887 if (!caps) { 888 fec_req = "Unknown"; 889 an_advertised = "Unknown"; 890 goto done; 891 } 892 893 status = ice_aq_get_phy_caps(vsi->port_info, false, 894 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 895 if (status) 896 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 897 898 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 899 900 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 901 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 902 fec_req = "RS-FEC"; 903 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 904 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 905 fec_req = "FC-FEC/BASE-R"; 906 else 907 fec_req = "NONE"; 908 909 kfree(caps); 910 911 done: 912 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 913 speed, fec_req, fec, an_advertised, an, fc); 914 ice_print_topo_conflict(vsi); 915 } 916 917 /** 918 * ice_vsi_link_event - update the VSI's netdev 919 * @vsi: the VSI on which the link event occurred 920 * @link_up: whether or not the VSI needs to be set up or down 921 */ 922 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 923 { 924 if (!vsi) 925 return; 926 927 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 928 return; 929 930 if (vsi->type == ICE_VSI_PF) { 931 if (link_up == netif_carrier_ok(vsi->netdev)) 932 return; 933 934 if (link_up) { 935 netif_carrier_on(vsi->netdev); 936 netif_tx_wake_all_queues(vsi->netdev); 937 } else { 938 netif_carrier_off(vsi->netdev); 939 netif_tx_stop_all_queues(vsi->netdev); 940 } 941 } 942 } 943 944 /** 945 * ice_set_dflt_mib - send a default config MIB to the FW 946 * @pf: private PF struct 947 * 948 * This function sends a default configuration MIB to the FW. 949 * 950 * If this function errors out at any point, the driver is still able to 951 * function. The main impact is that LFC may not operate as expected. 952 * Therefore an error state in this function should be treated with a DBG 953 * message and continue on with driver rebuild/reenable. 954 */ 955 static void ice_set_dflt_mib(struct ice_pf *pf) 956 { 957 struct device *dev = ice_pf_to_dev(pf); 958 u8 mib_type, *buf, *lldpmib = NULL; 959 u16 len, typelen, offset = 0; 960 struct ice_lldp_org_tlv *tlv; 961 struct ice_hw *hw = &pf->hw; 962 u32 ouisubtype; 963 964 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 965 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 966 if (!lldpmib) { 967 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 968 __func__); 969 return; 970 } 971 972 /* Add ETS CFG TLV */ 973 tlv = (struct ice_lldp_org_tlv *)lldpmib; 974 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 975 ICE_IEEE_ETS_TLV_LEN); 976 tlv->typelen = htons(typelen); 977 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 978 ICE_IEEE_SUBTYPE_ETS_CFG); 979 tlv->ouisubtype = htonl(ouisubtype); 980 981 buf = tlv->tlvinfo; 982 buf[0] = 0; 983 984 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 985 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 986 * Octets 13 - 20 are TSA values - leave as zeros 987 */ 988 buf[5] = 0x64; 989 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 990 offset += len + 2; 991 tlv = (struct ice_lldp_org_tlv *) 992 ((char *)tlv + sizeof(tlv->typelen) + len); 993 994 /* Add ETS REC TLV */ 995 buf = tlv->tlvinfo; 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_ETS_REC); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* First octet of buf is reserved 1003 * Octets 1 - 4 map UP to TC - all UPs map to zero 1004 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1005 * Octets 13 - 20 are TSA value - leave as zeros 1006 */ 1007 buf[5] = 0x64; 1008 offset += len + 2; 1009 tlv = (struct ice_lldp_org_tlv *) 1010 ((char *)tlv + sizeof(tlv->typelen) + len); 1011 1012 /* Add PFC CFG TLV */ 1013 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1014 ICE_IEEE_PFC_TLV_LEN); 1015 tlv->typelen = htons(typelen); 1016 1017 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1018 ICE_IEEE_SUBTYPE_PFC_CFG); 1019 tlv->ouisubtype = htonl(ouisubtype); 1020 1021 /* Octet 1 left as all zeros - PFC disabled */ 1022 buf[0] = 0x08; 1023 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1024 offset += len + 2; 1025 1026 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1027 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1028 1029 kfree(lldpmib); 1030 } 1031 1032 /** 1033 * ice_check_phy_fw_load - check if PHY FW load failed 1034 * @pf: pointer to PF struct 1035 * @link_cfg_err: bitmap from the link info structure 1036 * 1037 * check if external PHY FW load failed and print an error message if it did 1038 */ 1039 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1040 { 1041 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1042 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1043 return; 1044 } 1045 1046 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1047 return; 1048 1049 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1050 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1051 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1052 } 1053 } 1054 1055 /** 1056 * ice_check_module_power 1057 * @pf: pointer to PF struct 1058 * @link_cfg_err: bitmap from the link info structure 1059 * 1060 * check module power level returned by a previous call to aq_get_link_info 1061 * and print error messages if module power level is not supported 1062 */ 1063 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1064 { 1065 /* if module power level is supported, clear the flag */ 1066 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1067 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1068 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 return; 1070 } 1071 1072 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1073 * above block didn't clear this bit, there's nothing to do 1074 */ 1075 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1076 return; 1077 1078 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1079 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1080 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1081 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1082 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1083 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1084 } 1085 } 1086 1087 /** 1088 * ice_check_link_cfg_err - check if link configuration failed 1089 * @pf: pointer to the PF struct 1090 * @link_cfg_err: bitmap from the link info structure 1091 * 1092 * print if any link configuration failure happens due to the value in the 1093 * link_cfg_err parameter in the link info structure 1094 */ 1095 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1096 { 1097 ice_check_module_power(pf, link_cfg_err); 1098 ice_check_phy_fw_load(pf, link_cfg_err); 1099 } 1100 1101 /** 1102 * ice_link_event - process the link event 1103 * @pf: PF that the link event is associated with 1104 * @pi: port_info for the port that the link event is associated with 1105 * @link_up: true if the physical link is up and false if it is down 1106 * @link_speed: current link speed received from the link event 1107 * 1108 * Returns 0 on success and negative on failure 1109 */ 1110 static int 1111 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1112 u16 link_speed) 1113 { 1114 struct device *dev = ice_pf_to_dev(pf); 1115 struct ice_phy_info *phy_info; 1116 struct ice_vsi *vsi; 1117 u16 old_link_speed; 1118 bool old_link; 1119 int status; 1120 1121 phy_info = &pi->phy; 1122 phy_info->link_info_old = phy_info->link_info; 1123 1124 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1125 old_link_speed = phy_info->link_info_old.link_speed; 1126 1127 /* update the link info structures and re-enable link events, 1128 * don't bail on failure due to other book keeping needed 1129 */ 1130 status = ice_update_link_info(pi); 1131 if (status) 1132 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1133 pi->lport, status, 1134 ice_aq_str(pi->hw->adminq.sq_last_status)); 1135 1136 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1137 1138 /* Check if the link state is up after updating link info, and treat 1139 * this event as an UP event since the link is actually UP now. 1140 */ 1141 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1142 link_up = true; 1143 1144 vsi = ice_get_main_vsi(pf); 1145 if (!vsi || !vsi->port_info) 1146 return -EINVAL; 1147 1148 /* turn off PHY if media was removed */ 1149 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1150 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1151 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1152 ice_set_link(vsi, false); 1153 } 1154 1155 /* if the old link up/down and speed is the same as the new */ 1156 if (link_up == old_link && link_speed == old_link_speed) 1157 return 0; 1158 1159 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1160 1161 if (ice_is_dcb_active(pf)) { 1162 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1163 ice_dcb_rebuild(pf); 1164 } else { 1165 if (link_up) 1166 ice_set_dflt_mib(pf); 1167 } 1168 ice_vsi_link_event(vsi, link_up); 1169 ice_print_link_msg(vsi, link_up); 1170 1171 ice_vc_notify_link_state(pf); 1172 1173 return 0; 1174 } 1175 1176 /** 1177 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1178 * @pf: board private structure 1179 */ 1180 static void ice_watchdog_subtask(struct ice_pf *pf) 1181 { 1182 int i; 1183 1184 /* if interface is down do nothing */ 1185 if (test_bit(ICE_DOWN, pf->state) || 1186 test_bit(ICE_CFG_BUSY, pf->state)) 1187 return; 1188 1189 /* make sure we don't do these things too often */ 1190 if (time_before(jiffies, 1191 pf->serv_tmr_prev + pf->serv_tmr_period)) 1192 return; 1193 1194 pf->serv_tmr_prev = jiffies; 1195 1196 /* Update the stats for active netdevs so the network stack 1197 * can look at updated numbers whenever it cares to 1198 */ 1199 ice_update_pf_stats(pf); 1200 ice_for_each_vsi(pf, i) 1201 if (pf->vsi[i] && pf->vsi[i]->netdev) 1202 ice_update_vsi_stats(pf->vsi[i]); 1203 } 1204 1205 /** 1206 * ice_init_link_events - enable/initialize link events 1207 * @pi: pointer to the port_info instance 1208 * 1209 * Returns -EIO on failure, 0 on success 1210 */ 1211 static int ice_init_link_events(struct ice_port_info *pi) 1212 { 1213 u16 mask; 1214 1215 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1216 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1217 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1218 1219 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1220 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1221 pi->lport); 1222 return -EIO; 1223 } 1224 1225 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1226 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1227 pi->lport); 1228 return -EIO; 1229 } 1230 1231 return 0; 1232 } 1233 1234 /** 1235 * ice_handle_link_event - handle link event via ARQ 1236 * @pf: PF that the link event is associated with 1237 * @event: event structure containing link status info 1238 */ 1239 static int 1240 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1241 { 1242 struct ice_aqc_get_link_status_data *link_data; 1243 struct ice_port_info *port_info; 1244 int status; 1245 1246 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1247 port_info = pf->hw.port_info; 1248 if (!port_info) 1249 return -EINVAL; 1250 1251 status = ice_link_event(pf, port_info, 1252 !!(link_data->link_info & ICE_AQ_LINK_UP), 1253 le16_to_cpu(link_data->link_speed)); 1254 if (status) 1255 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1256 status); 1257 1258 return status; 1259 } 1260 1261 /** 1262 * ice_get_fwlog_data - copy the FW log data from ARQ event 1263 * @pf: PF that the FW log event is associated with 1264 * @event: event structure containing FW log data 1265 */ 1266 static void 1267 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1268 { 1269 struct ice_fwlog_data *fwlog; 1270 struct ice_hw *hw = &pf->hw; 1271 1272 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1273 1274 memset(fwlog->data, 0, PAGE_SIZE); 1275 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1276 1277 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1278 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1279 1280 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1281 /* the rings are full so bump the head to create room */ 1282 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1283 hw->fwlog_ring.size); 1284 } 1285 } 1286 1287 /** 1288 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1289 * @pf: pointer to the PF private structure 1290 * @task: intermediate helper storage and identifier for waiting 1291 * @opcode: the opcode to wait for 1292 * 1293 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1294 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1295 * 1296 * Calls are separated to allow caller registering for event before sending 1297 * the command, which mitigates a race between registering and FW responding. 1298 * 1299 * To obtain only the descriptor contents, pass an task->event with null 1300 * msg_buf. If the complete data buffer is desired, allocate the 1301 * task->event.msg_buf with enough space ahead of time. 1302 */ 1303 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1304 u16 opcode) 1305 { 1306 INIT_HLIST_NODE(&task->entry); 1307 task->opcode = opcode; 1308 task->state = ICE_AQ_TASK_WAITING; 1309 1310 spin_lock_bh(&pf->aq_wait_lock); 1311 hlist_add_head(&task->entry, &pf->aq_wait_list); 1312 spin_unlock_bh(&pf->aq_wait_lock); 1313 } 1314 1315 /** 1316 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1317 * @pf: pointer to the PF private structure 1318 * @task: ptr prepared by ice_aq_prep_for_event() 1319 * @timeout: how long to wait, in jiffies 1320 * 1321 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1322 * current thread will be put to sleep until the specified event occurs or 1323 * until the given timeout is reached. 1324 * 1325 * Returns: zero on success, or a negative error code on failure. 1326 */ 1327 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1328 unsigned long timeout) 1329 { 1330 enum ice_aq_task_state *state = &task->state; 1331 struct device *dev = ice_pf_to_dev(pf); 1332 unsigned long start = jiffies; 1333 long ret; 1334 int err; 1335 1336 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1337 *state != ICE_AQ_TASK_WAITING, 1338 timeout); 1339 switch (*state) { 1340 case ICE_AQ_TASK_NOT_PREPARED: 1341 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1342 err = -EINVAL; 1343 break; 1344 case ICE_AQ_TASK_WAITING: 1345 err = ret < 0 ? ret : -ETIMEDOUT; 1346 break; 1347 case ICE_AQ_TASK_CANCELED: 1348 err = ret < 0 ? ret : -ECANCELED; 1349 break; 1350 case ICE_AQ_TASK_COMPLETE: 1351 err = ret < 0 ? ret : 0; 1352 break; 1353 default: 1354 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1355 err = -EINVAL; 1356 break; 1357 } 1358 1359 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1360 jiffies_to_msecs(jiffies - start), 1361 jiffies_to_msecs(timeout), 1362 task->opcode); 1363 1364 spin_lock_bh(&pf->aq_wait_lock); 1365 hlist_del(&task->entry); 1366 spin_unlock_bh(&pf->aq_wait_lock); 1367 1368 return err; 1369 } 1370 1371 /** 1372 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1373 * @pf: pointer to the PF private structure 1374 * @opcode: the opcode of the event 1375 * @event: the event to check 1376 * 1377 * Loops over the current list of pending threads waiting for an AdminQ event. 1378 * For each matching task, copy the contents of the event into the task 1379 * structure and wake up the thread. 1380 * 1381 * If multiple threads wait for the same opcode, they will all be woken up. 1382 * 1383 * Note that event->msg_buf will only be duplicated if the event has a buffer 1384 * with enough space already allocated. Otherwise, only the descriptor and 1385 * message length will be copied. 1386 * 1387 * Returns: true if an event was found, false otherwise 1388 */ 1389 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1390 struct ice_rq_event_info *event) 1391 { 1392 struct ice_rq_event_info *task_ev; 1393 struct ice_aq_task *task; 1394 bool found = false; 1395 1396 spin_lock_bh(&pf->aq_wait_lock); 1397 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1398 if (task->state != ICE_AQ_TASK_WAITING) 1399 continue; 1400 if (task->opcode != opcode) 1401 continue; 1402 1403 task_ev = &task->event; 1404 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1405 task_ev->msg_len = event->msg_len; 1406 1407 /* Only copy the data buffer if a destination was set */ 1408 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1409 memcpy(task_ev->msg_buf, event->msg_buf, 1410 event->buf_len); 1411 task_ev->buf_len = event->buf_len; 1412 } 1413 1414 task->state = ICE_AQ_TASK_COMPLETE; 1415 found = true; 1416 } 1417 spin_unlock_bh(&pf->aq_wait_lock); 1418 1419 if (found) 1420 wake_up(&pf->aq_wait_queue); 1421 } 1422 1423 /** 1424 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1425 * @pf: the PF private structure 1426 * 1427 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1428 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1429 */ 1430 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1431 { 1432 struct ice_aq_task *task; 1433 1434 spin_lock_bh(&pf->aq_wait_lock); 1435 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1436 task->state = ICE_AQ_TASK_CANCELED; 1437 spin_unlock_bh(&pf->aq_wait_lock); 1438 1439 wake_up(&pf->aq_wait_queue); 1440 } 1441 1442 #define ICE_MBX_OVERFLOW_WATERMARK 64 1443 1444 /** 1445 * __ice_clean_ctrlq - helper function to clean controlq rings 1446 * @pf: ptr to struct ice_pf 1447 * @q_type: specific Control queue type 1448 */ 1449 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1450 { 1451 struct device *dev = ice_pf_to_dev(pf); 1452 struct ice_rq_event_info event; 1453 struct ice_hw *hw = &pf->hw; 1454 struct ice_ctl_q_info *cq; 1455 u16 pending, i = 0; 1456 const char *qtype; 1457 u32 oldval, val; 1458 1459 /* Do not clean control queue if/when PF reset fails */ 1460 if (test_bit(ICE_RESET_FAILED, pf->state)) 1461 return 0; 1462 1463 switch (q_type) { 1464 case ICE_CTL_Q_ADMIN: 1465 cq = &hw->adminq; 1466 qtype = "Admin"; 1467 break; 1468 case ICE_CTL_Q_SB: 1469 cq = &hw->sbq; 1470 qtype = "Sideband"; 1471 break; 1472 case ICE_CTL_Q_MAILBOX: 1473 cq = &hw->mailboxq; 1474 qtype = "Mailbox"; 1475 /* we are going to try to detect a malicious VF, so set the 1476 * state to begin detection 1477 */ 1478 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1479 break; 1480 default: 1481 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1482 return 0; 1483 } 1484 1485 /* check for error indications - PF_xx_AxQLEN register layout for 1486 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1487 */ 1488 val = rd32(hw, cq->rq.len); 1489 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1490 PF_FW_ARQLEN_ARQCRIT_M)) { 1491 oldval = val; 1492 if (val & PF_FW_ARQLEN_ARQVFE_M) 1493 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1494 qtype); 1495 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1496 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1497 qtype); 1498 } 1499 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1500 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1501 qtype); 1502 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1503 PF_FW_ARQLEN_ARQCRIT_M); 1504 if (oldval != val) 1505 wr32(hw, cq->rq.len, val); 1506 } 1507 1508 val = rd32(hw, cq->sq.len); 1509 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1510 PF_FW_ATQLEN_ATQCRIT_M)) { 1511 oldval = val; 1512 if (val & PF_FW_ATQLEN_ATQVFE_M) 1513 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1514 qtype); 1515 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1516 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1517 qtype); 1518 } 1519 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1520 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1521 qtype); 1522 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1523 PF_FW_ATQLEN_ATQCRIT_M); 1524 if (oldval != val) 1525 wr32(hw, cq->sq.len, val); 1526 } 1527 1528 event.buf_len = cq->rq_buf_size; 1529 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1530 if (!event.msg_buf) 1531 return 0; 1532 1533 do { 1534 struct ice_mbx_data data = {}; 1535 u16 opcode; 1536 int ret; 1537 1538 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1539 if (ret == -EALREADY) 1540 break; 1541 if (ret) { 1542 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1543 ret); 1544 break; 1545 } 1546 1547 opcode = le16_to_cpu(event.desc.opcode); 1548 1549 /* Notify any thread that might be waiting for this event */ 1550 ice_aq_check_events(pf, opcode, &event); 1551 1552 switch (opcode) { 1553 case ice_aqc_opc_get_link_status: 1554 if (ice_handle_link_event(pf, &event)) 1555 dev_err(dev, "Could not handle link event\n"); 1556 break; 1557 case ice_aqc_opc_event_lan_overflow: 1558 ice_vf_lan_overflow_event(pf, &event); 1559 break; 1560 case ice_mbx_opc_send_msg_to_pf: 1561 data.num_msg_proc = i; 1562 data.num_pending_arq = pending; 1563 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1564 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1565 1566 ice_vc_process_vf_msg(pf, &event, &data); 1567 break; 1568 case ice_aqc_opc_fw_logs_event: 1569 ice_get_fwlog_data(pf, &event); 1570 break; 1571 case ice_aqc_opc_lldp_set_mib_change: 1572 ice_dcb_process_lldp_set_mib_change(pf, &event); 1573 break; 1574 default: 1575 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1576 qtype, opcode); 1577 break; 1578 } 1579 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1580 1581 kfree(event.msg_buf); 1582 1583 return pending && (i == ICE_DFLT_IRQ_WORK); 1584 } 1585 1586 /** 1587 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1588 * @hw: pointer to hardware info 1589 * @cq: control queue information 1590 * 1591 * returns true if there are pending messages in a queue, false if there aren't 1592 */ 1593 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1594 { 1595 u16 ntu; 1596 1597 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1598 return cq->rq.next_to_clean != ntu; 1599 } 1600 1601 /** 1602 * ice_clean_adminq_subtask - clean the AdminQ rings 1603 * @pf: board private structure 1604 */ 1605 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1606 { 1607 struct ice_hw *hw = &pf->hw; 1608 1609 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1610 return; 1611 1612 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1613 return; 1614 1615 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1616 1617 /* There might be a situation where new messages arrive to a control 1618 * queue between processing the last message and clearing the 1619 * EVENT_PENDING bit. So before exiting, check queue head again (using 1620 * ice_ctrlq_pending) and process new messages if any. 1621 */ 1622 if (ice_ctrlq_pending(hw, &hw->adminq)) 1623 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1624 1625 ice_flush(hw); 1626 } 1627 1628 /** 1629 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1630 * @pf: board private structure 1631 */ 1632 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1633 { 1634 struct ice_hw *hw = &pf->hw; 1635 1636 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1637 return; 1638 1639 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1640 return; 1641 1642 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1643 1644 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1645 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1646 1647 ice_flush(hw); 1648 } 1649 1650 /** 1651 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1652 * @pf: board private structure 1653 */ 1654 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1655 { 1656 struct ice_hw *hw = &pf->hw; 1657 1658 /* if mac_type is not generic, sideband is not supported 1659 * and there's nothing to do here 1660 */ 1661 if (!ice_is_generic_mac(hw)) { 1662 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1663 return; 1664 } 1665 1666 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1667 return; 1668 1669 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1670 return; 1671 1672 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1673 1674 if (ice_ctrlq_pending(hw, &hw->sbq)) 1675 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1676 1677 ice_flush(hw); 1678 } 1679 1680 /** 1681 * ice_service_task_schedule - schedule the service task to wake up 1682 * @pf: board private structure 1683 * 1684 * If not already scheduled, this puts the task into the work queue. 1685 */ 1686 void ice_service_task_schedule(struct ice_pf *pf) 1687 { 1688 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1689 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1690 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1691 queue_work(ice_wq, &pf->serv_task); 1692 } 1693 1694 /** 1695 * ice_service_task_complete - finish up the service task 1696 * @pf: board private structure 1697 */ 1698 static void ice_service_task_complete(struct ice_pf *pf) 1699 { 1700 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1701 1702 /* force memory (pf->state) to sync before next service task */ 1703 smp_mb__before_atomic(); 1704 clear_bit(ICE_SERVICE_SCHED, pf->state); 1705 } 1706 1707 /** 1708 * ice_service_task_stop - stop service task and cancel works 1709 * @pf: board private structure 1710 * 1711 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1712 * 1 otherwise. 1713 */ 1714 static int ice_service_task_stop(struct ice_pf *pf) 1715 { 1716 int ret; 1717 1718 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1719 1720 if (pf->serv_tmr.function) 1721 del_timer_sync(&pf->serv_tmr); 1722 if (pf->serv_task.func) 1723 cancel_work_sync(&pf->serv_task); 1724 1725 clear_bit(ICE_SERVICE_SCHED, pf->state); 1726 return ret; 1727 } 1728 1729 /** 1730 * ice_service_task_restart - restart service task and schedule works 1731 * @pf: board private structure 1732 * 1733 * This function is needed for suspend and resume works (e.g WoL scenario) 1734 */ 1735 static void ice_service_task_restart(struct ice_pf *pf) 1736 { 1737 clear_bit(ICE_SERVICE_DIS, pf->state); 1738 ice_service_task_schedule(pf); 1739 } 1740 1741 /** 1742 * ice_service_timer - timer callback to schedule service task 1743 * @t: pointer to timer_list 1744 */ 1745 static void ice_service_timer(struct timer_list *t) 1746 { 1747 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1748 1749 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1750 ice_service_task_schedule(pf); 1751 } 1752 1753 /** 1754 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1755 * @pf: pointer to the PF structure 1756 * @vf: pointer to the VF structure 1757 * @reset_vf_tx: whether Tx MDD has occurred 1758 * @reset_vf_rx: whether Rx MDD has occurred 1759 * 1760 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1761 * automatically reset the VF by enabling the private ethtool flag 1762 * mdd-auto-reset-vf. 1763 */ 1764 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1765 bool reset_vf_tx, bool reset_vf_rx) 1766 { 1767 struct device *dev = ice_pf_to_dev(pf); 1768 1769 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1770 return; 1771 1772 /* VF MDD event counters will be cleared by reset, so print the event 1773 * prior to reset. 1774 */ 1775 if (reset_vf_tx) 1776 ice_print_vf_tx_mdd_event(vf); 1777 1778 if (reset_vf_rx) 1779 ice_print_vf_rx_mdd_event(vf); 1780 1781 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1782 pf->hw.pf_id, vf->vf_id); 1783 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1784 } 1785 1786 /** 1787 * ice_handle_mdd_event - handle malicious driver detect event 1788 * @pf: pointer to the PF structure 1789 * 1790 * Called from service task. OICR interrupt handler indicates MDD event. 1791 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1792 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1793 * disable the queue, the PF can be configured to reset the VF using ethtool 1794 * private flag mdd-auto-reset-vf. 1795 */ 1796 static void ice_handle_mdd_event(struct ice_pf *pf) 1797 { 1798 struct device *dev = ice_pf_to_dev(pf); 1799 struct ice_hw *hw = &pf->hw; 1800 struct ice_vf *vf; 1801 unsigned int bkt; 1802 u32 reg; 1803 1804 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1805 /* Since the VF MDD event logging is rate limited, check if 1806 * there are pending MDD events. 1807 */ 1808 ice_print_vfs_mdd_events(pf); 1809 return; 1810 } 1811 1812 /* find what triggered an MDD event */ 1813 reg = rd32(hw, GL_MDET_TX_PQM); 1814 if (reg & GL_MDET_TX_PQM_VALID_M) { 1815 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1816 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1817 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1818 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1819 1820 if (netif_msg_tx_err(pf)) 1821 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1822 event, queue, pf_num, vf_num); 1823 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1824 } 1825 1826 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1827 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1828 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1829 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1830 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1831 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1832 1833 if (netif_msg_tx_err(pf)) 1834 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1835 event, queue, pf_num, vf_num); 1836 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1837 } 1838 1839 reg = rd32(hw, GL_MDET_RX); 1840 if (reg & GL_MDET_RX_VALID_M) { 1841 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1842 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1843 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1844 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1845 1846 if (netif_msg_rx_err(pf)) 1847 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1848 event, queue, pf_num, vf_num); 1849 wr32(hw, GL_MDET_RX, 0xffffffff); 1850 } 1851 1852 /* check to see if this PF caused an MDD event */ 1853 reg = rd32(hw, PF_MDET_TX_PQM); 1854 if (reg & PF_MDET_TX_PQM_VALID_M) { 1855 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1856 if (netif_msg_tx_err(pf)) 1857 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1858 } 1859 1860 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1861 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1862 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1863 if (netif_msg_tx_err(pf)) 1864 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1865 } 1866 1867 reg = rd32(hw, PF_MDET_RX); 1868 if (reg & PF_MDET_RX_VALID_M) { 1869 wr32(hw, PF_MDET_RX, 0xFFFF); 1870 if (netif_msg_rx_err(pf)) 1871 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1872 } 1873 1874 /* Check to see if one of the VFs caused an MDD event, and then 1875 * increment counters and set print pending 1876 */ 1877 mutex_lock(&pf->vfs.table_lock); 1878 ice_for_each_vf(pf, bkt, vf) { 1879 bool reset_vf_tx = false, reset_vf_rx = false; 1880 1881 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1882 if (reg & VP_MDET_TX_PQM_VALID_M) { 1883 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1884 vf->mdd_tx_events.count++; 1885 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1886 if (netif_msg_tx_err(pf)) 1887 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1888 vf->vf_id); 1889 1890 reset_vf_tx = true; 1891 } 1892 1893 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1894 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1895 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1896 vf->mdd_tx_events.count++; 1897 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1898 if (netif_msg_tx_err(pf)) 1899 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1900 vf->vf_id); 1901 1902 reset_vf_tx = true; 1903 } 1904 1905 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1906 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1907 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1908 vf->mdd_tx_events.count++; 1909 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1910 if (netif_msg_tx_err(pf)) 1911 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1912 vf->vf_id); 1913 1914 reset_vf_tx = true; 1915 } 1916 1917 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1918 if (reg & VP_MDET_RX_VALID_M) { 1919 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1920 vf->mdd_rx_events.count++; 1921 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1922 if (netif_msg_rx_err(pf)) 1923 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1924 vf->vf_id); 1925 1926 reset_vf_rx = true; 1927 } 1928 1929 if (reset_vf_tx || reset_vf_rx) 1930 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1931 reset_vf_rx); 1932 } 1933 mutex_unlock(&pf->vfs.table_lock); 1934 1935 ice_print_vfs_mdd_events(pf); 1936 } 1937 1938 /** 1939 * ice_force_phys_link_state - Force the physical link state 1940 * @vsi: VSI to force the physical link state to up/down 1941 * @link_up: true/false indicates to set the physical link to up/down 1942 * 1943 * Force the physical link state by getting the current PHY capabilities from 1944 * hardware and setting the PHY config based on the determined capabilities. If 1945 * link changes a link event will be triggered because both the Enable Automatic 1946 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1947 * 1948 * Returns 0 on success, negative on failure 1949 */ 1950 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1951 { 1952 struct ice_aqc_get_phy_caps_data *pcaps; 1953 struct ice_aqc_set_phy_cfg_data *cfg; 1954 struct ice_port_info *pi; 1955 struct device *dev; 1956 int retcode; 1957 1958 if (!vsi || !vsi->port_info || !vsi->back) 1959 return -EINVAL; 1960 if (vsi->type != ICE_VSI_PF) 1961 return 0; 1962 1963 dev = ice_pf_to_dev(vsi->back); 1964 1965 pi = vsi->port_info; 1966 1967 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1968 if (!pcaps) 1969 return -ENOMEM; 1970 1971 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1972 NULL); 1973 if (retcode) { 1974 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1975 vsi->vsi_num, retcode); 1976 retcode = -EIO; 1977 goto out; 1978 } 1979 1980 /* No change in link */ 1981 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1982 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1983 goto out; 1984 1985 /* Use the current user PHY configuration. The current user PHY 1986 * configuration is initialized during probe from PHY capabilities 1987 * software mode, and updated on set PHY configuration. 