1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 ice_ptp_link_change(pf, link_up); 1148 1149 if (ice_is_dcb_active(pf)) { 1150 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1151 ice_dcb_rebuild(pf); 1152 } else { 1153 if (link_up) 1154 ice_set_dflt_mib(pf); 1155 } 1156 ice_vsi_link_event(vsi, link_up); 1157 ice_print_link_msg(vsi, link_up); 1158 1159 ice_vc_notify_link_state(pf); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1166 * @pf: board private structure 1167 */ 1168 static void ice_watchdog_subtask(struct ice_pf *pf) 1169 { 1170 int i; 1171 1172 /* if interface is down do nothing */ 1173 if (test_bit(ICE_DOWN, pf->state) || 1174 test_bit(ICE_CFG_BUSY, pf->state)) 1175 return; 1176 1177 /* make sure we don't do these things too often */ 1178 if (time_before(jiffies, 1179 pf->serv_tmr_prev + pf->serv_tmr_period)) 1180 return; 1181 1182 pf->serv_tmr_prev = jiffies; 1183 1184 /* Update the stats for active netdevs so the network stack 1185 * can look at updated numbers whenever it cares to 1186 */ 1187 ice_update_pf_stats(pf); 1188 ice_for_each_vsi(pf, i) 1189 if (pf->vsi[i] && pf->vsi[i]->netdev) 1190 ice_update_vsi_stats(pf->vsi[i]); 1191 } 1192 1193 /** 1194 * ice_init_link_events - enable/initialize link events 1195 * @pi: pointer to the port_info instance 1196 * 1197 * Returns -EIO on failure, 0 on success 1198 */ 1199 static int ice_init_link_events(struct ice_port_info *pi) 1200 { 1201 u16 mask; 1202 1203 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1204 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1205 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1206 1207 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1208 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1209 pi->lport); 1210 return -EIO; 1211 } 1212 1213 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 return 0; 1220 } 1221 1222 /** 1223 * ice_handle_link_event - handle link event via ARQ 1224 * @pf: PF that the link event is associated with 1225 * @event: event structure containing link status info 1226 */ 1227 static int 1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1229 { 1230 struct ice_aqc_get_link_status_data *link_data; 1231 struct ice_port_info *port_info; 1232 int status; 1233 1234 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1235 port_info = pf->hw.port_info; 1236 if (!port_info) 1237 return -EINVAL; 1238 1239 status = ice_link_event(pf, port_info, 1240 !!(link_data->link_info & ICE_AQ_LINK_UP), 1241 le16_to_cpu(link_data->link_speed)); 1242 if (status) 1243 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1244 status); 1245 1246 return status; 1247 } 1248 1249 /** 1250 * ice_get_fwlog_data - copy the FW log data from ARQ event 1251 * @pf: PF that the FW log event is associated with 1252 * @event: event structure containing FW log data 1253 */ 1254 static void 1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1256 { 1257 struct ice_fwlog_data *fwlog; 1258 struct ice_hw *hw = &pf->hw; 1259 1260 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1261 1262 memset(fwlog->data, 0, PAGE_SIZE); 1263 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1264 1265 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1266 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1267 1268 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1269 /* the rings are full so bump the head to create room */ 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1271 hw->fwlog_ring.size); 1272 } 1273 } 1274 1275 /** 1276 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1277 * @pf: pointer to the PF private structure 1278 * @task: intermediate helper storage and identifier for waiting 1279 * @opcode: the opcode to wait for 1280 * 1281 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1282 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1283 * 1284 * Calls are separated to allow caller registering for event before sending 1285 * the command, which mitigates a race between registering and FW responding. 1286 * 1287 * To obtain only the descriptor contents, pass an task->event with null 1288 * msg_buf. If the complete data buffer is desired, allocate the 1289 * task->event.msg_buf with enough space ahead of time. 1290 */ 1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1292 u16 opcode) 1293 { 1294 INIT_HLIST_NODE(&task->entry); 1295 task->opcode = opcode; 1296 task->state = ICE_AQ_TASK_WAITING; 1297 1298 spin_lock_bh(&pf->aq_wait_lock); 1299 hlist_add_head(&task->entry, &pf->aq_wait_list); 1300 spin_unlock_bh(&pf->aq_wait_lock); 1301 } 1302 1303 /** 1304 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1305 * @pf: pointer to the PF private structure 1306 * @task: ptr prepared by ice_aq_prep_for_event() 1307 * @timeout: how long to wait, in jiffies 1308 * 1309 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1310 * current thread will be put to sleep until the specified event occurs or 1311 * until the given timeout is reached. 1312 * 1313 * Returns: zero on success, or a negative error code on failure. 1314 */ 1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1316 unsigned long timeout) 1317 { 1318 enum ice_aq_task_state *state = &task->state; 1319 struct device *dev = ice_pf_to_dev(pf); 1320 unsigned long start = jiffies; 1321 long ret; 1322 int err; 1323 1324 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1325 *state != ICE_AQ_TASK_WAITING, 1326 timeout); 1327 switch (*state) { 1328 case ICE_AQ_TASK_NOT_PREPARED: 1329 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1330 err = -EINVAL; 1331 break; 1332 case ICE_AQ_TASK_WAITING: 1333 err = ret < 0 ? ret : -ETIMEDOUT; 1334 break; 1335 case ICE_AQ_TASK_CANCELED: 1336 err = ret < 0 ? ret : -ECANCELED; 1337 break; 1338 case ICE_AQ_TASK_COMPLETE: 1339 err = ret < 0 ? ret : 0; 1340 break; 1341 default: 1342 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1343 err = -EINVAL; 1344 break; 1345 } 1346 1347 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1348 jiffies_to_msecs(jiffies - start), 1349 jiffies_to_msecs(timeout), 1350 task->opcode); 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_del(&task->entry); 1354 spin_unlock_bh(&pf->aq_wait_lock); 1355 1356 return err; 1357 } 1358 1359 /** 1360 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1361 * @pf: pointer to the PF private structure 1362 * @opcode: the opcode of the event 1363 * @event: the event to check 1364 * 1365 * Loops over the current list of pending threads waiting for an AdminQ event. 1366 * For each matching task, copy the contents of the event into the task 1367 * structure and wake up the thread. 1368 * 1369 * If multiple threads wait for the same opcode, they will all be woken up. 1370 * 1371 * Note that event->msg_buf will only be duplicated if the event has a buffer 1372 * with enough space already allocated. Otherwise, only the descriptor and 1373 * message length will be copied. 1374 * 1375 * Returns: true if an event was found, false otherwise 1376 */ 1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1378 struct ice_rq_event_info *event) 1379 { 1380 struct ice_rq_event_info *task_ev; 1381 struct ice_aq_task *task; 1382 bool found = false; 1383 1384 spin_lock_bh(&pf->aq_wait_lock); 1385 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1386 if (task->state != ICE_AQ_TASK_WAITING) 1387 continue; 1388 if (task->opcode != opcode) 1389 continue; 1390 1391 task_ev = &task->event; 1392 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1393 task_ev->msg_len = event->msg_len; 1394 1395 /* Only copy the data buffer if a destination was set */ 1396 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1397 memcpy(task_ev->msg_buf, event->msg_buf, 1398 event->buf_len); 1399 task_ev->buf_len = event->buf_len; 1400 } 1401 1402 task->state = ICE_AQ_TASK_COMPLETE; 1403 found = true; 1404 } 1405 spin_unlock_bh(&pf->aq_wait_lock); 1406 1407 if (found) 1408 wake_up(&pf->aq_wait_queue); 1409 } 1410 1411 /** 1412 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1413 * @pf: the PF private structure 1414 * 1415 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1416 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1417 */ 1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1419 { 1420 struct ice_aq_task *task; 1421 1422 spin_lock_bh(&pf->aq_wait_lock); 1423 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1424 task->state = ICE_AQ_TASK_CANCELED; 1425 spin_unlock_bh(&pf->aq_wait_lock); 1426 1427 wake_up(&pf->aq_wait_queue); 1428 } 1429 1430 #define ICE_MBX_OVERFLOW_WATERMARK 64 1431 1432 /** 1433 * __ice_clean_ctrlq - helper function to clean controlq rings 1434 * @pf: ptr to struct ice_pf 1435 * @q_type: specific Control queue type 1436 */ 1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1438 { 1439 struct device *dev = ice_pf_to_dev(pf); 1440 struct ice_rq_event_info event; 1441 struct ice_hw *hw = &pf->hw; 1442 struct ice_ctl_q_info *cq; 1443 u16 pending, i = 0; 1444 const char *qtype; 1445 u32 oldval, val; 1446 1447 /* Do not clean control queue if/when PF reset fails */ 1448 if (test_bit(ICE_RESET_FAILED, pf->state)) 1449 return 0; 1450 1451 switch (q_type) { 1452 case ICE_CTL_Q_ADMIN: 1453 cq = &hw->adminq; 1454 qtype = "Admin"; 1455 break; 1456 case ICE_CTL_Q_SB: 1457 cq = &hw->sbq; 1458 qtype = "Sideband"; 1459 break; 1460 case ICE_CTL_Q_MAILBOX: 1461 cq = &hw->mailboxq; 1462 qtype = "Mailbox"; 1463 /* we are going to try to detect a malicious VF, so set the 1464 * state to begin detection 1465 */ 1466 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1467 break; 1468 default: 1469 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1470 return 0; 1471 } 1472 1473 /* check for error indications - PF_xx_AxQLEN register layout for 1474 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1475 */ 1476 val = rd32(hw, cq->rq.len); 1477 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1478 PF_FW_ARQLEN_ARQCRIT_M)) { 1479 oldval = val; 1480 if (val & PF_FW_ARQLEN_ARQVFE_M) 1481 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1482 qtype); 1483 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1484 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1485 qtype); 1486 } 1487 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1488 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1489 qtype); 1490 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1491 PF_FW_ARQLEN_ARQCRIT_M); 1492 if (oldval != val) 1493 wr32(hw, cq->rq.len, val); 1494 } 1495 1496 val = rd32(hw, cq->sq.len); 1497 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1498 PF_FW_ATQLEN_ATQCRIT_M)) { 1499 oldval = val; 1500 if (val & PF_FW_ATQLEN_ATQVFE_M) 1501 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1502 qtype); 1503 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1504 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1505 qtype); 1506 } 1507 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1508 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1509 qtype); 1510 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1511 PF_FW_ATQLEN_ATQCRIT_M); 1512 if (oldval != val) 1513 wr32(hw, cq->sq.len, val); 1514 } 1515 1516 event.buf_len = cq->rq_buf_size; 1517 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1518 if (!event.msg_buf) 1519 return 0; 1520 1521 do { 1522 struct ice_mbx_data data = {}; 1523 u16 opcode; 1524 int ret; 1525 1526 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1527 if (ret == -EALREADY) 1528 break; 1529 if (ret) { 1530 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1531 ret); 1532 break; 1533 } 1534 1535 opcode = le16_to_cpu(event.desc.opcode); 1536 1537 /* Notify any thread that might be waiting for this event */ 1538 ice_aq_check_events(pf, opcode, &event); 1539 1540 switch (opcode) { 1541 case ice_aqc_opc_get_link_status: 1542 if (ice_handle_link_event(pf, &event)) 1543 dev_err(dev, "Could not handle link event\n"); 1544 break; 1545 case ice_aqc_opc_event_lan_overflow: 1546 ice_vf_lan_overflow_event(pf, &event); 1547 break; 1548 case ice_mbx_opc_send_msg_to_pf: 1549 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1550 ice_vc_process_vf_msg(pf, &event, NULL); 1551 ice_mbx_vf_dec_trig_e830(hw, &event); 1552 } else { 1553 u16 val = hw->mailboxq.num_rq_entries; 1554 1555 data.max_num_msgs_mbx = val; 1556 val = ICE_MBX_OVERFLOW_WATERMARK; 1557 data.async_watermark_val = val; 1558 data.num_msg_proc = i; 1559 data.num_pending_arq = pending; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 } 1563 break; 1564 case ice_aqc_opc_fw_logs_event: 1565 ice_get_fwlog_data(pf, &event); 1566 break; 1567 case ice_aqc_opc_lldp_set_mib_change: 1568 ice_dcb_process_lldp_set_mib_change(pf, &event); 1569 break; 1570 case ice_aqc_opc_get_health_status: 1571 ice_process_health_status_event(pf, &event); 1572 break; 1573 default: 1574 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1575 qtype, opcode); 1576 break; 1577 } 1578 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1579 1580 kfree(event.msg_buf); 1581 1582 return pending && (i == ICE_DFLT_IRQ_WORK); 1583 } 1584 1585 /** 1586 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1587 * @hw: pointer to hardware info 1588 * @cq: control queue information 1589 * 1590 * returns true if there are pending messages in a queue, false if there aren't 1591 */ 1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1593 { 1594 u16 ntu; 1595 1596 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1597 return cq->rq.next_to_clean != ntu; 1598 } 1599 1600 /** 1601 * ice_clean_adminq_subtask - clean the AdminQ rings 1602 * @pf: board private structure 1603 */ 1604 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1605 { 1606 struct ice_hw *hw = &pf->hw; 1607 1608 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1609 return; 1610 1611 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1612 return; 1613 1614 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1615 1616 /* There might be a situation where new messages arrive to a control 1617 * queue between processing the last message and clearing the 1618 * EVENT_PENDING bit. So before exiting, check queue head again (using 1619 * ice_ctrlq_pending) and process new messages if any. 1620 */ 1621 if (ice_ctrlq_pending(hw, &hw->adminq)) 1622 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1623 1624 ice_flush(hw); 1625 } 1626 1627 /** 1628 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1629 * @pf: board private structure 1630 */ 1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1632 { 1633 struct ice_hw *hw = &pf->hw; 1634 1635 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1636 return; 1637 1638 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1639 return; 1640 1641 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1642 1643 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1644 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1645 1646 ice_flush(hw); 1647 } 1648 1649 /** 1650 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1651 * @pf: board private structure 1652 */ 1653 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1654 { 1655 struct ice_hw *hw = &pf->hw; 1656 1657 /* if mac_type is not generic, sideband is not supported 1658 * and there's nothing to do here 1659 */ 1660 if (!ice_is_generic_mac(hw)) { 1661 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1662 return; 1663 } 1664 1665 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1666 return; 1667 1668 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1669 return; 1670 1671 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1672 1673 if (ice_ctrlq_pending(hw, &hw->sbq)) 1674 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1675 1676 ice_flush(hw); 1677 } 1678 1679 /** 1680 * ice_service_task_schedule - schedule the service task to wake up 1681 * @pf: board private structure 1682 * 1683 * If not already scheduled, this puts the task into the work queue. 1684 */ 1685 void ice_service_task_schedule(struct ice_pf *pf) 1686 { 1687 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1688 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1689 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1690 queue_work(ice_wq, &pf->serv_task); 1691 } 1692 1693 /** 1694 * ice_service_task_complete - finish up the service task 1695 * @pf: board private structure 1696 */ 1697 static void ice_service_task_complete(struct ice_pf *pf) 1698 { 1699 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1700 1701 /* force memory (pf->state) to sync before next service task */ 1702 smp_mb__before_atomic(); 1703 clear_bit(ICE_SERVICE_SCHED, pf->state); 1704 } 1705 1706 /** 1707 * ice_service_task_stop - stop service task and cancel works 1708 * @pf: board private structure 1709 * 1710 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1711 * 1 otherwise. 1712 */ 1713 static int ice_service_task_stop(struct ice_pf *pf) 1714 { 1715 int ret; 1716 1717 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1718 1719 if (pf->serv_tmr.function) 1720 del_timer_sync(&pf->serv_tmr); 1721 if (pf->serv_task.func) 1722 cancel_work_sync(&pf->serv_task); 1723 1724 clear_bit(ICE_SERVICE_SCHED, pf->state); 1725 return ret; 1726 } 1727 1728 /** 1729 * ice_service_task_restart - restart service task and schedule works 1730 * @pf: board private structure 1731 * 1732 * This function is needed for suspend and resume works (e.g WoL scenario) 1733 */ 1734 static void ice_service_task_restart(struct ice_pf *pf) 1735 { 1736 clear_bit(ICE_SERVICE_DIS, pf->state); 1737 ice_service_task_schedule(pf); 1738 } 1739 1740 /** 1741 * ice_service_timer - timer callback to schedule service task 1742 * @t: pointer to timer_list 1743 */ 1744 static void ice_service_timer(struct timer_list *t) 1745 { 1746 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1747 1748 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1749 ice_service_task_schedule(pf); 1750 } 1751 1752 /** 1753 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1754 * @pf: pointer to the PF structure 1755 * @vf: pointer to the VF structure 1756 * @reset_vf_tx: whether Tx MDD has occurred 1757 * @reset_vf_rx: whether Rx MDD has occurred 1758 * 1759 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1760 * automatically reset the VF by enabling the private ethtool flag 1761 * mdd-auto-reset-vf. 1762 */ 1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1764 bool reset_vf_tx, bool reset_vf_rx) 1765 { 1766 struct device *dev = ice_pf_to_dev(pf); 1767 1768 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1769 return; 1770 1771 /* VF MDD event counters will be cleared by reset, so print the event 1772 * prior to reset. 1773 */ 1774 if (reset_vf_tx) 1775 ice_print_vf_tx_mdd_event(vf); 1776 1777 if (reset_vf_rx) 1778 ice_print_vf_rx_mdd_event(vf); 1779 1780 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1781 pf->hw.pf_id, vf->vf_id); 1782 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1783 } 1784 1785 /** 1786 * ice_handle_mdd_event - handle malicious driver detect event 1787 * @pf: pointer to the PF structure 1788 * 1789 * Called from service task. OICR interrupt handler indicates MDD event. 1790 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1791 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1792 * disable the queue, the PF can be configured to reset the VF using ethtool 1793 * private flag mdd-auto-reset-vf. 1794 */ 1795 static void ice_handle_mdd_event(struct ice_pf *pf) 1796 { 1797 struct device *dev = ice_pf_to_dev(pf); 1798 struct ice_hw *hw = &pf->hw; 1799 struct ice_vf *vf; 1800 unsigned int bkt; 1801 u32 reg; 1802 1803 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1804 /* Since the VF MDD event logging is rate limited, check if 1805 * there are pending MDD events. 1806 */ 1807 ice_print_vfs_mdd_events(pf); 1808 return; 1809 } 1810 1811 /* find what triggered an MDD event */ 1812 reg = rd32(hw, GL_MDET_TX_PQM); 1813 if (reg & GL_MDET_TX_PQM_VALID_M) { 1814 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1815 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1816 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1817 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1818 1819 if (netif_msg_tx_err(pf)) 1820 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1821 event, queue, pf_num, vf_num); 1822 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1823 event, queue); 1824 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1825 } 1826 1827 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1828 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1829 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1830 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1831 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1832 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1833 1834 if (netif_msg_tx_err(pf)) 1835 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1836 event, queue, pf_num, vf_num); 1837 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1838 event, queue); 1839 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1840 } 1841 1842 reg = rd32(hw, GL_MDET_RX); 1843 if (reg & GL_MDET_RX_VALID_M) { 1844 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1845 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1846 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1847 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1848 1849 if (netif_msg_rx_err(pf)) 1850 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1851 event, queue, pf_num, vf_num); 1852 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1853 queue); 1854 wr32(hw, GL_MDET_RX, 0xffffffff); 1855 } 1856 1857 /* check to see if this PF caused an MDD event */ 1858 reg = rd32(hw, PF_MDET_TX_PQM); 1859 if (reg & PF_MDET_TX_PQM_VALID_M) { 1860 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1861 if (netif_msg_tx_err(pf)) 1862 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1863 } 1864 1865 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1866 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1867 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1868 if (netif_msg_tx_err(pf)) 1869 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1870 } 1871 1872 reg = rd32(hw, PF_MDET_RX); 1873 if (reg & PF_MDET_RX_VALID_M) { 1874 wr32(hw, PF_MDET_RX, 0xFFFF); 1875 if (netif_msg_rx_err(pf)) 1876 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1877 } 1878 1879 /* Check to see if one of the VFs caused an MDD event, and then 1880 * increment counters and set print pending 1881 */ 1882 mutex_lock(&pf->vfs.table_lock); 1883 ice_for_each_vf(pf, bkt, vf) { 1884 bool reset_vf_tx = false, reset_vf_rx = false; 1885 1886 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1887 if (reg & VP_MDET_TX_PQM_VALID_M) { 1888 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1889 vf->mdd_tx_events.count++; 1890 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1891 if (netif_msg_tx_err(pf)) 1892 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1893 vf->vf_id); 1894 1895 reset_vf_tx = true; 1896 } 1897 1898 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1899 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1900 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1901 vf->mdd_tx_events.count++; 1902 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1903 if (netif_msg_tx_err(pf)) 1904 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1905 vf->vf_id); 1906 1907 reset_vf_tx = true; 1908 } 1909 1910 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1911 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1912 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1913 vf->mdd_tx_events.count++; 1914 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1915 if (netif_msg_tx_err(pf)) 1916 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1917 vf->vf_id); 1918 1919 reset_vf_tx = true; 1920 } 1921 1922 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1923 if (reg & VP_MDET_RX_VALID_M) { 1924 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1925 vf->mdd_rx_events.count++; 1926 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1927 if (netif_msg_rx_err(pf)) 1928 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1929 vf->vf_id); 1930 1931 reset_vf_rx = true; 1932 } 1933 1934 if (reset_vf_tx || reset_vf_rx) 1935 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1936 reset_vf_rx); 1937 } 1938 mutex_unlock(&pf->vfs.table_lock); 1939 1940 ice_print_vfs_mdd_events(pf); 1941 } 1942 1943 /** 1944 * ice_force_phys_link_state - Force the physical link state 1945 * @vsi: VSI to force the physical link state to up/down 1946 * @link_up: true/false indicates to set the physical link to up/down 1947 * 1948 * Force the physical link state by getting the current PHY capabilities from 1949 * hardware and setting the PHY config based on the determined capabilities. If 1950 * link changes a link event will be triggered because both the Enable Automatic 1951 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1952 * 1953 * Returns 0 on success, negative on failure 1954 */ 1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1956 { 1957 struct ice_aqc_get_phy_caps_data *pcaps; 1958 struct ice_aqc_set_phy_cfg_data *cfg; 1959 struct ice_port_info *pi; 1960 struct device *dev; 1961 int retcode; 1962 1963 if (!vsi || !vsi->port_info || !vsi->back) 1964 return -EINVAL; 1965 if (vsi->type != ICE_VSI_PF) 1966 return 0; 1967 1968 dev = ice_pf_to_dev(vsi->back); 1969 1970 pi = vsi->port_info; 1971 1972 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1973 if (!pcaps) 1974 return -ENOMEM; 1975 1976 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1977 NULL); 1978 if (retcode) { 1979 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1980 vsi->vsi_num, retcode); 1981 retcode = -EIO; 1982 goto out; 1983 } 1984 1985 /* No change in link */ 1986 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1987 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1988 goto out; 1989 1990 /* Use the current user PHY configuration. The current user PHY 1991 * configuration is initialized during probe from PHY capabilities 1992 * software mode, and updated on set PHY configuration. 1993 */ 1994 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1995 if (!cfg) { 1996 retcode = -ENOMEM; 1997 goto out; 1998 } 1999 2000 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2001 if (link_up) 2002 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2003 else 2004 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2005 2006 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2007 if (retcode) { 2008 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2009 vsi->vsi_num, retcode); 2010 retcode = -EIO; 2011 } 2012 2013 kfree(cfg); 2014 out: 2015 kfree(pcaps); 2016 return retcode; 2017 } 2018 2019 /** 2020 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2021 * @pi: port info structure 2022 * 2023 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2024 */ 2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2026 { 2027 struct ice_aqc_get_phy_caps_data *pcaps; 2028 struct ice_pf *pf = pi->hw->back; 2029 int err; 2030 2031 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2032 if (!pcaps) 2033 return -ENOMEM; 2034 2035 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2036 pcaps, NULL); 2037 2038 if (err) { 2039 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2040 goto out; 2041 } 2042 2043 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2044 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2045 2046 out: 2047 kfree(pcaps); 2048 return err; 2049 } 2050 2051 /** 2052 * ice_init_link_dflt_override - Initialize link default override 2053 * @pi: port info structure 2054 * 2055 * Initialize link default override and PHY total port shutdown during probe 2056 */ 2057 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2058 { 2059 struct ice_link_default_override_tlv *ldo; 2060 struct ice_pf *pf = pi->hw->back; 2061 2062 ldo = &pf->link_dflt_override; 2063 if (ice_get_link_default_override(ldo, pi)) 2064 return; 2065 2066 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2067 return; 2068 2069 /* Enable Total Port Shutdown (override/replace link-down-on-close 2070 * ethtool private flag) for ports with Port Disable bit set. 2071 */ 2072 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2073 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2074 } 2075 2076 /** 2077 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2078 * @pi: port info structure 2079 * 2080 * If default override is enabled, initialize the user PHY cfg speed and FEC 2081 * settings using the default override mask from the NVM. 2082 * 2083 * The PHY should only be configured with the default override settings the 2084 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2085 * is used to indicate that the user PHY cfg default override is initialized 2086 * and the PHY has not been configured with the default override settings. The 2087 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2088 * configured. 2089 * 2090 * This function should be called only if the FW doesn't support default 2091 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2092 */ 2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2094 { 2095 struct ice_link_default_override_tlv *ldo; 2096 struct ice_aqc_set_phy_cfg_data *cfg; 2097 struct ice_phy_info *phy = &pi->phy; 2098 struct ice_pf *pf = pi->hw->back; 2099 2100 ldo = &pf->link_dflt_override; 2101 2102 /* If link default override is enabled, use to mask NVM PHY capabilities 2103 * for speed and FEC default configuration. 2104 */ 2105 cfg = &phy->curr_user_phy_cfg; 2106 2107 if (ldo->phy_type_low || ldo->phy_type_high) { 2108 cfg->phy_type_low = pf->nvm_phy_type_lo & 2109 cpu_to_le64(ldo->phy_type_low); 2110 cfg->phy_type_high = pf->nvm_phy_type_hi & 2111 cpu_to_le64(ldo->phy_type_high); 2112 } 2113 cfg->link_fec_opt = ldo->fec_options; 2114 phy->curr_user_fec_req = ICE_FEC_AUTO; 2115 2116 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2117 } 2118 2119 /** 2120 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2121 * @pi: port info structure 2122 * 2123 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2124 * mode to default. The PHY defaults are from get PHY capabilities topology 2125 * with media so call when media is first available. An error is returned if 2126 * called when media is not available. The PHY initialization completed state is 2127 * set here. 2128 * 2129 * These configurations are used when setting PHY 2130 * configuration. The user PHY configuration is updated on set PHY 2131 * configuration. Returns 0 on success, negative on failure 2132 */ 2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2134 { 2135 struct ice_aqc_get_phy_caps_data *pcaps; 2136 struct ice_phy_info *phy = &pi->phy; 2137 struct ice_pf *pf = pi->hw->back; 2138 int err; 2139 2140 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2141 return -EIO; 2142 2143 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2144 if (!pcaps) 2145 return -ENOMEM; 2146 2147 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2148 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2149 pcaps, NULL); 2150 else 2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2152 pcaps, NULL); 2153 if (err) { 2154 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2155 goto err_out; 2156 } 2157 2158 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2159 2160 /* check if lenient mode is supported and enabled */ 2161 if (ice_fw_supports_link_override(pi->hw) && 2162 !