xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 26fbb4c8c7c3ee9a4c3b4de555a8587b5a19154e)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 
17 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
18 static const char ice_driver_string[] = DRV_SUMMARY;
19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20 
21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
23 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
24 
25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26 MODULE_DESCRIPTION(DRV_SUMMARY);
27 MODULE_LICENSE("GPL v2");
28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29 
30 static int debug = -1;
31 module_param(debug, int, 0644);
32 #ifndef CONFIG_DYNAMIC_DEBUG
33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34 #else
35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36 #endif /* !CONFIG_DYNAMIC_DEBUG */
37 
38 static struct workqueue_struct *ice_wq;
39 static const struct net_device_ops ice_netdev_safe_mode_ops;
40 static const struct net_device_ops ice_netdev_ops;
41 static int ice_vsi_open(struct ice_vsi *vsi);
42 
43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44 
45 static void ice_vsi_release_all(struct ice_pf *pf);
46 
47 /**
48  * ice_get_tx_pending - returns number of Tx descriptors not processed
49  * @ring: the ring of descriptors
50  */
51 static u16 ice_get_tx_pending(struct ice_ring *ring)
52 {
53 	u16 head, tail;
54 
55 	head = ring->next_to_clean;
56 	tail = ring->next_to_use;
57 
58 	if (head != tail)
59 		return (head < tail) ?
60 			tail - head : (tail + ring->count - head);
61 	return 0;
62 }
63 
64 /**
65  * ice_check_for_hang_subtask - check for and recover hung queues
66  * @pf: pointer to PF struct
67  */
68 static void ice_check_for_hang_subtask(struct ice_pf *pf)
69 {
70 	struct ice_vsi *vsi = NULL;
71 	struct ice_hw *hw;
72 	unsigned int i;
73 	int packets;
74 	u32 v;
75 
76 	ice_for_each_vsi(pf, v)
77 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 			vsi = pf->vsi[v];
79 			break;
80 		}
81 
82 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 		return;
84 
85 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 		return;
87 
88 	hw = &vsi->back->hw;
89 
90 	for (i = 0; i < vsi->num_txq; i++) {
91 		struct ice_ring *tx_ring = vsi->tx_rings[i];
92 
93 		if (tx_ring && tx_ring->desc) {
94 			/* If packet counter has not changed the queue is
95 			 * likely stalled, so force an interrupt for this
96 			 * queue.
97 			 *
98 			 * prev_pkt would be negative if there was no
99 			 * pending work.
100 			 */
101 			packets = tx_ring->stats.pkts & INT_MAX;
102 			if (tx_ring->tx_stats.prev_pkt == packets) {
103 				/* Trigger sw interrupt to revive the queue */
104 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 				continue;
106 			}
107 
108 			/* Memory barrier between read of packet count and call
109 			 * to ice_get_tx_pending()
110 			 */
111 			smp_rmb();
112 			tx_ring->tx_stats.prev_pkt =
113 			    ice_get_tx_pending(tx_ring) ? packets : -1;
114 		}
115 	}
116 }
117 
118 /**
119  * ice_init_mac_fltr - Set initial MAC filters
120  * @pf: board private structure
121  *
122  * Set initial set of MAC filters for PF VSI; configure filters for permanent
123  * address and broadcast address. If an error is encountered, netdevice will be
124  * unregistered.
125  */
126 static int ice_init_mac_fltr(struct ice_pf *pf)
127 {
128 	enum ice_status status;
129 	struct ice_vsi *vsi;
130 	u8 *perm_addr;
131 
132 	vsi = ice_get_main_vsi(pf);
133 	if (!vsi)
134 		return -EINVAL;
135 
136 	perm_addr = vsi->port_info->mac.perm_addr;
137 	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 	if (!status)
139 		return 0;
140 
141 	/* We aren't useful with no MAC filters, so unregister if we
142 	 * had an error
143 	 */
144 	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 			ice_stat_str(status));
147 		unregister_netdev(vsi->netdev);
148 		free_netdev(vsi->netdev);
149 		vsi->netdev = NULL;
150 	}
151 
152 	return -EIO;
153 }
154 
155 /**
156  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157  * @netdev: the net device on which the sync is happening
158  * @addr: MAC address to sync
159  *
160  * This is a callback function which is called by the in kernel device sync
161  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163  * MAC filters from the hardware.
164  */
165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166 {
167 	struct ice_netdev_priv *np = netdev_priv(netdev);
168 	struct ice_vsi *vsi = np->vsi;
169 
170 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 				     ICE_FWD_TO_VSI))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 
177 /**
178  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179  * @netdev: the net device on which the unsync is happening
180  * @addr: MAC address to unsync
181  *
182  * This is a callback function which is called by the in kernel device unsync
183  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185  * delete the MAC filters from the hardware.
186  */
187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188 {
189 	struct ice_netdev_priv *np = netdev_priv(netdev);
190 	struct ice_vsi *vsi = np->vsi;
191 
192 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
193 				     ICE_FWD_TO_VSI))
194 		return -EINVAL;
195 
196 	return 0;
197 }
198 
199 /**
200  * ice_vsi_fltr_changed - check if filter state changed
201  * @vsi: VSI to be checked
202  *
203  * returns true if filter state has changed, false otherwise.
204  */
205 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
206 {
207 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
208 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
209 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
210 }
211 
212 /**
213  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
214  * @vsi: the VSI being configured
215  * @promisc_m: mask of promiscuous config bits
216  * @set_promisc: enable or disable promisc flag request
217  *
218  */
219 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
220 {
221 	struct ice_hw *hw = &vsi->back->hw;
222 	enum ice_status status = 0;
223 
224 	if (vsi->type != ICE_VSI_PF)
225 		return 0;
226 
227 	if (vsi->num_vlan > 1) {
228 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
229 						  set_promisc);
230 	} else {
231 		if (set_promisc)
232 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
233 						     0);
234 		else
235 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
236 						       0);
237 	}
238 
239 	if (status)
240 		return -EIO;
241 
242 	return 0;
243 }
244 
245 /**
246  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
247  * @vsi: ptr to the VSI
248  *
249  * Push any outstanding VSI filter changes through the AdminQ.
250  */
251 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
252 {
253 	struct device *dev = ice_pf_to_dev(vsi->back);
254 	struct net_device *netdev = vsi->netdev;
255 	bool promisc_forced_on = false;
256 	struct ice_pf *pf = vsi->back;
257 	struct ice_hw *hw = &pf->hw;
258 	enum ice_status status = 0;
259 	u32 changed_flags = 0;
260 	u8 promisc_m;
261 	int err = 0;
262 
263 	if (!vsi->netdev)
264 		return -EINVAL;
265 
266 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
267 		usleep_range(1000, 2000);
268 
269 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
270 	vsi->current_netdev_flags = vsi->netdev->flags;
271 
272 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
273 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
274 
275 	if (ice_vsi_fltr_changed(vsi)) {
276 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
277 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
278 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
279 
280 		/* grab the netdev's addr_list_lock */
281 		netif_addr_lock_bh(netdev);
282 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
283 			      ice_add_mac_to_unsync_list);
284 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
285 			      ice_add_mac_to_unsync_list);
286 		/* our temp lists are populated. release lock */
287 		netif_addr_unlock_bh(netdev);
288 	}
289 
290 	/* Remove MAC addresses in the unsync list */
291 	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
292 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
293 	if (status) {
294 		netdev_err(netdev, "Failed to delete MAC filters\n");
295 		/* if we failed because of alloc failures, just bail */
296 		if (status == ICE_ERR_NO_MEMORY) {
297 			err = -ENOMEM;
298 			goto out;
299 		}
300 	}
301 
302 	/* Add MAC addresses in the sync list */
303 	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
304 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
305 	/* If filter is added successfully or already exists, do not go into
306 	 * 'if' condition and report it as error. Instead continue processing
307 	 * rest of the function.
308 	 */
309 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
310 		netdev_err(netdev, "Failed to add MAC filters\n");
311 		/* If there is no more space for new umac filters, VSI
312 		 * should go into promiscuous mode. There should be some
313 		 * space reserved for promiscuous filters.
314 		 */
315 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
316 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
317 				      vsi->state)) {
318 			promisc_forced_on = true;
319 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
320 				    vsi->vsi_num);
321 		} else {
322 			err = -EIO;
323 			goto out;
324 		}
325 	}
326 	/* check for changes in promiscuous modes */
327 	if (changed_flags & IFF_ALLMULTI) {
328 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
329 			if (vsi->num_vlan > 1)
330 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
331 			else
332 				promisc_m = ICE_MCAST_PROMISC_BITS;
333 
334 			err = ice_cfg_promisc(vsi, promisc_m, true);
335 			if (err) {
336 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
337 					   vsi->vsi_num);
338 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
339 				goto out_promisc;
340 			}
341 		} else {
342 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
343 			if (vsi->num_vlan > 1)
344 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
345 			else
346 				promisc_m = ICE_MCAST_PROMISC_BITS;
347 
348 			err = ice_cfg_promisc(vsi, promisc_m, false);
349 			if (err) {
350 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
351 					   vsi->vsi_num);
352 				vsi->current_netdev_flags |= IFF_ALLMULTI;
353 				goto out_promisc;
354 			}
355 		}
356 	}
357 
358 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
359 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
360 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
361 		if (vsi->current_netdev_flags & IFF_PROMISC) {
362 			/* Apply Rx filter rule to get traffic from wire */
363 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
364 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
365 				if (err && err != -EEXIST) {
366 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
367 						   err, vsi->vsi_num);
368 					vsi->current_netdev_flags &=
369 						~IFF_PROMISC;
370 					goto out_promisc;
371 				}
372 				ice_cfg_vlan_pruning(vsi, false, false);
373 			}
374 		} else {
375 			/* Clear Rx filter to remove traffic from wire */
376 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
377 				err = ice_clear_dflt_vsi(pf->first_sw);
378 				if (err) {
379 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
380 						   err, vsi->vsi_num);
381 					vsi->current_netdev_flags |=
382 						IFF_PROMISC;
383 					goto out_promisc;
384 				}
385 				if (vsi->num_vlan > 1)
386 					ice_cfg_vlan_pruning(vsi, true, false);
387 			}
388 		}
389 	}
390 	goto exit;
391 
392 out_promisc:
393 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
394 	goto exit;
395 out:
396 	/* if something went wrong then set the changed flag so we try again */
397 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
398 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
399 exit:
400 	clear_bit(__ICE_CFG_BUSY, vsi->state);
401 	return err;
402 }
403 
404 /**
405  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
406  * @pf: board private structure
407  */
408 static void ice_sync_fltr_subtask(struct ice_pf *pf)
409 {
410 	int v;
411 
412 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
413 		return;
414 
415 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
416 
417 	ice_for_each_vsi(pf, v)
418 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
419 		    ice_vsi_sync_fltr(pf->vsi[v])) {
420 			/* come back and try again later */
421 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
422 			break;
423 		}
424 }
425 
426 /**
427  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
428  * @pf: the PF
429  * @locked: is the rtnl_lock already held
430  */
431 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
432 {
433 	int v;
434 
435 	ice_for_each_vsi(pf, v)
436 		if (pf->vsi[v])
437 			ice_dis_vsi(pf->vsi[v], locked);
438 }
439 
440 /**
441  * ice_prepare_for_reset - prep for the core to reset
442  * @pf: board private structure
443  *
444  * Inform or close all dependent features in prep for reset.
445  */
446 static void
447 ice_prepare_for_reset(struct ice_pf *pf)
448 {
449 	struct ice_hw *hw = &pf->hw;
450 	unsigned int i;
451 
452 	/* already prepared for reset */
453 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
454 		return;
455 
456 	/* Notify VFs of impending reset */
457 	if (ice_check_sq_alive(hw, &hw->mailboxq))
458 		ice_vc_notify_reset(pf);
459 
460 	/* Disable VFs until reset is completed */
461 	ice_for_each_vf(pf, i)
462 		ice_set_vf_state_qs_dis(&pf->vf[i]);
463 
464 	/* clear SW filtering DB */
465 	ice_clear_hw_tbls(hw);
466 	/* disable the VSIs and their queues that are not already DOWN */
467 	ice_pf_dis_all_vsi(pf, false);
468 
469 	if (hw->port_info)
470 		ice_sched_clear_port(hw->port_info);
471 
472 	ice_shutdown_all_ctrlq(hw);
473 
474 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
475 }
476 
477 /**
478  * ice_do_reset - Initiate one of many types of resets
479  * @pf: board private structure
480  * @reset_type: reset type requested
481  * before this function was called.
482  */
483 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
484 {
485 	struct device *dev = ice_pf_to_dev(pf);
486 	struct ice_hw *hw = &pf->hw;
487 
488 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
489 
490 	ice_prepare_for_reset(pf);
491 
492 	/* trigger the reset */
493 	if (ice_reset(hw, reset_type)) {
494 		dev_err(dev, "reset %d failed\n", reset_type);
495 		set_bit(__ICE_RESET_FAILED, pf->state);
496 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
497 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
498 		clear_bit(__ICE_PFR_REQ, pf->state);
499 		clear_bit(__ICE_CORER_REQ, pf->state);
500 		clear_bit(__ICE_GLOBR_REQ, pf->state);
501 		return;
502 	}
503 
504 	/* PFR is a bit of a special case because it doesn't result in an OICR
505 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
506 	 * associated state bits.
507 	 */
508 	if (reset_type == ICE_RESET_PFR) {
509 		pf->pfr_count++;
510 		ice_rebuild(pf, reset_type);
511 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
512 		clear_bit(__ICE_PFR_REQ, pf->state);
513 		ice_reset_all_vfs(pf, true);
514 	}
515 }
516 
517 /**
518  * ice_reset_subtask - Set up for resetting the device and driver
519  * @pf: board private structure
520  */
521 static void ice_reset_subtask(struct ice_pf *pf)
522 {
523 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
524 
525 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
526 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
527 	 * of reset is pending and sets bits in pf->state indicating the reset
528 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
529 	 * prepare for pending reset if not already (for PF software-initiated
530 	 * global resets the software should already be prepared for it as
531 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
532 	 * by firmware or software on other PFs, that bit is not set so prepare
533 	 * for the reset now), poll for reset done, rebuild and return.
534 	 */
535 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
536 		/* Perform the largest reset requested */
537 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
538 			reset_type = ICE_RESET_CORER;
539 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
540 			reset_type = ICE_RESET_GLOBR;
541 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
542 			reset_type = ICE_RESET_EMPR;
543 		/* return if no valid reset type requested */
544 		if (reset_type == ICE_RESET_INVAL)
545 			return;
546 		ice_prepare_for_reset(pf);
547 
548 		/* make sure we are ready to rebuild */
549 		if (ice_check_reset(&pf->hw)) {
550 			set_bit(__ICE_RESET_FAILED, pf->state);
551 		} else {
552 			/* done with reset. start rebuild */
553 			pf->hw.reset_ongoing = false;
554 			ice_rebuild(pf, reset_type);
555 			/* clear bit to resume normal operations, but
556 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
557 			 */
558 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
559 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
560 			clear_bit(__ICE_PFR_REQ, pf->state);
561 			clear_bit(__ICE_CORER_REQ, pf->state);
562 			clear_bit(__ICE_GLOBR_REQ, pf->state);
563 			ice_reset_all_vfs(pf, true);
564 		}
565 
566 		return;
567 	}
568 
569 	/* No pending resets to finish processing. Check for new resets */
570 	if (test_bit(__ICE_PFR_REQ, pf->state))
571 		reset_type = ICE_RESET_PFR;
572 	if (test_bit(__ICE_CORER_REQ, pf->state))
573 		reset_type = ICE_RESET_CORER;
574 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
575 		reset_type = ICE_RESET_GLOBR;
576 	/* If no valid reset type requested just return */
577 	if (reset_type == ICE_RESET_INVAL)
578 		return;
579 
580 	/* reset if not already down or busy */
581 	if (!test_bit(__ICE_DOWN, pf->state) &&
582 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
583 		ice_do_reset(pf, reset_type);
584 	}
585 }
586 
587 /**
588  * ice_print_topo_conflict - print topology conflict message
589  * @vsi: the VSI whose topology status is being checked
590  */
591 static void ice_print_topo_conflict(struct ice_vsi *vsi)
592 {
593 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
594 	case ICE_AQ_LINK_TOPO_CONFLICT:
595 	case ICE_AQ_LINK_MEDIA_CONFLICT:
596 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
597 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
598 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
599 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
600 		break;
601 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
602 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
603 		break;
604 	default:
605 		break;
606 	}
607 }
608 
609 /**
610  * ice_print_link_msg - print link up or down message
611  * @vsi: the VSI whose link status is being queried
612  * @isup: boolean for if the link is now up or down
613  */
614 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
615 {
616 	struct ice_aqc_get_phy_caps_data *caps;
617 	const char *an_advertised;
618 	enum ice_status status;
619 	const char *fec_req;
620 	const char *speed;
621 	const char *fec;
622 	const char *fc;
623 	const char *an;
624 
625 	if (!vsi)
626 		return;
627 
628 	if (vsi->current_isup == isup)
629 		return;
630 
631 	vsi->current_isup = isup;
632 
633 	if (!isup) {
634 		netdev_info(vsi->netdev, "NIC Link is Down\n");
635 		return;
636 	}
637 
638 	switch (vsi->port_info->phy.link_info.link_speed) {
639 	case ICE_AQ_LINK_SPEED_100GB:
640 		speed = "100 G";
641 		break;
642 	case ICE_AQ_LINK_SPEED_50GB:
643 		speed = "50 G";
644 		break;
645 	case ICE_AQ_LINK_SPEED_40GB:
646 		speed = "40 G";
647 		break;
648 	case ICE_AQ_LINK_SPEED_25GB:
649 		speed = "25 G";
650 		break;
651 	case ICE_AQ_LINK_SPEED_20GB:
652 		speed = "20 G";
653 		break;
654 	case ICE_AQ_LINK_SPEED_10GB:
655 		speed = "10 G";
656 		break;
657 	case ICE_AQ_LINK_SPEED_5GB:
658 		speed = "5 G";
659 		break;
660 	case ICE_AQ_LINK_SPEED_2500MB:
661 		speed = "2.5 G";
662 		break;
663 	case ICE_AQ_LINK_SPEED_1000MB:
664 		speed = "1 G";
665 		break;
666 	case ICE_AQ_LINK_SPEED_100MB:
667 		speed = "100 M";
668 		break;
669 	default:
670 		speed = "Unknown ";
671 		break;
672 	}
673 
674 	switch (vsi->port_info->fc.current_mode) {
675 	case ICE_FC_FULL:
676 		fc = "Rx/Tx";
677 		break;
678 	case ICE_FC_TX_PAUSE:
679 		fc = "Tx";
680 		break;
681 	case ICE_FC_RX_PAUSE:
682 		fc = "Rx";
683 		break;
684 	case ICE_FC_NONE:
685 		fc = "None";
686 		break;
687 	default:
688 		fc = "Unknown";
689 		break;
690 	}
691 
692 	/* Get FEC mode based on negotiated link info */
693 	switch (vsi->port_info->phy.link_info.fec_info) {
694 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
695 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
696 		fec = "RS-FEC";
697 		break;
698 	case ICE_AQ_LINK_25G_KR_FEC_EN:
699 		fec = "FC-FEC/BASE-R";
700 		break;
701 	default:
702 		fec = "NONE";
703 		break;
704 	}
705 
706 	/* check if autoneg completed, might be false due to not supported */
707 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
708 		an = "True";
709 	else
710 		an = "False";
711 
712 	/* Get FEC mode requested based on PHY caps last SW configuration */
713 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
714 	if (!caps) {
715 		fec_req = "Unknown";
716 		an_advertised = "Unknown";
717 		goto done;
718 	}
719 
720 	status = ice_aq_get_phy_caps(vsi->port_info, false,
721 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
722 	if (status)
723 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
724 
725 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
726 
727 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
728 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
729 		fec_req = "RS-FEC";
730 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
731 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
732 		fec_req = "FC-FEC/BASE-R";
733 	else
734 		fec_req = "NONE";
735 
736 	kfree(caps);
737 
738 done:
739 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
740 		    speed, fec_req, fec, an_advertised, an, fc);
741 	ice_print_topo_conflict(vsi);
742 }
743 
744 /**
745  * ice_vsi_link_event - update the VSI's netdev
746  * @vsi: the VSI on which the link event occurred
747  * @link_up: whether or not the VSI needs to be set up or down
748  */
749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
750 {
751 	if (!vsi)
752 		return;
753 
754 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
755 		return;
756 
757 	if (vsi->type == ICE_VSI_PF) {
758 		if (link_up == netif_carrier_ok(vsi->netdev))
759 			return;
760 
761 		if (link_up) {
762 			netif_carrier_on(vsi->netdev);
763 			netif_tx_wake_all_queues(vsi->netdev);
764 		} else {
765 			netif_carrier_off(vsi->netdev);
766 			netif_tx_stop_all_queues(vsi->netdev);
767 		}
768 	}
769 }
770 
771 /**
772  * ice_set_dflt_mib - send a default config MIB to the FW
773  * @pf: private PF struct
774  *
775  * This function sends a default configuration MIB to the FW.
776  *
777  * If this function errors out at any point, the driver is still able to
778  * function.  The main impact is that LFC may not operate as expected.
779  * Therefore an error state in this function should be treated with a DBG
780  * message and continue on with driver rebuild/reenable.
781  */
782 static void ice_set_dflt_mib(struct ice_pf *pf)
783 {
784 	struct device *dev = ice_pf_to_dev(pf);
785 	u8 mib_type, *buf, *lldpmib = NULL;
786 	u16 len, typelen, offset = 0;
787 	struct ice_lldp_org_tlv *tlv;
788 	struct ice_hw *hw;
789 	u32 ouisubtype;
790 
791 	if (!pf) {
792 		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
793 		return;
794 	}
795 
796 	hw = &pf->hw;
797 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
798 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
799 	if (!lldpmib) {
800 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
801 			__func__);
802 		return;
803 	}
804 
805 	/* Add ETS CFG TLV */
806 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
807 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
808 		   ICE_IEEE_ETS_TLV_LEN);
809 	tlv->typelen = htons(typelen);
810 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
811 		      ICE_IEEE_SUBTYPE_ETS_CFG);
812 	tlv->ouisubtype = htonl(ouisubtype);
813 
814 	buf = tlv->tlvinfo;
815 	buf[0] = 0;
816 
817 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
818 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
819 	 * Octets 13 - 20 are TSA values - leave as zeros
820 	 */
821 	buf[5] = 0x64;
822 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
823 	offset += len + 2;
824 	tlv = (struct ice_lldp_org_tlv *)
825 		((char *)tlv + sizeof(tlv->typelen) + len);
826 
827 	/* Add ETS REC TLV */
828 	buf = tlv->tlvinfo;
829 	tlv->typelen = htons(typelen);
830 
831 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
832 		      ICE_IEEE_SUBTYPE_ETS_REC);
833 	tlv->ouisubtype = htonl(ouisubtype);
834 
835 	/* First octet of buf is reserved
836 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
837 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
838 	 * Octets 13 - 20 are TSA value - leave as zeros
839 	 */
840 	buf[5] = 0x64;
841 	offset += len + 2;
842 	tlv = (struct ice_lldp_org_tlv *)
843 		((char *)tlv + sizeof(tlv->typelen) + len);
844 
845 	/* Add PFC CFG TLV */
846 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
847 		   ICE_IEEE_PFC_TLV_LEN);
848 	tlv->typelen = htons(typelen);
849 
850 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
851 		      ICE_IEEE_SUBTYPE_PFC_CFG);
852 	tlv->ouisubtype = htonl(ouisubtype);
853 
854 	/* Octet 1 left as all zeros - PFC disabled */
855 	buf[0] = 0x08;
856 	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
857 	offset += len + 2;
858 
859 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
860 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
861 
862 	kfree(lldpmib);
863 }
864 
865 /**
866  * ice_link_event - process the link event
867  * @pf: PF that the link event is associated with
868  * @pi: port_info for the port that the link event is associated with
869  * @link_up: true if the physical link is up and false if it is down
870  * @link_speed: current link speed received from the link event
871  *
872  * Returns 0 on success and negative on failure
873  */
874 static int
875 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
876 	       u16 link_speed)
877 {
878 	struct device *dev = ice_pf_to_dev(pf);
879 	struct ice_phy_info *phy_info;
880 	struct ice_vsi *vsi;
881 	u16 old_link_speed;
882 	bool old_link;
883 	int result;
884 
885 	phy_info = &pi->phy;
886 	phy_info->link_info_old = phy_info->link_info;
887 
888 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
889 	old_link_speed = phy_info->link_info_old.link_speed;
890 
891 	/* update the link info structures and re-enable link events,
892 	 * don't bail on failure due to other book keeping needed
893 	 */
894 	result = ice_update_link_info(pi);
895 	if (result)
896 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
897 			pi->lport);
898 
899 	/* Check if the link state is up after updating link info, and treat
900 	 * this event as an UP event since the link is actually UP now.