1988 */ 1989 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1990 if (!cfg) { 1991 retcode = -ENOMEM; 1992 goto out; 1993 } 1994 1995 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1996 if (link_up) 1997 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1998 else 1999 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2000 2001 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2002 if (retcode) { 2003 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2004 vsi->vsi_num, retcode); 2005 retcode = -EIO; 2006 } 2007 2008 kfree(cfg); 2009 out: 2010 kfree(pcaps); 2011 return retcode; 2012 } 2013 2014 /** 2015 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2016 * @pi: port info structure 2017 * 2018 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2019 */ 2020 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2021 { 2022 struct ice_aqc_get_phy_caps_data *pcaps; 2023 struct ice_pf *pf = pi->hw->back; 2024 int err; 2025 2026 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2027 if (!pcaps) 2028 return -ENOMEM; 2029 2030 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2031 pcaps, NULL); 2032 2033 if (err) { 2034 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2035 goto out; 2036 } 2037 2038 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2039 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2040 2041 out: 2042 kfree(pcaps); 2043 return err; 2044 } 2045 2046 /** 2047 * ice_init_link_dflt_override - Initialize link default override 2048 * @pi: port info structure 2049 * 2050 * Initialize link default override and PHY total port shutdown during probe 2051 */ 2052 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2053 { 2054 struct ice_link_default_override_tlv *ldo; 2055 struct ice_pf *pf = pi->hw->back; 2056 2057 ldo = &pf->link_dflt_override; 2058 if (ice_get_link_default_override(ldo, pi)) 2059 return; 2060 2061 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2062 return; 2063 2064 /* Enable Total Port Shutdown (override/replace link-down-on-close 2065 * ethtool private flag) for ports with Port Disable bit set. 2066 */ 2067 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2068 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2069 } 2070 2071 /** 2072 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2073 * @pi: port info structure 2074 * 2075 * If default override is enabled, initialize the user PHY cfg speed and FEC 2076 * settings using the default override mask from the NVM. 2077 * 2078 * The PHY should only be configured with the default override settings the 2079 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2080 * is used to indicate that the user PHY cfg default override is initialized 2081 * and the PHY has not been configured with the default override settings. The 2082 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2083 * configured. 2084 * 2085 * This function should be called only if the FW doesn't support default 2086 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2087 */ 2088 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2089 { 2090 struct ice_link_default_override_tlv *ldo; 2091 struct ice_aqc_set_phy_cfg_data *cfg; 2092 struct ice_phy_info *phy = &pi->phy; 2093 struct ice_pf *pf = pi->hw->back; 2094 2095 ldo = &pf->link_dflt_override; 2096 2097 /* If link default override is enabled, use to mask NVM PHY capabilities 2098 * for speed and FEC default configuration. 2099 */ 2100 cfg = &phy->curr_user_phy_cfg; 2101 2102 if (ldo->phy_type_low || ldo->phy_type_high) { 2103 cfg->phy_type_low = pf->nvm_phy_type_lo & 2104 cpu_to_le64(ldo->phy_type_low); 2105 cfg->phy_type_high = pf->nvm_phy_type_hi & 2106 cpu_to_le64(ldo->phy_type_high); 2107 } 2108 cfg->link_fec_opt = ldo->fec_options; 2109 phy->curr_user_fec_req = ICE_FEC_AUTO; 2110 2111 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2112 } 2113 2114 /** 2115 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2116 * @pi: port info structure 2117 * 2118 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2119 * mode to default. The PHY defaults are from get PHY capabilities topology 2120 * with media so call when media is first available. An error is returned if 2121 * called when media is not available. The PHY initialization completed state is 2122 * set here. 2123 * 2124 * These configurations are used when setting PHY 2125 * configuration. The user PHY configuration is updated on set PHY 2126 * configuration. Returns 0 on success, negative on failure 2127 */ 2128 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2129 { 2130 struct ice_aqc_get_phy_caps_data *pcaps; 2131 struct ice_phy_info *phy = &pi->phy; 2132 struct ice_pf *pf = pi->hw->back; 2133 int err; 2134 2135 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2136 return -EIO; 2137 2138 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2139 if (!pcaps) 2140 return -ENOMEM; 2141 2142 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2143 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2144 pcaps, NULL); 2145 else 2146 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2147 pcaps, NULL); 2148 if (err) { 2149 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2150 goto err_out; 2151 } 2152 2153 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2154 2155 /* check if lenient mode is supported and enabled */ 2156 if (ice_fw_supports_link_override(pi->hw) && 2157 !(pcaps->module_compliance_enforcement & 2158 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2159 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2160 2161 /* if the FW supports default PHY configuration mode, then the driver 2162 * does not have to apply link override settings. If not, 2163 * initialize user PHY configuration with link override values 2164 */ 2165 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2166 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2167 ice_init_phy_cfg_dflt_override(pi); 2168 goto out; 2169 } 2170 } 2171 2172 /* if link default override is not enabled, set user flow control and 2173 * FEC settings based on what get_phy_caps returned 2174 */ 2175 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2176 pcaps->link_fec_options); 2177 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2178 2179 out: 2180 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2181 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2182 err_out: 2183 kfree(pcaps); 2184 return err; 2185 } 2186 2187 /** 2188 * ice_configure_phy - configure PHY 2189 * @vsi: VSI of PHY 2190 * 2191 * Set the PHY configuration. If the current PHY configuration is the same as 2192 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2193 * configure the based get PHY capabilities for topology with media. 2194 */ 2195 static int ice_configure_phy(struct ice_vsi *vsi) 2196 { 2197 struct device *dev = ice_pf_to_dev(vsi->back); 2198 struct ice_port_info *pi = vsi->port_info; 2199 struct ice_aqc_get_phy_caps_data *pcaps; 2200 struct ice_aqc_set_phy_cfg_data *cfg; 2201 struct ice_phy_info *phy = &pi->phy; 2202 struct ice_pf *pf = vsi->back; 2203 int err; 2204 2205 /* Ensure we have media as we cannot configure a medialess port */ 2206 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2207 return -ENOMEDIUM; 2208 2209 ice_print_topo_conflict(vsi); 2210 2211 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2212 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2213 return -EPERM; 2214 2215 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2216 return ice_force_phys_link_state(vsi, true); 2217 2218 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2219 if (!pcaps) 2220 return -ENOMEM; 2221 2222 /* Get current PHY config */ 2223 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2224 NULL); 2225 if (err) { 2226 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2227 vsi->vsi_num, err); 2228 goto done; 2229 } 2230 2231 /* If PHY enable link is configured and configuration has not changed, 2232 * there's nothing to do 2233 */ 2234 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2235 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2236 goto done; 2237 2238 /* Use PHY topology as baseline for configuration */ 2239 memset(pcaps, 0, sizeof(*pcaps)); 2240 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2241 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2242 pcaps, NULL); 2243 else 2244 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2245 pcaps, NULL); 2246 if (err) { 2247 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2248 vsi->vsi_num, err); 2249 goto done; 2250 } 2251 2252 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2253 if (!cfg) { 2254 err = -ENOMEM; 2255 goto done; 2256 } 2257 2258 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2259 2260 /* Speed - If default override pending, use curr_user_phy_cfg set in 2261 * ice_init_phy_user_cfg_ldo. 2262 */ 2263 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2264 vsi->back->state)) { 2265 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2266 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2267 } else { 2268 u64 phy_low = 0, phy_high = 0; 2269 2270 ice_update_phy_type(&phy_low, &phy_high, 2271 pi->phy.curr_user_speed_req); 2272 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2273 cfg->phy_type_high = pcaps->phy_type_high & 2274 cpu_to_le64(phy_high); 2275 } 2276 2277 /* Can't provide what was requested; use PHY capabilities */ 2278 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2279 cfg->phy_type_low = pcaps->phy_type_low; 2280 cfg->phy_type_high = pcaps->phy_type_high; 2281 } 2282 2283 /* FEC */ 2284 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2285 2286 /* Can't provide what was requested; use PHY capabilities */ 2287 if (cfg->link_fec_opt != 2288 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2289 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2290 cfg->link_fec_opt = pcaps->link_fec_options; 2291 } 2292 2293 /* Flow Control - always supported; no need to check against 2294 * capabilities 2295 */ 2296 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2297 2298 /* Enable link and link update */ 2299 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2300 2301 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2302 if (err) 2303 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2304 vsi->vsi_num, err); 2305 2306 kfree(cfg); 2307 done: 2308 kfree(pcaps); 2309 return err; 2310 } 2311 2312 /** 2313 * ice_check_media_subtask - Check for media 2314 * @pf: pointer to PF struct 2315 * 2316 * If media is available, then initialize PHY user configuration if it is not 2317 * been, and configure the PHY if the interface is up. 2318 */ 2319 static void ice_check_media_subtask(struct ice_pf *pf) 2320 { 2321 struct ice_port_info *pi; 2322 struct ice_vsi *vsi; 2323 int err; 2324 2325 /* No need to check for media if it's already present */ 2326 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2327 return; 2328 2329 vsi = ice_get_main_vsi(pf); 2330 if (!vsi) 2331 return; 2332 2333 /* Refresh link info and check if media is present */ 2334 pi = vsi->port_info; 2335 err = ice_update_link_info(pi); 2336 if (err) 2337 return; 2338 2339 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2340 2341 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2342 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2343 ice_init_phy_user_cfg(pi); 2344 2345 /* PHY settings are reset on media insertion, reconfigure 2346 * PHY to preserve settings. 2347 */ 2348 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2349 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2350 return; 2351 2352 err = ice_configure_phy(vsi); 2353 if (!err) 2354 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2355 2356 /* A Link Status Event will be generated; the event handler 2357 * will complete bringing the interface up 2358 */ 2359 } 2360 } 2361 2362 /** 2363 * ice_service_task - manage and run subtasks 2364 * @work: pointer to work_struct contained by the PF struct 2365 */ 2366 static void ice_service_task(struct work_struct *work) 2367 { 2368 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2369 unsigned long start_time = jiffies; 2370 2371 /* subtasks */ 2372 2373 /* process reset requests first */ 2374 ice_reset_subtask(pf); 2375 2376 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2377 if (ice_is_reset_in_progress(pf->state) || 2378 test_bit(ICE_SUSPENDED, pf->state) || 2379 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2380 ice_service_task_complete(pf); 2381 return; 2382 } 2383 2384 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2385 struct iidc_event *event; 2386 2387 event = kzalloc(sizeof(*event), GFP_KERNEL); 2388 if (event) { 2389 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2390 /* report the entire OICR value to AUX driver */ 2391 swap(event->reg, pf->oicr_err_reg); 2392 ice_send_event_to_aux(pf, event); 2393 kfree(event); 2394 } 2395 } 2396 2397 /* unplug aux dev per request, if an unplug request came in 2398 * while processing a plug request, this will handle it 2399 */ 2400 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2401 ice_unplug_aux_dev(pf); 2402 2403 /* Plug aux device per request */ 2404 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2405 ice_plug_aux_dev(pf); 2406 2407 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2408 struct iidc_event *event; 2409 2410 event = kzalloc(sizeof(*event), GFP_KERNEL); 2411 if (event) { 2412 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2413 ice_send_event_to_aux(pf, event); 2414 kfree(event); 2415 } 2416 } 2417 2418 ice_clean_adminq_subtask(pf); 2419 ice_check_media_subtask(pf); 2420 ice_check_for_hang_subtask(pf); 2421 ice_sync_fltr_subtask(pf); 2422 ice_handle_mdd_event(pf); 2423 ice_watchdog_subtask(pf); 2424 2425 if (ice_is_safe_mode(pf)) { 2426 ice_service_task_complete(pf); 2427 return; 2428 } 2429 2430 ice_process_vflr_event(pf); 2431 ice_clean_mailboxq_subtask(pf); 2432 ice_clean_sbq_subtask(pf); 2433 ice_sync_arfs_fltrs(pf); 2434 ice_flush_fdir_ctx(pf); 2435 2436 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2437 ice_service_task_complete(pf); 2438 2439 /* If the tasks have taken longer than one service timer period 2440 * or there is more work to be done, reset the service timer to 2441 * schedule the service task now. 2442 */ 2443 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2444 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2446 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2447 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2448 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2449 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2450 mod_timer(&pf->serv_tmr, jiffies); 2451 } 2452 2453 /** 2454 * ice_set_ctrlq_len - helper function to set controlq length 2455 * @hw: pointer to the HW instance 2456 */ 2457 static void ice_set_ctrlq_len(struct ice_hw *hw) 2458 { 2459 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2460 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2461 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2462 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2463 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2464 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2465 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2466 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2467 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2468 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2469 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2470 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2471 } 2472 2473 /** 2474 * ice_schedule_reset - schedule a reset 2475 * @pf: board private structure 2476 * @reset: reset being requested 2477 */ 2478 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2479 { 2480 struct device *dev = ice_pf_to_dev(pf); 2481 2482 /* bail out if earlier reset has failed */ 2483 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2484 dev_dbg(dev, "earlier reset has failed\n"); 2485 return -EIO; 2486 } 2487 /* bail if reset/recovery already in progress */ 2488 if (ice_is_reset_in_progress(pf->state)) { 2489 dev_dbg(dev, "Reset already in progress\n"); 2490 return -EBUSY; 2491 } 2492 2493 switch (reset) { 2494 case ICE_RESET_PFR: 2495 set_bit(ICE_PFR_REQ, pf->state); 2496 break; 2497 case ICE_RESET_CORER: 2498 set_bit(ICE_CORER_REQ, pf->state); 2499 break; 2500 case ICE_RESET_GLOBR: 2501 set_bit(ICE_GLOBR_REQ, pf->state); 2502 break; 2503 default: 2504 return -EINVAL; 2505 } 2506 2507 ice_service_task_schedule(pf); 2508 return 0; 2509 } 2510 2511 /** 2512 * ice_irq_affinity_notify - Callback for affinity changes 2513 * @notify: context as to what irq was changed 2514 * @mask: the new affinity mask 2515 * 2516 * This is a callback function used by the irq_set_affinity_notifier function 2517 * so that we may register to receive changes to the irq affinity masks. 2518 */ 2519 static void 2520 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2521 const cpumask_t *mask) 2522 { 2523 struct ice_q_vector *q_vector = 2524 container_of(notify, struct ice_q_vector, affinity_notify); 2525 2526 cpumask_copy(&q_vector->affinity_mask, mask); 2527 } 2528 2529 /** 2530 * ice_irq_affinity_release - Callback for affinity notifier release 2531 * @ref: internal core kernel usage 2532 * 2533 * This is a callback function used by the irq_set_affinity_notifier function 2534 * to inform the current notification subscriber that they will no longer 2535 * receive notifications. 2536 */ 2537 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2538 2539 /** 2540 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2541 * @vsi: the VSI being configured 2542 */ 2543 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2544 { 2545 struct ice_hw *hw = &vsi->back->hw; 2546 int i; 2547 2548 ice_for_each_q_vector(vsi, i) 2549 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2550 2551 ice_flush(hw); 2552 return 0; 2553 } 2554 2555 /** 2556 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2557 * @vsi: the VSI being configured 2558 * @basename: name for the vector 2559 */ 2560 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2561 { 2562 int q_vectors = vsi->num_q_vectors; 2563 struct ice_pf *pf = vsi->back; 2564 struct device *dev; 2565 int rx_int_idx = 0; 2566 int tx_int_idx = 0; 2567 int vector, err; 2568 int irq_num; 2569 2570 dev = ice_pf_to_dev(pf); 2571 for (vector = 0; vector < q_vectors; vector++) { 2572 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2573 2574 irq_num = q_vector->irq.virq; 2575 2576 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2577 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2578 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2579 tx_int_idx++; 2580 } else if (q_vector->rx.rx_ring) { 2581 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2582 "%s-%s-%d", basename, "rx", rx_int_idx++); 2583 } else if (q_vector->tx.tx_ring) { 2584 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2585 "%s-%s-%d", basename, "tx", tx_int_idx++); 2586 } else { 2587 /* skip this unused q_vector */ 2588 continue; 2589 } 2590 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2591 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2592 IRQF_SHARED, q_vector->name, 2593 q_vector); 2594 else 2595 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2596 0, q_vector->name, q_vector); 2597 if (err) { 2598 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2599 err); 2600 goto free_q_irqs; 2601 } 2602 2603 /* register for affinity change notifications */ 2604 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2605 struct irq_affinity_notify *affinity_notify; 2606 2607 affinity_notify = &q_vector->affinity_notify; 2608 affinity_notify->notify = ice_irq_affinity_notify; 2609 affinity_notify->release = ice_irq_affinity_release; 2610 irq_set_affinity_notifier(irq_num, affinity_notify); 2611 } 2612 2613 /* assign the mask for this irq */ 2614 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2615 } 2616 2617 err = ice_set_cpu_rx_rmap(vsi); 2618 if (err) { 2619 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2620 vsi->vsi_num, ERR_PTR(err)); 2621 goto free_q_irqs; 2622 } 2623 2624 vsi->irqs_ready = true; 2625 return 0; 2626 2627 free_q_irqs: 2628 while (vector--) { 2629 irq_num = vsi->q_vectors[vector]->irq.virq; 2630 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2631 irq_set_affinity_notifier(irq_num, NULL); 2632 irq_update_affinity_hint(irq_num, NULL); 2633 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2634 } 2635 return err; 2636 } 2637 2638 /** 2639 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2640 * @vsi: VSI to setup Tx rings used by XDP 2641 * 2642 * Return 0 on success and negative value on error 2643 */ 2644 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2645 { 2646 struct device *dev = ice_pf_to_dev(vsi->back); 2647 struct ice_tx_desc *tx_desc; 2648 int i, j; 2649 2650 ice_for_each_xdp_txq(vsi, i) { 2651 u16 xdp_q_idx = vsi->alloc_txq + i; 2652 struct ice_ring_stats *ring_stats; 2653 struct ice_tx_ring *xdp_ring; 2654 2655 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2656 if (!xdp_ring) 2657 goto free_xdp_rings; 2658 2659 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2660 if (!ring_stats) { 2661 ice_free_tx_ring(xdp_ring); 2662 goto free_xdp_rings; 2663 } 2664 2665 xdp_ring->ring_stats = ring_stats; 2666 xdp_ring->q_index = xdp_q_idx; 2667 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2668 xdp_ring->vsi = vsi; 2669 xdp_ring->netdev = NULL; 2670 xdp_ring->dev = dev; 2671 xdp_ring->count = vsi->num_tx_desc; 2672 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2673 if (ice_setup_tx_ring(xdp_ring)) 2674 goto free_xdp_rings; 2675 ice_set_ring_xdp(xdp_ring); 2676 spin_lock_init(&xdp_ring->tx_lock); 2677 for (j = 0; j < xdp_ring->count; j++) { 2678 tx_desc = ICE_TX_DESC(xdp_ring, j); 2679 tx_desc->cmd_type_offset_bsz = 0; 2680 } 2681 } 2682 2683 return 0; 2684 2685 free_xdp_rings: 2686 for (; i >= 0; i--) { 2687 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2688 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2689 vsi->xdp_rings[i]->ring_stats = NULL; 2690 ice_free_tx_ring(vsi->xdp_rings[i]); 2691 } 2692 } 2693 return -ENOMEM; 2694 } 2695 2696 /** 2697 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2698 * @vsi: VSI to set the bpf prog on 2699 * @prog: the bpf prog pointer 2700 */ 2701 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2702 { 2703 struct bpf_prog *old_prog; 2704 int i; 2705 2706 old_prog = xchg(&vsi->xdp_prog, prog); 2707 ice_for_each_rxq(vsi, i) 2708 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2709 2710 if (old_prog) 2711 bpf_prog_put(old_prog); 2712 } 2713 2714 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2715 { 2716 struct ice_q_vector *q_vector; 2717 struct ice_tx_ring *ring; 2718 2719 if (static_key_enabled(&ice_xdp_locking_key)) 2720 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2721 2722 q_vector = vsi->rx_rings[qid]->q_vector; 2723 ice_for_each_tx_ring(ring, q_vector->tx) 2724 if (ice_ring_is_xdp(ring)) 2725 return ring; 2726 2727 return NULL; 2728 } 2729 2730 /** 2731 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2732 * @vsi: the VSI with XDP rings being configured 2733 * 2734 * Map XDP rings to interrupt vectors and perform the configuration steps 2735 * dependent on the mapping. 2736 */ 2737 void ice_map_xdp_rings(struct ice_vsi *vsi) 2738 { 2739 int xdp_rings_rem = vsi->num_xdp_txq; 2740 int v_idx, q_idx; 2741 2742 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2743 ice_for_each_q_vector(vsi, v_idx) { 2744 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2745 int xdp_rings_per_v, q_id, q_base; 2746 2747 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2748 vsi->num_q_vectors - v_idx); 2749 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2750 2751 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2752 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2753 2754 xdp_ring->q_vector = q_vector; 2755 xdp_ring->next = q_vector->tx.tx_ring; 2756 q_vector->tx.tx_ring = xdp_ring; 2757 } 2758 xdp_rings_rem -= xdp_rings_per_v; 2759 } 2760 2761 ice_for_each_rxq(vsi, q_idx) { 2762 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2763 q_idx); 2764 ice_tx_xsk_pool(vsi, q_idx); 2765 } 2766 } 2767 2768 /** 2769 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2770 * @vsi: VSI to bring up Tx rings used by XDP 2771 * @prog: bpf program that will be assigned to VSI 2772 * @cfg_type: create from scratch or restore the existing configuration 2773 * 2774 * Return 0 on success and negative value on error 2775 */ 2776 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2777 enum ice_xdp_cfg cfg_type) 2778 { 2779 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2780 struct ice_pf *pf = vsi->back; 2781 struct ice_qs_cfg xdp_qs_cfg = { 2782 .qs_mutex = &pf->avail_q_mutex, 2783 .pf_map = pf->avail_txqs, 2784 .pf_map_size = pf->max_pf_txqs, 2785 .q_count = vsi->num_xdp_txq, 2786 .scatter_count = ICE_MAX_SCATTER_TXQS, 2787 .vsi_map = vsi->txq_map, 2788 .vsi_map_offset = vsi->alloc_txq, 2789 .mapping_mode = ICE_VSI_MAP_CONTIG 2790 }; 2791 struct device *dev; 2792 int status, i; 2793 2794 dev = ice_pf_to_dev(pf); 2795 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2796 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2797 if (!vsi->xdp_rings) 2798 return -ENOMEM; 2799 2800 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2801 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2802 goto err_map_xdp; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 netdev_warn(vsi->netdev, 2806 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2807 2808 if (ice_xdp_alloc_setup_rings(vsi)) 2809 goto clear_xdp_rings; 2810 2811 /* omit the scheduler update if in reset path; XDP queues will be 2812 * taken into account at the end of ice_vsi_rebuild, where 2813 * ice_cfg_vsi_lan is being called 2814 */ 2815 if (cfg_type == ICE_XDP_CFG_PART) 2816 return 0; 2817 2818 ice_map_xdp_rings(vsi); 2819 2820 /* tell the Tx scheduler that right now we have 2821 * additional queues 2822 */ 2823 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2824 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2825 2826 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2827 max_txqs); 2828 if (status) { 2829 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2830 status); 2831 goto clear_xdp_rings; 2832 } 2833 2834 /* assign the prog only when it's not already present on VSI; 2835 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2836 * VSI rebuild that happens under ethtool -L can expose us to 2837 * the bpf_prog refcount issues as we would be swapping same 2838 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2839 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2840 * this is not harmful as dev_xdp_install bumps the refcount 2841 * before calling the op exposed by the driver; 2842 */ 2843 if (!ice_is_xdp_ena_vsi(vsi)) 2844 ice_vsi_assign_bpf_prog(vsi, prog); 2845 2846 return 0; 2847 clear_xdp_rings: 2848 ice_for_each_xdp_txq(vsi, i) 2849 if (vsi->xdp_rings[i]) { 2850 kfree_rcu(vsi->xdp_rings[i], rcu); 2851 vsi->xdp_rings[i] = NULL; 2852 } 2853 2854 err_map_xdp: 2855 mutex_lock(&pf->avail_q_mutex); 2856 ice_for_each_xdp_txq(vsi, i) { 2857 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2858 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2859 } 2860 mutex_unlock(&pf->avail_q_mutex); 2861 2862 devm_kfree(dev, vsi->xdp_rings); 2863 return -ENOMEM; 2864 } 2865 2866 /** 2867 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2868 * @vsi: VSI to remove XDP rings 2869 * @cfg_type: disable XDP permanently or allow it to be restored later 2870 * 2871 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2872 * resources 2873 */ 2874 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2875 { 2876 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2877 struct ice_pf *pf = vsi->back; 2878 int i, v_idx; 2879 2880 /* q_vectors are freed in reset path so there's no point in detaching 2881 * rings 2882 */ 2883 if (cfg_type == ICE_XDP_CFG_PART) 2884 goto free_qmap; 2885 2886 ice_for_each_q_vector(vsi, v_idx) { 2887 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2888 struct ice_tx_ring *ring; 2889 2890 ice_for_each_tx_ring(ring, q_vector->tx) 2891 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2892 break; 2893 2894 /* restore the value of last node prior to XDP setup */ 2895 q_vector->tx.tx_ring = ring; 2896 } 2897 2898 free_qmap: 2899 mutex_lock(&pf->avail_q_mutex); 2900 ice_for_each_xdp_txq(vsi, i) { 2901 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2902 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2903 } 2904 mutex_unlock(&pf->avail_q_mutex); 2905 2906 ice_for_each_xdp_txq(vsi, i) 2907 if (vsi->xdp_rings[i]) { 2908 if (vsi->xdp_rings[i]->desc) { 2909 synchronize_rcu(); 2910 ice_free_tx_ring(vsi->xdp_rings[i]); 2911 } 2912 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2913 vsi->xdp_rings[i]->ring_stats = NULL; 2914 kfree_rcu(vsi->xdp_rings[i], rcu); 2915 vsi->xdp_rings[i] = NULL; 2916 } 2917 2918 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2919 vsi->xdp_rings = NULL; 2920 2921 if (static_key_enabled(&ice_xdp_locking_key)) 2922 static_branch_dec(&ice_xdp_locking_key); 2923 2924 if (cfg_type == ICE_XDP_CFG_PART) 2925 return 0; 2926 2927 ice_vsi_assign_bpf_prog(vsi, NULL); 2928 2929 /* notify Tx scheduler that we destroyed XDP queues and bring 2930 * back the old number of child nodes 2931 */ 2932 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2933 max_txqs[i] = vsi->num_txq; 2934 2935 /* change number of XDP Tx queues to 0 */ 2936 vsi->num_xdp_txq = 0; 2937 2938 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2939 max_txqs); 2940 } 2941 2942 /** 2943 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2944 * @vsi: VSI to schedule napi on 2945 */ 2946 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2947 { 2948 int i; 2949 2950 ice_for_each_rxq(vsi, i) { 2951 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2952 2953 if (READ_ONCE(rx_ring->xsk_pool)) 2954 napi_schedule(&rx_ring->q_vector->napi); 2955 } 2956 } 2957 2958 /** 2959 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2960 * @vsi: VSI to determine the count of XDP Tx qs 2961 * 2962 * returns 0 if Tx qs count is higher than at least half of CPU count, 2963 * -ENOMEM otherwise 2964 */ 2965 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2966 { 2967 u16 avail = ice_get_avail_txq_count(vsi->back); 2968 u16 cpus = num_possible_cpus(); 2969 2970 if (avail < cpus / 2) 2971 return -ENOMEM; 2972 2973 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2974 2975 if (vsi->num_xdp_txq < cpus) 2976 static_branch_inc(&ice_xdp_locking_key); 2977 2978 return 0; 2979 } 2980 2981 /** 2982 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2983 * @vsi: Pointer to VSI structure 2984 */ 2985 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2986 { 2987 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2988 return ICE_RXBUF_1664; 2989 else 2990 return ICE_RXBUF_3072; 2991 } 2992 2993 /** 2994 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2995 * @vsi: VSI to setup XDP for 2996 * @prog: XDP program 2997 * @extack: netlink extended ack 2998 */ 2999 static int 3000 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3001 struct netlink_ext_ack *extack) 3002 { 3003 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3004 bool if_running = netif_running(vsi->netdev); 3005 int ret = 0, xdp_ring_err = 0; 3006 3007 if (prog && !prog->aux->xdp_has_frags) { 3008 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3009 NL_SET_ERR_MSG_MOD(extack, 3010 "MTU is too large for linear frames and XDP prog does not support frags"); 3011 return -EOPNOTSUPP; 3012 } 3013 } 3014 3015 /* hot swap progs and avoid toggling link */ 3016 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 3017 ice_vsi_assign_bpf_prog(vsi, prog); 3018 return 0; 3019 } 3020 3021 /* need to stop netdev while setting up the program for Rx rings */ 3022 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 3023 ret = ice_down(vsi); 3024 if (ret) { 3025 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3026 return ret; 3027 } 3028 } 3029 3030 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3031 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3032 if (xdp_ring_err) { 3033 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3034 } else { 3035 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3036 ICE_XDP_CFG_FULL); 3037 if (xdp_ring_err) 3038 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3039 } 3040 xdp_features_set_redirect_target(vsi->netdev, true); 3041 /* reallocate Rx queues that are used for zero-copy */ 3042 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3043 if (xdp_ring_err) 3044 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3045 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3046 xdp_features_clear_redirect_target(vsi->netdev); 3047 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3048 if (xdp_ring_err) 3049 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3050 /* reallocate Rx queues that were used for zero-copy */ 3051 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3052 if (xdp_ring_err) 3053 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3054 } 3055 3056 if (if_running) 3057 ret = ice_up(vsi); 3058 3059 if (!ret && prog) 3060 ice_vsi_rx_napi_schedule(vsi); 3061 3062 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3063 } 3064 3065 /** 3066 * ice_xdp_safe_mode - XDP handler for safe mode 3067 * @dev: netdevice 3068 * @xdp: XDP command 3069 */ 3070 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3071 struct netdev_bpf *xdp) 3072 { 3073 NL_SET_ERR_MSG_MOD(xdp->extack, 3074 "Please provide working DDP firmware package in order to use XDP\n" 3075 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3076 return -EOPNOTSUPP; 3077 } 3078 3079 /** 3080 * ice_xdp - implements XDP handler 3081 * @dev: netdevice 3082 * @xdp: XDP command 3083 */ 3084 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3085 { 3086 struct ice_netdev_priv *np = netdev_priv(dev); 3087 struct ice_vsi *vsi = np->vsi; 3088 3089 if (vsi->type != ICE_VSI_PF) { 3090 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3091 return -EINVAL; 3092 } 3093 3094 switch (xdp->command) { 3095 case XDP_SETUP_PROG: 3096 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3097 case XDP_SETUP_XSK_POOL: 3098 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3099 xdp->xsk.queue_id); 3100 default: 3101 return -EINVAL; 3102 } 3103 } 3104 3105 /** 3106 * ice_ena_misc_vector - enable the non-queue interrupts 3107 * @pf: board private structure 3108 */ 3109 static void ice_ena_misc_vector(struct ice_pf *pf) 3110 { 3111 struct ice_hw *hw = &pf->hw; 3112 u32 pf_intr_start_offset; 3113 u32 val; 3114 3115 /* Disable anti-spoof detection interrupt to prevent spurious event 3116 * interrupts during a function reset. Anti-spoof functionally is 3117 * still supported. 