1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/devlink_port.h" 18 #include "ice_hwmon.h" 19 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 20 * ice tracepoint functions. This must be done exactly once across the 21 * ice driver. 22 */ 23 #define CREATE_TRACE_POINTS 24 #include "ice_trace.h" 25 #include "ice_eswitch.h" 26 #include "ice_tc_lib.h" 27 #include "ice_vsi_vlan_ops.h" 28 #include <net/xdp_sock_drv.h> 29 30 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 31 static const char ice_driver_string[] = DRV_SUMMARY; 32 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 33 34 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 35 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 36 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 37 38 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_LICENSE("GPL v2"); 41 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 42 43 static int debug = -1; 44 module_param(debug, int, 0644); 45 #ifndef CONFIG_DYNAMIC_DEBUG 46 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 47 #else 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 49 #endif /* !CONFIG_DYNAMIC_DEBUG */ 50 51 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 52 EXPORT_SYMBOL(ice_xdp_locking_key); 53 54 /** 55 * ice_hw_to_dev - Get device pointer from the hardware structure 56 * @hw: pointer to the device HW structure 57 * 58 * Used to access the device pointer from compilation units which can't easily 59 * include the definition of struct ice_pf without leading to circular header 60 * dependencies. 61 */ 62 struct device *ice_hw_to_dev(struct ice_hw *hw) 63 { 64 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 65 66 return &pf->pdev->dev; 67 } 68 69 static struct workqueue_struct *ice_wq; 70 struct workqueue_struct *ice_lag_wq; 71 static const struct net_device_ops ice_netdev_safe_mode_ops; 72 static const struct net_device_ops ice_netdev_ops; 73 74 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 75 76 static void ice_vsi_release_all(struct ice_pf *pf); 77 78 static int ice_rebuild_channels(struct ice_pf *pf); 79 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 80 81 static int 82 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 83 void *cb_priv, enum tc_setup_type type, void *type_data, 84 void *data, 85 void (*cleanup)(struct flow_block_cb *block_cb)); 86 87 bool netif_is_ice(const struct net_device *dev) 88 { 89 return dev && (dev->netdev_ops == &ice_netdev_ops); 90 } 91 92 /** 93 * ice_get_tx_pending - returns number of Tx descriptors not processed 94 * @ring: the ring of descriptors 95 */ 96 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 97 { 98 u16 head, tail; 99 100 head = ring->next_to_clean; 101 tail = ring->next_to_use; 102 103 if (head != tail) 104 return (head < tail) ? 105 tail - head : (tail + ring->count - head); 106 return 0; 107 } 108 109 /** 110 * ice_check_for_hang_subtask - check for and recover hung queues 111 * @pf: pointer to PF struct 112 */ 113 static void ice_check_for_hang_subtask(struct ice_pf *pf) 114 { 115 struct ice_vsi *vsi = NULL; 116 struct ice_hw *hw; 117 unsigned int i; 118 int packets; 119 u32 v; 120 121 ice_for_each_vsi(pf, v) 122 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 123 vsi = pf->vsi[v]; 124 break; 125 } 126 127 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 128 return; 129 130 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 131 return; 132 133 hw = &vsi->back->hw; 134 135 ice_for_each_txq(vsi, i) { 136 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 137 struct ice_ring_stats *ring_stats; 138 139 if (!tx_ring) 140 continue; 141 if (ice_ring_ch_enabled(tx_ring)) 142 continue; 143 144 ring_stats = tx_ring->ring_stats; 145 if (!ring_stats) 146 continue; 147 148 if (tx_ring->desc) { 149 /* If packet counter has not changed the queue is 150 * likely stalled, so force an interrupt for this 151 * queue. 152 * 153 * prev_pkt would be negative if there was no 154 * pending work. 155 */ 156 packets = ring_stats->stats.pkts & INT_MAX; 157 if (ring_stats->tx_stats.prev_pkt == packets) { 158 /* Trigger sw interrupt to revive the queue */ 159 ice_trigger_sw_intr(hw, tx_ring->q_vector); 160 continue; 161 } 162 163 /* Memory barrier between read of packet count and call 164 * to ice_get_tx_pending() 165 */ 166 smp_rmb(); 167 ring_stats->tx_stats.prev_pkt = 168 ice_get_tx_pending(tx_ring) ? packets : -1; 169 } 170 } 171 } 172 173 /** 174 * ice_init_mac_fltr - Set initial MAC filters 175 * @pf: board private structure 176 * 177 * Set initial set of MAC filters for PF VSI; configure filters for permanent 178 * address and broadcast address. If an error is encountered, netdevice will be 179 * unregistered. 180 */ 181 static int ice_init_mac_fltr(struct ice_pf *pf) 182 { 183 struct ice_vsi *vsi; 184 u8 *perm_addr; 185 186 vsi = ice_get_main_vsi(pf); 187 if (!vsi) 188 return -EINVAL; 189 190 perm_addr = vsi->port_info->mac.perm_addr; 191 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 192 } 193 194 /** 195 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 196 * @netdev: the net device on which the sync is happening 197 * @addr: MAC address to sync 198 * 199 * This is a callback function which is called by the in kernel device sync 200 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 201 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 202 * MAC filters from the hardware. 203 */ 204 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 205 { 206 struct ice_netdev_priv *np = netdev_priv(netdev); 207 struct ice_vsi *vsi = np->vsi; 208 209 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 210 ICE_FWD_TO_VSI)) 211 return -EINVAL; 212 213 return 0; 214 } 215 216 /** 217 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 218 * @netdev: the net device on which the unsync is happening 219 * @addr: MAC address to unsync 220 * 221 * This is a callback function which is called by the in kernel device unsync 222 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 223 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 224 * delete the MAC filters from the hardware. 225 */ 226 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 227 { 228 struct ice_netdev_priv *np = netdev_priv(netdev); 229 struct ice_vsi *vsi = np->vsi; 230 231 /* Under some circumstances, we might receive a request to delete our 232 * own device address from our uc list. Because we store the device 233 * address in the VSI's MAC filter list, we need to ignore such 234 * requests and not delete our device address from this list. 235 */ 236 if (ether_addr_equal(addr, netdev->dev_addr)) 237 return 0; 238 239 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 240 ICE_FWD_TO_VSI)) 241 return -EINVAL; 242 243 return 0; 244 } 245 246 /** 247 * ice_vsi_fltr_changed - check if filter state changed 248 * @vsi: VSI to be checked 249 * 250 * returns true if filter state has changed, false otherwise. 251 */ 252 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 253 { 254 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 255 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 256 } 257 258 /** 259 * ice_set_promisc - Enable promiscuous mode for a given PF 260 * @vsi: the VSI being configured 261 * @promisc_m: mask of promiscuous config bits 262 * 263 */ 264 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 265 { 266 int status; 267 268 if (vsi->type != ICE_VSI_PF) 269 return 0; 270 271 if (ice_vsi_has_non_zero_vlans(vsi)) { 272 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 273 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 274 promisc_m); 275 } else { 276 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 277 promisc_m, 0); 278 } 279 if (status && status != -EEXIST) 280 return status; 281 282 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 283 vsi->vsi_num, promisc_m); 284 return 0; 285 } 286 287 /** 288 * ice_clear_promisc - Disable promiscuous mode for a given PF 289 * @vsi: the VSI being configured 290 * @promisc_m: mask of promiscuous config bits 291 * 292 */ 293 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 294 { 295 int status; 296 297 if (vsi->type != ICE_VSI_PF) 298 return 0; 299 300 if (ice_vsi_has_non_zero_vlans(vsi)) { 301 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 302 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 303 promisc_m); 304 } else { 305 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 306 promisc_m, 0); 307 } 308 309 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 310 vsi->vsi_num, promisc_m); 311 return status; 312 } 313 314 /** 315 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 316 * @vsi: ptr to the VSI 317 * 318 * Push any outstanding VSI filter changes through the AdminQ. 319 */ 320 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 321 { 322 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 323 struct device *dev = ice_pf_to_dev(vsi->back); 324 struct net_device *netdev = vsi->netdev; 325 bool promisc_forced_on = false; 326 struct ice_pf *pf = vsi->back; 327 struct ice_hw *hw = &pf->hw; 328 u32 changed_flags = 0; 329 int err; 330 331 if (!vsi->netdev) 332 return -EINVAL; 333 334 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 335 usleep_range(1000, 2000); 336 337 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 338 vsi->current_netdev_flags = vsi->netdev->flags; 339 340 INIT_LIST_HEAD(&vsi->tmp_sync_list); 341 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 342 343 if (ice_vsi_fltr_changed(vsi)) { 344 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 345 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 346 347 /* grab the netdev's addr_list_lock */ 348 netif_addr_lock_bh(netdev); 349 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 350 ice_add_mac_to_unsync_list); 351 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 /* our temp lists are populated. release lock */ 354 netif_addr_unlock_bh(netdev); 355 } 356 357 /* Remove MAC addresses in the unsync list */ 358 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 359 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 360 if (err) { 361 netdev_err(netdev, "Failed to delete MAC filters\n"); 362 /* if we failed because of alloc failures, just bail */ 363 if (err == -ENOMEM) 364 goto out; 365 } 366 367 /* Add MAC addresses in the sync list */ 368 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 369 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 370 /* If filter is added successfully or already exists, do not go into 371 * 'if' condition and report it as error. Instead continue processing 372 * rest of the function. 373 */ 374 if (err && err != -EEXIST) { 375 netdev_err(netdev, "Failed to add MAC filters\n"); 376 /* If there is no more space for new umac filters, VSI 377 * should go into promiscuous mode. There should be some 378 * space reserved for promiscuous filters. 379 */ 380 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 381 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 382 vsi->state)) { 383 promisc_forced_on = true; 384 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 385 vsi->vsi_num); 386 } else { 387 goto out; 388 } 389 } 390 err = 0; 391 /* check for changes in promiscuous modes */ 392 if (changed_flags & IFF_ALLMULTI) { 393 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 394 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 395 if (err) { 396 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 397 goto out_promisc; 398 } 399 } else { 400 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 401 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 402 if (err) { 403 vsi->current_netdev_flags |= IFF_ALLMULTI; 404 goto out_promisc; 405 } 406 } 407 } 408 409 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 410 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 411 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 412 if (vsi->current_netdev_flags & IFF_PROMISC) { 413 /* Apply Rx filter rule to get traffic from wire */ 414 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 415 err = ice_set_dflt_vsi(vsi); 416 if (err && err != -EEXIST) { 417 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 418 err, vsi->vsi_num); 419 vsi->current_netdev_flags &= 420 ~IFF_PROMISC; 421 goto out_promisc; 422 } 423 err = 0; 424 vlan_ops->dis_rx_filtering(vsi); 425 426 /* promiscuous mode implies allmulticast so 427 * that VSIs that are in promiscuous mode are 428 * subscribed to multicast packets coming to 429 * the port 430 */ 431 err = ice_set_promisc(vsi, 432 ICE_MCAST_PROMISC_BITS); 433 if (err) 434 goto out_promisc; 435 } 436 } else { 437 /* Clear Rx filter to remove traffic from wire */ 438 if (ice_is_vsi_dflt_vsi(vsi)) { 439 err = ice_clear_dflt_vsi(vsi); 440 if (err) { 441 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 442 err, vsi->vsi_num); 443 vsi->current_netdev_flags |= 444 IFF_PROMISC; 445 goto out_promisc; 446 } 447 if (vsi->netdev->features & 448 NETIF_F_HW_VLAN_CTAG_FILTER) 449 vlan_ops->ena_rx_filtering(vsi); 450 } 451 452 /* disable allmulti here, but only if allmulti is not 453 * still enabled for the netdev 454 */ 455 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 456 err = ice_clear_promisc(vsi, 457 ICE_MCAST_PROMISC_BITS); 458 if (err) { 459 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 460 err, vsi->vsi_num); 461 } 462 } 463 } 464 } 465 goto exit; 466 467 out_promisc: 468 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 469 goto exit; 470 out: 471 /* if something went wrong then set the changed flag so we try again */ 472 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 473 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 474 exit: 475 clear_bit(ICE_CFG_BUSY, vsi->state); 476 return err; 477 } 478 479 /** 480 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 481 * @pf: board private structure 482 */ 483 static void ice_sync_fltr_subtask(struct ice_pf *pf) 484 { 485 int v; 486 487 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 488 return; 489 490 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 491 492 ice_for_each_vsi(pf, v) 493 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 494 ice_vsi_sync_fltr(pf->vsi[v])) { 495 /* come back and try again later */ 496 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 497 break; 498 } 499 } 500 501 /** 502 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 503 * @pf: the PF 504 * @locked: is the rtnl_lock already held 505 */ 506 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 507 { 508 int node; 509 int v; 510 511 ice_for_each_vsi(pf, v) 512 if (pf->vsi[v]) 513 ice_dis_vsi(pf->vsi[v], locked); 514 515 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 516 pf->pf_agg_node[node].num_vsis = 0; 517 518 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 519 pf->vf_agg_node[node].num_vsis = 0; 520 } 521 522 /** 523 * ice_clear_sw_switch_recipes - clear switch recipes 524 * @pf: board private structure 525 * 526 * Mark switch recipes as not created in sw structures. There are cases where 527 * rules (especially advanced rules) need to be restored, either re-read from 528 * hardware or added again. For example after the reset. 'recp_created' flag 529 * prevents from doing that and need to be cleared upfront. 530 */ 531 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 532 { 533 struct ice_sw_recipe *recp; 534 u8 i; 535 536 recp = pf->hw.switch_info->recp_list; 537 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 538 recp[i].recp_created = false; 539 } 540 541 /** 542 * ice_prepare_for_reset - prep for reset 543 * @pf: board private structure 544 * @reset_type: reset type requested 545 * 546 * Inform or close all dependent features in prep for reset. 547 */ 548 static void 549 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 550 { 551 struct ice_hw *hw = &pf->hw; 552 struct ice_vsi *vsi; 553 struct ice_vf *vf; 554 unsigned int bkt; 555 556 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 557 558 /* already prepared for reset */ 559 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 560 return; 561 562 ice_unplug_aux_dev(pf); 563 564 /* Notify VFs of impending reset */ 565 if (ice_check_sq_alive(hw, &hw->mailboxq)) 566 ice_vc_notify_reset(pf); 567 568 /* Disable VFs until reset is completed */ 569 mutex_lock(&pf->vfs.table_lock); 570 ice_for_each_vf(pf, bkt, vf) 571 ice_set_vf_state_dis(vf); 572 mutex_unlock(&pf->vfs.table_lock); 573 574 if (ice_is_eswitch_mode_switchdev(pf)) { 575 if (reset_type != ICE_RESET_PFR) 576 ice_clear_sw_switch_recipes(pf); 577 } 578 579 /* release ADQ specific HW and SW resources */ 580 vsi = ice_get_main_vsi(pf); 581 if (!vsi) 582 goto skip; 583 584 /* to be on safe side, reset orig_rss_size so that normal flow 585 * of deciding rss_size can take precedence 586 */ 587 vsi->orig_rss_size = 0; 588 589 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 590 if (reset_type == ICE_RESET_PFR) { 591 vsi->old_ena_tc = vsi->all_enatc; 592 vsi->old_numtc = vsi->all_numtc; 593 } else { 594 ice_remove_q_channels(vsi, true); 595 596 /* for other reset type, do not support channel rebuild 597 * hence reset needed info 598 */ 599 vsi->old_ena_tc = 0; 600 vsi->all_enatc = 0; 601 vsi->old_numtc = 0; 602 vsi->all_numtc = 0; 603 vsi->req_txq = 0; 604 vsi->req_rxq = 0; 605 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 606 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 607 } 608 } 609 skip: 610 611 /* clear SW filtering DB */ 612 ice_clear_hw_tbls(hw); 613 /* disable the VSIs and their queues that are not already DOWN */ 614 ice_pf_dis_all_vsi(pf, false); 615 616 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 617 ice_ptp_prepare_for_reset(pf, reset_type); 618 619 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 620 ice_gnss_exit(pf); 621 622 if (hw->port_info) 623 ice_sched_clear_port(hw->port_info); 624 625 ice_shutdown_all_ctrlq(hw); 626 627 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 628 } 629 630 /** 631 * ice_do_reset - Initiate one of many types of resets 632 * @pf: board private structure 633 * @reset_type: reset type requested before this function was called. 634 */ 635 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 636 { 637 struct device *dev = ice_pf_to_dev(pf); 638 struct ice_hw *hw = &pf->hw; 639 640 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 641 642 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 643 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 644 reset_type = ICE_RESET_CORER; 645 } 646 647 ice_prepare_for_reset(pf, reset_type); 648 649 /* trigger the reset */ 650 if (ice_reset(hw, reset_type)) { 651 dev_err(dev, "reset %d failed\n", reset_type); 652 set_bit(ICE_RESET_FAILED, pf->state); 653 clear_bit(ICE_RESET_OICR_RECV, pf->state); 654 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 655 clear_bit(ICE_PFR_REQ, pf->state); 656 clear_bit(ICE_CORER_REQ, pf->state); 657 clear_bit(ICE_GLOBR_REQ, pf->state); 658 wake_up(&pf->reset_wait_queue); 659 return; 660 } 661 662 /* PFR is a bit of a special case because it doesn't result in an OICR 663 * interrupt. So for PFR, rebuild after the reset and clear the reset- 664 * associated state bits. 665 */ 666 if (reset_type == ICE_RESET_PFR) { 667 pf->pfr_count++; 668 ice_rebuild(pf, reset_type); 669 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 670 clear_bit(ICE_PFR_REQ, pf->state); 671 wake_up(&pf->reset_wait_queue); 672 ice_reset_all_vfs(pf); 673 } 674 } 675 676 /** 677 * ice_reset_subtask - Set up for resetting the device and driver 678 * @pf: board private structure 679 */ 680 static void ice_reset_subtask(struct ice_pf *pf) 681 { 682 enum ice_reset_req reset_type = ICE_RESET_INVAL; 683 684 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 685 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 686 * of reset is pending and sets bits in pf->state indicating the reset 687 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 688 * prepare for pending reset if not already (for PF software-initiated 689 * global resets the software should already be prepared for it as 690 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 691 * by firmware or software on other PFs, that bit is not set so prepare 692 * for the reset now), poll for reset done, rebuild and return. 693 */ 694 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 695 /* Perform the largest reset requested */ 696 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 697 reset_type = ICE_RESET_CORER; 698 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 699 reset_type = ICE_RESET_GLOBR; 700 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 701 reset_type = ICE_RESET_EMPR; 702 /* return if no valid reset type requested */ 703 if (reset_type == ICE_RESET_INVAL) 704 return; 705 ice_prepare_for_reset(pf, reset_type); 706 707 /* make sure we are ready to rebuild */ 708 if (ice_check_reset(&pf->hw)) { 709 set_bit(ICE_RESET_FAILED, pf->state); 710 } else { 711 /* done with reset. start rebuild */ 712 pf->hw.reset_ongoing = false; 713 ice_rebuild(pf, reset_type); 714 /* clear bit to resume normal operations, but 715 * ICE_NEEDS_RESTART bit is set in case rebuild failed 716 */ 717 clear_bit(ICE_RESET_OICR_RECV, pf->state); 718 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 719 clear_bit(ICE_PFR_REQ, pf->state); 720 clear_bit(ICE_CORER_REQ, pf->state); 721 clear_bit(ICE_GLOBR_REQ, pf->state); 722 wake_up(&pf->reset_wait_queue); 723 ice_reset_all_vfs(pf); 724 } 725 726 return; 727 } 728 729 /* No pending resets to finish processing. Check for new resets */ 730 if (test_bit(ICE_PFR_REQ, pf->state)) { 731 reset_type = ICE_RESET_PFR; 732 if (pf->lag && pf->lag->bonded) { 733 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 734 reset_type = ICE_RESET_CORER; 735 } 736 } 737 if (test_bit(ICE_CORER_REQ, pf->state)) 738 reset_type = ICE_RESET_CORER; 739 if (test_bit(ICE_GLOBR_REQ, pf->state)) 740 reset_type = ICE_RESET_GLOBR; 741 /* If no valid reset type requested just return */ 742 if (reset_type == ICE_RESET_INVAL) 743 return; 744 745 /* reset if not already down or busy */ 746 if (!test_bit(ICE_DOWN, pf->state) && 747 !test_bit(ICE_CFG_BUSY, pf->state)) { 748 ice_do_reset(pf, reset_type); 749 } 750 } 751 752 /** 753 * ice_print_topo_conflict - print topology conflict message 754 * @vsi: the VSI whose topology status is being checked 755 */ 756 static void ice_print_topo_conflict(struct ice_vsi *vsi) 757 { 758 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 759 case ICE_AQ_LINK_TOPO_CONFLICT: 760 case ICE_AQ_LINK_MEDIA_CONFLICT: 761 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 763 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 764 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 765 break; 766 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 767 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 768 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 769 else 770 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 771 break; 772 default: 773 break; 774 } 775 } 776 777 /** 778 * ice_print_link_msg - print link up or down message 779 * @vsi: the VSI whose link status is being queried 780 * @isup: boolean for if the link is now up or down 781 */ 782 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 783 { 784 struct ice_aqc_get_phy_caps_data *caps; 785 const char *an_advertised; 786 const char *fec_req; 787 const char *speed; 788 const char *fec; 789 const char *fc; 790 const char *an; 791 int status; 792 793 if (!vsi) 794 return; 795 796 if (vsi->current_isup == isup) 797 return; 798 799 vsi->current_isup = isup; 800 801 if (!isup) { 802 netdev_info(vsi->netdev, "NIC Link is Down\n"); 803 return; 804 } 805 806 switch (vsi->port_info->phy.link_info.link_speed) { 807 case ICE_AQ_LINK_SPEED_100GB: 808 speed = "100 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_50GB: 811 speed = "50 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_40GB: 814 speed = "40 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_25GB: 817 speed = "25 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_20GB: 820 speed = "20 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_10GB: 823 speed = "10 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_5GB: 826 speed = "5 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_2500MB: 829 speed = "2.5 G"; 830 break; 831 case ICE_AQ_LINK_SPEED_1000MB: 832 speed = "1 G"; 833 break; 834 case ICE_AQ_LINK_SPEED_100MB: 835 speed = "100 M"; 836 break; 837 default: 838 speed = "Unknown "; 839 break; 840 } 841 842 switch (vsi->port_info->fc.current_mode) { 843 case ICE_FC_FULL: 844 fc = "Rx/Tx"; 845 break; 846 case ICE_FC_TX_PAUSE: 847 fc = "Tx"; 848 break; 849 case ICE_FC_RX_PAUSE: 850 fc = "Rx"; 851 break; 852 case ICE_FC_NONE: 853 fc = "None"; 854 break; 855 default: 856 fc = "Unknown"; 857 break; 858 } 859 860 /* Get FEC mode based on negotiated link info */ 861 switch (vsi->port_info->phy.link_info.fec_info) { 862 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 863 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 864 fec = "RS-FEC"; 865 break; 866 case ICE_AQ_LINK_25G_KR_FEC_EN: 867 fec = "FC-FEC/BASE-R"; 868 break; 869 default: 870 fec = "NONE"; 871 break; 872 } 873 874 /* check if autoneg completed, might be false due to not supported */ 875 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 876 an = "True"; 877 else 878 an = "False"; 879 880 /* Get FEC mode requested based on PHY caps last SW configuration */ 881 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 882 if (!caps) { 883 fec_req = "Unknown"; 884 an_advertised = "Unknown"; 885 goto done; 886 } 887 888 status = ice_aq_get_phy_caps(vsi->port_info, false, 889 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 890 if (status) 891 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 892 893 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 894 895 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 896 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 897 fec_req = "RS-FEC"; 898 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 899 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 900 fec_req = "FC-FEC/BASE-R"; 901 else 902 fec_req = "NONE"; 903 904 kfree(caps); 905 906 done: 907 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 908 speed, fec_req, fec, an_advertised, an, fc); 909 ice_print_topo_conflict(vsi); 910 } 911 912 /** 913 * ice_vsi_link_event - update the VSI's netdev 914 * @vsi: the VSI on which the link event occurred 915 * @link_up: whether or not the VSI needs to be set up or down 916 */ 917 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 918 { 919 if (!vsi) 920 return; 921 922 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 923 return; 924 925 if (vsi->type == ICE_VSI_PF) { 926 if (link_up == netif_carrier_ok(vsi->netdev)) 927 return; 928 929 if (link_up) { 930 netif_carrier_on(vsi->netdev); 931 netif_tx_wake_all_queues(vsi->netdev); 932 } else { 933 netif_carrier_off(vsi->netdev); 934 netif_tx_stop_all_queues(vsi->netdev); 935 } 936 } 937 } 938 939 /** 940 * ice_set_dflt_mib - send a default config MIB to the FW 941 * @pf: private PF struct 942 * 943 * This function sends a default configuration MIB to the FW. 944 * 945 * If this function errors out at any point, the driver is still able to 946 * function. The main impact is that LFC may not operate as expected. 947 * Therefore an error state in this function should be treated with a DBG 948 * message and continue on with driver rebuild/reenable. 949 */ 950 static void ice_set_dflt_mib(struct ice_pf *pf) 951 { 952 struct device *dev = ice_pf_to_dev(pf); 953 u8 mib_type, *buf, *lldpmib = NULL; 954 u16 len, typelen, offset = 0; 955 struct ice_lldp_org_tlv *tlv; 956 struct ice_hw *hw = &pf->hw; 957 u32 ouisubtype; 958 959 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 960 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 961 if (!lldpmib) { 962 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 963 __func__); 964 return; 965 } 966 967 /* Add ETS CFG TLV */ 968 tlv = (struct ice_lldp_org_tlv *)lldpmib; 969 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 970 ICE_IEEE_ETS_TLV_LEN); 971 tlv->typelen = htons(typelen); 972 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 973 ICE_IEEE_SUBTYPE_ETS_CFG); 974 tlv->ouisubtype = htonl(ouisubtype); 975 976 buf = tlv->tlvinfo; 977 buf[0] = 0; 978 979 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 980 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 981 * Octets 13 - 20 are TSA values - leave as zeros 982 */ 983 buf[5] = 0x64; 984 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 985 offset += len + 2; 986 tlv = (struct ice_lldp_org_tlv *) 987 ((char *)tlv + sizeof(tlv->typelen) + len); 988 989 /* Add ETS REC TLV */ 990 buf = tlv->tlvinfo; 991 tlv->typelen = htons(typelen); 992 993 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 994 ICE_IEEE_SUBTYPE_ETS_REC); 995 tlv->ouisubtype = htonl(ouisubtype); 996 997 /* First octet of buf is reserved 998 * Octets 1 - 4 map UP to TC - all UPs map to zero 999 * Octets 5 - 12 are BW values - set TC 0 to 100%. 1000 * Octets 13 - 20 are TSA value - leave as zeros 1001 */ 1002 buf[5] = 0x64; 1003 offset += len + 2; 1004 tlv = (struct ice_lldp_org_tlv *) 1005 ((char *)tlv + sizeof(tlv->typelen) + len); 1006 1007 /* Add PFC CFG TLV */ 1008 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1009 ICE_IEEE_PFC_TLV_LEN); 1010 tlv->typelen = htons(typelen); 1011 1012 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1013 ICE_IEEE_SUBTYPE_PFC_CFG); 1014 tlv->ouisubtype = htonl(ouisubtype); 1015 1016 /* Octet 1 left as all zeros - PFC disabled */ 1017 buf[0] = 0x08; 1018 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1019 offset += len + 2; 1020 1021 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1022 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1023 1024 kfree(lldpmib); 1025 } 1026 1027 /** 1028 * ice_check_phy_fw_load - check if PHY FW load failed 1029 * @pf: pointer to PF struct 1030 * @link_cfg_err: bitmap from the link info structure 1031 * 1032 * check if external PHY FW load failed and print an error message if it did 1033 */ 1034 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1035 { 1036 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1037 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1038 return; 1039 } 1040 1041 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1042 return; 1043 1044 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1045 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1046 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1047 } 1048 } 1049 1050 /** 1051 * ice_check_module_power 1052 * @pf: pointer to PF struct 1053 * @link_cfg_err: bitmap from the link info structure 1054 * 1055 * check module power level returned by a previous call to aq_get_link_info 1056 * and print error messages if module power level is not supported 1057 */ 1058 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1059 { 1060 /* if module power level is supported, clear the flag */ 1061 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1062 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1063 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1064 return; 1065 } 1066 1067 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1068 * above block didn't clear this bit, there's nothing to do 1069 */ 1070 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1071 return; 1072 1073 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1074 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1075 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1076 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1077 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1078 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1079 } 1080 } 1081 1082 /** 1083 * ice_check_link_cfg_err - check if link configuration failed 1084 * @pf: pointer to the PF struct 1085 * @link_cfg_err: bitmap from the link info structure 1086 * 1087 * print if any link configuration failure happens due to the value in the 1088 * link_cfg_err parameter in the link info structure 1089 */ 1090 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1091 { 1092 ice_check_module_power(pf, link_cfg_err); 1093 ice_check_phy_fw_load(pf, link_cfg_err); 1094 } 1095 1096 /** 1097 * ice_link_event - process the link event 1098 * @pf: PF that the link event is associated with 1099 * @pi: port_info for the port that the link event is associated with 1100 * @link_up: true if the physical link is up and false if it is down 1101 * @link_speed: current link speed received from the link event 1102 * 1103 * Returns 0 on success and negative on failure 1104 */ 1105 static int 1106 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1107 u16 link_speed) 1108 { 1109 struct device *dev = ice_pf_to_dev(pf); 1110 struct ice_phy_info *phy_info; 1111 struct ice_vsi *vsi; 1112 u16 old_link_speed; 1113 bool old_link; 1114 int status; 1115 1116 phy_info = &pi->phy; 1117 phy_info->link_info_old = phy_info->link_info; 1118 1119 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1120 old_link_speed = phy_info->link_info_old.link_speed; 1121 1122 /* update the link info structures and re-enable link events, 1123 * don't bail on failure due to other book keeping needed 1124 */ 1125 status = ice_update_link_info(pi); 1126 if (status) 1127 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1128 pi->lport, status, 1129 ice_aq_str(pi->hw->adminq.sq_last_status)); 1130 1131 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1132 1133 /* Check if the link state is up after updating link info, and treat 1134 * this event as an UP event since the link is actually UP now. 1135 */ 1136 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1137 link_up = true; 1138 1139 vsi = ice_get_main_vsi(pf); 1140 if (!vsi || !vsi->port_info) 1141 return -EINVAL; 1142 1143 /* turn off PHY if media was removed */ 1144 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1145 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1146 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1147 ice_set_link(vsi, false); 1148 } 1149 1150 /* if the old link up/down and speed is the same as the new */ 1151 if (link_up == old_link && link_speed == old_link_speed) 1152 return 0; 1153 1154 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1155 1156 if (ice_is_dcb_active(pf)) { 1157 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1158 ice_dcb_rebuild(pf); 1159 } else { 1160 if (link_up) 1161 ice_set_dflt_mib(pf); 1162 } 1163 ice_vsi_link_event(vsi, link_up); 1164 ice_print_link_msg(vsi, link_up); 1165 1166 ice_vc_notify_link_state(pf); 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1173 * @pf: board private structure 1174 */ 1175 static void ice_watchdog_subtask(struct ice_pf *pf) 1176 { 1177 int i; 1178 1179 /* if interface is down do nothing */ 1180 if (test_bit(ICE_DOWN, pf->state) || 1181 test_bit(ICE_CFG_BUSY, pf->state)) 1182 return; 1183 1184 /* make sure we don't do these things too often */ 1185 if (time_before(jiffies, 1186 pf->serv_tmr_prev + pf->serv_tmr_period)) 1187 return; 1188 1189 pf->serv_tmr_prev = jiffies; 1190 1191 /* Update the stats for active netdevs so the network stack 1192 * can look at updated numbers whenever it cares to 1193 */ 1194 ice_update_pf_stats(pf); 1195 ice_for_each_vsi(pf, i) 1196 if (pf->vsi[i] && pf->vsi[i]->netdev) 1197 ice_update_vsi_stats(pf->vsi[i]); 1198 } 1199 1200 /** 1201 * ice_init_link_events - enable/initialize link events 1202 * @pi: pointer to the port_info instance 1203 * 1204 * Returns -EIO on failure, 0 on success 1205 */ 1206 static int ice_init_link_events(struct ice_port_info *pi) 1207 { 1208 u16 mask; 1209 1210 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1211 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1212 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1213 1214 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1215 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1216 pi->lport); 1217 return -EIO; 1218 } 1219 1220 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1221 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1222 pi->lport); 1223 return -EIO; 1224 } 1225 1226 return 0; 1227 } 1228 1229 /** 1230 * ice_handle_link_event - handle link event via ARQ 1231 * @pf: PF that the link event is associated with 1232 * @event: event structure containing link status info 1233 */ 1234 static int 1235 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1236 { 1237 struct ice_aqc_get_link_status_data *link_data; 1238 struct ice_port_info *port_info; 1239 int status; 1240 1241 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1242 port_info = pf->hw.port_info; 1243 if (!port_info) 1244 return -EINVAL; 1245 1246 status = ice_link_event(pf, port_info, 1247 !!