901 	 */
902 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
903 		link_up = true;
904 
905 	vsi = ice_get_main_vsi(pf);
906 	if (!vsi || !vsi->port_info)
907 		return -EINVAL;
908 
909 	/* turn off PHY if media was removed */
910 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
911 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
912 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
913 
914 		result = ice_aq_set_link_restart_an(pi, false, NULL);
915 		if (result) {
916 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
917 				vsi->vsi_num, result);
918 			return result;
919 		}
920 	}
921 
922 	/* if the old link up/down and speed is the same as the new */
923 	if (link_up == old_link && link_speed == old_link_speed)
924 		return result;
925 
926 	if (ice_is_dcb_active(pf)) {
927 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
928 			ice_dcb_rebuild(pf);
929 	} else {
930 		if (link_up)
931 			ice_set_dflt_mib(pf);
932 	}
933 	ice_vsi_link_event(vsi, link_up);
934 	ice_print_link_msg(vsi, link_up);
935 
936 	ice_vc_notify_link_state(pf);
937 
938 	return result;
939 }
940 
941 /**
942  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
943  * @pf: board private structure
944  */
945 static void ice_watchdog_subtask(struct ice_pf *pf)
946 {
947 	int i;
948 
949 	/* if interface is down do nothing */
950 	if (test_bit(__ICE_DOWN, pf->state) ||
951 	    test_bit(__ICE_CFG_BUSY, pf->state))
952 		return;
953 
954 	/* make sure we don't do these things too often */
955 	if (time_before(jiffies,
956 			pf->serv_tmr_prev + pf->serv_tmr_period))
957 		return;
958 
959 	pf->serv_tmr_prev = jiffies;
960 
961 	/* Update the stats for active netdevs so the network stack
962 	 * can look at updated numbers whenever it cares to
963 	 */
964 	ice_update_pf_stats(pf);
965 	ice_for_each_vsi(pf, i)
966 		if (pf->vsi[i] && pf->vsi[i]->netdev)
967 			ice_update_vsi_stats(pf->vsi[i]);
968 }
969 
970 /**
971  * ice_init_link_events - enable/initialize link events
972  * @pi: pointer to the port_info instance
973  *
974  * Returns -EIO on failure, 0 on success
975  */
976 static int ice_init_link_events(struct ice_port_info *pi)
977 {
978 	u16 mask;
979 
980 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
981 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
982 
983 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
984 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
985 			pi->lport);
986 		return -EIO;
987 	}
988 
989 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
990 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
991 			pi->lport);
992 		return -EIO;
993 	}
994 
995 	return 0;
996 }
997 
998 /**
999  * ice_handle_link_event - handle link event via ARQ
1000  * @pf: PF that the link event is associated with
1001  * @event: event structure containing link status info
1002  */
1003 static int
1004 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1005 {
1006 	struct ice_aqc_get_link_status_data *link_data;
1007 	struct ice_port_info *port_info;
1008 	int status;
1009 
1010 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1011 	port_info = pf->hw.port_info;
1012 	if (!port_info)
1013 		return -EINVAL;
1014 
1015 	status = ice_link_event(pf, port_info,
1016 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1017 				le16_to_cpu(link_data->link_speed));
1018 	if (status)
1019 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1020 			status);
1021 
1022 	return status;
1023 }
1024 
1025 enum ice_aq_task_state {
1026 	ICE_AQ_TASK_WAITING = 0,
1027 	ICE_AQ_TASK_COMPLETE,
1028 	ICE_AQ_TASK_CANCELED,
1029 };
1030 
1031 struct ice_aq_task {
1032 	struct hlist_node entry;
1033 
1034 	u16 opcode;
1035 	struct ice_rq_event_info *event;
1036 	enum ice_aq_task_state state;
1037 };
1038 
1039 /**
1040  * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1041  * @pf: pointer to the PF private structure
1042  * @opcode: the opcode to wait for
1043  * @timeout: how long to wait, in jiffies
1044  * @event: storage for the event info
1045  *
1046  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1047  * current thread will be put to sleep until the specified event occurs or
1048  * until the given timeout is reached.
1049  *
1050  * To obtain only the descriptor contents, pass an event without an allocated
1051  * msg_buf. If the complete data buffer is desired, allocate the
1052  * event->msg_buf with enough space ahead of time.
1053  *
1054  * Returns: zero on success, or a negative error code on failure.
1055  */
1056 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1057 			  struct ice_rq_event_info *event)
1058 {
1059 	struct device *dev = ice_pf_to_dev(pf);
1060 	struct ice_aq_task *task;
1061 	unsigned long start;
1062 	long ret;
1063 	int err;
1064 
1065 	task = kzalloc(sizeof(*task), GFP_KERNEL);
1066 	if (!task)
1067 		return -ENOMEM;
1068 
1069 	INIT_HLIST_NODE(&task->entry);
1070 	task->opcode = opcode;
1071 	task->event = event;
1072 	task->state = ICE_AQ_TASK_WAITING;
1073 
1074 	spin_lock_bh(&pf->aq_wait_lock);
1075 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1076 	spin_unlock_bh(&pf->aq_wait_lock);
1077 
1078 	start = jiffies;
1079 
1080 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1081 					       timeout);
1082 	switch (task->state) {
1083 	case ICE_AQ_TASK_WAITING:
1084 		err = ret < 0 ? ret : -ETIMEDOUT;
1085 		break;
1086 	case ICE_AQ_TASK_CANCELED:
1087 		err = ret < 0 ? ret : -ECANCELED;
1088 		break;
1089 	case ICE_AQ_TASK_COMPLETE:
1090 		err = ret < 0 ? ret : 0;
1091 		break;
1092 	default:
1093 		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1094 		err = -EINVAL;
1095 		break;
1096 	}
1097 
1098 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1099 		jiffies_to_msecs(jiffies - start),
1100 		jiffies_to_msecs(timeout),
1101 		opcode);
1102 
1103 	spin_lock_bh(&pf->aq_wait_lock);
1104 	hlist_del(&task->entry);
1105 	spin_unlock_bh(&pf->aq_wait_lock);
1106 	kfree(task);
1107 
1108 	return err;
1109 }
1110 
1111 /**
1112  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1113  * @pf: pointer to the PF private structure
1114  * @opcode: the opcode of the event
1115  * @event: the event to check
1116  *
1117  * Loops over the current list of pending threads waiting for an AdminQ event.
1118  * For each matching task, copy the contents of the event into the task
1119  * structure and wake up the thread.
1120  *
1121  * If multiple threads wait for the same opcode, they will all be woken up.
1122  *
1123  * Note that event->msg_buf will only be duplicated if the event has a buffer
1124  * with enough space already allocated. Otherwise, only the descriptor and
1125  * message length will be copied.
1126  *
1127  * Returns: true if an event was found, false otherwise
1128  */
1129 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1130 				struct ice_rq_event_info *event)
1131 {
1132 	struct ice_aq_task *task;
1133 	bool found = false;
1134 
1135 	spin_lock_bh(&pf->aq_wait_lock);
1136 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1137 		if (task->state || task->opcode != opcode)
1138 			continue;
1139 
1140 		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1141 		task->event->msg_len = event->msg_len;
1142 
1143 		/* Only copy the data buffer if a destination was set */
1144 		if (task->event->msg_buf &&
1145 		    task->event->buf_len > event->buf_len) {
1146 			memcpy(task->event->msg_buf, event->msg_buf,
1147 			       event->buf_len);
1148 			task->event->buf_len = event->buf_len;
1149 		}
1150 
1151 		task->state = ICE_AQ_TASK_COMPLETE;
1152 		found = true;
1153 	}
1154 	spin_unlock_bh(&pf->aq_wait_lock);
1155 
1156 	if (found)
1157 		wake_up(&pf->aq_wait_queue);
1158 }
1159 
1160 /**
1161  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1162  * @pf: the PF private structure
1163  *
1164  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1165  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1166  */
1167 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1168 {
1169 	struct ice_aq_task *task;
1170 
1171 	spin_lock_bh(&pf->aq_wait_lock);
1172 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1173 		task->state = ICE_AQ_TASK_CANCELED;
1174 	spin_unlock_bh(&pf->aq_wait_lock);
1175 
1176 	wake_up(&pf->aq_wait_queue);
1177 }
1178 
1179 /**
1180  * __ice_clean_ctrlq - helper function to clean controlq rings
1181  * @pf: ptr to struct ice_pf
1182  * @q_type: specific Control queue type
1183  */
1184 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1185 {
1186 	struct device *dev = ice_pf_to_dev(pf);
1187 	struct ice_rq_event_info event;
1188 	struct ice_hw *hw = &pf->hw;
1189 	struct ice_ctl_q_info *cq;
1190 	u16 pending, i = 0;
1191 	const char *qtype;
1192 	u32 oldval, val;
1193 
1194 	/* Do not clean control queue if/when PF reset fails */
1195 	if (test_bit(__ICE_RESET_FAILED, pf->state))
1196 		return 0;
1197 
1198 	switch (q_type) {
1199 	case ICE_CTL_Q_ADMIN:
1200 		cq = &hw->adminq;
1201 		qtype = "Admin";
1202 		break;
1203 	case ICE_CTL_Q_MAILBOX:
1204 		cq = &hw->mailboxq;
1205 		qtype = "Mailbox";
1206 		break;
1207 	default:
1208 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1209 		return 0;
1210 	}
1211 
1212 	/* check for error indications - PF_xx_AxQLEN register layout for
1213 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1214 	 */
1215 	val = rd32(hw, cq->rq.len);
1216 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1217 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1218 		oldval = val;
1219 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1220 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1221 				qtype);
1222 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1223 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1224 				qtype);
1225 		}
1226 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1227 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1228 				qtype);
1229 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1230 			 PF_FW_ARQLEN_ARQCRIT_M);
1231 		if (oldval != val)
1232 			wr32(hw, cq->rq.len, val);
1233 	}
1234 
1235 	val = rd32(hw, cq->sq.len);
1236 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1237 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1238 		oldval = val;
1239 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1240 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1241 				qtype);
1242 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1243 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1244 				qtype);
1245 		}
1246 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1247 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1248 				qtype);
1249 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1250 			 PF_FW_ATQLEN_ATQCRIT_M);
1251 		if (oldval != val)
1252 			wr32(hw, cq->sq.len, val);
1253 	}
1254 
1255 	event.buf_len = cq->rq_buf_size;
1256 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1257 	if (!event.msg_buf)
1258 		return 0;
1259 
1260 	do {
1261 		enum ice_status ret;
1262 		u16 opcode;
1263 
1264 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1265 		if (ret == ICE_ERR_AQ_NO_WORK)
1266 			break;
1267 		if (ret) {
1268 			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1269 				ice_stat_str(ret));
1270 			break;
1271 		}
1272 
1273 		opcode = le16_to_cpu(event.desc.opcode);
1274 
1275 		/* Notify any thread that might be waiting for this event */
1276 		ice_aq_check_events(pf, opcode, &event);
1277 
1278 		switch (opcode) {
1279 		case ice_aqc_opc_get_link_status:
1280 			if (ice_handle_link_event(pf, &event))
1281 				dev_err(dev, "Could not handle link event\n");
1282 			break;
1283 		case ice_aqc_opc_event_lan_overflow:
1284 			ice_vf_lan_overflow_event(pf, &event);
1285 			break;
1286 		case ice_mbx_opc_send_msg_to_pf:
1287 			ice_vc_process_vf_msg(pf, &event);
1288 			break;
1289 		case ice_aqc_opc_fw_logging:
1290 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1291 			break;
1292 		case ice_aqc_opc_lldp_set_mib_change:
1293 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1294 			break;
1295 		default:
1296 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1297 				qtype, opcode);
1298 			break;
1299 		}
1300 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1301 
1302 	kfree(event.msg_buf);
1303 
1304 	return pending && (i == ICE_DFLT_IRQ_WORK);
1305 }
1306 
1307 /**
1308  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1309  * @hw: pointer to hardware info
1310  * @cq: control queue information
1311  *
1312  * returns true if there are pending messages in a queue, false if there aren't
1313  */
1314 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1315 {
1316 	u16 ntu;
1317 
1318 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1319 	return cq->rq.next_to_clean != ntu;
1320 }
1321 
1322 /**
1323  * ice_clean_adminq_subtask - clean the AdminQ rings
1324  * @pf: board private structure
1325  */
1326 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1327 {
1328 	struct ice_hw *hw = &pf->hw;
1329 
1330 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1331 		return;
1332 
1333 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1334 		return;
1335 
1336 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1337 
1338 	/* There might be a situation where new messages arrive to a control
1339 	 * queue between processing the last message and clearing the
1340 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1341 	 * ice_ctrlq_pending) and process new messages if any.
1342 	 */
1343 	if (ice_ctrlq_pending(hw, &hw->adminq))
1344 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1345 
1346 	ice_flush(hw);
1347 }
1348 
1349 /**
1350  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1351  * @pf: board private structure
1352  */
1353 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1354 {
1355 	struct ice_hw *hw = &pf->hw;
1356 
1357 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1358 		return;
1359 
1360 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1361 		return;
1362 
1363 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1364 
1365 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1366 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1367 
1368 	ice_flush(hw);
1369 }
1370 
1371 /**
1372  * ice_service_task_schedule - schedule the service task to wake up
1373  * @pf: board private structure
1374  *
1375  * If not already scheduled, this puts the task into the work queue.
1376  */
1377 void ice_service_task_schedule(struct ice_pf *pf)
1378 {
1379 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1380 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1381 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1382 		queue_work(ice_wq, &pf->serv_task);
1383 }
1384 
1385 /**
1386  * ice_service_task_complete - finish up the service task
1387  * @pf: board private structure
1388  */
1389 static void ice_service_task_complete(struct ice_pf *pf)
1390 {
1391 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1392 
1393 	/* force memory (pf->state) to sync before next service task */
1394 	smp_mb__before_atomic();
1395 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1396 }
1397 
1398 /**
1399  * ice_service_task_stop - stop service task and cancel works
1400  * @pf: board private structure
1401  *
1402  * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1403  * 1 otherwise.
1404  */
1405 static int ice_service_task_stop(struct ice_pf *pf)
1406 {
1407 	int ret;
1408 
1409 	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1410 
1411 	if (pf->serv_tmr.function)
1412 		del_timer_sync(&pf->serv_tmr);
1413 	if (pf->serv_task.func)
1414 		cancel_work_sync(&pf->serv_task);
1415 
1416 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1417 	return ret;
1418 }
1419 
1420 /**
1421  * ice_service_task_restart - restart service task and schedule works
1422  * @pf: board private structure
1423  *
1424  * This function is needed for suspend and resume works (e.g WoL scenario)
1425  */
1426 static void ice_service_task_restart(struct ice_pf *pf)
1427 {
1428 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1429 	ice_service_task_schedule(pf);
1430 }
1431 
1432 /**
1433  * ice_service_timer - timer callback to schedule service task
1434  * @t: pointer to timer_list
1435  */
1436 static void ice_service_timer(struct timer_list *t)
1437 {
1438 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1439 
1440 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1441 	ice_service_task_schedule(pf);
1442 }
1443 
1444 /**
1445  * ice_handle_mdd_event - handle malicious driver detect event
1446  * @pf: pointer to the PF structure
1447  *
1448  * Called from service task. OICR interrupt handler indicates MDD event.
1449  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1450  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1451  * disable the queue, the PF can be configured to reset the VF using ethtool
1452  * private flag mdd-auto-reset-vf.
1453  */
1454 static void ice_handle_mdd_event(struct ice_pf *pf)
1455 {
1456 	struct device *dev = ice_pf_to_dev(pf);
1457 	struct ice_hw *hw = &pf->hw;
1458 	unsigned int i;
1459 	u32 reg;
1460 
1461 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1462 		/* Since the VF MDD event logging is rate limited, check if
1463 		 * there are pending MDD events.
1464 		 */
1465 		ice_print_vfs_mdd_events(pf);
1466 		return;
1467 	}
1468 
1469 	/* find what triggered an MDD event */
1470 	reg = rd32(hw, GL_MDET_TX_PQM);
1471 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1472 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1473 				GL_MDET_TX_PQM_PF_NUM_S;
1474 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1475 				GL_MDET_TX_PQM_VF_NUM_S;
1476 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1477 				GL_MDET_TX_PQM_MAL_TYPE_S;
1478 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1479 				GL_MDET_TX_PQM_QNUM_S);
1480 
1481 		if (netif_msg_tx_err(pf))
1482 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1483 				 event, queue, pf_num, vf_num);
1484 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1485 	}
1486 
1487 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1488 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1489 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1490 				GL_MDET_TX_TCLAN_PF_NUM_S;
1491 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1492 				GL_MDET_TX_TCLAN_VF_NUM_S;
1493 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1494 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1495 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1496 				GL_MDET_TX_TCLAN_QNUM_S);
1497 
1498 		if (netif_msg_tx_err(pf))
1499 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1500 				 event, queue, pf_num, vf_num);
1501 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1502 	}
1503 
1504 	reg = rd32(hw, GL_MDET_RX);
1505 	if (reg & GL_MDET_RX_VALID_M) {
1506 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1507 				GL_MDET_RX_PF_NUM_S;
1508 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1509 				GL_MDET_RX_VF_NUM_S;
1510 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1511 				GL_MDET_RX_MAL_TYPE_S;
1512 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1513 				GL_MDET_RX_QNUM_S);
1514 
1515 		if (netif_msg_rx_err(pf))
1516 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1517 				 event, queue, pf_num, vf_num);
1518 		wr32(hw, GL_MDET_RX, 0xffffffff);
1519 	}
1520 
1521 	/* check to see if this PF caused an MDD event */
1522 	reg = rd32(hw, PF_MDET_TX_PQM);
1523 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1524 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1525 		if (netif_msg_tx_err(pf))
1526 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1527 	}
1528 
1529 	reg = rd32(hw, PF_MDET_TX_TCLAN);
1530 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1531 		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1532 		if (netif_msg_tx_err(pf))
1533 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1534 	}
1535 
1536 	reg = rd32(hw, PF_MDET_RX);
1537 	if (reg & PF_MDET_RX_VALID_M) {
1538 		wr32(hw, PF_MDET_RX, 0xFFFF);
1539 		if (netif_msg_rx_err(pf))
1540 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1541 	}
1542 
1543 	/* Check to see if one of the VFs caused an MDD event, and then
1544 	 * increment counters and set print pending
1545 	 */
1546 	ice_for_each_vf(pf, i) {
1547 		struct ice_vf *vf = &pf->vf[i];
1548 
1549 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1550 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1551 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1552 			vf->mdd_tx_events.count++;
1553 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1554 			if (netif_msg_tx_err(pf))
1555 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1556 					 i);
1557 		}
1558 
1559 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1560 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1561 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1562 			vf->mdd_tx_events.count++;
1563 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1564 			if (netif_msg_tx_err(pf))
1565 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1566 					 i);
1567 		}
1568 
1569 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1570 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1571 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1572 			vf->mdd_tx_events.count++;
1573 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1574 			if (netif_msg_tx_err(pf))
1575 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1576 					 i);
1577 		}
1578 
1579 		reg = rd32(hw, VP_MDET_RX(i));
1580 		if (reg & VP_MDET_RX_VALID_M) {
1581 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1582 			vf->mdd_rx_events.count++;
1583 			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1584 			if (netif_msg_rx_err(pf))
1585 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1586 					 i);
1587 
1588 			/* Since the queue is disabled on VF Rx MDD events, the
1589 			 * PF can be configured to reset the VF through ethtool
1590 			 * private flag mdd-auto-reset-vf.
1591 			 */
1592 			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1593 				/* VF MDD event counters will be cleared by
1594 				 * reset, so print the event prior to reset.
1595 				 */
1596 				ice_print_vf_rx_mdd_event(vf);
1597 				ice_reset_vf(&pf->vf[i], false);
1598 			}
1599 		}
1600 	}
1601 
1602 	ice_print_vfs_mdd_events(pf);
1603 }
1604 
1605 /**
1606  * ice_force_phys_link_state - Force the physical link state
1607  * @vsi: VSI to force the physical link state to up/down
1608  * @link_up: true/false indicates to set the physical link to up/down
1609  *
1610  * Force the physical link state by getting the current PHY capabilities from
1611  * hardware and setting the PHY config based on the determined capabilities. If
1612  * link changes a link event will be triggered because both the Enable Automatic
1613  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1614  *
1615  * Returns 0 on success, negative on failure
1616  */
1617 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1618 {
1619 	struct ice_aqc_get_phy_caps_data *pcaps;
1620 	struct ice_aqc_set_phy_cfg_data *cfg;
1621 	struct ice_port_info *pi;
1622 	struct device *dev;
1623 	int retcode;
1624 
1625 	if (!vsi || !vsi->port_info || !vsi->back)
1626 		return -EINVAL;
1627 	if (vsi->type != ICE_VSI_PF)
1628 		return 0;
1629 
1630 	dev = ice_pf_to_dev(vsi->back);
1631 
1632 	pi = vsi->port_info;
1633 
1634 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1635 	if (!pcaps)
1636 		return -ENOMEM;
1637 
1638 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1639 				      NULL);
1640 	if (retcode) {
1641 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1642 			vsi->vsi_num, retcode);
1643 		retcode = -EIO;
1644 		goto out;
1645 	}
1646 
1647 	/* No change in link */
1648 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1649 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1650 		goto out;
1651 
1652 	/* Use the current user PHY configuration. The current user PHY
1653 	 * configuration is initialized during probe from PHY capabilities
1654 	 * software mode, and updated on set PHY configuration.
1655 	 */
1656 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1657 	if (!cfg) {
1658 		retcode = -ENOMEM;
1659 		goto out;
1660 	}
1661 
1662 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1663 	if (link_up)
1664 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1665 	else
1666 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1667 
1668 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1669 	if (retcode) {
1670 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1671 			vsi->vsi_num, retcode);
1672 		retcode = -EIO;
1673 	}
1674 
1675 	kfree(cfg);
1676 out:
1677 	kfree(pcaps);
1678 	return retcode;
1679 }
1680 
1681 /**
1682  * ice_init_nvm_phy_type - Initialize the NVM PHY type
1683  * @pi: port info structure
1684  *
1685  * Initialize nvm_phy_type_[low|high] for link lenient mode support
1686  */
1687 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1688 {
1689 	struct ice_aqc_get_phy_caps_data *pcaps;
1690 	struct ice_pf *pf = pi->hw->back;
1691 	enum ice_status status;
1692 	int err = 0;
1693 
1694 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1695 	if (!pcaps)
1696 		return -ENOMEM;
1697 
1698 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1699 				     NULL);
1700 
1701 	if (status) {
1702 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1703 		err = -EIO;
1704 		goto out;
1705 	}
1706 
1707 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1708 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1709 
1710 out:
1711 	kfree(pcaps);
1712 	return err;
1713 }
1714 
1715 /**
1716  * ice_init_link_dflt_override - Initialize link default override
1717  * @pi: port info structure
1718  *
1719  * Initialize link default override and PHY total port shutdown during probe
1720  */
1721 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1722 {
1723 	struct ice_link_default_override_tlv *ldo;
1724 	struct ice_pf *pf = pi->hw->back;
1725 
1726 	ldo = &pf->link_dflt_override;
1727 	if (ice_get_link_default_override(ldo, pi))
1728 		return;
1729 
1730 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1731 		return;
1732 
1733 	/* Enable Total Port Shutdown (override/replace link-down-on-close
1734 	 * ethtool private flag) for ports with Port Disable bit set.
1735 	 */
1736 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1737 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1738 }
1739 
1740 /**
1741  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1742  * @pi: port info structure
1743  *
1744  * If default override is enabled, initialized the user PHY cfg speed and FEC
1745  * settings using the default override mask from the NVM.
1746  *
1747  * The PHY should only be configured with the default override settings the
1748  * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1749  * is used to indicate that the user PHY cfg default override is initialized
1750  * and the PHY has not been configured with the default override settings. The
1751  * state is set here, and cleared in ice_configure_phy the first time the PHY is
1752  * configured.
1753  */
1754 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1755 {
1756 	struct ice_link_default_override_tlv *ldo;
1757 	struct ice_aqc_set_phy_cfg_data *cfg;
1758 	struct ice_phy_info *phy = &pi->phy;
1759 	struct ice_pf *pf = pi->hw->back;
1760 
1761 	ldo = &pf->link_dflt_override;
1762 
1763 	/* If link default override is enabled, use to mask NVM PHY capabilities
1764 	 * for speed and FEC default configuration.
1765 	 */
1766 	cfg = &phy->curr_user_phy_cfg;
1767 
1768 	if (ldo->phy_type_low || ldo->phy_type_high) {
1769 		cfg->phy_type_low = pf->nvm_phy_type_lo &
1770 				    cpu_to_le64(ldo->phy_type_low);
1771 		cfg->phy_type_high = pf->nvm_phy_type_hi &
1772 				     cpu_to_le64(ldo->phy_type_high);
1773 	}
1774 	cfg->link_fec_opt = ldo->fec_options;
1775 	phy->curr_user_fec_req = ICE_FEC_AUTO;
1776 
1777 	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1778 }
1779 
1780 /**
1781  * ice_init_phy_user_cfg - Initialize the PHY user configuration
1782  * @pi: port info structure
1783  *
1784  * Initialize the current user PHY configuration, speed, FEC, and FC requested
1785  * mode to default. The PHY defaults are from get PHY capabilities topology
1786  * with media so call when media is first available. An error is returned if
1787  * called when media is not available. The PHY initialization completed state is
1788  * set here.