3118 */ 3119 val = rd32(hw, GL_MDCK_TX_TDPU); 3120 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3121 wr32(hw, GL_MDCK_TX_TDPU, val); 3122 3123 /* clear things first */ 3124 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3125 rd32(hw, PFINT_OICR); /* read to clear */ 3126 3127 val = (PFINT_OICR_ECC_ERR_M | 3128 PFINT_OICR_MAL_DETECT_M | 3129 PFINT_OICR_GRST_M | 3130 PFINT_OICR_PCI_EXCEPTION_M | 3131 PFINT_OICR_VFLR_M | 3132 PFINT_OICR_HMC_ERR_M | 3133 PFINT_OICR_PE_PUSH_M | 3134 PFINT_OICR_PE_CRITERR_M); 3135 3136 wr32(hw, PFINT_OICR_ENA, val); 3137 3138 /* SW_ITR_IDX = 0, but don't change INTENA */ 3139 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3140 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3141 3142 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3143 return; 3144 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3145 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3146 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3147 } 3148 3149 /** 3150 * ice_ll_ts_intr - ll_ts interrupt handler 3151 * @irq: interrupt number 3152 * @data: pointer to a q_vector 3153 */ 3154 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3155 { 3156 struct ice_pf *pf = data; 3157 u32 pf_intr_start_offset; 3158 struct ice_ptp_tx *tx; 3159 unsigned long flags; 3160 struct ice_hw *hw; 3161 u32 val; 3162 u8 idx; 3163 3164 hw = &pf->hw; 3165 tx = &pf->ptp.port.tx; 3166 spin_lock_irqsave(&tx->lock, flags); 3167 ice_ptp_complete_tx_single_tstamp(tx); 3168 3169 idx = find_next_bit_wrap(tx->in_use, tx->len, 3170 tx->last_ll_ts_idx_read + 1); 3171 if (idx != tx->len) 3172 ice_ptp_req_tx_single_tstamp(tx, idx); 3173 spin_unlock_irqrestore(&tx->lock, flags); 3174 3175 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3176 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3177 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3178 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3179 val); 3180 3181 return IRQ_HANDLED; 3182 } 3183 3184 /** 3185 * ice_misc_intr - misc interrupt handler 3186 * @irq: interrupt number 3187 * @data: pointer to a q_vector 3188 */ 3189 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3190 { 3191 struct ice_pf *pf = (struct ice_pf *)data; 3192 irqreturn_t ret = IRQ_HANDLED; 3193 struct ice_hw *hw = &pf->hw; 3194 struct device *dev; 3195 u32 oicr, ena_mask; 3196 3197 dev = ice_pf_to_dev(pf); 3198 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3199 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3200 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3201 3202 oicr = rd32(hw, PFINT_OICR); 3203 ena_mask = rd32(hw, PFINT_OICR_ENA); 3204 3205 if (oicr & PFINT_OICR_SWINT_M) { 3206 ena_mask &= ~PFINT_OICR_SWINT_M; 3207 pf->sw_int_count++; 3208 } 3209 3210 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3211 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3212 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3213 } 3214 if (oicr & PFINT_OICR_VFLR_M) { 3215 /* disable any further VFLR event notifications */ 3216 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3217 u32 reg = rd32(hw, PFINT_OICR_ENA); 3218 3219 reg &= ~PFINT_OICR_VFLR_M; 3220 wr32(hw, PFINT_OICR_ENA, reg); 3221 } else { 3222 ena_mask &= ~PFINT_OICR_VFLR_M; 3223 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3224 } 3225 } 3226 3227 if (oicr & PFINT_OICR_GRST_M) { 3228 u32 reset; 3229 3230 /* we have a reset warning */ 3231 ena_mask &= ~PFINT_OICR_GRST_M; 3232 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3233 rd32(hw, GLGEN_RSTAT)); 3234 3235 if (reset == ICE_RESET_CORER) 3236 pf->corer_count++; 3237 else if (reset == ICE_RESET_GLOBR) 3238 pf->globr_count++; 3239 else if (reset == ICE_RESET_EMPR) 3240 pf->empr_count++; 3241 else 3242 dev_dbg(dev, "Invalid reset type %d\n", reset); 3243 3244 /* If a reset cycle isn't already in progress, we set a bit in 3245 * pf->state so that the service task can start a reset/rebuild. 3246 */ 3247 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3248 if (reset == ICE_RESET_CORER) 3249 set_bit(ICE_CORER_RECV, pf->state); 3250 else if (reset == ICE_RESET_GLOBR) 3251 set_bit(ICE_GLOBR_RECV, pf->state); 3252 else 3253 set_bit(ICE_EMPR_RECV, pf->state); 3254 3255 /* There are couple of different bits at play here. 3256 * hw->reset_ongoing indicates whether the hardware is 3257 * in reset. This is set to true when a reset interrupt 3258 * is received and set back to false after the driver 3259 * has determined that the hardware is out of reset. 3260 * 3261 * ICE_RESET_OICR_RECV in pf->state indicates 3262 * that a post reset rebuild is required before the 3263 * driver is operational again. This is set above. 3264 * 3265 * As this is the start of the reset/rebuild cycle, set 3266 * both to indicate that. 3267 */ 3268 hw->reset_ongoing = true; 3269 } 3270 } 3271 3272 if (oicr & PFINT_OICR_TSYN_TX_M) { 3273 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3274 if (ice_pf_state_is_nominal(pf) && 3275 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3276 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3277 unsigned long flags; 3278 u8 idx; 3279 3280 spin_lock_irqsave(&tx->lock, flags); 3281 idx = find_next_bit_wrap(tx->in_use, tx->len, 3282 tx->last_ll_ts_idx_read + 1); 3283 if (idx != tx->len) 3284 ice_ptp_req_tx_single_tstamp(tx, idx); 3285 spin_unlock_irqrestore(&tx->lock, flags); 3286 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3287 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3288 ret = IRQ_WAKE_THREAD; 3289 } 3290 } 3291 3292 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3293 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3294 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3295 3296 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3297 3298 if (ice_pf_src_tmr_owned(pf)) { 3299 /* Save EVENTs from GLTSYN register */ 3300 pf->ptp.ext_ts_irq |= gltsyn_stat & 3301 (GLTSYN_STAT_EVENT0_M | 3302 GLTSYN_STAT_EVENT1_M | 3303 GLTSYN_STAT_EVENT2_M); 3304 3305 ice_ptp_extts_event(pf); 3306 } 3307 } 3308 3309 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3310 if (oicr & ICE_AUX_CRIT_ERR) { 3311 pf->oicr_err_reg |= oicr; 3312 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3313 ena_mask &= ~ICE_AUX_CRIT_ERR; 3314 } 3315 3316 /* Report any remaining unexpected interrupts */ 3317 oicr &= ena_mask; 3318 if (oicr) { 3319 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3320 /* If a critical error is pending there is no choice but to 3321 * reset the device. 3322 */ 3323 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3324 PFINT_OICR_ECC_ERR_M)) { 3325 set_bit(ICE_PFR_REQ, pf->state); 3326 } 3327 } 3328 ice_service_task_schedule(pf); 3329 if (ret == IRQ_HANDLED) 3330 ice_irq_dynamic_ena(hw, NULL, NULL); 3331 3332 return ret; 3333 } 3334 3335 /** 3336 * ice_misc_intr_thread_fn - misc interrupt thread function 3337 * @irq: interrupt number 3338 * @data: pointer to a q_vector 3339 */ 3340 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3341 { 3342 struct ice_pf *pf = data; 3343 struct ice_hw *hw; 3344 3345 hw = &pf->hw; 3346 3347 if (ice_is_reset_in_progress(pf->state)) 3348 goto skip_irq; 3349 3350 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3351 /* Process outstanding Tx timestamps. If there is more work, 3352 * re-arm the interrupt to trigger again. 3353 */ 3354 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3355 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3356 ice_flush(hw); 3357 } 3358 } 3359 3360 skip_irq: 3361 ice_irq_dynamic_ena(hw, NULL, NULL); 3362 3363 return IRQ_HANDLED; 3364 } 3365 3366 /** 3367 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3368 * @hw: pointer to HW structure 3369 */ 3370 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3371 { 3372 /* disable Admin queue Interrupt causes */ 3373 wr32(hw, PFINT_FW_CTL, 3374 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3375 3376 /* disable Mailbox queue Interrupt causes */ 3377 wr32(hw, PFINT_MBX_CTL, 3378 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3379 3380 wr32(hw, PFINT_SB_CTL, 3381 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3382 3383 /* disable Control queue Interrupt causes */ 3384 wr32(hw, PFINT_OICR_CTL, 3385 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3386 3387 ice_flush(hw); 3388 } 3389 3390 /** 3391 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3392 * @pf: board private structure 3393 */ 3394 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3395 { 3396 int irq_num = pf->ll_ts_irq.virq; 3397 3398 synchronize_irq(irq_num); 3399 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3400 3401 ice_free_irq(pf, pf->ll_ts_irq); 3402 } 3403 3404 /** 3405 * ice_free_irq_msix_misc - Unroll misc vector setup 3406 * @pf: board private structure 3407 */ 3408 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3409 { 3410 int misc_irq_num = pf->oicr_irq.virq; 3411 struct ice_hw *hw = &pf->hw; 3412 3413 ice_dis_ctrlq_interrupts(hw); 3414 3415 /* disable OICR interrupt */ 3416 wr32(hw, PFINT_OICR_ENA, 0); 3417 ice_flush(hw); 3418 3419 synchronize_irq(misc_irq_num); 3420 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3421 3422 ice_free_irq(pf, pf->oicr_irq); 3423 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3424 ice_free_irq_msix_ll_ts(pf); 3425 } 3426 3427 /** 3428 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3429 * @hw: pointer to HW structure 3430 * @reg_idx: HW vector index to associate the control queue interrupts with 3431 */ 3432 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3433 { 3434 u32 val; 3435 3436 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3437 PFINT_OICR_CTL_CAUSE_ENA_M); 3438 wr32(hw, PFINT_OICR_CTL, val); 3439 3440 /* enable Admin queue Interrupt causes */ 3441 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3442 PFINT_FW_CTL_CAUSE_ENA_M); 3443 wr32(hw, PFINT_FW_CTL, val); 3444 3445 /* enable Mailbox queue Interrupt causes */ 3446 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3447 PFINT_MBX_CTL_CAUSE_ENA_M); 3448 wr32(hw, PFINT_MBX_CTL, val); 3449 3450 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3451 /* enable Sideband queue Interrupt causes */ 3452 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3453 PFINT_SB_CTL_CAUSE_ENA_M); 3454 wr32(hw, PFINT_SB_CTL, val); 3455 } 3456 3457 ice_flush(hw); 3458 } 3459 3460 /** 3461 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3462 * @pf: board private structure 3463 * 3464 * This sets up the handler for MSIX 0, which is used to manage the 3465 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3466 * when in MSI or Legacy interrupt mode. 3467 */ 3468 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3469 { 3470 struct device *dev = ice_pf_to_dev(pf); 3471 struct ice_hw *hw = &pf->hw; 3472 u32 pf_intr_start_offset; 3473 struct msi_map irq; 3474 int err = 0; 3475 3476 if (!pf->int_name[0]) 3477 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3478 dev_driver_string(dev), dev_name(dev)); 3479 3480 if (!pf->int_name_ll_ts[0]) 3481 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3482 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3483 /* Do not request IRQ but do enable OICR interrupt since settings are 3484 * lost during reset. Note that this function is called only during 3485 * rebuild path and not while reset is in progress. 3486 */ 3487 if (ice_is_reset_in_progress(pf->state)) 3488 goto skip_req_irq; 3489 3490 /* reserve one vector in irq_tracker for misc interrupts */ 3491 irq = ice_alloc_irq(pf, false); 3492 if (irq.index < 0) 3493 return irq.index; 3494 3495 pf->oicr_irq = irq; 3496 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3497 ice_misc_intr_thread_fn, 0, 3498 pf->int_name, pf); 3499 if (err) { 3500 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3501 pf->int_name, err); 3502 ice_free_irq(pf, pf->oicr_irq); 3503 return err; 3504 } 3505 3506 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3507 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3508 goto skip_req_irq; 3509 3510 irq = ice_alloc_irq(pf, false); 3511 if (irq.index < 0) 3512 return irq.index; 3513 3514 pf->ll_ts_irq = irq; 3515 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3516 pf->int_name_ll_ts, pf); 3517 if (err) { 3518 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3519 pf->int_name_ll_ts, err); 3520 ice_free_irq(pf, pf->ll_ts_irq); 3521 return err; 3522 } 3523 3524 skip_req_irq: 3525 ice_ena_misc_vector(pf); 3526 3527 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3528 /* This enables LL TS interrupt */ 3529 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3530 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3531 wr32(hw, PFINT_SB_CTL, 3532 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3533 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3534 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3535 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3536 3537 ice_flush(hw); 3538 ice_irq_dynamic_ena(hw, NULL, NULL); 3539 3540 return 0; 3541 } 3542 3543 /** 3544 * ice_napi_add - register NAPI handler for the VSI 3545 * @vsi: VSI for which NAPI handler is to be registered 3546 * 3547 * This function is only called in the driver's load path. Registering the NAPI 3548 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3549 * reset/rebuild, etc.) 3550 */ 3551 static void ice_napi_add(struct ice_vsi *vsi) 3552 { 3553 int v_idx; 3554 3555 if (!vsi->netdev) 3556 return; 3557 3558 ice_for_each_q_vector(vsi, v_idx) { 3559 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3560 ice_napi_poll); 3561 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3562 } 3563 } 3564 3565 /** 3566 * ice_set_ops - set netdev and ethtools ops for the given netdev 3567 * @vsi: the VSI associated with the new netdev 3568 */ 3569 static void ice_set_ops(struct ice_vsi *vsi) 3570 { 3571 struct net_device *netdev = vsi->netdev; 3572 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3573 3574 if (ice_is_safe_mode(pf)) { 3575 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3576 ice_set_ethtool_safe_mode_ops(netdev); 3577 return; 3578 } 3579 3580 netdev->netdev_ops = &ice_netdev_ops; 3581 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3582 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3583 ice_set_ethtool_ops(netdev); 3584 3585 if (vsi->type != ICE_VSI_PF) 3586 return; 3587 3588 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3589 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3590 NETDEV_XDP_ACT_RX_SG; 3591 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3592 } 3593 3594 /** 3595 * ice_set_netdev_features - set features for the given netdev 3596 * @netdev: netdev instance 3597 */ 3598 static void ice_set_netdev_features(struct net_device *netdev) 3599 { 3600 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3601 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3602 netdev_features_t csumo_features; 3603 netdev_features_t vlano_features; 3604 netdev_features_t dflt_features; 3605 netdev_features_t tso_features; 3606 3607 if (ice_is_safe_mode(pf)) { 3608 /* safe mode */ 3609 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3610 netdev->hw_features = netdev->features; 3611 return; 3612 } 3613 3614 dflt_features = NETIF_F_SG | 3615 NETIF_F_HIGHDMA | 3616 NETIF_F_NTUPLE | 3617 NETIF_F_RXHASH; 3618 3619 csumo_features = NETIF_F_RXCSUM | 3620 NETIF_F_IP_CSUM | 3621 NETIF_F_SCTP_CRC | 3622 NETIF_F_IPV6_CSUM; 3623 3624 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3625 NETIF_F_HW_VLAN_CTAG_TX | 3626 NETIF_F_HW_VLAN_CTAG_RX; 3627 3628 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3629 if (is_dvm_ena) 3630 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3631 3632 tso_features = NETIF_F_TSO | 3633 NETIF_F_TSO_ECN | 3634 NETIF_F_TSO6 | 3635 NETIF_F_GSO_GRE | 3636 NETIF_F_GSO_UDP_TUNNEL | 3637 NETIF_F_GSO_GRE_CSUM | 3638 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3639 NETIF_F_GSO_PARTIAL | 3640 NETIF_F_GSO_IPXIP4 | 3641 NETIF_F_GSO_IPXIP6 | 3642 NETIF_F_GSO_UDP_L4; 3643 3644 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3645 NETIF_F_GSO_GRE_CSUM; 3646 /* set features that user can change */ 3647 netdev->hw_features = dflt_features | csumo_features | 3648 vlano_features | tso_features; 3649 3650 /* add support for HW_CSUM on packets with MPLS header */ 3651 netdev->mpls_features = NETIF_F_HW_CSUM | 3652 NETIF_F_TSO | 3653 NETIF_F_TSO6; 3654 3655 /* enable features */ 3656 netdev->features |= netdev->hw_features; 3657 3658 netdev->hw_features |= NETIF_F_HW_TC; 3659 netdev->hw_features |= NETIF_F_LOOPBACK; 3660 3661 /* encap and VLAN devices inherit default, csumo and tso features */ 3662 netdev->hw_enc_features |= dflt_features | csumo_features | 3663 tso_features; 3664 netdev->vlan_features |= dflt_features | csumo_features | 3665 tso_features; 3666 3667 /* advertise support but don't enable by default since only one type of 3668 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3669 * type turns on the other has to be turned off. This is enforced by the 3670 * ice_fix_features() ndo callback. 3671 */ 3672 if (is_dvm_ena) 3673 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3674 NETIF_F_HW_VLAN_STAG_TX; 3675 3676 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3677 * be changed at runtime 3678 */ 3679 netdev->hw_features |= NETIF_F_RXFCS; 3680 3681 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3682 } 3683 3684 /** 3685 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3686 * @lut: Lookup table 3687 * @rss_table_size: Lookup table size 3688 * @rss_size: Range of queue number for hashing 3689 */ 3690 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3691 { 3692 u16 i; 3693 3694 for (i = 0; i < rss_table_size; i++) 3695 lut[i] = i % rss_size; 3696 } 3697 3698 /** 3699 * ice_pf_vsi_setup - Set up a PF VSI 3700 * @pf: board private structure 3701 * @pi: pointer to the port_info instance 3702 * 3703 * Returns pointer to the successfully allocated VSI software struct 3704 * on success, otherwise returns NULL on failure. 3705 */ 3706 static struct ice_vsi * 3707 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3708 { 3709 struct ice_vsi_cfg_params params = {}; 3710 3711 params.type = ICE_VSI_PF; 3712 params.port_info = pi; 3713 params.flags = ICE_VSI_FLAG_INIT; 3714 3715 return ice_vsi_setup(pf, ¶ms); 3716 } 3717 3718 static struct ice_vsi * 3719 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3720 struct ice_channel *ch) 3721 { 3722 struct ice_vsi_cfg_params params = {}; 3723 3724 params.type = ICE_VSI_CHNL; 3725 params.port_info = pi; 3726 params.ch = ch; 3727 params.flags = ICE_VSI_FLAG_INIT; 3728 3729 return ice_vsi_setup(pf, ¶ms); 3730 } 3731 3732 /** 3733 * ice_ctrl_vsi_setup - Set up a control VSI 3734 * @pf: board private structure 3735 * @pi: pointer to the port_info instance 3736 * 3737 * Returns pointer to the successfully allocated VSI software struct 3738 * on success, otherwise returns NULL on failure. 3739 */ 3740 static struct ice_vsi * 3741 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3742 { 3743 struct ice_vsi_cfg_params params = {}; 3744 3745 params.type = ICE_VSI_CTRL; 3746 params.port_info = pi; 3747 params.flags = ICE_VSI_FLAG_INIT; 3748 3749 return ice_vsi_setup(pf, ¶ms); 3750 } 3751 3752 /** 3753 * ice_lb_vsi_setup - Set up a loopback VSI 3754 * @pf: board private structure 3755 * @pi: pointer to the port_info instance 3756 * 3757 * Returns pointer to the successfully allocated VSI software struct 3758 * on success, otherwise returns NULL on failure. 3759 */ 3760 struct ice_vsi * 3761 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3762 { 3763 struct ice_vsi_cfg_params params = {}; 3764 3765 params.type = ICE_VSI_LB; 3766 params.port_info = pi; 3767 params.flags = ICE_VSI_FLAG_INIT; 3768 3769 return ice_vsi_setup(pf, ¶ms); 3770 } 3771 3772 /** 3773 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3774 * @netdev: network interface to be adjusted 3775 * @proto: VLAN TPID 3776 * @vid: VLAN ID to be added 3777 * 3778 * net_device_ops implementation for adding VLAN IDs 3779 */ 3780 static int 3781 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3782 { 3783 struct ice_netdev_priv *np = netdev_priv(netdev); 3784 struct ice_vsi_vlan_ops *vlan_ops; 3785 struct ice_vsi *vsi = np->vsi; 3786 struct ice_vlan vlan; 3787 int ret; 3788 3789 /* VLAN 0 is added by default during load/reset */ 3790 if (!vid) 3791 return 0; 3792 3793 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3794 usleep_range(1000, 2000); 3795 3796 /* Add multicast promisc rule for the VLAN ID to be added if 3797 * all-multicast is currently enabled. 3798 */ 3799 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3800 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3801 ICE_MCAST_VLAN_PROMISC_BITS, 3802 vid); 3803 if (ret) 3804 goto finish; 3805 } 3806 3807 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3808 3809 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3810 * packets aren't pruned by the device's internal switch on Rx 3811 */ 3812 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3813 ret = vlan_ops->add_vlan(vsi, &vlan); 3814 if (ret) 3815 goto finish; 3816 3817 /* If all-multicast is currently enabled and this VLAN ID is only one 3818 * besides VLAN-0 we have to update look-up type of multicast promisc 3819 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3820 */ 3821 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3822 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3823 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3824 ICE_MCAST_PROMISC_BITS, 0); 3825 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3826 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3827 } 3828 3829 finish: 3830 clear_bit(ICE_CFG_BUSY, vsi->state); 3831 3832 return ret; 3833 } 3834 3835 /** 3836 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3837 * @netdev: network interface to be adjusted 3838 * @proto: VLAN TPID 3839 * @vid: VLAN ID to be removed 3840 * 3841 * net_device_ops implementation for removing VLAN IDs 3842 */ 3843 static int 3844 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3845 { 3846 struct ice_netdev_priv *np = netdev_priv(netdev); 3847 struct ice_vsi_vlan_ops *vlan_ops; 3848 struct ice_vsi *vsi = np->vsi; 3849 struct ice_vlan vlan; 3850 int ret; 3851 3852 /* don't allow removal of VLAN 0 */ 3853 if (!vid) 3854 return 0; 3855 3856 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3857 usleep_range(1000, 2000); 3858 3859 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3860 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3861 if (ret) { 3862 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3863 vsi->vsi_num); 3864 vsi->current_netdev_flags |= IFF_ALLMULTI; 3865 } 3866 3867 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3868 3869 /* Make sure VLAN delete is successful before updating VLAN 3870 * information 3871 */ 3872 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3873 ret = vlan_ops->del_vlan(vsi, &vlan); 3874 if (ret) 3875 goto finish; 3876 3877 /* Remove multicast promisc rule for the removed VLAN ID if 3878 * all-multicast is enabled. 3879 */ 3880 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3881 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3882 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3883 3884 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3885 /* Update look-up type of multicast promisc rule for VLAN 0 3886 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3887 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3888 */ 3889 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3890 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3891 ICE_MCAST_VLAN_PROMISC_BITS, 3892 0); 3893 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3894 ICE_MCAST_PROMISC_BITS, 0); 3895 } 3896 } 3897 3898 finish: 3899 clear_bit(ICE_CFG_BUSY, vsi->state); 3900 3901 return ret; 3902 } 3903 3904 /** 3905 * ice_rep_indr_tc_block_unbind 3906 * @cb_priv: indirection block private data 3907 */ 3908 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3909 { 3910 struct ice_indr_block_priv *indr_priv = cb_priv; 3911 3912 list_del(&indr_priv->list); 3913 kfree(indr_priv); 3914 } 3915 3916 /** 3917 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3918 * @vsi: VSI struct which has the netdev 3919 */ 3920 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3921 { 3922 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3923 3924 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3925 ice_rep_indr_tc_block_unbind); 3926 } 3927 3928 /** 3929 * ice_tc_indir_block_register - Register TC indirect block notifications 3930 * @vsi: VSI struct which has the netdev 3931 * 3932 * Returns 0 on success, negative value on failure 3933 */ 3934 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3935 { 3936 struct ice_netdev_priv *np; 3937 3938 if (!vsi || !vsi->netdev) 3939 return -EINVAL; 3940 3941 np = netdev_priv(vsi->netdev); 3942 3943 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3944 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3945 } 3946 3947 /** 3948 * ice_get_avail_q_count - Get count of queues in use 3949 * @pf_qmap: bitmap to get queue use count from 3950 * @lock: pointer to a mutex that protects access to pf_qmap 3951 * @size: size of the bitmap 3952 */ 3953 static u16 3954 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3955 { 3956 unsigned long bit; 3957 u16 count = 0; 3958 3959 mutex_lock(lock); 3960 for_each_clear_bit(bit, pf_qmap, size) 3961 count++; 3962 mutex_unlock(lock); 3963 3964 return count; 3965 } 3966 3967 /** 3968 * ice_get_avail_txq_count - Get count of Tx queues in use 3969 * @pf: pointer to an ice_pf instance 3970 */ 3971 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3972 { 3973 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3974 pf->max_pf_txqs); 3975 } 3976 3977 /** 3978 * ice_get_avail_rxq_count - Get count of Rx queues in use 3979 * @pf: pointer to an ice_pf instance 3980 */ 3981 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3982 { 3983 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3984 pf->max_pf_rxqs); 3985 } 3986 3987 /** 3988 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3989 * @pf: board private structure to initialize 3990 */ 3991 static void ice_deinit_pf(struct ice_pf *pf) 3992 { 3993 ice_service_task_stop(pf); 3994 mutex_destroy(&pf->lag_mutex); 3995 mutex_destroy(&pf->adev_mutex); 3996 mutex_destroy(&pf->sw_mutex); 3997 mutex_destroy(&pf->tc_mutex); 3998 mutex_destroy(&pf->avail_q_mutex); 3999 mutex_destroy(&pf->vfs.table_lock); 4000 4001 if (pf->avail_txqs) { 4002 bitmap_free(pf->avail_txqs); 4003 pf->avail_txqs = NULL; 4004 } 4005 4006 if (pf->avail_rxqs) { 4007 bitmap_free(pf->avail_rxqs); 4008 pf->avail_rxqs = NULL; 4009 } 4010 4011 if (pf->ptp.clock) 4012 ptp_clock_unregister(pf->ptp.clock); 4013 } 4014 4015 /** 4016 * ice_set_pf_caps - set PFs capability flags 4017 * @pf: pointer to the PF instance 4018 */ 4019 static void ice_set_pf_caps(struct ice_pf *pf) 4020 { 4021 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4022 4023 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4024 if (func_caps->common_cap.rdma) 4025 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4026 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4027 if (func_caps->common_cap.dcb) 4028 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4029 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4030 if (func_caps->common_cap.sr_iov_1_1) { 4031 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4032 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4033 ICE_MAX_SRIOV_VFS); 4034 } 4035 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4036 if (func_caps->common_cap.rss_table_size) 4037 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4038 4039 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4040 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4041 u16 unused; 4042 4043 /* ctrl_vsi_idx will be set to a valid value when flow director 4044 * is setup by ice_init_fdir 4045 */ 4046 pf->ctrl_vsi_idx = ICE_NO_VSI; 4047 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4048 /* force guaranteed filter pool for PF */ 4049 ice_alloc_fd_guar_item(&pf->hw, &unused, 4050 func_caps->fd_fltr_guar); 4051 /* force shared filter pool for PF */ 4052 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4053 func_caps->fd_fltr_best_effort); 4054 } 4055 4056 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4057 if (func_caps->common_cap.ieee_1588 && 4058 !