1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 17 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 18 static const char ice_driver_string[] = DRV_SUMMARY; 19 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 20 21 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 22 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 23 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 24 25 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 26 MODULE_DESCRIPTION(DRV_SUMMARY); 27 MODULE_LICENSE("GPL v2"); 28 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 29 30 static int debug = -1; 31 module_param(debug, int, 0644); 32 #ifndef CONFIG_DYNAMIC_DEBUG 33 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 34 #else 35 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 36 #endif /* !CONFIG_DYNAMIC_DEBUG */ 37 38 static struct workqueue_struct *ice_wq; 39 static const struct net_device_ops ice_netdev_safe_mode_ops; 40 static const struct net_device_ops ice_netdev_ops; 41 static int ice_vsi_open(struct ice_vsi *vsi); 42 43 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 44 45 static void ice_vsi_release_all(struct ice_pf *pf); 46 47 /** 48 * ice_get_tx_pending - returns number of Tx descriptors not processed 49 * @ring: the ring of descriptors 50 */ 51 static u16 ice_get_tx_pending(struct ice_ring *ring) 52 { 53 u16 head, tail; 54 55 head = ring->next_to_clean; 56 tail = ring->next_to_use; 57 58 if (head != tail) 59 return (head < tail) ? 60 tail - head : (tail + ring->count - head); 61 return 0; 62 } 63 64 /** 65 * ice_check_for_hang_subtask - check for and recover hung queues 66 * @pf: pointer to PF struct 67 */ 68 static void ice_check_for_hang_subtask(struct ice_pf *pf) 69 { 70 struct ice_vsi *vsi = NULL; 71 struct ice_hw *hw; 72 unsigned int i; 73 int packets; 74 u32 v; 75 76 ice_for_each_vsi(pf, v) 77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 78 vsi = pf->vsi[v]; 79 break; 80 } 81 82 if (!vsi || test_bit(__ICE_DOWN, vsi->state)) 83 return; 84 85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 86 return; 87 88 hw = &vsi->back->hw; 89 90 for (i = 0; i < vsi->num_txq; i++) { 91 struct ice_ring *tx_ring = vsi->tx_rings[i]; 92 93 if (tx_ring && tx_ring->desc) { 94 /* If packet counter has not changed the queue is 95 * likely stalled, so force an interrupt for this 96 * queue. 97 * 98 * prev_pkt would be negative if there was no 99 * pending work. 100 */ 101 packets = tx_ring->stats.pkts & INT_MAX; 102 if (tx_ring->tx_stats.prev_pkt == packets) { 103 /* Trigger sw interrupt to revive the queue */ 104 ice_trigger_sw_intr(hw, tx_ring->q_vector); 105 continue; 106 } 107 108 /* Memory barrier between read of packet count and call 109 * to ice_get_tx_pending() 110 */ 111 smp_rmb(); 112 tx_ring->tx_stats.prev_pkt = 113 ice_get_tx_pending(tx_ring) ? packets : -1; 114 } 115 } 116 } 117 118 /** 119 * ice_init_mac_fltr - Set initial MAC filters 120 * @pf: board private structure 121 * 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent 123 * address and broadcast address. If an error is encountered, netdevice will be 124 * unregistered. 125 */ 126 static int ice_init_mac_fltr(struct ice_pf *pf) 127 { 128 enum ice_status status; 129 struct ice_vsi *vsi; 130 u8 *perm_addr; 131 132 vsi = ice_get_main_vsi(pf); 133 if (!vsi) 134 return -EINVAL; 135 136 perm_addr = vsi->port_info->mac.perm_addr; 137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 138 if (!status) 139 return 0; 140 141 /* We aren't useful with no MAC filters, so unregister if we 142 * had an error 143 */ 144 if (vsi->netdev->reg_state == NETREG_REGISTERED) { 145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n", 146 ice_stat_str(status)); 147 unregister_netdev(vsi->netdev); 148 free_netdev(vsi->netdev); 149 vsi->netdev = NULL; 150 } 151 152 return -EIO; 153 } 154 155 /** 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 157 * @netdev: the net device on which the sync is happening 158 * @addr: MAC address to sync 159 * 160 * This is a callback function which is called by the in kernel device sync 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 163 * MAC filters from the hardware. 164 */ 165 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 166 { 167 struct ice_netdev_priv *np = netdev_priv(netdev); 168 struct ice_vsi *vsi = np->vsi; 169 170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 171 ICE_FWD_TO_VSI)) 172 return -EINVAL; 173 174 return 0; 175 } 176 177 /** 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 179 * @netdev: the net device on which the unsync is happening 180 * @addr: MAC address to unsync 181 * 182 * This is a callback function which is called by the in kernel device unsync 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 185 * delete the MAC filters from the hardware. 186 */ 187 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 188 { 189 struct ice_netdev_priv *np = netdev_priv(netdev); 190 struct ice_vsi *vsi = np->vsi; 191 192 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 193 ICE_FWD_TO_VSI)) 194 return -EINVAL; 195 196 return 0; 197 } 198 199 /** 200 * ice_vsi_fltr_changed - check if filter state changed 201 * @vsi: VSI to be checked 202 * 203 * returns true if filter state has changed, false otherwise. 204 */ 205 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 206 { 207 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) || 208 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) || 209 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 210 } 211 212 /** 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF 214 * @vsi: the VSI being configured 215 * @promisc_m: mask of promiscuous config bits 216 * @set_promisc: enable or disable promisc flag request 217 * 218 */ 219 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc) 220 { 221 struct ice_hw *hw = &vsi->back->hw; 222 enum ice_status status = 0; 223 224 if (vsi->type != ICE_VSI_PF) 225 return 0; 226 227 if (vsi->num_vlan > 1) { 228 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, 229 set_promisc); 230 } else { 231 if (set_promisc) 232 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, 233 0); 234 else 235 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, 236 0); 237 } 238 239 if (status) 240 return -EIO; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 247 * @vsi: ptr to the VSI 248 * 249 * Push any outstanding VSI filter changes through the AdminQ. 250 */ 251 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 252 { 253 struct device *dev = ice_pf_to_dev(vsi->back); 254 struct net_device *netdev = vsi->netdev; 255 bool promisc_forced_on = false; 256 struct ice_pf *pf = vsi->back; 257 struct ice_hw *hw = &pf->hw; 258 enum ice_status status = 0; 259 u32 changed_flags = 0; 260 u8 promisc_m; 261 int err = 0; 262 263 if (!vsi->netdev) 264 return -EINVAL; 265 266 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state)) 267 usleep_range(1000, 2000); 268 269 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 270 vsi->current_netdev_flags = vsi->netdev->flags; 271 272 INIT_LIST_HEAD(&vsi->tmp_sync_list); 273 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 274 275 if (ice_vsi_fltr_changed(vsi)) { 276 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 277 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 278 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 279 280 /* grab the netdev's addr_list_lock */ 281 netif_addr_lock_bh(netdev); 282 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 283 ice_add_mac_to_unsync_list); 284 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 285 ice_add_mac_to_unsync_list); 286 /* our temp lists are populated. release lock */ 287 netif_addr_unlock_bh(netdev); 288 } 289 290 /* Remove MAC addresses in the unsync list */ 291 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 292 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 293 if (status) { 294 netdev_err(netdev, "Failed to delete MAC filters\n"); 295 /* if we failed because of alloc failures, just bail */ 296 if (status == ICE_ERR_NO_MEMORY) { 297 err = -ENOMEM; 298 goto out; 299 } 300 } 301 302 /* Add MAC addresses in the sync list */ 303 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 304 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 305 /* If filter is added successfully or already exists, do not go into 306 * 'if' condition and report it as error. Instead continue processing 307 * rest of the function. 308 */ 309 if (status && status != ICE_ERR_ALREADY_EXISTS) { 310 netdev_err(netdev, "Failed to add MAC filters\n"); 311 /* If there is no more space for new umac filters, VSI 312 * should go into promiscuous mode. There should be some 313 * space reserved for promiscuous filters. 314 */ 315 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 316 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC, 317 vsi->state)) { 318 promisc_forced_on = true; 319 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 320 vsi->vsi_num); 321 } else { 322 err = -EIO; 323 goto out; 324 } 325 } 326 /* check for changes in promiscuous modes */ 327 if (changed_flags & IFF_ALLMULTI) { 328 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 329 if (vsi->num_vlan > 1) 330 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 331 else 332 promisc_m = ICE_MCAST_PROMISC_BITS; 333 334 err = ice_cfg_promisc(vsi, promisc_m, true); 335 if (err) { 336 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 337 vsi->vsi_num); 338 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 339 goto out_promisc; 340 } 341 } else { 342 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 343 if (vsi->num_vlan > 1) 344 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 345 else 346 promisc_m = ICE_MCAST_PROMISC_BITS; 347 348 err = ice_cfg_promisc(vsi, promisc_m, false); 349 if (err) { 350 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 351 vsi->vsi_num); 352 vsi->current_netdev_flags |= IFF_ALLMULTI; 353 goto out_promisc; 354 } 355 } 356 } 357 358 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 359 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) { 360 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 361 if (vsi->current_netdev_flags & IFF_PROMISC) { 362 /* Apply Rx filter rule to get traffic from wire */ 363 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 364 err = ice_set_dflt_vsi(pf->first_sw, vsi); 365 if (err && err != -EEXIST) { 366 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 367 err, vsi->vsi_num); 368 vsi->current_netdev_flags &= 369 ~IFF_PROMISC; 370 goto out_promisc; 371 } 372 ice_cfg_vlan_pruning(vsi, false, false); 373 } 374 } else { 375 /* Clear Rx filter to remove traffic from wire */ 376 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 377 err = ice_clear_dflt_vsi(pf->first_sw); 378 if (err) { 379 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 380 err, vsi->vsi_num); 381 vsi->current_netdev_flags |= 382 IFF_PROMISC; 383 goto out_promisc; 384 } 385 if (vsi->num_vlan > 1) 386 ice_cfg_vlan_pruning(vsi, true, false); 387 } 388 } 389 } 390 goto exit; 391 392 out_promisc: 393 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags); 394 goto exit; 395 out: 396 /* if something went wrong then set the changed flag so we try again */ 397 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 398 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 399 exit: 400 clear_bit(__ICE_CFG_BUSY, vsi->state); 401 return err; 402 } 403 404 /** 405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 406 * @pf: board private structure 407 */ 408 static void ice_sync_fltr_subtask(struct ice_pf *pf) 409 { 410 int v; 411 412 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 413 return; 414 415 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 416 417 ice_for_each_vsi(pf, v) 418 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 419 ice_vsi_sync_fltr(pf->vsi[v])) { 420 /* come back and try again later */ 421 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 422 break; 423 } 424 } 425 426 /** 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 428 * @pf: the PF 429 * @locked: is the rtnl_lock already held 430 */ 431 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 432 { 433 int v; 434 435 ice_for_each_vsi(pf, v) 436 if (pf->vsi[v]) 437 ice_dis_vsi(pf->vsi[v], locked); 438 } 439 440 /** 441 * ice_prepare_for_reset - prep for the core to reset 442 * @pf: board private structure 443 * 444 * Inform or close all dependent features in prep for reset. 445 */ 446 static void 447 ice_prepare_for_reset(struct ice_pf *pf) 448 { 449 struct ice_hw *hw = &pf->hw; 450 unsigned int i; 451 452 /* already prepared for reset */ 453 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) 454 return; 455 456 /* Notify VFs of impending reset */ 457 if (ice_check_sq_alive(hw, &hw->mailboxq)) 458 ice_vc_notify_reset(pf); 459 460 /* Disable VFs until reset is completed */ 461 ice_for_each_vf(pf, i) 462 ice_set_vf_state_qs_dis(&pf->vf[i]); 463 464 /* clear SW filtering DB */ 465 ice_clear_hw_tbls(hw); 466 /* disable the VSIs and their queues that are not already DOWN */ 467 ice_pf_dis_all_vsi(pf, false); 468 469 if (hw->port_info) 470 ice_sched_clear_port(hw->port_info); 471 472 ice_shutdown_all_ctrlq(hw); 473 474 set_bit(__ICE_PREPARED_FOR_RESET, pf->state); 475 } 476 477 /** 478 * ice_do_reset - Initiate one of many types of resets 479 * @pf: board private structure 480 * @reset_type: reset type requested 481 * before this function was called. 482 */ 483 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 484 { 485 struct device *dev = ice_pf_to_dev(pf); 486 struct ice_hw *hw = &pf->hw; 487 488 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 489 490 ice_prepare_for_reset(pf); 491 492 /* trigger the reset */ 493 if (ice_reset(hw, reset_type)) { 494 dev_err(dev, "reset %d failed\n", reset_type); 495 set_bit(__ICE_RESET_FAILED, pf->state); 496 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 497 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 498 clear_bit(__ICE_PFR_REQ, pf->state); 499 clear_bit(__ICE_CORER_REQ, pf->state); 500 clear_bit(__ICE_GLOBR_REQ, pf->state); 501 return; 502 } 503 504 /* PFR is a bit of a special case because it doesn't result in an OICR 505 * interrupt. So for PFR, rebuild after the reset and clear the reset- 506 * associated state bits. 507 */ 508 if (reset_type == ICE_RESET_PFR) { 509 pf->pfr_count++; 510 ice_rebuild(pf, reset_type); 511 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 512 clear_bit(__ICE_PFR_REQ, pf->state); 513 ice_reset_all_vfs(pf, true); 514 } 515 } 516 517 /** 518 * ice_reset_subtask - Set up for resetting the device and driver 519 * @pf: board private structure 520 */ 521 static void ice_reset_subtask(struct ice_pf *pf) 522 { 523 enum ice_reset_req reset_type = ICE_RESET_INVAL; 524 525 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 526 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 527 * of reset is pending and sets bits in pf->state indicating the reset 528 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set 529 * prepare for pending reset if not already (for PF software-initiated 530 * global resets the software should already be prepared for it as 531 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated 532 * by firmware or software on other PFs, that bit is not set so prepare 533 * for the reset now), poll for reset done, rebuild and return. 534 */ 535 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) { 536 /* Perform the largest reset requested */ 537 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state)) 538 reset_type = ICE_RESET_CORER; 539 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state)) 540 reset_type = ICE_RESET_GLOBR; 541 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state)) 542 reset_type = ICE_RESET_EMPR; 543 /* return if no valid reset type requested */ 544 if (reset_type == ICE_RESET_INVAL) 545 return; 546 ice_prepare_for_reset(pf); 547 548 /* make sure we are ready to rebuild */ 549 if (ice_check_reset(&pf->hw)) { 550 set_bit(__ICE_RESET_FAILED, pf->state); 551 } else { 552 /* done with reset. start rebuild */ 553 pf->hw.reset_ongoing = false; 554 ice_rebuild(pf, reset_type); 555 /* clear bit to resume normal operations, but 556 * ICE_NEEDS_RESTART bit is set in case rebuild failed 557 */ 558 clear_bit(__ICE_RESET_OICR_RECV, pf->state); 559 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state); 560 clear_bit(__ICE_PFR_REQ, pf->state); 561 clear_bit(__ICE_CORER_REQ, pf->state); 562 clear_bit(__ICE_GLOBR_REQ, pf->state); 563 ice_reset_all_vfs(pf, true); 564 } 565 566 return; 567 } 568 569 /* No pending resets to finish processing. Check for new resets */ 570 if (test_bit(__ICE_PFR_REQ, pf->state)) 571 reset_type = ICE_RESET_PFR; 572 if (test_bit(__ICE_CORER_REQ, pf->state)) 573 reset_type = ICE_RESET_CORER; 574 if (test_bit(__ICE_GLOBR_REQ, pf->state)) 575 reset_type = ICE_RESET_GLOBR; 576 /* If no valid reset type requested just return */ 577 if (reset_type == ICE_RESET_INVAL) 578 return; 579 580 /* reset if not already down or busy */ 581 if (!test_bit(__ICE_DOWN, pf->state) && 582 !test_bit(__ICE_CFG_BUSY, pf->state)) { 583 ice_do_reset(pf, reset_type); 584 } 585 } 586 587 /** 588 * ice_print_topo_conflict - print topology conflict message 589 * @vsi: the VSI whose topology status is being checked 590 */ 591 static void ice_print_topo_conflict(struct ice_vsi *vsi) 592 { 593 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 594 case ICE_AQ_LINK_TOPO_CONFLICT: 595 case ICE_AQ_LINK_MEDIA_CONFLICT: 596 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 597 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 598 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 599 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n"); 600 break; 601 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 602 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 603 break; 604 default: 605 break; 606 } 607 } 608 609 /** 610 * ice_print_link_msg - print link up or down message 611 * @vsi: the VSI whose link status is being queried 612 * @isup: boolean for if the link is now up or down 613 */ 614 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 615 { 616 struct ice_aqc_get_phy_caps_data *caps; 617 const char *an_advertised; 618 enum ice_status status; 619 const char *fec_req; 620 const char *speed; 621 const char *fec; 622 const char *fc; 623 const char *an; 624 625 if (!vsi) 626 return; 627 628 if (vsi->current_isup == isup) 629 return; 630 631 vsi->current_isup = isup; 632 633 if (!isup) { 634 netdev_info(vsi->netdev, "NIC Link is Down\n"); 635 return; 636 } 637 638 switch (vsi->port_info->phy.link_info.link_speed) { 639 case ICE_AQ_LINK_SPEED_100GB: 640 speed = "100 G"; 641 break; 642 case ICE_AQ_LINK_SPEED_50GB: 643 speed = "50 G"; 644 break; 645 case ICE_AQ_LINK_SPEED_40GB: 646 speed = "40 G"; 647 break; 648 case ICE_AQ_LINK_SPEED_25GB: 649 speed = "25 G"; 650 break; 651 case ICE_AQ_LINK_SPEED_20GB: 652 speed = "20 G"; 653 break; 654 case ICE_AQ_LINK_SPEED_10GB: 655 speed = "10 G"; 656 break; 657 case ICE_AQ_LINK_SPEED_5GB: 658 speed = "5 G"; 659 break; 660 case ICE_AQ_LINK_SPEED_2500MB: 661 speed = "2.5 G"; 662 break; 663 case ICE_AQ_LINK_SPEED_1000MB: 664 speed = "1 G"; 665 break; 666 case ICE_AQ_LINK_SPEED_100MB: 667 speed = "100 M"; 668 break; 669 default: 670 speed = "Unknown "; 671 break; 672 } 673 674 switch (vsi->port_info->fc.current_mode) { 675 case ICE_FC_FULL: 676 fc = "Rx/Tx"; 677 break; 678 case ICE_FC_TX_PAUSE: 679 fc = "Tx"; 680 break; 681 case ICE_FC_RX_PAUSE: 682 fc = "Rx"; 683 break; 684 case ICE_FC_NONE: 685 fc = "None"; 686 break; 687 default: 688 fc = "Unknown"; 689 break; 690 } 691 692 /* Get FEC mode based on negotiated link info */ 693 switch (vsi->port_info->phy.link_info.fec_info) { 694 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 695 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 696 fec = "RS-FEC"; 697 break; 698 case ICE_AQ_LINK_25G_KR_FEC_EN: 699 fec = "FC-FEC/BASE-R"; 700 break; 701 default: 702 fec = "NONE"; 703 break; 704 } 705 706 /* check if autoneg completed, might be false due to not supported */ 707 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 708 an = "True"; 709 else 710 an = "False"; 711 712 /* Get FEC mode requested based on PHY caps last SW configuration */ 713 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 714 if (!caps) { 715 fec_req = "Unknown"; 716 an_advertised = "Unknown"; 717 goto done; 718 } 719 720 status = ice_aq_get_phy_caps(vsi->port_info, false, 721 ICE_AQC_REPORT_SW_CFG, caps, NULL); 722 if (status) 723 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 724 725 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 726 727 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 728 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 729 fec_req = "RS-FEC"; 730 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 731 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 732 fec_req = "FC-FEC/BASE-R"; 733 else 734 fec_req = "NONE"; 735 736 kfree(caps); 737 738 done: 739 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 740 speed, fec_req, fec, an_advertised, an, fc); 741 ice_print_topo_conflict(vsi); 742 } 743 744 /** 745 * ice_vsi_link_event - update the VSI's netdev 746 * @vsi: the VSI on which the link event occurred 747 * @link_up: whether or not the VSI needs to be set up or down 748 */ 749 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 750 { 751 if (!vsi) 752 return; 753 754 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev) 755 return; 756 757 if (vsi->type == ICE_VSI_PF) { 758 if (link_up == netif_carrier_ok(vsi->netdev)) 759 return; 760 761 if (link_up) { 762 netif_carrier_on(vsi->netdev); 763 netif_tx_wake_all_queues(vsi->netdev); 764 } else { 765 netif_carrier_off(vsi->netdev); 766 netif_tx_stop_all_queues(vsi->netdev); 767 } 768 } 769 } 770 771 /** 772 * ice_set_dflt_mib - send a default config MIB to the FW 773 * @pf: private PF struct 774 * 775 * This function sends a default configuration MIB to the FW. 776 * 777 * If this function errors out at any point, the driver is still able to 778 * function. The main impact is that LFC may not operate as expected. 