xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 2a82874a3b7be3f424eb6e94cd4f225e928efe2a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21  * ice tracepoint functions. This must be done exactly once across the
22  * ice driver.
23  */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30 
31 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34 
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
38 
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43 
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51 
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54 
55 /**
56  * ice_hw_to_dev - Get device pointer from the hardware structure
57  * @hw: pointer to the device HW structure
58  *
59  * Used to access the device pointer from compilation units which can't easily
60  * include the definition of struct ice_pf without leading to circular header
61  * dependencies.
62  */
63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66 
67 	return &pf->pdev->dev;
68 }
69 
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74 
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76 
77 static void ice_vsi_release_all(struct ice_pf *pf);
78 
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81 
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 		     void *cb_priv, enum tc_setup_type type, void *type_data,
85 		     void *data,
86 		     void (*cleanup)(struct flow_block_cb *block_cb));
87 
88 bool netif_is_ice(const struct net_device *dev)
89 {
90 	return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 		       dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93 
94 /**
95  * ice_get_tx_pending - returns number of Tx descriptors not processed
96  * @ring: the ring of descriptors
97  */
98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 	u16 head, tail;
101 
102 	head = ring->next_to_clean;
103 	tail = ring->next_to_use;
104 
105 	if (head != tail)
106 		return (head < tail) ?
107 			tail - head : (tail + ring->count - head);
108 	return 0;
109 }
110 
111 /**
112  * ice_check_for_hang_subtask - check for and recover hung queues
113  * @pf: pointer to PF struct
114  */
115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 	struct ice_vsi *vsi = NULL;
118 	struct ice_hw *hw;
119 	unsigned int i;
120 	int packets;
121 	u32 v;
122 
123 	ice_for_each_vsi(pf, v)
124 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 			vsi = pf->vsi[v];
126 			break;
127 		}
128 
129 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 		return;
131 
132 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 		return;
134 
135 	hw = &vsi->back->hw;
136 
137 	ice_for_each_txq(vsi, i) {
138 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 		struct ice_ring_stats *ring_stats;
140 
141 		if (!tx_ring)
142 			continue;
143 		if (ice_ring_ch_enabled(tx_ring))
144 			continue;
145 
146 		ring_stats = tx_ring->ring_stats;
147 		if (!ring_stats)
148 			continue;
149 
150 		if (tx_ring->desc) {
151 			/* If packet counter has not changed the queue is
152 			 * likely stalled, so force an interrupt for this
153 			 * queue.
154 			 *
155 			 * prev_pkt would be negative if there was no
156 			 * pending work.
157 			 */
158 			packets = ring_stats->stats.pkts & INT_MAX;
159 			if (ring_stats->tx_stats.prev_pkt == packets) {
160 				/* Trigger sw interrupt to revive the queue */
161 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 				continue;
163 			}
164 
165 			/* Memory barrier between read of packet count and call
166 			 * to ice_get_tx_pending()
167 			 */
168 			smp_rmb();
169 			ring_stats->tx_stats.prev_pkt =
170 			    ice_get_tx_pending(tx_ring) ? packets : -1;
171 		}
172 	}
173 }
174 
175 /**
176  * ice_init_mac_fltr - Set initial MAC filters
177  * @pf: board private structure
178  *
179  * Set initial set of MAC filters for PF VSI; configure filters for permanent
180  * address and broadcast address. If an error is encountered, netdevice will be
181  * unregistered.
182  */
183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 	struct ice_vsi *vsi;
186 	u8 *perm_addr;
187 
188 	vsi = ice_get_main_vsi(pf);
189 	if (!vsi)
190 		return -EINVAL;
191 
192 	perm_addr = vsi->port_info->mac.perm_addr;
193 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195 
196 /**
197  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198  * @netdev: the net device on which the sync is happening
199  * @addr: MAC address to sync
200  *
201  * This is a callback function which is called by the in kernel device sync
202  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204  * MAC filters from the hardware.
205  */
206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 	struct ice_netdev_priv *np = netdev_priv(netdev);
209 	struct ice_vsi *vsi = np->vsi;
210 
211 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 				     ICE_FWD_TO_VSI))
213 		return -EINVAL;
214 
215 	return 0;
216 }
217 
218 /**
219  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220  * @netdev: the net device on which the unsync is happening
221  * @addr: MAC address to unsync
222  *
223  * This is a callback function which is called by the in kernel device unsync
224  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226  * delete the MAC filters from the hardware.
227  */
228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 	struct ice_netdev_priv *np = netdev_priv(netdev);
231 	struct ice_vsi *vsi = np->vsi;
232 
233 	/* Under some circumstances, we might receive a request to delete our
234 	 * own device address from our uc list. Because we store the device
235 	 * address in the VSI's MAC filter list, we need to ignore such
236 	 * requests and not delete our device address from this list.
237 	 */
238 	if (ether_addr_equal(addr, netdev->dev_addr))
239 		return 0;
240 
241 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 				     ICE_FWD_TO_VSI))
243 		return -EINVAL;
244 
245 	return 0;
246 }
247 
248 /**
249  * ice_vsi_fltr_changed - check if filter state changed
250  * @vsi: VSI to be checked
251  *
252  * returns true if filter state has changed, false otherwise.
253  */
254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259 
260 /**
261  * ice_set_promisc - Enable promiscuous mode for a given PF
262  * @vsi: the VSI being configured
263  * @promisc_m: mask of promiscuous config bits
264  *
265  */
266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 	int status;
269 
270 	if (vsi->type != ICE_VSI_PF)
271 		return 0;
272 
273 	if (ice_vsi_has_non_zero_vlans(vsi)) {
274 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 						       promisc_m);
277 	} else {
278 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 						  promisc_m, 0);
280 	}
281 	if (status && status != -EEXIST)
282 		return status;
283 
284 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 		   vsi->vsi_num, promisc_m);
286 	return 0;
287 }
288 
289 /**
290  * ice_clear_promisc - Disable promiscuous mode for a given PF
291  * @vsi: the VSI being configured
292  * @promisc_m: mask of promiscuous config bits
293  *
294  */
295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 	int status;
298 
299 	if (vsi->type != ICE_VSI_PF)
300 		return 0;
301 
302 	if (ice_vsi_has_non_zero_vlans(vsi)) {
303 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 							 promisc_m);
306 	} else {
307 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 						    promisc_m, 0);
309 	}
310 
311 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 		   vsi->vsi_num, promisc_m);
313 	return status;
314 }
315 
316 /**
317  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318  * @vsi: ptr to the VSI
319  *
320  * Push any outstanding VSI filter changes through the AdminQ.
321  */
322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 	struct device *dev = ice_pf_to_dev(vsi->back);
326 	struct net_device *netdev = vsi->netdev;
327 	bool promisc_forced_on = false;
328 	struct ice_pf *pf = vsi->back;
329 	struct ice_hw *hw = &pf->hw;
330 	u32 changed_flags = 0;
331 	int err;
332 
333 	if (!vsi->netdev)
334 		return -EINVAL;
335 
336 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 		usleep_range(1000, 2000);
338 
339 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 	vsi->current_netdev_flags = vsi->netdev->flags;
341 
342 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344 
345 	if (ice_vsi_fltr_changed(vsi)) {
346 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348 
349 		/* grab the netdev's addr_list_lock */
350 		netif_addr_lock_bh(netdev);
351 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 			      ice_add_mac_to_unsync_list);
353 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 			      ice_add_mac_to_unsync_list);
355 		/* our temp lists are populated. release lock */
356 		netif_addr_unlock_bh(netdev);
357 	}
358 
359 	/* Remove MAC addresses in the unsync list */
360 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 	if (err) {
363 		netdev_err(netdev, "Failed to delete MAC filters\n");
364 		/* if we failed because of alloc failures, just bail */
365 		if (err == -ENOMEM)
366 			goto out;
367 	}
368 
369 	/* Add MAC addresses in the sync list */
370 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 	/* If filter is added successfully or already exists, do not go into
373 	 * 'if' condition and report it as error. Instead continue processing
374 	 * rest of the function.
375 	 */
376 	if (err && err != -EEXIST) {
377 		netdev_err(netdev, "Failed to add MAC filters\n");
378 		/* If there is no more space for new umac filters, VSI
379 		 * should go into promiscuous mode. There should be some
380 		 * space reserved for promiscuous filters.
381 		 */
382 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 				      vsi->state)) {
385 			promisc_forced_on = true;
386 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 				    vsi->vsi_num);
388 		} else {
389 			goto out;
390 		}
391 	}
392 	err = 0;
393 	/* check for changes in promiscuous modes */
394 	if (changed_flags & IFF_ALLMULTI) {
395 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 			if (err) {
398 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 				goto out_promisc;
400 			}
401 		} else {
402 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 			if (err) {
405 				vsi->current_netdev_flags |= IFF_ALLMULTI;
406 				goto out_promisc;
407 			}
408 		}
409 	}
410 
411 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 		if (vsi->current_netdev_flags & IFF_PROMISC) {
415 			/* Apply Rx filter rule to get traffic from wire */
416 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 				err = ice_set_dflt_vsi(vsi);
418 				if (err && err != -EEXIST) {
419 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 						   err, vsi->vsi_num);
421 					vsi->current_netdev_flags &=
422 						~IFF_PROMISC;
423 					goto out_promisc;
424 				}
425 				err = 0;
426 				vlan_ops->dis_rx_filtering(vsi);
427 
428 				/* promiscuous mode implies allmulticast so
429 				 * that VSIs that are in promiscuous mode are
430 				 * subscribed to multicast packets coming to
431 				 * the port
432 				 */
433 				err = ice_set_promisc(vsi,
434 						      ICE_MCAST_PROMISC_BITS);
435 				if (err)
436 					goto out_promisc;
437 			}
438 		} else {
439 			/* Clear Rx filter to remove traffic from wire */
440 			if (ice_is_vsi_dflt_vsi(vsi)) {
441 				err = ice_clear_dflt_vsi(vsi);
442 				if (err) {
443 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 						   err, vsi->vsi_num);
445 					vsi->current_netdev_flags |=
446 						IFF_PROMISC;
447 					goto out_promisc;
448 				}
449 				if (vsi->netdev->features &
450 				    NETIF_F_HW_VLAN_CTAG_FILTER)
451 					vlan_ops->ena_rx_filtering(vsi);
452 			}
453 
454 			/* disable allmulti here, but only if allmulti is not
455 			 * still enabled for the netdev
456 			 */
457 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 				err = ice_clear_promisc(vsi,
459 							ICE_MCAST_PROMISC_BITS);
460 				if (err) {
461 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 						   err, vsi->vsi_num);
463 				}
464 			}
465 		}
466 	}
467 	goto exit;
468 
469 out_promisc:
470 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 	goto exit;
472 out:
473 	/* if something went wrong then set the changed flag so we try again */
474 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 	clear_bit(ICE_CFG_BUSY, vsi->state);
478 	return err;
479 }
480 
481 /**
482  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483  * @pf: board private structure
484  */
485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 	int v;
488 
489 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 		return;
491 
492 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493 
494 	ice_for_each_vsi(pf, v)
495 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 		    ice_vsi_sync_fltr(pf->vsi[v])) {
497 			/* come back and try again later */
498 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 			break;
500 		}
501 }
502 
503 /**
504  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505  * @pf: the PF
506  * @locked: is the rtnl_lock already held
507  */
508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 	int node;
511 	int v;
512 
513 	ice_for_each_vsi(pf, v)
514 		if (pf->vsi[v])
515 			ice_dis_vsi(pf->vsi[v], locked);
516 
517 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 		pf->pf_agg_node[node].num_vsis = 0;
519 
520 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 		pf->vf_agg_node[node].num_vsis = 0;
522 }
523 
524 /**
525  * ice_prepare_for_reset - prep for reset
526  * @pf: board private structure
527  * @reset_type: reset type requested
528  *
529  * Inform or close all dependent features in prep for reset.
530  */
531 static void
532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 	struct ice_hw *hw = &pf->hw;
535 	struct ice_vsi *vsi;
536 	struct ice_vf *vf;
537 	unsigned int bkt;
538 
539 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540 
541 	/* already prepared for reset */
542 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 		return;
544 
545 	synchronize_irq(pf->oicr_irq.virq);
546 
547 	ice_unplug_aux_dev(pf);
548 
549 	/* Notify VFs of impending reset */
550 	if (ice_check_sq_alive(hw, &hw->mailboxq))
551 		ice_vc_notify_reset(pf);
552 
553 	/* Disable VFs until reset is completed */
554 	mutex_lock(&pf->vfs.table_lock);
555 	ice_for_each_vf(pf, bkt, vf)
556 		ice_set_vf_state_dis(vf);
557 	mutex_unlock(&pf->vfs.table_lock);
558 
559 	if (ice_is_eswitch_mode_switchdev(pf)) {
560 		rtnl_lock();
561 		ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 		rtnl_unlock();
563 	}
564 
565 	/* release ADQ specific HW and SW resources */
566 	vsi = ice_get_main_vsi(pf);
567 	if (!vsi)
568 		goto skip;
569 
570 	/* to be on safe side, reset orig_rss_size so that normal flow
571 	 * of deciding rss_size can take precedence
572 	 */
573 	vsi->orig_rss_size = 0;
574 
575 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 		if (reset_type == ICE_RESET_PFR) {
577 			vsi->old_ena_tc = vsi->all_enatc;
578 			vsi->old_numtc = vsi->all_numtc;
579 		} else {
580 			ice_remove_q_channels(vsi, true);
581 
582 			/* for other reset type, do not support channel rebuild
583 			 * hence reset needed info
584 			 */
585 			vsi->old_ena_tc = 0;
586 			vsi->all_enatc = 0;
587 			vsi->old_numtc = 0;
588 			vsi->all_numtc = 0;
589 			vsi->req_txq = 0;
590 			vsi->req_rxq = 0;
591 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 		}
594 	}
595 
596 	if (vsi->netdev)
597 		netif_device_detach(vsi->netdev);
598 skip:
599 
600 	/* clear SW filtering DB */
601 	ice_clear_hw_tbls(hw);
602 	/* disable the VSIs and their queues that are not already DOWN */
603 	set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 	ice_pf_dis_all_vsi(pf, false);
605 
606 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 		ice_ptp_prepare_for_reset(pf, reset_type);
608 
609 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 		ice_gnss_exit(pf);
611 
612 	if (hw->port_info)
613 		ice_sched_clear_port(hw->port_info);
614 
615 	ice_shutdown_all_ctrlq(hw, false);
616 
617 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619 
620 /**
621  * ice_do_reset - Initiate one of many types of resets
622  * @pf: board private structure
623  * @reset_type: reset type requested before this function was called.
624  */
625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 	struct device *dev = ice_pf_to_dev(pf);
628 	struct ice_hw *hw = &pf->hw;
629 
630 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631 
632 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 		reset_type = ICE_RESET_CORER;
635 	}
636 
637 	ice_prepare_for_reset(pf, reset_type);
638 
639 	/* trigger the reset */
640 	if (ice_reset(hw, reset_type)) {
641 		dev_err(dev, "reset %d failed\n", reset_type);
642 		set_bit(ICE_RESET_FAILED, pf->state);
643 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 		clear_bit(ICE_PFR_REQ, pf->state);
646 		clear_bit(ICE_CORER_REQ, pf->state);
647 		clear_bit(ICE_GLOBR_REQ, pf->state);
648 		wake_up(&pf->reset_wait_queue);
649 		return;
650 	}
651 
652 	/* PFR is a bit of a special case because it doesn't result in an OICR
653 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 	 * associated state bits.
655 	 */
656 	if (reset_type == ICE_RESET_PFR) {
657 		pf->pfr_count++;
658 		ice_rebuild(pf, reset_type);
659 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 		clear_bit(ICE_PFR_REQ, pf->state);
661 		wake_up(&pf->reset_wait_queue);
662 		ice_reset_all_vfs(pf);
663 	}
664 }
665 
666 /**
667  * ice_reset_subtask - Set up for resetting the device and driver
668  * @pf: board private structure
669  */
670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
673 
674 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 	 * of reset is pending and sets bits in pf->state indicating the reset
677 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 	 * prepare for pending reset if not already (for PF software-initiated
679 	 * global resets the software should already be prepared for it as
680 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 	 * by firmware or software on other PFs, that bit is not set so prepare
682 	 * for the reset now), poll for reset done, rebuild and return.
683 	 */
684 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 		/* Perform the largest reset requested */
686 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 			reset_type = ICE_RESET_CORER;
688 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 			reset_type = ICE_RESET_GLOBR;
690 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 			reset_type = ICE_RESET_EMPR;
692 		/* return if no valid reset type requested */
693 		if (reset_type == ICE_RESET_INVAL)
694 			return;
695 		ice_prepare_for_reset(pf, reset_type);
696 
697 		/* make sure we are ready to rebuild */
698 		if (ice_check_reset(&pf->hw)) {
699 			set_bit(ICE_RESET_FAILED, pf->state);
700 		} else {
701 			/* done with reset. start rebuild */
702 			pf->hw.reset_ongoing = false;
703 			ice_rebuild(pf, reset_type);
704 			/* clear bit to resume normal operations, but
705 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 			 */
707 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 			clear_bit(ICE_PFR_REQ, pf->state);
710 			clear_bit(ICE_CORER_REQ, pf->state);
711 			clear_bit(ICE_GLOBR_REQ, pf->state);
712 			wake_up(&pf->reset_wait_queue);
713 			ice_reset_all_vfs(pf);
714 		}
715 
716 		return;
717 	}
718 
719 	/* No pending resets to finish processing. Check for new resets */
720 	if (test_bit(ICE_PFR_REQ, pf->state)) {
721 		reset_type = ICE_RESET_PFR;
722 		if (pf->lag && pf->lag->bonded) {
723 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 			reset_type = ICE_RESET_CORER;
725 		}
726 	}
727 	if (test_bit(ICE_CORER_REQ, pf->state))
728 		reset_type = ICE_RESET_CORER;
729 	if (test_bit(ICE_GLOBR_REQ, pf->state))
730 		reset_type = ICE_RESET_GLOBR;
731 	/* If no valid reset type requested just return */
732 	if (reset_type == ICE_RESET_INVAL)
733 		return;
734 
735 	/* reset if not already down or busy */
736 	if (!test_bit(ICE_DOWN, pf->state) &&
737 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
738 		ice_do_reset(pf, reset_type);
739 	}
740 }
741 
742 /**
743  * ice_print_topo_conflict - print topology conflict message
744  * @vsi: the VSI whose topology status is being checked
745  */
746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 	case ICE_AQ_LINK_TOPO_CONFLICT:
750 	case ICE_AQ_LINK_MEDIA_CONFLICT:
751 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 		break;
756 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 		else
760 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 		break;
762 	default:
763 		break;
764 	}
765 }
766 
767 /**
768  * ice_print_link_msg - print link up or down message
769  * @vsi: the VSI whose link status is being queried
770  * @isup: boolean for if the link is now up or down
771  */
772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 	struct ice_aqc_get_phy_caps_data *caps;
775 	const char *an_advertised;
776 	const char *fec_req;
777 	const char *speed;
778 	const char *fec;
779 	const char *fc;
780 	const char *an;
781 	int status;
782 
783 	if (!vsi)
784 		return;
785 
786 	if (vsi->current_isup == isup)
787 		return;
788 
789 	vsi->current_isup = isup;
790 
791 	if (!isup) {
792 		netdev_info(vsi->netdev, "NIC Link is Down\n");
793 		return;
794 	}
795 
796 	switch (vsi->port_info->phy.link_info.link_speed) {
797 	case ICE_AQ_LINK_SPEED_200GB:
798 		speed = "200 G";
799 		break;
800 	case ICE_AQ_LINK_SPEED_100GB:
801 		speed = "100 G";
802 		break;
803 	case ICE_AQ_LINK_SPEED_50GB:
804 		speed = "50 G";
805 		break;
806 	case ICE_AQ_LINK_SPEED_40GB:
807 		speed = "40 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_25GB:
810 		speed = "25 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_20GB:
813 		speed = "20 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_10GB:
816 		speed = "10 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_5GB:
819 		speed = "5 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_2500MB:
822 		speed = "2.5 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_1000MB:
825 		speed = "1 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_100MB:
828 		speed = "100 M";
829 		break;
830 	default:
831 		speed = "Unknown ";
832 		break;
833 	}
834 
835 	switch (vsi->port_info->fc.current_mode) {
836 	case ICE_FC_FULL:
837 		fc = "Rx/Tx";
838 		break;
839 	case ICE_FC_TX_PAUSE:
840 		fc = "Tx";
841 		break;
842 	case ICE_FC_RX_PAUSE:
843 		fc = "Rx";
844 		break;
845 	case ICE_FC_NONE:
846 		fc = "None";
847 		break;
848 	default:
849 		fc = "Unknown";
850 		break;
851 	}
852 
853 	/* Get FEC mode based on negotiated link info */
854 	switch (vsi->port_info->phy.link_info.fec_info) {
855 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 		fec = "RS-FEC";
858 		break;
859 	case ICE_AQ_LINK_25G_KR_FEC_EN:
860 		fec = "FC-FEC/BASE-R";
861 		break;
862 	default:
863 		fec = "NONE";
864 		break;
865 	}
866 
867 	/* check if autoneg completed, might be false due to not supported */
868 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 		an = "True";
870 	else
871 		an = "False";
872 
873 	/* Get FEC mode requested based on PHY caps last SW configuration */
874 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 	if (!caps) {
876 		fec_req = "Unknown";
877 		an_advertised = "Unknown";
878 		goto done;
879 	}
880 
881 	status = ice_aq_get_phy_caps(vsi->port_info, false,
882 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 	if (status)
884 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
885 
886 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887 
888 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 		fec_req = "RS-FEC";
891 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 		fec_req = "FC-FEC/BASE-R";
894 	else
895 		fec_req = "NONE";
896 
897 	kfree(caps);
898 
899 done:
900 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 		    speed, fec_req, fec, an_advertised, an, fc);
902 	ice_print_topo_conflict(vsi);
903 }
904 
905 /**
906  * ice_vsi_link_event - update the VSI's netdev
907  * @vsi: the VSI on which the link event occurred
908  * @link_up: whether or not the VSI needs to be set up or down
909  */
910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 	if (!vsi)
913 		return;
914 
915 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 		return;
917 
918 	if (vsi->type == ICE_VSI_PF) {
919 		if (link_up == netif_carrier_ok(vsi->netdev))
920 			return;
921 
922 		if (link_up) {
923 			netif_carrier_on(vsi->netdev);
924 			netif_tx_wake_all_queues(vsi->netdev);
925 		} else {
926 			netif_carrier_off(vsi->netdev);
927 			netif_tx_stop_all_queues(vsi->netdev);
928 		}
929 	}
930 }
931 
932 /**
933  * ice_set_dflt_mib - send a default config MIB to the FW
934  * @pf: private PF struct
935  *
936  * This function sends a default configuration MIB to the FW.
937  *
938  * If this function errors out at any point, the driver is still able to
939  * function.  The main impact is that LFC may not operate as expected.
940  * Therefore an error state in this function should be treated with a DBG
941  * message and continue on with driver rebuild/reenable.
942  */
943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 	struct device *dev = ice_pf_to_dev(pf);
946 	u8 mib_type, *buf, *lldpmib = NULL;
947 	u16 len, typelen, offset = 0;
948 	struct ice_lldp_org_tlv *tlv;
949 	struct ice_hw *hw = &pf->hw;
950 	u32 ouisubtype;
951 
952 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 	if (!lldpmib) {
955 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 			__func__);
957 		return;
958 	}
959 
960 	/* Add ETS CFG TLV */
961 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 		   ICE_IEEE_ETS_TLV_LEN);
964 	tlv->typelen = htons(typelen);
965 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 		      ICE_IEEE_SUBTYPE_ETS_CFG);
967 	tlv->ouisubtype = htonl(ouisubtype);
968 
969 	buf = tlv->tlvinfo;
970 	buf[0] = 0;
971 
972 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 	 * Octets 13 - 20 are TSA values - leave as zeros
975 	 */
976 	buf[5] = 0x64;
977 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 	offset += len + 2;
979 	tlv = (struct ice_lldp_org_tlv *)
980 		((char *)tlv + sizeof(tlv->typelen) + len);
981 
982 	/* Add ETS REC TLV */
983 	buf = tlv->tlvinfo;
984 	tlv->typelen = htons(typelen);
985 
986 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 		      ICE_IEEE_SUBTYPE_ETS_REC);
988 	tlv->ouisubtype = htonl(ouisubtype);
989 
990 	/* First octet of buf is reserved
991 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 	 * Octets 13 - 20 are TSA value - leave as zeros
994 	 */
995 	buf[5] = 0x64;
996 	offset += len + 2;
997 	tlv = (struct ice_lldp_org_tlv *)
998 		((char *)tlv + sizeof(tlv->typelen) + len);
999 
1000 	/* Add PFC CFG TLV */
1001 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 		   ICE_IEEE_PFC_TLV_LEN);
1003 	tlv->typelen = htons(typelen);
1004 
1005 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1007 	tlv->ouisubtype = htonl(ouisubtype);
1008 
1009 	/* Octet 1 left as all zeros - PFC disabled */
1010 	buf[0] = 0x08;
1011 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 	offset += len + 2;
1013 
1014 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016 
1017 	kfree(lldpmib);
1018 }
1019 
1020 /**
1021  * ice_check_phy_fw_load - check if PHY FW load failed
1022  * @pf: pointer to PF struct
1023  * @link_cfg_err: bitmap from the link info structure
1024  *
1025  * check if external PHY FW load failed and print an error message if it did
1026  */
1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 		return;
1032 	}
1033 
1034 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 		return;
1036 
1037 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 	}
1041 }
1042 
1043 /**
1044  * ice_check_module_power
1045  * @pf: pointer to PF struct
1046  * @link_cfg_err: bitmap from the link info structure
1047  *
1048  * check module power level returned by a previous call to aq_get_link_info
1049  * and print error messages if module power level is not supported
1050  */
1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 	/* if module power level is supported, clear the flag */
1054 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 		return;
1058 	}
1059 
1060 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 	 * above block didn't clear this bit, there's nothing to do
1062 	 */
1063 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 		return;
1065 
1066 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 	}
1073 }
1074 
1075 /**
1076  * ice_check_link_cfg_err - check if link configuration failed
1077  * @pf: pointer to the PF struct
1078  * @link_cfg_err: bitmap from the link info structure
1079  *
1080  * print if any link configuration failure happens due to the value in the
1081  * link_cfg_err parameter in the link info structure
1082  */
1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 	ice_check_module_power(pf, link_cfg_err);
1086 	ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088 
1089 /**
1090  * ice_link_event - process the link event
1091  * @pf: PF that the link event is associated with
1092  * @pi: port_info for the port that the link event is associated with
1093  * @link_up: true if the physical link is up and false if it is down
1094  * @link_speed: current link speed received from the link event
1095  *
1096  * Returns 0 on success and negative on failure
1097  */
1098 static int
1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 	       u16 link_speed)
1101 {
1102 	struct device *dev = ice_pf_to_dev(pf);
1103 	struct ice_phy_info *phy_info;
1104 	struct ice_vsi *vsi;
1105 	u16 old_link_speed;
1106 	bool old_link;
1107 	int status;
1108 
1109 	phy_info = &pi->phy;
1110 	phy_info->link_info_old = phy_info->link_info;
1111 
1112 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 	old_link_speed = phy_info->link_info_old.link_speed;
1114 
1115 	/* update the link info structures and re-enable link events,
1116 	 * don't bail on failure due to other book keeping needed
1117 	 */
1118 	status = ice_update_link_info(pi);
1119 	if (status)
1120 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 			pi->lport, status,
1122 			ice_aq_str(pi->hw->adminq.sq_last_status));
1123 
1124 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125 
1126 	/* Check if the link state is up after updating link info, and treat
1127 	 * this event as an UP event since the link is actually UP now.
1128 	 */
1129 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 		link_up = true;
1131 
1132 	vsi = ice_get_main_vsi(pf);
1133 	if (!vsi || !vsi->port_info)
1134 		return -EINVAL;
1135 
1136 	/* turn off PHY if media was removed */
1137 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 		ice_set_link(vsi, false);
1141 	}
1142 
1143 	/* if the old link up/down and speed is the same as the new */
1144 	if (link_up == old_link && link_speed == old_link_speed)
1145 		return 0;
1146 
1147 	ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1148 
1149 	if (ice_is_dcb_active(pf)) {
1150 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 			ice_dcb_rebuild(pf);
1152 	} else {
1153 		if (link_up)
1154 			ice_set_dflt_mib(pf);
1155 	}
1156 	ice_vsi_link_event(vsi, link_up);
1157 	ice_print_link_msg(vsi, link_up);
1158 
1159 	ice_vc_notify_link_state(pf);
1160 
1161 	return 0;
1162 }
1163 
1164 /**
1165  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166  * @pf: board private structure
1167  */
1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 	int i;
1171 
1172 	/* if interface is down do nothing */
1173 	if (test_bit(ICE_DOWN, pf->state) ||
1174 	    test_bit(ICE_CFG_BUSY, pf->state))
1175 		return;
1176 
1177 	/* make sure we don't do these things too often */
1178 	if (time_before(jiffies,
1179 			pf->serv_tmr_prev + pf->serv_tmr_period))
1180 		return;
1181 
1182 	pf->serv_tmr_prev = jiffies;
1183 
1184 	/* Update the stats for active netdevs so the network stack
1185 	 * can look at updated numbers whenever it cares to
1186 	 */
1187 	ice_update_pf_stats(pf);
1188 	ice_for_each_vsi(pf, i)
1189 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 			ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192 
1193 /**
1194  * ice_init_link_events - enable/initialize link events
1195  * @pi: pointer to the port_info instance
1196  *
1197  * Returns -EIO on failure, 0 on success
1198  */
1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 	u16 mask;
1202 
1203 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206 
1207 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 			pi->lport);
1210 		return -EIO;
1211 	}
1212 
1213 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * ice_handle_link_event - handle link event via ARQ
1224  * @pf: PF that the link event is associated with
1225  * @event: event structure containing link status info
1226  */
1227 static int
1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 	struct ice_aqc_get_link_status_data *link_data;
1231 	struct ice_port_info *port_info;
1232 	int status;
1233 
1234 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 	port_info = pf->hw.port_info;
1236 	if (!port_info)
1237 		return -EINVAL;
1238 
1239 	status = ice_link_event(pf, port_info,
1240 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1241 				le16_to_cpu(link_data->link_speed));
1242 	if (status)
1243 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 			status);
1245 
1246 	return status;
1247 }
1248 
1249 /**
1250  * ice_get_fwlog_data - copy the FW log data from ARQ event
1251  * @pf: PF that the FW log event is associated with
1252  * @event: event structure containing FW log data
1253  */
1254 static void
1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 	struct ice_fwlog_data *fwlog;
1258 	struct ice_hw *hw = &pf->hw;
1259 
1260 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261 
1262 	memset(fwlog->data, 0, PAGE_SIZE);
1263 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264 
1265 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267 
1268 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 		/* the rings are full so bump the head to create room */
1270 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 					 hw->fwlog_ring.size);
1272 	}
1273 }
1274 
1275 /**
1276  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277  * @pf: pointer to the PF private structure
1278  * @task: intermediate helper storage and identifier for waiting
1279  * @opcode: the opcode to wait for
1280  *
1281  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283  *
1284  * Calls are separated to allow caller registering for event before sending
1285  * the command, which mitigates a race between registering and FW responding.
1286  *
1287  * To obtain only the descriptor contents, pass an task->event with null
1288  * msg_buf. If the complete data buffer is desired, allocate the
1289  * task->event.msg_buf with enough space ahead of time.
1290  */
1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 			   u16 opcode)
1293 {
1294 	INIT_HLIST_NODE(&task->entry);
1295 	task->opcode = opcode;
1296 	task->state = ICE_AQ_TASK_WAITING;
1297 
1298 	spin_lock_bh(&pf->aq_wait_lock);
1299 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 	spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302 
1303 /**
1304  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305  * @pf: pointer to the PF private structure
1306  * @task: ptr prepared by ice_aq_prep_for_event()
1307  * @timeout: how long to wait, in jiffies
1308  *
1309  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310  * current thread will be put to sleep until the specified event occurs or
1311  * until the given timeout is reached.
1312  *
1313  * Returns: zero on success, or a negative error code on failure.
1314  */
1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 			  unsigned long timeout)
1317 {
1318 	enum ice_aq_task_state *state = &task->state;
1319 	struct device *dev = ice_pf_to_dev(pf);
1320 	unsigned long start = jiffies;
1321 	long ret;
1322 	int err;
1323 
1324 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 					       *state != ICE_AQ_TASK_WAITING,
1326 					       timeout);
1327 	switch (*state) {
1328 	case ICE_AQ_TASK_NOT_PREPARED:
1329 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 		err = -EINVAL;
1331 		break;
1332 	case ICE_AQ_TASK_WAITING:
1333 		err = ret < 0 ? ret : -ETIMEDOUT;
1334 		break;
1335 	case ICE_AQ_TASK_CANCELED:
1336 		err = ret < 0 ? ret : -ECANCELED;
1337 		break;
1338 	case ICE_AQ_TASK_COMPLETE:
1339 		err = ret < 0 ? ret : 0;
1340 		break;
1341 	default:
1342 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 		err = -EINVAL;
1344 		break;
1345 	}
1346 
1347 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 		jiffies_to_msecs(jiffies - start),
1349 		jiffies_to_msecs(timeout),
1350 		task->opcode);
1351 
1352 	spin_lock_bh(&pf->aq_wait_lock);
1353 	hlist_del(&task->entry);
1354 	spin_unlock_bh(&pf->aq_wait_lock);
1355 
1356 	return err;
1357 }
1358 
1359 /**
1360  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361  * @pf: pointer to the PF private structure
1362  * @opcode: the opcode of the event
1363  * @event: the event to check
1364  *
1365  * Loops over the current list of pending threads waiting for an AdminQ event.
1366  * For each matching task, copy the contents of the event into the task
1367  * structure and wake up the thread.
1368  *
1369  * If multiple threads wait for the same opcode, they will all be woken up.
1370  *
1371  * Note that event->msg_buf will only be duplicated if the event has a buffer
1372  * with enough space already allocated. Otherwise, only the descriptor and
1373  * message length will be copied.