(link_data->link_info & ICE_AQ_LINK_UP), 1248 le16_to_cpu(link_data->link_speed)); 1249 if (status) 1250 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1251 status); 1252 1253 return status; 1254 } 1255 1256 /** 1257 * ice_get_fwlog_data - copy the FW log data from ARQ event 1258 * @pf: PF that the FW log event is associated with 1259 * @event: event structure containing FW log data 1260 */ 1261 static void 1262 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1263 { 1264 struct ice_fwlog_data *fwlog; 1265 struct ice_hw *hw = &pf->hw; 1266 1267 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1268 1269 memset(fwlog->data, 0, PAGE_SIZE); 1270 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1271 1272 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1273 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1274 1275 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1276 /* the rings are full so bump the head to create room */ 1277 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1278 hw->fwlog_ring.size); 1279 } 1280 } 1281 1282 /** 1283 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1284 * @pf: pointer to the PF private structure 1285 * @task: intermediate helper storage and identifier for waiting 1286 * @opcode: the opcode to wait for 1287 * 1288 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1289 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1290 * 1291 * Calls are separated to allow caller registering for event before sending 1292 * the command, which mitigates a race between registering and FW responding. 1293 * 1294 * To obtain only the descriptor contents, pass an task->event with null 1295 * msg_buf. If the complete data buffer is desired, allocate the 1296 * task->event.msg_buf with enough space ahead of time. 1297 */ 1298 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1299 u16 opcode) 1300 { 1301 INIT_HLIST_NODE(&task->entry); 1302 task->opcode = opcode; 1303 task->state = ICE_AQ_TASK_WAITING; 1304 1305 spin_lock_bh(&pf->aq_wait_lock); 1306 hlist_add_head(&task->entry, &pf->aq_wait_list); 1307 spin_unlock_bh(&pf->aq_wait_lock); 1308 } 1309 1310 /** 1311 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1312 * @pf: pointer to the PF private structure 1313 * @task: ptr prepared by ice_aq_prep_for_event() 1314 * @timeout: how long to wait, in jiffies 1315 * 1316 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1317 * current thread will be put to sleep until the specified event occurs or 1318 * until the given timeout is reached. 1319 * 1320 * Returns: zero on success, or a negative error code on failure. 1321 */ 1322 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1323 unsigned long timeout) 1324 { 1325 enum ice_aq_task_state *state = &task->state; 1326 struct device *dev = ice_pf_to_dev(pf); 1327 unsigned long start = jiffies; 1328 long ret; 1329 int err; 1330 1331 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1332 *state != ICE_AQ_TASK_WAITING, 1333 timeout); 1334 switch (*state) { 1335 case ICE_AQ_TASK_NOT_PREPARED: 1336 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1337 err = -EINVAL; 1338 break; 1339 case ICE_AQ_TASK_WAITING: 1340 err = ret < 0 ? ret : -ETIMEDOUT; 1341 break; 1342 case ICE_AQ_TASK_CANCELED: 1343 err = ret < 0 ? ret : -ECANCELED; 1344 break; 1345 case ICE_AQ_TASK_COMPLETE: 1346 err = ret < 0 ? ret : 0; 1347 break; 1348 default: 1349 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1350 err = -EINVAL; 1351 break; 1352 } 1353 1354 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1355 jiffies_to_msecs(jiffies - start), 1356 jiffies_to_msecs(timeout), 1357 task->opcode); 1358 1359 spin_lock_bh(&pf->aq_wait_lock); 1360 hlist_del(&task->entry); 1361 spin_unlock_bh(&pf->aq_wait_lock); 1362 1363 return err; 1364 } 1365 1366 /** 1367 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1368 * @pf: pointer to the PF private structure 1369 * @opcode: the opcode of the event 1370 * @event: the event to check 1371 * 1372 * Loops over the current list of pending threads waiting for an AdminQ event. 1373 * For each matching task, copy the contents of the event into the task 1374 * structure and wake up the thread. 1375 * 1376 * If multiple threads wait for the same opcode, they will all be woken up. 1377 * 1378 * Note that event->msg_buf will only be duplicated if the event has a buffer 1379 * with enough space already allocated. Otherwise, only the descriptor and 1380 * message length will be copied. 1381 * 1382 * Returns: true if an event was found, false otherwise 1383 */ 1384 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1385 struct ice_rq_event_info *event) 1386 { 1387 struct ice_rq_event_info *task_ev; 1388 struct ice_aq_task *task; 1389 bool found = false; 1390 1391 spin_lock_bh(&pf->aq_wait_lock); 1392 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1393 if (task->state != ICE_AQ_TASK_WAITING) 1394 continue; 1395 if (task->opcode != opcode) 1396 continue; 1397 1398 task_ev = &task->event; 1399 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1400 task_ev->msg_len = event->msg_len; 1401 1402 /* Only copy the data buffer if a destination was set */ 1403 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1404 memcpy(task_ev->msg_buf, event->msg_buf, 1405 event->buf_len); 1406 task_ev->buf_len = event->buf_len; 1407 } 1408 1409 task->state = ICE_AQ_TASK_COMPLETE; 1410 found = true; 1411 } 1412 spin_unlock_bh(&pf->aq_wait_lock); 1413 1414 if (found) 1415 wake_up(&pf->aq_wait_queue); 1416 } 1417 1418 /** 1419 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1420 * @pf: the PF private structure 1421 * 1422 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1423 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1424 */ 1425 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1426 { 1427 struct ice_aq_task *task; 1428 1429 spin_lock_bh(&pf->aq_wait_lock); 1430 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1431 task->state = ICE_AQ_TASK_CANCELED; 1432 spin_unlock_bh(&pf->aq_wait_lock); 1433 1434 wake_up(&pf->aq_wait_queue); 1435 } 1436 1437 #define ICE_MBX_OVERFLOW_WATERMARK 64 1438 1439 /** 1440 * __ice_clean_ctrlq - helper function to clean controlq rings 1441 * @pf: ptr to struct ice_pf 1442 * @q_type: specific Control queue type 1443 */ 1444 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1445 { 1446 struct device *dev = ice_pf_to_dev(pf); 1447 struct ice_rq_event_info event; 1448 struct ice_hw *hw = &pf->hw; 1449 struct ice_ctl_q_info *cq; 1450 u16 pending, i = 0; 1451 const char *qtype; 1452 u32 oldval, val; 1453 1454 /* Do not clean control queue if/when PF reset fails */ 1455 if (test_bit(ICE_RESET_FAILED, pf->state)) 1456 return 0; 1457 1458 switch (q_type) { 1459 case ICE_CTL_Q_ADMIN: 1460 cq = &hw->adminq; 1461 qtype = "Admin"; 1462 break; 1463 case ICE_CTL_Q_SB: 1464 cq = &hw->sbq; 1465 qtype = "Sideband"; 1466 break; 1467 case ICE_CTL_Q_MAILBOX: 1468 cq = &hw->mailboxq; 1469 qtype = "Mailbox"; 1470 /* we are going to try to detect a malicious VF, so set the 1471 * state to begin detection 1472 */ 1473 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1474 break; 1475 default: 1476 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1477 return 0; 1478 } 1479 1480 /* check for error indications - PF_xx_AxQLEN register layout for 1481 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1482 */ 1483 val = rd32(hw, cq->rq.len); 1484 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1485 PF_FW_ARQLEN_ARQCRIT_M)) { 1486 oldval = val; 1487 if (val & PF_FW_ARQLEN_ARQVFE_M) 1488 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1489 qtype); 1490 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1491 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1492 qtype); 1493 } 1494 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1495 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1496 qtype); 1497 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1498 PF_FW_ARQLEN_ARQCRIT_M); 1499 if (oldval != val) 1500 wr32(hw, cq->rq.len, val); 1501 } 1502 1503 val = rd32(hw, cq->sq.len); 1504 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1505 PF_FW_ATQLEN_ATQCRIT_M)) { 1506 oldval = val; 1507 if (val & PF_FW_ATQLEN_ATQVFE_M) 1508 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1509 qtype); 1510 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1511 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1512 qtype); 1513 } 1514 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1515 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1516 qtype); 1517 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1518 PF_FW_ATQLEN_ATQCRIT_M); 1519 if (oldval != val) 1520 wr32(hw, cq->sq.len, val); 1521 } 1522 1523 event.buf_len = cq->rq_buf_size; 1524 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1525 if (!event.msg_buf) 1526 return 0; 1527 1528 do { 1529 struct ice_mbx_data data = {}; 1530 u16 opcode; 1531 int ret; 1532 1533 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1534 if (ret == -EALREADY) 1535 break; 1536 if (ret) { 1537 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1538 ret); 1539 break; 1540 } 1541 1542 opcode = le16_to_cpu(event.desc.opcode); 1543 1544 /* Notify any thread that might be waiting for this event */ 1545 ice_aq_check_events(pf, opcode, &event); 1546 1547 switch (opcode) { 1548 case ice_aqc_opc_get_link_status: 1549 if (ice_handle_link_event(pf, &event)) 1550 dev_err(dev, "Could not handle link event\n"); 1551 break; 1552 case ice_aqc_opc_event_lan_overflow: 1553 ice_vf_lan_overflow_event(pf, &event); 1554 break; 1555 case ice_mbx_opc_send_msg_to_pf: 1556 data.num_msg_proc = i; 1557 data.num_pending_arq = pending; 1558 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1559 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1560 1561 ice_vc_process_vf_msg(pf, &event, &data); 1562 break; 1563 case ice_aqc_opc_fw_logs_event: 1564 ice_get_fwlog_data(pf, &event); 1565 break; 1566 case ice_aqc_opc_lldp_set_mib_change: 1567 ice_dcb_process_lldp_set_mib_change(pf, &event); 1568 break; 1569 default: 1570 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1571 qtype, opcode); 1572 break; 1573 } 1574 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1575 1576 kfree(event.msg_buf); 1577 1578 return pending && (i == ICE_DFLT_IRQ_WORK); 1579 } 1580 1581 /** 1582 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1583 * @hw: pointer to hardware info 1584 * @cq: control queue information 1585 * 1586 * returns true if there are pending messages in a queue, false if there aren't 1587 */ 1588 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1589 { 1590 u16 ntu; 1591 1592 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1593 return cq->rq.next_to_clean != ntu; 1594 } 1595 1596 /** 1597 * ice_clean_adminq_subtask - clean the AdminQ rings 1598 * @pf: board private structure 1599 */ 1600 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1601 { 1602 struct ice_hw *hw = &pf->hw; 1603 1604 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1605 return; 1606 1607 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1608 return; 1609 1610 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1611 1612 /* There might be a situation where new messages arrive to a control 1613 * queue between processing the last message and clearing the 1614 * EVENT_PENDING bit. So before exiting, check queue head again (using 1615 * ice_ctrlq_pending) and process new messages if any. 1616 */ 1617 if (ice_ctrlq_pending(hw, &hw->adminq)) 1618 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1619 1620 ice_flush(hw); 1621 } 1622 1623 /** 1624 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1625 * @pf: board private structure 1626 */ 1627 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1628 { 1629 struct ice_hw *hw = &pf->hw; 1630 1631 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1632 return; 1633 1634 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1635 return; 1636 1637 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1638 1639 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1640 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1641 1642 ice_flush(hw); 1643 } 1644 1645 /** 1646 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1647 * @pf: board private structure 1648 */ 1649 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1650 { 1651 struct ice_hw *hw = &pf->hw; 1652 1653 /* if mac_type is not generic, sideband is not supported 1654 * and there's nothing to do here 1655 */ 1656 if (!ice_is_generic_mac(hw)) { 1657 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1658 return; 1659 } 1660 1661 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1662 return; 1663 1664 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1665 return; 1666 1667 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1668 1669 if (ice_ctrlq_pending(hw, &hw->sbq)) 1670 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1671 1672 ice_flush(hw); 1673 } 1674 1675 /** 1676 * ice_service_task_schedule - schedule the service task to wake up 1677 * @pf: board private structure 1678 * 1679 * If not already scheduled, this puts the task into the work queue. 1680 */ 1681 void ice_service_task_schedule(struct ice_pf *pf) 1682 { 1683 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1684 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1685 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1686 queue_work(ice_wq, &pf->serv_task); 1687 } 1688 1689 /** 1690 * ice_service_task_complete - finish up the service task 1691 * @pf: board private structure 1692 */ 1693 static void ice_service_task_complete(struct ice_pf *pf) 1694 { 1695 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1696 1697 /* force memory (pf->state) to sync before next service task */ 1698 smp_mb__before_atomic(); 1699 clear_bit(ICE_SERVICE_SCHED, pf->state); 1700 } 1701 1702 /** 1703 * ice_service_task_stop - stop service task and cancel works 1704 * @pf: board private structure 1705 * 1706 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1707 * 1 otherwise. 1708 */ 1709 static int ice_service_task_stop(struct ice_pf *pf) 1710 { 1711 int ret; 1712 1713 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1714 1715 if (pf->serv_tmr.function) 1716 del_timer_sync(&pf->serv_tmr); 1717 if (pf->serv_task.func) 1718 cancel_work_sync(&pf->serv_task); 1719 1720 clear_bit(ICE_SERVICE_SCHED, pf->state); 1721 return ret; 1722 } 1723 1724 /** 1725 * ice_service_task_restart - restart service task and schedule works 1726 * @pf: board private structure 1727 * 1728 * This function is needed for suspend and resume works (e.g WoL scenario) 1729 */ 1730 static void ice_service_task_restart(struct ice_pf *pf) 1731 { 1732 clear_bit(ICE_SERVICE_DIS, pf->state); 1733 ice_service_task_schedule(pf); 1734 } 1735 1736 /** 1737 * ice_service_timer - timer callback to schedule service task 1738 * @t: pointer to timer_list 1739 */ 1740 static void ice_service_timer(struct timer_list *t) 1741 { 1742 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1743 1744 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1745 ice_service_task_schedule(pf); 1746 } 1747 1748 /** 1749 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1750 * @pf: pointer to the PF structure 1751 * @vf: pointer to the VF structure 1752 * @reset_vf_tx: whether Tx MDD has occurred 1753 * @reset_vf_rx: whether Rx MDD has occurred 1754 * 1755 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1756 * automatically reset the VF by enabling the private ethtool flag 1757 * mdd-auto-reset-vf. 1758 */ 1759 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1760 bool reset_vf_tx, bool reset_vf_rx) 1761 { 1762 struct device *dev = ice_pf_to_dev(pf); 1763 1764 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1765 return; 1766 1767 /* VF MDD event counters will be cleared by reset, so print the event 1768 * prior to reset. 1769 */ 1770 if (reset_vf_tx) 1771 ice_print_vf_tx_mdd_event(vf); 1772 1773 if (reset_vf_rx) 1774 ice_print_vf_rx_mdd_event(vf); 1775 1776 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1777 pf->hw.pf_id, vf->vf_id); 1778 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1779 } 1780 1781 /** 1782 * ice_handle_mdd_event - handle malicious driver detect event 1783 * @pf: pointer to the PF structure 1784 * 1785 * Called from service task. OICR interrupt handler indicates MDD event. 1786 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1787 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1788 * disable the queue, the PF can be configured to reset the VF using ethtool 1789 * private flag mdd-auto-reset-vf. 1790 */ 1791 static void ice_handle_mdd_event(struct ice_pf *pf) 1792 { 1793 struct device *dev = ice_pf_to_dev(pf); 1794 struct ice_hw *hw = &pf->hw; 1795 struct ice_vf *vf; 1796 unsigned int bkt; 1797 u32 reg; 1798 1799 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1800 /* Since the VF MDD event logging is rate limited, check if 1801 * there are pending MDD events. 1802 */ 1803 ice_print_vfs_mdd_events(pf); 1804 return; 1805 } 1806 1807 /* find what triggered an MDD event */ 1808 reg = rd32(hw, GL_MDET_TX_PQM); 1809 if (reg & GL_MDET_TX_PQM_VALID_M) { 1810 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1811 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1812 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1813 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1814 1815 if (netif_msg_tx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1817 event, queue, pf_num, vf_num); 1818 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1819 } 1820 1821 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1822 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1823 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1824 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1825 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1826 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1827 1828 if (netif_msg_tx_err(pf)) 1829 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1830 event, queue, pf_num, vf_num); 1831 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1832 } 1833 1834 reg = rd32(hw, GL_MDET_RX); 1835 if (reg & GL_MDET_RX_VALID_M) { 1836 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1837 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1838 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1839 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1840 1841 if (netif_msg_rx_err(pf)) 1842 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1843 event, queue, pf_num, vf_num); 1844 wr32(hw, GL_MDET_RX, 0xffffffff); 1845 } 1846 1847 /* check to see if this PF caused an MDD event */ 1848 reg = rd32(hw, PF_MDET_TX_PQM); 1849 if (reg & PF_MDET_TX_PQM_VALID_M) { 1850 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1851 if (netif_msg_tx_err(pf)) 1852 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1853 } 1854 1855 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1856 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1857 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1858 if (netif_msg_tx_err(pf)) 1859 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1860 } 1861 1862 reg = rd32(hw, PF_MDET_RX); 1863 if (reg & PF_MDET_RX_VALID_M) { 1864 wr32(hw, PF_MDET_RX, 0xFFFF); 1865 if (netif_msg_rx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1867 } 1868 1869 /* Check to see if one of the VFs caused an MDD event, and then 1870 * increment counters and set print pending 1871 */ 1872 mutex_lock(&pf->vfs.table_lock); 1873 ice_for_each_vf(pf, bkt, vf) { 1874 bool reset_vf_tx = false, reset_vf_rx = false; 1875 1876 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1877 if (reg & VP_MDET_TX_PQM_VALID_M) { 1878 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1879 vf->mdd_tx_events.count++; 1880 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1881 if (netif_msg_tx_err(pf)) 1882 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1883 vf->vf_id); 1884 1885 reset_vf_tx = true; 1886 } 1887 1888 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1889 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1890 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1891 vf->mdd_tx_events.count++; 1892 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1893 if (netif_msg_tx_err(pf)) 1894 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1895 vf->vf_id); 1896 1897 reset_vf_tx = true; 1898 } 1899 1900 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1901 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1902 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1903 vf->mdd_tx_events.count++; 1904 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1905 if (netif_msg_tx_err(pf)) 1906 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1907 vf->vf_id); 1908 1909 reset_vf_tx = true; 1910 } 1911 1912 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1913 if (reg & VP_MDET_RX_VALID_M) { 1914 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1915 vf->mdd_rx_events.count++; 1916 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1917 if (netif_msg_rx_err(pf)) 1918 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1919 vf->vf_id); 1920 1921 reset_vf_rx = true; 1922 } 1923 1924 if (reset_vf_tx || reset_vf_rx) 1925 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1926 reset_vf_rx); 1927 } 1928 mutex_unlock(&pf->vfs.table_lock); 1929 1930 ice_print_vfs_mdd_events(pf); 1931 } 1932 1933 /** 1934 * ice_force_phys_link_state - Force the physical link state 1935 * @vsi: VSI to force the physical link state to up/down 1936 * @link_up: true/false indicates to set the physical link to up/down 1937 * 1938 * Force the physical link state by getting the current PHY capabilities from 1939 * hardware and setting the PHY config based on the determined capabilities. If 1940 * link changes a link event will be triggered because both the Enable Automatic 1941 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1942 * 1943 * Returns 0 on success, negative on failure 1944 */ 1945 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1946 { 1947 struct ice_aqc_get_phy_caps_data *pcaps; 1948 struct ice_aqc_set_phy_cfg_data *cfg; 1949 struct ice_port_info *pi; 1950 struct device *dev; 1951 int retcode; 1952 1953 if (!vsi || !vsi->port_info || !vsi->back) 1954 return -EINVAL; 1955 if (vsi->type != ICE_VSI_PF) 1956 return 0; 1957 1958 dev = ice_pf_to_dev(vsi->back); 1959 1960 pi = vsi->port_info; 1961 1962 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1963 if (!pcaps) 1964 return -ENOMEM; 1965 1966 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1967 NULL); 1968 if (retcode) { 1969 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1970 vsi->vsi_num, retcode); 1971 retcode = -EIO; 1972 goto out; 1973 } 1974 1975 /* No change in link */ 1976 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1977 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1978 goto out; 1979 1980 /* Use the current user PHY configuration. The current user PHY 1981 * configuration is initialized during probe from PHY capabilities 1982 * software mode, and updated on set PHY configuration. 1983 */ 1984 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1985 if (!cfg) { 1986 retcode = -ENOMEM; 1987 goto out; 1988 } 1989 1990 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1991 if (link_up) 1992 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1993 else 1994 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1995 1996 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1997 if (retcode) { 1998 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1999 vsi->vsi_num, retcode); 2000 retcode = -EIO; 2001 } 2002 2003 kfree(cfg); 2004 out: 2005 kfree(pcaps); 2006 return retcode; 2007 } 2008 2009 /** 2010 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2011 * @pi: port info structure 2012 * 2013 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2014 */ 2015 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2016 { 2017 struct ice_aqc_get_phy_caps_data *pcaps; 2018 struct ice_pf *pf = pi->hw->back; 2019 int err; 2020 2021 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2022 if (!pcaps) 2023 return -ENOMEM; 2024 2025 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2026 pcaps, NULL); 2027 2028 if (err) { 2029 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2030 goto out; 2031 } 2032 2033 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2034 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2035 2036 out: 2037 kfree(pcaps); 2038 return err; 2039 } 2040 2041 /** 2042 * ice_init_link_dflt_override - Initialize link default override 2043 * @pi: port info structure 2044 * 2045 * Initialize link default override and PHY total port shutdown during probe 2046 */ 2047 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2048 { 2049 struct ice_link_default_override_tlv *ldo; 2050 struct ice_pf *pf = pi->hw->back; 2051 2052 ldo = &pf->link_dflt_override; 2053 if (ice_get_link_default_override(ldo, pi)) 2054 return; 2055 2056 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2057 return; 2058 2059 /* Enable Total Port Shutdown (override/replace link-down-on-close 2060 * ethtool private flag) for ports with Port Disable bit set. 2061 */ 2062 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2063 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2064 } 2065 2066 /** 2067 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2068 * @pi: port info structure 2069 * 2070 * If default override is enabled, initialize the user PHY cfg speed and FEC 2071 * settings using the default override mask from the NVM. 2072 * 2073 * The PHY should only be configured with the default override settings the 2074 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2075 * is used to indicate that the user PHY cfg default override is initialized 2076 * and the PHY has not been configured with the default override settings. The 2077 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2078 * configured. 2079 * 2080 * This function should be called only if the FW doesn't support default 2081 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2082 */ 2083 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2084 { 2085 struct ice_link_default_override_tlv *ldo; 2086 struct ice_aqc_set_phy_cfg_data *cfg; 2087 struct ice_phy_info *phy = &pi->phy; 2088 struct ice_pf *pf = pi->hw->back; 2089 2090 ldo = &pf->link_dflt_override; 2091 2092 /* If link default override is enabled, use to mask NVM PHY capabilities 2093 * for speed and FEC default configuration. 2094 */ 2095 cfg = &phy->curr_user_phy_cfg; 2096 2097 if (ldo->phy_type_low || ldo->phy_type_high) { 2098 cfg->phy_type_low = pf->nvm_phy_type_lo & 2099 cpu_to_le64(ldo->phy_type_low); 2100 cfg->phy_type_high = pf->nvm_phy_type_hi & 2101 cpu_to_le64(ldo->phy_type_high); 2102 } 2103 cfg->link_fec_opt = ldo->fec_options; 2104 phy->curr_user_fec_req = ICE_FEC_AUTO; 2105 2106 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2107 } 2108 2109 /** 2110 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2111 * @pi: port info structure 2112 * 2113 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2114 * mode to default. The PHY defaults are from get PHY capabilities topology 2115 * with media so call when media is first available. An error is returned if 2116 * called when media is not available. The PHY initialization completed state is 2117 * set here. 2118 * 2119 * These configurations are used when setting PHY 2120 * configuration. The user PHY configuration is updated on set PHY 2121 * configuration. Returns 0 on success, negative on failure 2122 */ 2123 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2124 { 2125 struct ice_aqc_get_phy_caps_data *pcaps; 2126 struct ice_phy_info *phy = &pi->phy; 2127 struct ice_pf *pf = pi->hw->back; 2128 int err; 2129 2130 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2131 return -EIO; 2132 2133 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2134 if (!pcaps) 2135 return -ENOMEM; 2136 2137 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2138 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2139 pcaps, NULL); 2140 else 2141 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2142 pcaps, NULL); 2143 if (err) { 2144 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2145 goto err_out; 2146 } 2147 2148 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2149 2150 /* check if lenient mode is supported and enabled */ 2151 if (ice_fw_supports_link_override(pi->hw) && 2152 !(pcaps->module_compliance_enforcement & 2153 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2154 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2155 2156 /* if the FW supports default PHY configuration mode, then the driver 2157 * does not have to apply link override settings. If not, 2158 * initialize user PHY configuration with link override values 2159 */ 2160 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2161 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2162 ice_init_phy_cfg_dflt_override(pi); 2163 goto out; 2164 } 2165 } 2166 2167 /* if link default override is not enabled, set user flow control and 2168 * FEC settings based on what get_phy_caps returned 2169 */ 2170 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2171 pcaps->link_fec_options); 2172 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2173 2174 out: 2175 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2176 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2177 err_out: 2178 kfree(pcaps); 2179 return err; 2180 } 2181 2182 /** 2183 * ice_configure_phy - configure PHY 2184 * @vsi: VSI of PHY 2185 * 2186 * Set the PHY configuration. If the current PHY configuration is the same as 2187 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2188 * configure the based get PHY capabilities for topology with media. 2189 */ 2190 static int ice_configure_phy(struct ice_vsi *vsi) 2191 { 2192 struct device *dev = ice_pf_to_dev(vsi->back); 2193 struct ice_port_info *pi = vsi->port_info; 2194 struct ice_aqc_get_phy_caps_data *pcaps; 2195 struct ice_aqc_set_phy_cfg_data *cfg; 2196 struct ice_phy_info *phy = &pi->phy; 2197 struct ice_pf *pf = vsi->back; 2198 int err; 2199 2200 /* Ensure we have media as we cannot configure a medialess port */ 2201 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2202 return -ENOMEDIUM; 2203 2204 ice_print_topo_conflict(vsi); 2205 2206 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2207 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2208 return -EPERM; 2209 2210 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2211 return ice_force_phys_link_state(vsi, true); 2212 2213 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2214 if (!pcaps) 2215 return -ENOMEM; 2216 2217 /* Get current PHY config */ 2218 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2219 NULL); 2220 if (err) { 2221 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2222 vsi->vsi_num, err); 2223 goto done; 2224 } 2225 2226 /* If PHY enable link is configured and configuration has not changed, 2227 * there's nothing to do 2228 */ 2229 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2230 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2231 goto done; 2232 2233 /* Use PHY topology as baseline for configuration */ 2234 memset(pcaps, 0, sizeof(*pcaps)); 2235 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2236 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2237 pcaps, NULL); 2238 else 2239 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2240 pcaps, NULL); 2241 if (err) { 2242 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2243 vsi->vsi_num, err); 2244 goto done; 2245 } 2246 2247 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2248 if (!cfg) { 2249 err = -ENOMEM; 2250 goto done; 2251 } 2252 2253 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2254 2255 /* Speed - If default override pending, use curr_user_phy_cfg set in 2256 * ice_init_phy_user_cfg_ldo. 2257 */ 2258 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2259 vsi->back->state)) { 2260 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2261 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2262 } else { 2263 u64 phy_low = 0, phy_high = 0; 2264 2265 ice_update_phy_type(&phy_low, &phy_high, 2266 pi->phy.curr_user_speed_req); 2267 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2268 cfg->phy_type_high = pcaps->phy_type_high & 2269 cpu_to_le64(phy_high); 2270 } 2271 2272 /* Can't provide what was requested; use PHY capabilities */ 2273 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2274 cfg->phy_type_low = pcaps->phy_type_low; 2275 cfg->phy_type_high = pcaps->phy_type_high; 2276 } 2277 2278 /* FEC */ 2279 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2280 2281 /* Can't provide what was requested; use PHY capabilities */ 2282 if (cfg->link_fec_opt != 2283 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2284 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2285 cfg->link_fec_opt = pcaps->link_fec_options; 2286 } 2287 2288 /* Flow Control - always supported; no need to check against 2289 * capabilities 2290 */ 2291 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2292 2293 /* Enable link and link update */ 2294 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2295 2296 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2297 if (err) 2298 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2299 vsi->vsi_num, err); 2300 2301 kfree(cfg); 2302 done: 2303 kfree(pcaps); 2304 return err; 2305 } 2306 2307 /** 2308 * ice_check_media_subtask - Check for media 2309 * @pf: pointer to PF struct 2310 * 2311 * If media is available, then initialize PHY user configuration if it is not 2312 * been, and configure the PHY if the interface is up. 2313 */ 2314 static void ice_check_media_subtask(struct ice_pf *pf) 2315 { 2316 struct ice_port_info *pi; 2317 struct ice_vsi *vsi; 2318 int err; 2319 2320 /* No need to check for media if it's already present */ 2321 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2322 return; 2323 2324 vsi = ice_get_main_vsi(pf); 2325 if (!vsi) 2326 return; 2327 2328 /* Refresh link info and check if media is present */ 2329 pi = vsi->port_info; 2330 err = ice_update_link_info(pi); 2331 if (err) 2332 return; 2333 2334 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2335 2336 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2337 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2338 ice_init_phy_user_cfg(pi); 2339 2340 /* PHY settings are reset on media insertion, reconfigure 2341 * PHY to preserve settings. 