779 * Therefore an error state in this function should be treated with a DBG 780 * message and continue on with driver rebuild/reenable. 781 */ 782 static void ice_set_dflt_mib(struct ice_pf *pf) 783 { 784 struct device *dev = ice_pf_to_dev(pf); 785 u8 mib_type, *buf, *lldpmib = NULL; 786 u16 len, typelen, offset = 0; 787 struct ice_lldp_org_tlv *tlv; 788 struct ice_hw *hw; 789 u32 ouisubtype; 790 791 if (!pf) { 792 dev_dbg(dev, "%s NULL pf pointer\n", __func__); 793 return; 794 } 795 796 hw = &pf->hw; 797 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 798 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 799 if (!lldpmib) { 800 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 801 __func__); 802 return; 803 } 804 805 /* Add ETS CFG TLV */ 806 tlv = (struct ice_lldp_org_tlv *)lldpmib; 807 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 808 ICE_IEEE_ETS_TLV_LEN); 809 tlv->typelen = htons(typelen); 810 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 811 ICE_IEEE_SUBTYPE_ETS_CFG); 812 tlv->ouisubtype = htonl(ouisubtype); 813 814 buf = tlv->tlvinfo; 815 buf[0] = 0; 816 817 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 818 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 819 * Octets 13 - 20 are TSA values - leave as zeros 820 */ 821 buf[5] = 0x64; 822 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 823 offset += len + 2; 824 tlv = (struct ice_lldp_org_tlv *) 825 ((char *)tlv + sizeof(tlv->typelen) + len); 826 827 /* Add ETS REC TLV */ 828 buf = tlv->tlvinfo; 829 tlv->typelen = htons(typelen); 830 831 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 832 ICE_IEEE_SUBTYPE_ETS_REC); 833 tlv->ouisubtype = htonl(ouisubtype); 834 835 /* First octet of buf is reserved 836 * Octets 1 - 4 map UP to TC - all UPs map to zero 837 * Octets 5 - 12 are BW values - set TC 0 to 100%. 838 * Octets 13 - 20 are TSA value - leave as zeros 839 */ 840 buf[5] = 0x64; 841 offset += len + 2; 842 tlv = (struct ice_lldp_org_tlv *) 843 ((char *)tlv + sizeof(tlv->typelen) + len); 844 845 /* Add PFC CFG TLV */ 846 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 847 ICE_IEEE_PFC_TLV_LEN); 848 tlv->typelen = htons(typelen); 849 850 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 851 ICE_IEEE_SUBTYPE_PFC_CFG); 852 tlv->ouisubtype = htonl(ouisubtype); 853 854 /* Octet 1 left as all zeros - PFC disabled */ 855 buf[0] = 0x08; 856 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 857 offset += len + 2; 858 859 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 860 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 861 862 kfree(lldpmib); 863 } 864 865 /** 866 * ice_link_event - process the link event 867 * @pf: PF that the link event is associated with 868 * @pi: port_info for the port that the link event is associated with 869 * @link_up: true if the physical link is up and false if it is down 870 * @link_speed: current link speed received from the link event 871 * 872 * Returns 0 on success and negative on failure 873 */ 874 static int 875 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 876 u16 link_speed) 877 { 878 struct device *dev = ice_pf_to_dev(pf); 879 struct ice_phy_info *phy_info; 880 struct ice_vsi *vsi; 881 u16 old_link_speed; 882 bool old_link; 883 int result; 884 885 phy_info = &pi->phy; 886 phy_info->link_info_old = phy_info->link_info; 887 888 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 889 old_link_speed = phy_info->link_info_old.link_speed; 890 891 /* update the link info structures and re-enable link events, 892 * don't bail on failure due to other book keeping needed 893 */ 894 result = ice_update_link_info(pi); 895 if (result) 896 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n", 897 pi->lport); 898 899 /* Check if the link state is up after updating link info, and treat 900 * this event as an UP event since the link is actually UP now. 901 */ 902 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 903 link_up = true; 904 905 vsi = ice_get_main_vsi(pf); 906 if (!vsi || !vsi->port_info) 907 return -EINVAL; 908 909 /* turn off PHY if media was removed */ 910 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 911 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 912 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 913 914 result = ice_aq_set_link_restart_an(pi, false, NULL); 915 if (result) { 916 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n", 917 vsi->vsi_num, result); 918 return result; 919 } 920 } 921 922 /* if the old link up/down and speed is the same as the new */ 923 if (link_up == old_link && link_speed == old_link_speed) 924 return result; 925 926 if (ice_is_dcb_active(pf)) { 927 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 928 ice_dcb_rebuild(pf); 929 } else { 930 if (link_up) 931 ice_set_dflt_mib(pf); 932 } 933 ice_vsi_link_event(vsi, link_up); 934 ice_print_link_msg(vsi, link_up); 935 936 ice_vc_notify_link_state(pf); 937 938 return result; 939 } 940 941 /** 942 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 943 * @pf: board private structure 944 */ 945 static void ice_watchdog_subtask(struct ice_pf *pf) 946 { 947 int i; 948 949 /* if interface is down do nothing */ 950 if (test_bit(__ICE_DOWN, pf->state) || 951 test_bit(__ICE_CFG_BUSY, pf->state)) 952 return; 953 954 /* make sure we don't do these things too often */ 955 if (time_before(jiffies, 956 pf->serv_tmr_prev + pf->serv_tmr_period)) 957 return; 958 959 pf->serv_tmr_prev = jiffies; 960 961 /* Update the stats for active netdevs so the network stack 962 * can look at updated numbers whenever it cares to 963 */ 964 ice_update_pf_stats(pf); 965 ice_for_each_vsi(pf, i) 966 if (pf->vsi[i] && pf->vsi[i]->netdev) 967 ice_update_vsi_stats(pf->vsi[i]); 968 } 969 970 /** 971 * ice_init_link_events - enable/initialize link events 972 * @pi: pointer to the port_info instance 973 * 974 * Returns -EIO on failure, 0 on success 975 */ 976 static int ice_init_link_events(struct ice_port_info *pi) 977 { 978 u16 mask; 979 980 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 981 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL)); 982 983 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 984 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 985 pi->lport); 986 return -EIO; 987 } 988 989 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 990 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 991 pi->lport); 992 return -EIO; 993 } 994 995 return 0; 996 } 997 998 /** 999 * ice_handle_link_event - handle link event via ARQ 1000 * @pf: PF that the link event is associated with 1001 * @event: event structure containing link status info 1002 */ 1003 static int 1004 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1005 { 1006 struct ice_aqc_get_link_status_data *link_data; 1007 struct ice_port_info *port_info; 1008 int status; 1009 1010 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1011 port_info = pf->hw.port_info; 1012 if (!port_info) 1013 return -EINVAL; 1014 1015 status = ice_link_event(pf, port_info, 1016 !!(link_data->link_info & ICE_AQ_LINK_UP), 1017 le16_to_cpu(link_data->link_speed)); 1018 if (status) 1019 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1020 status); 1021 1022 return status; 1023 } 1024 1025 enum ice_aq_task_state { 1026 ICE_AQ_TASK_WAITING = 0, 1027 ICE_AQ_TASK_COMPLETE, 1028 ICE_AQ_TASK_CANCELED, 1029 }; 1030 1031 struct ice_aq_task { 1032 struct hlist_node entry; 1033 1034 u16 opcode; 1035 struct ice_rq_event_info *event; 1036 enum ice_aq_task_state state; 1037 }; 1038 1039 /** 1040 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware 1041 * @pf: pointer to the PF private structure 1042 * @opcode: the opcode to wait for 1043 * @timeout: how long to wait, in jiffies 1044 * @event: storage for the event info 1045 * 1046 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1047 * current thread will be put to sleep until the specified event occurs or 1048 * until the given timeout is reached. 1049 * 1050 * To obtain only the descriptor contents, pass an event without an allocated 1051 * msg_buf. If the complete data buffer is desired, allocate the 1052 * event->msg_buf with enough space ahead of time. 1053 * 1054 * Returns: zero on success, or a negative error code on failure. 1055 */ 1056 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1057 struct ice_rq_event_info *event) 1058 { 1059 struct device *dev = ice_pf_to_dev(pf); 1060 struct ice_aq_task *task; 1061 unsigned long start; 1062 long ret; 1063 int err; 1064 1065 task = kzalloc(sizeof(*task), GFP_KERNEL); 1066 if (!task) 1067 return -ENOMEM; 1068 1069 INIT_HLIST_NODE(&task->entry); 1070 task->opcode = opcode; 1071 task->event = event; 1072 task->state = ICE_AQ_TASK_WAITING; 1073 1074 spin_lock_bh(&pf->aq_wait_lock); 1075 hlist_add_head(&task->entry, &pf->aq_wait_list); 1076 spin_unlock_bh(&pf->aq_wait_lock); 1077 1078 start = jiffies; 1079 1080 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1081 timeout); 1082 switch (task->state) { 1083 case ICE_AQ_TASK_WAITING: 1084 err = ret < 0 ? ret : -ETIMEDOUT; 1085 break; 1086 case ICE_AQ_TASK_CANCELED: 1087 err = ret < 0 ? ret : -ECANCELED; 1088 break; 1089 case ICE_AQ_TASK_COMPLETE: 1090 err = ret < 0 ? ret : 0; 1091 break; 1092 default: 1093 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1094 err = -EINVAL; 1095 break; 1096 } 1097 1098 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1099 jiffies_to_msecs(jiffies - start), 1100 jiffies_to_msecs(timeout), 1101 opcode); 1102 1103 spin_lock_bh(&pf->aq_wait_lock); 1104 hlist_del(&task->entry); 1105 spin_unlock_bh(&pf->aq_wait_lock); 1106 kfree(task); 1107 1108 return err; 1109 } 1110 1111 /** 1112 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1113 * @pf: pointer to the PF private structure 1114 * @opcode: the opcode of the event 1115 * @event: the event to check 1116 * 1117 * Loops over the current list of pending threads waiting for an AdminQ event. 1118 * For each matching task, copy the contents of the event into the task 1119 * structure and wake up the thread. 1120 * 1121 * If multiple threads wait for the same opcode, they will all be woken up. 1122 * 1123 * Note that event->msg_buf will only be duplicated if the event has a buffer 1124 * with enough space already allocated. Otherwise, only the descriptor and 1125 * message length will be copied. 1126 * 1127 * Returns: true if an event was found, false otherwise 1128 */ 1129 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1130 struct ice_rq_event_info *event) 1131 { 1132 struct ice_aq_task *task; 1133 bool found = false; 1134 1135 spin_lock_bh(&pf->aq_wait_lock); 1136 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1137 if (task->state || task->opcode != opcode) 1138 continue; 1139 1140 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1141 task->event->msg_len = event->msg_len; 1142 1143 /* Only copy the data buffer if a destination was set */ 1144 if (task->event->msg_buf && 1145 task->event->buf_len > event->buf_len) { 1146 memcpy(task->event->msg_buf, event->msg_buf, 1147 event->buf_len); 1148 task->event->buf_len = event->buf_len; 1149 } 1150 1151 task->state = ICE_AQ_TASK_COMPLETE; 1152 found = true; 1153 } 1154 spin_unlock_bh(&pf->aq_wait_lock); 1155 1156 if (found) 1157 wake_up(&pf->aq_wait_queue); 1158 } 1159 1160 /** 1161 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1162 * @pf: the PF private structure 1163 * 1164 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1165 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1166 */ 1167 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1168 { 1169 struct ice_aq_task *task; 1170 1171 spin_lock_bh(&pf->aq_wait_lock); 1172 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1173 task->state = ICE_AQ_TASK_CANCELED; 1174 spin_unlock_bh(&pf->aq_wait_lock); 1175 1176 wake_up(&pf->aq_wait_queue); 1177 } 1178 1179 /** 1180 * __ice_clean_ctrlq - helper function to clean controlq rings 1181 * @pf: ptr to struct ice_pf 1182 * @q_type: specific Control queue type 1183 */ 1184 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1185 { 1186 struct device *dev = ice_pf_to_dev(pf); 1187 struct ice_rq_event_info event; 1188 struct ice_hw *hw = &pf->hw; 1189 struct ice_ctl_q_info *cq; 1190 u16 pending, i = 0; 1191 const char *qtype; 1192 u32 oldval, val; 1193 1194 /* Do not clean control queue if/when PF reset fails */ 1195 if (test_bit(__ICE_RESET_FAILED, pf->state)) 1196 return 0; 1197 1198 switch (q_type) { 1199 case ICE_CTL_Q_ADMIN: 1200 cq = &hw->adminq; 1201 qtype = "Admin"; 1202 break; 1203 case ICE_CTL_Q_MAILBOX: 1204 cq = &hw->mailboxq; 1205 qtype = "Mailbox"; 1206 break; 1207 default: 1208 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1209 return 0; 1210 } 1211 1212 /* check for error indications - PF_xx_AxQLEN register layout for 1213 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1214 */ 1215 val = rd32(hw, cq->rq.len); 1216 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1217 PF_FW_ARQLEN_ARQCRIT_M)) { 1218 oldval = val; 1219 if (val & PF_FW_ARQLEN_ARQVFE_M) 1220 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1221 qtype); 1222 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1223 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1224 qtype); 1225 } 1226 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1227 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1228 qtype); 1229 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1230 PF_FW_ARQLEN_ARQCRIT_M); 1231 if (oldval != val) 1232 wr32(hw, cq->rq.len, val); 1233 } 1234 1235 val = rd32(hw, cq->sq.len); 1236 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1237 PF_FW_ATQLEN_ATQCRIT_M)) { 1238 oldval = val; 1239 if (val & PF_FW_ATQLEN_ATQVFE_M) 1240 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1241 qtype); 1242 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1243 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1244 qtype); 1245 } 1246 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1247 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1248 qtype); 1249 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1250 PF_FW_ATQLEN_ATQCRIT_M); 1251 if (oldval != val) 1252 wr32(hw, cq->sq.len, val); 1253 } 1254 1255 event.buf_len = cq->rq_buf_size; 1256 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1257 if (!event.msg_buf) 1258 return 0; 1259 1260 do { 1261 enum ice_status ret; 1262 u16 opcode; 1263 1264 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1265 if (ret == ICE_ERR_AQ_NO_WORK) 1266 break; 1267 if (ret) { 1268 dev_err(dev, "%s Receive Queue event error %s\n", qtype, 1269 ice_stat_str(ret)); 1270 break; 1271 } 1272 1273 opcode = le16_to_cpu(event.desc.opcode); 1274 1275 /* Notify any thread that might be waiting for this event */ 1276 ice_aq_check_events(pf, opcode, &event); 1277 1278 switch (opcode) { 1279 case ice_aqc_opc_get_link_status: 1280 if (ice_handle_link_event(pf, &event)) 1281 dev_err(dev, "Could not handle link event\n"); 1282 break; 1283 case ice_aqc_opc_event_lan_overflow: 1284 ice_vf_lan_overflow_event(pf, &event); 1285 break; 1286 case ice_mbx_opc_send_msg_to_pf: 1287 ice_vc_process_vf_msg(pf, &event); 1288 break; 1289 case ice_aqc_opc_fw_logging: 1290 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1291 break; 1292 case ice_aqc_opc_lldp_set_mib_change: 1293 ice_dcb_process_lldp_set_mib_change(pf, &event); 1294 break; 1295 default: 1296 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1297 qtype, opcode); 1298 break; 1299 } 1300 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1301 1302 kfree(event.msg_buf); 1303 1304 return pending && (i == ICE_DFLT_IRQ_WORK); 1305 } 1306 1307 /** 1308 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1309 * @hw: pointer to hardware info 1310 * @cq: control queue information 1311 * 1312 * returns true if there are pending messages in a queue, false if there aren't 1313 */ 1314 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1315 { 1316 u16 ntu; 1317 1318 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1319 return cq->rq.next_to_clean != ntu; 1320 } 1321 1322 /** 1323 * ice_clean_adminq_subtask - clean the AdminQ rings 1324 * @pf: board private structure 1325 */ 1326 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1327 { 1328 struct ice_hw *hw = &pf->hw; 1329 1330 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 1331 return; 1332 1333 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1334 return; 1335 1336 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 1337 1338 /* There might be a situation where new messages arrive to a control 1339 * queue between processing the last message and clearing the 1340 * EVENT_PENDING bit. So before exiting, check queue head again (using 1341 * ice_ctrlq_pending) and process new messages if any. 1342 */ 1343 if (ice_ctrlq_pending(hw, &hw->adminq)) 1344 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1345 1346 ice_flush(hw); 1347 } 1348 1349 /** 1350 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1351 * @pf: board private structure 1352 */ 1353 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1354 { 1355 struct ice_hw *hw = &pf->hw; 1356 1357 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1358 return; 1359 1360 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1361 return; 1362 1363 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1364 1365 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1366 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1367 1368 ice_flush(hw); 1369 } 1370 1371 /** 1372 * ice_service_task_schedule - schedule the service task to wake up 1373 * @pf: board private structure 1374 * 1375 * If not already scheduled, this puts the task into the work queue. 1376 */ 1377 void ice_service_task_schedule(struct ice_pf *pf) 1378 { 1379 if (!test_bit(__ICE_SERVICE_DIS, pf->state) && 1380 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) && 1381 !test_bit(__ICE_NEEDS_RESTART, pf->state)) 1382 queue_work(ice_wq, &pf->serv_task); 1383 } 1384 1385 /** 1386 * ice_service_task_complete - finish up the service task 1387 * @pf: board private structure 1388 */ 1389 static void ice_service_task_complete(struct ice_pf *pf) 1390 { 1391 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state)); 1392 1393 /* force memory (pf->state) to sync before next service task */ 1394 smp_mb__before_atomic(); 1395 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1396 } 1397 1398 /** 1399 * ice_service_task_stop - stop service task and cancel works 1400 * @pf: board private structure 1401 * 1402 * Return 0 if the __ICE_SERVICE_DIS bit was not already set, 1403 * 1 otherwise. 