1374  *
1375  * Returns: true if an event was found, false otherwise
1376  */
1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 				struct ice_rq_event_info *event)
1379 {
1380 	struct ice_rq_event_info *task_ev;
1381 	struct ice_aq_task *task;
1382 	bool found = false;
1383 
1384 	spin_lock_bh(&pf->aq_wait_lock);
1385 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 		if (task->state != ICE_AQ_TASK_WAITING)
1387 			continue;
1388 		if (task->opcode != opcode)
1389 			continue;
1390 
1391 		task_ev = &task->event;
1392 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 		task_ev->msg_len = event->msg_len;
1394 
1395 		/* Only copy the data buffer if a destination was set */
1396 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 			memcpy(task_ev->msg_buf, event->msg_buf,
1398 			       event->buf_len);
1399 			task_ev->buf_len = event->buf_len;
1400 		}
1401 
1402 		task->state = ICE_AQ_TASK_COMPLETE;
1403 		found = true;
1404 	}
1405 	spin_unlock_bh(&pf->aq_wait_lock);
1406 
1407 	if (found)
1408 		wake_up(&pf->aq_wait_queue);
1409 }
1410 
1411 /**
1412  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413  * @pf: the PF private structure
1414  *
1415  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417  */
1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 	struct ice_aq_task *task;
1421 
1422 	spin_lock_bh(&pf->aq_wait_lock);
1423 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 		task->state = ICE_AQ_TASK_CANCELED;
1425 	spin_unlock_bh(&pf->aq_wait_lock);
1426 
1427 	wake_up(&pf->aq_wait_queue);
1428 }
1429 
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431 
1432 /**
1433  * __ice_clean_ctrlq - helper function to clean controlq rings
1434  * @pf: ptr to struct ice_pf
1435  * @q_type: specific Control queue type
1436  */
1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 	struct device *dev = ice_pf_to_dev(pf);
1440 	struct ice_rq_event_info event;
1441 	struct ice_hw *hw = &pf->hw;
1442 	struct ice_ctl_q_info *cq;
1443 	u16 pending, i = 0;
1444 	const char *qtype;
1445 	u32 oldval, val;
1446 
1447 	/* Do not clean control queue if/when PF reset fails */
1448 	if (test_bit(ICE_RESET_FAILED, pf->state))
1449 		return 0;
1450 
1451 	switch (q_type) {
1452 	case ICE_CTL_Q_ADMIN:
1453 		cq = &hw->adminq;
1454 		qtype = "Admin";
1455 		break;
1456 	case ICE_CTL_Q_SB:
1457 		cq = &hw->sbq;
1458 		qtype = "Sideband";
1459 		break;
1460 	case ICE_CTL_Q_MAILBOX:
1461 		cq = &hw->mailboxq;
1462 		qtype = "Mailbox";
1463 		/* we are going to try to detect a malicious VF, so set the
1464 		 * state to begin detection
1465 		 */
1466 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 		break;
1468 	default:
1469 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 		return 0;
1471 	}
1472 
1473 	/* check for error indications - PF_xx_AxQLEN register layout for
1474 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 	 */
1476 	val = rd32(hw, cq->rq.len);
1477 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1479 		oldval = val;
1480 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 				qtype);
1483 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 				qtype);
1486 		}
1487 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 				qtype);
1490 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 			 PF_FW_ARQLEN_ARQCRIT_M);
1492 		if (oldval != val)
1493 			wr32(hw, cq->rq.len, val);
1494 	}
1495 
1496 	val = rd32(hw, cq->sq.len);
1497 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1499 		oldval = val;
1500 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 				qtype);
1503 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 				qtype);
1506 		}
1507 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 				qtype);
1510 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 			 PF_FW_ATQLEN_ATQCRIT_M);
1512 		if (oldval != val)
1513 			wr32(hw, cq->sq.len, val);
1514 	}
1515 
1516 	event.buf_len = cq->rq_buf_size;
1517 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 	if (!event.msg_buf)
1519 		return 0;
1520 
1521 	do {
1522 		struct ice_mbx_data data = {};
1523 		u16 opcode;
1524 		int ret;
1525 
1526 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 		if (ret == -EALREADY)
1528 			break;
1529 		if (ret) {
1530 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 				ret);
1532 			break;
1533 		}
1534 
1535 		opcode = le16_to_cpu(event.desc.opcode);
1536 
1537 		/* Notify any thread that might be waiting for this event */
1538 		ice_aq_check_events(pf, opcode, &event);
1539 
1540 		switch (opcode) {
1541 		case ice_aqc_opc_get_link_status:
1542 			if (ice_handle_link_event(pf, &event))
1543 				dev_err(dev, "Could not handle link event\n");
1544 			break;
1545 		case ice_aqc_opc_event_lan_overflow:
1546 			ice_vf_lan_overflow_event(pf, &event);
1547 			break;
1548 		case ice_mbx_opc_send_msg_to_pf:
1549 			if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 				ice_vc_process_vf_msg(pf, &event, NULL);
1551 				ice_mbx_vf_dec_trig_e830(hw, &event);
1552 			} else {
1553 				u16 val = hw->mailboxq.num_rq_entries;
1554 
1555 				data.max_num_msgs_mbx = val;
1556 				val = ICE_MBX_OVERFLOW_WATERMARK;
1557 				data.async_watermark_val = val;
1558 				data.num_msg_proc = i;
1559 				data.num_pending_arq = pending;
1560 
1561 				ice_vc_process_vf_msg(pf, &event, &data);
1562 			}
1563 			break;
1564 		case ice_aqc_opc_fw_logs_event:
1565 			ice_get_fwlog_data(pf, &event);
1566 			break;
1567 		case ice_aqc_opc_lldp_set_mib_change:
1568 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 			break;
1570 		default:
1571 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1572 				qtype, opcode);
1573 			break;
1574 		}
1575 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1576 
1577 	kfree(event.msg_buf);
1578 
1579 	return pending && (i == ICE_DFLT_IRQ_WORK);
1580 }
1581 
1582 /**
1583  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1584  * @hw: pointer to hardware info
1585  * @cq: control queue information
1586  *
1587  * returns true if there are pending messages in a queue, false if there aren't
1588  */
1589 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1590 {
1591 	u16 ntu;
1592 
1593 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1594 	return cq->rq.next_to_clean != ntu;
1595 }
1596 
1597 /**
1598  * ice_clean_adminq_subtask - clean the AdminQ rings
1599  * @pf: board private structure
1600  */
1601 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1602 {
1603 	struct ice_hw *hw = &pf->hw;
1604 
1605 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1606 		return;
1607 
1608 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1609 		return;
1610 
1611 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1612 
1613 	/* There might be a situation where new messages arrive to a control
1614 	 * queue between processing the last message and clearing the
1615 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1616 	 * ice_ctrlq_pending) and process new messages if any.
1617 	 */
1618 	if (ice_ctrlq_pending(hw, &hw->adminq))
1619 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1620 
1621 	ice_flush(hw);
1622 }
1623 
1624 /**
1625  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1626  * @pf: board private structure
1627  */
1628 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1629 {
1630 	struct ice_hw *hw = &pf->hw;
1631 
1632 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1633 		return;
1634 
1635 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1636 		return;
1637 
1638 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1639 
1640 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1641 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1642 
1643 	ice_flush(hw);
1644 }
1645 
1646 /**
1647  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1648  * @pf: board private structure
1649  */
1650 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1651 {
1652 	struct ice_hw *hw = &pf->hw;
1653 
1654 	/* if mac_type is not generic, sideband is not supported
1655 	 * and there's nothing to do here
1656 	 */
1657 	if (!ice_is_generic_mac(hw)) {
1658 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1659 		return;
1660 	}
1661 
1662 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1663 		return;
1664 
1665 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1666 		return;
1667 
1668 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1669 
1670 	if (ice_ctrlq_pending(hw, &hw->sbq))
1671 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1672 
1673 	ice_flush(hw);
1674 }
1675 
1676 /**
1677  * ice_service_task_schedule - schedule the service task to wake up
1678  * @pf: board private structure
1679  *
1680  * If not already scheduled, this puts the task into the work queue.
1681  */
1682 void ice_service_task_schedule(struct ice_pf *pf)
1683 {
1684 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1685 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1686 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1687 		queue_work(ice_wq, &pf->serv_task);
1688 }
1689 
1690 /**
1691  * ice_service_task_complete - finish up the service task
1692  * @pf: board private structure
1693  */
1694 static void ice_service_task_complete(struct ice_pf *pf)
1695 {
1696 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1697 
1698 	/* force memory (pf->state) to sync before next service task */
1699 	smp_mb__before_atomic();
1700 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1701 }
1702 
1703 /**
1704  * ice_service_task_stop - stop service task and cancel works
1705  * @pf: board private structure
1706  *
1707  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1708  * 1 otherwise.
1709  */
1710 static int ice_service_task_stop(struct ice_pf *pf)
1711 {
1712 	int ret;
1713 
1714 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1715 
1716 	if (pf->serv_tmr.function)
1717 		del_timer_sync(&pf->serv_tmr);
1718 	if (pf->serv_task.func)
1719 		cancel_work_sync(&pf->serv_task);
1720 
1721 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1722 	return ret;
1723 }
1724 
1725 /**
1726  * ice_service_task_restart - restart service task and schedule works
1727  * @pf: board private structure
1728  *
1729  * This function is needed for suspend and resume works (e.g WoL scenario)
1730  */
1731 static void ice_service_task_restart(struct ice_pf *pf)
1732 {
1733 	clear_bit(ICE_SERVICE_DIS, pf->state);
1734 	ice_service_task_schedule(pf);
1735 }
1736 
1737 /**
1738  * ice_service_timer - timer callback to schedule service task
1739  * @t: pointer to timer_list
1740  */
1741 static void ice_service_timer(struct timer_list *t)
1742 {
1743 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1744 
1745 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1746 	ice_service_task_schedule(pf);
1747 }
1748 
1749 /**
1750  * ice_mdd_maybe_reset_vf - reset VF after MDD event
1751  * @pf: pointer to the PF structure
1752  * @vf: pointer to the VF structure
1753  * @reset_vf_tx: whether Tx MDD has occurred
1754  * @reset_vf_rx: whether Rx MDD has occurred
1755  *
1756  * Since the queue can get stuck on VF MDD events, the PF can be configured to
1757  * automatically reset the VF by enabling the private ethtool flag
1758  * mdd-auto-reset-vf.
1759  */
1760 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1761 				   bool reset_vf_tx, bool reset_vf_rx)
1762 {
1763 	struct device *dev = ice_pf_to_dev(pf);
1764 
1765 	if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1766 		return;
1767 
1768 	/* VF MDD event counters will be cleared by reset, so print the event
1769 	 * prior to reset.
1770 	 */
1771 	if (reset_vf_tx)
1772 		ice_print_vf_tx_mdd_event(vf);
1773 
1774 	if (reset_vf_rx)
1775 		ice_print_vf_rx_mdd_event(vf);
1776 
1777 	dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1778 		 pf->hw.pf_id, vf->vf_id);
1779 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1780 }
1781 
1782 /**
1783  * ice_handle_mdd_event - handle malicious driver detect event
1784  * @pf: pointer to the PF structure
1785  *
1786  * Called from service task. OICR interrupt handler indicates MDD event.
1787  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1788  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1789  * disable the queue, the PF can be configured to reset the VF using ethtool
1790  * private flag mdd-auto-reset-vf.
1791  */
1792 static void ice_handle_mdd_event(struct ice_pf *pf)
1793 {
1794 	struct device *dev = ice_pf_to_dev(pf);
1795 	struct ice_hw *hw = &pf->hw;
1796 	struct ice_vf *vf;
1797 	unsigned int bkt;
1798 	u32 reg;
1799 
1800 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1801 		/* Since the VF MDD event logging is rate limited, check if
1802 		 * there are pending MDD events.
1803 		 */
1804 		ice_print_vfs_mdd_events(pf);
1805 		return;
1806 	}
1807 
1808 	/* find what triggered an MDD event */
1809 	reg = rd32(hw, GL_MDET_TX_PQM);
1810 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1811 		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1812 		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1813 		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1814 		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1815 
1816 		if (netif_msg_tx_err(pf))
1817 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1818 				 event, queue, pf_num, vf_num);
1819 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1820 	}
1821 
1822 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1823 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1824 		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1825 		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1826 		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1827 		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1828 
1829 		if (netif_msg_tx_err(pf))
1830 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1831 				 event, queue, pf_num, vf_num);
1832 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1833 	}
1834 
1835 	reg = rd32(hw, GL_MDET_RX);
1836 	if (reg & GL_MDET_RX_VALID_M) {
1837 		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1838 		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1839 		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1840 		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1841 
1842 		if (netif_msg_rx_err(pf))
1843 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1844 				 event, queue, pf_num, vf_num);
1845 		wr32(hw, GL_MDET_RX, 0xffffffff);
1846 	}
1847 
1848 	/* check to see if this PF caused an MDD event */
1849 	reg = rd32(hw, PF_MDET_TX_PQM);
1850 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1851 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1852 		if (netif_msg_tx_err(pf))
1853 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1854 	}
1855 
1856 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1857 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1858 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1859 		if (netif_msg_tx_err(pf))
1860 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1861 	}
1862 
1863 	reg = rd32(hw, PF_MDET_RX);
1864 	if (reg & PF_MDET_RX_VALID_M) {
1865 		wr32(hw, PF_MDET_RX, 0xFFFF);
1866 		if (netif_msg_rx_err(pf))
1867 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1868 	}
1869 
1870 	/* Check to see if one of the VFs caused an MDD event, and then
1871 	 * increment counters and set print pending
1872 	 */
1873 	mutex_lock(&pf->vfs.table_lock);
1874 	ice_for_each_vf(pf, bkt, vf) {
1875 		bool reset_vf_tx = false, reset_vf_rx = false;
1876 
1877 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1878 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1879 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1880 			vf->mdd_tx_events.count++;
1881 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1882 			if (netif_msg_tx_err(pf))
1883 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1884 					 vf->vf_id);
1885 
1886 			reset_vf_tx = true;
1887 		}
1888 
1889 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1890 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1891 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1892 			vf->mdd_tx_events.count++;
1893 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1894 			if (netif_msg_tx_err(pf))
1895 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1896 					 vf->vf_id);
1897 
1898 			reset_vf_tx = true;
1899 		}
1900 
1901 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1902 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1903 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1904 			vf->mdd_tx_events.count++;
1905 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1906 			if (netif_msg_tx_err(pf))
1907 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1908 					 vf->vf_id);
1909 
1910 			reset_vf_tx = true;
1911 		}
1912 
1913 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1914 		if (reg & VP_MDET_RX_VALID_M) {
1915 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1916 			vf->mdd_rx_events.count++;
1917 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1918 			if (netif_msg_rx_err(pf))
1919 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1920 					 vf->vf_id);
1921 
1922 			reset_vf_rx = true;
1923 		}
1924 
1925 		if (reset_vf_tx || reset_vf_rx)
1926 			ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1927 					       reset_vf_rx);
1928 	}
1929 	mutex_unlock(&pf->vfs.table_lock);
1930 
1931 	ice_print_vfs_mdd_events(pf);
1932 }
1933 
1934 /**
1935  * ice_force_phys_link_state - Force the physical link state
1936  * @vsi: VSI to force the physical link state to up/down
1937  * @link_up: true/false indicates to set the physical link to up/down
1938  *
1939  * Force the physical link state by getting the current PHY capabilities from
1940  * hardware and setting the PHY config based on the determined capabilities. If
1941  * link changes a link event will be triggered because both the Enable Automatic
1942  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1943  *
1944  * Returns 0 on success, negative on failure
1945  */
1946 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1947 {
1948 	struct ice_aqc_get_phy_caps_data *pcaps;
1949 	struct ice_aqc_set_phy_cfg_data *cfg;
1950 	struct ice_port_info *pi;
1951 	struct device *dev;
1952 	int retcode;
1953 
1954 	if (!vsi || !vsi->port_info || !vsi->back)
1955 		return -EINVAL;
1956 	if (vsi->type != ICE_VSI_PF)
1957 		return 0;
1958 
1959 	dev = ice_pf_to_dev(vsi->back);
1960 
1961 	pi = vsi->port_info;
1962 
1963 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1964 	if (!pcaps)
1965 		return -ENOMEM;
1966 
1967 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1968 				      NULL);
1969 	if (retcode) {
1970 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1971 			vsi->vsi_num, retcode);
1972 		retcode = -EIO;
1973 		goto out;
1974 	}
1975 
1976 	/* No change in link */
1977 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1978 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1979 		goto out;
1980 
1981 	/* Use the current user PHY configuration. The current user PHY
1982 	 * configuration is initialized during probe from PHY capabilities
1983 	 * software mode, and updated on set PHY configuration.
1984 	 */
1985 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1986 	if (!cfg) {
1987 		retcode = -ENOMEM;
1988 		goto out;
1989 	}
1990 
1991 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1992 	if (link_up)
1993 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1994 	else
1995 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1996 
1997 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1998 	if (retcode) {
1999 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2000 			vsi->vsi_num, retcode);
2001 		retcode = -EIO;
2002 	}
2003 
2004 	kfree(cfg);
2005 out:
2006 	kfree(pcaps);
2007 	return retcode;
2008 }
2009 
2010 /**
2011  * ice_init_nvm_phy_type - Initialize the NVM PHY type
2012  * @pi: port info structure
2013  *
2014  * Initialize nvm_phy_type_[low|high] for link lenient mode support
2015  */
2016 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2017 {
2018 	struct ice_aqc_get_phy_caps_data *pcaps;
2019 	struct ice_pf *pf = pi->hw->back;
2020 	int err;
2021 
2022 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2023 	if (!pcaps)
2024 		return -ENOMEM;
2025 
2026 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2027 				  pcaps, NULL);
2028 
2029 	if (err) {
2030 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2031 		goto out;
2032 	}
2033 
2034 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
2035 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
2036 
2037 out:
2038 	kfree(pcaps);
2039 	return err;
2040 }
2041 
2042 /**
2043  * ice_init_link_dflt_override - Initialize link default override
2044  * @pi: port info structure
2045  *
2046  * Initialize link default override and PHY total port shutdown during probe
2047  */
2048 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2049 {
2050 	struct ice_link_default_override_tlv *ldo;
2051 	struct ice_pf *pf = pi->hw->back;
2052 
2053 	ldo = &pf->link_dflt_override;
2054 	if (ice_get_link_default_override(ldo, pi))
2055 		return;
2056 
2057 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2058 		return;
2059 
2060 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2061 	 * ethtool private flag) for ports with Port Disable bit set.
2062 	 */
2063 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2064 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2065 }
2066 
2067 /**
2068  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2069  * @pi: port info structure
2070  *
2071  * If default override is enabled, initialize the user PHY cfg speed and FEC
2072  * settings using the default override mask from the NVM.
2073  *
2074  * The PHY should only be configured with the default override settings the
2075  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2076  * is used to indicate that the user PHY cfg default override is initialized
2077  * and the PHY has not been configured with the default override settings. The
2078  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2079  * configured.
2080  *
2081  * This function should be called only if the FW doesn't support default
2082  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2083  */
2084 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2085 {
2086 	struct ice_link_default_override_tlv *ldo;
2087 	struct ice_aqc_set_phy_cfg_data *cfg;
2088 	struct ice_phy_info *phy = &pi->phy;
2089 	struct ice_pf *pf = pi->hw->back;
2090 
2091 	ldo = &pf->link_dflt_override;
2092 
2093 	/* If link default override is enabled, use to mask NVM PHY capabilities
2094 	 * for speed and FEC default configuration.
2095 	 */
2096 	cfg = &phy->curr_user_phy_cfg;
2097 
2098 	if (ldo->phy_type_low || ldo->phy_type_high) {
2099 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2100 				    cpu_to_le64(ldo->phy_type_low);
2101 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2102 				     cpu_to_le64(ldo->phy_type_high);
2103 	}
2104 	cfg->link_fec_opt = ldo->fec_options;
2105 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2106 
2107 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2108 }
2109 
2110 /**
2111  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2112  * @pi: port info structure
2113  *
2114  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2115  * mode to default. The PHY defaults are from get PHY capabilities topology
2116  * with media so call when media is first available. An error is returned if
2117  * called when media is not available. The PHY initialization completed state is
2118  * set here.
2119  *
2120  * These configurations are used when setting PHY
2121  * configuration. The user PHY configuration is updated on set PHY
2122  * configuration. Returns 0 on success, negative on failure
2123  */
2124 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2125 {
2126 	struct ice_aqc_get_phy_caps_data *pcaps;
2127 	struct ice_phy_info *phy = &pi->phy;
2128 	struct ice_pf *pf = pi->hw->back;
2129 	int err;
2130 
2131 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2132 		return -EIO;
2133 
2134 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2135 	if (!pcaps)
2136 		return -ENOMEM;
2137 
2138 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2139 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2140 					  pcaps, NULL);
2141 	else
2142 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2143 					  pcaps, NULL);
2144 	if (err) {
2145 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2146 		goto err_out;
2147 	}
2148 
2149 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2150 
2151 	/* check if lenient mode is supported and enabled */
2152 	if (ice_fw_supports_link_override(pi->hw) &&
2153 	    !(pcaps->module_compliance_enforcement &
2154 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2155 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2156 
2157 		/* if the FW supports default PHY configuration mode, then the driver
2158 		 * does not have to apply link override settings. If not,
2159 		 * initialize user PHY configuration with link override values
2160 		 */
2161 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2162 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2163 			ice_init_phy_cfg_dflt_override(pi);
2164 			goto out;
2165 		}
2166 	}
2167 
2168 	/* if link default override is not enabled, set user flow control and
2169 	 * FEC settings based on what get_phy_caps returned
2170 	 */
2171 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2172 						      pcaps->link_fec_options);
2173 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2174 
2175 out:
2176 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2177 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2178 err_out:
2179 	kfree(pcaps);
2180 	return err;
2181 }
2182 
2183 /**
2184  * ice_configure_phy - configure PHY
2185  * @vsi: VSI of PHY
2186  *
2187  * Set the PHY configuration. If the current PHY configuration is the same as
2188  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2189  * configure the based get PHY capabilities for topology with media.
2190  */
2191 static int ice_configure_phy(struct ice_vsi *vsi)
2192 {
2193 	struct device *dev = ice_pf_to_dev(vsi->back);
2194 	struct ice_port_info *pi = vsi->port_info;
2195 	struct ice_aqc_get_phy_caps_data *pcaps;
2196 	struct ice_aqc_set_phy_cfg_data *cfg;
2197 	struct ice_phy_info *phy = &pi->phy;
2198 	struct ice_pf *pf = vsi->back;
2199 	int err;
2200 
2201 	/* Ensure we have media as we cannot configure a medialess port */
2202 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2203 		return -ENOMEDIUM;
2204 
2205 	ice_print_topo_conflict(vsi);
2206 
2207 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2208 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2209 		return -EPERM;
2210 
2211 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2212 		return ice_force_phys_link_state(vsi, true);
2213 
2214 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2215 	if (!pcaps)
2216 		return -ENOMEM;
2217 
2218 	/* Get current PHY config */
2219 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2220 				  NULL);
2221 	if (err) {
2222 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2223 			vsi->vsi_num, err);
2224 		goto done;
2225 	}
2226 
2227 	/* If PHY enable link is configured and configuration has not changed,
2228 	 * there's nothing to do
2229 	 */
2230 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2231 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2232 		goto done;
2233 
2234 	/* Use PHY topology as baseline for configuration */
2235 	memset(pcaps, 0, sizeof(*pcaps));
2236 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2237 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2238 					  pcaps, NULL);
2239 	else
2240 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2241 					  pcaps, NULL);
2242 	if (err) {
2243 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2244 			vsi->vsi_num, err);
2245 		goto done;
2246 	}
2247 
2248 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2249 	if (!cfg) {
2250 		err = -ENOMEM;
2251 		goto done;
2252 	}
2253 
2254 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2255 
2256 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2257 	 * ice_init_phy_user_cfg_ldo.
2258 	 */
2259 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2260 			       vsi->back->state)) {
2261 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2262 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2263 	} else {
2264 		u64 phy_low = 0, phy_high = 0;
2265 
2266 		ice_update_phy_type(&phy_low, &phy_high,
2267 				    pi->phy.curr_user_speed_req);
2268 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2269 		cfg->phy_type_high = pcaps->phy_type_high &
2270 				     cpu_to_le64(phy_high);
2271 	}
2272 
2273 	/* Can't provide what was requested; use PHY capabilities */
2274 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2275 		cfg->phy_type_low = pcaps->phy_type_low;
2276 		cfg->phy_type_high = pcaps->phy_type_high;
2277 	}
2278 
2279 	/* FEC */
2280 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2281 
2282 	/* Can't provide what was requested; use PHY capabilities */
2283 	if (cfg->link_fec_opt !=
2284 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2285 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2286 		cfg->link_fec_opt = pcaps->link_fec_options;
2287 	}
2288 
2289 	/* Flow Control - always supported; no need to check against
2290 	 * capabilities
2291 	 */
2292 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2293 
2294 	/* Enable link and link update */
2295 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2296 
2297 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2298 	if (err)
2299 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2300 			vsi->vsi_num, err);
2301 
2302 	kfree(cfg);
2303 done:
2304 	kfree(pcaps);
2305 	return err;
2306 }
2307 
2308 /**
2309  * ice_check_media_subtask - Check for media
2310  * @pf: pointer to PF struct
2311  *
2312  * If media is available, then initialize PHY user configuration if it is not
2313  * been, and configure the PHY if the interface is up.
2314  */
2315 static void ice_check_media_subtask(struct ice_pf *pf)
2316 {
2317 	struct ice_port_info *pi;
2318 	struct ice_vsi *vsi;
2319 	int err;
2320 
2321 	/* No need to check for media if it's already present */
2322 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2323 		return;
2324 
2325 	vsi = ice_get_main_vsi(pf);
2326 	if (!vsi)
2327 		return;
2328 
2329 	/* Refresh link info and check if media is present */
2330 	pi = vsi->port_info;
2331 	err = ice_update_link_info(pi);
2332 	if (err)
2333 		return;
2334 
2335 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2336 
2337 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2338 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2339 			ice_init_phy_user_cfg(pi);
2340 
2341 		/* PHY settings are reset on media insertion, reconfigure
2342 		 * PHY to preserve settings.
2343 		 */
2344 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2345 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2346 			return;
2347 
2348 		err = ice_configure_phy(vsi);
2349 		if (!err)
2350 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2351 
2352 		/* A Link Status Event will be generated; the event handler
2353 		 * will complete bringing the interface up
2354 		 */
2355 	}
2356 }
2357 
2358 /**
2359  * ice_service_task - manage and run subtasks
2360  * @work: pointer to work_struct contained by the PF struct
2361  */
2362 static void ice_service_task(struct work_struct *work)
2363 {
2364 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2365 	unsigned long start_time = jiffies;
2366 
2367 	if (pf->health_reporters.tx_hang_buf.tx_ring) {
2368 		ice_report_tx_hang(pf);
2369 		pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2370 	}
2371 
2372 	ice_reset_subtask(pf);
2373 
2374 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2375 	if (ice_is_reset_in_progress(pf->state) ||
2376 	    test_bit(ICE_SUSPENDED, pf->state) ||
2377 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2378 		ice_service_task_complete(pf);
2379 		return;
2380 	}
2381 
2382 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2383 		struct iidc_event *event;
2384 
2385 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2386 		if (event) {
2387 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2388 			/* report the entire OICR value to AUX driver */
2389 			swap(event->reg, pf->oicr_err_reg);
2390 			ice_send_event_to_aux(pf, event);
2391 			kfree(event);
2392 		}
2393 	}
2394 
2395 	/* unplug aux dev per request, if an unplug request came in
2396 	 * while processing a plug request, this will handle it
2397 	 */
2398 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2399 		ice_unplug_aux_dev(pf);
2400 
2401 	/* Plug aux device per request */
2402 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2403 		ice_plug_aux_dev(pf);
2404 
2405 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2406 		struct iidc_event *event;
2407 
2408 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2409 		if (event) {
2410 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2411 			ice_send_event_to_aux(pf, event);
2412 			kfree(event);
2413 		}
2414 	}
2415 
2416 	ice_clean_adminq_subtask(pf);
2417 	ice_check_media_subtask(pf);
2418 	ice_check_for_hang_subtask(pf);
2419 	ice_sync_fltr_subtask(pf);
2420 	ice_handle_mdd_event(pf);
2421 	ice_watchdog_subtask(pf);
2422 
2423 	if (ice_is_safe_mode(pf)) {
2424 		ice_service_task_complete(pf);
2425 		return;
2426 	}
2427 
2428 	ice_process_vflr_event(pf);
2429 	ice_clean_mailboxq_subtask(pf);
2430 	ice_clean_sbq_subtask(pf);
2431 	ice_sync_arfs_fltrs(pf);
2432 	ice_flush_fdir_ctx(pf);
2433 
2434 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2435 	ice_service_task_complete(pf);
2436 
2437 	/* If the tasks have taken longer than one service timer period
2438 	 * or there is more work to be done, reset the service timer to
2439 	 * schedule the service task now.
2440 	 */
2441 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2442 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2443 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2444 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2445 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2446 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2447 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2448 		mod_timer(&pf->serv_tmr, jiffies);
2449 }
2450 
2451 /**
2452  * ice_set_ctrlq_len - helper function to set controlq length
2453  * @hw: pointer to the HW instance
2454  */
2455 static void ice_set_ctrlq_len(struct ice_hw *hw)
2456 {
2457 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2458 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2459 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2460 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2461 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2462 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2463 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2464 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2465 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2466 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2467 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2468 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2469 }
2470 
2471 /**
2472  * ice_schedule_reset - schedule a reset
2473  * @pf: board private structure
2474  * @reset: reset being requested
2475  */
2476 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2477 {
2478 	struct device *dev = ice_pf_to_dev(pf);
2479 
2480 	/* bail out if earlier reset has failed */
2481 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2482 		dev_dbg(dev, "earlier reset has failed\n");
2483 		return -EIO;
2484 	}
2485 	/* bail if reset/recovery already in progress */
2486 	if (ice_is_reset_in_progress(pf->state)) {
2487 		dev_dbg(dev, "Reset already in progress\n");
2488 		return -EBUSY;
2489 	}
2490 
2491 	switch (reset) {
2492 	case ICE_RESET_PFR:
2493 		set_bit(ICE_PFR_REQ, pf->state);
2494 		break;
2495 	case ICE_RESET_CORER:
2496 		set_bit(ICE_CORER_REQ, pf->state);
2497 		break;
2498 	case ICE_RESET_GLOBR:
2499 		set_bit(ICE_GLOBR_REQ, pf->state);
2500 		break;
2501 	default:
2502 		return -EINVAL;
2503 	}
2504 
2505 	ice_service_task_schedule(pf);
2506 	return 0;
2507 }
2508 
2509 /**
2510  * ice_irq_affinity_notify - Callback for affinity changes
2511  * @notify: context as to what irq was changed
2512  * @mask: the new affinity mask
2513  *
2514  * This is a callback function used by the irq_set_affinity_notifier function
2515  * so that we may register to receive changes to the irq affinity masks.
2516  */
2517 static void
2518 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2519 			const cpumask_t *mask)
2520 {
2521 	struct ice_q_vector *q_vector =
2522 		container_of(notify, struct ice_q_vector, affinity_notify);
2523 
2524 	cpumask_copy(&q_vector->affinity_mask, mask);
2525 }
2526 
2527 /**
2528  * ice_irq_affinity_release - Callback for affinity notifier release
2529  * @ref: internal core kernel usage
2530  *
2531  * This is a callback function used by the irq_set_affinity_notifier function
2532  * to inform the current notification subscriber that they will no longer
2533  * receive notifications.
2534  */
2535 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2536 
2537 /**
2538  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2539  * @vsi: the VSI being configured
2540  */
2541 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2542 {
2543 	struct ice_hw *hw = &vsi->back->hw;
2544 	int i;
2545 
2546 	ice_for_each_q_vector(vsi, i)
2547 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2548 
2549 	ice_flush(hw);
2550 	return 0;
2551 }
2552 
2553 /**
2554  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2555  * @vsi: the VSI being configured
2556  * @basename: name for the vector
2557  */
2558 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2559 {
2560 	int q_vectors = vsi->num_q_vectors;
2561 	struct ice_pf *pf = vsi->back;
2562 	struct device *dev;
2563 	int rx_int_idx = 0;
2564 	int tx_int_idx = 0;
2565 	int vector, err;
2566 	int irq_num;
2567 
2568 	dev = ice_pf_to_dev(pf);
2569 	for (vector = 0; vector < q_vectors; vector++) {
2570 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2571 
2572 		irq_num = q_vector->irq.virq;
2573 
2574 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2575 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2576 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2577 			tx_int_idx++;
2578 		} else if (q_vector->rx.rx_ring) {
2579 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2580 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2581 		} else if (q_vector->tx.tx_ring) {
2582 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2583 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2584 		} else {
2585 			/* skip this unused q_vector */
2586 			continue;
2587 		}
2588 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2589 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2590 					       IRQF_SHARED, q_vector->name,
2591 					       q_vector);
2592 		else
2593 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2594 					       0, q_vector->name, q_vector);
2595 		if (err) {
2596 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2597 				   err);
2598 			goto free_q_irqs;
2599 		}
2600 
2601 		/* register for affinity change notifications */
2602 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2603 			struct irq_affinity_notify *affinity_notify;
2604 
2605 			affinity_notify = &q_vector->affinity_notify;
2606 			affinity_notify->notify = ice_irq_affinity_notify;
2607 			affinity_notify->release = ice_irq_affinity_release;
2608 			irq_set_affinity_notifier(irq_num, affinity_notify);
2609 		}
2610 
2611 		/* assign the mask for this irq */
2612 		irq_update_affinity_hint(irq_num, &q_vector->affinity_mask);
2613 	}
2614 
2615 	err = ice_set_cpu_rx_rmap(vsi);
2616 	if (err) {
2617 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2618 			   vsi->vsi_num, ERR_PTR(err));
2619 		goto free_q_irqs;
2620 	}
2621 
2622 	vsi->irqs_ready = true;
2623 	return 0;
2624 
2625 free_q_irqs:
2626 	while (vector--) {
2627 		irq_num = vsi->q_vectors[vector]->irq.virq;
2628 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2629 			irq_set_affinity_notifier(irq_num, NULL);
2630 		irq_update_affinity_hint(irq_num, NULL);
2631 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2632 	}
2633 	return err;
2634 }
2635 
2636 /**
2637  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2638  * @vsi: VSI to setup Tx rings used by XDP
2639  *
2640  * Return 0 on success and negative value on error
2641  */
2642 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2643 {
2644 	struct device *dev = ice_pf_to_dev(vsi->back);
2645 	struct ice_tx_desc *tx_desc;
2646 	int i, j;
2647 
2648 	ice_for_each_xdp_txq(vsi, i) {
2649 		u16 xdp_q_idx = vsi->alloc_txq + i;
2650 		struct ice_ring_stats *ring_stats;
2651 		struct ice_tx_ring *xdp_ring;
2652 
2653 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2654 		if (!xdp_ring)
2655 			goto free_xdp_rings;
2656 
2657 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2658 		if (!ring_stats) {
2659 			ice_free_tx_ring(xdp_ring);
2660 			goto free_xdp_rings;
2661 		}
2662 
2663 		xdp_ring->ring_stats = ring_stats;
2664 		xdp_ring->q_index = xdp_q_idx;
2665 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2666 		xdp_ring->vsi = vsi;
2667 		xdp_ring->netdev = NULL;
2668 		xdp_ring->dev = dev;
2669 		xdp_ring->count = vsi->num_tx_desc;
2670 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2671 		if (ice_setup_tx_ring(xdp_ring))
2672 			goto free_xdp_rings;
2673 		ice_set_ring_xdp(xdp_ring);
2674 		spin_lock_init(&xdp_ring->tx_lock);
2675 		for (j = 0; j < xdp_ring->count; j++) {
2676 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2677 			tx_desc->cmd_type_offset_bsz = 0;
2678 		}
2679 	}
2680 
2681 	return 0;
2682 
2683 free_xdp_rings:
2684 	for (; i >= 0; i--) {
2685 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2686 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2687 			vsi->xdp_rings[i]->ring_stats = NULL;
2688 			ice_free_tx_ring(vsi->xdp_rings[i]);
2689 		}
2690 	}
2691 	return -ENOMEM;
2692 }
2693 
2694 /**
2695  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2696  * @vsi: VSI to set the bpf prog on
2697  * @prog: the bpf prog pointer
2698  */
2699 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2700 {
2701 	struct bpf_prog *old_prog;
2702 	int i;
2703 
2704 	old_prog = xchg(&vsi->xdp_prog, prog);
2705 	ice_for_each_rxq(vsi, i)
2706 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2707 
2708 	if (old_prog)
2709 		bpf_prog_put(old_prog);
2710 }
2711 
2712 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2713 {
2714 	struct ice_q_vector *q_vector;
2715 	struct ice_tx_ring *ring;
2716 
2717 	if (static_key_enabled(&ice_xdp_locking_key))
2718 		return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2719 
2720 	q_vector = vsi->rx_rings[qid]->q_vector;
2721 	ice_for_each_tx_ring(ring, q_vector->tx)
2722 		if (ice_ring_is_xdp(ring))
2723 			return ring;
2724 
2725 	return NULL;
2726 }
2727 
2728 /**
2729  * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2730  * @vsi: the VSI with XDP rings being configured
2731  *
2732  * Map XDP rings to interrupt vectors and perform the configuration steps
2733  * dependent on the mapping.