(pcaps->module_compliance_enforcement & 2163 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2164 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2165 2166 /* if the FW supports default PHY configuration mode, then the driver 2167 * does not have to apply link override settings. If not, 2168 * initialize user PHY configuration with link override values 2169 */ 2170 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2171 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2172 ice_init_phy_cfg_dflt_override(pi); 2173 goto out; 2174 } 2175 } 2176 2177 /* if link default override is not enabled, set user flow control and 2178 * FEC settings based on what get_phy_caps returned 2179 */ 2180 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2181 pcaps->link_fec_options); 2182 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2183 2184 out: 2185 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2186 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2187 err_out: 2188 kfree(pcaps); 2189 return err; 2190 } 2191 2192 /** 2193 * ice_configure_phy - configure PHY 2194 * @vsi: VSI of PHY 2195 * 2196 * Set the PHY configuration. If the current PHY configuration is the same as 2197 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2198 * configure the based get PHY capabilities for topology with media. 2199 */ 2200 static int ice_configure_phy(struct ice_vsi *vsi) 2201 { 2202 struct device *dev = ice_pf_to_dev(vsi->back); 2203 struct ice_port_info *pi = vsi->port_info; 2204 struct ice_aqc_get_phy_caps_data *pcaps; 2205 struct ice_aqc_set_phy_cfg_data *cfg; 2206 struct ice_phy_info *phy = &pi->phy; 2207 struct ice_pf *pf = vsi->back; 2208 int err; 2209 2210 /* Ensure we have media as we cannot configure a medialess port */ 2211 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2212 return -ENOMEDIUM; 2213 2214 ice_print_topo_conflict(vsi); 2215 2216 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2217 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2218 return -EPERM; 2219 2220 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2221 return ice_force_phys_link_state(vsi, true); 2222 2223 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2224 if (!pcaps) 2225 return -ENOMEM; 2226 2227 /* Get current PHY config */ 2228 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2229 NULL); 2230 if (err) { 2231 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2232 vsi->vsi_num, err); 2233 goto done; 2234 } 2235 2236 /* If PHY enable link is configured and configuration has not changed, 2237 * there's nothing to do 2238 */ 2239 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2240 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2241 goto done; 2242 2243 /* Use PHY topology as baseline for configuration */ 2244 memset(pcaps, 0, sizeof(*pcaps)); 2245 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2246 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2247 pcaps, NULL); 2248 else 2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2250 pcaps, NULL); 2251 if (err) { 2252 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2253 vsi->vsi_num, err); 2254 goto done; 2255 } 2256 2257 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2258 if (!cfg) { 2259 err = -ENOMEM; 2260 goto done; 2261 } 2262 2263 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2264 2265 /* Speed - If default override pending, use curr_user_phy_cfg set in 2266 * ice_init_phy_user_cfg_ldo. 2267 */ 2268 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2269 vsi->back->state)) { 2270 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2271 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2272 } else { 2273 u64 phy_low = 0, phy_high = 0; 2274 2275 ice_update_phy_type(&phy_low, &phy_high, 2276 pi->phy.curr_user_speed_req); 2277 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2278 cfg->phy_type_high = pcaps->phy_type_high & 2279 cpu_to_le64(phy_high); 2280 } 2281 2282 /* Can't provide what was requested; use PHY capabilities */ 2283 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2284 cfg->phy_type_low = pcaps->phy_type_low; 2285 cfg->phy_type_high = pcaps->phy_type_high; 2286 } 2287 2288 /* FEC */ 2289 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2290 2291 /* Can't provide what was requested; use PHY capabilities */ 2292 if (cfg->link_fec_opt != 2293 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2294 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2295 cfg->link_fec_opt = pcaps->link_fec_options; 2296 } 2297 2298 /* Flow Control - always supported; no need to check against 2299 * capabilities 2300 */ 2301 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2302 2303 /* Enable link and link update */ 2304 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2305 2306 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2307 if (err) 2308 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2309 vsi->vsi_num, err); 2310 2311 kfree(cfg); 2312 done: 2313 kfree(pcaps); 2314 return err; 2315 } 2316 2317 /** 2318 * ice_check_media_subtask - Check for media 2319 * @pf: pointer to PF struct 2320 * 2321 * If media is available, then initialize PHY user configuration if it is not 2322 * been, and configure the PHY if the interface is up. 2323 */ 2324 static void ice_check_media_subtask(struct ice_pf *pf) 2325 { 2326 struct ice_port_info *pi; 2327 struct ice_vsi *vsi; 2328 int err; 2329 2330 /* No need to check for media if it's already present */ 2331 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2332 return; 2333 2334 vsi = ice_get_main_vsi(pf); 2335 if (!vsi) 2336 return; 2337 2338 /* Refresh link info and check if media is present */ 2339 pi = vsi->port_info; 2340 err = ice_update_link_info(pi); 2341 if (err) 2342 return; 2343 2344 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2345 2346 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2347 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2348 ice_init_phy_user_cfg(pi); 2349 2350 /* PHY settings are reset on media insertion, reconfigure 2351 * PHY to preserve settings. 2352 */ 2353 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2354 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2355 return; 2356 2357 err = ice_configure_phy(vsi); 2358 if (!err) 2359 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2360 2361 /* A Link Status Event will be generated; the event handler 2362 * will complete bringing the interface up 2363 */ 2364 } 2365 } 2366 2367 /** 2368 * ice_service_task - manage and run subtasks 2369 * @work: pointer to work_struct contained by the PF struct 2370 */ 2371 static void ice_service_task(struct work_struct *work) 2372 { 2373 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2374 unsigned long start_time = jiffies; 2375 2376 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2377 ice_report_tx_hang(pf); 2378 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2379 } 2380 2381 ice_reset_subtask(pf); 2382 2383 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2384 if (ice_is_reset_in_progress(pf->state) || 2385 test_bit(ICE_SUSPENDED, pf->state) || 2386 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2387 ice_service_task_complete(pf); 2388 return; 2389 } 2390 2391 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2392 struct iidc_event *event; 2393 2394 event = kzalloc(sizeof(*event), GFP_KERNEL); 2395 if (event) { 2396 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2397 /* report the entire OICR value to AUX driver */ 2398 swap(event->reg, pf->oicr_err_reg); 2399 ice_send_event_to_aux(pf, event); 2400 kfree(event); 2401 } 2402 } 2403 2404 /* unplug aux dev per request, if an unplug request came in 2405 * while processing a plug request, this will handle it 2406 */ 2407 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2408 ice_unplug_aux_dev(pf); 2409 2410 /* Plug aux device per request */ 2411 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2412 ice_plug_aux_dev(pf); 2413 2414 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2415 struct iidc_event *event; 2416 2417 event = kzalloc(sizeof(*event), GFP_KERNEL); 2418 if (event) { 2419 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2420 ice_send_event_to_aux(pf, event); 2421 kfree(event); 2422 } 2423 } 2424 2425 ice_clean_adminq_subtask(pf); 2426 ice_check_media_subtask(pf); 2427 ice_check_for_hang_subtask(pf); 2428 ice_sync_fltr_subtask(pf); 2429 ice_handle_mdd_event(pf); 2430 ice_watchdog_subtask(pf); 2431 2432 if (ice_is_safe_mode(pf)) { 2433 ice_service_task_complete(pf); 2434 return; 2435 } 2436 2437 ice_process_vflr_event(pf); 2438 ice_clean_mailboxq_subtask(pf); 2439 ice_clean_sbq_subtask(pf); 2440 ice_sync_arfs_fltrs(pf); 2441 ice_flush_fdir_ctx(pf); 2442 2443 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2444 ice_service_task_complete(pf); 2445 2446 /* If the tasks have taken longer than one service timer period 2447 * or there is more work to be done, reset the service timer to 2448 * schedule the service task now. 2449 */ 2450 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2451 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2452 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2453 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2454 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2455 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2456 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2457 mod_timer(&pf->serv_tmr, jiffies); 2458 } 2459 2460 /** 2461 * ice_set_ctrlq_len - helper function to set controlq length 2462 * @hw: pointer to the HW instance 2463 */ 2464 static void ice_set_ctrlq_len(struct ice_hw *hw) 2465 { 2466 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2467 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2468 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2469 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2470 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2471 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2472 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2473 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2474 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2475 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2476 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2477 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2478 } 2479 2480 /** 2481 * ice_schedule_reset - schedule a reset 2482 * @pf: board private structure 2483 * @reset: reset being requested 2484 */ 2485 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2486 { 2487 struct device *dev = ice_pf_to_dev(pf); 2488 2489 /* bail out if earlier reset has failed */ 2490 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2491 dev_dbg(dev, "earlier reset has failed\n"); 2492 return -EIO; 2493 } 2494 /* bail if reset/recovery already in progress */ 2495 if (ice_is_reset_in_progress(pf->state)) { 2496 dev_dbg(dev, "Reset already in progress\n"); 2497 return -EBUSY; 2498 } 2499 2500 switch (reset) { 2501 case ICE_RESET_PFR: 2502 set_bit(ICE_PFR_REQ, pf->state); 2503 break; 2504 case ICE_RESET_CORER: 2505 set_bit(ICE_CORER_REQ, pf->state); 2506 break; 2507 case ICE_RESET_GLOBR: 2508 set_bit(ICE_GLOBR_REQ, pf->state); 2509 break; 2510 default: 2511 return -EINVAL; 2512 } 2513 2514 ice_service_task_schedule(pf); 2515 return 0; 2516 } 2517 2518 /** 2519 * ice_irq_affinity_notify - Callback for affinity changes 2520 * @notify: context as to what irq was changed 2521 * @mask: the new affinity mask 2522 * 2523 * This is a callback function used by the irq_set_affinity_notifier function 2524 * so that we may register to receive changes to the irq affinity masks. 2525 */ 2526 static void 2527 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2528 const cpumask_t *mask) 2529 { 2530 struct ice_q_vector *q_vector = 2531 container_of(notify, struct ice_q_vector, affinity_notify); 2532 2533 cpumask_copy(&q_vector->affinity_mask, mask); 2534 } 2535 2536 /** 2537 * ice_irq_affinity_release - Callback for affinity notifier release 2538 * @ref: internal core kernel usage 2539 * 2540 * This is a callback function used by the irq_set_affinity_notifier function 2541 * to inform the current notification subscriber that they will no longer 2542 * receive notifications. 2543 */ 2544 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2545 2546 /** 2547 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2548 * @vsi: the VSI being configured 2549 */ 2550 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2551 { 2552 struct ice_hw *hw = &vsi->back->hw; 2553 int i; 2554 2555 ice_for_each_q_vector(vsi, i) 2556 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2557 2558 ice_flush(hw); 2559 return 0; 2560 } 2561 2562 /** 2563 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2564 * @vsi: the VSI being configured 2565 * @basename: name for the vector 2566 */ 2567 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2568 { 2569 int q_vectors = vsi->num_q_vectors; 2570 struct ice_pf *pf = vsi->back; 2571 struct device *dev; 2572 int rx_int_idx = 0; 2573 int tx_int_idx = 0; 2574 int vector, err; 2575 int irq_num; 2576 2577 dev = ice_pf_to_dev(pf); 2578 for (vector = 0; vector < q_vectors; vector++) { 2579 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2580 2581 irq_num = q_vector->irq.virq; 2582 2583 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2584 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2585 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2586 tx_int_idx++; 2587 } else if (q_vector->rx.rx_ring) { 2588 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2589 "%s-%s-%d", basename, "rx", rx_int_idx++); 2590 } else if (q_vector->tx.tx_ring) { 2591 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2592 "%s-%s-%d", basename, "tx", tx_int_idx++); 2593 } else { 2594 /* skip this unused q_vector */ 2595 continue; 2596 } 2597 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2598 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2599 IRQF_SHARED, q_vector->name, 2600 q_vector); 2601 else 2602 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2603 0, q_vector->name, q_vector); 2604 if (err) { 2605 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2606 err); 2607 goto free_q_irqs; 2608 } 2609 2610 /* register for affinity change notifications */ 2611 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2612 struct irq_affinity_notify *affinity_notify; 2613 2614 affinity_notify = &q_vector->affinity_notify; 2615 affinity_notify->notify = ice_irq_affinity_notify; 2616 affinity_notify->release = ice_irq_affinity_release; 2617 irq_set_affinity_notifier(irq_num, affinity_notify); 2618 } 2619 2620 /* assign the mask for this irq */ 2621 irq_update_affinity_hint(irq_num, &q_vector->affinity_mask); 2622 } 2623 2624 err = ice_set_cpu_rx_rmap(vsi); 2625 if (err) { 2626 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2627 vsi->vsi_num, ERR_PTR(err)); 2628 goto free_q_irqs; 2629 } 2630 2631 vsi->irqs_ready = true; 2632 return 0; 2633 2634 free_q_irqs: 2635 while (vector--) { 2636 irq_num = vsi->q_vectors[vector]->irq.virq; 2637 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2638 irq_set_affinity_notifier(irq_num, NULL); 2639 irq_update_affinity_hint(irq_num, NULL); 2640 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2641 } 2642 return err; 2643 } 2644 2645 /** 2646 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2647 * @vsi: VSI to setup Tx rings used by XDP 2648 * 2649 * Return 0 on success and negative value on error 2650 */ 2651 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2652 { 2653 struct device *dev = ice_pf_to_dev(vsi->back); 2654 struct ice_tx_desc *tx_desc; 2655 int i, j; 2656 2657 ice_for_each_xdp_txq(vsi, i) { 2658 u16 xdp_q_idx = vsi->alloc_txq + i; 2659 struct ice_ring_stats *ring_stats; 2660 struct ice_tx_ring *xdp_ring; 2661 2662 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2663 if (!xdp_ring) 2664 goto free_xdp_rings; 2665 2666 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2667 if (!ring_stats) { 2668 ice_free_tx_ring(xdp_ring); 2669 goto free_xdp_rings; 2670 } 2671 2672 xdp_ring->ring_stats = ring_stats; 2673 xdp_ring->q_index = xdp_q_idx; 2674 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2675 xdp_ring->vsi = vsi; 2676 xdp_ring->netdev = NULL; 2677 xdp_ring->dev = dev; 2678 xdp_ring->count = vsi->num_tx_desc; 2679 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2680 if (ice_setup_tx_ring(xdp_ring)) 2681 goto free_xdp_rings; 2682 ice_set_ring_xdp(xdp_ring); 2683 spin_lock_init(&xdp_ring->tx_lock); 2684 for (j = 0; j < xdp_ring->count; j++) { 2685 tx_desc = ICE_TX_DESC(xdp_ring, j); 2686 tx_desc->cmd_type_offset_bsz = 0; 2687 } 2688 } 2689 2690 return 0; 2691 2692 free_xdp_rings: 2693 for (; i >= 0; i--) { 2694 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2695 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2696 vsi->xdp_rings[i]->ring_stats = NULL; 2697 ice_free_tx_ring(vsi->xdp_rings[i]); 2698 } 2699 } 2700 return -ENOMEM; 2701 } 2702 2703 /** 2704 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2705 * @vsi: VSI to set the bpf prog on 2706 * @prog: the bpf prog pointer 2707 */ 2708 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2709 { 2710 struct bpf_prog *old_prog; 2711 int i; 2712 2713 old_prog = xchg(&vsi->xdp_prog, prog); 2714 ice_for_each_rxq(vsi, i) 2715 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2716 2717 if (old_prog) 2718 bpf_prog_put(old_prog); 2719 } 2720 2721 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2722 { 2723 struct ice_q_vector *q_vector; 2724 struct ice_tx_ring *ring; 2725 2726 if (static_key_enabled(&ice_xdp_locking_key)) 2727 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2728 2729 q_vector = vsi->rx_rings[qid]->q_vector; 2730 ice_for_each_tx_ring(ring, q_vector->tx) 2731 if (ice_ring_is_xdp(ring)) 2732 return ring; 2733 2734 return NULL; 2735 } 2736 2737 /** 2738 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2739 * @vsi: the VSI with XDP rings being configured 2740 * 2741 * Map XDP rings to interrupt vectors and perform the configuration steps 2742 * dependent on the mapping. 2743 */ 2744 void ice_map_xdp_rings(struct ice_vsi *vsi) 2745 { 2746 int xdp_rings_rem = vsi->num_xdp_txq; 2747 int v_idx, q_idx; 2748 2749 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2750 ice_for_each_q_vector(vsi, v_idx) { 2751 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2752 int xdp_rings_per_v, q_id, q_base; 2753 2754 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2755 vsi->num_q_vectors - v_idx); 2756 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2757 2758 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2759 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2760 2761 xdp_ring->q_vector = q_vector; 2762 xdp_ring->next = q_vector->tx.tx_ring; 2763 q_vector->tx.tx_ring = xdp_ring; 2764 } 2765 xdp_rings_rem -= xdp_rings_per_v; 2766 } 2767 2768 ice_for_each_rxq(vsi, q_idx) { 2769 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2770 q_idx); 2771 ice_tx_xsk_pool(vsi, q_idx); 2772 } 2773 } 2774 2775 /** 2776 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2777 * @vsi: VSI to bring up Tx rings used by XDP 2778 * @prog: bpf program that will be assigned to VSI 2779 * @cfg_type: create from scratch or restore the existing configuration 2780 * 2781 * Return 0 on success and negative value on error 2782 */ 2783 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2784 enum ice_xdp_cfg cfg_type) 2785 { 2786 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2787 struct ice_pf *pf = vsi->back; 2788 struct ice_qs_cfg xdp_qs_cfg = { 2789 .qs_mutex = &pf->avail_q_mutex, 2790 .pf_map = pf->avail_txqs, 2791 .pf_map_size = pf->max_pf_txqs, 2792 .q_count = vsi->num_xdp_txq, 2793 .scatter_count = ICE_MAX_SCATTER_TXQS, 2794 .vsi_map = vsi->txq_map, 2795 .vsi_map_offset = vsi->alloc_txq, 2796 .mapping_mode = ICE_VSI_MAP_CONTIG 2797 }; 2798 struct device *dev; 2799 int status, i; 2800 2801 dev = ice_pf_to_dev(pf); 2802 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2803 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2804 if (!vsi->xdp_rings) 2805 return -ENOMEM; 2806 2807 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2808 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2809 goto err_map_xdp; 2810 2811 if (static_key_enabled(&ice_xdp_locking_key)) 2812 netdev_warn(vsi->netdev, 2813 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2814 2815 if (ice_xdp_alloc_setup_rings(vsi)) 2816 goto clear_xdp_rings; 2817 2818 /* omit the scheduler update if in reset path; XDP queues will be 2819 * taken into account at the end of ice_vsi_rebuild, where 2820 * ice_cfg_vsi_lan is being called 2821 */ 2822 if (cfg_type == ICE_XDP_CFG_PART) 2823 return 0; 2824 2825 ice_map_xdp_rings(vsi); 2826 2827 /* tell the Tx scheduler that right now we have 2828 * additional queues 2829 */ 2830 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2831 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2832 2833 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2834 max_txqs); 2835 if (status) { 2836 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2837 status); 2838 goto clear_xdp_rings; 2839 } 2840 2841 /* assign the prog only when it's not already present on VSI; 2842 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2843 * VSI rebuild that happens under ethtool -L can expose us to 2844 * the bpf_prog refcount issues as we would be swapping same 2845 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2846 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2847 * this is not harmful as dev_xdp_install bumps the refcount 2848 * before calling the op exposed by the driver; 2849 */ 2850 if (!ice_is_xdp_ena_vsi(vsi)) 2851 ice_vsi_assign_bpf_prog(vsi, prog); 2852 2853 return 0; 2854 clear_xdp_rings: 2855 ice_for_each_xdp_txq(vsi, i) 2856 if (vsi->xdp_rings[i]) { 2857 kfree_rcu(vsi->xdp_rings[i], rcu); 2858 vsi->xdp_rings[i] = NULL; 2859 } 2860 2861 err_map_xdp: 2862 mutex_lock(&pf->avail_q_mutex); 2863 ice_for_each_xdp_txq(vsi, i) { 2864 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2865 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2866 } 2867 mutex_unlock(&pf->avail_q_mutex); 2868 2869 devm_kfree(dev, vsi->xdp_rings); 2870 return -ENOMEM; 2871 } 2872 2873 /** 2874 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2875 * @vsi: VSI to remove XDP rings 2876 * @cfg_type: disable XDP permanently or allow it to be restored later 2877 * 2878 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2879 * resources 2880 */ 2881 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2882 { 2883 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2884 struct ice_pf *pf = vsi->back; 2885 int i, v_idx; 2886 2887 /* q_vectors are freed in reset path so there's no point in detaching 2888 * rings 2889 */ 2890 if (cfg_type == ICE_XDP_CFG_PART) 2891 goto free_qmap; 2892 2893 ice_for_each_q_vector(vsi, v_idx) { 2894 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2895 struct ice_tx_ring *ring; 2896 2897 ice_for_each_tx_ring(ring, q_vector->tx) 2898 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2899 break; 2900 2901 /* restore the value of last node prior to XDP setup */ 2902 q_vector->tx.tx_ring = ring; 2903 } 2904 2905 free_qmap: 2906 mutex_lock(&pf->avail_q_mutex); 2907 ice_for_each_xdp_txq(vsi, i) { 2908 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2909 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2910 } 2911 mutex_unlock(&pf->avail_q_mutex); 2912 2913 ice_for_each_xdp_txq(vsi, i) 2914 if (vsi->xdp_rings[i]) { 2915 if (vsi->xdp_rings[i]->desc) { 2916 synchronize_rcu(); 2917 ice_free_tx_ring(vsi->xdp_rings[i]); 2918 } 2919 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2920 vsi->xdp_rings[i]->ring_stats = NULL; 2921 kfree_rcu(vsi->xdp_rings[i], rcu); 2922 vsi->xdp_rings[i] = NULL; 2923 } 2924 2925 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2926 vsi->xdp_rings = NULL; 2927 2928 if (static_key_enabled(&ice_xdp_locking_key)) 2929 static_branch_dec(&ice_xdp_locking_key); 2930 2931 if (cfg_type == ICE_XDP_CFG_PART) 2932 return 0; 2933 2934 ice_vsi_assign_bpf_prog(vsi, NULL); 2935 2936 /* notify Tx scheduler that we destroyed XDP queues and bring 2937 * back the old number of child nodes 2938 */ 2939 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2940 max_txqs[i] = vsi->num_txq; 2941 2942 /* change number of XDP Tx queues to 0 */ 2943 vsi->num_xdp_txq = 0; 2944 2945 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2946 max_txqs); 2947 } 2948 2949 /** 2950 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2951 * @vsi: VSI to schedule napi on 2952 */ 2953 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2954 { 2955 int i; 2956 2957 ice_for_each_rxq(vsi, i) { 2958 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2959 2960 if (READ_ONCE(rx_ring->xsk_pool)) 2961 napi_schedule(&rx_ring->q_vector->napi); 2962 } 2963 } 2964 2965 /** 2966 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2967 * @vsi: VSI to determine the count of XDP Tx qs 2968 * 2969 * returns 0 if Tx qs count is higher than at least half of CPU count, 2970 * -ENOMEM otherwise 2971 */ 2972 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2973 { 2974 u16 avail = ice_get_avail_txq_count(vsi->back); 2975 u16 cpus = num_possible_cpus(); 2976 2977 if (avail < cpus / 2) 2978 return -ENOMEM; 2979 2980 if (vsi->type == ICE_VSI_SF) 2981 avail = vsi->alloc_txq; 2982 2983 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2984 2985 if (vsi->num_xdp_txq < cpus) 2986 static_branch_inc(&ice_xdp_locking_key); 2987 2988 return 0; 2989 } 2990 2991 /** 2992 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2993 * @vsi: Pointer to VSI structure 2994 */ 2995 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2996 { 2997 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2998 return ICE_RXBUF_1664; 2999 else 3000 return ICE_RXBUF_3072; 3001 } 3002 3003 /** 3004 * ice_xdp_setup_prog - Add or remove XDP eBPF program 3005 * @vsi: VSI to setup XDP for 3006 * @prog: XDP program 3007 * @extack: netlink extended ack 3008 */ 3009 static int 3010 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 3011 struct netlink_ext_ack *extack) 3012 { 3013 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3014 int ret = 0, xdp_ring_err = 0; 3015 bool if_running; 3016 3017 if (prog && !prog->aux->xdp_has_frags) { 3018 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3019 NL_SET_ERR_MSG_MOD(extack, 3020 "MTU is too large for linear frames and XDP prog does not support frags"); 3021 return -EOPNOTSUPP; 3022 } 3023 } 3024 3025 /* hot swap progs and avoid toggling link */ 3026 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3027 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3028 ice_vsi_assign_bpf_prog(vsi, prog); 3029 return 0; 3030 } 3031 3032 if_running = netif_running(vsi->netdev) && 3033 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3034 3035 /* need to stop netdev while setting up the program for Rx rings */ 3036 if (if_running) { 3037 ret = ice_down(vsi); 3038 if (ret) { 3039 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3040 return ret; 3041 } 3042 } 3043 3044 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3045 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3046 if (xdp_ring_err) { 3047 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3048 } else { 3049 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3050 ICE_XDP_CFG_FULL); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3053 } 3054 xdp_features_set_redirect_target(vsi->netdev, true); 3055 /* reallocate Rx queues that are used for zero-copy */ 3056 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3057 if (xdp_ring_err) 3058 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3059 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3060 xdp_features_clear_redirect_target(vsi->netdev); 3061 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3062 if (xdp_ring_err) 3063 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3064 /* reallocate Rx queues that were used for zero-copy */ 3065 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3066 if (xdp_ring_err) 3067 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3068 } 3069 3070 if (if_running) 3071 ret = ice_up(vsi); 3072 3073 if (!ret && prog) 3074 ice_vsi_rx_napi_schedule(vsi); 3075 3076 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3077 } 3078 3079 /** 3080 * ice_xdp_safe_mode - XDP handler for safe mode 3081 * @dev: netdevice 3082 * @xdp: XDP command 3083 */ 3084 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3085 struct netdev_bpf *xdp) 3086 { 3087 NL_SET_ERR_MSG_MOD(xdp->extack, 3088 "Please provide working DDP firmware package in order to use XDP\n" 3089 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3090 return -EOPNOTSUPP; 3091 } 3092 3093 /** 3094 * ice_xdp - implements XDP handler 3095 * @dev: netdevice 3096 * @xdp: XDP command 3097 */ 3098 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3099 { 3100 struct ice_netdev_priv *np = netdev_priv(dev); 3101 struct ice_vsi *vsi = np->vsi; 3102 int ret; 3103 3104 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3105 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3106 return -EINVAL; 3107 } 3108 3109 mutex_lock(&vsi->xdp_state_lock); 3110 3111 switch (xdp->command) { 3112 case XDP_SETUP_PROG: 3113 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3114 break; 3115 case XDP_SETUP_XSK_POOL: 3116 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3117 break; 3118 default: 3119 ret = -EINVAL; 3120 } 3121 3122 mutex_unlock(&vsi->xdp_state_lock); 3123 return ret; 3124 } 3125 3126 /** 3127 * ice_ena_misc_vector - enable the non-queue interrupts 3128 * @pf: board private structure 3129 */ 3130 static void ice_ena_misc_vector(struct ice_pf *pf) 3131 { 3132 struct ice_hw *hw = &pf->hw; 3133 u32 pf_intr_start_offset; 3134 u32 val; 3135 3136 /* Disable anti-spoof detection interrupt to prevent spurious event 3137 * interrupts during a function reset. Anti-spoof functionally is 3138 * still supported. 