1789  *
1790  * These configurations are used when setting PHY
1791  * configuration. The user PHY configuration is updated on set PHY
1792  * configuration. Returns 0 on success, negative on failure
1793  */
1794 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1795 {
1796 	struct ice_aqc_get_phy_caps_data *pcaps;
1797 	struct ice_phy_info *phy = &pi->phy;
1798 	struct ice_pf *pf = pi->hw->back;
1799 	enum ice_status status;
1800 	struct ice_vsi *vsi;
1801 	int err = 0;
1802 
1803 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1804 		return -EIO;
1805 
1806 	vsi = ice_get_main_vsi(pf);
1807 	if (!vsi)
1808 		return -EINVAL;
1809 
1810 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1811 	if (!pcaps)
1812 		return -ENOMEM;
1813 
1814 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1815 				     NULL);
1816 	if (status) {
1817 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1818 		err = -EIO;
1819 		goto err_out;
1820 	}
1821 
1822 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1823 
1824 	/* check if lenient mode is supported and enabled */
1825 	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1826 	    !(pcaps->module_compliance_enforcement &
1827 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1828 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1829 
1830 		/* if link default override is enabled, initialize user PHY
1831 		 * configuration with link default override values
1832 		 */
1833 		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1834 			ice_init_phy_cfg_dflt_override(pi);
1835 			goto out;
1836 		}
1837 	}
1838 
1839 	/* if link default override is not enabled, initialize PHY using
1840 	 * topology with media
1841 	 */
1842 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1843 						      pcaps->link_fec_options);
1844 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1845 
1846 out:
1847 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1848 	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1849 err_out:
1850 	kfree(pcaps);
1851 	return err;
1852 }
1853 
1854 /**
1855  * ice_configure_phy - configure PHY
1856  * @vsi: VSI of PHY
1857  *
1858  * Set the PHY configuration. If the current PHY configuration is the same as
1859  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1860  * configure the based get PHY capabilities for topology with media.
1861  */
1862 static int ice_configure_phy(struct ice_vsi *vsi)
1863 {
1864 	struct device *dev = ice_pf_to_dev(vsi->back);
1865 	struct ice_aqc_get_phy_caps_data *pcaps;
1866 	struct ice_aqc_set_phy_cfg_data *cfg;
1867 	struct ice_port_info *pi;
1868 	enum ice_status status;
1869 	int err = 0;
1870 
1871 	pi = vsi->port_info;
1872 	if (!pi)
1873 		return -EINVAL;
1874 
1875 	/* Ensure we have media as we cannot configure a medialess port */
1876 	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1877 		return -EPERM;
1878 
1879 	ice_print_topo_conflict(vsi);
1880 
1881 	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1882 	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1883 		return -EPERM;
1884 
1885 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1886 		return ice_force_phys_link_state(vsi, true);
1887 
1888 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1889 	if (!pcaps)
1890 		return -ENOMEM;
1891 
1892 	/* Get current PHY config */
1893 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1894 				     NULL);
1895 	if (status) {
1896 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1897 			vsi->vsi_num, ice_stat_str(status));
1898 		err = -EIO;
1899 		goto done;
1900 	}
1901 
1902 	/* If PHY enable link is configured and configuration has not changed,
1903 	 * there's nothing to do
1904 	 */
1905 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1906 	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1907 		goto done;
1908 
1909 	/* Use PHY topology as baseline for configuration */
1910 	memset(pcaps, 0, sizeof(*pcaps));
1911 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1912 				     NULL);
1913 	if (status) {
1914 		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1915 			vsi->vsi_num, ice_stat_str(status));
1916 		err = -EIO;
1917 		goto done;
1918 	}
1919 
1920 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1921 	if (!cfg) {
1922 		err = -ENOMEM;
1923 		goto done;
1924 	}
1925 
1926 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1927 
1928 	/* Speed - If default override pending, use curr_user_phy_cfg set in
1929 	 * ice_init_phy_user_cfg_ldo.
1930 	 */
1931 	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1932 			       vsi->back->state)) {
1933 		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1934 		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1935 	} else {
1936 		u64 phy_low = 0, phy_high = 0;
1937 
1938 		ice_update_phy_type(&phy_low, &phy_high,
1939 				    pi->phy.curr_user_speed_req);
1940 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1941 		cfg->phy_type_high = pcaps->phy_type_high &
1942 				     cpu_to_le64(phy_high);
1943 	}
1944 
1945 	/* Can't provide what was requested; use PHY capabilities */
1946 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1947 		cfg->phy_type_low = pcaps->phy_type_low;
1948 		cfg->phy_type_high = pcaps->phy_type_high;
1949 	}
1950 
1951 	/* FEC */
1952 	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1953 
1954 	/* Can't provide what was requested; use PHY capabilities */
1955 	if (cfg->link_fec_opt !=
1956 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1957 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1958 		cfg->link_fec_opt = pcaps->link_fec_options;
1959 	}
1960 
1961 	/* Flow Control - always supported; no need to check against
1962 	 * capabilities
1963 	 */
1964 	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1965 
1966 	/* Enable link and link update */
1967 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1968 
1969 	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1970 	if (status) {
1971 		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1972 			vsi->vsi_num, ice_stat_str(status));
1973 		err = -EIO;
1974 	}
1975 
1976 	kfree(cfg);
1977 done:
1978 	kfree(pcaps);
1979 	return err;
1980 }
1981 
1982 /**
1983  * ice_check_media_subtask - Check for media
1984  * @pf: pointer to PF struct
1985  *
1986  * If media is available, then initialize PHY user configuration if it is not
1987  * been, and configure the PHY if the interface is up.
1988  */
1989 static void ice_check_media_subtask(struct ice_pf *pf)
1990 {
1991 	struct ice_port_info *pi;
1992 	struct ice_vsi *vsi;
1993 	int err;
1994 
1995 	/* No need to check for media if it's already present */
1996 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1997 		return;
1998 
1999 	vsi = ice_get_main_vsi(pf);
2000 	if (!vsi)
2001 		return;
2002 
2003 	/* Refresh link info and check if media is present */
2004 	pi = vsi->port_info;
2005 	err = ice_update_link_info(pi);
2006 	if (err)
2007 		return;
2008 
2009 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2010 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2011 			ice_init_phy_user_cfg(pi);
2012 
2013 		/* PHY settings are reset on media insertion, reconfigure
2014 		 * PHY to preserve settings.
2015 		 */
2016 		if (test_bit(__ICE_DOWN, vsi->state) &&
2017 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2018 			return;
2019 
2020 		err = ice_configure_phy(vsi);
2021 		if (!err)
2022 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2023 
2024 		/* A Link Status Event will be generated; the event handler
2025 		 * will complete bringing the interface up
2026 		 */
2027 	}
2028 }
2029 
2030 /**
2031  * ice_service_task - manage and run subtasks
2032  * @work: pointer to work_struct contained by the PF struct
2033  */
2034 static void ice_service_task(struct work_struct *work)
2035 {
2036 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2037 	unsigned long start_time = jiffies;
2038 
2039 	/* subtasks */
2040 
2041 	/* process reset requests first */
2042 	ice_reset_subtask(pf);
2043 
2044 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2045 	if (ice_is_reset_in_progress(pf->state) ||
2046 	    test_bit(__ICE_SUSPENDED, pf->state) ||
2047 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2048 		ice_service_task_complete(pf);
2049 		return;
2050 	}
2051 
2052 	ice_clean_adminq_subtask(pf);
2053 	ice_check_media_subtask(pf);
2054 	ice_check_for_hang_subtask(pf);
2055 	ice_sync_fltr_subtask(pf);
2056 	ice_handle_mdd_event(pf);
2057 	ice_watchdog_subtask(pf);
2058 
2059 	if (ice_is_safe_mode(pf)) {
2060 		ice_service_task_complete(pf);
2061 		return;
2062 	}
2063 
2064 	ice_process_vflr_event(pf);
2065 	ice_clean_mailboxq_subtask(pf);
2066 	ice_sync_arfs_fltrs(pf);
2067 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2068 	ice_service_task_complete(pf);
2069 
2070 	/* If the tasks have taken longer than one service timer period
2071 	 * or there is more work to be done, reset the service timer to
2072 	 * schedule the service task now.
2073 	 */
2074 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2075 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2076 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2077 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2078 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2079 		mod_timer(&pf->serv_tmr, jiffies);
2080 }
2081 
2082 /**
2083  * ice_set_ctrlq_len - helper function to set controlq length
2084  * @hw: pointer to the HW instance
2085  */
2086 static void ice_set_ctrlq_len(struct ice_hw *hw)
2087 {
2088 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2089 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2090 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2091 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2092 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2093 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2094 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2095 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2096 }
2097 
2098 /**
2099  * ice_schedule_reset - schedule a reset
2100  * @pf: board private structure
2101  * @reset: reset being requested
2102  */
2103 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2104 {
2105 	struct device *dev = ice_pf_to_dev(pf);
2106 
2107 	/* bail out if earlier reset has failed */
2108 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2109 		dev_dbg(dev, "earlier reset has failed\n");
2110 		return -EIO;
2111 	}
2112 	/* bail if reset/recovery already in progress */
2113 	if (ice_is_reset_in_progress(pf->state)) {
2114 		dev_dbg(dev, "Reset already in progress\n");
2115 		return -EBUSY;
2116 	}
2117 
2118 	switch (reset) {
2119 	case ICE_RESET_PFR:
2120 		set_bit(__ICE_PFR_REQ, pf->state);
2121 		break;
2122 	case ICE_RESET_CORER:
2123 		set_bit(__ICE_CORER_REQ, pf->state);
2124 		break;
2125 	case ICE_RESET_GLOBR:
2126 		set_bit(__ICE_GLOBR_REQ, pf->state);
2127 		break;
2128 	default:
2129 		return -EINVAL;
2130 	}
2131 
2132 	ice_service_task_schedule(pf);
2133 	return 0;
2134 }
2135 
2136 /**
2137  * ice_irq_affinity_notify - Callback for affinity changes
2138  * @notify: context as to what irq was changed
2139  * @mask: the new affinity mask
2140  *
2141  * This is a callback function used by the irq_set_affinity_notifier function
2142  * so that we may register to receive changes to the irq affinity masks.
2143  */
2144 static void
2145 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2146 			const cpumask_t *mask)
2147 {
2148 	struct ice_q_vector *q_vector =
2149 		container_of(notify, struct ice_q_vector, affinity_notify);
2150 
2151 	cpumask_copy(&q_vector->affinity_mask, mask);
2152 }
2153 
2154 /**
2155  * ice_irq_affinity_release - Callback for affinity notifier release
2156  * @ref: internal core kernel usage
2157  *
2158  * This is a callback function used by the irq_set_affinity_notifier function
2159  * to inform the current notification subscriber that they will no longer
2160  * receive notifications.
2161  */
2162 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2163 
2164 /**
2165  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2166  * @vsi: the VSI being configured
2167  */
2168 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2169 {
2170 	struct ice_hw *hw = &vsi->back->hw;
2171 	int i;
2172 
2173 	ice_for_each_q_vector(vsi, i)
2174 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2175 
2176 	ice_flush(hw);
2177 	return 0;
2178 }
2179 
2180 /**
2181  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2182  * @vsi: the VSI being configured
2183  * @basename: name for the vector
2184  */
2185 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2186 {
2187 	int q_vectors = vsi->num_q_vectors;
2188 	struct ice_pf *pf = vsi->back;
2189 	int base = vsi->base_vector;
2190 	struct device *dev;
2191 	int rx_int_idx = 0;
2192 	int tx_int_idx = 0;
2193 	int vector, err;
2194 	int irq_num;
2195 
2196 	dev = ice_pf_to_dev(pf);
2197 	for (vector = 0; vector < q_vectors; vector++) {
2198 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2199 
2200 		irq_num = pf->msix_entries[base + vector].vector;
2201 
2202 		if (q_vector->tx.ring && q_vector->rx.ring) {
2203 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2204 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2205 			tx_int_idx++;
2206 		} else if (q_vector->rx.ring) {
2207 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2208 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2209 		} else if (q_vector->tx.ring) {
2210 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2211 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2212 		} else {
2213 			/* skip this unused q_vector */
2214 			continue;
2215 		}
2216 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2217 				       q_vector->name, q_vector);
2218 		if (err) {
2219 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2220 				   err);
2221 			goto free_q_irqs;
2222 		}
2223 
2224 		/* register for affinity change notifications */
2225 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2226 			struct irq_affinity_notify *affinity_notify;
2227 
2228 			affinity_notify = &q_vector->affinity_notify;
2229 			affinity_notify->notify = ice_irq_affinity_notify;
2230 			affinity_notify->release = ice_irq_affinity_release;
2231 			irq_set_affinity_notifier(irq_num, affinity_notify);
2232 		}
2233 
2234 		/* assign the mask for this irq */
2235 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2236 	}
2237 
2238 	vsi->irqs_ready = true;
2239 	return 0;
2240 
2241 free_q_irqs:
2242 	while (vector) {
2243 		vector--;
2244 		irq_num = pf->msix_entries[base + vector].vector;
2245 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2246 			irq_set_affinity_notifier(irq_num, NULL);
2247 		irq_set_affinity_hint(irq_num, NULL);
2248 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2249 	}
2250 	return err;
2251 }
2252 
2253 /**
2254  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2255  * @vsi: VSI to setup Tx rings used by XDP
2256  *
2257  * Return 0 on success and negative value on error
2258  */
2259 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2260 {
2261 	struct device *dev = ice_pf_to_dev(vsi->back);
2262 	int i;
2263 
2264 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2265 		u16 xdp_q_idx = vsi->alloc_txq + i;
2266 		struct ice_ring *xdp_ring;
2267 
2268 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2269 
2270 		if (!xdp_ring)
2271 			goto free_xdp_rings;
2272 
2273 		xdp_ring->q_index = xdp_q_idx;
2274 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2275 		xdp_ring->ring_active = false;
2276 		xdp_ring->vsi = vsi;
2277 		xdp_ring->netdev = NULL;
2278 		xdp_ring->dev = dev;
2279 		xdp_ring->count = vsi->num_tx_desc;
2280 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2281 		if (ice_setup_tx_ring(xdp_ring))
2282 			goto free_xdp_rings;
2283 		ice_set_ring_xdp(xdp_ring);
2284 		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2285 	}
2286 
2287 	return 0;
2288 
2289 free_xdp_rings:
2290 	for (; i >= 0; i--)
2291 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2292 			ice_free_tx_ring(vsi->xdp_rings[i]);
2293 	return -ENOMEM;
2294 }
2295 
2296 /**
2297  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2298  * @vsi: VSI to set the bpf prog on
2299  * @prog: the bpf prog pointer
2300  */
2301 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2302 {
2303 	struct bpf_prog *old_prog;
2304 	int i;
2305 
2306 	old_prog = xchg(&vsi->xdp_prog, prog);
2307 	if (old_prog)
2308 		bpf_prog_put(old_prog);
2309 
2310 	ice_for_each_rxq(vsi, i)
2311 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2312 }
2313 
2314 /**
2315  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2316  * @vsi: VSI to bring up Tx rings used by XDP
2317  * @prog: bpf program that will be assigned to VSI
2318  *
2319  * Return 0 on success and negative value on error
2320  */
2321 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2322 {
2323 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2324 	int xdp_rings_rem = vsi->num_xdp_txq;
2325 	struct ice_pf *pf = vsi->back;
2326 	struct ice_qs_cfg xdp_qs_cfg = {
2327 		.qs_mutex = &pf->avail_q_mutex,
2328 		.pf_map = pf->avail_txqs,
2329 		.pf_map_size = pf->max_pf_txqs,
2330 		.q_count = vsi->num_xdp_txq,
2331 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2332 		.vsi_map = vsi->txq_map,
2333 		.vsi_map_offset = vsi->alloc_txq,
2334 		.mapping_mode = ICE_VSI_MAP_CONTIG
2335 	};
2336 	enum ice_status status;
2337 	struct device *dev;
2338 	int i, v_idx;
2339 
2340 	dev = ice_pf_to_dev(pf);
2341 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2342 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2343 	if (!vsi->xdp_rings)
2344 		return -ENOMEM;
2345 
2346 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2347 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2348 		goto err_map_xdp;
2349 
2350 	if (ice_xdp_alloc_setup_rings(vsi))
2351 		goto clear_xdp_rings;
2352 
2353 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2354 	ice_for_each_q_vector(vsi, v_idx) {
2355 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2356 		int xdp_rings_per_v, q_id, q_base;
2357 
2358 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2359 					       vsi->num_q_vectors - v_idx);
2360 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2361 
2362 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2363 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2364 
2365 			xdp_ring->q_vector = q_vector;
2366 			xdp_ring->next = q_vector->tx.ring;
2367 			q_vector->tx.ring = xdp_ring;
2368 		}
2369 		xdp_rings_rem -= xdp_rings_per_v;
2370 	}
2371 
2372 	/* omit the scheduler update if in reset path; XDP queues will be
2373 	 * taken into account at the end of ice_vsi_rebuild, where
2374 	 * ice_cfg_vsi_lan is being called
2375 	 */
2376 	if (ice_is_reset_in_progress(pf->state))
2377 		return 0;
2378 
2379 	/* tell the Tx scheduler that right now we have
2380 	 * additional queues
2381 	 */
2382 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2383 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2384 
2385 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2386 				 max_txqs);
2387 	if (status) {
2388 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2389 			ice_stat_str(status));
2390 		goto clear_xdp_rings;
2391 	}
2392 	ice_vsi_assign_bpf_prog(vsi, prog);
2393 
2394 	return 0;
2395 clear_xdp_rings:
2396 	for (i = 0; i < vsi->num_xdp_txq; i++)
2397 		if (vsi->xdp_rings[i]) {
2398 			kfree_rcu(vsi->xdp_rings[i], rcu);
2399 			vsi->xdp_rings[i] = NULL;
2400 		}
2401 
2402 err_map_xdp:
2403 	mutex_lock(&pf->avail_q_mutex);
2404 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2405 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2406 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2407 	}
2408 	mutex_unlock(&pf->avail_q_mutex);
2409 
2410 	devm_kfree(dev, vsi->xdp_rings);
2411 	return -ENOMEM;
2412 }
2413 
2414 /**
2415  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2416  * @vsi: VSI to remove XDP rings
2417  *
2418  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2419  * resources
2420  */
2421 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2422 {
2423 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2424 	struct ice_pf *pf = vsi->back;
2425 	int i, v_idx;
2426 
2427 	/* q_vectors are freed in reset path so there's no point in detaching
2428 	 * rings; in case of rebuild being triggered not from reset bits
2429 	 * in pf->state won't be set, so additionally check first q_vector
2430 	 * against NULL
2431 	 */
2432 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2433 		goto free_qmap;
2434 
2435 	ice_for_each_q_vector(vsi, v_idx) {
2436 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2437 		struct ice_ring *ring;
2438 
2439 		ice_for_each_ring(ring, q_vector->tx)
2440 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2441 				break;
2442 
2443 		/* restore the value of last node prior to XDP setup */
2444 		q_vector->tx.ring = ring;
2445 	}
2446 
2447 free_qmap:
2448 	mutex_lock(&pf->avail_q_mutex);
2449 	for (i = 0; i < vsi->num_xdp_txq; i++) {
2450 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2451 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2452 	}
2453 	mutex_unlock(&pf->avail_q_mutex);
2454 
2455 	for (i = 0; i < vsi->num_xdp_txq; i++)
2456 		if (vsi->xdp_rings[i]) {
2457 			if (vsi->xdp_rings[i]->desc)
2458 				ice_free_tx_ring(vsi->xdp_rings[i]);
2459 			kfree_rcu(vsi->xdp_rings[i], rcu);
2460 			vsi->xdp_rings[i] = NULL;
2461 		}
2462 
2463 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2464 	vsi->xdp_rings = NULL;
2465 
2466 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2467 		return 0;
2468 
2469 	ice_vsi_assign_bpf_prog(vsi, NULL);
2470 
2471 	/* notify Tx scheduler that we destroyed XDP queues and bring
2472 	 * back the old number of child nodes
2473 	 */
2474 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2475 		max_txqs[i] = vsi->num_txq;
2476 
2477 	/* change number of XDP Tx queues to 0 */
2478 	vsi->num_xdp_txq = 0;
2479 
2480 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2481 			       max_txqs);
2482 }
2483 
2484 /**
2485  * ice_xdp_setup_prog - Add or remove XDP eBPF program
2486  * @vsi: VSI to setup XDP for
2487  * @prog: XDP program
2488  * @extack: netlink extended ack
2489  */
2490 static int
2491 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2492 		   struct netlink_ext_ack *extack)
2493 {
2494 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2495 	bool if_running = netif_running(vsi->netdev);
2496 	int ret = 0, xdp_ring_err = 0;
2497 
2498 	if (frame_size > vsi->rx_buf_len) {
2499 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2500 		return -EOPNOTSUPP;
2501 	}
2502 
2503 	/* need to stop netdev while setting up the program for Rx rings */
2504 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2505 		ret = ice_down(vsi);
2506 		if (ret) {
2507 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2508 			return ret;
2509 		}
2510 	}
2511 
2512 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2513 		vsi->num_xdp_txq = vsi->alloc_rxq;
2514 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2515 		if (xdp_ring_err)
2516 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2517 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2518 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2519 		if (xdp_ring_err)
2520 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2521 	} else {
2522 		ice_vsi_assign_bpf_prog(vsi, prog);
2523 	}
2524 
2525 	if (if_running)
2526 		ret = ice_up(vsi);
2527 
2528 	if (!ret && prog && vsi->xsk_pools) {
2529 		int i;
2530 
2531 		ice_for_each_rxq(vsi, i) {
2532 			struct ice_ring *rx_ring = vsi->rx_rings[i];
2533 
2534 			if (rx_ring->xsk_pool)
2535 				napi_schedule(&rx_ring->q_vector->napi);
2536 		}
2537 	}
2538 
2539 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2540 }
2541 
2542 /**
2543  * ice_xdp - implements XDP handler
2544  * @dev: netdevice
2545  * @xdp: XDP command
2546  */
2547 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2548 {
2549 	struct ice_netdev_priv *np = netdev_priv(dev);
2550 	struct ice_vsi *vsi = np->vsi;
2551 
2552 	if (vsi->type != ICE_VSI_PF) {
2553 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2554 		return -EINVAL;
2555 	}
2556 
2557 	switch (xdp->command) {
2558 	case XDP_SETUP_PROG:
2559 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2560 	case XDP_SETUP_XSK_POOL:
2561 		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2562 					  xdp->xsk.queue_id);
2563 	default:
2564 		return -EINVAL;
2565 	}
2566 }
2567 
2568 /**
2569  * ice_ena_misc_vector - enable the non-queue interrupts
2570  * @pf: board private structure
2571  */
2572 static void ice_ena_misc_vector(struct ice_pf *pf)
2573 {
2574 	struct ice_hw *hw = &pf->hw;
2575 	u32 val;
2576 
2577 	/* Disable anti-spoof detection interrupt to prevent spurious event
2578 	 * interrupts during a function reset. Anti-spoof functionally is
2579 	 * still supported.
2580 	 */
2581 	val = rd32(hw, GL_MDCK_TX_TDPU);
2582 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2583 	wr32(hw, GL_MDCK_TX_TDPU, val);
2584 
2585 	/* clear things first */
2586 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2587 	rd32(hw, PFINT_OICR);		/* read to clear */
2588 
2589 	val = (PFINT_OICR_ECC_ERR_M |
2590 	       PFINT_OICR_MAL_DETECT_M |
2591 	       PFINT_OICR_GRST_M |
2592 	       PFINT_OICR_PCI_EXCEPTION_M |
2593 	       PFINT_OICR_VFLR_M |
2594 	       PFINT_OICR_HMC_ERR_M |
2595 	       PFINT_OICR_PE_CRITERR_M);
2596 
2597 	wr32(hw, PFINT_OICR_ENA, val);
2598 
2599 	/* SW_ITR_IDX = 0, but don't change INTENA */
2600 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2601 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2602 }
2603 
2604 /**
2605  * ice_misc_intr - misc interrupt handler
2606  * @irq: interrupt number
2607  * @data: pointer to a q_vector
2608  */
2609 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2610 {
2611 	struct ice_pf *pf = (struct ice_pf *)data;
2612 	struct ice_hw *hw = &pf->hw;
2613 	irqreturn_t ret = IRQ_NONE;
2614 	struct device *dev;
2615 	u32 oicr, ena_mask;
2616 
2617 	dev = ice_pf_to_dev(pf);
2618 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2619 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2620 
2621 	oicr = rd32(hw, PFINT_OICR);
2622 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2623 
2624 	if (oicr & PFINT_OICR_SWINT_M) {
2625 		ena_mask &= ~PFINT_OICR_SWINT_M;
2626 		pf->sw_int_count++;
2627 	}
2628 
2629 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2630 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2631 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2632 	}
2633 	if (oicr & PFINT_OICR_VFLR_M) {
2634 		/* disable any further VFLR event notifications */
2635 		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2636 			u32 reg = rd32(hw, PFINT_OICR_ENA);
2637 
2638 			reg &= ~PFINT_OICR_VFLR_M;
2639 			wr32(hw, PFINT_OICR_ENA, reg);
2640 		} else {
2641 			ena_mask &= ~PFINT_OICR_VFLR_M;
2642 			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2643 		}
2644 	}
2645 
2646 	if (oicr & PFINT_OICR_GRST_M) {
2647 		u32 reset;
2648 
2649 		/* we have a reset warning */
2650 		ena_mask &= ~PFINT_OICR_GRST_M;
2651 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2652 			GLGEN_RSTAT_RESET_TYPE_S;
2653 
2654 		if (reset == ICE_RESET_CORER)
2655 			pf->corer_count++;
2656 		else if (reset == ICE_RESET_GLOBR)
2657 			pf->globr_count++;
2658 		else if (reset == ICE_RESET_EMPR)
2659 			pf->empr_count++;
2660 		else
2661 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2662 
2663 		/* If a reset cycle isn't already in progress, we set a bit in
2664 		 * pf->state so that the service task can start a reset/rebuild.