2734  */
2735 void ice_map_xdp_rings(struct ice_vsi *vsi)
2736 {
2737 	int xdp_rings_rem = vsi->num_xdp_txq;
2738 	int v_idx, q_idx;
2739 
2740 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2741 	ice_for_each_q_vector(vsi, v_idx) {
2742 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2743 		int xdp_rings_per_v, q_id, q_base;
2744 
2745 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2746 					       vsi->num_q_vectors - v_idx);
2747 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2748 
2749 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2750 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2751 
2752 			xdp_ring->q_vector = q_vector;
2753 			xdp_ring->next = q_vector->tx.tx_ring;
2754 			q_vector->tx.tx_ring = xdp_ring;
2755 		}
2756 		xdp_rings_rem -= xdp_rings_per_v;
2757 	}
2758 
2759 	ice_for_each_rxq(vsi, q_idx) {
2760 		vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2761 								       q_idx);
2762 		ice_tx_xsk_pool(vsi, q_idx);
2763 	}
2764 }
2765 
2766 /**
2767  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2768  * @vsi: VSI to bring up Tx rings used by XDP
2769  * @prog: bpf program that will be assigned to VSI
2770  * @cfg_type: create from scratch or restore the existing configuration
2771  *
2772  * Return 0 on success and negative value on error
2773  */
2774 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2775 			  enum ice_xdp_cfg cfg_type)
2776 {
2777 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2778 	struct ice_pf *pf = vsi->back;
2779 	struct ice_qs_cfg xdp_qs_cfg = {
2780 		.qs_mutex = &pf->avail_q_mutex,
2781 		.pf_map = pf->avail_txqs,
2782 		.pf_map_size = pf->max_pf_txqs,
2783 		.q_count = vsi->num_xdp_txq,
2784 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2785 		.vsi_map = vsi->txq_map,
2786 		.vsi_map_offset = vsi->alloc_txq,
2787 		.mapping_mode = ICE_VSI_MAP_CONTIG
2788 	};
2789 	struct device *dev;
2790 	int status, i;
2791 
2792 	dev = ice_pf_to_dev(pf);
2793 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2794 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2795 	if (!vsi->xdp_rings)
2796 		return -ENOMEM;
2797 
2798 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2799 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2800 		goto err_map_xdp;
2801 
2802 	if (static_key_enabled(&ice_xdp_locking_key))
2803 		netdev_warn(vsi->netdev,
2804 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2805 
2806 	if (ice_xdp_alloc_setup_rings(vsi))
2807 		goto clear_xdp_rings;
2808 
2809 	/* omit the scheduler update if in reset path; XDP queues will be
2810 	 * taken into account at the end of ice_vsi_rebuild, where
2811 	 * ice_cfg_vsi_lan is being called
2812 	 */
2813 	if (cfg_type == ICE_XDP_CFG_PART)
2814 		return 0;
2815 
2816 	ice_map_xdp_rings(vsi);
2817 
2818 	/* tell the Tx scheduler that right now we have
2819 	 * additional queues
2820 	 */
2821 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2822 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2823 
2824 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2825 				 max_txqs);
2826 	if (status) {
2827 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2828 			status);
2829 		goto clear_xdp_rings;
2830 	}
2831 
2832 	/* assign the prog only when it's not already present on VSI;
2833 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2834 	 * VSI rebuild that happens under ethtool -L can expose us to
2835 	 * the bpf_prog refcount issues as we would be swapping same
2836 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2837 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2838 	 * this is not harmful as dev_xdp_install bumps the refcount
2839 	 * before calling the op exposed by the driver;
2840 	 */
2841 	if (!ice_is_xdp_ena_vsi(vsi))
2842 		ice_vsi_assign_bpf_prog(vsi, prog);
2843 
2844 	return 0;
2845 clear_xdp_rings:
2846 	ice_for_each_xdp_txq(vsi, i)
2847 		if (vsi->xdp_rings[i]) {
2848 			kfree_rcu(vsi->xdp_rings[i], rcu);
2849 			vsi->xdp_rings[i] = NULL;
2850 		}
2851 
2852 err_map_xdp:
2853 	mutex_lock(&pf->avail_q_mutex);
2854 	ice_for_each_xdp_txq(vsi, i) {
2855 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2856 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2857 	}
2858 	mutex_unlock(&pf->avail_q_mutex);
2859 
2860 	devm_kfree(dev, vsi->xdp_rings);
2861 	return -ENOMEM;
2862 }
2863 
2864 /**
2865  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2866  * @vsi: VSI to remove XDP rings
2867  * @cfg_type: disable XDP permanently or allow it to be restored later
2868  *
2869  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2870  * resources
2871  */
2872 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2873 {
2874 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2875 	struct ice_pf *pf = vsi->back;
2876 	int i, v_idx;
2877 
2878 	/* q_vectors are freed in reset path so there's no point in detaching
2879 	 * rings
2880 	 */
2881 	if (cfg_type == ICE_XDP_CFG_PART)
2882 		goto free_qmap;
2883 
2884 	ice_for_each_q_vector(vsi, v_idx) {
2885 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2886 		struct ice_tx_ring *ring;
2887 
2888 		ice_for_each_tx_ring(ring, q_vector->tx)
2889 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2890 				break;
2891 
2892 		/* restore the value of last node prior to XDP setup */
2893 		q_vector->tx.tx_ring = ring;
2894 	}
2895 
2896 free_qmap:
2897 	mutex_lock(&pf->avail_q_mutex);
2898 	ice_for_each_xdp_txq(vsi, i) {
2899 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2900 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2901 	}
2902 	mutex_unlock(&pf->avail_q_mutex);
2903 
2904 	ice_for_each_xdp_txq(vsi, i)
2905 		if (vsi->xdp_rings[i]) {
2906 			if (vsi->xdp_rings[i]->desc) {
2907 				synchronize_rcu();
2908 				ice_free_tx_ring(vsi->xdp_rings[i]);
2909 			}
2910 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2911 			vsi->xdp_rings[i]->ring_stats = NULL;
2912 			kfree_rcu(vsi->xdp_rings[i], rcu);
2913 			vsi->xdp_rings[i] = NULL;
2914 		}
2915 
2916 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2917 	vsi->xdp_rings = NULL;
2918 
2919 	if (static_key_enabled(&ice_xdp_locking_key))
2920 		static_branch_dec(&ice_xdp_locking_key);
2921 
2922 	if (cfg_type == ICE_XDP_CFG_PART)
2923 		return 0;
2924 
2925 	ice_vsi_assign_bpf_prog(vsi, NULL);
2926 
2927 	/* notify Tx scheduler that we destroyed XDP queues and bring
2928 	 * back the old number of child nodes
2929 	 */
2930 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2931 		max_txqs[i] = vsi->num_txq;
2932 
2933 	/* change number of XDP Tx queues to 0 */
2934 	vsi->num_xdp_txq = 0;
2935 
2936 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2937 			       max_txqs);
2938 }
2939 
2940 /**
2941  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2942  * @vsi: VSI to schedule napi on
2943  */
2944 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2945 {
2946 	int i;
2947 
2948 	ice_for_each_rxq(vsi, i) {
2949 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2950 
2951 		if (READ_ONCE(rx_ring->xsk_pool))
2952 			napi_schedule(&rx_ring->q_vector->napi);
2953 	}
2954 }
2955 
2956 /**
2957  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2958  * @vsi: VSI to determine the count of XDP Tx qs
2959  *
2960  * returns 0 if Tx qs count is higher than at least half of CPU count,
2961  * -ENOMEM otherwise
2962  */
2963 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2964 {
2965 	u16 avail = ice_get_avail_txq_count(vsi->back);
2966 	u16 cpus = num_possible_cpus();
2967 
2968 	if (avail < cpus / 2)
2969 		return -ENOMEM;
2970 
2971 	if (vsi->type == ICE_VSI_SF)
2972 		avail = vsi->alloc_txq;
2973 
2974 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2975 
2976 	if (vsi->num_xdp_txq < cpus)
2977 		static_branch_inc(&ice_xdp_locking_key);
2978 
2979 	return 0;
2980 }
2981 
2982 /**
2983  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2984  * @vsi: Pointer to VSI structure
2985  */
2986 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
2987 {
2988 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
2989 		return ICE_RXBUF_1664;
2990 	else
2991 		return ICE_RXBUF_3072;
2992 }
2993 
2994 /**
2995  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2996  * @vsi: VSI to setup XDP for
2997  * @prog: XDP program
2998  * @extack: netlink extended ack
2999  */
3000 static int
3001 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
3002 		   struct netlink_ext_ack *extack)
3003 {
3004 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
3005 	int ret = 0, xdp_ring_err = 0;
3006 	bool if_running;
3007 
3008 	if (prog && !prog->aux->xdp_has_frags) {
3009 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
3010 			NL_SET_ERR_MSG_MOD(extack,
3011 					   "MTU is too large for linear frames and XDP prog does not support frags");
3012 			return -EOPNOTSUPP;
3013 		}
3014 	}
3015 
3016 	/* hot swap progs and avoid toggling link */
3017 	if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3018 	    test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3019 		ice_vsi_assign_bpf_prog(vsi, prog);
3020 		return 0;
3021 	}
3022 
3023 	if_running = netif_running(vsi->netdev) &&
3024 		     !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3025 
3026 	/* need to stop netdev while setting up the program for Rx rings */
3027 	if (if_running) {
3028 		ret = ice_down(vsi);
3029 		if (ret) {
3030 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3031 			return ret;
3032 		}
3033 	}
3034 
3035 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3036 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3037 		if (xdp_ring_err) {
3038 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3039 		} else {
3040 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3041 							     ICE_XDP_CFG_FULL);
3042 			if (xdp_ring_err)
3043 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3044 		}
3045 		xdp_features_set_redirect_target(vsi->netdev, true);
3046 		/* reallocate Rx queues that are used for zero-copy */
3047 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3048 		if (xdp_ring_err)
3049 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3050 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3051 		xdp_features_clear_redirect_target(vsi->netdev);
3052 		xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3053 		if (xdp_ring_err)
3054 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3055 		/* reallocate Rx queues that were used for zero-copy */
3056 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3057 		if (xdp_ring_err)
3058 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3059 	}
3060 
3061 	if (if_running)
3062 		ret = ice_up(vsi);
3063 
3064 	if (!ret && prog)
3065 		ice_vsi_rx_napi_schedule(vsi);
3066 
3067 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3068 }
3069 
3070 /**
3071  * ice_xdp_safe_mode - XDP handler for safe mode
3072  * @dev: netdevice
3073  * @xdp: XDP command
3074  */
3075 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3076 			     struct netdev_bpf *xdp)
3077 {
3078 	NL_SET_ERR_MSG_MOD(xdp->extack,
3079 			   "Please provide working DDP firmware package in order to use XDP\n"
3080 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3081 	return -EOPNOTSUPP;
3082 }
3083 
3084 /**
3085  * ice_xdp - implements XDP handler
3086  * @dev: netdevice
3087  * @xdp: XDP command
3088  */
3089 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3090 {
3091 	struct ice_netdev_priv *np = netdev_priv(dev);
3092 	struct ice_vsi *vsi = np->vsi;
3093 	int ret;
3094 
3095 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3096 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3097 		return -EINVAL;
3098 	}
3099 
3100 	mutex_lock(&vsi->xdp_state_lock);
3101 
3102 	switch (xdp->command) {
3103 	case XDP_SETUP_PROG:
3104 		ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3105 		break;
3106 	case XDP_SETUP_XSK_POOL:
3107 		ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3108 		break;
3109 	default:
3110 		ret = -EINVAL;
3111 	}
3112 
3113 	mutex_unlock(&vsi->xdp_state_lock);
3114 	return ret;
3115 }
3116 
3117 /**
3118  * ice_ena_misc_vector - enable the non-queue interrupts
3119  * @pf: board private structure
3120  */
3121 static void ice_ena_misc_vector(struct ice_pf *pf)
3122 {
3123 	struct ice_hw *hw = &pf->hw;
3124 	u32 pf_intr_start_offset;
3125 	u32 val;
3126 
3127 	/* Disable anti-spoof detection interrupt to prevent spurious event
3128 	 * interrupts during a function reset. Anti-spoof functionally is
3129 	 * still supported.
3130 	 */
3131 	val = rd32(hw, GL_MDCK_TX_TDPU);
3132 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3133 	wr32(hw, GL_MDCK_TX_TDPU, val);
3134 
3135 	/* clear things first */
3136 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3137 	rd32(hw, PFINT_OICR);		/* read to clear */
3138 
3139 	val = (PFINT_OICR_ECC_ERR_M |
3140 	       PFINT_OICR_MAL_DETECT_M |
3141 	       PFINT_OICR_GRST_M |
3142 	       PFINT_OICR_PCI_EXCEPTION_M |
3143 	       PFINT_OICR_VFLR_M |
3144 	       PFINT_OICR_HMC_ERR_M |
3145 	       PFINT_OICR_PE_PUSH_M |
3146 	       PFINT_OICR_PE_CRITERR_M);
3147 
3148 	wr32(hw, PFINT_OICR_ENA, val);
3149 
3150 	/* SW_ITR_IDX = 0, but don't change INTENA */
3151 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3152 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3153 
3154 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3155 		return;
3156 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3157 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3158 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3159 }
3160 
3161 /**
3162  * ice_ll_ts_intr - ll_ts interrupt handler
3163  * @irq: interrupt number
3164  * @data: pointer to a q_vector
3165  */
3166 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3167 {
3168 	struct ice_pf *pf = data;
3169 	u32 pf_intr_start_offset;
3170 	struct ice_ptp_tx *tx;
3171 	unsigned long flags;
3172 	struct ice_hw *hw;
3173 	u32 val;
3174 	u8 idx;
3175 
3176 	hw = &pf->hw;
3177 	tx = &pf->ptp.port.tx;
3178 	spin_lock_irqsave(&tx->lock, flags);
3179 	ice_ptp_complete_tx_single_tstamp(tx);
3180 
3181 	idx = find_next_bit_wrap(tx->in_use, tx->len,
3182 				 tx->last_ll_ts_idx_read + 1);
3183 	if (idx != tx->len)
3184 		ice_ptp_req_tx_single_tstamp(tx, idx);
3185 	spin_unlock_irqrestore(&tx->lock, flags);
3186 
3187 	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3188 	      (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3189 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3190 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3191 	     val);
3192 
3193 	return IRQ_HANDLED;
3194 }
3195 
3196 /**
3197  * ice_misc_intr - misc interrupt handler
3198  * @irq: interrupt number
3199  * @data: pointer to a q_vector
3200  */
3201 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3202 {
3203 	struct ice_pf *pf = (struct ice_pf *)data;
3204 	irqreturn_t ret = IRQ_HANDLED;
3205 	struct ice_hw *hw = &pf->hw;
3206 	struct device *dev;
3207 	u32 oicr, ena_mask;
3208 
3209 	dev = ice_pf_to_dev(pf);
3210 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3211 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3212 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3213 
3214 	oicr = rd32(hw, PFINT_OICR);
3215 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3216 
3217 	if (oicr & PFINT_OICR_SWINT_M) {
3218 		ena_mask &= ~PFINT_OICR_SWINT_M;
3219 		pf->sw_int_count++;
3220 	}
3221 
3222 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3223 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3224 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3225 	}
3226 	if (oicr & PFINT_OICR_VFLR_M) {
3227 		/* disable any further VFLR event notifications */
3228 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3229 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3230 
3231 			reg &= ~PFINT_OICR_VFLR_M;
3232 			wr32(hw, PFINT_OICR_ENA, reg);
3233 		} else {
3234 			ena_mask &= ~PFINT_OICR_VFLR_M;
3235 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3236 		}
3237 	}
3238 
3239 	if (oicr & PFINT_OICR_GRST_M) {
3240 		u32 reset;
3241 
3242 		/* we have a reset warning */
3243 		ena_mask &= ~PFINT_OICR_GRST_M;
3244 		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3245 				  rd32(hw, GLGEN_RSTAT));
3246 
3247 		if (reset == ICE_RESET_CORER)
3248 			pf->corer_count++;
3249 		else if (reset == ICE_RESET_GLOBR)
3250 			pf->globr_count++;
3251 		else if (reset == ICE_RESET_EMPR)
3252 			pf->empr_count++;
3253 		else
3254 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3255 
3256 		/* If a reset cycle isn't already in progress, we set a bit in
3257 		 * pf->state so that the service task can start a reset/rebuild.
3258 		 */
3259 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3260 			if (reset == ICE_RESET_CORER)
3261 				set_bit(ICE_CORER_RECV, pf->state);
3262 			else if (reset == ICE_RESET_GLOBR)
3263 				set_bit(ICE_GLOBR_RECV, pf->state);
3264 			else
3265 				set_bit(ICE_EMPR_RECV, pf->state);
3266 
3267 			/* There are couple of different bits at play here.
3268 			 * hw->reset_ongoing indicates whether the hardware is
3269 			 * in reset. This is set to true when a reset interrupt
3270 			 * is received and set back to false after the driver
3271 			 * has determined that the hardware is out of reset.
3272 			 *
3273 			 * ICE_RESET_OICR_RECV in pf->state indicates
3274 			 * that a post reset rebuild is required before the
3275 			 * driver is operational again. This is set above.
3276 			 *
3277 			 * As this is the start of the reset/rebuild cycle, set
3278 			 * both to indicate that.
3279 			 */
3280 			hw->reset_ongoing = true;
3281 		}
3282 	}
3283 
3284 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3285 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3286 		if (ice_pf_state_is_nominal(pf) &&
3287 		    pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) {
3288 			struct ice_ptp_tx *tx = &pf->ptp.port.tx;
3289 			unsigned long flags;
3290 			u8 idx;
3291 
3292 			spin_lock_irqsave(&tx->lock, flags);
3293 			idx = find_next_bit_wrap(tx->in_use, tx->len,
3294 						 tx->last_ll_ts_idx_read + 1);
3295 			if (idx != tx->len)
3296 				ice_ptp_req_tx_single_tstamp(tx, idx);
3297 			spin_unlock_irqrestore(&tx->lock, flags);
3298 		} else if (ice_ptp_pf_handles_tx_interrupt(pf)) {
3299 			set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread);
3300 			ret = IRQ_WAKE_THREAD;
3301 		}
3302 	}
3303 
3304 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3305 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3306 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3307 
3308 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3309 
3310 		if (ice_pf_src_tmr_owned(pf)) {
3311 			/* Save EVENTs from GLTSYN register */
3312 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3313 					      (GLTSYN_STAT_EVENT0_M |
3314 					       GLTSYN_STAT_EVENT1_M |
3315 					       GLTSYN_STAT_EVENT2_M);
3316 
3317 			ice_ptp_extts_event(pf);
3318 		}
3319 	}
3320 
3321 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3322 	if (oicr & ICE_AUX_CRIT_ERR) {
3323 		pf->oicr_err_reg |= oicr;
3324 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3325 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3326 	}
3327 
3328 	/* Report any remaining unexpected interrupts */
3329 	oicr &= ena_mask;
3330 	if (oicr) {
3331 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3332 		/* If a critical error is pending there is no choice but to
3333 		 * reset the device.
3334 		 */
3335 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3336 			    PFINT_OICR_ECC_ERR_M)) {
3337 			set_bit(ICE_PFR_REQ, pf->state);
3338 		}
3339 	}
3340 	ice_service_task_schedule(pf);
3341 	if (ret == IRQ_HANDLED)
3342 		ice_irq_dynamic_ena(hw, NULL, NULL);
3343 
3344 	return ret;
3345 }
3346 
3347 /**
3348  * ice_misc_intr_thread_fn - misc interrupt thread function
3349  * @irq: interrupt number
3350  * @data: pointer to a q_vector
3351  */
3352 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3353 {
3354 	struct ice_pf *pf = data;
3355 	struct ice_hw *hw;
3356 
3357 	hw = &pf->hw;
3358 
3359 	if (ice_is_reset_in_progress(pf->state))
3360 		goto skip_irq;
3361 
3362 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3363 		/* Process outstanding Tx timestamps. If there is more work,
3364 		 * re-arm the interrupt to trigger again.
3365 		 */
3366 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3367 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3368 			ice_flush(hw);
3369 		}
3370 	}
3371 
3372 skip_irq:
3373 	ice_irq_dynamic_ena(hw, NULL, NULL);
3374 
3375 	return IRQ_HANDLED;
3376 }
3377 
3378 /**
3379  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3380  * @hw: pointer to HW structure
3381  */
3382 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3383 {
3384 	/* disable Admin queue Interrupt causes */
3385 	wr32(hw, PFINT_FW_CTL,
3386 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3387 
3388 	/* disable Mailbox queue Interrupt causes */
3389 	wr32(hw, PFINT_MBX_CTL,
3390 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3391 
3392 	wr32(hw, PFINT_SB_CTL,
3393 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3394 
3395 	/* disable Control queue Interrupt causes */
3396 	wr32(hw, PFINT_OICR_CTL,
3397 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3398 
3399 	ice_flush(hw);
3400 }
3401 
3402 /**
3403  * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3404  * @pf: board private structure
3405  */
3406 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3407 {
3408 	int irq_num = pf->ll_ts_irq.virq;
3409 
3410 	synchronize_irq(irq_num);
3411 	devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3412 
3413 	ice_free_irq(pf, pf->ll_ts_irq);
3414 }
3415 
3416 /**
3417  * ice_free_irq_msix_misc - Unroll misc vector setup
3418  * @pf: board private structure
3419  */
3420 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3421 {
3422 	int misc_irq_num = pf->oicr_irq.virq;
3423 	struct ice_hw *hw = &pf->hw;
3424 
3425 	ice_dis_ctrlq_interrupts(hw);
3426 
3427 	/* disable OICR interrupt */
3428 	wr32(hw, PFINT_OICR_ENA, 0);
3429 	ice_flush(hw);
3430 
3431 	synchronize_irq(misc_irq_num);
3432 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3433 
3434 	ice_free_irq(pf, pf->oicr_irq);
3435 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3436 		ice_free_irq_msix_ll_ts(pf);
3437 }
3438 
3439 /**
3440  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3441  * @hw: pointer to HW structure
3442  * @reg_idx: HW vector index to associate the control queue interrupts with
3443  */
3444 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3445 {
3446 	u32 val;
3447 
3448 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3449 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3450 	wr32(hw, PFINT_OICR_CTL, val);
3451 
3452 	/* enable Admin queue Interrupt causes */
3453 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3454 	       PFINT_FW_CTL_CAUSE_ENA_M);
3455 	wr32(hw, PFINT_FW_CTL, val);
3456 
3457 	/* enable Mailbox queue Interrupt causes */
3458 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3459 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3460 	wr32(hw, PFINT_MBX_CTL, val);
3461 
3462 	if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3463 		/* enable Sideband queue Interrupt causes */
3464 		val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3465 		       PFINT_SB_CTL_CAUSE_ENA_M);
3466 		wr32(hw, PFINT_SB_CTL, val);
3467 	}
3468 
3469 	ice_flush(hw);
3470 }
3471 
3472 /**
3473  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3474  * @pf: board private structure
3475  *
3476  * This sets up the handler for MSIX 0, which is used to manage the
3477  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3478  * when in MSI or Legacy interrupt mode.
3479  */
3480 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3481 {
3482 	struct device *dev = ice_pf_to_dev(pf);
3483 	struct ice_hw *hw = &pf->hw;
3484 	u32 pf_intr_start_offset;
3485 	struct msi_map irq;
3486 	int err = 0;
3487 
3488 	if (!pf->int_name[0])
3489 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3490 			 dev_driver_string(dev), dev_name(dev));
3491 
3492 	if (!pf->int_name_ll_ts[0])
3493 		snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3494 			 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3495 	/* Do not request IRQ but do enable OICR interrupt since settings are
3496 	 * lost during reset. Note that this function is called only during
3497 	 * rebuild path and not while reset is in progress.
3498 	 */
3499 	if (ice_is_reset_in_progress(pf->state))
3500 		goto skip_req_irq;
3501 
3502 	/* reserve one vector in irq_tracker for misc interrupts */
3503 	irq = ice_alloc_irq(pf, false);
3504 	if (irq.index < 0)
3505 		return irq.index;
3506 
3507 	pf->oicr_irq = irq;
3508 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3509 					ice_misc_intr_thread_fn, 0,
3510 					pf->int_name, pf);
3511 	if (err) {
3512 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3513 			pf->int_name, err);
3514 		ice_free_irq(pf, pf->oicr_irq);
3515 		return err;
3516 	}
3517 
3518 	/* reserve one vector in irq_tracker for ll_ts interrupt */
3519 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3520 		goto skip_req_irq;
3521 
3522 	irq = ice_alloc_irq(pf, false);
3523 	if (irq.index < 0)
3524 		return irq.index;
3525 
3526 	pf->ll_ts_irq = irq;
3527 	err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3528 			       pf->int_name_ll_ts, pf);
3529 	if (err) {
3530 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3531 			pf->int_name_ll_ts, err);
3532 		ice_free_irq(pf, pf->ll_ts_irq);
3533 		return err;
3534 	}
3535 
3536 skip_req_irq:
3537 	ice_ena_misc_vector(pf);
3538 
3539 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3540 	/* This enables LL TS interrupt */
3541 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3542 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3543 		wr32(hw, PFINT_SB_CTL,
3544 		     ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3545 		      PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3546 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3547 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3548 
3549 	ice_flush(hw);
3550 	ice_irq_dynamic_ena(hw, NULL, NULL);
3551 
3552 	return 0;
3553 }
3554 
3555 /**
3556  * ice_set_ops - set netdev and ethtools ops for the given netdev
3557  * @vsi: the VSI associated with the new netdev
3558  */
3559 static void ice_set_ops(struct ice_vsi *vsi)
3560 {
3561 	struct net_device *netdev = vsi->netdev;
3562 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3563 
3564 	if (ice_is_safe_mode(pf)) {
3565 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3566 		ice_set_ethtool_safe_mode_ops(netdev);
3567 		return;
3568 	}
3569 
3570 	netdev->netdev_ops = &ice_netdev_ops;
3571 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3572 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3573 	ice_set_ethtool_ops(netdev);
3574 
3575 	if (vsi->type != ICE_VSI_PF)
3576 		return;
3577 
3578 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3579 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3580 			       NETDEV_XDP_ACT_RX_SG;
3581 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3582 }
3583 
3584 /**
3585  * ice_set_netdev_features - set features for the given netdev
3586  * @netdev: netdev instance
3587  */
3588 void ice_set_netdev_features(struct net_device *netdev)
3589 {
3590 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3591 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3592 	netdev_features_t csumo_features;
3593 	netdev_features_t vlano_features;
3594 	netdev_features_t dflt_features;
3595 	netdev_features_t tso_features;
3596 
3597 	if (ice_is_safe_mode(pf)) {
3598 		/* safe mode */
3599 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3600 		netdev->hw_features = netdev->features;
3601 		return;
3602 	}
3603 
3604 	dflt_features = NETIF_F_SG	|
3605 			NETIF_F_HIGHDMA	|
3606 			NETIF_F_NTUPLE	|
3607 			NETIF_F_RXHASH;
3608 
3609 	csumo_features = NETIF_F_RXCSUM	  |
3610 			 NETIF_F_IP_CSUM  |
3611 			 NETIF_F_SCTP_CRC |
3612 			 NETIF_F_IPV6_CSUM;
3613 
3614 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3615 			 NETIF_F_HW_VLAN_CTAG_TX     |
3616 			 NETIF_F_HW_VLAN_CTAG_RX;
3617 
3618 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3619 	if (is_dvm_ena)
3620 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3621 
3622 	tso_features = NETIF_F_TSO			|
3623 		       NETIF_F_TSO_ECN			|
3624 		       NETIF_F_TSO6			|
3625 		       NETIF_F_GSO_GRE			|
3626 		       NETIF_F_GSO_UDP_TUNNEL		|
3627 		       NETIF_F_GSO_GRE_CSUM		|
3628 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3629 		       NETIF_F_GSO_PARTIAL		|
3630 		       NETIF_F_GSO_IPXIP4		|
3631 		       NETIF_F_GSO_IPXIP6		|
3632 		       NETIF_F_GSO_UDP_L4;
3633 
3634 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3635 					NETIF_F_GSO_GRE_CSUM;
3636 	/* set features that user can change */
3637 	netdev->hw_features = dflt_features | csumo_features |
3638 			      vlano_features | tso_features;
3639 
3640 	/* add support for HW_CSUM on packets with MPLS header */
3641 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3642 				 NETIF_F_TSO     |
3643 				 NETIF_F_TSO6;
3644 
3645 	/* enable features */
3646 	netdev->features |= netdev->hw_features;
3647 
3648 	netdev->hw_features |= NETIF_F_HW_TC;
3649 	netdev->hw_features |= NETIF_F_LOOPBACK;
3650 
3651 	/* encap and VLAN devices inherit default, csumo and tso features */
3652 	netdev->hw_enc_features |= dflt_features | csumo_features |
3653 				   tso_features;
3654 	netdev->vlan_features |= dflt_features | csumo_features |
3655 				 tso_features;
3656 
3657 	/* advertise support but don't enable by default since only one type of
3658 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3659 	 * type turns on the other has to be turned off. This is enforced by the
3660 	 * ice_fix_features() ndo callback.
3661 	 */
3662 	if (is_dvm_ena)
3663 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3664 			NETIF_F_HW_VLAN_STAG_TX;
3665 
3666 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3667 	 * be changed at runtime
3668 	 */
3669 	netdev->hw_features |= NETIF_F_RXFCS;
3670 
3671 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3672 }
3673 
3674 /**
3675  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3676  * @lut: Lookup table
3677  * @rss_table_size: Lookup table size
3678  * @rss_size: Range of queue number for hashing
3679  */
3680 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3681 {
3682 	u16 i;
3683 
3684 	for (i = 0; i < rss_table_size; i++)
3685 		lut[i] = i % rss_size;
3686 }
3687 
3688 /**
3689  * ice_pf_vsi_setup - Set up a PF VSI
3690  * @pf: board private structure
3691  * @pi: pointer to the port_info instance
3692  *
3693  * Returns pointer to the successfully allocated VSI software struct
3694  * on success, otherwise returns NULL on failure.
3695  */
3696 static struct ice_vsi *
3697 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3698 {
3699 	struct ice_vsi_cfg_params params = {};
3700 
3701 	params.type = ICE_VSI_PF;
3702 	params.port_info = pi;
3703 	params.flags = ICE_VSI_FLAG_INIT;
3704 
3705 	return ice_vsi_setup(pf, &params);
3706 }
3707 
3708 static struct ice_vsi *
3709 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3710 		   struct ice_channel *ch)
3711 {
3712 	struct ice_vsi_cfg_params params = {};
3713 
3714 	params.type = ICE_VSI_CHNL;
3715 	params.port_info = pi;
3716 	params.ch = ch;
3717 	params.flags = ICE_VSI_FLAG_INIT;
3718 
3719 	return ice_vsi_setup(pf, &params);
3720 }
3721 
3722 /**
3723  * ice_ctrl_vsi_setup - Set up a control VSI
3724  * @pf: board private structure
3725  * @pi: pointer to the port_info instance
3726  *
3727  * Returns pointer to the successfully allocated VSI software struct
3728  * on success, otherwise returns NULL on failure.
3729  */
3730 static struct ice_vsi *
3731 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3732 {
3733 	struct ice_vsi_cfg_params params = {};
3734 
3735 	params.type = ICE_VSI_CTRL;
3736 	params.port_info = pi;
3737 	params.flags = ICE_VSI_FLAG_INIT;
3738 
3739 	return ice_vsi_setup(pf, &params);
3740 }
3741 
3742 /**
3743  * ice_lb_vsi_setup - Set up a loopback VSI
3744  * @pf: board private structure
3745  * @pi: pointer to the port_info instance
3746  *
3747  * Returns pointer to the successfully allocated VSI software struct
3748  * on success, otherwise returns NULL on failure.
3749  */
3750 struct ice_vsi *
3751 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3752 {
3753 	struct ice_vsi_cfg_params params = {};
3754 
3755 	params.type = ICE_VSI_LB;
3756 	params.port_info = pi;
3757 	params.flags = ICE_VSI_FLAG_INIT;
3758 
3759 	return ice_vsi_setup(pf, &params);
3760 }
3761 
3762 /**
3763  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3764  * @netdev: network interface to be adjusted
3765  * @proto: VLAN TPID
3766  * @vid: VLAN ID to be added
3767  *
3768  * net_device_ops implementation for adding VLAN IDs
3769  */
3770 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3771 {
3772 	struct ice_netdev_priv *np = netdev_priv(netdev);
3773 	struct ice_vsi_vlan_ops *vlan_ops;
3774 	struct ice_vsi *vsi = np->vsi;
3775 	struct ice_vlan vlan;
3776 	int ret;
3777 
3778 	/* VLAN 0 is added by default during load/reset */
3779 	if (!vid)
3780 		return 0;
3781 
3782 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3783 		usleep_range(1000, 2000);
3784 
3785 	/* Add multicast promisc rule for the VLAN ID to be added if
3786 	 * all-multicast is currently enabled.