1404 */ 1405 static int ice_service_task_stop(struct ice_pf *pf) 1406 { 1407 int ret; 1408 1409 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state); 1410 1411 if (pf->serv_tmr.function) 1412 del_timer_sync(&pf->serv_tmr); 1413 if (pf->serv_task.func) 1414 cancel_work_sync(&pf->serv_task); 1415 1416 clear_bit(__ICE_SERVICE_SCHED, pf->state); 1417 return ret; 1418 } 1419 1420 /** 1421 * ice_service_task_restart - restart service task and schedule works 1422 * @pf: board private structure 1423 * 1424 * This function is needed for suspend and resume works (e.g WoL scenario) 1425 */ 1426 static void ice_service_task_restart(struct ice_pf *pf) 1427 { 1428 clear_bit(__ICE_SERVICE_DIS, pf->state); 1429 ice_service_task_schedule(pf); 1430 } 1431 1432 /** 1433 * ice_service_timer - timer callback to schedule service task 1434 * @t: pointer to timer_list 1435 */ 1436 static void ice_service_timer(struct timer_list *t) 1437 { 1438 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1439 1440 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1441 ice_service_task_schedule(pf); 1442 } 1443 1444 /** 1445 * ice_handle_mdd_event - handle malicious driver detect event 1446 * @pf: pointer to the PF structure 1447 * 1448 * Called from service task. OICR interrupt handler indicates MDD event. 1449 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1450 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1451 * disable the queue, the PF can be configured to reset the VF using ethtool 1452 * private flag mdd-auto-reset-vf. 1453 */ 1454 static void ice_handle_mdd_event(struct ice_pf *pf) 1455 { 1456 struct device *dev = ice_pf_to_dev(pf); 1457 struct ice_hw *hw = &pf->hw; 1458 unsigned int i; 1459 u32 reg; 1460 1461 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) { 1462 /* Since the VF MDD event logging is rate limited, check if 1463 * there are pending MDD events. 1464 */ 1465 ice_print_vfs_mdd_events(pf); 1466 return; 1467 } 1468 1469 /* find what triggered an MDD event */ 1470 reg = rd32(hw, GL_MDET_TX_PQM); 1471 if (reg & GL_MDET_TX_PQM_VALID_M) { 1472 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1473 GL_MDET_TX_PQM_PF_NUM_S; 1474 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1475 GL_MDET_TX_PQM_VF_NUM_S; 1476 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1477 GL_MDET_TX_PQM_MAL_TYPE_S; 1478 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1479 GL_MDET_TX_PQM_QNUM_S); 1480 1481 if (netif_msg_tx_err(pf)) 1482 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1483 event, queue, pf_num, vf_num); 1484 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1485 } 1486 1487 reg = rd32(hw, GL_MDET_TX_TCLAN); 1488 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1489 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1490 GL_MDET_TX_TCLAN_PF_NUM_S; 1491 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1492 GL_MDET_TX_TCLAN_VF_NUM_S; 1493 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1494 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1495 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1496 GL_MDET_TX_TCLAN_QNUM_S); 1497 1498 if (netif_msg_tx_err(pf)) 1499 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1500 event, queue, pf_num, vf_num); 1501 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1502 } 1503 1504 reg = rd32(hw, GL_MDET_RX); 1505 if (reg & GL_MDET_RX_VALID_M) { 1506 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1507 GL_MDET_RX_PF_NUM_S; 1508 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1509 GL_MDET_RX_VF_NUM_S; 1510 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1511 GL_MDET_RX_MAL_TYPE_S; 1512 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1513 GL_MDET_RX_QNUM_S); 1514 1515 if (netif_msg_rx_err(pf)) 1516 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1517 event, queue, pf_num, vf_num); 1518 wr32(hw, GL_MDET_RX, 0xffffffff); 1519 } 1520 1521 /* check to see if this PF caused an MDD event */ 1522 reg = rd32(hw, PF_MDET_TX_PQM); 1523 if (reg & PF_MDET_TX_PQM_VALID_M) { 1524 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1525 if (netif_msg_tx_err(pf)) 1526 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1527 } 1528 1529 reg = rd32(hw, PF_MDET_TX_TCLAN); 1530 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1531 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1532 if (netif_msg_tx_err(pf)) 1533 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1534 } 1535 1536 reg = rd32(hw, PF_MDET_RX); 1537 if (reg & PF_MDET_RX_VALID_M) { 1538 wr32(hw, PF_MDET_RX, 0xFFFF); 1539 if (netif_msg_rx_err(pf)) 1540 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1541 } 1542 1543 /* Check to see if one of the VFs caused an MDD event, and then 1544 * increment counters and set print pending 1545 */ 1546 ice_for_each_vf(pf, i) { 1547 struct ice_vf *vf = &pf->vf[i]; 1548 1549 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1550 if (reg & VP_MDET_TX_PQM_VALID_M) { 1551 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1552 vf->mdd_tx_events.count++; 1553 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1554 if (netif_msg_tx_err(pf)) 1555 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1556 i); 1557 } 1558 1559 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1560 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1561 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1562 vf->mdd_tx_events.count++; 1563 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1564 if (netif_msg_tx_err(pf)) 1565 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1566 i); 1567 } 1568 1569 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1570 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1571 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1572 vf->mdd_tx_events.count++; 1573 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1574 if (netif_msg_tx_err(pf)) 1575 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1576 i); 1577 } 1578 1579 reg = rd32(hw, VP_MDET_RX(i)); 1580 if (reg & VP_MDET_RX_VALID_M) { 1581 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1582 vf->mdd_rx_events.count++; 1583 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state); 1584 if (netif_msg_rx_err(pf)) 1585 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1586 i); 1587 1588 /* Since the queue is disabled on VF Rx MDD events, the 1589 * PF can be configured to reset the VF through ethtool 1590 * private flag mdd-auto-reset-vf. 1591 */ 1592 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1593 /* VF MDD event counters will be cleared by 1594 * reset, so print the event prior to reset. 1595 */ 1596 ice_print_vf_rx_mdd_event(vf); 1597 ice_reset_vf(&pf->vf[i], false); 1598 } 1599 } 1600 } 1601 1602 ice_print_vfs_mdd_events(pf); 1603 } 1604 1605 /** 1606 * ice_force_phys_link_state - Force the physical link state 1607 * @vsi: VSI to force the physical link state to up/down 1608 * @link_up: true/false indicates to set the physical link to up/down 1609 * 1610 * Force the physical link state by getting the current PHY capabilities from 1611 * hardware and setting the PHY config based on the determined capabilities. If 1612 * link changes a link event will be triggered because both the Enable Automatic 1613 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1614 * 1615 * Returns 0 on success, negative on failure 1616 */ 1617 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1618 { 1619 struct ice_aqc_get_phy_caps_data *pcaps; 1620 struct ice_aqc_set_phy_cfg_data *cfg; 1621 struct ice_port_info *pi; 1622 struct device *dev; 1623 int retcode; 1624 1625 if (!vsi || !vsi->port_info || !vsi->back) 1626 return -EINVAL; 1627 if (vsi->type != ICE_VSI_PF) 1628 return 0; 1629 1630 dev = ice_pf_to_dev(vsi->back); 1631 1632 pi = vsi->port_info; 1633 1634 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1635 if (!pcaps) 1636 return -ENOMEM; 1637 1638 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1639 NULL); 1640 if (retcode) { 1641 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1642 vsi->vsi_num, retcode); 1643 retcode = -EIO; 1644 goto out; 1645 } 1646 1647 /* No change in link */ 1648 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1649 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1650 goto out; 1651 1652 /* Use the current user PHY configuration. The current user PHY 1653 * configuration is initialized during probe from PHY capabilities 1654 * software mode, and updated on set PHY configuration. 1655 */ 1656 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1657 if (!cfg) { 1658 retcode = -ENOMEM; 1659 goto out; 1660 } 1661 1662 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1663 if (link_up) 1664 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1665 else 1666 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1667 1668 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1669 if (retcode) { 1670 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1671 vsi->vsi_num, retcode); 1672 retcode = -EIO; 1673 } 1674 1675 kfree(cfg); 1676 out: 1677 kfree(pcaps); 1678 return retcode; 1679 } 1680 1681 /** 1682 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1683 * @pi: port info structure 1684 * 1685 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1686 */ 1687 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1688 { 1689 struct ice_aqc_get_phy_caps_data *pcaps; 1690 struct ice_pf *pf = pi->hw->back; 1691 enum ice_status status; 1692 int err = 0; 1693 1694 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1695 if (!pcaps) 1696 return -ENOMEM; 1697 1698 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps, 1699 NULL); 1700 1701 if (status) { 1702 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1703 err = -EIO; 1704 goto out; 1705 } 1706 1707 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1708 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1709 1710 out: 1711 kfree(pcaps); 1712 return err; 1713 } 1714 1715 /** 1716 * ice_init_link_dflt_override - Initialize link default override 1717 * @pi: port info structure 1718 * 1719 * Initialize link default override and PHY total port shutdown during probe 1720 */ 1721 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1722 { 1723 struct ice_link_default_override_tlv *ldo; 1724 struct ice_pf *pf = pi->hw->back; 1725 1726 ldo = &pf->link_dflt_override; 1727 if (ice_get_link_default_override(ldo, pi)) 1728 return; 1729 1730 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1731 return; 1732 1733 /* Enable Total Port Shutdown (override/replace link-down-on-close 1734 * ethtool private flag) for ports with Port Disable bit set. 1735 */ 1736 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1737 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1738 } 1739 1740 /** 1741 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1742 * @pi: port info structure 1743 * 1744 * If default override is enabled, initialized the user PHY cfg speed and FEC 1745 * settings using the default override mask from the NVM. 1746 * 1747 * The PHY should only be configured with the default override settings the 1748 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1749 * is used to indicate that the user PHY cfg default override is initialized 1750 * and the PHY has not been configured with the default override settings. The 1751 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1752 * configured. 1753 */ 1754 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1755 { 1756 struct ice_link_default_override_tlv *ldo; 1757 struct ice_aqc_set_phy_cfg_data *cfg; 1758 struct ice_phy_info *phy = &pi->phy; 1759 struct ice_pf *pf = pi->hw->back; 1760 1761 ldo = &pf->link_dflt_override; 1762 1763 /* If link default override is enabled, use to mask NVM PHY capabilities 1764 * for speed and FEC default configuration. 1765 */ 1766 cfg = &phy->curr_user_phy_cfg; 1767 1768 if (ldo->phy_type_low || ldo->phy_type_high) { 1769 cfg->phy_type_low = pf->nvm_phy_type_lo & 1770 cpu_to_le64(ldo->phy_type_low); 1771 cfg->phy_type_high = pf->nvm_phy_type_hi & 1772 cpu_to_le64(ldo->phy_type_high); 1773 } 1774 cfg->link_fec_opt = ldo->fec_options; 1775 phy->curr_user_fec_req = ICE_FEC_AUTO; 1776 1777 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1778 } 1779 1780 /** 1781 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1782 * @pi: port info structure 1783 * 1784 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1785 * mode to default. The PHY defaults are from get PHY capabilities topology 1786 * with media so call when media is first available. An error is returned if 1787 * called when media is not available. The PHY initialization completed state is 1788 * set here. 1789 * 1790 * These configurations are used when setting PHY 1791 * configuration. The user PHY configuration is updated on set PHY 1792 * configuration. Returns 0 on success, negative on failure 1793 */ 1794 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 1795 { 1796 struct ice_aqc_get_phy_caps_data *pcaps; 1797 struct ice_phy_info *phy = &pi->phy; 1798 struct ice_pf *pf = pi->hw->back; 1799 enum ice_status status; 1800 struct ice_vsi *vsi; 1801 int err = 0; 1802 1803 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1804 return -EIO; 1805 1806 vsi = ice_get_main_vsi(pf); 1807 if (!vsi) 1808 return -EINVAL; 1809 1810 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1811 if (!pcaps) 1812 return -ENOMEM; 1813 1814 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1815 NULL); 1816 if (status) { 1817 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1818 err = -EIO; 1819 goto err_out; 1820 } 1821 1822 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 1823 1824 /* check if lenient mode is supported and enabled */ 1825 if (ice_fw_supports_link_override(&vsi->back->hw) && 1826 !(pcaps->module_compliance_enforcement & 1827 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 1828 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 1829 1830 /* if link default override is enabled, initialize user PHY 1831 * configuration with link default override values 1832 */ 1833 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) { 1834 ice_init_phy_cfg_dflt_override(pi); 1835 goto out; 1836 } 1837 } 1838 1839 /* if link default override is not enabled, initialize PHY using 1840 * topology with media 1841 */ 1842 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 1843 pcaps->link_fec_options); 1844 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 1845 1846 out: 1847 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 1848 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state); 1849 err_out: 1850 kfree(pcaps); 1851 return err; 1852 } 1853 1854 /** 1855 * ice_configure_phy - configure PHY 1856 * @vsi: VSI of PHY 1857 * 1858 * Set the PHY configuration. If the current PHY configuration is the same as 1859 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 1860 * configure the based get PHY capabilities for topology with media. 1861 */ 1862 static int ice_configure_phy(struct ice_vsi *vsi) 1863 { 1864 struct device *dev = ice_pf_to_dev(vsi->back); 1865 struct ice_aqc_get_phy_caps_data *pcaps; 1866 struct ice_aqc_set_phy_cfg_data *cfg; 1867 struct ice_port_info *pi; 1868 enum ice_status status; 1869 int err = 0; 1870 1871 pi = vsi->port_info; 1872 if (!pi) 1873 return -EINVAL; 1874 1875 /* Ensure we have media as we cannot configure a medialess port */ 1876 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 1877 return -EPERM; 1878 1879 ice_print_topo_conflict(vsi); 1880 1881 if (vsi->port_info->phy.link_info.topo_media_conflict == 1882 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 1883 return -EPERM; 1884 1885 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 1886 return ice_force_phys_link_state(vsi, true); 1887 1888 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1889 if (!pcaps) 1890 return -ENOMEM; 1891 1892 /* Get current PHY config */ 1893 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps, 1894 NULL); 1895 if (status) { 1896 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n", 1897 vsi->vsi_num, ice_stat_str(status)); 1898 err = -EIO; 1899 goto done; 1900 } 1901 1902 /* If PHY enable link is configured and configuration has not changed, 1903 * there's nothing to do 1904 */ 1905 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 1906 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg)) 1907 goto done; 1908 1909 /* Use PHY topology as baseline for configuration */ 1910 memset(pcaps, 0, sizeof(*pcaps)); 1911 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps, 1912 NULL); 1913 if (status) { 1914 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n", 1915 vsi->vsi_num, ice_stat_str(status)); 1916 err = -EIO; 1917 goto done; 1918 } 1919 1920 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 1921 if (!cfg) { 1922 err = -ENOMEM; 1923 goto done; 1924 } 1925 1926 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 1927 1928 /* Speed - If default override pending, use curr_user_phy_cfg set in 1929 * ice_init_phy_user_cfg_ldo. 1930 */ 1931 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, 1932 vsi->back->state)) { 1933 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low; 1934 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high; 1935 } else { 1936 u64 phy_low = 0, phy_high = 0; 1937 1938 ice_update_phy_type(&phy_low, &phy_high, 1939 pi->phy.curr_user_speed_req); 1940 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 1941 cfg->phy_type_high = pcaps->phy_type_high & 1942 cpu_to_le64(phy_high); 1943 } 1944 1945 /* Can't provide what was requested; use PHY capabilities */ 1946 if (!cfg->phy_type_low && !cfg->phy_type_high) { 1947 cfg->phy_type_low = pcaps->phy_type_low; 1948 cfg->phy_type_high = pcaps->phy_type_high; 1949 } 1950 1951 /* FEC */ 1952 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req); 1953 1954 /* Can't provide what was requested; use PHY capabilities */ 1955 if (cfg->link_fec_opt != 1956 (cfg->link_fec_opt & pcaps->link_fec_options)) { 1957 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 1958 cfg->link_fec_opt = pcaps->link_fec_options; 1959 } 1960 1961 /* Flow Control - always supported; no need to check against 1962 * capabilities 1963 */ 1964 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req); 1965 1966 /* Enable link and link update */ 1967 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 1968 1969 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1970 if (status) { 1971 dev_err(dev, "Failed to set phy config, VSI %d error %s\n", 1972 vsi->vsi_num, ice_stat_str(status)); 1973 err = -EIO; 1974 } 1975 1976 kfree(cfg); 1977 done: 1978 kfree(pcaps); 1979 return err; 1980 } 1981 1982 /** 1983 * ice_check_media_subtask - Check for media 1984 * @pf: pointer to PF struct 1985 * 1986 * If media is available, then initialize PHY user configuration if it is not 1987 * been, and configure the PHY if the interface is up. 1988 */ 1989 static void ice_check_media_subtask(struct ice_pf *pf) 1990 { 1991 struct ice_port_info *pi; 1992 struct ice_vsi *vsi; 1993 int err; 1994 1995 /* No need to check for media if it's already present */ 1996 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 1997 return; 1998 1999 vsi = ice_get_main_vsi(pf); 2000 if (!vsi) 2001 return; 2002 2003 /* Refresh link info and check if media is present */ 2004 pi = vsi->port_info; 2005 err = ice_update_link_info(pi); 2006 if (err) 2007 return; 2008 2009 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2010 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) 2011 ice_init_phy_user_cfg(pi); 2012 2013 /* PHY settings are reset on media insertion, reconfigure 2014 * PHY to preserve settings. 