2342 */ 2343 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2344 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2345 return; 2346 2347 err = ice_configure_phy(vsi); 2348 if (!err) 2349 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2350 2351 /* A Link Status Event will be generated; the event handler 2352 * will complete bringing the interface up 2353 */ 2354 } 2355 } 2356 2357 /** 2358 * ice_service_task - manage and run subtasks 2359 * @work: pointer to work_struct contained by the PF struct 2360 */ 2361 static void ice_service_task(struct work_struct *work) 2362 { 2363 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2364 unsigned long start_time = jiffies; 2365 2366 /* subtasks */ 2367 2368 /* process reset requests first */ 2369 ice_reset_subtask(pf); 2370 2371 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2372 if (ice_is_reset_in_progress(pf->state) || 2373 test_bit(ICE_SUSPENDED, pf->state) || 2374 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2375 ice_service_task_complete(pf); 2376 return; 2377 } 2378 2379 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2380 struct iidc_event *event; 2381 2382 event = kzalloc(sizeof(*event), GFP_KERNEL); 2383 if (event) { 2384 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2385 /* report the entire OICR value to AUX driver */ 2386 swap(event->reg, pf->oicr_err_reg); 2387 ice_send_event_to_aux(pf, event); 2388 kfree(event); 2389 } 2390 } 2391 2392 /* unplug aux dev per request, if an unplug request came in 2393 * while processing a plug request, this will handle it 2394 */ 2395 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2396 ice_unplug_aux_dev(pf); 2397 2398 /* Plug aux device per request */ 2399 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2400 ice_plug_aux_dev(pf); 2401 2402 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2403 struct iidc_event *event; 2404 2405 event = kzalloc(sizeof(*event), GFP_KERNEL); 2406 if (event) { 2407 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2408 ice_send_event_to_aux(pf, event); 2409 kfree(event); 2410 } 2411 } 2412 2413 ice_clean_adminq_subtask(pf); 2414 ice_check_media_subtask(pf); 2415 ice_check_for_hang_subtask(pf); 2416 ice_sync_fltr_subtask(pf); 2417 ice_handle_mdd_event(pf); 2418 ice_watchdog_subtask(pf); 2419 2420 if (ice_is_safe_mode(pf)) { 2421 ice_service_task_complete(pf); 2422 return; 2423 } 2424 2425 ice_process_vflr_event(pf); 2426 ice_clean_mailboxq_subtask(pf); 2427 ice_clean_sbq_subtask(pf); 2428 ice_sync_arfs_fltrs(pf); 2429 ice_flush_fdir_ctx(pf); 2430 2431 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2432 ice_service_task_complete(pf); 2433 2434 /* If the tasks have taken longer than one service timer period 2435 * or there is more work to be done, reset the service timer to 2436 * schedule the service task now. 2437 */ 2438 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2439 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2440 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2441 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2442 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2443 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2444 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2445 mod_timer(&pf->serv_tmr, jiffies); 2446 } 2447 2448 /** 2449 * ice_set_ctrlq_len - helper function to set controlq length 2450 * @hw: pointer to the HW instance 2451 */ 2452 static void ice_set_ctrlq_len(struct ice_hw *hw) 2453 { 2454 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2455 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2456 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2457 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2458 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2459 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2460 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2461 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2462 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2463 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2464 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2465 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2466 } 2467 2468 /** 2469 * ice_schedule_reset - schedule a reset 2470 * @pf: board private structure 2471 * @reset: reset being requested 2472 */ 2473 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2474 { 2475 struct device *dev = ice_pf_to_dev(pf); 2476 2477 /* bail out if earlier reset has failed */ 2478 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2479 dev_dbg(dev, "earlier reset has failed\n"); 2480 return -EIO; 2481 } 2482 /* bail if reset/recovery already in progress */ 2483 if (ice_is_reset_in_progress(pf->state)) { 2484 dev_dbg(dev, "Reset already in progress\n"); 2485 return -EBUSY; 2486 } 2487 2488 switch (reset) { 2489 case ICE_RESET_PFR: 2490 set_bit(ICE_PFR_REQ, pf->state); 2491 break; 2492 case ICE_RESET_CORER: 2493 set_bit(ICE_CORER_REQ, pf->state); 2494 break; 2495 case ICE_RESET_GLOBR: 2496 set_bit(ICE_GLOBR_REQ, pf->state); 2497 break; 2498 default: 2499 return -EINVAL; 2500 } 2501 2502 ice_service_task_schedule(pf); 2503 return 0; 2504 } 2505 2506 /** 2507 * ice_irq_affinity_notify - Callback for affinity changes 2508 * @notify: context as to what irq was changed 2509 * @mask: the new affinity mask 2510 * 2511 * This is a callback function used by the irq_set_affinity_notifier function 2512 * so that we may register to receive changes to the irq affinity masks. 2513 */ 2514 static void 2515 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2516 const cpumask_t *mask) 2517 { 2518 struct ice_q_vector *q_vector = 2519 container_of(notify, struct ice_q_vector, affinity_notify); 2520 2521 cpumask_copy(&q_vector->affinity_mask, mask); 2522 } 2523 2524 /** 2525 * ice_irq_affinity_release - Callback for affinity notifier release 2526 * @ref: internal core kernel usage 2527 * 2528 * This is a callback function used by the irq_set_affinity_notifier function 2529 * to inform the current notification subscriber that they will no longer 2530 * receive notifications. 2531 */ 2532 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2533 2534 /** 2535 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2536 * @vsi: the VSI being configured 2537 */ 2538 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2539 { 2540 struct ice_hw *hw = &vsi->back->hw; 2541 int i; 2542 2543 ice_for_each_q_vector(vsi, i) 2544 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2545 2546 ice_flush(hw); 2547 return 0; 2548 } 2549 2550 /** 2551 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2552 * @vsi: the VSI being configured 2553 * @basename: name for the vector 2554 */ 2555 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2556 { 2557 int q_vectors = vsi->num_q_vectors; 2558 struct ice_pf *pf = vsi->back; 2559 struct device *dev; 2560 int rx_int_idx = 0; 2561 int tx_int_idx = 0; 2562 int vector, err; 2563 int irq_num; 2564 2565 dev = ice_pf_to_dev(pf); 2566 for (vector = 0; vector < q_vectors; vector++) { 2567 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2568 2569 irq_num = q_vector->irq.virq; 2570 2571 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2574 tx_int_idx++; 2575 } else if (q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "rx", rx_int_idx++); 2578 } else if (q_vector->tx.tx_ring) { 2579 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2580 "%s-%s-%d", basename, "tx", tx_int_idx++); 2581 } else { 2582 /* skip this unused q_vector */ 2583 continue; 2584 } 2585 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2587 IRQF_SHARED, q_vector->name, 2588 q_vector); 2589 else 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 0, q_vector->name, q_vector); 2592 if (err) { 2593 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2594 err); 2595 goto free_q_irqs; 2596 } 2597 2598 /* register for affinity change notifications */ 2599 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2600 struct irq_affinity_notify *affinity_notify; 2601 2602 affinity_notify = &q_vector->affinity_notify; 2603 affinity_notify->notify = ice_irq_affinity_notify; 2604 affinity_notify->release = ice_irq_affinity_release; 2605 irq_set_affinity_notifier(irq_num, affinity_notify); 2606 } 2607 2608 /* assign the mask for this irq */ 2609 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2610 } 2611 2612 err = ice_set_cpu_rx_rmap(vsi); 2613 if (err) { 2614 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2615 vsi->vsi_num, ERR_PTR(err)); 2616 goto free_q_irqs; 2617 } 2618 2619 vsi->irqs_ready = true; 2620 return 0; 2621 2622 free_q_irqs: 2623 while (vector--) { 2624 irq_num = vsi->q_vectors[vector]->irq.virq; 2625 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2626 irq_set_affinity_notifier(irq_num, NULL); 2627 irq_set_affinity_hint(irq_num, NULL); 2628 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2629 } 2630 return err; 2631 } 2632 2633 /** 2634 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2635 * @vsi: VSI to setup Tx rings used by XDP 2636 * 2637 * Return 0 on success and negative value on error 2638 */ 2639 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2640 { 2641 struct device *dev = ice_pf_to_dev(vsi->back); 2642 struct ice_tx_desc *tx_desc; 2643 int i, j; 2644 2645 ice_for_each_xdp_txq(vsi, i) { 2646 u16 xdp_q_idx = vsi->alloc_txq + i; 2647 struct ice_ring_stats *ring_stats; 2648 struct ice_tx_ring *xdp_ring; 2649 2650 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2651 if (!xdp_ring) 2652 goto free_xdp_rings; 2653 2654 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2655 if (!ring_stats) { 2656 ice_free_tx_ring(xdp_ring); 2657 goto free_xdp_rings; 2658 } 2659 2660 xdp_ring->ring_stats = ring_stats; 2661 xdp_ring->q_index = xdp_q_idx; 2662 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2663 xdp_ring->vsi = vsi; 2664 xdp_ring->netdev = NULL; 2665 xdp_ring->dev = dev; 2666 xdp_ring->count = vsi->num_tx_desc; 2667 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2668 if (ice_setup_tx_ring(xdp_ring)) 2669 goto free_xdp_rings; 2670 ice_set_ring_xdp(xdp_ring); 2671 spin_lock_init(&xdp_ring->tx_lock); 2672 for (j = 0; j < xdp_ring->count; j++) { 2673 tx_desc = ICE_TX_DESC(xdp_ring, j); 2674 tx_desc->cmd_type_offset_bsz = 0; 2675 } 2676 } 2677 2678 return 0; 2679 2680 free_xdp_rings: 2681 for (; i >= 0; i--) { 2682 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2683 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2684 vsi->xdp_rings[i]->ring_stats = NULL; 2685 ice_free_tx_ring(vsi->xdp_rings[i]); 2686 } 2687 } 2688 return -ENOMEM; 2689 } 2690 2691 /** 2692 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2693 * @vsi: VSI to set the bpf prog on 2694 * @prog: the bpf prog pointer 2695 */ 2696 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2697 { 2698 struct bpf_prog *old_prog; 2699 int i; 2700 2701 old_prog = xchg(&vsi->xdp_prog, prog); 2702 ice_for_each_rxq(vsi, i) 2703 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2704 2705 if (old_prog) 2706 bpf_prog_put(old_prog); 2707 } 2708 2709 /** 2710 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2711 * @vsi: VSI to bring up Tx rings used by XDP 2712 * @prog: bpf program that will be assigned to VSI 2713 * 2714 * Return 0 on success and negative value on error 2715 */ 2716 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2717 { 2718 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2719 int xdp_rings_rem = vsi->num_xdp_txq; 2720 struct ice_pf *pf = vsi->back; 2721 struct ice_qs_cfg xdp_qs_cfg = { 2722 .qs_mutex = &pf->avail_q_mutex, 2723 .pf_map = pf->avail_txqs, 2724 .pf_map_size = pf->max_pf_txqs, 2725 .q_count = vsi->num_xdp_txq, 2726 .scatter_count = ICE_MAX_SCATTER_TXQS, 2727 .vsi_map = vsi->txq_map, 2728 .vsi_map_offset = vsi->alloc_txq, 2729 .mapping_mode = ICE_VSI_MAP_CONTIG 2730 }; 2731 struct device *dev; 2732 int i, v_idx; 2733 int status; 2734 2735 dev = ice_pf_to_dev(pf); 2736 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2737 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2738 if (!vsi->xdp_rings) 2739 return -ENOMEM; 2740 2741 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2742 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2743 goto err_map_xdp; 2744 2745 if (static_key_enabled(&ice_xdp_locking_key)) 2746 netdev_warn(vsi->netdev, 2747 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2748 2749 if (ice_xdp_alloc_setup_rings(vsi)) 2750 goto clear_xdp_rings; 2751 2752 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2753 ice_for_each_q_vector(vsi, v_idx) { 2754 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2755 int xdp_rings_per_v, q_id, q_base; 2756 2757 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2758 vsi->num_q_vectors - v_idx); 2759 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2760 2761 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2762 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2763 2764 xdp_ring->q_vector = q_vector; 2765 xdp_ring->next = q_vector->tx.tx_ring; 2766 q_vector->tx.tx_ring = xdp_ring; 2767 } 2768 xdp_rings_rem -= xdp_rings_per_v; 2769 } 2770 2771 ice_for_each_rxq(vsi, i) { 2772 if (static_key_enabled(&ice_xdp_locking_key)) { 2773 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2774 } else { 2775 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2776 struct ice_tx_ring *ring; 2777 2778 ice_for_each_tx_ring(ring, q_vector->tx) { 2779 if (ice_ring_is_xdp(ring)) { 2780 vsi->rx_rings[i]->xdp_ring = ring; 2781 break; 2782 } 2783 } 2784 } 2785 ice_tx_xsk_pool(vsi, i); 2786 } 2787 2788 /* omit the scheduler update if in reset path; XDP queues will be 2789 * taken into account at the end of ice_vsi_rebuild, where 2790 * ice_cfg_vsi_lan is being called 2791 */ 2792 if (ice_is_reset_in_progress(pf->state)) 2793 return 0; 2794 2795 /* tell the Tx scheduler that right now we have 2796 * additional queues 2797 */ 2798 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2799 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2800 2801 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2802 max_txqs); 2803 if (status) { 2804 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2805 status); 2806 goto clear_xdp_rings; 2807 } 2808 2809 /* assign the prog only when it's not already present on VSI; 2810 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2811 * VSI rebuild that happens under ethtool -L can expose us to 2812 * the bpf_prog refcount issues as we would be swapping same 2813 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2814 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2815 * this is not harmful as dev_xdp_install bumps the refcount 2816 * before calling the op exposed by the driver; 2817 */ 2818 if (!ice_is_xdp_ena_vsi(vsi)) 2819 ice_vsi_assign_bpf_prog(vsi, prog); 2820 2821 return 0; 2822 clear_xdp_rings: 2823 ice_for_each_xdp_txq(vsi, i) 2824 if (vsi->xdp_rings[i]) { 2825 kfree_rcu(vsi->xdp_rings[i], rcu); 2826 vsi->xdp_rings[i] = NULL; 2827 } 2828 2829 err_map_xdp: 2830 mutex_lock(&pf->avail_q_mutex); 2831 ice_for_each_xdp_txq(vsi, i) { 2832 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2833 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2834 } 2835 mutex_unlock(&pf->avail_q_mutex); 2836 2837 devm_kfree(dev, vsi->xdp_rings); 2838 return -ENOMEM; 2839 } 2840 2841 /** 2842 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2843 * @vsi: VSI to remove XDP rings 2844 * 2845 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2846 * resources 2847 */ 2848 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2849 { 2850 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2851 struct ice_pf *pf = vsi->back; 2852 int i, v_idx; 2853 2854 /* q_vectors are freed in reset path so there's no point in detaching 2855 * rings; in case of rebuild being triggered not from reset bits 2856 * in pf->state won't be set, so additionally check first q_vector 2857 * against NULL 2858 */ 2859 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2860 goto free_qmap; 2861 2862 ice_for_each_q_vector(vsi, v_idx) { 2863 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2864 struct ice_tx_ring *ring; 2865 2866 ice_for_each_tx_ring(ring, q_vector->tx) 2867 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2868 break; 2869 2870 /* restore the value of last node prior to XDP setup */ 2871 q_vector->tx.tx_ring = ring; 2872 } 2873 2874 free_qmap: 2875 mutex_lock(&pf->avail_q_mutex); 2876 ice_for_each_xdp_txq(vsi, i) { 2877 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2878 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2879 } 2880 mutex_unlock(&pf->avail_q_mutex); 2881 2882 ice_for_each_xdp_txq(vsi, i) 2883 if (vsi->xdp_rings[i]) { 2884 if (vsi->xdp_rings[i]->desc) { 2885 synchronize_rcu(); 2886 ice_free_tx_ring(vsi->xdp_rings[i]); 2887 } 2888 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2889 vsi->xdp_rings[i]->ring_stats = NULL; 2890 kfree_rcu(vsi->xdp_rings[i], rcu); 2891 vsi->xdp_rings[i] = NULL; 2892 } 2893 2894 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2895 vsi->xdp_rings = NULL; 2896 2897 if (static_key_enabled(&ice_xdp_locking_key)) 2898 static_branch_dec(&ice_xdp_locking_key); 2899 2900 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2901 return 0; 2902 2903 ice_vsi_assign_bpf_prog(vsi, NULL); 2904 2905 /* notify Tx scheduler that we destroyed XDP queues and bring 2906 * back the old number of child nodes 2907 */ 2908 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2909 max_txqs[i] = vsi->num_txq; 2910 2911 /* change number of XDP Tx queues to 0 */ 2912 vsi->num_xdp_txq = 0; 2913 2914 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2915 max_txqs); 2916 } 2917 2918 /** 2919 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2920 * @vsi: VSI to schedule napi on 2921 */ 2922 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2923 { 2924 int i; 2925 2926 ice_for_each_rxq(vsi, i) { 2927 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2928 2929 if (rx_ring->xsk_pool) 2930 napi_schedule(&rx_ring->q_vector->napi); 2931 } 2932 } 2933 2934 /** 2935 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2936 * @vsi: VSI to determine the count of XDP Tx qs 2937 * 2938 * returns 0 if Tx qs count is higher than at least half of CPU count, 2939 * -ENOMEM otherwise 2940 */ 2941 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2942 { 2943 u16 avail = ice_get_avail_txq_count(vsi->back); 2944 u16 cpus = num_possible_cpus(); 2945 2946 if (avail < cpus / 2) 2947 return -ENOMEM; 2948 2949 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2950 2951 if (vsi->num_xdp_txq < cpus) 2952 static_branch_inc(&ice_xdp_locking_key); 2953 2954 return 0; 2955 } 2956 2957 /** 2958 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2959 * @vsi: Pointer to VSI structure 2960 */ 2961 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2962 { 2963 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2964 return ICE_RXBUF_1664; 2965 else 2966 return ICE_RXBUF_3072; 2967 } 2968 2969 /** 2970 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2971 * @vsi: VSI to setup XDP for 2972 * @prog: XDP program 2973 * @extack: netlink extended ack 2974 */ 2975 static int 2976 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2977 struct netlink_ext_ack *extack) 2978 { 2979 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2980 bool if_running = netif_running(vsi->netdev); 2981 int ret = 0, xdp_ring_err = 0; 2982 2983 if (prog && !prog->aux->xdp_has_frags) { 2984 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2985 NL_SET_ERR_MSG_MOD(extack, 2986 "MTU is too large for linear frames and XDP prog does not support frags"); 2987 return -EOPNOTSUPP; 2988 } 2989 } 2990 2991 /* hot swap progs and avoid toggling link */ 2992 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2993 ice_vsi_assign_bpf_prog(vsi, prog); 2994 return 0; 2995 } 2996 2997 /* need to stop netdev while setting up the program for Rx rings */ 2998 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2999 ret = ice_down(vsi); 3000 if (ret) { 3001 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3002 return ret; 3003 } 3004 } 3005 3006 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3007 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3008 if (xdp_ring_err) { 3009 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3010 } else { 3011 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 3012 if (xdp_ring_err) 3013 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3014 } 3015 xdp_features_set_redirect_target(vsi->netdev, true); 3016 /* reallocate Rx queues that are used for zero-copy */ 3017 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3018 if (xdp_ring_err) 3019 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3020 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3021 xdp_features_clear_redirect_target(vsi->netdev); 3022 xdp_ring_err = ice_destroy_xdp_rings(vsi); 3023 if (xdp_ring_err) 3024 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3025 /* reallocate Rx queues that were used for zero-copy */ 3026 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3027 if (xdp_ring_err) 3028 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3029 } 3030 3031 if (if_running) 3032 ret = ice_up(vsi); 3033 3034 if (!ret && prog) 3035 ice_vsi_rx_napi_schedule(vsi); 3036 3037 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3038 } 3039 3040 /** 3041 * ice_xdp_safe_mode - XDP handler for safe mode 3042 * @dev: netdevice 3043 * @xdp: XDP command 3044 */ 3045 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3046 struct netdev_bpf *xdp) 3047 { 3048 NL_SET_ERR_MSG_MOD(xdp->extack, 3049 "Please provide working DDP firmware package in order to use XDP\n" 3050 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3051 return -EOPNOTSUPP; 3052 } 3053 3054 /** 3055 * ice_xdp - implements XDP handler 3056 * @dev: netdevice 3057 * @xdp: XDP command 3058 */ 3059 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3060 { 3061 struct ice_netdev_priv *np = netdev_priv(dev); 3062 struct ice_vsi *vsi = np->vsi; 3063 3064 if (vsi->type != ICE_VSI_PF) { 3065 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3066 return -EINVAL; 3067 } 3068 3069 switch (xdp->command) { 3070 case XDP_SETUP_PROG: 3071 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3072 case XDP_SETUP_XSK_POOL: 3073 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3074 xdp->xsk.queue_id); 3075 default: 3076 return -EINVAL; 3077 } 3078 } 3079 3080 /** 3081 * ice_ena_misc_vector - enable the non-queue interrupts 3082 * @pf: board private structure 3083 */ 3084 static void ice_ena_misc_vector(struct ice_pf *pf) 3085 { 3086 struct ice_hw *hw = &pf->hw; 3087 u32 pf_intr_start_offset; 3088 u32 val; 3089 3090 /* Disable anti-spoof detection interrupt to prevent spurious event 3091 * interrupts during a function reset. Anti-spoof functionally is 3092 * still supported. 3093 */ 3094 val = rd32(hw, GL_MDCK_TX_TDPU); 3095 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3096 wr32(hw, GL_MDCK_TX_TDPU, val); 3097 3098 /* clear things first */ 3099 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3100 rd32(hw, PFINT_OICR); /* read to clear */ 3101 3102 val = (PFINT_OICR_ECC_ERR_M | 3103 PFINT_OICR_MAL_DETECT_M | 3104 PFINT_OICR_GRST_M | 3105 PFINT_OICR_PCI_EXCEPTION_M | 3106 PFINT_OICR_VFLR_M | 3107 PFINT_OICR_HMC_ERR_M | 3108 PFINT_OICR_PE_PUSH_M | 3109 PFINT_OICR_PE_CRITERR_M); 3110 3111 wr32(hw, PFINT_OICR_ENA, val); 3112 3113 /* SW_ITR_IDX = 0, but don't change INTENA */ 3114 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3115 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3116 3117 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3118 return; 3119 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3120 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3121 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3122 } 3123 3124 /** 3125 * ice_ll_ts_intr - ll_ts interrupt handler 3126 * @irq: interrupt number 3127 * @data: pointer to a q_vector 3128 */ 3129 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3130 { 3131 struct ice_pf *pf = data; 3132 u32 pf_intr_start_offset; 3133 struct ice_ptp_tx *tx; 3134 unsigned long flags; 3135 struct ice_hw *hw; 3136 u32 val; 3137 u8 idx; 3138 3139 hw = &pf->hw; 3140 tx = &pf->ptp.port.tx; 3141 spin_lock_irqsave(&tx->lock, flags); 3142 ice_ptp_complete_tx_single_tstamp(tx); 3143 3144 idx = find_next_bit_wrap(tx->in_use, tx->len, 3145 tx->last_ll_ts_idx_read + 1); 3146 if (idx != tx->len) 3147 ice_ptp_req_tx_single_tstamp(tx, idx); 3148 spin_unlock_irqrestore(&tx->lock, flags); 3149 3150 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3151 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3152 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3153 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3154 val); 3155 3156 return IRQ_HANDLED; 3157 } 3158 3159 /** 3160 * ice_misc_intr - misc interrupt handler 3161 * @irq: interrupt number 3162 * @data: pointer to a q_vector 3163 */ 3164 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3165 { 3166 struct ice_pf *pf = (struct ice_pf *)data; 3167 irqreturn_t ret = IRQ_HANDLED; 3168 struct ice_hw *hw = &pf->hw; 3169 struct device *dev; 3170 u32 oicr, ena_mask; 3171 3172 dev = ice_pf_to_dev(pf); 3173 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3174 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3175 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3176 3177 oicr = rd32(hw, PFINT_OICR); 3178 ena_mask = rd32(hw, PFINT_OICR_ENA); 3179 3180 if (oicr & PFINT_OICR_SWINT_M) { 3181 ena_mask &= ~PFINT_OICR_SWINT_M; 3182 pf->sw_int_count++; 3183 } 3184 3185 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3186 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3187 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3188 } 3189 if (oicr & PFINT_OICR_VFLR_M) { 3190 /* disable any further VFLR event notifications */ 3191 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3192 u32 reg = rd32(hw, PFINT_OICR_ENA); 3193 3194 reg &= ~PFINT_OICR_VFLR_M; 3195 wr32(hw, PFINT_OICR_ENA, reg); 3196 } else { 3197 ena_mask &= ~PFINT_OICR_VFLR_M; 3198 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3199 } 3200 } 3201 3202 if (oicr & PFINT_OICR_GRST_M) { 3203 u32 reset; 3204 3205 /* we have a reset warning */ 3206 ena_mask &= ~PFINT_OICR_GRST_M; 3207 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3208 rd32(hw, GLGEN_RSTAT)); 3209 3210 if (reset == ICE_RESET_CORER) 3211 pf->corer_count++; 3212 else if (reset == ICE_RESET_GLOBR) 3213 pf->globr_count++; 3214 else if (reset == ICE_RESET_EMPR) 3215 pf->empr_count++; 3216 else 3217 dev_dbg(dev, "Invalid reset type %d\n", reset); 3218 3219 /* If a reset cycle isn't already in progress, we set a bit in 3220 * pf->state so that the service task can start a reset/rebuild. 3221 */ 3222 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3223 if (reset == ICE_RESET_CORER) 3224 set_bit(ICE_CORER_RECV, pf->state); 3225 else if (reset == ICE_RESET_GLOBR) 3226 set_bit(ICE_GLOBR_RECV, pf->state); 3227 else 3228 set_bit(ICE_EMPR_RECV, pf->state); 3229 3230 /* There are couple of different bits at play here. 3231 * hw->reset_ongoing indicates whether the hardware is 3232 * in reset. This is set to true when a reset interrupt 3233 * is received and set back to false after the driver 3234 * has determined that the hardware is out of reset. 3235 * 3236 * ICE_RESET_OICR_RECV in pf->state indicates 3237 * that a post reset rebuild is required before the 3238 * driver is operational again. This is set above. 3239 * 3240 * As this is the start of the reset/rebuild cycle, set 3241 * both to indicate that. 3242 */ 3243 hw->reset_ongoing = true; 3244 } 3245 } 3246 3247 if (oicr & PFINT_OICR_TSYN_TX_M) { 3248 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3249 if (ice_pf_state_is_nominal(pf) && 3250 pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) { 3251 struct ice_ptp_tx *tx = &pf->ptp.port.tx; 3252 unsigned long flags; 3253 u8 idx; 3254 3255 spin_lock_irqsave(&tx->lock, flags); 3256 idx = find_next_bit_wrap(tx->in_use, tx->len, 3257 tx->last_ll_ts_idx_read + 1); 3258 if (idx != tx->len) 3259 ice_ptp_req_tx_single_tstamp(tx, idx); 3260 spin_unlock_irqrestore(&tx->lock, flags); 3261 } else if (ice_ptp_pf_handles_tx_interrupt(pf)) { 3262 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3263 ret = IRQ_WAKE_THREAD; 3264 } 3265 } 3266 3267 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3268 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3269 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3270 3271 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3272 3273 if (ice_pf_src_tmr_owned(pf)) { 3274 /* Save EVENTs from GLTSYN register */ 3275 pf->ptp.ext_ts_irq |= gltsyn_stat & 3276 (GLTSYN_STAT_EVENT0_M | 3277 GLTSYN_STAT_EVENT1_M | 3278 GLTSYN_STAT_EVENT2_M); 3279 3280 ice_ptp_extts_event(pf); 3281 } 3282 } 3283 3284 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3285 if (oicr & ICE_AUX_CRIT_ERR) { 3286 pf->oicr_err_reg |= oicr; 3287 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3288 ena_mask &= ~ICE_AUX_CRIT_ERR; 3289 } 3290 3291 /* Report any remaining unexpected interrupts */ 3292 oicr &= ena_mask; 3293 if (oicr) { 3294 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3295 /* If a critical error is pending there is no choice but to 3296 * reset the device. 3297 */ 3298 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3299 PFINT_OICR_ECC_ERR_M)) { 3300 set_bit(ICE_PFR_REQ, pf->state); 3301 } 3302 } 3303 ice_service_task_schedule(pf); 3304 if (ret == IRQ_HANDLED) 3305 ice_irq_dynamic_ena(hw, NULL, NULL); 3306 3307 return ret; 3308 } 3309 3310 /** 3311 * ice_misc_intr_thread_fn - misc interrupt thread function 3312 * @irq: interrupt number 3313 * @data: pointer to a q_vector 3314 */ 3315 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3316 { 3317 struct ice_pf *pf = data; 3318 struct ice_hw *hw; 3319 3320 hw = &pf->hw; 3321 3322 if (ice_is_reset_in_progress(pf->state)) 3323 goto skip_irq; 3324 3325 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3326 /* Process outstanding Tx timestamps. If there is more work, 3327 * re-arm the interrupt to trigger again. 3328 */ 3329 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3330 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3331 ice_flush(hw); 3332 } 3333 } 3334 3335 skip_irq: 3336 ice_irq_dynamic_ena(hw, NULL, NULL); 3337 3338 return IRQ_HANDLED; 3339 } 3340 3341 /** 3342 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3343 * @hw: pointer to HW structure 3344 */ 3345 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3346 { 3347 /* disable Admin queue Interrupt causes */ 3348 wr32(hw, PFINT_FW_CTL, 3349 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3350 3351 /* disable Mailbox queue Interrupt causes */ 3352 wr32(hw, PFINT_MBX_CTL, 3353 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3354 3355 wr32(hw, PFINT_SB_CTL, 3356 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3357 3358 /* disable Control queue Interrupt causes */ 3359 wr32(hw, PFINT_OICR_CTL, 3360 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3361 3362 ice_flush(hw); 3363 } 3364 3365 /** 3366 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3367 * @pf: board private structure 3368 */ 3369 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3370 { 3371 int irq_num = pf->ll_ts_irq.virq; 3372 3373 synchronize_irq(irq_num); 3374 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3375 3376 ice_free_irq(pf, pf->ll_ts_irq); 3377 } 3378 3379 /** 3380 * ice_free_irq_msix_misc - Unroll misc vector setup 3381 * @pf: board private structure 3382 */ 3383 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3384 { 3385 int misc_irq_num = pf->oicr_irq.virq; 3386 struct ice_hw *hw = &pf->hw; 3387 3388 ice_dis_ctrlq_interrupts(hw); 3389 3390 /* disable OICR interrupt */ 3391 wr32(hw, PFINT_OICR_ENA, 0); 3392 ice_flush(hw); 3393 3394 synchronize_irq(misc_irq_num); 3395 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3396 3397 ice_free_irq(pf, pf->oicr_irq); 3398 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3399 ice_free_irq_msix_ll_ts(pf); 3400 } 3401 3402 /** 3403 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3404 * @hw: pointer to HW structure 3405 * @reg_idx: HW vector index to associate the control queue interrupts with 3406 */ 3407 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3408 { 3409 u32 val; 3410 3411 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3412 PFINT_OICR_CTL_CAUSE_ENA_M); 3413 wr32(hw, PFINT_OICR_CTL, val); 3414 3415 /* enable Admin queue Interrupt causes */ 3416 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3417 PFINT_FW_CTL_CAUSE_ENA_M); 3418 wr32(hw, PFINT_FW_CTL, val); 3419 3420 /* enable Mailbox queue Interrupt causes */ 3421 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3422 PFINT_MBX_CTL_CAUSE_ENA_M); 3423 wr32(hw, PFINT_MBX_CTL, val); 3424 3425 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3426 /* enable Sideband queue Interrupt causes */ 3427 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3428 PFINT_SB_CTL_CAUSE_ENA_M); 3429 wr32(hw, PFINT_SB_CTL, val); 3430 } 3431 3432 ice_flush(hw); 3433 } 3434 3435 /** 3436 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3437 * @pf: board private structure 3438 * 3439 * This sets up the handler for MSIX 0, which is used to manage the 3440 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3441 * when in MSI or Legacy interrupt mode. 3442 */ 3443 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3444 { 3445 struct device *dev = ice_pf_to_dev(pf); 3446 struct ice_hw *hw = &pf->hw; 3447 u32 pf_intr_start_offset; 3448 struct msi_map irq; 3449 int err = 0; 3450 3451 if (!pf->int_name[0]) 3452 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3453 dev_driver_string(dev), dev_name(dev)); 3454 3455 if (!pf->int_name_ll_ts[0]) 3456 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3457 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3458 /* Do not request IRQ but do enable OICR interrupt since settings are 3459 * lost during reset. Note that this function is called only during 3460 * rebuild path and not while reset is in progress. 