3787 	 */
3788 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3789 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3790 					       ICE_MCAST_VLAN_PROMISC_BITS,
3791 					       vid);
3792 		if (ret)
3793 			goto finish;
3794 	}
3795 
3796 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3797 
3798 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3799 	 * packets aren't pruned by the device's internal switch on Rx
3800 	 */
3801 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3802 	ret = vlan_ops->add_vlan(vsi, &vlan);
3803 	if (ret)
3804 		goto finish;
3805 
3806 	/* If all-multicast is currently enabled and this VLAN ID is only one
3807 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3808 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3809 	 */
3810 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3811 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3812 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3813 					   ICE_MCAST_PROMISC_BITS, 0);
3814 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3815 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3816 	}
3817 
3818 finish:
3819 	clear_bit(ICE_CFG_BUSY, vsi->state);
3820 
3821 	return ret;
3822 }
3823 
3824 /**
3825  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3826  * @netdev: network interface to be adjusted
3827  * @proto: VLAN TPID
3828  * @vid: VLAN ID to be removed
3829  *
3830  * net_device_ops implementation for removing VLAN IDs
3831  */
3832 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3833 {
3834 	struct ice_netdev_priv *np = netdev_priv(netdev);
3835 	struct ice_vsi_vlan_ops *vlan_ops;
3836 	struct ice_vsi *vsi = np->vsi;
3837 	struct ice_vlan vlan;
3838 	int ret;
3839 
3840 	/* don't allow removal of VLAN 0 */
3841 	if (!vid)
3842 		return 0;
3843 
3844 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3845 		usleep_range(1000, 2000);
3846 
3847 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3848 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3849 	if (ret) {
3850 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3851 			   vsi->vsi_num);
3852 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3853 	}
3854 
3855 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3856 
3857 	/* Make sure VLAN delete is successful before updating VLAN
3858 	 * information
3859 	 */
3860 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3861 	ret = vlan_ops->del_vlan(vsi, &vlan);
3862 	if (ret)
3863 		goto finish;
3864 
3865 	/* Remove multicast promisc rule for the removed VLAN ID if
3866 	 * all-multicast is enabled.
3867 	 */
3868 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3869 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3870 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3871 
3872 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3873 		/* Update look-up type of multicast promisc rule for VLAN 0
3874 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3875 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3876 		 */
3877 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3878 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3879 						   ICE_MCAST_VLAN_PROMISC_BITS,
3880 						   0);
3881 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3882 						 ICE_MCAST_PROMISC_BITS, 0);
3883 		}
3884 	}
3885 
3886 finish:
3887 	clear_bit(ICE_CFG_BUSY, vsi->state);
3888 
3889 	return ret;
3890 }
3891 
3892 /**
3893  * ice_rep_indr_tc_block_unbind
3894  * @cb_priv: indirection block private data
3895  */
3896 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3897 {
3898 	struct ice_indr_block_priv *indr_priv = cb_priv;
3899 
3900 	list_del(&indr_priv->list);
3901 	kfree(indr_priv);
3902 }
3903 
3904 /**
3905  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3906  * @vsi: VSI struct which has the netdev
3907  */
3908 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3909 {
3910 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3911 
3912 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3913 				 ice_rep_indr_tc_block_unbind);
3914 }
3915 
3916 /**
3917  * ice_tc_indir_block_register - Register TC indirect block notifications
3918  * @vsi: VSI struct which has the netdev
3919  *
3920  * Returns 0 on success, negative value on failure
3921  */
3922 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3923 {
3924 	struct ice_netdev_priv *np;
3925 
3926 	if (!vsi || !vsi->netdev)
3927 		return -EINVAL;
3928 
3929 	np = netdev_priv(vsi->netdev);
3930 
3931 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3932 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3933 }
3934 
3935 /**
3936  * ice_get_avail_q_count - Get count of queues in use
3937  * @pf_qmap: bitmap to get queue use count from
3938  * @lock: pointer to a mutex that protects access to pf_qmap
3939  * @size: size of the bitmap
3940  */
3941 static u16
3942 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3943 {
3944 	unsigned long bit;
3945 	u16 count = 0;
3946 
3947 	mutex_lock(lock);
3948 	for_each_clear_bit(bit, pf_qmap, size)
3949 		count++;
3950 	mutex_unlock(lock);
3951 
3952 	return count;
3953 }
3954 
3955 /**
3956  * ice_get_avail_txq_count - Get count of Tx queues in use
3957  * @pf: pointer to an ice_pf instance
3958  */
3959 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3960 {
3961 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3962 				     pf->max_pf_txqs);
3963 }
3964 
3965 /**
3966  * ice_get_avail_rxq_count - Get count of Rx queues in use
3967  * @pf: pointer to an ice_pf instance
3968  */
3969 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3970 {
3971 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3972 				     pf->max_pf_rxqs);
3973 }
3974 
3975 /**
3976  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3977  * @pf: board private structure to initialize
3978  */
3979 static void ice_deinit_pf(struct ice_pf *pf)
3980 {
3981 	ice_service_task_stop(pf);
3982 	mutex_destroy(&pf->lag_mutex);
3983 	mutex_destroy(&pf->adev_mutex);
3984 	mutex_destroy(&pf->sw_mutex);
3985 	mutex_destroy(&pf->tc_mutex);
3986 	mutex_destroy(&pf->avail_q_mutex);
3987 	mutex_destroy(&pf->vfs.table_lock);
3988 
3989 	if (pf->avail_txqs) {
3990 		bitmap_free(pf->avail_txqs);
3991 		pf->avail_txqs = NULL;
3992 	}
3993 
3994 	if (pf->avail_rxqs) {
3995 		bitmap_free(pf->avail_rxqs);
3996 		pf->avail_rxqs = NULL;
3997 	}
3998 
3999 	if (pf->ptp.clock)
4000 		ptp_clock_unregister(pf->ptp.clock);
4001 
4002 	xa_destroy(&pf->dyn_ports);
4003 	xa_destroy(&pf->sf_nums);
4004 }
4005 
4006 /**
4007  * ice_set_pf_caps - set PFs capability flags
4008  * @pf: pointer to the PF instance
4009  */
4010 static void ice_set_pf_caps(struct ice_pf *pf)
4011 {
4012 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4013 
4014 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4015 	if (func_caps->common_cap.rdma)
4016 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4017 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4018 	if (func_caps->common_cap.dcb)
4019 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4020 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4021 	if (func_caps->common_cap.sr_iov_1_1) {
4022 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4023 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4024 					      ICE_MAX_SRIOV_VFS);
4025 	}
4026 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4027 	if (func_caps->common_cap.rss_table_size)
4028 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4029 
4030 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4031 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4032 		u16 unused;
4033 
4034 		/* ctrl_vsi_idx will be set to a valid value when flow director
4035 		 * is setup by ice_init_fdir
4036 		 */
4037 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4038 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
4039 		/* force guaranteed filter pool for PF */
4040 		ice_alloc_fd_guar_item(&pf->hw, &unused,
4041 				       func_caps->fd_fltr_guar);
4042 		/* force shared filter pool for PF */
4043 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
4044 				       func_caps->fd_fltr_best_effort);
4045 	}
4046 
4047 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4048 	if (func_caps->common_cap.ieee_1588 &&
4049 	    !(pf->hw.mac_type == ICE_MAC_E830))
4050 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4051 
4052 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
4053 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4054 }
4055 
4056 /**
4057  * ice_init_pf - Initialize general software structures (struct ice_pf)
4058  * @pf: board private structure to initialize
4059  */
4060 static int ice_init_pf(struct ice_pf *pf)
4061 {
4062 	ice_set_pf_caps(pf);
4063 
4064 	mutex_init(&pf->sw_mutex);
4065 	mutex_init(&pf->tc_mutex);
4066 	mutex_init(&pf->adev_mutex);
4067 	mutex_init(&pf->lag_mutex);
4068 
4069 	INIT_HLIST_HEAD(&pf->aq_wait_list);
4070 	spin_lock_init(&pf->aq_wait_lock);
4071 	init_waitqueue_head(&pf->aq_wait_queue);
4072 
4073 	init_waitqueue_head(&pf->reset_wait_queue);
4074 
4075 	/* setup service timer and periodic service task */
4076 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4077 	pf->serv_tmr_period = HZ;
4078 	INIT_WORK(&pf->serv_task, ice_service_task);
4079 	clear_bit(ICE_SERVICE_SCHED, pf->state);
4080 
4081 	mutex_init(&pf->avail_q_mutex);
4082 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4083 	if (!pf->avail_txqs)
4084 		return -ENOMEM;
4085 
4086 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4087 	if (!pf->avail_rxqs) {
4088 		bitmap_free(pf->avail_txqs);
4089 		pf->avail_txqs = NULL;
4090 		return -ENOMEM;
4091 	}
4092 
4093 	mutex_init(&pf->vfs.table_lock);
4094 	hash_init(pf->vfs.table);
4095 	if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4096 		wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4097 		     ICE_MBX_OVERFLOW_WATERMARK);
4098 	else
4099 		ice_mbx_init_snapshot(&pf->hw);
4100 
4101 	xa_init(&pf->dyn_ports);
4102 	xa_init(&pf->sf_nums);
4103 
4104 	return 0;
4105 }
4106 
4107 /**
4108  * ice_is_wol_supported - check if WoL is supported
4109  * @hw: pointer to hardware info
4110  *
4111  * Check if WoL is supported based on the HW configuration.
4112  * Returns true if NVM supports and enables WoL for this port, false otherwise
4113  */
4114 bool ice_is_wol_supported(struct ice_hw *hw)
4115 {
4116 	u16 wol_ctrl;
4117 
4118 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4119 	 * word) indicates WoL is not supported on the corresponding PF ID.
4120 	 */
4121 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4122 		return false;
4123 
4124 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4125 }
4126 
4127 /**
4128  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4129  * @vsi: VSI being changed
4130  * @new_rx: new number of Rx queues
4131  * @new_tx: new number of Tx queues
4132  * @locked: is adev device_lock held
4133  *
4134  * Only change the number of queues if new_tx, or new_rx is non-0.
4135  *
4136  * Returns 0 on success.
4137  */
4138 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4139 {
4140 	struct ice_pf *pf = vsi->back;
4141 	int i, err = 0, timeout = 50;
4142 
4143 	if (!new_rx && !new_tx)
4144 		return -EINVAL;
4145 
4146 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4147 		timeout--;
4148 		if (!timeout)
4149 			return -EBUSY;
4150 		usleep_range(1000, 2000);
4151 	}
4152 
4153 	if (new_tx)
4154 		vsi->req_txq = (u16)new_tx;
4155 	if (new_rx)
4156 		vsi->req_rxq = (u16)new_rx;
4157 
4158 	/* set for the next time the netdev is started */
4159 	if (!netif_running(vsi->netdev)) {
4160 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4161 		if (err)
4162 			goto rebuild_err;
4163 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4164 		goto done;
4165 	}
4166 
4167 	ice_vsi_close(vsi);
4168 	err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4169 	if (err)
4170 		goto rebuild_err;
4171 
4172 	ice_for_each_traffic_class(i) {
4173 		if (vsi->tc_cfg.ena_tc & BIT(i))
4174 			netdev_set_tc_queue(vsi->netdev,
4175 					    vsi->tc_cfg.tc_info[i].netdev_tc,
4176 					    vsi->tc_cfg.tc_info[i].qcount_tx,
4177 					    vsi->tc_cfg.tc_info[i].qoffset);
4178 	}
4179 	ice_pf_dcb_recfg(pf, locked);
4180 	ice_vsi_open(vsi);
4181 	goto done;
4182 
4183 rebuild_err:
4184 	dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4185 		err);
4186 done:
4187 	clear_bit(ICE_CFG_BUSY, pf->state);
4188 	return err;
4189 }
4190 
4191 /**
4192  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4193  * @pf: PF to configure
4194  *
4195  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4196  * VSI can still Tx/Rx VLAN tagged packets.
4197  */
4198 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4199 {
4200 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4201 	struct ice_vsi_ctx *ctxt;
4202 	struct ice_hw *hw;
4203 	int status;
4204 
4205 	if (!vsi)
4206 		return;
4207 
4208 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4209 	if (!ctxt)
4210 		return;
4211 
4212 	hw = &pf->hw;
4213 	ctxt->info = vsi->info;
4214 
4215 	ctxt->info.valid_sections =
4216 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4217 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4218 			    ICE_AQ_VSI_PROP_SW_VALID);
4219 
4220 	/* disable VLAN anti-spoof */
4221 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4222 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4223 
4224 	/* disable VLAN pruning and keep all other settings */
4225 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4226 
4227 	/* allow all VLANs on Tx and don't strip on Rx */
4228 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4229 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4230 
4231 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4232 	if (status) {
4233 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4234 			status, ice_aq_str(hw->adminq.sq_last_status));
4235 	} else {
4236 		vsi->info.sec_flags = ctxt->info.sec_flags;
4237 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4238 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4239 	}
4240 
4241 	kfree(ctxt);
4242 }
4243 
4244 /**
4245  * ice_log_pkg_init - log result of DDP package load
4246  * @hw: pointer to hardware info
4247  * @state: state of package load
4248  */
4249 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4250 {
4251 	struct ice_pf *pf = hw->back;
4252 	struct device *dev;
4253 
4254 	dev = ice_pf_to_dev(pf);
4255 
4256 	switch (state) {
4257 	case ICE_DDP_PKG_SUCCESS:
4258 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4259 			 hw->active_pkg_name,
4260 			 hw->active_pkg_ver.major,
4261 			 hw->active_pkg_ver.minor,
4262 			 hw->active_pkg_ver.update,
4263 			 hw->active_pkg_ver.draft);
4264 		break;
4265 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4266 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4267 			 hw->active_pkg_name,
4268 			 hw->active_pkg_ver.major,
4269 			 hw->active_pkg_ver.minor,
4270 			 hw->active_pkg_ver.update,
4271 			 hw->active_pkg_ver.draft);
4272 		break;
4273 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4274 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4275 			hw->active_pkg_name,
4276 			hw->active_pkg_ver.major,
4277 			hw->active_pkg_ver.minor,
4278 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4279 		break;
4280 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4281 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4282 			 hw->active_pkg_name,
4283 			 hw->active_pkg_ver.major,
4284 			 hw->active_pkg_ver.minor,
4285 			 hw->active_pkg_ver.update,
4286 			 hw->active_pkg_ver.draft,
4287 			 hw->pkg_name,
4288 			 hw->pkg_ver.major,
4289 			 hw->pkg_ver.minor,
4290 			 hw->pkg_ver.update,
4291 			 hw->pkg_ver.draft);
4292 		break;
4293 	case ICE_DDP_PKG_FW_MISMATCH:
4294 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4295 		break;
4296 	case ICE_DDP_PKG_INVALID_FILE:
4297 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4298 		break;
4299 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4300 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4301 		break;
4302 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4303 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4304 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4305 		break;
4306 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4307 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4308 		break;
4309 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4310 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4311 		break;
4312 	case ICE_DDP_PKG_LOAD_ERROR:
4313 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4314 		/* poll for reset to complete */
4315 		if (ice_check_reset(hw))
4316 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4317 		break;
4318 	case ICE_DDP_PKG_ERR:
4319 	default:
4320 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4321 		break;
4322 	}
4323 }
4324 
4325 /**
4326  * ice_load_pkg - load/reload the DDP Package file
4327  * @firmware: firmware structure when firmware requested or NULL for reload
4328  * @pf: pointer to the PF instance
4329  *
4330  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4331  * initialize HW tables.
4332  */
4333 static void
4334 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4335 {
4336 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4337 	struct device *dev = ice_pf_to_dev(pf);
4338 	struct ice_hw *hw = &pf->hw;
4339 
4340 	/* Load DDP Package */
4341 	if (firmware && !hw->pkg_copy) {
4342 		state = ice_copy_and_init_pkg(hw, firmware->data,
4343 					      firmware->size);
4344 		ice_log_pkg_init(hw, state);
4345 	} else if (!firmware && hw->pkg_copy) {
4346 		/* Reload package during rebuild after CORER/GLOBR reset */
4347 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4348 		ice_log_pkg_init(hw, state);
4349 	} else {
4350 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4351 	}
4352 
4353 	if (!ice_is_init_pkg_successful(state)) {
4354 		/* Safe Mode */
4355 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4356 		return;
4357 	}
4358 
4359 	/* Successful download package is the precondition for advanced
4360 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4361 	 */
4362 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4363 }
4364 
4365 /**
4366  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4367  * @pf: pointer to the PF structure
4368  *
4369  * There is no error returned here because the driver should be able to handle
4370  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4371  * specifically with Tx.
4372  */
4373 static void ice_verify_cacheline_size(struct ice_pf *pf)
4374 {
4375 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4376 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4377 			 ICE_CACHE_LINE_BYTES);
4378 }
4379 
4380 /**
4381  * ice_send_version - update firmware with driver version
4382  * @pf: PF struct
4383  *
4384  * Returns 0 on success, else error code
4385  */
4386 static int ice_send_version(struct ice_pf *pf)
4387 {
4388 	struct ice_driver_ver dv;
4389 
4390 	dv.major_ver = 0xff;
4391 	dv.minor_ver = 0xff;
4392 	dv.build_ver = 0xff;
4393 	dv.subbuild_ver = 0;
4394 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4395 		sizeof(dv.driver_string));
4396 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4397 }
4398 
4399 /**
4400  * ice_init_fdir - Initialize flow director VSI and configuration
4401  * @pf: pointer to the PF instance
4402  *
4403  * returns 0 on success, negative on error
4404  */
4405 static int ice_init_fdir(struct ice_pf *pf)
4406 {
4407 	struct device *dev = ice_pf_to_dev(pf);
4408 	struct ice_vsi *ctrl_vsi;
4409 	int err;
4410 
4411 	/* Side Band Flow Director needs to have a control VSI.
4412 	 * Allocate it and store it in the PF.
4413 	 */
4414 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4415 	if (!ctrl_vsi) {
4416 		dev_dbg(dev, "could not create control VSI\n");
4417 		return -ENOMEM;
4418 	}
4419 
4420 	err = ice_vsi_open_ctrl(ctrl_vsi);
4421 	if (err) {
4422 		dev_dbg(dev, "could not open control VSI\n");
4423 		goto err_vsi_open;
4424 	}
4425 
4426 	mutex_init(&pf->hw.fdir_fltr_lock);
4427 
4428 	err = ice_fdir_create_dflt_rules(pf);
4429 	if (err)
4430 		goto err_fdir_rule;
4431 
4432 	return 0;
4433 
4434 err_fdir_rule:
4435 	ice_fdir_release_flows(&pf->hw);
4436 	ice_vsi_close(ctrl_vsi);
4437 err_vsi_open:
4438 	ice_vsi_release(ctrl_vsi);
4439 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4440 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4441 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4442 	}
4443 	return err;
4444 }
4445 
4446 static void ice_deinit_fdir(struct ice_pf *pf)
4447 {
4448 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4449 
4450 	if (!vsi)
4451 		return;
4452 
4453 	ice_vsi_manage_fdir(vsi, false);
4454 	ice_vsi_release(vsi);
4455 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4456 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4457 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4458 	}
4459 
4460 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4461 }
4462 
4463 /**
4464  * ice_get_opt_fw_name - return optional firmware file name or NULL
4465  * @pf: pointer to the PF instance
4466  */
4467 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4468 {
4469 	/* Optional firmware name same as default with additional dash
4470 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4471 	 */
4472 	struct pci_dev *pdev = pf->pdev;
4473 	char *opt_fw_filename;
4474 	u64 dsn;
4475 
4476 	/* Determine the name of the optional file using the DSN (two
4477 	 * dwords following the start of the DSN Capability).
4478 	 */
4479 	dsn = pci_get_dsn(pdev);
4480 	if (!dsn)
4481 		return NULL;
4482 
4483 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4484 	if (!opt_fw_filename)
4485 		return NULL;
4486 
4487 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4488 		 ICE_DDP_PKG_PATH, dsn);
4489 
4490 	return opt_fw_filename;
4491 }
4492 
4493 /**
4494  * ice_request_fw - Device initialization routine
4495  * @pf: pointer to the PF instance
4496  * @firmware: double pointer to firmware struct
4497  *
4498  * Return: zero when successful, negative values otherwise.
4499  */
4500 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4501 {
4502 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4503 	struct device *dev = ice_pf_to_dev(pf);
4504 	int err = 0;
4505 
4506 	/* optional device-specific DDP (if present) overrides the default DDP
4507 	 * package file. kernel logs a debug message if the file doesn't exist,
4508 	 * and warning messages for other errors.
4509 	 */
4510 	if (opt_fw_filename) {
4511 		err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4512 		kfree(opt_fw_filename);
4513 		if (!err)
4514 			return err;
4515 	}
4516 	err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4517 	if (err)
4518 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4519 
4520 	return err;
4521 }
4522 
4523 /**
4524  * ice_init_tx_topology - performs Tx topology initialization
4525  * @hw: pointer to the hardware structure
4526  * @firmware: pointer to firmware structure
4527  *
4528  * Return: zero when init was successful, negative values otherwise.
4529  */
4530 static int
4531 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4532 {
4533 	u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4534 	struct ice_pf *pf = hw->back;
4535 	struct device *dev;
4536 	int err;
4537 
4538 	dev = ice_pf_to_dev(pf);
4539 	err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4540 	if (!err) {
4541 		if (hw->num_tx_sched_layers > num_tx_sched_layers)
4542 			dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4543 		else
4544 			dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4545 		/* if there was a change in topology ice_cfg_tx_topo triggered
4546 		 * a CORER and we need to re-init hw
4547 		 */
4548 		ice_deinit_hw(hw);
4549 		err = ice_init_hw(hw);
4550 
4551 		return err;
4552 	} else if (err == -EIO) {
4553 		dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4554 	}
4555 
4556 	return 0;
4557 }
4558 
4559 /**
4560  * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4561  * @hw: pointer to the hardware structure
4562  * @pf: pointer to pf structure
4563  *
4564  * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4565  * formats the PF hardware supports. The exact list of supported RXDIDs
4566  * depends on the loaded DDP package. The IDs can be determined by reading the
4567  * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4568  *
4569  * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4570  * in the DDP package. The 16-byte legacy descriptor is never supported by
4571  * VFs.
4572  */
4573 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4574 {
4575 	pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4576 
4577 	for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4578 		u32 regval;
4579 
4580 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4581 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4582 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4583 			pf->supported_rxdids |= BIT(i);
4584 	}
4585 }
4586 
4587 /**
4588  * ice_init_ddp_config - DDP related configuration
4589  * @hw: pointer to the hardware structure
4590  * @pf: pointer to pf structure
4591  *
4592  * This function loads DDP file from the disk, then initializes Tx
4593  * topology. At the end DDP package is loaded on the card.
4594  *
4595  * Return: zero when init was successful, negative values otherwise.
4596  */
4597 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4598 {
4599 	struct device *dev = ice_pf_to_dev(pf);
4600 	const struct firmware *firmware = NULL;
4601 	int err;
4602 
4603 	err = ice_request_fw(pf, &firmware);
4604 	if (err) {
4605 		dev_err(dev, "Fail during requesting FW: %d\n", err);
4606 		return err;
4607 	}
4608 
4609 	err = ice_init_tx_topology(hw, firmware);
4610 	if (err) {
4611 		dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4612 			err);
4613 		release_firmware(firmware);
4614 		return err;
4615 	}
4616 
4617 	/* Download firmware to device */
4618 	ice_load_pkg(firmware, pf);
4619 	release_firmware(firmware);
4620 
4621 	/* Initialize the supported Rx descriptor IDs after loading DDP */
4622 	ice_init_supported_rxdids(hw, pf);
4623 
4624 	return 0;
4625 }
4626 
4627 /**
4628  * ice_print_wake_reason - show the wake up cause in the log
4629  * @pf: pointer to the PF struct
4630  */
4631 static void ice_print_wake_reason(struct ice_pf *pf)
4632 {
4633 	u32 wus = pf->wakeup_reason;
4634 	const char *wake_str;
4635 
4636 	/* if no wake event, nothing to print */
4637 	if (!wus)
4638 		return;
4639 
4640 	if (wus & PFPM_WUS_LNKC_M)
4641 		wake_str = "Link\n";
4642 	else if (wus & PFPM_WUS_MAG_M)
4643 		wake_str = "Magic Packet\n";
4644 	else if (wus & PFPM_WUS_MNG_M)
4645 		wake_str = "Management\n";
4646 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4647 		wake_str = "Firmware Reset\n";
4648 	else
4649 		wake_str = "Unknown\n";
4650 
4651 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4652 }
4653 
4654 /**
4655  * ice_pf_fwlog_update_module - update 1 module
4656  * @pf: pointer to the PF struct
4657  * @log_level: log_level to use for the @module
4658  * @module: module to update
4659  */
4660 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4661 {
4662 	struct ice_hw *hw = &pf->hw;
4663 
4664 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4665 }
4666 
4667 /**
4668  * ice_register_netdev - register netdev
4669  * @vsi: pointer to the VSI struct
4670  */
4671 static int ice_register_netdev(struct ice_vsi *vsi)
4672 {
4673 	int err;
4674 
4675 	if (!vsi || !vsi->netdev)
4676 		return -EIO;
4677 
4678 	err = register_netdev(vsi->netdev);
4679 	if (err)
4680 		return err;
4681 
4682 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4683 	netif_carrier_off(vsi->netdev);
4684 	netif_tx_stop_all_queues(vsi->netdev);
4685 
4686 	return 0;
4687 }
4688 
4689 static void ice_unregister_netdev(struct ice_vsi *vsi)
4690 {
4691 	if (!vsi || !vsi->netdev)
4692 		return;
4693 
4694 	unregister_netdev(vsi->netdev);
4695 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4696 }
4697 
4698 /**
4699  * ice_cfg_netdev - Allocate, configure and register a netdev
4700  * @vsi: the VSI associated with the new netdev
4701  *
4702  * Returns 0 on success, negative value on failure
4703  */
4704 static int ice_cfg_netdev(struct ice_vsi *vsi)
4705 {
4706 	struct ice_netdev_priv *np;
4707 	struct net_device *netdev;
4708 	u8 mac_addr[ETH_ALEN];
4709 
4710 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4711 				    vsi->alloc_rxq);
4712 	if (!netdev)
4713 		return -ENOMEM;
4714 
4715 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4716 	vsi->netdev = netdev;
4717 	np = netdev_priv(netdev);
4718 	np->vsi = vsi;
4719 
4720 	ice_set_netdev_features(netdev);
4721 	ice_set_ops(vsi);
4722 
4723 	if (vsi->type == ICE_VSI_PF) {
4724 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4725 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4726 		eth_hw_addr_set(netdev, mac_addr);
4727 	}
4728 
4729 	netdev->priv_flags |= IFF_UNICAST_FLT;
4730 
4731 	/* Setup netdev TC information */
4732 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4733 
4734 	netdev->max_mtu = ICE_MAX_MTU;
4735 
4736 	return 0;
4737 }
4738 
4739 static void ice_decfg_netdev(struct ice_vsi *vsi)
4740 {
4741 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4742 	free_netdev(vsi->netdev);
4743 	vsi->netdev = NULL;
4744 }
4745 
4746 /**
4747  * ice_wait_for_fw - wait for full FW readiness
4748  * @hw: pointer to the hardware structure
4749  * @timeout: milliseconds that can elapse before timing out
4750  */
4751 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout)
4752 {
4753 	int fw_loading;
4754 	u32 elapsed = 0;
4755 
4756 	while (elapsed <= timeout) {
4757 		fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M;
4758 
4759 		/* firmware was not yet loaded, we have to wait more */
4760 		if (fw_loading) {
4761 			elapsed += 100;
4762 			msleep(100);
4763 			continue;
4764 		}
4765 		return 0;
4766 	}
4767 
4768 	return -ETIMEDOUT;
4769 }
4770 
4771 int ice_init_dev(struct ice_pf *pf)
4772 {
4773 	struct device *dev = ice_pf_to_dev(pf);
4774 	struct ice_hw *hw = &pf->hw;
4775 	int err;
4776 
4777 	err = ice_init_hw(hw);
4778 	if (err) {
4779 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4780 		return err;
4781 	}
4782 
4783 	/* Some cards require longer initialization times
4784 	 * due to necessity of loading FW from an external source.
4785 	 * This can take even half a minute.
4786 	 */
4787 	if (ice_is_pf_c827(hw)) {
4788 		err = ice_wait_for_fw(hw, 30000);
4789 		if (err) {
4790 			dev_err(dev, "ice_wait_for_fw timed out");
4791 			return err;
4792 		}
4793 	}
4794 
4795 	ice_init_feature_support(pf);
4796 
4797 	err = ice_init_ddp_config(hw, pf);
4798 
4799 	/* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4800 	 * set in pf->state, which will cause ice_is_safe_mode to return
4801 	 * true
4802 	 */
4803 	if (err || ice_is_safe_mode(pf)) {
4804 		/* we already got function/device capabilities but these don't
4805 		 * reflect what the driver needs to do in safe mode. Instead of
4806 		 * adding conditional logic everywhere to ignore these
4807 		 * device/function capabilities, override them.
4808 		 */
4809 		ice_set_safe_mode_caps(hw);
4810 	}
4811 
4812 	err = ice_init_pf(pf);
4813 	if (err) {
4814 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4815 		goto err_init_pf;
4816 	}
4817 
4818 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4819 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4820 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4821 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4822 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4823 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4824 			pf->hw.tnl.valid_count[TNL_VXLAN];
4825 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4826 			UDP_TUNNEL_TYPE_VXLAN;
4827 	}
4828 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4829 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4830 			pf->hw.tnl.valid_count[TNL_GENEVE];
4831 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4832 			UDP_TUNNEL_TYPE_GENEVE;
4833 	}
4834 
4835 	err = ice_init_interrupt_scheme(pf);
4836 	if (err) {
4837 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4838 		err = -EIO;
4839 		goto err_init_interrupt_scheme;
4840 	}
4841 
4842 	/* In case of MSIX we are going to setup the misc vector right here
4843 	 * to handle admin queue events etc. In case of legacy and MSI
4844 	 * the misc functionality and queue processing is combined in
4845 	 * the same vector and that gets setup at open.
4846 	 */
4847 	err = ice_req_irq_msix_misc(pf);
4848 	if (err) {
4849 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4850 		goto err_req_irq_msix_misc;
4851 	}
4852 
4853 	return 0;
4854 
4855 err_req_irq_msix_misc:
4856 	ice_clear_interrupt_scheme(pf);
4857 err_init_interrupt_scheme:
4858 	ice_deinit_pf(pf);
4859 err_init_pf:
4860 	ice_deinit_hw(hw);
4861 	return err;
4862 }
4863 
4864 void ice_deinit_dev(struct ice_pf *pf)
4865 {
4866 	ice_free_irq_msix_misc(pf);
4867 	ice_deinit_pf(pf);
4868 	ice_deinit_hw(&pf->hw);
4869 
4870 	/* Service task is already stopped, so call reset directly. */
4871 	ice_reset(&pf->hw, ICE_RESET_PFR);
4872 	pci_wait_for_pending_transaction(pf->pdev);
4873 	ice_clear_interrupt_scheme(pf);
4874 }
4875 
4876 static void ice_init_features(struct ice_pf *pf)
4877 {
4878 	struct device *dev = ice_pf_to_dev(pf);
4879 
4880 	if (ice_is_safe_mode(pf))
4881 		return;
4882 
4883 	/* initialize DDP driven features */
4884 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4885 		ice_ptp_init(pf);
4886 
4887 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4888 		ice_gnss_init(pf);
4889 
4890 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4891 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4892 		ice_dpll_init(pf);
4893 
4894 	/* Note: Flow director init failure is non-fatal to load */
4895 	if (ice_init_fdir(pf))
4896 		dev_err(dev, "could not initialize flow director\n");
4897 
4898 	/* Note: DCB init failure is non-fatal to load */
4899 	if (ice_init_pf_dcb(pf, false)) {
4900 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4901 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4902 	} else {
4903 		ice_cfg_lldp_mib_change(&pf->hw, true);
4904 	}
4905 
4906 	if (ice_init_lag(pf))
4907 		dev_warn(dev, "Failed to init link aggregation support\n");
4908 
4909 	ice_hwmon_init(pf);
4910 }
4911 
4912 static void ice_deinit_features(struct ice_pf *pf)
4913 {
4914 	if (ice_is_safe_mode(pf))
4915 		return;
4916 
4917 	ice_deinit_lag(pf);
4918 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4919 		ice_cfg_lldp_mib_change(&pf->hw, false);
4920 	ice_deinit_fdir(pf);
4921 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4922 		ice_gnss_exit(pf);
4923 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4924 		ice_ptp_release(pf);
4925 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4926 		ice_dpll_deinit(pf);
4927 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4928 		xa_destroy(&pf->eswitch.reprs);
4929 }
4930 
4931 static void ice_init_wakeup(struct ice_pf *pf)
4932 {
4933 	/* Save wakeup reason register for later use */
4934 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4935 
4936 	/* check for a power management event */
4937 	ice_print_wake_reason(pf);
4938 
4939 	/* clear wake status, all bits */
4940 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4941 
4942 	/* Disable WoL at init, wait for user to enable */
4943 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4944 }
4945 
4946 static int ice_init_link(struct ice_pf *pf)
4947 {
4948 	struct device *dev = ice_pf_to_dev(pf);
4949 	int err;
4950 
4951 	err = ice_init_link_events(pf->hw.port_info);
4952 	if (err) {
4953 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4954 		return err;
4955 	}
4956 
4957 	/* not a fatal error if this fails */
4958 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4959 	if (err)
4960 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4961 
4962 	/* not a fatal error if this fails */
4963 	err = ice_update_link_info(pf->hw.port_info);
4964 	if (err)
4965 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4966 
4967 	ice_init_link_dflt_override(pf->hw.port_info);
4968 
4969 	ice_check_link_cfg_err(pf,
4970 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4971 
4972 	/* if media available, initialize PHY settings */
4973 	if (pf->hw.port_info->phy.link_info.link_info &
4974 	    ICE_AQ_MEDIA_AVAILABLE) {
4975 		/* not a fatal error if this fails */
4976 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4977 		if (err)
4978 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4979 
4980 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4981 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4982 
4983 			if (vsi)
4984 				ice_configure_phy(vsi);
4985 		}
4986 	} else {
4987 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4988 	}
4989 
4990 	return err;
4991 }
4992 
4993 static int ice_init_pf_sw(struct ice_pf *pf)
4994 {
4995 	bool dvm = ice_is_dvm_ena(&pf->hw);
4996 	struct ice_vsi *vsi;
4997 	int err;
4998 
4999 	/* create switch struct for the switch element created by FW on boot */
5000 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
5001 	if (!pf->first_sw)
5002 		return -ENOMEM;
5003 
5004 	if (pf->hw.evb_veb)
5005 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
5006 	else
5007 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
5008 
5009 	pf->first_sw->pf = pf;
5010 
5011 	/* record the sw_id available for later use */
5012 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
5013 
5014 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
5015 	if (err)
5016 		goto err_aq_set_port_params;
5017 
5018 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
5019 	if (!vsi) {
5020 		err = -ENOMEM;
5021 		goto err_pf_vsi_setup;
5022 	}
5023 
5024 	return 0;
5025 
5026 err_pf_vsi_setup:
5027 err_aq_set_port_params:
5028 	kfree(pf->first_sw);
5029 	return err;
5030 }
5031 
5032 static void ice_deinit_pf_sw(struct ice_pf *pf)
5033 {
5034 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
5035 
5036 	if (!vsi)
5037 		return;
5038 
5039 	ice_vsi_release(vsi);
5040 	kfree(pf->first_sw);
5041 }
5042 
5043 static int ice_alloc_vsis(struct ice_pf *pf)
5044 {
5045 	struct device *dev = ice_pf_to_dev(pf);
5046 
5047 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
5048 	if (!pf->num_alloc_vsi)
5049 		return -EIO;
5050 
5051 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
5052 		dev_warn(dev,
5053 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
5054 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5055 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5056 	}
5057 
5058 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5059 			       GFP_KERNEL);
5060 	if (!pf->vsi)
5061 		return -ENOMEM;
5062 
5063 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5064 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
5065 	if (!pf->vsi_stats) {
5066 		devm_kfree(dev, pf->vsi);
5067 		return -ENOMEM;
5068 	}
5069 
5070 	return 0;
5071 }
5072 
5073 static void ice_dealloc_vsis(struct ice_pf *pf)
5074 {
5075 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5076 	pf->vsi_stats = NULL;
5077 
5078 	pf->num_alloc_vsi = 0;
5079 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5080 	pf->vsi = NULL;
5081 }
5082 
5083 static int ice_init_devlink(struct ice_pf *pf)
5084 {
5085 	int err;
5086 
5087 	err = ice_devlink_register_params(pf);
5088 	if (err)
5089 		return err;
5090 
5091 	ice_devlink_init_regions(pf);
5092 	ice_health_init(pf);
5093 	ice_devlink_register(pf);
5094 
5095 	return 0;
5096 }
5097 
5098 static void ice_deinit_devlink(struct ice_pf *pf)
5099 {
5100 	ice_devlink_unregister(pf);
5101 	ice_health_deinit(pf);
5102 	ice_devlink_destroy_regions(pf);
5103 	ice_devlink_unregister_params(pf);
5104 }
5105 
5106 static int ice_init(struct ice_pf *pf)
5107 {
5108 	int err;
5109 
5110 	err = ice_init_dev(pf);
5111 	if (err)
5112 		return err;
5113 
5114 	err = ice_alloc_vsis(pf);
5115 	if (err)
5116 		goto err_alloc_vsis;
5117 
5118 	err = ice_init_pf_sw(pf);
5119 	if (err)
5120 		goto err_init_pf_sw;
5121 
5122 	ice_init_wakeup(pf);
5123 
5124 	err = ice_init_link(pf);
5125 	if (err)
5126 		goto err_init_link;
5127 
5128 	err = ice_send_version(pf);
5129 	if (err)
5130 		goto err_init_link;
5131 
5132 	ice_verify_cacheline_size(pf);
5133 
5134 	if (ice_is_safe_mode(pf))
5135 		ice_set_safe_mode_vlan_cfg(pf);
5136 	else
5137 		/* print PCI link speed and width */
5138 		pcie_print_link_status(pf->pdev);
5139 
5140 	/* ready to go, so clear down state bit */
5141 	clear_bit(ICE_DOWN, pf->state);
5142 	clear_bit(ICE_SERVICE_DIS, pf->state);
5143 
5144 	/* since everything is good, start the service timer */
5145 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5146 
5147 	return 0;
5148 
5149 err_init_link:
5150 	ice_deinit_pf_sw(pf);
5151 err_init_pf_sw:
5152 	ice_dealloc_vsis(pf);
5153 err_alloc_vsis:
5154 	ice_deinit_dev(pf);
5155 	return err;
5156 }
5157 
5158 static void ice_deinit(struct ice_pf *pf)
5159 {
5160 	set_bit(ICE_SERVICE_DIS, pf->state);
5161 	set_bit(ICE_DOWN, pf->state);
5162 
5163 	ice_deinit_pf_sw(pf);
5164 	ice_dealloc_vsis(pf);
5165 	ice_deinit_dev(pf);
5166 }
5167 
5168 /**
5169  * ice_load - load pf by init hw and starting VSI
5170  * @pf: pointer to the pf instance
5171  *
5172  * This function has to be called under devl_lock.