(pf->hw.mac_type == ICE_MAC_E830)) 4059 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4060 4061 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4062 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4063 } 4064 4065 /** 4066 * ice_init_pf - Initialize general software structures (struct ice_pf) 4067 * @pf: board private structure to initialize 4068 */ 4069 static int ice_init_pf(struct ice_pf *pf) 4070 { 4071 ice_set_pf_caps(pf); 4072 4073 mutex_init(&pf->sw_mutex); 4074 mutex_init(&pf->tc_mutex); 4075 mutex_init(&pf->adev_mutex); 4076 mutex_init(&pf->lag_mutex); 4077 4078 INIT_HLIST_HEAD(&pf->aq_wait_list); 4079 spin_lock_init(&pf->aq_wait_lock); 4080 init_waitqueue_head(&pf->aq_wait_queue); 4081 4082 init_waitqueue_head(&pf->reset_wait_queue); 4083 4084 /* setup service timer and periodic service task */ 4085 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4086 pf->serv_tmr_period = HZ; 4087 INIT_WORK(&pf->serv_task, ice_service_task); 4088 clear_bit(ICE_SERVICE_SCHED, pf->state); 4089 4090 mutex_init(&pf->avail_q_mutex); 4091 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4092 if (!pf->avail_txqs) 4093 return -ENOMEM; 4094 4095 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4096 if (!pf->avail_rxqs) { 4097 bitmap_free(pf->avail_txqs); 4098 pf->avail_txqs = NULL; 4099 return -ENOMEM; 4100 } 4101 4102 mutex_init(&pf->vfs.table_lock); 4103 hash_init(pf->vfs.table); 4104 ice_mbx_init_snapshot(&pf->hw); 4105 4106 return 0; 4107 } 4108 4109 /** 4110 * ice_is_wol_supported - check if WoL is supported 4111 * @hw: pointer to hardware info 4112 * 4113 * Check if WoL is supported based on the HW configuration. 4114 * Returns true if NVM supports and enables WoL for this port, false otherwise 4115 */ 4116 bool ice_is_wol_supported(struct ice_hw *hw) 4117 { 4118 u16 wol_ctrl; 4119 4120 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4121 * word) indicates WoL is not supported on the corresponding PF ID. 4122 */ 4123 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4124 return false; 4125 4126 return !(BIT(hw->port_info->lport) & wol_ctrl); 4127 } 4128 4129 /** 4130 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4131 * @vsi: VSI being changed 4132 * @new_rx: new number of Rx queues 4133 * @new_tx: new number of Tx queues 4134 * @locked: is adev device_lock held 4135 * 4136 * Only change the number of queues if new_tx, or new_rx is non-0. 4137 * 4138 * Returns 0 on success. 4139 */ 4140 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4141 { 4142 struct ice_pf *pf = vsi->back; 4143 int i, err = 0, timeout = 50; 4144 4145 if (!new_rx && !new_tx) 4146 return -EINVAL; 4147 4148 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4149 timeout--; 4150 if (!timeout) 4151 return -EBUSY; 4152 usleep_range(1000, 2000); 4153 } 4154 4155 if (new_tx) 4156 vsi->req_txq = (u16)new_tx; 4157 if (new_rx) 4158 vsi->req_rxq = (u16)new_rx; 4159 4160 /* set for the next time the netdev is started */ 4161 if (!netif_running(vsi->netdev)) { 4162 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4163 if (err) 4164 goto rebuild_err; 4165 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4166 goto done; 4167 } 4168 4169 ice_vsi_close(vsi); 4170 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4171 if (err) 4172 goto rebuild_err; 4173 4174 ice_for_each_traffic_class(i) { 4175 if (vsi->tc_cfg.ena_tc & BIT(i)) 4176 netdev_set_tc_queue(vsi->netdev, 4177 vsi->tc_cfg.tc_info[i].netdev_tc, 4178 vsi->tc_cfg.tc_info[i].qcount_tx, 4179 vsi->tc_cfg.tc_info[i].qoffset); 4180 } 4181 ice_pf_dcb_recfg(pf, locked); 4182 ice_vsi_open(vsi); 4183 goto done; 4184 4185 rebuild_err: 4186 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4187 err); 4188 done: 4189 clear_bit(ICE_CFG_BUSY, pf->state); 4190 return err; 4191 } 4192 4193 /** 4194 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4195 * @pf: PF to configure 4196 * 4197 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4198 * VSI can still Tx/Rx VLAN tagged packets. 4199 */ 4200 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4201 { 4202 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4203 struct ice_vsi_ctx *ctxt; 4204 struct ice_hw *hw; 4205 int status; 4206 4207 if (!vsi) 4208 return; 4209 4210 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4211 if (!ctxt) 4212 return; 4213 4214 hw = &pf->hw; 4215 ctxt->info = vsi->info; 4216 4217 ctxt->info.valid_sections = 4218 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4219 ICE_AQ_VSI_PROP_SECURITY_VALID | 4220 ICE_AQ_VSI_PROP_SW_VALID); 4221 4222 /* disable VLAN anti-spoof */ 4223 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4224 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4225 4226 /* disable VLAN pruning and keep all other settings */ 4227 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4228 4229 /* allow all VLANs on Tx and don't strip on Rx */ 4230 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4231 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4232 4233 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4234 if (status) { 4235 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4236 status, ice_aq_str(hw->adminq.sq_last_status)); 4237 } else { 4238 vsi->info.sec_flags = ctxt->info.sec_flags; 4239 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4240 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4241 } 4242 4243 kfree(ctxt); 4244 } 4245 4246 /** 4247 * ice_log_pkg_init - log result of DDP package load 4248 * @hw: pointer to hardware info 4249 * @state: state of package load 4250 */ 4251 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4252 { 4253 struct ice_pf *pf = hw->back; 4254 struct device *dev; 4255 4256 dev = ice_pf_to_dev(pf); 4257 4258 switch (state) { 4259 case ICE_DDP_PKG_SUCCESS: 4260 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4261 hw->active_pkg_name, 4262 hw->active_pkg_ver.major, 4263 hw->active_pkg_ver.minor, 4264 hw->active_pkg_ver.update, 4265 hw->active_pkg_ver.draft); 4266 break; 4267 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4268 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4269 hw->active_pkg_name, 4270 hw->active_pkg_ver.major, 4271 hw->active_pkg_ver.minor, 4272 hw->active_pkg_ver.update, 4273 hw->active_pkg_ver.draft); 4274 break; 4275 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4276 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4277 hw->active_pkg_name, 4278 hw->active_pkg_ver.major, 4279 hw->active_pkg_ver.minor, 4280 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4281 break; 4282 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4283 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4284 hw->active_pkg_name, 4285 hw->active_pkg_ver.major, 4286 hw->active_pkg_ver.minor, 4287 hw->active_pkg_ver.update, 4288 hw->active_pkg_ver.draft, 4289 hw->pkg_name, 4290 hw->pkg_ver.major, 4291 hw->pkg_ver.minor, 4292 hw->pkg_ver.update, 4293 hw->pkg_ver.draft); 4294 break; 4295 case ICE_DDP_PKG_FW_MISMATCH: 4296 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4297 break; 4298 case ICE_DDP_PKG_INVALID_FILE: 4299 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4300 break; 4301 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4302 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4303 break; 4304 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4305 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4306 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4307 break; 4308 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4309 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4310 break; 4311 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4312 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4313 break; 4314 case ICE_DDP_PKG_LOAD_ERROR: 4315 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4316 /* poll for reset to complete */ 4317 if (ice_check_reset(hw)) 4318 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4319 break; 4320 case ICE_DDP_PKG_ERR: 4321 default: 4322 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4323 break; 4324 } 4325 } 4326 4327 /** 4328 * ice_load_pkg - load/reload the DDP Package file 4329 * @firmware: firmware structure when firmware requested or NULL for reload 4330 * @pf: pointer to the PF instance 4331 * 4332 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4333 * initialize HW tables. 4334 */ 4335 static void 4336 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4337 { 4338 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4339 struct device *dev = ice_pf_to_dev(pf); 4340 struct ice_hw *hw = &pf->hw; 4341 4342 /* Load DDP Package */ 4343 if (firmware && !hw->pkg_copy) { 4344 state = ice_copy_and_init_pkg(hw, firmware->data, 4345 firmware->size); 4346 ice_log_pkg_init(hw, state); 4347 } else if (!firmware && hw->pkg_copy) { 4348 /* Reload package during rebuild after CORER/GLOBR reset */ 4349 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4350 ice_log_pkg_init(hw, state); 4351 } else { 4352 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4353 } 4354 4355 if (!ice_is_init_pkg_successful(state)) { 4356 /* Safe Mode */ 4357 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4358 return; 4359 } 4360 4361 /* Successful download package is the precondition for advanced 4362 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4363 */ 4364 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4365 } 4366 4367 /** 4368 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4369 * @pf: pointer to the PF structure 4370 * 4371 * There is no error returned here because the driver should be able to handle 4372 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4373 * specifically with Tx. 4374 */ 4375 static void ice_verify_cacheline_size(struct ice_pf *pf) 4376 { 4377 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4378 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4379 ICE_CACHE_LINE_BYTES); 4380 } 4381 4382 /** 4383 * ice_send_version - update firmware with driver version 4384 * @pf: PF struct 4385 * 4386 * Returns 0 on success, else error code 4387 */ 4388 static int ice_send_version(struct ice_pf *pf) 4389 { 4390 struct ice_driver_ver dv; 4391 4392 dv.major_ver = 0xff; 4393 dv.minor_ver = 0xff; 4394 dv.build_ver = 0xff; 4395 dv.subbuild_ver = 0; 4396 strscpy((char *)dv.driver_string, UTS_RELEASE, 4397 sizeof(dv.driver_string)); 4398 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4399 } 4400 4401 /** 4402 * ice_init_fdir - Initialize flow director VSI and configuration 4403 * @pf: pointer to the PF instance 4404 * 4405 * returns 0 on success, negative on error 4406 */ 4407 static int ice_init_fdir(struct ice_pf *pf) 4408 { 4409 struct device *dev = ice_pf_to_dev(pf); 4410 struct ice_vsi *ctrl_vsi; 4411 int err; 4412 4413 /* Side Band Flow Director needs to have a control VSI. 4414 * Allocate it and store it in the PF. 4415 */ 4416 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4417 if (!ctrl_vsi) { 4418 dev_dbg(dev, "could not create control VSI\n"); 4419 return -ENOMEM; 4420 } 4421 4422 err = ice_vsi_open_ctrl(ctrl_vsi); 4423 if (err) { 4424 dev_dbg(dev, "could not open control VSI\n"); 4425 goto err_vsi_open; 4426 } 4427 4428 mutex_init(&pf->hw.fdir_fltr_lock); 4429 4430 err = ice_fdir_create_dflt_rules(pf); 4431 if (err) 4432 goto err_fdir_rule; 4433 4434 return 0; 4435 4436 err_fdir_rule: 4437 ice_fdir_release_flows(&pf->hw); 4438 ice_vsi_close(ctrl_vsi); 4439 err_vsi_open: 4440 ice_vsi_release(ctrl_vsi); 4441 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4442 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4443 pf->ctrl_vsi_idx = ICE_NO_VSI; 4444 } 4445 return err; 4446 } 4447 4448 static void ice_deinit_fdir(struct ice_pf *pf) 4449 { 4450 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4451 4452 if (!vsi) 4453 return; 4454 4455 ice_vsi_manage_fdir(vsi, false); 4456 ice_vsi_release(vsi); 4457 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4458 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4459 pf->ctrl_vsi_idx = ICE_NO_VSI; 4460 } 4461 4462 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4463 } 4464 4465 /** 4466 * ice_get_opt_fw_name - return optional firmware file name or NULL 4467 * @pf: pointer to the PF instance 4468 */ 4469 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4470 { 4471 /* Optional firmware name same as default with additional dash 4472 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4473 */ 4474 struct pci_dev *pdev = pf->pdev; 4475 char *opt_fw_filename; 4476 u64 dsn; 4477 4478 /* Determine the name of the optional file using the DSN (two 4479 * dwords following the start of the DSN Capability). 4480 */ 4481 dsn = pci_get_dsn(pdev); 4482 if (!dsn) 4483 return NULL; 4484 4485 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4486 if (!opt_fw_filename) 4487 return NULL; 4488 4489 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4490 ICE_DDP_PKG_PATH, dsn); 4491 4492 return opt_fw_filename; 4493 } 4494 4495 /** 4496 * ice_request_fw - Device initialization routine 4497 * @pf: pointer to the PF instance 4498 * @firmware: double pointer to firmware struct 4499 * 4500 * Return: zero when successful, negative values otherwise. 4501 */ 4502 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4503 { 4504 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4505 struct device *dev = ice_pf_to_dev(pf); 4506 int err = 0; 4507 4508 /* optional device-specific DDP (if present) overrides the default DDP 4509 * package file. kernel logs a debug message if the file doesn't exist, 4510 * and warning messages for other errors. 4511 */ 4512 if (opt_fw_filename) { 4513 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4514 kfree(opt_fw_filename); 4515 if (!err) 4516 return err; 4517 } 4518 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4519 if (err) 4520 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4521 4522 return err; 4523 } 4524 4525 /** 4526 * ice_init_tx_topology - performs Tx topology initialization 4527 * @hw: pointer to the hardware structure 4528 * @firmware: pointer to firmware structure 4529 * 4530 * Return: zero when init was successful, negative values otherwise. 4531 */ 4532 static int 4533 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4534 { 4535 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4536 struct ice_pf *pf = hw->back; 4537 struct device *dev; 4538 u8 *buf_copy; 4539 int err; 4540 4541 dev = ice_pf_to_dev(pf); 4542 /* ice_cfg_tx_topo buf argument is not a constant, 4543 * so we have to make a copy 4544 */ 4545 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4546 4547 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4548 if (!err) { 4549 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4550 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4551 else 4552 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4553 /* if there was a change in topology ice_cfg_tx_topo triggered 4554 * a CORER and we need to re-init hw 4555 */ 4556 ice_deinit_hw(hw); 4557 err = ice_init_hw(hw); 4558 4559 return err; 4560 } else if (err == -EIO) { 4561 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4562 } 4563 4564 return 0; 4565 } 4566 4567 /** 4568 * ice_init_ddp_config - DDP related configuration 4569 * @hw: pointer to the hardware structure 4570 * @pf: pointer to pf structure 4571 * 4572 * This function loads DDP file from the disk, then initializes Tx 4573 * topology. At the end DDP package is loaded on the card. 4574 * 4575 * Return: zero when init was successful, negative values otherwise. 4576 */ 4577 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4578 { 4579 struct device *dev = ice_pf_to_dev(pf); 4580 const struct firmware *firmware = NULL; 4581 int err; 4582 4583 err = ice_request_fw(pf, &firmware); 4584 if (err) { 4585 dev_err(dev, "Fail during requesting FW: %d\n", err); 4586 return err; 4587 } 4588 4589 err = ice_init_tx_topology(hw, firmware); 4590 if (err) { 4591 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4592 err); 4593 release_firmware(firmware); 4594 return err; 4595 } 4596 4597 /* Download firmware to device */ 4598 ice_load_pkg(firmware, pf); 4599 release_firmware(firmware); 4600 4601 return 0; 4602 } 4603 4604 /** 4605 * ice_print_wake_reason - show the wake up cause in the log 4606 * @pf: pointer to the PF struct 4607 */ 4608 static void ice_print_wake_reason(struct ice_pf *pf) 4609 { 4610 u32 wus = pf->wakeup_reason; 4611 const char *wake_str; 4612 4613 /* if no wake event, nothing to print */ 4614 if (!wus) 4615 return; 4616 4617 if (wus & PFPM_WUS_LNKC_M) 4618 wake_str = "Link\n"; 4619 else if (wus & PFPM_WUS_MAG_M) 4620 wake_str = "Magic Packet\n"; 4621 else if (wus & PFPM_WUS_MNG_M) 4622 wake_str = "Management\n"; 4623 else if (wus & PFPM_WUS_FW_RST_WK_M) 4624 wake_str = "Firmware Reset\n"; 4625 else 4626 wake_str = "Unknown\n"; 4627 4628 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4629 } 4630 4631 /** 4632 * ice_pf_fwlog_update_module - update 1 module 4633 * @pf: pointer to the PF struct 4634 * @log_level: log_level to use for the @module 4635 * @module: module to update 4636 */ 4637 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4638 { 4639 struct ice_hw *hw = &pf->hw; 4640 4641 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4642 } 4643 4644 /** 4645 * ice_register_netdev - register netdev 4646 * @vsi: pointer to the VSI struct 4647 */ 4648 static int ice_register_netdev(struct ice_vsi *vsi) 4649 { 4650 int err; 4651 4652 if (!vsi || !vsi->netdev) 4653 return -EIO; 4654 4655 err = register_netdev(vsi->netdev); 4656 if (err) 4657 return err; 4658 4659 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4660 netif_carrier_off(vsi->netdev); 4661 netif_tx_stop_all_queues(vsi->netdev); 4662 4663 return 0; 4664 } 4665 4666 static void ice_unregister_netdev(struct ice_vsi *vsi) 4667 { 4668 if (!vsi || !vsi->netdev) 4669 return; 4670 4671 unregister_netdev(vsi->netdev); 4672 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4673 } 4674 4675 /** 4676 * ice_cfg_netdev - Allocate, configure and register a netdev 4677 * @vsi: the VSI associated with the new netdev 4678 * 4679 * Returns 0 on success, negative value on failure 4680 */ 4681 static int ice_cfg_netdev(struct ice_vsi *vsi) 4682 { 4683 struct ice_netdev_priv *np; 4684 struct net_device *netdev; 4685 u8 mac_addr[ETH_ALEN]; 4686 4687 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4688 vsi->alloc_rxq); 4689 if (!netdev) 4690 return -ENOMEM; 4691 4692 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4693 vsi->netdev = netdev; 4694 np = netdev_priv(netdev); 4695 np->vsi = vsi; 4696 4697 ice_set_netdev_features(netdev); 4698 ice_set_ops(vsi); 4699 4700 if (vsi->type == ICE_VSI_PF) { 4701 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4702 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4703 eth_hw_addr_set(netdev, mac_addr); 4704 } 4705 4706 netdev->priv_flags |= IFF_UNICAST_FLT; 4707 4708 /* Setup netdev TC information */ 4709 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4710 4711 netdev->max_mtu = ICE_MAX_MTU; 4712 4713 return 0; 4714 } 4715 4716 static void ice_decfg_netdev(struct ice_vsi *vsi) 4717 { 4718 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4719 free_netdev(vsi->netdev); 4720 vsi->netdev = NULL; 4721 } 4722 4723 /** 4724 * ice_wait_for_fw - wait for full FW readiness 4725 * @hw: pointer to the hardware structure 4726 * @timeout: milliseconds that can elapse before timing out 4727 */ 4728 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4729 { 4730 int fw_loading; 4731 u32 elapsed = 0; 4732 4733 while (elapsed <= timeout) { 4734 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4735 4736 /* firmware was not yet loaded, we have to wait more */ 4737 if (fw_loading) { 4738 elapsed += 100; 4739 msleep(100); 4740 continue; 4741 } 4742 return 0; 4743 } 4744 4745 return -ETIMEDOUT; 4746 } 4747 4748 int ice_init_dev(struct ice_pf *pf) 4749 { 4750 struct device *dev = ice_pf_to_dev(pf); 4751 struct ice_hw *hw = &pf->hw; 4752 int err; 4753 4754 err = ice_init_hw(hw); 4755 if (err) { 4756 dev_err(dev, "ice_init_hw failed: %d\n", err); 4757 return err; 4758 } 4759 4760 /* Some cards require longer initialization times 4761 * due to necessity of loading FW from an external source. 4762 * This can take even half a minute. 4763 */ 4764 if (ice_is_pf_c827(hw)) { 4765 err = ice_wait_for_fw(hw, 30000); 4766 if (err) { 4767 dev_err(dev, "ice_wait_for_fw timed out"); 4768 return err; 4769 } 4770 } 4771 4772 ice_init_feature_support(pf); 4773 4774 err = ice_init_ddp_config(hw, pf); 4775 if (err) 4776 return err; 4777 4778 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4779 * set in pf->state, which will cause ice_is_safe_mode to return 4780 * true 4781 */ 4782 if (ice_is_safe_mode(pf)) { 4783 /* we already got function/device capabilities but these don't 4784 * reflect what the driver needs to do in safe mode. Instead of 4785 * adding conditional logic everywhere to ignore these 4786 * device/function capabilities, override them. 4787 */ 4788 ice_set_safe_mode_caps(hw); 4789 } 4790 4791 err = ice_init_pf(pf); 4792 if (err) { 4793 dev_err(dev, "ice_init_pf failed: %d\n", err); 4794 goto err_init_pf; 4795 } 4796 4797 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4798 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4799 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4800 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4801 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4802 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4803 pf->hw.tnl.valid_count[TNL_VXLAN]; 4804 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4805 UDP_TUNNEL_TYPE_VXLAN; 4806 } 4807 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4808 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4809 pf->hw.tnl.valid_count[TNL_GENEVE]; 4810 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4811 UDP_TUNNEL_TYPE_GENEVE; 4812 } 4813 4814 err = ice_init_interrupt_scheme(pf); 4815 if (err) { 4816 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4817 err = -EIO; 4818 goto err_init_interrupt_scheme; 4819 } 4820 4821 /* In case of MSIX we are going to setup the misc vector right here 4822 * to handle admin queue events etc. In case of legacy and MSI 4823 * the misc functionality and queue processing is combined in 4824 * the same vector and that gets setup at open. 4825 */ 4826 err = ice_req_irq_msix_misc(pf); 4827 if (err) { 4828 dev_err(dev, "setup of misc vector failed: %d\n", err); 4829 goto err_req_irq_msix_misc; 4830 } 4831 4832 return 0; 4833 4834 err_req_irq_msix_misc: 4835 ice_clear_interrupt_scheme(pf); 4836 err_init_interrupt_scheme: 4837 ice_deinit_pf(pf); 4838 err_init_pf: 4839 ice_deinit_hw(hw); 4840 return err; 4841 } 4842 4843 void ice_deinit_dev(struct ice_pf *pf) 4844 { 4845 ice_free_irq_msix_misc(pf); 4846 ice_deinit_pf(pf); 4847 ice_deinit_hw(&pf->hw); 4848 4849 /* Service task is already stopped, so call reset directly. */ 4850 ice_reset(&pf->hw, ICE_RESET_PFR); 4851 pci_wait_for_pending_transaction(pf->pdev); 4852 ice_clear_interrupt_scheme(pf); 4853 } 4854 4855 static void ice_init_features(struct ice_pf *pf) 4856 { 4857 struct device *dev = ice_pf_to_dev(pf); 4858 4859 if (ice_is_safe_mode(pf)) 4860 return; 4861 4862 /* initialize DDP driven features */ 4863 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4864 ice_ptp_init(pf); 4865 4866 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4867 ice_gnss_init(pf); 4868 4869 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4870 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4871 ice_dpll_init(pf); 4872 4873 /* Note: Flow director init failure is non-fatal to load */ 4874 if (ice_init_fdir(pf)) 4875 dev_err(dev, "could not initialize flow director\n"); 4876 4877 /* Note: DCB init failure is non-fatal to load */ 4878 if (ice_init_pf_dcb(pf, false)) { 4879 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4880 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4881 } else { 4882 ice_cfg_lldp_mib_change(&pf->hw, true); 4883 } 4884 4885 if (ice_init_lag(pf)) 4886 dev_warn(dev, "Failed to init link aggregation support\n"); 4887 4888 ice_hwmon_init(pf); 4889 } 4890 4891 static void ice_deinit_features(struct ice_pf *pf) 4892 { 4893 if (ice_is_safe_mode(pf)) 4894 return; 4895 4896 ice_deinit_lag(pf); 4897 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4898 ice_cfg_lldp_mib_change(&pf->hw, false); 4899 ice_deinit_fdir(pf); 4900 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4901 ice_gnss_exit(pf); 4902 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4903 ice_ptp_release(pf); 4904 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4905 ice_dpll_deinit(pf); 4906 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4907 xa_destroy(&pf->eswitch.reprs); 4908 } 4909 4910 static void ice_init_wakeup(struct ice_pf *pf) 4911 { 4912 /* Save wakeup reason register for later use */ 4913 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4914 4915 /* check for a power management event */ 4916 ice_print_wake_reason(pf); 4917 4918 /* clear wake status, all bits */ 4919 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4920 4921 /* Disable WoL at init, wait for user to enable */ 4922 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4923 } 4924 4925 static int ice_init_link(struct ice_pf *pf) 4926 { 4927 struct device *dev = ice_pf_to_dev(pf); 4928 int err; 4929 4930 err = ice_init_link_events(pf->hw.port_info); 4931 if (err) { 4932 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4933 return err; 4934 } 4935 4936 /* not a fatal error if this fails */ 4937 err = ice_init_nvm_phy_type(pf->hw.port_info); 4938 if (err) 4939 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4940 4941 /* not a fatal error if this fails */ 4942 err = ice_update_link_info(pf->hw.port_info); 4943 if (err) 4944 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4945 4946 ice_init_link_dflt_override(pf->hw.port_info); 4947 4948 ice_check_link_cfg_err(pf, 4949 pf->hw.port_info->phy.link_info.link_cfg_err); 4950 4951 /* if media available, initialize PHY settings */ 4952 if (pf->hw.port_info->phy.link_info.link_info & 4953 ICE_AQ_MEDIA_AVAILABLE) { 4954 /* not a fatal error if this fails */ 4955 err = ice_init_phy_user_cfg(pf->hw.port_info); 4956 if (err) 4957 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4958 4959 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4960 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4961 4962 if (vsi) 4963 ice_configure_phy(vsi); 4964 } 4965 } else { 4966 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4967 } 4968 4969 return err; 4970 } 4971 4972 static int ice_init_pf_sw(struct ice_pf *pf) 4973 { 4974 bool dvm = ice_is_dvm_ena(&pf->hw); 4975 struct ice_vsi *vsi; 4976 int err; 4977 4978 /* create switch struct for the switch element created by FW on boot */ 4979 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4980 if (!pf->first_sw) 4981 return -ENOMEM; 4982 4983 if (pf->hw.evb_veb) 4984 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4985 else 4986 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4987 4988 pf->first_sw->pf = pf; 4989 4990 /* record the sw_id available for later use */ 4991 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4992 4993 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4994 if (err) 4995 goto err_aq_set_port_params; 4996 4997 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4998 if (!vsi) { 4999 err = -ENOMEM; 5000 goto err_pf_vsi_setup; 5001 } 5002 5003 return 0; 5004 5005 err_pf_vsi_setup: 5006 err_aq_set_port_params: 5007 kfree(pf->first_sw); 5008 return err; 5009 } 5010 5011 static void ice_deinit_pf_sw(struct ice_pf *pf) 5012 { 5013 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5014 5015 if (!vsi) 5016 return; 5017 5018 ice_vsi_release(vsi); 5019 kfree(pf->first_sw); 5020 } 5021 5022 static int ice_alloc_vsis(struct ice_pf *pf) 5023 { 5024 struct device *dev = ice_pf_to_dev(pf); 5025 5026 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5027 if (!pf->num_alloc_vsi) 5028 return -EIO; 5029 5030 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5031 dev_warn(dev, 5032 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5033 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5034 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5035 } 5036 5037 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5038 GFP_KERNEL); 5039 if (!pf->vsi) 5040 return -ENOMEM; 5041 5042 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5043 sizeof(*pf->vsi_stats), GFP_KERNEL); 5044 if (!pf->vsi_stats) { 5045 devm_kfree(dev, pf->vsi); 5046 return -ENOMEM; 5047 } 5048 5049 return 0; 5050 } 5051 5052 static void ice_dealloc_vsis(struct ice_pf *pf) 5053 { 5054 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5055 pf->vsi_stats = NULL; 5056 5057 pf->num_alloc_vsi = 0; 5058 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5059 pf->vsi = NULL; 5060 } 5061 5062 static int ice_init_devlink(struct ice_pf *pf) 5063 { 5064 int err; 5065 5066 err = ice_devlink_register_params(pf); 5067 if (err) 5068 return err; 5069 5070 ice_devlink_init_regions(pf); 5071 ice_devlink_register(pf); 5072 5073 return 0; 5074 } 5075 5076 static void ice_deinit_devlink(struct ice_pf *pf) 5077 { 5078 ice_devlink_unregister(pf); 5079 ice_devlink_destroy_regions(pf); 5080 ice_devlink_unregister_params(pf); 5081 } 5082 5083 static int ice_init(struct ice_pf *pf) 5084 { 5085 int err; 5086 5087 err = ice_init_dev(pf); 5088 if (err) 5089 return err; 5090 5091 err = ice_alloc_vsis(pf); 5092 if (err) 5093 goto err_alloc_vsis; 5094 5095 err = ice_init_pf_sw(pf); 5096 if (err) 5097 goto err_init_pf_sw; 5098 5099 ice_init_wakeup(pf); 5100 5101 err = ice_init_link(pf); 5102 if (err) 5103 goto err_init_link; 5104 5105 err = ice_send_version(pf); 5106 if (err) 5107 goto err_init_link; 5108 5109 ice_verify_cacheline_size(pf); 5110 5111 if (ice_is_safe_mode(pf)) 5112 ice_set_safe_mode_vlan_cfg(pf); 5113 else 5114 /* print PCI link speed and width */ 5115 pcie_print_link_status(pf->pdev); 5116 5117 /* ready to go, so clear down state bit */ 5118 clear_bit(ICE_DOWN, pf->state); 5119 clear_bit(ICE_SERVICE_DIS, pf->state); 5120 5121 /* since everything is good, start the service timer */ 5122 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5123 5124 return 0; 5125 5126 err_init_link: 5127 ice_deinit_pf_sw(pf); 5128 err_init_pf_sw: 5129 ice_dealloc_vsis(pf); 5130 err_alloc_vsis: 5131 ice_deinit_dev(pf); 5132 return err; 5133 } 5134 5135 static void ice_deinit(struct ice_pf *pf) 5136 { 5137 set_bit(ICE_SERVICE_DIS, pf->state); 5138 set_bit(ICE_DOWN, pf->state); 5139 5140 ice_deinit_pf_sw(pf); 5141 ice_dealloc_vsis(pf); 5142 ice_deinit_dev(pf); 5143 } 5144 5145 /** 5146 * ice_load - load pf by init hw and starting VSI 5147 * @pf: pointer to the pf instance 5148 * 5149 * This function has to be called under devl_lock. 5150 */ 5151 int ice_load(struct ice_pf *pf) 5152 { 5153 struct ice_vsi *vsi; 5154 int err; 5155 5156 devl_assert_locked(priv_to_devlink(pf)); 5157 5158 vsi = ice_get_main_vsi(pf); 5159 5160 /* init channel list */ 5161 INIT_LIST_HEAD(&vsi->ch_list); 5162 5163 err = ice_cfg_netdev(vsi); 5164 if (err) 5165 return err; 5166 5167 /* Setup DCB netlink interface */ 5168 ice_dcbnl_setup(vsi); 5169 5170 err = ice_init_mac_fltr(pf); 5171 if (err) 5172 goto err_init_mac_fltr; 5173 5174 err = ice_devlink_create_pf_port(pf); 5175 if (err) 5176 goto err_devlink_create_pf_port; 5177 5178 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5179 5180 err = ice_register_netdev(vsi); 5181 if (err) 5182 goto err_register_netdev; 5183 5184 err = ice_tc_indir_block_register(vsi); 5185 if (err) 5186 goto err_tc_indir_block_register; 5187 5188 ice_napi_add(vsi); 5189 5190 err = ice_init_rdma(pf); 5191 if (err) 5192 goto err_init_rdma; 5193 5194 ice_init_features(pf); 5195 ice_service_task_restart(pf); 5196 5197 clear_bit(ICE_DOWN, pf->state); 5198 5199 return 0; 5200 5201 err_init_rdma: 5202 ice_tc_indir_block_unregister(vsi); 5203 err_tc_indir_block_register: 5204 ice_unregister_netdev(vsi); 5205 err_register_netdev: 5206 ice_devlink_destroy_pf_port(pf); 5207 err_devlink_create_pf_port: 5208 err_init_mac_fltr: 5209 ice_decfg_netdev(vsi); 5210 return err; 5211 } 5212 5213 /** 5214 * ice_unload - unload pf by stopping VSI and deinit hw 5215 * @pf: pointer to the pf instance 5216 * 5217 * This function has to be called under devl_lock. 5218 */ 5219 void ice_unload(struct ice_pf *pf) 5220 { 5221 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5222 5223 devl_assert_locked(priv_to_devlink(pf)); 5224 5225 ice_deinit_features(pf); 5226 ice_deinit_rdma(pf); 5227 ice_tc_indir_block_unregister(vsi); 5228 ice_unregister_netdev(vsi); 5229 ice_devlink_destroy_pf_port(pf); 5230 ice_decfg_netdev(vsi); 5231 } 5232 5233 /** 5234 * ice_probe - Device initialization routine 5235 * @pdev: PCI device information struct 5236 * @ent: entry in ice_pci_tbl 5237 * 5238 * Returns 0 on success, negative on failure 5239 */ 5240 static int 5241 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5242 { 5243 struct device *dev = &pdev->dev; 5244 struct ice_adapter *adapter; 5245 struct ice_pf *pf; 5246 struct ice_hw *hw; 5247 int err; 5248 5249 if (pdev->is_virtfn) { 5250 dev_err(dev, "can't probe a virtual function\n"); 5251 return -EINVAL; 5252 } 5253 5254 /* when under a kdump kernel initiate a reset before enabling the 5255 * device in order to clear out any pending DMA transactions. These 5256 * transactions can cause some systems to machine check when doing 5257 * the pcim_enable_device() below. 