2665 		 * We also make note of which reset happened so that peer
2666 		 * devices/drivers can be informed.
2667 		 */
2668 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2669 			if (reset == ICE_RESET_CORER)
2670 				set_bit(__ICE_CORER_RECV, pf->state);
2671 			else if (reset == ICE_RESET_GLOBR)
2672 				set_bit(__ICE_GLOBR_RECV, pf->state);
2673 			else
2674 				set_bit(__ICE_EMPR_RECV, pf->state);
2675 
2676 			/* There are couple of different bits at play here.
2677 			 * hw->reset_ongoing indicates whether the hardware is
2678 			 * in reset. This is set to true when a reset interrupt
2679 			 * is received and set back to false after the driver
2680 			 * has determined that the hardware is out of reset.
2681 			 *
2682 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2683 			 * that a post reset rebuild is required before the
2684 			 * driver is operational again. This is set above.
2685 			 *
2686 			 * As this is the start of the reset/rebuild cycle, set
2687 			 * both to indicate that.
2688 			 */
2689 			hw->reset_ongoing = true;
2690 		}
2691 	}
2692 
2693 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2694 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2695 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2696 			rd32(hw, PFHMC_ERRORINFO),
2697 			rd32(hw, PFHMC_ERRORDATA));
2698 	}
2699 
2700 	/* Report any remaining unexpected interrupts */
2701 	oicr &= ena_mask;
2702 	if (oicr) {
2703 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2704 		/* If a critical error is pending there is no choice but to
2705 		 * reset the device.
2706 		 */
2707 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2708 			    PFINT_OICR_PCI_EXCEPTION_M |
2709 			    PFINT_OICR_ECC_ERR_M)) {
2710 			set_bit(__ICE_PFR_REQ, pf->state);
2711 			ice_service_task_schedule(pf);
2712 		}
2713 	}
2714 	ret = IRQ_HANDLED;
2715 
2716 	ice_service_task_schedule(pf);
2717 	ice_irq_dynamic_ena(hw, NULL, NULL);
2718 
2719 	return ret;
2720 }
2721 
2722 /**
2723  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2724  * @hw: pointer to HW structure
2725  */
2726 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2727 {
2728 	/* disable Admin queue Interrupt causes */
2729 	wr32(hw, PFINT_FW_CTL,
2730 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2731 
2732 	/* disable Mailbox queue Interrupt causes */
2733 	wr32(hw, PFINT_MBX_CTL,
2734 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2735 
2736 	/* disable Control queue Interrupt causes */
2737 	wr32(hw, PFINT_OICR_CTL,
2738 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2739 
2740 	ice_flush(hw);
2741 }
2742 
2743 /**
2744  * ice_free_irq_msix_misc - Unroll misc vector setup
2745  * @pf: board private structure
2746  */
2747 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2748 {
2749 	struct ice_hw *hw = &pf->hw;
2750 
2751 	ice_dis_ctrlq_interrupts(hw);
2752 
2753 	/* disable OICR interrupt */
2754 	wr32(hw, PFINT_OICR_ENA, 0);
2755 	ice_flush(hw);
2756 
2757 	if (pf->msix_entries) {
2758 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2759 		devm_free_irq(ice_pf_to_dev(pf),
2760 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2761 	}
2762 
2763 	pf->num_avail_sw_msix += 1;
2764 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2765 }
2766 
2767 /**
2768  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2769  * @hw: pointer to HW structure
2770  * @reg_idx: HW vector index to associate the control queue interrupts with
2771  */
2772 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2773 {
2774 	u32 val;
2775 
2776 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2777 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2778 	wr32(hw, PFINT_OICR_CTL, val);
2779 
2780 	/* enable Admin queue Interrupt causes */
2781 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2782 	       PFINT_FW_CTL_CAUSE_ENA_M);
2783 	wr32(hw, PFINT_FW_CTL, val);
2784 
2785 	/* enable Mailbox queue Interrupt causes */
2786 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2787 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2788 	wr32(hw, PFINT_MBX_CTL, val);
2789 
2790 	ice_flush(hw);
2791 }
2792 
2793 /**
2794  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2795  * @pf: board private structure
2796  *
2797  * This sets up the handler for MSIX 0, which is used to manage the
2798  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2799  * when in MSI or Legacy interrupt mode.
2800  */
2801 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2802 {
2803 	struct device *dev = ice_pf_to_dev(pf);
2804 	struct ice_hw *hw = &pf->hw;
2805 	int oicr_idx, err = 0;
2806 
2807 	if (!pf->int_name[0])
2808 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2809 			 dev_driver_string(dev), dev_name(dev));
2810 
2811 	/* Do not request IRQ but do enable OICR interrupt since settings are
2812 	 * lost during reset. Note that this function is called only during
2813 	 * rebuild path and not while reset is in progress.
2814 	 */
2815 	if (ice_is_reset_in_progress(pf->state))
2816 		goto skip_req_irq;
2817 
2818 	/* reserve one vector in irq_tracker for misc interrupts */
2819 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2820 	if (oicr_idx < 0)
2821 		return oicr_idx;
2822 
2823 	pf->num_avail_sw_msix -= 1;
2824 	pf->oicr_idx = (u16)oicr_idx;
2825 
2826 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2827 			       ice_misc_intr, 0, pf->int_name, pf);
2828 	if (err) {
2829 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2830 			pf->int_name, err);
2831 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2832 		pf->num_avail_sw_msix += 1;
2833 		return err;
2834 	}
2835 
2836 skip_req_irq:
2837 	ice_ena_misc_vector(pf);
2838 
2839 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2840 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2841 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2842 
2843 	ice_flush(hw);
2844 	ice_irq_dynamic_ena(hw, NULL, NULL);
2845 
2846 	return 0;
2847 }
2848 
2849 /**
2850  * ice_napi_add - register NAPI handler for the VSI
2851  * @vsi: VSI for which NAPI handler is to be registered
2852  *
2853  * This function is only called in the driver's load path. Registering the NAPI
2854  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2855  * reset/rebuild, etc.)
2856  */
2857 static void ice_napi_add(struct ice_vsi *vsi)
2858 {
2859 	int v_idx;
2860 
2861 	if (!vsi->netdev)
2862 		return;
2863 
2864 	ice_for_each_q_vector(vsi, v_idx)
2865 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2866 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2867 }
2868 
2869 /**
2870  * ice_set_ops - set netdev and ethtools ops for the given netdev
2871  * @netdev: netdev instance
2872  */
2873 static void ice_set_ops(struct net_device *netdev)
2874 {
2875 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2876 
2877 	if (ice_is_safe_mode(pf)) {
2878 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2879 		ice_set_ethtool_safe_mode_ops(netdev);
2880 		return;
2881 	}
2882 
2883 	netdev->netdev_ops = &ice_netdev_ops;
2884 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
2885 	ice_set_ethtool_ops(netdev);
2886 }
2887 
2888 /**
2889  * ice_set_netdev_features - set features for the given netdev
2890  * @netdev: netdev instance
2891  */
2892 static void ice_set_netdev_features(struct net_device *netdev)
2893 {
2894 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2895 	netdev_features_t csumo_features;
2896 	netdev_features_t vlano_features;
2897 	netdev_features_t dflt_features;
2898 	netdev_features_t tso_features;
2899 
2900 	if (ice_is_safe_mode(pf)) {
2901 		/* safe mode */
2902 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2903 		netdev->hw_features = netdev->features;
2904 		return;
2905 	}
2906 
2907 	dflt_features = NETIF_F_SG	|
2908 			NETIF_F_HIGHDMA	|
2909 			NETIF_F_NTUPLE	|
2910 			NETIF_F_RXHASH;
2911 
2912 	csumo_features = NETIF_F_RXCSUM	  |
2913 			 NETIF_F_IP_CSUM  |
2914 			 NETIF_F_SCTP_CRC |
2915 			 NETIF_F_IPV6_CSUM;
2916 
2917 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2918 			 NETIF_F_HW_VLAN_CTAG_TX     |
2919 			 NETIF_F_HW_VLAN_CTAG_RX;
2920 
2921 	tso_features = NETIF_F_TSO			|
2922 		       NETIF_F_TSO_ECN			|
2923 		       NETIF_F_TSO6			|
2924 		       NETIF_F_GSO_GRE			|
2925 		       NETIF_F_GSO_UDP_TUNNEL		|
2926 		       NETIF_F_GSO_GRE_CSUM		|
2927 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2928 		       NETIF_F_GSO_PARTIAL		|
2929 		       NETIF_F_GSO_IPXIP4		|
2930 		       NETIF_F_GSO_IPXIP6		|
2931 		       NETIF_F_GSO_UDP_L4;
2932 
2933 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2934 					NETIF_F_GSO_GRE_CSUM;
2935 	/* set features that user can change */
2936 	netdev->hw_features = dflt_features | csumo_features |
2937 			      vlano_features | tso_features;
2938 
2939 	/* add support for HW_CSUM on packets with MPLS header */
2940 	netdev->mpls_features =  NETIF_F_HW_CSUM;
2941 
2942 	/* enable features */
2943 	netdev->features |= netdev->hw_features;
2944 	/* encap and VLAN devices inherit default, csumo and tso features */
2945 	netdev->hw_enc_features |= dflt_features | csumo_features |
2946 				   tso_features;
2947 	netdev->vlan_features |= dflt_features | csumo_features |
2948 				 tso_features;
2949 }
2950 
2951 /**
2952  * ice_cfg_netdev - Allocate, configure and register a netdev
2953  * @vsi: the VSI associated with the new netdev
2954  *
2955  * Returns 0 on success, negative value on failure
2956  */
2957 static int ice_cfg_netdev(struct ice_vsi *vsi)
2958 {
2959 	struct ice_pf *pf = vsi->back;
2960 	struct ice_netdev_priv *np;
2961 	struct net_device *netdev;
2962 	u8 mac_addr[ETH_ALEN];
2963 	int err;
2964 
2965 	err = ice_devlink_create_port(vsi);
2966 	if (err)
2967 		return err;
2968 
2969 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2970 				    vsi->alloc_rxq);
2971 	if (!netdev) {
2972 		err = -ENOMEM;
2973 		goto err_destroy_devlink_port;
2974 	}
2975 
2976 	vsi->netdev = netdev;
2977 	np = netdev_priv(netdev);
2978 	np->vsi = vsi;
2979 
2980 	ice_set_netdev_features(netdev);
2981 
2982 	ice_set_ops(netdev);
2983 
2984 	if (vsi->type == ICE_VSI_PF) {
2985 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2986 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2987 		ether_addr_copy(netdev->dev_addr, mac_addr);
2988 		ether_addr_copy(netdev->perm_addr, mac_addr);
2989 	}
2990 
2991 	netdev->priv_flags |= IFF_UNICAST_FLT;
2992 
2993 	/* Setup netdev TC information */
2994 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2995 
2996 	/* setup watchdog timeout value to be 5 second */
2997 	netdev->watchdog_timeo = 5 * HZ;
2998 
2999 	netdev->min_mtu = ETH_MIN_MTU;
3000 	netdev->max_mtu = ICE_MAX_MTU;
3001 
3002 	err = register_netdev(vsi->netdev);
3003 	if (err)
3004 		goto err_free_netdev;
3005 
3006 	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
3007 
3008 	netif_carrier_off(vsi->netdev);
3009 
3010 	/* make sure transmit queues start off as stopped */
3011 	netif_tx_stop_all_queues(vsi->netdev);
3012 
3013 	return 0;
3014 
3015 err_free_netdev:
3016 	free_netdev(vsi->netdev);
3017 	vsi->netdev = NULL;
3018 err_destroy_devlink_port:
3019 	ice_devlink_destroy_port(vsi);
3020 	return err;
3021 }
3022 
3023 /**
3024  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3025  * @lut: Lookup table
3026  * @rss_table_size: Lookup table size
3027  * @rss_size: Range of queue number for hashing
3028  */
3029 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3030 {
3031 	u16 i;
3032 
3033 	for (i = 0; i < rss_table_size; i++)
3034 		lut[i] = i % rss_size;
3035 }
3036 
3037 /**
3038  * ice_pf_vsi_setup - Set up a PF VSI
3039  * @pf: board private structure
3040  * @pi: pointer to the port_info instance
3041  *
3042  * Returns pointer to the successfully allocated VSI software struct
3043  * on success, otherwise returns NULL on failure.
3044  */
3045 static struct ice_vsi *
3046 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3047 {
3048 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3049 }
3050 
3051 /**
3052  * ice_ctrl_vsi_setup - Set up a control VSI
3053  * @pf: board private structure
3054  * @pi: pointer to the port_info instance
3055  *
3056  * Returns pointer to the successfully allocated VSI software struct
3057  * on success, otherwise returns NULL on failure.
3058  */
3059 static struct ice_vsi *
3060 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3061 {
3062 	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3063 }
3064 
3065 /**
3066  * ice_lb_vsi_setup - Set up a loopback VSI
3067  * @pf: board private structure
3068  * @pi: pointer to the port_info instance
3069  *
3070  * Returns pointer to the successfully allocated VSI software struct
3071  * on success, otherwise returns NULL on failure.
3072  */
3073 struct ice_vsi *
3074 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3075 {
3076 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3077 }
3078 
3079 /**
3080  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3081  * @netdev: network interface to be adjusted
3082  * @proto: unused protocol
3083  * @vid: VLAN ID to be added
3084  *
3085  * net_device_ops implementation for adding VLAN IDs
3086  */
3087 static int
3088 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3089 		    u16 vid)
3090 {
3091 	struct ice_netdev_priv *np = netdev_priv(netdev);
3092 	struct ice_vsi *vsi = np->vsi;
3093 	int ret;
3094 
3095 	if (vid >= VLAN_N_VID) {
3096 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3097 			   vid, VLAN_N_VID);
3098 		return -EINVAL;
3099 	}
3100 
3101 	if (vsi->info.pvid)
3102 		return -EINVAL;
3103 
3104 	/* VLAN 0 is added by default during load/reset */
3105 	if (!vid)
3106 		return 0;
3107 
3108 	/* Enable VLAN pruning when a VLAN other than 0 is added */
3109 	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3110 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3111 		if (ret)
3112 			return ret;
3113 	}
3114 
3115 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3116 	 * packets aren't pruned by the device's internal switch on Rx
3117 	 */
3118 	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3119 	if (!ret)
3120 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3121 
3122 	return ret;
3123 }
3124 
3125 /**
3126  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3127  * @netdev: network interface to be adjusted
3128  * @proto: unused protocol
3129  * @vid: VLAN ID to be removed
3130  *
3131  * net_device_ops implementation for removing VLAN IDs
3132  */
3133 static int
3134 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3135 		     u16 vid)
3136 {
3137 	struct ice_netdev_priv *np = netdev_priv(netdev);
3138 	struct ice_vsi *vsi = np->vsi;
3139 	int ret;
3140 
3141 	if (vsi->info.pvid)
3142 		return -EINVAL;
3143 
3144 	/* don't allow removal of VLAN 0 */
3145 	if (!vid)
3146 		return 0;
3147 
3148 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3149 	 * information
3150 	 */
3151 	ret = ice_vsi_kill_vlan(vsi, vid);
3152 	if (ret)
3153 		return ret;
3154 
3155 	/* Disable pruning when VLAN 0 is the only VLAN rule */
3156 	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3157 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3158 
3159 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3160 	return ret;
3161 }
3162 
3163 /**
3164  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3165  * @pf: board private structure
3166  *
3167  * Returns 0 on success, negative value on failure
3168  */
3169 static int ice_setup_pf_sw(struct ice_pf *pf)
3170 {
3171 	struct ice_vsi *vsi;
3172 	int status = 0;
3173 
3174 	if (ice_is_reset_in_progress(pf->state))
3175 		return -EBUSY;
3176 
3177 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3178 	if (!vsi)
3179 		return -ENOMEM;
3180 
3181 	status = ice_cfg_netdev(vsi);
3182 	if (status) {
3183 		status = -ENODEV;
3184 		goto unroll_vsi_setup;
3185 	}
3186 	/* netdev has to be configured before setting frame size */
3187 	ice_vsi_cfg_frame_size(vsi);
3188 
3189 	/* Setup DCB netlink interface */
3190 	ice_dcbnl_setup(vsi);
3191 
3192 	/* registering the NAPI handler requires both the queues and
3193 	 * netdev to be created, which are done in ice_pf_vsi_setup()
3194 	 * and ice_cfg_netdev() respectively
3195 	 */
3196 	ice_napi_add(vsi);
3197 
3198 	status = ice_set_cpu_rx_rmap(vsi);
3199 	if (status) {
3200 		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3201 			vsi->vsi_num, status);
3202 		status = -EINVAL;
3203 		goto unroll_napi_add;
3204 	}
3205 	status = ice_init_mac_fltr(pf);
3206 	if (status)
3207 		goto free_cpu_rx_map;
3208 
3209 	return status;
3210 
3211 free_cpu_rx_map:
3212 	ice_free_cpu_rx_rmap(vsi);
3213 
3214 unroll_napi_add:
3215 	if (vsi) {
3216 		ice_napi_del(vsi);
3217 		if (vsi->netdev) {
3218 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3219 				unregister_netdev(vsi->netdev);
3220 			free_netdev(vsi->netdev);
3221 			vsi->netdev = NULL;
3222 		}
3223 	}
3224 
3225 unroll_vsi_setup:
3226 	ice_vsi_release(vsi);
3227 	return status;
3228 }
3229 
3230 /**
3231  * ice_get_avail_q_count - Get count of queues in use
3232  * @pf_qmap: bitmap to get queue use count from
3233  * @lock: pointer to a mutex that protects access to pf_qmap
3234  * @size: size of the bitmap
3235  */
3236 static u16
3237 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3238 {
3239 	unsigned long bit;
3240 	u16 count = 0;
3241 
3242 	mutex_lock(lock);
3243 	for_each_clear_bit(bit, pf_qmap, size)
3244 		count++;
3245 	mutex_unlock(lock);
3246 
3247 	return count;
3248 }
3249 
3250 /**
3251  * ice_get_avail_txq_count - Get count of Tx queues in use
3252  * @pf: pointer to an ice_pf instance
3253  */
3254 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3255 {
3256 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3257 				     pf->max_pf_txqs);
3258 }
3259 
3260 /**
3261  * ice_get_avail_rxq_count - Get count of Rx queues in use
3262  * @pf: pointer to an ice_pf instance
3263  */
3264 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3265 {
3266 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3267 				     pf->max_pf_rxqs);
3268 }
3269 
3270 /**
3271  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3272  * @pf: board private structure to initialize
3273  */
3274 static void ice_deinit_pf(struct ice_pf *pf)
3275 {
3276 	ice_service_task_stop(pf);
3277 	mutex_destroy(&pf->sw_mutex);
3278 	mutex_destroy(&pf->tc_mutex);
3279 	mutex_destroy(&pf->avail_q_mutex);
3280 
3281 	if (pf->avail_txqs) {
3282 		bitmap_free(pf->avail_txqs);
3283 		pf->avail_txqs = NULL;
3284 	}
3285 
3286 	if (pf->avail_rxqs) {
3287 		bitmap_free(pf->avail_rxqs);
3288 		pf->avail_rxqs = NULL;
3289 	}
3290 }
3291 
3292 /**
3293  * ice_set_pf_caps - set PFs capability flags
3294  * @pf: pointer to the PF instance
3295  */
3296 static void ice_set_pf_caps(struct ice_pf *pf)
3297 {
3298 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3299 
3300 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3301 	if (func_caps->common_cap.dcb)
3302 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3303 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3304 	if (func_caps->common_cap.sr_iov_1_1) {
3305 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3306 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3307 					      ICE_MAX_VF_COUNT);
3308 	}
3309 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3310 	if (func_caps->common_cap.rss_table_size)
3311 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3312 
3313 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3314 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3315 		u16 unused;
3316 
3317 		/* ctrl_vsi_idx will be set to a valid value when flow director
3318 		 * is setup by ice_init_fdir
3319 		 */
3320 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3321 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3322 		/* force guaranteed filter pool for PF */
3323 		ice_alloc_fd_guar_item(&pf->hw, &unused,
3324 				       func_caps->fd_fltr_guar);
3325 		/* force shared filter pool for PF */
3326 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3327 				       func_caps->fd_fltr_best_effort);
3328 	}
3329 
3330 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3331 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3332 }
3333 
3334 /**
3335  * ice_init_pf - Initialize general software structures (struct ice_pf)
3336  * @pf: board private structure to initialize
3337  */
3338 static int ice_init_pf(struct ice_pf *pf)
3339 {
3340 	ice_set_pf_caps(pf);
3341 
3342 	mutex_init(&pf->sw_mutex);
3343 	mutex_init(&pf->tc_mutex);
3344 
3345 	INIT_HLIST_HEAD(&pf->aq_wait_list);
3346 	spin_lock_init(&pf->aq_wait_lock);
3347 	init_waitqueue_head(&pf->aq_wait_queue);
3348 
3349 	/* setup service timer and periodic service task */
3350 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3351 	pf->serv_tmr_period = HZ;
3352 	INIT_WORK(&pf->serv_task, ice_service_task);
3353 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3354 
3355 	mutex_init(&pf->avail_q_mutex);
3356 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3357 	if (!pf->avail_txqs)
3358 		return -ENOMEM;
3359 
3360 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3361 	if (!pf->avail_rxqs) {
3362 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3363 		pf->avail_txqs = NULL;
3364 		return -ENOMEM;
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 /**
3371  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3372  * @pf: board private structure
3373  *
3374  * compute the number of MSIX vectors required (v_budget) and request from
3375  * the OS. Return the number of vectors reserved or negative on failure
3376  */
3377 static int ice_ena_msix_range(struct ice_pf *pf)
3378 {
3379 	struct device *dev = ice_pf_to_dev(pf);
3380 	int v_left, v_actual, v_budget = 0;
3381 	int needed, err, i;
3382 
3383 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3384 
3385 	/* reserve one vector for miscellaneous handler */
3386 	needed = 1;
3387 	if (v_left < needed)
3388 		goto no_hw_vecs_left_err;
3389 	v_budget += needed;
3390 	v_left -= needed;
3391 
3392 	/* reserve vectors for LAN traffic */
3393 	needed = min_t(int, num_online_cpus(), v_left);
3394 	if (v_left < needed)
3395 		goto no_hw_vecs_left_err;
3396 	pf->num_lan_msix = needed;
3397 	v_budget += needed;
3398 	v_left -= needed;
3399 
3400 	/* reserve one vector for flow director */
3401 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3402 		needed = ICE_FDIR_MSIX;
3403 		if (v_left < needed)
3404 			goto no_hw_vecs_left_err;
3405 		v_budget += needed;
3406 		v_left -= needed;
3407 	}
3408 
3409 	pf->msix_entries = devm_kcalloc(dev, v_budget,
3410 					sizeof(*pf->msix_entries), GFP_KERNEL);
3411 
3412 	if (!pf->msix_entries) {
3413 		err = -ENOMEM;
3414 		goto exit_err;
3415 	}
3416 
3417 	for (i = 0; i < v_budget; i++)
3418 		pf->msix_entries[i].entry = i;
3419 
3420 	/* actually reserve the vectors */
3421 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3422 					 ICE_MIN_MSIX, v_budget);
3423 
3424 	if (v_actual < 0) {
3425 		dev_err(dev, "unable to reserve MSI-X vectors\n");
3426 		err = v_actual;
3427 		goto msix_err;
3428 	}
3429 
3430 	if (v_actual < v_budget) {
3431 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3432 			 v_budget, v_actual);
3433 /* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3434 #define ICE_MIN_LAN_VECS 2
3435 #define ICE_MIN_RDMA_VECS 2
3436 #define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3437 
3438 		if (v_actual < ICE_MIN_LAN_VECS) {
3439 			/* error if we can't get minimum vectors */
3440 			pci_disable_msix(pf->pdev);
3441 			err = -ERANGE;
3442 			goto msix_err;
3443 		} else {
3444 			pf->num_lan_msix = ICE_MIN_LAN_VECS;
3445 		}
3446 	}
3447 
3448 	return v_actual;
3449 
3450 msix_err:
3451 	devm_kfree(dev, pf->msix_entries);
3452 	goto exit_err;
3453 
3454 no_hw_vecs_left_err:
3455 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3456 		needed, v_left);
3457 	err = -ERANGE;
3458 exit_err:
3459 	pf->num_lan_msix = 0;
3460 	return err;
3461 }
3462 
3463 /**
3464  * ice_dis_msix - Disable MSI-X interrupt setup in OS
3465  * @pf: board private structure
3466  */
3467 static void ice_dis_msix(struct ice_pf *pf)
3468 {
3469 	pci_disable_msix(pf->pdev);
3470 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3471 	pf->msix_entries = NULL;
3472 }
3473 
3474 /**
3475  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3476  * @pf: board private structure
3477  */
3478 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3479 {
3480 	ice_dis_msix(pf);
3481 
3482 	if (pf->irq_tracker) {
3483 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3484 		pf->irq_tracker = NULL;
3485 	}
3486 }
3487 
3488 /**
3489  * ice_init_interrupt_scheme - Determine proper interrupt scheme
3490  * @pf: board private structure to initialize
3491  */
3492 static int ice_init_interrupt_scheme(struct ice_pf *pf)
3493 {
3494 	int vectors;
3495 
3496 	vectors = ice_ena_msix_range(pf);
3497 
3498 	if (vectors < 0)
3499 		return vectors;
3500 
3501 	/* set up vector assignment tracking */
3502 	pf->irq_tracker =
3503 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3504 			     (sizeof(u16) * vectors), GFP_KERNEL);
3505 	if (!pf->irq_tracker) {
3506 		ice_dis_msix(pf);
3507 		return -ENOMEM;
3508 	}
3509 
3510 	/* populate SW interrupts pool with number of OS granted IRQs. */
3511 	pf->num_avail_sw_msix = (u16)vectors;
3512 	pf->irq_tracker->num_entries = (u16)vectors;
3513 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3514 
3515 	return 0;
3516 }
3517 
3518 /**
3519  * ice_is_wol_supported - get NVM state of WoL
3520  * @pf: board private structure
3521  *
3522  * Check if WoL is supported based on the HW configuration.