3139 */ 3140 val = rd32(hw, GL_MDCK_TX_TDPU); 3141 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3142 wr32(hw, GL_MDCK_TX_TDPU, val); 3143 3144 /* clear things first */ 3145 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3146 rd32(hw, PFINT_OICR); /* read to clear */ 3147 3148 val = (PFINT_OICR_ECC_ERR_M | 3149 PFINT_OICR_MAL_DETECT_M | 3150 PFINT_OICR_GRST_M | 3151 PFINT_OICR_PCI_EXCEPTION_M | 3152 PFINT_OICR_VFLR_M | 3153 PFINT_OICR_HMC_ERR_M | 3154 PFINT_OICR_PE_PUSH_M | 3155 PFINT_OICR_PE_CRITERR_M); 3156 3157 wr32(hw, PFINT_OICR_ENA, val); 3158 3159 /* SW_ITR_IDX = 0, but don't change INTENA */ 3160 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3161 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3162 3163 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3164 return; 3165 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3166 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3167 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3168 } 3169 3170 /** 3171 * ice_ll_ts_intr - ll_ts interrupt handler 3172 * @irq: interrupt number 3173 * @data: pointer to a q_vector 3174 */ 3175 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3176 { 3177 struct ice_pf *pf = data; 3178 u32 pf_intr_start_offset; 3179 struct ice_ptp_tx *tx; 3180 unsigned long flags; 3181 struct ice_hw *hw; 3182 u32 val; 3183 u8 idx; 3184 3185 hw = &pf->hw; 3186 tx = &pf->ptp.port.tx; 3187 spin_lock_irqsave(&tx->lock, flags); 3188 ice_ptp_complete_tx_single_tstamp(tx); 3189 3190 idx = find_next_bit_wrap(tx->in_use, tx->len, 3191 tx->last_ll_ts_idx_read + 1); 3192 if (idx != tx->len) 3193 ice_ptp_req_tx_single_tstamp(tx, idx); 3194 spin_unlock_irqrestore(&tx->lock, flags); 3195 3196 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3197 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3198 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3199 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3200 val); 3201 3202 return IRQ_HANDLED; 3203 } 3204 3205 /** 3206 * ice_misc_intr - misc interrupt handler 3207 * @irq: interrupt number 3208 * @data: pointer to a q_vector 3209 */ 3210 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3211 { 3212 struct ice_pf *pf = (struct ice_pf *)data; 3213 irqreturn_t ret = IRQ_HANDLED; 3214 struct ice_hw *hw = &pf->hw; 3215 struct device *dev; 3216 u32 oicr, ena_mask; 3217 3218 dev = ice_pf_to_dev(pf); 3219 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3220 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3221 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3222 3223 oicr = rd32(hw, PFINT_OICR); 3224 ena_mask = rd32(hw, PFINT_OICR_ENA); 3225 3226 if (oicr & PFINT_OICR_SWINT_M) { 3227 ena_mask &= ~PFINT_OICR_SWINT_M; 3228 pf->sw_int_count++; 3229 } 3230 3231 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3232 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3233 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3234 } 3235 if (oicr & PFINT_OICR_VFLR_M) { 3236 /* disable any further VFLR event notifications */ 3237 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3238 u32 reg = rd32(hw, PFINT_OICR_ENA); 3239 3240 reg &= ~PFINT_OICR_VFLR_M; 3241 wr32(hw, PFINT_OICR_ENA, reg); 3242 } else { 3243 ena_mask &= ~PFINT_OICR_VFLR_M; 3244 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3245 } 3246 } 3247 3248 if (oicr & PFINT_OICR_GRST_M) { 3249 u32 reset; 3250 3251 /* we have a reset warning */ 3252 ena_mask &= ~PFINT_OICR_GRST_M; 3253 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3254 rd32(hw, GLGEN_RSTAT)); 3255 3256 if (reset == ICE_RESET_CORER) 3257 pf->corer_count++; 3258 else if (reset == ICE_RESET_GLOBR) 3259 pf->globr_count++; 3260 else if (reset == ICE_RESET_EMPR) 3261 pf->empr_count++; 3262 else 3263 dev_dbg(dev, "Invalid reset type %d\n", reset); 3264 3265 /* If a reset cycle isn't already in progress, we set a bit in 3266 * pf->state so that the service task can start a reset/rebuild. 3267 */ 3268 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3269 if (reset == ICE_RESET_CORER) 3270 set_bit(ICE_CORER_RECV, pf->state); 3271 else if (reset == ICE_RESET_GLOBR) 3272 set_bit(ICE_GLOBR_RECV, pf->state); 3273 else 3274 set_bit(ICE_EMPR_RECV, pf->state); 3275 3276 /* There are couple of different bits at play here. 3277 * hw->reset_ongoing indicates whether the hardware is 3278 * in reset. This is set to true when a reset interrupt 3279 * is received and set back to false after the driver 3280 * has determined that the hardware is out of reset. 3281 * 3282 * ICE_RESET_OICR_RECV in pf->state indicates 3283 * that a post reset rebuild is required before the 3284 * driver is operational again. This is set above. 3285 * 3286 * As this is the start of the reset/rebuild cycle, set 3287 * both to indicate that. 3288 */ 3289 hw->reset_ongoing = true; 3290 } 3291 } 3292 3293 if (oicr & PFINT_OICR_TSYN_TX_M) { 3294 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3295 if (ice_pf_state_is_nominal(pf) && 3296 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3297 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3298 unsigned long flags; 3299 u8 idx; 3300 3301 spin_lock_irqsave(&tx->lock, flags); 3302 idx = find_next_bit_wrap(tx->in_use, tx->len, 3303 tx->last_ll_ts_idx_read + 1); 3304 if (idx != tx->len) 3305 ice_ptp_req_tx_single_tstamp(tx, idx); 3306 spin_unlock_irqrestore(&tx->lock, flags); 3307 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3308 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3309 ret = IRQ_WAKE_THREAD; 3310 } 3311 } 3312 3313 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3314 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3315 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3316 3317 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3318 3319 if (ice_pf_src_tmr_owned(pf)) { 3320 /* Save EVENTs from GLTSYN register */ 3321 pf->ptp.ext_ts_irq |= gltsyn_stat & 3322 (GLTSYN_STAT_EVENT0_M | 3323 GLTSYN_STAT_EVENT1_M | 3324 GLTSYN_STAT_EVENT2_M); 3325 3326 ice_ptp_extts_event(pf); 3327 } 3328 } 3329 3330 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3331 if (oicr & ICE_AUX_CRIT_ERR) { 3332 pf->oicr_err_reg |= oicr; 3333 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3334 ena_mask &= ~ICE_AUX_CRIT_ERR; 3335 } 3336 3337 /* Report any remaining unexpected interrupts */ 3338 oicr &= ena_mask; 3339 if (oicr) { 3340 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3341 /* If a critical error is pending there is no choice but to 3342 * reset the device. 3343 */ 3344 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3345 PFINT_OICR_ECC_ERR_M)) { 3346 set_bit(ICE_PFR_REQ, pf->state); 3347 } 3348 } 3349 ice_service_task_schedule(pf); 3350 if (ret == IRQ_HANDLED) 3351 ice_irq_dynamic_ena(hw, NULL, NULL); 3352 3353 return ret; 3354 } 3355 3356 /** 3357 * ice_misc_intr_thread_fn - misc interrupt thread function 3358 * @irq: interrupt number 3359 * @data: pointer to a q_vector 3360 */ 3361 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3362 { 3363 struct ice_pf *pf = data; 3364 struct ice_hw *hw; 3365 3366 hw = &pf->hw; 3367 3368 if (ice_is_reset_in_progress(pf->state)) 3369 goto skip_irq; 3370 3371 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3372 /* Process outstanding Tx timestamps. If there is more work, 3373 * re-arm the interrupt to trigger again. 3374 */ 3375 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3376 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3377 ice_flush(hw); 3378 } 3379 } 3380 3381 skip_irq: 3382 ice_irq_dynamic_ena(hw, NULL, NULL); 3383 3384 return IRQ_HANDLED; 3385 } 3386 3387 /** 3388 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3389 * @hw: pointer to HW structure 3390 */ 3391 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3392 { 3393 /* disable Admin queue Interrupt causes */ 3394 wr32(hw, PFINT_FW_CTL, 3395 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3396 3397 /* disable Mailbox queue Interrupt causes */ 3398 wr32(hw, PFINT_MBX_CTL, 3399 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3400 3401 wr32(hw, PFINT_SB_CTL, 3402 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3403 3404 /* disable Control queue Interrupt causes */ 3405 wr32(hw, PFINT_OICR_CTL, 3406 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3407 3408 ice_flush(hw); 3409 } 3410 3411 /** 3412 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3413 * @pf: board private structure 3414 */ 3415 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3416 { 3417 int irq_num = pf->ll_ts_irq.virq; 3418 3419 synchronize_irq(irq_num); 3420 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3421 3422 ice_free_irq(pf, pf->ll_ts_irq); 3423 } 3424 3425 /** 3426 * ice_free_irq_msix_misc - Unroll misc vector setup 3427 * @pf: board private structure 3428 */ 3429 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3430 { 3431 int misc_irq_num = pf->oicr_irq.virq; 3432 struct ice_hw *hw = &pf->hw; 3433 3434 ice_dis_ctrlq_interrupts(hw); 3435 3436 /* disable OICR interrupt */ 3437 wr32(hw, PFINT_OICR_ENA, 0); 3438 ice_flush(hw); 3439 3440 synchronize_irq(misc_irq_num); 3441 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3442 3443 ice_free_irq(pf, pf->oicr_irq); 3444 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3445 ice_free_irq_msix_ll_ts(pf); 3446 } 3447 3448 /** 3449 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3450 * @hw: pointer to HW structure 3451 * @reg_idx: HW vector index to associate the control queue interrupts with 3452 */ 3453 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3454 { 3455 u32 val; 3456 3457 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3458 PFINT_OICR_CTL_CAUSE_ENA_M); 3459 wr32(hw, PFINT_OICR_CTL, val); 3460 3461 /* enable Admin queue Interrupt causes */ 3462 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3463 PFINT_FW_CTL_CAUSE_ENA_M); 3464 wr32(hw, PFINT_FW_CTL, val); 3465 3466 /* enable Mailbox queue Interrupt causes */ 3467 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3468 PFINT_MBX_CTL_CAUSE_ENA_M); 3469 wr32(hw, PFINT_MBX_CTL, val); 3470 3471 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3472 /* enable Sideband queue Interrupt causes */ 3473 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3474 PFINT_SB_CTL_CAUSE_ENA_M); 3475 wr32(hw, PFINT_SB_CTL, val); 3476 } 3477 3478 ice_flush(hw); 3479 } 3480 3481 /** 3482 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3483 * @pf: board private structure 3484 * 3485 * This sets up the handler for MSIX 0, which is used to manage the 3486 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3487 * when in MSI or Legacy interrupt mode. 3488 */ 3489 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3490 { 3491 struct device *dev = ice_pf_to_dev(pf); 3492 struct ice_hw *hw = &pf->hw; 3493 u32 pf_intr_start_offset; 3494 struct msi_map irq; 3495 int err = 0; 3496 3497 if (!pf->int_name[0]) 3498 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3499 dev_driver_string(dev), dev_name(dev)); 3500 3501 if (!pf->int_name_ll_ts[0]) 3502 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3503 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3504 /* Do not request IRQ but do enable OICR interrupt since settings are 3505 * lost during reset. Note that this function is called only during 3506 * rebuild path and not while reset is in progress. 3507 */ 3508 if (ice_is_reset_in_progress(pf->state)) 3509 goto skip_req_irq; 3510 3511 /* reserve one vector in irq_tracker for misc interrupts */ 3512 irq = ice_alloc_irq(pf, false); 3513 if (irq.index < 0) 3514 return irq.index; 3515 3516 pf->oicr_irq = irq; 3517 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3518 ice_misc_intr_thread_fn, 0, 3519 pf->int_name, pf); 3520 if (err) { 3521 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3522 pf->int_name, err); 3523 ice_free_irq(pf, pf->oicr_irq); 3524 return err; 3525 } 3526 3527 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3528 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3529 goto skip_req_irq; 3530 3531 irq = ice_alloc_irq(pf, false); 3532 if (irq.index < 0) 3533 return irq.index; 3534 3535 pf->ll_ts_irq = irq; 3536 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3537 pf->int_name_ll_ts, pf); 3538 if (err) { 3539 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3540 pf->int_name_ll_ts, err); 3541 ice_free_irq(pf, pf->ll_ts_irq); 3542 return err; 3543 } 3544 3545 skip_req_irq: 3546 ice_ena_misc_vector(pf); 3547 3548 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3549 /* This enables LL TS interrupt */ 3550 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3551 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3552 wr32(hw, PFINT_SB_CTL, 3553 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3554 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3555 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3556 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3557 3558 ice_flush(hw); 3559 ice_irq_dynamic_ena(hw, NULL, NULL); 3560 3561 return 0; 3562 } 3563 3564 /** 3565 * ice_set_ops - set netdev and ethtools ops for the given netdev 3566 * @vsi: the VSI associated with the new netdev 3567 */ 3568 static void ice_set_ops(struct ice_vsi *vsi) 3569 { 3570 struct net_device *netdev = vsi->netdev; 3571 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3572 3573 if (ice_is_safe_mode(pf)) { 3574 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3575 ice_set_ethtool_safe_mode_ops(netdev); 3576 return; 3577 } 3578 3579 netdev->netdev_ops = &ice_netdev_ops; 3580 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3581 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3582 ice_set_ethtool_ops(netdev); 3583 3584 if (vsi->type != ICE_VSI_PF) 3585 return; 3586 3587 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3588 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3589 NETDEV_XDP_ACT_RX_SG; 3590 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3591 } 3592 3593 /** 3594 * ice_set_netdev_features - set features for the given netdev 3595 * @netdev: netdev instance 3596 */ 3597 void ice_set_netdev_features(struct net_device *netdev) 3598 { 3599 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3600 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3601 netdev_features_t csumo_features; 3602 netdev_features_t vlano_features; 3603 netdev_features_t dflt_features; 3604 netdev_features_t tso_features; 3605 3606 if (ice_is_safe_mode(pf)) { 3607 /* safe mode */ 3608 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3609 netdev->hw_features = netdev->features; 3610 return; 3611 } 3612 3613 dflt_features = NETIF_F_SG | 3614 NETIF_F_HIGHDMA | 3615 NETIF_F_NTUPLE | 3616 NETIF_F_RXHASH; 3617 3618 csumo_features = NETIF_F_RXCSUM | 3619 NETIF_F_IP_CSUM | 3620 NETIF_F_SCTP_CRC | 3621 NETIF_F_IPV6_CSUM; 3622 3623 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3624 NETIF_F_HW_VLAN_CTAG_TX | 3625 NETIF_F_HW_VLAN_CTAG_RX; 3626 3627 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3628 if (is_dvm_ena) 3629 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3630 3631 tso_features = NETIF_F_TSO | 3632 NETIF_F_TSO_ECN | 3633 NETIF_F_TSO6 | 3634 NETIF_F_GSO_GRE | 3635 NETIF_F_GSO_UDP_TUNNEL | 3636 NETIF_F_GSO_GRE_CSUM | 3637 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3638 NETIF_F_GSO_PARTIAL | 3639 NETIF_F_GSO_IPXIP4 | 3640 NETIF_F_GSO_IPXIP6 | 3641 NETIF_F_GSO_UDP_L4; 3642 3643 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3644 NETIF_F_GSO_GRE_CSUM; 3645 /* set features that user can change */ 3646 netdev->hw_features = dflt_features | csumo_features | 3647 vlano_features | tso_features; 3648 3649 /* add support for HW_CSUM on packets with MPLS header */ 3650 netdev->mpls_features = NETIF_F_HW_CSUM | 3651 NETIF_F_TSO | 3652 NETIF_F_TSO6; 3653 3654 /* enable features */ 3655 netdev->features |= netdev->hw_features; 3656 3657 netdev->hw_features |= NETIF_F_HW_TC; 3658 netdev->hw_features |= NETIF_F_LOOPBACK; 3659 3660 /* encap and VLAN devices inherit default, csumo and tso features */ 3661 netdev->hw_enc_features |= dflt_features | csumo_features | 3662 tso_features; 3663 netdev->vlan_features |= dflt_features | csumo_features | 3664 tso_features; 3665 3666 /* advertise support but don't enable by default since only one type of 3667 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3668 * type turns on the other has to be turned off. This is enforced by the 3669 * ice_fix_features() ndo callback. 3670 */ 3671 if (is_dvm_ena) 3672 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3673 NETIF_F_HW_VLAN_STAG_TX; 3674 3675 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3676 * be changed at runtime 3677 */ 3678 netdev->hw_features |= NETIF_F_RXFCS; 3679 3680 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3681 } 3682 3683 /** 3684 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3685 * @lut: Lookup table 3686 * @rss_table_size: Lookup table size 3687 * @rss_size: Range of queue number for hashing 3688 */ 3689 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3690 { 3691 u16 i; 3692 3693 for (i = 0; i < rss_table_size; i++) 3694 lut[i] = i % rss_size; 3695 } 3696 3697 /** 3698 * ice_pf_vsi_setup - Set up a PF VSI 3699 * @pf: board private structure 3700 * @pi: pointer to the port_info instance 3701 * 3702 * Returns pointer to the successfully allocated VSI software struct 3703 * on success, otherwise returns NULL on failure. 3704 */ 3705 static struct ice_vsi * 3706 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3707 { 3708 struct ice_vsi_cfg_params params = {}; 3709 3710 params.type = ICE_VSI_PF; 3711 params.port_info = pi; 3712 params.flags = ICE_VSI_FLAG_INIT; 3713 3714 return ice_vsi_setup(pf, ¶ms); 3715 } 3716 3717 static struct ice_vsi * 3718 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3719 struct ice_channel *ch) 3720 { 3721 struct ice_vsi_cfg_params params = {}; 3722 3723 params.type = ICE_VSI_CHNL; 3724 params.port_info = pi; 3725 params.ch = ch; 3726 params.flags = ICE_VSI_FLAG_INIT; 3727 3728 return ice_vsi_setup(pf, ¶ms); 3729 } 3730 3731 /** 3732 * ice_ctrl_vsi_setup - Set up a control VSI 3733 * @pf: board private structure 3734 * @pi: pointer to the port_info instance 3735 * 3736 * Returns pointer to the successfully allocated VSI software struct 3737 * on success, otherwise returns NULL on failure. 3738 */ 3739 static struct ice_vsi * 3740 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3741 { 3742 struct ice_vsi_cfg_params params = {}; 3743 3744 params.type = ICE_VSI_CTRL; 3745 params.port_info = pi; 3746 params.flags = ICE_VSI_FLAG_INIT; 3747 3748 return ice_vsi_setup(pf, ¶ms); 3749 } 3750 3751 /** 3752 * ice_lb_vsi_setup - Set up a loopback VSI 3753 * @pf: board private structure 3754 * @pi: pointer to the port_info instance 3755 * 3756 * Returns pointer to the successfully allocated VSI software struct 3757 * on success, otherwise returns NULL on failure. 3758 */ 3759 struct ice_vsi * 3760 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3761 { 3762 struct ice_vsi_cfg_params params = {}; 3763 3764 params.type = ICE_VSI_LB; 3765 params.port_info = pi; 3766 params.flags = ICE_VSI_FLAG_INIT; 3767 3768 return ice_vsi_setup(pf, ¶ms); 3769 } 3770 3771 /** 3772 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3773 * @netdev: network interface to be adjusted 3774 * @proto: VLAN TPID 3775 * @vid: VLAN ID to be added 3776 * 3777 * net_device_ops implementation for adding VLAN IDs 3778 */ 3779 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3780 { 3781 struct ice_netdev_priv *np = netdev_priv(netdev); 3782 struct ice_vsi_vlan_ops *vlan_ops; 3783 struct ice_vsi *vsi = np->vsi; 3784 struct ice_vlan vlan; 3785 int ret; 3786 3787 /* VLAN 0 is added by default during load/reset */ 3788 if (!vid) 3789 return 0; 3790 3791 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3792 usleep_range(1000, 2000); 3793 3794 /* Add multicast promisc rule for the VLAN ID to be added if 3795 * all-multicast is currently enabled. 3796 */ 3797 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3798 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3799 ICE_MCAST_VLAN_PROMISC_BITS, 3800 vid); 3801 if (ret) 3802 goto finish; 3803 } 3804 3805 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3806 3807 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3808 * packets aren't pruned by the device's internal switch on Rx 3809 */ 3810 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3811 ret = vlan_ops->add_vlan(vsi, &vlan); 3812 if (ret) 3813 goto finish; 3814 3815 /* If all-multicast is currently enabled and this VLAN ID is only one 3816 * besides VLAN-0 we have to update look-up type of multicast promisc 3817 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3818 */ 3819 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3820 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3821 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3822 ICE_MCAST_PROMISC_BITS, 0); 3823 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3824 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3825 } 3826 3827 finish: 3828 clear_bit(ICE_CFG_BUSY, vsi->state); 3829 3830 return ret; 3831 } 3832 3833 /** 3834 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3835 * @netdev: network interface to be adjusted 3836 * @proto: VLAN TPID 3837 * @vid: VLAN ID to be removed 3838 * 3839 * net_device_ops implementation for removing VLAN IDs 3840 */ 3841 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3842 { 3843 struct ice_netdev_priv *np = netdev_priv(netdev); 3844 struct ice_vsi_vlan_ops *vlan_ops; 3845 struct ice_vsi *vsi = np->vsi; 3846 struct ice_vlan vlan; 3847 int ret; 3848 3849 /* don't allow removal of VLAN 0 */ 3850 if (!vid) 3851 return 0; 3852 3853 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3854 usleep_range(1000, 2000); 3855 3856 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3857 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3858 if (ret) { 3859 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3860 vsi->vsi_num); 3861 vsi->current_netdev_flags |= IFF_ALLMULTI; 3862 } 3863 3864 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3865 3866 /* Make sure VLAN delete is successful before updating VLAN 3867 * information 3868 */ 3869 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3870 ret = vlan_ops->del_vlan(vsi, &vlan); 3871 if (ret) 3872 goto finish; 3873 3874 /* Remove multicast promisc rule for the removed VLAN ID if 3875 * all-multicast is enabled. 3876 */ 3877 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3878 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3879 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3880 3881 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3882 /* Update look-up type of multicast promisc rule for VLAN 0 3883 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3884 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3885 */ 3886 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3887 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3888 ICE_MCAST_VLAN_PROMISC_BITS, 3889 0); 3890 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3891 ICE_MCAST_PROMISC_BITS, 0); 3892 } 3893 } 3894 3895 finish: 3896 clear_bit(ICE_CFG_BUSY, vsi->state); 3897 3898 return ret; 3899 } 3900 3901 /** 3902 * ice_rep_indr_tc_block_unbind 3903 * @cb_priv: indirection block private data 3904 */ 3905 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3906 { 3907 struct ice_indr_block_priv *indr_priv = cb_priv; 3908 3909 list_del(&indr_priv->list); 3910 kfree(indr_priv); 3911 } 3912 3913 /** 3914 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3915 * @vsi: VSI struct which has the netdev 3916 */ 3917 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3918 { 3919 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3920 3921 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3922 ice_rep_indr_tc_block_unbind); 3923 } 3924 3925 /** 3926 * ice_tc_indir_block_register - Register TC indirect block notifications 3927 * @vsi: VSI struct which has the netdev 3928 * 3929 * Returns 0 on success, negative value on failure 3930 */ 3931 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3932 { 3933 struct ice_netdev_priv *np; 3934 3935 if (!vsi || !vsi->netdev) 3936 return -EINVAL; 3937 3938 np = netdev_priv(vsi->netdev); 3939 3940 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3941 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3942 } 3943 3944 /** 3945 * ice_get_avail_q_count - Get count of queues in use 3946 * @pf_qmap: bitmap to get queue use count from 3947 * @lock: pointer to a mutex that protects access to pf_qmap 3948 * @size: size of the bitmap 3949 */ 3950 static u16 3951 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3952 { 3953 unsigned long bit; 3954 u16 count = 0; 3955 3956 mutex_lock(lock); 3957 for_each_clear_bit(bit, pf_qmap, size) 3958 count++; 3959 mutex_unlock(lock); 3960 3961 return count; 3962 } 3963 3964 /** 3965 * ice_get_avail_txq_count - Get count of Tx queues in use 3966 * @pf: pointer to an ice_pf instance 3967 */ 3968 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3969 { 3970 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3971 pf->max_pf_txqs); 3972 } 3973 3974 /** 3975 * ice_get_avail_rxq_count - Get count of Rx queues in use 3976 * @pf: pointer to an ice_pf instance 3977 */ 3978 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3979 { 3980 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3981 pf->max_pf_rxqs); 3982 } 3983 3984 /** 3985 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3986 * @pf: board private structure to initialize 3987 */ 3988 static void ice_deinit_pf(struct ice_pf *pf) 3989 { 3990 ice_service_task_stop(pf); 3991 mutex_destroy(&pf->lag_mutex); 3992 mutex_destroy(&pf->adev_mutex); 3993 mutex_destroy(&pf->sw_mutex); 3994 mutex_destroy(&pf->tc_mutex); 3995 mutex_destroy(&pf->avail_q_mutex); 3996 mutex_destroy(&pf->vfs.table_lock); 3997 3998 if (pf->avail_txqs) { 3999 bitmap_free(pf->avail_txqs); 4000 pf->avail_txqs = NULL; 4001 } 4002 4003 if (pf->avail_rxqs) { 4004 bitmap_free(pf->avail_rxqs); 4005 pf->avail_rxqs = NULL; 4006 } 4007 4008 if (pf->ptp.clock) 4009 ptp_clock_unregister(pf->ptp.clock); 4010 4011 xa_destroy(&pf->dyn_ports); 4012 xa_destroy(&pf->sf_nums); 4013 } 4014 4015 /** 4016 * ice_set_pf_caps - set PFs capability flags 4017 * @pf: pointer to the PF instance 4018 */ 4019 static void ice_set_pf_caps(struct ice_pf *pf) 4020 { 4021 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4022 4023 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4024 if (func_caps->common_cap.rdma) 4025 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4026 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4027 if (func_caps->common_cap.dcb) 4028 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4029 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4030 if (func_caps->common_cap.sr_iov_1_1) { 4031 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4032 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4033 ICE_MAX_SRIOV_VFS); 4034 } 4035 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4036 if (func_caps->common_cap.rss_table_size) 4037 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4038 4039 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4040 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4041 u16 unused; 4042 4043 /* ctrl_vsi_idx will be set to a valid value when flow director 4044 * is setup by ice_init_fdir 4045 */ 4046 pf->ctrl_vsi_idx = ICE_NO_VSI; 4047 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4048 /* force guaranteed filter pool for PF */ 4049 ice_alloc_fd_guar_item(&pf->hw, &unused, 4050 func_caps->fd_fltr_guar); 4051 /* force shared filter pool for PF */ 4052 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4053 func_caps->fd_fltr_best_effort); 4054 } 4055 4056 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4057 if (func_caps->common_cap.ieee_1588 && 4058 !(pf->hw.mac_type == ICE_MAC_E830)) 4059 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4060 4061 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4062 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4063 } 4064 4065 /** 4066 * ice_init_pf - Initialize general software structures (struct ice_pf) 4067 * @pf: board private structure to initialize 4068 */ 4069 static int ice_init_pf(struct ice_pf *pf) 4070 { 4071 ice_set_pf_caps(pf); 4072 4073 mutex_init(&pf->sw_mutex); 4074 mutex_init(&pf->tc_mutex); 4075 mutex_init(&pf->adev_mutex); 4076 mutex_init(&pf->lag_mutex); 4077 4078 INIT_HLIST_HEAD(&pf->aq_wait_list); 4079 spin_lock_init(&pf->aq_wait_lock); 4080 init_waitqueue_head(&pf->aq_wait_queue); 4081 4082 init_waitqueue_head(&pf->reset_wait_queue); 4083 4084 /* setup service timer and periodic service task */ 4085 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4086 pf->serv_tmr_period = HZ; 4087 INIT_WORK(&pf->serv_task, ice_service_task); 4088 clear_bit(ICE_SERVICE_SCHED, pf->state); 4089 4090 mutex_init(&pf->avail_q_mutex); 4091 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4092 if (!pf->avail_txqs) 4093 return -ENOMEM; 4094 4095 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4096 if (!pf->avail_rxqs) { 4097 bitmap_free(pf->avail_txqs); 4098 pf->avail_txqs = NULL; 4099 return -ENOMEM; 4100 } 4101 4102 mutex_init(&pf->vfs.table_lock); 4103 hash_init(pf->vfs.table); 4104 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4105 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4106 ICE_MBX_OVERFLOW_WATERMARK); 4107 else 4108 ice_mbx_init_snapshot(&pf->hw); 4109 4110 xa_init(&pf->dyn_ports); 4111 xa_init(&pf->sf_nums); 4112 4113 return 0; 4114 } 4115 4116 /** 4117 * ice_is_wol_supported - check if WoL is supported 4118 * @hw: pointer to hardware info 4119 * 4120 * Check if WoL is supported based on the HW configuration. 4121 * Returns true if NVM supports and enables WoL for this port, false otherwise 4122 */ 4123 bool ice_is_wol_supported(struct ice_hw *hw) 4124 { 4125 u16 wol_ctrl; 4126 4127 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4128 * word) indicates WoL is not supported on the corresponding PF ID. 4129 */ 4130 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4131 return false; 4132 4133 return !(BIT(hw->port_info->lport) & wol_ctrl); 4134 } 4135 4136 /** 4137 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4138 * @vsi: VSI being changed 4139 * @new_rx: new number of Rx queues 4140 * @new_tx: new number of Tx queues 4141 * @locked: is adev device_lock held 4142 * 4143 * Only change the number of queues if new_tx, or new_rx is non-0. 4144 * 4145 * Returns 0 on success. 4146 */ 4147 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4148 { 4149 struct ice_pf *pf = vsi->back; 4150 int i, err = 0, timeout = 50; 4151 4152 if (!new_rx && !new_tx) 4153 return -EINVAL; 4154 4155 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4156 timeout--; 4157 if (!timeout) 4158 return -EBUSY; 4159 usleep_range(1000, 2000); 4160 } 4161 4162 if (new_tx) 4163 vsi->req_txq = (u16)new_tx; 4164 if (new_rx) 4165 vsi->req_rxq = (u16)new_rx; 4166 4167 /* set for the next time the netdev is started */ 4168 if (!netif_running(vsi->netdev)) { 4169 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4170 if (err) 4171 goto rebuild_err; 4172 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4173 goto done; 4174 } 4175 4176 ice_vsi_close(vsi); 4177 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4178 if (err) 4179 goto rebuild_err; 4180 4181 ice_for_each_traffic_class(i) { 4182 if (vsi->tc_cfg.ena_tc & BIT(i)) 4183 netdev_set_tc_queue(vsi->netdev, 4184 vsi->tc_cfg.tc_info[i].netdev_tc, 4185 vsi->tc_cfg.tc_info[i].qcount_tx, 4186 vsi->tc_cfg.tc_info[i].qoffset); 4187 } 4188 ice_pf_dcb_recfg(pf, locked); 4189 ice_vsi_open(vsi); 4190 goto done; 4191 4192 rebuild_err: 4193 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4194 err); 4195 done: 4196 clear_bit(ICE_CFG_BUSY, pf->state); 4197 return err; 4198 } 4199 4200 /** 4201 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4202 * @pf: PF to configure 4203 * 4204 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4205 * VSI can still Tx/Rx VLAN tagged packets. 