2015 */ 2016 if (test_bit(__ICE_DOWN, vsi->state) && 2017 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2018 return; 2019 2020 err = ice_configure_phy(vsi); 2021 if (!err) 2022 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2023 2024 /* A Link Status Event will be generated; the event handler 2025 * will complete bringing the interface up 2026 */ 2027 } 2028 } 2029 2030 /** 2031 * ice_service_task - manage and run subtasks 2032 * @work: pointer to work_struct contained by the PF struct 2033 */ 2034 static void ice_service_task(struct work_struct *work) 2035 { 2036 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2037 unsigned long start_time = jiffies; 2038 2039 /* subtasks */ 2040 2041 /* process reset requests first */ 2042 ice_reset_subtask(pf); 2043 2044 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2045 if (ice_is_reset_in_progress(pf->state) || 2046 test_bit(__ICE_SUSPENDED, pf->state) || 2047 test_bit(__ICE_NEEDS_RESTART, pf->state)) { 2048 ice_service_task_complete(pf); 2049 return; 2050 } 2051 2052 ice_clean_adminq_subtask(pf); 2053 ice_check_media_subtask(pf); 2054 ice_check_for_hang_subtask(pf); 2055 ice_sync_fltr_subtask(pf); 2056 ice_handle_mdd_event(pf); 2057 ice_watchdog_subtask(pf); 2058 2059 if (ice_is_safe_mode(pf)) { 2060 ice_service_task_complete(pf); 2061 return; 2062 } 2063 2064 ice_process_vflr_event(pf); 2065 ice_clean_mailboxq_subtask(pf); 2066 ice_sync_arfs_fltrs(pf); 2067 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */ 2068 ice_service_task_complete(pf); 2069 2070 /* If the tasks have taken longer than one service timer period 2071 * or there is more work to be done, reset the service timer to 2072 * schedule the service task now. 2073 */ 2074 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2075 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) || 2076 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || 2077 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2078 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state)) 2079 mod_timer(&pf->serv_tmr, jiffies); 2080 } 2081 2082 /** 2083 * ice_set_ctrlq_len - helper function to set controlq length 2084 * @hw: pointer to the HW instance 2085 */ 2086 static void ice_set_ctrlq_len(struct ice_hw *hw) 2087 { 2088 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2089 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2090 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2091 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2092 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2093 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2094 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2095 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2096 } 2097 2098 /** 2099 * ice_schedule_reset - schedule a reset 2100 * @pf: board private structure 2101 * @reset: reset being requested 2102 */ 2103 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2104 { 2105 struct device *dev = ice_pf_to_dev(pf); 2106 2107 /* bail out if earlier reset has failed */ 2108 if (test_bit(__ICE_RESET_FAILED, pf->state)) { 2109 dev_dbg(dev, "earlier reset has failed\n"); 2110 return -EIO; 2111 } 2112 /* bail if reset/recovery already in progress */ 2113 if (ice_is_reset_in_progress(pf->state)) { 2114 dev_dbg(dev, "Reset already in progress\n"); 2115 return -EBUSY; 2116 } 2117 2118 switch (reset) { 2119 case ICE_RESET_PFR: 2120 set_bit(__ICE_PFR_REQ, pf->state); 2121 break; 2122 case ICE_RESET_CORER: 2123 set_bit(__ICE_CORER_REQ, pf->state); 2124 break; 2125 case ICE_RESET_GLOBR: 2126 set_bit(__ICE_GLOBR_REQ, pf->state); 2127 break; 2128 default: 2129 return -EINVAL; 2130 } 2131 2132 ice_service_task_schedule(pf); 2133 return 0; 2134 } 2135 2136 /** 2137 * ice_irq_affinity_notify - Callback for affinity changes 2138 * @notify: context as to what irq was changed 2139 * @mask: the new affinity mask 2140 * 2141 * This is a callback function used by the irq_set_affinity_notifier function 2142 * so that we may register to receive changes to the irq affinity masks. 2143 */ 2144 static void 2145 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2146 const cpumask_t *mask) 2147 { 2148 struct ice_q_vector *q_vector = 2149 container_of(notify, struct ice_q_vector, affinity_notify); 2150 2151 cpumask_copy(&q_vector->affinity_mask, mask); 2152 } 2153 2154 /** 2155 * ice_irq_affinity_release - Callback for affinity notifier release 2156 * @ref: internal core kernel usage 2157 * 2158 * This is a callback function used by the irq_set_affinity_notifier function 2159 * to inform the current notification subscriber that they will no longer 2160 * receive notifications. 2161 */ 2162 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2163 2164 /** 2165 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2166 * @vsi: the VSI being configured 2167 */ 2168 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2169 { 2170 struct ice_hw *hw = &vsi->back->hw; 2171 int i; 2172 2173 ice_for_each_q_vector(vsi, i) 2174 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2175 2176 ice_flush(hw); 2177 return 0; 2178 } 2179 2180 /** 2181 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2182 * @vsi: the VSI being configured 2183 * @basename: name for the vector 2184 */ 2185 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2186 { 2187 int q_vectors = vsi->num_q_vectors; 2188 struct ice_pf *pf = vsi->back; 2189 int base = vsi->base_vector; 2190 struct device *dev; 2191 int rx_int_idx = 0; 2192 int tx_int_idx = 0; 2193 int vector, err; 2194 int irq_num; 2195 2196 dev = ice_pf_to_dev(pf); 2197 for (vector = 0; vector < q_vectors; vector++) { 2198 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2199 2200 irq_num = pf->msix_entries[base + vector].vector; 2201 2202 if (q_vector->tx.ring && q_vector->rx.ring) { 2203 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2204 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2205 tx_int_idx++; 2206 } else if (q_vector->rx.ring) { 2207 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2208 "%s-%s-%d", basename, "rx", rx_int_idx++); 2209 } else if (q_vector->tx.ring) { 2210 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2211 "%s-%s-%d", basename, "tx", tx_int_idx++); 2212 } else { 2213 /* skip this unused q_vector */ 2214 continue; 2215 } 2216 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0, 2217 q_vector->name, q_vector); 2218 if (err) { 2219 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2220 err); 2221 goto free_q_irqs; 2222 } 2223 2224 /* register for affinity change notifications */ 2225 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2226 struct irq_affinity_notify *affinity_notify; 2227 2228 affinity_notify = &q_vector->affinity_notify; 2229 affinity_notify->notify = ice_irq_affinity_notify; 2230 affinity_notify->release = ice_irq_affinity_release; 2231 irq_set_affinity_notifier(irq_num, affinity_notify); 2232 } 2233 2234 /* assign the mask for this irq */ 2235 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2236 } 2237 2238 vsi->irqs_ready = true; 2239 return 0; 2240 2241 free_q_irqs: 2242 while (vector) { 2243 vector--; 2244 irq_num = pf->msix_entries[base + vector].vector; 2245 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2246 irq_set_affinity_notifier(irq_num, NULL); 2247 irq_set_affinity_hint(irq_num, NULL); 2248 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2249 } 2250 return err; 2251 } 2252 2253 /** 2254 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2255 * @vsi: VSI to setup Tx rings used by XDP 2256 * 2257 * Return 0 on success and negative value on error 2258 */ 2259 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2260 { 2261 struct device *dev = ice_pf_to_dev(vsi->back); 2262 int i; 2263 2264 for (i = 0; i < vsi->num_xdp_txq; i++) { 2265 u16 xdp_q_idx = vsi->alloc_txq + i; 2266 struct ice_ring *xdp_ring; 2267 2268 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2269 2270 if (!xdp_ring) 2271 goto free_xdp_rings; 2272 2273 xdp_ring->q_index = xdp_q_idx; 2274 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2275 xdp_ring->ring_active = false; 2276 xdp_ring->vsi = vsi; 2277 xdp_ring->netdev = NULL; 2278 xdp_ring->dev = dev; 2279 xdp_ring->count = vsi->num_tx_desc; 2280 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2281 if (ice_setup_tx_ring(xdp_ring)) 2282 goto free_xdp_rings; 2283 ice_set_ring_xdp(xdp_ring); 2284 xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring); 2285 } 2286 2287 return 0; 2288 2289 free_xdp_rings: 2290 for (; i >= 0; i--) 2291 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2292 ice_free_tx_ring(vsi->xdp_rings[i]); 2293 return -ENOMEM; 2294 } 2295 2296 /** 2297 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2298 * @vsi: VSI to set the bpf prog on 2299 * @prog: the bpf prog pointer 2300 */ 2301 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2302 { 2303 struct bpf_prog *old_prog; 2304 int i; 2305 2306 old_prog = xchg(&vsi->xdp_prog, prog); 2307 if (old_prog) 2308 bpf_prog_put(old_prog); 2309 2310 ice_for_each_rxq(vsi, i) 2311 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2312 } 2313 2314 /** 2315 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2316 * @vsi: VSI to bring up Tx rings used by XDP 2317 * @prog: bpf program that will be assigned to VSI 2318 * 2319 * Return 0 on success and negative value on error 2320 */ 2321 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2322 { 2323 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2324 int xdp_rings_rem = vsi->num_xdp_txq; 2325 struct ice_pf *pf = vsi->back; 2326 struct ice_qs_cfg xdp_qs_cfg = { 2327 .qs_mutex = &pf->avail_q_mutex, 2328 .pf_map = pf->avail_txqs, 2329 .pf_map_size = pf->max_pf_txqs, 2330 .q_count = vsi->num_xdp_txq, 2331 .scatter_count = ICE_MAX_SCATTER_TXQS, 2332 .vsi_map = vsi->txq_map, 2333 .vsi_map_offset = vsi->alloc_txq, 2334 .mapping_mode = ICE_VSI_MAP_CONTIG 2335 }; 2336 enum ice_status status; 2337 struct device *dev; 2338 int i, v_idx; 2339 2340 dev = ice_pf_to_dev(pf); 2341 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2342 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2343 if (!vsi->xdp_rings) 2344 return -ENOMEM; 2345 2346 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2347 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2348 goto err_map_xdp; 2349 2350 if (ice_xdp_alloc_setup_rings(vsi)) 2351 goto clear_xdp_rings; 2352 2353 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2354 ice_for_each_q_vector(vsi, v_idx) { 2355 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2356 int xdp_rings_per_v, q_id, q_base; 2357 2358 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2359 vsi->num_q_vectors - v_idx); 2360 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2361 2362 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2363 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id]; 2364 2365 xdp_ring->q_vector = q_vector; 2366 xdp_ring->next = q_vector->tx.ring; 2367 q_vector->tx.ring = xdp_ring; 2368 } 2369 xdp_rings_rem -= xdp_rings_per_v; 2370 } 2371 2372 /* omit the scheduler update if in reset path; XDP queues will be 2373 * taken into account at the end of ice_vsi_rebuild, where 2374 * ice_cfg_vsi_lan is being called 2375 */ 2376 if (ice_is_reset_in_progress(pf->state)) 2377 return 0; 2378 2379 /* tell the Tx scheduler that right now we have 2380 * additional queues 2381 */ 2382 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2383 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2384 2385 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2386 max_txqs); 2387 if (status) { 2388 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n", 2389 ice_stat_str(status)); 2390 goto clear_xdp_rings; 2391 } 2392 ice_vsi_assign_bpf_prog(vsi, prog); 2393 2394 return 0; 2395 clear_xdp_rings: 2396 for (i = 0; i < vsi->num_xdp_txq; i++) 2397 if (vsi->xdp_rings[i]) { 2398 kfree_rcu(vsi->xdp_rings[i], rcu); 2399 vsi->xdp_rings[i] = NULL; 2400 } 2401 2402 err_map_xdp: 2403 mutex_lock(&pf->avail_q_mutex); 2404 for (i = 0; i < vsi->num_xdp_txq; i++) { 2405 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2406 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2407 } 2408 mutex_unlock(&pf->avail_q_mutex); 2409 2410 devm_kfree(dev, vsi->xdp_rings); 2411 return -ENOMEM; 2412 } 2413 2414 /** 2415 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2416 * @vsi: VSI to remove XDP rings 2417 * 2418 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2419 * resources 2420 */ 2421 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2422 { 2423 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2424 struct ice_pf *pf = vsi->back; 2425 int i, v_idx; 2426 2427 /* q_vectors are freed in reset path so there's no point in detaching 2428 * rings; in case of rebuild being triggered not from reset bits 2429 * in pf->state won't be set, so additionally check first q_vector 2430 * against NULL 2431 */ 2432 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2433 goto free_qmap; 2434 2435 ice_for_each_q_vector(vsi, v_idx) { 2436 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2437 struct ice_ring *ring; 2438 2439 ice_for_each_ring(ring, q_vector->tx) 2440 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2441 break; 2442 2443 /* restore the value of last node prior to XDP setup */ 2444 q_vector->tx.ring = ring; 2445 } 2446 2447 free_qmap: 2448 mutex_lock(&pf->avail_q_mutex); 2449 for (i = 0; i < vsi->num_xdp_txq; i++) { 2450 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2451 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2452 } 2453 mutex_unlock(&pf->avail_q_mutex); 2454 2455 for (i = 0; i < vsi->num_xdp_txq; i++) 2456 if (vsi->xdp_rings[i]) { 2457 if (vsi->xdp_rings[i]->desc) 2458 ice_free_tx_ring(vsi->xdp_rings[i]); 2459 kfree_rcu(vsi->xdp_rings[i], rcu); 2460 vsi->xdp_rings[i] = NULL; 2461 } 2462 2463 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2464 vsi->xdp_rings = NULL; 2465 2466 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2467 return 0; 2468 2469 ice_vsi_assign_bpf_prog(vsi, NULL); 2470 2471 /* notify Tx scheduler that we destroyed XDP queues and bring 2472 * back the old number of child nodes 2473 */ 2474 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2475 max_txqs[i] = vsi->num_txq; 2476 2477 /* change number of XDP Tx queues to 0 */ 2478 vsi->num_xdp_txq = 0; 2479 2480 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2481 max_txqs); 2482 } 2483 2484 /** 2485 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2486 * @vsi: VSI to setup XDP for 2487 * @prog: XDP program 2488 * @extack: netlink extended ack 2489 */ 2490 static int 2491 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2492 struct netlink_ext_ack *extack) 2493 { 2494 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2495 bool if_running = netif_running(vsi->netdev); 2496 int ret = 0, xdp_ring_err = 0; 2497 2498 if (frame_size > vsi->rx_buf_len) { 2499 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2500 return -EOPNOTSUPP; 2501 } 2502 2503 /* need to stop netdev while setting up the program for Rx rings */ 2504 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) { 2505 ret = ice_down(vsi); 2506 if (ret) { 2507 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2508 return ret; 2509 } 2510 } 2511 2512 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2513 vsi->num_xdp_txq = vsi->alloc_rxq; 2514 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2515 if (xdp_ring_err) 2516 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2517 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2518 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2519 if (xdp_ring_err) 2520 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2521 } else { 2522 ice_vsi_assign_bpf_prog(vsi, prog); 2523 } 2524 2525 if (if_running) 2526 ret = ice_up(vsi); 2527 2528 if (!ret && prog && vsi->xsk_pools) { 2529 int i; 2530 2531 ice_for_each_rxq(vsi, i) { 2532 struct ice_ring *rx_ring = vsi->rx_rings[i]; 2533 2534 if (rx_ring->xsk_pool) 2535 napi_schedule(&rx_ring->q_vector->napi); 2536 } 2537 } 2538 2539 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2540 } 2541 2542 /** 2543 * ice_xdp - implements XDP handler 2544 * @dev: netdevice 2545 * @xdp: XDP command 2546 */ 2547 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2548 { 2549 struct ice_netdev_priv *np = netdev_priv(dev); 2550 struct ice_vsi *vsi = np->vsi; 2551 2552 if (vsi->type != ICE_VSI_PF) { 2553 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2554 return -EINVAL; 2555 } 2556 2557 switch (xdp->command) { 2558 case XDP_SETUP_PROG: 2559 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2560 case XDP_SETUP_XSK_POOL: 2561 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2562 xdp->xsk.queue_id); 2563 default: 2564 return -EINVAL; 2565 } 2566 } 2567 2568 /** 2569 * ice_ena_misc_vector - enable the non-queue interrupts 2570 * @pf: board private structure 2571 */ 2572 static void ice_ena_misc_vector(struct ice_pf *pf) 2573 { 2574 struct ice_hw *hw = &pf->hw; 2575 u32 val; 2576 2577 /* Disable anti-spoof detection interrupt to prevent spurious event 2578 * interrupts during a function reset. Anti-spoof functionally is 2579 * still supported. 2580 */ 2581 val = rd32(hw, GL_MDCK_TX_TDPU); 2582 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2583 wr32(hw, GL_MDCK_TX_TDPU, val); 2584 2585 /* clear things first */ 2586 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2587 rd32(hw, PFINT_OICR); /* read to clear */ 2588 2589 val = (PFINT_OICR_ECC_ERR_M | 2590 PFINT_OICR_MAL_DETECT_M | 2591 PFINT_OICR_GRST_M | 2592 PFINT_OICR_PCI_EXCEPTION_M | 2593 PFINT_OICR_VFLR_M | 2594 PFINT_OICR_HMC_ERR_M | 2595 PFINT_OICR_PE_CRITERR_M); 2596 2597 wr32(hw, PFINT_OICR_ENA, val); 2598 2599 /* SW_ITR_IDX = 0, but don't change INTENA */ 2600 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2601 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2602 } 2603 2604 /** 2605 * ice_misc_intr - misc interrupt handler 2606 * @irq: interrupt number 2607 * @data: pointer to a q_vector 2608 */ 2609 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2610 { 2611 struct ice_pf *pf = (struct ice_pf *)data; 2612 struct ice_hw *hw = &pf->hw; 2613 irqreturn_t ret = IRQ_NONE; 2614 struct device *dev; 2615 u32 oicr, ena_mask; 2616 2617 dev = ice_pf_to_dev(pf); 2618 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state); 2619 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2620 2621 oicr = rd32(hw, PFINT_OICR); 2622 ena_mask = rd32(hw, PFINT_OICR_ENA); 2623 2624 if (oicr & PFINT_OICR_SWINT_M) { 2625 ena_mask &= ~PFINT_OICR_SWINT_M; 2626 pf->sw_int_count++; 2627 } 2628 2629 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2630 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2631 set_bit(__ICE_MDD_EVENT_PENDING, pf->state); 2632 } 2633 if (oicr & PFINT_OICR_VFLR_M) { 2634 /* disable any further VFLR event notifications */ 2635 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) { 2636 u32 reg = rd32(hw, PFINT_OICR_ENA); 2637 2638 reg &= ~PFINT_OICR_VFLR_M; 2639 wr32(hw, PFINT_OICR_ENA, reg); 2640 } else { 2641 ena_mask &= ~PFINT_OICR_VFLR_M; 2642 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state); 2643 } 2644 } 2645 2646 if (oicr & PFINT_OICR_GRST_M) { 2647 u32 reset; 2648 2649 /* we have a reset warning */ 2650 ena_mask &= ~PFINT_OICR_GRST_M; 2651 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2652 GLGEN_RSTAT_RESET_TYPE_S; 2653 2654 if (reset == ICE_RESET_CORER) 2655 pf->corer_count++; 2656 else if (reset == ICE_RESET_GLOBR) 2657 pf->globr_count++; 2658 else if (reset == ICE_RESET_EMPR) 2659 pf->empr_count++; 2660 else 2661 dev_dbg(dev, "Invalid reset type %d\n", reset); 2662 2663 /* If a reset cycle isn't already in progress, we set a bit in 2664 * pf->state so that the service task can start a reset/rebuild. 2665 * We also make note of which reset happened so that peer 2666 * devices/drivers can be informed. 2667 */ 2668 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) { 2669 if (reset == ICE_RESET_CORER) 2670 set_bit(__ICE_CORER_RECV, pf->state); 2671 else if (reset == ICE_RESET_GLOBR) 2672 set_bit(__ICE_GLOBR_RECV, pf->state); 2673 else 2674 set_bit(__ICE_EMPR_RECV, pf->state); 2675 2676 /* There are couple of different bits at play here. 2677 * hw->reset_ongoing indicates whether the hardware is 2678 * in reset. This is set to true when a reset interrupt 2679 * is received and set back to false after the driver 2680 * has determined that the hardware is out of reset. 2681 * 2682 * __ICE_RESET_OICR_RECV in pf->state indicates 2683 * that a post reset rebuild is required before the 2684 * driver is operational again. This is set above. 2685 * 2686 * As this is the start of the reset/rebuild cycle, set 2687 * both to indicate that. 2688 */ 2689 hw->reset_ongoing = true; 2690 } 2691 } 2692 2693 if (oicr & PFINT_OICR_HMC_ERR_M) { 2694 ena_mask &= ~PFINT_OICR_HMC_ERR_M; 2695 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n", 2696 rd32(hw, PFHMC_ERRORINFO), 2697 rd32(hw, PFHMC_ERRORDATA)); 2698 } 2699 2700 /* Report any remaining unexpected interrupts */ 2701 oicr &= ena_mask; 2702 if (oicr) { 2703 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 2704 /* If a critical error is pending there is no choice but to 2705 * reset the device. 