3523  * Returns true if NVM supports and enables WoL for this port, false otherwise
3524  */
3525 bool ice_is_wol_supported(struct ice_pf *pf)
3526 {
3527 	struct ice_hw *hw = &pf->hw;
3528 	u16 wol_ctrl;
3529 
3530 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3531 	 * word) indicates WoL is not supported on the corresponding PF ID.
3532 	 */
3533 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3534 		return false;
3535 
3536 	return !(BIT(hw->pf_id) & wol_ctrl);
3537 }
3538 
3539 /**
3540  * ice_vsi_recfg_qs - Change the number of queues on a VSI
3541  * @vsi: VSI being changed
3542  * @new_rx: new number of Rx queues
3543  * @new_tx: new number of Tx queues
3544  *
3545  * Only change the number of queues if new_tx, or new_rx is non-0.
3546  *
3547  * Returns 0 on success.
3548  */
3549 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3550 {
3551 	struct ice_pf *pf = vsi->back;
3552 	int err = 0, timeout = 50;
3553 
3554 	if (!new_rx && !new_tx)
3555 		return -EINVAL;
3556 
3557 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3558 		timeout--;
3559 		if (!timeout)
3560 			return -EBUSY;
3561 		usleep_range(1000, 2000);
3562 	}
3563 
3564 	if (new_tx)
3565 		vsi->req_txq = (u16)new_tx;
3566 	if (new_rx)
3567 		vsi->req_rxq = (u16)new_rx;
3568 
3569 	/* set for the next time the netdev is started */
3570 	if (!netif_running(vsi->netdev)) {
3571 		ice_vsi_rebuild(vsi, false);
3572 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3573 		goto done;
3574 	}
3575 
3576 	ice_vsi_close(vsi);
3577 	ice_vsi_rebuild(vsi, false);
3578 	ice_pf_dcb_recfg(pf);
3579 	ice_vsi_open(vsi);
3580 done:
3581 	clear_bit(__ICE_CFG_BUSY, pf->state);
3582 	return err;
3583 }
3584 
3585 /**
3586  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3587  * @pf: PF to configure
3588  *
3589  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3590  * VSI can still Tx/Rx VLAN tagged packets.
3591  */
3592 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3593 {
3594 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3595 	struct ice_vsi_ctx *ctxt;
3596 	enum ice_status status;
3597 	struct ice_hw *hw;
3598 
3599 	if (!vsi)
3600 		return;
3601 
3602 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3603 	if (!ctxt)
3604 		return;
3605 
3606 	hw = &pf->hw;
3607 	ctxt->info = vsi->info;
3608 
3609 	ctxt->info.valid_sections =
3610 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3611 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3612 			    ICE_AQ_VSI_PROP_SW_VALID);
3613 
3614 	/* disable VLAN anti-spoof */
3615 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3616 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3617 
3618 	/* disable VLAN pruning and keep all other settings */
3619 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3620 
3621 	/* allow all VLANs on Tx and don't strip on Rx */
3622 	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3623 		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3624 
3625 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3626 	if (status) {
3627 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3628 			ice_stat_str(status),
3629 			ice_aq_str(hw->adminq.sq_last_status));
3630 	} else {
3631 		vsi->info.sec_flags = ctxt->info.sec_flags;
3632 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3633 		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3634 	}
3635 
3636 	kfree(ctxt);
3637 }
3638 
3639 /**
3640  * ice_log_pkg_init - log result of DDP package load
3641  * @hw: pointer to hardware info
3642  * @status: status of package load
3643  */
3644 static void
3645 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3646 {
3647 	struct ice_pf *pf = (struct ice_pf *)hw->back;
3648 	struct device *dev = ice_pf_to_dev(pf);
3649 
3650 	switch (*status) {
3651 	case ICE_SUCCESS:
3652 		/* The package download AdminQ command returned success because
3653 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3654 		 * already a package loaded on the device.
3655 		 */
3656 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3657 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3658 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3659 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3660 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3661 			    sizeof(hw->pkg_name))) {
3662 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3663 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3664 					 hw->active_pkg_name,
3665 					 hw->active_pkg_ver.major,
3666 					 hw->active_pkg_ver.minor,
3667 					 hw->active_pkg_ver.update,
3668 					 hw->active_pkg_ver.draft);
3669 			else
3670 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3671 					 hw->active_pkg_name,
3672 					 hw->active_pkg_ver.major,
3673 					 hw->active_pkg_ver.minor,
3674 					 hw->active_pkg_ver.update,
3675 					 hw->active_pkg_ver.draft);
3676 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3677 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3678 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3679 				hw->active_pkg_name,
3680 				hw->active_pkg_ver.major,
3681 				hw->active_pkg_ver.minor,
3682 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3683 			*status = ICE_ERR_NOT_SUPPORTED;
3684 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3685 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3686 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3687 				 hw->active_pkg_name,
3688 				 hw->active_pkg_ver.major,
3689 				 hw->active_pkg_ver.minor,
3690 				 hw->active_pkg_ver.update,
3691 				 hw->active_pkg_ver.draft,
3692 				 hw->pkg_name,
3693 				 hw->pkg_ver.major,
3694 				 hw->pkg_ver.minor,
3695 				 hw->pkg_ver.update,
3696 				 hw->pkg_ver.draft);
3697 		} else {
3698 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3699 			*status = ICE_ERR_NOT_SUPPORTED;
3700 		}
3701 		break;
3702 	case ICE_ERR_FW_DDP_MISMATCH:
3703 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3704 		break;
3705 	case ICE_ERR_BUF_TOO_SHORT:
3706 	case ICE_ERR_CFG:
3707 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3708 		break;
3709 	case ICE_ERR_NOT_SUPPORTED:
3710 		/* Package File version not supported */
3711 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3712 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3713 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3714 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3715 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3716 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3717 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3718 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3719 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3720 		break;
3721 	case ICE_ERR_AQ_ERROR:
3722 		switch (hw->pkg_dwnld_status) {
3723 		case ICE_AQ_RC_ENOSEC:
3724 		case ICE_AQ_RC_EBADSIG:
3725 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3726 			return;
3727 		case ICE_AQ_RC_ESVN:
3728 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3729 			return;
3730 		case ICE_AQ_RC_EBADMAN:
3731 		case ICE_AQ_RC_EBADBUF:
3732 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3733 			/* poll for reset to complete */
3734 			if (ice_check_reset(hw))
3735 				dev_err(dev, "Error resetting device. Please reload the driver\n");
3736 			return;
3737 		default:
3738 			break;
3739 		}
3740 		fallthrough;
3741 	default:
3742 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3743 			*status);
3744 		break;
3745 	}
3746 }
3747 
3748 /**
3749  * ice_load_pkg - load/reload the DDP Package file
3750  * @firmware: firmware structure when firmware requested or NULL for reload
3751  * @pf: pointer to the PF instance
3752  *
3753  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3754  * initialize HW tables.
3755  */
3756 static void
3757 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3758 {
3759 	enum ice_status status = ICE_ERR_PARAM;
3760 	struct device *dev = ice_pf_to_dev(pf);
3761 	struct ice_hw *hw = &pf->hw;
3762 
3763 	/* Load DDP Package */
3764 	if (firmware && !hw->pkg_copy) {
3765 		status = ice_copy_and_init_pkg(hw, firmware->data,
3766 					       firmware->size);
3767 		ice_log_pkg_init(hw, &status);
3768 	} else if (!firmware && hw->pkg_copy) {
3769 		/* Reload package during rebuild after CORER/GLOBR reset */
3770 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3771 		ice_log_pkg_init(hw, &status);
3772 	} else {
3773 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3774 	}
3775 
3776 	if (status) {
3777 		/* Safe Mode */
3778 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3779 		return;
3780 	}
3781 
3782 	/* Successful download package is the precondition for advanced
3783 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3784 	 */
3785 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3786 }
3787 
3788 /**
3789  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3790  * @pf: pointer to the PF structure
3791  *
3792  * There is no error returned here because the driver should be able to handle
3793  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3794  * specifically with Tx.
3795  */
3796 static void ice_verify_cacheline_size(struct ice_pf *pf)
3797 {
3798 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3799 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3800 			 ICE_CACHE_LINE_BYTES);
3801 }
3802 
3803 /**
3804  * ice_send_version - update firmware with driver version
3805  * @pf: PF struct
3806  *
3807  * Returns ICE_SUCCESS on success, else error code
3808  */
3809 static enum ice_status ice_send_version(struct ice_pf *pf)
3810 {
3811 	struct ice_driver_ver dv;
3812 
3813 	dv.major_ver = 0xff;
3814 	dv.minor_ver = 0xff;
3815 	dv.build_ver = 0xff;
3816 	dv.subbuild_ver = 0;
3817 	strscpy((char *)dv.driver_string, UTS_RELEASE,
3818 		sizeof(dv.driver_string));
3819 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3820 }
3821 
3822 /**
3823  * ice_init_fdir - Initialize flow director VSI and configuration
3824  * @pf: pointer to the PF instance
3825  *
3826  * returns 0 on success, negative on error
3827  */
3828 static int ice_init_fdir(struct ice_pf *pf)
3829 {
3830 	struct device *dev = ice_pf_to_dev(pf);
3831 	struct ice_vsi *ctrl_vsi;
3832 	int err;
3833 
3834 	/* Side Band Flow Director needs to have a control VSI.
3835 	 * Allocate it and store it in the PF.
3836 	 */
3837 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3838 	if (!ctrl_vsi) {
3839 		dev_dbg(dev, "could not create control VSI\n");
3840 		return -ENOMEM;
3841 	}
3842 
3843 	err = ice_vsi_open_ctrl(ctrl_vsi);
3844 	if (err) {
3845 		dev_dbg(dev, "could not open control VSI\n");
3846 		goto err_vsi_open;
3847 	}
3848 
3849 	mutex_init(&pf->hw.fdir_fltr_lock);
3850 
3851 	err = ice_fdir_create_dflt_rules(pf);
3852 	if (err)
3853 		goto err_fdir_rule;
3854 
3855 	return 0;
3856 
3857 err_fdir_rule:
3858 	ice_fdir_release_flows(&pf->hw);
3859 	ice_vsi_close(ctrl_vsi);
3860 err_vsi_open:
3861 	ice_vsi_release(ctrl_vsi);
3862 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3863 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3864 		pf->ctrl_vsi_idx = ICE_NO_VSI;
3865 	}
3866 	return err;
3867 }
3868 
3869 /**
3870  * ice_get_opt_fw_name - return optional firmware file name or NULL
3871  * @pf: pointer to the PF instance
3872  */
3873 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3874 {
3875 	/* Optional firmware name same as default with additional dash
3876 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3877 	 */
3878 	struct pci_dev *pdev = pf->pdev;
3879 	char *opt_fw_filename;
3880 	u64 dsn;
3881 
3882 	/* Determine the name of the optional file using the DSN (two
3883 	 * dwords following the start of the DSN Capability).
3884 	 */
3885 	dsn = pci_get_dsn(pdev);
3886 	if (!dsn)
3887 		return NULL;
3888 
3889 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3890 	if (!opt_fw_filename)
3891 		return NULL;
3892 
3893 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3894 		 ICE_DDP_PKG_PATH, dsn);
3895 
3896 	return opt_fw_filename;
3897 }
3898 
3899 /**
3900  * ice_request_fw - Device initialization routine
3901  * @pf: pointer to the PF instance
3902  */
3903 static void ice_request_fw(struct ice_pf *pf)
3904 {
3905 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3906 	const struct firmware *firmware = NULL;
3907 	struct device *dev = ice_pf_to_dev(pf);
3908 	int err = 0;
3909 
3910 	/* optional device-specific DDP (if present) overrides the default DDP
3911 	 * package file. kernel logs a debug message if the file doesn't exist,
3912 	 * and warning messages for other errors.
3913 	 */
3914 	if (opt_fw_filename) {
3915 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3916 		if (err) {
3917 			kfree(opt_fw_filename);
3918 			goto dflt_pkg_load;
3919 		}
3920 
3921 		/* request for firmware was successful. Download to device */
3922 		ice_load_pkg(firmware, pf);
3923 		kfree(opt_fw_filename);
3924 		release_firmware(firmware);
3925 		return;
3926 	}
3927 
3928 dflt_pkg_load:
3929 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3930 	if (err) {
3931 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3932 		return;
3933 	}
3934 
3935 	/* request for firmware was successful. Download to device */
3936 	ice_load_pkg(firmware, pf);
3937 	release_firmware(firmware);
3938 }
3939 
3940 /**
3941  * ice_print_wake_reason - show the wake up cause in the log
3942  * @pf: pointer to the PF struct
3943  */
3944 static void ice_print_wake_reason(struct ice_pf *pf)
3945 {
3946 	u32 wus = pf->wakeup_reason;
3947 	const char *wake_str;
3948 
3949 	/* if no wake event, nothing to print */
3950 	if (!wus)
3951 		return;
3952 
3953 	if (wus & PFPM_WUS_LNKC_M)
3954 		wake_str = "Link\n";
3955 	else if (wus & PFPM_WUS_MAG_M)
3956 		wake_str = "Magic Packet\n";
3957 	else if (wus & PFPM_WUS_MNG_M)
3958 		wake_str = "Management\n";
3959 	else if (wus & PFPM_WUS_FW_RST_WK_M)
3960 		wake_str = "Firmware Reset\n";
3961 	else
3962 		wake_str = "Unknown\n";
3963 
3964 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3965 }
3966 
3967 /**
3968  * ice_probe - Device initialization routine
3969  * @pdev: PCI device information struct
3970  * @ent: entry in ice_pci_tbl
3971  *
3972  * Returns 0 on success, negative on failure
3973  */
3974 static int
3975 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3976 {
3977 	struct device *dev = &pdev->dev;
3978 	struct ice_pf *pf;
3979 	struct ice_hw *hw;
3980 	int i, err;
3981 
3982 	/* this driver uses devres, see
3983 	 * Documentation/driver-api/driver-model/devres.rst
3984 	 */
3985 	err = pcim_enable_device(pdev);
3986 	if (err)
3987 		return err;
3988 
3989 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3990 	if (err) {
3991 		dev_err(dev, "BAR0 I/O map error %d\n", err);
3992 		return err;
3993 	}
3994 
3995 	pf = ice_allocate_pf(dev);
3996 	if (!pf)
3997 		return -ENOMEM;
3998 
3999 	/* set up for high or low DMA */
4000 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4001 	if (err)
4002 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4003 	if (err) {
4004 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4005 		return err;
4006 	}
4007 
4008 	pci_enable_pcie_error_reporting(pdev);
4009 	pci_set_master(pdev);
4010 
4011 	pf->pdev = pdev;
4012 	pci_set_drvdata(pdev, pf);
4013 	set_bit(__ICE_DOWN, pf->state);
4014 	/* Disable service task until DOWN bit is cleared */
4015 	set_bit(__ICE_SERVICE_DIS, pf->state);
4016 
4017 	hw = &pf->hw;
4018 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4019 	pci_save_state(pdev);
4020 
4021 	hw->back = pf;
4022 	hw->vendor_id = pdev->vendor;
4023 	hw->device_id = pdev->device;
4024 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4025 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4026 	hw->subsystem_device_id = pdev->subsystem_device;
4027 	hw->bus.device = PCI_SLOT(pdev->devfn);
4028 	hw->bus.func = PCI_FUNC(pdev->devfn);
4029 	ice_set_ctrlq_len(hw);
4030 
4031 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4032 
4033 	err = ice_devlink_register(pf);
4034 	if (err) {
4035 		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4036 		goto err_exit_unroll;
4037 	}
4038 
4039 #ifndef CONFIG_DYNAMIC_DEBUG
4040 	if (debug < -1)
4041 		hw->debug_mask = debug;
4042 #endif
4043 
4044 	err = ice_init_hw(hw);
4045 	if (err) {
4046 		dev_err(dev, "ice_init_hw failed: %d\n", err);
4047 		err = -EIO;
4048 		goto err_exit_unroll;
4049 	}
4050 
4051 	ice_request_fw(pf);
4052 
4053 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4054 	 * set in pf->state, which will cause ice_is_safe_mode to return
4055 	 * true
4056 	 */
4057 	if (ice_is_safe_mode(pf)) {
4058 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4059 		/* we already got function/device capabilities but these don't
4060 		 * reflect what the driver needs to do in safe mode. Instead of
4061 		 * adding conditional logic everywhere to ignore these
4062 		 * device/function capabilities, override them.
4063 		 */
4064 		ice_set_safe_mode_caps(hw);
4065 	}
4066 
4067 	err = ice_init_pf(pf);
4068 	if (err) {
4069 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4070 		goto err_init_pf_unroll;
4071 	}
4072 
4073 	ice_devlink_init_regions(pf);
4074 
4075 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4076 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4077 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4078 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4079 	i = 0;
4080 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4081 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4082 			pf->hw.tnl.valid_count[TNL_VXLAN];
4083 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4084 			UDP_TUNNEL_TYPE_VXLAN;
4085 		i++;
4086 	}
4087 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4088 		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4089 			pf->hw.tnl.valid_count[TNL_GENEVE];
4090 		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4091 			UDP_TUNNEL_TYPE_GENEVE;
4092 		i++;
4093 	}
4094 
4095 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4096 	if (!pf->num_alloc_vsi) {
4097 		err = -EIO;
4098 		goto err_init_pf_unroll;
4099 	}
4100 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4101 		dev_warn(&pf->pdev->dev,
4102 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4103 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4104 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4105 	}
4106 
4107 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4108 			       GFP_KERNEL);
4109 	if (!pf->vsi) {
4110 		err = -ENOMEM;
4111 		goto err_init_pf_unroll;
4112 	}
4113 
4114 	err = ice_init_interrupt_scheme(pf);
4115 	if (err) {
4116 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4117 		err = -EIO;
4118 		goto err_init_vsi_unroll;
4119 	}
4120 
4121 	/* In case of MSIX we are going to setup the misc vector right here
4122 	 * to handle admin queue events etc. In case of legacy and MSI
4123 	 * the misc functionality and queue processing is combined in
4124 	 * the same vector and that gets setup at open.
4125 	 */
4126 	err = ice_req_irq_msix_misc(pf);
4127 	if (err) {
4128 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4129 		goto err_init_interrupt_unroll;
4130 	}
4131 
4132 	/* create switch struct for the switch element created by FW on boot */
4133 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4134 	if (!pf->first_sw) {
4135 		err = -ENOMEM;
4136 		goto err_msix_misc_unroll;
4137 	}
4138 
4139 	if (hw->evb_veb)
4140 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4141 	else
4142 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4143 
4144 	pf->first_sw->pf = pf;
4145 
4146 	/* record the sw_id available for later use */
4147 	pf->first_sw->sw_id = hw->port_info->sw_id;
4148 
4149 	err = ice_setup_pf_sw(pf);
4150 	if (err) {
4151 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4152 		goto err_alloc_sw_unroll;
4153 	}
4154 
4155 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4156 
4157 	/* tell the firmware we are up */
4158 	err = ice_send_version(pf);
4159 	if (err) {
4160 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4161 			UTS_RELEASE, err);
4162 		goto err_send_version_unroll;
4163 	}
4164 
4165 	/* since everything is good, start the service timer */
4166 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4167 
4168 	err = ice_init_link_events(pf->hw.port_info);
4169 	if (err) {
4170 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4171 		goto err_send_version_unroll;
4172 	}
4173 
4174 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4175 	if (err) {
4176 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4177 		goto err_send_version_unroll;
4178 	}
4179 
4180 	err = ice_update_link_info(pf->hw.port_info);
4181 	if (err) {
4182 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4183 		goto err_send_version_unroll;
4184 	}
4185 
4186 	ice_init_link_dflt_override(pf->hw.port_info);
4187 
4188 	/* if media available, initialize PHY settings */
4189 	if (pf->hw.port_info->phy.link_info.link_info &
4190 	    ICE_AQ_MEDIA_AVAILABLE) {
4191 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4192 		if (err) {
4193 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4194 			goto err_send_version_unroll;
4195 		}
4196 
4197 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4198 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4199 
4200 			if (vsi)
4201 				ice_configure_phy(vsi);
4202 		}
4203 	} else {
4204 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4205 	}
4206 
4207 	ice_verify_cacheline_size(pf);
4208 
4209 	/* Save wakeup reason register for later use */
4210 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4211 
4212 	/* check for a power management event */
4213 	ice_print_wake_reason(pf);
4214 
4215 	/* clear wake status, all bits */
4216 	wr32(hw, PFPM_WUS, U32_MAX);
4217 
4218 	/* Disable WoL at init, wait for user to enable */
4219 	device_set_wakeup_enable(dev, false);
4220 
4221 	if (ice_is_safe_mode(pf)) {
4222 		ice_set_safe_mode_vlan_cfg(pf);
4223 		goto probe_done;
4224 	}
4225 
4226 	/* initialize DDP driven features */
4227 
4228 	/* Note: Flow director init failure is non-fatal to load */
4229 	if (ice_init_fdir(pf))
4230 		dev_err(dev, "could not initialize flow director\n");
4231 
4232 	/* Note: DCB init failure is non-fatal to load */
4233 	if (ice_init_pf_dcb(pf, false)) {
4234 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4235 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4236 	} else {
4237 		ice_cfg_lldp_mib_change(&pf->hw, true);
4238 	}
4239 
4240 	/* print PCI link speed and width */
4241 	pcie_print_link_status(pf->pdev);
4242 
4243 probe_done:
4244 	/* ready to go, so clear down state bit */
4245 	clear_bit(__ICE_DOWN, pf->state);
4246 	return 0;
4247 
4248 err_send_version_unroll:
4249 	ice_vsi_release_all(pf);
4250 err_alloc_sw_unroll:
4251 	set_bit(__ICE_SERVICE_DIS, pf->state);
4252 	set_bit(__ICE_DOWN, pf->state);
4253 	devm_kfree(dev, pf->first_sw);
4254 err_msix_misc_unroll:
4255 	ice_free_irq_msix_misc(pf);
4256 err_init_interrupt_unroll:
4257 	ice_clear_interrupt_scheme(pf);
4258 err_init_vsi_unroll:
4259 	devm_kfree(dev, pf->vsi);
4260 err_init_pf_unroll:
4261 	ice_deinit_pf(pf);
4262 	ice_devlink_destroy_regions(pf);
4263 	ice_deinit_hw(hw);
4264 err_exit_unroll:
4265 	ice_devlink_unregister(pf);
4266 	pci_disable_pcie_error_reporting(pdev);
4267 	pci_disable_device(pdev);
4268 	return err;
4269 }
4270 
4271 /**
4272  * ice_set_wake - enable or disable Wake on LAN
4273  * @pf: pointer to the PF struct
4274  *
4275  * Simple helper for WoL control
4276  */
4277 static void ice_set_wake(struct ice_pf *pf)
4278 {
4279 	struct ice_hw *hw = &pf->hw;
4280 	bool wol = pf->wol_ena;
4281 
4282 	/* clear wake state, otherwise new wake events won't fire */
4283 	wr32(hw, PFPM_WUS, U32_MAX);
4284 
4285 	/* enable / disable APM wake up, no RMW needed */
4286 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4287 
4288 	/* set magic packet filter enabled */
4289 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4290 }
4291 
4292 /**
4293  * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4294  * @pf: pointer to the PF struct
4295  *
4296  * Issue firmware command to enable multicast magic wake, making
4297  * sure that any locally administered address (LAA) is used for
4298  * wake, and that PF reset doesn't undo the LAA.
4299  */
4300 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4301 {
4302 	struct device *dev = ice_pf_to_dev(pf);
4303 	struct ice_hw *hw = &pf->hw;
4304 	enum ice_status status;
4305 	u8 mac_addr[ETH_ALEN];
4306 	struct ice_vsi *vsi;
4307 	u8 flags;
4308 
4309 	if (!pf->wol_ena)
4310 		return;
4311 
4312 	vsi = ice_get_main_vsi(pf);
4313 	if (!vsi)
4314 		return;
4315 
4316 	/* Get current MAC address in case it's an LAA */
4317 	if (vsi->netdev)
4318 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4319 	else
4320 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4321 
4322 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4323 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4324 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4325 
4326 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4327 	if (status)
4328 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4329 			ice_stat_str(status),
4330 			ice_aq_str(hw->adminq.sq_last_status));
4331 }
4332 
4333 /**
4334  * ice_remove - Device removal routine
4335  * @pdev: PCI device information struct
4336  */
4337 static void ice_remove(struct pci_dev *pdev)
4338 {
4339 	struct ice_pf *pf = pci_get_drvdata(pdev);
4340 	int i;
4341 
4342 	if (!pf)
4343 		return;
4344 
4345 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4346 		if (!ice_is_reset_in_progress(pf->state))
4347 			break;
4348 		msleep(100);
4349 	}
4350 
4351 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4352 		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4353 		ice_free_vfs(pf);
4354 	}
4355 
4356 	set_bit(__ICE_DOWN, pf->state);
4357 	ice_service_task_stop(pf);
4358 
4359 	ice_aq_cancel_waiting_tasks(pf);
4360 
4361 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4362 	if (!ice_is_safe_mode(pf))
4363 		ice_remove_arfs(pf);
4364 	ice_setup_mc_magic_wake(pf);
4365 	ice_vsi_release_all(pf);
4366 	ice_set_wake(pf);
4367 	ice_free_irq_msix_misc(pf);
4368 	ice_for_each_vsi(pf, i) {
4369 		if (!pf->vsi[i])
4370 			continue;
4371 		ice_vsi_free_q_vectors(pf->vsi[i]);
4372 	}
4373 	ice_deinit_pf(pf);
4374 	ice_devlink_destroy_regions(pf);
4375 	ice_deinit_hw(&pf->hw);
4376 	ice_devlink_unregister(pf);
4377 
4378 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4379 	 * do it via ice_schedule_reset() since there is no need to rebuild
4380 	 * and the service task is already stopped.