4206 */ 4207 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4208 { 4209 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4210 struct ice_vsi_ctx *ctxt; 4211 struct ice_hw *hw; 4212 int status; 4213 4214 if (!vsi) 4215 return; 4216 4217 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4218 if (!ctxt) 4219 return; 4220 4221 hw = &pf->hw; 4222 ctxt->info = vsi->info; 4223 4224 ctxt->info.valid_sections = 4225 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4226 ICE_AQ_VSI_PROP_SECURITY_VALID | 4227 ICE_AQ_VSI_PROP_SW_VALID); 4228 4229 /* disable VLAN anti-spoof */ 4230 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4231 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4232 4233 /* disable VLAN pruning and keep all other settings */ 4234 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4235 4236 /* allow all VLANs on Tx and don't strip on Rx */ 4237 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4238 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4239 4240 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4241 if (status) { 4242 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4243 status, ice_aq_str(hw->adminq.sq_last_status)); 4244 } else { 4245 vsi->info.sec_flags = ctxt->info.sec_flags; 4246 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4247 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4248 } 4249 4250 kfree(ctxt); 4251 } 4252 4253 /** 4254 * ice_log_pkg_init - log result of DDP package load 4255 * @hw: pointer to hardware info 4256 * @state: state of package load 4257 */ 4258 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4259 { 4260 struct ice_pf *pf = hw->back; 4261 struct device *dev; 4262 4263 dev = ice_pf_to_dev(pf); 4264 4265 switch (state) { 4266 case ICE_DDP_PKG_SUCCESS: 4267 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4268 hw->active_pkg_name, 4269 hw->active_pkg_ver.major, 4270 hw->active_pkg_ver.minor, 4271 hw->active_pkg_ver.update, 4272 hw->active_pkg_ver.draft); 4273 break; 4274 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4275 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4276 hw->active_pkg_name, 4277 hw->active_pkg_ver.major, 4278 hw->active_pkg_ver.minor, 4279 hw->active_pkg_ver.update, 4280 hw->active_pkg_ver.draft); 4281 break; 4282 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4283 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4284 hw->active_pkg_name, 4285 hw->active_pkg_ver.major, 4286 hw->active_pkg_ver.minor, 4287 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4288 break; 4289 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4290 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4291 hw->active_pkg_name, 4292 hw->active_pkg_ver.major, 4293 hw->active_pkg_ver.minor, 4294 hw->active_pkg_ver.update, 4295 hw->active_pkg_ver.draft, 4296 hw->pkg_name, 4297 hw->pkg_ver.major, 4298 hw->pkg_ver.minor, 4299 hw->pkg_ver.update, 4300 hw->pkg_ver.draft); 4301 break; 4302 case ICE_DDP_PKG_FW_MISMATCH: 4303 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4304 break; 4305 case ICE_DDP_PKG_INVALID_FILE: 4306 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4307 break; 4308 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4309 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4310 break; 4311 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4312 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4313 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4314 break; 4315 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4316 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4317 break; 4318 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4319 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4320 break; 4321 case ICE_DDP_PKG_LOAD_ERROR: 4322 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4323 /* poll for reset to complete */ 4324 if (ice_check_reset(hw)) 4325 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4326 break; 4327 case ICE_DDP_PKG_ERR: 4328 default: 4329 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4330 break; 4331 } 4332 } 4333 4334 /** 4335 * ice_load_pkg - load/reload the DDP Package file 4336 * @firmware: firmware structure when firmware requested or NULL for reload 4337 * @pf: pointer to the PF instance 4338 * 4339 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4340 * initialize HW tables. 4341 */ 4342 static void 4343 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4344 { 4345 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4346 struct device *dev = ice_pf_to_dev(pf); 4347 struct ice_hw *hw = &pf->hw; 4348 4349 /* Load DDP Package */ 4350 if (firmware && !hw->pkg_copy) { 4351 state = ice_copy_and_init_pkg(hw, firmware->data, 4352 firmware->size); 4353 ice_log_pkg_init(hw, state); 4354 } else if (!firmware && hw->pkg_copy) { 4355 /* Reload package during rebuild after CORER/GLOBR reset */ 4356 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4357 ice_log_pkg_init(hw, state); 4358 } else { 4359 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4360 } 4361 4362 if (!ice_is_init_pkg_successful(state)) { 4363 /* Safe Mode */ 4364 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4365 return; 4366 } 4367 4368 /* Successful download package is the precondition for advanced 4369 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4370 */ 4371 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4372 } 4373 4374 /** 4375 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4376 * @pf: pointer to the PF structure 4377 * 4378 * There is no error returned here because the driver should be able to handle 4379 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4380 * specifically with Tx. 4381 */ 4382 static void ice_verify_cacheline_size(struct ice_pf *pf) 4383 { 4384 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4385 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4386 ICE_CACHE_LINE_BYTES); 4387 } 4388 4389 /** 4390 * ice_send_version - update firmware with driver version 4391 * @pf: PF struct 4392 * 4393 * Returns 0 on success, else error code 4394 */ 4395 static int ice_send_version(struct ice_pf *pf) 4396 { 4397 struct ice_driver_ver dv; 4398 4399 dv.major_ver = 0xff; 4400 dv.minor_ver = 0xff; 4401 dv.build_ver = 0xff; 4402 dv.subbuild_ver = 0; 4403 strscpy((char *)dv.driver_string, UTS_RELEASE, 4404 sizeof(dv.driver_string)); 4405 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4406 } 4407 4408 /** 4409 * ice_init_fdir - Initialize flow director VSI and configuration 4410 * @pf: pointer to the PF instance 4411 * 4412 * returns 0 on success, negative on error 4413 */ 4414 static int ice_init_fdir(struct ice_pf *pf) 4415 { 4416 struct device *dev = ice_pf_to_dev(pf); 4417 struct ice_vsi *ctrl_vsi; 4418 int err; 4419 4420 /* Side Band Flow Director needs to have a control VSI. 4421 * Allocate it and store it in the PF. 4422 */ 4423 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4424 if (!ctrl_vsi) { 4425 dev_dbg(dev, "could not create control VSI\n"); 4426 return -ENOMEM; 4427 } 4428 4429 err = ice_vsi_open_ctrl(ctrl_vsi); 4430 if (err) { 4431 dev_dbg(dev, "could not open control VSI\n"); 4432 goto err_vsi_open; 4433 } 4434 4435 mutex_init(&pf->hw.fdir_fltr_lock); 4436 4437 err = ice_fdir_create_dflt_rules(pf); 4438 if (err) 4439 goto err_fdir_rule; 4440 4441 return 0; 4442 4443 err_fdir_rule: 4444 ice_fdir_release_flows(&pf->hw); 4445 ice_vsi_close(ctrl_vsi); 4446 err_vsi_open: 4447 ice_vsi_release(ctrl_vsi); 4448 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4449 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4450 pf->ctrl_vsi_idx = ICE_NO_VSI; 4451 } 4452 return err; 4453 } 4454 4455 static void ice_deinit_fdir(struct ice_pf *pf) 4456 { 4457 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4458 4459 if (!vsi) 4460 return; 4461 4462 ice_vsi_manage_fdir(vsi, false); 4463 ice_vsi_release(vsi); 4464 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4465 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4466 pf->ctrl_vsi_idx = ICE_NO_VSI; 4467 } 4468 4469 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4470 } 4471 4472 /** 4473 * ice_get_opt_fw_name - return optional firmware file name or NULL 4474 * @pf: pointer to the PF instance 4475 */ 4476 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4477 { 4478 /* Optional firmware name same as default with additional dash 4479 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4480 */ 4481 struct pci_dev *pdev = pf->pdev; 4482 char *opt_fw_filename; 4483 u64 dsn; 4484 4485 /* Determine the name of the optional file using the DSN (two 4486 * dwords following the start of the DSN Capability). 4487 */ 4488 dsn = pci_get_dsn(pdev); 4489 if (!dsn) 4490 return NULL; 4491 4492 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4493 if (!opt_fw_filename) 4494 return NULL; 4495 4496 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4497 ICE_DDP_PKG_PATH, dsn); 4498 4499 return opt_fw_filename; 4500 } 4501 4502 /** 4503 * ice_request_fw - Device initialization routine 4504 * @pf: pointer to the PF instance 4505 * @firmware: double pointer to firmware struct 4506 * 4507 * Return: zero when successful, negative values otherwise. 4508 */ 4509 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4510 { 4511 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4512 struct device *dev = ice_pf_to_dev(pf); 4513 int err = 0; 4514 4515 /* optional device-specific DDP (if present) overrides the default DDP 4516 * package file. kernel logs a debug message if the file doesn't exist, 4517 * and warning messages for other errors. 4518 */ 4519 if (opt_fw_filename) { 4520 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4521 kfree(opt_fw_filename); 4522 if (!err) 4523 return err; 4524 } 4525 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4526 if (err) 4527 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4528 4529 return err; 4530 } 4531 4532 /** 4533 * ice_init_tx_topology - performs Tx topology initialization 4534 * @hw: pointer to the hardware structure 4535 * @firmware: pointer to firmware structure 4536 * 4537 * Return: zero when init was successful, negative values otherwise. 4538 */ 4539 static int 4540 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4541 { 4542 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4543 struct ice_pf *pf = hw->back; 4544 struct device *dev; 4545 int err; 4546 4547 dev = ice_pf_to_dev(pf); 4548 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4549 if (!err) { 4550 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4551 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4552 else 4553 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4554 /* if there was a change in topology ice_cfg_tx_topo triggered 4555 * a CORER and we need to re-init hw 4556 */ 4557 ice_deinit_hw(hw); 4558 err = ice_init_hw(hw); 4559 4560 return err; 4561 } else if (err == -EIO) { 4562 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4563 } 4564 4565 return 0; 4566 } 4567 4568 /** 4569 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4570 * @hw: pointer to the hardware structure 4571 * @pf: pointer to pf structure 4572 * 4573 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4574 * formats the PF hardware supports. The exact list of supported RXDIDs 4575 * depends on the loaded DDP package. The IDs can be determined by reading the 4576 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4577 * 4578 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4579 * in the DDP package. The 16-byte legacy descriptor is never supported by 4580 * VFs. 4581 */ 4582 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4583 { 4584 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4585 4586 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4587 u32 regval; 4588 4589 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4590 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4591 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4592 pf->supported_rxdids |= BIT(i); 4593 } 4594 } 4595 4596 /** 4597 * ice_init_ddp_config - DDP related configuration 4598 * @hw: pointer to the hardware structure 4599 * @pf: pointer to pf structure 4600 * 4601 * This function loads DDP file from the disk, then initializes Tx 4602 * topology. At the end DDP package is loaded on the card. 4603 * 4604 * Return: zero when init was successful, negative values otherwise. 4605 */ 4606 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4607 { 4608 struct device *dev = ice_pf_to_dev(pf); 4609 const struct firmware *firmware = NULL; 4610 int err; 4611 4612 err = ice_request_fw(pf, &firmware); 4613 if (err) { 4614 dev_err(dev, "Fail during requesting FW: %d\n", err); 4615 return err; 4616 } 4617 4618 err = ice_init_tx_topology(hw, firmware); 4619 if (err) { 4620 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4621 err); 4622 release_firmware(firmware); 4623 return err; 4624 } 4625 4626 /* Download firmware to device */ 4627 ice_load_pkg(firmware, pf); 4628 release_firmware(firmware); 4629 4630 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4631 ice_init_supported_rxdids(hw, pf); 4632 4633 return 0; 4634 } 4635 4636 /** 4637 * ice_print_wake_reason - show the wake up cause in the log 4638 * @pf: pointer to the PF struct 4639 */ 4640 static void ice_print_wake_reason(struct ice_pf *pf) 4641 { 4642 u32 wus = pf->wakeup_reason; 4643 const char *wake_str; 4644 4645 /* if no wake event, nothing to print */ 4646 if (!wus) 4647 return; 4648 4649 if (wus & PFPM_WUS_LNKC_M) 4650 wake_str = "Link\n"; 4651 else if (wus & PFPM_WUS_MAG_M) 4652 wake_str = "Magic Packet\n"; 4653 else if (wus & PFPM_WUS_MNG_M) 4654 wake_str = "Management\n"; 4655 else if (wus & PFPM_WUS_FW_RST_WK_M) 4656 wake_str = "Firmware Reset\n"; 4657 else 4658 wake_str = "Unknown\n"; 4659 4660 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4661 } 4662 4663 /** 4664 * ice_pf_fwlog_update_module - update 1 module 4665 * @pf: pointer to the PF struct 4666 * @log_level: log_level to use for the @module 4667 * @module: module to update 4668 */ 4669 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4670 { 4671 struct ice_hw *hw = &pf->hw; 4672 4673 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4674 } 4675 4676 /** 4677 * ice_register_netdev - register netdev 4678 * @vsi: pointer to the VSI struct 4679 */ 4680 static int ice_register_netdev(struct ice_vsi *vsi) 4681 { 4682 int err; 4683 4684 if (!vsi || !vsi->netdev) 4685 return -EIO; 4686 4687 err = register_netdev(vsi->netdev); 4688 if (err) 4689 return err; 4690 4691 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4692 netif_carrier_off(vsi->netdev); 4693 netif_tx_stop_all_queues(vsi->netdev); 4694 4695 return 0; 4696 } 4697 4698 static void ice_unregister_netdev(struct ice_vsi *vsi) 4699 { 4700 if (!vsi || !vsi->netdev) 4701 return; 4702 4703 unregister_netdev(vsi->netdev); 4704 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4705 } 4706 4707 /** 4708 * ice_cfg_netdev - Allocate, configure and register a netdev 4709 * @vsi: the VSI associated with the new netdev 4710 * 4711 * Returns 0 on success, negative value on failure 4712 */ 4713 static int ice_cfg_netdev(struct ice_vsi *vsi) 4714 { 4715 struct ice_netdev_priv *np; 4716 struct net_device *netdev; 4717 u8 mac_addr[ETH_ALEN]; 4718 4719 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4720 vsi->alloc_rxq); 4721 if (!netdev) 4722 return -ENOMEM; 4723 4724 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4725 vsi->netdev = netdev; 4726 np = netdev_priv(netdev); 4727 np->vsi = vsi; 4728 4729 ice_set_netdev_features(netdev); 4730 ice_set_ops(vsi); 4731 4732 if (vsi->type == ICE_VSI_PF) { 4733 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4734 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4735 eth_hw_addr_set(netdev, mac_addr); 4736 } 4737 4738 netdev->priv_flags |= IFF_UNICAST_FLT; 4739 4740 /* Setup netdev TC information */ 4741 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4742 4743 netdev->max_mtu = ICE_MAX_MTU; 4744 4745 return 0; 4746 } 4747 4748 static void ice_decfg_netdev(struct ice_vsi *vsi) 4749 { 4750 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4751 free_netdev(vsi->netdev); 4752 vsi->netdev = NULL; 4753 } 4754 4755 int ice_init_dev(struct ice_pf *pf) 4756 { 4757 struct device *dev = ice_pf_to_dev(pf); 4758 struct ice_hw *hw = &pf->hw; 4759 int err; 4760 4761 ice_init_feature_support(pf); 4762 4763 err = ice_init_ddp_config(hw, pf); 4764 4765 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4766 * set in pf->state, which will cause ice_is_safe_mode to return 4767 * true 4768 */ 4769 if (err || ice_is_safe_mode(pf)) { 4770 /* we already got function/device capabilities but these don't 4771 * reflect what the driver needs to do in safe mode. Instead of 4772 * adding conditional logic everywhere to ignore these 4773 * device/function capabilities, override them. 4774 */ 4775 ice_set_safe_mode_caps(hw); 4776 } 4777 4778 err = ice_init_pf(pf); 4779 if (err) { 4780 dev_err(dev, "ice_init_pf failed: %d\n", err); 4781 return err; 4782 } 4783 4784 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4785 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4786 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4787 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4788 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4789 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4790 pf->hw.tnl.valid_count[TNL_VXLAN]; 4791 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4792 UDP_TUNNEL_TYPE_VXLAN; 4793 } 4794 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4795 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4796 pf->hw.tnl.valid_count[TNL_GENEVE]; 4797 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4798 UDP_TUNNEL_TYPE_GENEVE; 4799 } 4800 4801 err = ice_init_interrupt_scheme(pf); 4802 if (err) { 4803 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4804 err = -EIO; 4805 goto unroll_pf_init; 4806 } 4807 4808 /* In case of MSIX we are going to setup the misc vector right here 4809 * to handle admin queue events etc. In case of legacy and MSI 4810 * the misc functionality and queue processing is combined in 4811 * the same vector and that gets setup at open. 4812 */ 4813 err = ice_req_irq_msix_misc(pf); 4814 if (err) { 4815 dev_err(dev, "setup of misc vector failed: %d\n", err); 4816 goto unroll_irq_scheme_init; 4817 } 4818 4819 return 0; 4820 4821 unroll_irq_scheme_init: 4822 ice_clear_interrupt_scheme(pf); 4823 unroll_pf_init: 4824 ice_deinit_pf(pf); 4825 return err; 4826 } 4827 4828 void ice_deinit_dev(struct ice_pf *pf) 4829 { 4830 ice_free_irq_msix_misc(pf); 4831 ice_deinit_pf(pf); 4832 ice_deinit_hw(&pf->hw); 4833 4834 /* Service task is already stopped, so call reset directly. */ 4835 ice_reset(&pf->hw, ICE_RESET_PFR); 4836 pci_wait_for_pending_transaction(pf->pdev); 4837 ice_clear_interrupt_scheme(pf); 4838 } 4839 4840 static void ice_init_features(struct ice_pf *pf) 4841 { 4842 struct device *dev = ice_pf_to_dev(pf); 4843 4844 if (ice_is_safe_mode(pf)) 4845 return; 4846 4847 /* initialize DDP driven features */ 4848 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4849 ice_ptp_init(pf); 4850 4851 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4852 ice_gnss_init(pf); 4853 4854 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4855 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4856 ice_dpll_init(pf); 4857 4858 /* Note: Flow director init failure is non-fatal to load */ 4859 if (ice_init_fdir(pf)) 4860 dev_err(dev, "could not initialize flow director\n"); 4861 4862 /* Note: DCB init failure is non-fatal to load */ 4863 if (ice_init_pf_dcb(pf, false)) { 4864 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4865 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4866 } else { 4867 ice_cfg_lldp_mib_change(&pf->hw, true); 4868 } 4869 4870 if (ice_init_lag(pf)) 4871 dev_warn(dev, "Failed to init link aggregation support\n"); 4872 4873 ice_hwmon_init(pf); 4874 } 4875 4876 static void ice_deinit_features(struct ice_pf *pf) 4877 { 4878 if (ice_is_safe_mode(pf)) 4879 return; 4880 4881 ice_deinit_lag(pf); 4882 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4883 ice_cfg_lldp_mib_change(&pf->hw, false); 4884 ice_deinit_fdir(pf); 4885 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4886 ice_gnss_exit(pf); 4887 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4888 ice_ptp_release(pf); 4889 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4890 ice_dpll_deinit(pf); 4891 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4892 xa_destroy(&pf->eswitch.reprs); 4893 } 4894 4895 static void ice_init_wakeup(struct ice_pf *pf) 4896 { 4897 /* Save wakeup reason register for later use */ 4898 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4899 4900 /* check for a power management event */ 4901 ice_print_wake_reason(pf); 4902 4903 /* clear wake status, all bits */ 4904 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4905 4906 /* Disable WoL at init, wait for user to enable */ 4907 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4908 } 4909 4910 static int ice_init_link(struct ice_pf *pf) 4911 { 4912 struct device *dev = ice_pf_to_dev(pf); 4913 int err; 4914 4915 err = ice_init_link_events(pf->hw.port_info); 4916 if (err) { 4917 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4918 return err; 4919 } 4920 4921 /* not a fatal error if this fails */ 4922 err = ice_init_nvm_phy_type(pf->hw.port_info); 4923 if (err) 4924 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4925 4926 /* not a fatal error if this fails */ 4927 err = ice_update_link_info(pf->hw.port_info); 4928 if (err) 4929 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4930 4931 ice_init_link_dflt_override(pf->hw.port_info); 4932 4933 ice_check_link_cfg_err(pf, 4934 pf->hw.port_info->phy.link_info.link_cfg_err); 4935 4936 /* if media available, initialize PHY settings */ 4937 if (pf->hw.port_info->phy.link_info.link_info & 4938 ICE_AQ_MEDIA_AVAILABLE) { 4939 /* not a fatal error if this fails */ 4940 err = ice_init_phy_user_cfg(pf->hw.port_info); 4941 if (err) 4942 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4943 4944 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4945 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4946 4947 if (vsi) 4948 ice_configure_phy(vsi); 4949 } 4950 } else { 4951 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4952 } 4953 4954 return err; 4955 } 4956 4957 static int ice_init_pf_sw(struct ice_pf *pf) 4958 { 4959 bool dvm = ice_is_dvm_ena(&pf->hw); 4960 struct ice_vsi *vsi; 4961 int err; 4962 4963 /* create switch struct for the switch element created by FW on boot */ 4964 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4965 if (!pf->first_sw) 4966 return -ENOMEM; 4967 4968 if (pf->hw.evb_veb) 4969 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4970 else 4971 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4972 4973 pf->first_sw->pf = pf; 4974 4975 /* record the sw_id available for later use */ 4976 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4977 4978 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4979 if (err) 4980 goto err_aq_set_port_params; 4981 4982 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4983 if (!vsi) { 4984 err = -ENOMEM; 4985 goto err_pf_vsi_setup; 4986 } 4987 4988 return 0; 4989 4990 err_pf_vsi_setup: 4991 err_aq_set_port_params: 4992 kfree(pf->first_sw); 4993 return err; 4994 } 4995 4996 static void ice_deinit_pf_sw(struct ice_pf *pf) 4997 { 4998 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4999 5000 if (!vsi) 5001 return; 5002 5003 ice_vsi_release(vsi); 5004 kfree(pf->first_sw); 5005 } 5006 5007 static int ice_alloc_vsis(struct ice_pf *pf) 5008 { 5009 struct device *dev = ice_pf_to_dev(pf); 5010 5011 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 5012 if (!pf->num_alloc_vsi) 5013 return -EIO; 5014 5015 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5016 dev_warn(dev, 5017 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5018 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5019 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5020 } 5021 5022 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5023 GFP_KERNEL); 5024 if (!pf->vsi) 5025 return -ENOMEM; 5026 5027 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5028 sizeof(*pf->vsi_stats), GFP_KERNEL); 5029 if (!pf->vsi_stats) { 5030 devm_kfree(dev, pf->vsi); 5031 return -ENOMEM; 5032 } 5033 5034 return 0; 5035 } 5036 5037 static void ice_dealloc_vsis(struct ice_pf *pf) 5038 { 5039 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5040 pf->vsi_stats = NULL; 5041 5042 pf->num_alloc_vsi = 0; 5043 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5044 pf->vsi = NULL; 5045 } 5046 5047 static int ice_init_devlink(struct ice_pf *pf) 5048 { 5049 int err; 5050 5051 err = ice_devlink_register_params(pf); 5052 if (err) 5053 return err; 5054 5055 ice_devlink_init_regions(pf); 5056 ice_health_init(pf); 5057 ice_devlink_register(pf); 5058 5059 return 0; 5060 } 5061 5062 static void ice_deinit_devlink(struct ice_pf *pf) 5063 { 5064 ice_devlink_unregister(pf); 5065 ice_health_deinit(pf); 5066 ice_devlink_destroy_regions(pf); 5067 ice_devlink_unregister_params(pf); 5068 } 5069 5070 static int ice_init(struct ice_pf *pf) 5071 { 5072 int err; 5073 5074 err = ice_init_dev(pf); 5075 if (err) 5076 return err; 5077 5078 err = ice_alloc_vsis(pf); 5079 if (err) 5080 goto err_alloc_vsis; 5081 5082 err = ice_init_pf_sw(pf); 5083 if (err) 5084 goto err_init_pf_sw; 5085 5086 ice_init_wakeup(pf); 5087 5088 err = ice_init_link(pf); 5089 if (err) 5090 goto err_init_link; 5091 5092 err = ice_send_version(pf); 5093 if (err) 5094 goto err_init_link; 5095 5096 ice_verify_cacheline_size(pf); 5097 5098 if (ice_is_safe_mode(pf)) 5099 ice_set_safe_mode_vlan_cfg(pf); 5100 else 5101 /* print PCI link speed and width */ 5102 pcie_print_link_status(pf->pdev); 5103 5104 /* ready to go, so clear down state bit */ 5105 clear_bit(ICE_DOWN, pf->state); 5106 clear_bit(ICE_SERVICE_DIS, pf->state); 5107 5108 /* since everything is good, start the service timer */ 5109 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5110 5111 return 0; 5112 5113 err_init_link: 5114 ice_deinit_pf_sw(pf); 5115 err_init_pf_sw: 5116 ice_dealloc_vsis(pf); 5117 err_alloc_vsis: 5118 ice_deinit_dev(pf); 5119 return err; 5120 } 5121 5122 static void ice_deinit(struct ice_pf *pf) 5123 { 5124 set_bit(ICE_SERVICE_DIS, pf->state); 5125 set_bit(ICE_DOWN, pf->state); 5126 5127 ice_deinit_pf_sw(pf); 5128 ice_dealloc_vsis(pf); 5129 ice_deinit_dev(pf); 5130 } 5131 5132 /** 5133 * ice_load - load pf by init hw and starting VSI 5134 * @pf: pointer to the pf instance 5135 * 5136 * This function has to be called under devl_lock. 5137 */ 5138 int ice_load(struct ice_pf *pf) 5139 { 5140 struct ice_vsi *vsi; 5141 int err; 5142 5143 devl_assert_locked(priv_to_devlink(pf)); 5144 5145 vsi = ice_get_main_vsi(pf); 5146 5147 /* init channel list */ 5148 INIT_LIST_HEAD(&vsi->ch_list); 5149 5150 err = ice_cfg_netdev(vsi); 5151 if (err) 5152 return err; 5153 5154 /* Setup DCB netlink interface */ 5155 ice_dcbnl_setup(vsi); 5156 5157 err = ice_init_mac_fltr(pf); 5158 if (err) 5159 goto err_init_mac_fltr; 5160 5161 err = ice_devlink_create_pf_port(pf); 5162 if (err) 5163 goto err_devlink_create_pf_port; 5164 5165 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5166 5167 err = ice_register_netdev(vsi); 5168 if (err) 5169 goto err_register_netdev; 5170 5171 err = ice_tc_indir_block_register(vsi); 5172 if (err) 5173 goto err_tc_indir_block_register; 5174 5175 ice_napi_add(vsi); 5176 5177 err = ice_init_rdma(pf); 5178 if (err) 5179 goto err_init_rdma; 5180 5181 ice_init_features(pf); 5182 ice_service_task_restart(pf); 5183 5184 clear_bit(ICE_DOWN, pf->state); 5185 5186 return 0; 5187 5188 err_init_rdma: 5189 ice_tc_indir_block_unregister(vsi); 5190 err_tc_indir_block_register: 5191 ice_unregister_netdev(vsi); 5192 err_register_netdev: 5193 ice_devlink_destroy_pf_port(pf); 5194 err_devlink_create_pf_port: 5195 err_init_mac_fltr: 5196 ice_decfg_netdev(vsi); 5197 return err; 5198 } 5199 5200 /** 5201 * ice_unload - unload pf by stopping VSI and deinit hw 5202 * @pf: pointer to the pf instance 5203 * 5204 * This function has to be called under devl_lock. 5205 */ 5206 void ice_unload(struct ice_pf *pf) 5207 { 5208 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5209 5210 devl_assert_locked(priv_to_devlink(pf)); 5211 5212 ice_deinit_features(pf); 5213 ice_deinit_rdma(pf); 5214 ice_tc_indir_block_unregister(vsi); 5215 ice_unregister_netdev(vsi); 5216 ice_devlink_destroy_pf_port(pf); 5217 ice_decfg_netdev(vsi); 5218 } 5219 5220 /** 5221 * ice_probe - Device initialization routine 5222 * @pdev: PCI device information struct 5223 * @ent: entry in ice_pci_tbl 5224 * 5225 * Returns 0 on success, negative on failure 5226 */ 5227 static int 5228 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5229 { 5230 struct device *dev = &pdev->dev; 5231 struct ice_adapter *adapter; 5232 struct ice_pf *pf; 5233 struct ice_hw *hw; 5234 int err; 5235 5236 if (pdev->is_virtfn) { 5237 dev_err(dev, "can't probe a virtual function\n"); 5238 return -EINVAL; 5239 } 5240 5241 /* when under a kdump kernel initiate a reset before enabling the 5242 * device in order to clear out any pending DMA transactions. These 5243 * transactions can cause some systems to machine check when doing 5244 * the pcim_enable_device() below. 