2706 */ 2707 if (oicr & (PFINT_OICR_PE_CRITERR_M | 2708 PFINT_OICR_PCI_EXCEPTION_M | 2709 PFINT_OICR_ECC_ERR_M)) { 2710 set_bit(__ICE_PFR_REQ, pf->state); 2711 ice_service_task_schedule(pf); 2712 } 2713 } 2714 ret = IRQ_HANDLED; 2715 2716 ice_service_task_schedule(pf); 2717 ice_irq_dynamic_ena(hw, NULL, NULL); 2718 2719 return ret; 2720 } 2721 2722 /** 2723 * ice_dis_ctrlq_interrupts - disable control queue interrupts 2724 * @hw: pointer to HW structure 2725 */ 2726 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 2727 { 2728 /* disable Admin queue Interrupt causes */ 2729 wr32(hw, PFINT_FW_CTL, 2730 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 2731 2732 /* disable Mailbox queue Interrupt causes */ 2733 wr32(hw, PFINT_MBX_CTL, 2734 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 2735 2736 /* disable Control queue Interrupt causes */ 2737 wr32(hw, PFINT_OICR_CTL, 2738 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 2739 2740 ice_flush(hw); 2741 } 2742 2743 /** 2744 * ice_free_irq_msix_misc - Unroll misc vector setup 2745 * @pf: board private structure 2746 */ 2747 static void ice_free_irq_msix_misc(struct ice_pf *pf) 2748 { 2749 struct ice_hw *hw = &pf->hw; 2750 2751 ice_dis_ctrlq_interrupts(hw); 2752 2753 /* disable OICR interrupt */ 2754 wr32(hw, PFINT_OICR_ENA, 0); 2755 ice_flush(hw); 2756 2757 if (pf->msix_entries) { 2758 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 2759 devm_free_irq(ice_pf_to_dev(pf), 2760 pf->msix_entries[pf->oicr_idx].vector, pf); 2761 } 2762 2763 pf->num_avail_sw_msix += 1; 2764 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 2765 } 2766 2767 /** 2768 * ice_ena_ctrlq_interrupts - enable control queue interrupts 2769 * @hw: pointer to HW structure 2770 * @reg_idx: HW vector index to associate the control queue interrupts with 2771 */ 2772 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 2773 { 2774 u32 val; 2775 2776 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 2777 PFINT_OICR_CTL_CAUSE_ENA_M); 2778 wr32(hw, PFINT_OICR_CTL, val); 2779 2780 /* enable Admin queue Interrupt causes */ 2781 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 2782 PFINT_FW_CTL_CAUSE_ENA_M); 2783 wr32(hw, PFINT_FW_CTL, val); 2784 2785 /* enable Mailbox queue Interrupt causes */ 2786 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 2787 PFINT_MBX_CTL_CAUSE_ENA_M); 2788 wr32(hw, PFINT_MBX_CTL, val); 2789 2790 ice_flush(hw); 2791 } 2792 2793 /** 2794 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 2795 * @pf: board private structure 2796 * 2797 * This sets up the handler for MSIX 0, which is used to manage the 2798 * non-queue interrupts, e.g. AdminQ and errors. This is not used 2799 * when in MSI or Legacy interrupt mode. 2800 */ 2801 static int ice_req_irq_msix_misc(struct ice_pf *pf) 2802 { 2803 struct device *dev = ice_pf_to_dev(pf); 2804 struct ice_hw *hw = &pf->hw; 2805 int oicr_idx, err = 0; 2806 2807 if (!pf->int_name[0]) 2808 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 2809 dev_driver_string(dev), dev_name(dev)); 2810 2811 /* Do not request IRQ but do enable OICR interrupt since settings are 2812 * lost during reset. Note that this function is called only during 2813 * rebuild path and not while reset is in progress. 2814 */ 2815 if (ice_is_reset_in_progress(pf->state)) 2816 goto skip_req_irq; 2817 2818 /* reserve one vector in irq_tracker for misc interrupts */ 2819 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2820 if (oicr_idx < 0) 2821 return oicr_idx; 2822 2823 pf->num_avail_sw_msix -= 1; 2824 pf->oicr_idx = (u16)oicr_idx; 2825 2826 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 2827 ice_misc_intr, 0, pf->int_name, pf); 2828 if (err) { 2829 dev_err(dev, "devm_request_irq for %s failed: %d\n", 2830 pf->int_name, err); 2831 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 2832 pf->num_avail_sw_msix += 1; 2833 return err; 2834 } 2835 2836 skip_req_irq: 2837 ice_ena_misc_vector(pf); 2838 2839 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 2840 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 2841 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 2842 2843 ice_flush(hw); 2844 ice_irq_dynamic_ena(hw, NULL, NULL); 2845 2846 return 0; 2847 } 2848 2849 /** 2850 * ice_napi_add - register NAPI handler for the VSI 2851 * @vsi: VSI for which NAPI handler is to be registered 2852 * 2853 * This function is only called in the driver's load path. Registering the NAPI 2854 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2855 * reset/rebuild, etc.) 2856 */ 2857 static void ice_napi_add(struct ice_vsi *vsi) 2858 { 2859 int v_idx; 2860 2861 if (!vsi->netdev) 2862 return; 2863 2864 ice_for_each_q_vector(vsi, v_idx) 2865 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2866 ice_napi_poll, NAPI_POLL_WEIGHT); 2867 } 2868 2869 /** 2870 * ice_set_ops - set netdev and ethtools ops for the given netdev 2871 * @netdev: netdev instance 2872 */ 2873 static void ice_set_ops(struct net_device *netdev) 2874 { 2875 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2876 2877 if (ice_is_safe_mode(pf)) { 2878 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 2879 ice_set_ethtool_safe_mode_ops(netdev); 2880 return; 2881 } 2882 2883 netdev->netdev_ops = &ice_netdev_ops; 2884 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 2885 ice_set_ethtool_ops(netdev); 2886 } 2887 2888 /** 2889 * ice_set_netdev_features - set features for the given netdev 2890 * @netdev: netdev instance 2891 */ 2892 static void ice_set_netdev_features(struct net_device *netdev) 2893 { 2894 struct ice_pf *pf = ice_netdev_to_pf(netdev); 2895 netdev_features_t csumo_features; 2896 netdev_features_t vlano_features; 2897 netdev_features_t dflt_features; 2898 netdev_features_t tso_features; 2899 2900 if (ice_is_safe_mode(pf)) { 2901 /* safe mode */ 2902 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 2903 netdev->hw_features = netdev->features; 2904 return; 2905 } 2906 2907 dflt_features = NETIF_F_SG | 2908 NETIF_F_HIGHDMA | 2909 NETIF_F_NTUPLE | 2910 NETIF_F_RXHASH; 2911 2912 csumo_features = NETIF_F_RXCSUM | 2913 NETIF_F_IP_CSUM | 2914 NETIF_F_SCTP_CRC | 2915 NETIF_F_IPV6_CSUM; 2916 2917 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 2918 NETIF_F_HW_VLAN_CTAG_TX | 2919 NETIF_F_HW_VLAN_CTAG_RX; 2920 2921 tso_features = NETIF_F_TSO | 2922 NETIF_F_TSO_ECN | 2923 NETIF_F_TSO6 | 2924 NETIF_F_GSO_GRE | 2925 NETIF_F_GSO_UDP_TUNNEL | 2926 NETIF_F_GSO_GRE_CSUM | 2927 NETIF_F_GSO_UDP_TUNNEL_CSUM | 2928 NETIF_F_GSO_PARTIAL | 2929 NETIF_F_GSO_IPXIP4 | 2930 NETIF_F_GSO_IPXIP6 | 2931 NETIF_F_GSO_UDP_L4; 2932 2933 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 2934 NETIF_F_GSO_GRE_CSUM; 2935 /* set features that user can change */ 2936 netdev->hw_features = dflt_features | csumo_features | 2937 vlano_features | tso_features; 2938 2939 /* add support for HW_CSUM on packets with MPLS header */ 2940 netdev->mpls_features = NETIF_F_HW_CSUM; 2941 2942 /* enable features */ 2943 netdev->features |= netdev->hw_features; 2944 /* encap and VLAN devices inherit default, csumo and tso features */ 2945 netdev->hw_enc_features |= dflt_features | csumo_features | 2946 tso_features; 2947 netdev->vlan_features |= dflt_features | csumo_features | 2948 tso_features; 2949 } 2950 2951 /** 2952 * ice_cfg_netdev - Allocate, configure and register a netdev 2953 * @vsi: the VSI associated with the new netdev 2954 * 2955 * Returns 0 on success, negative value on failure 2956 */ 2957 static int ice_cfg_netdev(struct ice_vsi *vsi) 2958 { 2959 struct ice_pf *pf = vsi->back; 2960 struct ice_netdev_priv *np; 2961 struct net_device *netdev; 2962 u8 mac_addr[ETH_ALEN]; 2963 int err; 2964 2965 err = ice_devlink_create_port(vsi); 2966 if (err) 2967 return err; 2968 2969 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 2970 vsi->alloc_rxq); 2971 if (!netdev) { 2972 err = -ENOMEM; 2973 goto err_destroy_devlink_port; 2974 } 2975 2976 vsi->netdev = netdev; 2977 np = netdev_priv(netdev); 2978 np->vsi = vsi; 2979 2980 ice_set_netdev_features(netdev); 2981 2982 ice_set_ops(netdev); 2983 2984 if (vsi->type == ICE_VSI_PF) { 2985 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf)); 2986 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 2987 ether_addr_copy(netdev->dev_addr, mac_addr); 2988 ether_addr_copy(netdev->perm_addr, mac_addr); 2989 } 2990 2991 netdev->priv_flags |= IFF_UNICAST_FLT; 2992 2993 /* Setup netdev TC information */ 2994 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 2995 2996 /* setup watchdog timeout value to be 5 second */ 2997 netdev->watchdog_timeo = 5 * HZ; 2998 2999 netdev->min_mtu = ETH_MIN_MTU; 3000 netdev->max_mtu = ICE_MAX_MTU; 3001 3002 err = register_netdev(vsi->netdev); 3003 if (err) 3004 goto err_free_netdev; 3005 3006 devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev); 3007 3008 netif_carrier_off(vsi->netdev); 3009 3010 /* make sure transmit queues start off as stopped */ 3011 netif_tx_stop_all_queues(vsi->netdev); 3012 3013 return 0; 3014 3015 err_free_netdev: 3016 free_netdev(vsi->netdev); 3017 vsi->netdev = NULL; 3018 err_destroy_devlink_port: 3019 ice_devlink_destroy_port(vsi); 3020 return err; 3021 } 3022 3023 /** 3024 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3025 * @lut: Lookup table 3026 * @rss_table_size: Lookup table size 3027 * @rss_size: Range of queue number for hashing 3028 */ 3029 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3030 { 3031 u16 i; 3032 3033 for (i = 0; i < rss_table_size; i++) 3034 lut[i] = i % rss_size; 3035 } 3036 3037 /** 3038 * ice_pf_vsi_setup - Set up a PF VSI 3039 * @pf: board private structure 3040 * @pi: pointer to the port_info instance 3041 * 3042 * Returns pointer to the successfully allocated VSI software struct 3043 * on success, otherwise returns NULL on failure. 3044 */ 3045 static struct ice_vsi * 3046 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3047 { 3048 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID); 3049 } 3050 3051 /** 3052 * ice_ctrl_vsi_setup - Set up a control VSI 3053 * @pf: board private structure 3054 * @pi: pointer to the port_info instance 3055 * 3056 * Returns pointer to the successfully allocated VSI software struct 3057 * on success, otherwise returns NULL on failure. 3058 */ 3059 static struct ice_vsi * 3060 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3061 { 3062 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID); 3063 } 3064 3065 /** 3066 * ice_lb_vsi_setup - Set up a loopback VSI 3067 * @pf: board private structure 3068 * @pi: pointer to the port_info instance 3069 * 3070 * Returns pointer to the successfully allocated VSI software struct 3071 * on success, otherwise returns NULL on failure. 3072 */ 3073 struct ice_vsi * 3074 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3075 { 3076 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID); 3077 } 3078 3079 /** 3080 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3081 * @netdev: network interface to be adjusted 3082 * @proto: unused protocol 3083 * @vid: VLAN ID to be added 3084 * 3085 * net_device_ops implementation for adding VLAN IDs 3086 */ 3087 static int 3088 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, 3089 u16 vid) 3090 { 3091 struct ice_netdev_priv *np = netdev_priv(netdev); 3092 struct ice_vsi *vsi = np->vsi; 3093 int ret; 3094 3095 if (vid >= VLAN_N_VID) { 3096 netdev_err(netdev, "VLAN id requested %d is out of range %d\n", 3097 vid, VLAN_N_VID); 3098 return -EINVAL; 3099 } 3100 3101 if (vsi->info.pvid) 3102 return -EINVAL; 3103 3104 /* VLAN 0 is added by default during load/reset */ 3105 if (!vid) 3106 return 0; 3107 3108 /* Enable VLAN pruning when a VLAN other than 0 is added */ 3109 if (!ice_vsi_is_vlan_pruning_ena(vsi)) { 3110 ret = ice_cfg_vlan_pruning(vsi, true, false); 3111 if (ret) 3112 return ret; 3113 } 3114 3115 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3116 * packets aren't pruned by the device's internal switch on Rx 3117 */ 3118 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI); 3119 if (!ret) 3120 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3121 3122 return ret; 3123 } 3124 3125 /** 3126 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3127 * @netdev: network interface to be adjusted 3128 * @proto: unused protocol 3129 * @vid: VLAN ID to be removed 3130 * 3131 * net_device_ops implementation for removing VLAN IDs 3132 */ 3133 static int 3134 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, 3135 u16 vid) 3136 { 3137 struct ice_netdev_priv *np = netdev_priv(netdev); 3138 struct ice_vsi *vsi = np->vsi; 3139 int ret; 3140 3141 if (vsi->info.pvid) 3142 return -EINVAL; 3143 3144 /* don't allow removal of VLAN 0 */ 3145 if (!vid) 3146 return 0; 3147 3148 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN 3149 * information 3150 */ 3151 ret = ice_vsi_kill_vlan(vsi, vid); 3152 if (ret) 3153 return ret; 3154 3155 /* Disable pruning when VLAN 0 is the only VLAN rule */ 3156 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi)) 3157 ret = ice_cfg_vlan_pruning(vsi, false, false); 3158 3159 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags); 3160 return ret; 3161 } 3162 3163 /** 3164 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3165 * @pf: board private structure 3166 * 3167 * Returns 0 on success, negative value on failure 3168 */ 3169 static int ice_setup_pf_sw(struct ice_pf *pf) 3170 { 3171 struct ice_vsi *vsi; 3172 int status = 0; 3173 3174 if (ice_is_reset_in_progress(pf->state)) 3175 return -EBUSY; 3176 3177 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3178 if (!vsi) 3179 return -ENOMEM; 3180 3181 status = ice_cfg_netdev(vsi); 3182 if (status) { 3183 status = -ENODEV; 3184 goto unroll_vsi_setup; 3185 } 3186 /* netdev has to be configured before setting frame size */ 3187 ice_vsi_cfg_frame_size(vsi); 3188 3189 /* Setup DCB netlink interface */ 3190 ice_dcbnl_setup(vsi); 3191 3192 /* registering the NAPI handler requires both the queues and 3193 * netdev to be created, which are done in ice_pf_vsi_setup() 3194 * and ice_cfg_netdev() respectively 3195 */ 3196 ice_napi_add(vsi); 3197 3198 status = ice_set_cpu_rx_rmap(vsi); 3199 if (status) { 3200 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n", 3201 vsi->vsi_num, status); 3202 status = -EINVAL; 3203 goto unroll_napi_add; 3204 } 3205 status = ice_init_mac_fltr(pf); 3206 if (status) 3207 goto free_cpu_rx_map; 3208 3209 return status; 3210 3211 free_cpu_rx_map: 3212 ice_free_cpu_rx_rmap(vsi); 3213 3214 unroll_napi_add: 3215 if (vsi) { 3216 ice_napi_del(vsi); 3217 if (vsi->netdev) { 3218 if (vsi->netdev->reg_state == NETREG_REGISTERED) 3219 unregister_netdev(vsi->netdev); 3220 free_netdev(vsi->netdev); 3221 vsi->netdev = NULL; 3222 } 3223 } 3224 3225 unroll_vsi_setup: 3226 ice_vsi_release(vsi); 3227 return status; 3228 } 3229 3230 /** 3231 * ice_get_avail_q_count - Get count of queues in use 3232 * @pf_qmap: bitmap to get queue use count from 3233 * @lock: pointer to a mutex that protects access to pf_qmap 3234 * @size: size of the bitmap 3235 */ 3236 static u16 3237 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3238 { 3239 unsigned long bit; 3240 u16 count = 0; 3241 3242 mutex_lock(lock); 3243 for_each_clear_bit(bit, pf_qmap, size) 3244 count++; 3245 mutex_unlock(lock); 3246 3247 return count; 3248 } 3249 3250 /** 3251 * ice_get_avail_txq_count - Get count of Tx queues in use 3252 * @pf: pointer to an ice_pf instance 3253 */ 3254 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3255 { 3256 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3257 pf->max_pf_txqs); 3258 } 3259 3260 /** 3261 * ice_get_avail_rxq_count - Get count of Rx queues in use 3262 * @pf: pointer to an ice_pf instance 3263 */ 3264 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3265 { 3266 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3267 pf->max_pf_rxqs); 3268 } 3269 3270 /** 3271 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3272 * @pf: board private structure to initialize 3273 */ 3274 static void ice_deinit_pf(struct ice_pf *pf) 3275 { 3276 ice_service_task_stop(pf); 3277 mutex_destroy(&pf->sw_mutex); 3278 mutex_destroy(&pf->tc_mutex); 3279 mutex_destroy(&pf->avail_q_mutex); 3280 3281 if (pf->avail_txqs) { 3282 bitmap_free(pf->avail_txqs); 3283 pf->avail_txqs = NULL; 3284 } 3285 3286 if (pf->avail_rxqs) { 3287 bitmap_free(pf->avail_rxqs); 3288 pf->avail_rxqs = NULL; 3289 } 3290 } 3291 3292 /** 3293 * ice_set_pf_caps - set PFs capability flags 3294 * @pf: pointer to the PF instance 3295 */ 3296 static void ice_set_pf_caps(struct ice_pf *pf) 3297 { 3298 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3299 3300 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3301 if (func_caps->common_cap.dcb) 3302 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3303 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3304 if (func_caps->common_cap.sr_iov_1_1) { 3305 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3306 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3307 ICE_MAX_VF_COUNT); 3308 } 3309 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3310 if (func_caps->common_cap.rss_table_size) 3311 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3312 3313 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3314 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3315 u16 unused; 3316 3317 /* ctrl_vsi_idx will be set to a valid value when flow director 3318 * is setup by ice_init_fdir 3319 */ 3320 pf->ctrl_vsi_idx = ICE_NO_VSI; 3321 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3322 /* force guaranteed filter pool for PF */ 3323 ice_alloc_fd_guar_item(&pf->hw, &unused, 3324 func_caps->fd_fltr_guar); 3325 /* force shared filter pool for PF */ 3326 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3327 func_caps->fd_fltr_best_effort); 3328 } 3329 3330 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3331 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3332 } 3333 3334 /** 3335 * ice_init_pf - Initialize general software structures (struct ice_pf) 3336 * @pf: board private structure to initialize 3337 */ 3338 static int ice_init_pf(struct ice_pf *pf) 3339 { 3340 ice_set_pf_caps(pf); 3341 3342 mutex_init(&pf->sw_mutex); 3343 mutex_init(&pf->tc_mutex); 3344 3345 INIT_HLIST_HEAD(&pf->aq_wait_list); 3346 spin_lock_init(&pf->aq_wait_lock); 3347 init_waitqueue_head(&pf->aq_wait_queue); 3348 3349 /* setup service timer and periodic service task */ 3350 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3351 pf->serv_tmr_period = HZ; 3352 INIT_WORK(&pf->serv_task, ice_service_task); 3353 clear_bit(__ICE_SERVICE_SCHED, pf->state); 3354 3355 mutex_init(&pf->avail_q_mutex); 3356 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3357 if (!pf->avail_txqs) 3358 return -ENOMEM; 3359 3360 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3361 if (!pf->avail_rxqs) { 3362 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3363 pf->avail_txqs = NULL; 3364 return -ENOMEM; 3365 } 3366 3367 return 0; 3368 } 3369 3370 /** 3371 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3372 * @pf: board private structure 3373 * 3374 * compute the number of MSIX vectors required (v_budget) and request from 3375 * the OS. Return the number of vectors reserved or negative on failure 3376 */ 3377 static int ice_ena_msix_range(struct ice_pf *pf) 3378 { 3379 struct device *dev = ice_pf_to_dev(pf); 3380 int v_left, v_actual, v_budget = 0; 3381 int needed, err, i; 3382 3383 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3384 3385 /* reserve one vector for miscellaneous handler */ 3386 needed = 1; 3387 if (v_left < needed) 3388 goto no_hw_vecs_left_err; 3389 v_budget += needed; 3390 v_left -= needed; 3391 3392 /* reserve vectors for LAN traffic */ 3393 needed = min_t(int, num_online_cpus(), v_left); 3394 if (v_left < needed) 3395 goto no_hw_vecs_left_err; 3396 pf->num_lan_msix = needed; 3397 v_budget += needed; 3398 v_left -= needed; 3399 3400 /* reserve one vector for flow director */ 3401 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3402 needed = ICE_FDIR_MSIX; 3403 if (v_left < needed) 3404 goto no_hw_vecs_left_err; 3405 v_budget += needed; 3406 v_left -= needed; 3407 } 3408 3409 pf->msix_entries = devm_kcalloc(dev, v_budget, 3410 sizeof(*pf->msix_entries), GFP_KERNEL); 3411 3412 if (!pf->msix_entries) { 3413 err = -ENOMEM; 3414 goto exit_err; 3415 } 3416 3417 for (i = 0; i < v_budget; i++) 3418 pf->msix_entries[i].entry = i; 3419 3420 /* actually reserve the vectors */ 3421 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3422 ICE_MIN_MSIX, v_budget); 3423 3424 if (v_actual < 0) { 3425 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3426 err = v_actual; 3427 goto msix_err; 3428 } 3429 3430 if (v_actual < v_budget) { 3431 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3432 v_budget, v_actual); 3433 /* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */ 3434 #define ICE_MIN_LAN_VECS 2 3435 #define ICE_MIN_RDMA_VECS 2 3436 #define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1) 3437 3438 if (v_actual < ICE_MIN_LAN_VECS) { 3439 /* error if we can't get minimum vectors */ 3440 pci_disable_msix(pf->pdev); 3441 err = -ERANGE; 3442 goto msix_err; 3443 } else { 3444 pf->num_lan_msix = ICE_MIN_LAN_VECS; 3445 } 3446 } 3447 3448 return v_actual; 3449 3450 msix_err: 3451 devm_kfree(dev, pf->msix_entries); 3452 goto exit_err; 3453 3454 no_hw_vecs_left_err: 3455 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3456 needed, v_left); 3457 err = -ERANGE; 3458 exit_err: 3459 pf->num_lan_msix = 0; 3460 return err; 3461 } 3462 3463 /** 3464 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3465 * @pf: board private structure 3466 */ 3467 static void ice_dis_msix(struct ice_pf *pf) 3468 { 3469 pci_disable_msix(pf->pdev); 3470 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3471 pf->msix_entries = NULL; 3472 } 3473 3474 /** 3475 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3476 * @pf: board private structure 3477 */ 3478 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3479 { 3480 ice_dis_msix(pf); 3481 3482 if (pf->irq_tracker) { 3483 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3484 pf->irq_tracker = NULL; 3485 } 3486 } 3487 3488 /** 3489 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3490 * @pf: board private structure to initialize 3491 */ 3492 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3493 { 3494 int vectors; 3495 3496 vectors = ice_ena_msix_range(pf); 3497 3498 if (vectors < 0) 3499 return vectors; 3500 3501 /* set up vector assignment tracking */ 3502 pf->irq_tracker = 3503 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) + 3504 (sizeof(u16) * vectors), GFP_KERNEL); 3505 if (!pf->irq_tracker) { 3506 ice_dis_msix(pf); 3507 return -ENOMEM; 3508 } 3509 3510 /* populate SW interrupts pool with number of OS granted IRQs. */ 3511 pf->num_avail_sw_msix = (u16)vectors; 3512 pf->irq_tracker->num_entries = (u16)vectors; 3513 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3514 3515 return 0; 3516 } 3517 3518 /** 3519 * ice_is_wol_supported - get NVM state of WoL 3520 * @pf: board private structure 3521 * 3522 * Check if WoL is supported based on the HW configuration. 