4381 	 */
4382 	ice_reset(&pf->hw, ICE_RESET_PFR);
4383 	pci_wait_for_pending_transaction(pdev);
4384 	ice_clear_interrupt_scheme(pf);
4385 	pci_disable_pcie_error_reporting(pdev);
4386 	pci_disable_device(pdev);
4387 }
4388 
4389 /**
4390  * ice_shutdown - PCI callback for shutting down device
4391  * @pdev: PCI device information struct
4392  */
4393 static void ice_shutdown(struct pci_dev *pdev)
4394 {
4395 	struct ice_pf *pf = pci_get_drvdata(pdev);
4396 
4397 	ice_remove(pdev);
4398 
4399 	if (system_state == SYSTEM_POWER_OFF) {
4400 		pci_wake_from_d3(pdev, pf->wol_ena);
4401 		pci_set_power_state(pdev, PCI_D3hot);
4402 	}
4403 }
4404 
4405 #ifdef CONFIG_PM
4406 /**
4407  * ice_prepare_for_shutdown - prep for PCI shutdown
4408  * @pf: board private structure
4409  *
4410  * Inform or close all dependent features in prep for PCI device shutdown
4411  */
4412 static void ice_prepare_for_shutdown(struct ice_pf *pf)
4413 {
4414 	struct ice_hw *hw = &pf->hw;
4415 	u32 v;
4416 
4417 	/* Notify VFs of impending reset */
4418 	if (ice_check_sq_alive(hw, &hw->mailboxq))
4419 		ice_vc_notify_reset(pf);
4420 
4421 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4422 
4423 	/* disable the VSIs and their queues that are not already DOWN */
4424 	ice_pf_dis_all_vsi(pf, false);
4425 
4426 	ice_for_each_vsi(pf, v)
4427 		if (pf->vsi[v])
4428 			pf->vsi[v]->vsi_num = 0;
4429 
4430 	ice_shutdown_all_ctrlq(hw);
4431 }
4432 
4433 /**
4434  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4435  * @pf: board private structure to reinitialize
4436  *
4437  * This routine reinitialize interrupt scheme that was cleared during
4438  * power management suspend callback.
4439  *
4440  * This should be called during resume routine to re-allocate the q_vectors
4441  * and reacquire interrupts.
4442  */
4443 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4444 {
4445 	struct device *dev = ice_pf_to_dev(pf);
4446 	int ret, v;
4447 
4448 	/* Since we clear MSIX flag during suspend, we need to
4449 	 * set it back during resume...
4450 	 */
4451 
4452 	ret = ice_init_interrupt_scheme(pf);
4453 	if (ret) {
4454 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4455 		return ret;
4456 	}
4457 
4458 	/* Remap vectors and rings, after successful re-init interrupts */
4459 	ice_for_each_vsi(pf, v) {
4460 		if (!pf->vsi[v])
4461 			continue;
4462 
4463 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4464 		if (ret)
4465 			goto err_reinit;
4466 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4467 	}
4468 
4469 	ret = ice_req_irq_msix_misc(pf);
4470 	if (ret) {
4471 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4472 			ret);
4473 		goto err_reinit;
4474 	}
4475 
4476 	return 0;
4477 
4478 err_reinit:
4479 	while (v--)
4480 		if (pf->vsi[v])
4481 			ice_vsi_free_q_vectors(pf->vsi[v]);
4482 
4483 	return ret;
4484 }
4485 
4486 /**
4487  * ice_suspend
4488  * @dev: generic device information structure
4489  *
4490  * Power Management callback to quiesce the device and prepare
4491  * for D3 transition.
4492  */
4493 static int __maybe_unused ice_suspend(struct device *dev)
4494 {
4495 	struct pci_dev *pdev = to_pci_dev(dev);
4496 	struct ice_pf *pf;
4497 	int disabled, v;
4498 
4499 	pf = pci_get_drvdata(pdev);
4500 
4501 	if (!ice_pf_state_is_nominal(pf)) {
4502 		dev_err(dev, "Device is not ready, no need to suspend it\n");
4503 		return -EBUSY;
4504 	}
4505 
4506 	/* Stop watchdog tasks until resume completion.
4507 	 * Even though it is most likely that the service task is
4508 	 * disabled if the device is suspended or down, the service task's
4509 	 * state is controlled by a different state bit, and we should
4510 	 * store and honor whatever state that bit is in at this point.
4511 	 */
4512 	disabled = ice_service_task_stop(pf);
4513 
4514 	/* Already suspended?, then there is nothing to do */
4515 	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4516 		if (!disabled)
4517 			ice_service_task_restart(pf);
4518 		return 0;
4519 	}
4520 
4521 	if (test_bit(__ICE_DOWN, pf->state) ||
4522 	    ice_is_reset_in_progress(pf->state)) {
4523 		dev_err(dev, "can't suspend device in reset or already down\n");
4524 		if (!disabled)
4525 			ice_service_task_restart(pf);
4526 		return 0;
4527 	}
4528 
4529 	ice_setup_mc_magic_wake(pf);
4530 
4531 	ice_prepare_for_shutdown(pf);
4532 
4533 	ice_set_wake(pf);
4534 
4535 	/* Free vectors, clear the interrupt scheme and release IRQs
4536 	 * for proper hibernation, especially with large number of CPUs.
4537 	 * Otherwise hibernation might fail when mapping all the vectors back
4538 	 * to CPU0.
4539 	 */
4540 	ice_free_irq_msix_misc(pf);
4541 	ice_for_each_vsi(pf, v) {
4542 		if (!pf->vsi[v])
4543 			continue;
4544 		ice_vsi_free_q_vectors(pf->vsi[v]);
4545 	}
4546 	ice_clear_interrupt_scheme(pf);
4547 
4548 	pci_save_state(pdev);
4549 	pci_wake_from_d3(pdev, pf->wol_ena);
4550 	pci_set_power_state(pdev, PCI_D3hot);
4551 	return 0;
4552 }
4553 
4554 /**
4555  * ice_resume - PM callback for waking up from D3
4556  * @dev: generic device information structure
4557  */
4558 static int __maybe_unused ice_resume(struct device *dev)
4559 {
4560 	struct pci_dev *pdev = to_pci_dev(dev);
4561 	enum ice_reset_req reset_type;
4562 	struct ice_pf *pf;
4563 	struct ice_hw *hw;
4564 	int ret;
4565 
4566 	pci_set_power_state(pdev, PCI_D0);
4567 	pci_restore_state(pdev);
4568 	pci_save_state(pdev);
4569 
4570 	if (!pci_device_is_present(pdev))
4571 		return -ENODEV;
4572 
4573 	ret = pci_enable_device_mem(pdev);
4574 	if (ret) {
4575 		dev_err(dev, "Cannot enable device after suspend\n");
4576 		return ret;
4577 	}
4578 
4579 	pf = pci_get_drvdata(pdev);
4580 	hw = &pf->hw;
4581 
4582 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4583 	ice_print_wake_reason(pf);
4584 
4585 	/* We cleared the interrupt scheme when we suspended, so we need to
4586 	 * restore it now to resume device functionality.
4587 	 */
4588 	ret = ice_reinit_interrupt_scheme(pf);
4589 	if (ret)
4590 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4591 
4592 	clear_bit(__ICE_DOWN, pf->state);
4593 	/* Now perform PF reset and rebuild */
4594 	reset_type = ICE_RESET_PFR;
4595 	/* re-enable service task for reset, but allow reset to schedule it */
4596 	clear_bit(__ICE_SERVICE_DIS, pf->state);
4597 
4598 	if (ice_schedule_reset(pf, reset_type))
4599 		dev_err(dev, "Reset during resume failed.\n");
4600 
4601 	clear_bit(__ICE_SUSPENDED, pf->state);
4602 	ice_service_task_restart(pf);
4603 
4604 	/* Restart the service task */
4605 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4606 
4607 	return 0;
4608 }
4609 #endif /* CONFIG_PM */
4610 
4611 /**
4612  * ice_pci_err_detected - warning that PCI error has been detected
4613  * @pdev: PCI device information struct
4614  * @err: the type of PCI error
4615  *
4616  * Called to warn that something happened on the PCI bus and the error handling
4617  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4618  */
4619 static pci_ers_result_t
4620 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4621 {
4622 	struct ice_pf *pf = pci_get_drvdata(pdev);
4623 
4624 	if (!pf) {
4625 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4626 			__func__, err);
4627 		return PCI_ERS_RESULT_DISCONNECT;
4628 	}
4629 
4630 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4631 		ice_service_task_stop(pf);
4632 
4633 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4634 			set_bit(__ICE_PFR_REQ, pf->state);
4635 			ice_prepare_for_reset(pf);
4636 		}
4637 	}
4638 
4639 	return PCI_ERS_RESULT_NEED_RESET;
4640 }
4641 
4642 /**
4643  * ice_pci_err_slot_reset - a PCI slot reset has just happened
4644  * @pdev: PCI device information struct
4645  *
4646  * Called to determine if the driver can recover from the PCI slot reset by
4647  * using a register read to determine if the device is recoverable.
4648  */
4649 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4650 {
4651 	struct ice_pf *pf = pci_get_drvdata(pdev);
4652 	pci_ers_result_t result;
4653 	int err;
4654 	u32 reg;
4655 
4656 	err = pci_enable_device_mem(pdev);
4657 	if (err) {
4658 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4659 			err);
4660 		result = PCI_ERS_RESULT_DISCONNECT;
4661 	} else {
4662 		pci_set_master(pdev);
4663 		pci_restore_state(pdev);
4664 		pci_save_state(pdev);
4665 		pci_wake_from_d3(pdev, false);
4666 
4667 		/* Check for life */
4668 		reg = rd32(&pf->hw, GLGEN_RTRIG);
4669 		if (!reg)
4670 			result = PCI_ERS_RESULT_RECOVERED;
4671 		else
4672 			result = PCI_ERS_RESULT_DISCONNECT;
4673 	}
4674 
4675 	err = pci_aer_clear_nonfatal_status(pdev);
4676 	if (err)
4677 		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4678 			err);
4679 		/* non-fatal, continue */
4680 
4681 	return result;
4682 }
4683 
4684 /**
4685  * ice_pci_err_resume - restart operations after PCI error recovery
4686  * @pdev: PCI device information struct
4687  *
4688  * Called to allow the driver to bring things back up after PCI error and/or
4689  * reset recovery have finished
4690  */
4691 static void ice_pci_err_resume(struct pci_dev *pdev)
4692 {
4693 	struct ice_pf *pf = pci_get_drvdata(pdev);
4694 
4695 	if (!pf) {
4696 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4697 			__func__);
4698 		return;
4699 	}
4700 
4701 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4702 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4703 			__func__);
4704 		return;
4705 	}
4706 
4707 	ice_restore_all_vfs_msi_state(pdev);
4708 
4709 	ice_do_reset(pf, ICE_RESET_PFR);
4710 	ice_service_task_restart(pf);
4711 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4712 }
4713 
4714 /**
4715  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4716  * @pdev: PCI device information struct
4717  */
4718 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4719 {
4720 	struct ice_pf *pf = pci_get_drvdata(pdev);
4721 
4722 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4723 		ice_service_task_stop(pf);
4724 
4725 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4726 			set_bit(__ICE_PFR_REQ, pf->state);
4727 			ice_prepare_for_reset(pf);
4728 		}
4729 	}
4730 }
4731 
4732 /**
4733  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4734  * @pdev: PCI device information struct
4735  */
4736 static void ice_pci_err_reset_done(struct pci_dev *pdev)
4737 {
4738 	ice_pci_err_resume(pdev);
4739 }
4740 
4741 /* ice_pci_tbl - PCI Device ID Table
4742  *
4743  * Wildcard entries (PCI_ANY_ID) should come last
4744  * Last entry must be all 0s
4745  *
4746  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4747  *   Class, Class Mask, private data (not used) }
4748  */
4749 static const struct pci_device_id ice_pci_tbl[] = {
4750 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4751 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4752 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4753 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4754 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4755 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4756 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4757 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4758 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4759 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4760 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4761 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4762 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4763 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4764 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4765 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4766 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4767 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4768 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4769 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4770 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4771 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4772 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4773 	/* required last entry */
4774 	{ 0, }
4775 };
4776 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4777 
4778 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4779 
4780 static const struct pci_error_handlers ice_pci_err_handler = {
4781 	.error_detected = ice_pci_err_detected,
4782 	.slot_reset = ice_pci_err_slot_reset,
4783 	.reset_prepare = ice_pci_err_reset_prepare,
4784 	.reset_done = ice_pci_err_reset_done,
4785 	.resume = ice_pci_err_resume
4786 };
4787 
4788 static struct pci_driver ice_driver = {
4789 	.name = KBUILD_MODNAME,
4790 	.id_table = ice_pci_tbl,
4791 	.probe = ice_probe,
4792 	.remove = ice_remove,
4793 #ifdef CONFIG_PM
4794 	.driver.pm = &ice_pm_ops,
4795 #endif /* CONFIG_PM */
4796 	.shutdown = ice_shutdown,
4797 	.sriov_configure = ice_sriov_configure,
4798 	.err_handler = &ice_pci_err_handler
4799 };
4800 
4801 /**
4802  * ice_module_init - Driver registration routine
4803  *
4804  * ice_module_init is the first routine called when the driver is
4805  * loaded. All it does is register with the PCI subsystem.
4806  */
4807 static int __init ice_module_init(void)
4808 {
4809 	int status;
4810 
4811 	pr_info("%s\n", ice_driver_string);
4812 	pr_info("%s\n", ice_copyright);
4813 
4814 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4815 	if (!ice_wq) {
4816 		pr_err("Failed to create workqueue\n");
4817 		return -ENOMEM;
4818 	}
4819 
4820 	status = pci_register_driver(&ice_driver);
4821 	if (status) {
4822 		pr_err("failed to register PCI driver, err %d\n", status);
4823 		destroy_workqueue(ice_wq);
4824 	}
4825 
4826 	return status;
4827 }
4828 module_init(ice_module_init);
4829 
4830 /**
4831  * ice_module_exit - Driver exit cleanup routine
4832  *
4833  * ice_module_exit is called just before the driver is removed
4834  * from memory.
4835  */
4836 static void __exit ice_module_exit(void)
4837 {
4838 	pci_unregister_driver(&ice_driver);
4839 	destroy_workqueue(ice_wq);
4840 	pr_info("module unloaded\n");
4841 }
4842 module_exit(ice_module_exit);
4843 
4844 /**
4845  * ice_set_mac_address - NDO callback to set MAC address
4846  * @netdev: network interface device structure
4847  * @pi: pointer to an address structure
4848  *
4849  * Returns 0 on success, negative on failure
4850  */
4851 static int ice_set_mac_address(struct net_device *netdev, void *pi)
4852 {
4853 	struct ice_netdev_priv *np = netdev_priv(netdev);
4854 	struct ice_vsi *vsi = np->vsi;
4855 	struct ice_pf *pf = vsi->back;
4856 	struct ice_hw *hw = &pf->hw;
4857 	struct sockaddr *addr = pi;
4858 	enum ice_status status;
4859 	u8 flags = 0;
4860 	int err = 0;
4861 	u8 *mac;
4862 
4863 	mac = (u8 *)addr->sa_data;
4864 
4865 	if (!is_valid_ether_addr(mac))
4866 		return -EADDRNOTAVAIL;
4867 
4868 	if (ether_addr_equal(netdev->dev_addr, mac)) {
4869 		netdev_warn(netdev, "already using mac %pM\n", mac);
4870 		return 0;
4871 	}
4872 
4873 	if (test_bit(__ICE_DOWN, pf->state) ||
4874 	    ice_is_reset_in_progress(pf->state)) {
4875 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4876 			   mac);
4877 		return -EBUSY;
4878 	}
4879 
4880 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4881 	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4882 	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4883 		err = -EADDRNOTAVAIL;
4884 		goto err_update_filters;
4885 	}
4886 
4887 	/* Add filter for new MAC. If filter exists, just return success */
4888 	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4889 	if (status == ICE_ERR_ALREADY_EXISTS) {
4890 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4891 		return 0;
4892 	}
4893 
4894 	/* error if the new filter addition failed */
4895 	if (status)
4896 		err = -EADDRNOTAVAIL;
4897 
4898 err_update_filters:
4899 	if (err) {
4900 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4901 			   mac);
4902 		return err;
4903 	}
4904 
4905 	/* change the netdev's MAC address */
4906 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4907 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4908 		   netdev->dev_addr);
4909 
4910 	/* write new MAC address to the firmware */
4911 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4912 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4913 	if (status) {
4914 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4915 			   mac, ice_stat_str(status));
4916 	}
4917 	return 0;
4918 }
4919 
4920 /**
4921  * ice_set_rx_mode - NDO callback to set the netdev filters
4922  * @netdev: network interface device structure
4923  */
4924 static void ice_set_rx_mode(struct net_device *netdev)
4925 {
4926 	struct ice_netdev_priv *np = netdev_priv(netdev);
4927 	struct ice_vsi *vsi = np->vsi;
4928 
4929 	if (!vsi)
4930 		return;
4931 
4932 	/* Set the flags to synchronize filters
4933 	 * ndo_set_rx_mode may be triggered even without a change in netdev
4934 	 * flags
4935 	 */
4936 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4937 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4938 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4939 
4940 	/* schedule our worker thread which will take care of
4941 	 * applying the new filter changes
4942 	 */
4943 	ice_service_task_schedule(vsi->back);
4944 }
4945 
4946 /**
4947  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4948  * @netdev: network interface device structure
4949  * @queue_index: Queue ID
4950  * @maxrate: maximum bandwidth in Mbps
4951  */
4952 static int
4953 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4954 {
4955 	struct ice_netdev_priv *np = netdev_priv(netdev);
4956 	struct ice_vsi *vsi = np->vsi;
4957 	enum ice_status status;
4958 	u16 q_handle;
4959 	u8 tc;
4960 
4961 	/* Validate maxrate requested is within permitted range */
4962 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4963 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4964 			   maxrate, queue_index);
4965 		return -EINVAL;
4966 	}
4967 
4968 	q_handle = vsi->tx_rings[queue_index]->q_handle;
4969 	tc = ice_dcb_get_tc(vsi, queue_index);
4970 
4971 	/* Set BW back to default, when user set maxrate to 0 */
4972 	if (!maxrate)
4973 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4974 					       q_handle, ICE_MAX_BW);
4975 	else
4976 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4977 					  q_handle, ICE_MAX_BW, maxrate * 1000);
4978 	if (status) {
4979 		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4980 			   ice_stat_str(status));
4981 		return -EIO;
4982 	}
4983 
4984 	return 0;
4985 }
4986 
4987 /**
4988  * ice_fdb_add - add an entry to the hardware database
4989  * @ndm: the input from the stack
4990  * @tb: pointer to array of nladdr (unused)
4991  * @dev: the net device pointer
4992  * @addr: the MAC address entry being added
4993  * @vid: VLAN ID
4994  * @flags: instructions from stack about fdb operation
4995  * @extack: netlink extended ack
4996  */
4997 static int
4998 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
4999 	    struct net_device *dev, const unsigned char *addr, u16 vid,
5000 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5001 {
5002 	int err;
5003 
5004 	if (vid) {
5005 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5006 		return -EINVAL;
5007 	}
5008 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5009 		netdev_err(dev, "FDB only supports static addresses\n");
5010 		return -EINVAL;
5011 	}
5012 
5013 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5014 		err = dev_uc_add_excl(dev, addr);
5015 	else if (is_multicast_ether_addr(addr))
5016 		err = dev_mc_add_excl(dev, addr);
5017 	else
5018 		err = -EINVAL;
5019 
5020 	/* Only return duplicate errors if NLM_F_EXCL is set */
5021 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5022 		err = 0;
5023 
5024 	return err;
5025 }
5026 
5027 /**
5028  * ice_fdb_del - delete an entry from the hardware database
5029  * @ndm: the input from the stack
5030  * @tb: pointer to array of nladdr (unused)
5031  * @dev: the net device pointer
5032  * @addr: the MAC address entry being added
5033  * @vid: VLAN ID
5034  */
5035 static int
5036 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5037 	    struct net_device *dev, const unsigned char *addr,
5038 	    __always_unused u16 vid)
5039 {
5040 	int err;
5041 
5042 	if (ndm->ndm_state & NUD_PERMANENT) {
5043 		netdev_err(dev, "FDB only supports static addresses\n");
5044 		return -EINVAL;
5045 	}
5046 
5047 	if (is_unicast_ether_addr(addr))
5048 		err = dev_uc_del(dev, addr);
5049 	else if (is_multicast_ether_addr(addr))
5050 		err = dev_mc_del(dev, addr);
5051 	else
5052 		err = -EINVAL;
5053 
5054 	return err;
5055 }
5056 
5057 /**
5058  * ice_set_features - set the netdev feature flags
5059  * @netdev: ptr to the netdev being adjusted
5060  * @features: the feature set that the stack is suggesting
5061  */
5062 static int
5063 ice_set_features(struct net_device *netdev, netdev_features_t features)
5064 {
5065 	struct ice_netdev_priv *np = netdev_priv(netdev);
5066 	struct ice_vsi *vsi = np->vsi;
5067 	struct ice_pf *pf = vsi->back;
5068 	int ret = 0;
5069 
5070 	/* Don't set any netdev advanced features with device in Safe Mode */
5071 	if (ice_is_safe_mode(vsi->back)) {
5072 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5073 		return ret;
5074 	}
5075 
5076 	/* Do not change setting during reset */
5077 	if (ice_is_reset_in_progress(pf->state)) {
5078 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5079 		return -EBUSY;
5080 	}
5081 
5082 	/* Multiple features can be changed in one call so keep features in
5083 	 * separate if/else statements to guarantee each feature is checked
5084 	 */
5085 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5086 		ret = ice_vsi_manage_rss_lut(vsi, true);
5087 	else if (!(features & NETIF_F_RXHASH) &&
5088 		 netdev->features & NETIF_F_RXHASH)
5089 		ret = ice_vsi_manage_rss_lut(vsi, false);
5090 
5091 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5092 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5093 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5094 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5095 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5096 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5097 
5098 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5099 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5100 		ret = ice_vsi_manage_vlan_insertion(vsi);
5101 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5102 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5103 		ret = ice_vsi_manage_vlan_insertion(vsi);
5104 
5105 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5106 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5107 		ret = ice_cfg_vlan_pruning(vsi, true, false);
5108 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5109 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5110 		ret = ice_cfg_vlan_pruning(vsi, false, false);
5111 
5112 	if ((features & NETIF_F_NTUPLE) &&
5113 	    !(netdev->features & NETIF_F_NTUPLE)) {
5114 		ice_vsi_manage_fdir(vsi, true);
5115 		ice_init_arfs(vsi);
5116 	} else if (!(features & NETIF_F_NTUPLE) &&
5117 		 (netdev->features & NETIF_F_NTUPLE)) {
5118 		ice_vsi_manage_fdir(vsi, false);
5119 		ice_clear_arfs(vsi);
5120 	}
5121 
5122 	return ret;
5123 }
5124 
5125 /**
5126  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5127  * @vsi: VSI to setup VLAN properties for
5128  */
5129 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5130 {
5131 	int ret = 0;
5132 
5133 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5134 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5135 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5136 		ret = ice_vsi_manage_vlan_insertion(vsi);
5137 
5138 	return ret;
5139 }
5140 
5141 /**
5142  * ice_vsi_cfg - Setup the VSI
5143  * @vsi: the VSI being configured
5144  *
5145  * Return 0 on success and negative value on error
5146  */
5147 int ice_vsi_cfg(struct ice_vsi *vsi)
5148 {
5149 	int err;
5150 
5151 	if (vsi->netdev) {
5152 		ice_set_rx_mode(vsi->netdev);
5153 
5154 		err = ice_vsi_vlan_setup(vsi);
5155 
5156 		if (err)
5157 			return err;
5158 	}
5159 	ice_vsi_cfg_dcb_rings(vsi);
5160 
5161 	err = ice_vsi_cfg_lan_txqs(vsi);
5162 	if (!err && ice_is_xdp_ena_vsi(vsi))
5163 		err = ice_vsi_cfg_xdp_txqs(vsi);
5164 	if (!err)
5165 		err = ice_vsi_cfg_rxqs(vsi);
5166 
5167 	return err;
5168 }
5169 
5170 /**
5171  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5172  * @vsi: the VSI being configured
5173  */
5174 static void ice_napi_enable_all(struct ice_vsi *vsi)
5175 {
5176 	int q_idx;
5177 
5178 	if (!vsi->netdev)
5179 		return;
5180 
5181 	ice_for_each_q_vector(vsi, q_idx) {
5182 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5183 
5184 		if (q_vector->rx.ring || q_vector->tx.ring)
5185 			napi_enable(&q_vector->napi);
5186 	}
5187 }
5188 
5189 /**
5190  * ice_up_complete - Finish the last steps of bringing up a connection
5191  * @vsi: The VSI being configured
5192  *
5193  * Return 0 on success and negative value on error
5194  */
5195 static int ice_up_complete(struct ice_vsi *vsi)
5196 {
5197 	struct ice_pf *pf = vsi->back;
5198 	int err;
5199 
5200 	ice_vsi_cfg_msix(vsi);
5201 
5202 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5203 	 * Tx queue group list was configured and the context bits were
5204 	 * programmed using ice_vsi_cfg_txqs
5205 	 */
5206 	err = ice_vsi_start_all_rx_rings(vsi);
5207 	if (err)
5208 		return err;
5209 
5210 	clear_bit(__ICE_DOWN, vsi->state);
5211 	ice_napi_enable_all(vsi);
5212 	ice_vsi_ena_irq(vsi);
5213 
5214 	if (vsi->port_info &&
5215 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5216 	    vsi->netdev) {
5217 		ice_print_link_msg(vsi, true);
5218 		netif_tx_start_all_queues(vsi->netdev);
5219 		netif_carrier_on(vsi->netdev);
5220 	}
5221 
5222 	ice_service_task_schedule(pf);
5223 
5224 	return 0;
5225 }
5226 
5227 /**
5228  * ice_up - Bring the connection back up after being down
5229  * @vsi: VSI being configured
5230  */
5231 int ice_up(struct ice_vsi *vsi)
5232 {
5233 	int err;
5234 
5235 	err = ice_vsi_cfg(vsi);
5236 	if (!err)
5237 		err = ice_up_complete(vsi);
5238 
5239 	return err;
5240 }
5241 
5242 /**
5243  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5244  * @ring: Tx or Rx ring to read stats from
5245  * @pkts: packets stats counter
5246  * @bytes: bytes stats counter
5247  *
5248  * This function fetches stats from the ring considering the atomic operations
5249  * that needs to be performed to read u64 values in 32 bit machine.