5173  */
5174 int ice_load(struct ice_pf *pf)
5175 {
5176 	struct ice_vsi *vsi;
5177 	int err;
5178 
5179 	devl_assert_locked(priv_to_devlink(pf));
5180 
5181 	vsi = ice_get_main_vsi(pf);
5182 
5183 	/* init channel list */
5184 	INIT_LIST_HEAD(&vsi->ch_list);
5185 
5186 	err = ice_cfg_netdev(vsi);
5187 	if (err)
5188 		return err;
5189 
5190 	/* Setup DCB netlink interface */
5191 	ice_dcbnl_setup(vsi);
5192 
5193 	err = ice_init_mac_fltr(pf);
5194 	if (err)
5195 		goto err_init_mac_fltr;
5196 
5197 	err = ice_devlink_create_pf_port(pf);
5198 	if (err)
5199 		goto err_devlink_create_pf_port;
5200 
5201 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5202 
5203 	err = ice_register_netdev(vsi);
5204 	if (err)
5205 		goto err_register_netdev;
5206 
5207 	err = ice_tc_indir_block_register(vsi);
5208 	if (err)
5209 		goto err_tc_indir_block_register;
5210 
5211 	ice_napi_add(vsi);
5212 
5213 	err = ice_init_rdma(pf);
5214 	if (err)
5215 		goto err_init_rdma;
5216 
5217 	ice_init_features(pf);
5218 	ice_service_task_restart(pf);
5219 
5220 	clear_bit(ICE_DOWN, pf->state);
5221 
5222 	return 0;
5223 
5224 err_init_rdma:
5225 	ice_tc_indir_block_unregister(vsi);
5226 err_tc_indir_block_register:
5227 	ice_unregister_netdev(vsi);
5228 err_register_netdev:
5229 	ice_devlink_destroy_pf_port(pf);
5230 err_devlink_create_pf_port:
5231 err_init_mac_fltr:
5232 	ice_decfg_netdev(vsi);
5233 	return err;
5234 }
5235 
5236 /**
5237  * ice_unload - unload pf by stopping VSI and deinit hw
5238  * @pf: pointer to the pf instance
5239  *
5240  * This function has to be called under devl_lock.
5241  */
5242 void ice_unload(struct ice_pf *pf)
5243 {
5244 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
5245 
5246 	devl_assert_locked(priv_to_devlink(pf));
5247 
5248 	ice_deinit_features(pf);
5249 	ice_deinit_rdma(pf);
5250 	ice_tc_indir_block_unregister(vsi);
5251 	ice_unregister_netdev(vsi);
5252 	ice_devlink_destroy_pf_port(pf);
5253 	ice_decfg_netdev(vsi);
5254 }
5255 
5256 /**
5257  * ice_probe - Device initialization routine
5258  * @pdev: PCI device information struct
5259  * @ent: entry in ice_pci_tbl
5260  *
5261  * Returns 0 on success, negative on failure
5262  */
5263 static int
5264 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5265 {
5266 	struct device *dev = &pdev->dev;
5267 	struct ice_adapter *adapter;
5268 	struct ice_pf *pf;
5269 	struct ice_hw *hw;
5270 	int err;
5271 
5272 	if (pdev->is_virtfn) {
5273 		dev_err(dev, "can't probe a virtual function\n");
5274 		return -EINVAL;
5275 	}
5276 
5277 	/* when under a kdump kernel initiate a reset before enabling the
5278 	 * device in order to clear out any pending DMA transactions. These
5279 	 * transactions can cause some systems to machine check when doing
5280 	 * the pcim_enable_device() below.
5281 	 */
5282 	if (is_kdump_kernel()) {
5283 		pci_save_state(pdev);
5284 		pci_clear_master(pdev);
5285 		err = pcie_flr(pdev);
5286 		if (err)
5287 			return err;
5288 		pci_restore_state(pdev);
5289 	}
5290 
5291 	/* this driver uses devres, see
5292 	 * Documentation/driver-api/driver-model/devres.rst
5293 	 */
5294 	err = pcim_enable_device(pdev);
5295 	if (err)
5296 		return err;
5297 
5298 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5299 	if (err) {
5300 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5301 		return err;
5302 	}
5303 
5304 	pf = ice_allocate_pf(dev);
5305 	if (!pf)
5306 		return -ENOMEM;
5307 
5308 	/* initialize Auxiliary index to invalid value */
5309 	pf->aux_idx = -1;
5310 
5311 	/* set up for high or low DMA */
5312 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5313 	if (err) {
5314 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5315 		return err;
5316 	}
5317 
5318 	pci_set_master(pdev);
5319 
5320 	adapter = ice_adapter_get(pdev);
5321 	if (IS_ERR(adapter))
5322 		return PTR_ERR(adapter);
5323 
5324 	pf->pdev = pdev;
5325 	pf->adapter = adapter;
5326 	pci_set_drvdata(pdev, pf);
5327 	set_bit(ICE_DOWN, pf->state);
5328 	/* Disable service task until DOWN bit is cleared */
5329 	set_bit(ICE_SERVICE_DIS, pf->state);
5330 
5331 	hw = &pf->hw;
5332 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5333 	pci_save_state(pdev);
5334 
5335 	hw->back = pf;
5336 	hw->port_info = NULL;
5337 	hw->vendor_id = pdev->vendor;
5338 	hw->device_id = pdev->device;
5339 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5340 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5341 	hw->subsystem_device_id = pdev->subsystem_device;
5342 	hw->bus.device = PCI_SLOT(pdev->devfn);
5343 	hw->bus.func = PCI_FUNC(pdev->devfn);
5344 	ice_set_ctrlq_len(hw);
5345 
5346 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5347 
5348 #ifndef CONFIG_DYNAMIC_DEBUG
5349 	if (debug < -1)
5350 		hw->debug_mask = debug;
5351 #endif
5352 
5353 	err = ice_init(pf);
5354 	if (err)
5355 		goto err_init;
5356 
5357 	devl_lock(priv_to_devlink(pf));
5358 	err = ice_load(pf);
5359 	if (err)
5360 		goto err_load;
5361 
5362 	err = ice_init_devlink(pf);
5363 	if (err)
5364 		goto err_init_devlink;
5365 	devl_unlock(priv_to_devlink(pf));
5366 
5367 	return 0;
5368 
5369 err_init_devlink:
5370 	ice_unload(pf);
5371 err_load:
5372 	devl_unlock(priv_to_devlink(pf));
5373 	ice_deinit(pf);
5374 err_init:
5375 	ice_adapter_put(pdev);
5376 	return err;
5377 }
5378 
5379 /**
5380  * ice_set_wake - enable or disable Wake on LAN
5381  * @pf: pointer to the PF struct
5382  *
5383  * Simple helper for WoL control
5384  */
5385 static void ice_set_wake(struct ice_pf *pf)
5386 {
5387 	struct ice_hw *hw = &pf->hw;
5388 	bool wol = pf->wol_ena;
5389 
5390 	/* clear wake state, otherwise new wake events won't fire */
5391 	wr32(hw, PFPM_WUS, U32_MAX);
5392 
5393 	/* enable / disable APM wake up, no RMW needed */
5394 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5395 
5396 	/* set magic packet filter enabled */
5397 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5398 }
5399 
5400 /**
5401  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5402  * @pf: pointer to the PF struct
5403  *
5404  * Issue firmware command to enable multicast magic wake, making
5405  * sure that any locally administered address (LAA) is used for
5406  * wake, and that PF reset doesn't undo the LAA.
5407  */
5408 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5409 {
5410 	struct device *dev = ice_pf_to_dev(pf);
5411 	struct ice_hw *hw = &pf->hw;
5412 	u8 mac_addr[ETH_ALEN];
5413 	struct ice_vsi *vsi;
5414 	int status;
5415 	u8 flags;
5416 
5417 	if (!pf->wol_ena)
5418 		return;
5419 
5420 	vsi = ice_get_main_vsi(pf);
5421 	if (!vsi)
5422 		return;
5423 
5424 	/* Get current MAC address in case it's an LAA */
5425 	if (vsi->netdev)
5426 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5427 	else
5428 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5429 
5430 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5431 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5432 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5433 
5434 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5435 	if (status)
5436 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5437 			status, ice_aq_str(hw->adminq.sq_last_status));
5438 }
5439 
5440 /**
5441  * ice_remove - Device removal routine
5442  * @pdev: PCI device information struct
5443  */
5444 static void ice_remove(struct pci_dev *pdev)
5445 {
5446 	struct ice_pf *pf = pci_get_drvdata(pdev);
5447 	int i;
5448 
5449 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5450 		if (!ice_is_reset_in_progress(pf->state))
5451 			break;
5452 		msleep(100);
5453 	}
5454 
5455 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5456 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5457 		ice_free_vfs(pf);
5458 	}
5459 
5460 	ice_hwmon_exit(pf);
5461 
5462 	ice_service_task_stop(pf);
5463 	ice_aq_cancel_waiting_tasks(pf);
5464 	set_bit(ICE_DOWN, pf->state);
5465 
5466 	if (!ice_is_safe_mode(pf))
5467 		ice_remove_arfs(pf);
5468 
5469 	devl_lock(priv_to_devlink(pf));
5470 	ice_dealloc_all_dynamic_ports(pf);
5471 	ice_deinit_devlink(pf);
5472 
5473 	ice_unload(pf);
5474 	devl_unlock(priv_to_devlink(pf));
5475 
5476 	ice_deinit(pf);
5477 	ice_vsi_release_all(pf);
5478 
5479 	ice_setup_mc_magic_wake(pf);
5480 	ice_set_wake(pf);
5481 
5482 	ice_adapter_put(pdev);
5483 }
5484 
5485 /**
5486  * ice_shutdown - PCI callback for shutting down device
5487  * @pdev: PCI device information struct
5488  */
5489 static void ice_shutdown(struct pci_dev *pdev)
5490 {
5491 	struct ice_pf *pf = pci_get_drvdata(pdev);
5492 
5493 	ice_remove(pdev);
5494 
5495 	if (system_state == SYSTEM_POWER_OFF) {
5496 		pci_wake_from_d3(pdev, pf->wol_ena);
5497 		pci_set_power_state(pdev, PCI_D3hot);
5498 	}
5499 }
5500 
5501 /**
5502  * ice_prepare_for_shutdown - prep for PCI shutdown
5503  * @pf: board private structure
5504  *
5505  * Inform or close all dependent features in prep for PCI device shutdown
5506  */
5507 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5508 {
5509 	struct ice_hw *hw = &pf->hw;
5510 	u32 v;
5511 
5512 	/* Notify VFs of impending reset */
5513 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5514 		ice_vc_notify_reset(pf);
5515 
5516 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5517 
5518 	/* disable the VSIs and their queues that are not already DOWN */
5519 	ice_pf_dis_all_vsi(pf, false);
5520 
5521 	ice_for_each_vsi(pf, v)
5522 		if (pf->vsi[v])
5523 			pf->vsi[v]->vsi_num = 0;
5524 
5525 	ice_shutdown_all_ctrlq(hw, true);
5526 }
5527 
5528 /**
5529  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5530  * @pf: board private structure to reinitialize
5531  *
5532  * This routine reinitialize interrupt scheme that was cleared during
5533  * power management suspend callback.
5534  *
5535  * This should be called during resume routine to re-allocate the q_vectors
5536  * and reacquire interrupts.
5537  */
5538 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5539 {
5540 	struct device *dev = ice_pf_to_dev(pf);
5541 	int ret, v;
5542 
5543 	/* Since we clear MSIX flag during suspend, we need to
5544 	 * set it back during resume...
5545 	 */
5546 
5547 	ret = ice_init_interrupt_scheme(pf);
5548 	if (ret) {
5549 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5550 		return ret;
5551 	}
5552 
5553 	/* Remap vectors and rings, after successful re-init interrupts */
5554 	ice_for_each_vsi(pf, v) {
5555 		if (!pf->vsi[v])
5556 			continue;
5557 
5558 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5559 		if (ret)
5560 			goto err_reinit;
5561 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5562 		rtnl_lock();
5563 		ice_vsi_set_napi_queues(pf->vsi[v]);
5564 		rtnl_unlock();
5565 	}
5566 
5567 	ret = ice_req_irq_msix_misc(pf);
5568 	if (ret) {
5569 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5570 			ret);
5571 		goto err_reinit;
5572 	}
5573 
5574 	return 0;
5575 
5576 err_reinit:
5577 	while (v--)
5578 		if (pf->vsi[v]) {
5579 			rtnl_lock();
5580 			ice_vsi_clear_napi_queues(pf->vsi[v]);
5581 			rtnl_unlock();
5582 			ice_vsi_free_q_vectors(pf->vsi[v]);
5583 		}
5584 
5585 	return ret;
5586 }
5587 
5588 /**
5589  * ice_suspend
5590  * @dev: generic device information structure
5591  *
5592  * Power Management callback to quiesce the device and prepare
5593  * for D3 transition.
5594  */
5595 static int ice_suspend(struct device *dev)
5596 {
5597 	struct pci_dev *pdev = to_pci_dev(dev);
5598 	struct ice_pf *pf;
5599 	int disabled, v;
5600 
5601 	pf = pci_get_drvdata(pdev);
5602 
5603 	if (!ice_pf_state_is_nominal(pf)) {
5604 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5605 		return -EBUSY;
5606 	}
5607 
5608 	/* Stop watchdog tasks until resume completion.
5609 	 * Even though it is most likely that the service task is
5610 	 * disabled if the device is suspended or down, the service task's
5611 	 * state is controlled by a different state bit, and we should
5612 	 * store and honor whatever state that bit is in at this point.
5613 	 */
5614 	disabled = ice_service_task_stop(pf);
5615 
5616 	ice_deinit_rdma(pf);
5617 
5618 	/* Already suspended?, then there is nothing to do */
5619 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5620 		if (!disabled)
5621 			ice_service_task_restart(pf);
5622 		return 0;
5623 	}
5624 
5625 	if (test_bit(ICE_DOWN, pf->state) ||
5626 	    ice_is_reset_in_progress(pf->state)) {
5627 		dev_err(dev, "can't suspend device in reset or already down\n");
5628 		if (!disabled)
5629 			ice_service_task_restart(pf);
5630 		return 0;
5631 	}
5632 
5633 	ice_setup_mc_magic_wake(pf);
5634 
5635 	ice_prepare_for_shutdown(pf);
5636 
5637 	ice_set_wake(pf);
5638 
5639 	/* Free vectors, clear the interrupt scheme and release IRQs
5640 	 * for proper hibernation, especially with large number of CPUs.
5641 	 * Otherwise hibernation might fail when mapping all the vectors back
5642 	 * to CPU0.
5643 	 */
5644 	ice_free_irq_msix_misc(pf);
5645 	ice_for_each_vsi(pf, v) {
5646 		if (!pf->vsi[v])
5647 			continue;
5648 		rtnl_lock();
5649 		ice_vsi_clear_napi_queues(pf->vsi[v]);
5650 		rtnl_unlock();
5651 		ice_vsi_free_q_vectors(pf->vsi[v]);
5652 	}
5653 	ice_clear_interrupt_scheme(pf);
5654 
5655 	pci_save_state(pdev);
5656 	pci_wake_from_d3(pdev, pf->wol_ena);
5657 	pci_set_power_state(pdev, PCI_D3hot);
5658 	return 0;
5659 }
5660 
5661 /**
5662  * ice_resume - PM callback for waking up from D3
5663  * @dev: generic device information structure
5664  */
5665 static int ice_resume(struct device *dev)
5666 {
5667 	struct pci_dev *pdev = to_pci_dev(dev);
5668 	enum ice_reset_req reset_type;
5669 	struct ice_pf *pf;
5670 	struct ice_hw *hw;
5671 	int ret;
5672 
5673 	pci_set_power_state(pdev, PCI_D0);
5674 	pci_restore_state(pdev);
5675 	pci_save_state(pdev);
5676 
5677 	if (!pci_device_is_present(pdev))
5678 		return -ENODEV;
5679 
5680 	ret = pci_enable_device_mem(pdev);
5681 	if (ret) {
5682 		dev_err(dev, "Cannot enable device after suspend\n");
5683 		return ret;
5684 	}
5685 
5686 	pf = pci_get_drvdata(pdev);
5687 	hw = &pf->hw;
5688 
5689 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5690 	ice_print_wake_reason(pf);
5691 
5692 	/* We cleared the interrupt scheme when we suspended, so we need to
5693 	 * restore it now to resume device functionality.
5694 	 */
5695 	ret = ice_reinit_interrupt_scheme(pf);
5696 	if (ret)
5697 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5698 
5699 	ret = ice_init_rdma(pf);
5700 	if (ret)
5701 		dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5702 			ret);
5703 
5704 	clear_bit(ICE_DOWN, pf->state);
5705 	/* Now perform PF reset and rebuild */
5706 	reset_type = ICE_RESET_PFR;
5707 	/* re-enable service task for reset, but allow reset to schedule it */
5708 	clear_bit(ICE_SERVICE_DIS, pf->state);
5709 
5710 	if (ice_schedule_reset(pf, reset_type))
5711 		dev_err(dev, "Reset during resume failed.\n");
5712 
5713 	clear_bit(ICE_SUSPENDED, pf->state);
5714 	ice_service_task_restart(pf);
5715 
5716 	/* Restart the service task */
5717 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5718 
5719 	return 0;
5720 }
5721 
5722 /**
5723  * ice_pci_err_detected - warning that PCI error has been detected
5724  * @pdev: PCI device information struct
5725  * @err: the type of PCI error
5726  *
5727  * Called to warn that something happened on the PCI bus and the error handling
5728  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5729  */
5730 static pci_ers_result_t
5731 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5732 {
5733 	struct ice_pf *pf = pci_get_drvdata(pdev);
5734 
5735 	if (!pf) {
5736 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5737 			__func__, err);
5738 		return PCI_ERS_RESULT_DISCONNECT;
5739 	}
5740 
5741 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5742 		ice_service_task_stop(pf);
5743 
5744 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5745 			set_bit(ICE_PFR_REQ, pf->state);
5746 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5747 		}
5748 	}
5749 
5750 	return PCI_ERS_RESULT_NEED_RESET;
5751 }
5752 
5753 /**
5754  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5755  * @pdev: PCI device information struct
5756  *
5757  * Called to determine if the driver can recover from the PCI slot reset by
5758  * using a register read to determine if the device is recoverable.
5759  */
5760 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5761 {
5762 	struct ice_pf *pf = pci_get_drvdata(pdev);
5763 	pci_ers_result_t result;
5764 	int err;
5765 	u32 reg;
5766 
5767 	err = pci_enable_device_mem(pdev);
5768 	if (err) {
5769 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5770 			err);
5771 		result = PCI_ERS_RESULT_DISCONNECT;
5772 	} else {
5773 		pci_set_master(pdev);
5774 		pci_restore_state(pdev);
5775 		pci_save_state(pdev);
5776 		pci_wake_from_d3(pdev, false);
5777 
5778 		/* Check for life */
5779 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5780 		if (!reg)
5781 			result = PCI_ERS_RESULT_RECOVERED;
5782 		else
5783 			result = PCI_ERS_RESULT_DISCONNECT;
5784 	}
5785 
5786 	return result;
5787 }
5788 
5789 /**
5790  * ice_pci_err_resume - restart operations after PCI error recovery
5791  * @pdev: PCI device information struct
5792  *
5793  * Called to allow the driver to bring things back up after PCI error and/or
5794  * reset recovery have finished
5795  */
5796 static void ice_pci_err_resume(struct pci_dev *pdev)
5797 {
5798 	struct ice_pf *pf = pci_get_drvdata(pdev);
5799 
5800 	if (!pf) {
5801 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5802 			__func__);
5803 		return;
5804 	}
5805 
5806 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5807 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5808 			__func__);
5809 		return;
5810 	}
5811 
5812 	ice_restore_all_vfs_msi_state(pf);
5813 
5814 	ice_do_reset(pf, ICE_RESET_PFR);
5815 	ice_service_task_restart(pf);
5816 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5817 }
5818 
5819 /**
5820  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5821  * @pdev: PCI device information struct
5822  */
5823 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5824 {
5825 	struct ice_pf *pf = pci_get_drvdata(pdev);
5826 
5827 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5828 		ice_service_task_stop(pf);
5829 
5830 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5831 			set_bit(ICE_PFR_REQ, pf->state);
5832 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5833 		}
5834 	}
5835 }
5836 
5837 /**
5838  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5839  * @pdev: PCI device information struct
5840  */
5841 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5842 {
5843 	ice_pci_err_resume(pdev);
5844 }
5845 
5846 /* ice_pci_tbl - PCI Device ID Table
5847  *
5848  * Wildcard entries (PCI_ANY_ID) should come last
5849  * Last entry must be all 0s
5850  *
5851  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5852  *   Class, Class Mask, private data (not used) }
5853  */
5854 static const struct pci_device_id ice_pci_tbl[] = {
5855 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5856 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5857 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5858 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5859 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5860 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5861 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5862 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5863 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5864 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5865 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5866 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5867 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5868 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5869 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5870 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5871 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5872 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5873 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5874 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5875 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5876 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5877 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5878 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5879 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5880 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5881 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5882 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5883 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5884 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5885 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5886 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5887 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5888 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5889 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5890 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5891 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5892 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5893 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5894 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5895 	/* required last entry */
5896 	{}
5897 };
5898 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5899 
5900 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5901 
5902 static const struct pci_error_handlers ice_pci_err_handler = {
5903 	.error_detected = ice_pci_err_detected,
5904 	.slot_reset = ice_pci_err_slot_reset,
5905 	.reset_prepare = ice_pci_err_reset_prepare,
5906 	.reset_done = ice_pci_err_reset_done,
5907 	.resume = ice_pci_err_resume
5908 };
5909 
5910 static struct pci_driver ice_driver = {
5911 	.name = KBUILD_MODNAME,
5912 	.id_table = ice_pci_tbl,
5913 	.probe = ice_probe,
5914 	.remove = ice_remove,
5915 	.driver.pm = pm_sleep_ptr(&ice_pm_ops),
5916 	.shutdown = ice_shutdown,
5917 	.sriov_configure = ice_sriov_configure,
5918 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5919 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5920 	.err_handler = &ice_pci_err_handler
5921 };
5922 
5923 /**
5924  * ice_module_init - Driver registration routine
5925  *
5926  * ice_module_init is the first routine called when the driver is
5927  * loaded. All it does is register with the PCI subsystem.
5928  */
5929 static int __init ice_module_init(void)
5930 {
5931 	int status = -ENOMEM;
5932 
5933 	pr_info("%s\n", ice_driver_string);
5934 	pr_info("%s\n", ice_copyright);
5935 
5936 	ice_adv_lnk_speed_maps_init();
5937 
5938 	ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5939 	if (!ice_wq) {
5940 		pr_err("Failed to create workqueue\n");
5941 		return status;
5942 	}
5943 
5944 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5945 	if (!ice_lag_wq) {
5946 		pr_err("Failed to create LAG workqueue\n");
5947 		goto err_dest_wq;
5948 	}
5949 
5950 	ice_debugfs_init();
5951 
5952 	status = pci_register_driver(&ice_driver);
5953 	if (status) {
5954 		pr_err("failed to register PCI driver, err %d\n", status);
5955 		goto err_dest_lag_wq;
5956 	}
5957 
5958 	status = ice_sf_driver_register();
5959 	if (status) {
5960 		pr_err("Failed to register SF driver, err %d\n", status);
5961 		goto err_sf_driver;
5962 	}
5963 
5964 	return 0;
5965 
5966 err_sf_driver:
5967 	pci_unregister_driver(&ice_driver);
5968 err_dest_lag_wq:
5969 	destroy_workqueue(ice_lag_wq);
5970 	ice_debugfs_exit();
5971 err_dest_wq:
5972 	destroy_workqueue(ice_wq);
5973 	return status;
5974 }
5975 module_init(ice_module_init);
5976 
5977 /**
5978  * ice_module_exit - Driver exit cleanup routine
5979  *
5980  * ice_module_exit is called just before the driver is removed
5981  * from memory.
5982  */
5983 static void __exit ice_module_exit(void)
5984 {
5985 	ice_sf_driver_unregister();
5986 	pci_unregister_driver(&ice_driver);
5987 	ice_debugfs_exit();
5988 	destroy_workqueue(ice_wq);
5989 	destroy_workqueue(ice_lag_wq);
5990 	pr_info("module unloaded\n");
5991 }
5992 module_exit(ice_module_exit);
5993 
5994 /**
5995  * ice_set_mac_address - NDO callback to set MAC address
5996  * @netdev: network interface device structure
5997  * @pi: pointer to an address structure
5998  *
5999  * Returns 0 on success, negative on failure
6000  */
6001 static int ice_set_mac_address(struct net_device *netdev, void *pi)
6002 {
6003 	struct ice_netdev_priv *np = netdev_priv(netdev);
6004 	struct ice_vsi *vsi = np->vsi;
6005 	struct ice_pf *pf = vsi->back;
6006 	struct ice_hw *hw = &pf->hw;
6007 	struct sockaddr *addr = pi;
6008 	u8 old_mac[ETH_ALEN];
6009 	u8 flags = 0;
6010 	u8 *mac;
6011 	int err;
6012 
6013 	mac = (u8 *)addr->sa_data;
6014 
6015 	if (!is_valid_ether_addr(mac))
6016 		return -EADDRNOTAVAIL;
6017 
6018 	if (test_bit(ICE_DOWN, pf->state) ||
6019 	    ice_is_reset_in_progress(pf->state)) {
6020 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
6021 			   mac);
6022 		return -EBUSY;
6023 	}
6024 
6025 	if (ice_chnl_dmac_fltr_cnt(pf)) {
6026 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6027 			   mac);
6028 		return -EAGAIN;
6029 	}
6030 
6031 	netif_addr_lock_bh(netdev);
6032 	ether_addr_copy(old_mac, netdev->dev_addr);
6033 	/* change the netdev's MAC address */
6034 	eth_hw_addr_set(netdev, mac);
6035 	netif_addr_unlock_bh(netdev);
6036 
6037 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
6038 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6039 	if (err && err != -ENOENT) {
6040 		err = -EADDRNOTAVAIL;
6041 		goto err_update_filters;
6042 	}
6043 
6044 	/* Add filter for new MAC. If filter exists, return success */
6045 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6046 	if (err == -EEXIST) {
6047 		/* Although this MAC filter is already present in hardware it's
6048 		 * possible in some cases (e.g. bonding) that dev_addr was
6049 		 * modified outside of the driver and needs to be restored back
6050 		 * to this value.
6051 		 */
6052 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6053 
6054 		return 0;
6055 	} else if (err) {
6056 		/* error if the new filter addition failed */
6057 		err = -EADDRNOTAVAIL;
6058 	}
6059 
6060 err_update_filters:
6061 	if (err) {
6062 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6063 			   mac);
6064 		netif_addr_lock_bh(netdev);
6065 		eth_hw_addr_set(netdev, old_mac);
6066 		netif_addr_unlock_bh(netdev);
6067 		return err;
6068 	}
6069 
6070 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6071 		   netdev->dev_addr);
6072 
6073 	/* write new MAC address to the firmware */
6074 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6075 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6076 	if (err) {
6077 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6078 			   mac, err);
6079 	}
6080 	return 0;
6081 }
6082 
6083 /**
6084  * ice_set_rx_mode - NDO callback to set the netdev filters
6085  * @netdev: network interface device structure
6086  */
6087 static void ice_set_rx_mode(struct net_device *netdev)
6088 {
6089 	struct ice_netdev_priv *np = netdev_priv(netdev);
6090 	struct ice_vsi *vsi = np->vsi;
6091 
6092 	if (!vsi || ice_is_switchdev_running(vsi->back))
6093 		return;
6094 
6095 	/* Set the flags to synchronize filters
6096 	 * ndo_set_rx_mode may be triggered even without a change in netdev
6097 	 * flags
6098 	 */
6099 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6100 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6101 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6102 
6103 	/* schedule our worker thread which will take care of
6104 	 * applying the new filter changes
6105 	 */
6106 	ice_service_task_schedule(vsi->back);
6107 }
6108 
6109 /**
6110  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6111  * @netdev: network interface device structure
6112  * @queue_index: Queue ID
6113  * @maxrate: maximum bandwidth in Mbps
6114  */
6115 static int
6116 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6117 {
6118 	struct ice_netdev_priv *np = netdev_priv(netdev);
6119 	struct ice_vsi *vsi = np->vsi;
6120 	u16 q_handle;
6121 	int status;
6122 	u8 tc;
6123 
6124 	/* Validate maxrate requested is within permitted range */
6125 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6126 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6127 			   maxrate, queue_index);
6128 		return -EINVAL;
6129 	}
6130 
6131 	q_handle = vsi->tx_rings[queue_index]->q_handle;
6132 	tc = ice_dcb_get_tc(vsi, queue_index);
6133 
6134 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6135 	if (!vsi) {
6136 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
6137 			   queue_index);
6138 		return -EINVAL;
6139 	}
6140 
6141 	/* Set BW back to default, when user set maxrate to 0 */
6142 	if (!maxrate)
6143 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6144 					       q_handle, ICE_MAX_BW);
6145 	else
6146 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6147 					  q_handle, ICE_MAX_BW, maxrate * 1000);
6148 	if (status)
6149 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6150 			   status);
6151 
6152 	return status;
6153 }
6154 
6155 /**
6156  * ice_fdb_add - add an entry to the hardware database
6157  * @ndm: the input from the stack
6158  * @tb: pointer to array of nladdr (unused)
6159  * @dev: the net device pointer
6160  * @addr: the MAC address entry being added
6161  * @vid: VLAN ID
6162  * @flags: instructions from stack about fdb operation
6163  * @notified: whether notification was emitted
6164  * @extack: netlink extended ack
6165  */
6166 static int
6167 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6168 	    struct net_device *dev, const unsigned char *addr, u16 vid,
6169 	    u16 flags, bool *notified,
6170 	    struct netlink_ext_ack __always_unused *extack)
6171 {
6172 	int err;
6173 
6174 	if (vid) {
6175 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6176 		return -EINVAL;
6177 	}
6178 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6179 		netdev_err(dev, "FDB only supports static addresses\n");
6180 		return -EINVAL;
6181 	}
6182 
6183 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6184 		err = dev_uc_add_excl(dev, addr);
6185 	else if (is_multicast_ether_addr(addr))
6186 		err = dev_mc_add_excl(dev, addr);
6187 	else
6188 		err = -EINVAL;
6189 
6190 	/* Only return duplicate errors if NLM_F_EXCL is set */
6191 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
6192 		err = 0;
6193 
6194 	return err;
6195 }
6196 
6197 /**
6198  * ice_fdb_del - delete an entry from the hardware database
6199  * @ndm: the input from the stack
6200  * @tb: pointer to array of nladdr (unused)
6201  * @dev: the net device pointer
6202  * @addr: the MAC address entry being added
6203  * @vid: VLAN ID
6204  * @notified: whether notification was emitted
6205  * @extack: netlink extended ack
6206  */
6207 static int
6208 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6209 	    struct net_device *dev, const unsigned char *addr,
6210 	    __always_unused u16 vid, bool *notified,
6211 	    struct netlink_ext_ack *extack)
6212 {
6213 	int err;
6214 
6215 	if (ndm->ndm_state & NUD_PERMANENT) {
6216 		netdev_err(dev, "FDB only supports static addresses\n");
6217 		return -EINVAL;
6218 	}
6219 
6220 	if (is_unicast_ether_addr(addr))
6221 		err = dev_uc_del(dev, addr);
6222 	else if (is_multicast_ether_addr(addr))
6223 		err = dev_mc_del(dev, addr);
6224 	else
6225 		err = -EINVAL;
6226 
6227 	return err;
6228 }
6229 
6230 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6231 					 NETIF_F_HW_VLAN_CTAG_TX | \
6232 					 NETIF_F_HW_VLAN_STAG_RX | \
6233 					 NETIF_F_HW_VLAN_STAG_TX)
6234 
6235 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6236 					 NETIF_F_HW_VLAN_STAG_RX)
6237 
6238 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6239 					 NETIF_F_HW_VLAN_STAG_FILTER)
6240 
6241 /**
6242  * ice_fix_features - fix the netdev features flags based on device limitations
6243  * @netdev: ptr to the netdev that flags are being fixed on
6244  * @features: features that need to be checked and possibly fixed
6245  *
6246  * Make sure any fixups are made to features in this callback. This enables the
6247  * driver to not have to check unsupported configurations throughout the driver
6248  * because that's the responsiblity of this callback.