3523 * Returns true if NVM supports and enables WoL for this port, false otherwise 3524 */ 3525 bool ice_is_wol_supported(struct ice_pf *pf) 3526 { 3527 struct ice_hw *hw = &pf->hw; 3528 u16 wol_ctrl; 3529 3530 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3531 * word) indicates WoL is not supported on the corresponding PF ID. 3532 */ 3533 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3534 return false; 3535 3536 return !(BIT(hw->pf_id) & wol_ctrl); 3537 } 3538 3539 /** 3540 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3541 * @vsi: VSI being changed 3542 * @new_rx: new number of Rx queues 3543 * @new_tx: new number of Tx queues 3544 * 3545 * Only change the number of queues if new_tx, or new_rx is non-0. 3546 * 3547 * Returns 0 on success. 3548 */ 3549 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 3550 { 3551 struct ice_pf *pf = vsi->back; 3552 int err = 0, timeout = 50; 3553 3554 if (!new_rx && !new_tx) 3555 return -EINVAL; 3556 3557 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) { 3558 timeout--; 3559 if (!timeout) 3560 return -EBUSY; 3561 usleep_range(1000, 2000); 3562 } 3563 3564 if (new_tx) 3565 vsi->req_txq = (u16)new_tx; 3566 if (new_rx) 3567 vsi->req_rxq = (u16)new_rx; 3568 3569 /* set for the next time the netdev is started */ 3570 if (!netif_running(vsi->netdev)) { 3571 ice_vsi_rebuild(vsi, false); 3572 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3573 goto done; 3574 } 3575 3576 ice_vsi_close(vsi); 3577 ice_vsi_rebuild(vsi, false); 3578 ice_pf_dcb_recfg(pf); 3579 ice_vsi_open(vsi); 3580 done: 3581 clear_bit(__ICE_CFG_BUSY, pf->state); 3582 return err; 3583 } 3584 3585 /** 3586 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3587 * @pf: PF to configure 3588 * 3589 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 3590 * VSI can still Tx/Rx VLAN tagged packets. 3591 */ 3592 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 3593 { 3594 struct ice_vsi *vsi = ice_get_main_vsi(pf); 3595 struct ice_vsi_ctx *ctxt; 3596 enum ice_status status; 3597 struct ice_hw *hw; 3598 3599 if (!vsi) 3600 return; 3601 3602 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 3603 if (!ctxt) 3604 return; 3605 3606 hw = &pf->hw; 3607 ctxt->info = vsi->info; 3608 3609 ctxt->info.valid_sections = 3610 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 3611 ICE_AQ_VSI_PROP_SECURITY_VALID | 3612 ICE_AQ_VSI_PROP_SW_VALID); 3613 3614 /* disable VLAN anti-spoof */ 3615 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3616 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3617 3618 /* disable VLAN pruning and keep all other settings */ 3619 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 3620 3621 /* allow all VLANs on Tx and don't strip on Rx */ 3622 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL | 3623 ICE_AQ_VSI_VLAN_EMOD_NOTHING; 3624 3625 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 3626 if (status) { 3627 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n", 3628 ice_stat_str(status), 3629 ice_aq_str(hw->adminq.sq_last_status)); 3630 } else { 3631 vsi->info.sec_flags = ctxt->info.sec_flags; 3632 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 3633 vsi->info.vlan_flags = ctxt->info.vlan_flags; 3634 } 3635 3636 kfree(ctxt); 3637 } 3638 3639 /** 3640 * ice_log_pkg_init - log result of DDP package load 3641 * @hw: pointer to hardware info 3642 * @status: status of package load 3643 */ 3644 static void 3645 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status) 3646 { 3647 struct ice_pf *pf = (struct ice_pf *)hw->back; 3648 struct device *dev = ice_pf_to_dev(pf); 3649 3650 switch (*status) { 3651 case ICE_SUCCESS: 3652 /* The package download AdminQ command returned success because 3653 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is 3654 * already a package loaded on the device. 3655 */ 3656 if (hw->pkg_ver.major == hw->active_pkg_ver.major && 3657 hw->pkg_ver.minor == hw->active_pkg_ver.minor && 3658 hw->pkg_ver.update == hw->active_pkg_ver.update && 3659 hw->pkg_ver.draft == hw->active_pkg_ver.draft && 3660 !memcmp(hw->pkg_name, hw->active_pkg_name, 3661 sizeof(hw->pkg_name))) { 3662 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST) 3663 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 3664 hw->active_pkg_name, 3665 hw->active_pkg_ver.major, 3666 hw->active_pkg_ver.minor, 3667 hw->active_pkg_ver.update, 3668 hw->active_pkg_ver.draft); 3669 else 3670 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 3671 hw->active_pkg_name, 3672 hw->active_pkg_ver.major, 3673 hw->active_pkg_ver.minor, 3674 hw->active_pkg_ver.update, 3675 hw->active_pkg_ver.draft); 3676 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ || 3677 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) { 3678 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 3679 hw->active_pkg_name, 3680 hw->active_pkg_ver.major, 3681 hw->active_pkg_ver.minor, 3682 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3683 *status = ICE_ERR_NOT_SUPPORTED; 3684 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3685 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) { 3686 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 3687 hw->active_pkg_name, 3688 hw->active_pkg_ver.major, 3689 hw->active_pkg_ver.minor, 3690 hw->active_pkg_ver.update, 3691 hw->active_pkg_ver.draft, 3692 hw->pkg_name, 3693 hw->pkg_ver.major, 3694 hw->pkg_ver.minor, 3695 hw->pkg_ver.update, 3696 hw->pkg_ver.draft); 3697 } else { 3698 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n"); 3699 *status = ICE_ERR_NOT_SUPPORTED; 3700 } 3701 break; 3702 case ICE_ERR_FW_DDP_MISMATCH: 3703 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 3704 break; 3705 case ICE_ERR_BUF_TOO_SHORT: 3706 case ICE_ERR_CFG: 3707 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 3708 break; 3709 case ICE_ERR_NOT_SUPPORTED: 3710 /* Package File version not supported */ 3711 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ || 3712 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3713 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR)) 3714 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 3715 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ || 3716 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ && 3717 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR)) 3718 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 3719 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 3720 break; 3721 case ICE_ERR_AQ_ERROR: 3722 switch (hw->pkg_dwnld_status) { 3723 case ICE_AQ_RC_ENOSEC: 3724 case ICE_AQ_RC_EBADSIG: 3725 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 3726 return; 3727 case ICE_AQ_RC_ESVN: 3728 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 3729 return; 3730 case ICE_AQ_RC_EBADMAN: 3731 case ICE_AQ_RC_EBADBUF: 3732 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 3733 /* poll for reset to complete */ 3734 if (ice_check_reset(hw)) 3735 dev_err(dev, "Error resetting device. Please reload the driver\n"); 3736 return; 3737 default: 3738 break; 3739 } 3740 fallthrough; 3741 default: 3742 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n", 3743 *status); 3744 break; 3745 } 3746 } 3747 3748 /** 3749 * ice_load_pkg - load/reload the DDP Package file 3750 * @firmware: firmware structure when firmware requested or NULL for reload 3751 * @pf: pointer to the PF instance 3752 * 3753 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 3754 * initialize HW tables. 3755 */ 3756 static void 3757 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 3758 { 3759 enum ice_status status = ICE_ERR_PARAM; 3760 struct device *dev = ice_pf_to_dev(pf); 3761 struct ice_hw *hw = &pf->hw; 3762 3763 /* Load DDP Package */ 3764 if (firmware && !hw->pkg_copy) { 3765 status = ice_copy_and_init_pkg(hw, firmware->data, 3766 firmware->size); 3767 ice_log_pkg_init(hw, &status); 3768 } else if (!firmware && hw->pkg_copy) { 3769 /* Reload package during rebuild after CORER/GLOBR reset */ 3770 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 3771 ice_log_pkg_init(hw, &status); 3772 } else { 3773 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 3774 } 3775 3776 if (status) { 3777 /* Safe Mode */ 3778 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3779 return; 3780 } 3781 3782 /* Successful download package is the precondition for advanced 3783 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 3784 */ 3785 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 3786 } 3787 3788 /** 3789 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 3790 * @pf: pointer to the PF structure 3791 * 3792 * There is no error returned here because the driver should be able to handle 3793 * 128 Byte cache lines, so we only print a warning in case issues are seen, 3794 * specifically with Tx. 3795 */ 3796 static void ice_verify_cacheline_size(struct ice_pf *pf) 3797 { 3798 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 3799 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 3800 ICE_CACHE_LINE_BYTES); 3801 } 3802 3803 /** 3804 * ice_send_version - update firmware with driver version 3805 * @pf: PF struct 3806 * 3807 * Returns ICE_SUCCESS on success, else error code 3808 */ 3809 static enum ice_status ice_send_version(struct ice_pf *pf) 3810 { 3811 struct ice_driver_ver dv; 3812 3813 dv.major_ver = 0xff; 3814 dv.minor_ver = 0xff; 3815 dv.build_ver = 0xff; 3816 dv.subbuild_ver = 0; 3817 strscpy((char *)dv.driver_string, UTS_RELEASE, 3818 sizeof(dv.driver_string)); 3819 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 3820 } 3821 3822 /** 3823 * ice_init_fdir - Initialize flow director VSI and configuration 3824 * @pf: pointer to the PF instance 3825 * 3826 * returns 0 on success, negative on error 3827 */ 3828 static int ice_init_fdir(struct ice_pf *pf) 3829 { 3830 struct device *dev = ice_pf_to_dev(pf); 3831 struct ice_vsi *ctrl_vsi; 3832 int err; 3833 3834 /* Side Band Flow Director needs to have a control VSI. 3835 * Allocate it and store it in the PF. 3836 */ 3837 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 3838 if (!ctrl_vsi) { 3839 dev_dbg(dev, "could not create control VSI\n"); 3840 return -ENOMEM; 3841 } 3842 3843 err = ice_vsi_open_ctrl(ctrl_vsi); 3844 if (err) { 3845 dev_dbg(dev, "could not open control VSI\n"); 3846 goto err_vsi_open; 3847 } 3848 3849 mutex_init(&pf->hw.fdir_fltr_lock); 3850 3851 err = ice_fdir_create_dflt_rules(pf); 3852 if (err) 3853 goto err_fdir_rule; 3854 3855 return 0; 3856 3857 err_fdir_rule: 3858 ice_fdir_release_flows(&pf->hw); 3859 ice_vsi_close(ctrl_vsi); 3860 err_vsi_open: 3861 ice_vsi_release(ctrl_vsi); 3862 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 3863 pf->vsi[pf->ctrl_vsi_idx] = NULL; 3864 pf->ctrl_vsi_idx = ICE_NO_VSI; 3865 } 3866 return err; 3867 } 3868 3869 /** 3870 * ice_get_opt_fw_name - return optional firmware file name or NULL 3871 * @pf: pointer to the PF instance 3872 */ 3873 static char *ice_get_opt_fw_name(struct ice_pf *pf) 3874 { 3875 /* Optional firmware name same as default with additional dash 3876 * followed by a EUI-64 identifier (PCIe Device Serial Number) 3877 */ 3878 struct pci_dev *pdev = pf->pdev; 3879 char *opt_fw_filename; 3880 u64 dsn; 3881 3882 /* Determine the name of the optional file using the DSN (two 3883 * dwords following the start of the DSN Capability). 3884 */ 3885 dsn = pci_get_dsn(pdev); 3886 if (!dsn) 3887 return NULL; 3888 3889 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 3890 if (!opt_fw_filename) 3891 return NULL; 3892 3893 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 3894 ICE_DDP_PKG_PATH, dsn); 3895 3896 return opt_fw_filename; 3897 } 3898 3899 /** 3900 * ice_request_fw - Device initialization routine 3901 * @pf: pointer to the PF instance 3902 */ 3903 static void ice_request_fw(struct ice_pf *pf) 3904 { 3905 char *opt_fw_filename = ice_get_opt_fw_name(pf); 3906 const struct firmware *firmware = NULL; 3907 struct device *dev = ice_pf_to_dev(pf); 3908 int err = 0; 3909 3910 /* optional device-specific DDP (if present) overrides the default DDP 3911 * package file. kernel logs a debug message if the file doesn't exist, 3912 * and warning messages for other errors. 3913 */ 3914 if (opt_fw_filename) { 3915 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 3916 if (err) { 3917 kfree(opt_fw_filename); 3918 goto dflt_pkg_load; 3919 } 3920 3921 /* request for firmware was successful. Download to device */ 3922 ice_load_pkg(firmware, pf); 3923 kfree(opt_fw_filename); 3924 release_firmware(firmware); 3925 return; 3926 } 3927 3928 dflt_pkg_load: 3929 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 3930 if (err) { 3931 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 3932 return; 3933 } 3934 3935 /* request for firmware was successful. Download to device */ 3936 ice_load_pkg(firmware, pf); 3937 release_firmware(firmware); 3938 } 3939 3940 /** 3941 * ice_print_wake_reason - show the wake up cause in the log 3942 * @pf: pointer to the PF struct 3943 */ 3944 static void ice_print_wake_reason(struct ice_pf *pf) 3945 { 3946 u32 wus = pf->wakeup_reason; 3947 const char *wake_str; 3948 3949 /* if no wake event, nothing to print */ 3950 if (!wus) 3951 return; 3952 3953 if (wus & PFPM_WUS_LNKC_M) 3954 wake_str = "Link\n"; 3955 else if (wus & PFPM_WUS_MAG_M) 3956 wake_str = "Magic Packet\n"; 3957 else if (wus & PFPM_WUS_MNG_M) 3958 wake_str = "Management\n"; 3959 else if (wus & PFPM_WUS_FW_RST_WK_M) 3960 wake_str = "Firmware Reset\n"; 3961 else 3962 wake_str = "Unknown\n"; 3963 3964 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 3965 } 3966 3967 /** 3968 * ice_probe - Device initialization routine 3969 * @pdev: PCI device information struct 3970 * @ent: entry in ice_pci_tbl 3971 * 3972 * Returns 0 on success, negative on failure 3973 */ 3974 static int 3975 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 3976 { 3977 struct device *dev = &pdev->dev; 3978 struct ice_pf *pf; 3979 struct ice_hw *hw; 3980 int i, err; 3981 3982 /* this driver uses devres, see 3983 * Documentation/driver-api/driver-model/devres.rst 3984 */ 3985 err = pcim_enable_device(pdev); 3986 if (err) 3987 return err; 3988 3989 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev)); 3990 if (err) { 3991 dev_err(dev, "BAR0 I/O map error %d\n", err); 3992 return err; 3993 } 3994 3995 pf = ice_allocate_pf(dev); 3996 if (!pf) 3997 return -ENOMEM; 3998 3999 /* set up for high or low DMA */ 4000 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4001 if (err) 4002 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); 4003 if (err) { 4004 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4005 return err; 4006 } 4007 4008 pci_enable_pcie_error_reporting(pdev); 4009 pci_set_master(pdev); 4010 4011 pf->pdev = pdev; 4012 pci_set_drvdata(pdev, pf); 4013 set_bit(__ICE_DOWN, pf->state); 4014 /* Disable service task until DOWN bit is cleared */ 4015 set_bit(__ICE_SERVICE_DIS, pf->state); 4016 4017 hw = &pf->hw; 4018 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4019 pci_save_state(pdev); 4020 4021 hw->back = pf; 4022 hw->vendor_id = pdev->vendor; 4023 hw->device_id = pdev->device; 4024 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4025 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4026 hw->subsystem_device_id = pdev->subsystem_device; 4027 hw->bus.device = PCI_SLOT(pdev->devfn); 4028 hw->bus.func = PCI_FUNC(pdev->devfn); 4029 ice_set_ctrlq_len(hw); 4030 4031 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4032 4033 err = ice_devlink_register(pf); 4034 if (err) { 4035 dev_err(dev, "ice_devlink_register failed: %d\n", err); 4036 goto err_exit_unroll; 4037 } 4038 4039 #ifndef CONFIG_DYNAMIC_DEBUG 4040 if (debug < -1) 4041 hw->debug_mask = debug; 4042 #endif 4043 4044 err = ice_init_hw(hw); 4045 if (err) { 4046 dev_err(dev, "ice_init_hw failed: %d\n", err); 4047 err = -EIO; 4048 goto err_exit_unroll; 4049 } 4050 4051 ice_request_fw(pf); 4052 4053 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4054 * set in pf->state, which will cause ice_is_safe_mode to return 4055 * true 4056 */ 4057 if (ice_is_safe_mode(pf)) { 4058 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n"); 4059 /* we already got function/device capabilities but these don't 4060 * reflect what the driver needs to do in safe mode. Instead of 4061 * adding conditional logic everywhere to ignore these 4062 * device/function capabilities, override them. 4063 */ 4064 ice_set_safe_mode_caps(hw); 4065 } 4066 4067 err = ice_init_pf(pf); 4068 if (err) { 4069 dev_err(dev, "ice_init_pf failed: %d\n", err); 4070 goto err_init_pf_unroll; 4071 } 4072 4073 ice_devlink_init_regions(pf); 4074 4075 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4076 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4077 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4078 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4079 i = 0; 4080 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4081 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4082 pf->hw.tnl.valid_count[TNL_VXLAN]; 4083 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4084 UDP_TUNNEL_TYPE_VXLAN; 4085 i++; 4086 } 4087 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4088 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4089 pf->hw.tnl.valid_count[TNL_GENEVE]; 4090 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4091 UDP_TUNNEL_TYPE_GENEVE; 4092 i++; 4093 } 4094 4095 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4096 if (!pf->num_alloc_vsi) { 4097 err = -EIO; 4098 goto err_init_pf_unroll; 4099 } 4100 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4101 dev_warn(&pf->pdev->dev, 4102 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4103 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4104 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4105 } 4106 4107 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4108 GFP_KERNEL); 4109 if (!pf->vsi) { 4110 err = -ENOMEM; 4111 goto err_init_pf_unroll; 4112 } 4113 4114 err = ice_init_interrupt_scheme(pf); 4115 if (err) { 4116 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4117 err = -EIO; 4118 goto err_init_vsi_unroll; 4119 } 4120 4121 /* In case of MSIX