5250  */
5251 static void
5252 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5253 {
5254 	unsigned int start;
5255 	*pkts = 0;
5256 	*bytes = 0;
5257 
5258 	if (!ring)
5259 		return;
5260 	do {
5261 		start = u64_stats_fetch_begin_irq(&ring->syncp);
5262 		*pkts = ring->stats.pkts;
5263 		*bytes = ring->stats.bytes;
5264 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5265 }
5266 
5267 /**
5268  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5269  * @vsi: the VSI to be updated
5270  * @rings: rings to work on
5271  * @count: number of rings
5272  */
5273 static void
5274 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5275 			     u16 count)
5276 {
5277 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5278 	u16 i;
5279 
5280 	for (i = 0; i < count; i++) {
5281 		struct ice_ring *ring;
5282 		u64 pkts, bytes;
5283 
5284 		ring = READ_ONCE(rings[i]);
5285 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5286 		vsi_stats->tx_packets += pkts;
5287 		vsi_stats->tx_bytes += bytes;
5288 		vsi->tx_restart += ring->tx_stats.restart_q;
5289 		vsi->tx_busy += ring->tx_stats.tx_busy;
5290 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5291 	}
5292 }
5293 
5294 /**
5295  * ice_update_vsi_ring_stats - Update VSI stats counters
5296  * @vsi: the VSI to be updated
5297  */
5298 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5299 {
5300 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5301 	struct ice_ring *ring;
5302 	u64 pkts, bytes;
5303 	int i;
5304 
5305 	/* reset netdev stats */
5306 	vsi_stats->tx_packets = 0;
5307 	vsi_stats->tx_bytes = 0;
5308 	vsi_stats->rx_packets = 0;
5309 	vsi_stats->rx_bytes = 0;
5310 
5311 	/* reset non-netdev (extended) stats */
5312 	vsi->tx_restart = 0;
5313 	vsi->tx_busy = 0;
5314 	vsi->tx_linearize = 0;
5315 	vsi->rx_buf_failed = 0;
5316 	vsi->rx_page_failed = 0;
5317 	vsi->rx_gro_dropped = 0;
5318 
5319 	rcu_read_lock();
5320 
5321 	/* update Tx rings counters */
5322 	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5323 
5324 	/* update Rx rings counters */
5325 	ice_for_each_rxq(vsi, i) {
5326 		ring = READ_ONCE(vsi->rx_rings[i]);
5327 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5328 		vsi_stats->rx_packets += pkts;
5329 		vsi_stats->rx_bytes += bytes;
5330 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5331 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5332 		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5333 	}
5334 
5335 	/* update XDP Tx rings counters */
5336 	if (ice_is_xdp_ena_vsi(vsi))
5337 		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5338 					     vsi->num_xdp_txq);
5339 
5340 	rcu_read_unlock();
5341 }
5342 
5343 /**
5344  * ice_update_vsi_stats - Update VSI stats counters
5345  * @vsi: the VSI to be updated
5346  */
5347 void ice_update_vsi_stats(struct ice_vsi *vsi)
5348 {
5349 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5350 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5351 	struct ice_pf *pf = vsi->back;
5352 
5353 	if (test_bit(__ICE_DOWN, vsi->state) ||
5354 	    test_bit(__ICE_CFG_BUSY, pf->state))
5355 		return;
5356 
5357 	/* get stats as recorded by Tx/Rx rings */
5358 	ice_update_vsi_ring_stats(vsi);
5359 
5360 	/* get VSI stats as recorded by the hardware */
5361 	ice_update_eth_stats(vsi);
5362 
5363 	cur_ns->tx_errors = cur_es->tx_errors;
5364 	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5365 	cur_ns->tx_dropped = cur_es->tx_discards;
5366 	cur_ns->multicast = cur_es->rx_multicast;
5367 
5368 	/* update some more netdev stats if this is main VSI */
5369 	if (vsi->type == ICE_VSI_PF) {
5370 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5371 		cur_ns->rx_errors = pf->stats.crc_errors +
5372 				    pf->stats.illegal_bytes +
5373 				    pf->stats.rx_len_errors +
5374 				    pf->stats.rx_undersize +
5375 				    pf->hw_csum_rx_error +
5376 				    pf->stats.rx_jabber +
5377 				    pf->stats.rx_fragments +
5378 				    pf->stats.rx_oversize;
5379 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5380 		/* record drops from the port level */
5381 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5382 	}
5383 }
5384 
5385 /**
5386  * ice_update_pf_stats - Update PF port stats counters
5387  * @pf: PF whose stats needs to be updated
5388  */
5389 void ice_update_pf_stats(struct ice_pf *pf)
5390 {
5391 	struct ice_hw_port_stats *prev_ps, *cur_ps;
5392 	struct ice_hw *hw = &pf->hw;
5393 	u16 fd_ctr_base;
5394 	u8 port;
5395 
5396 	port = hw->port_info->lport;
5397 	prev_ps = &pf->stats_prev;
5398 	cur_ps = &pf->stats;
5399 
5400 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5401 			  &prev_ps->eth.rx_bytes,
5402 			  &cur_ps->eth.rx_bytes);
5403 
5404 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5405 			  &prev_ps->eth.rx_unicast,
5406 			  &cur_ps->eth.rx_unicast);
5407 
5408 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5409 			  &prev_ps->eth.rx_multicast,
5410 			  &cur_ps->eth.rx_multicast);
5411 
5412 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5413 			  &prev_ps->eth.rx_broadcast,
5414 			  &cur_ps->eth.rx_broadcast);
5415 
5416 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5417 			  &prev_ps->eth.rx_discards,
5418 			  &cur_ps->eth.rx_discards);
5419 
5420 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5421 			  &prev_ps->eth.tx_bytes,
5422 			  &cur_ps->eth.tx_bytes);
5423 
5424 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5425 			  &prev_ps->eth.tx_unicast,
5426 			  &cur_ps->eth.tx_unicast);
5427 
5428 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5429 			  &prev_ps->eth.tx_multicast,
5430 			  &cur_ps->eth.tx_multicast);
5431 
5432 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5433 			  &prev_ps->eth.tx_broadcast,
5434 			  &cur_ps->eth.tx_broadcast);
5435 
5436 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5437 			  &prev_ps->tx_dropped_link_down,
5438 			  &cur_ps->tx_dropped_link_down);
5439 
5440 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5441 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5442 
5443 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5444 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5445 
5446 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5447 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5448 
5449 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5450 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5451 
5452 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5453 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5454 
5455 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5456 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5457 
5458 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5459 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5460 
5461 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5462 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5463 
5464 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5465 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5466 
5467 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5468 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5469 
5470 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5471 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5472 
5473 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5474 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5475 
5476 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5477 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5478 
5479 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5480 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5481 
5482 	fd_ctr_base = hw->fd_ctr_base;
5483 
5484 	ice_stat_update40(hw,
5485 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5486 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5487 			  &cur_ps->fd_sb_match);
5488 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5489 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5490 
5491 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5492 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5493 
5494 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5495 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5496 
5497 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5498 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5499 
5500 	ice_update_dcb_stats(pf);
5501 
5502 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5503 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5504 
5505 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5506 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5507 
5508 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5509 			  &prev_ps->mac_local_faults,
5510 			  &cur_ps->mac_local_faults);
5511 
5512 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5513 			  &prev_ps->mac_remote_faults,
5514 			  &cur_ps->mac_remote_faults);
5515 
5516 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5517 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5518 
5519 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5520 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5521 
5522 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5523 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5524 
5525 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5526 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5527 
5528 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5529 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5530 
5531 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5532 
5533 	pf->stat_prev_loaded = true;
5534 }
5535 
5536 /**
5537  * ice_get_stats64 - get statistics for network device structure
5538  * @netdev: network interface device structure
5539  * @stats: main device statistics structure
5540  */
5541 static
5542 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5543 {
5544 	struct ice_netdev_priv *np = netdev_priv(netdev);
5545 	struct rtnl_link_stats64 *vsi_stats;
5546 	struct ice_vsi *vsi = np->vsi;
5547 
5548 	vsi_stats = &vsi->net_stats;
5549 
5550 	if (!vsi->num_txq || !vsi->num_rxq)
5551 		return;
5552 
5553 	/* netdev packet/byte stats come from ring counter. These are obtained
5554 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5555 	 * But, only call the update routine and read the registers if VSI is
5556 	 * not down.
5557 	 */
5558 	if (!test_bit(__ICE_DOWN, vsi->state))
5559 		ice_update_vsi_ring_stats(vsi);
5560 	stats->tx_packets = vsi_stats->tx_packets;
5561 	stats->tx_bytes = vsi_stats->tx_bytes;
5562 	stats->rx_packets = vsi_stats->rx_packets;
5563 	stats->rx_bytes = vsi_stats->rx_bytes;
5564 
5565 	/* The rest of the stats can be read from the hardware but instead we
5566 	 * just return values that the watchdog task has already obtained from
5567 	 * the hardware.
5568 	 */
5569 	stats->multicast = vsi_stats->multicast;
5570 	stats->tx_errors = vsi_stats->tx_errors;
5571 	stats->tx_dropped = vsi_stats->tx_dropped;
5572 	stats->rx_errors = vsi_stats->rx_errors;
5573 	stats->rx_dropped = vsi_stats->rx_dropped;
5574 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5575 	stats->rx_length_errors = vsi_stats->rx_length_errors;
5576 }
5577 
5578 /**
5579  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5580  * @vsi: VSI having NAPI disabled
5581  */
5582 static void ice_napi_disable_all(struct ice_vsi *vsi)
5583 {
5584 	int q_idx;
5585 
5586 	if (!vsi->netdev)
5587 		return;
5588 
5589 	ice_for_each_q_vector(vsi, q_idx) {
5590 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5591 
5592 		if (q_vector->rx.ring || q_vector->tx.ring)
5593 			napi_disable(&q_vector->napi);
5594 	}
5595 }
5596 
5597 /**
5598  * ice_down - Shutdown the connection
5599  * @vsi: The VSI being stopped
5600  */
5601 int ice_down(struct ice_vsi *vsi)
5602 {
5603 	int i, tx_err, rx_err, link_err = 0;
5604 
5605 	/* Caller of this function is expected to set the
5606 	 * vsi->state __ICE_DOWN bit
5607 	 */
5608 	if (vsi->netdev) {
5609 		netif_carrier_off(vsi->netdev);
5610 		netif_tx_disable(vsi->netdev);
5611 	}
5612 
5613 	ice_vsi_dis_irq(vsi);
5614 
5615 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5616 	if (tx_err)
5617 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5618 			   vsi->vsi_num, tx_err);
5619 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5620 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5621 		if (tx_err)
5622 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5623 				   vsi->vsi_num, tx_err);
5624 	}
5625 
5626 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5627 	if (rx_err)
5628 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5629 			   vsi->vsi_num, rx_err);
5630 
5631 	ice_napi_disable_all(vsi);
5632 
5633 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5634 		link_err = ice_force_phys_link_state(vsi, false);
5635 		if (link_err)
5636 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5637 				   vsi->vsi_num, link_err);
5638 	}
5639 
5640 	ice_for_each_txq(vsi, i)
5641 		ice_clean_tx_ring(vsi->tx_rings[i]);
5642 
5643 	ice_for_each_rxq(vsi, i)
5644 		ice_clean_rx_ring(vsi->rx_rings[i]);
5645 
5646 	if (tx_err || rx_err || link_err) {
5647 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5648 			   vsi->vsi_num, vsi->vsw->sw_id);
5649 		return -EIO;
5650 	}
5651 
5652 	return 0;
5653 }
5654 
5655 /**
5656  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5657  * @vsi: VSI having resources allocated
5658  *
5659  * Return 0 on success, negative on failure
5660  */
5661 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5662 {
5663 	int i, err = 0;
5664 
5665 	if (!vsi->num_txq) {
5666 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5667 			vsi->vsi_num);
5668 		return -EINVAL;
5669 	}
5670 
5671 	ice_for_each_txq(vsi, i) {
5672 		struct ice_ring *ring = vsi->tx_rings[i];
5673 
5674 		if (!ring)
5675 			return -EINVAL;
5676 
5677 		ring->netdev = vsi->netdev;
5678 		err = ice_setup_tx_ring(ring);
5679 		if (err)
5680 			break;
5681 	}
5682 
5683 	return err;
5684 }
5685 
5686 /**
5687  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5688  * @vsi: VSI having resources allocated
5689  *
5690  * Return 0 on success, negative on failure
5691  */
5692 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5693 {
5694 	int i, err = 0;
5695 
5696 	if (!vsi->num_rxq) {
5697 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5698 			vsi->vsi_num);
5699 		return -EINVAL;
5700 	}
5701 
5702 	ice_for_each_rxq(vsi, i) {
5703 		struct ice_ring *ring = vsi->rx_rings[i];
5704 
5705 		if (!ring)
5706 			return -EINVAL;
5707 
5708 		ring->netdev = vsi->netdev;
5709 		err = ice_setup_rx_ring(ring);
5710 		if (err)
5711 			break;
5712 	}
5713 
5714 	return err;
5715 }
5716 
5717 /**
5718  * ice_vsi_open_ctrl - open control VSI for use
5719  * @vsi: the VSI to open
5720  *
5721  * Initialization of the Control VSI
5722  *
5723  * Returns 0 on success, negative value on error
5724  */
5725 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5726 {
5727 	char int_name[ICE_INT_NAME_STR_LEN];
5728 	struct ice_pf *pf = vsi->back;
5729 	struct device *dev;
5730 	int err;
5731 
5732 	dev = ice_pf_to_dev(pf);
5733 	/* allocate descriptors */
5734 	err = ice_vsi_setup_tx_rings(vsi);
5735 	if (err)
5736 		goto err_setup_tx;
5737 
5738 	err = ice_vsi_setup_rx_rings(vsi);
5739 	if (err)
5740 		goto err_setup_rx;
5741 
5742 	err = ice_vsi_cfg(vsi);
5743 	if (err)
5744 		goto err_setup_rx;
5745 
5746 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5747 		 dev_driver_string(dev), dev_name(dev));
5748 	err = ice_vsi_req_irq_msix(vsi, int_name);
5749 	if (err)
5750 		goto err_setup_rx;
5751 
5752 	ice_vsi_cfg_msix(vsi);
5753 
5754 	err = ice_vsi_start_all_rx_rings(vsi);
5755 	if (err)
5756 		goto err_up_complete;
5757 
5758 	clear_bit(__ICE_DOWN, vsi->state);
5759 	ice_vsi_ena_irq(vsi);
5760 
5761 	return 0;
5762 
5763 err_up_complete:
5764 	ice_down(vsi);
5765 err_setup_rx:
5766 	ice_vsi_free_rx_rings(vsi);
5767 err_setup_tx:
5768 	ice_vsi_free_tx_rings(vsi);
5769 
5770 	return err;
5771 }
5772 
5773 /**
5774  * ice_vsi_open - Called when a network interface is made active
5775  * @vsi: the VSI to open
5776  *
5777  * Initialization of the VSI
5778  *
5779  * Returns 0 on success, negative value on error
5780  */
5781 static int ice_vsi_open(struct ice_vsi *vsi)
5782 {
5783 	char int_name[ICE_INT_NAME_STR_LEN];
5784 	struct ice_pf *pf = vsi->back;
5785 	int err;
5786 
5787 	/* allocate descriptors */
5788 	err = ice_vsi_setup_tx_rings(vsi);
5789 	if (err)
5790 		goto err_setup_tx;
5791 
5792 	err = ice_vsi_setup_rx_rings(vsi);
5793 	if (err)
5794 		goto err_setup_rx;
5795 
5796 	err = ice_vsi_cfg(vsi);
5797 	if (err)
5798 		goto err_setup_rx;
5799 
5800 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5801 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5802 	err = ice_vsi_req_irq_msix(vsi, int_name);
5803 	if (err)
5804 		goto err_setup_rx;
5805 
5806 	/* Notify the stack of the actual queue counts. */
5807 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5808 	if (err)
5809 		goto err_set_qs;
5810 
5811 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5812 	if (err)
5813 		goto err_set_qs;
5814 
5815 	err = ice_up_complete(vsi);
5816 	if (err)
5817 		goto err_up_complete;
5818 
5819 	return 0;
5820 
5821 err_up_complete:
5822 	ice_down(vsi);
5823 err_set_qs:
5824 	ice_vsi_free_irq(vsi);
5825 err_setup_rx:
5826 	ice_vsi_free_rx_rings(vsi);
5827 err_setup_tx:
5828 	ice_vsi_free_tx_rings(vsi);
5829 
5830 	return err;
5831 }
5832 
5833 /**
5834  * ice_vsi_release_all - Delete all VSIs
5835  * @pf: PF from which all VSIs are being removed
5836  */
5837 static void ice_vsi_release_all(struct ice_pf *pf)
5838 {
5839 	int err, i;
5840 
5841 	if (!pf->vsi)
5842 		return;
5843 
5844 	ice_for_each_vsi(pf, i) {
5845 		if (!pf->vsi[i])
5846 			continue;
5847 
5848 		err = ice_vsi_release(pf->vsi[i]);
5849 		if (err)
5850 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5851 				i, err, pf->vsi[i]->vsi_num);
5852 	}
5853 }
5854 
5855 /**
5856  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5857  * @pf: pointer to the PF instance
5858  * @type: VSI type to rebuild
5859  *
5860  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5861  */
5862 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5863 {
5864 	struct device *dev = ice_pf_to_dev(pf);
5865 	enum ice_status status;
5866 	int i, err;
5867 
5868 	ice_for_each_vsi(pf, i) {
5869 		struct ice_vsi *vsi = pf->vsi[i];
5870 
5871 		if (!vsi || vsi->type != type)
5872 			continue;
5873 
5874 		/* rebuild the VSI */
5875 		err = ice_vsi_rebuild(vsi, true);
5876 		if (err) {
5877 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5878 				err, vsi->idx, ice_vsi_type_str(type));
5879 			return err;
5880 		}
5881 
5882 		/* replay filters for the VSI */
5883 		status = ice_replay_vsi(&pf->hw, vsi->idx);
5884 		if (status) {
5885 			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5886 				ice_stat_str(status), vsi->idx,
5887 				ice_vsi_type_str(type));
5888 			return -EIO;
5889 		}
5890 
5891 		/* Re-map HW VSI number, using VSI handle that has been
5892 		 * previously validated in ice_replay_vsi() call above
5893 		 */
5894 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5895 
5896 		/* enable the VSI */
5897 		err = ice_ena_vsi(vsi, false);
5898 		if (err) {
5899 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5900 				err, vsi->idx, ice_vsi_type_str(type));
5901 			return err;
5902 		}
5903 
5904 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5905 			 ice_vsi_type_str(type));
5906 	}
5907 
5908 	return 0;
5909 }
5910 
5911 /**
5912  * ice_update_pf_netdev_link - Update PF netdev link status
5913  * @pf: pointer to the PF instance
5914  */
5915 static void ice_update_pf_netdev_link(struct ice_pf *pf)
5916 {
5917 	bool link_up;
5918 	int i;
5919 
5920 	ice_for_each_vsi(pf, i) {
5921 		struct ice_vsi *vsi = pf->vsi[i];
5922 
5923 		if (!vsi || vsi->type != ICE_VSI_PF)
5924 			return;
5925 
5926 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5927 		if (link_up) {
5928 			netif_carrier_on(pf->vsi[i]->netdev);
5929 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5930 		} else {
5931 			netif_carrier_off(pf->vsi[i]->netdev);
5932 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5933 		}
5934 	}
5935 }
5936 
5937 /**
5938  * ice_rebuild - rebuild after reset
5939  * @pf: PF to rebuild
5940  * @reset_type: type of reset
5941  *
5942  * Do not rebuild VF VSI in this flow because that is already handled via
5943  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5944  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5945  * to reset/rebuild all the VF VSI twice.