3461 */ 3462 if (ice_is_reset_in_progress(pf->state)) 3463 goto skip_req_irq; 3464 3465 /* reserve one vector in irq_tracker for misc interrupts */ 3466 irq = ice_alloc_irq(pf, false); 3467 if (irq.index < 0) 3468 return irq.index; 3469 3470 pf->oicr_irq = irq; 3471 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3472 ice_misc_intr_thread_fn, 0, 3473 pf->int_name, pf); 3474 if (err) { 3475 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3476 pf->int_name, err); 3477 ice_free_irq(pf, pf->oicr_irq); 3478 return err; 3479 } 3480 3481 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3482 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3483 goto skip_req_irq; 3484 3485 irq = ice_alloc_irq(pf, false); 3486 if (irq.index < 0) 3487 return irq.index; 3488 3489 pf->ll_ts_irq = irq; 3490 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3491 pf->int_name_ll_ts, pf); 3492 if (err) { 3493 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3494 pf->int_name_ll_ts, err); 3495 ice_free_irq(pf, pf->ll_ts_irq); 3496 return err; 3497 } 3498 3499 skip_req_irq: 3500 ice_ena_misc_vector(pf); 3501 3502 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3503 /* This enables LL TS interrupt */ 3504 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3505 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3506 wr32(hw, PFINT_SB_CTL, 3507 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3508 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3509 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3510 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3511 3512 ice_flush(hw); 3513 ice_irq_dynamic_ena(hw, NULL, NULL); 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * ice_napi_add - register NAPI handler for the VSI 3520 * @vsi: VSI for which NAPI handler is to be registered 3521 * 3522 * This function is only called in the driver's load path. Registering the NAPI 3523 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3524 * reset/rebuild, etc.) 3525 */ 3526 static void ice_napi_add(struct ice_vsi *vsi) 3527 { 3528 int v_idx; 3529 3530 if (!vsi->netdev) 3531 return; 3532 3533 ice_for_each_q_vector(vsi, v_idx) { 3534 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3535 ice_napi_poll); 3536 __ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3537 } 3538 } 3539 3540 /** 3541 * ice_set_ops - set netdev and ethtools ops for the given netdev 3542 * @vsi: the VSI associated with the new netdev 3543 */ 3544 static void ice_set_ops(struct ice_vsi *vsi) 3545 { 3546 struct net_device *netdev = vsi->netdev; 3547 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3548 3549 if (ice_is_safe_mode(pf)) { 3550 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3551 ice_set_ethtool_safe_mode_ops(netdev); 3552 return; 3553 } 3554 3555 netdev->netdev_ops = &ice_netdev_ops; 3556 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3557 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3558 ice_set_ethtool_ops(netdev); 3559 3560 if (vsi->type != ICE_VSI_PF) 3561 return; 3562 3563 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3564 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3565 NETDEV_XDP_ACT_RX_SG; 3566 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3567 } 3568 3569 /** 3570 * ice_set_netdev_features - set features for the given netdev 3571 * @netdev: netdev instance 3572 */ 3573 static void ice_set_netdev_features(struct net_device *netdev) 3574 { 3575 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3576 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3577 netdev_features_t csumo_features; 3578 netdev_features_t vlano_features; 3579 netdev_features_t dflt_features; 3580 netdev_features_t tso_features; 3581 3582 if (ice_is_safe_mode(pf)) { 3583 /* safe mode */ 3584 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3585 netdev->hw_features = netdev->features; 3586 return; 3587 } 3588 3589 dflt_features = NETIF_F_SG | 3590 NETIF_F_HIGHDMA | 3591 NETIF_F_NTUPLE | 3592 NETIF_F_RXHASH; 3593 3594 csumo_features = NETIF_F_RXCSUM | 3595 NETIF_F_IP_CSUM | 3596 NETIF_F_SCTP_CRC | 3597 NETIF_F_IPV6_CSUM; 3598 3599 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3600 NETIF_F_HW_VLAN_CTAG_TX | 3601 NETIF_F_HW_VLAN_CTAG_RX; 3602 3603 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3604 if (is_dvm_ena) 3605 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3606 3607 tso_features = NETIF_F_TSO | 3608 NETIF_F_TSO_ECN | 3609 NETIF_F_TSO6 | 3610 NETIF_F_GSO_GRE | 3611 NETIF_F_GSO_UDP_TUNNEL | 3612 NETIF_F_GSO_GRE_CSUM | 3613 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3614 NETIF_F_GSO_PARTIAL | 3615 NETIF_F_GSO_IPXIP4 | 3616 NETIF_F_GSO_IPXIP6 | 3617 NETIF_F_GSO_UDP_L4; 3618 3619 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3620 NETIF_F_GSO_GRE_CSUM; 3621 /* set features that user can change */ 3622 netdev->hw_features = dflt_features | csumo_features | 3623 vlano_features | tso_features; 3624 3625 /* add support for HW_CSUM on packets with MPLS header */ 3626 netdev->mpls_features = NETIF_F_HW_CSUM | 3627 NETIF_F_TSO | 3628 NETIF_F_TSO6; 3629 3630 /* enable features */ 3631 netdev->features |= netdev->hw_features; 3632 3633 netdev->hw_features |= NETIF_F_HW_TC; 3634 netdev->hw_features |= NETIF_F_LOOPBACK; 3635 3636 /* encap and VLAN devices inherit default, csumo and tso features */ 3637 netdev->hw_enc_features |= dflt_features | csumo_features | 3638 tso_features; 3639 netdev->vlan_features |= dflt_features | csumo_features | 3640 tso_features; 3641 3642 /* advertise support but don't enable by default since only one type of 3643 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3644 * type turns on the other has to be turned off. This is enforced by the 3645 * ice_fix_features() ndo callback. 3646 */ 3647 if (is_dvm_ena) 3648 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3649 NETIF_F_HW_VLAN_STAG_TX; 3650 3651 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3652 * be changed at runtime 3653 */ 3654 netdev->hw_features |= NETIF_F_RXFCS; 3655 3656 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3657 } 3658 3659 /** 3660 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3661 * @lut: Lookup table 3662 * @rss_table_size: Lookup table size 3663 * @rss_size: Range of queue number for hashing 3664 */ 3665 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3666 { 3667 u16 i; 3668 3669 for (i = 0; i < rss_table_size; i++) 3670 lut[i] = i % rss_size; 3671 } 3672 3673 /** 3674 * ice_pf_vsi_setup - Set up a PF VSI 3675 * @pf: board private structure 3676 * @pi: pointer to the port_info instance 3677 * 3678 * Returns pointer to the successfully allocated VSI software struct 3679 * on success, otherwise returns NULL on failure. 3680 */ 3681 static struct ice_vsi * 3682 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3683 { 3684 struct ice_vsi_cfg_params params = {}; 3685 3686 params.type = ICE_VSI_PF; 3687 params.pi = pi; 3688 params.flags = ICE_VSI_FLAG_INIT; 3689 3690 return ice_vsi_setup(pf, ¶ms); 3691 } 3692 3693 static struct ice_vsi * 3694 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3695 struct ice_channel *ch) 3696 { 3697 struct ice_vsi_cfg_params params = {}; 3698 3699 params.type = ICE_VSI_CHNL; 3700 params.pi = pi; 3701 params.ch = ch; 3702 params.flags = ICE_VSI_FLAG_INIT; 3703 3704 return ice_vsi_setup(pf, ¶ms); 3705 } 3706 3707 /** 3708 * ice_ctrl_vsi_setup - Set up a control VSI 3709 * @pf: board private structure 3710 * @pi: pointer to the port_info instance 3711 * 3712 * Returns pointer to the successfully allocated VSI software struct 3713 * on success, otherwise returns NULL on failure. 3714 */ 3715 static struct ice_vsi * 3716 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3717 { 3718 struct ice_vsi_cfg_params params = {}; 3719 3720 params.type = ICE_VSI_CTRL; 3721 params.pi = pi; 3722 params.flags = ICE_VSI_FLAG_INIT; 3723 3724 return ice_vsi_setup(pf, ¶ms); 3725 } 3726 3727 /** 3728 * ice_lb_vsi_setup - Set up a loopback VSI 3729 * @pf: board private structure 3730 * @pi: pointer to the port_info instance 3731 * 3732 * Returns pointer to the successfully allocated VSI software struct 3733 * on success, otherwise returns NULL on failure. 3734 */ 3735 struct ice_vsi * 3736 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3737 { 3738 struct ice_vsi_cfg_params params = {}; 3739 3740 params.type = ICE_VSI_LB; 3741 params.pi = pi; 3742 params.flags = ICE_VSI_FLAG_INIT; 3743 3744 return ice_vsi_setup(pf, ¶ms); 3745 } 3746 3747 /** 3748 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3749 * @netdev: network interface to be adjusted 3750 * @proto: VLAN TPID 3751 * @vid: VLAN ID to be added 3752 * 3753 * net_device_ops implementation for adding VLAN IDs 3754 */ 3755 static int 3756 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3757 { 3758 struct ice_netdev_priv *np = netdev_priv(netdev); 3759 struct ice_vsi_vlan_ops *vlan_ops; 3760 struct ice_vsi *vsi = np->vsi; 3761 struct ice_vlan vlan; 3762 int ret; 3763 3764 /* VLAN 0 is added by default during load/reset */ 3765 if (!vid) 3766 return 0; 3767 3768 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3769 usleep_range(1000, 2000); 3770 3771 /* Add multicast promisc rule for the VLAN ID to be added if 3772 * all-multicast is currently enabled. 3773 */ 3774 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3775 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3776 ICE_MCAST_VLAN_PROMISC_BITS, 3777 vid); 3778 if (ret) 3779 goto finish; 3780 } 3781 3782 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3783 3784 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3785 * packets aren't pruned by the device's internal switch on Rx 3786 */ 3787 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3788 ret = vlan_ops->add_vlan(vsi, &vlan); 3789 if (ret) 3790 goto finish; 3791 3792 /* If all-multicast is currently enabled and this VLAN ID is only one 3793 * besides VLAN-0 we have to update look-up type of multicast promisc 3794 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3795 */ 3796 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3797 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3798 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3799 ICE_MCAST_PROMISC_BITS, 0); 3800 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3801 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3802 } 3803 3804 finish: 3805 clear_bit(ICE_CFG_BUSY, vsi->state); 3806 3807 return ret; 3808 } 3809 3810 /** 3811 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3812 * @netdev: network interface to be adjusted 3813 * @proto: VLAN TPID 3814 * @vid: VLAN ID to be removed 3815 * 3816 * net_device_ops implementation for removing VLAN IDs 3817 */ 3818 static int 3819 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3820 { 3821 struct ice_netdev_priv *np = netdev_priv(netdev); 3822 struct ice_vsi_vlan_ops *vlan_ops; 3823 struct ice_vsi *vsi = np->vsi; 3824 struct ice_vlan vlan; 3825 int ret; 3826 3827 /* don't allow removal of VLAN 0 */ 3828 if (!vid) 3829 return 0; 3830 3831 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3832 usleep_range(1000, 2000); 3833 3834 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3835 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3836 if (ret) { 3837 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3838 vsi->vsi_num); 3839 vsi->current_netdev_flags |= IFF_ALLMULTI; 3840 } 3841 3842 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3843 3844 /* Make sure VLAN delete is successful before updating VLAN 3845 * information 3846 */ 3847 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3848 ret = vlan_ops->del_vlan(vsi, &vlan); 3849 if (ret) 3850 goto finish; 3851 3852 /* Remove multicast promisc rule for the removed VLAN ID if 3853 * all-multicast is enabled. 3854 */ 3855 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3856 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3857 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3858 3859 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3860 /* Update look-up type of multicast promisc rule for VLAN 0 3861 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3862 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3863 */ 3864 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3865 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3866 ICE_MCAST_VLAN_PROMISC_BITS, 3867 0); 3868 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3869 ICE_MCAST_PROMISC_BITS, 0); 3870 } 3871 } 3872 3873 finish: 3874 clear_bit(ICE_CFG_BUSY, vsi->state); 3875 3876 return ret; 3877 } 3878 3879 /** 3880 * ice_rep_indr_tc_block_unbind 3881 * @cb_priv: indirection block private data 3882 */ 3883 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3884 { 3885 struct ice_indr_block_priv *indr_priv = cb_priv; 3886 3887 list_del(&indr_priv->list); 3888 kfree(indr_priv); 3889 } 3890 3891 /** 3892 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3893 * @vsi: VSI struct which has the netdev 3894 */ 3895 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3896 { 3897 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3898 3899 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3900 ice_rep_indr_tc_block_unbind); 3901 } 3902 3903 /** 3904 * ice_tc_indir_block_register - Register TC indirect block notifications 3905 * @vsi: VSI struct which has the netdev 3906 * 3907 * Returns 0 on success, negative value on failure 3908 */ 3909 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3910 { 3911 struct ice_netdev_priv *np; 3912 3913 if (!vsi || !vsi->netdev) 3914 return -EINVAL; 3915 3916 np = netdev_priv(vsi->netdev); 3917 3918 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3919 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3920 } 3921 3922 /** 3923 * ice_get_avail_q_count - Get count of queues in use 3924 * @pf_qmap: bitmap to get queue use count from 3925 * @lock: pointer to a mutex that protects access to pf_qmap 3926 * @size: size of the bitmap 3927 */ 3928 static u16 3929 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3930 { 3931 unsigned long bit; 3932 u16 count = 0; 3933 3934 mutex_lock(lock); 3935 for_each_clear_bit(bit, pf_qmap, size) 3936 count++; 3937 mutex_unlock(lock); 3938 3939 return count; 3940 } 3941 3942 /** 3943 * ice_get_avail_txq_count - Get count of Tx queues in use 3944 * @pf: pointer to an ice_pf instance 3945 */ 3946 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3947 { 3948 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3949 pf->max_pf_txqs); 3950 } 3951 3952 /** 3953 * ice_get_avail_rxq_count - Get count of Rx queues in use 3954 * @pf: pointer to an ice_pf instance 3955 */ 3956 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3957 { 3958 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3959 pf->max_pf_rxqs); 3960 } 3961 3962 /** 3963 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3964 * @pf: board private structure to initialize 3965 */ 3966 static void ice_deinit_pf(struct ice_pf *pf) 3967 { 3968 ice_service_task_stop(pf); 3969 mutex_destroy(&pf->lag_mutex); 3970 mutex_destroy(&pf->adev_mutex); 3971 mutex_destroy(&pf->sw_mutex); 3972 mutex_destroy(&pf->tc_mutex); 3973 mutex_destroy(&pf->avail_q_mutex); 3974 mutex_destroy(&pf->vfs.table_lock); 3975 3976 if (pf->avail_txqs) { 3977 bitmap_free(pf->avail_txqs); 3978 pf->avail_txqs = NULL; 3979 } 3980 3981 if (pf->avail_rxqs) { 3982 bitmap_free(pf->avail_rxqs); 3983 pf->avail_rxqs = NULL; 3984 } 3985 3986 if (pf->ptp.clock) 3987 ptp_clock_unregister(pf->ptp.clock); 3988 } 3989 3990 /** 3991 * ice_set_pf_caps - set PFs capability flags 3992 * @pf: pointer to the PF instance 3993 */ 3994 static void ice_set_pf_caps(struct ice_pf *pf) 3995 { 3996 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3997 3998 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3999 if (func_caps->common_cap.rdma) 4000 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4001 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4002 if (func_caps->common_cap.dcb) 4003 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4004 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4005 if (func_caps->common_cap.sr_iov_1_1) { 4006 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4007 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4008 ICE_MAX_SRIOV_VFS); 4009 } 4010 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4011 if (func_caps->common_cap.rss_table_size) 4012 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4013 4014 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4015 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4016 u16 unused; 4017 4018 /* ctrl_vsi_idx will be set to a valid value when flow director 4019 * is setup by ice_init_fdir 4020 */ 4021 pf->ctrl_vsi_idx = ICE_NO_VSI; 4022 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4023 /* force guaranteed filter pool for PF */ 4024 ice_alloc_fd_guar_item(&pf->hw, &unused, 4025 func_caps->fd_fltr_guar); 4026 /* force shared filter pool for PF */ 4027 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4028 func_caps->fd_fltr_best_effort); 4029 } 4030 4031 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4032 if (func_caps->common_cap.ieee_1588 && 4033 !(pf->hw.mac_type == ICE_MAC_E830)) 4034 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4035 4036 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4037 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4038 } 4039 4040 /** 4041 * ice_init_pf - Initialize general software structures (struct ice_pf) 4042 * @pf: board private structure to initialize 4043 */ 4044 static int ice_init_pf(struct ice_pf *pf) 4045 { 4046 ice_set_pf_caps(pf); 4047 4048 mutex_init(&pf->sw_mutex); 4049 mutex_init(&pf->tc_mutex); 4050 mutex_init(&pf->adev_mutex); 4051 mutex_init(&pf->lag_mutex); 4052 4053 INIT_HLIST_HEAD(&pf->aq_wait_list); 4054 spin_lock_init(&pf->aq_wait_lock); 4055 init_waitqueue_head(&pf->aq_wait_queue); 4056 4057 init_waitqueue_head(&pf->reset_wait_queue); 4058 4059 /* setup service timer and periodic service task */ 4060 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4061 pf->serv_tmr_period = HZ; 4062 INIT_WORK(&pf->serv_task, ice_service_task); 4063 clear_bit(ICE_SERVICE_SCHED, pf->state); 4064 4065 mutex_init(&pf->avail_q_mutex); 4066 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4067 if (!pf->avail_txqs) 4068 return -ENOMEM; 4069 4070 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4071 if (!pf->avail_rxqs) { 4072 bitmap_free(pf->avail_txqs); 4073 pf->avail_txqs = NULL; 4074 return -ENOMEM; 4075 } 4076 4077 mutex_init(&pf->vfs.table_lock); 4078 hash_init(pf->vfs.table); 4079 ice_mbx_init_snapshot(&pf->hw); 4080 4081 return 0; 4082 } 4083 4084 /** 4085 * ice_is_wol_supported - check if WoL is supported 4086 * @hw: pointer to hardware info 4087 * 4088 * Check if WoL is supported based on the HW configuration. 4089 * Returns true if NVM supports and enables WoL for this port, false otherwise 4090 */ 4091 bool ice_is_wol_supported(struct ice_hw *hw) 4092 { 4093 u16 wol_ctrl; 4094 4095 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4096 * word) indicates WoL is not supported on the corresponding PF ID. 4097 */ 4098 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4099 return false; 4100 4101 return !(BIT(hw->port_info->lport) & wol_ctrl); 4102 } 4103 4104 /** 4105 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4106 * @vsi: VSI being changed 4107 * @new_rx: new number of Rx queues 4108 * @new_tx: new number of Tx queues 4109 * @locked: is adev device_lock held 4110 * 4111 * Only change the number of queues if new_tx, or new_rx is non-0. 4112 * 4113 * Returns 0 on success. 4114 */ 4115 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4116 { 4117 struct ice_pf *pf = vsi->back; 4118 int err = 0, timeout = 50; 4119 4120 if (!new_rx && !new_tx) 4121 return -EINVAL; 4122 4123 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4124 timeout--; 4125 if (!timeout) 4126 return -EBUSY; 4127 usleep_range(1000, 2000); 4128 } 4129 4130 if (new_tx) 4131 vsi->req_txq = (u16)new_tx; 4132 if (new_rx) 4133 vsi->req_rxq = (u16)new_rx; 4134 4135 /* set for the next time the netdev is started */ 4136 if (!netif_running(vsi->netdev)) { 4137 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4138 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4139 goto done; 4140 } 4141 4142 ice_vsi_close(vsi); 4143 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4144 ice_pf_dcb_recfg(pf, locked); 4145 ice_vsi_open(vsi); 4146 done: 4147 clear_bit(ICE_CFG_BUSY, pf->state); 4148 return err; 4149 } 4150 4151 /** 4152 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4153 * @pf: PF to configure 4154 * 4155 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4156 * VSI can still Tx/Rx VLAN tagged packets. 4157 */ 4158 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4159 { 4160 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4161 struct ice_vsi_ctx *ctxt; 4162 struct ice_hw *hw; 4163 int status; 4164 4165 if (!vsi) 4166 return; 4167 4168 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4169 if (!ctxt) 4170 return; 4171 4172 hw = &pf->hw; 4173 ctxt->info = vsi->info; 4174 4175 ctxt->info.valid_sections = 4176 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4177 ICE_AQ_VSI_PROP_SECURITY_VALID | 4178 ICE_AQ_VSI_PROP_SW_VALID); 4179 4180 /* disable VLAN anti-spoof */ 4181 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4182 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4183 4184 /* disable VLAN pruning and keep all other settings */ 4185 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4186 4187 /* allow all VLANs on Tx and don't strip on Rx */ 4188 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4189 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4190 4191 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4192 if (status) { 4193 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4194 status, ice_aq_str(hw->adminq.sq_last_status)); 4195 } else { 4196 vsi->info.sec_flags = ctxt->info.sec_flags; 4197 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4198 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4199 } 4200 4201 kfree(ctxt); 4202 } 4203 4204 /** 4205 * ice_log_pkg_init - log result of DDP package load 4206 * @hw: pointer to hardware info 4207 * @state: state of package load 4208 */ 4209 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4210 { 4211 struct ice_pf *pf = hw->back; 4212 struct device *dev; 4213 4214 dev = ice_pf_to_dev(pf); 4215 4216 switch (state) { 4217 case ICE_DDP_PKG_SUCCESS: 4218 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4219 hw->active_pkg_name, 4220 hw->active_pkg_ver.major, 4221 hw->active_pkg_ver.minor, 4222 hw->active_pkg_ver.update, 4223 hw->active_pkg_ver.draft); 4224 break; 4225 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4226 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4227 hw->active_pkg_name, 4228 hw->active_pkg_ver.major, 4229 hw->active_pkg_ver.minor, 4230 hw->active_pkg_ver.update, 4231 hw->active_pkg_ver.draft); 4232 break; 4233 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4234 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4235 hw->active_pkg_name, 4236 hw->active_pkg_ver.major, 4237 hw->active_pkg_ver.minor, 4238 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4239 break; 4240 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4241 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4242 hw->active_pkg_name, 4243 hw->active_pkg_ver.major, 4244 hw->active_pkg_ver.minor, 4245 hw->active_pkg_ver.update, 4246 hw->active_pkg_ver.draft, 4247 hw->pkg_name, 4248 hw->pkg_ver.major, 4249 hw->pkg_ver.minor, 4250 hw->pkg_ver.update, 4251 hw->pkg_ver.draft); 4252 break; 4253 case ICE_DDP_PKG_FW_MISMATCH: 4254 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4255 break; 4256 case ICE_DDP_PKG_INVALID_FILE: 4257 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4258 break; 4259 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4260 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4261 break; 4262 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4263 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4264 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4265 break; 4266 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4267 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4268 break; 4269 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4270 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4271 break; 4272 case ICE_DDP_PKG_LOAD_ERROR: 4273 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4274 /* poll for reset to complete */ 4275 if (ice_check_reset(hw)) 4276 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4277 break; 4278 case ICE_DDP_PKG_ERR: 4279 default: 4280 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4281 break; 4282 } 4283 } 4284 4285 /** 4286 * ice_load_pkg - load/reload the DDP Package file 4287 * @firmware: firmware structure when firmware requested or NULL for reload 4288 * @pf: pointer to the PF instance 4289 * 4290 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4291 * initialize HW tables. 4292 */ 4293 static void 4294 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4295 { 4296 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4297 struct device *dev = ice_pf_to_dev(pf); 4298 struct ice_hw *hw = &pf->hw; 4299 4300 /* Load DDP Package */ 4301 if (firmware && !hw->pkg_copy) { 4302 state = ice_copy_and_init_pkg(hw, firmware->data, 4303 firmware->size); 4304 ice_log_pkg_init(hw, state); 4305 } else if (!firmware && hw->pkg_copy) { 4306 /* Reload package during rebuild after CORER/GLOBR reset */ 4307 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4308 ice_log_pkg_init(hw, state); 4309 } else { 4310 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4311 } 4312 4313 if (!ice_is_init_pkg_successful(state)) { 4314 /* Safe Mode */ 4315 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4316 return; 4317 } 4318 4319 /* Successful download package is the precondition for advanced 4320 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4321 */ 4322 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4323 } 4324 4325 /** 4326 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4327 * @pf: pointer to the PF structure 4328 * 4329 * There is no error returned here because the driver should be able to handle 4330 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4331 * specifically with Tx. 4332 */ 4333 static void ice_verify_cacheline_size(struct ice_pf *pf) 4334 { 4335 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4336 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4337 ICE_CACHE_LINE_BYTES); 4338 } 4339 4340 /** 4341 * ice_send_version - update firmware with driver version 4342 * @pf: PF struct 4343 * 4344 * Returns 0 on success, else error code 4345 */ 4346 static int ice_send_version(struct ice_pf *pf) 4347 { 4348 struct ice_driver_ver dv; 4349 4350 dv.major_ver = 0xff; 4351 dv.minor_ver = 0xff; 4352 dv.build_ver = 0xff; 4353 dv.subbuild_ver = 0; 4354 strscpy((char *)dv.driver_string, UTS_RELEASE, 4355 sizeof(dv.driver_string)); 4356 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4357 } 4358 4359 /** 4360 * ice_init_fdir - Initialize flow director VSI and configuration 4361 * @pf: pointer to the PF instance 4362 * 4363 * returns 0 on success, negative on error 4364 */ 4365 static int ice_init_fdir(struct ice_pf *pf) 4366 { 4367 struct device *dev = ice_pf_to_dev(pf); 4368 struct ice_vsi *ctrl_vsi; 4369 int err; 4370 4371 /* Side Band Flow Director needs to have a control VSI. 4372 * Allocate it and store it in the PF. 4373 */ 4374 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4375 if (!ctrl_vsi) { 4376 dev_dbg(dev, "could not create control VSI\n"); 4377 return -ENOMEM; 4378 } 4379 4380 err = ice_vsi_open_ctrl(ctrl_vsi); 4381 if (err) { 4382 dev_dbg(dev, "could not open control VSI\n"); 4383 goto err_vsi_open; 4384 } 4385 4386 mutex_init(&pf->hw.fdir_fltr_lock); 4387 4388 err = ice_fdir_create_dflt_rules(pf); 4389 if (err) 4390 goto err_fdir_rule; 4391 4392 return 0; 4393 4394 err_fdir_rule: 4395 ice_fdir_release_flows(&pf->hw); 4396 ice_vsi_close(ctrl_vsi); 4397 err_vsi_open: 4398 ice_vsi_release(ctrl_vsi); 4399 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4400 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4401 pf->ctrl_vsi_idx = ICE_NO_VSI; 4402 } 4403 return err; 4404 } 4405 4406 static void ice_deinit_fdir(struct ice_pf *pf) 4407 { 4408 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4409 4410 if (!vsi) 4411 return; 4412 4413 ice_vsi_manage_fdir(vsi, false); 4414 ice_vsi_release(vsi); 4415 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4416 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4417 pf->ctrl_vsi_idx = ICE_NO_VSI; 4418 } 4419 4420 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4421 } 4422 4423 /** 4424 * ice_get_opt_fw_name - return optional firmware file name or NULL 4425 * @pf: pointer to the PF instance 4426 */ 4427 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4428 { 4429 /* Optional firmware name same as default with additional dash 4430 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4431 */ 4432 struct pci_dev *pdev = pf->pdev; 4433 char *opt_fw_filename; 4434 u64 dsn; 4435 4436 /* Determine the name of the optional file using the DSN (two 4437 * dwords following the start of the DSN Capability). 4438 */ 4439 dsn = pci_get_dsn(pdev); 4440 if (!dsn) 4441 return NULL; 4442 4443 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4444 if (!opt_fw_filename) 4445 return NULL; 4446 4447 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4448 ICE_DDP_PKG_PATH, dsn); 4449 4450 return opt_fw_filename; 4451 } 4452 4453 /** 4454 * ice_request_fw - Device initialization routine 4455 * @pf: pointer to the PF instance 4456 * @firmware: double pointer to firmware struct 4457 * 4458 * Return: zero when successful, negative values otherwise. 4459 */ 4460 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4461 { 4462 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4463 struct device *dev = ice_pf_to_dev(pf); 4464 int err = 0; 4465 4466 /* optional device-specific DDP (if present) overrides the default DDP 4467 * package file. kernel logs a debug message if the file doesn't exist, 4468 * and warning messages for other errors. 4469 */ 4470 if (opt_fw_filename) { 4471 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4472 kfree(opt_fw_filename); 4473 if (!err) 4474 return err; 4475 } 4476 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4477 if (err) 4478 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4479 4480 return err; 4481 } 4482 4483 /** 4484 * ice_init_tx_topology - performs Tx topology initialization 4485 * @hw: pointer to the hardware structure 4486 * @firmware: pointer to firmware structure 4487 * 4488 * Return: zero when init was successful, negative values otherwise. 4489 */ 4490 static int 4491 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4492 { 4493 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4494 struct ice_pf *pf = hw->back; 4495 struct device *dev; 4496 u8 *buf_copy; 4497 int err; 4498 4499 dev = ice_pf_to_dev(pf); 4500 /* ice_cfg_tx_topo buf argument is not a constant, 4501 * so we have to make a copy 4502 */ 4503 buf_copy = kmemdup(firmware->data, firmware->size, GFP_KERNEL); 4504 4505 err = ice_cfg_tx_topo(hw, buf_copy, firmware->size); 4506 if (!err) { 4507 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4508 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4509 else 4510 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4511 /* if there was a change in topology ice_cfg_tx_topo triggered 4512 * a CORER and we need to re-init hw 4513 */ 4514 ice_deinit_hw(hw); 4515 err = ice_init_hw(hw); 4516 4517 return err; 4518 } else if (err == -EIO) { 4519 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4520 } 4521 4522 return 0; 4523 } 4524 4525 /** 4526 * ice_init_ddp_config - DDP related configuration 4527 * @hw: pointer to the hardware structure 4528 * @pf: pointer to pf structure 4529 * 4530 * This function loads DDP file from the disk, then initializes Tx 4531 * topology. At the end DDP package is loaded on the card. 4532 * 4533 * Return: zero when init was successful, negative values otherwise. 4534 */ 4535 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4536 { 4537 struct device *dev = ice_pf_to_dev(pf); 4538 const struct firmware *firmware = NULL; 4539 int err; 4540 4541 err = ice_request_fw(pf, &firmware); 4542 if (err) { 4543 dev_err(dev, "Fail during requesting FW: %d\n", err); 4544 return err; 4545 } 4546 4547 err = ice_init_tx_topology(hw, firmware); 4548 if (err) { 4549 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4550 err); 4551 release_firmware(firmware); 4552 return err; 4553 } 4554 4555 /* Download firmware to device */ 4556 ice_load_pkg(firmware, pf); 4557 release_firmware(firmware); 4558 4559 return 0; 4560 } 4561 4562 /** 4563 * ice_print_wake_reason - show the wake up cause in the log 4564 * @pf: pointer to the PF struct 4565 */ 4566 static void ice_print_wake_reason(struct ice_pf *pf) 4567 { 4568 u32 wus = pf->wakeup_reason; 4569 const char *wake_str; 4570 4571 /* if no wake event, nothing to print */ 4572 if (!wus) 4573 return; 4574 4575 if (wus & PFPM_WUS_LNKC_M) 4576 wake_str = "Link\n"; 4577 else if (wus & PFPM_WUS_MAG_M) 4578 wake_str = "Magic Packet\n"; 4579 else if (wus & PFPM_WUS_MNG_M) 4580 wake_str = "Management\n"; 4581 else if (wus & PFPM_WUS_FW_RST_WK_M) 4582 wake_str = "Firmware Reset\n"; 4583 else 4584 wake_str = "Unknown\n"; 4585 4586 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4587 } 4588 4589 /** 4590 * ice_pf_fwlog_update_module - update 1 module 4591 * @pf: pointer to the PF struct 4592 * @log_level: log_level to use for the @module 4593 * @module: module to update 4594 */ 4595 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4596 { 4597 struct ice_hw *hw = &pf->hw; 4598 4599 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4600 } 4601 4602 /** 4603 * ice_register_netdev - register netdev 4604 * @vsi: pointer to the VSI struct 4605 */ 4606 static int ice_register_netdev(struct ice_vsi *vsi) 4607 { 4608 int err; 4609 4610 if (!vsi || !vsi->netdev) 4611 return -EIO; 4612 4613 err = register_netdev(vsi->netdev); 4614 if (err) 4615 return err; 4616 4617 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4618 netif_carrier_off(vsi->netdev); 4619 netif_tx_stop_all_queues(vsi->netdev); 4620 4621 return 0; 4622 } 4623 4624 static void ice_unregister_netdev(struct ice_vsi *vsi) 4625 { 4626 if (!vsi || !vsi->netdev) 4627 return; 4628 4629 unregister_netdev(vsi->netdev); 4630 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4631 } 4632 4633 /** 4634 * ice_cfg_netdev - Allocate, configure and register a netdev 4635 * @vsi: the VSI associated with the new netdev 4636 * 4637 * Returns 0 on success, negative value on failure 4638 */ 4639 static int ice_cfg_netdev(struct ice_vsi *vsi) 4640 { 4641 struct ice_netdev_priv *np; 4642 struct net_device *netdev; 4643 u8 mac_addr[ETH_ALEN]; 4644 4645 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4646 vsi->alloc_rxq); 4647 if (!netdev) 4648 return -ENOMEM; 4649 4650 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4651 vsi->netdev = netdev; 4652 np = netdev_priv(netdev); 4653 np->vsi = vsi; 4654 4655 ice_set_netdev_features(netdev); 4656 ice_set_ops(vsi); 4657 4658 if (vsi->type == ICE_VSI_PF) { 4659 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4660 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4661 eth_hw_addr_set(netdev, mac_addr); 4662 } 4663 4664 netdev->priv_flags |= IFF_UNICAST_FLT; 4665 4666 /* Setup netdev TC information */ 4667 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4668 4669 netdev->max_mtu = ICE_MAX_MTU; 4670 4671 return 0; 4672 } 4673 4674 static void ice_decfg_netdev(struct ice_vsi *vsi) 4675 { 4676 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4677 free_netdev(vsi->netdev); 4678 vsi->netdev = NULL; 4679 } 4680 4681 /** 4682 * ice_wait_for_fw - wait for full FW readiness 4683 * @hw: pointer to the hardware structure 4684 * @timeout: milliseconds that can elapse before timing out 4685 */ 4686 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4687 { 4688 int fw_loading; 4689 u32 elapsed = 0; 4690 4691 while (elapsed <= timeout) { 4692 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4693 4694 /* firmware was not yet loaded, we have to wait more */ 4695 if (fw_loading) { 4696 elapsed += 100; 4697 msleep(100); 4698 continue; 4699 } 4700 return 0; 4701 } 4702 4703 return -ETIMEDOUT; 4704 } 4705 4706 int ice_init_dev(struct ice_pf *pf) 4707 { 4708 struct device *dev = ice_pf_to_dev(pf); 4709 struct ice_hw *hw = &pf->hw; 4710 int err; 4711 4712 err = ice_init_hw(hw); 4713 if (err) { 4714 dev_err(dev, "ice_init_hw failed: %d\n", err); 4715 return err; 4716 } 4717 4718 /* Some cards require longer initialization times 4719 * due to necessity of loading FW from an external source. 