we are going to setup the misc vector right here 4122 * to handle admin queue events etc. In case of legacy and MSI 4123 * the misc functionality and queue processing is combined in 4124 * the same vector and that gets setup at open. 4125 */ 4126 err = ice_req_irq_msix_misc(pf); 4127 if (err) { 4128 dev_err(dev, "setup of misc vector failed: %d\n", err); 4129 goto err_init_interrupt_unroll; 4130 } 4131 4132 /* create switch struct for the switch element created by FW on boot */ 4133 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4134 if (!pf->first_sw) { 4135 err = -ENOMEM; 4136 goto err_msix_misc_unroll; 4137 } 4138 4139 if (hw->evb_veb) 4140 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4141 else 4142 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4143 4144 pf->first_sw->pf = pf; 4145 4146 /* record the sw_id available for later use */ 4147 pf->first_sw->sw_id = hw->port_info->sw_id; 4148 4149 err = ice_setup_pf_sw(pf); 4150 if (err) { 4151 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4152 goto err_alloc_sw_unroll; 4153 } 4154 4155 clear_bit(__ICE_SERVICE_DIS, pf->state); 4156 4157 /* tell the firmware we are up */ 4158 err = ice_send_version(pf); 4159 if (err) { 4160 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4161 UTS_RELEASE, err); 4162 goto err_send_version_unroll; 4163 } 4164 4165 /* since everything is good, start the service timer */ 4166 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4167 4168 err = ice_init_link_events(pf->hw.port_info); 4169 if (err) { 4170 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4171 goto err_send_version_unroll; 4172 } 4173 4174 err = ice_init_nvm_phy_type(pf->hw.port_info); 4175 if (err) { 4176 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4177 goto err_send_version_unroll; 4178 } 4179 4180 err = ice_update_link_info(pf->hw.port_info); 4181 if (err) { 4182 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4183 goto err_send_version_unroll; 4184 } 4185 4186 ice_init_link_dflt_override(pf->hw.port_info); 4187 4188 /* if media available, initialize PHY settings */ 4189 if (pf->hw.port_info->phy.link_info.link_info & 4190 ICE_AQ_MEDIA_AVAILABLE) { 4191 err = ice_init_phy_user_cfg(pf->hw.port_info); 4192 if (err) { 4193 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4194 goto err_send_version_unroll; 4195 } 4196 4197 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4198 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4199 4200 if (vsi) 4201 ice_configure_phy(vsi); 4202 } 4203 } else { 4204 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4205 } 4206 4207 ice_verify_cacheline_size(pf); 4208 4209 /* Save wakeup reason register for later use */ 4210 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4211 4212 /* check for a power management event */ 4213 ice_print_wake_reason(pf); 4214 4215 /* clear wake status, all bits */ 4216 wr32(hw, PFPM_WUS, U32_MAX); 4217 4218 /* Disable WoL at init, wait for user to enable */ 4219 device_set_wakeup_enable(dev, false); 4220 4221 if (ice_is_safe_mode(pf)) { 4222 ice_set_safe_mode_vlan_cfg(pf); 4223 goto probe_done; 4224 } 4225 4226 /* initialize DDP driven features */ 4227 4228 /* Note: Flow director init failure is non-fatal to load */ 4229 if (ice_init_fdir(pf)) 4230 dev_err(dev, "could not initialize flow director\n"); 4231 4232 /* Note: DCB init failure is non-fatal to load */ 4233 if (ice_init_pf_dcb(pf, false)) { 4234 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4235 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4236 } else { 4237 ice_cfg_lldp_mib_change(&pf->hw, true); 4238 } 4239 4240 /* print PCI link speed and width */ 4241 pcie_print_link_status(pf->pdev); 4242 4243 probe_done: 4244 /* ready to go, so clear down state bit */ 4245 clear_bit(__ICE_DOWN, pf->state); 4246 return 0; 4247 4248 err_send_version_unroll: 4249 ice_vsi_release_all(pf); 4250 err_alloc_sw_unroll: 4251 set_bit(__ICE_SERVICE_DIS, pf->state); 4252 set_bit(__ICE_DOWN, pf->state); 4253 devm_kfree(dev, pf->first_sw); 4254 err_msix_misc_unroll: 4255 ice_free_irq_msix_misc(pf); 4256 err_init_interrupt_unroll: 4257 ice_clear_interrupt_scheme(pf); 4258 err_init_vsi_unroll: 4259 devm_kfree(dev, pf->vsi); 4260 err_init_pf_unroll: 4261 ice_deinit_pf(pf); 4262 ice_devlink_destroy_regions(pf); 4263 ice_deinit_hw(hw); 4264 err_exit_unroll: 4265 ice_devlink_unregister(pf); 4266 pci_disable_pcie_error_reporting(pdev); 4267 pci_disable_device(pdev); 4268 return err; 4269 } 4270 4271 /** 4272 * ice_set_wake - enable or disable Wake on LAN 4273 * @pf: pointer to the PF struct 4274 * 4275 * Simple helper for WoL control 4276 */ 4277 static void ice_set_wake(struct ice_pf *pf) 4278 { 4279 struct ice_hw *hw = &pf->hw; 4280 bool wol = pf->wol_ena; 4281 4282 /* clear wake state, otherwise new wake events won't fire */ 4283 wr32(hw, PFPM_WUS, U32_MAX); 4284 4285 /* enable / disable APM wake up, no RMW needed */ 4286 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4287 4288 /* set magic packet filter enabled */ 4289 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4290 } 4291 4292 /** 4293 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet 4294 * @pf: pointer to the PF struct 4295 * 4296 * Issue firmware command to enable multicast magic wake, making 4297 * sure that any locally administered address (LAA) is used for 4298 * wake, and that PF reset doesn't undo the LAA. 4299 */ 4300 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4301 { 4302 struct device *dev = ice_pf_to_dev(pf); 4303 struct ice_hw *hw = &pf->hw; 4304 enum ice_status status; 4305 u8 mac_addr[ETH_ALEN]; 4306 struct ice_vsi *vsi; 4307 u8 flags; 4308 4309 if (!pf->wol_ena) 4310 return; 4311 4312 vsi = ice_get_main_vsi(pf); 4313 if (!vsi) 4314 return; 4315 4316 /* Get current MAC address in case it's an LAA */ 4317 if (vsi->netdev) 4318 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4319 else 4320 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4321 4322 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4323 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4324 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4325 4326 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4327 if (status) 4328 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n", 4329 ice_stat_str(status), 4330 ice_aq_str(hw->adminq.sq_last_status)); 4331 } 4332 4333 /** 4334 * ice_remove - Device removal routine 4335 * @pdev: PCI device information struct 4336 */ 4337 static void ice_remove(struct pci_dev *pdev) 4338 { 4339 struct ice_pf *pf = pci_get_drvdata(pdev); 4340 int i; 4341 4342 if (!pf) 4343 return; 4344 4345 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4346 if (!ice_is_reset_in_progress(pf->state)) 4347 break; 4348 msleep(100); 4349 } 4350 4351 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4352 set_bit(__ICE_VF_RESETS_DISABLED, pf->state); 4353 ice_free_vfs(pf); 4354 } 4355 4356 set_bit(__ICE_DOWN, pf->state); 4357 ice_service_task_stop(pf); 4358 4359 ice_aq_cancel_waiting_tasks(pf); 4360 4361 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4362 if (!ice_is_safe_mode(pf)) 4363 ice_remove_arfs(pf); 4364 ice_setup_mc_magic_wake(pf); 4365 ice_vsi_release_all(pf); 4366 ice_set_wake(pf); 4367 ice_free_irq_msix_misc(pf); 4368 ice_for_each_vsi(pf, i) { 4369 if (!pf->vsi[i]) 4370 continue; 4371 ice_vsi_free_q_vectors(pf->vsi[i]); 4372 } 4373 ice_deinit_pf(pf); 4374 ice_devlink_destroy_regions(pf); 4375 ice_deinit_hw(&pf->hw); 4376 ice_devlink_unregister(pf); 4377 4378 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4379 * do it via ice_schedule_reset() since there is no need to rebuild 4380 * and the service task is already stopped. 4381 */ 4382 ice_reset(&pf->hw, ICE_RESET_PFR); 4383 pci_wait_for_pending_transaction(pdev); 4384 ice_clear_interrupt_scheme(pf); 4385 pci_disable_pcie_error_reporting(pdev); 4386 pci_disable_device(pdev); 4387 } 4388 4389 /** 4390 * ice_shutdown - PCI callback for shutting down device 4391 * @pdev: PCI device information struct 4392 */ 4393 static void ice_shutdown(struct pci_dev *pdev) 4394 { 4395 struct ice_pf *pf = pci_get_drvdata(pdev); 4396 4397 ice_remove(pdev); 4398 4399 if (system_state == SYSTEM_POWER_OFF) { 4400 pci_wake_from_d3(pdev, pf->wol_ena); 4401 pci_set_power_state(pdev, PCI_D3hot); 4402 } 4403 } 4404 4405 #ifdef CONFIG_PM 4406 /** 4407 * ice_prepare_for_shutdown - prep for PCI shutdown 4408 * @pf: board private structure 4409 * 4410 * Inform or close all dependent features in prep for PCI device shutdown 4411 */ 4412 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4413 { 4414 struct ice_hw *hw = &pf->hw; 4415 u32 v; 4416 4417 /* Notify VFs of impending reset */ 4418 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4419 ice_vc_notify_reset(pf); 4420 4421 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4422 4423 /* disable the VSIs and their queues that are not already DOWN */ 4424 ice_pf_dis_all_vsi(pf, false); 4425 4426 ice_for_each_vsi(pf, v) 4427 if (pf->vsi[v]) 4428 pf->vsi[v]->vsi_num = 0; 4429 4430 ice_shutdown_all_ctrlq(hw); 4431 } 4432 4433 /** 4434 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4435 * @pf: board private structure to reinitialize 4436 * 4437 * This routine reinitialize interrupt scheme that was cleared during 4438 * power management suspend callback. 4439 * 4440 * This should be called during resume routine to re-allocate the q_vectors 4441 * and reacquire interrupts. 4442 */ 4443 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4444 { 4445 struct device *dev = ice_pf_to_dev(pf); 4446 int ret, v; 4447 4448 /* Since we clear MSIX flag during suspend, we need to 4449 * set it back during resume... 4450 */ 4451 4452 ret = ice_init_interrupt_scheme(pf); 4453 if (ret) { 4454 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4455 return ret; 4456 } 4457 4458 /* Remap vectors and rings, after successful re-init interrupts */ 4459 ice_for_each_vsi(pf, v) { 4460 if (!pf->vsi[v]) 4461 continue; 4462 4463 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4464 if (ret) 4465 goto err_reinit; 4466 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4467 } 4468 4469 ret = ice_req_irq_msix_misc(pf); 4470 if (ret) { 4471 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4472 ret); 4473 goto err_reinit; 4474 } 4475 4476 return 0; 4477 4478 err_reinit: 4479 while (v--) 4480 if (pf->vsi[v]) 4481 ice_vsi_free_q_vectors(pf->vsi[v]); 4482 4483 return ret; 4484 } 4485 4486 /** 4487 * ice_suspend 4488 * @dev: generic device information structure 4489 * 4490 * Power Management callback to quiesce the device and prepare 4491 * for D3 transition. 4492 */ 4493 static int __maybe_unused ice_suspend(struct device *dev) 4494 { 4495 struct pci_dev *pdev = to_pci_dev(dev); 4496 struct ice_pf *pf; 4497 int disabled, v; 4498 4499 pf = pci_get_drvdata(pdev); 4500 4501 if (!ice_pf_state_is_nominal(pf)) { 4502 dev_err(dev, "Device is not ready, no need to suspend it\n"); 4503 return -EBUSY; 4504 } 4505 4506 /* Stop watchdog tasks until resume completion. 4507 * Even though it is most likely that the service task is 4508 * disabled if the device is suspended or down, the service task's 4509 * state is controlled by a different state bit, and we should 4510 * store and honor whatever state that bit is in at this point. 4511 */ 4512 disabled = ice_service_task_stop(pf); 4513 4514 /* Already suspended?, then there is nothing to do */ 4515 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) { 4516 if (!disabled) 4517 ice_service_task_restart(pf); 4518 return 0; 4519 } 4520 4521 if (test_bit(__ICE_DOWN, pf->state) || 4522 ice_is_reset_in_progress(pf->state)) { 4523 dev_err(dev, "can't suspend device in reset or already down\n"); 4524 if (!disabled) 4525 ice_service_task_restart(pf); 4526 return 0; 4527 } 4528 4529 ice_setup_mc_magic_wake(pf); 4530 4531 ice_prepare_for_shutdown(pf); 4532 4533 ice_set_wake(pf); 4534 4535 /* Free vectors, clear the interrupt scheme and release IRQs 4536 * for proper hibernation, especially with large number of CPUs. 4537 * Otherwise hibernation might fail when mapping all the vectors back 4538 * to CPU0. 4539 */ 4540 ice_free_irq_msix_misc(pf); 4541 ice_for_each_vsi(pf, v) { 4542 if (!pf->vsi[v]) 4543 continue; 4544 ice_vsi_free_q_vectors(pf->vsi[v]); 4545 } 4546 ice_clear_interrupt_scheme(pf); 4547 4548 pci_save_state(pdev); 4549 pci_wake_from_d3(pdev, pf->wol_ena); 4550 pci_set_power_state(pdev, PCI_D3hot); 4551 return 0; 4552 } 4553 4554 /** 4555 * ice_resume - PM callback for waking up from D3 4556 * @dev: generic device information structure 4557 */ 4558 static int __maybe_unused ice_resume(struct device *dev) 4559 { 4560 struct pci_dev *pdev = to_pci_dev(dev); 4561 enum ice_reset_req reset_type; 4562 struct ice_pf *pf; 4563 struct ice_hw *hw; 4564 int ret; 4565 4566 pci_set_power_state(pdev, PCI_D0); 4567 pci_restore_state(pdev); 4568 pci_save_state(pdev); 4569 4570 if (!pci_device_is_present(pdev)) 4571 return -ENODEV; 4572 4573 ret = pci_enable_device_mem(pdev); 4574 if (ret) { 4575 dev_err(dev, "Cannot enable device after suspend\n"); 4576 return ret; 4577 } 4578 4579 pf = pci_get_drvdata(pdev); 4580 hw = &pf->hw; 4581 4582 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4583 ice_print_wake_reason(pf); 4584 4585 /* We cleared the interrupt scheme when we suspended, so we need to 4586 * restore it now to resume device functionality. 4587 */ 4588 ret = ice_reinit_interrupt_scheme(pf); 4589 if (ret) 4590 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 4591 4592 clear_bit(__ICE_DOWN, pf->state); 4593 /* Now perform PF reset and rebuild */ 4594 reset_type = ICE_RESET_PFR; 4595 /* re-enable service task for reset, but allow reset to schedule it */ 4596 clear_bit(__ICE_SERVICE_DIS, pf->state); 4597 4598 if (ice_schedule_reset(pf, reset_type)) 4599 dev_err(dev, "Reset during resume failed.\n"); 4600 4601 clear_bit(__ICE_SUSPENDED, pf->state); 4602 ice_service_task_restart(pf); 4603 4604 /* Restart the service task */ 4605 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4606 4607 return 0; 4608 } 4609 #endif /* CONFIG_PM */ 4610 4611 /** 4612 * ice_pci_err_detected - warning that PCI error has been detected 4613 * @pdev: PCI device information struct 4614 * @err: the type of PCI error 4615 * 4616 * Called to warn that something happened on the PCI bus and the error handling 4617 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 4618 */ 4619 static pci_ers_result_t 4620 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 4621 { 4622 struct ice_pf *pf = pci_get_drvdata(pdev); 4623 4624 if (!pf) { 4625 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 4626 __func__, err); 4627 return PCI_ERS_RESULT_DISCONNECT; 4628 } 4629 4630 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4631 ice_service_task_stop(pf); 4632 4633 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4634 set_bit(__ICE_PFR_REQ, pf->state); 4635 ice_prepare_for_reset(pf); 4636 } 4637 } 4638 4639 return PCI_ERS_RESULT_NEED_RESET; 4640 } 4641 4642 /** 4643 * ice_pci_err_slot_reset - a PCI slot reset has just happened 4644 * @pdev: PCI device information struct 4645 * 4646 * Called to determine if the driver can recover from the PCI slot reset by 4647 * using a register read to determine if the device is recoverable. 4648 */ 4649 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 4650 { 4651 struct ice_pf *pf = pci_get_drvdata(pdev); 4652 pci_ers_result_t result; 4653 int err; 4654 u32 reg; 4655 4656 err = pci_enable_device_mem(pdev); 4657 if (err) { 4658 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 4659 err); 4660 result = PCI_ERS_RESULT_DISCONNECT; 4661 } else { 4662 pci_set_master(pdev); 4663 pci_restore_state(pdev); 4664 pci_save_state(pdev); 4665 pci_wake_from_d3(pdev, false); 4666 4667 /* Check for life */ 4668 reg = rd32(&pf->hw, GLGEN_RTRIG); 4669 if (!reg) 4670 result = PCI_ERS_RESULT_RECOVERED; 4671 else 4672 result = PCI_ERS_RESULT_DISCONNECT; 4673 } 4674 4675 err = pci_aer_clear_nonfatal_status(pdev); 4676 if (err) 4677 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 4678 err); 4679 /* non-fatal, continue */ 4680 4681 return result; 4682 } 4683 4684 /** 4685 * ice_pci_err_resume - restart operations after PCI error recovery 4686 * @pdev: PCI device information struct 4687 * 4688 * Called to allow the driver to bring things back up after PCI error and/or 4689 * reset recovery have finished 4690 */ 4691 static void ice_pci_err_resume(struct pci_dev *pdev) 4692 { 4693 struct ice_pf *pf = pci_get_drvdata(pdev); 4694 4695 if (!pf) { 4696 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 4697 __func__); 4698 return; 4699 } 4700 4701 if (test_bit(__ICE_SUSPENDED, pf->state)) { 4702 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 4703 __func__); 4704 return; 4705 } 4706 4707 ice_restore_all_vfs_msi_state(pdev); 4708 4709 ice_do_reset(pf, ICE_RESET_PFR); 4710 ice_service_task_restart(pf); 4711 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4712 } 4713 4714 /** 4715 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 4716 * @pdev: PCI device information struct 4717 */ 4718 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 4719 { 4720 struct ice_pf *pf = pci_get_drvdata(pdev); 4721 4722 if (!test_bit(__ICE_SUSPENDED, pf->state)) { 4723 ice_service_task_stop(pf); 4724 4725 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) { 4726 set_bit(__ICE_PFR_REQ, pf->state); 4727 ice_prepare_for_reset(pf); 4728 } 4729 } 4730 } 4731 4732 /** 4733 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 4734 * @pdev: PCI device information struct 4735 */ 4736 static void ice_pci_err_reset_done(struct pci_dev *pdev) 4737 { 4738 ice_pci_err_resume(pdev); 4739 } 4740 4741 /* ice_pci_tbl - PCI Device ID Table 4742 * 4743 * Wildcard entries (PCI_ANY_ID) should come last 4744 * Last entry must be all 0s 4745 * 4746 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 4747 * Class, Class Mask, private data (not used) } 4748 */ 4749 static const struct pci_device_id ice_pci_tbl[] = { 4750 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 4751 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 4752 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 4753 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 4754 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 4755 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 4756 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 4757 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 4758 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 4759 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 4760 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 4761 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 4762 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 4763 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 4764 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 4765 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 4766 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 4767 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 4768 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 4769 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 4770 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 4771 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 4772 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 4773 /* required last entry */ 4774 { 0, } 4775 }; 4776 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 4777 4778 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 4779 4780 static const struct pci_error_handlers ice_pci_err_handler = { 4781 .error_detected = ice_pci_err_detected, 4782 .slot_reset = ice_pci_err_slot_reset, 4783 .reset_prepare = ice_pci_err_reset_prepare, 4784 .reset_done = ice_pci_err_reset_done, 4785 .resume = ice_pci_err_resume 4786 }; 4787 4788 static struct pci_driver ice_driver = { 4789 .name = KBUILD_MODNAME, 4790 .id_table = ice_pci_tbl, 4791 .probe = ice_probe, 4792 .remove = ice_remove, 4793 #ifdef CONFIG_PM 4794 .driver.pm = &ice_pm_ops, 4795 #endif /* CONFIG_PM */ 4796 .shutdown = ice_shutdown, 4797 .sriov_configure = ice_sriov_configure, 4798 .err_handler = &ice_pci_err_handler 4799 }; 4800 4801 /** 4802 * ice_module_init - Driver registration routine 4803 * 4804 * ice_module_init is the first routine called when the driver is 4805 * loaded. All it does is register with the PCI subsystem. 