5245 */ 5246 if (is_kdump_kernel()) { 5247 pci_save_state(pdev); 5248 pci_clear_master(pdev); 5249 err = pcie_flr(pdev); 5250 if (err) 5251 return err; 5252 pci_restore_state(pdev); 5253 } 5254 5255 /* this driver uses devres, see 5256 * Documentation/driver-api/driver-model/devres.rst 5257 */ 5258 err = pcim_enable_device(pdev); 5259 if (err) 5260 return err; 5261 5262 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5263 if (err) { 5264 dev_err(dev, "BAR0 I/O map error %d\n", err); 5265 return err; 5266 } 5267 5268 pf = ice_allocate_pf(dev); 5269 if (!pf) 5270 return -ENOMEM; 5271 5272 /* initialize Auxiliary index to invalid value */ 5273 pf->aux_idx = -1; 5274 5275 /* set up for high or low DMA */ 5276 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5277 if (err) { 5278 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5279 return err; 5280 } 5281 5282 pci_set_master(pdev); 5283 pf->pdev = pdev; 5284 pci_set_drvdata(pdev, pf); 5285 set_bit(ICE_DOWN, pf->state); 5286 /* Disable service task until DOWN bit is cleared */ 5287 set_bit(ICE_SERVICE_DIS, pf->state); 5288 5289 hw = &pf->hw; 5290 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5291 pci_save_state(pdev); 5292 5293 hw->back = pf; 5294 hw->port_info = NULL; 5295 hw->vendor_id = pdev->vendor; 5296 hw->device_id = pdev->device; 5297 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5298 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5299 hw->subsystem_device_id = pdev->subsystem_device; 5300 hw->bus.device = PCI_SLOT(pdev->devfn); 5301 hw->bus.func = PCI_FUNC(pdev->devfn); 5302 ice_set_ctrlq_len(hw); 5303 5304 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5305 5306 #ifndef CONFIG_DYNAMIC_DEBUG 5307 if (debug < -1) 5308 hw->debug_mask = debug; 5309 #endif 5310 5311 err = ice_init_hw(hw); 5312 if (err) { 5313 dev_err(dev, "ice_init_hw failed: %d\n", err); 5314 return err; 5315 } 5316 5317 adapter = ice_adapter_get(pdev); 5318 if (IS_ERR(adapter)) { 5319 err = PTR_ERR(adapter); 5320 goto unroll_hw_init; 5321 } 5322 pf->adapter = adapter; 5323 5324 err = ice_init(pf); 5325 if (err) 5326 goto unroll_adapter; 5327 5328 devl_lock(priv_to_devlink(pf)); 5329 err = ice_load(pf); 5330 if (err) 5331 goto unroll_init; 5332 5333 err = ice_init_devlink(pf); 5334 if (err) 5335 goto unroll_load; 5336 devl_unlock(priv_to_devlink(pf)); 5337 5338 return 0; 5339 5340 unroll_load: 5341 ice_unload(pf); 5342 unroll_init: 5343 devl_unlock(priv_to_devlink(pf)); 5344 ice_deinit(pf); 5345 unroll_adapter: 5346 ice_adapter_put(pdev); 5347 unroll_hw_init: 5348 ice_deinit_hw(hw); 5349 return err; 5350 } 5351 5352 /** 5353 * ice_set_wake - enable or disable Wake on LAN 5354 * @pf: pointer to the PF struct 5355 * 5356 * Simple helper for WoL control 5357 */ 5358 static void ice_set_wake(struct ice_pf *pf) 5359 { 5360 struct ice_hw *hw = &pf->hw; 5361 bool wol = pf->wol_ena; 5362 5363 /* clear wake state, otherwise new wake events won't fire */ 5364 wr32(hw, PFPM_WUS, U32_MAX); 5365 5366 /* enable / disable APM wake up, no RMW needed */ 5367 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5368 5369 /* set magic packet filter enabled */ 5370 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5371 } 5372 5373 /** 5374 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5375 * @pf: pointer to the PF struct 5376 * 5377 * Issue firmware command to enable multicast magic wake, making 5378 * sure that any locally administered address (LAA) is used for 5379 * wake, and that PF reset doesn't undo the LAA. 5380 */ 5381 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5382 { 5383 struct device *dev = ice_pf_to_dev(pf); 5384 struct ice_hw *hw = &pf->hw; 5385 u8 mac_addr[ETH_ALEN]; 5386 struct ice_vsi *vsi; 5387 int status; 5388 u8 flags; 5389 5390 if (!pf->wol_ena) 5391 return; 5392 5393 vsi = ice_get_main_vsi(pf); 5394 if (!vsi) 5395 return; 5396 5397 /* Get current MAC address in case it's an LAA */ 5398 if (vsi->netdev) 5399 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5400 else 5401 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5402 5403 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5404 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5405 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5406 5407 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5408 if (status) 5409 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5410 status, ice_aq_str(hw->adminq.sq_last_status)); 5411 } 5412 5413 /** 5414 * ice_remove - Device removal routine 5415 * @pdev: PCI device information struct 5416 */ 5417 static void ice_remove(struct pci_dev *pdev) 5418 { 5419 struct ice_pf *pf = pci_get_drvdata(pdev); 5420 int i; 5421 5422 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5423 if (!ice_is_reset_in_progress(pf->state)) 5424 break; 5425 msleep(100); 5426 } 5427 5428 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5429 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5430 ice_free_vfs(pf); 5431 } 5432 5433 ice_hwmon_exit(pf); 5434 5435 ice_service_task_stop(pf); 5436 ice_aq_cancel_waiting_tasks(pf); 5437 set_bit(ICE_DOWN, pf->state); 5438 5439 if (!ice_is_safe_mode(pf)) 5440 ice_remove_arfs(pf); 5441 5442 devl_lock(priv_to_devlink(pf)); 5443 ice_dealloc_all_dynamic_ports(pf); 5444 ice_deinit_devlink(pf); 5445 5446 ice_unload(pf); 5447 devl_unlock(priv_to_devlink(pf)); 5448 5449 ice_deinit(pf); 5450 ice_vsi_release_all(pf); 5451 5452 ice_setup_mc_magic_wake(pf); 5453 ice_set_wake(pf); 5454 5455 ice_adapter_put(pdev); 5456 } 5457 5458 /** 5459 * ice_shutdown - PCI callback for shutting down device 5460 * @pdev: PCI device information struct 5461 */ 5462 static void ice_shutdown(struct pci_dev *pdev) 5463 { 5464 struct ice_pf *pf = pci_get_drvdata(pdev); 5465 5466 ice_remove(pdev); 5467 5468 if (system_state == SYSTEM_POWER_OFF) { 5469 pci_wake_from_d3(pdev, pf->wol_ena); 5470 pci_set_power_state(pdev, PCI_D3hot); 5471 } 5472 } 5473 5474 /** 5475 * ice_prepare_for_shutdown - prep for PCI shutdown 5476 * @pf: board private structure 5477 * 5478 * Inform or close all dependent features in prep for PCI device shutdown 5479 */ 5480 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5481 { 5482 struct ice_hw *hw = &pf->hw; 5483 u32 v; 5484 5485 /* Notify VFs of impending reset */ 5486 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5487 ice_vc_notify_reset(pf); 5488 5489 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5490 5491 /* disable the VSIs and their queues that are not already DOWN */ 5492 ice_pf_dis_all_vsi(pf, false); 5493 5494 ice_for_each_vsi(pf, v) 5495 if (pf->vsi[v]) 5496 pf->vsi[v]->vsi_num = 0; 5497 5498 ice_shutdown_all_ctrlq(hw, true); 5499 } 5500 5501 /** 5502 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5503 * @pf: board private structure to reinitialize 5504 * 5505 * This routine reinitialize interrupt scheme that was cleared during 5506 * power management suspend callback. 5507 * 5508 * This should be called during resume routine to re-allocate the q_vectors 5509 * and reacquire interrupts. 5510 */ 5511 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5512 { 5513 struct device *dev = ice_pf_to_dev(pf); 5514 int ret, v; 5515 5516 /* Since we clear MSIX flag during suspend, we need to 5517 * set it back during resume... 5518 */ 5519 5520 ret = ice_init_interrupt_scheme(pf); 5521 if (ret) { 5522 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5523 return ret; 5524 } 5525 5526 /* Remap vectors and rings, after successful re-init interrupts */ 5527 ice_for_each_vsi(pf, v) { 5528 if (!pf->vsi[v]) 5529 continue; 5530 5531 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5532 if (ret) 5533 goto err_reinit; 5534 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5535 rtnl_lock(); 5536 ice_vsi_set_napi_queues(pf->vsi[v]); 5537 rtnl_unlock(); 5538 } 5539 5540 ret = ice_req_irq_msix_misc(pf); 5541 if (ret) { 5542 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5543 ret); 5544 goto err_reinit; 5545 } 5546 5547 return 0; 5548 5549 err_reinit: 5550 while (v--) 5551 if (pf->vsi[v]) { 5552 rtnl_lock(); 5553 ice_vsi_clear_napi_queues(pf->vsi[v]); 5554 rtnl_unlock(); 5555 ice_vsi_free_q_vectors(pf->vsi[v]); 5556 } 5557 5558 return ret; 5559 } 5560 5561 /** 5562 * ice_suspend 5563 * @dev: generic device information structure 5564 * 5565 * Power Management callback to quiesce the device and prepare 5566 * for D3 transition. 5567 */ 5568 static int ice_suspend(struct device *dev) 5569 { 5570 struct pci_dev *pdev = to_pci_dev(dev); 5571 struct ice_pf *pf; 5572 int disabled, v; 5573 5574 pf = pci_get_drvdata(pdev); 5575 5576 if (!ice_pf_state_is_nominal(pf)) { 5577 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5578 return -EBUSY; 5579 } 5580 5581 /* Stop watchdog tasks until resume completion. 5582 * Even though it is most likely that the service task is 5583 * disabled if the device is suspended or down, the service task's 5584 * state is controlled by a different state bit, and we should 5585 * store and honor whatever state that bit is in at this point. 5586 */ 5587 disabled = ice_service_task_stop(pf); 5588 5589 ice_deinit_rdma(pf); 5590 5591 /* Already suspended?, then there is nothing to do */ 5592 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5593 if (!disabled) 5594 ice_service_task_restart(pf); 5595 return 0; 5596 } 5597 5598 if (test_bit(ICE_DOWN, pf->state) || 5599 ice_is_reset_in_progress(pf->state)) { 5600 dev_err(dev, "can't suspend device in reset or already down\n"); 5601 if (!disabled) 5602 ice_service_task_restart(pf); 5603 return 0; 5604 } 5605 5606 ice_setup_mc_magic_wake(pf); 5607 5608 ice_prepare_for_shutdown(pf); 5609 5610 ice_set_wake(pf); 5611 5612 /* Free vectors, clear the interrupt scheme and release IRQs 5613 * for proper hibernation, especially with large number of CPUs. 5614 * Otherwise hibernation might fail when mapping all the vectors back 5615 * to CPU0. 5616 */ 5617 ice_free_irq_msix_misc(pf); 5618 ice_for_each_vsi(pf, v) { 5619 if (!pf->vsi[v]) 5620 continue; 5621 rtnl_lock(); 5622 ice_vsi_clear_napi_queues(pf->vsi[v]); 5623 rtnl_unlock(); 5624 ice_vsi_free_q_vectors(pf->vsi[v]); 5625 } 5626 ice_clear_interrupt_scheme(pf); 5627 5628 pci_save_state(pdev); 5629 pci_wake_from_d3(pdev, pf->wol_ena); 5630 pci_set_power_state(pdev, PCI_D3hot); 5631 return 0; 5632 } 5633 5634 /** 5635 * ice_resume - PM callback for waking up from D3 5636 * @dev: generic device information structure 5637 */ 5638 static int ice_resume(struct device *dev) 5639 { 5640 struct pci_dev *pdev = to_pci_dev(dev); 5641 enum ice_reset_req reset_type; 5642 struct ice_pf *pf; 5643 struct ice_hw *hw; 5644 int ret; 5645 5646 pci_set_power_state(pdev, PCI_D0); 5647 pci_restore_state(pdev); 5648 pci_save_state(pdev); 5649 5650 if (!pci_device_is_present(pdev)) 5651 return -ENODEV; 5652 5653 ret = pci_enable_device_mem(pdev); 5654 if (ret) { 5655 dev_err(dev, "Cannot enable device after suspend\n"); 5656 return ret; 5657 } 5658 5659 pf = pci_get_drvdata(pdev); 5660 hw = &pf->hw; 5661 5662 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5663 ice_print_wake_reason(pf); 5664 5665 /* We cleared the interrupt scheme when we suspended, so we need to 5666 * restore it now to resume device functionality. 5667 */ 5668 ret = ice_reinit_interrupt_scheme(pf); 5669 if (ret) 5670 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5671 5672 ret = ice_init_rdma(pf); 5673 if (ret) 5674 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5675 ret); 5676 5677 clear_bit(ICE_DOWN, pf->state); 5678 /* Now perform PF reset and rebuild */ 5679 reset_type = ICE_RESET_PFR; 5680 /* re-enable service task for reset, but allow reset to schedule it */ 5681 clear_bit(ICE_SERVICE_DIS, pf->state); 5682 5683 if (ice_schedule_reset(pf, reset_type)) 5684 dev_err(dev, "Reset during resume failed.\n"); 5685 5686 clear_bit(ICE_SUSPENDED, pf->state); 5687 ice_service_task_restart(pf); 5688 5689 /* Restart the service task */ 5690 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5691 5692 return 0; 5693 } 5694 5695 /** 5696 * ice_pci_err_detected - warning that PCI error has been detected 5697 * @pdev: PCI device information struct 5698 * @err: the type of PCI error 5699 * 5700 * Called to warn that something happened on the PCI bus and the error handling 5701 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5702 */ 5703 static pci_ers_result_t 5704 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5705 { 5706 struct ice_pf *pf = pci_get_drvdata(pdev); 5707 5708 if (!pf) { 5709 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5710 __func__, err); 5711 return PCI_ERS_RESULT_DISCONNECT; 5712 } 5713 5714 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5715 ice_service_task_stop(pf); 5716 5717 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5718 set_bit(ICE_PFR_REQ, pf->state); 5719 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5720 } 5721 } 5722 5723 return PCI_ERS_RESULT_NEED_RESET; 5724 } 5725 5726 /** 5727 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5728 * @pdev: PCI device information struct 5729 * 5730 * Called to determine if the driver can recover from the PCI slot reset by 5731 * using a register read to determine if the device is recoverable. 5732 */ 5733 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5734 { 5735 struct ice_pf *pf = pci_get_drvdata(pdev); 5736 pci_ers_result_t result; 5737 int err; 5738 u32 reg; 5739 5740 err = pci_enable_device_mem(pdev); 5741 if (err) { 5742 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5743 err); 5744 result = PCI_ERS_RESULT_DISCONNECT; 5745 } else { 5746 pci_set_master(pdev); 5747 pci_restore_state(pdev); 5748 pci_save_state(pdev); 5749 pci_wake_from_d3(pdev, false); 5750 5751 /* Check for life */ 5752 reg = rd32(&pf->hw, GLGEN_RTRIG); 5753 if (!reg) 5754 result = PCI_ERS_RESULT_RECOVERED; 5755 else 5756 result = PCI_ERS_RESULT_DISCONNECT; 5757 } 5758 5759 return result; 5760 } 5761 5762 /** 5763 * ice_pci_err_resume - restart operations after PCI error recovery 5764 * @pdev: PCI device information struct 5765 * 5766 * Called to allow the driver to bring things back up after PCI error and/or 5767 * reset recovery have finished 5768 */ 5769 static void ice_pci_err_resume(struct pci_dev *pdev) 5770 { 5771 struct ice_pf *pf = pci_get_drvdata(pdev); 5772 5773 if (!pf) { 5774 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5775 __func__); 5776 return; 5777 } 5778 5779 if (test_bit(ICE_SUSPENDED, pf->state)) { 5780 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5781 __func__); 5782 return; 5783 } 5784 5785 ice_restore_all_vfs_msi_state(pf); 5786 5787 ice_do_reset(pf, ICE_RESET_PFR); 5788 ice_service_task_restart(pf); 5789 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5790 } 5791 5792 /** 5793 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5794 * @pdev: PCI device information struct 5795 */ 5796 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5797 { 5798 struct ice_pf *pf = pci_get_drvdata(pdev); 5799 5800 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5801 ice_service_task_stop(pf); 5802 5803 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5804 set_bit(ICE_PFR_REQ, pf->state); 5805 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5806 } 5807 } 5808 } 5809 5810 /** 5811 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5812 * @pdev: PCI device information struct 5813 */ 5814 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5815 { 5816 ice_pci_err_resume(pdev); 5817 } 5818 5819 /* ice_pci_tbl - PCI Device ID Table 5820 * 5821 * Wildcard entries (PCI_ANY_ID) should come last 5822 * Last entry must be all 0s 5823 * 5824 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5825 * Class, Class Mask, private data (not used) } 5826 */ 5827 static const struct pci_device_id ice_pci_tbl[] = { 5828 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5829 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5830 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5831 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5832 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5833 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5834 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5835 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5836 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5837 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5838 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5839 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5840 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5841 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5842 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5843 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5844 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5845 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5868 /* required last entry */ 5869 {} 5870 }; 5871 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5872 5873 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5874 5875 static const struct pci_error_handlers ice_pci_err_handler = { 5876 .error_detected = ice_pci_err_detected, 5877 .slot_reset = ice_pci_err_slot_reset, 5878 .reset_prepare = ice_pci_err_reset_prepare, 5879 .reset_done = ice_pci_err_reset_done, 5880 .resume = ice_pci_err_resume 5881 }; 5882 5883 static struct pci_driver ice_driver = { 5884 .name = KBUILD_MODNAME, 5885 .id_table = ice_pci_tbl, 5886 .probe = ice_probe, 5887 .remove = ice_remove, 5888 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5889 .shutdown = ice_shutdown, 5890 .sriov_configure = ice_sriov_configure, 5891 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5892 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5893 .err_handler = &ice_pci_err_handler 5894 }; 5895 5896 /** 5897 * ice_module_init - Driver registration routine 5898 * 5899 * ice_module_init is the first routine called when the driver is 5900 * loaded. All it does is register with the PCI subsystem. 5901 */ 5902 static int __init ice_module_init(void) 5903 { 5904 int status = -ENOMEM; 5905 5906 pr_info("%s\n", ice_driver_string); 5907 pr_info("%s\n", ice_copyright); 5908 5909 ice_adv_lnk_speed_maps_init(); 5910 5911 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5912 if (!ice_wq) { 5913 pr_err("Failed to create workqueue\n"); 5914 return status; 5915 } 5916 5917 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5918 if (!ice_lag_wq) { 5919 pr_err("Failed to create LAG workqueue\n"); 5920 goto err_dest_wq; 5921 } 5922 5923 ice_debugfs_init(); 5924 5925 status = pci_register_driver(&ice_driver); 5926 if (status) { 5927 pr_err("failed to register PCI driver, err %d\n", status); 5928 goto err_dest_lag_wq; 5929 } 5930 5931 status = ice_sf_driver_register(); 5932 if (status) { 5933 pr_err("Failed to register SF driver, err %d\n", status); 5934 goto err_sf_driver; 5935 } 5936 5937 return 0; 5938 5939 err_sf_driver: 5940 pci_unregister_driver(&ice_driver); 5941 err_dest_lag_wq: 5942 destroy_workqueue(ice_lag_wq); 5943 ice_debugfs_exit(); 5944 err_dest_wq: 5945 destroy_workqueue(ice_wq); 5946 return status; 5947 } 5948 module_init(ice_module_init); 5949 5950 /** 5951 * ice_module_exit - Driver exit cleanup routine 5952 * 5953 * ice_module_exit is called just before the driver is removed 5954 * from memory. 5955 */ 5956 static void __exit ice_module_exit(void) 5957 { 5958 ice_sf_driver_unregister(); 5959 pci_unregister_driver(&ice_driver); 5960 ice_debugfs_exit(); 5961 destroy_workqueue(ice_wq); 5962 destroy_workqueue(ice_lag_wq); 5963 pr_info("module unloaded\n"); 5964 } 5965 module_exit(ice_module_exit); 5966 5967 /** 5968 * ice_set_mac_address - NDO callback to set MAC address 5969 * @netdev: network interface device structure 5970 * @pi: pointer to an address structure 5971 * 5972 * Returns 0 on success, negative on failure 5973 */ 5974 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5975 { 5976 struct ice_netdev_priv *np = netdev_priv(netdev); 5977 struct ice_vsi *vsi = np->vsi; 5978 struct ice_pf *pf = vsi->back; 5979 struct ice_hw *hw = &pf->hw; 5980 struct sockaddr *addr = pi; 5981 u8 old_mac[ETH_ALEN]; 5982 u8 flags = 0; 5983 u8 *mac; 5984 int err; 5985 5986 mac = (u8 *)addr->sa_data; 5987 5988 if (!is_valid_ether_addr(mac)) 5989 return -EADDRNOTAVAIL; 5990 5991 if (test_bit(ICE_DOWN, pf->state) || 5992 ice_is_reset_in_progress(pf->state)) { 5993 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5994 mac); 5995 return -EBUSY; 5996 } 5997 5998 if (ice_chnl_dmac_fltr_cnt(pf)) { 5999 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6000 mac); 6001 return -EAGAIN; 6002 } 6003 6004 netif_addr_lock_bh(netdev); 6005 ether_addr_copy(old_mac, netdev->dev_addr); 6006 /* change the netdev's MAC address */ 6007 eth_hw_addr_set(netdev, mac); 6008 netif_addr_unlock_bh(netdev); 6009 6010 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6011 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6012 if (err && err != -ENOENT) { 6013 err = -EADDRNOTAVAIL; 6014 goto err_update_filters; 6015 } 6016 6017 /* Add filter for new MAC. If filter exists, return success */ 6018 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6019 if (err == -EEXIST) { 6020 /* Although this MAC filter is already present in hardware it's 6021 * possible in some cases (e.g. bonding) that dev_addr was 6022 * modified outside of the driver and needs to be restored back 6023 * to this value. 6024 */ 6025 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6026 6027 return 0; 6028 } else if (err) { 6029 /* error if the new filter addition failed */ 6030 err = -EADDRNOTAVAIL; 6031 } 6032 6033 err_update_filters: 6034 if (err) { 6035 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6036 mac); 6037 netif_addr_lock_bh(netdev); 6038 eth_hw_addr_set(netdev, old_mac); 6039 netif_addr_unlock_bh(netdev); 6040 return err; 6041 } 6042 6043 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6044 netdev->dev_addr); 6045 6046 /* write new MAC address to the firmware */ 6047 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6048 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6049 if (err) { 6050 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6051 mac, err); 6052 } 6053 return 0; 6054 } 6055 6056 /** 6057 * ice_set_rx_mode - NDO callback to set the netdev filters 6058 * @netdev: network interface device structure 6059 */ 6060 static void ice_set_rx_mode(struct net_device *netdev) 6061 { 6062 struct ice_netdev_priv *np = netdev_priv(netdev); 6063 struct ice_vsi *vsi = np->vsi; 6064 6065 if (!vsi || ice_is_switchdev_running(vsi->back)) 6066 return; 6067 6068 /* Set the flags to synchronize filters 6069 * ndo_set_rx_mode may be triggered even without a change in netdev 6070 * flags 6071 */ 6072 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6073 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6074 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6075 6076 /* schedule our worker thread which will take care of 6077 * applying the new filter changes 6078 */ 6079 ice_service_task_schedule(vsi->back); 6080 } 6081 6082 /** 6083 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6084 * @netdev: network interface device structure 6085 * @queue_index: Queue ID 6086 * @maxrate: maximum bandwidth in Mbps 6087 */ 6088 static int 6089 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6090 { 6091 struct ice_netdev_priv *np = netdev_priv(netdev); 6092 struct ice_vsi *vsi = np->vsi; 6093 u16 q_handle; 6094 int status; 6095 u8 tc; 6096 6097 /* Validate maxrate requested is within permitted range */ 6098 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6099 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6100 maxrate, queue_index); 6101 return -EINVAL; 6102 } 6103 6104 q_handle = vsi->tx_rings[queue_index]->q_handle; 6105 tc = ice_dcb_get_tc(vsi, queue_index); 6106 6107 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6108 if (!vsi) { 6109 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6110 queue_index); 6111 return -EINVAL; 6112 } 6113 6114 /* Set BW back to default, when user set maxrate to 0 */ 6115 if (!maxrate) 6116 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6117 q_handle, ICE_MAX_BW); 6118 else 6119 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6120 q_handle, ICE_MAX_BW, maxrate * 1000); 6121 if (status) 6122 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6123 status); 6124 6125 return status; 6126 } 6127 6128 /** 6129 * ice_fdb_add - add an entry to the hardware database 6130 * @ndm: the input from the stack 6131 * @tb: pointer to array of nladdr (unused) 6132 * @dev: the net device pointer 6133 * @addr: the MAC address entry being added 6134 * @vid: VLAN ID 6135 * @flags: instructions from stack about fdb operation 6136 * @notified: whether notification was emitted 6137 * @extack: netlink extended ack 6138 */ 6139 static int 6140 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6141 struct net_device *dev, const unsigned char *addr, u16 vid, 6142 u16 flags, bool *notified, 6143 struct netlink_ext_ack __always_unused *extack) 6144 { 6145 int err; 6146 6147 if (vid) { 6148 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6149 return -EINVAL; 6150 } 6151 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6152 netdev_err(dev, "FDB only supports static addresses\n"); 6153 return -EINVAL; 6154 } 6155 6156 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6157 err = dev_uc_add_excl(dev, addr); 6158 else if (is_multicast_ether_addr(addr)) 6159 err = dev_mc_add_excl(dev, addr); 6160 else 6161 err = -EINVAL; 6162 6163 /* Only return duplicate errors if NLM_F_EXCL is set */ 6164 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6165 err = 0; 6166 6167 return err; 6168 } 6169 6170 /** 6171 * ice_fdb_del - delete an entry from the hardware database 6172 * @ndm: the input from the stack 6173 * @tb: pointer to array of nladdr (unused) 6174 * @dev: the net device pointer 6175 * @addr: the MAC address entry being added 6176 * @vid: VLAN ID 6177 * @notified: whether notification was emitted 6178 * @extack: netlink extended ack 6179 */ 6180 static int 6181 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6182 struct net_device *dev, const unsigned char *addr, 6183 __always_unused u16 vid, bool *notified, 6184 struct netlink_ext_ack *extack) 6185 { 6186 int err; 6187 6188 if (ndm->ndm_state & NUD_PERMANENT) { 6189 netdev_err(dev, "FDB only supports static addresses\n"); 6190 return -EINVAL; 6191 } 6192 6193 if (is_unicast_ether_addr(addr)) 6194 err = dev_uc_del(dev, addr); 6195 else if (is_multicast_ether_addr(addr)) 6196 err = dev_mc_del(dev, addr); 6197 else 6198 err = -EINVAL; 6199 6200 return err; 6201 } 6202 6203 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6204 NETIF_F_HW_VLAN_CTAG_TX | \ 6205 NETIF_F_HW_VLAN_STAG_RX | \ 6206 NETIF_F_HW_VLAN_STAG_TX) 6207 6208 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6209 NETIF_F_HW_VLAN_STAG_RX) 6210 6211 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6212 NETIF_F_HW_VLAN_STAG_FILTER) 6213 6214 /** 6215 * ice_fix_features - fix the netdev features flags based on device limitations 6216 * @netdev: ptr to the netdev that flags are being fixed on 6217 * @features: features that need to be checked and possibly fixed 6218 * 6219 * Make sure any fixups are made to features in this callback. This enables the 6220 * driver to not have to check unsupported configurations throughout the driver 6221 * because that's the responsiblity of this callback. 6222 * 6223 * Single VLAN Mode (SVM) Supported Features: 6224 * NETIF_F_HW_VLAN_CTAG_FILTER 6225 * NETIF_F_HW_VLAN_CTAG_RX 6226 * NETIF_F_HW_VLAN_CTAG_TX 6227 * 6228 * Double VLAN Mode (DVM) Supported Features: 6229 * NETIF_F_HW_VLAN_CTAG_FILTER 6230 * NETIF_F_HW_VLAN_CTAG_RX 6231 * NETIF_F_HW_VLAN_CTAG_TX 6232 * 6233 * NETIF_F_HW_VLAN_STAG_FILTER 6234 * NETIF_HW_VLAN_STAG_RX 6235 * NETIF_HW_VLAN_STAG_TX 6236 * 6237 * Features that need fixing: 6238 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6239 * These are mutually exlusive as the VSI context cannot support multiple 6240 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6241 * is not done, then default to clearing the requested STAG offload 6242 * settings. 6243 * 6244 * All supported filtering has to be enabled or disabled together. For 6245 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6246 * together. If this is not done, then default to VLAN filtering disabled. 6247 * These are mutually exclusive as there is currently no way to 6248 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6249 * prune rules. 6250 */ 6251 static netdev_features_t 6252 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6253 { 6254 struct ice_netdev_priv *np = netdev_priv(netdev); 6255 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6256 bool cur_ctag, cur_stag, req_ctag, req_stag; 6257 6258 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6259 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6260 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6261 6262 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6263 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6264 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6265 6266 if (req_vlan_fltr != cur_vlan_fltr) { 6267 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6268 if (req_ctag && req_stag) { 6269 features |= NETIF_VLAN_FILTERING_FEATURES; 6270 } else if (!req_ctag && !req_stag) { 6271 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6272 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6273 (!cur_stag && req_stag && !cur_ctag)) { 6274 features |= NETIF_VLAN_FILTERING_FEATURES; 6275 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6276 } else if ((cur_ctag && !req_ctag && cur_stag) || 6277 (cur_stag && !req_stag && cur_ctag)) { 6278 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6279 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6280 } 6281 } else { 6282 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6283 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6284 6285 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6286 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6287 } 6288 } 6289 6290 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6291 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6292 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6293 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6294 NETIF_F_HW_VLAN_STAG_TX); 6295 } 6296 6297 if (!(netdev->features & NETIF_F_RXFCS) && 6298 (features & NETIF_F_RXFCS) && 6299 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6300 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6301 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6302 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6303 } 6304 6305 return features; 6306 } 6307 6308 /** 6309 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6310 * @vsi: PF's VSI 6311 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6312 * 6313 * Store current stripped VLAN proto in ring packet context, 6314 * so it can be accessed more efficiently by packet processing code. 6315 */ 6316 static void 6317 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6318 { 6319 u16 i; 6320 6321 ice_for_each_alloc_rxq(vsi, i) 6322 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6323 } 6324 6325 /** 6326 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6327 * @vsi: PF's VSI 6328 * @features: features used to determine VLAN offload settings 6329 * 6330 * First, determine the vlan_ethertype based on the VLAN offload bits in 6331 * features. Then determine if stripping and insertion should be enabled or 6332 * disabled. Finally enable or disable VLAN stripping and insertion. 6333 */ 6334 static int 6335 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6336 { 6337 bool enable_stripping = true, enable_insertion = true; 6338 struct ice_vsi_vlan_ops *vlan_ops; 6339 int strip_err = 0, insert_err = 0; 6340 u16 vlan_ethertype = 0; 6341 6342 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6343 6344 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6345 vlan_ethertype = ETH_P_8021AD; 6346 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6347 vlan_ethertype = ETH_P_8021Q; 6348 6349 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6350 enable_stripping = false; 6351 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6352 enable_insertion = false; 6353 6354 if (enable_stripping) 6355 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6356 else 6357 strip_err = vlan_ops->dis_stripping(vsi); 6358 6359 if (enable_insertion) 6360 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6361 else 6362 insert_err = vlan_ops->dis_insertion(vsi); 6363 6364 if (strip_err || insert_err) 6365 return -EIO; 6366 6367 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6368 htons(vlan_ethertype) : 0); 6369 6370 return 0; 6371 } 6372 6373 /** 6374 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6375 * @vsi: PF's VSI 6376 * @features: features used to determine VLAN filtering settings 6377 * 6378 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6379 * features. 6380 */ 6381 static int 6382 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6383 { 6384 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6385 int err = 0; 6386 6387 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6388 * if either bit is set. In switchdev mode Rx filtering should never be 6389 * enabled. 6390 */ 6391 if ((features & 6392 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6393 !ice_is_eswitch_mode_switchdev(vsi->back)) 6394 err = vlan_ops->ena_rx_filtering(vsi); 6395 else 6396 err = vlan_ops->dis_rx_filtering(vsi); 6397 6398 return err; 6399 } 6400 6401 /** 6402 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6403 * @netdev: ptr to the netdev being adjusted 6404 * @features: the feature set that the stack is suggesting 6405 * 6406 * Only update VLAN settings if the requested_vlan_features are different than 6407 * the current_vlan_features. 