4720 * This can take even half a minute. 4721 */ 4722 if (ice_is_pf_c827(hw)) { 4723 err = ice_wait_for_fw(hw, 30000); 4724 if (err) { 4725 dev_err(dev, "ice_wait_for_fw timed out"); 4726 return err; 4727 } 4728 } 4729 4730 ice_init_feature_support(pf); 4731 4732 err = ice_init_ddp_config(hw, pf); 4733 if (err) 4734 return err; 4735 4736 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4737 * set in pf->state, which will cause ice_is_safe_mode to return 4738 * true 4739 */ 4740 if (ice_is_safe_mode(pf)) { 4741 /* we already got function/device capabilities but these don't 4742 * reflect what the driver needs to do in safe mode. Instead of 4743 * adding conditional logic everywhere to ignore these 4744 * device/function capabilities, override them. 4745 */ 4746 ice_set_safe_mode_caps(hw); 4747 } 4748 4749 err = ice_init_pf(pf); 4750 if (err) { 4751 dev_err(dev, "ice_init_pf failed: %d\n", err); 4752 goto err_init_pf; 4753 } 4754 4755 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4756 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4757 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4758 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4759 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4760 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4761 pf->hw.tnl.valid_count[TNL_VXLAN]; 4762 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4763 UDP_TUNNEL_TYPE_VXLAN; 4764 } 4765 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4766 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4767 pf->hw.tnl.valid_count[TNL_GENEVE]; 4768 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4769 UDP_TUNNEL_TYPE_GENEVE; 4770 } 4771 4772 err = ice_init_interrupt_scheme(pf); 4773 if (err) { 4774 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4775 err = -EIO; 4776 goto err_init_interrupt_scheme; 4777 } 4778 4779 /* In case of MSIX we are going to setup the misc vector right here 4780 * to handle admin queue events etc. In case of legacy and MSI 4781 * the misc functionality and queue processing is combined in 4782 * the same vector and that gets setup at open. 4783 */ 4784 err = ice_req_irq_msix_misc(pf); 4785 if (err) { 4786 dev_err(dev, "setup of misc vector failed: %d\n", err); 4787 goto err_req_irq_msix_misc; 4788 } 4789 4790 return 0; 4791 4792 err_req_irq_msix_misc: 4793 ice_clear_interrupt_scheme(pf); 4794 err_init_interrupt_scheme: 4795 ice_deinit_pf(pf); 4796 err_init_pf: 4797 ice_deinit_hw(hw); 4798 return err; 4799 } 4800 4801 void ice_deinit_dev(struct ice_pf *pf) 4802 { 4803 ice_free_irq_msix_misc(pf); 4804 ice_deinit_pf(pf); 4805 ice_deinit_hw(&pf->hw); 4806 4807 /* Service task is already stopped, so call reset directly. */ 4808 ice_reset(&pf->hw, ICE_RESET_PFR); 4809 pci_wait_for_pending_transaction(pf->pdev); 4810 ice_clear_interrupt_scheme(pf); 4811 } 4812 4813 static void ice_init_features(struct ice_pf *pf) 4814 { 4815 struct device *dev = ice_pf_to_dev(pf); 4816 4817 if (ice_is_safe_mode(pf)) 4818 return; 4819 4820 /* initialize DDP driven features */ 4821 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4822 ice_ptp_init(pf); 4823 4824 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4825 ice_gnss_init(pf); 4826 4827 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4828 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4829 ice_dpll_init(pf); 4830 4831 /* Note: Flow director init failure is non-fatal to load */ 4832 if (ice_init_fdir(pf)) 4833 dev_err(dev, "could not initialize flow director\n"); 4834 4835 /* Note: DCB init failure is non-fatal to load */ 4836 if (ice_init_pf_dcb(pf, false)) { 4837 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4838 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4839 } else { 4840 ice_cfg_lldp_mib_change(&pf->hw, true); 4841 } 4842 4843 if (ice_init_lag(pf)) 4844 dev_warn(dev, "Failed to init link aggregation support\n"); 4845 4846 ice_hwmon_init(pf); 4847 } 4848 4849 static void ice_deinit_features(struct ice_pf *pf) 4850 { 4851 if (ice_is_safe_mode(pf)) 4852 return; 4853 4854 ice_deinit_lag(pf); 4855 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4856 ice_cfg_lldp_mib_change(&pf->hw, false); 4857 ice_deinit_fdir(pf); 4858 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4859 ice_gnss_exit(pf); 4860 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4861 ice_ptp_release(pf); 4862 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4863 ice_dpll_deinit(pf); 4864 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4865 xa_destroy(&pf->eswitch.reprs); 4866 } 4867 4868 static void ice_init_wakeup(struct ice_pf *pf) 4869 { 4870 /* Save wakeup reason register for later use */ 4871 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4872 4873 /* check for a power management event */ 4874 ice_print_wake_reason(pf); 4875 4876 /* clear wake status, all bits */ 4877 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4878 4879 /* Disable WoL at init, wait for user to enable */ 4880 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4881 } 4882 4883 static int ice_init_link(struct ice_pf *pf) 4884 { 4885 struct device *dev = ice_pf_to_dev(pf); 4886 int err; 4887 4888 err = ice_init_link_events(pf->hw.port_info); 4889 if (err) { 4890 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4891 return err; 4892 } 4893 4894 /* not a fatal error if this fails */ 4895 err = ice_init_nvm_phy_type(pf->hw.port_info); 4896 if (err) 4897 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4898 4899 /* not a fatal error if this fails */ 4900 err = ice_update_link_info(pf->hw.port_info); 4901 if (err) 4902 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4903 4904 ice_init_link_dflt_override(pf->hw.port_info); 4905 4906 ice_check_link_cfg_err(pf, 4907 pf->hw.port_info->phy.link_info.link_cfg_err); 4908 4909 /* if media available, initialize PHY settings */ 4910 if (pf->hw.port_info->phy.link_info.link_info & 4911 ICE_AQ_MEDIA_AVAILABLE) { 4912 /* not a fatal error if this fails */ 4913 err = ice_init_phy_user_cfg(pf->hw.port_info); 4914 if (err) 4915 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4916 4917 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4918 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4919 4920 if (vsi) 4921 ice_configure_phy(vsi); 4922 } 4923 } else { 4924 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4925 } 4926 4927 return err; 4928 } 4929 4930 static int ice_init_pf_sw(struct ice_pf *pf) 4931 { 4932 bool dvm = ice_is_dvm_ena(&pf->hw); 4933 struct ice_vsi *vsi; 4934 int err; 4935 4936 /* create switch struct for the switch element created by FW on boot */ 4937 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4938 if (!pf->first_sw) 4939 return -ENOMEM; 4940 4941 if (pf->hw.evb_veb) 4942 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4943 else 4944 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4945 4946 pf->first_sw->pf = pf; 4947 4948 /* record the sw_id available for later use */ 4949 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4950 4951 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4952 if (err) 4953 goto err_aq_set_port_params; 4954 4955 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4956 if (!vsi) { 4957 err = -ENOMEM; 4958 goto err_pf_vsi_setup; 4959 } 4960 4961 return 0; 4962 4963 err_pf_vsi_setup: 4964 err_aq_set_port_params: 4965 kfree(pf->first_sw); 4966 return err; 4967 } 4968 4969 static void ice_deinit_pf_sw(struct ice_pf *pf) 4970 { 4971 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4972 4973 if (!vsi) 4974 return; 4975 4976 ice_vsi_release(vsi); 4977 kfree(pf->first_sw); 4978 } 4979 4980 static int ice_alloc_vsis(struct ice_pf *pf) 4981 { 4982 struct device *dev = ice_pf_to_dev(pf); 4983 4984 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4985 if (!pf->num_alloc_vsi) 4986 return -EIO; 4987 4988 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4989 dev_warn(dev, 4990 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4991 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4992 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4993 } 4994 4995 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4996 GFP_KERNEL); 4997 if (!pf->vsi) 4998 return -ENOMEM; 4999 5000 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5001 sizeof(*pf->vsi_stats), GFP_KERNEL); 5002 if (!pf->vsi_stats) { 5003 devm_kfree(dev, pf->vsi); 5004 return -ENOMEM; 5005 } 5006 5007 return 0; 5008 } 5009 5010 static void ice_dealloc_vsis(struct ice_pf *pf) 5011 { 5012 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5013 pf->vsi_stats = NULL; 5014 5015 pf->num_alloc_vsi = 0; 5016 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5017 pf->vsi = NULL; 5018 } 5019 5020 static int ice_init_devlink(struct ice_pf *pf) 5021 { 5022 int err; 5023 5024 err = ice_devlink_register_params(pf); 5025 if (err) 5026 return err; 5027 5028 ice_devlink_init_regions(pf); 5029 ice_devlink_register(pf); 5030 5031 return 0; 5032 } 5033 5034 static void ice_deinit_devlink(struct ice_pf *pf) 5035 { 5036 ice_devlink_unregister(pf); 5037 ice_devlink_destroy_regions(pf); 5038 ice_devlink_unregister_params(pf); 5039 } 5040 5041 static int ice_init(struct ice_pf *pf) 5042 { 5043 int err; 5044 5045 err = ice_init_dev(pf); 5046 if (err) 5047 return err; 5048 5049 err = ice_alloc_vsis(pf); 5050 if (err) 5051 goto err_alloc_vsis; 5052 5053 err = ice_init_pf_sw(pf); 5054 if (err) 5055 goto err_init_pf_sw; 5056 5057 ice_init_wakeup(pf); 5058 5059 err = ice_init_link(pf); 5060 if (err) 5061 goto err_init_link; 5062 5063 err = ice_send_version(pf); 5064 if (err) 5065 goto err_init_link; 5066 5067 ice_verify_cacheline_size(pf); 5068 5069 if (ice_is_safe_mode(pf)) 5070 ice_set_safe_mode_vlan_cfg(pf); 5071 else 5072 /* print PCI link speed and width */ 5073 pcie_print_link_status(pf->pdev); 5074 5075 /* ready to go, so clear down state bit */ 5076 clear_bit(ICE_DOWN, pf->state); 5077 clear_bit(ICE_SERVICE_DIS, pf->state); 5078 5079 /* since everything is good, start the service timer */ 5080 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5081 5082 return 0; 5083 5084 err_init_link: 5085 ice_deinit_pf_sw(pf); 5086 err_init_pf_sw: 5087 ice_dealloc_vsis(pf); 5088 err_alloc_vsis: 5089 ice_deinit_dev(pf); 5090 return err; 5091 } 5092 5093 static void ice_deinit(struct ice_pf *pf) 5094 { 5095 set_bit(ICE_SERVICE_DIS, pf->state); 5096 set_bit(ICE_DOWN, pf->state); 5097 5098 ice_deinit_pf_sw(pf); 5099 ice_dealloc_vsis(pf); 5100 ice_deinit_dev(pf); 5101 } 5102 5103 /** 5104 * ice_load - load pf by init hw and starting VSI 5105 * @pf: pointer to the pf instance 5106 * 5107 * This function has to be called under devl_lock. 5108 */ 5109 int ice_load(struct ice_pf *pf) 5110 { 5111 struct ice_vsi *vsi; 5112 int err; 5113 5114 devl_assert_locked(priv_to_devlink(pf)); 5115 5116 vsi = ice_get_main_vsi(pf); 5117 5118 /* init channel list */ 5119 INIT_LIST_HEAD(&vsi->ch_list); 5120 5121 err = ice_cfg_netdev(vsi); 5122 if (err) 5123 return err; 5124 5125 /* Setup DCB netlink interface */ 5126 ice_dcbnl_setup(vsi); 5127 5128 err = ice_init_mac_fltr(pf); 5129 if (err) 5130 goto err_init_mac_fltr; 5131 5132 err = ice_devlink_create_pf_port(pf); 5133 if (err) 5134 goto err_devlink_create_pf_port; 5135 5136 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5137 5138 err = ice_register_netdev(vsi); 5139 if (err) 5140 goto err_register_netdev; 5141 5142 err = ice_tc_indir_block_register(vsi); 5143 if (err) 5144 goto err_tc_indir_block_register; 5145 5146 ice_napi_add(vsi); 5147 5148 err = ice_init_rdma(pf); 5149 if (err) 5150 goto err_init_rdma; 5151 5152 ice_init_features(pf); 5153 ice_service_task_restart(pf); 5154 5155 clear_bit(ICE_DOWN, pf->state); 5156 5157 return 0; 5158 5159 err_init_rdma: 5160 ice_tc_indir_block_unregister(vsi); 5161 err_tc_indir_block_register: 5162 ice_unregister_netdev(vsi); 5163 err_register_netdev: 5164 ice_devlink_destroy_pf_port(pf); 5165 err_devlink_create_pf_port: 5166 err_init_mac_fltr: 5167 ice_decfg_netdev(vsi); 5168 return err; 5169 } 5170 5171 /** 5172 * ice_unload - unload pf by stopping VSI and deinit hw 5173 * @pf: pointer to the pf instance 5174 * 5175 * This function has to be called under devl_lock. 5176 */ 5177 void ice_unload(struct ice_pf *pf) 5178 { 5179 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5180 5181 devl_assert_locked(priv_to_devlink(pf)); 5182 5183 ice_deinit_features(pf); 5184 ice_deinit_rdma(pf); 5185 ice_tc_indir_block_unregister(vsi); 5186 ice_unregister_netdev(vsi); 5187 ice_devlink_destroy_pf_port(pf); 5188 ice_decfg_netdev(vsi); 5189 } 5190 5191 /** 5192 * ice_probe - Device initialization routine 5193 * @pdev: PCI device information struct 5194 * @ent: entry in ice_pci_tbl 5195 * 5196 * Returns 0 on success, negative on failure 5197 */ 5198 static int 5199 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5200 { 5201 struct device *dev = &pdev->dev; 5202 struct ice_adapter *adapter; 5203 struct ice_pf *pf; 5204 struct ice_hw *hw; 5205 int err; 5206 5207 if (pdev->is_virtfn) { 5208 dev_err(dev, "can't probe a virtual function\n"); 5209 return -EINVAL; 5210 } 5211 5212 /* when under a kdump kernel initiate a reset before enabling the 5213 * device in order to clear out any pending DMA transactions. These 5214 * transactions can cause some systems to machine check when doing 5215 * the pcim_enable_device() below. 5216 */ 5217 if (is_kdump_kernel()) { 5218 pci_save_state(pdev); 5219 pci_clear_master(pdev); 5220 err = pcie_flr(pdev); 5221 if (err) 5222 return err; 5223 pci_restore_state(pdev); 5224 } 5225 5226 /* this driver uses devres, see 5227 * Documentation/driver-api/driver-model/devres.rst 5228 */ 5229 err = pcim_enable_device(pdev); 5230 if (err) 5231 return err; 5232 5233 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5234 if (err) { 5235 dev_err(dev, "BAR0 I/O map error %d\n", err); 5236 return err; 5237 } 5238 5239 pf = ice_allocate_pf(dev); 5240 if (!pf) 5241 return -ENOMEM; 5242 5243 /* initialize Auxiliary index to invalid value */ 5244 pf->aux_idx = -1; 5245 5246 /* set up for high or low DMA */ 5247 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5248 if (err) { 5249 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5250 return err; 5251 } 5252 5253 pci_set_master(pdev); 5254 5255 adapter = ice_adapter_get(pdev); 5256 if (IS_ERR(adapter)) 5257 return PTR_ERR(adapter); 5258 5259 pf->pdev = pdev; 5260 pf->adapter = adapter; 5261 pci_set_drvdata(pdev, pf); 5262 set_bit(ICE_DOWN, pf->state); 5263 /* Disable service task until DOWN bit is cleared */ 5264 set_bit(ICE_SERVICE_DIS, pf->state); 5265 5266 hw = &pf->hw; 5267 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5268 pci_save_state(pdev); 5269 5270 hw->back = pf; 5271 hw->port_info = NULL; 5272 hw->vendor_id = pdev->vendor; 5273 hw->device_id = pdev->device; 5274 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5275 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5276 hw->subsystem_device_id = pdev->subsystem_device; 5277 hw->bus.device = PCI_SLOT(pdev->devfn); 5278 hw->bus.func = PCI_FUNC(pdev->devfn); 5279 ice_set_ctrlq_len(hw); 5280 5281 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5282 5283 #ifndef CONFIG_DYNAMIC_DEBUG 5284 if (debug < -1) 5285 hw->debug_mask = debug; 5286 #endif 5287 5288 err = ice_init(pf); 5289 if (err) 5290 goto err_init; 5291 5292 devl_lock(priv_to_devlink(pf)); 5293 err = ice_load(pf); 5294 if (err) 5295 goto err_load; 5296 5297 err = ice_init_devlink(pf); 5298 if (err) 5299 goto err_init_devlink; 5300 devl_unlock(priv_to_devlink(pf)); 5301 5302 return 0; 5303 5304 err_init_devlink: 5305 ice_unload(pf); 5306 err_load: 5307 devl_unlock(priv_to_devlink(pf)); 5308 ice_deinit(pf); 5309 err_init: 5310 ice_adapter_put(pdev); 5311 pci_disable_device(pdev); 5312 return err; 5313 } 5314 5315 /** 5316 * ice_set_wake - enable or disable Wake on LAN 5317 * @pf: pointer to the PF struct 5318 * 5319 * Simple helper for WoL control 5320 */ 5321 static void ice_set_wake(struct ice_pf *pf) 5322 { 5323 struct ice_hw *hw = &pf->hw; 5324 bool wol = pf->wol_ena; 5325 5326 /* clear wake state, otherwise new wake events won't fire */ 5327 wr32(hw, PFPM_WUS, U32_MAX); 5328 5329 /* enable / disable APM wake up, no RMW needed */ 5330 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5331 5332 /* set magic packet filter enabled */ 5333 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5334 } 5335 5336 /** 5337 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5338 * @pf: pointer to the PF struct 5339 * 5340 * Issue firmware command to enable multicast magic wake, making 5341 * sure that any locally administered address (LAA) is used for 5342 * wake, and that PF reset doesn't undo the LAA. 5343 */ 5344 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5345 { 5346 struct device *dev = ice_pf_to_dev(pf); 5347 struct ice_hw *hw = &pf->hw; 5348 u8 mac_addr[ETH_ALEN]; 5349 struct ice_vsi *vsi; 5350 int status; 5351 u8 flags; 5352 5353 if (!pf->wol_ena) 5354 return; 5355 5356 vsi = ice_get_main_vsi(pf); 5357 if (!vsi) 5358 return; 5359 5360 /* Get current MAC address in case it's an LAA */ 5361 if (vsi->netdev) 5362 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5363 else 5364 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5365 5366 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5367 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5368 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5369 5370 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5371 if (status) 5372 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5373 status, ice_aq_str(hw->adminq.sq_last_status)); 5374 } 5375 5376 /** 5377 * ice_remove - Device removal routine 5378 * @pdev: PCI device information struct 5379 */ 5380 static void ice_remove(struct pci_dev *pdev) 5381 { 5382 struct ice_pf *pf = pci_get_drvdata(pdev); 5383 int i; 5384 5385 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5386 if (!ice_is_reset_in_progress(pf->state)) 5387 break; 5388 msleep(100); 5389 } 5390 5391 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5392 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5393 ice_free_vfs(pf); 5394 } 5395 5396 ice_hwmon_exit(pf); 5397 5398 ice_service_task_stop(pf); 5399 ice_aq_cancel_waiting_tasks(pf); 5400 set_bit(ICE_DOWN, pf->state); 5401 5402 if (!ice_is_safe_mode(pf)) 5403 ice_remove_arfs(pf); 5404 5405 devl_lock(priv_to_devlink(pf)); 5406 ice_deinit_devlink(pf); 5407 5408 ice_unload(pf); 5409 devl_unlock(priv_to_devlink(pf)); 5410 5411 ice_deinit(pf); 5412 ice_vsi_release_all(pf); 5413 5414 ice_setup_mc_magic_wake(pf); 5415 ice_set_wake(pf); 5416 5417 ice_adapter_put(pdev); 5418 pci_disable_device(pdev); 5419 } 5420 5421 /** 5422 * ice_shutdown - PCI callback for shutting down device 5423 * @pdev: PCI device information struct 5424 */ 5425 static void ice_shutdown(struct pci_dev *pdev) 5426 { 5427 struct ice_pf *pf = pci_get_drvdata(pdev); 5428 5429 ice_remove(pdev); 5430 5431 if (system_state == SYSTEM_POWER_OFF) { 5432 pci_wake_from_d3(pdev, pf->wol_ena); 5433 pci_set_power_state(pdev, PCI_D3hot); 5434 } 5435 } 5436 5437 /** 5438 * ice_prepare_for_shutdown - prep for PCI shutdown 5439 * @pf: board private structure 5440 * 5441 * Inform or close all dependent features in prep for PCI device shutdown 5442 */ 5443 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5444 { 5445 struct ice_hw *hw = &pf->hw; 5446 u32 v; 5447 5448 /* Notify VFs of impending reset */ 5449 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5450 ice_vc_notify_reset(pf); 5451 5452 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5453 5454 /* disable the VSIs and their queues that are not already DOWN */ 5455 ice_pf_dis_all_vsi(pf, false); 5456 5457 ice_for_each_vsi(pf, v) 5458 if (pf->vsi[v]) 5459 pf->vsi[v]->vsi_num = 0; 5460 5461 ice_shutdown_all_ctrlq(hw); 5462 } 5463 5464 /** 5465 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5466 * @pf: board private structure to reinitialize 5467 * 5468 * This routine reinitialize interrupt scheme that was cleared during 5469 * power management suspend callback. 5470 * 5471 * This should be called during resume routine to re-allocate the q_vectors 5472 * and reacquire interrupts. 5473 */ 5474 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5475 { 5476 struct device *dev = ice_pf_to_dev(pf); 5477 int ret, v; 5478 5479 /* Since we clear MSIX flag during suspend, we need to 5480 * set it back during resume... 5481 */ 5482 5483 ret = ice_init_interrupt_scheme(pf); 5484 if (ret) { 5485 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5486 return ret; 5487 } 5488 5489 /* Remap vectors and rings, after successful re-init interrupts */ 5490 ice_for_each_vsi(pf, v) { 5491 if (!pf->vsi[v]) 5492 continue; 5493 5494 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5495 if (ret) 5496 goto err_reinit; 5497 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5498 ice_vsi_set_napi_queues(pf->vsi[v]); 5499 } 5500 5501 ret = ice_req_irq_msix_misc(pf); 5502 if (ret) { 5503 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5504 ret); 5505 goto err_reinit; 5506 } 5507 5508 return 0; 5509 5510 err_reinit: 5511 while (v--) 5512 if (pf->vsi[v]) 5513 ice_vsi_free_q_vectors(pf->vsi[v]); 5514 5515 return ret; 5516 } 5517 5518 /** 5519 * ice_suspend 5520 * @dev: generic device information structure 5521 * 5522 * Power Management callback to quiesce the device and prepare 5523 * for D3 transition. 5524 */ 5525 static int ice_suspend(struct device *dev) 5526 { 5527 struct pci_dev *pdev = to_pci_dev(dev); 5528 struct ice_pf *pf; 5529 int disabled, v; 5530 5531 pf = pci_get_drvdata(pdev); 5532 5533 if (!ice_pf_state_is_nominal(pf)) { 5534 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5535 return -EBUSY; 5536 } 5537 5538 /* Stop watchdog tasks until resume completion. 5539 * Even though it is most likely that the service task is 5540 * disabled if the device is suspended or down, the service task's 5541 * state is controlled by a different state bit, and we should 5542 * store and honor whatever state that bit is in at this point. 5543 */ 5544 disabled = ice_service_task_stop(pf); 5545 5546 ice_unplug_aux_dev(pf); 5547 5548 /* Already suspended?, then there is nothing to do */ 5549 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5550 if (!disabled) 5551 ice_service_task_restart(pf); 5552 return 0; 5553 } 5554 5555 if (test_bit(ICE_DOWN, pf->state) || 5556 ice_is_reset_in_progress(pf->state)) { 5557 dev_err(dev, "can't suspend device in reset or already down\n"); 5558 if (!disabled) 5559 ice_service_task_restart(pf); 5560 return 0; 5561 } 5562 5563 ice_setup_mc_magic_wake(pf); 5564 5565 ice_prepare_for_shutdown(pf); 5566 5567 ice_set_wake(pf); 5568 5569 /* Free vectors, clear the interrupt scheme and release IRQs 5570 * for proper hibernation, especially with large number of CPUs. 5571 * Otherwise hibernation might fail when mapping all the vectors back 5572 * to CPU0. 5573 */ 5574 ice_free_irq_msix_misc(pf); 5575 ice_for_each_vsi(pf, v) { 5576 if (!pf->vsi[v]) 5577 continue; 5578 ice_vsi_free_q_vectors(pf->vsi[v]); 5579 } 5580 ice_clear_interrupt_scheme(pf); 5581 5582 pci_save_state(pdev); 5583 pci_wake_from_d3(pdev, pf->wol_ena); 5584 pci_set_power_state(pdev, PCI_D3hot); 5585 return 0; 5586 } 5587 5588 /** 5589 * ice_resume - PM callback for waking up from D3 5590 * @dev: generic device information structure 5591 */ 5592 static int ice_resume(struct device *dev) 5593 { 5594 struct pci_dev *pdev = to_pci_dev(dev); 5595 enum ice_reset_req reset_type; 5596 struct ice_pf *pf; 5597 struct ice_hw *hw; 5598 int ret; 5599 5600 pci_set_power_state(pdev, PCI_D0); 5601 pci_restore_state(pdev); 5602 pci_save_state(pdev); 5603 5604 if (!pci_device_is_present(pdev)) 5605 return -ENODEV; 5606 5607 ret = pci_enable_device_mem(pdev); 5608 if (ret) { 5609 dev_err(dev, "Cannot enable device after suspend\n"); 5610 return ret; 5611 } 5612 5613 pf = pci_get_drvdata(pdev); 5614 hw = &pf->hw; 5615 5616 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5617 ice_print_wake_reason(pf); 5618 5619 /* We cleared the interrupt scheme when we suspended, so we need to 5620 * restore it now to resume device functionality. 5621 */ 5622 ret = ice_reinit_interrupt_scheme(pf); 5623 if (ret) 5624 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5625 5626 clear_bit(ICE_DOWN, pf->state); 5627 /* Now perform PF reset and rebuild */ 5628 reset_type = ICE_RESET_PFR; 5629 /* re-enable service task for reset, but allow reset to schedule it */ 5630 clear_bit(ICE_SERVICE_DIS, pf->state); 5631 5632 if (ice_schedule_reset(pf, reset_type)) 5633 dev_err(dev, "Reset during resume failed.\n"); 5634 5635 clear_bit(ICE_SUSPENDED, pf->state); 5636 ice_service_task_restart(pf); 5637 5638 /* Restart the service task */ 5639 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5640 5641 return 0; 5642 } 5643 5644 /** 5645 * ice_pci_err_detected - warning that PCI error has been detected 5646 * @pdev: PCI device information struct 5647 * @err: the type of PCI error 5648 * 5649 * Called to warn that something happened on the PCI bus and the error handling 5650 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5651 */ 5652 static pci_ers_result_t 5653 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5654 { 5655 struct ice_pf *pf = pci_get_drvdata(pdev); 5656 5657 if (!pf) { 5658 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5659 __func__, err); 5660 return PCI_ERS_RESULT_DISCONNECT; 5661 } 5662 5663 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5664 ice_service_task_stop(pf); 5665 5666 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5667 set_bit(ICE_PFR_REQ, pf->state); 5668 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5669 } 5670 } 5671 5672 return PCI_ERS_RESULT_NEED_RESET; 5673 } 5674 5675 /** 5676 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5677 * @pdev: PCI device information struct 5678 * 5679 * Called to determine if the driver can recover from the PCI slot reset by 5680 * using a register read to determine if the device is recoverable. 5681 */ 5682 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5683 { 5684 struct ice_pf *pf = pci_get_drvdata(pdev); 5685 pci_ers_result_t result; 5686 int err; 5687 u32 reg; 5688 5689 err = pci_enable_device_mem(pdev); 5690 if (err) { 5691 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5692 err); 5693 result = PCI_ERS_RESULT_DISCONNECT; 5694 } else { 5695 pci_set_master(pdev); 5696 pci_restore_state(pdev); 5697 pci_save_state(pdev); 5698 pci_wake_from_d3(pdev, false); 5699 5700 /* Check for life */ 5701 reg = rd32(&pf->hw, GLGEN_RTRIG); 5702 if (!reg) 5703 result = PCI_ERS_RESULT_RECOVERED; 5704 else 5705 result = PCI_ERS_RESULT_DISCONNECT; 5706 } 5707 5708 return result; 5709 } 5710 5711 /** 5712 * ice_pci_err_resume - restart operations after PCI error recovery 5713 * @pdev: PCI device information struct 5714 * 5715 * Called to allow the driver to bring things back up after PCI error and/or 5716 * reset recovery have finished 5717 */ 5718 static void ice_pci_err_resume(struct pci_dev *pdev) 5719 { 5720 struct ice_pf *pf = pci_get_drvdata(pdev); 5721 5722 if (!pf) { 5723 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5724 __func__); 5725 return; 5726 } 5727 5728 if (test_bit(ICE_SUSPENDED, pf->state)) { 5729 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5730 __func__); 5731 return; 5732 } 5733 5734 ice_restore_all_vfs_msi_state(pf); 5735 5736 ice_do_reset(pf, ICE_RESET_PFR); 5737 ice_service_task_restart(pf); 5738 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5739 } 5740 5741 /** 5742 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5743 * @pdev: PCI device information struct 5744 */ 5745 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5746 { 5747 struct ice_pf *pf = pci_get_drvdata(pdev); 5748 5749 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5750 ice_service_task_stop(pf); 5751 5752 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5753 set_bit(ICE_PFR_REQ, pf->state); 5754 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5755 } 5756 } 5757 } 5758 5759 /** 5760 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5761 * @pdev: PCI device information struct 5762 */ 5763 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5764 { 5765 ice_pci_err_resume(pdev); 5766 } 5767 5768 /* ice_pci_tbl - PCI Device ID Table 5769 * 5770 * Wildcard entries (PCI_ANY_ID) should come last 5771 * Last entry must be all 0s 5772 * 5773 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5774 * Class, Class Mask, private data (not used) } 5775 */ 5776 static const struct pci_device_id ice_pci_tbl[] = { 5777 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5778 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5779 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5780 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5781 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5782 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5783 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5784 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5785 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5786 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5787 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5788 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5789 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5790 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5791 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5792 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5793 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5794 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5795 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5796 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5797 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5798 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5799 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5800 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5801 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5802 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5803 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5804 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5805 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5806 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5807 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5808 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5809 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5810 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5811 /* required last entry */ 5812 {} 5813 }; 5814 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5815 5816 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5817 5818 static const struct pci_error_handlers ice_pci_err_handler = { 5819 .error_detected = ice_pci_err_detected, 5820 .slot_reset = ice_pci_err_slot_reset, 5821 .reset_prepare = ice_pci_err_reset_prepare, 5822 .reset_done = ice_pci_err_reset_done, 5823 .resume = ice_pci_err_resume 5824 }; 5825 5826 static struct pci_driver ice_driver = { 5827 .name = KBUILD_MODNAME, 5828 .id_table = ice_pci_tbl, 5829 .probe = ice_probe, 5830 .remove = ice_remove, 5831 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5832 .shutdown = ice_shutdown, 5833 .sriov_configure = ice_sriov_configure, 5834 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5835 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5836 .err_handler = &ice_pci_err_handler 5837 }; 5838 5839 /** 5840 * ice_module_init - Driver registration routine 5841 * 5842 * ice_module_init is the first routine called when the driver is 5843 * loaded. All it does is register with the PCI subsystem. 5844 */ 5845 static int __init ice_module_init(void) 5846 { 5847 int status = -ENOMEM; 5848 5849 pr_info("%s\n", ice_driver_string); 5850 pr_info("%s\n", ice_copyright); 5851 5852 ice_adv_lnk_speed_maps_init(); 5853 5854 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5855 if (!ice_wq) { 5856 pr_err("Failed to create workqueue\n"); 5857 return status; 5858 } 5859 5860 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5861 if (!ice_lag_wq) { 5862 pr_err("Failed to create LAG workqueue\n"); 5863 goto err_dest_wq; 5864 } 5865 5866 ice_debugfs_init(); 5867 5868 status = pci_register_driver(&ice_driver); 5869 if (status) { 5870 pr_err("failed to register PCI driver, err %d\n", status); 5871 goto err_dest_lag_wq; 5872 } 5873 5874 return 0; 5875 5876 err_dest_lag_wq: 5877 destroy_workqueue(ice_lag_wq); 5878 ice_debugfs_exit(); 5879 err_dest_wq: 5880 destroy_workqueue(ice_wq); 5881 return status; 5882 } 5883 module_init(ice_module_init); 5884 5885 /** 5886 * ice_module_exit - Driver exit cleanup routine 5887 * 5888 * ice_module_exit is called just before the driver is removed 5889 * from memory. 5890 */ 5891 static void __exit ice_module_exit(void) 5892 { 5893 pci_unregister_driver(&ice_driver); 5894 ice_debugfs_exit(); 5895 destroy_workqueue(ice_wq); 5896 destroy_workqueue(ice_lag_wq); 5897 pr_info("module unloaded\n"); 5898 } 5899 module_exit(ice_module_exit); 5900 5901 /** 5902 * ice_set_mac_address - NDO callback to set MAC address 5903 * @netdev: network interface device structure 5904 * @pi: pointer to an address structure 5905 * 5906 * Returns 0 on success, negative on failure 5907 */ 5908 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5909 { 5910 struct ice_netdev_priv *np = netdev_priv(netdev); 5911 struct ice_vsi *vsi = np->vsi; 5912 struct ice_pf *pf = vsi->back; 5913 struct ice_hw *hw = &pf->hw; 5914 struct sockaddr *addr = pi; 5915 u8 old_mac[ETH_ALEN]; 5916 u8 flags = 0; 5917 u8 *mac; 5918 int err; 5919 5920 mac = (u8 *)addr->sa_data; 5921 5922 if (!is_valid_ether_addr(mac)) 5923 return -EADDRNOTAVAIL; 5924 5925 if (test_bit(ICE_DOWN, pf->state) || 5926 ice_is_reset_in_progress(pf->state)) { 5927 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5928 mac); 5929 return -EBUSY; 5930 } 5931 5932 if (ice_chnl_dmac_fltr_cnt(pf)) { 5933 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5934 mac); 5935 return -EAGAIN; 5936 } 5937 5938 netif_addr_lock_bh(netdev); 5939 ether_addr_copy(old_mac, netdev->dev_addr); 5940 /* change the netdev's MAC address */ 5941 eth_hw_addr_set(netdev, mac); 5942 netif_addr_unlock_bh(netdev); 5943 5944 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5945 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5946 if (err && err != -ENOENT) { 5947 err = -EADDRNOTAVAIL; 5948 goto err_update_filters; 5949 } 5950 5951 /* Add filter for new MAC. If filter exists, return success */ 5952 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5953 if (err == -EEXIST) { 5954 /* Although this MAC filter is already present in hardware it's 5955 * possible in some cases (e.g. bonding) that dev_addr was 5956 * modified outside of the driver and needs to be restored back 5957 * to this value. 