5258 */ 5259 if (is_kdump_kernel()) { 5260 pci_save_state(pdev); 5261 pci_clear_master(pdev); 5262 err = pcie_flr(pdev); 5263 if (err) 5264 return err; 5265 pci_restore_state(pdev); 5266 } 5267 5268 /* this driver uses devres, see 5269 * Documentation/driver-api/driver-model/devres.rst 5270 */ 5271 err = pcim_enable_device(pdev); 5272 if (err) 5273 return err; 5274 5275 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5276 if (err) { 5277 dev_err(dev, "BAR0 I/O map error %d\n", err); 5278 return err; 5279 } 5280 5281 pf = ice_allocate_pf(dev); 5282 if (!pf) 5283 return -ENOMEM; 5284 5285 /* initialize Auxiliary index to invalid value */ 5286 pf->aux_idx = -1; 5287 5288 /* set up for high or low DMA */ 5289 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5290 if (err) { 5291 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5292 return err; 5293 } 5294 5295 pci_set_master(pdev); 5296 5297 adapter = ice_adapter_get(pdev); 5298 if (IS_ERR(adapter)) 5299 return PTR_ERR(adapter); 5300 5301 pf->pdev = pdev; 5302 pf->adapter = adapter; 5303 pci_set_drvdata(pdev, pf); 5304 set_bit(ICE_DOWN, pf->state); 5305 /* Disable service task until DOWN bit is cleared */ 5306 set_bit(ICE_SERVICE_DIS, pf->state); 5307 5308 hw = &pf->hw; 5309 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5310 pci_save_state(pdev); 5311 5312 hw->back = pf; 5313 hw->port_info = NULL; 5314 hw->vendor_id = pdev->vendor; 5315 hw->device_id = pdev->device; 5316 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5317 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5318 hw->subsystem_device_id = pdev->subsystem_device; 5319 hw->bus.device = PCI_SLOT(pdev->devfn); 5320 hw->bus.func = PCI_FUNC(pdev->devfn); 5321 ice_set_ctrlq_len(hw); 5322 5323 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5324 5325 #ifndef CONFIG_DYNAMIC_DEBUG 5326 if (debug < -1) 5327 hw->debug_mask = debug; 5328 #endif 5329 5330 err = ice_init(pf); 5331 if (err) 5332 goto err_init; 5333 5334 devl_lock(priv_to_devlink(pf)); 5335 err = ice_load(pf); 5336 if (err) 5337 goto err_load; 5338 5339 err = ice_init_devlink(pf); 5340 if (err) 5341 goto err_init_devlink; 5342 devl_unlock(priv_to_devlink(pf)); 5343 5344 return 0; 5345 5346 err_init_devlink: 5347 ice_unload(pf); 5348 err_load: 5349 devl_unlock(priv_to_devlink(pf)); 5350 ice_deinit(pf); 5351 err_init: 5352 ice_adapter_put(pdev); 5353 pci_disable_device(pdev); 5354 return err; 5355 } 5356 5357 /** 5358 * ice_set_wake - enable or disable Wake on LAN 5359 * @pf: pointer to the PF struct 5360 * 5361 * Simple helper for WoL control 5362 */ 5363 static void ice_set_wake(struct ice_pf *pf) 5364 { 5365 struct ice_hw *hw = &pf->hw; 5366 bool wol = pf->wol_ena; 5367 5368 /* clear wake state, otherwise new wake events won't fire */ 5369 wr32(hw, PFPM_WUS, U32_MAX); 5370 5371 /* enable / disable APM wake up, no RMW needed */ 5372 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5373 5374 /* set magic packet filter enabled */ 5375 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5376 } 5377 5378 /** 5379 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5380 * @pf: pointer to the PF struct 5381 * 5382 * Issue firmware command to enable multicast magic wake, making 5383 * sure that any locally administered address (LAA) is used for 5384 * wake, and that PF reset doesn't undo the LAA. 5385 */ 5386 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5387 { 5388 struct device *dev = ice_pf_to_dev(pf); 5389 struct ice_hw *hw = &pf->hw; 5390 u8 mac_addr[ETH_ALEN]; 5391 struct ice_vsi *vsi; 5392 int status; 5393 u8 flags; 5394 5395 if (!pf->wol_ena) 5396 return; 5397 5398 vsi = ice_get_main_vsi(pf); 5399 if (!vsi) 5400 return; 5401 5402 /* Get current MAC address in case it's an LAA */ 5403 if (vsi->netdev) 5404 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5405 else 5406 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5407 5408 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5409 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5410 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5411 5412 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5413 if (status) 5414 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5415 status, ice_aq_str(hw->adminq.sq_last_status)); 5416 } 5417 5418 /** 5419 * ice_remove - Device removal routine 5420 * @pdev: PCI device information struct 5421 */ 5422 static void ice_remove(struct pci_dev *pdev) 5423 { 5424 struct ice_pf *pf = pci_get_drvdata(pdev); 5425 int i; 5426 5427 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5428 if (!ice_is_reset_in_progress(pf->state)) 5429 break; 5430 msleep(100); 5431 } 5432 5433 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5434 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5435 ice_free_vfs(pf); 5436 } 5437 5438 ice_hwmon_exit(pf); 5439 5440 ice_service_task_stop(pf); 5441 ice_aq_cancel_waiting_tasks(pf); 5442 set_bit(ICE_DOWN, pf->state); 5443 5444 if (!ice_is_safe_mode(pf)) 5445 ice_remove_arfs(pf); 5446 5447 devl_lock(priv_to_devlink(pf)); 5448 ice_deinit_devlink(pf); 5449 5450 ice_unload(pf); 5451 devl_unlock(priv_to_devlink(pf)); 5452 5453 ice_deinit(pf); 5454 ice_vsi_release_all(pf); 5455 5456 ice_setup_mc_magic_wake(pf); 5457 ice_set_wake(pf); 5458 5459 ice_adapter_put(pdev); 5460 pci_disable_device(pdev); 5461 } 5462 5463 /** 5464 * ice_shutdown - PCI callback for shutting down device 5465 * @pdev: PCI device information struct 5466 */ 5467 static void ice_shutdown(struct pci_dev *pdev) 5468 { 5469 struct ice_pf *pf = pci_get_drvdata(pdev); 5470 5471 ice_remove(pdev); 5472 5473 if (system_state == SYSTEM_POWER_OFF) { 5474 pci_wake_from_d3(pdev, pf->wol_ena); 5475 pci_set_power_state(pdev, PCI_D3hot); 5476 } 5477 } 5478 5479 /** 5480 * ice_prepare_for_shutdown - prep for PCI shutdown 5481 * @pf: board private structure 5482 * 5483 * Inform or close all dependent features in prep for PCI device shutdown 5484 */ 5485 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5486 { 5487 struct ice_hw *hw = &pf->hw; 5488 u32 v; 5489 5490 /* Notify VFs of impending reset */ 5491 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5492 ice_vc_notify_reset(pf); 5493 5494 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5495 5496 /* disable the VSIs and their queues that are not already DOWN */ 5497 ice_pf_dis_all_vsi(pf, false); 5498 5499 ice_for_each_vsi(pf, v) 5500 if (pf->vsi[v]) 5501 pf->vsi[v]->vsi_num = 0; 5502 5503 ice_shutdown_all_ctrlq(hw, true); 5504 } 5505 5506 /** 5507 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5508 * @pf: board private structure to reinitialize 5509 * 5510 * This routine reinitialize interrupt scheme that was cleared during 5511 * power management suspend callback. 5512 * 5513 * This should be called during resume routine to re-allocate the q_vectors 5514 * and reacquire interrupts. 5515 */ 5516 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5517 { 5518 struct device *dev = ice_pf_to_dev(pf); 5519 int ret, v; 5520 5521 /* Since we clear MSIX flag during suspend, we need to 5522 * set it back during resume... 5523 */ 5524 5525 ret = ice_init_interrupt_scheme(pf); 5526 if (ret) { 5527 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5528 return ret; 5529 } 5530 5531 /* Remap vectors and rings, after successful re-init interrupts */ 5532 ice_for_each_vsi(pf, v) { 5533 if (!pf->vsi[v]) 5534 continue; 5535 5536 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5537 if (ret) 5538 goto err_reinit; 5539 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5540 ice_vsi_set_napi_queues(pf->vsi[v]); 5541 } 5542 5543 ret = ice_req_irq_msix_misc(pf); 5544 if (ret) { 5545 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5546 ret); 5547 goto err_reinit; 5548 } 5549 5550 return 0; 5551 5552 err_reinit: 5553 while (v--) 5554 if (pf->vsi[v]) 5555 ice_vsi_free_q_vectors(pf->vsi[v]); 5556 5557 return ret; 5558 } 5559 5560 /** 5561 * ice_suspend 5562 * @dev: generic device information structure 5563 * 5564 * Power Management callback to quiesce the device and prepare 5565 * for D3 transition. 5566 */ 5567 static int ice_suspend(struct device *dev) 5568 { 5569 struct pci_dev *pdev = to_pci_dev(dev); 5570 struct ice_pf *pf; 5571 int disabled, v; 5572 5573 pf = pci_get_drvdata(pdev); 5574 5575 if (!ice_pf_state_is_nominal(pf)) { 5576 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5577 return -EBUSY; 5578 } 5579 5580 /* Stop watchdog tasks until resume completion. 5581 * Even though it is most likely that the service task is 5582 * disabled if the device is suspended or down, the service task's 5583 * state is controlled by a different state bit, and we should 5584 * store and honor whatever state that bit is in at this point. 5585 */ 5586 disabled = ice_service_task_stop(pf); 5587 5588 ice_deinit_rdma(pf); 5589 5590 /* Already suspended?, then there is nothing to do */ 5591 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5592 if (!disabled) 5593 ice_service_task_restart(pf); 5594 return 0; 5595 } 5596 5597 if (test_bit(ICE_DOWN, pf->state) || 5598 ice_is_reset_in_progress(pf->state)) { 5599 dev_err(dev, "can't suspend device in reset or already down\n"); 5600 if (!disabled) 5601 ice_service_task_restart(pf); 5602 return 0; 5603 } 5604 5605 ice_setup_mc_magic_wake(pf); 5606 5607 ice_prepare_for_shutdown(pf); 5608 5609 ice_set_wake(pf); 5610 5611 /* Free vectors, clear the interrupt scheme and release IRQs 5612 * for proper hibernation, especially with large number of CPUs. 5613 * Otherwise hibernation might fail when mapping all the vectors back 5614 * to CPU0. 5615 */ 5616 ice_free_irq_msix_misc(pf); 5617 ice_for_each_vsi(pf, v) { 5618 if (!pf->vsi[v]) 5619 continue; 5620 ice_vsi_free_q_vectors(pf->vsi[v]); 5621 } 5622 ice_clear_interrupt_scheme(pf); 5623 5624 pci_save_state(pdev); 5625 pci_wake_from_d3(pdev, pf->wol_ena); 5626 pci_set_power_state(pdev, PCI_D3hot); 5627 return 0; 5628 } 5629 5630 /** 5631 * ice_resume - PM callback for waking up from D3 5632 * @dev: generic device information structure 5633 */ 5634 static int ice_resume(struct device *dev) 5635 { 5636 struct pci_dev *pdev = to_pci_dev(dev); 5637 enum ice_reset_req reset_type; 5638 struct ice_pf *pf; 5639 struct ice_hw *hw; 5640 int ret; 5641 5642 pci_set_power_state(pdev, PCI_D0); 5643 pci_restore_state(pdev); 5644 pci_save_state(pdev); 5645 5646 if (!pci_device_is_present(pdev)) 5647 return -ENODEV; 5648 5649 ret = pci_enable_device_mem(pdev); 5650 if (ret) { 5651 dev_err(dev, "Cannot enable device after suspend\n"); 5652 return ret; 5653 } 5654 5655 pf = pci_get_drvdata(pdev); 5656 hw = &pf->hw; 5657 5658 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5659 ice_print_wake_reason(pf); 5660 5661 /* We cleared the interrupt scheme when we suspended, so we need to 5662 * restore it now to resume device functionality. 5663 */ 5664 ret = ice_reinit_interrupt_scheme(pf); 5665 if (ret) 5666 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5667 5668 ret = ice_init_rdma(pf); 5669 if (ret) 5670 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5671 ret); 5672 5673 clear_bit(ICE_DOWN, pf->state); 5674 /* Now perform PF reset and rebuild */ 5675 reset_type = ICE_RESET_PFR; 5676 /* re-enable service task for reset, but allow reset to schedule it */ 5677 clear_bit(ICE_SERVICE_DIS, pf->state); 5678 5679 if (ice_schedule_reset(pf, reset_type)) 5680 dev_err(dev, "Reset during resume failed.\n"); 5681 5682 clear_bit(ICE_SUSPENDED, pf->state); 5683 ice_service_task_restart(pf); 5684 5685 /* Restart the service task */ 5686 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5687 5688 return 0; 5689 } 5690 5691 /** 5692 * ice_pci_err_detected - warning that PCI error has been detected 5693 * @pdev: PCI device information struct 5694 * @err: the type of PCI error 5695 * 5696 * Called to warn that something happened on the PCI bus and the error handling 5697 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5698 */ 5699 static pci_ers_result_t 5700 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5701 { 5702 struct ice_pf *pf = pci_get_drvdata(pdev); 5703 5704 if (!pf) { 5705 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5706 __func__, err); 5707 return PCI_ERS_RESULT_DISCONNECT; 5708 } 5709 5710 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5711 ice_service_task_stop(pf); 5712 5713 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5714 set_bit(ICE_PFR_REQ, pf->state); 5715 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5716 } 5717 } 5718 5719 return PCI_ERS_RESULT_NEED_RESET; 5720 } 5721 5722 /** 5723 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5724 * @pdev: PCI device information struct 5725 * 5726 * Called to determine if the driver can recover from the PCI slot reset by 5727 * using a register read to determine if the device is recoverable. 5728 */ 5729 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5730 { 5731 struct ice_pf *pf = pci_get_drvdata(pdev); 5732 pci_ers_result_t result; 5733 int err; 5734 u32 reg; 5735 5736 err = pci_enable_device_mem(pdev); 5737 if (err) { 5738 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5739 err); 5740 result = PCI_ERS_RESULT_DISCONNECT; 5741 } else { 5742 pci_set_master(pdev); 5743 pci_restore_state(pdev); 5744 pci_save_state(pdev); 5745 pci_wake_from_d3(pdev, false); 5746 5747 /* Check for life */ 5748 reg = rd32(&pf->hw, GLGEN_RTRIG); 5749 if (!reg) 5750 result = PCI_ERS_RESULT_RECOVERED; 5751 else 5752 result = PCI_ERS_RESULT_DISCONNECT; 5753 } 5754 5755 return result; 5756 } 5757 5758 /** 5759 * ice_pci_err_resume - restart operations after PCI error recovery 5760 * @pdev: PCI device information struct 5761 * 5762 * Called to allow the driver to bring things back up after PCI error and/or 5763 * reset recovery have finished 5764 */ 5765 static void ice_pci_err_resume(struct pci_dev *pdev) 5766 { 5767 struct ice_pf *pf = pci_get_drvdata(pdev); 5768 5769 if (!pf) { 5770 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5771 __func__); 5772 return; 5773 } 5774 5775 if (test_bit(ICE_SUSPENDED, pf->state)) { 5776 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5777 __func__); 5778 return; 5779 } 5780 5781 ice_restore_all_vfs_msi_state(pf); 5782 5783 ice_do_reset(pf, ICE_RESET_PFR); 5784 ice_service_task_restart(pf); 5785 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5786 } 5787 5788 /** 5789 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5790 * @pdev: PCI device information struct 5791 */ 5792 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5793 { 5794 struct ice_pf *pf = pci_get_drvdata(pdev); 5795 5796 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5797 ice_service_task_stop(pf); 5798 5799 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5800 set_bit(ICE_PFR_REQ, pf->state); 5801 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5802 } 5803 } 5804 } 5805 5806 /** 5807 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5808 * @pdev: PCI device information struct 5809 */ 5810 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5811 { 5812 ice_pci_err_resume(pdev); 5813 } 5814 5815 /* ice_pci_tbl - PCI Device ID Table 5816 * 5817 * Wildcard entries (PCI_ANY_ID) should come last 5818 * Last entry must be all 0s 5819 * 5820 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5821 * Class, Class Mask, private data (not used) } 5822 */ 5823 static const struct pci_device_id ice_pci_tbl[] = { 5824 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5825 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5826 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5827 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5864 /* required last entry */ 5865 {} 5866 }; 5867 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5868 5869 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5870 5871 static const struct pci_error_handlers ice_pci_err_handler = { 5872 .error_detected = ice_pci_err_detected, 5873 .slot_reset = ice_pci_err_slot_reset, 5874 .reset_prepare = ice_pci_err_reset_prepare, 5875 .reset_done = ice_pci_err_reset_done, 5876 .resume = ice_pci_err_resume 5877 }; 5878 5879 static struct pci_driver ice_driver = { 5880 .name = KBUILD_MODNAME, 5881 .id_table = ice_pci_tbl, 5882 .probe = ice_probe, 5883 .remove = ice_remove, 5884 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5885 .shutdown = ice_shutdown, 5886 .sriov_configure = ice_sriov_configure, 5887 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5888 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5889 .err_handler = &ice_pci_err_handler 5890 }; 5891 5892 /** 5893 * ice_module_init - Driver registration routine 5894 * 5895 * ice_module_init is the first routine called when the driver is 5896 * loaded. All it does is register with the PCI subsystem. 5897 */ 5898 static int __init ice_module_init(void) 5899 { 5900 int status = -ENOMEM; 5901 5902 pr_info("%s\n", ice_driver_string); 5903 pr_info("%s\n", ice_copyright); 5904 5905 ice_adv_lnk_speed_maps_init(); 5906 5907 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5908 if (!ice_wq) { 5909 pr_err("Failed to create workqueue\n"); 5910 return status; 5911 } 5912 5913 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5914 if (!ice_lag_wq) { 5915 pr_err("Failed to create LAG workqueue\n"); 5916 goto err_dest_wq; 5917 } 5918 5919 ice_debugfs_init(); 5920 5921 status = pci_register_driver(&ice_driver); 5922 if (status) { 5923 pr_err("failed to register PCI driver, err %d\n", status); 5924 goto err_dest_lag_wq; 5925 } 5926 5927 return 0; 5928 5929 err_dest_lag_wq: 5930 destroy_workqueue(ice_lag_wq); 5931 ice_debugfs_exit(); 5932 err_dest_wq: 5933 destroy_workqueue(ice_wq); 5934 return status; 5935 } 5936 module_init(ice_module_init); 5937 5938 /** 5939 * ice_module_exit - Driver exit cleanup routine 5940 * 5941 * ice_module_exit is called just before the driver is removed 5942 * from memory. 5943 */ 5944 static void __exit ice_module_exit(void) 5945 { 5946 pci_unregister_driver(&ice_driver); 5947 ice_debugfs_exit(); 5948 destroy_workqueue(ice_wq); 5949 destroy_workqueue(ice_lag_wq); 5950 pr_info("module unloaded\n"); 5951 } 5952 module_exit(ice_module_exit); 5953 5954 /** 5955 * ice_set_mac_address - NDO callback to set MAC address 5956 * @netdev: network interface device structure 5957 * @pi: pointer to an address structure 5958 * 5959 * Returns 0 on success, negative on failure 5960 */ 5961 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5962 { 5963 struct ice_netdev_priv *np = netdev_priv(netdev); 5964 struct ice_vsi *vsi = np->vsi; 5965 struct ice_pf *pf = vsi->back; 5966 struct ice_hw *hw = &pf->hw; 5967 struct sockaddr *addr = pi; 5968 u8 old_mac[ETH_ALEN]; 5969 u8 flags = 0; 5970 u8 *mac; 5971 int err; 5972 5973 mac = (u8 *)addr->sa_data; 5974 5975 if (!is_valid_ether_addr(mac)) 5976 return -EADDRNOTAVAIL; 5977 5978 if (test_bit(ICE_DOWN, pf->state) || 5979 ice_is_reset_in_progress(pf->state)) { 5980 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5981 mac); 5982 return -EBUSY; 5983 } 5984 5985 if (ice_chnl_dmac_fltr_cnt(pf)) { 5986 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5987 mac); 5988 return -EAGAIN; 5989 } 5990 5991 netif_addr_lock_bh(netdev); 5992 ether_addr_copy(old_mac, netdev->dev_addr); 5993 /* change the netdev's MAC address */ 5994 eth_hw_addr_set(netdev, mac); 5995 netif_addr_unlock_bh(netdev); 5996 5997 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5998 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5999 if (err && err != -ENOENT) { 6000 err = -EADDRNOTAVAIL; 6001 goto err_update_filters; 6002 } 6003 6004 /* Add filter for new MAC. If filter exists, return success */ 6005 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6006 if (err == -EEXIST) { 6007 /* Although this MAC filter is already present in hardware it's 6008 * possible in some cases (e.g. bonding) that dev_addr was 6009 * modified outside of the driver and needs to be restored back 6010 * to this value. 6011 */ 6012 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6013 6014 return 0; 6015 } else if (err) { 6016 /* error if the new filter addition failed */ 6017 err = -EADDRNOTAVAIL; 6018 } 6019 6020 err_update_filters: 6021 if (err) { 6022 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6023 mac); 6024 netif_addr_lock_bh(netdev); 6025 eth_hw_addr_set(netdev, old_mac); 6026 netif_addr_unlock_bh(netdev); 6027 return err; 6028 } 6029 6030 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6031 netdev->dev_addr); 6032 6033 /* write new MAC address to the firmware */ 6034 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6035 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6036 if (err) { 6037 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6038 mac, err); 6039 } 6040 return 0; 6041 } 6042 6043 /** 6044 * ice_set_rx_mode - NDO callback to set the netdev filters 6045 * @netdev: network interface device structure 6046 */ 6047 static void ice_set_rx_mode(struct net_device *netdev) 6048 { 6049 struct ice_netdev_priv *np = netdev_priv(netdev); 6050 struct ice_vsi *vsi = np->vsi; 6051 6052 if (!vsi || ice_is_switchdev_running(vsi->back)) 6053 return; 6054 6055 /* Set the flags to synchronize filters 6056 * ndo_set_rx_mode may be triggered even without a change in netdev 6057 * flags 6058 */ 6059 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6060 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6061 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6062 6063 /* schedule our worker thread which will take care of 6064 * applying the new filter changes 6065 */ 6066 ice_service_task_schedule(vsi->back); 6067 } 6068 6069 /** 6070 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6071 * @netdev: network interface device structure 6072 * @queue_index: Queue ID 6073 * @maxrate: maximum bandwidth in Mbps 6074 */ 6075 static int 6076 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6077 { 6078 struct ice_netdev_priv *np = netdev_priv(netdev); 6079 struct ice_vsi *vsi = np->vsi; 6080 u16 q_handle; 6081 int status; 6082 u8 tc; 6083 6084 /* Validate maxrate requested is within permitted range */ 6085 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6086 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6087 maxrate, queue_index); 6088 return -EINVAL; 6089 } 6090 6091 q_handle = vsi->tx_rings[queue_index]->q_handle; 6092 tc = ice_dcb_get_tc(vsi, queue_index); 6093 6094 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6095 if (!vsi) { 6096 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6097 queue_index); 6098 return -EINVAL; 6099 } 6100 6101 /* Set BW back to default, when user set maxrate to 0 */ 6102 if (!maxrate) 6103 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6104 q_handle, ICE_MAX_BW); 6105 else 6106 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6107 q_handle, ICE_MAX_BW, maxrate * 1000); 6108 if (status) 6109 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6110 status); 6111 6112 return status; 6113 } 6114 6115 /** 6116 * ice_fdb_add - add an entry to the hardware database 6117 * @ndm: the input from the stack 6118 * @tb: pointer to array of nladdr (unused) 6119 * @dev: the net device pointer 6120 * @addr: the MAC address entry being added 6121 * @vid: VLAN ID 6122 * @flags: instructions from stack about fdb operation 6123 * @extack: netlink extended ack 6124 */ 6125 static int 6126 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6127 struct net_device *dev, const unsigned char *addr, u16 vid, 6128 u16 flags, struct netlink_ext_ack __always_unused *extack) 6129 { 6130 int err; 6131 6132 if (vid) { 6133 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6134 return -EINVAL; 6135 } 6136 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6137 netdev_err(dev, "FDB only supports static addresses\n"); 6138 return -EINVAL; 6139 } 6140 6141 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6142 err = dev_uc_add_excl(dev, addr); 6143 else if (is_multicast_ether_addr(addr)) 6144 err = dev_mc_add_excl(dev, addr); 6145 else 6146 err = -EINVAL; 6147 6148 /* Only return duplicate errors if NLM_F_EXCL is set */ 6149 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6150 err = 0; 6151 6152 return err; 6153 } 6154 6155 /** 6156 * ice_fdb_del - delete an entry from the hardware database 6157 * @ndm: the input from the stack 6158 * @tb: pointer to array of nladdr (unused) 6159 * @dev: the net device pointer 6160 * @addr: the MAC address entry being added 6161 * @vid: VLAN ID 6162 * @extack: netlink extended ack 6163 */ 6164 static int 6165 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6166 struct net_device *dev, const unsigned char *addr, 6167 __always_unused u16 vid, struct netlink_ext_ack *extack) 6168 { 6169 int err; 6170 6171 if (ndm->ndm_state & NUD_PERMANENT) { 6172 netdev_err(dev, "FDB only supports static addresses\n"); 6173 return -EINVAL; 6174 } 6175 6176 if (is_unicast_ether_addr(addr)) 6177 err = dev_uc_del(dev, addr); 6178 else if (is_multicast_ether_addr(addr)) 6179 err = dev_mc_del(dev, addr); 6180 else 6181 err = -EINVAL; 6182 6183 return err; 6184 } 6185 6186 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6187 NETIF_F_HW_VLAN_CTAG_TX | \ 6188 NETIF_F_HW_VLAN_STAG_RX | \ 6189 NETIF_F_HW_VLAN_STAG_TX) 6190 6191 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6192 NETIF_F_HW_VLAN_STAG_RX) 6193 6194 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6195 NETIF_F_HW_VLAN_STAG_FILTER) 6196 6197 /** 6198 * ice_fix_features - fix the netdev features flags based on device limitations 6199 * @netdev: ptr to the netdev that flags are being fixed on 6200 * @features: features that need to be checked and possibly fixed 6201 * 6202 * Make sure any fixups are made to features in this callback. This enables the 6203 * driver to not have to check unsupported configurations throughout the driver 6204 * because that's the responsiblity of this callback. 6205 * 6206 * Single VLAN Mode (SVM) Supported Features: 6207 * NETIF_F_HW_VLAN_CTAG_FILTER 6208 * NETIF_F_HW_VLAN_CTAG_RX 6209 * NETIF_F_HW_VLAN_CTAG_TX 6210 * 6211 * Double VLAN Mode (DVM) Supported Features: 6212 * NETIF_F_HW_VLAN_CTAG_FILTER 6213 * NETIF_F_HW_VLAN_CTAG_RX 6214 * NETIF_F_HW_VLAN_CTAG_TX 6215 * 6216 * NETIF_F_HW_VLAN_STAG_FILTER 6217 * NETIF_HW_VLAN_STAG_RX 6218 * NETIF_HW_VLAN_STAG_TX 6219 * 6220 * Features that need fixing: 6221 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6222 * These are mutually exlusive as the VSI context cannot support multiple 6223 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6224 * is not done, then default to clearing the requested STAG offload 6225 * settings. 6226 * 6227 * All supported filtering has to be enabled or disabled together. For 6228 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6229 * together. If this is not done, then default to VLAN filtering disabled. 6230 * These are mutually exclusive as there is currently no way to 6231 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6232 * prune rules. 6233 */ 6234 static netdev_features_t 6235 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6236 { 6237 struct ice_netdev_priv *np = netdev_priv(netdev); 6238 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6239 bool cur_ctag, cur_stag, req_ctag, req_stag; 6240 6241 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6242 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6243 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6244 6245 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6246 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6247 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6248 6249 if (req_vlan_fltr != cur_vlan_fltr) { 6250 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6251 if (req_ctag && req_stag) { 6252 features |= NETIF_VLAN_FILTERING_FEATURES; 6253 } else if (!req_ctag && !req_stag) { 6254 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6255 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6256 (!cur_stag && req_stag && !cur_ctag)) { 6257 features |= NETIF_VLAN_FILTERING_FEATURES; 6258 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6259 } else if ((cur_ctag && !req_ctag && cur_stag) || 6260 (cur_stag && !req_stag && cur_ctag)) { 6261 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6262 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6263 } 6264 } else { 6265 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6266 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6267 6268 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6269 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6270 } 6271 } 6272 6273 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6274 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6275 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6276 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6277 NETIF_F_HW_VLAN_STAG_TX); 6278 } 6279 6280 if (!(netdev->features & NETIF_F_RXFCS) && 6281 (features & NETIF_F_RXFCS) && 6282 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6283 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6284 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6285 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6286 } 6287 6288 return features; 6289 } 6290 6291 /** 6292 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6293 * @vsi: PF's VSI 6294 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6295 * 6296 * Store current stripped VLAN proto in ring packet context, 6297 * so it can be accessed more efficiently by packet processing code. 6298 */ 6299 static void 6300 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6301 { 6302 u16 i; 6303 6304 ice_for_each_alloc_rxq(vsi, i) 6305 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6306 } 6307 6308 /** 6309 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6310 * @vsi: PF's VSI 6311 * @features: features used to determine VLAN offload settings 6312 * 6313 * First, determine the vlan_ethertype based on the VLAN offload bits in 6314 * features. Then determine if stripping and insertion should be enabled or 6315 * disabled. Finally enable or disable VLAN stripping and insertion. 