6249  *
6250  * Single VLAN Mode (SVM) Supported Features:
6251  *	NETIF_F_HW_VLAN_CTAG_FILTER
6252  *	NETIF_F_HW_VLAN_CTAG_RX
6253  *	NETIF_F_HW_VLAN_CTAG_TX
6254  *
6255  * Double VLAN Mode (DVM) Supported Features:
6256  *	NETIF_F_HW_VLAN_CTAG_FILTER
6257  *	NETIF_F_HW_VLAN_CTAG_RX
6258  *	NETIF_F_HW_VLAN_CTAG_TX
6259  *
6260  *	NETIF_F_HW_VLAN_STAG_FILTER
6261  *	NETIF_HW_VLAN_STAG_RX
6262  *	NETIF_HW_VLAN_STAG_TX
6263  *
6264  * Features that need fixing:
6265  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6266  *	These are mutually exlusive as the VSI context cannot support multiple
6267  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6268  *	is not done, then default to clearing the requested STAG offload
6269  *	settings.
6270  *
6271  *	All supported filtering has to be enabled or disabled together. For
6272  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6273  *	together. If this is not done, then default to VLAN filtering disabled.
6274  *	These are mutually exclusive as there is currently no way to
6275  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6276  *	prune rules.
6277  */
6278 static netdev_features_t
6279 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6280 {
6281 	struct ice_netdev_priv *np = netdev_priv(netdev);
6282 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6283 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6284 
6285 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6286 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6287 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6288 
6289 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6290 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6291 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6292 
6293 	if (req_vlan_fltr != cur_vlan_fltr) {
6294 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6295 			if (req_ctag && req_stag) {
6296 				features |= NETIF_VLAN_FILTERING_FEATURES;
6297 			} else if (!req_ctag && !req_stag) {
6298 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6299 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6300 				   (!cur_stag && req_stag && !cur_ctag)) {
6301 				features |= NETIF_VLAN_FILTERING_FEATURES;
6302 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6303 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6304 				   (cur_stag && !req_stag && cur_ctag)) {
6305 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6306 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6307 			}
6308 		} else {
6309 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6310 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6311 
6312 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6313 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6314 		}
6315 	}
6316 
6317 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6318 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6319 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6320 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6321 			      NETIF_F_HW_VLAN_STAG_TX);
6322 	}
6323 
6324 	if (!(netdev->features & NETIF_F_RXFCS) &&
6325 	    (features & NETIF_F_RXFCS) &&
6326 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6327 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6328 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6329 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6330 	}
6331 
6332 	return features;
6333 }
6334 
6335 /**
6336  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6337  * @vsi: PF's VSI
6338  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6339  *
6340  * Store current stripped VLAN proto in ring packet context,
6341  * so it can be accessed more efficiently by packet processing code.
6342  */
6343 static void
6344 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6345 {
6346 	u16 i;
6347 
6348 	ice_for_each_alloc_rxq(vsi, i)
6349 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6350 }
6351 
6352 /**
6353  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6354  * @vsi: PF's VSI
6355  * @features: features used to determine VLAN offload settings
6356  *
6357  * First, determine the vlan_ethertype based on the VLAN offload bits in
6358  * features. Then determine if stripping and insertion should be enabled or
6359  * disabled. Finally enable or disable VLAN stripping and insertion.
6360  */
6361 static int
6362 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6363 {
6364 	bool enable_stripping = true, enable_insertion = true;
6365 	struct ice_vsi_vlan_ops *vlan_ops;
6366 	int strip_err = 0, insert_err = 0;
6367 	u16 vlan_ethertype = 0;
6368 
6369 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6370 
6371 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6372 		vlan_ethertype = ETH_P_8021AD;
6373 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6374 		vlan_ethertype = ETH_P_8021Q;
6375 
6376 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6377 		enable_stripping = false;
6378 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6379 		enable_insertion = false;
6380 
6381 	if (enable_stripping)
6382 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6383 	else
6384 		strip_err = vlan_ops->dis_stripping(vsi);
6385 
6386 	if (enable_insertion)
6387 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6388 	else
6389 		insert_err = vlan_ops->dis_insertion(vsi);
6390 
6391 	if (strip_err || insert_err)
6392 		return -EIO;
6393 
6394 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6395 				    htons(vlan_ethertype) : 0);
6396 
6397 	return 0;
6398 }
6399 
6400 /**
6401  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6402  * @vsi: PF's VSI
6403  * @features: features used to determine VLAN filtering settings
6404  *
6405  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6406  * features.
6407  */
6408 static int
6409 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6410 {
6411 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6412 	int err = 0;
6413 
6414 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6415 	 * if either bit is set. In switchdev mode Rx filtering should never be
6416 	 * enabled.
6417 	 */
6418 	if ((features &
6419 	     (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6420 	     !ice_is_eswitch_mode_switchdev(vsi->back))
6421 		err = vlan_ops->ena_rx_filtering(vsi);
6422 	else
6423 		err = vlan_ops->dis_rx_filtering(vsi);
6424 
6425 	return err;
6426 }
6427 
6428 /**
6429  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6430  * @netdev: ptr to the netdev being adjusted
6431  * @features: the feature set that the stack is suggesting
6432  *
6433  * Only update VLAN settings if the requested_vlan_features are different than
6434  * the current_vlan_features.
6435  */
6436 static int
6437 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6438 {
6439 	netdev_features_t current_vlan_features, requested_vlan_features;
6440 	struct ice_netdev_priv *np = netdev_priv(netdev);
6441 	struct ice_vsi *vsi = np->vsi;
6442 	int err;
6443 
6444 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6445 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6446 	if (current_vlan_features ^ requested_vlan_features) {
6447 		if ((features & NETIF_F_RXFCS) &&
6448 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6449 			dev_err(ice_pf_to_dev(vsi->back),
6450 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6451 			return -EIO;
6452 		}
6453 
6454 		err = ice_set_vlan_offload_features(vsi, features);
6455 		if (err)
6456 			return err;
6457 	}
6458 
6459 	current_vlan_features = netdev->features &
6460 		NETIF_VLAN_FILTERING_FEATURES;
6461 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6462 	if (current_vlan_features ^ requested_vlan_features) {
6463 		err = ice_set_vlan_filtering_features(vsi, features);
6464 		if (err)
6465 			return err;
6466 	}
6467 
6468 	return 0;
6469 }
6470 
6471 /**
6472  * ice_set_loopback - turn on/off loopback mode on underlying PF
6473  * @vsi: ptr to VSI
6474  * @ena: flag to indicate the on/off setting
6475  */
6476 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6477 {
6478 	bool if_running = netif_running(vsi->netdev);
6479 	int ret;
6480 
6481 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6482 		ret = ice_down(vsi);
6483 		if (ret) {
6484 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6485 			return ret;
6486 		}
6487 	}
6488 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6489 	if (ret)
6490 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6491 	if (if_running)
6492 		ret = ice_up(vsi);
6493 
6494 	return ret;
6495 }
6496 
6497 /**
6498  * ice_set_features - set the netdev feature flags
6499  * @netdev: ptr to the netdev being adjusted
6500  * @features: the feature set that the stack is suggesting
6501  */
6502 static int
6503 ice_set_features(struct net_device *netdev, netdev_features_t features)
6504 {
6505 	netdev_features_t changed = netdev->features ^ features;
6506 	struct ice_netdev_priv *np = netdev_priv(netdev);
6507 	struct ice_vsi *vsi = np->vsi;
6508 	struct ice_pf *pf = vsi->back;
6509 	int ret = 0;
6510 
6511 	/* Don't set any netdev advanced features with device in Safe Mode */
6512 	if (ice_is_safe_mode(pf)) {
6513 		dev_err(ice_pf_to_dev(pf),
6514 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6515 		return ret;
6516 	}
6517 
6518 	/* Do not change setting during reset */
6519 	if (ice_is_reset_in_progress(pf->state)) {
6520 		dev_err(ice_pf_to_dev(pf),
6521 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6522 		return -EBUSY;
6523 	}
6524 
6525 	/* Multiple features can be changed in one call so keep features in
6526 	 * separate if/else statements to guarantee each feature is checked
6527 	 */
6528 	if (changed & NETIF_F_RXHASH)
6529 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6530 
6531 	ret = ice_set_vlan_features(netdev, features);
6532 	if (ret)
6533 		return ret;
6534 
6535 	/* Turn on receive of FCS aka CRC, and after setting this
6536 	 * flag the packet data will have the 4 byte CRC appended
6537 	 */
6538 	if (changed & NETIF_F_RXFCS) {
6539 		if ((features & NETIF_F_RXFCS) &&
6540 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6541 			dev_err(ice_pf_to_dev(vsi->back),
6542 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6543 			return -EIO;
6544 		}
6545 
6546 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6547 		ret = ice_down_up(vsi);
6548 		if (ret)
6549 			return ret;
6550 	}
6551 
6552 	if (changed & NETIF_F_NTUPLE) {
6553 		bool ena = !!(features & NETIF_F_NTUPLE);
6554 
6555 		ice_vsi_manage_fdir(vsi, ena);
6556 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6557 	}
6558 
6559 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6560 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6561 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6562 		return -EACCES;
6563 	}
6564 
6565 	if (changed & NETIF_F_HW_TC) {
6566 		bool ena = !!(features & NETIF_F_HW_TC);
6567 
6568 		assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6569 	}
6570 
6571 	if (changed & NETIF_F_LOOPBACK)
6572 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6573 
6574 	return ret;
6575 }
6576 
6577 /**
6578  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6579  * @vsi: VSI to setup VLAN properties for
6580  */
6581 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6582 {
6583 	int err;
6584 
6585 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6586 	if (err)
6587 		return err;
6588 
6589 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6590 	if (err)
6591 		return err;
6592 
6593 	return ice_vsi_add_vlan_zero(vsi);
6594 }
6595 
6596 /**
6597  * ice_vsi_cfg_lan - Setup the VSI lan related config
6598  * @vsi: the VSI being configured
6599  *
6600  * Return 0 on success and negative value on error
6601  */
6602 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6603 {
6604 	int err;
6605 
6606 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6607 		ice_set_rx_mode(vsi->netdev);
6608 
6609 		err = ice_vsi_vlan_setup(vsi);
6610 		if (err)
6611 			return err;
6612 	}
6613 	ice_vsi_cfg_dcb_rings(vsi);
6614 
6615 	err = ice_vsi_cfg_lan_txqs(vsi);
6616 	if (!err && ice_is_xdp_ena_vsi(vsi))
6617 		err = ice_vsi_cfg_xdp_txqs(vsi);
6618 	if (!err)
6619 		err = ice_vsi_cfg_rxqs(vsi);
6620 
6621 	return err;
6622 }
6623 
6624 /* THEORY OF MODERATION:
6625  * The ice driver hardware works differently than the hardware that DIMLIB was
6626  * originally made for. ice hardware doesn't have packet count limits that
6627  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6628  * which is hard-coded to a limit of 250,000 ints/second.
6629  * If not using dynamic moderation, the INTRL value can be modified
6630  * by ethtool rx-usecs-high.
6631  */
6632 struct ice_dim {
6633 	/* the throttle rate for interrupts, basically worst case delay before
6634 	 * an initial interrupt fires, value is stored in microseconds.
6635 	 */
6636 	u16 itr;
6637 };
6638 
6639 /* Make a different profile for Rx that doesn't allow quite so aggressive
6640  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6641  * second.
6642  */
6643 static const struct ice_dim rx_profile[] = {
6644 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6645 	{8},    /* 125,000 ints/s */
6646 	{16},   /*  62,500 ints/s */
6647 	{62},   /*  16,129 ints/s */
6648 	{126}   /*   7,936 ints/s */
6649 };
6650 
6651 /* The transmit profile, which has the same sorts of values
6652  * as the previous struct
6653  */
6654 static const struct ice_dim tx_profile[] = {
6655 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6656 	{8},    /* 125,000 ints/s */
6657 	{40},   /*  16,125 ints/s */
6658 	{128},  /*   7,812 ints/s */
6659 	{256}   /*   3,906 ints/s */
6660 };
6661 
6662 static void ice_tx_dim_work(struct work_struct *work)
6663 {
6664 	struct ice_ring_container *rc;
6665 	struct dim *dim;
6666 	u16 itr;
6667 
6668 	dim = container_of(work, struct dim, work);
6669 	rc = dim->priv;
6670 
6671 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6672 
6673 	/* look up the values in our local table */
6674 	itr = tx_profile[dim->profile_ix].itr;
6675 
6676 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6677 	ice_write_itr(rc, itr);
6678 
6679 	dim->state = DIM_START_MEASURE;
6680 }
6681 
6682 static void ice_rx_dim_work(struct work_struct *work)
6683 {
6684 	struct ice_ring_container *rc;
6685 	struct dim *dim;
6686 	u16 itr;
6687 
6688 	dim = container_of(work, struct dim, work);
6689 	rc = dim->priv;
6690 
6691 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6692 
6693 	/* look up the values in our local table */
6694 	itr = rx_profile[dim->profile_ix].itr;
6695 
6696 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6697 	ice_write_itr(rc, itr);
6698 
6699 	dim->state = DIM_START_MEASURE;
6700 }
6701 
6702 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6703 
6704 /**
6705  * ice_init_moderation - set up interrupt moderation
6706  * @q_vector: the vector containing rings to be configured
6707  *
6708  * Set up interrupt moderation registers, with the intent to do the right thing
6709  * when called from reset or from probe, and whether or not dynamic moderation
6710  * is enabled or not. Take special care to write all the registers in both
6711  * dynamic moderation mode or not in order to make sure hardware is in a known
6712  * state.
6713  */
6714 static void ice_init_moderation(struct ice_q_vector *q_vector)
6715 {
6716 	struct ice_ring_container *rc;
6717 	bool tx_dynamic, rx_dynamic;
6718 
6719 	rc = &q_vector->tx;
6720 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6721 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6722 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6723 	rc->dim.priv = rc;
6724 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6725 
6726 	/* set the initial TX ITR to match the above */
6727 	ice_write_itr(rc, tx_dynamic ?
6728 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6729 
6730 	rc = &q_vector->rx;
6731 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6732 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6733 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6734 	rc->dim.priv = rc;
6735 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6736 
6737 	/* set the initial RX ITR to match the above */
6738 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6739 				       rc->itr_setting);
6740 
6741 	ice_set_q_vector_intrl(q_vector);
6742 }
6743 
6744 /**
6745  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6746  * @vsi: the VSI being configured
6747  */
6748 static void ice_napi_enable_all(struct ice_vsi *vsi)
6749 {
6750 	int q_idx;
6751 
6752 	if (!vsi->netdev)
6753 		return;
6754 
6755 	ice_for_each_q_vector(vsi, q_idx) {
6756 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6757 
6758 		ice_init_moderation(q_vector);
6759 
6760 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6761 			napi_enable(&q_vector->napi);
6762 	}
6763 }
6764 
6765 /**
6766  * ice_up_complete - Finish the last steps of bringing up a connection
6767  * @vsi: The VSI being configured
6768  *
6769  * Return 0 on success and negative value on error
6770  */
6771 static int ice_up_complete(struct ice_vsi *vsi)
6772 {
6773 	struct ice_pf *pf = vsi->back;
6774 	int err;
6775 
6776 	ice_vsi_cfg_msix(vsi);
6777 
6778 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6779 	 * Tx queue group list was configured and the context bits were
6780 	 * programmed using ice_vsi_cfg_txqs
6781 	 */
6782 	err = ice_vsi_start_all_rx_rings(vsi);
6783 	if (err)
6784 		return err;
6785 
6786 	clear_bit(ICE_VSI_DOWN, vsi->state);
6787 	ice_napi_enable_all(vsi);
6788 	ice_vsi_ena_irq(vsi);
6789 
6790 	if (vsi->port_info &&
6791 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6792 	    ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6793 			      vsi->type == ICE_VSI_SF)))) {
6794 		ice_print_link_msg(vsi, true);
6795 		netif_tx_start_all_queues(vsi->netdev);
6796 		netif_carrier_on(vsi->netdev);
6797 		ice_ptp_link_change(pf, pf->hw.pf_id, true);
6798 	}
6799 
6800 	/* Perform an initial read of the statistics registers now to
6801 	 * set the baseline so counters are ready when interface is up
6802 	 */
6803 	ice_update_eth_stats(vsi);
6804 
6805 	if (vsi->type == ICE_VSI_PF)
6806 		ice_service_task_schedule(pf);
6807 
6808 	return 0;
6809 }
6810 
6811 /**
6812  * ice_up - Bring the connection back up after being down
6813  * @vsi: VSI being configured
6814  */
6815 int ice_up(struct ice_vsi *vsi)
6816 {
6817 	int err;
6818 
6819 	err = ice_vsi_cfg_lan(vsi);
6820 	if (!err)
6821 		err = ice_up_complete(vsi);
6822 
6823 	return err;
6824 }
6825 
6826 /**
6827  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6828  * @syncp: pointer to u64_stats_sync
6829  * @stats: stats that pkts and bytes count will be taken from
6830  * @pkts: packets stats counter
6831  * @bytes: bytes stats counter
6832  *
6833  * This function fetches stats from the ring considering the atomic operations
6834  * that needs to be performed to read u64 values in 32 bit machine.
6835  */
6836 void
6837 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6838 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6839 {
6840 	unsigned int start;
6841 
6842 	do {
6843 		start = u64_stats_fetch_begin(syncp);
6844 		*pkts = stats.pkts;
6845 		*bytes = stats.bytes;
6846 	} while (u64_stats_fetch_retry(syncp, start));
6847 }
6848 
6849 /**
6850  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6851  * @vsi: the VSI to be updated
6852  * @vsi_stats: the stats struct to be updated
6853  * @rings: rings to work on
6854  * @count: number of rings
6855  */
6856 static void
6857 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6858 			     struct rtnl_link_stats64 *vsi_stats,
6859 			     struct ice_tx_ring **rings, u16 count)
6860 {
6861 	u16 i;
6862 
6863 	for (i = 0; i < count; i++) {
6864 		struct ice_tx_ring *ring;
6865 		u64 pkts = 0, bytes = 0;
6866 
6867 		ring = READ_ONCE(rings[i]);
6868 		if (!ring || !ring->ring_stats)
6869 			continue;
6870 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6871 					     ring->ring_stats->stats, &pkts,
6872 					     &bytes);
6873 		vsi_stats->tx_packets += pkts;
6874 		vsi_stats->tx_bytes += bytes;
6875 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6876 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6877 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6878 	}
6879 }
6880 
6881 /**
6882  * ice_update_vsi_ring_stats - Update VSI stats counters
6883  * @vsi: the VSI to be updated
6884  */
6885 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6886 {
6887 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6888 	struct rtnl_link_stats64 *vsi_stats;
6889 	struct ice_pf *pf = vsi->back;
6890 	u64 pkts, bytes;
6891 	int i;
6892 
6893 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6894 	if (!vsi_stats)
6895 		return;
6896 
6897 	/* reset non-netdev (extended) stats */
6898 	vsi->tx_restart = 0;
6899 	vsi->tx_busy = 0;
6900 	vsi->tx_linearize = 0;
6901 	vsi->rx_buf_failed = 0;
6902 	vsi->rx_page_failed = 0;
6903 
6904 	rcu_read_lock();
6905 
6906 	/* update Tx rings counters */
6907 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6908 				     vsi->num_txq);
6909 
6910 	/* update Rx rings counters */
6911 	ice_for_each_rxq(vsi, i) {
6912 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6913 		struct ice_ring_stats *ring_stats;
6914 
6915 		ring_stats = ring->ring_stats;
6916 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6917 					     ring_stats->stats, &pkts,
6918 					     &bytes);
6919 		vsi_stats->rx_packets += pkts;
6920 		vsi_stats->rx_bytes += bytes;
6921 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6922 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6923 	}
6924 
6925 	/* update XDP Tx rings counters */
6926 	if (ice_is_xdp_ena_vsi(vsi))
6927 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6928 					     vsi->num_xdp_txq);
6929 
6930 	rcu_read_unlock();
6931 
6932 	net_stats = &vsi->net_stats;
6933 	stats_prev = &vsi->net_stats_prev;
6934 
6935 	/* Update netdev counters, but keep in mind that values could start at
6936 	 * random value after PF reset. And as we increase the reported stat by
6937 	 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6938 	 * let's skip this round.
6939 	 */
6940 	if (likely(pf->stat_prev_loaded)) {
6941 		net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6942 		net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6943 		net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6944 		net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6945 	}
6946 
6947 	stats_prev->tx_packets = vsi_stats->tx_packets;
6948 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6949 	stats_prev->rx_packets = vsi_stats->rx_packets;
6950 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6951 
6952 	kfree(vsi_stats);
6953 }
6954 
6955 /**
6956  * ice_update_vsi_stats - Update VSI stats counters
6957  * @vsi: the VSI to be updated
6958  */
6959 void ice_update_vsi_stats(struct ice_vsi *vsi)
6960 {
6961 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6962 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6963 	struct ice_pf *pf = vsi->back;
6964 
6965 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6966 	    test_bit(ICE_CFG_BUSY, pf->state))
6967 		return;
6968 
6969 	/* get stats as recorded by Tx/Rx rings */
6970 	ice_update_vsi_ring_stats(vsi);
6971 
6972 	/* get VSI stats as recorded by the hardware */
6973 	ice_update_eth_stats(vsi);
6974 
6975 	cur_ns->tx_errors = cur_es->tx_errors;
6976 	cur_ns->rx_dropped = cur_es->rx_discards;
6977 	cur_ns->tx_dropped = cur_es->tx_discards;
6978 	cur_ns->multicast = cur_es->rx_multicast;
6979 
6980 	/* update some more netdev stats if this is main VSI */
6981 	if (vsi->type == ICE_VSI_PF) {
6982 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
6983 		cur_ns->rx_errors = pf->stats.crc_errors +
6984 				    pf->stats.illegal_bytes +
6985 				    pf->stats.rx_undersize +
6986 				    pf->hw_csum_rx_error +
6987 				    pf->stats.rx_jabber +
6988 				    pf->stats.rx_fragments +
6989 				    pf->stats.rx_oversize;
6990 		/* record drops from the port level */
6991 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6992 	}
6993 }
6994 
6995 /**
6996  * ice_update_pf_stats - Update PF port stats counters
6997  * @pf: PF whose stats needs to be updated
6998  */
6999 void ice_update_pf_stats(struct ice_pf *pf)
7000 {
7001 	struct ice_hw_port_stats *prev_ps, *cur_ps;
7002 	struct ice_hw *hw = &pf->hw;
7003 	u16 fd_ctr_base;
7004 	u8 port;
7005 
7006 	port = hw->port_info->lport;
7007 	prev_ps = &pf->stats_prev;
7008 	cur_ps = &pf->stats;
7009 
7010 	if (ice_is_reset_in_progress(pf->state))
7011 		pf->stat_prev_loaded = false;
7012 
7013 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7014 			  &prev_ps->eth.rx_bytes,
7015 			  &cur_ps->eth.rx_bytes);
7016 
7017 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7018 			  &prev_ps->eth.rx_unicast,
7019 			  &cur_ps->eth.rx_unicast);
7020 
7021 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7022 			  &prev_ps->eth.rx_multicast,
7023 			  &cur_ps->eth.rx_multicast);
7024 
7025 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7026 			  &prev_ps->eth.rx_broadcast,
7027 			  &cur_ps->eth.rx_broadcast);
7028 
7029 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7030 			  &prev_ps->eth.rx_discards,
7031 			  &cur_ps->eth.rx_discards);
7032 
7033 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7034 			  &prev_ps->eth.tx_bytes,
7035 			  &cur_ps->eth.tx_bytes);
7036 
7037 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7038 			  &prev_ps->eth.tx_unicast,
7039 			  &cur_ps->eth.tx_unicast);
7040 
7041 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7042 			  &prev_ps->eth.tx_multicast,
7043 			  &cur_ps->eth.tx_multicast);
7044 
7045 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7046 			  &prev_ps->eth.tx_broadcast,
7047 			  &cur_ps->eth.tx_broadcast);
7048 
7049 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7050 			  &prev_ps->tx_dropped_link_down,
7051 			  &cur_ps->tx_dropped_link_down);
7052 
7053 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7054 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7055 
7056 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7057 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7058 
7059 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7060 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7061 
7062 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7063 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7064 
7065 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7066 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7067 
7068 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7069 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7070 
7071 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7072 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7073 
7074 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7075 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7076 
7077 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7078 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7079 
7080 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7081 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7082 
7083 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7084 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7085 
7086 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7087 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7088 
7089 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7090 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7091 
7092 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7093 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7094 
7095 	fd_ctr_base = hw->fd_ctr_base;
7096 
7097 	ice_stat_update40(hw,
7098 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7099 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7100 			  &cur_ps->fd_sb_match);
7101 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7102 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7103 
7104 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7105 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7106 
7107 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7108 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7109 
7110 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7111 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7112 
7113 	ice_update_dcb_stats(pf);
7114 
7115 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7116 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
7117 
7118 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7119 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7120 
7121 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7122 			  &prev_ps->mac_local_faults,
7123 			  &cur_ps->mac_local_faults);
7124 
7125 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7126 			  &prev_ps->mac_remote_faults,
7127 			  &cur_ps->mac_remote_faults);
7128 
7129 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7130 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7131 
7132 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7133 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7134 
7135 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7136 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7137 
7138 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7139 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7140 
7141 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7142 
7143 	pf->stat_prev_loaded = true;
7144 }
7145 
7146 /**
7147  * ice_get_stats64 - get statistics for network device structure
7148  * @netdev: network interface device structure
7149  * @stats: main device statistics structure
7150  */
7151 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7152 {
7153 	struct ice_netdev_priv *np = netdev_priv(netdev);
7154 	struct rtnl_link_stats64 *vsi_stats;
7155 	struct ice_vsi *vsi = np->vsi;
7156 
7157 	vsi_stats = &vsi->net_stats;
7158 
7159 	if (!vsi->num_txq || !vsi->num_rxq)
7160 		return;
7161 
7162 	/* netdev packet/byte stats come from ring counter. These are obtained
7163 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7164 	 * But, only call the update routine and read the registers if VSI is
7165 	 * not down.
7166 	 */
7167 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
7168 		ice_update_vsi_ring_stats(vsi);
7169 	stats->tx_packets = vsi_stats->tx_packets;
7170 	stats->tx_bytes = vsi_stats->tx_bytes;
7171 	stats->rx_packets = vsi_stats->rx_packets;
7172 	stats->rx_bytes = vsi_stats->rx_bytes;
7173 
7174 	/* The rest of the stats can be read from the hardware but instead we
7175 	 * just return values that the watchdog task has already obtained from
7176 	 * the hardware.
7177 	 */
7178 	stats->multicast = vsi_stats->multicast;
7179 	stats->tx_errors = vsi_stats->tx_errors;
7180 	stats->tx_dropped = vsi_stats->tx_dropped;
7181 	stats->rx_errors = vsi_stats->rx_errors;
7182 	stats->rx_dropped = vsi_stats->rx_dropped;
7183 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7184 	stats->rx_length_errors = vsi_stats->rx_length_errors;
7185 }
7186 
7187 /**
7188  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7189  * @vsi: VSI having NAPI disabled
7190  */
7191 static void ice_napi_disable_all(struct ice_vsi *vsi)
7192 {
7193 	int q_idx;
7194 
7195 	if (!vsi->netdev)
7196 		return;
7197 
7198 	ice_for_each_q_vector(vsi, q_idx) {
7199 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7200 
7201 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7202 			napi_disable(&q_vector->napi);
7203 
7204 		cancel_work_sync(&q_vector->tx.dim.work);
7205 		cancel_work_sync(&q_vector->rx.dim.work);
7206 	}
7207 }
7208 
7209 /**
7210  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7211  * @vsi: the VSI being un-configured
7212  */
7213 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7214 {
7215 	struct ice_pf *pf = vsi->back;
7216 	struct ice_hw *hw = &pf->hw;
7217 	u32 val;
7218 	int i;
7219 
7220 	/* disable interrupt causation from each Rx queue; Tx queues are
7221 	 * handled in ice_vsi_stop_tx_ring()
7222 	 */
7223 	if (vsi->rx_rings) {
7224 		ice_for_each_rxq(vsi, i) {
7225 			if (vsi->rx_rings[i]) {
7226 				u16 reg;
7227 
7228 				reg = vsi->rx_rings[i]->reg_idx;
7229 				val = rd32(hw, QINT_RQCTL(reg));
7230 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
7231 				wr32(hw, QINT_RQCTL(reg), val);
7232 			}
7233 		}
7234 	}
7235 
7236 	/* disable each interrupt */
7237 	ice_for_each_q_vector(vsi, i) {
7238 		if (!vsi->q_vectors[i])
7239 			continue;
7240 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7241 	}
7242 
7243 	ice_flush(hw);
7244 
7245 	/* don't call synchronize_irq() for VF's from the host */
7246 	if (vsi->type == ICE_VSI_VF)
7247 		return;
7248 
7249 	ice_for_each_q_vector(vsi, i)
7250 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
7251 }
7252 
7253 /**
7254  * ice_down - Shutdown the connection
7255  * @vsi: The VSI being stopped
7256  *
7257  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7258  */
7259 int ice_down(struct ice_vsi *vsi)
7260 {
7261 	int i, tx_err, rx_err, vlan_err = 0;
7262 
7263 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7264 
7265 	if (vsi->netdev) {
7266 		vlan_err = ice_vsi_del_vlan_zero(vsi);
7267 		ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
7268 		netif_carrier_off(vsi->netdev);
7269 		netif_tx_disable(vsi->netdev);
7270 	}
7271 
7272 	ice_vsi_dis_irq(vsi);
7273 
7274 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7275 	if (tx_err)
7276 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7277 			   vsi->vsi_num, tx_err);
7278 	if (!tx_err && vsi->xdp_rings) {
7279 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7280 		if (tx_err)
7281 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7282 				   vsi->vsi_num, tx_err);
7283 	}
7284 
7285 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7286 	if (rx_err)
7287 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7288 			   vsi->vsi_num, rx_err);
7289 
7290 	ice_napi_disable_all(vsi);
7291 
7292 	ice_for_each_txq(vsi, i)
7293 		ice_clean_tx_ring(vsi->tx_rings[i]);
7294 
7295 	if (vsi->xdp_rings)
7296 		ice_for_each_xdp_txq(vsi, i)
7297 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7298 
7299 	ice_for_each_rxq(vsi, i)
7300 		ice_clean_rx_ring(vsi->rx_rings[i]);
7301 
7302 	if (tx_err || rx_err || vlan_err) {
7303 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7304 			   vsi->vsi_num, vsi->vsw->sw_id);
7305 		return -EIO;
7306 	}
7307 
7308 	return 0;
7309 }
7310 
7311 /**
7312  * ice_down_up - shutdown the VSI connection and bring it up
7313  * @vsi: the VSI to be reconnected
7314  */
7315 int ice_down_up(struct ice_vsi *vsi)
7316 {
7317 	int ret;
7318 
7319 	/* if DOWN already set, nothing to do */
7320 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7321 		return 0;
7322 
7323 	ret = ice_down(vsi);
7324 	if (ret)
7325 		return ret;
7326 
7327 	ret = ice_up(vsi);
7328 	if (ret) {
7329 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7330 		return ret;
7331 	}
7332 
7333 	return 0;
7334 }
7335 
7336 /**
7337  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7338  * @vsi: VSI having resources allocated
7339  *
7340  * Return 0 on success, negative on failure
7341  */
7342 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7343 {
7344 	int i, err = 0;
7345 
7346 	if (!vsi->num_txq) {
7347 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7348 			vsi->vsi_num);
7349 		return -EINVAL;
7350 	}
7351 
7352 	ice_for_each_txq(vsi, i) {
7353 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7354 
7355 		if (!ring)
7356 			return -EINVAL;
7357 
7358 		if (vsi->netdev)
7359 			ring->netdev = vsi->netdev;
7360 		err = ice_setup_tx_ring(ring);
7361 		if (err)
7362 			break;
7363 	}
7364 
7365 	return err;
7366 }
7367 
7368 /**
7369  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7370  * @vsi: VSI having resources allocated
7371  *
7372  * Return 0 on success, negative on failure
7373  */
7374 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7375 {
7376 	int i, err = 0;
7377 
7378 	if (!vsi->num_rxq) {
7379 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7380 			vsi->vsi_num);
7381 		return -EINVAL;
7382 	}
7383 
7384 	ice_for_each_rxq(vsi, i) {
7385 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7386 
7387 		if (!ring)
7388 			return -EINVAL;
7389 
7390 		if (vsi->netdev)
7391 			ring->netdev = vsi->netdev;
7392 		err = ice_setup_rx_ring(ring);
7393 		if (err)
7394 			break;
7395 	}
7396 
7397 	return err;
7398 }
7399 
7400 /**
7401  * ice_vsi_open_ctrl - open control VSI for use
7402  * @vsi: the VSI to open
7403  *
7404  * Initialization of the Control VSI
7405  *
7406  * Returns 0 on success, negative value on error
7407  */
7408 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7409 {
7410 	char int_name[ICE_INT_NAME_STR_LEN];
7411 	struct ice_pf *pf = vsi->back;
7412 	struct device *dev;
7413 	int err;
7414 
7415 	dev = ice_pf_to_dev(pf);
7416 	/* allocate descriptors */
7417 	err = ice_vsi_setup_tx_rings(vsi);
7418 	if (err)
7419 		goto err_setup_tx;
7420 
7421 	err = ice_vsi_setup_rx_rings(vsi);
7422 	if (err)
7423 		goto err_setup_rx;
7424 
7425 	err = ice_vsi_cfg_lan(vsi);
7426 	if (err)
7427 		goto err_setup_rx;
7428 
7429 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7430 		 dev_driver_string(dev), dev_name(dev));
7431 	err = ice_vsi_req_irq_msix(vsi, int_name);
7432 	if (err)
7433 		goto err_setup_rx;
7434 
7435 	ice_vsi_cfg_msix(vsi);
7436 
7437 	err = ice_vsi_start_all_rx_rings(vsi);
7438 	if (err)
7439 		goto err_up_complete;
7440 
7441 	clear_bit(ICE_VSI_DOWN, vsi->state);
7442 	ice_vsi_ena_irq(vsi);
7443 
7444 	return 0;
7445 
7446 err_up_complete:
7447 	ice_down(vsi);
7448 err_setup_rx:
7449 	ice_vsi_free_rx_rings(vsi);
7450 err_setup_tx:
7451 	ice_vsi_free_tx_rings(vsi);
7452 
7453 	return err;
7454 }
7455 
7456 /**
7457  * ice_vsi_open - Called when a network interface is made active
7458  * @vsi: the VSI to open
7459  *
7460  * Initialization of the VSI
7461  *
7462  * Returns 0 on success, negative value on error
7463  */
7464 int ice_vsi_open(struct ice_vsi *vsi)
7465 {
7466 	char int_name[ICE_INT_NAME_STR_LEN];
7467 	struct ice_pf *pf = vsi->back;
7468 	int err;
7469 
7470 	/* allocate descriptors */
7471 	err = ice_vsi_setup_tx_rings(vsi);
7472 	if (err)
7473 		goto err_setup_tx;
7474 
7475 	err = ice_vsi_setup_rx_rings(vsi);
7476 	if (err)
7477 		goto err_setup_rx;
7478 
7479 	err = ice_vsi_cfg_lan(vsi);
7480 	if (err)
7481 		goto err_setup_rx;
7482 
7483 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7484 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7485 	err = ice_vsi_req_irq_msix(vsi, int_name);
7486 	if (err)
7487 		goto err_setup_rx;
7488 
7489 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7490 
7491 	if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7492 		/* Notify the stack of the actual queue counts. */
7493 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7494 		if (err)
7495 			goto err_set_qs;
7496 
7497 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7498 		if (err)
7499 			goto err_set_qs;
7500 
7501 		ice_vsi_set_napi_queues(vsi);
7502 	}
7503 
7504 	err = ice_up_complete(vsi);
7505 	if (err)
7506 		goto err_up_complete;
7507 
7508 	return 0;
7509 
7510 err_up_complete:
7511 	ice_down(vsi);
7512 err_set_qs:
7513 	ice_vsi_free_irq(vsi);
7514 err_setup_rx:
7515 	ice_vsi_free_rx_rings(vsi);
7516 err_setup_tx:
7517 	ice_vsi_free_tx_rings(vsi);
7518 
7519 	return err;
7520 }
7521 
7522 /**
7523  * ice_vsi_release_all - Delete all VSIs
7524  * @pf: PF from which all VSIs are being removed
7525  */
7526 static void ice_vsi_release_all(struct ice_pf *pf)
7527 {
7528 	int err, i;
7529 
7530 	if (!pf->vsi)
7531 		return;
7532 
7533 	ice_for_each_vsi(pf, i) {
7534 		if (!pf->vsi[i])
7535 			continue;
7536 
7537 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7538 			continue;
7539 
7540 		err = ice_vsi_release(pf->vsi[i]);
7541 		if (err)
7542 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7543 				i, err, pf->vsi[i]->vsi_num);
7544 	}
7545 }
7546 
7547 /**
7548  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7549  * @pf: pointer to the PF instance
7550  * @type: VSI type to rebuild
7551  *
7552  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7553  */
7554 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7555 {
7556 	struct device *dev = ice_pf_to_dev(pf);
7557 	int i, err;
7558 
7559 	ice_for_each_vsi(pf, i) {
7560 		struct ice_vsi *vsi = pf->vsi[i];
7561 
7562 		if (!vsi || vsi->type != type)
7563 			continue;
7564 
7565 		/* rebuild the VSI */
7566 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7567 		if (err) {
7568 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7569 				err, vsi->idx, ice_vsi_type_str(type));
7570 			return err;
7571 		}
7572 
7573 		/* replay filters for the VSI */
7574 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7575 		if (err) {
7576 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7577 				err, vsi->idx, ice_vsi_type_str(type));
7578 			return err;
7579 		}
7580 
7581 		/* Re-map HW VSI number, using VSI handle that has been
7582 		 * previously validated in ice_replay_vsi() call above
7583 		 */
7584 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7585 
7586 		/* enable the VSI */
7587 		err = ice_ena_vsi(vsi, false);
7588 		if (err) {
7589 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7590 				err, vsi->idx, ice_vsi_type_str(type));
7591 			return err;
7592 		}
7593 
7594 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7595 			 ice_vsi_type_str(type));
7596 	}
7597 
7598 	return 0;
7599 }
7600 
7601 /**
7602  * ice_update_pf_netdev_link - Update PF netdev link status
7603  * @pf: pointer to the PF instance
7604  */
7605 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7606 {
7607 	bool link_up;
7608 	int i;
7609 
7610 	ice_for_each_vsi(pf, i) {
7611 		struct ice_vsi *vsi = pf->vsi[i];
7612 
7613 		if (!vsi || vsi->type != ICE_VSI_PF)
7614 			return;
7615 
7616 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7617 		if (link_up) {
7618 			netif_carrier_on(pf->vsi[i]->netdev);
7619 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7620 		} else {
7621 			netif_carrier_off(pf->vsi[i]->netdev);
7622 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7623 		}
7624 	}
7625 }
7626 
7627 /**
7628  * ice_rebuild - rebuild after reset
7629  * @pf: PF to rebuild
7630  * @reset_type: type of reset
7631  *
7632  * Do not rebuild VF VSI in this flow because that is already handled via
7633  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7634  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7635  * to reset/rebuild all the VF VSI twice.