5958 */ 5959 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5960 5961 return 0; 5962 } else if (err) { 5963 /* error if the new filter addition failed */ 5964 err = -EADDRNOTAVAIL; 5965 } 5966 5967 err_update_filters: 5968 if (err) { 5969 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5970 mac); 5971 netif_addr_lock_bh(netdev); 5972 eth_hw_addr_set(netdev, old_mac); 5973 netif_addr_unlock_bh(netdev); 5974 return err; 5975 } 5976 5977 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5978 netdev->dev_addr); 5979 5980 /* write new MAC address to the firmware */ 5981 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5982 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5983 if (err) { 5984 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5985 mac, err); 5986 } 5987 return 0; 5988 } 5989 5990 /** 5991 * ice_set_rx_mode - NDO callback to set the netdev filters 5992 * @netdev: network interface device structure 5993 */ 5994 static void ice_set_rx_mode(struct net_device *netdev) 5995 { 5996 struct ice_netdev_priv *np = netdev_priv(netdev); 5997 struct ice_vsi *vsi = np->vsi; 5998 5999 if (!vsi || ice_is_switchdev_running(vsi->back)) 6000 return; 6001 6002 /* Set the flags to synchronize filters 6003 * ndo_set_rx_mode may be triggered even without a change in netdev 6004 * flags 6005 */ 6006 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6007 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6008 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6009 6010 /* schedule our worker thread which will take care of 6011 * applying the new filter changes 6012 */ 6013 ice_service_task_schedule(vsi->back); 6014 } 6015 6016 /** 6017 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6018 * @netdev: network interface device structure 6019 * @queue_index: Queue ID 6020 * @maxrate: maximum bandwidth in Mbps 6021 */ 6022 static int 6023 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6024 { 6025 struct ice_netdev_priv *np = netdev_priv(netdev); 6026 struct ice_vsi *vsi = np->vsi; 6027 u16 q_handle; 6028 int status; 6029 u8 tc; 6030 6031 /* Validate maxrate requested is within permitted range */ 6032 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6033 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6034 maxrate, queue_index); 6035 return -EINVAL; 6036 } 6037 6038 q_handle = vsi->tx_rings[queue_index]->q_handle; 6039 tc = ice_dcb_get_tc(vsi, queue_index); 6040 6041 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6042 if (!vsi) { 6043 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6044 queue_index); 6045 return -EINVAL; 6046 } 6047 6048 /* Set BW back to default, when user set maxrate to 0 */ 6049 if (!maxrate) 6050 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6051 q_handle, ICE_MAX_BW); 6052 else 6053 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6054 q_handle, ICE_MAX_BW, maxrate * 1000); 6055 if (status) 6056 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6057 status); 6058 6059 return status; 6060 } 6061 6062 /** 6063 * ice_fdb_add - add an entry to the hardware database 6064 * @ndm: the input from the stack 6065 * @tb: pointer to array of nladdr (unused) 6066 * @dev: the net device pointer 6067 * @addr: the MAC address entry being added 6068 * @vid: VLAN ID 6069 * @flags: instructions from stack about fdb operation 6070 * @extack: netlink extended ack 6071 */ 6072 static int 6073 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6074 struct net_device *dev, const unsigned char *addr, u16 vid, 6075 u16 flags, struct netlink_ext_ack __always_unused *extack) 6076 { 6077 int err; 6078 6079 if (vid) { 6080 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6081 return -EINVAL; 6082 } 6083 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6084 netdev_err(dev, "FDB only supports static addresses\n"); 6085 return -EINVAL; 6086 } 6087 6088 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6089 err = dev_uc_add_excl(dev, addr); 6090 else if (is_multicast_ether_addr(addr)) 6091 err = dev_mc_add_excl(dev, addr); 6092 else 6093 err = -EINVAL; 6094 6095 /* Only return duplicate errors if NLM_F_EXCL is set */ 6096 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6097 err = 0; 6098 6099 return err; 6100 } 6101 6102 /** 6103 * ice_fdb_del - delete an entry from the hardware database 6104 * @ndm: the input from the stack 6105 * @tb: pointer to array of nladdr (unused) 6106 * @dev: the net device pointer 6107 * @addr: the MAC address entry being added 6108 * @vid: VLAN ID 6109 * @extack: netlink extended ack 6110 */ 6111 static int 6112 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6113 struct net_device *dev, const unsigned char *addr, 6114 __always_unused u16 vid, struct netlink_ext_ack *extack) 6115 { 6116 int err; 6117 6118 if (ndm->ndm_state & NUD_PERMANENT) { 6119 netdev_err(dev, "FDB only supports static addresses\n"); 6120 return -EINVAL; 6121 } 6122 6123 if (is_unicast_ether_addr(addr)) 6124 err = dev_uc_del(dev, addr); 6125 else if (is_multicast_ether_addr(addr)) 6126 err = dev_mc_del(dev, addr); 6127 else 6128 err = -EINVAL; 6129 6130 return err; 6131 } 6132 6133 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6134 NETIF_F_HW_VLAN_CTAG_TX | \ 6135 NETIF_F_HW_VLAN_STAG_RX | \ 6136 NETIF_F_HW_VLAN_STAG_TX) 6137 6138 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6139 NETIF_F_HW_VLAN_STAG_RX) 6140 6141 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6142 NETIF_F_HW_VLAN_STAG_FILTER) 6143 6144 /** 6145 * ice_fix_features - fix the netdev features flags based on device limitations 6146 * @netdev: ptr to the netdev that flags are being fixed on 6147 * @features: features that need to be checked and possibly fixed 6148 * 6149 * Make sure any fixups are made to features in this callback. This enables the 6150 * driver to not have to check unsupported configurations throughout the driver 6151 * because that's the responsiblity of this callback. 6152 * 6153 * Single VLAN Mode (SVM) Supported Features: 6154 * NETIF_F_HW_VLAN_CTAG_FILTER 6155 * NETIF_F_HW_VLAN_CTAG_RX 6156 * NETIF_F_HW_VLAN_CTAG_TX 6157 * 6158 * Double VLAN Mode (DVM) Supported Features: 6159 * NETIF_F_HW_VLAN_CTAG_FILTER 6160 * NETIF_F_HW_VLAN_CTAG_RX 6161 * NETIF_F_HW_VLAN_CTAG_TX 6162 * 6163 * NETIF_F_HW_VLAN_STAG_FILTER 6164 * NETIF_HW_VLAN_STAG_RX 6165 * NETIF_HW_VLAN_STAG_TX 6166 * 6167 * Features that need fixing: 6168 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6169 * These are mutually exlusive as the VSI context cannot support multiple 6170 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6171 * is not done, then default to clearing the requested STAG offload 6172 * settings. 6173 * 6174 * All supported filtering has to be enabled or disabled together. For 6175 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6176 * together. If this is not done, then default to VLAN filtering disabled. 6177 * These are mutually exclusive as there is currently no way to 6178 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6179 * prune rules. 6180 */ 6181 static netdev_features_t 6182 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6183 { 6184 struct ice_netdev_priv *np = netdev_priv(netdev); 6185 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6186 bool cur_ctag, cur_stag, req_ctag, req_stag; 6187 6188 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6189 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6190 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6191 6192 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6193 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6194 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6195 6196 if (req_vlan_fltr != cur_vlan_fltr) { 6197 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6198 if (req_ctag && req_stag) { 6199 features |= NETIF_VLAN_FILTERING_FEATURES; 6200 } else if (!req_ctag && !req_stag) { 6201 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6202 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6203 (!cur_stag && req_stag && !cur_ctag)) { 6204 features |= NETIF_VLAN_FILTERING_FEATURES; 6205 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6206 } else if ((cur_ctag && !req_ctag && cur_stag) || 6207 (cur_stag && !req_stag && cur_ctag)) { 6208 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6209 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6210 } 6211 } else { 6212 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6213 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6214 6215 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6216 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6217 } 6218 } 6219 6220 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6221 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6222 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6223 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6224 NETIF_F_HW_VLAN_STAG_TX); 6225 } 6226 6227 if (!(netdev->features & NETIF_F_RXFCS) && 6228 (features & NETIF_F_RXFCS) && 6229 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6230 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6231 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6232 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6233 } 6234 6235 return features; 6236 } 6237 6238 /** 6239 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6240 * @vsi: PF's VSI 6241 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6242 * 6243 * Store current stripped VLAN proto in ring packet context, 6244 * so it can be accessed more efficiently by packet processing code. 6245 */ 6246 static void 6247 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6248 { 6249 u16 i; 6250 6251 ice_for_each_alloc_rxq(vsi, i) 6252 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6253 } 6254 6255 /** 6256 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6257 * @vsi: PF's VSI 6258 * @features: features used to determine VLAN offload settings 6259 * 6260 * First, determine the vlan_ethertype based on the VLAN offload bits in 6261 * features. Then determine if stripping and insertion should be enabled or 6262 * disabled. Finally enable or disable VLAN stripping and insertion. 6263 */ 6264 static int 6265 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6266 { 6267 bool enable_stripping = true, enable_insertion = true; 6268 struct ice_vsi_vlan_ops *vlan_ops; 6269 int strip_err = 0, insert_err = 0; 6270 u16 vlan_ethertype = 0; 6271 6272 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6273 6274 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6275 vlan_ethertype = ETH_P_8021AD; 6276 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6277 vlan_ethertype = ETH_P_8021Q; 6278 6279 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6280 enable_stripping = false; 6281 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6282 enable_insertion = false; 6283 6284 if (enable_stripping) 6285 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6286 else 6287 strip_err = vlan_ops->dis_stripping(vsi); 6288 6289 if (enable_insertion) 6290 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6291 else 6292 insert_err = vlan_ops->dis_insertion(vsi); 6293 6294 if (strip_err || insert_err) 6295 return -EIO; 6296 6297 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6298 htons(vlan_ethertype) : 0); 6299 6300 return 0; 6301 } 6302 6303 /** 6304 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6305 * @vsi: PF's VSI 6306 * @features: features used to determine VLAN filtering settings 6307 * 6308 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6309 * features. 6310 */ 6311 static int 6312 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6313 { 6314 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6315 int err = 0; 6316 6317 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6318 * if either bit is set 6319 */ 6320 if (features & 6321 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6322 err = vlan_ops->ena_rx_filtering(vsi); 6323 else 6324 err = vlan_ops->dis_rx_filtering(vsi); 6325 6326 return err; 6327 } 6328 6329 /** 6330 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6331 * @netdev: ptr to the netdev being adjusted 6332 * @features: the feature set that the stack is suggesting 6333 * 6334 * Only update VLAN settings if the requested_vlan_features are different than 6335 * the current_vlan_features. 6336 */ 6337 static int 6338 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6339 { 6340 netdev_features_t current_vlan_features, requested_vlan_features; 6341 struct ice_netdev_priv *np = netdev_priv(netdev); 6342 struct ice_vsi *vsi = np->vsi; 6343 int err; 6344 6345 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6346 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6347 if (current_vlan_features ^ requested_vlan_features) { 6348 if ((features & NETIF_F_RXFCS) && 6349 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6350 dev_err(ice_pf_to_dev(vsi->back), 6351 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6352 return -EIO; 6353 } 6354 6355 err = ice_set_vlan_offload_features(vsi, features); 6356 if (err) 6357 return err; 6358 } 6359 6360 current_vlan_features = netdev->features & 6361 NETIF_VLAN_FILTERING_FEATURES; 6362 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6363 if (current_vlan_features ^ requested_vlan_features) { 6364 err = ice_set_vlan_filtering_features(vsi, features); 6365 if (err) 6366 return err; 6367 } 6368 6369 return 0; 6370 } 6371 6372 /** 6373 * ice_set_loopback - turn on/off loopback mode on underlying PF 6374 * @vsi: ptr to VSI 6375 * @ena: flag to indicate the on/off setting 6376 */ 6377 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6378 { 6379 bool if_running = netif_running(vsi->netdev); 6380 int ret; 6381 6382 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6383 ret = ice_down(vsi); 6384 if (ret) { 6385 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6386 return ret; 6387 } 6388 } 6389 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6390 if (ret) 6391 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6392 if (if_running) 6393 ret = ice_up(vsi); 6394 6395 return ret; 6396 } 6397 6398 /** 6399 * ice_set_features - set the netdev feature flags 6400 * @netdev: ptr to the netdev being adjusted 6401 * @features: the feature set that the stack is suggesting 6402 */ 6403 static int 6404 ice_set_features(struct net_device *netdev, netdev_features_t features) 6405 { 6406 netdev_features_t changed = netdev->features ^ features; 6407 struct ice_netdev_priv *np = netdev_priv(netdev); 6408 struct ice_vsi *vsi = np->vsi; 6409 struct ice_pf *pf = vsi->back; 6410 int ret = 0; 6411 6412 /* Don't set any netdev advanced features with device in Safe Mode */ 6413 if (ice_is_safe_mode(pf)) { 6414 dev_err(ice_pf_to_dev(pf), 6415 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6416 return ret; 6417 } 6418 6419 /* Do not change setting during reset */ 6420 if (ice_is_reset_in_progress(pf->state)) { 6421 dev_err(ice_pf_to_dev(pf), 6422 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6423 return -EBUSY; 6424 } 6425 6426 /* Multiple features can be changed in one call so keep features in 6427 * separate if/else statements to guarantee each feature is checked 6428 */ 6429 if (changed & NETIF_F_RXHASH) 6430 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6431 6432 ret = ice_set_vlan_features(netdev, features); 6433 if (ret) 6434 return ret; 6435 6436 /* Turn on receive of FCS aka CRC, and after setting this 6437 * flag the packet data will have the 4 byte CRC appended 6438 */ 6439 if (changed & NETIF_F_RXFCS) { 6440 if ((features & NETIF_F_RXFCS) && 6441 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6442 dev_err(ice_pf_to_dev(vsi->back), 6443 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6444 return -EIO; 6445 } 6446 6447 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6448 ret = ice_down_up(vsi); 6449 if (ret) 6450 return ret; 6451 } 6452 6453 if (changed & NETIF_F_NTUPLE) { 6454 bool ena = !!(features & NETIF_F_NTUPLE); 6455 6456 ice_vsi_manage_fdir(vsi, ena); 6457 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6458 } 6459 6460 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6461 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6462 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6463 return -EACCES; 6464 } 6465 6466 if (changed & NETIF_F_HW_TC) { 6467 bool ena = !!(features & NETIF_F_HW_TC); 6468 6469 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6470 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6471 } 6472 6473 if (changed & NETIF_F_LOOPBACK) 6474 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6475 6476 return ret; 6477 } 6478 6479 /** 6480 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6481 * @vsi: VSI to setup VLAN properties for 6482 */ 6483 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6484 { 6485 int err; 6486 6487 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6488 if (err) 6489 return err; 6490 6491 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6492 if (err) 6493 return err; 6494 6495 return ice_vsi_add_vlan_zero(vsi); 6496 } 6497 6498 /** 6499 * ice_vsi_cfg_lan - Setup the VSI lan related config 6500 * @vsi: the VSI being configured 6501 * 6502 * Return 0 on success and negative value on error 6503 */ 6504 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6505 { 6506 int err; 6507 6508 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6509 ice_set_rx_mode(vsi->netdev); 6510 6511 err = ice_vsi_vlan_setup(vsi); 6512 if (err) 6513 return err; 6514 } 6515 ice_vsi_cfg_dcb_rings(vsi); 6516 6517 err = ice_vsi_cfg_lan_txqs(vsi); 6518 if (!err && ice_is_xdp_ena_vsi(vsi)) 6519 err = ice_vsi_cfg_xdp_txqs(vsi); 6520 if (!err) 6521 err = ice_vsi_cfg_rxqs(vsi); 6522 6523 return err; 6524 } 6525 6526 /* THEORY OF MODERATION: 6527 * The ice driver hardware works differently than the hardware that DIMLIB was 6528 * originally made for. ice hardware doesn't have packet count limits that 6529 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6530 * which is hard-coded to a limit of 250,000 ints/second. 6531 * If not using dynamic moderation, the INTRL value can be modified 6532 * by ethtool rx-usecs-high. 6533 */ 6534 struct ice_dim { 6535 /* the throttle rate for interrupts, basically worst case delay before 6536 * an initial interrupt fires, value is stored in microseconds. 6537 */ 6538 u16 itr; 6539 }; 6540 6541 /* Make a different profile for Rx that doesn't allow quite so aggressive 6542 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6543 * second. 6544 */ 6545 static const struct ice_dim rx_profile[] = { 6546 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6547 {8}, /* 125,000 ints/s */ 6548 {16}, /* 62,500 ints/s */ 6549 {62}, /* 16,129 ints/s */ 6550 {126} /* 7,936 ints/s */ 6551 }; 6552 6553 /* The transmit profile, which has the same sorts of values 6554 * as the previous struct 6555 */ 6556 static const struct ice_dim tx_profile[] = { 6557 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6558 {8}, /* 125,000 ints/s */ 6559 {40}, /* 16,125 ints/s */ 6560 {128}, /* 7,812 ints/s */ 6561 {256} /* 3,906 ints/s */ 6562 }; 6563 6564 static void ice_tx_dim_work(struct work_struct *work) 6565 { 6566 struct ice_ring_container *rc; 6567 struct dim *dim; 6568 u16 itr; 6569 6570 dim = container_of(work, struct dim, work); 6571 rc = dim->priv; 6572 6573 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6574 6575 /* look up the values in our local table */ 6576 itr = tx_profile[dim->profile_ix].itr; 6577 6578 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6579 ice_write_itr(rc, itr); 6580 6581 dim->state = DIM_START_MEASURE; 6582 } 6583 6584 static void ice_rx_dim_work(struct work_struct *work) 6585 { 6586 struct ice_ring_container *rc; 6587 struct dim *dim; 6588 u16 itr; 6589 6590 dim = container_of(work, struct dim, work); 6591 rc = dim->priv; 6592 6593 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6594 6595 /* look up the values in our local table */ 6596 itr = rx_profile[dim->profile_ix].itr; 6597 6598 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6599 ice_write_itr(rc, itr); 6600 6601 dim->state = DIM_START_MEASURE; 6602 } 6603 6604 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6605 6606 /** 6607 * ice_init_moderation - set up interrupt moderation 6608 * @q_vector: the vector containing rings to be configured 6609 * 6610 * Set up interrupt moderation registers, with the intent to do the right thing 6611 * when called from reset or from probe, and whether or not dynamic moderation 6612 * is enabled or not. Take special care to write all the registers in both 6613 * dynamic moderation mode or not in order to make sure hardware is in a known 6614 * state. 6615 */ 6616 static void ice_init_moderation(struct ice_q_vector *q_vector) 6617 { 6618 struct ice_ring_container *rc; 6619 bool tx_dynamic, rx_dynamic; 6620 6621 rc = &q_vector->tx; 6622 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6623 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6624 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6625 rc->dim.priv = rc; 6626 tx_dynamic = ITR_IS_DYNAMIC(rc); 6627 6628 /* set the initial TX ITR to match the above */ 6629 ice_write_itr(rc, tx_dynamic ? 6630 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6631 6632 rc = &q_vector->rx; 6633 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6634 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6635 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6636 rc->dim.priv = rc; 6637 rx_dynamic = ITR_IS_DYNAMIC(rc); 6638 6639 /* set the initial RX ITR to match the above */ 6640 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6641 rc->itr_setting); 6642 6643 ice_set_q_vector_intrl(q_vector); 6644 } 6645 6646 /** 6647 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6648 * @vsi: the VSI being configured 6649 */ 6650 static void ice_napi_enable_all(struct ice_vsi *vsi) 6651 { 6652 int q_idx; 6653 6654 if (!vsi->netdev) 6655 return; 6656 6657 ice_for_each_q_vector(vsi, q_idx) { 6658 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6659 6660 ice_init_moderation(q_vector); 6661 6662 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6663 napi_enable(&q_vector->napi); 6664 } 6665 } 6666 6667 /** 6668 * ice_up_complete - Finish the last steps of bringing up a connection 6669 * @vsi: The VSI being configured 6670 * 6671 * Return 0 on success and negative value on error 6672 */ 6673 static int ice_up_complete(struct ice_vsi *vsi) 6674 { 6675 struct ice_pf *pf = vsi->back; 6676 int err; 6677 6678 ice_vsi_cfg_msix(vsi); 6679 6680 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6681 * Tx queue group list was configured and the context bits were 6682 * programmed using ice_vsi_cfg_txqs 6683 */ 6684 err = ice_vsi_start_all_rx_rings(vsi); 6685 if (err) 6686 return err; 6687 6688 clear_bit(ICE_VSI_DOWN, vsi->state); 6689 ice_napi_enable_all(vsi); 6690 ice_vsi_ena_irq(vsi); 6691 6692 if (vsi->port_info && 6693 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6694 vsi->netdev && vsi->type == ICE_VSI_PF) { 6695 ice_print_link_msg(vsi, true); 6696 netif_tx_start_all_queues(vsi->netdev); 6697 netif_carrier_on(vsi->netdev); 6698 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6699 } 6700 6701 /* Perform an initial read of the statistics registers now to 6702 * set the baseline so counters are ready when interface is up 6703 */ 6704 ice_update_eth_stats(vsi); 6705 6706 if (vsi->type == ICE_VSI_PF) 6707 ice_service_task_schedule(pf); 6708 6709 return 0; 6710 } 6711 6712 /** 6713 * ice_up - Bring the connection back up after being down 6714 * @vsi: VSI being configured 6715 */ 6716 int ice_up(struct ice_vsi *vsi) 6717 { 6718 int err; 6719 6720 err = ice_vsi_cfg_lan(vsi); 6721 if (!err) 6722 err = ice_up_complete(vsi); 6723 6724 return err; 6725 } 6726 6727 /** 6728 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6729 * @syncp: pointer to u64_stats_sync 6730 * @stats: stats that pkts and bytes count will be taken from 6731 * @pkts: packets stats counter 6732 * @bytes: bytes stats counter 6733 * 6734 * This function fetches stats from the ring considering the atomic operations 6735 * that needs to be performed to read u64 values in 32 bit machine. 6736 */ 6737 void 6738 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6739 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6740 { 6741 unsigned int start; 6742 6743 do { 6744 start = u64_stats_fetch_begin(syncp); 6745 *pkts = stats.pkts; 6746 *bytes = stats.bytes; 6747 } while (u64_stats_fetch_retry(syncp, start)); 6748 } 6749 6750 /** 6751 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6752 * @vsi: the VSI to be updated 6753 * @vsi_stats: the stats struct to be updated 6754 * @rings: rings to work on 6755 * @count: number of rings 6756 */ 6757 static void 6758 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6759 struct rtnl_link_stats64 *vsi_stats, 6760 struct ice_tx_ring **rings, u16 count) 6761 { 6762 u16 i; 6763 6764 for (i = 0; i < count; i++) { 6765 struct ice_tx_ring *ring; 6766 u64 pkts = 0, bytes = 0; 6767 6768 ring = READ_ONCE(rings[i]); 6769 if (!ring || !ring->ring_stats) 6770 continue; 6771 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6772 ring->ring_stats->stats, &pkts, 6773 &bytes); 6774 vsi_stats->tx_packets += pkts; 6775 vsi_stats->tx_bytes += bytes; 6776 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6777 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6778 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6779 } 6780 } 6781 6782 /** 6783 * ice_update_vsi_ring_stats - Update VSI stats counters 6784 * @vsi: the VSI to be updated 6785 */ 6786 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6787 { 6788 struct rtnl_link_stats64 *net_stats, *stats_prev; 6789 struct rtnl_link_stats64 *vsi_stats; 6790 struct ice_pf *pf = vsi->back; 6791 u64 pkts, bytes; 6792 int i; 6793 6794 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6795 if (!vsi_stats) 6796 return; 6797 6798 /* reset non-netdev (extended) stats */ 6799 vsi->tx_restart = 0; 6800 vsi->tx_busy = 0; 6801 vsi->tx_linearize = 0; 6802 vsi->rx_buf_failed = 0; 6803 vsi->rx_page_failed = 0; 6804 6805 rcu_read_lock(); 6806 6807 /* update Tx rings counters */ 6808 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6809 vsi->num_txq); 6810 6811 /* update Rx rings counters */ 6812 ice_for_each_rxq(vsi, i) { 6813 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6814 struct ice_ring_stats *ring_stats; 6815 6816 ring_stats = ring->ring_stats; 6817 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6818 ring_stats->stats, &pkts, 6819 &bytes); 6820 vsi_stats->rx_packets += pkts; 6821 vsi_stats->rx_bytes += bytes; 6822 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6823 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6824 } 6825 6826 /* update XDP Tx rings counters */ 6827 if (ice_is_xdp_ena_vsi(vsi)) 6828 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6829 vsi->num_xdp_txq); 6830 6831 rcu_read_unlock(); 6832 6833 net_stats = &vsi->net_stats; 6834 stats_prev = &vsi->net_stats_prev; 6835 6836 /* Update netdev counters, but keep in mind that values could start at 6837 * random value after PF reset. And as we increase the reported stat by 6838 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6839 * let's skip this round. 6840 */ 6841 if (likely(pf->stat_prev_loaded)) { 6842 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6843 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6844 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6845 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6846 } 6847 6848 stats_prev->tx_packets = vsi_stats->tx_packets; 6849 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6850 stats_prev->rx_packets = vsi_stats->rx_packets; 6851 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6852 6853 kfree(vsi_stats); 6854 } 6855 6856 /** 6857 * ice_update_vsi_stats - Update VSI stats counters 6858 * @vsi: the VSI to be updated 6859 */ 6860 void ice_update_vsi_stats(struct ice_vsi *vsi) 6861 { 6862 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6863 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6864 struct ice_pf *pf = vsi->back; 6865 6866 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6867 test_bit(ICE_CFG_BUSY, pf->state)) 6868 return; 6869 6870 /* get stats as recorded by Tx/Rx rings */ 6871 ice_update_vsi_ring_stats(vsi); 6872 6873 /* get VSI stats as recorded by the hardware */ 6874 ice_update_eth_stats(vsi); 6875 6876 cur_ns->tx_errors = cur_es->tx_errors; 6877 cur_ns->rx_dropped = cur_es->rx_discards; 6878 cur_ns->tx_dropped = cur_es->tx_discards; 6879 cur_ns->multicast = cur_es->rx_multicast; 6880 6881 /* update some more netdev stats if this is main VSI */ 6882 if (vsi->type == ICE_VSI_PF) { 6883 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6884 cur_ns->rx_errors = pf->stats.crc_errors + 6885 pf->stats.illegal_bytes + 6886 pf->stats.rx_undersize + 6887 pf->hw_csum_rx_error + 6888 pf->stats.rx_jabber + 6889 pf->stats.rx_fragments + 6890 pf->stats.rx_oversize; 6891 /* record drops from the port level */ 6892 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6893 } 6894 } 6895 6896 /** 6897 * ice_update_pf_stats - Update PF port stats counters 6898 * @pf: PF whose stats needs to be updated 6899 */ 6900 void ice_update_pf_stats(struct ice_pf *pf) 6901 { 6902 struct ice_hw_port_stats *prev_ps, *cur_ps; 6903 struct ice_hw *hw = &pf->hw; 6904 u16 fd_ctr_base; 6905 u8 port; 6906 6907 port = hw->port_info->lport; 6908 prev_ps = &pf->stats_prev; 6909 cur_ps = &pf->stats; 6910 6911 if (ice_is_reset_in_progress(pf->state)) 6912 pf->stat_prev_loaded = false; 6913 6914 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6915 &prev_ps->eth.rx_bytes, 6916 &cur_ps->eth.rx_bytes); 6917 6918 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6919 &prev_ps->eth.rx_unicast, 6920 &cur_ps->eth.rx_unicast); 6921 6922 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6923 &prev_ps->eth.rx_multicast, 6924 &cur_ps->eth.rx_multicast); 6925 6926 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6927 &prev_ps->eth.rx_broadcast, 6928 &cur_ps->eth.rx_broadcast); 6929 6930 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6931 &prev_ps->eth.rx_discards, 6932 &cur_ps->eth.rx_discards); 6933 6934 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6935 &prev_ps->eth.tx_bytes, 6936 &cur_ps->eth.tx_bytes); 6937 6938 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6939 &prev_ps->eth.tx_unicast, 6940 &cur_ps->eth.tx_unicast); 6941 6942 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6943 &prev_ps->eth.tx_multicast, 6944 &cur_ps->eth.tx_multicast); 6945 6946 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6947 &prev_ps->eth.tx_broadcast, 6948 &cur_ps->eth.tx_broadcast); 6949 6950 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6951 &prev_ps->tx_dropped_link_down, 6952 &cur_ps->tx_dropped_link_down); 6953 6954 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6955 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6956 6957 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6958 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6959 6960 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6961 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6962 6963 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6964 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6965 6966 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6967 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6968 6969 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6970 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6971 6972 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6973 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6974 6975 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6976 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6977 6978 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6979 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6980 6981 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6982 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6983 6984 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6985 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6986 6987 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6988 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6989 6990 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6991 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6992 6993 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6994 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6995 6996 fd_ctr_base = hw->fd_ctr_base; 6997 6998 ice_stat_update40(hw, 6999 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7000 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7001 &cur_ps->fd_sb_match); 7002 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7003 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7004 7005 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7006 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7007 7008 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7009 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7010 7011 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7012 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7013 7014 ice_update_dcb_stats(pf); 7015 7016 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7017 &prev_ps->crc_errors, &cur_ps->crc_errors); 7018 7019 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7020 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7021 7022 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7023 &prev_ps->mac_local_faults, 7024 &cur_ps->mac_local_faults); 7025 7026 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7027 &prev_ps->mac_remote_faults, 7028 &cur_ps->mac_remote_faults); 7029 7030 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7031 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7032 7033 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7034 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7035 7036 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7037 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7038 7039 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7040 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7041 7042 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7043 7044 pf->stat_prev_loaded = true; 7045 } 7046 7047 /** 7048 * ice_get_stats64 - get statistics for network device structure 7049 * @netdev: network interface device structure 7050 * @stats: main device statistics structure 7051 */ 7052 static 7053 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7054 { 7055 struct ice_netdev_priv *np = netdev_priv(netdev); 7056 struct rtnl_link_stats64 *vsi_stats; 7057 struct ice_vsi *vsi = np->vsi; 7058 7059 vsi_stats = &vsi->net_stats; 7060 7061 if (!vsi->num_txq || !vsi->num_rxq) 7062 return; 7063 7064 /* netdev packet/byte stats come from ring counter. These are obtained 7065 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7066 * But, only call the update routine and read the registers if VSI is 7067 * not down. 7068 */ 7069 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7070 ice_update_vsi_ring_stats(vsi); 7071 stats->tx_packets = vsi_stats->tx_packets; 7072 stats->tx_bytes = vsi_stats->tx_bytes; 7073 stats->rx_packets = vsi_stats->rx_packets; 7074 stats->rx_bytes = vsi_stats->rx_bytes; 7075 7076 /* The rest of the stats can be read from the hardware but instead we 7077 * just return values that the watchdog task has already obtained from 7078 * the hardware. 