5946  */
5947 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5948 {
5949 	struct device *dev = ice_pf_to_dev(pf);
5950 	struct ice_hw *hw = &pf->hw;
5951 	enum ice_status ret;
5952 	int err;
5953 
5954 	if (test_bit(__ICE_DOWN, pf->state))
5955 		goto clear_recovery;
5956 
5957 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5958 
5959 	ret = ice_init_all_ctrlq(hw);
5960 	if (ret) {
5961 		dev_err(dev, "control queues init failed %s\n",
5962 			ice_stat_str(ret));
5963 		goto err_init_ctrlq;
5964 	}
5965 
5966 	/* if DDP was previously loaded successfully */
5967 	if (!ice_is_safe_mode(pf)) {
5968 		/* reload the SW DB of filter tables */
5969 		if (reset_type == ICE_RESET_PFR)
5970 			ice_fill_blk_tbls(hw);
5971 		else
5972 			/* Reload DDP Package after CORER/GLOBR reset */
5973 			ice_load_pkg(NULL, pf);
5974 	}
5975 
5976 	ret = ice_clear_pf_cfg(hw);
5977 	if (ret) {
5978 		dev_err(dev, "clear PF configuration failed %s\n",
5979 			ice_stat_str(ret));
5980 		goto err_init_ctrlq;
5981 	}
5982 
5983 	if (pf->first_sw->dflt_vsi_ena)
5984 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5985 	/* clear the default VSI configuration if it exists */
5986 	pf->first_sw->dflt_vsi = NULL;
5987 	pf->first_sw->dflt_vsi_ena = false;
5988 
5989 	ice_clear_pxe_mode(hw);
5990 
5991 	ret = ice_get_caps(hw);
5992 	if (ret) {
5993 		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5994 		goto err_init_ctrlq;
5995 	}
5996 
5997 	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
5998 	if (ret) {
5999 		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6000 		goto err_init_ctrlq;
6001 	}
6002 
6003 	err = ice_sched_init_port(hw->port_info);
6004 	if (err)
6005 		goto err_sched_init_port;
6006 
6007 	/* start misc vector */
6008 	err = ice_req_irq_msix_misc(pf);
6009 	if (err) {
6010 		dev_err(dev, "misc vector setup failed: %d\n", err);
6011 		goto err_sched_init_port;
6012 	}
6013 
6014 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6015 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6016 		if (!rd32(hw, PFQF_FD_SIZE)) {
6017 			u16 unused, guar, b_effort;
6018 
6019 			guar = hw->func_caps.fd_fltr_guar;
6020 			b_effort = hw->func_caps.fd_fltr_best_effort;
6021 
6022 			/* force guaranteed filter pool for PF */
6023 			ice_alloc_fd_guar_item(hw, &unused, guar);
6024 			/* force shared filter pool for PF */
6025 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6026 		}
6027 	}
6028 
6029 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6030 		ice_dcb_rebuild(pf);
6031 
6032 	/* rebuild PF VSI */
6033 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6034 	if (err) {
6035 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6036 		goto err_vsi_rebuild;
6037 	}
6038 
6039 	/* If Flow Director is active */
6040 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6041 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6042 		if (err) {
6043 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6044 			goto err_vsi_rebuild;
6045 		}
6046 
6047 		/* replay HW Flow Director recipes */
6048 		if (hw->fdir_prof)
6049 			ice_fdir_replay_flows(hw);
6050 
6051 		/* replay Flow Director filters */
6052 		ice_fdir_replay_fltrs(pf);
6053 
6054 		ice_rebuild_arfs(pf);
6055 	}
6056 
6057 	ice_update_pf_netdev_link(pf);
6058 
6059 	/* tell the firmware we are up */
6060 	ret = ice_send_version(pf);
6061 	if (ret) {
6062 		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6063 			ice_stat_str(ret));
6064 		goto err_vsi_rebuild;
6065 	}
6066 
6067 	ice_replay_post(hw);
6068 
6069 	/* if we get here, reset flow is successful */
6070 	clear_bit(__ICE_RESET_FAILED, pf->state);
6071 	return;
6072 
6073 err_vsi_rebuild:
6074 err_sched_init_port:
6075 	ice_sched_cleanup_all(hw);
6076 err_init_ctrlq:
6077 	ice_shutdown_all_ctrlq(hw);
6078 	set_bit(__ICE_RESET_FAILED, pf->state);
6079 clear_recovery:
6080 	/* set this bit in PF state to control service task scheduling */
6081 	set_bit(__ICE_NEEDS_RESTART, pf->state);
6082 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6083 }
6084 
6085 /**
6086  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6087  * @vsi: Pointer to VSI structure
6088  */
6089 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6090 {
6091 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6092 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6093 	else
6094 		return ICE_RXBUF_3072;
6095 }
6096 
6097 /**
6098  * ice_change_mtu - NDO callback to change the MTU
6099  * @netdev: network interface device structure
6100  * @new_mtu: new value for maximum frame size
6101  *
6102  * Returns 0 on success, negative on failure
6103  */
6104 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6105 {
6106 	struct ice_netdev_priv *np = netdev_priv(netdev);
6107 	struct ice_vsi *vsi = np->vsi;
6108 	struct ice_pf *pf = vsi->back;
6109 	u8 count = 0;
6110 
6111 	if (new_mtu == (int)netdev->mtu) {
6112 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6113 		return 0;
6114 	}
6115 
6116 	if (ice_is_xdp_ena_vsi(vsi)) {
6117 		int frame_size = ice_max_xdp_frame_size(vsi);
6118 
6119 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6120 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6121 				   frame_size - ICE_ETH_PKT_HDR_PAD);
6122 			return -EINVAL;
6123 		}
6124 	}
6125 
6126 	if (new_mtu < (int)netdev->min_mtu) {
6127 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6128 			   netdev->min_mtu);
6129 		return -EINVAL;
6130 	} else if (new_mtu > (int)netdev->max_mtu) {
6131 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6132 			   netdev->min_mtu);
6133 		return -EINVAL;
6134 	}
6135 	/* if a reset is in progress, wait for some time for it to complete */
6136 	do {
6137 		if (ice_is_reset_in_progress(pf->state)) {
6138 			count++;
6139 			usleep_range(1000, 2000);
6140 		} else {
6141 			break;
6142 		}
6143 
6144 	} while (count < 100);
6145 
6146 	if (count == 100) {
6147 		netdev_err(netdev, "can't change MTU. Device is busy\n");
6148 		return -EBUSY;
6149 	}
6150 
6151 	netdev->mtu = (unsigned int)new_mtu;
6152 
6153 	/* if VSI is up, bring it down and then back up */
6154 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6155 		int err;
6156 
6157 		err = ice_down(vsi);
6158 		if (err) {
6159 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6160 			return err;
6161 		}
6162 
6163 		err = ice_up(vsi);
6164 		if (err) {
6165 			netdev_err(netdev, "change MTU if_up err %d\n", err);
6166 			return err;
6167 		}
6168 	}
6169 
6170 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6171 	return 0;
6172 }
6173 
6174 /**
6175  * ice_aq_str - convert AQ err code to a string
6176  * @aq_err: the AQ error code to convert
6177  */
6178 const char *ice_aq_str(enum ice_aq_err aq_err)
6179 {
6180 	switch (aq_err) {
6181 	case ICE_AQ_RC_OK:
6182 		return "OK";
6183 	case ICE_AQ_RC_EPERM:
6184 		return "ICE_AQ_RC_EPERM";
6185 	case ICE_AQ_RC_ENOENT:
6186 		return "ICE_AQ_RC_ENOENT";
6187 	case ICE_AQ_RC_ENOMEM:
6188 		return "ICE_AQ_RC_ENOMEM";
6189 	case ICE_AQ_RC_EBUSY:
6190 		return "ICE_AQ_RC_EBUSY";
6191 	case ICE_AQ_RC_EEXIST:
6192 		return "ICE_AQ_RC_EEXIST";
6193 	case ICE_AQ_RC_EINVAL:
6194 		return "ICE_AQ_RC_EINVAL";
6195 	case ICE_AQ_RC_ENOSPC:
6196 		return "ICE_AQ_RC_ENOSPC";
6197 	case ICE_AQ_RC_ENOSYS:
6198 		return "ICE_AQ_RC_ENOSYS";
6199 	case ICE_AQ_RC_EMODE:
6200 		return "ICE_AQ_RC_EMODE";
6201 	case ICE_AQ_RC_ENOSEC:
6202 		return "ICE_AQ_RC_ENOSEC";
6203 	case ICE_AQ_RC_EBADSIG:
6204 		return "ICE_AQ_RC_EBADSIG";
6205 	case ICE_AQ_RC_ESVN:
6206 		return "ICE_AQ_RC_ESVN";
6207 	case ICE_AQ_RC_EBADMAN:
6208 		return "ICE_AQ_RC_EBADMAN";
6209 	case ICE_AQ_RC_EBADBUF:
6210 		return "ICE_AQ_RC_EBADBUF";
6211 	}
6212 
6213 	return "ICE_AQ_RC_UNKNOWN";
6214 }
6215 
6216 /**
6217  * ice_stat_str - convert status err code to a string
6218  * @stat_err: the status error code to convert
6219  */
6220 const char *ice_stat_str(enum ice_status stat_err)
6221 {
6222 	switch (stat_err) {
6223 	case ICE_SUCCESS:
6224 		return "OK";
6225 	case ICE_ERR_PARAM:
6226 		return "ICE_ERR_PARAM";
6227 	case ICE_ERR_NOT_IMPL:
6228 		return "ICE_ERR_NOT_IMPL";
6229 	case ICE_ERR_NOT_READY:
6230 		return "ICE_ERR_NOT_READY";
6231 	case ICE_ERR_NOT_SUPPORTED:
6232 		return "ICE_ERR_NOT_SUPPORTED";
6233 	case ICE_ERR_BAD_PTR:
6234 		return "ICE_ERR_BAD_PTR";
6235 	case ICE_ERR_INVAL_SIZE:
6236 		return "ICE_ERR_INVAL_SIZE";
6237 	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6238 		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6239 	case ICE_ERR_RESET_FAILED:
6240 		return "ICE_ERR_RESET_FAILED";
6241 	case ICE_ERR_FW_API_VER:
6242 		return "ICE_ERR_FW_API_VER";
6243 	case ICE_ERR_NO_MEMORY:
6244 		return "ICE_ERR_NO_MEMORY";
6245 	case ICE_ERR_CFG:
6246 		return "ICE_ERR_CFG";
6247 	case ICE_ERR_OUT_OF_RANGE:
6248 		return "ICE_ERR_OUT_OF_RANGE";
6249 	case ICE_ERR_ALREADY_EXISTS:
6250 		return "ICE_ERR_ALREADY_EXISTS";
6251 	case ICE_ERR_NVM_CHECKSUM:
6252 		return "ICE_ERR_NVM_CHECKSUM";
6253 	case ICE_ERR_BUF_TOO_SHORT:
6254 		return "ICE_ERR_BUF_TOO_SHORT";
6255 	case ICE_ERR_NVM_BLANK_MODE:
6256 		return "ICE_ERR_NVM_BLANK_MODE";
6257 	case ICE_ERR_IN_USE:
6258 		return "ICE_ERR_IN_USE";
6259 	case ICE_ERR_MAX_LIMIT:
6260 		return "ICE_ERR_MAX_LIMIT";
6261 	case ICE_ERR_RESET_ONGOING:
6262 		return "ICE_ERR_RESET_ONGOING";
6263 	case ICE_ERR_HW_TABLE:
6264 		return "ICE_ERR_HW_TABLE";
6265 	case ICE_ERR_DOES_NOT_EXIST:
6266 		return "ICE_ERR_DOES_NOT_EXIST";
6267 	case ICE_ERR_FW_DDP_MISMATCH:
6268 		return "ICE_ERR_FW_DDP_MISMATCH";
6269 	case ICE_ERR_AQ_ERROR:
6270 		return "ICE_ERR_AQ_ERROR";
6271 	case ICE_ERR_AQ_TIMEOUT:
6272 		return "ICE_ERR_AQ_TIMEOUT";
6273 	case ICE_ERR_AQ_FULL:
6274 		return "ICE_ERR_AQ_FULL";
6275 	case ICE_ERR_AQ_NO_WORK:
6276 		return "ICE_ERR_AQ_NO_WORK";
6277 	case ICE_ERR_AQ_EMPTY:
6278 		return "ICE_ERR_AQ_EMPTY";
6279 	case ICE_ERR_AQ_FW_CRITICAL:
6280 		return "ICE_ERR_AQ_FW_CRITICAL";
6281 	}
6282 
6283 	return "ICE_ERR_UNKNOWN";
6284 }
6285 
6286 /**
6287  * ice_set_rss - Set RSS keys and lut
6288  * @vsi: Pointer to VSI structure
6289  * @seed: RSS hash seed
6290  * @lut: Lookup table
6291  * @lut_size: Lookup table size
6292  *
6293  * Returns 0 on success, negative on failure
6294  */
6295 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6296 {
6297 	struct ice_pf *pf = vsi->back;
6298 	struct ice_hw *hw = &pf->hw;
6299 	enum ice_status status;
6300 	struct device *dev;
6301 
6302 	dev = ice_pf_to_dev(pf);
6303 	if (seed) {
6304 		struct ice_aqc_get_set_rss_keys *buf =
6305 				  (struct ice_aqc_get_set_rss_keys *)seed;
6306 
6307 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6308 
6309 		if (status) {
6310 			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6311 				ice_stat_str(status),
6312 				ice_aq_str(hw->adminq.sq_last_status));
6313 			return -EIO;
6314 		}
6315 	}
6316 
6317 	if (lut) {
6318 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6319 					    lut, lut_size);
6320 		if (status) {
6321 			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6322 				ice_stat_str(status),
6323 				ice_aq_str(hw->adminq.sq_last_status));
6324 			return -EIO;
6325 		}
6326 	}
6327 
6328 	return 0;
6329 }
6330 
6331 /**
6332  * ice_get_rss - Get RSS keys and lut
6333  * @vsi: Pointer to VSI structure
6334  * @seed: Buffer to store the keys
6335  * @lut: Buffer to store the lookup table entries
6336  * @lut_size: Size of buffer to store the lookup table entries
6337  *
6338  * Returns 0 on success, negative on failure
6339  */
6340 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6341 {
6342 	struct ice_pf *pf = vsi->back;
6343 	struct ice_hw *hw = &pf->hw;
6344 	enum ice_status status;
6345 	struct device *dev;
6346 
6347 	dev = ice_pf_to_dev(pf);
6348 	if (seed) {
6349 		struct ice_aqc_get_set_rss_keys *buf =
6350 				  (struct ice_aqc_get_set_rss_keys *)seed;
6351 
6352 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6353 		if (status) {
6354 			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6355 				ice_stat_str(status),
6356 				ice_aq_str(hw->adminq.sq_last_status));
6357 			return -EIO;
6358 		}
6359 	}
6360 
6361 	if (lut) {
6362 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6363 					    lut, lut_size);
6364 		if (status) {
6365 			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6366 				ice_stat_str(status),
6367 				ice_aq_str(hw->adminq.sq_last_status));
6368 			return -EIO;
6369 		}
6370 	}
6371 
6372 	return 0;
6373 }
6374 
6375 /**
6376  * ice_bridge_getlink - Get the hardware bridge mode
6377  * @skb: skb buff
6378  * @pid: process ID
6379  * @seq: RTNL message seq
6380  * @dev: the netdev being configured
6381  * @filter_mask: filter mask passed in
6382  * @nlflags: netlink flags passed in
6383  *
6384  * Return the bridge mode (VEB/VEPA)
6385  */
6386 static int
6387 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6388 		   struct net_device *dev, u32 filter_mask, int nlflags)
6389 {
6390 	struct ice_netdev_priv *np = netdev_priv(dev);
6391 	struct ice_vsi *vsi = np->vsi;
6392 	struct ice_pf *pf = vsi->back;
6393 	u16 bmode;
6394 
6395 	bmode = pf->first_sw->bridge_mode;
6396 
6397 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6398 				       filter_mask, NULL);
6399 }
6400 
6401 /**
6402  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6403  * @vsi: Pointer to VSI structure
6404  * @bmode: Hardware bridge mode (VEB/VEPA)
6405  *
6406  * Returns 0 on success, negative on failure
6407  */
6408 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6409 {
6410 	struct ice_aqc_vsi_props *vsi_props;
6411 	struct ice_hw *hw = &vsi->back->hw;
6412 	struct ice_vsi_ctx *ctxt;
6413 	enum ice_status status;
6414 	int ret = 0;
6415 
6416 	vsi_props = &vsi->info;
6417 
6418 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6419 	if (!ctxt)
6420 		return -ENOMEM;
6421 
6422 	ctxt->info = vsi->info;
6423 
6424 	if (bmode == BRIDGE_MODE_VEB)
6425 		/* change from VEPA to VEB mode */
6426 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6427 	else
6428 		/* change from VEB to VEPA mode */
6429 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6430 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6431 
6432 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6433 	if (status) {
6434 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6435 			bmode, ice_stat_str(status),
6436 			ice_aq_str(hw->adminq.sq_last_status));
6437 		ret = -EIO;
6438 		goto out;
6439 	}
6440 	/* Update sw flags for book keeping */
6441 	vsi_props->sw_flags = ctxt->info.sw_flags;
6442 
6443 out:
6444 	kfree(ctxt);
6445 	return ret;
6446 }
6447 
6448 /**
6449  * ice_bridge_setlink - Set the hardware bridge mode
6450  * @dev: the netdev being configured
6451  * @nlh: RTNL message
6452  * @flags: bridge setlink flags
6453  * @extack: netlink extended ack
6454  *
6455  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6456  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6457  * not already set for all VSIs connected to this switch. And also update the
6458  * unicast switch filter rules for the corresponding switch of the netdev.
6459  */
6460 static int
6461 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6462 		   u16 __always_unused flags,
6463 		   struct netlink_ext_ack __always_unused *extack)
6464 {
6465 	struct ice_netdev_priv *np = netdev_priv(dev);
6466 	struct ice_pf *pf = np->vsi->back;
6467 	struct nlattr *attr, *br_spec;
6468 	struct ice_hw *hw = &pf->hw;
6469 	enum ice_status status;
6470 	struct ice_sw *pf_sw;
6471 	int rem, v, err = 0;
6472 
6473 	pf_sw = pf->first_sw;
6474 	/* find the attribute in the netlink message */
6475 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6476 
6477 	nla_for_each_nested(attr, br_spec, rem) {
6478 		__u16 mode;
6479 
6480 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6481 			continue;
6482 		mode = nla_get_u16(attr);
6483 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6484 			return -EINVAL;
6485 		/* Continue  if bridge mode is not being flipped */
6486 		if (mode == pf_sw->bridge_mode)
6487 			continue;
6488 		/* Iterates through the PF VSI list and update the loopback
6489 		 * mode of the VSI
6490 		 */
6491 		ice_for_each_vsi(pf, v) {
6492 			if (!pf->vsi[v])
6493 				continue;
6494 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6495 			if (err)
6496 				return err;
6497 		}
6498 
6499 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6500 		/* Update the unicast switch filter rules for the corresponding
6501 		 * switch of the netdev
6502 		 */
6503 		status = ice_update_sw_rule_bridge_mode(hw);
6504 		if (status) {
6505 			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6506 				   mode, ice_stat_str(status),
6507 				   ice_aq_str(hw->adminq.sq_last_status));
6508 			/* revert hw->evb_veb */
6509 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6510 			return -EIO;
6511 		}
6512 
6513 		pf_sw->bridge_mode = mode;
6514 	}
6515 
6516 	return 0;
6517 }
6518 
6519 /**
6520  * ice_tx_timeout - Respond to a Tx Hang
6521  * @netdev: network interface device structure
6522  * @txqueue: Tx queue
6523  */
6524 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6525 {
6526 	struct ice_netdev_priv *np = netdev_priv(netdev);
6527 	struct ice_ring *tx_ring = NULL;
6528 	struct ice_vsi *vsi = np->vsi;
6529 	struct ice_pf *pf = vsi->back;
6530 	u32 i;
6531 
6532 	pf->tx_timeout_count++;
6533 
6534 	/* Check if PFC is enabled for the TC to which the queue belongs
6535 	 * to. If yes then Tx timeout is not caused by a hung queue, no
6536 	 * need to reset and rebuild
6537 	 */
6538 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6539 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6540 			 txqueue);
6541 		return;
6542 	}
6543 
6544 	/* now that we have an index, find the tx_ring struct */
6545 	for (i = 0; i < vsi->num_txq; i++)
6546 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6547 			if (txqueue == vsi->tx_rings[i]->q_index) {
6548 				tx_ring = vsi->tx_rings[i];
6549 				break;
6550 			}
6551 
6552 	/* Reset recovery level if enough time has elapsed after last timeout.
6553 	 * Also ensure no new reset action happens before next timeout period.
6554 	 */
6555 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6556 		pf->tx_timeout_recovery_level = 1;
6557 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6558 				       netdev->watchdog_timeo)))
6559 		return;
6560 
6561 	if (tx_ring) {
6562 		struct ice_hw *hw = &pf->hw;
6563 		u32 head, val = 0;
6564 
6565 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6566 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6567 		/* Read interrupt register */
6568 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6569 
6570 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6571 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6572 			    head, tx_ring->next_to_use, val);
6573 	}
6574 
6575 	pf->tx_timeout_last_recovery = jiffies;
6576 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6577 		    pf->tx_timeout_recovery_level, txqueue);
6578 
6579 	switch (pf->tx_timeout_recovery_level) {
6580 	case 1:
6581 		set_bit(__ICE_PFR_REQ, pf->state);
6582 		break;
6583 	case 2:
6584 		set_bit(__ICE_CORER_REQ, pf->state);
6585 		break;
6586 	case 3:
6587 		set_bit(__ICE_GLOBR_REQ, pf->state);
6588 		break;
6589 	default:
6590 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6591 		set_bit(__ICE_DOWN, pf->state);
6592 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6593 		set_bit(__ICE_SERVICE_DIS, pf->state);
6594 		break;
6595 	}
6596 
6597 	ice_service_task_schedule(pf);
6598 	pf->tx_timeout_recovery_level++;
6599 }
6600 
6601 /**
6602  * ice_open - Called when a network interface becomes active
6603  * @netdev: network interface device structure
6604  *
6605  * The open entry point is called when a network interface is made
6606  * active by the system (IFF_UP). At this point all resources needed
6607  * for transmit and receive operations are allocated, the interrupt
6608  * handler is registered with the OS, the netdev watchdog is enabled,
6609  * and the stack is notified that the interface is ready.
6610  *
6611  * Returns 0 on success, negative value on failure
6612  */
6613 int ice_open(struct net_device *netdev)
6614 {
6615 	struct ice_netdev_priv *np = netdev_priv(netdev);
6616 	struct ice_vsi *vsi = np->vsi;
6617 	struct ice_pf *pf = vsi->back;
6618 	struct ice_port_info *pi;
6619 	int err;
6620 
6621 	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6622 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6623 		return -EIO;
6624 	}
6625 
6626 	if (test_bit(__ICE_DOWN, pf->state)) {
6627 		netdev_err(netdev, "device is not ready yet\n");
6628 		return -EBUSY;
6629 	}
6630 
6631 	netif_carrier_off(netdev);
6632 
6633 	pi = vsi->port_info;
6634 	err = ice_update_link_info(pi);
6635 	if (err) {
6636 		netdev_err(netdev, "Failed to get link info, error %d\n",
6637 			   err);
6638 		return err;
6639 	}
6640 
6641 	/* Set PHY if there is media, otherwise, turn off PHY */
6642 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6643 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6644 		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6645 			err = ice_init_phy_user_cfg(pi);
6646 			if (err) {
6647 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6648 					   err);
6649 				return err;
6650 			}
6651 		}
6652 
6653 		err = ice_configure_phy(vsi);
6654 		if (err) {
6655 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6656 				   err);
6657 			return err;
6658 		}
6659 	} else {
6660 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6661 		err = ice_aq_set_link_restart_an(pi, false, NULL);
6662 		if (err) {
6663 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6664 				   vsi->vsi_num, err);
6665 			return err;
6666 		}
6667 	}
6668 
6669 	err = ice_vsi_open(vsi);
6670 	if (err)
6671 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6672 			   vsi->vsi_num, vsi->vsw->sw_id);
6673 
6674 	/* Update existing tunnels information */
6675 	udp_tunnel_get_rx_info(netdev);
6676 
6677 	return err;
6678 }
6679 
6680 /**
6681  * ice_stop - Disables a network interface
6682  * @netdev: network interface device structure
6683  *
6684  * The stop entry point is called when an interface is de-activated by the OS,
6685  * and the netdevice enters the DOWN state. The hardware is still under the
6686  * driver's control, but the netdev interface is disabled.
6687  *
6688  * Returns success only - not allowed to fail
6689  */
6690 int ice_stop(struct net_device *netdev)
6691 {
6692 	struct ice_netdev_priv *np = netdev_priv(netdev);
6693 	struct ice_vsi *vsi = np->vsi;
6694 
6695 	ice_vsi_close(vsi);
6696 
6697 	return 0;
6698 }
6699 
6700 /**
6701  * ice_features_check - Validate encapsulated packet conforms to limits
6702  * @skb: skb buffer
6703  * @netdev: This port's netdev
6704  * @features: Offload features that the stack believes apply
6705  */
6706 static netdev_features_t
6707 ice_features_check(struct sk_buff *skb,
6708 		   struct net_device __always_unused *netdev,
6709 		   netdev_features_t features)
6710 {
6711 	size_t len;
6712 
6713 	/* No point in doing any of this if neither checksum nor GSO are
6714 	 * being requested for this frame. We can rule out both by just
6715 	 * checking for CHECKSUM_PARTIAL
6716 	 */
6717 	if (skb->ip_summed != CHECKSUM_PARTIAL)
6718 		return features;
6719 
6720 	/* We cannot support GSO if the MSS is going to be less than
6721 	 * 64 bytes. If it is then we need to drop support for GSO.
6722 	 */
6723 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6724 		features &= ~NETIF_F_GSO_MASK;
6725 
6726 	len = skb_network_header(skb) - skb->data;
6727 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6728 		goto out_rm_features;
6729 
6730 	len = skb_transport_header(skb) - skb_network_header(skb);
6731 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6732 		goto out_rm_features;
6733 
6734 	if (skb->encapsulation) {
6735 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6736 		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6737 			goto out_rm_features;
6738 
6739 		len = skb_inner_transport_header(skb) -
6740 		      skb_inner_network_header(skb);
6741 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6742 			goto out_rm_features;
6743 	}
6744 
6745 	return features;
6746 out_rm_features:
6747 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6748 }
6749 
6750 static const struct net_device_ops ice_netdev_safe_mode_ops = {
6751 	.ndo_open = ice_open,
6752 	.ndo_stop = ice_stop,
6753 	.ndo_start_xmit = ice_start_xmit,
6754 	.ndo_set_mac_address = ice_set_mac_address,
6755 	.ndo_validate_addr = eth_validate_addr,
6756 	.ndo_change_mtu = ice_change_mtu,
6757 	.ndo_get_stats64 = ice_get_stats64,
6758 	.ndo_tx_timeout = ice_tx_timeout,
6759 };
6760 
6761 static const struct net_device_ops ice_netdev_ops = {
6762 	.ndo_open = ice_open,
6763 	.ndo_stop = ice_stop,
6764 	.ndo_start_xmit = ice_start_xmit,
6765 	.ndo_features_check = ice_features_check,
6766 	.ndo_set_rx_mode = ice_set_rx_mode,
6767 	.ndo_set_mac_address = ice_set_mac_address,
6768 	.ndo_validate_addr = eth_validate_addr,
6769 	.ndo_change_mtu = ice_change_mtu,
6770 	.ndo_get_stats64 = ice_get_stats64,
6771 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6772 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6773 	.ndo_set_vf_mac = ice_set_vf_mac,
6774 	.ndo_get_vf_config = ice_get_vf_cfg,
6775 	.ndo_set_vf_trust = ice_set_vf_trust,
6776 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6777 	.ndo_set_vf_link_state = ice_set_vf_link_state,
6778 	.ndo_get_vf_stats = ice_get_vf_stats,
6779 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6780 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6781 	.ndo_set_features = ice_set_features,
6782 	.ndo_bridge_getlink = ice_bridge_getlink,
6783 	.ndo_bridge_setlink = ice_bridge_setlink,
6784 	.ndo_fdb_add = ice_fdb_add,
6785 	.ndo_fdb_del = ice_fdb_del,
6786 #ifdef CONFIG_RFS_ACCEL
6787 	.ndo_rx_flow_steer = ice_rx_flow_steer,
6788 #endif
6789 	.ndo_tx_timeout = ice_tx_timeout,
6790 	.ndo_bpf = ice_xdp,
6791 	.ndo_xdp_xmit = ice_xdp_xmit,
6792 	.ndo_xsk_wakeup = ice_xsk_wakeup,
6793 	.ndo_udp_tunnel_add = udp_tunnel_nic_add_port,
6794 	.ndo_udp_tunnel_del = udp_tunnel_nic_del_port,
6795 };
6796