7636  */
7637 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7638 {
7639 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
7640 	struct device *dev = ice_pf_to_dev(pf);
7641 	struct ice_hw *hw = &pf->hw;
7642 	bool dvm;
7643 	int err;
7644 
7645 	if (test_bit(ICE_DOWN, pf->state))
7646 		goto clear_recovery;
7647 
7648 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7649 
7650 #define ICE_EMP_RESET_SLEEP_MS 5000
7651 	if (reset_type == ICE_RESET_EMPR) {
7652 		/* If an EMP reset has occurred, any previously pending flash
7653 		 * update will have completed. We no longer know whether or
7654 		 * not the NVM update EMP reset is restricted.
7655 		 */
7656 		pf->fw_emp_reset_disabled = false;
7657 
7658 		msleep(ICE_EMP_RESET_SLEEP_MS);
7659 	}
7660 
7661 	err = ice_init_all_ctrlq(hw);
7662 	if (err) {
7663 		dev_err(dev, "control queues init failed %d\n", err);
7664 		goto err_init_ctrlq;
7665 	}
7666 
7667 	/* if DDP was previously loaded successfully */
7668 	if (!ice_is_safe_mode(pf)) {
7669 		/* reload the SW DB of filter tables */
7670 		if (reset_type == ICE_RESET_PFR)
7671 			ice_fill_blk_tbls(hw);
7672 		else
7673 			/* Reload DDP Package after CORER/GLOBR reset */
7674 			ice_load_pkg(NULL, pf);
7675 	}
7676 
7677 	err = ice_clear_pf_cfg(hw);
7678 	if (err) {
7679 		dev_err(dev, "clear PF configuration failed %d\n", err);
7680 		goto err_init_ctrlq;
7681 	}
7682 
7683 	ice_clear_pxe_mode(hw);
7684 
7685 	err = ice_init_nvm(hw);
7686 	if (err) {
7687 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7688 		goto err_init_ctrlq;
7689 	}
7690 
7691 	err = ice_get_caps(hw);
7692 	if (err) {
7693 		dev_err(dev, "ice_get_caps failed %d\n", err);
7694 		goto err_init_ctrlq;
7695 	}
7696 
7697 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7698 	if (err) {
7699 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7700 		goto err_init_ctrlq;
7701 	}
7702 
7703 	dvm = ice_is_dvm_ena(hw);
7704 
7705 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7706 	if (err)
7707 		goto err_init_ctrlq;
7708 
7709 	err = ice_sched_init_port(hw->port_info);
7710 	if (err)
7711 		goto err_sched_init_port;
7712 
7713 	/* start misc vector */
7714 	err = ice_req_irq_msix_misc(pf);
7715 	if (err) {
7716 		dev_err(dev, "misc vector setup failed: %d\n", err);
7717 		goto err_sched_init_port;
7718 	}
7719 
7720 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7721 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7722 		if (!rd32(hw, PFQF_FD_SIZE)) {
7723 			u16 unused, guar, b_effort;
7724 
7725 			guar = hw->func_caps.fd_fltr_guar;
7726 			b_effort = hw->func_caps.fd_fltr_best_effort;
7727 
7728 			/* force guaranteed filter pool for PF */
7729 			ice_alloc_fd_guar_item(hw, &unused, guar);
7730 			/* force shared filter pool for PF */
7731 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7732 		}
7733 	}
7734 
7735 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7736 		ice_dcb_rebuild(pf);
7737 
7738 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7739 	 * the VSI rebuild. If not, this causes the PTP link status events to
7740 	 * fail.
7741 	 */
7742 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7743 		ice_ptp_rebuild(pf, reset_type);
7744 
7745 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7746 		ice_gnss_init(pf);
7747 
7748 	/* rebuild PF VSI */
7749 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7750 	if (err) {
7751 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7752 		goto err_vsi_rebuild;
7753 	}
7754 
7755 	if (reset_type == ICE_RESET_PFR) {
7756 		err = ice_rebuild_channels(pf);
7757 		if (err) {
7758 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7759 				err);
7760 			goto err_vsi_rebuild;
7761 		}
7762 	}
7763 
7764 	/* If Flow Director is active */
7765 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7766 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7767 		if (err) {
7768 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7769 			goto err_vsi_rebuild;
7770 		}
7771 
7772 		/* replay HW Flow Director recipes */
7773 		if (hw->fdir_prof)
7774 			ice_fdir_replay_flows(hw);
7775 
7776 		/* replay Flow Director filters */
7777 		ice_fdir_replay_fltrs(pf);
7778 
7779 		ice_rebuild_arfs(pf);
7780 	}
7781 
7782 	if (vsi && vsi->netdev)
7783 		netif_device_attach(vsi->netdev);
7784 
7785 	ice_update_pf_netdev_link(pf);
7786 
7787 	/* tell the firmware we are up */
7788 	err = ice_send_version(pf);
7789 	if (err) {
7790 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7791 			err);
7792 		goto err_vsi_rebuild;
7793 	}
7794 
7795 	ice_replay_post(hw);
7796 
7797 	/* if we get here, reset flow is successful */
7798 	clear_bit(ICE_RESET_FAILED, pf->state);
7799 
7800 	ice_health_clear(pf);
7801 
7802 	ice_plug_aux_dev(pf);
7803 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7804 		ice_lag_rebuild(pf);
7805 
7806 	/* Restore timestamp mode settings after VSI rebuild */
7807 	ice_ptp_restore_timestamp_mode(pf);
7808 	return;
7809 
7810 err_vsi_rebuild:
7811 err_sched_init_port:
7812 	ice_sched_cleanup_all(hw);
7813 err_init_ctrlq:
7814 	ice_shutdown_all_ctrlq(hw, false);
7815 	set_bit(ICE_RESET_FAILED, pf->state);
7816 clear_recovery:
7817 	/* set this bit in PF state to control service task scheduling */
7818 	set_bit(ICE_NEEDS_RESTART, pf->state);
7819 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7820 }
7821 
7822 /**
7823  * ice_change_mtu - NDO callback to change the MTU
7824  * @netdev: network interface device structure
7825  * @new_mtu: new value for maximum frame size
7826  *
7827  * Returns 0 on success, negative on failure
7828  */
7829 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7830 {
7831 	struct ice_netdev_priv *np = netdev_priv(netdev);
7832 	struct ice_vsi *vsi = np->vsi;
7833 	struct ice_pf *pf = vsi->back;
7834 	struct bpf_prog *prog;
7835 	u8 count = 0;
7836 	int err = 0;
7837 
7838 	if (new_mtu == (int)netdev->mtu) {
7839 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7840 		return 0;
7841 	}
7842 
7843 	prog = vsi->xdp_prog;
7844 	if (prog && !prog->aux->xdp_has_frags) {
7845 		int frame_size = ice_max_xdp_frame_size(vsi);
7846 
7847 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7848 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7849 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7850 			return -EINVAL;
7851 		}
7852 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7853 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7854 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7855 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7856 			return -EINVAL;
7857 		}
7858 	}
7859 
7860 	/* if a reset is in progress, wait for some time for it to complete */
7861 	do {
7862 		if (ice_is_reset_in_progress(pf->state)) {
7863 			count++;
7864 			usleep_range(1000, 2000);
7865 		} else {
7866 			break;
7867 		}
7868 
7869 	} while (count < 100);
7870 
7871 	if (count == 100) {
7872 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7873 		return -EBUSY;
7874 	}
7875 
7876 	WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7877 	err = ice_down_up(vsi);
7878 	if (err)
7879 		return err;
7880 
7881 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7882 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7883 
7884 	return err;
7885 }
7886 
7887 /**
7888  * ice_eth_ioctl - Access the hwtstamp interface
7889  * @netdev: network interface device structure
7890  * @ifr: interface request data
7891  * @cmd: ioctl command
7892  */
7893 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7894 {
7895 	struct ice_netdev_priv *np = netdev_priv(netdev);
7896 	struct ice_pf *pf = np->vsi->back;
7897 
7898 	switch (cmd) {
7899 	case SIOCGHWTSTAMP:
7900 		return ice_ptp_get_ts_config(pf, ifr);
7901 	case SIOCSHWTSTAMP:
7902 		return ice_ptp_set_ts_config(pf, ifr);
7903 	default:
7904 		return -EOPNOTSUPP;
7905 	}
7906 }
7907 
7908 /**
7909  * ice_aq_str - convert AQ err code to a string
7910  * @aq_err: the AQ error code to convert
7911  */
7912 const char *ice_aq_str(enum ice_aq_err aq_err)
7913 {
7914 	switch (aq_err) {
7915 	case ICE_AQ_RC_OK:
7916 		return "OK";
7917 	case ICE_AQ_RC_EPERM:
7918 		return "ICE_AQ_RC_EPERM";
7919 	case ICE_AQ_RC_ENOENT:
7920 		return "ICE_AQ_RC_ENOENT";
7921 	case ICE_AQ_RC_ENOMEM:
7922 		return "ICE_AQ_RC_ENOMEM";
7923 	case ICE_AQ_RC_EBUSY:
7924 		return "ICE_AQ_RC_EBUSY";
7925 	case ICE_AQ_RC_EEXIST:
7926 		return "ICE_AQ_RC_EEXIST";
7927 	case ICE_AQ_RC_EINVAL:
7928 		return "ICE_AQ_RC_EINVAL";
7929 	case ICE_AQ_RC_ENOSPC:
7930 		return "ICE_AQ_RC_ENOSPC";
7931 	case ICE_AQ_RC_ENOSYS:
7932 		return "ICE_AQ_RC_ENOSYS";
7933 	case ICE_AQ_RC_EMODE:
7934 		return "ICE_AQ_RC_EMODE";
7935 	case ICE_AQ_RC_ENOSEC:
7936 		return "ICE_AQ_RC_ENOSEC";
7937 	case ICE_AQ_RC_EBADSIG:
7938 		return "ICE_AQ_RC_EBADSIG";
7939 	case ICE_AQ_RC_ESVN:
7940 		return "ICE_AQ_RC_ESVN";
7941 	case ICE_AQ_RC_EBADMAN:
7942 		return "ICE_AQ_RC_EBADMAN";
7943 	case ICE_AQ_RC_EBADBUF:
7944 		return "ICE_AQ_RC_EBADBUF";
7945 	}
7946 
7947 	return "ICE_AQ_RC_UNKNOWN";
7948 }
7949 
7950 /**
7951  * ice_set_rss_lut - Set RSS LUT
7952  * @vsi: Pointer to VSI structure
7953  * @lut: Lookup table
7954  * @lut_size: Lookup table size
7955  *
7956  * Returns 0 on success, negative on failure
7957  */
7958 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7959 {
7960 	struct ice_aq_get_set_rss_lut_params params = {};
7961 	struct ice_hw *hw = &vsi->back->hw;
7962 	int status;
7963 
7964 	if (!lut)
7965 		return -EINVAL;
7966 
7967 	params.vsi_handle = vsi->idx;
7968 	params.lut_size = lut_size;
7969 	params.lut_type = vsi->rss_lut_type;
7970 	params.lut = lut;
7971 
7972 	status = ice_aq_set_rss_lut(hw, &params);
7973 	if (status)
7974 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7975 			status, ice_aq_str(hw->adminq.sq_last_status));
7976 
7977 	return status;
7978 }
7979 
7980 /**
7981  * ice_set_rss_key - Set RSS key
7982  * @vsi: Pointer to the VSI structure
7983  * @seed: RSS hash seed
7984  *
7985  * Returns 0 on success, negative on failure
7986  */
7987 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7988 {
7989 	struct ice_hw *hw = &vsi->back->hw;
7990 	int status;
7991 
7992 	if (!seed)
7993 		return -EINVAL;
7994 
7995 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7996 	if (status)
7997 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7998 			status, ice_aq_str(hw->adminq.sq_last_status));
7999 
8000 	return status;
8001 }
8002 
8003 /**
8004  * ice_get_rss_lut - Get RSS LUT
8005  * @vsi: Pointer to VSI structure
8006  * @lut: Buffer to store the lookup table entries
8007  * @lut_size: Size of buffer to store the lookup table entries
8008  *
8009  * Returns 0 on success, negative on failure
8010  */
8011 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
8012 {
8013 	struct ice_aq_get_set_rss_lut_params params = {};
8014 	struct ice_hw *hw = &vsi->back->hw;
8015 	int status;
8016 
8017 	if (!lut)
8018 		return -EINVAL;
8019 
8020 	params.vsi_handle = vsi->idx;
8021 	params.lut_size = lut_size;
8022 	params.lut_type = vsi->rss_lut_type;
8023 	params.lut = lut;
8024 
8025 	status = ice_aq_get_rss_lut(hw, &params);
8026 	if (status)
8027 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8028 			status, ice_aq_str(hw->adminq.sq_last_status));
8029 
8030 	return status;
8031 }
8032 
8033 /**
8034  * ice_get_rss_key - Get RSS key
8035  * @vsi: Pointer to VSI structure
8036  * @seed: Buffer to store the key in
8037  *
8038  * Returns 0 on success, negative on failure
8039  */
8040 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8041 {
8042 	struct ice_hw *hw = &vsi->back->hw;
8043 	int status;
8044 
8045 	if (!seed)
8046 		return -EINVAL;
8047 
8048 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8049 	if (status)
8050 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8051 			status, ice_aq_str(hw->adminq.sq_last_status));
8052 
8053 	return status;
8054 }
8055 
8056 /**
8057  * ice_set_rss_hfunc - Set RSS HASH function
8058  * @vsi: Pointer to VSI structure
8059  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8060  *
8061  * Returns 0 on success, negative on failure
8062  */
8063 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8064 {
8065 	struct ice_hw *hw = &vsi->back->hw;
8066 	struct ice_vsi_ctx *ctx;
8067 	bool symm;
8068 	int err;
8069 
8070 	if (hfunc == vsi->rss_hfunc)
8071 		return 0;
8072 
8073 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8074 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8075 		return -EOPNOTSUPP;
8076 
8077 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8078 	if (!ctx)
8079 		return -ENOMEM;
8080 
8081 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8082 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8083 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8084 	ctx->info.q_opt_rss |=
8085 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8086 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8087 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8088 
8089 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8090 	if (err) {
8091 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8092 			vsi->vsi_num, err);
8093 	} else {
8094 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8095 		vsi->rss_hfunc = hfunc;
8096 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8097 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8098 			    "Symmetric " : "");
8099 	}
8100 	kfree(ctx);
8101 	if (err)
8102 		return err;
8103 
8104 	/* Fix the symmetry setting for all existing RSS configurations */
8105 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8106 	return ice_set_rss_cfg_symm(hw, vsi, symm);
8107 }
8108 
8109 /**
8110  * ice_bridge_getlink - Get the hardware bridge mode
8111  * @skb: skb buff
8112  * @pid: process ID
8113  * @seq: RTNL message seq
8114  * @dev: the netdev being configured
8115  * @filter_mask: filter mask passed in
8116  * @nlflags: netlink flags passed in
8117  *
8118  * Return the bridge mode (VEB/VEPA)
8119  */
8120 static int
8121 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8122 		   struct net_device *dev, u32 filter_mask, int nlflags)
8123 {
8124 	struct ice_netdev_priv *np = netdev_priv(dev);
8125 	struct ice_vsi *vsi = np->vsi;
8126 	struct ice_pf *pf = vsi->back;
8127 	u16 bmode;
8128 
8129 	bmode = pf->first_sw->bridge_mode;
8130 
8131 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8132 				       filter_mask, NULL);
8133 }
8134 
8135 /**
8136  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8137  * @vsi: Pointer to VSI structure
8138  * @bmode: Hardware bridge mode (VEB/VEPA)
8139  *
8140  * Returns 0 on success, negative on failure
8141  */
8142 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8143 {
8144 	struct ice_aqc_vsi_props *vsi_props;
8145 	struct ice_hw *hw = &vsi->back->hw;
8146 	struct ice_vsi_ctx *ctxt;
8147 	int ret;
8148 
8149 	vsi_props = &vsi->info;
8150 
8151 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8152 	if (!ctxt)
8153 		return -ENOMEM;
8154 
8155 	ctxt->info = vsi->info;
8156 
8157 	if (bmode == BRIDGE_MODE_VEB)
8158 		/* change from VEPA to VEB mode */
8159 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8160 	else
8161 		/* change from VEB to VEPA mode */
8162 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8163 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8164 
8165 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8166 	if (ret) {
8167 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8168 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8169 		goto out;
8170 	}
8171 	/* Update sw flags for book keeping */
8172 	vsi_props->sw_flags = ctxt->info.sw_flags;
8173 
8174 out:
8175 	kfree(ctxt);
8176 	return ret;
8177 }
8178 
8179 /**
8180  * ice_bridge_setlink - Set the hardware bridge mode
8181  * @dev: the netdev being configured
8182  * @nlh: RTNL message
8183  * @flags: bridge setlink flags
8184  * @extack: netlink extended ack
8185  *
8186  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8187  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8188  * not already set for all VSIs connected to this switch. And also update the
8189  * unicast switch filter rules for the corresponding switch of the netdev.
8190  */
8191 static int
8192 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8193 		   u16 __always_unused flags,
8194 		   struct netlink_ext_ack __always_unused *extack)
8195 {
8196 	struct ice_netdev_priv *np = netdev_priv(dev);
8197 	struct ice_pf *pf = np->vsi->back;
8198 	struct nlattr *attr, *br_spec;
8199 	struct ice_hw *hw = &pf->hw;
8200 	struct ice_sw *pf_sw;
8201 	int rem, v, err = 0;
8202 
8203 	pf_sw = pf->first_sw;
8204 	/* find the attribute in the netlink message */
8205 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8206 	if (!br_spec)
8207 		return -EINVAL;
8208 
8209 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8210 		__u16 mode = nla_get_u16(attr);
8211 
8212 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8213 			return -EINVAL;
8214 		/* Continue  if bridge mode is not being flipped */
8215 		if (mode == pf_sw->bridge_mode)
8216 			continue;
8217 		/* Iterates through the PF VSI list and update the loopback
8218 		 * mode of the VSI
8219 		 */
8220 		ice_for_each_vsi(pf, v) {
8221 			if (!pf->vsi[v])
8222 				continue;
8223 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8224 			if (err)
8225 				return err;
8226 		}
8227 
8228 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8229 		/* Update the unicast switch filter rules for the corresponding
8230 		 * switch of the netdev
8231 		 */
8232 		err = ice_update_sw_rule_bridge_mode(hw);
8233 		if (err) {
8234 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8235 				   mode, err,
8236 				   ice_aq_str(hw->adminq.sq_last_status));
8237 			/* revert hw->evb_veb */
8238 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8239 			return err;
8240 		}
8241 
8242 		pf_sw->bridge_mode = mode;
8243 	}
8244 
8245 	return 0;
8246 }
8247 
8248 /**
8249  * ice_tx_timeout - Respond to a Tx Hang
8250  * @netdev: network interface device structure
8251  * @txqueue: Tx queue
8252  */
8253 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8254 {
8255 	struct ice_netdev_priv *np = netdev_priv(netdev);
8256 	struct ice_tx_ring *tx_ring = NULL;
8257 	struct ice_vsi *vsi = np->vsi;
8258 	struct ice_pf *pf = vsi->back;
8259 	u32 i;
8260 
8261 	pf->tx_timeout_count++;
8262 
8263 	/* Check if PFC is enabled for the TC to which the queue belongs
8264 	 * to. If yes then Tx timeout is not caused by a hung queue, no
8265 	 * need to reset and rebuild
8266 	 */
8267 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8268 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8269 			 txqueue);
8270 		return;
8271 	}
8272 
8273 	/* now that we have an index, find the tx_ring struct */
8274 	ice_for_each_txq(vsi, i)
8275 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8276 			if (txqueue == vsi->tx_rings[i]->q_index) {
8277 				tx_ring = vsi->tx_rings[i];
8278 				break;
8279 			}
8280 
8281 	/* Reset recovery level if enough time has elapsed after last timeout.
8282 	 * Also ensure no new reset action happens before next timeout period.
8283 	 */
8284 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8285 		pf->tx_timeout_recovery_level = 1;
8286 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8287 				       netdev->watchdog_timeo)))
8288 		return;
8289 
8290 	if (tx_ring) {
8291 		struct ice_hw *hw = &pf->hw;
8292 		u32 head, intr = 0;
8293 
8294 		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8295 				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8296 		/* Read interrupt register */
8297 		intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8298 
8299 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8300 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8301 			    head, tx_ring->next_to_use, intr);
8302 
8303 		ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8304 	}
8305 
8306 	pf->tx_timeout_last_recovery = jiffies;
8307 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8308 		    pf->tx_timeout_recovery_level, txqueue);
8309 
8310 	switch (pf->tx_timeout_recovery_level) {
8311 	case 1:
8312 		set_bit(ICE_PFR_REQ, pf->state);
8313 		break;
8314 	case 2:
8315 		set_bit(ICE_CORER_REQ, pf->state);
8316 		break;
8317 	case 3:
8318 		set_bit(ICE_GLOBR_REQ, pf->state);
8319 		break;
8320 	default:
8321 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8322 		set_bit(ICE_DOWN, pf->state);
8323 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8324 		set_bit(ICE_SERVICE_DIS, pf->state);
8325 		break;
8326 	}
8327 
8328 	ice_service_task_schedule(pf);
8329 	pf->tx_timeout_recovery_level++;
8330 }
8331 
8332 /**
8333  * ice_setup_tc_cls_flower - flower classifier offloads
8334  * @np: net device to configure
8335  * @filter_dev: device on which filter is added
8336  * @cls_flower: offload data
8337  */
8338 static int
8339 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8340 			struct net_device *filter_dev,
8341 			struct flow_cls_offload *cls_flower)
8342 {
8343 	struct ice_vsi *vsi = np->vsi;
8344 
8345 	if (cls_flower->common.chain_index)
8346 		return -EOPNOTSUPP;
8347 
8348 	switch (cls_flower->command) {
8349 	case FLOW_CLS_REPLACE:
8350 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8351 	case FLOW_CLS_DESTROY:
8352 		return ice_del_cls_flower(vsi, cls_flower);
8353 	default:
8354 		return -EINVAL;
8355 	}
8356 }
8357 
8358 /**
8359  * ice_setup_tc_block_cb - callback handler registered for TC block
8360  * @type: TC SETUP type
8361  * @type_data: TC flower offload data that contains user input
8362  * @cb_priv: netdev private data
8363  */
8364 static int
8365 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8366 {
8367 	struct ice_netdev_priv *np = cb_priv;
8368 
8369 	switch (type) {
8370 	case TC_SETUP_CLSFLOWER:
8371 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8372 					       type_data);
8373 	default:
8374 		return -EOPNOTSUPP;
8375 	}
8376 }
8377 
8378 /**
8379  * ice_validate_mqprio_qopt - Validate TCF input parameters
8380  * @vsi: Pointer to VSI
8381  * @mqprio_qopt: input parameters for mqprio queue configuration
8382  *
8383  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8384  * needed), and make sure user doesn't specify qcount and BW rate limit
8385  * for TCs, which are more than "num_tc"
8386  */
8387 static int
8388 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8389 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8390 {
8391 	int non_power_of_2_qcount = 0;
8392 	struct ice_pf *pf = vsi->back;
8393 	int max_rss_q_cnt = 0;
8394 	u64 sum_min_rate = 0;
8395 	struct device *dev;
8396 	int i, speed;
8397 	u8 num_tc;
8398 
8399 	if (vsi->type != ICE_VSI_PF)
8400 		return -EINVAL;
8401 
8402 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8403 	    mqprio_qopt->qopt.num_tc < 1 ||
8404 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8405 		return -EINVAL;
8406 
8407 	dev = ice_pf_to_dev(pf);
8408 	vsi->ch_rss_size = 0;
8409 	num_tc = mqprio_qopt->qopt.num_tc;
8410 	speed = ice_get_link_speed_kbps(vsi);
8411 
8412 	for (i = 0; num_tc; i++) {
8413 		int qcount = mqprio_qopt->qopt.count[i];
8414 		u64 max_rate, min_rate, rem;
8415 
8416 		if (!qcount)
8417 			return -EINVAL;
8418 
8419 		if (is_power_of_2(qcount)) {
8420 			if (non_power_of_2_qcount &&
8421 			    qcount > non_power_of_2_qcount) {
8422 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8423 					qcount, non_power_of_2_qcount);
8424 				return -EINVAL;
8425 			}
8426 			if (qcount > max_rss_q_cnt)
8427 				max_rss_q_cnt = qcount;
8428 		} else {
8429 			if (non_power_of_2_qcount &&
8430 			    qcount != non_power_of_2_qcount) {
8431 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8432 					qcount, non_power_of_2_qcount);
8433 				return -EINVAL;
8434 			}
8435 			if (qcount < max_rss_q_cnt) {
8436 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8437 					qcount, max_rss_q_cnt);
8438 				return -EINVAL;
8439 			}
8440 			max_rss_q_cnt = qcount;
8441 			non_power_of_2_qcount = qcount;
8442 		}
8443 
8444 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8445 		 * converts the bandwidth rate limit into Bytes/s when
8446 		 * passing it down to the driver. So convert input bandwidth
8447 		 * from Bytes/s to Kbps
8448 		 */
8449 		max_rate = mqprio_qopt->max_rate[i];
8450 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8451 
8452 		/* min_rate is minimum guaranteed rate and it can't be zero */
8453 		min_rate = mqprio_qopt->min_rate[i];
8454 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8455 		sum_min_rate += min_rate;
8456 
8457 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8458 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8459 				min_rate, ICE_MIN_BW_LIMIT);
8460 			return -EINVAL;
8461 		}
8462 
8463 		if (max_rate && max_rate > speed) {
8464 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8465 				i, max_rate, speed);
8466 			return -EINVAL;
8467 		}
8468 
8469 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8470 		if (rem) {
8471 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8472 				i, ICE_MIN_BW_LIMIT);
8473 			return -EINVAL;
8474 		}
8475 
8476 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8477 		if (rem) {
8478 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8479 				i, ICE_MIN_BW_LIMIT);
8480 			return -EINVAL;
8481 		}
8482 
8483 		/* min_rate can't be more than max_rate, except when max_rate
8484 		 * is zero (implies max_rate sought is max line rate). In such
8485 		 * a case min_rate can be more than max.
8486 		 */
8487 		if (max_rate && min_rate > max_rate) {
8488 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8489 				min_rate, max_rate);
8490 			return -EINVAL;
8491 		}
8492 
8493 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8494 			break;
8495 		if (mqprio_qopt->qopt.offset[i + 1] !=
8496 		    (mqprio_qopt->qopt.offset[i] + qcount))
8497 			return -EINVAL;
8498 	}
8499 	if (vsi->num_rxq <
8500 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8501 		return -EINVAL;
8502 	if (vsi->num_txq <
8503 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8504 		return -EINVAL;
8505 
8506 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8507 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8508 			sum_min_rate, speed);
8509 		return -EINVAL;
8510 	}
8511 
8512 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8513 	vsi->ch_rss_size = max_rss_q_cnt;
8514 
8515 	return 0;
8516 }
8517 
8518 /**
8519  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8520  * @pf: ptr to PF device
8521  * @vsi: ptr to VSI
8522  */
8523 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8524 {
8525 	struct device *dev = ice_pf_to_dev(pf);
8526 	bool added = false;
8527 	struct ice_hw *hw;
8528 	int flow;
8529 
8530 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8531 		return -EINVAL;
8532 
8533 	hw = &pf->hw;
8534 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8535 		struct ice_fd_hw_prof *prof;
8536 		int tun, status;
8537 		u64 entry_h;
8538 
8539 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8540 		      hw->fdir_prof[flow]->cnt))
8541 			continue;
8542 
8543 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8544 			enum ice_flow_priority prio;
8545 
8546 			/* add this VSI to FDir profile for this flow */
8547 			prio = ICE_FLOW_PRIO_NORMAL;
8548 			prof = hw->fdir_prof[flow];
8549 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8550 						    prof->prof_id[tun],
8551 						    prof->vsi_h[0], vsi->idx,
8552 						    prio, prof->fdir_seg[tun],
8553 						    &entry_h);
8554 			if (status) {
8555 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8556 					vsi->idx, flow);
8557 				continue;
8558 			}
8559 
8560 			prof->entry_h[prof->cnt][tun] = entry_h;
8561 		}
8562 
8563 		/* store VSI for filter replay and delete */
8564 		prof->vsi_h[prof->cnt] = vsi->idx;
8565 		prof->cnt++;
8566 
8567 		added = true;
8568 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8569 			flow);
8570 	}
8571 
8572 	if (!added)
8573 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8574 
8575 	return 0;
8576 }
8577 
8578 /**
8579  * ice_add_channel - add a channel by adding VSI
8580  * @pf: ptr to PF device
8581  * @sw_id: underlying HW switching element ID
8582  * @ch: ptr to channel structure
8583  *
8584  * Add a channel (VSI) using add_vsi and queue_map
8585  */
8586 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8587 {
8588 	struct device *dev = ice_pf_to_dev(pf);
8589 	struct ice_vsi *vsi;
8590 
8591 	if (ch->type != ICE_VSI_CHNL) {
8592 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8593 		return -EINVAL;
8594 	}
8595 
8596 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8597 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8598 		dev_err(dev, "create chnl VSI failure\n");
8599 		return -EINVAL;
8600 	}
8601 
8602 	ice_add_vsi_to_fdir(pf, vsi);
8603 
8604 	ch->sw_id = sw_id;
8605 	ch->vsi_num = vsi->vsi_num;
8606 	ch->info.mapping_flags = vsi->info.mapping_flags;
8607 	ch->ch_vsi = vsi;
8608 	/* set the back pointer of channel for newly created VSI */
8609 	vsi->ch = ch;
8610 
8611 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8612 	       sizeof(vsi->info.q_mapping));
8613 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8614 	       sizeof(vsi->info.tc_mapping));
8615 
8616 	return 0;
8617 }
8618 
8619 /**
8620  * ice_chnl_cfg_res
8621  * @vsi: the VSI being setup
8622  * @ch: ptr to channel structure
8623  *
8624  * Configure channel specific resources such as rings, vector.