6316 */ 6317 static int 6318 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6319 { 6320 bool enable_stripping = true, enable_insertion = true; 6321 struct ice_vsi_vlan_ops *vlan_ops; 6322 int strip_err = 0, insert_err = 0; 6323 u16 vlan_ethertype = 0; 6324 6325 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6326 6327 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6328 vlan_ethertype = ETH_P_8021AD; 6329 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6330 vlan_ethertype = ETH_P_8021Q; 6331 6332 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6333 enable_stripping = false; 6334 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6335 enable_insertion = false; 6336 6337 if (enable_stripping) 6338 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6339 else 6340 strip_err = vlan_ops->dis_stripping(vsi); 6341 6342 if (enable_insertion) 6343 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6344 else 6345 insert_err = vlan_ops->dis_insertion(vsi); 6346 6347 if (strip_err || insert_err) 6348 return -EIO; 6349 6350 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6351 htons(vlan_ethertype) : 0); 6352 6353 return 0; 6354 } 6355 6356 /** 6357 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6358 * @vsi: PF's VSI 6359 * @features: features used to determine VLAN filtering settings 6360 * 6361 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6362 * features. 6363 */ 6364 static int 6365 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6366 { 6367 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6368 int err = 0; 6369 6370 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6371 * if either bit is set 6372 */ 6373 if (features & 6374 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6375 err = vlan_ops->ena_rx_filtering(vsi); 6376 else 6377 err = vlan_ops->dis_rx_filtering(vsi); 6378 6379 return err; 6380 } 6381 6382 /** 6383 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6384 * @netdev: ptr to the netdev being adjusted 6385 * @features: the feature set that the stack is suggesting 6386 * 6387 * Only update VLAN settings if the requested_vlan_features are different than 6388 * the current_vlan_features. 6389 */ 6390 static int 6391 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6392 { 6393 netdev_features_t current_vlan_features, requested_vlan_features; 6394 struct ice_netdev_priv *np = netdev_priv(netdev); 6395 struct ice_vsi *vsi = np->vsi; 6396 int err; 6397 6398 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6399 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6400 if (current_vlan_features ^ requested_vlan_features) { 6401 if ((features & NETIF_F_RXFCS) && 6402 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6403 dev_err(ice_pf_to_dev(vsi->back), 6404 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6405 return -EIO; 6406 } 6407 6408 err = ice_set_vlan_offload_features(vsi, features); 6409 if (err) 6410 return err; 6411 } 6412 6413 current_vlan_features = netdev->features & 6414 NETIF_VLAN_FILTERING_FEATURES; 6415 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6416 if (current_vlan_features ^ requested_vlan_features) { 6417 err = ice_set_vlan_filtering_features(vsi, features); 6418 if (err) 6419 return err; 6420 } 6421 6422 return 0; 6423 } 6424 6425 /** 6426 * ice_set_loopback - turn on/off loopback mode on underlying PF 6427 * @vsi: ptr to VSI 6428 * @ena: flag to indicate the on/off setting 6429 */ 6430 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6431 { 6432 bool if_running = netif_running(vsi->netdev); 6433 int ret; 6434 6435 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6436 ret = ice_down(vsi); 6437 if (ret) { 6438 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6439 return ret; 6440 } 6441 } 6442 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6443 if (ret) 6444 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6445 if (if_running) 6446 ret = ice_up(vsi); 6447 6448 return ret; 6449 } 6450 6451 /** 6452 * ice_set_features - set the netdev feature flags 6453 * @netdev: ptr to the netdev being adjusted 6454 * @features: the feature set that the stack is suggesting 6455 */ 6456 static int 6457 ice_set_features(struct net_device *netdev, netdev_features_t features) 6458 { 6459 netdev_features_t changed = netdev->features ^ features; 6460 struct ice_netdev_priv *np = netdev_priv(netdev); 6461 struct ice_vsi *vsi = np->vsi; 6462 struct ice_pf *pf = vsi->back; 6463 int ret = 0; 6464 6465 /* Don't set any netdev advanced features with device in Safe Mode */ 6466 if (ice_is_safe_mode(pf)) { 6467 dev_err(ice_pf_to_dev(pf), 6468 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6469 return ret; 6470 } 6471 6472 /* Do not change setting during reset */ 6473 if (ice_is_reset_in_progress(pf->state)) { 6474 dev_err(ice_pf_to_dev(pf), 6475 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6476 return -EBUSY; 6477 } 6478 6479 /* Multiple features can be changed in one call so keep features in 6480 * separate if/else statements to guarantee each feature is checked 6481 */ 6482 if (changed & NETIF_F_RXHASH) 6483 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6484 6485 ret = ice_set_vlan_features(netdev, features); 6486 if (ret) 6487 return ret; 6488 6489 /* Turn on receive of FCS aka CRC, and after setting this 6490 * flag the packet data will have the 4 byte CRC appended 6491 */ 6492 if (changed & NETIF_F_RXFCS) { 6493 if ((features & NETIF_F_RXFCS) && 6494 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6495 dev_err(ice_pf_to_dev(vsi->back), 6496 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6497 return -EIO; 6498 } 6499 6500 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6501 ret = ice_down_up(vsi); 6502 if (ret) 6503 return ret; 6504 } 6505 6506 if (changed & NETIF_F_NTUPLE) { 6507 bool ena = !!(features & NETIF_F_NTUPLE); 6508 6509 ice_vsi_manage_fdir(vsi, ena); 6510 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6511 } 6512 6513 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6514 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6515 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6516 return -EACCES; 6517 } 6518 6519 if (changed & NETIF_F_HW_TC) { 6520 bool ena = !!(features & NETIF_F_HW_TC); 6521 6522 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6523 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6524 } 6525 6526 if (changed & NETIF_F_LOOPBACK) 6527 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6528 6529 return ret; 6530 } 6531 6532 /** 6533 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6534 * @vsi: VSI to setup VLAN properties for 6535 */ 6536 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6537 { 6538 int err; 6539 6540 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6541 if (err) 6542 return err; 6543 6544 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6545 if (err) 6546 return err; 6547 6548 return ice_vsi_add_vlan_zero(vsi); 6549 } 6550 6551 /** 6552 * ice_vsi_cfg_lan - Setup the VSI lan related config 6553 * @vsi: the VSI being configured 6554 * 6555 * Return 0 on success and negative value on error 6556 */ 6557 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6558 { 6559 int err; 6560 6561 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6562 ice_set_rx_mode(vsi->netdev); 6563 6564 err = ice_vsi_vlan_setup(vsi); 6565 if (err) 6566 return err; 6567 } 6568 ice_vsi_cfg_dcb_rings(vsi); 6569 6570 err = ice_vsi_cfg_lan_txqs(vsi); 6571 if (!err && ice_is_xdp_ena_vsi(vsi)) 6572 err = ice_vsi_cfg_xdp_txqs(vsi); 6573 if (!err) 6574 err = ice_vsi_cfg_rxqs(vsi); 6575 6576 return err; 6577 } 6578 6579 /* THEORY OF MODERATION: 6580 * The ice driver hardware works differently than the hardware that DIMLIB was 6581 * originally made for. ice hardware doesn't have packet count limits that 6582 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6583 * which is hard-coded to a limit of 250,000 ints/second. 6584 * If not using dynamic moderation, the INTRL value can be modified 6585 * by ethtool rx-usecs-high. 6586 */ 6587 struct ice_dim { 6588 /* the throttle rate for interrupts, basically worst case delay before 6589 * an initial interrupt fires, value is stored in microseconds. 6590 */ 6591 u16 itr; 6592 }; 6593 6594 /* Make a different profile for Rx that doesn't allow quite so aggressive 6595 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6596 * second. 6597 */ 6598 static const struct ice_dim rx_profile[] = { 6599 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6600 {8}, /* 125,000 ints/s */ 6601 {16}, /* 62,500 ints/s */ 6602 {62}, /* 16,129 ints/s */ 6603 {126} /* 7,936 ints/s */ 6604 }; 6605 6606 /* The transmit profile, which has the same sorts of values 6607 * as the previous struct 6608 */ 6609 static const struct ice_dim tx_profile[] = { 6610 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6611 {8}, /* 125,000 ints/s */ 6612 {40}, /* 16,125 ints/s */ 6613 {128}, /* 7,812 ints/s */ 6614 {256} /* 3,906 ints/s */ 6615 }; 6616 6617 static void ice_tx_dim_work(struct work_struct *work) 6618 { 6619 struct ice_ring_container *rc; 6620 struct dim *dim; 6621 u16 itr; 6622 6623 dim = container_of(work, struct dim, work); 6624 rc = dim->priv; 6625 6626 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6627 6628 /* look up the values in our local table */ 6629 itr = tx_profile[dim->profile_ix].itr; 6630 6631 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6632 ice_write_itr(rc, itr); 6633 6634 dim->state = DIM_START_MEASURE; 6635 } 6636 6637 static void ice_rx_dim_work(struct work_struct *work) 6638 { 6639 struct ice_ring_container *rc; 6640 struct dim *dim; 6641 u16 itr; 6642 6643 dim = container_of(work, struct dim, work); 6644 rc = dim->priv; 6645 6646 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6647 6648 /* look up the values in our local table */ 6649 itr = rx_profile[dim->profile_ix].itr; 6650 6651 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6652 ice_write_itr(rc, itr); 6653 6654 dim->state = DIM_START_MEASURE; 6655 } 6656 6657 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6658 6659 /** 6660 * ice_init_moderation - set up interrupt moderation 6661 * @q_vector: the vector containing rings to be configured 6662 * 6663 * Set up interrupt moderation registers, with the intent to do the right thing 6664 * when called from reset or from probe, and whether or not dynamic moderation 6665 * is enabled or not. Take special care to write all the registers in both 6666 * dynamic moderation mode or not in order to make sure hardware is in a known 6667 * state. 6668 */ 6669 static void ice_init_moderation(struct ice_q_vector *q_vector) 6670 { 6671 struct ice_ring_container *rc; 6672 bool tx_dynamic, rx_dynamic; 6673 6674 rc = &q_vector->tx; 6675 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6676 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6677 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6678 rc->dim.priv = rc; 6679 tx_dynamic = ITR_IS_DYNAMIC(rc); 6680 6681 /* set the initial TX ITR to match the above */ 6682 ice_write_itr(rc, tx_dynamic ? 6683 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6684 6685 rc = &q_vector->rx; 6686 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6687 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6688 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6689 rc->dim.priv = rc; 6690 rx_dynamic = ITR_IS_DYNAMIC(rc); 6691 6692 /* set the initial RX ITR to match the above */ 6693 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6694 rc->itr_setting); 6695 6696 ice_set_q_vector_intrl(q_vector); 6697 } 6698 6699 /** 6700 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6701 * @vsi: the VSI being configured 6702 */ 6703 static void ice_napi_enable_all(struct ice_vsi *vsi) 6704 { 6705 int q_idx; 6706 6707 if (!vsi->netdev) 6708 return; 6709 6710 ice_for_each_q_vector(vsi, q_idx) { 6711 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6712 6713 ice_init_moderation(q_vector); 6714 6715 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6716 napi_enable(&q_vector->napi); 6717 } 6718 } 6719 6720 /** 6721 * ice_up_complete - Finish the last steps of bringing up a connection 6722 * @vsi: The VSI being configured 6723 * 6724 * Return 0 on success and negative value on error 6725 */ 6726 static int ice_up_complete(struct ice_vsi *vsi) 6727 { 6728 struct ice_pf *pf = vsi->back; 6729 int err; 6730 6731 ice_vsi_cfg_msix(vsi); 6732 6733 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6734 * Tx queue group list was configured and the context bits were 6735 * programmed using ice_vsi_cfg_txqs 6736 */ 6737 err = ice_vsi_start_all_rx_rings(vsi); 6738 if (err) 6739 return err; 6740 6741 clear_bit(ICE_VSI_DOWN, vsi->state); 6742 ice_napi_enable_all(vsi); 6743 ice_vsi_ena_irq(vsi); 6744 6745 if (vsi->port_info && 6746 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6747 vsi->netdev && vsi->type == ICE_VSI_PF) { 6748 ice_print_link_msg(vsi, true); 6749 netif_tx_start_all_queues(vsi->netdev); 6750 netif_carrier_on(vsi->netdev); 6751 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6752 } 6753 6754 /* Perform an initial read of the statistics registers now to 6755 * set the baseline so counters are ready when interface is up 6756 */ 6757 ice_update_eth_stats(vsi); 6758 6759 if (vsi->type == ICE_VSI_PF) 6760 ice_service_task_schedule(pf); 6761 6762 return 0; 6763 } 6764 6765 /** 6766 * ice_up - Bring the connection back up after being down 6767 * @vsi: VSI being configured 6768 */ 6769 int ice_up(struct ice_vsi *vsi) 6770 { 6771 int err; 6772 6773 err = ice_vsi_cfg_lan(vsi); 6774 if (!err) 6775 err = ice_up_complete(vsi); 6776 6777 return err; 6778 } 6779 6780 /** 6781 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6782 * @syncp: pointer to u64_stats_sync 6783 * @stats: stats that pkts and bytes count will be taken from 6784 * @pkts: packets stats counter 6785 * @bytes: bytes stats counter 6786 * 6787 * This function fetches stats from the ring considering the atomic operations 6788 * that needs to be performed to read u64 values in 32 bit machine. 6789 */ 6790 void 6791 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6792 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6793 { 6794 unsigned int start; 6795 6796 do { 6797 start = u64_stats_fetch_begin(syncp); 6798 *pkts = stats.pkts; 6799 *bytes = stats.bytes; 6800 } while (u64_stats_fetch_retry(syncp, start)); 6801 } 6802 6803 /** 6804 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6805 * @vsi: the VSI to be updated 6806 * @vsi_stats: the stats struct to be updated 6807 * @rings: rings to work on 6808 * @count: number of rings 6809 */ 6810 static void 6811 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6812 struct rtnl_link_stats64 *vsi_stats, 6813 struct ice_tx_ring **rings, u16 count) 6814 { 6815 u16 i; 6816 6817 for (i = 0; i < count; i++) { 6818 struct ice_tx_ring *ring; 6819 u64 pkts = 0, bytes = 0; 6820 6821 ring = READ_ONCE(rings[i]); 6822 if (!ring || !ring->ring_stats) 6823 continue; 6824 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6825 ring->ring_stats->stats, &pkts, 6826 &bytes); 6827 vsi_stats->tx_packets += pkts; 6828 vsi_stats->tx_bytes += bytes; 6829 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6830 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6831 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6832 } 6833 } 6834 6835 /** 6836 * ice_update_vsi_ring_stats - Update VSI stats counters 6837 * @vsi: the VSI to be updated 6838 */ 6839 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6840 { 6841 struct rtnl_link_stats64 *net_stats, *stats_prev; 6842 struct rtnl_link_stats64 *vsi_stats; 6843 struct ice_pf *pf = vsi->back; 6844 u64 pkts, bytes; 6845 int i; 6846 6847 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6848 if (!vsi_stats) 6849 return; 6850 6851 /* reset non-netdev (extended) stats */ 6852 vsi->tx_restart = 0; 6853 vsi->tx_busy = 0; 6854 vsi->tx_linearize = 0; 6855 vsi->rx_buf_failed = 0; 6856 vsi->rx_page_failed = 0; 6857 6858 rcu_read_lock(); 6859 6860 /* update Tx rings counters */ 6861 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6862 vsi->num_txq); 6863 6864 /* update Rx rings counters */ 6865 ice_for_each_rxq(vsi, i) { 6866 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6867 struct ice_ring_stats *ring_stats; 6868 6869 ring_stats = ring->ring_stats; 6870 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6871 ring_stats->stats, &pkts, 6872 &bytes); 6873 vsi_stats->rx_packets += pkts; 6874 vsi_stats->rx_bytes += bytes; 6875 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6876 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6877 } 6878 6879 /* update XDP Tx rings counters */ 6880 if (ice_is_xdp_ena_vsi(vsi)) 6881 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6882 vsi->num_xdp_txq); 6883 6884 rcu_read_unlock(); 6885 6886 net_stats = &vsi->net_stats; 6887 stats_prev = &vsi->net_stats_prev; 6888 6889 /* Update netdev counters, but keep in mind that values could start at 6890 * random value after PF reset. And as we increase the reported stat by 6891 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6892 * let's skip this round. 6893 */ 6894 if (likely(pf->stat_prev_loaded)) { 6895 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6896 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6897 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6898 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6899 } 6900 6901 stats_prev->tx_packets = vsi_stats->tx_packets; 6902 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6903 stats_prev->rx_packets = vsi_stats->rx_packets; 6904 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6905 6906 kfree(vsi_stats); 6907 } 6908 6909 /** 6910 * ice_update_vsi_stats - Update VSI stats counters 6911 * @vsi: the VSI to be updated 6912 */ 6913 void ice_update_vsi_stats(struct ice_vsi *vsi) 6914 { 6915 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6916 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6917 struct ice_pf *pf = vsi->back; 6918 6919 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6920 test_bit(ICE_CFG_BUSY, pf->state)) 6921 return; 6922 6923 /* get stats as recorded by Tx/Rx rings */ 6924 ice_update_vsi_ring_stats(vsi); 6925 6926 /* get VSI stats as recorded by the hardware */ 6927 ice_update_eth_stats(vsi); 6928 6929 cur_ns->tx_errors = cur_es->tx_errors; 6930 cur_ns->rx_dropped = cur_es->rx_discards; 6931 cur_ns->tx_dropped = cur_es->tx_discards; 6932 cur_ns->multicast = cur_es->rx_multicast; 6933 6934 /* update some more netdev stats if this is main VSI */ 6935 if (vsi->type == ICE_VSI_PF) { 6936 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6937 cur_ns->rx_errors = pf->stats.crc_errors + 6938 pf->stats.illegal_bytes + 6939 pf->stats.rx_undersize + 6940 pf->hw_csum_rx_error + 6941 pf->stats.rx_jabber + 6942 pf->stats.rx_fragments + 6943 pf->stats.rx_oversize; 6944 /* record drops from the port level */ 6945 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6946 } 6947 } 6948 6949 /** 6950 * ice_update_pf_stats - Update PF port stats counters 6951 * @pf: PF whose stats needs to be updated 6952 */ 6953 void ice_update_pf_stats(struct ice_pf *pf) 6954 { 6955 struct ice_hw_port_stats *prev_ps, *cur_ps; 6956 struct ice_hw *hw = &pf->hw; 6957 u16 fd_ctr_base; 6958 u8 port; 6959 6960 port = hw->port_info->lport; 6961 prev_ps = &pf->stats_prev; 6962 cur_ps = &pf->stats; 6963 6964 if (ice_is_reset_in_progress(pf->state)) 6965 pf->stat_prev_loaded = false; 6966 6967 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6968 &prev_ps->eth.rx_bytes, 6969 &cur_ps->eth.rx_bytes); 6970 6971 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6972 &prev_ps->eth.rx_unicast, 6973 &cur_ps->eth.rx_unicast); 6974 6975 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6976 &prev_ps->eth.rx_multicast, 6977 &cur_ps->eth.rx_multicast); 6978 6979 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6980 &prev_ps->eth.rx_broadcast, 6981 &cur_ps->eth.rx_broadcast); 6982 6983 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6984 &prev_ps->eth.rx_discards, 6985 &cur_ps->eth.rx_discards); 6986 6987 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6988 &prev_ps->eth.tx_bytes, 6989 &cur_ps->eth.tx_bytes); 6990 6991 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6992 &prev_ps->eth.tx_unicast, 6993 &cur_ps->eth.tx_unicast); 6994 6995 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6996 &prev_ps->eth.tx_multicast, 6997 &cur_ps->eth.tx_multicast); 6998 6999 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7000 &prev_ps->eth.tx_broadcast, 7001 &cur_ps->eth.tx_broadcast); 7002 7003 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7004 &prev_ps->tx_dropped_link_down, 7005 &cur_ps->tx_dropped_link_down); 7006 7007 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7008 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7009 7010 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7011 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7012 7013 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7014 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7015 7016 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7017 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7018 7019 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7020 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7021 7022 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7023 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7024 7025 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7026 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7027 7028 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7029 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7030 7031 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7032 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7033 7034 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7035 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7036 7037 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7038 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7039 7040 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7041 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7042 7043 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7044 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7045 7046 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7047 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7048 7049 fd_ctr_base = hw->fd_ctr_base; 7050 7051 ice_stat_update40(hw, 7052 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7053 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7054 &cur_ps->fd_sb_match); 7055 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7056 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7057 7058 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7059 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7060 7061 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7062 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7063 7064 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7065 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7066 7067 ice_update_dcb_stats(pf); 7068 7069 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7070 &prev_ps->crc_errors, &cur_ps->crc_errors); 7071 7072 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7073 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7074 7075 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7076 &prev_ps->mac_local_faults, 7077 &cur_ps->mac_local_faults); 7078 7079 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7080 &prev_ps->mac_remote_faults, 7081 &cur_ps->mac_remote_faults); 7082 7083 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7084 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7085 7086 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7087 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7088 7089 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7090 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7091 7092 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7093 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7094 7095 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7096 7097 pf->stat_prev_loaded = true; 7098 } 7099 7100 /** 7101 * ice_get_stats64 - get statistics for network device structure 7102 * @netdev: network interface device structure 7103 * @stats: main device statistics structure 7104 */ 7105 static 7106 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7107 { 7108 struct ice_netdev_priv *np = netdev_priv(netdev); 7109 struct rtnl_link_stats64 *vsi_stats; 7110 struct ice_vsi *vsi = np->vsi; 7111 7112 vsi_stats = &vsi->net_stats; 7113 7114 if (!vsi->num_txq || !vsi->num_rxq) 7115 return; 7116 7117 /* netdev packet/byte stats come from ring counter. These are obtained 7118 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7119 * But, only call the update routine and read the registers if VSI is 7120 * not down. 7121 */ 7122 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7123 ice_update_vsi_ring_stats(vsi); 7124 stats->tx_packets = vsi_stats->tx_packets; 7125 stats->tx_bytes = vsi_stats->tx_bytes; 7126 stats->rx_packets = vsi_stats->rx_packets; 7127 stats->rx_bytes = vsi_stats->rx_bytes; 7128 7129 /* The rest of the stats can be read from the hardware but instead we 7130 * just return values that the watchdog task has already obtained from 7131 * the hardware. 7132 */ 7133 stats->multicast = vsi_stats->multicast; 7134 stats->tx_errors = vsi_stats->tx_errors; 7135 stats->tx_dropped = vsi_stats->tx_dropped; 7136 stats->rx_errors = vsi_stats->rx_errors; 7137 stats->rx_dropped = vsi_stats->rx_dropped; 7138 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7139 stats->rx_length_errors = vsi_stats->rx_length_errors; 7140 } 7141 7142 /** 7143 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7144 * @vsi: VSI having NAPI disabled 7145 */ 7146 static void ice_napi_disable_all(struct ice_vsi *vsi) 7147 { 7148 int q_idx; 7149 7150 if (!vsi->netdev) 7151 return; 7152 7153 ice_for_each_q_vector(vsi, q_idx) { 7154 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7155 7156 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7157 napi_disable(&q_vector->napi); 7158 7159 cancel_work_sync(&q_vector->tx.dim.work); 7160 cancel_work_sync(&q_vector->rx.dim.work); 7161 } 7162 } 7163 7164 /** 7165 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7166 * @vsi: the VSI being un-configured 7167 */ 7168 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7169 { 7170 struct ice_pf *pf = vsi->back; 7171 struct ice_hw *hw = &pf->hw; 7172 u32 val; 7173 int i; 7174 7175 /* disable interrupt causation from each Rx queue; Tx queues are 7176 * handled in ice_vsi_stop_tx_ring() 7177 */ 7178 if (vsi->rx_rings) { 7179 ice_for_each_rxq(vsi, i) { 7180 if (vsi->rx_rings[i]) { 7181 u16 reg; 7182 7183 reg = vsi->rx_rings[i]->reg_idx; 7184 val = rd32(hw, QINT_RQCTL(reg)); 7185 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7186 wr32(hw, QINT_RQCTL(reg), val); 7187 } 7188 } 7189 } 7190 7191 /* disable each interrupt */ 7192 ice_for_each_q_vector(vsi, i) { 7193 if (!vsi->q_vectors[i]) 7194 continue; 7195 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7196 } 7197 7198 ice_flush(hw); 7199 7200 /* don't call synchronize_irq() for VF's from the host */ 7201 if (vsi->type == ICE_VSI_VF) 7202 return; 7203 7204 ice_for_each_q_vector(vsi, i) 7205 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7206 } 7207 7208 /** 7209 * ice_down - Shutdown the connection 7210 * @vsi: The VSI being stopped 7211 * 7212 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7213 */ 7214 int ice_down(struct ice_vsi *vsi) 7215 { 7216 int i, tx_err, rx_err, vlan_err = 0; 7217 7218 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7219 7220 if (vsi->netdev) { 7221 vlan_err = ice_vsi_del_vlan_zero(vsi); 7222 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7223 netif_carrier_off(vsi->netdev); 7224 netif_tx_disable(vsi->netdev); 7225 } 7226 7227 ice_vsi_dis_irq(vsi); 7228 7229 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7230 if (tx_err) 7231 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7232 vsi->vsi_num, tx_err); 7233 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7234 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7235 if (tx_err) 7236 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7237 vsi->vsi_num, tx_err); 7238 } 7239 7240 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7241 if (rx_err) 7242 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7243 vsi->vsi_num, rx_err); 7244 7245 ice_napi_disable_all(vsi); 7246 7247 ice_for_each_txq(vsi, i) 7248 ice_clean_tx_ring(vsi->tx_rings[i]); 7249 7250 if (ice_is_xdp_ena_vsi(vsi)) 7251 ice_for_each_xdp_txq(vsi, i) 7252 ice_clean_tx_ring(vsi->xdp_rings[i]); 7253 7254 ice_for_each_rxq(vsi, i) 7255 ice_clean_rx_ring(vsi->rx_rings[i]); 7256 7257 if (tx_err || rx_err || vlan_err) { 7258 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7259 vsi->vsi_num, vsi->vsw->sw_id); 7260 return -EIO; 7261 } 7262 7263 return 0; 7264 } 7265 7266 /** 7267 * ice_down_up - shutdown the VSI connection and bring it up 7268 * @vsi: the VSI to be reconnected 7269 */ 7270 int ice_down_up(struct ice_vsi *vsi) 7271 { 7272 int ret; 7273 7274 /* if DOWN already set, nothing to do */ 7275 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7276 return 0; 7277 7278 ret = ice_down(vsi); 7279 if (ret) 7280 return ret; 7281 7282 ret = ice_up(vsi); 7283 if (ret) { 7284 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7285 return ret; 7286 } 7287 7288 return 0; 7289 } 7290 7291 /** 7292 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7293 * @vsi: VSI having resources allocated 7294 * 7295 * Return 0 on success, negative on failure 7296 */ 7297 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7298 { 7299 int i, err = 0; 7300 7301 if (!vsi->num_txq) { 7302 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7303 vsi->vsi_num); 7304 return -EINVAL; 7305 } 7306 7307 ice_for_each_txq(vsi, i) { 7308 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7309 7310 if (!ring) 7311 return -EINVAL; 7312 7313 if (vsi->netdev) 7314 ring->netdev = vsi->netdev; 7315 err = ice_setup_tx_ring(ring); 7316 if (err) 7317 break; 7318 } 7319 7320 return err; 7321 } 7322 7323 /** 7324 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7325 * @vsi: VSI having resources allocated 7326 * 7327 * Return 0 on success, negative on failure 7328 */ 7329 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7330 { 7331 int i, err = 0; 7332 7333 if (!vsi->num_rxq) { 7334 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7335 vsi->vsi_num); 7336 return -EINVAL; 7337 } 7338 7339 ice_for_each_rxq(vsi, i) { 7340 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7341 7342 if (!ring) 7343 return -EINVAL; 7344 7345 if (vsi->netdev) 7346 ring->netdev = vsi->netdev; 7347 err = ice_setup_rx_ring(ring); 7348 if (err) 7349 break; 7350 } 7351 7352 return err; 7353 } 7354 7355 /** 7356 * ice_vsi_open_ctrl - open control VSI for use 7357 * @vsi: the VSI to open 7358 * 7359 * Initialization of the Control VSI 7360 * 7361 * Returns 0 on success, negative value on error 7362 */ 7363 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7364 { 7365 char int_name[ICE_INT_NAME_STR_LEN]; 7366 struct ice_pf *pf = vsi->back; 7367 struct device *dev; 7368 int err; 7369 7370 dev = ice_pf_to_dev(pf); 7371 /* allocate descriptors */ 7372 err = ice_vsi_setup_tx_rings(vsi); 7373 if (err) 7374 goto err_setup_tx; 7375 7376 err = ice_vsi_setup_rx_rings(vsi); 7377 if (err) 7378 goto err_setup_rx; 7379 7380 err = ice_vsi_cfg_lan(vsi); 7381 if (err) 7382 goto err_setup_rx; 7383 7384 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7385 dev_driver_string(dev), dev_name(dev)); 7386 err = ice_vsi_req_irq_msix(vsi, int_name); 7387 if (err) 7388 goto err_setup_rx; 7389 7390 ice_vsi_cfg_msix(vsi); 7391 7392 err = ice_vsi_start_all_rx_rings(vsi); 7393 if (err) 7394 goto err_up_complete; 7395 7396 clear_bit(ICE_VSI_DOWN, vsi->state); 7397 ice_vsi_ena_irq(vsi); 7398 7399 return 0; 7400 7401 err_up_complete: 7402 ice_down(vsi); 7403 err_setup_rx: 7404 ice_vsi_free_rx_rings(vsi); 7405 err_setup_tx: 7406 ice_vsi_free_tx_rings(vsi); 7407 7408 return err; 7409 } 7410 7411 /** 7412 * ice_vsi_open - Called when a network interface is made active 7413 * @vsi: the VSI to open 7414 * 7415 * Initialization of the VSI 7416 * 7417 * Returns 0 on success, negative value on error 7418 */ 7419 int ice_vsi_open(struct ice_vsi *vsi) 7420 { 7421 char int_name[ICE_INT_NAME_STR_LEN]; 7422 struct ice_pf *pf = vsi->back; 7423 int err; 7424 7425 /* allocate descriptors */ 7426 err = ice_vsi_setup_tx_rings(vsi); 7427 if (err) 7428 goto err_setup_tx; 7429 7430 err = ice_vsi_setup_rx_rings(vsi); 7431 if (err) 7432 goto err_setup_rx; 7433 7434 err = ice_vsi_cfg_lan(vsi); 7435 if (err) 7436 goto err_setup_rx; 7437 7438 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7439 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7440 err = ice_vsi_req_irq_msix(vsi, int_name); 7441 if (err) 7442 goto err_setup_rx; 7443 7444 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7445 7446 if (vsi->type == ICE_VSI_PF) { 7447 /* Notify the stack of the actual queue counts. */ 7448 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7449 if (err) 7450 goto err_set_qs; 7451 7452 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7453 if (err) 7454 goto err_set_qs; 7455 } 7456 7457 err = ice_up_complete(vsi); 7458 if (err) 7459 goto err_up_complete; 7460 7461 return 0; 7462 7463 err_up_complete: 7464 ice_down(vsi); 7465 err_set_qs: 7466 ice_vsi_free_irq(vsi); 7467 err_setup_rx: 7468 ice_vsi_free_rx_rings(vsi); 7469 err_setup_tx: 7470 ice_vsi_free_tx_rings(vsi); 7471 7472 return err; 7473 } 7474 7475 /** 7476 * ice_vsi_release_all - Delete all VSIs 7477 * @pf: PF from which all VSIs are being removed 7478 */ 7479 static void ice_vsi_release_all(struct ice_pf *pf) 7480 { 7481 int err, i; 7482 7483 if (!pf->vsi) 7484 return; 7485 7486 ice_for_each_vsi(pf, i) { 7487 if (!pf->vsi[i]) 7488 continue; 7489 7490 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7491 continue; 7492 7493 err = ice_vsi_release(pf->vsi[i]); 7494 if (err) 7495 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7496 i, err, pf->vsi[i]->vsi_num); 7497 } 7498 } 7499 7500 /** 7501 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7502 * @pf: pointer to the PF instance 7503 * @type: VSI type to rebuild 7504 * 7505 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7506 */ 7507 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7508 { 7509 struct device *dev = ice_pf_to_dev(pf); 7510 int i, err; 7511 7512 ice_for_each_vsi(pf, i) { 7513 struct ice_vsi *vsi = pf->vsi[i]; 7514 7515 if (!vsi || vsi->type != type) 7516 continue; 7517 7518 /* rebuild the VSI */ 7519 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7520 if (err) { 7521 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7522 err, vsi->idx, ice_vsi_type_str(type)); 7523 return err; 7524 } 7525 7526 /* replay filters for the VSI */ 7527 err = ice_replay_vsi(&pf->hw, vsi->idx); 7528 if (err) { 7529 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7530 err, vsi->idx, ice_vsi_type_str(type)); 7531 return err; 7532 } 7533 7534 /* Re-map HW VSI number, using VSI handle that has been 7535 * previously validated in ice_replay_vsi() call above 7536 */ 7537 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7538 7539 /* enable the VSI */ 7540 err = ice_ena_vsi(vsi, false); 7541 if (err) { 7542 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7543 err, vsi->idx, ice_vsi_type_str(type)); 7544 return err; 7545 } 7546 7547 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7548 ice_vsi_type_str(type)); 7549 } 7550 7551 return 0; 7552 } 7553 7554 /** 7555 * ice_update_pf_netdev_link - Update PF netdev link status 7556 * @pf: pointer to the PF instance 7557 */ 7558 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7559 { 7560 bool link_up; 7561 int i; 7562 7563 ice_for_each_vsi(pf, i) { 7564 struct ice_vsi *vsi = pf->vsi[i]; 7565 7566 if (!vsi || vsi->type != ICE_VSI_PF) 7567 return; 7568 7569 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7570 if (link_up) { 7571 netif_carrier_on(pf->vsi[i]->netdev); 7572 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7573 } else { 7574 netif_carrier_off(pf->vsi[i]->netdev); 7575 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7576 } 7577 } 7578 } 7579 7580 /** 7581 * ice_rebuild - rebuild after reset 7582 * @pf: PF to rebuild 7583 * @reset_type: type of reset 7584 * 7585 * Do not rebuild VF VSI in this flow because that is already handled via 7586 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7587 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7588 * to reset/rebuild all the VF VSI twice. 