6408 */ 6409 static int 6410 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6411 { 6412 netdev_features_t current_vlan_features, requested_vlan_features; 6413 struct ice_netdev_priv *np = netdev_priv(netdev); 6414 struct ice_vsi *vsi = np->vsi; 6415 int err; 6416 6417 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6418 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6419 if (current_vlan_features ^ requested_vlan_features) { 6420 if ((features & NETIF_F_RXFCS) && 6421 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6422 dev_err(ice_pf_to_dev(vsi->back), 6423 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6424 return -EIO; 6425 } 6426 6427 err = ice_set_vlan_offload_features(vsi, features); 6428 if (err) 6429 return err; 6430 } 6431 6432 current_vlan_features = netdev->features & 6433 NETIF_VLAN_FILTERING_FEATURES; 6434 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6435 if (current_vlan_features ^ requested_vlan_features) { 6436 err = ice_set_vlan_filtering_features(vsi, features); 6437 if (err) 6438 return err; 6439 } 6440 6441 return 0; 6442 } 6443 6444 /** 6445 * ice_set_loopback - turn on/off loopback mode on underlying PF 6446 * @vsi: ptr to VSI 6447 * @ena: flag to indicate the on/off setting 6448 */ 6449 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6450 { 6451 bool if_running = netif_running(vsi->netdev); 6452 int ret; 6453 6454 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6455 ret = ice_down(vsi); 6456 if (ret) { 6457 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6458 return ret; 6459 } 6460 } 6461 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6462 if (ret) 6463 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6464 if (if_running) 6465 ret = ice_up(vsi); 6466 6467 return ret; 6468 } 6469 6470 /** 6471 * ice_set_features - set the netdev feature flags 6472 * @netdev: ptr to the netdev being adjusted 6473 * @features: the feature set that the stack is suggesting 6474 */ 6475 static int 6476 ice_set_features(struct net_device *netdev, netdev_features_t features) 6477 { 6478 netdev_features_t changed = netdev->features ^ features; 6479 struct ice_netdev_priv *np = netdev_priv(netdev); 6480 struct ice_vsi *vsi = np->vsi; 6481 struct ice_pf *pf = vsi->back; 6482 int ret = 0; 6483 6484 /* Don't set any netdev advanced features with device in Safe Mode */ 6485 if (ice_is_safe_mode(pf)) { 6486 dev_err(ice_pf_to_dev(pf), 6487 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6488 return ret; 6489 } 6490 6491 /* Do not change setting during reset */ 6492 if (ice_is_reset_in_progress(pf->state)) { 6493 dev_err(ice_pf_to_dev(pf), 6494 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6495 return -EBUSY; 6496 } 6497 6498 /* Multiple features can be changed in one call so keep features in 6499 * separate if/else statements to guarantee each feature is checked 6500 */ 6501 if (changed & NETIF_F_RXHASH) 6502 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6503 6504 ret = ice_set_vlan_features(netdev, features); 6505 if (ret) 6506 return ret; 6507 6508 /* Turn on receive of FCS aka CRC, and after setting this 6509 * flag the packet data will have the 4 byte CRC appended 6510 */ 6511 if (changed & NETIF_F_RXFCS) { 6512 if ((features & NETIF_F_RXFCS) && 6513 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6514 dev_err(ice_pf_to_dev(vsi->back), 6515 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6516 return -EIO; 6517 } 6518 6519 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6520 ret = ice_down_up(vsi); 6521 if (ret) 6522 return ret; 6523 } 6524 6525 if (changed & NETIF_F_NTUPLE) { 6526 bool ena = !!(features & NETIF_F_NTUPLE); 6527 6528 ice_vsi_manage_fdir(vsi, ena); 6529 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6530 } 6531 6532 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6533 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6534 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6535 return -EACCES; 6536 } 6537 6538 if (changed & NETIF_F_HW_TC) { 6539 bool ena = !!(features & NETIF_F_HW_TC); 6540 6541 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6542 } 6543 6544 if (changed & NETIF_F_LOOPBACK) 6545 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6546 6547 return ret; 6548 } 6549 6550 /** 6551 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6552 * @vsi: VSI to setup VLAN properties for 6553 */ 6554 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6555 { 6556 int err; 6557 6558 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6559 if (err) 6560 return err; 6561 6562 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6563 if (err) 6564 return err; 6565 6566 return ice_vsi_add_vlan_zero(vsi); 6567 } 6568 6569 /** 6570 * ice_vsi_cfg_lan - Setup the VSI lan related config 6571 * @vsi: the VSI being configured 6572 * 6573 * Return 0 on success and negative value on error 6574 */ 6575 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6576 { 6577 int err; 6578 6579 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6580 ice_set_rx_mode(vsi->netdev); 6581 6582 err = ice_vsi_vlan_setup(vsi); 6583 if (err) 6584 return err; 6585 } 6586 ice_vsi_cfg_dcb_rings(vsi); 6587 6588 err = ice_vsi_cfg_lan_txqs(vsi); 6589 if (!err && ice_is_xdp_ena_vsi(vsi)) 6590 err = ice_vsi_cfg_xdp_txqs(vsi); 6591 if (!err) 6592 err = ice_vsi_cfg_rxqs(vsi); 6593 6594 return err; 6595 } 6596 6597 /* THEORY OF MODERATION: 6598 * The ice driver hardware works differently than the hardware that DIMLIB was 6599 * originally made for. ice hardware doesn't have packet count limits that 6600 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6601 * which is hard-coded to a limit of 250,000 ints/second. 6602 * If not using dynamic moderation, the INTRL value can be modified 6603 * by ethtool rx-usecs-high. 6604 */ 6605 struct ice_dim { 6606 /* the throttle rate for interrupts, basically worst case delay before 6607 * an initial interrupt fires, value is stored in microseconds. 6608 */ 6609 u16 itr; 6610 }; 6611 6612 /* Make a different profile for Rx that doesn't allow quite so aggressive 6613 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6614 * second. 6615 */ 6616 static const struct ice_dim rx_profile[] = { 6617 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6618 {8}, /* 125,000 ints/s */ 6619 {16}, /* 62,500 ints/s */ 6620 {62}, /* 16,129 ints/s */ 6621 {126} /* 7,936 ints/s */ 6622 }; 6623 6624 /* The transmit profile, which has the same sorts of values 6625 * as the previous struct 6626 */ 6627 static const struct ice_dim tx_profile[] = { 6628 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6629 {8}, /* 125,000 ints/s */ 6630 {40}, /* 16,125 ints/s */ 6631 {128}, /* 7,812 ints/s */ 6632 {256} /* 3,906 ints/s */ 6633 }; 6634 6635 static void ice_tx_dim_work(struct work_struct *work) 6636 { 6637 struct ice_ring_container *rc; 6638 struct dim *dim; 6639 u16 itr; 6640 6641 dim = container_of(work, struct dim, work); 6642 rc = dim->priv; 6643 6644 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6645 6646 /* look up the values in our local table */ 6647 itr = tx_profile[dim->profile_ix].itr; 6648 6649 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6650 ice_write_itr(rc, itr); 6651 6652 dim->state = DIM_START_MEASURE; 6653 } 6654 6655 static void ice_rx_dim_work(struct work_struct *work) 6656 { 6657 struct ice_ring_container *rc; 6658 struct dim *dim; 6659 u16 itr; 6660 6661 dim = container_of(work, struct dim, work); 6662 rc = dim->priv; 6663 6664 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6665 6666 /* look up the values in our local table */ 6667 itr = rx_profile[dim->profile_ix].itr; 6668 6669 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6670 ice_write_itr(rc, itr); 6671 6672 dim->state = DIM_START_MEASURE; 6673 } 6674 6675 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6676 6677 /** 6678 * ice_init_moderation - set up interrupt moderation 6679 * @q_vector: the vector containing rings to be configured 6680 * 6681 * Set up interrupt moderation registers, with the intent to do the right thing 6682 * when called from reset or from probe, and whether or not dynamic moderation 6683 * is enabled or not. Take special care to write all the registers in both 6684 * dynamic moderation mode or not in order to make sure hardware is in a known 6685 * state. 6686 */ 6687 static void ice_init_moderation(struct ice_q_vector *q_vector) 6688 { 6689 struct ice_ring_container *rc; 6690 bool tx_dynamic, rx_dynamic; 6691 6692 rc = &q_vector->tx; 6693 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6694 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6695 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6696 rc->dim.priv = rc; 6697 tx_dynamic = ITR_IS_DYNAMIC(rc); 6698 6699 /* set the initial TX ITR to match the above */ 6700 ice_write_itr(rc, tx_dynamic ? 6701 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6702 6703 rc = &q_vector->rx; 6704 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6705 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6706 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6707 rc->dim.priv = rc; 6708 rx_dynamic = ITR_IS_DYNAMIC(rc); 6709 6710 /* set the initial RX ITR to match the above */ 6711 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6712 rc->itr_setting); 6713 6714 ice_set_q_vector_intrl(q_vector); 6715 } 6716 6717 /** 6718 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6719 * @vsi: the VSI being configured 6720 */ 6721 static void ice_napi_enable_all(struct ice_vsi *vsi) 6722 { 6723 int q_idx; 6724 6725 if (!vsi->netdev) 6726 return; 6727 6728 ice_for_each_q_vector(vsi, q_idx) { 6729 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6730 6731 ice_init_moderation(q_vector); 6732 6733 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6734 napi_enable(&q_vector->napi); 6735 } 6736 } 6737 6738 /** 6739 * ice_up_complete - Finish the last steps of bringing up a connection 6740 * @vsi: The VSI being configured 6741 * 6742 * Return 0 on success and negative value on error 6743 */ 6744 static int ice_up_complete(struct ice_vsi *vsi) 6745 { 6746 struct ice_pf *pf = vsi->back; 6747 int err; 6748 6749 ice_vsi_cfg_msix(vsi); 6750 6751 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6752 * Tx queue group list was configured and the context bits were 6753 * programmed using ice_vsi_cfg_txqs 6754 */ 6755 err = ice_vsi_start_all_rx_rings(vsi); 6756 if (err) 6757 return err; 6758 6759 clear_bit(ICE_VSI_DOWN, vsi->state); 6760 ice_napi_enable_all(vsi); 6761 ice_vsi_ena_irq(vsi); 6762 6763 if (vsi->port_info && 6764 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6765 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6766 vsi->type == ICE_VSI_SF)))) { 6767 ice_print_link_msg(vsi, true); 6768 netif_tx_start_all_queues(vsi->netdev); 6769 netif_carrier_on(vsi->netdev); 6770 ice_ptp_link_change(pf, true); 6771 } 6772 6773 /* Perform an initial read of the statistics registers now to 6774 * set the baseline so counters are ready when interface is up 6775 */ 6776 ice_update_eth_stats(vsi); 6777 6778 if (vsi->type == ICE_VSI_PF) 6779 ice_service_task_schedule(pf); 6780 6781 return 0; 6782 } 6783 6784 /** 6785 * ice_up - Bring the connection back up after being down 6786 * @vsi: VSI being configured 6787 */ 6788 int ice_up(struct ice_vsi *vsi) 6789 { 6790 int err; 6791 6792 err = ice_vsi_cfg_lan(vsi); 6793 if (!err) 6794 err = ice_up_complete(vsi); 6795 6796 return err; 6797 } 6798 6799 /** 6800 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6801 * @syncp: pointer to u64_stats_sync 6802 * @stats: stats that pkts and bytes count will be taken from 6803 * @pkts: packets stats counter 6804 * @bytes: bytes stats counter 6805 * 6806 * This function fetches stats from the ring considering the atomic operations 6807 * that needs to be performed to read u64 values in 32 bit machine. 6808 */ 6809 void 6810 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6811 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6812 { 6813 unsigned int start; 6814 6815 do { 6816 start = u64_stats_fetch_begin(syncp); 6817 *pkts = stats.pkts; 6818 *bytes = stats.bytes; 6819 } while (u64_stats_fetch_retry(syncp, start)); 6820 } 6821 6822 /** 6823 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6824 * @vsi: the VSI to be updated 6825 * @vsi_stats: the stats struct to be updated 6826 * @rings: rings to work on 6827 * @count: number of rings 6828 */ 6829 static void 6830 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6831 struct rtnl_link_stats64 *vsi_stats, 6832 struct ice_tx_ring **rings, u16 count) 6833 { 6834 u16 i; 6835 6836 for (i = 0; i < count; i++) { 6837 struct ice_tx_ring *ring; 6838 u64 pkts = 0, bytes = 0; 6839 6840 ring = READ_ONCE(rings[i]); 6841 if (!ring || !ring->ring_stats) 6842 continue; 6843 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6844 ring->ring_stats->stats, &pkts, 6845 &bytes); 6846 vsi_stats->tx_packets += pkts; 6847 vsi_stats->tx_bytes += bytes; 6848 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6849 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6850 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6851 } 6852 } 6853 6854 /** 6855 * ice_update_vsi_ring_stats - Update VSI stats counters 6856 * @vsi: the VSI to be updated 6857 */ 6858 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6859 { 6860 struct rtnl_link_stats64 *net_stats, *stats_prev; 6861 struct rtnl_link_stats64 *vsi_stats; 6862 struct ice_pf *pf = vsi->back; 6863 u64 pkts, bytes; 6864 int i; 6865 6866 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6867 if (!vsi_stats) 6868 return; 6869 6870 /* reset non-netdev (extended) stats */ 6871 vsi->tx_restart = 0; 6872 vsi->tx_busy = 0; 6873 vsi->tx_linearize = 0; 6874 vsi->rx_buf_failed = 0; 6875 vsi->rx_page_failed = 0; 6876 6877 rcu_read_lock(); 6878 6879 /* update Tx rings counters */ 6880 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6881 vsi->num_txq); 6882 6883 /* update Rx rings counters */ 6884 ice_for_each_rxq(vsi, i) { 6885 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6886 struct ice_ring_stats *ring_stats; 6887 6888 ring_stats = ring->ring_stats; 6889 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6890 ring_stats->stats, &pkts, 6891 &bytes); 6892 vsi_stats->rx_packets += pkts; 6893 vsi_stats->rx_bytes += bytes; 6894 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6895 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6896 } 6897 6898 /* update XDP Tx rings counters */ 6899 if (ice_is_xdp_ena_vsi(vsi)) 6900 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6901 vsi->num_xdp_txq); 6902 6903 rcu_read_unlock(); 6904 6905 net_stats = &vsi->net_stats; 6906 stats_prev = &vsi->net_stats_prev; 6907 6908 /* Update netdev counters, but keep in mind that values could start at 6909 * random value after PF reset. And as we increase the reported stat by 6910 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6911 * let's skip this round. 6912 */ 6913 if (likely(pf->stat_prev_loaded)) { 6914 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6915 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6916 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6917 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6918 } 6919 6920 stats_prev->tx_packets = vsi_stats->tx_packets; 6921 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6922 stats_prev->rx_packets = vsi_stats->rx_packets; 6923 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6924 6925 kfree(vsi_stats); 6926 } 6927 6928 /** 6929 * ice_update_vsi_stats - Update VSI stats counters 6930 * @vsi: the VSI to be updated 6931 */ 6932 void ice_update_vsi_stats(struct ice_vsi *vsi) 6933 { 6934 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6935 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6936 struct ice_pf *pf = vsi->back; 6937 6938 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6939 test_bit(ICE_CFG_BUSY, pf->state)) 6940 return; 6941 6942 /* get stats as recorded by Tx/Rx rings */ 6943 ice_update_vsi_ring_stats(vsi); 6944 6945 /* get VSI stats as recorded by the hardware */ 6946 ice_update_eth_stats(vsi); 6947 6948 cur_ns->tx_errors = cur_es->tx_errors; 6949 cur_ns->rx_dropped = cur_es->rx_discards; 6950 cur_ns->tx_dropped = cur_es->tx_discards; 6951 cur_ns->multicast = cur_es->rx_multicast; 6952 6953 /* update some more netdev stats if this is main VSI */ 6954 if (vsi->type == ICE_VSI_PF) { 6955 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6956 cur_ns->rx_errors = pf->stats.crc_errors + 6957 pf->stats.illegal_bytes + 6958 pf->stats.rx_undersize + 6959 pf->hw_csum_rx_error + 6960 pf->stats.rx_jabber + 6961 pf->stats.rx_fragments + 6962 pf->stats.rx_oversize; 6963 /* record drops from the port level */ 6964 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6965 } 6966 } 6967 6968 /** 6969 * ice_update_pf_stats - Update PF port stats counters 6970 * @pf: PF whose stats needs to be updated 6971 */ 6972 void ice_update_pf_stats(struct ice_pf *pf) 6973 { 6974 struct ice_hw_port_stats *prev_ps, *cur_ps; 6975 struct ice_hw *hw = &pf->hw; 6976 u16 fd_ctr_base; 6977 u8 port; 6978 6979 port = hw->port_info->lport; 6980 prev_ps = &pf->stats_prev; 6981 cur_ps = &pf->stats; 6982 6983 if (ice_is_reset_in_progress(pf->state)) 6984 pf->stat_prev_loaded = false; 6985 6986 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6987 &prev_ps->eth.rx_bytes, 6988 &cur_ps->eth.rx_bytes); 6989 6990 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6991 &prev_ps->eth.rx_unicast, 6992 &cur_ps->eth.rx_unicast); 6993 6994 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6995 &prev_ps->eth.rx_multicast, 6996 &cur_ps->eth.rx_multicast); 6997 6998 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6999 &prev_ps->eth.rx_broadcast, 7000 &cur_ps->eth.rx_broadcast); 7001 7002 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7003 &prev_ps->eth.rx_discards, 7004 &cur_ps->eth.rx_discards); 7005 7006 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7007 &prev_ps->eth.tx_bytes, 7008 &cur_ps->eth.tx_bytes); 7009 7010 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7011 &prev_ps->eth.tx_unicast, 7012 &cur_ps->eth.tx_unicast); 7013 7014 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7015 &prev_ps->eth.tx_multicast, 7016 &cur_ps->eth.tx_multicast); 7017 7018 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7019 &prev_ps->eth.tx_broadcast, 7020 &cur_ps->eth.tx_broadcast); 7021 7022 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7023 &prev_ps->tx_dropped_link_down, 7024 &cur_ps->tx_dropped_link_down); 7025 7026 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7027 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7028 7029 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7030 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7031 7032 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7033 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7034 7035 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7036 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7037 7038 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7039 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7040 7041 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7042 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7043 7044 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7045 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7046 7047 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7048 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7049 7050 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7051 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7052 7053 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7054 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7055 7056 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7057 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7058 7059 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7060 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7061 7062 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7063 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7064 7065 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7066 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7067 7068 fd_ctr_base = hw->fd_ctr_base; 7069 7070 ice_stat_update40(hw, 7071 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7072 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7073 &cur_ps->fd_sb_match); 7074 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7075 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7076 7077 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7078 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7079 7080 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7081 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7082 7083 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7084 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7085 7086 ice_update_dcb_stats(pf); 7087 7088 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7089 &prev_ps->crc_errors, &cur_ps->crc_errors); 7090 7091 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7092 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7093 7094 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7095 &prev_ps->mac_local_faults, 7096 &cur_ps->mac_local_faults); 7097 7098 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7099 &prev_ps->mac_remote_faults, 7100 &cur_ps->mac_remote_faults); 7101 7102 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7103 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7104 7105 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7106 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7107 7108 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7109 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7110 7111 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7112 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7113 7114 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7115 7116 pf->stat_prev_loaded = true; 7117 } 7118 7119 /** 7120 * ice_get_stats64 - get statistics for network device structure 7121 * @netdev: network interface device structure 7122 * @stats: main device statistics structure 7123 */ 7124 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7125 { 7126 struct ice_netdev_priv *np = netdev_priv(netdev); 7127 struct rtnl_link_stats64 *vsi_stats; 7128 struct ice_vsi *vsi = np->vsi; 7129 7130 vsi_stats = &vsi->net_stats; 7131 7132 if (!vsi->num_txq || !vsi->num_rxq) 7133 return; 7134 7135 /* netdev packet/byte stats come from ring counter. These are obtained 7136 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7137 * But, only call the update routine and read the registers if VSI is 7138 * not down. 7139 */ 7140 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7141 ice_update_vsi_ring_stats(vsi); 7142 stats->tx_packets = vsi_stats->tx_packets; 7143 stats->tx_bytes = vsi_stats->tx_bytes; 7144 stats->rx_packets = vsi_stats->rx_packets; 7145 stats->rx_bytes = vsi_stats->rx_bytes; 7146 7147 /* The rest of the stats can be read from the hardware but instead we 7148 * just return values that the watchdog task has already obtained from 7149 * the hardware. 7150 */ 7151 stats->multicast = vsi_stats->multicast; 7152 stats->tx_errors = vsi_stats->tx_errors; 7153 stats->tx_dropped = vsi_stats->tx_dropped; 7154 stats->rx_errors = vsi_stats->rx_errors; 7155 stats->rx_dropped = vsi_stats->rx_dropped; 7156 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7157 stats->rx_length_errors = vsi_stats->rx_length_errors; 7158 } 7159 7160 /** 7161 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7162 * @vsi: VSI having NAPI disabled 7163 */ 7164 static void ice_napi_disable_all(struct ice_vsi *vsi) 7165 { 7166 int q_idx; 7167 7168 if (!vsi->netdev) 7169 return; 7170 7171 ice_for_each_q_vector(vsi, q_idx) { 7172 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7173 7174 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7175 napi_disable(&q_vector->napi); 7176 7177 cancel_work_sync(&q_vector->tx.dim.work); 7178 cancel_work_sync(&q_vector->rx.dim.work); 7179 } 7180 } 7181 7182 /** 7183 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7184 * @vsi: the VSI being un-configured 7185 */ 7186 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7187 { 7188 struct ice_pf *pf = vsi->back; 7189 struct ice_hw *hw = &pf->hw; 7190 u32 val; 7191 int i; 7192 7193 /* disable interrupt causation from each Rx queue; Tx queues are 7194 * handled in ice_vsi_stop_tx_ring() 7195 */ 7196 if (vsi->rx_rings) { 7197 ice_for_each_rxq(vsi, i) { 7198 if (vsi->rx_rings[i]) { 7199 u16 reg; 7200 7201 reg = vsi->rx_rings[i]->reg_idx; 7202 val = rd32(hw, QINT_RQCTL(reg)); 7203 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7204 wr32(hw, QINT_RQCTL(reg), val); 7205 } 7206 } 7207 } 7208 7209 /* disable each interrupt */ 7210 ice_for_each_q_vector(vsi, i) { 7211 if (!vsi->q_vectors[i]) 7212 continue; 7213 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7214 } 7215 7216 ice_flush(hw); 7217 7218 /* don't call synchronize_irq() for VF's from the host */ 7219 if (vsi->type == ICE_VSI_VF) 7220 return; 7221 7222 ice_for_each_q_vector(vsi, i) 7223 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7224 } 7225 7226 /** 7227 * ice_down - Shutdown the connection 7228 * @vsi: The VSI being stopped 7229 * 7230 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7231 */ 7232 int ice_down(struct ice_vsi *vsi) 7233 { 7234 int i, tx_err, rx_err, vlan_err = 0; 7235 7236 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7237 7238 if (vsi->netdev) { 7239 vlan_err = ice_vsi_del_vlan_zero(vsi); 7240 ice_ptp_link_change(vsi->back, false); 7241 netif_carrier_off(vsi->netdev); 7242 netif_tx_disable(vsi->netdev); 7243 } 7244 7245 ice_vsi_dis_irq(vsi); 7246 7247 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7248 if (tx_err) 7249 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7250 vsi->vsi_num, tx_err); 7251 if (!tx_err && vsi->xdp_rings) { 7252 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7253 if (tx_err) 7254 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7255 vsi->vsi_num, tx_err); 7256 } 7257 7258 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7259 if (rx_err) 7260 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7261 vsi->vsi_num, rx_err); 7262 7263 ice_napi_disable_all(vsi); 7264 7265 ice_for_each_txq(vsi, i) 7266 ice_clean_tx_ring(vsi->tx_rings[i]); 7267 7268 if (vsi->xdp_rings) 7269 ice_for_each_xdp_txq(vsi, i) 7270 ice_clean_tx_ring(vsi->xdp_rings[i]); 7271 7272 ice_for_each_rxq(vsi, i) 7273 ice_clean_rx_ring(vsi->rx_rings[i]); 7274 7275 if (tx_err || rx_err || vlan_err) { 7276 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7277 vsi->vsi_num, vsi->vsw->sw_id); 7278 return -EIO; 7279 } 7280 7281 return 0; 7282 } 7283 7284 /** 7285 * ice_down_up - shutdown the VSI connection and bring it up 7286 * @vsi: the VSI to be reconnected 7287 */ 7288 int ice_down_up(struct ice_vsi *vsi) 7289 { 7290 int ret; 7291 7292 /* if DOWN already set, nothing to do */ 7293 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7294 return 0; 7295 7296 ret = ice_down(vsi); 7297 if (ret) 7298 return ret; 7299 7300 ret = ice_up(vsi); 7301 if (ret) { 7302 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7303 return ret; 7304 } 7305 7306 return 0; 7307 } 7308 7309 /** 7310 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7311 * @vsi: VSI having resources allocated 7312 * 7313 * Return 0 on success, negative on failure 7314 */ 7315 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7316 { 7317 int i, err = 0; 7318 7319 if (!vsi->num_txq) { 7320 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7321 vsi->vsi_num); 7322 return -EINVAL; 7323 } 7324 7325 ice_for_each_txq(vsi, i) { 7326 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7327 7328 if (!ring) 7329 return -EINVAL; 7330 7331 if (vsi->netdev) 7332 ring->netdev = vsi->netdev; 7333 err = ice_setup_tx_ring(ring); 7334 if (err) 7335 break; 7336 } 7337 7338 return err; 7339 } 7340 7341 /** 7342 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7343 * @vsi: VSI having resources allocated 7344 * 7345 * Return 0 on success, negative on failure 7346 */ 7347 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7348 { 7349 int i, err = 0; 7350 7351 if (!vsi->num_rxq) { 7352 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7353 vsi->vsi_num); 7354 return -EINVAL; 7355 } 7356 7357 ice_for_each_rxq(vsi, i) { 7358 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7359 7360 if (!ring) 7361 return -EINVAL; 7362 7363 if (vsi->netdev) 7364 ring->netdev = vsi->netdev; 7365 err = ice_setup_rx_ring(ring); 7366 if (err) 7367 break; 7368 } 7369 7370 return err; 7371 } 7372 7373 /** 7374 * ice_vsi_open_ctrl - open control VSI for use 7375 * @vsi: the VSI to open 7376 * 7377 * Initialization of the Control VSI 7378 * 7379 * Returns 0 on success, negative value on error 7380 */ 7381 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7382 { 7383 char int_name[ICE_INT_NAME_STR_LEN]; 7384 struct ice_pf *pf = vsi->back; 7385 struct device *dev; 7386 int err; 7387 7388 dev = ice_pf_to_dev(pf); 7389 /* allocate descriptors */ 7390 err = ice_vsi_setup_tx_rings(vsi); 7391 if (err) 7392 goto err_setup_tx; 7393 7394 err = ice_vsi_setup_rx_rings(vsi); 7395 if (err) 7396 goto err_setup_rx; 7397 7398 err = ice_vsi_cfg_lan(vsi); 7399 if (err) 7400 goto err_setup_rx; 7401 7402 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7403 dev_driver_string(dev), dev_name(dev)); 7404 err = ice_vsi_req_irq_msix(vsi, int_name); 7405 if (err) 7406 goto err_setup_rx; 7407 7408 ice_vsi_cfg_msix(vsi); 7409 7410 err = ice_vsi_start_all_rx_rings(vsi); 7411 if (err) 7412 goto err_up_complete; 7413 7414 clear_bit(ICE_VSI_DOWN, vsi->state); 7415 ice_vsi_ena_irq(vsi); 7416 7417 return 0; 7418 7419 err_up_complete: 7420 ice_down(vsi); 7421 err_setup_rx: 7422 ice_vsi_free_rx_rings(vsi); 7423 err_setup_tx: 7424 ice_vsi_free_tx_rings(vsi); 7425 7426 return err; 7427 } 7428 7429 /** 7430 * ice_vsi_open - Called when a network interface is made active 7431 * @vsi: the VSI to open 7432 * 7433 * Initialization of the VSI 7434 * 7435 * Returns 0 on success, negative value on error 7436 */ 7437 int ice_vsi_open(struct ice_vsi *vsi) 7438 { 7439 char int_name[ICE_INT_NAME_STR_LEN]; 7440 struct ice_pf *pf = vsi->back; 7441 int err; 7442 7443 /* allocate descriptors */ 7444 err = ice_vsi_setup_tx_rings(vsi); 7445 if (err) 7446 goto err_setup_tx; 7447 7448 err = ice_vsi_setup_rx_rings(vsi); 7449 if (err) 7450 goto err_setup_rx; 7451 7452 err = ice_vsi_cfg_lan(vsi); 7453 if (err) 7454 goto err_setup_rx; 7455 7456 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7457 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7458 err = ice_vsi_req_irq_msix(vsi, int_name); 7459 if (err) 7460 goto err_setup_rx; 7461 7462 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7463 7464 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7465 /* Notify the stack of the actual queue counts. */ 7466 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7467 if (err) 7468 goto err_set_qs; 7469 7470 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7471 if (err) 7472 goto err_set_qs; 7473 7474 ice_vsi_set_napi_queues(vsi); 7475 } 7476 7477 err = ice_up_complete(vsi); 7478 if (err) 7479 goto err_up_complete; 7480 7481 return 0; 7482 7483 err_up_complete: 7484 ice_down(vsi); 7485 err_set_qs: 7486 ice_vsi_free_irq(vsi); 7487 err_setup_rx: 7488 ice_vsi_free_rx_rings(vsi); 7489 err_setup_tx: 7490 ice_vsi_free_tx_rings(vsi); 7491 7492 return err; 7493 } 7494 7495 /** 7496 * ice_vsi_release_all - Delete all VSIs 7497 * @pf: PF from which all VSIs are being removed 7498 */ 7499 static void ice_vsi_release_all(struct ice_pf *pf) 7500 { 7501 int err, i; 7502 7503 if (!pf->vsi) 7504 return; 7505 7506 ice_for_each_vsi(pf, i) { 7507 if (!pf->vsi[i]) 7508 continue; 7509 7510 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7511 continue; 7512 7513 err = ice_vsi_release(pf->vsi[i]); 7514 if (err) 7515 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7516 i, err, pf->vsi[i]->vsi_num); 7517 } 7518 } 7519 7520 /** 7521 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7522 * @pf: pointer to the PF instance 7523 * @type: VSI type to rebuild 7524 * 7525 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7526 */ 7527 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7528 { 7529 struct device *dev = ice_pf_to_dev(pf); 7530 int i, err; 7531 7532 ice_for_each_vsi(pf, i) { 7533 struct ice_vsi *vsi = pf->vsi[i]; 7534 7535 if (!vsi || vsi->type != type) 7536 continue; 7537 7538 /* rebuild the VSI */ 7539 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7540 if (err) { 7541 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7542 err, vsi->idx, ice_vsi_type_str(type)); 7543 return err; 7544 } 7545 7546 /* replay filters for the VSI */ 7547 err = ice_replay_vsi(&pf->hw, vsi->idx); 7548 if (err) { 7549 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7550 err, vsi->idx, ice_vsi_type_str(type)); 7551 return err; 7552 } 7553 7554 /* Re-map HW VSI number, using VSI handle that has been 7555 * previously validated in ice_replay_vsi() call above 7556 */ 7557 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7558 7559 /* enable the VSI */ 7560 err = ice_ena_vsi(vsi, false); 7561 if (err) { 7562 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7563 err, vsi->idx, ice_vsi_type_str(type)); 7564 return err; 7565 } 7566 7567 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7568 ice_vsi_type_str(type)); 7569 } 7570 7571 return 0; 7572 } 7573 7574 /** 7575 * ice_update_pf_netdev_link - Update PF netdev link status 7576 * @pf: pointer to the PF instance 7577 */ 7578 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7579 { 7580 bool link_up; 7581 int i; 7582 7583 ice_for_each_vsi(pf, i) { 7584 struct ice_vsi *vsi = pf->vsi[i]; 7585 7586 if (!vsi || vsi->type != ICE_VSI_PF) 7587 return; 7588 7589 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7590 if (link_up) { 7591 netif_carrier_on(pf->vsi[i]->netdev); 7592 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7593 } else { 7594 netif_carrier_off(pf->vsi[i]->netdev); 7595 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7596 } 7597 } 7598 } 7599 7600 /** 7601 * ice_rebuild - rebuild after reset 7602 * @pf: PF to rebuild 7603 * @reset_type: type of reset 7604 * 7605 * Do not rebuild VF VSI in this flow because that is already handled via 7606 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7607 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7608 * to reset/rebuild all the VF VSI twice. 