7079 */ 7080 stats->multicast = vsi_stats->multicast; 7081 stats->tx_errors = vsi_stats->tx_errors; 7082 stats->tx_dropped = vsi_stats->tx_dropped; 7083 stats->rx_errors = vsi_stats->rx_errors; 7084 stats->rx_dropped = vsi_stats->rx_dropped; 7085 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7086 stats->rx_length_errors = vsi_stats->rx_length_errors; 7087 } 7088 7089 /** 7090 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7091 * @vsi: VSI having NAPI disabled 7092 */ 7093 static void ice_napi_disable_all(struct ice_vsi *vsi) 7094 { 7095 int q_idx; 7096 7097 if (!vsi->netdev) 7098 return; 7099 7100 ice_for_each_q_vector(vsi, q_idx) { 7101 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7102 7103 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7104 napi_disable(&q_vector->napi); 7105 7106 cancel_work_sync(&q_vector->tx.dim.work); 7107 cancel_work_sync(&q_vector->rx.dim.work); 7108 } 7109 } 7110 7111 /** 7112 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7113 * @vsi: the VSI being un-configured 7114 */ 7115 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7116 { 7117 struct ice_pf *pf = vsi->back; 7118 struct ice_hw *hw = &pf->hw; 7119 u32 val; 7120 int i; 7121 7122 /* disable interrupt causation from each Rx queue; Tx queues are 7123 * handled in ice_vsi_stop_tx_ring() 7124 */ 7125 if (vsi->rx_rings) { 7126 ice_for_each_rxq(vsi, i) { 7127 if (vsi->rx_rings[i]) { 7128 u16 reg; 7129 7130 reg = vsi->rx_rings[i]->reg_idx; 7131 val = rd32(hw, QINT_RQCTL(reg)); 7132 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7133 wr32(hw, QINT_RQCTL(reg), val); 7134 } 7135 } 7136 } 7137 7138 /* disable each interrupt */ 7139 ice_for_each_q_vector(vsi, i) { 7140 if (!vsi->q_vectors[i]) 7141 continue; 7142 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7143 } 7144 7145 ice_flush(hw); 7146 7147 /* don't call synchronize_irq() for VF's from the host */ 7148 if (vsi->type == ICE_VSI_VF) 7149 return; 7150 7151 ice_for_each_q_vector(vsi, i) 7152 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7153 } 7154 7155 /** 7156 * ice_down - Shutdown the connection 7157 * @vsi: The VSI being stopped 7158 * 7159 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7160 */ 7161 int ice_down(struct ice_vsi *vsi) 7162 { 7163 int i, tx_err, rx_err, vlan_err = 0; 7164 7165 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7166 7167 if (vsi->netdev) { 7168 vlan_err = ice_vsi_del_vlan_zero(vsi); 7169 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7170 netif_carrier_off(vsi->netdev); 7171 netif_tx_disable(vsi->netdev); 7172 } 7173 7174 ice_vsi_dis_irq(vsi); 7175 7176 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7177 if (tx_err) 7178 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7179 vsi->vsi_num, tx_err); 7180 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7181 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7182 if (tx_err) 7183 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7184 vsi->vsi_num, tx_err); 7185 } 7186 7187 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7188 if (rx_err) 7189 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7190 vsi->vsi_num, rx_err); 7191 7192 ice_napi_disable_all(vsi); 7193 7194 ice_for_each_txq(vsi, i) 7195 ice_clean_tx_ring(vsi->tx_rings[i]); 7196 7197 if (ice_is_xdp_ena_vsi(vsi)) 7198 ice_for_each_xdp_txq(vsi, i) 7199 ice_clean_tx_ring(vsi->xdp_rings[i]); 7200 7201 ice_for_each_rxq(vsi, i) 7202 ice_clean_rx_ring(vsi->rx_rings[i]); 7203 7204 if (tx_err || rx_err || vlan_err) { 7205 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7206 vsi->vsi_num, vsi->vsw->sw_id); 7207 return -EIO; 7208 } 7209 7210 return 0; 7211 } 7212 7213 /** 7214 * ice_down_up - shutdown the VSI connection and bring it up 7215 * @vsi: the VSI to be reconnected 7216 */ 7217 int ice_down_up(struct ice_vsi *vsi) 7218 { 7219 int ret; 7220 7221 /* if DOWN already set, nothing to do */ 7222 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7223 return 0; 7224 7225 ret = ice_down(vsi); 7226 if (ret) 7227 return ret; 7228 7229 ret = ice_up(vsi); 7230 if (ret) { 7231 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7232 return ret; 7233 } 7234 7235 return 0; 7236 } 7237 7238 /** 7239 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7240 * @vsi: VSI having resources allocated 7241 * 7242 * Return 0 on success, negative on failure 7243 */ 7244 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7245 { 7246 int i, err = 0; 7247 7248 if (!vsi->num_txq) { 7249 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7250 vsi->vsi_num); 7251 return -EINVAL; 7252 } 7253 7254 ice_for_each_txq(vsi, i) { 7255 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7256 7257 if (!ring) 7258 return -EINVAL; 7259 7260 if (vsi->netdev) 7261 ring->netdev = vsi->netdev; 7262 err = ice_setup_tx_ring(ring); 7263 if (err) 7264 break; 7265 } 7266 7267 return err; 7268 } 7269 7270 /** 7271 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7272 * @vsi: VSI having resources allocated 7273 * 7274 * Return 0 on success, negative on failure 7275 */ 7276 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7277 { 7278 int i, err = 0; 7279 7280 if (!vsi->num_rxq) { 7281 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7282 vsi->vsi_num); 7283 return -EINVAL; 7284 } 7285 7286 ice_for_each_rxq(vsi, i) { 7287 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7288 7289 if (!ring) 7290 return -EINVAL; 7291 7292 if (vsi->netdev) 7293 ring->netdev = vsi->netdev; 7294 err = ice_setup_rx_ring(ring); 7295 if (err) 7296 break; 7297 } 7298 7299 return err; 7300 } 7301 7302 /** 7303 * ice_vsi_open_ctrl - open control VSI for use 7304 * @vsi: the VSI to open 7305 * 7306 * Initialization of the Control VSI 7307 * 7308 * Returns 0 on success, negative value on error 7309 */ 7310 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7311 { 7312 char int_name[ICE_INT_NAME_STR_LEN]; 7313 struct ice_pf *pf = vsi->back; 7314 struct device *dev; 7315 int err; 7316 7317 dev = ice_pf_to_dev(pf); 7318 /* allocate descriptors */ 7319 err = ice_vsi_setup_tx_rings(vsi); 7320 if (err) 7321 goto err_setup_tx; 7322 7323 err = ice_vsi_setup_rx_rings(vsi); 7324 if (err) 7325 goto err_setup_rx; 7326 7327 err = ice_vsi_cfg_lan(vsi); 7328 if (err) 7329 goto err_setup_rx; 7330 7331 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7332 dev_driver_string(dev), dev_name(dev)); 7333 err = ice_vsi_req_irq_msix(vsi, int_name); 7334 if (err) 7335 goto err_setup_rx; 7336 7337 ice_vsi_cfg_msix(vsi); 7338 7339 err = ice_vsi_start_all_rx_rings(vsi); 7340 if (err) 7341 goto err_up_complete; 7342 7343 clear_bit(ICE_VSI_DOWN, vsi->state); 7344 ice_vsi_ena_irq(vsi); 7345 7346 return 0; 7347 7348 err_up_complete: 7349 ice_down(vsi); 7350 err_setup_rx: 7351 ice_vsi_free_rx_rings(vsi); 7352 err_setup_tx: 7353 ice_vsi_free_tx_rings(vsi); 7354 7355 return err; 7356 } 7357 7358 /** 7359 * ice_vsi_open - Called when a network interface is made active 7360 * @vsi: the VSI to open 7361 * 7362 * Initialization of the VSI 7363 * 7364 * Returns 0 on success, negative value on error 7365 */ 7366 int ice_vsi_open(struct ice_vsi *vsi) 7367 { 7368 char int_name[ICE_INT_NAME_STR_LEN]; 7369 struct ice_pf *pf = vsi->back; 7370 int err; 7371 7372 /* allocate descriptors */ 7373 err = ice_vsi_setup_tx_rings(vsi); 7374 if (err) 7375 goto err_setup_tx; 7376 7377 err = ice_vsi_setup_rx_rings(vsi); 7378 if (err) 7379 goto err_setup_rx; 7380 7381 err = ice_vsi_cfg_lan(vsi); 7382 if (err) 7383 goto err_setup_rx; 7384 7385 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7386 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7387 err = ice_vsi_req_irq_msix(vsi, int_name); 7388 if (err) 7389 goto err_setup_rx; 7390 7391 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7392 7393 if (vsi->type == ICE_VSI_PF) { 7394 /* Notify the stack of the actual queue counts. */ 7395 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7396 if (err) 7397 goto err_set_qs; 7398 7399 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7400 if (err) 7401 goto err_set_qs; 7402 } 7403 7404 err = ice_up_complete(vsi); 7405 if (err) 7406 goto err_up_complete; 7407 7408 return 0; 7409 7410 err_up_complete: 7411 ice_down(vsi); 7412 err_set_qs: 7413 ice_vsi_free_irq(vsi); 7414 err_setup_rx: 7415 ice_vsi_free_rx_rings(vsi); 7416 err_setup_tx: 7417 ice_vsi_free_tx_rings(vsi); 7418 7419 return err; 7420 } 7421 7422 /** 7423 * ice_vsi_release_all - Delete all VSIs 7424 * @pf: PF from which all VSIs are being removed 7425 */ 7426 static void ice_vsi_release_all(struct ice_pf *pf) 7427 { 7428 int err, i; 7429 7430 if (!pf->vsi) 7431 return; 7432 7433 ice_for_each_vsi(pf, i) { 7434 if (!pf->vsi[i]) 7435 continue; 7436 7437 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7438 continue; 7439 7440 err = ice_vsi_release(pf->vsi[i]); 7441 if (err) 7442 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7443 i, err, pf->vsi[i]->vsi_num); 7444 } 7445 } 7446 7447 /** 7448 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7449 * @pf: pointer to the PF instance 7450 * @type: VSI type to rebuild 7451 * 7452 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7453 */ 7454 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7455 { 7456 struct device *dev = ice_pf_to_dev(pf); 7457 int i, err; 7458 7459 ice_for_each_vsi(pf, i) { 7460 struct ice_vsi *vsi = pf->vsi[i]; 7461 7462 if (!vsi || vsi->type != type) 7463 continue; 7464 7465 /* rebuild the VSI */ 7466 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7467 if (err) { 7468 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7469 err, vsi->idx, ice_vsi_type_str(type)); 7470 return err; 7471 } 7472 7473 /* replay filters for the VSI */ 7474 err = ice_replay_vsi(&pf->hw, vsi->idx); 7475 if (err) { 7476 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7477 err, vsi->idx, ice_vsi_type_str(type)); 7478 return err; 7479 } 7480 7481 /* Re-map HW VSI number, using VSI handle that has been 7482 * previously validated in ice_replay_vsi() call above 7483 */ 7484 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7485 7486 /* enable the VSI */ 7487 err = ice_ena_vsi(vsi, false); 7488 if (err) { 7489 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7490 err, vsi->idx, ice_vsi_type_str(type)); 7491 return err; 7492 } 7493 7494 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7495 ice_vsi_type_str(type)); 7496 } 7497 7498 return 0; 7499 } 7500 7501 /** 7502 * ice_update_pf_netdev_link - Update PF netdev link status 7503 * @pf: pointer to the PF instance 7504 */ 7505 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7506 { 7507 bool link_up; 7508 int i; 7509 7510 ice_for_each_vsi(pf, i) { 7511 struct ice_vsi *vsi = pf->vsi[i]; 7512 7513 if (!vsi || vsi->type != ICE_VSI_PF) 7514 return; 7515 7516 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7517 if (link_up) { 7518 netif_carrier_on(pf->vsi[i]->netdev); 7519 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7520 } else { 7521 netif_carrier_off(pf->vsi[i]->netdev); 7522 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7523 } 7524 } 7525 } 7526 7527 /** 7528 * ice_rebuild - rebuild after reset 7529 * @pf: PF to rebuild 7530 * @reset_type: type of reset 7531 * 7532 * Do not rebuild VF VSI in this flow because that is already handled via 7533 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7534 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7535 * to reset/rebuild all the VF VSI twice. 7536 */ 7537 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7538 { 7539 struct device *dev = ice_pf_to_dev(pf); 7540 struct ice_hw *hw = &pf->hw; 7541 bool dvm; 7542 int err; 7543 7544 if (test_bit(ICE_DOWN, pf->state)) 7545 goto clear_recovery; 7546 7547 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7548 7549 #define ICE_EMP_RESET_SLEEP_MS 5000 7550 if (reset_type == ICE_RESET_EMPR) { 7551 /* If an EMP reset has occurred, any previously pending flash 7552 * update will have completed. We no longer know whether or 7553 * not the NVM update EMP reset is restricted. 7554 */ 7555 pf->fw_emp_reset_disabled = false; 7556 7557 msleep(ICE_EMP_RESET_SLEEP_MS); 7558 } 7559 7560 err = ice_init_all_ctrlq(hw); 7561 if (err) { 7562 dev_err(dev, "control queues init failed %d\n", err); 7563 goto err_init_ctrlq; 7564 } 7565 7566 /* if DDP was previously loaded successfully */ 7567 if (!ice_is_safe_mode(pf)) { 7568 /* reload the SW DB of filter tables */ 7569 if (reset_type == ICE_RESET_PFR) 7570 ice_fill_blk_tbls(hw); 7571 else 7572 /* Reload DDP Package after CORER/GLOBR reset */ 7573 ice_load_pkg(NULL, pf); 7574 } 7575 7576 err = ice_clear_pf_cfg(hw); 7577 if (err) { 7578 dev_err(dev, "clear PF configuration failed %d\n", err); 7579 goto err_init_ctrlq; 7580 } 7581 7582 ice_clear_pxe_mode(hw); 7583 7584 err = ice_init_nvm(hw); 7585 if (err) { 7586 dev_err(dev, "ice_init_nvm failed %d\n", err); 7587 goto err_init_ctrlq; 7588 } 7589 7590 err = ice_get_caps(hw); 7591 if (err) { 7592 dev_err(dev, "ice_get_caps failed %d\n", err); 7593 goto err_init_ctrlq; 7594 } 7595 7596 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7597 if (err) { 7598 dev_err(dev, "set_mac_cfg failed %d\n", err); 7599 goto err_init_ctrlq; 7600 } 7601 7602 dvm = ice_is_dvm_ena(hw); 7603 7604 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7605 if (err) 7606 goto err_init_ctrlq; 7607 7608 err = ice_sched_init_port(hw->port_info); 7609 if (err) 7610 goto err_sched_init_port; 7611 7612 /* start misc vector */ 7613 err = ice_req_irq_msix_misc(pf); 7614 if (err) { 7615 dev_err(dev, "misc vector setup failed: %d\n", err); 7616 goto err_sched_init_port; 7617 } 7618 7619 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7620 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7621 if (!rd32(hw, PFQF_FD_SIZE)) { 7622 u16 unused, guar, b_effort; 7623 7624 guar = hw->func_caps.fd_fltr_guar; 7625 b_effort = hw->func_caps.fd_fltr_best_effort; 7626 7627 /* force guaranteed filter pool for PF */ 7628 ice_alloc_fd_guar_item(hw, &unused, guar); 7629 /* force shared filter pool for PF */ 7630 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7631 } 7632 } 7633 7634 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7635 ice_dcb_rebuild(pf); 7636 7637 /* If the PF previously had enabled PTP, PTP init needs to happen before 7638 * the VSI rebuild. If not, this causes the PTP link status events to 7639 * fail. 7640 */ 7641 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7642 ice_ptp_rebuild(pf, reset_type); 7643 7644 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7645 ice_gnss_init(pf); 7646 7647 /* rebuild PF VSI */ 7648 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7649 if (err) { 7650 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7651 goto err_vsi_rebuild; 7652 } 7653 7654 ice_eswitch_rebuild(pf); 7655 7656 if (reset_type == ICE_RESET_PFR) { 7657 err = ice_rebuild_channels(pf); 7658 if (err) { 7659 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7660 err); 7661 goto err_vsi_rebuild; 7662 } 7663 } 7664 7665 /* If Flow Director is active */ 7666 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7667 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7668 if (err) { 7669 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7670 goto err_vsi_rebuild; 7671 } 7672 7673 /* replay HW Flow Director recipes */ 7674 if (hw->fdir_prof) 7675 ice_fdir_replay_flows(hw); 7676 7677 /* replay Flow Director filters */ 7678 ice_fdir_replay_fltrs(pf); 7679 7680 ice_rebuild_arfs(pf); 7681 } 7682 7683 ice_update_pf_netdev_link(pf); 7684 7685 /* tell the firmware we are up */ 7686 err = ice_send_version(pf); 7687 if (err) { 7688 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7689 err); 7690 goto err_vsi_rebuild; 7691 } 7692 7693 ice_replay_post(hw); 7694 7695 /* if we get here, reset flow is successful */ 7696 clear_bit(ICE_RESET_FAILED, pf->state); 7697 7698 ice_plug_aux_dev(pf); 7699 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7700 ice_lag_rebuild(pf); 7701 7702 /* Restore timestamp mode settings after VSI rebuild */ 7703 ice_ptp_restore_timestamp_mode(pf); 7704 return; 7705 7706 err_vsi_rebuild: 7707 err_sched_init_port: 7708 ice_sched_cleanup_all(hw); 7709 err_init_ctrlq: 7710 ice_shutdown_all_ctrlq(hw); 7711 set_bit(ICE_RESET_FAILED, pf->state); 7712 clear_recovery: 7713 /* set this bit in PF state to control service task scheduling */ 7714 set_bit(ICE_NEEDS_RESTART, pf->state); 7715 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7716 } 7717 7718 /** 7719 * ice_change_mtu - NDO callback to change the MTU 7720 * @netdev: network interface device structure 7721 * @new_mtu: new value for maximum frame size 7722 * 7723 * Returns 0 on success, negative on failure 7724 */ 7725 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7726 { 7727 struct ice_netdev_priv *np = netdev_priv(netdev); 7728 struct ice_vsi *vsi = np->vsi; 7729 struct ice_pf *pf = vsi->back; 7730 struct bpf_prog *prog; 7731 u8 count = 0; 7732 int err = 0; 7733 7734 if (new_mtu == (int)netdev->mtu) { 7735 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7736 return 0; 7737 } 7738 7739 prog = vsi->xdp_prog; 7740 if (prog && !prog->aux->xdp_has_frags) { 7741 int frame_size = ice_max_xdp_frame_size(vsi); 7742 7743 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7744 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7745 frame_size - ICE_ETH_PKT_HDR_PAD); 7746 return -EINVAL; 7747 } 7748 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7749 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7750 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7751 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7752 return -EINVAL; 7753 } 7754 } 7755 7756 /* if a reset is in progress, wait for some time for it to complete */ 7757 do { 7758 if (ice_is_reset_in_progress(pf->state)) { 7759 count++; 7760 usleep_range(1000, 2000); 7761 } else { 7762 break; 7763 } 7764 7765 } while (count < 100); 7766 7767 if (count == 100) { 7768 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7769 return -EBUSY; 7770 } 7771 7772 netdev->mtu = (unsigned int)new_mtu; 7773 err = ice_down_up(vsi); 7774 if (err) 7775 return err; 7776 7777 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7778 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7779 7780 return err; 7781 } 7782 7783 /** 7784 * ice_eth_ioctl - Access the hwtstamp interface 7785 * @netdev: network interface device structure 7786 * @ifr: interface request data 7787 * @cmd: ioctl command 7788 */ 7789 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7790 { 7791 struct ice_netdev_priv *np = netdev_priv(netdev); 7792 struct ice_pf *pf = np->vsi->back; 7793 7794 switch (cmd) { 7795 case SIOCGHWTSTAMP: 7796 return ice_ptp_get_ts_config(pf, ifr); 7797 case SIOCSHWTSTAMP: 7798 return ice_ptp_set_ts_config(pf, ifr); 7799 default: 7800 return -EOPNOTSUPP; 7801 } 7802 } 7803 7804 /** 7805 * ice_aq_str - convert AQ err code to a string 7806 * @aq_err: the AQ error code to convert 7807 */ 7808 const char *ice_aq_str(enum ice_aq_err aq_err) 7809 { 7810 switch (aq_err) { 7811 case ICE_AQ_RC_OK: 7812 return "OK"; 7813 case ICE_AQ_RC_EPERM: 7814 return "ICE_AQ_RC_EPERM"; 7815 case ICE_AQ_RC_ENOENT: 7816 return "ICE_AQ_RC_ENOENT"; 7817 case ICE_AQ_RC_ENOMEM: 7818 return "ICE_AQ_RC_ENOMEM"; 7819 case ICE_AQ_RC_EBUSY: 7820 return "ICE_AQ_RC_EBUSY"; 7821 case ICE_AQ_RC_EEXIST: 7822 return "ICE_AQ_RC_EEXIST"; 7823 case ICE_AQ_RC_EINVAL: 7824 return "ICE_AQ_RC_EINVAL"; 7825 case ICE_AQ_RC_ENOSPC: 7826 return "ICE_AQ_RC_ENOSPC"; 7827 case ICE_AQ_RC_ENOSYS: 7828 return "ICE_AQ_RC_ENOSYS"; 7829 case ICE_AQ_RC_EMODE: 7830 return "ICE_AQ_RC_EMODE"; 7831 case ICE_AQ_RC_ENOSEC: 7832 return "ICE_AQ_RC_ENOSEC"; 7833 case ICE_AQ_RC_EBADSIG: 7834 return "ICE_AQ_RC_EBADSIG"; 7835 case ICE_AQ_RC_ESVN: 7836 return "ICE_AQ_RC_ESVN"; 7837 case ICE_AQ_RC_EBADMAN: 7838 return "ICE_AQ_RC_EBADMAN"; 7839 case ICE_AQ_RC_EBADBUF: 7840 return "ICE_AQ_RC_EBADBUF"; 7841 } 7842 7843 return "ICE_AQ_RC_UNKNOWN"; 7844 } 7845 7846 /** 7847 * ice_set_rss_lut - Set RSS LUT 7848 * @vsi: Pointer to VSI structure 7849 * @lut: Lookup table 7850 * @lut_size: Lookup table size 7851 * 7852 * Returns 0 on success, negative on failure 7853 */ 7854 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7855 { 7856 struct ice_aq_get_set_rss_lut_params params = {}; 7857 struct ice_hw *hw = &vsi->back->hw; 7858 int status; 7859 7860 if (!lut) 7861 return -EINVAL; 7862 7863 params.vsi_handle = vsi->idx; 7864 params.lut_size = lut_size; 7865 params.lut_type = vsi->rss_lut_type; 7866 params.lut = lut; 7867 7868 status = ice_aq_set_rss_lut(hw, ¶ms); 7869 if (status) 7870 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7871 status, ice_aq_str(hw->adminq.sq_last_status)); 7872 7873 return status; 7874 } 7875 7876 /** 7877 * ice_set_rss_key - Set RSS key 7878 * @vsi: Pointer to the VSI structure 7879 * @seed: RSS hash seed 7880 * 7881 * Returns 0 on success, negative on failure 7882 */ 7883 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7884 { 7885 struct ice_hw *hw = &vsi->back->hw; 7886 int status; 7887 7888 if (!seed) 7889 return -EINVAL; 7890 7891 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7892 if (status) 7893 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7894 status, ice_aq_str(hw->adminq.sq_last_status)); 7895 7896 return status; 7897 } 7898 7899 /** 7900 * ice_get_rss_lut - Get RSS LUT 7901 * @vsi: Pointer to VSI structure 7902 * @lut: Buffer to store the lookup table entries 7903 * @lut_size: Size of buffer to store the lookup table entries 7904 * 7905 * Returns 0 on success, negative on failure 7906 */ 7907 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7908 { 7909 struct ice_aq_get_set_rss_lut_params params = {}; 7910 struct ice_hw *hw = &vsi->back->hw; 7911 int status; 7912 7913 if (!lut) 7914 return -EINVAL; 7915 7916 params.vsi_handle = vsi->idx; 7917 params.lut_size = lut_size; 7918 params.lut_type = vsi->rss_lut_type; 7919 params.lut = lut; 7920 7921 status = ice_aq_get_rss_lut(hw, ¶ms); 7922 if (status) 7923 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7924 status, ice_aq_str(hw->adminq.sq_last_status)); 7925 7926 return status; 7927 } 7928 7929 /** 7930 * ice_get_rss_key - Get RSS key 7931 * @vsi: Pointer to VSI structure 7932 * @seed: Buffer to store the key in 7933 * 7934 * Returns 0 on success, negative on failure 7935 */ 7936 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7937 { 7938 struct ice_hw *hw = &vsi->back->hw; 7939 int status; 7940 7941 if (!seed) 7942 return -EINVAL; 7943 7944 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7945 if (status) 7946 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7947 status, ice_aq_str(hw->adminq.sq_last_status)); 7948 7949 return status; 7950 } 7951 7952 /** 7953 * ice_set_rss_hfunc - Set RSS HASH function 7954 * @vsi: Pointer to VSI structure 7955 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 7956 * 7957 * Returns 0 on success, negative on failure 7958 */ 7959 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 7960 { 7961 struct ice_hw *hw = &vsi->back->hw; 7962 struct ice_vsi_ctx *ctx; 7963 bool symm; 7964 int err; 7965 7966 if (hfunc == vsi->rss_hfunc) 7967 return 0; 7968 7969 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 7970 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 7971 return -EOPNOTSUPP; 7972 7973 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 7974 if (!ctx) 7975 return -ENOMEM; 7976 7977 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 7978 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 7979 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 7980 ctx->info.q_opt_rss |= 7981 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 7982 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 7983 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 7984 7985 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 7986 if (err) { 7987 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 7988 vsi->vsi_num, err); 7989 } else { 7990 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 7991 vsi->rss_hfunc = hfunc; 7992 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 7993 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 7994 "Symmetric " : ""); 7995 } 7996 kfree(ctx); 7997 if (err) 7998 return err; 7999 8000 /* Fix the symmetry setting for all existing RSS configurations */ 8001 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8002 return ice_set_rss_cfg_symm(hw, vsi, symm); 8003 } 8004 8005 /** 8006 * ice_bridge_getlink - Get the hardware bridge mode 8007 * @skb: skb buff 8008 * @pid: process ID 8009 * @seq: RTNL message seq 8010 * @dev: the netdev being configured 8011 * @filter_mask: filter mask passed in 8012 * @nlflags: netlink flags passed in 8013 * 8014 * Return the bridge mode (VEB/VEPA) 8015 */ 8016 static int 8017 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8018 struct net_device *dev, u32 filter_mask, int nlflags) 8019 { 8020 struct ice_netdev_priv *np = netdev_priv(dev); 8021 struct ice_vsi *vsi = np->vsi; 8022 struct ice_pf *pf = vsi->back; 8023 u16 bmode; 8024 8025 bmode = pf->first_sw->bridge_mode; 8026 8027 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8028 filter_mask, NULL); 8029 } 8030 8031 /** 8032 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8033 * @vsi: Pointer to VSI structure 8034 * @bmode: Hardware bridge mode (VEB/VEPA) 8035 * 8036 * Returns 0 on success, negative on failure 8037 */ 8038 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8039 { 8040 struct ice_aqc_vsi_props *vsi_props; 8041 struct ice_hw *hw = &vsi->back->hw; 8042 struct ice_vsi_ctx *ctxt; 8043 int ret; 8044 8045 vsi_props = &vsi->info; 8046 8047 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8048 if (!ctxt) 8049 return -ENOMEM; 8050 8051 ctxt->info = vsi->info; 8052 8053 if (bmode == BRIDGE_MODE_VEB) 8054 /* change from VEPA to VEB mode */ 8055 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8056 else 8057 /* change from VEB to VEPA mode */ 8058 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8059 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8060 8061 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8062 if (ret) { 8063 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8064 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8065 goto out; 8066 } 8067 /* Update sw flags for book keeping */ 8068 vsi_props->sw_flags = ctxt->info.sw_flags; 8069 8070 out: 8071 kfree(ctxt); 8072 return ret; 8073 } 8074 8075 /** 8076 * ice_bridge_setlink - Set the hardware bridge mode 8077 * @dev: the netdev being configured 8078 * @nlh: RTNL message 8079 * @flags: bridge setlink flags 8080 * @extack: netlink extended ack 8081 * 8082 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8083 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8084 * not already set for all VSIs connected to this switch. And also update the 8085 * unicast switch filter rules for the corresponding switch of the netdev. 8086 */ 8087 static int 8088 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8089 u16 __always_unused flags, 8090 struct netlink_ext_ack __always_unused *extack) 8091 { 8092 struct ice_netdev_priv *np = netdev_priv(dev); 8093 struct ice_pf *pf = np->vsi->back; 8094 struct nlattr *attr, *br_spec; 8095 struct ice_hw *hw = &pf->hw; 8096 struct ice_sw *pf_sw; 8097 int rem, v, err = 0; 8098 8099 pf_sw = pf->first_sw; 8100 /* find the attribute in the netlink message */ 8101 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8102 if (!br_spec) 8103 return -EINVAL; 8104 8105 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8106 __u16 mode = nla_get_u16(attr); 8107 8108 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8109 return -EINVAL; 8110 /* Continue if bridge mode is not being flipped */ 8111 if (mode == pf_sw->bridge_mode) 8112 continue; 8113 /* Iterates through the PF VSI list and update the loopback 8114 * mode of the VSI 8115 */ 8116 ice_for_each_vsi(pf, v) { 8117 if (!pf->vsi[v]) 8118 continue; 8119 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8120 if (err) 8121 return err; 8122 } 8123 8124 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8125 /* Update the unicast switch filter rules for the corresponding 8126 * switch of the netdev 8127 */ 8128 err = ice_update_sw_rule_bridge_mode(hw); 8129 if (err) { 8130 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8131 mode, err, 8132 ice_aq_str(hw->adminq.sq_last_status)); 8133 /* revert hw->evb_veb */ 8134 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8135 return err; 8136 } 8137 8138 pf_sw->bridge_mode = mode; 8139 } 8140 8141 return 0; 8142 } 8143 8144 /** 8145 * ice_tx_timeout - Respond to a Tx Hang 8146 * @netdev: network interface device structure 8147 * @txqueue: Tx queue 8148 */ 8149 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8150 { 8151 struct ice_netdev_priv *np = netdev_priv(netdev); 8152 struct ice_tx_ring *tx_ring = NULL; 8153 struct ice_vsi *vsi = np->vsi; 8154 struct ice_pf *pf = vsi->back; 8155 u32 i; 8156 8157 pf->tx_timeout_count++; 8158 8159 /* Check if PFC is enabled for the TC to which the queue belongs 8160 * to. If yes then Tx timeout is not caused by a hung queue, no 8161 * need to reset and rebuild 8162 */ 8163 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8164 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8165 txqueue); 8166 return; 8167 } 8168 8169 /* now that we have an index, find the tx_ring struct */ 8170 ice_for_each_txq(vsi, i) 8171 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8172 if (txqueue == vsi->tx_rings[i]->q_index) { 8173 tx_ring = vsi->tx_rings[i]; 8174 break; 8175 } 8176 8177 /* Reset recovery level if enough time has elapsed after last timeout. 8178 * Also ensure no new reset action happens before next timeout period. 8179 */ 8180 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8181 pf->tx_timeout_recovery_level = 1; 8182 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8183 netdev->watchdog_timeo))) 8184 return; 8185 8186 if (tx_ring) { 8187 struct ice_hw *hw = &pf->hw; 8188 u32 head, val = 0; 8189 8190 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8191 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8192 /* Read interrupt register */ 8193 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8194 8195 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8196 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8197 head, tx_ring->next_to_use, val); 8198 } 8199 8200 pf->tx_timeout_last_recovery = jiffies; 8201 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8202 pf->tx_timeout_recovery_level, txqueue); 8203 8204 switch (pf->tx_timeout_recovery_level) { 8205 case 1: 8206 set_bit(ICE_PFR_REQ, pf->state); 8207 break; 8208 case 2: 8209 set_bit(ICE_CORER_REQ, pf->state); 8210 break; 8211 case 3: 8212 set_bit(ICE_GLOBR_REQ, pf->state); 8213 break; 8214 default: 8215 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8216 set_bit(ICE_DOWN, pf->state); 8217 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8218 set_bit(ICE_SERVICE_DIS, pf->state); 8219 break; 8220 } 8221 8222 ice_service_task_schedule(pf); 8223 pf->tx_timeout_recovery_level++; 8224 } 8225 8226 /** 8227 * ice_setup_tc_cls_flower - flower classifier offloads 8228 * @np: net device to configure 8229 * @filter_dev: device on which filter is added 8230 * @cls_flower: offload data 8231 */ 8232 static int 8233 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8234 struct net_device *filter_dev, 8235 struct flow_cls_offload *cls_flower) 8236 { 8237 struct ice_vsi *vsi = np->vsi; 8238 8239 if (cls_flower->common.chain_index) 8240 return -EOPNOTSUPP; 8241 8242 switch (cls_flower->command) { 8243 case FLOW_CLS_REPLACE: 8244 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8245 case FLOW_CLS_DESTROY: 8246 return ice_del_cls_flower(vsi, cls_flower); 8247 default: 8248 return -EINVAL; 8249 } 8250 } 8251 8252 /** 8253 * ice_setup_tc_block_cb - callback handler registered for TC block 8254 * @type: TC SETUP type 8255 * @type_data: TC flower offload data that contains user input 8256 * @cb_priv: netdev private data 8257 */ 8258 static int 8259 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8260 { 8261 struct ice_netdev_priv *np = cb_priv; 8262 8263 switch (type) { 8264 case TC_SETUP_CLSFLOWER: 8265 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8266 type_data); 8267 default: 8268 return -EOPNOTSUPP; 8269 } 8270 } 8271 8272 /** 8273 * ice_validate_mqprio_qopt - Validate TCF input parameters 8274 * @vsi: Pointer to VSI 8275 * @mqprio_qopt: input parameters for mqprio queue configuration 8276 * 8277 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8278 * needed), and make sure user doesn't specify qcount and BW rate limit 8279 * for TCs, which are more than "num_tc" 8280 */ 8281 static int 8282 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8283 struct tc_mqprio_qopt_offload *mqprio_qopt) 8284 { 8285 int non_power_of_2_qcount = 0; 8286 struct ice_pf *pf = vsi->back; 8287 int max_rss_q_cnt = 0; 8288 u64 sum_min_rate = 0; 8289 struct device *dev; 8290 int i, speed; 8291 u8 num_tc; 8292 8293 if (vsi->type != ICE_VSI_PF) 8294 return -EINVAL; 8295 8296 if (mqprio_qopt->qopt.offset[0] != 0 || 8297 mqprio_qopt->qopt.num_tc < 1 || 8298 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8299 return -EINVAL; 8300 8301 dev = ice_pf_to_dev(pf); 8302 vsi->ch_rss_size = 0; 8303 num_tc = mqprio_qopt->qopt.num_tc; 8304 speed = ice_get_link_speed_kbps(vsi); 8305 8306 for (i = 0; num_tc; i++) { 8307 int qcount = mqprio_qopt->qopt.count[i]; 8308 u64 max_rate, min_rate, rem; 8309 8310 if (!qcount) 8311 return -EINVAL; 8312 8313 if (is_power_of_2(qcount)) { 8314 if (non_power_of_2_qcount && 8315 qcount > non_power_of_2_qcount) { 8316 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8317 qcount, non_power_of_2_qcount); 8318 return -EINVAL; 8319 } 8320 if (qcount > max_rss_q_cnt) 8321 max_rss_q_cnt = qcount; 8322 } else { 8323 if (non_power_of_2_qcount && 8324 qcount != non_power_of_2_qcount) { 8325 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8326 qcount, non_power_of_2_qcount); 8327 return -EINVAL; 8328 } 8329 if (qcount < max_rss_q_cnt) { 8330 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8331 qcount, max_rss_q_cnt); 8332 return -EINVAL; 8333 } 8334 max_rss_q_cnt = qcount; 8335 non_power_of_2_qcount = qcount; 8336 } 8337 8338 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8339 * converts the bandwidth rate limit into Bytes/s when 8340 * passing it down to the driver. So convert input bandwidth 8341 * from Bytes/s to Kbps 8342 */ 8343 max_rate = mqprio_qopt->max_rate[i]; 8344 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8345 8346 /* min_rate is minimum guaranteed rate and it can't be zero */ 8347 min_rate = mqprio_qopt->min_rate[i]; 8348 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8349 sum_min_rate += min_rate; 8350 8351 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8352 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8353 min_rate, ICE_MIN_BW_LIMIT); 8354 return -EINVAL; 8355 } 8356 8357 if (max_rate && max_rate > speed) { 8358 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8359 i, max_rate, speed); 8360 return -EINVAL; 8361 } 8362 8363 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8364 if (rem) { 8365 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8366 i, ICE_MIN_BW_LIMIT); 8367 return -EINVAL; 8368 } 8369 8370 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8371 if (rem) { 8372 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8373 i, ICE_MIN_BW_LIMIT); 8374 return -EINVAL; 8375 } 8376 8377 /* min_rate can't be more than max_rate, except when max_rate 8378 * is zero (implies max_rate sought is max line rate). In such 8379 * a case min_rate can be more than max. 8380 */ 8381 if (max_rate && min_rate > max_rate) { 8382 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8383 min_rate, max_rate); 8384 return -EINVAL; 8385 } 8386 8387 if (i >= mqprio_qopt->qopt.num_tc - 1) 8388 break; 8389 if (mqprio_qopt->qopt.offset[i + 1] != 8390 (mqprio_qopt->qopt.offset[i] + qcount)) 8391 return -EINVAL; 8392 } 8393 if (vsi->num_rxq < 8394 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8395 return -EINVAL; 8396 if (vsi->num_txq < 8397 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8398 return -EINVAL; 8399 8400 if (sum_min_rate && sum_min_rate > (u64)speed) { 8401 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8402 sum_min_rate, speed); 8403 return -EINVAL; 8404 } 8405 8406 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8407 vsi->ch_rss_size = max_rss_q_cnt; 8408 8409 return 0; 8410 } 8411 8412 /** 8413 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8414 * @pf: ptr to PF device 8415 * @vsi: ptr to VSI 8416 */ 8417 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8418 { 8419 struct device *dev = ice_pf_to_dev(pf); 8420 bool added = false; 8421 struct ice_hw *hw; 8422 int flow; 8423 8424 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8425 return -EINVAL; 8426 8427 hw = &pf->hw; 8428 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8429 struct ice_fd_hw_prof *prof; 8430 int tun, status; 8431 u64 entry_h; 8432 8433 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8434 hw->fdir_prof[flow]->cnt)) 8435 continue; 8436 8437 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8438 enum ice_flow_priority prio; 8439 8440 /* add this VSI to FDir profile for this flow */ 8441 prio = ICE_FLOW_PRIO_NORMAL; 8442 prof = hw->fdir_prof[flow]; 8443 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8444 prof->prof_id[tun], 8445 prof->vsi_h[0], vsi->idx, 8446 prio, prof->fdir_seg[tun], 8447 &entry_h); 8448 if (status) { 8449 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8450 vsi->idx, flow); 8451 continue; 8452 } 8453 8454 prof->entry_h[prof->cnt][tun] = entry_h; 8455 } 8456 8457 /* store VSI for filter replay and delete */ 8458 prof->vsi_h[prof->cnt] = vsi->idx; 8459 prof->cnt++; 8460 8461 added = true; 8462 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8463 flow); 8464 } 8465 8466 if (!added) 8467 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8468 8469 return 0; 8470 } 8471 8472 /** 8473 * ice_add_channel - add a channel by adding VSI 8474 * @pf: ptr to PF device 8475 * @sw_id: underlying HW switching element ID 8476 * @ch: ptr to channel structure 8477 * 8478 * Add a channel (VSI) using add_vsi and queue_map 8479 */ 8480 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8481 { 8482 struct device *dev = ice_pf_to_dev(pf); 8483 struct ice_vsi *vsi; 8484 8485 if (ch->type != ICE_VSI_CHNL) { 8486 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8487 return -EINVAL; 8488 } 8489 8490 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8491 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8492 dev_err(dev, "create chnl VSI failure\n"); 8493 return -EINVAL; 8494 } 8495 8496 ice_add_vsi_to_fdir(pf, vsi); 8497 8498 ch->sw_id = sw_id; 8499 ch->vsi_num = vsi->vsi_num; 8500 ch->info.mapping_flags = vsi->info.mapping_flags; 8501 ch->ch_vsi = vsi; 8502 /* set the back pointer of channel for newly created VSI */ 8503 vsi->ch = ch; 8504 8505 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8506 sizeof(vsi->info.q_mapping)); 8507 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8508 sizeof(vsi->info.tc_mapping)); 8509 8510 return 0; 8511 } 8512 8513 /** 8514 * ice_chnl_cfg_res 8515 * @vsi: the VSI being setup 8516 * @ch: ptr to channel structure 8517 * 8518 * Configure channel specific resources such as rings, vector. 