7589 */ 7590 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7591 { 7592 struct device *dev = ice_pf_to_dev(pf); 7593 struct ice_hw *hw = &pf->hw; 7594 bool dvm; 7595 int err; 7596 7597 if (test_bit(ICE_DOWN, pf->state)) 7598 goto clear_recovery; 7599 7600 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7601 7602 #define ICE_EMP_RESET_SLEEP_MS 5000 7603 if (reset_type == ICE_RESET_EMPR) { 7604 /* If an EMP reset has occurred, any previously pending flash 7605 * update will have completed. We no longer know whether or 7606 * not the NVM update EMP reset is restricted. 7607 */ 7608 pf->fw_emp_reset_disabled = false; 7609 7610 msleep(ICE_EMP_RESET_SLEEP_MS); 7611 } 7612 7613 err = ice_init_all_ctrlq(hw); 7614 if (err) { 7615 dev_err(dev, "control queues init failed %d\n", err); 7616 goto err_init_ctrlq; 7617 } 7618 7619 /* if DDP was previously loaded successfully */ 7620 if (!ice_is_safe_mode(pf)) { 7621 /* reload the SW DB of filter tables */ 7622 if (reset_type == ICE_RESET_PFR) 7623 ice_fill_blk_tbls(hw); 7624 else 7625 /* Reload DDP Package after CORER/GLOBR reset */ 7626 ice_load_pkg(NULL, pf); 7627 } 7628 7629 err = ice_clear_pf_cfg(hw); 7630 if (err) { 7631 dev_err(dev, "clear PF configuration failed %d\n", err); 7632 goto err_init_ctrlq; 7633 } 7634 7635 ice_clear_pxe_mode(hw); 7636 7637 err = ice_init_nvm(hw); 7638 if (err) { 7639 dev_err(dev, "ice_init_nvm failed %d\n", err); 7640 goto err_init_ctrlq; 7641 } 7642 7643 err = ice_get_caps(hw); 7644 if (err) { 7645 dev_err(dev, "ice_get_caps failed %d\n", err); 7646 goto err_init_ctrlq; 7647 } 7648 7649 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7650 if (err) { 7651 dev_err(dev, "set_mac_cfg failed %d\n", err); 7652 goto err_init_ctrlq; 7653 } 7654 7655 dvm = ice_is_dvm_ena(hw); 7656 7657 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7658 if (err) 7659 goto err_init_ctrlq; 7660 7661 err = ice_sched_init_port(hw->port_info); 7662 if (err) 7663 goto err_sched_init_port; 7664 7665 /* start misc vector */ 7666 err = ice_req_irq_msix_misc(pf); 7667 if (err) { 7668 dev_err(dev, "misc vector setup failed: %d\n", err); 7669 goto err_sched_init_port; 7670 } 7671 7672 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7673 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7674 if (!rd32(hw, PFQF_FD_SIZE)) { 7675 u16 unused, guar, b_effort; 7676 7677 guar = hw->func_caps.fd_fltr_guar; 7678 b_effort = hw->func_caps.fd_fltr_best_effort; 7679 7680 /* force guaranteed filter pool for PF */ 7681 ice_alloc_fd_guar_item(hw, &unused, guar); 7682 /* force shared filter pool for PF */ 7683 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7684 } 7685 } 7686 7687 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7688 ice_dcb_rebuild(pf); 7689 7690 /* If the PF previously had enabled PTP, PTP init needs to happen before 7691 * the VSI rebuild. If not, this causes the PTP link status events to 7692 * fail. 7693 */ 7694 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7695 ice_ptp_rebuild(pf, reset_type); 7696 7697 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7698 ice_gnss_init(pf); 7699 7700 /* rebuild PF VSI */ 7701 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7702 if (err) { 7703 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7704 goto err_vsi_rebuild; 7705 } 7706 7707 if (reset_type == ICE_RESET_PFR) { 7708 err = ice_rebuild_channels(pf); 7709 if (err) { 7710 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7711 err); 7712 goto err_vsi_rebuild; 7713 } 7714 } 7715 7716 /* If Flow Director is active */ 7717 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7718 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7719 if (err) { 7720 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7721 goto err_vsi_rebuild; 7722 } 7723 7724 /* replay HW Flow Director recipes */ 7725 if (hw->fdir_prof) 7726 ice_fdir_replay_flows(hw); 7727 7728 /* replay Flow Director filters */ 7729 ice_fdir_replay_fltrs(pf); 7730 7731 ice_rebuild_arfs(pf); 7732 } 7733 7734 ice_update_pf_netdev_link(pf); 7735 7736 /* tell the firmware we are up */ 7737 err = ice_send_version(pf); 7738 if (err) { 7739 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7740 err); 7741 goto err_vsi_rebuild; 7742 } 7743 7744 ice_replay_post(hw); 7745 7746 /* if we get here, reset flow is successful */ 7747 clear_bit(ICE_RESET_FAILED, pf->state); 7748 7749 ice_plug_aux_dev(pf); 7750 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7751 ice_lag_rebuild(pf); 7752 7753 /* Restore timestamp mode settings after VSI rebuild */ 7754 ice_ptp_restore_timestamp_mode(pf); 7755 return; 7756 7757 err_vsi_rebuild: 7758 err_sched_init_port: 7759 ice_sched_cleanup_all(hw); 7760 err_init_ctrlq: 7761 ice_shutdown_all_ctrlq(hw, false); 7762 set_bit(ICE_RESET_FAILED, pf->state); 7763 clear_recovery: 7764 /* set this bit in PF state to control service task scheduling */ 7765 set_bit(ICE_NEEDS_RESTART, pf->state); 7766 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7767 } 7768 7769 /** 7770 * ice_change_mtu - NDO callback to change the MTU 7771 * @netdev: network interface device structure 7772 * @new_mtu: new value for maximum frame size 7773 * 7774 * Returns 0 on success, negative on failure 7775 */ 7776 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7777 { 7778 struct ice_netdev_priv *np = netdev_priv(netdev); 7779 struct ice_vsi *vsi = np->vsi; 7780 struct ice_pf *pf = vsi->back; 7781 struct bpf_prog *prog; 7782 u8 count = 0; 7783 int err = 0; 7784 7785 if (new_mtu == (int)netdev->mtu) { 7786 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7787 return 0; 7788 } 7789 7790 prog = vsi->xdp_prog; 7791 if (prog && !prog->aux->xdp_has_frags) { 7792 int frame_size = ice_max_xdp_frame_size(vsi); 7793 7794 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7795 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7796 frame_size - ICE_ETH_PKT_HDR_PAD); 7797 return -EINVAL; 7798 } 7799 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7800 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7801 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7802 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7803 return -EINVAL; 7804 } 7805 } 7806 7807 /* if a reset is in progress, wait for some time for it to complete */ 7808 do { 7809 if (ice_is_reset_in_progress(pf->state)) { 7810 count++; 7811 usleep_range(1000, 2000); 7812 } else { 7813 break; 7814 } 7815 7816 } while (count < 100); 7817 7818 if (count == 100) { 7819 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7820 return -EBUSY; 7821 } 7822 7823 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7824 err = ice_down_up(vsi); 7825 if (err) 7826 return err; 7827 7828 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7829 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7830 7831 return err; 7832 } 7833 7834 /** 7835 * ice_eth_ioctl - Access the hwtstamp interface 7836 * @netdev: network interface device structure 7837 * @ifr: interface request data 7838 * @cmd: ioctl command 7839 */ 7840 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7841 { 7842 struct ice_netdev_priv *np = netdev_priv(netdev); 7843 struct ice_pf *pf = np->vsi->back; 7844 7845 switch (cmd) { 7846 case SIOCGHWTSTAMP: 7847 return ice_ptp_get_ts_config(pf, ifr); 7848 case SIOCSHWTSTAMP: 7849 return ice_ptp_set_ts_config(pf, ifr); 7850 default: 7851 return -EOPNOTSUPP; 7852 } 7853 } 7854 7855 /** 7856 * ice_aq_str - convert AQ err code to a string 7857 * @aq_err: the AQ error code to convert 7858 */ 7859 const char *ice_aq_str(enum ice_aq_err aq_err) 7860 { 7861 switch (aq_err) { 7862 case ICE_AQ_RC_OK: 7863 return "OK"; 7864 case ICE_AQ_RC_EPERM: 7865 return "ICE_AQ_RC_EPERM"; 7866 case ICE_AQ_RC_ENOENT: 7867 return "ICE_AQ_RC_ENOENT"; 7868 case ICE_AQ_RC_ENOMEM: 7869 return "ICE_AQ_RC_ENOMEM"; 7870 case ICE_AQ_RC_EBUSY: 7871 return "ICE_AQ_RC_EBUSY"; 7872 case ICE_AQ_RC_EEXIST: 7873 return "ICE_AQ_RC_EEXIST"; 7874 case ICE_AQ_RC_EINVAL: 7875 return "ICE_AQ_RC_EINVAL"; 7876 case ICE_AQ_RC_ENOSPC: 7877 return "ICE_AQ_RC_ENOSPC"; 7878 case ICE_AQ_RC_ENOSYS: 7879 return "ICE_AQ_RC_ENOSYS"; 7880 case ICE_AQ_RC_EMODE: 7881 return "ICE_AQ_RC_EMODE"; 7882 case ICE_AQ_RC_ENOSEC: 7883 return "ICE_AQ_RC_ENOSEC"; 7884 case ICE_AQ_RC_EBADSIG: 7885 return "ICE_AQ_RC_EBADSIG"; 7886 case ICE_AQ_RC_ESVN: 7887 return "ICE_AQ_RC_ESVN"; 7888 case ICE_AQ_RC_EBADMAN: 7889 return "ICE_AQ_RC_EBADMAN"; 7890 case ICE_AQ_RC_EBADBUF: 7891 return "ICE_AQ_RC_EBADBUF"; 7892 } 7893 7894 return "ICE_AQ_RC_UNKNOWN"; 7895 } 7896 7897 /** 7898 * ice_set_rss_lut - Set RSS LUT 7899 * @vsi: Pointer to VSI structure 7900 * @lut: Lookup table 7901 * @lut_size: Lookup table size 7902 * 7903 * Returns 0 on success, negative on failure 7904 */ 7905 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7906 { 7907 struct ice_aq_get_set_rss_lut_params params = {}; 7908 struct ice_hw *hw = &vsi->back->hw; 7909 int status; 7910 7911 if (!lut) 7912 return -EINVAL; 7913 7914 params.vsi_handle = vsi->idx; 7915 params.lut_size = lut_size; 7916 params.lut_type = vsi->rss_lut_type; 7917 params.lut = lut; 7918 7919 status = ice_aq_set_rss_lut(hw, ¶ms); 7920 if (status) 7921 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7922 status, ice_aq_str(hw->adminq.sq_last_status)); 7923 7924 return status; 7925 } 7926 7927 /** 7928 * ice_set_rss_key - Set RSS key 7929 * @vsi: Pointer to the VSI structure 7930 * @seed: RSS hash seed 7931 * 7932 * Returns 0 on success, negative on failure 7933 */ 7934 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7935 { 7936 struct ice_hw *hw = &vsi->back->hw; 7937 int status; 7938 7939 if (!seed) 7940 return -EINVAL; 7941 7942 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7943 if (status) 7944 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7945 status, ice_aq_str(hw->adminq.sq_last_status)); 7946 7947 return status; 7948 } 7949 7950 /** 7951 * ice_get_rss_lut - Get RSS LUT 7952 * @vsi: Pointer to VSI structure 7953 * @lut: Buffer to store the lookup table entries 7954 * @lut_size: Size of buffer to store the lookup table entries 7955 * 7956 * Returns 0 on success, negative on failure 7957 */ 7958 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7959 { 7960 struct ice_aq_get_set_rss_lut_params params = {}; 7961 struct ice_hw *hw = &vsi->back->hw; 7962 int status; 7963 7964 if (!lut) 7965 return -EINVAL; 7966 7967 params.vsi_handle = vsi->idx; 7968 params.lut_size = lut_size; 7969 params.lut_type = vsi->rss_lut_type; 7970 params.lut = lut; 7971 7972 status = ice_aq_get_rss_lut(hw, ¶ms); 7973 if (status) 7974 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7975 status, ice_aq_str(hw->adminq.sq_last_status)); 7976 7977 return status; 7978 } 7979 7980 /** 7981 * ice_get_rss_key - Get RSS key 7982 * @vsi: Pointer to VSI structure 7983 * @seed: Buffer to store the key in 7984 * 7985 * Returns 0 on success, negative on failure 7986 */ 7987 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7988 { 7989 struct ice_hw *hw = &vsi->back->hw; 7990 int status; 7991 7992 if (!seed) 7993 return -EINVAL; 7994 7995 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7996 if (status) 7997 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7998 status, ice_aq_str(hw->adminq.sq_last_status)); 7999 8000 return status; 8001 } 8002 8003 /** 8004 * ice_set_rss_hfunc - Set RSS HASH function 8005 * @vsi: Pointer to VSI structure 8006 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8007 * 8008 * Returns 0 on success, negative on failure 8009 */ 8010 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8011 { 8012 struct ice_hw *hw = &vsi->back->hw; 8013 struct ice_vsi_ctx *ctx; 8014 bool symm; 8015 int err; 8016 8017 if (hfunc == vsi->rss_hfunc) 8018 return 0; 8019 8020 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8021 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8022 return -EOPNOTSUPP; 8023 8024 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8025 if (!ctx) 8026 return -ENOMEM; 8027 8028 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8029 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8030 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8031 ctx->info.q_opt_rss |= 8032 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8033 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8034 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8035 8036 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8037 if (err) { 8038 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8039 vsi->vsi_num, err); 8040 } else { 8041 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8042 vsi->rss_hfunc = hfunc; 8043 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8044 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8045 "Symmetric " : ""); 8046 } 8047 kfree(ctx); 8048 if (err) 8049 return err; 8050 8051 /* Fix the symmetry setting for all existing RSS configurations */ 8052 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8053 return ice_set_rss_cfg_symm(hw, vsi, symm); 8054 } 8055 8056 /** 8057 * ice_bridge_getlink - Get the hardware bridge mode 8058 * @skb: skb buff 8059 * @pid: process ID 8060 * @seq: RTNL message seq 8061 * @dev: the netdev being configured 8062 * @filter_mask: filter mask passed in 8063 * @nlflags: netlink flags passed in 8064 * 8065 * Return the bridge mode (VEB/VEPA) 8066 */ 8067 static int 8068 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8069 struct net_device *dev, u32 filter_mask, int nlflags) 8070 { 8071 struct ice_netdev_priv *np = netdev_priv(dev); 8072 struct ice_vsi *vsi = np->vsi; 8073 struct ice_pf *pf = vsi->back; 8074 u16 bmode; 8075 8076 bmode = pf->first_sw->bridge_mode; 8077 8078 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8079 filter_mask, NULL); 8080 } 8081 8082 /** 8083 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8084 * @vsi: Pointer to VSI structure 8085 * @bmode: Hardware bridge mode (VEB/VEPA) 8086 * 8087 * Returns 0 on success, negative on failure 8088 */ 8089 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8090 { 8091 struct ice_aqc_vsi_props *vsi_props; 8092 struct ice_hw *hw = &vsi->back->hw; 8093 struct ice_vsi_ctx *ctxt; 8094 int ret; 8095 8096 vsi_props = &vsi->info; 8097 8098 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8099 if (!ctxt) 8100 return -ENOMEM; 8101 8102 ctxt->info = vsi->info; 8103 8104 if (bmode == BRIDGE_MODE_VEB) 8105 /* change from VEPA to VEB mode */ 8106 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8107 else 8108 /* change from VEB to VEPA mode */ 8109 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8110 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8111 8112 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8113 if (ret) { 8114 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8115 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8116 goto out; 8117 } 8118 /* Update sw flags for book keeping */ 8119 vsi_props->sw_flags = ctxt->info.sw_flags; 8120 8121 out: 8122 kfree(ctxt); 8123 return ret; 8124 } 8125 8126 /** 8127 * ice_bridge_setlink - Set the hardware bridge mode 8128 * @dev: the netdev being configured 8129 * @nlh: RTNL message 8130 * @flags: bridge setlink flags 8131 * @extack: netlink extended ack 8132 * 8133 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8134 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8135 * not already set for all VSIs connected to this switch. And also update the 8136 * unicast switch filter rules for the corresponding switch of the netdev. 8137 */ 8138 static int 8139 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8140 u16 __always_unused flags, 8141 struct netlink_ext_ack __always_unused *extack) 8142 { 8143 struct ice_netdev_priv *np = netdev_priv(dev); 8144 struct ice_pf *pf = np->vsi->back; 8145 struct nlattr *attr, *br_spec; 8146 struct ice_hw *hw = &pf->hw; 8147 struct ice_sw *pf_sw; 8148 int rem, v, err = 0; 8149 8150 pf_sw = pf->first_sw; 8151 /* find the attribute in the netlink message */ 8152 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8153 if (!br_spec) 8154 return -EINVAL; 8155 8156 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8157 __u16 mode = nla_get_u16(attr); 8158 8159 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8160 return -EINVAL; 8161 /* Continue if bridge mode is not being flipped */ 8162 if (mode == pf_sw->bridge_mode) 8163 continue; 8164 /* Iterates through the PF VSI list and update the loopback 8165 * mode of the VSI 8166 */ 8167 ice_for_each_vsi(pf, v) { 8168 if (!pf->vsi[v]) 8169 continue; 8170 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8171 if (err) 8172 return err; 8173 } 8174 8175 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8176 /* Update the unicast switch filter rules for the corresponding 8177 * switch of the netdev 8178 */ 8179 err = ice_update_sw_rule_bridge_mode(hw); 8180 if (err) { 8181 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8182 mode, err, 8183 ice_aq_str(hw->adminq.sq_last_status)); 8184 /* revert hw->evb_veb */ 8185 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8186 return err; 8187 } 8188 8189 pf_sw->bridge_mode = mode; 8190 } 8191 8192 return 0; 8193 } 8194 8195 /** 8196 * ice_tx_timeout - Respond to a Tx Hang 8197 * @netdev: network interface device structure 8198 * @txqueue: Tx queue 8199 */ 8200 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8201 { 8202 struct ice_netdev_priv *np = netdev_priv(netdev); 8203 struct ice_tx_ring *tx_ring = NULL; 8204 struct ice_vsi *vsi = np->vsi; 8205 struct ice_pf *pf = vsi->back; 8206 u32 i; 8207 8208 pf->tx_timeout_count++; 8209 8210 /* Check if PFC is enabled for the TC to which the queue belongs 8211 * to. If yes then Tx timeout is not caused by a hung queue, no 8212 * need to reset and rebuild 8213 */ 8214 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8215 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8216 txqueue); 8217 return; 8218 } 8219 8220 /* now that we have an index, find the tx_ring struct */ 8221 ice_for_each_txq(vsi, i) 8222 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8223 if (txqueue == vsi->tx_rings[i]->q_index) { 8224 tx_ring = vsi->tx_rings[i]; 8225 break; 8226 } 8227 8228 /* Reset recovery level if enough time has elapsed after last timeout. 8229 * Also ensure no new reset action happens before next timeout period. 8230 */ 8231 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8232 pf->tx_timeout_recovery_level = 1; 8233 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8234 netdev->watchdog_timeo))) 8235 return; 8236 8237 if (tx_ring) { 8238 struct ice_hw *hw = &pf->hw; 8239 u32 head, val = 0; 8240 8241 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8242 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8243 /* Read interrupt register */ 8244 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8245 8246 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8247 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8248 head, tx_ring->next_to_use, val); 8249 } 8250 8251 pf->tx_timeout_last_recovery = jiffies; 8252 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8253 pf->tx_timeout_recovery_level, txqueue); 8254 8255 switch (pf->tx_timeout_recovery_level) { 8256 case 1: 8257 set_bit(ICE_PFR_REQ, pf->state); 8258 break; 8259 case 2: 8260 set_bit(ICE_CORER_REQ, pf->state); 8261 break; 8262 case 3: 8263 set_bit(ICE_GLOBR_REQ, pf->state); 8264 break; 8265 default: 8266 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8267 set_bit(ICE_DOWN, pf->state); 8268 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8269 set_bit(ICE_SERVICE_DIS, pf->state); 8270 break; 8271 } 8272 8273 ice_service_task_schedule(pf); 8274 pf->tx_timeout_recovery_level++; 8275 } 8276 8277 /** 8278 * ice_setup_tc_cls_flower - flower classifier offloads 8279 * @np: net device to configure 8280 * @filter_dev: device on which filter is added 8281 * @cls_flower: offload data 8282 */ 8283 static int 8284 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8285 struct net_device *filter_dev, 8286 struct flow_cls_offload *cls_flower) 8287 { 8288 struct ice_vsi *vsi = np->vsi; 8289 8290 if (cls_flower->common.chain_index) 8291 return -EOPNOTSUPP; 8292 8293 switch (cls_flower->command) { 8294 case FLOW_CLS_REPLACE: 8295 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8296 case FLOW_CLS_DESTROY: 8297 return ice_del_cls_flower(vsi, cls_flower); 8298 default: 8299 return -EINVAL; 8300 } 8301 } 8302 8303 /** 8304 * ice_setup_tc_block_cb - callback handler registered for TC block 8305 * @type: TC SETUP type 8306 * @type_data: TC flower offload data that contains user input 8307 * @cb_priv: netdev private data 8308 */ 8309 static int 8310 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8311 { 8312 struct ice_netdev_priv *np = cb_priv; 8313 8314 switch (type) { 8315 case TC_SETUP_CLSFLOWER: 8316 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8317 type_data); 8318 default: 8319 return -EOPNOTSUPP; 8320 } 8321 } 8322 8323 /** 8324 * ice_validate_mqprio_qopt - Validate TCF input parameters 8325 * @vsi: Pointer to VSI 8326 * @mqprio_qopt: input parameters for mqprio queue configuration 8327 * 8328 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8329 * needed), and make sure user doesn't specify qcount and BW rate limit 8330 * for TCs, which are more than "num_tc" 8331 */ 8332 static int 8333 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8334 struct tc_mqprio_qopt_offload *mqprio_qopt) 8335 { 8336 int non_power_of_2_qcount = 0; 8337 struct ice_pf *pf = vsi->back; 8338 int max_rss_q_cnt = 0; 8339 u64 sum_min_rate = 0; 8340 struct device *dev; 8341 int i, speed; 8342 u8 num_tc; 8343 8344 if (vsi->type != ICE_VSI_PF) 8345 return -EINVAL; 8346 8347 if (mqprio_qopt->qopt.offset[0] != 0 || 8348 mqprio_qopt->qopt.num_tc < 1 || 8349 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8350 return -EINVAL; 8351 8352 dev = ice_pf_to_dev(pf); 8353 vsi->ch_rss_size = 0; 8354 num_tc = mqprio_qopt->qopt.num_tc; 8355 speed = ice_get_link_speed_kbps(vsi); 8356 8357 for (i = 0; num_tc; i++) { 8358 int qcount = mqprio_qopt->qopt.count[i]; 8359 u64 max_rate, min_rate, rem; 8360 8361 if (!qcount) 8362 return -EINVAL; 8363 8364 if (is_power_of_2(qcount)) { 8365 if (non_power_of_2_qcount && 8366 qcount > non_power_of_2_qcount) { 8367 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8368 qcount, non_power_of_2_qcount); 8369 return -EINVAL; 8370 } 8371 if (qcount > max_rss_q_cnt) 8372 max_rss_q_cnt = qcount; 8373 } else { 8374 if (non_power_of_2_qcount && 8375 qcount != non_power_of_2_qcount) { 8376 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8377 qcount, non_power_of_2_qcount); 8378 return -EINVAL; 8379 } 8380 if (qcount < max_rss_q_cnt) { 8381 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8382 qcount, max_rss_q_cnt); 8383 return -EINVAL; 8384 } 8385 max_rss_q_cnt = qcount; 8386 non_power_of_2_qcount = qcount; 8387 } 8388 8389 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8390 * converts the bandwidth rate limit into Bytes/s when 8391 * passing it down to the driver. So convert input bandwidth 8392 * from Bytes/s to Kbps 8393 */ 8394 max_rate = mqprio_qopt->max_rate[i]; 8395 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8396 8397 /* min_rate is minimum guaranteed rate and it can't be zero */ 8398 min_rate = mqprio_qopt->min_rate[i]; 8399 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8400 sum_min_rate += min_rate; 8401 8402 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8403 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8404 min_rate, ICE_MIN_BW_LIMIT); 8405 return -EINVAL; 8406 } 8407 8408 if (max_rate && max_rate > speed) { 8409 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8410 i, max_rate, speed); 8411 return -EINVAL; 8412 } 8413 8414 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8415 if (rem) { 8416 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8417 i, ICE_MIN_BW_LIMIT); 8418 return -EINVAL; 8419 } 8420 8421 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8422 if (rem) { 8423 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8424 i, ICE_MIN_BW_LIMIT); 8425 return -EINVAL; 8426 } 8427 8428 /* min_rate can't be more than max_rate, except when max_rate 8429 * is zero (implies max_rate sought is max line rate). In such 8430 * a case min_rate can be more than max. 8431 */ 8432 if (max_rate && min_rate > max_rate) { 8433 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8434 min_rate, max_rate); 8435 return -EINVAL; 8436 } 8437 8438 if (i >= mqprio_qopt->qopt.num_tc - 1) 8439 break; 8440 if (mqprio_qopt->qopt.offset[i + 1] != 8441 (mqprio_qopt->qopt.offset[i] + qcount)) 8442 return -EINVAL; 8443 } 8444 if (vsi->num_rxq < 8445 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8446 return -EINVAL; 8447 if (vsi->num_txq < 8448 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8449 return -EINVAL; 8450 8451 if (sum_min_rate && sum_min_rate > (u64)speed) { 8452 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8453 sum_min_rate, speed); 8454 return -EINVAL; 8455 } 8456 8457 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8458 vsi->ch_rss_size = max_rss_q_cnt; 8459 8460 return 0; 8461 } 8462 8463 /** 8464 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8465 * @pf: ptr to PF device 8466 * @vsi: ptr to VSI 8467 */ 8468 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8469 { 8470 struct device *dev = ice_pf_to_dev(pf); 8471 bool added = false; 8472 struct ice_hw *hw; 8473 int flow; 8474 8475 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8476 return -EINVAL; 8477 8478 hw = &pf->hw; 8479 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8480 struct ice_fd_hw_prof *prof; 8481 int tun, status; 8482 u64 entry_h; 8483 8484 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8485 hw->fdir_prof[flow]->cnt)) 8486 continue; 8487 8488 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8489 enum ice_flow_priority prio; 8490 8491 /* add this VSI to FDir profile for this flow */ 8492 prio = ICE_FLOW_PRIO_NORMAL; 8493 prof = hw->fdir_prof[flow]; 8494 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8495 prof->prof_id[tun], 8496 prof->vsi_h[0], vsi->idx, 8497 prio, prof->fdir_seg[tun], 8498 &entry_h); 8499 if (status) { 8500 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8501 vsi->idx, flow); 8502 continue; 8503 } 8504 8505 prof->entry_h[prof->cnt][tun] = entry_h; 8506 } 8507 8508 /* store VSI for filter replay and delete */ 8509 prof->vsi_h[prof->cnt] = vsi->idx; 8510 prof->cnt++; 8511 8512 added = true; 8513 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8514 flow); 8515 } 8516 8517 if (!added) 8518 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8519 8520 return 0; 8521 } 8522 8523 /** 8524 * ice_add_channel - add a channel by adding VSI 8525 * @pf: ptr to PF device 8526 * @sw_id: underlying HW switching element ID 8527 * @ch: ptr to channel structure 8528 * 8529 * Add a channel (VSI) using add_vsi and queue_map 8530 */ 8531 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8532 { 8533 struct device *dev = ice_pf_to_dev(pf); 8534 struct ice_vsi *vsi; 8535 8536 if (ch->type != ICE_VSI_CHNL) { 8537 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8538 return -EINVAL; 8539 } 8540 8541 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8542 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8543 dev_err(dev, "create chnl VSI failure\n"); 8544 return -EINVAL; 8545 } 8546 8547 ice_add_vsi_to_fdir(pf, vsi); 8548 8549 ch->sw_id = sw_id; 8550 ch->vsi_num = vsi->vsi_num; 8551 ch->info.mapping_flags = vsi->info.mapping_flags; 8552 ch->ch_vsi = vsi; 8553 /* set the back pointer of channel for newly created VSI */ 8554 vsi->ch = ch; 8555 8556 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8557 sizeof(vsi->info.q_mapping)); 8558 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8559 sizeof(vsi->info.tc_mapping)); 8560 8561 return 0; 8562 } 8563 8564 /** 8565 * ice_chnl_cfg_res 8566 * @vsi: the VSI being setup 8567 * @ch: ptr to channel structure 8568 * 8569 * Configure channel specific resources such as rings, vector. 