8625  */
8626 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8627 {
8628 	int i;
8629 
8630 	for (i = 0; i < ch->num_txq; i++) {
8631 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8632 		struct ice_ring_container *rc;
8633 		struct ice_tx_ring *tx_ring;
8634 		struct ice_rx_ring *rx_ring;
8635 
8636 		tx_ring = vsi->tx_rings[ch->base_q + i];
8637 		rx_ring = vsi->rx_rings[ch->base_q + i];
8638 		if (!tx_ring || !rx_ring)
8639 			continue;
8640 
8641 		/* setup ring being channel enabled */
8642 		tx_ring->ch = ch;
8643 		rx_ring->ch = ch;
8644 
8645 		/* following code block sets up vector specific attributes */
8646 		tx_q_vector = tx_ring->q_vector;
8647 		rx_q_vector = rx_ring->q_vector;
8648 		if (!tx_q_vector && !rx_q_vector)
8649 			continue;
8650 
8651 		if (tx_q_vector) {
8652 			tx_q_vector->ch = ch;
8653 			/* setup Tx and Rx ITR setting if DIM is off */
8654 			rc = &tx_q_vector->tx;
8655 			if (!ITR_IS_DYNAMIC(rc))
8656 				ice_write_itr(rc, rc->itr_setting);
8657 		}
8658 		if (rx_q_vector) {
8659 			rx_q_vector->ch = ch;
8660 			/* setup Tx and Rx ITR setting if DIM is off */
8661 			rc = &rx_q_vector->rx;
8662 			if (!ITR_IS_DYNAMIC(rc))
8663 				ice_write_itr(rc, rc->itr_setting);
8664 		}
8665 	}
8666 
8667 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8668 	 * GLINT_ITR register would have written to perform in-context
8669 	 * update, hence perform flush
8670 	 */
8671 	if (ch->num_txq || ch->num_rxq)
8672 		ice_flush(&vsi->back->hw);
8673 }
8674 
8675 /**
8676  * ice_cfg_chnl_all_res - configure channel resources
8677  * @vsi: pte to main_vsi
8678  * @ch: ptr to channel structure
8679  *
8680  * This function configures channel specific resources such as flow-director
8681  * counter index, and other resources such as queues, vectors, ITR settings
8682  */
8683 static void
8684 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8685 {
8686 	/* configure channel (aka ADQ) resources such as queues, vectors,
8687 	 * ITR settings for channel specific vectors and anything else
8688 	 */
8689 	ice_chnl_cfg_res(vsi, ch);
8690 }
8691 
8692 /**
8693  * ice_setup_hw_channel - setup new channel
8694  * @pf: ptr to PF device
8695  * @vsi: the VSI being setup
8696  * @ch: ptr to channel structure
8697  * @sw_id: underlying HW switching element ID
8698  * @type: type of channel to be created (VMDq2/VF)
8699  *
8700  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8701  * and configures Tx rings accordingly
8702  */
8703 static int
8704 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8705 		     struct ice_channel *ch, u16 sw_id, u8 type)
8706 {
8707 	struct device *dev = ice_pf_to_dev(pf);
8708 	int ret;
8709 
8710 	ch->base_q = vsi->next_base_q;
8711 	ch->type = type;
8712 
8713 	ret = ice_add_channel(pf, sw_id, ch);
8714 	if (ret) {
8715 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8716 		return ret;
8717 	}
8718 
8719 	/* configure/setup ADQ specific resources */
8720 	ice_cfg_chnl_all_res(vsi, ch);
8721 
8722 	/* make sure to update the next_base_q so that subsequent channel's
8723 	 * (aka ADQ) VSI queue map is correct
8724 	 */
8725 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8726 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8727 		ch->num_rxq);
8728 
8729 	return 0;
8730 }
8731 
8732 /**
8733  * ice_setup_channel - setup new channel using uplink element
8734  * @pf: ptr to PF device
8735  * @vsi: the VSI being setup
8736  * @ch: ptr to channel structure
8737  *
8738  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8739  * and uplink switching element
8740  */
8741 static bool
8742 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8743 		  struct ice_channel *ch)
8744 {
8745 	struct device *dev = ice_pf_to_dev(pf);
8746 	u16 sw_id;
8747 	int ret;
8748 
8749 	if (vsi->type != ICE_VSI_PF) {
8750 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8751 		return false;
8752 	}
8753 
8754 	sw_id = pf->first_sw->sw_id;
8755 
8756 	/* create channel (VSI) */
8757 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8758 	if (ret) {
8759 		dev_err(dev, "failed to setup hw_channel\n");
8760 		return false;
8761 	}
8762 	dev_dbg(dev, "successfully created channel()\n");
8763 
8764 	return ch->ch_vsi ? true : false;
8765 }
8766 
8767 /**
8768  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8769  * @vsi: VSI to be configured
8770  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8771  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8772  */
8773 static int
8774 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8775 {
8776 	int err;
8777 
8778 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8779 	if (err)
8780 		return err;
8781 
8782 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8783 }
8784 
8785 /**
8786  * ice_create_q_channel - function to create channel
8787  * @vsi: VSI to be configured
8788  * @ch: ptr to channel (it contains channel specific params)
8789  *
8790  * This function creates channel (VSI) using num_queues specified by user,
8791  * reconfigs RSS if needed.
8792  */
8793 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8794 {
8795 	struct ice_pf *pf = vsi->back;
8796 	struct device *dev;
8797 
8798 	if (!ch)
8799 		return -EINVAL;
8800 
8801 	dev = ice_pf_to_dev(pf);
8802 	if (!ch->num_txq || !ch->num_rxq) {
8803 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8804 		return -EINVAL;
8805 	}
8806 
8807 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8808 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8809 			vsi->cnt_q_avail, ch->num_txq);
8810 		return -EINVAL;
8811 	}
8812 
8813 	if (!ice_setup_channel(pf, vsi, ch)) {
8814 		dev_info(dev, "Failed to setup channel\n");
8815 		return -EINVAL;
8816 	}
8817 	/* configure BW rate limit */
8818 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8819 		int ret;
8820 
8821 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8822 				       ch->min_tx_rate);
8823 		if (ret)
8824 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8825 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8826 		else
8827 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8828 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8829 	}
8830 
8831 	vsi->cnt_q_avail -= ch->num_txq;
8832 
8833 	return 0;
8834 }
8835 
8836 /**
8837  * ice_rem_all_chnl_fltrs - removes all channel filters
8838  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8839  *
8840  * Remove all advanced switch filters only if they are channel specific
8841  * tc-flower based filter
8842  */
8843 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8844 {
8845 	struct ice_tc_flower_fltr *fltr;
8846 	struct hlist_node *node;
8847 
8848 	/* to remove all channel filters, iterate an ordered list of filters */
8849 	hlist_for_each_entry_safe(fltr, node,
8850 				  &pf->tc_flower_fltr_list,
8851 				  tc_flower_node) {
8852 		struct ice_rule_query_data rule;
8853 		int status;
8854 
8855 		/* for now process only channel specific filters */
8856 		if (!ice_is_chnl_fltr(fltr))
8857 			continue;
8858 
8859 		rule.rid = fltr->rid;
8860 		rule.rule_id = fltr->rule_id;
8861 		rule.vsi_handle = fltr->dest_vsi_handle;
8862 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8863 		if (status) {
8864 			if (status == -ENOENT)
8865 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8866 					rule.rule_id);
8867 			else
8868 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8869 					status);
8870 		} else if (fltr->dest_vsi) {
8871 			/* update advanced switch filter count */
8872 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8873 				u32 flags = fltr->flags;
8874 
8875 				fltr->dest_vsi->num_chnl_fltr--;
8876 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8877 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8878 					pf->num_dmac_chnl_fltrs--;
8879 			}
8880 		}
8881 
8882 		hlist_del(&fltr->tc_flower_node);
8883 		kfree(fltr);
8884 	}
8885 }
8886 
8887 /**
8888  * ice_remove_q_channels - Remove queue channels for the TCs
8889  * @vsi: VSI to be configured
8890  * @rem_fltr: delete advanced switch filter or not
8891  *
8892  * Remove queue channels for the TCs
8893  */
8894 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8895 {
8896 	struct ice_channel *ch, *ch_tmp;
8897 	struct ice_pf *pf = vsi->back;
8898 	int i;
8899 
8900 	/* remove all tc-flower based filter if they are channel filters only */
8901 	if (rem_fltr)
8902 		ice_rem_all_chnl_fltrs(pf);
8903 
8904 	/* remove ntuple filters since queue configuration is being changed */
8905 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8906 		struct ice_hw *hw = &pf->hw;
8907 
8908 		mutex_lock(&hw->fdir_fltr_lock);
8909 		ice_fdir_del_all_fltrs(vsi);
8910 		mutex_unlock(&hw->fdir_fltr_lock);
8911 	}
8912 
8913 	/* perform cleanup for channels if they exist */
8914 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8915 		struct ice_vsi *ch_vsi;
8916 
8917 		list_del(&ch->list);
8918 		ch_vsi = ch->ch_vsi;
8919 		if (!ch_vsi) {
8920 			kfree(ch);
8921 			continue;
8922 		}
8923 
8924 		/* Reset queue contexts */
8925 		for (i = 0; i < ch->num_rxq; i++) {
8926 			struct ice_tx_ring *tx_ring;
8927 			struct ice_rx_ring *rx_ring;
8928 
8929 			tx_ring = vsi->tx_rings[ch->base_q + i];
8930 			rx_ring = vsi->rx_rings[ch->base_q + i];
8931 			if (tx_ring) {
8932 				tx_ring->ch = NULL;
8933 				if (tx_ring->q_vector)
8934 					tx_ring->q_vector->ch = NULL;
8935 			}
8936 			if (rx_ring) {
8937 				rx_ring->ch = NULL;
8938 				if (rx_ring->q_vector)
8939 					rx_ring->q_vector->ch = NULL;
8940 			}
8941 		}
8942 
8943 		/* Release FD resources for the channel VSI */
8944 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8945 
8946 		/* clear the VSI from scheduler tree */
8947 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8948 
8949 		/* Delete VSI from FW, PF and HW VSI arrays */
8950 		ice_vsi_delete(ch->ch_vsi);
8951 
8952 		/* free the channel */
8953 		kfree(ch);
8954 	}
8955 
8956 	/* clear the channel VSI map which is stored in main VSI */
8957 	ice_for_each_chnl_tc(i)
8958 		vsi->tc_map_vsi[i] = NULL;
8959 
8960 	/* reset main VSI's all TC information */
8961 	vsi->all_enatc = 0;
8962 	vsi->all_numtc = 0;
8963 }
8964 
8965 /**
8966  * ice_rebuild_channels - rebuild channel
8967  * @pf: ptr to PF
8968  *
8969  * Recreate channel VSIs and replay filters
8970  */
8971 static int ice_rebuild_channels(struct ice_pf *pf)
8972 {
8973 	struct device *dev = ice_pf_to_dev(pf);
8974 	struct ice_vsi *main_vsi;
8975 	bool rem_adv_fltr = true;
8976 	struct ice_channel *ch;
8977 	struct ice_vsi *vsi;
8978 	int tc_idx = 1;
8979 	int i, err;
8980 
8981 	main_vsi = ice_get_main_vsi(pf);
8982 	if (!main_vsi)
8983 		return 0;
8984 
8985 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8986 	    main_vsi->old_numtc == 1)
8987 		return 0; /* nothing to be done */
8988 
8989 	/* reconfigure main VSI based on old value of TC and cached values
8990 	 * for MQPRIO opts
8991 	 */
8992 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8993 	if (err) {
8994 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8995 			main_vsi->old_ena_tc, main_vsi->vsi_num);
8996 		return err;
8997 	}
8998 
8999 	/* rebuild ADQ VSIs */
9000 	ice_for_each_vsi(pf, i) {
9001 		enum ice_vsi_type type;
9002 
9003 		vsi = pf->vsi[i];
9004 		if (!vsi || vsi->type != ICE_VSI_CHNL)
9005 			continue;
9006 
9007 		type = vsi->type;
9008 
9009 		/* rebuild ADQ VSI */
9010 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9011 		if (err) {
9012 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9013 				ice_vsi_type_str(type), vsi->idx, err);
9014 			goto cleanup;
9015 		}
9016 
9017 		/* Re-map HW VSI number, using VSI handle that has been
9018 		 * previously validated in ice_replay_vsi() call above
9019 		 */
9020 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9021 
9022 		/* replay filters for the VSI */
9023 		err = ice_replay_vsi(&pf->hw, vsi->idx);
9024 		if (err) {
9025 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9026 				ice_vsi_type_str(type), err, vsi->idx);
9027 			rem_adv_fltr = false;
9028 			goto cleanup;
9029 		}
9030 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9031 			 ice_vsi_type_str(type), vsi->idx);
9032 
9033 		/* store ADQ VSI at correct TC index in main VSI's
9034 		 * map of TC to VSI
9035 		 */
9036 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
9037 	}
9038 
9039 	/* ADQ VSI(s) has been rebuilt successfully, so setup
9040 	 * channel for main VSI's Tx and Rx rings
9041 	 */
9042 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
9043 		struct ice_vsi *ch_vsi;
9044 
9045 		ch_vsi = ch->ch_vsi;
9046 		if (!ch_vsi)
9047 			continue;
9048 
9049 		/* reconfig channel resources */
9050 		ice_cfg_chnl_all_res(main_vsi, ch);
9051 
9052 		/* replay BW rate limit if it is non-zero */
9053 		if (!ch->max_tx_rate && !ch->min_tx_rate)
9054 			continue;
9055 
9056 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9057 				       ch->min_tx_rate);
9058 		if (err)
9059 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9060 				err, ch->max_tx_rate, ch->min_tx_rate,
9061 				ch_vsi->vsi_num);
9062 		else
9063 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9064 				ch->max_tx_rate, ch->min_tx_rate,
9065 				ch_vsi->vsi_num);
9066 	}
9067 
9068 	/* reconfig RSS for main VSI */
9069 	if (main_vsi->ch_rss_size)
9070 		ice_vsi_cfg_rss_lut_key(main_vsi);
9071 
9072 	return 0;
9073 
9074 cleanup:
9075 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
9076 	return err;
9077 }
9078 
9079 /**
9080  * ice_create_q_channels - Add queue channel for the given TCs
9081  * @vsi: VSI to be configured
9082  *
9083  * Configures queue channel mapping to the given TCs
9084  */
9085 static int ice_create_q_channels(struct ice_vsi *vsi)
9086 {
9087 	struct ice_pf *pf = vsi->back;
9088 	struct ice_channel *ch;
9089 	int ret = 0, i;
9090 
9091 	ice_for_each_chnl_tc(i) {
9092 		if (!(vsi->all_enatc & BIT(i)))
9093 			continue;
9094 
9095 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9096 		if (!ch) {
9097 			ret = -ENOMEM;
9098 			goto err_free;
9099 		}
9100 		INIT_LIST_HEAD(&ch->list);
9101 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9102 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9103 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9104 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9105 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9106 
9107 		/* convert to Kbits/s */
9108 		if (ch->max_tx_rate)
9109 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
9110 						  ICE_BW_KBPS_DIVISOR);
9111 		if (ch->min_tx_rate)
9112 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
9113 						  ICE_BW_KBPS_DIVISOR);
9114 
9115 		ret = ice_create_q_channel(vsi, ch);
9116 		if (ret) {
9117 			dev_err(ice_pf_to_dev(pf),
9118 				"failed creating channel TC:%d\n", i);
9119 			kfree(ch);
9120 			goto err_free;
9121 		}
9122 		list_add_tail(&ch->list, &vsi->ch_list);
9123 		vsi->tc_map_vsi[i] = ch->ch_vsi;
9124 		dev_dbg(ice_pf_to_dev(pf),
9125 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
9126 	}
9127 	return 0;
9128 
9129 err_free:
9130 	ice_remove_q_channels(vsi, false);
9131 
9132 	return ret;
9133 }
9134 
9135 /**
9136  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9137  * @netdev: net device to configure
9138  * @type_data: TC offload data
9139  */
9140 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9141 {
9142 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9143 	struct ice_netdev_priv *np = netdev_priv(netdev);
9144 	struct ice_vsi *vsi = np->vsi;
9145 	struct ice_pf *pf = vsi->back;
9146 	u16 mode, ena_tc_qdisc = 0;
9147 	int cur_txq, cur_rxq;
9148 	u8 hw = 0, num_tcf;
9149 	struct device *dev;
9150 	int ret, i;
9151 
9152 	dev = ice_pf_to_dev(pf);
9153 	num_tcf = mqprio_qopt->qopt.num_tc;
9154 	hw = mqprio_qopt->qopt.hw;
9155 	mode = mqprio_qopt->mode;
9156 	if (!hw) {
9157 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9158 		vsi->ch_rss_size = 0;
9159 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9160 		goto config_tcf;
9161 	}
9162 
9163 	/* Generate queue region map for number of TCF requested */
9164 	for (i = 0; i < num_tcf; i++)
9165 		ena_tc_qdisc |= BIT(i);
9166 
9167 	switch (mode) {
9168 	case TC_MQPRIO_MODE_CHANNEL:
9169 
9170 		if (pf->hw.port_info->is_custom_tx_enabled) {
9171 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9172 			return -EBUSY;
9173 		}
9174 		ice_tear_down_devlink_rate_tree(pf);
9175 
9176 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9177 		if (ret) {
9178 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9179 				   ret);
9180 			return ret;
9181 		}
9182 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9183 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9184 		/* don't assume state of hw_tc_offload during driver load
9185 		 * and set the flag for TC flower filter if hw_tc_offload
9186 		 * already ON
9187 		 */
9188 		if (vsi->netdev->features & NETIF_F_HW_TC)
9189 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9190 		break;
9191 	default:
9192 		return -EINVAL;
9193 	}
9194 
9195 config_tcf:
9196 
9197 	/* Requesting same TCF configuration as already enabled */
9198 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9199 	    mode != TC_MQPRIO_MODE_CHANNEL)
9200 		return 0;
9201 
9202 	/* Pause VSI queues */
9203 	ice_dis_vsi(vsi, true);
9204 
9205 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9206 		ice_remove_q_channels(vsi, true);
9207 
9208 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9209 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9210 				     num_online_cpus());
9211 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9212 				     num_online_cpus());
9213 	} else {
9214 		/* logic to rebuild VSI, same like ethtool -L */
9215 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9216 
9217 		for (i = 0; i < num_tcf; i++) {
9218 			if (!(ena_tc_qdisc & BIT(i)))
9219 				continue;
9220 
9221 			offset = vsi->mqprio_qopt.qopt.offset[i];
9222 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9223 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9224 		}
9225 		vsi->req_txq = offset + qcount_tx;
9226 		vsi->req_rxq = offset + qcount_rx;
9227 
9228 		/* store away original rss_size info, so that it gets reused
9229 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9230 		 * determine, what should be the rss_sizefor main VSI
9231 		 */
9232 		vsi->orig_rss_size = vsi->rss_size;
9233 	}
9234 
9235 	/* save current values of Tx and Rx queues before calling VSI rebuild
9236 	 * for fallback option
9237 	 */
9238 	cur_txq = vsi->num_txq;
9239 	cur_rxq = vsi->num_rxq;
9240 
9241 	/* proceed with rebuild main VSI using correct number of queues */
9242 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9243 	if (ret) {
9244 		/* fallback to current number of queues */
9245 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9246 		vsi->req_txq = cur_txq;
9247 		vsi->req_rxq = cur_rxq;
9248 		clear_bit(ICE_RESET_FAILED, pf->state);
9249 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9250 			dev_err(dev, "Rebuild of main VSI failed again\n");
9251 			return ret;
9252 		}
9253 	}
9254 
9255 	vsi->all_numtc = num_tcf;
9256 	vsi->all_enatc = ena_tc_qdisc;
9257 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9258 	if (ret) {
9259 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9260 			   vsi->vsi_num);
9261 		goto exit;
9262 	}
9263 
9264 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9265 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9266 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9267 
9268 		/* set TC0 rate limit if specified */
9269 		if (max_tx_rate || min_tx_rate) {
9270 			/* convert to Kbits/s */
9271 			if (max_tx_rate)
9272 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9273 			if (min_tx_rate)
9274 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9275 
9276 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9277 			if (!ret) {
9278 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9279 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9280 			} else {
9281 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9282 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9283 				goto exit;
9284 			}
9285 		}
9286 		ret = ice_create_q_channels(vsi);
9287 		if (ret) {
9288 			netdev_err(netdev, "failed configuring queue channels\n");
9289 			goto exit;
9290 		} else {
9291 			netdev_dbg(netdev, "successfully configured channels\n");
9292 		}
9293 	}
9294 
9295 	if (vsi->ch_rss_size)
9296 		ice_vsi_cfg_rss_lut_key(vsi);
9297 
9298 exit:
9299 	/* if error, reset the all_numtc and all_enatc */
9300 	if (ret) {
9301 		vsi->all_numtc = 0;
9302 		vsi->all_enatc = 0;
9303 	}
9304 	/* resume VSI */
9305 	ice_ena_vsi(vsi, true);
9306 
9307 	return ret;
9308 }
9309 
9310 static LIST_HEAD(ice_block_cb_list);
9311 
9312 static int
9313 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9314 	     void *type_data)
9315 {
9316 	struct ice_netdev_priv *np = netdev_priv(netdev);
9317 	struct ice_pf *pf = np->vsi->back;
9318 	bool locked = false;
9319 	int err;
9320 
9321 	switch (type) {
9322 	case TC_SETUP_BLOCK:
9323 		return flow_block_cb_setup_simple(type_data,
9324 						  &ice_block_cb_list,
9325 						  ice_setup_tc_block_cb,
9326 						  np, np, true);
9327 	case TC_SETUP_QDISC_MQPRIO:
9328 		if (ice_is_eswitch_mode_switchdev(pf)) {
9329 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9330 			return -EOPNOTSUPP;
9331 		}
9332 
9333 		if (pf->adev) {
9334 			mutex_lock(&pf->adev_mutex);
9335 			device_lock(&pf->adev->dev);
9336 			locked = true;
9337 			if (pf->adev->dev.driver) {
9338 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9339 				err = -EBUSY;
9340 				goto adev_unlock;
9341 			}
9342 		}
9343 
9344 		/* setup traffic classifier for receive side */
9345 		mutex_lock(&pf->tc_mutex);
9346 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9347 		mutex_unlock(&pf->tc_mutex);
9348 
9349 adev_unlock:
9350 		if (locked) {
9351 			device_unlock(&pf->adev->dev);
9352 			mutex_unlock(&pf->adev_mutex);
9353 		}
9354 		return err;
9355 	default:
9356 		return -EOPNOTSUPP;
9357 	}
9358 	return -EOPNOTSUPP;
9359 }
9360 
9361 static struct ice_indr_block_priv *
9362 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9363 			   struct net_device *netdev)
9364 {
9365 	struct ice_indr_block_priv *cb_priv;
9366 
9367 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9368 		if (!cb_priv->netdev)
9369 			return NULL;
9370 		if (cb_priv->netdev == netdev)
9371 			return cb_priv;
9372 	}
9373 	return NULL;
9374 }
9375 
9376 static int
9377 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9378 			void *indr_priv)
9379 {
9380 	struct ice_indr_block_priv *priv = indr_priv;
9381 	struct ice_netdev_priv *np = priv->np;
9382 
9383 	switch (type) {
9384 	case TC_SETUP_CLSFLOWER:
9385 		return ice_setup_tc_cls_flower(np, priv->netdev,
9386 					       (struct flow_cls_offload *)
9387 					       type_data);
9388 	default:
9389 		return -EOPNOTSUPP;
9390 	}
9391 }
9392 
9393 static int
9394 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9395 			struct ice_netdev_priv *np,
9396 			struct flow_block_offload *f, void *data,
9397 			void (*cleanup)(struct flow_block_cb *block_cb))
9398 {
9399 	struct ice_indr_block_priv *indr_priv;
9400 	struct flow_block_cb *block_cb;
9401 
9402 	if (!ice_is_tunnel_supported(netdev) &&
9403 	    !(is_vlan_dev(netdev) &&
9404 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9405 		return -EOPNOTSUPP;
9406 
9407 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9408 		return -EOPNOTSUPP;
9409 
9410 	switch (f->command) {
9411 	case FLOW_BLOCK_BIND:
9412 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9413 		if (indr_priv)
9414 			return -EEXIST;
9415 
9416 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9417 		if (!indr_priv)
9418 			return -ENOMEM;
9419 
9420 		indr_priv->netdev = netdev;
9421 		indr_priv->np = np;
9422 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9423 
9424 		block_cb =
9425 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9426 						 indr_priv, indr_priv,
9427 						 ice_rep_indr_tc_block_unbind,
9428 						 f, netdev, sch, data, np,
9429 						 cleanup);
9430 
9431 		if (IS_ERR(block_cb)) {
9432 			list_del(&indr_priv->list);
9433 			kfree(indr_priv);
9434 			return PTR_ERR(block_cb);
9435 		}
9436 		flow_block_cb_add(block_cb, f);
9437 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9438 		break;
9439 	case FLOW_BLOCK_UNBIND:
9440 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9441 		if (!indr_priv)
9442 			return -ENOENT;
9443 
9444 		block_cb = flow_block_cb_lookup(f->block,
9445 						ice_indr_setup_block_cb,
9446 						indr_priv);
9447 		if (!block_cb)
9448 			return -ENOENT;
9449 
9450 		flow_indr_block_cb_remove(block_cb, f);
9451 
9452 		list_del(&block_cb->driver_list);
9453 		break;
9454 	default:
9455 		return -EOPNOTSUPP;
9456 	}
9457 	return 0;
9458 }
9459 
9460 static int
9461 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9462 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9463 		     void *data,
9464 		     void (*cleanup)(struct flow_block_cb *block_cb))
9465 {
9466 	switch (type) {
9467 	case TC_SETUP_BLOCK:
9468 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9469 					       data, cleanup);
9470 
9471 	default:
9472 		return -EOPNOTSUPP;
9473 	}
9474 }
9475 
9476 /**
9477  * ice_open - Called when a network interface becomes active
9478  * @netdev: network interface device structure
9479  *
9480  * The open entry point is called when a network interface is made
9481  * active by the system (IFF_UP). At this point all resources needed
9482  * for transmit and receive operations are allocated, the interrupt
9483  * handler is registered with the OS, the netdev watchdog is enabled,
9484  * and the stack is notified that the interface is ready.
9485  *
9486  * Returns 0 on success, negative value on failure
9487  */
9488 int ice_open(struct net_device *netdev)
9489 {
9490 	struct ice_netdev_priv *np = netdev_priv(netdev);
9491 	struct ice_pf *pf = np->vsi->back;
9492 
9493 	if (ice_is_reset_in_progress(pf->state)) {
9494 		netdev_err(netdev, "can't open net device while reset is in progress");
9495 		return -EBUSY;
9496 	}
9497 
9498 	return ice_open_internal(netdev);
9499 }
9500 
9501 /**
9502  * ice_open_internal - Called when a network interface becomes active
9503  * @netdev: network interface device structure
9504  *
9505  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9506  * handling routine
9507  *
9508  * Returns 0 on success, negative value on failure
9509  */
9510 int ice_open_internal(struct net_device *netdev)
9511 {
9512 	struct ice_netdev_priv *np = netdev_priv(netdev);
9513 	struct ice_vsi *vsi = np->vsi;
9514 	struct ice_pf *pf = vsi->back;
9515 	struct ice_port_info *pi;
9516 	int err;
9517 
9518 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9519 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9520 		return -EIO;
9521 	}
9522 
9523 	netif_carrier_off(netdev);
9524 
9525 	pi = vsi->port_info;
9526 	err = ice_update_link_info(pi);
9527 	if (err) {
9528 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9529 		return err;
9530 	}
9531 
9532 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9533 
9534 	/* Set PHY if there is media, otherwise, turn off PHY */
9535 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9536 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9537 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9538 			err = ice_init_phy_user_cfg(pi);
9539 			if (err) {
9540 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9541 					   err);
9542 				return err;
9543 			}
9544 		}
9545 
9546 		err = ice_configure_phy(vsi);
9547 		if (err) {
9548 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9549 				   err);
9550 			return err;
9551 		}
9552 	} else {
9553 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9554 		ice_set_link(vsi, false);
9555 	}
9556 
9557 	err = ice_vsi_open(vsi);
9558 	if (err)
9559 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9560 			   vsi->vsi_num, vsi->vsw->sw_id);
9561 
9562 	/* Update existing tunnels information */
9563 	udp_tunnel_get_rx_info(netdev);
9564 
9565 	return err;
9566 }
9567 
9568 /**
9569  * ice_stop - Disables a network interface
9570  * @netdev: network interface device structure
9571  *
9572  * The stop entry point is called when an interface is de-activated by the OS,
9573  * and the netdevice enters the DOWN state. The hardware is still under the
9574  * driver's control, but the netdev interface is disabled.
9575  *
9576  * Returns success only - not allowed to fail
9577  */
9578 int ice_stop(struct net_device *netdev)
9579 {
9580 	struct ice_netdev_priv *np = netdev_priv(netdev);
9581 	struct ice_vsi *vsi = np->vsi;
9582 	struct ice_pf *pf = vsi->back;
9583 
9584 	if (ice_is_reset_in_progress(pf->state)) {
9585 		netdev_err(netdev, "can't stop net device while reset is in progress");
9586 		return -EBUSY;
9587 	}
9588 
9589 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9590 		int link_err = ice_force_phys_link_state(vsi, false);
9591 
9592 		if (link_err) {
9593 			if (link_err == -ENOMEDIUM)
9594 				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9595 					    vsi->vsi_num);
9596 			else
9597 				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9598 					   vsi->vsi_num, link_err);
9599 
9600 			ice_vsi_close(vsi);
9601 			return -EIO;
9602 		}
9603 	}
9604 
9605 	ice_vsi_close(vsi);
9606 
9607 	return 0;
9608 }
9609 
9610 /**
9611  * ice_features_check - Validate encapsulated packet conforms to limits
9612  * @skb: skb buffer
9613  * @netdev: This port's netdev
9614  * @features: Offload features that the stack believes apply
9615  */
9616 static netdev_features_t
9617 ice_features_check(struct sk_buff *skb,
9618 		   struct net_device __always_unused *netdev,
9619 		   netdev_features_t features)
9620 {
9621 	bool gso = skb_is_gso(skb);
9622 	size_t len;
9623 
9624 	/* No point in doing any of this if neither checksum nor GSO are
9625 	 * being requested for this frame. We can rule out both by just
9626 	 * checking for CHECKSUM_PARTIAL
9627 	 */
9628 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9629 		return features;
9630 
9631 	/* We cannot support GSO if the MSS is going to be less than
9632 	 * 64 bytes. If it is then we need to drop support for GSO.
9633 	 */
9634 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9635 		features &= ~NETIF_F_GSO_MASK;
9636 
9637 	len = skb_network_offset(skb);
9638 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9639 		goto out_rm_features;
9640 
9641 	len = skb_network_header_len(skb);
9642 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9643 		goto out_rm_features;
9644 
9645 	if (skb->encapsulation) {
9646 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9647 		 * the case of IPIP frames, the transport header pointer is
9648 		 * after the inner header! So check to make sure that this
9649 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9650 		 */
9651 		if (gso && (skb_shinfo(skb)->gso_type &
9652 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9653 			len = skb_inner_network_header(skb) -
9654 			      skb_transport_header(skb);
9655 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9656 				goto out_rm_features;
9657 		}
9658 
9659 		len = skb_inner_network_header_len(skb);
9660 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9661 			goto out_rm_features;
9662 	}
9663 
9664 	return features;
9665 out_rm_features:
9666 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9667 }
9668 
9669 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9670 	.ndo_open = ice_open,
9671 	.ndo_stop = ice_stop,
9672 	.ndo_start_xmit = ice_start_xmit,
9673 	.ndo_set_mac_address = ice_set_mac_address,
9674 	.ndo_validate_addr = eth_validate_addr,
9675 	.ndo_change_mtu = ice_change_mtu,
9676 	.ndo_get_stats64 = ice_get_stats64,
9677 	.ndo_tx_timeout = ice_tx_timeout,
9678 	.ndo_bpf = ice_xdp_safe_mode,
9679 };
9680 
9681 static const struct net_device_ops ice_netdev_ops = {
9682 	.ndo_open = ice_open,
9683 	.ndo_stop = ice_stop,
9684 	.ndo_start_xmit = ice_start_xmit,
9685 	.ndo_select_queue = ice_select_queue,
9686 	.ndo_features_check = ice_features_check,
9687 	.ndo_fix_features = ice_fix_features,
9688 	.ndo_set_rx_mode = ice_set_rx_mode,
9689 	.ndo_set_mac_address = ice_set_mac_address,
9690 	.ndo_validate_addr = eth_validate_addr,
9691 	.ndo_change_mtu = ice_change_mtu,
9692 	.ndo_get_stats64 = ice_get_stats64,
9693 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9694 	.ndo_eth_ioctl = ice_eth_ioctl,
9695 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9696 	.ndo_set_vf_mac = ice_set_vf_mac,
9697 	.ndo_get_vf_config = ice_get_vf_cfg,
9698 	.ndo_set_vf_trust = ice_set_vf_trust,
9699 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9700 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9701 	.ndo_get_vf_stats = ice_get_vf_stats,
9702 	.ndo_set_vf_rate = ice_set_vf_bw,
9703 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9704 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9705 	.ndo_setup_tc = ice_setup_tc,
9706 	.ndo_set_features = ice_set_features,
9707 	.ndo_bridge_getlink = ice_bridge_getlink,
9708 	.ndo_bridge_setlink = ice_bridge_setlink,
9709 	.ndo_fdb_add = ice_fdb_add,
9710 	.ndo_fdb_del = ice_fdb_del,
9711 #ifdef CONFIG_RFS_ACCEL
9712 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9713 #endif
9714 	.ndo_tx_timeout = ice_tx_timeout,
9715 	.ndo_bpf = ice_xdp,
9716 	.ndo_xdp_xmit = ice_xdp_xmit,
9717 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9718 };
9719