8519 */ 8520 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8521 { 8522 int i; 8523 8524 for (i = 0; i < ch->num_txq; i++) { 8525 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8526 struct ice_ring_container *rc; 8527 struct ice_tx_ring *tx_ring; 8528 struct ice_rx_ring *rx_ring; 8529 8530 tx_ring = vsi->tx_rings[ch->base_q + i]; 8531 rx_ring = vsi->rx_rings[ch->base_q + i]; 8532 if (!tx_ring || !rx_ring) 8533 continue; 8534 8535 /* setup ring being channel enabled */ 8536 tx_ring->ch = ch; 8537 rx_ring->ch = ch; 8538 8539 /* following code block sets up vector specific attributes */ 8540 tx_q_vector = tx_ring->q_vector; 8541 rx_q_vector = rx_ring->q_vector; 8542 if (!tx_q_vector && !rx_q_vector) 8543 continue; 8544 8545 if (tx_q_vector) { 8546 tx_q_vector->ch = ch; 8547 /* setup Tx and Rx ITR setting if DIM is off */ 8548 rc = &tx_q_vector->tx; 8549 if (!ITR_IS_DYNAMIC(rc)) 8550 ice_write_itr(rc, rc->itr_setting); 8551 } 8552 if (rx_q_vector) { 8553 rx_q_vector->ch = ch; 8554 /* setup Tx and Rx ITR setting if DIM is off */ 8555 rc = &rx_q_vector->rx; 8556 if (!ITR_IS_DYNAMIC(rc)) 8557 ice_write_itr(rc, rc->itr_setting); 8558 } 8559 } 8560 8561 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8562 * GLINT_ITR register would have written to perform in-context 8563 * update, hence perform flush 8564 */ 8565 if (ch->num_txq || ch->num_rxq) 8566 ice_flush(&vsi->back->hw); 8567 } 8568 8569 /** 8570 * ice_cfg_chnl_all_res - configure channel resources 8571 * @vsi: pte to main_vsi 8572 * @ch: ptr to channel structure 8573 * 8574 * This function configures channel specific resources such as flow-director 8575 * counter index, and other resources such as queues, vectors, ITR settings 8576 */ 8577 static void 8578 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8579 { 8580 /* configure channel (aka ADQ) resources such as queues, vectors, 8581 * ITR settings for channel specific vectors and anything else 8582 */ 8583 ice_chnl_cfg_res(vsi, ch); 8584 } 8585 8586 /** 8587 * ice_setup_hw_channel - setup new channel 8588 * @pf: ptr to PF device 8589 * @vsi: the VSI being setup 8590 * @ch: ptr to channel structure 8591 * @sw_id: underlying HW switching element ID 8592 * @type: type of channel to be created (VMDq2/VF) 8593 * 8594 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8595 * and configures Tx rings accordingly 8596 */ 8597 static int 8598 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8599 struct ice_channel *ch, u16 sw_id, u8 type) 8600 { 8601 struct device *dev = ice_pf_to_dev(pf); 8602 int ret; 8603 8604 ch->base_q = vsi->next_base_q; 8605 ch->type = type; 8606 8607 ret = ice_add_channel(pf, sw_id, ch); 8608 if (ret) { 8609 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8610 return ret; 8611 } 8612 8613 /* configure/setup ADQ specific resources */ 8614 ice_cfg_chnl_all_res(vsi, ch); 8615 8616 /* make sure to update the next_base_q so that subsequent channel's 8617 * (aka ADQ) VSI queue map is correct 8618 */ 8619 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8620 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8621 ch->num_rxq); 8622 8623 return 0; 8624 } 8625 8626 /** 8627 * ice_setup_channel - setup new channel using uplink element 8628 * @pf: ptr to PF device 8629 * @vsi: the VSI being setup 8630 * @ch: ptr to channel structure 8631 * 8632 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8633 * and uplink switching element 8634 */ 8635 static bool 8636 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8637 struct ice_channel *ch) 8638 { 8639 struct device *dev = ice_pf_to_dev(pf); 8640 u16 sw_id; 8641 int ret; 8642 8643 if (vsi->type != ICE_VSI_PF) { 8644 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8645 return false; 8646 } 8647 8648 sw_id = pf->first_sw->sw_id; 8649 8650 /* create channel (VSI) */ 8651 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8652 if (ret) { 8653 dev_err(dev, "failed to setup hw_channel\n"); 8654 return false; 8655 } 8656 dev_dbg(dev, "successfully created channel()\n"); 8657 8658 return ch->ch_vsi ? true : false; 8659 } 8660 8661 /** 8662 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8663 * @vsi: VSI to be configured 8664 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8665 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8666 */ 8667 static int 8668 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8669 { 8670 int err; 8671 8672 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8673 if (err) 8674 return err; 8675 8676 return ice_set_max_bw_limit(vsi, max_tx_rate); 8677 } 8678 8679 /** 8680 * ice_create_q_channel - function to create channel 8681 * @vsi: VSI to be configured 8682 * @ch: ptr to channel (it contains channel specific params) 8683 * 8684 * This function creates channel (VSI) using num_queues specified by user, 8685 * reconfigs RSS if needed. 8686 */ 8687 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8688 { 8689 struct ice_pf *pf = vsi->back; 8690 struct device *dev; 8691 8692 if (!ch) 8693 return -EINVAL; 8694 8695 dev = ice_pf_to_dev(pf); 8696 if (!ch->num_txq || !ch->num_rxq) { 8697 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8698 return -EINVAL; 8699 } 8700 8701 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8702 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8703 vsi->cnt_q_avail, ch->num_txq); 8704 return -EINVAL; 8705 } 8706 8707 if (!ice_setup_channel(pf, vsi, ch)) { 8708 dev_info(dev, "Failed to setup channel\n"); 8709 return -EINVAL; 8710 } 8711 /* configure BW rate limit */ 8712 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8713 int ret; 8714 8715 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8716 ch->min_tx_rate); 8717 if (ret) 8718 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8719 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8720 else 8721 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8722 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8723 } 8724 8725 vsi->cnt_q_avail -= ch->num_txq; 8726 8727 return 0; 8728 } 8729 8730 /** 8731 * ice_rem_all_chnl_fltrs - removes all channel filters 8732 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8733 * 8734 * Remove all advanced switch filters only if they are channel specific 8735 * tc-flower based filter 8736 */ 8737 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8738 { 8739 struct ice_tc_flower_fltr *fltr; 8740 struct hlist_node *node; 8741 8742 /* to remove all channel filters, iterate an ordered list of filters */ 8743 hlist_for_each_entry_safe(fltr, node, 8744 &pf->tc_flower_fltr_list, 8745 tc_flower_node) { 8746 struct ice_rule_query_data rule; 8747 int status; 8748 8749 /* for now process only channel specific filters */ 8750 if (!ice_is_chnl_fltr(fltr)) 8751 continue; 8752 8753 rule.rid = fltr->rid; 8754 rule.rule_id = fltr->rule_id; 8755 rule.vsi_handle = fltr->dest_vsi_handle; 8756 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8757 if (status) { 8758 if (status == -ENOENT) 8759 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8760 rule.rule_id); 8761 else 8762 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8763 status); 8764 } else if (fltr->dest_vsi) { 8765 /* update advanced switch filter count */ 8766 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8767 u32 flags = fltr->flags; 8768 8769 fltr->dest_vsi->num_chnl_fltr--; 8770 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8771 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8772 pf->num_dmac_chnl_fltrs--; 8773 } 8774 } 8775 8776 hlist_del(&fltr->tc_flower_node); 8777 kfree(fltr); 8778 } 8779 } 8780 8781 /** 8782 * ice_remove_q_channels - Remove queue channels for the TCs 8783 * @vsi: VSI to be configured 8784 * @rem_fltr: delete advanced switch filter or not 8785 * 8786 * Remove queue channels for the TCs 8787 */ 8788 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8789 { 8790 struct ice_channel *ch, *ch_tmp; 8791 struct ice_pf *pf = vsi->back; 8792 int i; 8793 8794 /* remove all tc-flower based filter if they are channel filters only */ 8795 if (rem_fltr) 8796 ice_rem_all_chnl_fltrs(pf); 8797 8798 /* remove ntuple filters since queue configuration is being changed */ 8799 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8800 struct ice_hw *hw = &pf->hw; 8801 8802 mutex_lock(&hw->fdir_fltr_lock); 8803 ice_fdir_del_all_fltrs(vsi); 8804 mutex_unlock(&hw->fdir_fltr_lock); 8805 } 8806 8807 /* perform cleanup for channels if they exist */ 8808 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8809 struct ice_vsi *ch_vsi; 8810 8811 list_del(&ch->list); 8812 ch_vsi = ch->ch_vsi; 8813 if (!ch_vsi) { 8814 kfree(ch); 8815 continue; 8816 } 8817 8818 /* Reset queue contexts */ 8819 for (i = 0; i < ch->num_rxq; i++) { 8820 struct ice_tx_ring *tx_ring; 8821 struct ice_rx_ring *rx_ring; 8822 8823 tx_ring = vsi->tx_rings[ch->base_q + i]; 8824 rx_ring = vsi->rx_rings[ch->base_q + i]; 8825 if (tx_ring) { 8826 tx_ring->ch = NULL; 8827 if (tx_ring->q_vector) 8828 tx_ring->q_vector->ch = NULL; 8829 } 8830 if (rx_ring) { 8831 rx_ring->ch = NULL; 8832 if (rx_ring->q_vector) 8833 rx_ring->q_vector->ch = NULL; 8834 } 8835 } 8836 8837 /* Release FD resources for the channel VSI */ 8838 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8839 8840 /* clear the VSI from scheduler tree */ 8841 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8842 8843 /* Delete VSI from FW, PF and HW VSI arrays */ 8844 ice_vsi_delete(ch->ch_vsi); 8845 8846 /* free the channel */ 8847 kfree(ch); 8848 } 8849 8850 /* clear the channel VSI map which is stored in main VSI */ 8851 ice_for_each_chnl_tc(i) 8852 vsi->tc_map_vsi[i] = NULL; 8853 8854 /* reset main VSI's all TC information */ 8855 vsi->all_enatc = 0; 8856 vsi->all_numtc = 0; 8857 } 8858 8859 /** 8860 * ice_rebuild_channels - rebuild channel 8861 * @pf: ptr to PF 8862 * 8863 * Recreate channel VSIs and replay filters 8864 */ 8865 static int ice_rebuild_channels(struct ice_pf *pf) 8866 { 8867 struct device *dev = ice_pf_to_dev(pf); 8868 struct ice_vsi *main_vsi; 8869 bool rem_adv_fltr = true; 8870 struct ice_channel *ch; 8871 struct ice_vsi *vsi; 8872 int tc_idx = 1; 8873 int i, err; 8874 8875 main_vsi = ice_get_main_vsi(pf); 8876 if (!main_vsi) 8877 return 0; 8878 8879 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8880 main_vsi->old_numtc == 1) 8881 return 0; /* nothing to be done */ 8882 8883 /* reconfigure main VSI based on old value of TC and cached values 8884 * for MQPRIO opts 8885 */ 8886 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8887 if (err) { 8888 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8889 main_vsi->old_ena_tc, main_vsi->vsi_num); 8890 return err; 8891 } 8892 8893 /* rebuild ADQ VSIs */ 8894 ice_for_each_vsi(pf, i) { 8895 enum ice_vsi_type type; 8896 8897 vsi = pf->vsi[i]; 8898 if (!vsi || vsi->type != ICE_VSI_CHNL) 8899 continue; 8900 8901 type = vsi->type; 8902 8903 /* rebuild ADQ VSI */ 8904 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8905 if (err) { 8906 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8907 ice_vsi_type_str(type), vsi->idx, err); 8908 goto cleanup; 8909 } 8910 8911 /* Re-map HW VSI number, using VSI handle that has been 8912 * previously validated in ice_replay_vsi() call above 8913 */ 8914 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8915 8916 /* replay filters for the VSI */ 8917 err = ice_replay_vsi(&pf->hw, vsi->idx); 8918 if (err) { 8919 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8920 ice_vsi_type_str(type), err, vsi->idx); 8921 rem_adv_fltr = false; 8922 goto cleanup; 8923 } 8924 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8925 ice_vsi_type_str(type), vsi->idx); 8926 8927 /* store ADQ VSI at correct TC index in main VSI's 8928 * map of TC to VSI 8929 */ 8930 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8931 } 8932 8933 /* ADQ VSI(s) has been rebuilt successfully, so setup 8934 * channel for main VSI's Tx and Rx rings 8935 */ 8936 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8937 struct ice_vsi *ch_vsi; 8938 8939 ch_vsi = ch->ch_vsi; 8940 if (!ch_vsi) 8941 continue; 8942 8943 /* reconfig channel resources */ 8944 ice_cfg_chnl_all_res(main_vsi, ch); 8945 8946 /* replay BW rate limit if it is non-zero */ 8947 if (!ch->max_tx_rate && !ch->min_tx_rate) 8948 continue; 8949 8950 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8951 ch->min_tx_rate); 8952 if (err) 8953 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8954 err, ch->max_tx_rate, ch->min_tx_rate, 8955 ch_vsi->vsi_num); 8956 else 8957 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8958 ch->max_tx_rate, ch->min_tx_rate, 8959 ch_vsi->vsi_num); 8960 } 8961 8962 /* reconfig RSS for main VSI */ 8963 if (main_vsi->ch_rss_size) 8964 ice_vsi_cfg_rss_lut_key(main_vsi); 8965 8966 return 0; 8967 8968 cleanup: 8969 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8970 return err; 8971 } 8972 8973 /** 8974 * ice_create_q_channels - Add queue channel for the given TCs 8975 * @vsi: VSI to be configured 8976 * 8977 * Configures queue channel mapping to the given TCs 8978 */ 8979 static int ice_create_q_channels(struct ice_vsi *vsi) 8980 { 8981 struct ice_pf *pf = vsi->back; 8982 struct ice_channel *ch; 8983 int ret = 0, i; 8984 8985 ice_for_each_chnl_tc(i) { 8986 if (!(vsi->all_enatc & BIT(i))) 8987 continue; 8988 8989 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8990 if (!ch) { 8991 ret = -ENOMEM; 8992 goto err_free; 8993 } 8994 INIT_LIST_HEAD(&ch->list); 8995 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8996 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8997 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8998 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8999 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9000 9001 /* convert to Kbits/s */ 9002 if (ch->max_tx_rate) 9003 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9004 ICE_BW_KBPS_DIVISOR); 9005 if (ch->min_tx_rate) 9006 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9007 ICE_BW_KBPS_DIVISOR); 9008 9009 ret = ice_create_q_channel(vsi, ch); 9010 if (ret) { 9011 dev_err(ice_pf_to_dev(pf), 9012 "failed creating channel TC:%d\n", i); 9013 kfree(ch); 9014 goto err_free; 9015 } 9016 list_add_tail(&ch->list, &vsi->ch_list); 9017 vsi->tc_map_vsi[i] = ch->ch_vsi; 9018 dev_dbg(ice_pf_to_dev(pf), 9019 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9020 } 9021 return 0; 9022 9023 err_free: 9024 ice_remove_q_channels(vsi, false); 9025 9026 return ret; 9027 } 9028 9029 /** 9030 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9031 * @netdev: net device to configure 9032 * @type_data: TC offload data 9033 */ 9034 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9035 { 9036 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9037 struct ice_netdev_priv *np = netdev_priv(netdev); 9038 struct ice_vsi *vsi = np->vsi; 9039 struct ice_pf *pf = vsi->back; 9040 u16 mode, ena_tc_qdisc = 0; 9041 int cur_txq, cur_rxq; 9042 u8 hw = 0, num_tcf; 9043 struct device *dev; 9044 int ret, i; 9045 9046 dev = ice_pf_to_dev(pf); 9047 num_tcf = mqprio_qopt->qopt.num_tc; 9048 hw = mqprio_qopt->qopt.hw; 9049 mode = mqprio_qopt->mode; 9050 if (!hw) { 9051 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9052 vsi->ch_rss_size = 0; 9053 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9054 goto config_tcf; 9055 } 9056 9057 /* Generate queue region map for number of TCF requested */ 9058 for (i = 0; i < num_tcf; i++) 9059 ena_tc_qdisc |= BIT(i); 9060 9061 switch (mode) { 9062 case TC_MQPRIO_MODE_CHANNEL: 9063 9064 if (pf->hw.port_info->is_custom_tx_enabled) { 9065 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9066 return -EBUSY; 9067 } 9068 ice_tear_down_devlink_rate_tree(pf); 9069 9070 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9071 if (ret) { 9072 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9073 ret); 9074 return ret; 9075 } 9076 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9077 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9078 /* don't assume state of hw_tc_offload during driver load 9079 * and set the flag for TC flower filter if hw_tc_offload 9080 * already ON 9081 */ 9082 if (vsi->netdev->features & NETIF_F_HW_TC) 9083 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9084 break; 9085 default: 9086 return -EINVAL; 9087 } 9088 9089 config_tcf: 9090 9091 /* Requesting same TCF configuration as already enabled */ 9092 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9093 mode != TC_MQPRIO_MODE_CHANNEL) 9094 return 0; 9095 9096 /* Pause VSI queues */ 9097 ice_dis_vsi(vsi, true); 9098 9099 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9100 ice_remove_q_channels(vsi, true); 9101 9102 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9103 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9104 num_online_cpus()); 9105 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9106 num_online_cpus()); 9107 } else { 9108 /* logic to rebuild VSI, same like ethtool -L */ 9109 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9110 9111 for (i = 0; i < num_tcf; i++) { 9112 if (!(ena_tc_qdisc & BIT(i))) 9113 continue; 9114 9115 offset = vsi->mqprio_qopt.qopt.offset[i]; 9116 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9117 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9118 } 9119 vsi->req_txq = offset + qcount_tx; 9120 vsi->req_rxq = offset + qcount_rx; 9121 9122 /* store away original rss_size info, so that it gets reused 9123 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9124 * determine, what should be the rss_sizefor main VSI 9125 */ 9126 vsi->orig_rss_size = vsi->rss_size; 9127 } 9128 9129 /* save current values of Tx and Rx queues before calling VSI rebuild 9130 * for fallback option 9131 */ 9132 cur_txq = vsi->num_txq; 9133 cur_rxq = vsi->num_rxq; 9134 9135 /* proceed with rebuild main VSI using correct number of queues */ 9136 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9137 if (ret) { 9138 /* fallback to current number of queues */ 9139 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9140 vsi->req_txq = cur_txq; 9141 vsi->req_rxq = cur_rxq; 9142 clear_bit(ICE_RESET_FAILED, pf->state); 9143 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9144 dev_err(dev, "Rebuild of main VSI failed again\n"); 9145 return ret; 9146 } 9147 } 9148 9149 vsi->all_numtc = num_tcf; 9150 vsi->all_enatc = ena_tc_qdisc; 9151 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9152 if (ret) { 9153 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9154 vsi->vsi_num); 9155 goto exit; 9156 } 9157 9158 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9159 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9160 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9161 9162 /* set TC0 rate limit if specified */ 9163 if (max_tx_rate || min_tx_rate) { 9164 /* convert to Kbits/s */ 9165 if (max_tx_rate) 9166 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9167 if (min_tx_rate) 9168 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9169 9170 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9171 if (!ret) { 9172 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9173 max_tx_rate, min_tx_rate, vsi->vsi_num); 9174 } else { 9175 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9176 max_tx_rate, min_tx_rate, vsi->vsi_num); 9177 goto exit; 9178 } 9179 } 9180 ret = ice_create_q_channels(vsi); 9181 if (ret) { 9182 netdev_err(netdev, "failed configuring queue channels\n"); 9183 goto exit; 9184 } else { 9185 netdev_dbg(netdev, "successfully configured channels\n"); 9186 } 9187 } 9188 9189 if (vsi->ch_rss_size) 9190 ice_vsi_cfg_rss_lut_key(vsi); 9191 9192 exit: 9193 /* if error, reset the all_numtc and all_enatc */ 9194 if (ret) { 9195 vsi->all_numtc = 0; 9196 vsi->all_enatc = 0; 9197 } 9198 /* resume VSI */ 9199 ice_ena_vsi(vsi, true); 9200 9201 return ret; 9202 } 9203 9204 static LIST_HEAD(ice_block_cb_list); 9205 9206 static int 9207 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9208 void *type_data) 9209 { 9210 struct ice_netdev_priv *np = netdev_priv(netdev); 9211 struct ice_pf *pf = np->vsi->back; 9212 bool locked = false; 9213 int err; 9214 9215 switch (type) { 9216 case TC_SETUP_BLOCK: 9217 return flow_block_cb_setup_simple(type_data, 9218 &ice_block_cb_list, 9219 ice_setup_tc_block_cb, 9220 np, np, true); 9221 case TC_SETUP_QDISC_MQPRIO: 9222 if (ice_is_eswitch_mode_switchdev(pf)) { 9223 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9224 return -EOPNOTSUPP; 9225 } 9226 9227 if (pf->adev) { 9228 mutex_lock(&pf->adev_mutex); 9229 device_lock(&pf->adev->dev); 9230 locked = true; 9231 if (pf->adev->dev.driver) { 9232 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9233 err = -EBUSY; 9234 goto adev_unlock; 9235 } 9236 } 9237 9238 /* setup traffic classifier for receive side */ 9239 mutex_lock(&pf->tc_mutex); 9240 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9241 mutex_unlock(&pf->tc_mutex); 9242 9243 adev_unlock: 9244 if (locked) { 9245 device_unlock(&pf->adev->dev); 9246 mutex_unlock(&pf->adev_mutex); 9247 } 9248 return err; 9249 default: 9250 return -EOPNOTSUPP; 9251 } 9252 return -EOPNOTSUPP; 9253 } 9254 9255 static struct ice_indr_block_priv * 9256 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9257 struct net_device *netdev) 9258 { 9259 struct ice_indr_block_priv *cb_priv; 9260 9261 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9262 if (!cb_priv->netdev) 9263 return NULL; 9264 if (cb_priv->netdev == netdev) 9265 return cb_priv; 9266 } 9267 return NULL; 9268 } 9269 9270 static int 9271 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9272 void *indr_priv) 9273 { 9274 struct ice_indr_block_priv *priv = indr_priv; 9275 struct ice_netdev_priv *np = priv->np; 9276 9277 switch (type) { 9278 case TC_SETUP_CLSFLOWER: 9279 return ice_setup_tc_cls_flower(np, priv->netdev, 9280 (struct flow_cls_offload *) 9281 type_data); 9282 default: 9283 return -EOPNOTSUPP; 9284 } 9285 } 9286 9287 static int 9288 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9289 struct ice_netdev_priv *np, 9290 struct flow_block_offload *f, void *data, 9291 void (*cleanup)(struct flow_block_cb *block_cb)) 9292 { 9293 struct ice_indr_block_priv *indr_priv; 9294 struct flow_block_cb *block_cb; 9295 9296 if (!ice_is_tunnel_supported(netdev) && 9297 !(is_vlan_dev(netdev) && 9298 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9299 return -EOPNOTSUPP; 9300 9301 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9302 return -EOPNOTSUPP; 9303 9304 switch (f->command) { 9305 case FLOW_BLOCK_BIND: 9306 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9307 if (indr_priv) 9308 return -EEXIST; 9309 9310 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9311 if (!indr_priv) 9312 return -ENOMEM; 9313 9314 indr_priv->netdev = netdev; 9315 indr_priv->np = np; 9316 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9317 9318 block_cb = 9319 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9320 indr_priv, indr_priv, 9321 ice_rep_indr_tc_block_unbind, 9322 f, netdev, sch, data, np, 9323 cleanup); 9324 9325 if (IS_ERR(block_cb)) { 9326 list_del(&indr_priv->list); 9327 kfree(indr_priv); 9328 return PTR_ERR(block_cb); 9329 } 9330 flow_block_cb_add(block_cb, f); 9331 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9332 break; 9333 case FLOW_BLOCK_UNBIND: 9334 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9335 if (!indr_priv) 9336 return -ENOENT; 9337 9338 block_cb = flow_block_cb_lookup(f->block, 9339 ice_indr_setup_block_cb, 9340 indr_priv); 9341 if (!block_cb) 9342 return -ENOENT; 9343 9344 flow_indr_block_cb_remove(block_cb, f); 9345 9346 list_del(&block_cb->driver_list); 9347 break; 9348 default: 9349 return -EOPNOTSUPP; 9350 } 9351 return 0; 9352 } 9353 9354 static int 9355 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9356 void *cb_priv, enum tc_setup_type type, void *type_data, 9357 void *data, 9358 void (*cleanup)(struct flow_block_cb *block_cb)) 9359 { 9360 switch (type) { 9361 case TC_SETUP_BLOCK: 9362 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9363 data, cleanup); 9364 9365 default: 9366 return -EOPNOTSUPP; 9367 } 9368 } 9369 9370 /** 9371 * ice_open - Called when a network interface becomes active 9372 * @netdev: network interface device structure 9373 * 9374 * The open entry point is called when a network interface is made 9375 * active by the system (IFF_UP). At this point all resources needed 9376 * for transmit and receive operations are allocated, the interrupt 9377 * handler is registered with the OS, the netdev watchdog is enabled, 9378 * and the stack is notified that the interface is ready. 9379 * 9380 * Returns 0 on success, negative value on failure 9381 */ 9382 int ice_open(struct net_device *netdev) 9383 { 9384 struct ice_netdev_priv *np = netdev_priv(netdev); 9385 struct ice_pf *pf = np->vsi->back; 9386 9387 if (ice_is_reset_in_progress(pf->state)) { 9388 netdev_err(netdev, "can't open net device while reset is in progress"); 9389 return -EBUSY; 9390 } 9391 9392 return ice_open_internal(netdev); 9393 } 9394 9395 /** 9396 * ice_open_internal - Called when a network interface becomes active 9397 * @netdev: network interface device structure 9398 * 9399 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9400 * handling routine 9401 * 9402 * Returns 0 on success, negative value on failure 9403 */ 9404 int ice_open_internal(struct net_device *netdev) 9405 { 9406 struct ice_netdev_priv *np = netdev_priv(netdev); 9407 struct ice_vsi *vsi = np->vsi; 9408 struct ice_pf *pf = vsi->back; 9409 struct ice_port_info *pi; 9410 int err; 9411 9412 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9413 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9414 return -EIO; 9415 } 9416 9417 netif_carrier_off(netdev); 9418 9419 pi = vsi->port_info; 9420 err = ice_update_link_info(pi); 9421 if (err) { 9422 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9423 return err; 9424 } 9425 9426 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9427 9428 /* Set PHY if there is media, otherwise, turn off PHY */ 9429 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9430 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9431 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9432 err = ice_init_phy_user_cfg(pi); 9433 if (err) { 9434 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9435 err); 9436 return err; 9437 } 9438 } 9439 9440 err = ice_configure_phy(vsi); 9441 if (err) { 9442 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9443 err); 9444 return err; 9445 } 9446 } else { 9447 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9448 ice_set_link(vsi, false); 9449 } 9450 9451 err = ice_vsi_open(vsi); 9452 if (err) 9453 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9454 vsi->vsi_num, vsi->vsw->sw_id); 9455 9456 /* Update existing tunnels information */ 9457 udp_tunnel_get_rx_info(netdev); 9458 9459 return err; 9460 } 9461 9462 /** 9463 * ice_stop - Disables a network interface 9464 * @netdev: network interface device structure 9465 * 9466 * The stop entry point is called when an interface is de-activated by the OS, 9467 * and the netdevice enters the DOWN state. The hardware is still under the 9468 * driver's control, but the netdev interface is disabled. 9469 * 9470 * Returns success only - not allowed to fail 9471 */ 9472 int ice_stop(struct net_device *netdev) 9473 { 9474 struct ice_netdev_priv *np = netdev_priv(netdev); 9475 struct ice_vsi *vsi = np->vsi; 9476 struct ice_pf *pf = vsi->back; 9477 9478 if (ice_is_reset_in_progress(pf->state)) { 9479 netdev_err(netdev, "can't stop net device while reset is in progress"); 9480 return -EBUSY; 9481 } 9482 9483 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9484 int link_err = ice_force_phys_link_state(vsi, false); 9485 9486 if (link_err) { 9487 if (link_err == -ENOMEDIUM) 9488 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9489 vsi->vsi_num); 9490 else 9491 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9492 vsi->vsi_num, link_err); 9493 9494 ice_vsi_close(vsi); 9495 return -EIO; 9496 } 9497 } 9498 9499 ice_vsi_close(vsi); 9500 9501 return 0; 9502 } 9503 9504 /** 9505 * ice_features_check - Validate encapsulated packet conforms to limits 9506 * @skb: skb buffer 9507 * @netdev: This port's netdev 9508 * @features: Offload features that the stack believes apply 9509 */ 9510 static netdev_features_t 9511 ice_features_check(struct sk_buff *skb, 9512 struct net_device __always_unused *netdev, 9513 netdev_features_t features) 9514 { 9515 bool gso = skb_is_gso(skb); 9516 size_t len; 9517 9518 /* No point in doing any of this if neither checksum nor GSO are 9519 * being requested for this frame. We can rule out both by just 9520 * checking for CHECKSUM_PARTIAL 9521 */ 9522 if (skb->ip_summed != CHECKSUM_PARTIAL) 9523 return features; 9524 9525 /* We cannot support GSO if the MSS is going to be less than 9526 * 64 bytes. If it is then we need to drop support for GSO. 9527 */ 9528 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9529 features &= ~NETIF_F_GSO_MASK; 9530 9531 len = skb_network_offset(skb); 9532 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9533 goto out_rm_features; 9534 9535 len = skb_network_header_len(skb); 9536 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9537 goto out_rm_features; 9538 9539 if (skb->encapsulation) { 9540 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9541 * the case of IPIP frames, the transport header pointer is 9542 * after the inner header! So check to make sure that this 9543 * is a GRE or UDP_TUNNEL frame before doing that math. 9544 */ 9545 if (gso && (skb_shinfo(skb)->gso_type & 9546 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9547 len = skb_inner_network_header(skb) - 9548 skb_transport_header(skb); 9549 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9550 goto out_rm_features; 9551 } 9552 9553 len = skb_inner_network_header_len(skb); 9554 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9555 goto out_rm_features; 9556 } 9557 9558 return features; 9559 out_rm_features: 9560 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9561 } 9562 9563 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9564 .ndo_open = ice_open, 9565 .ndo_stop = ice_stop, 9566 .ndo_start_xmit = ice_start_xmit, 9567 .ndo_set_mac_address = ice_set_mac_address, 9568 .ndo_validate_addr = eth_validate_addr, 9569 .ndo_change_mtu = ice_change_mtu, 9570 .ndo_get_stats64 = ice_get_stats64, 9571 .ndo_tx_timeout = ice_tx_timeout, 9572 .ndo_bpf = ice_xdp_safe_mode, 9573 }; 9574 9575 static const struct net_device_ops ice_netdev_ops = { 9576 .ndo_open = ice_open, 9577 .ndo_stop = ice_stop, 9578 .ndo_start_xmit = ice_start_xmit, 9579 .ndo_select_queue = ice_select_queue, 9580 .ndo_features_check = ice_features_check, 9581 .ndo_fix_features = ice_fix_features, 9582 .ndo_set_rx_mode = ice_set_rx_mode, 9583 .ndo_set_mac_address = ice_set_mac_address, 9584 .ndo_validate_addr = eth_validate_addr, 9585 .ndo_change_mtu = ice_change_mtu, 9586 .ndo_get_stats64 = ice_get_stats64, 9587 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9588 .ndo_eth_ioctl = ice_eth_ioctl, 9589 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9590 .ndo_set_vf_mac = ice_set_vf_mac, 9591 .ndo_get_vf_config = ice_get_vf_cfg, 9592 .ndo_set_vf_trust = ice_set_vf_trust, 9593 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9594 .ndo_set_vf_link_state = ice_set_vf_link_state, 9595 .ndo_get_vf_stats = ice_get_vf_stats, 9596 .ndo_set_vf_rate = ice_set_vf_bw, 9597 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9598 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9599 .ndo_setup_tc = ice_setup_tc, 9600 .ndo_set_features = ice_set_features, 9601 .ndo_bridge_getlink = ice_bridge_getlink, 9602 .ndo_bridge_setlink = ice_bridge_setlink, 9603 .ndo_fdb_add = ice_fdb_add, 9604 .ndo_fdb_del = ice_fdb_del, 9605 #ifdef CONFIG_RFS_ACCEL 9606 .ndo_rx_flow_steer = ice_rx_flow_steer, 9607 #endif 9608 .ndo_tx_timeout = ice_tx_timeout, 9609 .ndo_bpf = ice_xdp, 9610 .ndo_xdp_xmit = ice_xdp_xmit, 9611 .ndo_xsk_wakeup = ice_xsk_wakeup, 9612 }; 9613