8570 */ 8571 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8572 { 8573 int i; 8574 8575 for (i = 0; i < ch->num_txq; i++) { 8576 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8577 struct ice_ring_container *rc; 8578 struct ice_tx_ring *tx_ring; 8579 struct ice_rx_ring *rx_ring; 8580 8581 tx_ring = vsi->tx_rings[ch->base_q + i]; 8582 rx_ring = vsi->rx_rings[ch->base_q + i]; 8583 if (!tx_ring || !rx_ring) 8584 continue; 8585 8586 /* setup ring being channel enabled */ 8587 tx_ring->ch = ch; 8588 rx_ring->ch = ch; 8589 8590 /* following code block sets up vector specific attributes */ 8591 tx_q_vector = tx_ring->q_vector; 8592 rx_q_vector = rx_ring->q_vector; 8593 if (!tx_q_vector && !rx_q_vector) 8594 continue; 8595 8596 if (tx_q_vector) { 8597 tx_q_vector->ch = ch; 8598 /* setup Tx and Rx ITR setting if DIM is off */ 8599 rc = &tx_q_vector->tx; 8600 if (!ITR_IS_DYNAMIC(rc)) 8601 ice_write_itr(rc, rc->itr_setting); 8602 } 8603 if (rx_q_vector) { 8604 rx_q_vector->ch = ch; 8605 /* setup Tx and Rx ITR setting if DIM is off */ 8606 rc = &rx_q_vector->rx; 8607 if (!ITR_IS_DYNAMIC(rc)) 8608 ice_write_itr(rc, rc->itr_setting); 8609 } 8610 } 8611 8612 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8613 * GLINT_ITR register would have written to perform in-context 8614 * update, hence perform flush 8615 */ 8616 if (ch->num_txq || ch->num_rxq) 8617 ice_flush(&vsi->back->hw); 8618 } 8619 8620 /** 8621 * ice_cfg_chnl_all_res - configure channel resources 8622 * @vsi: pte to main_vsi 8623 * @ch: ptr to channel structure 8624 * 8625 * This function configures channel specific resources such as flow-director 8626 * counter index, and other resources such as queues, vectors, ITR settings 8627 */ 8628 static void 8629 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8630 { 8631 /* configure channel (aka ADQ) resources such as queues, vectors, 8632 * ITR settings for channel specific vectors and anything else 8633 */ 8634 ice_chnl_cfg_res(vsi, ch); 8635 } 8636 8637 /** 8638 * ice_setup_hw_channel - setup new channel 8639 * @pf: ptr to PF device 8640 * @vsi: the VSI being setup 8641 * @ch: ptr to channel structure 8642 * @sw_id: underlying HW switching element ID 8643 * @type: type of channel to be created (VMDq2/VF) 8644 * 8645 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8646 * and configures Tx rings accordingly 8647 */ 8648 static int 8649 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8650 struct ice_channel *ch, u16 sw_id, u8 type) 8651 { 8652 struct device *dev = ice_pf_to_dev(pf); 8653 int ret; 8654 8655 ch->base_q = vsi->next_base_q; 8656 ch->type = type; 8657 8658 ret = ice_add_channel(pf, sw_id, ch); 8659 if (ret) { 8660 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8661 return ret; 8662 } 8663 8664 /* configure/setup ADQ specific resources */ 8665 ice_cfg_chnl_all_res(vsi, ch); 8666 8667 /* make sure to update the next_base_q so that subsequent channel's 8668 * (aka ADQ) VSI queue map is correct 8669 */ 8670 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8671 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8672 ch->num_rxq); 8673 8674 return 0; 8675 } 8676 8677 /** 8678 * ice_setup_channel - setup new channel using uplink element 8679 * @pf: ptr to PF device 8680 * @vsi: the VSI being setup 8681 * @ch: ptr to channel structure 8682 * 8683 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8684 * and uplink switching element 8685 */ 8686 static bool 8687 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8688 struct ice_channel *ch) 8689 { 8690 struct device *dev = ice_pf_to_dev(pf); 8691 u16 sw_id; 8692 int ret; 8693 8694 if (vsi->type != ICE_VSI_PF) { 8695 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8696 return false; 8697 } 8698 8699 sw_id = pf->first_sw->sw_id; 8700 8701 /* create channel (VSI) */ 8702 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8703 if (ret) { 8704 dev_err(dev, "failed to setup hw_channel\n"); 8705 return false; 8706 } 8707 dev_dbg(dev, "successfully created channel()\n"); 8708 8709 return ch->ch_vsi ? true : false; 8710 } 8711 8712 /** 8713 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8714 * @vsi: VSI to be configured 8715 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8716 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8717 */ 8718 static int 8719 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8720 { 8721 int err; 8722 8723 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8724 if (err) 8725 return err; 8726 8727 return ice_set_max_bw_limit(vsi, max_tx_rate); 8728 } 8729 8730 /** 8731 * ice_create_q_channel - function to create channel 8732 * @vsi: VSI to be configured 8733 * @ch: ptr to channel (it contains channel specific params) 8734 * 8735 * This function creates channel (VSI) using num_queues specified by user, 8736 * reconfigs RSS if needed. 8737 */ 8738 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8739 { 8740 struct ice_pf *pf = vsi->back; 8741 struct device *dev; 8742 8743 if (!ch) 8744 return -EINVAL; 8745 8746 dev = ice_pf_to_dev(pf); 8747 if (!ch->num_txq || !ch->num_rxq) { 8748 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8749 return -EINVAL; 8750 } 8751 8752 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8753 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8754 vsi->cnt_q_avail, ch->num_txq); 8755 return -EINVAL; 8756 } 8757 8758 if (!ice_setup_channel(pf, vsi, ch)) { 8759 dev_info(dev, "Failed to setup channel\n"); 8760 return -EINVAL; 8761 } 8762 /* configure BW rate limit */ 8763 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8764 int ret; 8765 8766 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8767 ch->min_tx_rate); 8768 if (ret) 8769 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8770 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8771 else 8772 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8773 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8774 } 8775 8776 vsi->cnt_q_avail -= ch->num_txq; 8777 8778 return 0; 8779 } 8780 8781 /** 8782 * ice_rem_all_chnl_fltrs - removes all channel filters 8783 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8784 * 8785 * Remove all advanced switch filters only if they are channel specific 8786 * tc-flower based filter 8787 */ 8788 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8789 { 8790 struct ice_tc_flower_fltr *fltr; 8791 struct hlist_node *node; 8792 8793 /* to remove all channel filters, iterate an ordered list of filters */ 8794 hlist_for_each_entry_safe(fltr, node, 8795 &pf->tc_flower_fltr_list, 8796 tc_flower_node) { 8797 struct ice_rule_query_data rule; 8798 int status; 8799 8800 /* for now process only channel specific filters */ 8801 if (!ice_is_chnl_fltr(fltr)) 8802 continue; 8803 8804 rule.rid = fltr->rid; 8805 rule.rule_id = fltr->rule_id; 8806 rule.vsi_handle = fltr->dest_vsi_handle; 8807 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8808 if (status) { 8809 if (status == -ENOENT) 8810 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8811 rule.rule_id); 8812 else 8813 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8814 status); 8815 } else if (fltr->dest_vsi) { 8816 /* update advanced switch filter count */ 8817 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8818 u32 flags = fltr->flags; 8819 8820 fltr->dest_vsi->num_chnl_fltr--; 8821 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8822 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8823 pf->num_dmac_chnl_fltrs--; 8824 } 8825 } 8826 8827 hlist_del(&fltr->tc_flower_node); 8828 kfree(fltr); 8829 } 8830 } 8831 8832 /** 8833 * ice_remove_q_channels - Remove queue channels for the TCs 8834 * @vsi: VSI to be configured 8835 * @rem_fltr: delete advanced switch filter or not 8836 * 8837 * Remove queue channels for the TCs 8838 */ 8839 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8840 { 8841 struct ice_channel *ch, *ch_tmp; 8842 struct ice_pf *pf = vsi->back; 8843 int i; 8844 8845 /* remove all tc-flower based filter if they are channel filters only */ 8846 if (rem_fltr) 8847 ice_rem_all_chnl_fltrs(pf); 8848 8849 /* remove ntuple filters since queue configuration is being changed */ 8850 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8851 struct ice_hw *hw = &pf->hw; 8852 8853 mutex_lock(&hw->fdir_fltr_lock); 8854 ice_fdir_del_all_fltrs(vsi); 8855 mutex_unlock(&hw->fdir_fltr_lock); 8856 } 8857 8858 /* perform cleanup for channels if they exist */ 8859 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8860 struct ice_vsi *ch_vsi; 8861 8862 list_del(&ch->list); 8863 ch_vsi = ch->ch_vsi; 8864 if (!ch_vsi) { 8865 kfree(ch); 8866 continue; 8867 } 8868 8869 /* Reset queue contexts */ 8870 for (i = 0; i < ch->num_rxq; i++) { 8871 struct ice_tx_ring *tx_ring; 8872 struct ice_rx_ring *rx_ring; 8873 8874 tx_ring = vsi->tx_rings[ch->base_q + i]; 8875 rx_ring = vsi->rx_rings[ch->base_q + i]; 8876 if (tx_ring) { 8877 tx_ring->ch = NULL; 8878 if (tx_ring->q_vector) 8879 tx_ring->q_vector->ch = NULL; 8880 } 8881 if (rx_ring) { 8882 rx_ring->ch = NULL; 8883 if (rx_ring->q_vector) 8884 rx_ring->q_vector->ch = NULL; 8885 } 8886 } 8887 8888 /* Release FD resources for the channel VSI */ 8889 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8890 8891 /* clear the VSI from scheduler tree */ 8892 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8893 8894 /* Delete VSI from FW, PF and HW VSI arrays */ 8895 ice_vsi_delete(ch->ch_vsi); 8896 8897 /* free the channel */ 8898 kfree(ch); 8899 } 8900 8901 /* clear the channel VSI map which is stored in main VSI */ 8902 ice_for_each_chnl_tc(i) 8903 vsi->tc_map_vsi[i] = NULL; 8904 8905 /* reset main VSI's all TC information */ 8906 vsi->all_enatc = 0; 8907 vsi->all_numtc = 0; 8908 } 8909 8910 /** 8911 * ice_rebuild_channels - rebuild channel 8912 * @pf: ptr to PF 8913 * 8914 * Recreate channel VSIs and replay filters 8915 */ 8916 static int ice_rebuild_channels(struct ice_pf *pf) 8917 { 8918 struct device *dev = ice_pf_to_dev(pf); 8919 struct ice_vsi *main_vsi; 8920 bool rem_adv_fltr = true; 8921 struct ice_channel *ch; 8922 struct ice_vsi *vsi; 8923 int tc_idx = 1; 8924 int i, err; 8925 8926 main_vsi = ice_get_main_vsi(pf); 8927 if (!main_vsi) 8928 return 0; 8929 8930 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8931 main_vsi->old_numtc == 1) 8932 return 0; /* nothing to be done */ 8933 8934 /* reconfigure main VSI based on old value of TC and cached values 8935 * for MQPRIO opts 8936 */ 8937 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8938 if (err) { 8939 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8940 main_vsi->old_ena_tc, main_vsi->vsi_num); 8941 return err; 8942 } 8943 8944 /* rebuild ADQ VSIs */ 8945 ice_for_each_vsi(pf, i) { 8946 enum ice_vsi_type type; 8947 8948 vsi = pf->vsi[i]; 8949 if (!vsi || vsi->type != ICE_VSI_CHNL) 8950 continue; 8951 8952 type = vsi->type; 8953 8954 /* rebuild ADQ VSI */ 8955 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8956 if (err) { 8957 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8958 ice_vsi_type_str(type), vsi->idx, err); 8959 goto cleanup; 8960 } 8961 8962 /* Re-map HW VSI number, using VSI handle that has been 8963 * previously validated in ice_replay_vsi() call above 8964 */ 8965 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8966 8967 /* replay filters for the VSI */ 8968 err = ice_replay_vsi(&pf->hw, vsi->idx); 8969 if (err) { 8970 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8971 ice_vsi_type_str(type), err, vsi->idx); 8972 rem_adv_fltr = false; 8973 goto cleanup; 8974 } 8975 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8976 ice_vsi_type_str(type), vsi->idx); 8977 8978 /* store ADQ VSI at correct TC index in main VSI's 8979 * map of TC to VSI 8980 */ 8981 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8982 } 8983 8984 /* ADQ VSI(s) has been rebuilt successfully, so setup 8985 * channel for main VSI's Tx and Rx rings 8986 */ 8987 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8988 struct ice_vsi *ch_vsi; 8989 8990 ch_vsi = ch->ch_vsi; 8991 if (!ch_vsi) 8992 continue; 8993 8994 /* reconfig channel resources */ 8995 ice_cfg_chnl_all_res(main_vsi, ch); 8996 8997 /* replay BW rate limit if it is non-zero */ 8998 if (!ch->max_tx_rate && !ch->min_tx_rate) 8999 continue; 9000 9001 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9002 ch->min_tx_rate); 9003 if (err) 9004 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9005 err, ch->max_tx_rate, ch->min_tx_rate, 9006 ch_vsi->vsi_num); 9007 else 9008 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9009 ch->max_tx_rate, ch->min_tx_rate, 9010 ch_vsi->vsi_num); 9011 } 9012 9013 /* reconfig RSS for main VSI */ 9014 if (main_vsi->ch_rss_size) 9015 ice_vsi_cfg_rss_lut_key(main_vsi); 9016 9017 return 0; 9018 9019 cleanup: 9020 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9021 return err; 9022 } 9023 9024 /** 9025 * ice_create_q_channels - Add queue channel for the given TCs 9026 * @vsi: VSI to be configured 9027 * 9028 * Configures queue channel mapping to the given TCs 9029 */ 9030 static int ice_create_q_channels(struct ice_vsi *vsi) 9031 { 9032 struct ice_pf *pf = vsi->back; 9033 struct ice_channel *ch; 9034 int ret = 0, i; 9035 9036 ice_for_each_chnl_tc(i) { 9037 if (!(vsi->all_enatc & BIT(i))) 9038 continue; 9039 9040 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9041 if (!ch) { 9042 ret = -ENOMEM; 9043 goto err_free; 9044 } 9045 INIT_LIST_HEAD(&ch->list); 9046 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9047 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9048 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9049 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9050 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9051 9052 /* convert to Kbits/s */ 9053 if (ch->max_tx_rate) 9054 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9055 ICE_BW_KBPS_DIVISOR); 9056 if (ch->min_tx_rate) 9057 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9058 ICE_BW_KBPS_DIVISOR); 9059 9060 ret = ice_create_q_channel(vsi, ch); 9061 if (ret) { 9062 dev_err(ice_pf_to_dev(pf), 9063 "failed creating channel TC:%d\n", i); 9064 kfree(ch); 9065 goto err_free; 9066 } 9067 list_add_tail(&ch->list, &vsi->ch_list); 9068 vsi->tc_map_vsi[i] = ch->ch_vsi; 9069 dev_dbg(ice_pf_to_dev(pf), 9070 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9071 } 9072 return 0; 9073 9074 err_free: 9075 ice_remove_q_channels(vsi, false); 9076 9077 return ret; 9078 } 9079 9080 /** 9081 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9082 * @netdev: net device to configure 9083 * @type_data: TC offload data 9084 */ 9085 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9086 { 9087 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9088 struct ice_netdev_priv *np = netdev_priv(netdev); 9089 struct ice_vsi *vsi = np->vsi; 9090 struct ice_pf *pf = vsi->back; 9091 u16 mode, ena_tc_qdisc = 0; 9092 int cur_txq, cur_rxq; 9093 u8 hw = 0, num_tcf; 9094 struct device *dev; 9095 int ret, i; 9096 9097 dev = ice_pf_to_dev(pf); 9098 num_tcf = mqprio_qopt->qopt.num_tc; 9099 hw = mqprio_qopt->qopt.hw; 9100 mode = mqprio_qopt->mode; 9101 if (!hw) { 9102 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9103 vsi->ch_rss_size = 0; 9104 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9105 goto config_tcf; 9106 } 9107 9108 /* Generate queue region map for number of TCF requested */ 9109 for (i = 0; i < num_tcf; i++) 9110 ena_tc_qdisc |= BIT(i); 9111 9112 switch (mode) { 9113 case TC_MQPRIO_MODE_CHANNEL: 9114 9115 if (pf->hw.port_info->is_custom_tx_enabled) { 9116 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9117 return -EBUSY; 9118 } 9119 ice_tear_down_devlink_rate_tree(pf); 9120 9121 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9122 if (ret) { 9123 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9124 ret); 9125 return ret; 9126 } 9127 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9128 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9129 /* don't assume state of hw_tc_offload during driver load 9130 * and set the flag for TC flower filter if hw_tc_offload 9131 * already ON 9132 */ 9133 if (vsi->netdev->features & NETIF_F_HW_TC) 9134 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9135 break; 9136 default: 9137 return -EINVAL; 9138 } 9139 9140 config_tcf: 9141 9142 /* Requesting same TCF configuration as already enabled */ 9143 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9144 mode != TC_MQPRIO_MODE_CHANNEL) 9145 return 0; 9146 9147 /* Pause VSI queues */ 9148 ice_dis_vsi(vsi, true); 9149 9150 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9151 ice_remove_q_channels(vsi, true); 9152 9153 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9154 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9155 num_online_cpus()); 9156 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9157 num_online_cpus()); 9158 } else { 9159 /* logic to rebuild VSI, same like ethtool -L */ 9160 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9161 9162 for (i = 0; i < num_tcf; i++) { 9163 if (!(ena_tc_qdisc & BIT(i))) 9164 continue; 9165 9166 offset = vsi->mqprio_qopt.qopt.offset[i]; 9167 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9168 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9169 } 9170 vsi->req_txq = offset + qcount_tx; 9171 vsi->req_rxq = offset + qcount_rx; 9172 9173 /* store away original rss_size info, so that it gets reused 9174 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9175 * determine, what should be the rss_sizefor main VSI 9176 */ 9177 vsi->orig_rss_size = vsi->rss_size; 9178 } 9179 9180 /* save current values of Tx and Rx queues before calling VSI rebuild 9181 * for fallback option 9182 */ 9183 cur_txq = vsi->num_txq; 9184 cur_rxq = vsi->num_rxq; 9185 9186 /* proceed with rebuild main VSI using correct number of queues */ 9187 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9188 if (ret) { 9189 /* fallback to current number of queues */ 9190 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9191 vsi->req_txq = cur_txq; 9192 vsi->req_rxq = cur_rxq; 9193 clear_bit(ICE_RESET_FAILED, pf->state); 9194 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9195 dev_err(dev, "Rebuild of main VSI failed again\n"); 9196 return ret; 9197 } 9198 } 9199 9200 vsi->all_numtc = num_tcf; 9201 vsi->all_enatc = ena_tc_qdisc; 9202 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9203 if (ret) { 9204 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9205 vsi->vsi_num); 9206 goto exit; 9207 } 9208 9209 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9210 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9211 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9212 9213 /* set TC0 rate limit if specified */ 9214 if (max_tx_rate || min_tx_rate) { 9215 /* convert to Kbits/s */ 9216 if (max_tx_rate) 9217 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9218 if (min_tx_rate) 9219 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9220 9221 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9222 if (!ret) { 9223 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9224 max_tx_rate, min_tx_rate, vsi->vsi_num); 9225 } else { 9226 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9227 max_tx_rate, min_tx_rate, vsi->vsi_num); 9228 goto exit; 9229 } 9230 } 9231 ret = ice_create_q_channels(vsi); 9232 if (ret) { 9233 netdev_err(netdev, "failed configuring queue channels\n"); 9234 goto exit; 9235 } else { 9236 netdev_dbg(netdev, "successfully configured channels\n"); 9237 } 9238 } 9239 9240 if (vsi->ch_rss_size) 9241 ice_vsi_cfg_rss_lut_key(vsi); 9242 9243 exit: 9244 /* if error, reset the all_numtc and all_enatc */ 9245 if (ret) { 9246 vsi->all_numtc = 0; 9247 vsi->all_enatc = 0; 9248 } 9249 /* resume VSI */ 9250 ice_ena_vsi(vsi, true); 9251 9252 return ret; 9253 } 9254 9255 static LIST_HEAD(ice_block_cb_list); 9256 9257 static int 9258 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9259 void *type_data) 9260 { 9261 struct ice_netdev_priv *np = netdev_priv(netdev); 9262 struct ice_pf *pf = np->vsi->back; 9263 bool locked = false; 9264 int err; 9265 9266 switch (type) { 9267 case TC_SETUP_BLOCK: 9268 return flow_block_cb_setup_simple(type_data, 9269 &ice_block_cb_list, 9270 ice_setup_tc_block_cb, 9271 np, np, true); 9272 case TC_SETUP_QDISC_MQPRIO: 9273 if (ice_is_eswitch_mode_switchdev(pf)) { 9274 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9275 return -EOPNOTSUPP; 9276 } 9277 9278 if (pf->adev) { 9279 mutex_lock(&pf->adev_mutex); 9280 device_lock(&pf->adev->dev); 9281 locked = true; 9282 if (pf->adev->dev.driver) { 9283 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9284 err = -EBUSY; 9285 goto adev_unlock; 9286 } 9287 } 9288 9289 /* setup traffic classifier for receive side */ 9290 mutex_lock(&pf->tc_mutex); 9291 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9292 mutex_unlock(&pf->tc_mutex); 9293 9294 adev_unlock: 9295 if (locked) { 9296 device_unlock(&pf->adev->dev); 9297 mutex_unlock(&pf->adev_mutex); 9298 } 9299 return err; 9300 default: 9301 return -EOPNOTSUPP; 9302 } 9303 return -EOPNOTSUPP; 9304 } 9305 9306 static struct ice_indr_block_priv * 9307 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9308 struct net_device *netdev) 9309 { 9310 struct ice_indr_block_priv *cb_priv; 9311 9312 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9313 if (!cb_priv->netdev) 9314 return NULL; 9315 if (cb_priv->netdev == netdev) 9316 return cb_priv; 9317 } 9318 return NULL; 9319 } 9320 9321 static int 9322 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9323 void *indr_priv) 9324 { 9325 struct ice_indr_block_priv *priv = indr_priv; 9326 struct ice_netdev_priv *np = priv->np; 9327 9328 switch (type) { 9329 case TC_SETUP_CLSFLOWER: 9330 return ice_setup_tc_cls_flower(np, priv->netdev, 9331 (struct flow_cls_offload *) 9332 type_data); 9333 default: 9334 return -EOPNOTSUPP; 9335 } 9336 } 9337 9338 static int 9339 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9340 struct ice_netdev_priv *np, 9341 struct flow_block_offload *f, void *data, 9342 void (*cleanup)(struct flow_block_cb *block_cb)) 9343 { 9344 struct ice_indr_block_priv *indr_priv; 9345 struct flow_block_cb *block_cb; 9346 9347 if (!ice_is_tunnel_supported(netdev) && 9348 !(is_vlan_dev(netdev) && 9349 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9350 return -EOPNOTSUPP; 9351 9352 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9353 return -EOPNOTSUPP; 9354 9355 switch (f->command) { 9356 case FLOW_BLOCK_BIND: 9357 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9358 if (indr_priv) 9359 return -EEXIST; 9360 9361 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9362 if (!indr_priv) 9363 return -ENOMEM; 9364 9365 indr_priv->netdev = netdev; 9366 indr_priv->np = np; 9367 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9368 9369 block_cb = 9370 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9371 indr_priv, indr_priv, 9372 ice_rep_indr_tc_block_unbind, 9373 f, netdev, sch, data, np, 9374 cleanup); 9375 9376 if (IS_ERR(block_cb)) { 9377 list_del(&indr_priv->list); 9378 kfree(indr_priv); 9379 return PTR_ERR(block_cb); 9380 } 9381 flow_block_cb_add(block_cb, f); 9382 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9383 break; 9384 case FLOW_BLOCK_UNBIND: 9385 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9386 if (!indr_priv) 9387 return -ENOENT; 9388 9389 block_cb = flow_block_cb_lookup(f->block, 9390 ice_indr_setup_block_cb, 9391 indr_priv); 9392 if (!block_cb) 9393 return -ENOENT; 9394 9395 flow_indr_block_cb_remove(block_cb, f); 9396 9397 list_del(&block_cb->driver_list); 9398 break; 9399 default: 9400 return -EOPNOTSUPP; 9401 } 9402 return 0; 9403 } 9404 9405 static int 9406 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9407 void *cb_priv, enum tc_setup_type type, void *type_data, 9408 void *data, 9409 void (*cleanup)(struct flow_block_cb *block_cb)) 9410 { 9411 switch (type) { 9412 case TC_SETUP_BLOCK: 9413 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9414 data, cleanup); 9415 9416 default: 9417 return -EOPNOTSUPP; 9418 } 9419 } 9420 9421 /** 9422 * ice_open - Called when a network interface becomes active 9423 * @netdev: network interface device structure 9424 * 9425 * The open entry point is called when a network interface is made 9426 * active by the system (IFF_UP). At this point all resources needed 9427 * for transmit and receive operations are allocated, the interrupt 9428 * handler is registered with the OS, the netdev watchdog is enabled, 9429 * and the stack is notified that the interface is ready. 9430 * 9431 * Returns 0 on success, negative value on failure 9432 */ 9433 int ice_open(struct net_device *netdev) 9434 { 9435 struct ice_netdev_priv *np = netdev_priv(netdev); 9436 struct ice_pf *pf = np->vsi->back; 9437 9438 if (ice_is_reset_in_progress(pf->state)) { 9439 netdev_err(netdev, "can't open net device while reset is in progress"); 9440 return -EBUSY; 9441 } 9442 9443 return ice_open_internal(netdev); 9444 } 9445 9446 /** 9447 * ice_open_internal - Called when a network interface becomes active 9448 * @netdev: network interface device structure 9449 * 9450 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9451 * handling routine 9452 * 9453 * Returns 0 on success, negative value on failure 9454 */ 9455 int ice_open_internal(struct net_device *netdev) 9456 { 9457 struct ice_netdev_priv *np = netdev_priv(netdev); 9458 struct ice_vsi *vsi = np->vsi; 9459 struct ice_pf *pf = vsi->back; 9460 struct ice_port_info *pi; 9461 int err; 9462 9463 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9464 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9465 return -EIO; 9466 } 9467 9468 netif_carrier_off(netdev); 9469 9470 pi = vsi->port_info; 9471 err = ice_update_link_info(pi); 9472 if (err) { 9473 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9474 return err; 9475 } 9476 9477 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9478 9479 /* Set PHY if there is media, otherwise, turn off PHY */ 9480 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9481 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9482 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9483 err = ice_init_phy_user_cfg(pi); 9484 if (err) { 9485 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9486 err); 9487 return err; 9488 } 9489 } 9490 9491 err = ice_configure_phy(vsi); 9492 if (err) { 9493 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9494 err); 9495 return err; 9496 } 9497 } else { 9498 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9499 ice_set_link(vsi, false); 9500 } 9501 9502 err = ice_vsi_open(vsi); 9503 if (err) 9504 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9505 vsi->vsi_num, vsi->vsw->sw_id); 9506 9507 /* Update existing tunnels information */ 9508 udp_tunnel_get_rx_info(netdev); 9509 9510 return err; 9511 } 9512 9513 /** 9514 * ice_stop - Disables a network interface 9515 * @netdev: network interface device structure 9516 * 9517 * The stop entry point is called when an interface is de-activated by the OS, 9518 * and the netdevice enters the DOWN state. The hardware is still under the 9519 * driver's control, but the netdev interface is disabled. 9520 * 9521 * Returns success only - not allowed to fail 9522 */ 9523 int ice_stop(struct net_device *netdev) 9524 { 9525 struct ice_netdev_priv *np = netdev_priv(netdev); 9526 struct ice_vsi *vsi = np->vsi; 9527 struct ice_pf *pf = vsi->back; 9528 9529 if (ice_is_reset_in_progress(pf->state)) { 9530 netdev_err(netdev, "can't stop net device while reset is in progress"); 9531 return -EBUSY; 9532 } 9533 9534 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9535 int link_err = ice_force_phys_link_state(vsi, false); 9536 9537 if (link_err) { 9538 if (link_err == -ENOMEDIUM) 9539 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9540 vsi->vsi_num); 9541 else 9542 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9543 vsi->vsi_num, link_err); 9544 9545 ice_vsi_close(vsi); 9546 return -EIO; 9547 } 9548 } 9549 9550 ice_vsi_close(vsi); 9551 9552 return 0; 9553 } 9554 9555 /** 9556 * ice_features_check - Validate encapsulated packet conforms to limits 9557 * @skb: skb buffer 9558 * @netdev: This port's netdev 9559 * @features: Offload features that the stack believes apply 9560 */ 9561 static netdev_features_t 9562 ice_features_check(struct sk_buff *skb, 9563 struct net_device __always_unused *netdev, 9564 netdev_features_t features) 9565 { 9566 bool gso = skb_is_gso(skb); 9567 size_t len; 9568 9569 /* No point in doing any of this if neither checksum nor GSO are 9570 * being requested for this frame. We can rule out both by just 9571 * checking for CHECKSUM_PARTIAL 9572 */ 9573 if (skb->ip_summed != CHECKSUM_PARTIAL) 9574 return features; 9575 9576 /* We cannot support GSO if the MSS is going to be less than 9577 * 64 bytes. If it is then we need to drop support for GSO. 9578 */ 9579 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9580 features &= ~NETIF_F_GSO_MASK; 9581 9582 len = skb_network_offset(skb); 9583 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9584 goto out_rm_features; 9585 9586 len = skb_network_header_len(skb); 9587 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9588 goto out_rm_features; 9589 9590 if (skb->encapsulation) { 9591 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9592 * the case of IPIP frames, the transport header pointer is 9593 * after the inner header! So check to make sure that this 9594 * is a GRE or UDP_TUNNEL frame before doing that math. 9595 */ 9596 if (gso && (skb_shinfo(skb)->gso_type & 9597 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9598 len = skb_inner_network_header(skb) - 9599 skb_transport_header(skb); 9600 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9601 goto out_rm_features; 9602 } 9603 9604 len = skb_inner_network_header_len(skb); 9605 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9606 goto out_rm_features; 9607 } 9608 9609 return features; 9610 out_rm_features: 9611 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9612 } 9613 9614 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9615 .ndo_open = ice_open, 9616 .ndo_stop = ice_stop, 9617 .ndo_start_xmit = ice_start_xmit, 9618 .ndo_set_mac_address = ice_set_mac_address, 9619 .ndo_validate_addr = eth_validate_addr, 9620 .ndo_change_mtu = ice_change_mtu, 9621 .ndo_get_stats64 = ice_get_stats64, 9622 .ndo_tx_timeout = ice_tx_timeout, 9623 .ndo_bpf = ice_xdp_safe_mode, 9624 }; 9625 9626 static const struct net_device_ops ice_netdev_ops = { 9627 .ndo_open = ice_open, 9628 .ndo_stop = ice_stop, 9629 .ndo_start_xmit = ice_start_xmit, 9630 .ndo_select_queue = ice_select_queue, 9631 .ndo_features_check = ice_features_check, 9632 .ndo_fix_features = ice_fix_features, 9633 .ndo_set_rx_mode = ice_set_rx_mode, 9634 .ndo_set_mac_address = ice_set_mac_address, 9635 .ndo_validate_addr = eth_validate_addr, 9636 .ndo_change_mtu = ice_change_mtu, 9637 .ndo_get_stats64 = ice_get_stats64, 9638 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9639 .ndo_eth_ioctl = ice_eth_ioctl, 9640 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9641 .ndo_set_vf_mac = ice_set_vf_mac, 9642 .ndo_get_vf_config = ice_get_vf_cfg, 9643 .ndo_set_vf_trust = ice_set_vf_trust, 9644 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9645 .ndo_set_vf_link_state = ice_set_vf_link_state, 9646 .ndo_get_vf_stats = ice_get_vf_stats, 9647 .ndo_set_vf_rate = ice_set_vf_bw, 9648 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9649 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9650 .ndo_setup_tc = ice_setup_tc, 9651 .ndo_set_features = ice_set_features, 9652 .ndo_bridge_getlink = ice_bridge_getlink, 9653 .ndo_bridge_setlink = ice_bridge_setlink, 9654 .ndo_fdb_add = ice_fdb_add, 9655 .ndo_fdb_del = ice_fdb_del, 9656 #ifdef CONFIG_RFS_ACCEL 9657 .ndo_rx_flow_steer = ice_rx_flow_steer, 9658 #endif 9659 .ndo_tx_timeout = ice_tx_timeout, 9660 .ndo_bpf = ice_xdp, 9661 .ndo_xdp_xmit = ice_xdp_xmit, 9662 .ndo_xsk_wakeup = ice_xsk_wakeup, 9663 }; 9664