7609 */ 7610 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7611 { 7612 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7613 struct device *dev = ice_pf_to_dev(pf); 7614 struct ice_hw *hw = &pf->hw; 7615 bool dvm; 7616 int err; 7617 7618 if (test_bit(ICE_DOWN, pf->state)) 7619 goto clear_recovery; 7620 7621 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7622 7623 #define ICE_EMP_RESET_SLEEP_MS 5000 7624 if (reset_type == ICE_RESET_EMPR) { 7625 /* If an EMP reset has occurred, any previously pending flash 7626 * update will have completed. We no longer know whether or 7627 * not the NVM update EMP reset is restricted. 7628 */ 7629 pf->fw_emp_reset_disabled = false; 7630 7631 msleep(ICE_EMP_RESET_SLEEP_MS); 7632 } 7633 7634 err = ice_init_all_ctrlq(hw); 7635 if (err) { 7636 dev_err(dev, "control queues init failed %d\n", err); 7637 goto err_init_ctrlq; 7638 } 7639 7640 /* if DDP was previously loaded successfully */ 7641 if (!ice_is_safe_mode(pf)) { 7642 /* reload the SW DB of filter tables */ 7643 if (reset_type == ICE_RESET_PFR) 7644 ice_fill_blk_tbls(hw); 7645 else 7646 /* Reload DDP Package after CORER/GLOBR reset */ 7647 ice_load_pkg(NULL, pf); 7648 } 7649 7650 err = ice_clear_pf_cfg(hw); 7651 if (err) { 7652 dev_err(dev, "clear PF configuration failed %d\n", err); 7653 goto err_init_ctrlq; 7654 } 7655 7656 ice_clear_pxe_mode(hw); 7657 7658 err = ice_init_nvm(hw); 7659 if (err) { 7660 dev_err(dev, "ice_init_nvm failed %d\n", err); 7661 goto err_init_ctrlq; 7662 } 7663 7664 err = ice_get_caps(hw); 7665 if (err) { 7666 dev_err(dev, "ice_get_caps failed %d\n", err); 7667 goto err_init_ctrlq; 7668 } 7669 7670 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7671 if (err) { 7672 dev_err(dev, "set_mac_cfg failed %d\n", err); 7673 goto err_init_ctrlq; 7674 } 7675 7676 dvm = ice_is_dvm_ena(hw); 7677 7678 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7679 if (err) 7680 goto err_init_ctrlq; 7681 7682 err = ice_sched_init_port(hw->port_info); 7683 if (err) 7684 goto err_sched_init_port; 7685 7686 /* start misc vector */ 7687 err = ice_req_irq_msix_misc(pf); 7688 if (err) { 7689 dev_err(dev, "misc vector setup failed: %d\n", err); 7690 goto err_sched_init_port; 7691 } 7692 7693 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7694 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7695 if (!rd32(hw, PFQF_FD_SIZE)) { 7696 u16 unused, guar, b_effort; 7697 7698 guar = hw->func_caps.fd_fltr_guar; 7699 b_effort = hw->func_caps.fd_fltr_best_effort; 7700 7701 /* force guaranteed filter pool for PF */ 7702 ice_alloc_fd_guar_item(hw, &unused, guar); 7703 /* force shared filter pool for PF */ 7704 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7705 } 7706 } 7707 7708 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7709 ice_dcb_rebuild(pf); 7710 7711 /* If the PF previously had enabled PTP, PTP init needs to happen before 7712 * the VSI rebuild. If not, this causes the PTP link status events to 7713 * fail. 7714 */ 7715 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7716 ice_ptp_rebuild(pf, reset_type); 7717 7718 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7719 ice_gnss_init(pf); 7720 7721 /* rebuild PF VSI */ 7722 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7723 if (err) { 7724 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7725 goto err_vsi_rebuild; 7726 } 7727 7728 if (reset_type == ICE_RESET_PFR) { 7729 err = ice_rebuild_channels(pf); 7730 if (err) { 7731 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7732 err); 7733 goto err_vsi_rebuild; 7734 } 7735 } 7736 7737 /* If Flow Director is active */ 7738 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7739 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7740 if (err) { 7741 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7742 goto err_vsi_rebuild; 7743 } 7744 7745 /* replay HW Flow Director recipes */ 7746 if (hw->fdir_prof) 7747 ice_fdir_replay_flows(hw); 7748 7749 /* replay Flow Director filters */ 7750 ice_fdir_replay_fltrs(pf); 7751 7752 ice_rebuild_arfs(pf); 7753 } 7754 7755 if (vsi && vsi->netdev) 7756 netif_device_attach(vsi->netdev); 7757 7758 ice_update_pf_netdev_link(pf); 7759 7760 /* tell the firmware we are up */ 7761 err = ice_send_version(pf); 7762 if (err) { 7763 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7764 err); 7765 goto err_vsi_rebuild; 7766 } 7767 7768 ice_replay_post(hw); 7769 7770 /* if we get here, reset flow is successful */ 7771 clear_bit(ICE_RESET_FAILED, pf->state); 7772 7773 ice_health_clear(pf); 7774 7775 ice_plug_aux_dev(pf); 7776 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7777 ice_lag_rebuild(pf); 7778 7779 /* Restore timestamp mode settings after VSI rebuild */ 7780 ice_ptp_restore_timestamp_mode(pf); 7781 return; 7782 7783 err_vsi_rebuild: 7784 err_sched_init_port: 7785 ice_sched_cleanup_all(hw); 7786 err_init_ctrlq: 7787 ice_shutdown_all_ctrlq(hw, false); 7788 set_bit(ICE_RESET_FAILED, pf->state); 7789 clear_recovery: 7790 /* set this bit in PF state to control service task scheduling */ 7791 set_bit(ICE_NEEDS_RESTART, pf->state); 7792 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7793 } 7794 7795 /** 7796 * ice_change_mtu - NDO callback to change the MTU 7797 * @netdev: network interface device structure 7798 * @new_mtu: new value for maximum frame size 7799 * 7800 * Returns 0 on success, negative on failure 7801 */ 7802 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7803 { 7804 struct ice_netdev_priv *np = netdev_priv(netdev); 7805 struct ice_vsi *vsi = np->vsi; 7806 struct ice_pf *pf = vsi->back; 7807 struct bpf_prog *prog; 7808 u8 count = 0; 7809 int err = 0; 7810 7811 if (new_mtu == (int)netdev->mtu) { 7812 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7813 return 0; 7814 } 7815 7816 prog = vsi->xdp_prog; 7817 if (prog && !prog->aux->xdp_has_frags) { 7818 int frame_size = ice_max_xdp_frame_size(vsi); 7819 7820 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7821 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7822 frame_size - ICE_ETH_PKT_HDR_PAD); 7823 return -EINVAL; 7824 } 7825 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7826 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7827 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7828 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7829 return -EINVAL; 7830 } 7831 } 7832 7833 /* if a reset is in progress, wait for some time for it to complete */ 7834 do { 7835 if (ice_is_reset_in_progress(pf->state)) { 7836 count++; 7837 usleep_range(1000, 2000); 7838 } else { 7839 break; 7840 } 7841 7842 } while (count < 100); 7843 7844 if (count == 100) { 7845 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7846 return -EBUSY; 7847 } 7848 7849 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7850 err = ice_down_up(vsi); 7851 if (err) 7852 return err; 7853 7854 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7855 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7856 7857 return err; 7858 } 7859 7860 /** 7861 * ice_eth_ioctl - Access the hwtstamp interface 7862 * @netdev: network interface device structure 7863 * @ifr: interface request data 7864 * @cmd: ioctl command 7865 */ 7866 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7867 { 7868 struct ice_netdev_priv *np = netdev_priv(netdev); 7869 struct ice_pf *pf = np->vsi->back; 7870 7871 switch (cmd) { 7872 case SIOCGHWTSTAMP: 7873 return ice_ptp_get_ts_config(pf, ifr); 7874 case SIOCSHWTSTAMP: 7875 return ice_ptp_set_ts_config(pf, ifr); 7876 default: 7877 return -EOPNOTSUPP; 7878 } 7879 } 7880 7881 /** 7882 * ice_aq_str - convert AQ err code to a string 7883 * @aq_err: the AQ error code to convert 7884 */ 7885 const char *ice_aq_str(enum ice_aq_err aq_err) 7886 { 7887 switch (aq_err) { 7888 case ICE_AQ_RC_OK: 7889 return "OK"; 7890 case ICE_AQ_RC_EPERM: 7891 return "ICE_AQ_RC_EPERM"; 7892 case ICE_AQ_RC_ENOENT: 7893 return "ICE_AQ_RC_ENOENT"; 7894 case ICE_AQ_RC_ENOMEM: 7895 return "ICE_AQ_RC_ENOMEM"; 7896 case ICE_AQ_RC_EBUSY: 7897 return "ICE_AQ_RC_EBUSY"; 7898 case ICE_AQ_RC_EEXIST: 7899 return "ICE_AQ_RC_EEXIST"; 7900 case ICE_AQ_RC_EINVAL: 7901 return "ICE_AQ_RC_EINVAL"; 7902 case ICE_AQ_RC_ENOSPC: 7903 return "ICE_AQ_RC_ENOSPC"; 7904 case ICE_AQ_RC_ENOSYS: 7905 return "ICE_AQ_RC_ENOSYS"; 7906 case ICE_AQ_RC_EMODE: 7907 return "ICE_AQ_RC_EMODE"; 7908 case ICE_AQ_RC_ENOSEC: 7909 return "ICE_AQ_RC_ENOSEC"; 7910 case ICE_AQ_RC_EBADSIG: 7911 return "ICE_AQ_RC_EBADSIG"; 7912 case ICE_AQ_RC_ESVN: 7913 return "ICE_AQ_RC_ESVN"; 7914 case ICE_AQ_RC_EBADMAN: 7915 return "ICE_AQ_RC_EBADMAN"; 7916 case ICE_AQ_RC_EBADBUF: 7917 return "ICE_AQ_RC_EBADBUF"; 7918 } 7919 7920 return "ICE_AQ_RC_UNKNOWN"; 7921 } 7922 7923 /** 7924 * ice_set_rss_lut - Set RSS LUT 7925 * @vsi: Pointer to VSI structure 7926 * @lut: Lookup table 7927 * @lut_size: Lookup table size 7928 * 7929 * Returns 0 on success, negative on failure 7930 */ 7931 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7932 { 7933 struct ice_aq_get_set_rss_lut_params params = {}; 7934 struct ice_hw *hw = &vsi->back->hw; 7935 int status; 7936 7937 if (!lut) 7938 return -EINVAL; 7939 7940 params.vsi_handle = vsi->idx; 7941 params.lut_size = lut_size; 7942 params.lut_type = vsi->rss_lut_type; 7943 params.lut = lut; 7944 7945 status = ice_aq_set_rss_lut(hw, ¶ms); 7946 if (status) 7947 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7948 status, ice_aq_str(hw->adminq.sq_last_status)); 7949 7950 return status; 7951 } 7952 7953 /** 7954 * ice_set_rss_key - Set RSS key 7955 * @vsi: Pointer to the VSI structure 7956 * @seed: RSS hash seed 7957 * 7958 * Returns 0 on success, negative on failure 7959 */ 7960 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7961 { 7962 struct ice_hw *hw = &vsi->back->hw; 7963 int status; 7964 7965 if (!seed) 7966 return -EINVAL; 7967 7968 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7969 if (status) 7970 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7971 status, ice_aq_str(hw->adminq.sq_last_status)); 7972 7973 return status; 7974 } 7975 7976 /** 7977 * ice_get_rss_lut - Get RSS LUT 7978 * @vsi: Pointer to VSI structure 7979 * @lut: Buffer to store the lookup table entries 7980 * @lut_size: Size of buffer to store the lookup table entries 7981 * 7982 * Returns 0 on success, negative on failure 7983 */ 7984 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7985 { 7986 struct ice_aq_get_set_rss_lut_params params = {}; 7987 struct ice_hw *hw = &vsi->back->hw; 7988 int status; 7989 7990 if (!lut) 7991 return -EINVAL; 7992 7993 params.vsi_handle = vsi->idx; 7994 params.lut_size = lut_size; 7995 params.lut_type = vsi->rss_lut_type; 7996 params.lut = lut; 7997 7998 status = ice_aq_get_rss_lut(hw, ¶ms); 7999 if (status) 8000 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 8001 status, ice_aq_str(hw->adminq.sq_last_status)); 8002 8003 return status; 8004 } 8005 8006 /** 8007 * ice_get_rss_key - Get RSS key 8008 * @vsi: Pointer to VSI structure 8009 * @seed: Buffer to store the key in 8010 * 8011 * Returns 0 on success, negative on failure 8012 */ 8013 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8014 { 8015 struct ice_hw *hw = &vsi->back->hw; 8016 int status; 8017 8018 if (!seed) 8019 return -EINVAL; 8020 8021 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8022 if (status) 8023 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8024 status, ice_aq_str(hw->adminq.sq_last_status)); 8025 8026 return status; 8027 } 8028 8029 /** 8030 * ice_set_rss_hfunc - Set RSS HASH function 8031 * @vsi: Pointer to VSI structure 8032 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8033 * 8034 * Returns 0 on success, negative on failure 8035 */ 8036 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8037 { 8038 struct ice_hw *hw = &vsi->back->hw; 8039 struct ice_vsi_ctx *ctx; 8040 bool symm; 8041 int err; 8042 8043 if (hfunc == vsi->rss_hfunc) 8044 return 0; 8045 8046 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8047 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8048 return -EOPNOTSUPP; 8049 8050 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8051 if (!ctx) 8052 return -ENOMEM; 8053 8054 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8055 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8056 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8057 ctx->info.q_opt_rss |= 8058 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8059 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8060 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8061 8062 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8063 if (err) { 8064 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8065 vsi->vsi_num, err); 8066 } else { 8067 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8068 vsi->rss_hfunc = hfunc; 8069 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8070 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8071 "Symmetric " : ""); 8072 } 8073 kfree(ctx); 8074 if (err) 8075 return err; 8076 8077 /* Fix the symmetry setting for all existing RSS configurations */ 8078 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8079 return ice_set_rss_cfg_symm(hw, vsi, symm); 8080 } 8081 8082 /** 8083 * ice_bridge_getlink - Get the hardware bridge mode 8084 * @skb: skb buff 8085 * @pid: process ID 8086 * @seq: RTNL message seq 8087 * @dev: the netdev being configured 8088 * @filter_mask: filter mask passed in 8089 * @nlflags: netlink flags passed in 8090 * 8091 * Return the bridge mode (VEB/VEPA) 8092 */ 8093 static int 8094 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8095 struct net_device *dev, u32 filter_mask, int nlflags) 8096 { 8097 struct ice_netdev_priv *np = netdev_priv(dev); 8098 struct ice_vsi *vsi = np->vsi; 8099 struct ice_pf *pf = vsi->back; 8100 u16 bmode; 8101 8102 bmode = pf->first_sw->bridge_mode; 8103 8104 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8105 filter_mask, NULL); 8106 } 8107 8108 /** 8109 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8110 * @vsi: Pointer to VSI structure 8111 * @bmode: Hardware bridge mode (VEB/VEPA) 8112 * 8113 * Returns 0 on success, negative on failure 8114 */ 8115 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8116 { 8117 struct ice_aqc_vsi_props *vsi_props; 8118 struct ice_hw *hw = &vsi->back->hw; 8119 struct ice_vsi_ctx *ctxt; 8120 int ret; 8121 8122 vsi_props = &vsi->info; 8123 8124 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8125 if (!ctxt) 8126 return -ENOMEM; 8127 8128 ctxt->info = vsi->info; 8129 8130 if (bmode == BRIDGE_MODE_VEB) 8131 /* change from VEPA to VEB mode */ 8132 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8133 else 8134 /* change from VEB to VEPA mode */ 8135 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8136 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8137 8138 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8139 if (ret) { 8140 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8141 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8142 goto out; 8143 } 8144 /* Update sw flags for book keeping */ 8145 vsi_props->sw_flags = ctxt->info.sw_flags; 8146 8147 out: 8148 kfree(ctxt); 8149 return ret; 8150 } 8151 8152 /** 8153 * ice_bridge_setlink - Set the hardware bridge mode 8154 * @dev: the netdev being configured 8155 * @nlh: RTNL message 8156 * @flags: bridge setlink flags 8157 * @extack: netlink extended ack 8158 * 8159 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8160 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8161 * not already set for all VSIs connected to this switch. And also update the 8162 * unicast switch filter rules for the corresponding switch of the netdev. 8163 */ 8164 static int 8165 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8166 u16 __always_unused flags, 8167 struct netlink_ext_ack __always_unused *extack) 8168 { 8169 struct ice_netdev_priv *np = netdev_priv(dev); 8170 struct ice_pf *pf = np->vsi->back; 8171 struct nlattr *attr, *br_spec; 8172 struct ice_hw *hw = &pf->hw; 8173 struct ice_sw *pf_sw; 8174 int rem, v, err = 0; 8175 8176 pf_sw = pf->first_sw; 8177 /* find the attribute in the netlink message */ 8178 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8179 if (!br_spec) 8180 return -EINVAL; 8181 8182 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8183 __u16 mode = nla_get_u16(attr); 8184 8185 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8186 return -EINVAL; 8187 /* Continue if bridge mode is not being flipped */ 8188 if (mode == pf_sw->bridge_mode) 8189 continue; 8190 /* Iterates through the PF VSI list and update the loopback 8191 * mode of the VSI 8192 */ 8193 ice_for_each_vsi(pf, v) { 8194 if (!pf->vsi[v]) 8195 continue; 8196 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8197 if (err) 8198 return err; 8199 } 8200 8201 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8202 /* Update the unicast switch filter rules for the corresponding 8203 * switch of the netdev 8204 */ 8205 err = ice_update_sw_rule_bridge_mode(hw); 8206 if (err) { 8207 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8208 mode, err, 8209 ice_aq_str(hw->adminq.sq_last_status)); 8210 /* revert hw->evb_veb */ 8211 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8212 return err; 8213 } 8214 8215 pf_sw->bridge_mode = mode; 8216 } 8217 8218 return 0; 8219 } 8220 8221 /** 8222 * ice_tx_timeout - Respond to a Tx Hang 8223 * @netdev: network interface device structure 8224 * @txqueue: Tx queue 8225 */ 8226 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8227 { 8228 struct ice_netdev_priv *np = netdev_priv(netdev); 8229 struct ice_tx_ring *tx_ring = NULL; 8230 struct ice_vsi *vsi = np->vsi; 8231 struct ice_pf *pf = vsi->back; 8232 u32 i; 8233 8234 pf->tx_timeout_count++; 8235 8236 /* Check if PFC is enabled for the TC to which the queue belongs 8237 * to. If yes then Tx timeout is not caused by a hung queue, no 8238 * need to reset and rebuild 8239 */ 8240 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8241 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8242 txqueue); 8243 return; 8244 } 8245 8246 /* now that we have an index, find the tx_ring struct */ 8247 ice_for_each_txq(vsi, i) 8248 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8249 if (txqueue == vsi->tx_rings[i]->q_index) { 8250 tx_ring = vsi->tx_rings[i]; 8251 break; 8252 } 8253 8254 /* Reset recovery level if enough time has elapsed after last timeout. 8255 * Also ensure no new reset action happens before next timeout period. 8256 */ 8257 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8258 pf->tx_timeout_recovery_level = 1; 8259 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8260 netdev->watchdog_timeo))) 8261 return; 8262 8263 if (tx_ring) { 8264 struct ice_hw *hw = &pf->hw; 8265 u32 head, intr = 0; 8266 8267 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8268 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8269 /* Read interrupt register */ 8270 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8271 8272 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8273 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8274 head, tx_ring->next_to_use, intr); 8275 8276 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8277 } 8278 8279 pf->tx_timeout_last_recovery = jiffies; 8280 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8281 pf->tx_timeout_recovery_level, txqueue); 8282 8283 switch (pf->tx_timeout_recovery_level) { 8284 case 1: 8285 set_bit(ICE_PFR_REQ, pf->state); 8286 break; 8287 case 2: 8288 set_bit(ICE_CORER_REQ, pf->state); 8289 break; 8290 case 3: 8291 set_bit(ICE_GLOBR_REQ, pf->state); 8292 break; 8293 default: 8294 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8295 set_bit(ICE_DOWN, pf->state); 8296 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8297 set_bit(ICE_SERVICE_DIS, pf->state); 8298 break; 8299 } 8300 8301 ice_service_task_schedule(pf); 8302 pf->tx_timeout_recovery_level++; 8303 } 8304 8305 /** 8306 * ice_setup_tc_cls_flower - flower classifier offloads 8307 * @np: net device to configure 8308 * @filter_dev: device on which filter is added 8309 * @cls_flower: offload data 8310 */ 8311 static int 8312 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8313 struct net_device *filter_dev, 8314 struct flow_cls_offload *cls_flower) 8315 { 8316 struct ice_vsi *vsi = np->vsi; 8317 8318 if (cls_flower->common.chain_index) 8319 return -EOPNOTSUPP; 8320 8321 switch (cls_flower->command) { 8322 case FLOW_CLS_REPLACE: 8323 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8324 case FLOW_CLS_DESTROY: 8325 return ice_del_cls_flower(vsi, cls_flower); 8326 default: 8327 return -EINVAL; 8328 } 8329 } 8330 8331 /** 8332 * ice_setup_tc_block_cb - callback handler registered for TC block 8333 * @type: TC SETUP type 8334 * @type_data: TC flower offload data that contains user input 8335 * @cb_priv: netdev private data 8336 */ 8337 static int 8338 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8339 { 8340 struct ice_netdev_priv *np = cb_priv; 8341 8342 switch (type) { 8343 case TC_SETUP_CLSFLOWER: 8344 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8345 type_data); 8346 default: 8347 return -EOPNOTSUPP; 8348 } 8349 } 8350 8351 /** 8352 * ice_validate_mqprio_qopt - Validate TCF input parameters 8353 * @vsi: Pointer to VSI 8354 * @mqprio_qopt: input parameters for mqprio queue configuration 8355 * 8356 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8357 * needed), and make sure user doesn't specify qcount and BW rate limit 8358 * for TCs, which are more than "num_tc" 8359 */ 8360 static int 8361 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8362 struct tc_mqprio_qopt_offload *mqprio_qopt) 8363 { 8364 int non_power_of_2_qcount = 0; 8365 struct ice_pf *pf = vsi->back; 8366 int max_rss_q_cnt = 0; 8367 u64 sum_min_rate = 0; 8368 struct device *dev; 8369 int i, speed; 8370 u8 num_tc; 8371 8372 if (vsi->type != ICE_VSI_PF) 8373 return -EINVAL; 8374 8375 if (mqprio_qopt->qopt.offset[0] != 0 || 8376 mqprio_qopt->qopt.num_tc < 1 || 8377 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8378 return -EINVAL; 8379 8380 dev = ice_pf_to_dev(pf); 8381 vsi->ch_rss_size = 0; 8382 num_tc = mqprio_qopt->qopt.num_tc; 8383 speed = ice_get_link_speed_kbps(vsi); 8384 8385 for (i = 0; num_tc; i++) { 8386 int qcount = mqprio_qopt->qopt.count[i]; 8387 u64 max_rate, min_rate, rem; 8388 8389 if (!qcount) 8390 return -EINVAL; 8391 8392 if (is_power_of_2(qcount)) { 8393 if (non_power_of_2_qcount && 8394 qcount > non_power_of_2_qcount) { 8395 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8396 qcount, non_power_of_2_qcount); 8397 return -EINVAL; 8398 } 8399 if (qcount > max_rss_q_cnt) 8400 max_rss_q_cnt = qcount; 8401 } else { 8402 if (non_power_of_2_qcount && 8403 qcount != non_power_of_2_qcount) { 8404 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8405 qcount, non_power_of_2_qcount); 8406 return -EINVAL; 8407 } 8408 if (qcount < max_rss_q_cnt) { 8409 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8410 qcount, max_rss_q_cnt); 8411 return -EINVAL; 8412 } 8413 max_rss_q_cnt = qcount; 8414 non_power_of_2_qcount = qcount; 8415 } 8416 8417 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8418 * converts the bandwidth rate limit into Bytes/s when 8419 * passing it down to the driver. So convert input bandwidth 8420 * from Bytes/s to Kbps 8421 */ 8422 max_rate = mqprio_qopt->max_rate[i]; 8423 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8424 8425 /* min_rate is minimum guaranteed rate and it can't be zero */ 8426 min_rate = mqprio_qopt->min_rate[i]; 8427 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8428 sum_min_rate += min_rate; 8429 8430 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8431 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8432 min_rate, ICE_MIN_BW_LIMIT); 8433 return -EINVAL; 8434 } 8435 8436 if (max_rate && max_rate > speed) { 8437 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8438 i, max_rate, speed); 8439 return -EINVAL; 8440 } 8441 8442 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8443 if (rem) { 8444 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8445 i, ICE_MIN_BW_LIMIT); 8446 return -EINVAL; 8447 } 8448 8449 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8450 if (rem) { 8451 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8452 i, ICE_MIN_BW_LIMIT); 8453 return -EINVAL; 8454 } 8455 8456 /* min_rate can't be more than max_rate, except when max_rate 8457 * is zero (implies max_rate sought is max line rate). In such 8458 * a case min_rate can be more than max. 8459 */ 8460 if (max_rate && min_rate > max_rate) { 8461 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8462 min_rate, max_rate); 8463 return -EINVAL; 8464 } 8465 8466 if (i >= mqprio_qopt->qopt.num_tc - 1) 8467 break; 8468 if (mqprio_qopt->qopt.offset[i + 1] != 8469 (mqprio_qopt->qopt.offset[i] + qcount)) 8470 return -EINVAL; 8471 } 8472 if (vsi->num_rxq < 8473 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8474 return -EINVAL; 8475 if (vsi->num_txq < 8476 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8477 return -EINVAL; 8478 8479 if (sum_min_rate && sum_min_rate > (u64)speed) { 8480 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8481 sum_min_rate, speed); 8482 return -EINVAL; 8483 } 8484 8485 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8486 vsi->ch_rss_size = max_rss_q_cnt; 8487 8488 return 0; 8489 } 8490 8491 /** 8492 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8493 * @pf: ptr to PF device 8494 * @vsi: ptr to VSI 8495 */ 8496 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8497 { 8498 struct device *dev = ice_pf_to_dev(pf); 8499 bool added = false; 8500 struct ice_hw *hw; 8501 int flow; 8502 8503 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8504 return -EINVAL; 8505 8506 hw = &pf->hw; 8507 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8508 struct ice_fd_hw_prof *prof; 8509 int tun, status; 8510 u64 entry_h; 8511 8512 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8513 hw->fdir_prof[flow]->cnt)) 8514 continue; 8515 8516 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8517 enum ice_flow_priority prio; 8518 8519 /* add this VSI to FDir profile for this flow */ 8520 prio = ICE_FLOW_PRIO_NORMAL; 8521 prof = hw->fdir_prof[flow]; 8522 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8523 prof->prof_id[tun], 8524 prof->vsi_h[0], vsi->idx, 8525 prio, prof->fdir_seg[tun], 8526 &entry_h); 8527 if (status) { 8528 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8529 vsi->idx, flow); 8530 continue; 8531 } 8532 8533 prof->entry_h[prof->cnt][tun] = entry_h; 8534 } 8535 8536 /* store VSI for filter replay and delete */ 8537 prof->vsi_h[prof->cnt] = vsi->idx; 8538 prof->cnt++; 8539 8540 added = true; 8541 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8542 flow); 8543 } 8544 8545 if (!added) 8546 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8547 8548 return 0; 8549 } 8550 8551 /** 8552 * ice_add_channel - add a channel by adding VSI 8553 * @pf: ptr to PF device 8554 * @sw_id: underlying HW switching element ID 8555 * @ch: ptr to channel structure 8556 * 8557 * Add a channel (VSI) using add_vsi and queue_map 8558 */ 8559 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8560 { 8561 struct device *dev = ice_pf_to_dev(pf); 8562 struct ice_vsi *vsi; 8563 8564 if (ch->type != ICE_VSI_CHNL) { 8565 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8566 return -EINVAL; 8567 } 8568 8569 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8570 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8571 dev_err(dev, "create chnl VSI failure\n"); 8572 return -EINVAL; 8573 } 8574 8575 ice_add_vsi_to_fdir(pf, vsi); 8576 8577 ch->sw_id = sw_id; 8578 ch->vsi_num = vsi->vsi_num; 8579 ch->info.mapping_flags = vsi->info.mapping_flags; 8580 ch->ch_vsi = vsi; 8581 /* set the back pointer of channel for newly created VSI */ 8582 vsi->ch = ch; 8583 8584 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8585 sizeof(vsi->info.q_mapping)); 8586 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8587 sizeof(vsi->info.tc_mapping)); 8588 8589 return 0; 8590 } 8591 8592 /** 8593 * ice_chnl_cfg_res 8594 * @vsi: the VSI being setup 8595 * @ch: ptr to channel structure 8596 * 8597 * Configure channel specific resources such as rings, vector. 8598 */ 8599 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8600 { 8601 int i; 8602 8603 for (i = 0; i < ch->num_txq; i++) { 8604 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8605 struct ice_ring_container *rc; 8606 struct ice_tx_ring *tx_ring; 8607 struct ice_rx_ring *rx_ring; 8608 8609 tx_ring = vsi->tx_rings[ch->base_q + i]; 8610 rx_ring = vsi->rx_rings[ch->base_q + i]; 8611 if (!tx_ring || !rx_ring) 8612 continue; 8613 8614 /* setup ring being channel enabled */ 8615 tx_ring->ch = ch; 8616 rx_ring->ch = ch; 8617 8618 /* following code block sets up vector specific attributes */ 8619 tx_q_vector = tx_ring->q_vector; 8620 rx_q_vector = rx_ring->q_vector; 8621 if (!tx_q_vector && !rx_q_vector) 8622 continue; 8623 8624 if (tx_q_vector) { 8625 tx_q_vector->ch = ch; 8626 /* setup Tx and Rx ITR setting if DIM is off */ 8627 rc = &tx_q_vector->tx; 8628 if (!ITR_IS_DYNAMIC(rc)) 8629 ice_write_itr(rc, rc->itr_setting); 8630 } 8631 if (rx_q_vector) { 8632 rx_q_vector->ch = ch; 8633 /* setup Tx and Rx ITR setting if DIM is off */ 8634 rc = &rx_q_vector->rx; 8635 if (!ITR_IS_DYNAMIC(rc)) 8636 ice_write_itr(rc, rc->itr_setting); 8637 } 8638 } 8639 8640 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8641 * GLINT_ITR register would have written to perform in-context 8642 * update, hence perform flush 8643 */ 8644 if (ch->num_txq || ch->num_rxq) 8645 ice_flush(&vsi->back->hw); 8646 } 8647 8648 /** 8649 * ice_cfg_chnl_all_res - configure channel resources 8650 * @vsi: pte to main_vsi 8651 * @ch: ptr to channel structure 8652 * 8653 * This function configures channel specific resources such as flow-director 8654 * counter index, and other resources such as queues, vectors, ITR settings 8655 */ 8656 static void 8657 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8658 { 8659 /* configure channel (aka ADQ) resources such as queues, vectors, 8660 * ITR settings for channel specific vectors and anything else 8661 */ 8662 ice_chnl_cfg_res(vsi, ch); 8663 } 8664 8665 /** 8666 * ice_setup_hw_channel - setup new channel 8667 * @pf: ptr to PF device 8668 * @vsi: the VSI being setup 8669 * @ch: ptr to channel structure 8670 * @sw_id: underlying HW switching element ID 8671 * @type: type of channel to be created (VMDq2/VF) 8672 * 8673 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8674 * and configures Tx rings accordingly 8675 */ 8676 static int 8677 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8678 struct ice_channel *ch, u16 sw_id, u8 type) 8679 { 8680 struct device *dev = ice_pf_to_dev(pf); 8681 int ret; 8682 8683 ch->base_q = vsi->next_base_q; 8684 ch->type = type; 8685 8686 ret = ice_add_channel(pf, sw_id, ch); 8687 if (ret) { 8688 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8689 return ret; 8690 } 8691 8692 /* configure/setup ADQ specific resources */ 8693 ice_cfg_chnl_all_res(vsi, ch); 8694 8695 /* make sure to update the next_base_q so that subsequent channel's 8696 * (aka ADQ) VSI queue map is correct 8697 */ 8698 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8699 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8700 ch->num_rxq); 8701 8702 return 0; 8703 } 8704 8705 /** 8706 * ice_setup_channel - setup new channel using uplink element 8707 * @pf: ptr to PF device 8708 * @vsi: the VSI being setup 8709 * @ch: ptr to channel structure 8710 * 8711 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8712 * and uplink switching element 8713 */ 8714 static bool 8715 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8716 struct ice_channel *ch) 8717 { 8718 struct device *dev = ice_pf_to_dev(pf); 8719 u16 sw_id; 8720 int ret; 8721 8722 if (vsi->type != ICE_VSI_PF) { 8723 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8724 return false; 8725 } 8726 8727 sw_id = pf->first_sw->sw_id; 8728 8729 /* create channel (VSI) */ 8730 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8731 if (ret) { 8732 dev_err(dev, "failed to setup hw_channel\n"); 8733 return false; 8734 } 8735 dev_dbg(dev, "successfully created channel()\n"); 8736 8737 return ch->ch_vsi ? true : false; 8738 } 8739 8740 /** 8741 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8742 * @vsi: VSI to be configured 8743 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8744 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8745 */ 8746 static int 8747 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8748 { 8749 int err; 8750 8751 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8752 if (err) 8753 return err; 8754 8755 return ice_set_max_bw_limit(vsi, max_tx_rate); 8756 } 8757 8758 /** 8759 * ice_create_q_channel - function to create channel 8760 * @vsi: VSI to be configured 8761 * @ch: ptr to channel (it contains channel specific params) 8762 * 8763 * This function creates channel (VSI) using num_queues specified by user, 8764 * reconfigs RSS if needed. 8765 */ 8766 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8767 { 8768 struct ice_pf *pf = vsi->back; 8769 struct device *dev; 8770 8771 if (!ch) 8772 return -EINVAL; 8773 8774 dev = ice_pf_to_dev(pf); 8775 if (!ch->num_txq || !ch->num_rxq) { 8776 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8777 return -EINVAL; 8778 } 8779 8780 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8781 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8782 vsi->cnt_q_avail, ch->num_txq); 8783 return -EINVAL; 8784 } 8785 8786 if (!ice_setup_channel(pf, vsi, ch)) { 8787 dev_info(dev, "Failed to setup channel\n"); 8788 return -EINVAL; 8789 } 8790 /* configure BW rate limit */ 8791 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8792 int ret; 8793 8794 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8795 ch->min_tx_rate); 8796 if (ret) 8797 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8798 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8799 else 8800 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8801 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8802 } 8803 8804 vsi->cnt_q_avail -= ch->num_txq; 8805 8806 return 0; 8807 } 8808 8809 /** 8810 * ice_rem_all_chnl_fltrs - removes all channel filters 8811 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8812 * 8813 * Remove all advanced switch filters only if they are channel specific 8814 * tc-flower based filter 8815 */ 8816 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8817 { 8818 struct ice_tc_flower_fltr *fltr; 8819 struct hlist_node *node; 8820 8821 /* to remove all channel filters, iterate an ordered list of filters */ 8822 hlist_for_each_entry_safe(fltr, node, 8823 &pf->tc_flower_fltr_list, 8824 tc_flower_node) { 8825 struct ice_rule_query_data rule; 8826 int status; 8827 8828 /* for now process only channel specific filters */ 8829 if (!ice_is_chnl_fltr(fltr)) 8830 continue; 8831 8832 rule.rid = fltr->rid; 8833 rule.rule_id = fltr->rule_id; 8834 rule.vsi_handle = fltr->dest_vsi_handle; 8835 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8836 if (status) { 8837 if (status == -ENOENT) 8838 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8839 rule.rule_id); 8840 else 8841 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8842 status); 8843 } else if (fltr->dest_vsi) { 8844 /* update advanced switch filter count */ 8845 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8846 u32 flags = fltr->flags; 8847 8848 fltr->dest_vsi->num_chnl_fltr--; 8849 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8850 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8851 pf->num_dmac_chnl_fltrs--; 8852 } 8853 } 8854 8855 hlist_del(&fltr->tc_flower_node); 8856 kfree(fltr); 8857 } 8858 } 8859 8860 /** 8861 * ice_remove_q_channels - Remove queue channels for the TCs 8862 * @vsi: VSI to be configured 8863 * @rem_fltr: delete advanced switch filter or not 8864 * 8865 * Remove queue channels for the TCs 8866 */ 8867 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8868 { 8869 struct ice_channel *ch, *ch_tmp; 8870 struct ice_pf *pf = vsi->back; 8871 int i; 8872 8873 /* remove all tc-flower based filter if they are channel filters only */ 8874 if (rem_fltr) 8875 ice_rem_all_chnl_fltrs(pf); 8876 8877 /* remove ntuple filters since queue configuration is being changed */ 8878 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8879 struct ice_hw *hw = &pf->hw; 8880 8881 mutex_lock(&hw->fdir_fltr_lock); 8882 ice_fdir_del_all_fltrs(vsi); 8883 mutex_unlock(&hw->fdir_fltr_lock); 8884 } 8885 8886 /* perform cleanup for channels if they exist */ 8887 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8888 struct ice_vsi *ch_vsi; 8889 8890 list_del(&ch->list); 8891 ch_vsi = ch->ch_vsi; 8892 if (!ch_vsi) { 8893 kfree(ch); 8894 continue; 8895 } 8896 8897 /* Reset queue contexts */ 8898 for (i = 0; i < ch->num_rxq; i++) { 8899 struct ice_tx_ring *tx_ring; 8900 struct ice_rx_ring *rx_ring; 8901 8902 tx_ring = vsi->tx_rings[ch->base_q + i]; 8903 rx_ring = vsi->rx_rings[ch->base_q + i]; 8904 if (tx_ring) { 8905 tx_ring->ch = NULL; 8906 if (tx_ring->q_vector) 8907 tx_ring->q_vector->ch = NULL; 8908 } 8909 if (rx_ring) { 8910 rx_ring->ch = NULL; 8911 if (rx_ring->q_vector) 8912 rx_ring->q_vector->ch = NULL; 8913 } 8914 } 8915 8916 /* Release FD resources for the channel VSI */ 8917 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8918 8919 /* clear the VSI from scheduler tree */ 8920 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8921 8922 /* Delete VSI from FW, PF and HW VSI arrays */ 8923 ice_vsi_delete(ch->ch_vsi); 8924 8925 /* free the channel */ 8926 kfree(ch); 8927 } 8928 8929 /* clear the channel VSI map which is stored in main VSI */ 8930 ice_for_each_chnl_tc(i) 8931 vsi->tc_map_vsi[i] = NULL; 8932 8933 /* reset main VSI's all TC information */ 8934 vsi->all_enatc = 0; 8935 vsi->all_numtc = 0; 8936 } 8937 8938 /** 8939 * ice_rebuild_channels - rebuild channel 8940 * @pf: ptr to PF 8941 * 8942 * Recreate channel VSIs and replay filters 8943 */ 8944 static int ice_rebuild_channels(struct ice_pf *pf) 8945 { 8946 struct device *dev = ice_pf_to_dev(pf); 8947 struct ice_vsi *main_vsi; 8948 bool rem_adv_fltr = true; 8949 struct ice_channel *ch; 8950 struct ice_vsi *vsi; 8951 int tc_idx = 1; 8952 int i, err; 8953 8954 main_vsi = ice_get_main_vsi(pf); 8955 if (!main_vsi) 8956 return 0; 8957 8958 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8959 main_vsi->old_numtc == 1) 8960 return 0; /* nothing to be done */ 8961 8962 /* reconfigure main VSI based on old value of TC and cached values 8963 * for MQPRIO opts 8964 */ 8965 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8966 if (err) { 8967 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8968 main_vsi->old_ena_tc, main_vsi->vsi_num); 8969 return err; 8970 } 8971 8972 /* rebuild ADQ VSIs */ 8973 ice_for_each_vsi(pf, i) { 8974 enum ice_vsi_type type; 8975 8976 vsi = pf->vsi[i]; 8977 if (!vsi || vsi->type != ICE_VSI_CHNL) 8978 continue; 8979 8980 type = vsi->type; 8981 8982 /* rebuild ADQ VSI */ 8983 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8984 if (err) { 8985 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8986 ice_vsi_type_str(type), vsi->idx, err); 8987 goto cleanup; 8988 } 8989 8990 /* Re-map HW VSI number, using VSI handle that has been 8991 * previously validated in ice_replay_vsi() call above 8992 */ 8993 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8994 8995 /* replay filters for the VSI */ 8996 err = ice_replay_vsi(&pf->hw, vsi->idx); 8997 if (err) { 8998 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8999 ice_vsi_type_str(type), err, vsi->idx); 9000 rem_adv_fltr = false; 9001 goto cleanup; 9002 } 9003 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9004 ice_vsi_type_str(type), vsi->idx); 9005 9006 /* store ADQ VSI at correct TC index in main VSI's 9007 * map of TC to VSI 9008 */ 9009 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9010 } 9011 9012 /* ADQ VSI(s) has been rebuilt successfully, so setup 9013 * channel for main VSI's Tx and Rx rings 9014 */ 9015 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9016 struct ice_vsi *ch_vsi; 9017 9018 ch_vsi = ch->ch_vsi; 9019 if (!ch_vsi) 9020 continue; 9021 9022 /* reconfig channel resources */ 9023 ice_cfg_chnl_all_res(main_vsi, ch); 9024 9025 /* replay BW rate limit if it is non-zero */ 9026 if (!ch->max_tx_rate && !ch->min_tx_rate) 9027 continue; 9028 9029 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9030 ch->min_tx_rate); 9031 if (err) 9032 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9033 err, ch->max_tx_rate, ch->min_tx_rate, 9034 ch_vsi->vsi_num); 9035 else 9036 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9037 ch->max_tx_rate, ch->min_tx_rate, 9038 ch_vsi->vsi_num); 9039 } 9040 9041 /* reconfig RSS for main VSI */ 9042 if (main_vsi->ch_rss_size) 9043 ice_vsi_cfg_rss_lut_key(main_vsi); 9044 9045 return 0; 9046 9047 cleanup: 9048 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9049 return err; 9050 } 9051 9052 /** 9053 * ice_create_q_channels - Add queue channel for the given TCs 9054 * @vsi: VSI to be configured 9055 * 9056 * Configures queue channel mapping to the given TCs 9057 */ 9058 static int ice_create_q_channels(struct ice_vsi *vsi) 9059 { 9060 struct ice_pf *pf = vsi->back; 9061 struct ice_channel *ch; 9062 int ret = 0, i; 9063 9064 ice_for_each_chnl_tc(i) { 9065 if (!(vsi->all_enatc & BIT(i))) 9066 continue; 9067 9068 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9069 if (!ch) { 9070 ret = -ENOMEM; 9071 goto err_free; 9072 } 9073 INIT_LIST_HEAD(&ch->list); 9074 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9075 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9076 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9077 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9078 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9079 9080 /* convert to Kbits/s */ 9081 if (ch->max_tx_rate) 9082 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9083 ICE_BW_KBPS_DIVISOR); 9084 if (ch->min_tx_rate) 9085 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9086 ICE_BW_KBPS_DIVISOR); 9087 9088 ret = ice_create_q_channel(vsi, ch); 9089 if (ret) { 9090 dev_err(ice_pf_to_dev(pf), 9091 "failed creating channel TC:%d\n", i); 9092 kfree(ch); 9093 goto err_free; 9094 } 9095 list_add_tail(&ch->list, &vsi->ch_list); 9096 vsi->tc_map_vsi[i] = ch->ch_vsi; 9097 dev_dbg(ice_pf_to_dev(pf), 9098 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9099 } 9100 return 0; 9101 9102 err_free: 9103 ice_remove_q_channels(vsi, false); 9104 9105 return ret; 9106 } 9107 9108 /** 9109 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9110 * @netdev: net device to configure 9111 * @type_data: TC offload data 9112 */ 9113 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9114 { 9115 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9116 struct ice_netdev_priv *np = netdev_priv(netdev); 9117 struct ice_vsi *vsi = np->vsi; 9118 struct ice_pf *pf = vsi->back; 9119 u16 mode, ena_tc_qdisc = 0; 9120 int cur_txq, cur_rxq; 9121 u8 hw = 0, num_tcf; 9122 struct device *dev; 9123 int ret, i; 9124 9125 dev = ice_pf_to_dev(pf); 9126 num_tcf = mqprio_qopt->qopt.num_tc; 9127 hw = mqprio_qopt->qopt.hw; 9128 mode = mqprio_qopt->mode; 9129 if (!hw) { 9130 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9131 vsi->ch_rss_size = 0; 9132 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9133 goto config_tcf; 9134 } 9135 9136 /* Generate queue region map for number of TCF requested */ 9137 for (i = 0; i < num_tcf; i++) 9138 ena_tc_qdisc |= BIT(i); 9139 9140 switch (mode) { 9141 case TC_MQPRIO_MODE_CHANNEL: 9142 9143 if (pf->hw.port_info->is_custom_tx_enabled) { 9144 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9145 return -EBUSY; 9146 } 9147 ice_tear_down_devlink_rate_tree(pf); 9148 9149 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9150 if (ret) { 9151 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9152 ret); 9153 return ret; 9154 } 9155 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9156 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9157 /* don't assume state of hw_tc_offload during driver load 9158 * and set the flag for TC flower filter if hw_tc_offload 9159 * already ON 9160 */ 9161 if (vsi->netdev->features & NETIF_F_HW_TC) 9162 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9163 break; 9164 default: 9165 return -EINVAL; 9166 } 9167 9168 config_tcf: 9169 9170 /* Requesting same TCF configuration as already enabled */ 9171 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9172 mode != TC_MQPRIO_MODE_CHANNEL) 9173 return 0; 9174 9175 /* Pause VSI queues */ 9176 ice_dis_vsi(vsi, true); 9177 9178 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9179 ice_remove_q_channels(vsi, true); 9180 9181 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9182 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9183 num_online_cpus()); 9184 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9185 num_online_cpus()); 9186 } else { 9187 /* logic to rebuild VSI, same like ethtool -L */ 9188 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9189 9190 for (i = 0; i < num_tcf; i++) { 9191 if (!(ena_tc_qdisc & BIT(i))) 9192 continue; 9193 9194 offset = vsi->mqprio_qopt.qopt.offset[i]; 9195 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9196 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9197 } 9198 vsi->req_txq = offset + qcount_tx; 9199 vsi->req_rxq = offset + qcount_rx; 9200 9201 /* store away original rss_size info, so that it gets reused 9202 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9203 * determine, what should be the rss_sizefor main VSI 9204 */ 9205 vsi->orig_rss_size = vsi->rss_size; 9206 } 9207 9208 /* save current values of Tx and Rx queues before calling VSI rebuild 9209 * for fallback option 9210 */ 9211 cur_txq = vsi->num_txq; 9212 cur_rxq = vsi->num_rxq; 9213 9214 /* proceed with rebuild main VSI using correct number of queues */ 9215 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9216 if (ret) { 9217 /* fallback to current number of queues */ 9218 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9219 vsi->req_txq = cur_txq; 9220 vsi->req_rxq = cur_rxq; 9221 clear_bit(ICE_RESET_FAILED, pf->state); 9222 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9223 dev_err(dev, "Rebuild of main VSI failed again\n"); 9224 return ret; 9225 } 9226 } 9227 9228 vsi->all_numtc = num_tcf; 9229 vsi->all_enatc = ena_tc_qdisc; 9230 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9231 if (ret) { 9232 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9233 vsi->vsi_num); 9234 goto exit; 9235 } 9236 9237 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9238 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9239 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9240 9241 /* set TC0 rate limit if specified */ 9242 if (max_tx_rate || min_tx_rate) { 9243 /* convert to Kbits/s */ 9244 if (max_tx_rate) 9245 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9246 if (min_tx_rate) 9247 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9248 9249 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9250 if (!ret) { 9251 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9252 max_tx_rate, min_tx_rate, vsi->vsi_num); 9253 } else { 9254 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9255 max_tx_rate, min_tx_rate, vsi->vsi_num); 9256 goto exit; 9257 } 9258 } 9259 ret = ice_create_q_channels(vsi); 9260 if (ret) { 9261 netdev_err(netdev, "failed configuring queue channels\n"); 9262 goto exit; 9263 } else { 9264 netdev_dbg(netdev, "successfully configured channels\n"); 9265 } 9266 } 9267 9268 if (vsi->ch_rss_size) 9269 ice_vsi_cfg_rss_lut_key(vsi); 9270 9271 exit: 9272 /* if error, reset the all_numtc and all_enatc */ 9273 if (ret) { 9274 vsi->all_numtc = 0; 9275 vsi->all_enatc = 0; 9276 } 9277 /* resume VSI */ 9278 ice_ena_vsi(vsi, true); 9279 9280 return ret; 9281 } 9282 9283 static LIST_HEAD(ice_block_cb_list); 9284 9285 static int 9286 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9287 void *type_data) 9288 { 9289 struct ice_netdev_priv *np = netdev_priv(netdev); 9290 struct ice_pf *pf = np->vsi->back; 9291 bool locked = false; 9292 int err; 9293 9294 switch (type) { 9295 case TC_SETUP_BLOCK: 9296 return flow_block_cb_setup_simple(type_data, 9297 &ice_block_cb_list, 9298 ice_setup_tc_block_cb, 9299 np, np, true); 9300 case TC_SETUP_QDISC_MQPRIO: 9301 if (ice_is_eswitch_mode_switchdev(pf)) { 9302 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9303 return -EOPNOTSUPP; 9304 } 9305 9306 if (pf->adev) { 9307 mutex_lock(&pf->adev_mutex); 9308 device_lock(&pf->adev->dev); 9309 locked = true; 9310 if (pf->adev->dev.driver) { 9311 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9312 err = -EBUSY; 9313 goto adev_unlock; 9314 } 9315 } 9316 9317 /* setup traffic classifier for receive side */ 9318 mutex_lock(&pf->tc_mutex); 9319 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9320 mutex_unlock(&pf->tc_mutex); 9321 9322 adev_unlock: 9323 if (locked) { 9324 device_unlock(&pf->adev->dev); 9325 mutex_unlock(&pf->adev_mutex); 9326 } 9327 return err; 9328 default: 9329 return -EOPNOTSUPP; 9330 } 9331 return -EOPNOTSUPP; 9332 } 9333 9334 static struct ice_indr_block_priv * 9335 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9336 struct net_device *netdev) 9337 { 9338 struct ice_indr_block_priv *cb_priv; 9339 9340 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9341 if (!cb_priv->netdev) 9342 return NULL; 9343 if (cb_priv->netdev == netdev) 9344 return cb_priv; 9345 } 9346 return NULL; 9347 } 9348 9349 static int 9350 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9351 void *indr_priv) 9352 { 9353 struct ice_indr_block_priv *priv = indr_priv; 9354 struct ice_netdev_priv *np = priv->np; 9355 9356 switch (type) { 9357 case TC_SETUP_CLSFLOWER: 9358 return ice_setup_tc_cls_flower(np, priv->netdev, 9359 (struct flow_cls_offload *) 9360 type_data); 9361 default: 9362 return -EOPNOTSUPP; 9363 } 9364 } 9365 9366 static int 9367 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9368 struct ice_netdev_priv *np, 9369 struct flow_block_offload *f, void *data, 9370 void (*cleanup)(struct flow_block_cb *block_cb)) 9371 { 9372 struct ice_indr_block_priv *indr_priv; 9373 struct flow_block_cb *block_cb; 9374 9375 if (!ice_is_tunnel_supported(netdev) && 9376 !(is_vlan_dev(netdev) && 9377 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9378 return -EOPNOTSUPP; 9379 9380 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9381 return -EOPNOTSUPP; 9382 9383 switch (f->command) { 9384 case FLOW_BLOCK_BIND: 9385 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9386 if (indr_priv) 9387 return -EEXIST; 9388 9389 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9390 if (!indr_priv) 9391 return -ENOMEM; 9392 9393 indr_priv->netdev = netdev; 9394 indr_priv->np = np; 9395 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9396 9397 block_cb = 9398 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9399 indr_priv, indr_priv, 9400 ice_rep_indr_tc_block_unbind, 9401 f, netdev, sch, data, np, 9402 cleanup); 9403 9404 if (IS_ERR(block_cb)) { 9405 list_del(&indr_priv->list); 9406 kfree(indr_priv); 9407 return PTR_ERR(block_cb); 9408 } 9409 flow_block_cb_add(block_cb, f); 9410 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9411 break; 9412 case FLOW_BLOCK_UNBIND: 9413 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9414 if (!indr_priv) 9415 return -ENOENT; 9416 9417 block_cb = flow_block_cb_lookup(f->block, 9418 ice_indr_setup_block_cb, 9419 indr_priv); 9420 if (!block_cb) 9421 return -ENOENT; 9422 9423 flow_indr_block_cb_remove(block_cb, f); 9424 9425 list_del(&block_cb->driver_list); 9426 break; 9427 default: 9428 return -EOPNOTSUPP; 9429 } 9430 return 0; 9431 } 9432 9433 static int 9434 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9435 void *cb_priv, enum tc_setup_type type, void *type_data, 9436 void *data, 9437 void (*cleanup)(struct flow_block_cb *block_cb)) 9438 { 9439 switch (type) { 9440 case TC_SETUP_BLOCK: 9441 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9442 data, cleanup); 9443 9444 default: 9445 return -EOPNOTSUPP; 9446 } 9447 } 9448 9449 /** 9450 * ice_open - Called when a network interface becomes active 9451 * @netdev: network interface device structure 9452 * 9453 * The open entry point is called when a network interface is made 9454 * active by the system (IFF_UP). At this point all resources needed 9455 * for transmit and receive operations are allocated, the interrupt 9456 * handler is registered with the OS, the netdev watchdog is enabled, 9457 * and the stack is notified that the interface is ready. 9458 * 9459 * Returns 0 on success, negative value on failure 9460 */ 9461 int ice_open(struct net_device *netdev) 9462 { 9463 struct ice_netdev_priv *np = netdev_priv(netdev); 9464 struct ice_pf *pf = np->vsi->back; 9465 9466 if (ice_is_reset_in_progress(pf->state)) { 9467 netdev_err(netdev, "can't open net device while reset is in progress"); 9468 return -EBUSY; 9469 } 9470 9471 return ice_open_internal(netdev); 9472 } 9473 9474 /** 9475 * ice_open_internal - Called when a network interface becomes active 9476 * @netdev: network interface device structure 9477 * 9478 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9479 * handling routine 9480 * 9481 * Returns 0 on success, negative value on failure 9482 */ 9483 int ice_open_internal(struct net_device *netdev) 9484 { 9485 struct ice_netdev_priv *np = netdev_priv(netdev); 9486 struct ice_vsi *vsi = np->vsi; 9487 struct ice_pf *pf = vsi->back; 9488 struct ice_port_info *pi; 9489 int err; 9490 9491 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9492 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9493 return -EIO; 9494 } 9495 9496 netif_carrier_off(netdev); 9497 9498 pi = vsi->port_info; 9499 err = ice_update_link_info(pi); 9500 if (err) { 9501 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9502 return err; 9503 } 9504 9505 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9506 9507 /* Set PHY if there is media, otherwise, turn off PHY */ 9508 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9509 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9510 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9511 err = ice_init_phy_user_cfg(pi); 9512 if (err) { 9513 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9514 err); 9515 return err; 9516 } 9517 } 9518 9519 err = ice_configure_phy(vsi); 9520 if (err) { 9521 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9522 err); 9523 return err; 9524 } 9525 } else { 9526 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9527 ice_set_link(vsi, false); 9528 } 9529 9530 err = ice_vsi_open(vsi); 9531 if (err) 9532 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9533 vsi->vsi_num, vsi->vsw->sw_id); 9534 9535 /* Update existing tunnels information */ 9536 udp_tunnel_get_rx_info(netdev); 9537 9538 return err; 9539 } 9540 9541 /** 9542 * ice_stop - Disables a network interface 9543 * @netdev: network interface device structure 9544 * 9545 * The stop entry point is called when an interface is de-activated by the OS, 9546 * and the netdevice enters the DOWN state. The hardware is still under the 9547 * driver's control, but the netdev interface is disabled. 9548 * 9549 * Returns success only - not allowed to fail 9550 */ 9551 int ice_stop(struct net_device *netdev) 9552 { 9553 struct ice_netdev_priv *np = netdev_priv(netdev); 9554 struct ice_vsi *vsi = np->vsi; 9555 struct ice_pf *pf = vsi->back; 9556 9557 if (ice_is_reset_in_progress(pf->state)) { 9558 netdev_err(netdev, "can't stop net device while reset is in progress"); 9559 return -EBUSY; 9560 } 9561 9562 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9563 int link_err = ice_force_phys_link_state(vsi, false); 9564 9565 if (link_err) { 9566 if (link_err == -ENOMEDIUM) 9567 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9568 vsi->vsi_num); 9569 else 9570 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9571 vsi->vsi_num, link_err); 9572 9573 ice_vsi_close(vsi); 9574 return -EIO; 9575 } 9576 } 9577 9578 ice_vsi_close(vsi); 9579 9580 return 0; 9581 } 9582 9583 /** 9584 * ice_features_check - Validate encapsulated packet conforms to limits 9585 * @skb: skb buffer 9586 * @netdev: This port's netdev 9587 * @features: Offload features that the stack believes apply 9588 */ 9589 static netdev_features_t 9590 ice_features_check(struct sk_buff *skb, 9591 struct net_device __always_unused *netdev, 9592 netdev_features_t features) 9593 { 9594 bool gso = skb_is_gso(skb); 9595 size_t len; 9596 9597 /* No point in doing any of this if neither checksum nor GSO are 9598 * being requested for this frame. We can rule out both by just 9599 * checking for CHECKSUM_PARTIAL 9600 */ 9601 if (skb->ip_summed != CHECKSUM_PARTIAL) 9602 return features; 9603 9604 /* We cannot support GSO if the MSS is going to be less than 9605 * 64 bytes. If it is then we need to drop support for GSO. 9606 */ 9607 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9608 features &= ~NETIF_F_GSO_MASK; 9609 9610 len = skb_network_offset(skb); 9611 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9612 goto out_rm_features; 9613 9614 len = skb_network_header_len(skb); 9615 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9616 goto out_rm_features; 9617 9618 if (skb->encapsulation) { 9619 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9620 * the case of IPIP frames, the transport header pointer is 9621 * after the inner header! So check to make sure that this 9622 * is a GRE or UDP_TUNNEL frame before doing that math. 9623 */ 9624 if (gso && (skb_shinfo(skb)->gso_type & 9625 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9626 len = skb_inner_network_header(skb) - 9627 skb_transport_header(skb); 9628 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9629 goto out_rm_features; 9630 } 9631 9632 len = skb_inner_network_header_len(skb); 9633 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9634 goto out_rm_features; 9635 } 9636 9637 return features; 9638 out_rm_features: 9639 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9640 } 9641 9642 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9643 .ndo_open = ice_open, 9644 .ndo_stop = ice_stop, 9645 .ndo_start_xmit = ice_start_xmit, 9646 .ndo_set_mac_address = ice_set_mac_address, 9647 .ndo_validate_addr = eth_validate_addr, 9648 .ndo_change_mtu = ice_change_mtu, 9649 .ndo_get_stats64 = ice_get_stats64, 9650 .ndo_tx_timeout = ice_tx_timeout, 9651 .ndo_bpf = ice_xdp_safe_mode, 9652 }; 9653 9654 static const struct net_device_ops ice_netdev_ops = { 9655 .ndo_open = ice_open, 9656 .ndo_stop = ice_stop, 9657 .ndo_start_xmit = ice_start_xmit, 9658 .ndo_select_queue = ice_select_queue, 9659 .ndo_features_check = ice_features_check, 9660 .ndo_fix_features = ice_fix_features, 9661 .ndo_set_rx_mode = ice_set_rx_mode, 9662 .ndo_set_mac_address = ice_set_mac_address, 9663 .ndo_validate_addr = eth_validate_addr, 9664 .ndo_change_mtu = ice_change_mtu, 9665 .ndo_get_stats64 = ice_get_stats64, 9666 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9667 .ndo_eth_ioctl = ice_eth_ioctl, 9668 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9669 .ndo_set_vf_mac = ice_set_vf_mac, 9670 .ndo_get_vf_config = ice_get_vf_cfg, 9671 .ndo_set_vf_trust = ice_set_vf_trust, 9672 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9673 .ndo_set_vf_link_state = ice_set_vf_link_state, 9674 .ndo_get_vf_stats = ice_get_vf_stats, 9675 .ndo_set_vf_rate = ice_set_vf_bw, 9676 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9677 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9678 .ndo_setup_tc = ice_setup_tc, 9679 .ndo_set_features = ice_set_features, 9680 .ndo_bridge_getlink = ice_bridge_getlink, 9681 .ndo_bridge_setlink = ice_bridge_setlink, 9682 .ndo_fdb_add = ice_fdb_add, 9683 .ndo_fdb_del = ice_fdb_del, 9684 #ifdef CONFIG_RFS_ACCEL 9685 .ndo_rx_flow_steer = ice_rx_flow_steer, 9686 #endif 9687 .ndo_tx_timeout = ice_tx_timeout, 9688 .ndo_bpf = ice_xdp, 9689 .ndo_xdp_xmit = ice_xdp_xmit, 9690 .ndo_xsk_wakeup = ice_xsk_wakeup, 9691 }; 9692