4806 */ 4807 static int __init ice_module_init(void) 4808 { 4809 int status; 4810 4811 pr_info("%s\n", ice_driver_string); 4812 pr_info("%s\n", ice_copyright); 4813 4814 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 4815 if (!ice_wq) { 4816 pr_err("Failed to create workqueue\n"); 4817 return -ENOMEM; 4818 } 4819 4820 status = pci_register_driver(&ice_driver); 4821 if (status) { 4822 pr_err("failed to register PCI driver, err %d\n", status); 4823 destroy_workqueue(ice_wq); 4824 } 4825 4826 return status; 4827 } 4828 module_init(ice_module_init); 4829 4830 /** 4831 * ice_module_exit - Driver exit cleanup routine 4832 * 4833 * ice_module_exit is called just before the driver is removed 4834 * from memory. 4835 */ 4836 static void __exit ice_module_exit(void) 4837 { 4838 pci_unregister_driver(&ice_driver); 4839 destroy_workqueue(ice_wq); 4840 pr_info("module unloaded\n"); 4841 } 4842 module_exit(ice_module_exit); 4843 4844 /** 4845 * ice_set_mac_address - NDO callback to set MAC address 4846 * @netdev: network interface device structure 4847 * @pi: pointer to an address structure 4848 * 4849 * Returns 0 on success, negative on failure 4850 */ 4851 static int ice_set_mac_address(struct net_device *netdev, void *pi) 4852 { 4853 struct ice_netdev_priv *np = netdev_priv(netdev); 4854 struct ice_vsi *vsi = np->vsi; 4855 struct ice_pf *pf = vsi->back; 4856 struct ice_hw *hw = &pf->hw; 4857 struct sockaddr *addr = pi; 4858 enum ice_status status; 4859 u8 flags = 0; 4860 int err = 0; 4861 u8 *mac; 4862 4863 mac = (u8 *)addr->sa_data; 4864 4865 if (!is_valid_ether_addr(mac)) 4866 return -EADDRNOTAVAIL; 4867 4868 if (ether_addr_equal(netdev->dev_addr, mac)) { 4869 netdev_warn(netdev, "already using mac %pM\n", mac); 4870 return 0; 4871 } 4872 4873 if (test_bit(__ICE_DOWN, pf->state) || 4874 ice_is_reset_in_progress(pf->state)) { 4875 netdev_err(netdev, "can't set mac %pM. device not ready\n", 4876 mac); 4877 return -EBUSY; 4878 } 4879 4880 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 4881 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI); 4882 if (status && status != ICE_ERR_DOES_NOT_EXIST) { 4883 err = -EADDRNOTAVAIL; 4884 goto err_update_filters; 4885 } 4886 4887 /* Add filter for new MAC. If filter exists, just return success */ 4888 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 4889 if (status == ICE_ERR_ALREADY_EXISTS) { 4890 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 4891 return 0; 4892 } 4893 4894 /* error if the new filter addition failed */ 4895 if (status) 4896 err = -EADDRNOTAVAIL; 4897 4898 err_update_filters: 4899 if (err) { 4900 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 4901 mac); 4902 return err; 4903 } 4904 4905 /* change the netdev's MAC address */ 4906 memcpy(netdev->dev_addr, mac, netdev->addr_len); 4907 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 4908 netdev->dev_addr); 4909 4910 /* write new MAC address to the firmware */ 4911 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 4912 status = ice_aq_manage_mac_write(hw, mac, flags, NULL); 4913 if (status) { 4914 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n", 4915 mac, ice_stat_str(status)); 4916 } 4917 return 0; 4918 } 4919 4920 /** 4921 * ice_set_rx_mode - NDO callback to set the netdev filters 4922 * @netdev: network interface device structure 4923 */ 4924 static void ice_set_rx_mode(struct net_device *netdev) 4925 { 4926 struct ice_netdev_priv *np = netdev_priv(netdev); 4927 struct ice_vsi *vsi = np->vsi; 4928 4929 if (!vsi) 4930 return; 4931 4932 /* Set the flags to synchronize filters 4933 * ndo_set_rx_mode may be triggered even without a change in netdev 4934 * flags 4935 */ 4936 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags); 4937 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags); 4938 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 4939 4940 /* schedule our worker thread which will take care of 4941 * applying the new filter changes 4942 */ 4943 ice_service_task_schedule(vsi->back); 4944 } 4945 4946 /** 4947 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 4948 * @netdev: network interface device structure 4949 * @queue_index: Queue ID 4950 * @maxrate: maximum bandwidth in Mbps 4951 */ 4952 static int 4953 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 4954 { 4955 struct ice_netdev_priv *np = netdev_priv(netdev); 4956 struct ice_vsi *vsi = np->vsi; 4957 enum ice_status status; 4958 u16 q_handle; 4959 u8 tc; 4960 4961 /* Validate maxrate requested is within permitted range */ 4962 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 4963 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 4964 maxrate, queue_index); 4965 return -EINVAL; 4966 } 4967 4968 q_handle = vsi->tx_rings[queue_index]->q_handle; 4969 tc = ice_dcb_get_tc(vsi, queue_index); 4970 4971 /* Set BW back to default, when user set maxrate to 0 */ 4972 if (!maxrate) 4973 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 4974 q_handle, ICE_MAX_BW); 4975 else 4976 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 4977 q_handle, ICE_MAX_BW, maxrate * 1000); 4978 if (status) { 4979 netdev_err(netdev, "Unable to set Tx max rate, error %s\n", 4980 ice_stat_str(status)); 4981 return -EIO; 4982 } 4983 4984 return 0; 4985 } 4986 4987 /** 4988 * ice_fdb_add - add an entry to the hardware database 4989 * @ndm: the input from the stack 4990 * @tb: pointer to array of nladdr (unused) 4991 * @dev: the net device pointer 4992 * @addr: the MAC address entry being added 4993 * @vid: VLAN ID 4994 * @flags: instructions from stack about fdb operation 4995 * @extack: netlink extended ack 4996 */ 4997 static int 4998 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 4999 struct net_device *dev, const unsigned char *addr, u16 vid, 5000 u16 flags, struct netlink_ext_ack __always_unused *extack) 5001 { 5002 int err; 5003 5004 if (vid) { 5005 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5006 return -EINVAL; 5007 } 5008 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5009 netdev_err(dev, "FDB only supports static addresses\n"); 5010 return -EINVAL; 5011 } 5012 5013 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5014 err = dev_uc_add_excl(dev, addr); 5015 else if (is_multicast_ether_addr(addr)) 5016 err = dev_mc_add_excl(dev, addr); 5017 else 5018 err = -EINVAL; 5019 5020 /* Only return duplicate errors if NLM_F_EXCL is set */ 5021 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5022 err = 0; 5023 5024 return err; 5025 } 5026 5027 /** 5028 * ice_fdb_del - delete an entry from the hardware database 5029 * @ndm: the input from the stack 5030 * @tb: pointer to array of nladdr (unused) 5031 * @dev: the net device pointer 5032 * @addr: the MAC address entry being added 5033 * @vid: VLAN ID 5034 */ 5035 static int 5036 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5037 struct net_device *dev, const unsigned char *addr, 5038 __always_unused u16 vid) 5039 { 5040 int err; 5041 5042 if (ndm->ndm_state & NUD_PERMANENT) { 5043 netdev_err(dev, "FDB only supports static addresses\n"); 5044 return -EINVAL; 5045 } 5046 5047 if (is_unicast_ether_addr(addr)) 5048 err = dev_uc_del(dev, addr); 5049 else if (is_multicast_ether_addr(addr)) 5050 err = dev_mc_del(dev, addr); 5051 else 5052 err = -EINVAL; 5053 5054 return err; 5055 } 5056 5057 /** 5058 * ice_set_features - set the netdev feature flags 5059 * @netdev: ptr to the netdev being adjusted 5060 * @features: the feature set that the stack is suggesting 5061 */ 5062 static int 5063 ice_set_features(struct net_device *netdev, netdev_features_t features) 5064 { 5065 struct ice_netdev_priv *np = netdev_priv(netdev); 5066 struct ice_vsi *vsi = np->vsi; 5067 struct ice_pf *pf = vsi->back; 5068 int ret = 0; 5069 5070 /* Don't set any netdev advanced features with device in Safe Mode */ 5071 if (ice_is_safe_mode(vsi->back)) { 5072 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5073 return ret; 5074 } 5075 5076 /* Do not change setting during reset */ 5077 if (ice_is_reset_in_progress(pf->state)) { 5078 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5079 return -EBUSY; 5080 } 5081 5082 /* Multiple features can be changed in one call so keep features in 5083 * separate if/else statements to guarantee each feature is checked 5084 */ 5085 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5086 ret = ice_vsi_manage_rss_lut(vsi, true); 5087 else if (!(features & NETIF_F_RXHASH) && 5088 netdev->features & NETIF_F_RXHASH) 5089 ret = ice_vsi_manage_rss_lut(vsi, false); 5090 5091 if ((features & NETIF_F_HW_VLAN_CTAG_RX) && 5092 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5093 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5094 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && 5095 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)) 5096 ret = ice_vsi_manage_vlan_stripping(vsi, false); 5097 5098 if ((features & NETIF_F_HW_VLAN_CTAG_TX) && 5099 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5100 ret = ice_vsi_manage_vlan_insertion(vsi); 5101 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) && 5102 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) 5103 ret = ice_vsi_manage_vlan_insertion(vsi); 5104 5105 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5106 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5107 ret = ice_cfg_vlan_pruning(vsi, true, false); 5108 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && 5109 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) 5110 ret = ice_cfg_vlan_pruning(vsi, false, false); 5111 5112 if ((features & NETIF_F_NTUPLE) && 5113 !(netdev->features & NETIF_F_NTUPLE)) { 5114 ice_vsi_manage_fdir(vsi, true); 5115 ice_init_arfs(vsi); 5116 } else if (!(features & NETIF_F_NTUPLE) && 5117 (netdev->features & NETIF_F_NTUPLE)) { 5118 ice_vsi_manage_fdir(vsi, false); 5119 ice_clear_arfs(vsi); 5120 } 5121 5122 return ret; 5123 } 5124 5125 /** 5126 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI 5127 * @vsi: VSI to setup VLAN properties for 5128 */ 5129 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5130 { 5131 int ret = 0; 5132 5133 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 5134 ret = ice_vsi_manage_vlan_stripping(vsi, true); 5135 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX) 5136 ret = ice_vsi_manage_vlan_insertion(vsi); 5137 5138 return ret; 5139 } 5140 5141 /** 5142 * ice_vsi_cfg - Setup the VSI 5143 * @vsi: the VSI being configured 5144 * 5145 * Return 0 on success and negative value on error 5146 */ 5147 int ice_vsi_cfg(struct ice_vsi *vsi) 5148 { 5149 int err; 5150 5151 if (vsi->netdev) { 5152 ice_set_rx_mode(vsi->netdev); 5153 5154 err = ice_vsi_vlan_setup(vsi); 5155 5156 if (err) 5157 return err; 5158 } 5159 ice_vsi_cfg_dcb_rings(vsi); 5160 5161 err = ice_vsi_cfg_lan_txqs(vsi); 5162 if (!err && ice_is_xdp_ena_vsi(vsi)) 5163 err = ice_vsi_cfg_xdp_txqs(vsi); 5164 if (!err) 5165 err = ice_vsi_cfg_rxqs(vsi); 5166 5167 return err; 5168 } 5169 5170 /** 5171 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 5172 * @vsi: the VSI being configured 5173 */ 5174 static void ice_napi_enable_all(struct ice_vsi *vsi) 5175 { 5176 int q_idx; 5177 5178 if (!vsi->netdev) 5179 return; 5180 5181 ice_for_each_q_vector(vsi, q_idx) { 5182 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5183 5184 if (q_vector->rx.ring || q_vector->tx.ring) 5185 napi_enable(&q_vector->napi); 5186 } 5187 } 5188 5189 /** 5190 * ice_up_complete - Finish the last steps of bringing up a connection 5191 * @vsi: The VSI being configured 5192 * 5193 * Return 0 on success and negative value on error 5194 */ 5195 static int ice_up_complete(struct ice_vsi *vsi) 5196 { 5197 struct ice_pf *pf = vsi->back; 5198 int err; 5199 5200 ice_vsi_cfg_msix(vsi); 5201 5202 /* Enable only Rx rings, Tx rings were enabled by the FW when the 5203 * Tx queue group list was configured and the context bits were 5204 * programmed using ice_vsi_cfg_txqs 5205 */ 5206 err = ice_vsi_start_all_rx_rings(vsi); 5207 if (err) 5208 return err; 5209 5210 clear_bit(__ICE_DOWN, vsi->state); 5211 ice_napi_enable_all(vsi); 5212 ice_vsi_ena_irq(vsi); 5213 5214 if (vsi->port_info && 5215 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 5216 vsi->netdev) { 5217 ice_print_link_msg(vsi, true); 5218 netif_tx_start_all_queues(vsi->netdev); 5219 netif_carrier_on(vsi->netdev); 5220 } 5221 5222 ice_service_task_schedule(pf); 5223 5224 return 0; 5225 } 5226 5227 /** 5228 * ice_up - Bring the connection back up after being down 5229 * @vsi: VSI being configured 5230 */ 5231 int ice_up(struct ice_vsi *vsi) 5232 { 5233 int err; 5234 5235 err = ice_vsi_cfg(vsi); 5236 if (!err) 5237 err = ice_up_complete(vsi); 5238 5239 return err; 5240 } 5241 5242 /** 5243 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 5244 * @ring: Tx or Rx ring to read stats from 5245 * @pkts: packets stats counter 5246 * @bytes: bytes stats counter 5247 * 5248 * This function fetches stats from the ring considering the atomic operations 5249 * that needs to be performed to read u64 values in 32 bit machine. 5250 */ 5251 static void 5252 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes) 5253 { 5254 unsigned int start; 5255 *pkts = 0; 5256 *bytes = 0; 5257 5258 if (!ring) 5259 return; 5260 do { 5261 start = u64_stats_fetch_begin_irq(&ring->syncp); 5262 *pkts = ring->stats.pkts; 5263 *bytes = ring->stats.bytes; 5264 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 5265 } 5266 5267 /** 5268 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 5269 * @vsi: the VSI to be updated 5270 * @rings: rings to work on 5271 * @count: number of rings 5272 */ 5273 static void 5274 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings, 5275 u16 count) 5276 { 5277 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5278 u16 i; 5279 5280 for (i = 0; i < count; i++) { 5281 struct ice_ring *ring; 5282 u64 pkts, bytes; 5283 5284 ring = READ_ONCE(rings[i]); 5285 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5286 vsi_stats->tx_packets += pkts; 5287 vsi_stats->tx_bytes += bytes; 5288 vsi->tx_restart += ring->tx_stats.restart_q; 5289 vsi->tx_busy += ring->tx_stats.tx_busy; 5290 vsi->tx_linearize += ring->tx_stats.tx_linearize; 5291 } 5292 } 5293 5294 /** 5295 * ice_update_vsi_ring_stats - Update VSI stats counters 5296 * @vsi: the VSI to be updated 5297 */ 5298 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 5299 { 5300 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats; 5301 struct ice_ring *ring; 5302 u64 pkts, bytes; 5303 int i; 5304 5305 /* reset netdev stats */ 5306 vsi_stats->tx_packets = 0; 5307 vsi_stats->tx_bytes = 0; 5308 vsi_stats->rx_packets = 0; 5309 vsi_stats->rx_bytes = 0; 5310 5311 /* reset non-netdev (extended) stats */ 5312 vsi->tx_restart = 0; 5313 vsi->tx_busy = 0; 5314 vsi->tx_linearize = 0; 5315 vsi->rx_buf_failed = 0; 5316 vsi->rx_page_failed = 0; 5317 vsi->rx_gro_dropped = 0; 5318 5319 rcu_read_lock(); 5320 5321 /* update Tx rings counters */ 5322 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq); 5323 5324 /* update Rx rings counters */ 5325 ice_for_each_rxq(vsi, i) { 5326 ring = READ_ONCE(vsi->rx_rings[i]); 5327 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes); 5328 vsi_stats->rx_packets += pkts; 5329 vsi_stats->rx_bytes += bytes; 5330 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 5331 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 5332 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped; 5333 } 5334 5335 /* update XDP Tx rings counters */ 5336 if (ice_is_xdp_ena_vsi(vsi)) 5337 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings, 5338 vsi->num_xdp_txq); 5339 5340 rcu_read_unlock(); 5341 } 5342 5343 /** 5344 * ice_update_vsi_stats - Update VSI stats counters 5345 * @vsi: the VSI to be updated 5346 */ 5347 void ice_update_vsi_stats(struct ice_vsi *vsi) 5348 { 5349 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 5350 struct ice_eth_stats *cur_es = &vsi->eth_stats; 5351 struct ice_pf *pf = vsi->back; 5352 5353 if (test_bit(__ICE_DOWN, vsi->state) || 5354 test_bit(__ICE_CFG_BUSY, pf->state)) 5355 return; 5356 5357 /* get stats as recorded by Tx/Rx rings */ 5358 ice_update_vsi_ring_stats(vsi); 5359 5360 /* get VSI stats as recorded by the hardware */ 5361 ice_update_eth_stats(vsi); 5362 5363 cur_ns->tx_errors = cur_es->tx_errors; 5364 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped; 5365 cur_ns->tx_dropped = cur_es->tx_discards; 5366 cur_ns->multicast = cur_es->rx_multicast; 5367 5368 /* update some more netdev stats if this is main VSI */ 5369 if (vsi->type == ICE_VSI_PF) { 5370 cur_ns->rx_crc_errors = pf->stats.crc_errors; 5371 cur_ns->rx_errors = pf->stats.crc_errors + 5372 pf->stats.illegal_bytes + 5373 pf->stats.rx_len_errors + 5374 pf->stats.rx_undersize + 5375 pf->hw_csum_rx_error + 5376 pf->stats.rx_jabber + 5377 pf->stats.rx_fragments + 5378 pf->stats.rx_oversize; 5379 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 5380 /* record drops from the port level */ 5381 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 5382 } 5383 } 5384 5385 /** 5386 * ice_update_pf_stats - Update PF port stats counters 5387 * @pf: PF whose stats needs to be updated 5388 */ 5389 void ice_update_pf_stats(struct ice_pf *pf) 5390 { 5391 struct ice_hw_port_stats *prev_ps, *cur_ps; 5392 struct ice_hw *hw = &pf->hw; 5393 u16 fd_ctr_base; 5394 u8 port; 5395 5396 port = hw->port_info->lport; 5397 prev_ps = &pf->stats_prev; 5398 cur_ps = &pf->stats; 5399 5400 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 5401 &prev_ps->eth.rx_bytes, 5402 &cur_ps->eth.rx_bytes); 5403 5404 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 5405 &prev_ps->eth.rx_unicast, 5406 &cur_ps->eth.rx_unicast); 5407 5408 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 5409 &prev_ps->eth.rx_multicast, 5410 &cur_ps->eth.rx_multicast); 5411 5412 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 5413 &prev_ps->eth.rx_broadcast, 5414 &cur_ps->eth.rx_broadcast); 5415 5416 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 5417 &prev_ps->eth.rx_discards, 5418 &cur_ps->eth.rx_discards); 5419 5420 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 5421 &prev_ps->eth.tx_bytes, 5422 &cur_ps->eth.tx_bytes); 5423 5424 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 5425 &prev_ps->eth.tx_unicast, 5426 &cur_ps->eth.tx_unicast); 5427 5428 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 5429 &prev_ps->eth.tx_multicast, 5430 &cur_ps->eth.tx_multicast); 5431 5432 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 5433 &prev_ps->eth.tx_broadcast, 5434 &cur_ps->eth.tx_broadcast); 5435 5436 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 5437 &prev_ps->tx_dropped_link_down, 5438 &cur_ps->tx_dropped_link_down); 5439 5440 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 5441 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 5442 5443 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 5444 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 5445 5446 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 5447 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 5448 5449 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 5450 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 5451 5452 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 5453 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 5454 5455 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 5456 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 5457 5458 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 5459 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 5460 5461 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 5462 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 5463 5464 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 5465 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 5466 5467 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 5468 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 5469 5470 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 5471 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 5472 5473 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 5474 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 5475 5476 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 5477 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 5478 5479 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 5480 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 5481 5482 fd_ctr_base = hw->fd_ctr_base; 5483 5484 ice_stat_update40(hw, 5485 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 5486 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 5487 &cur_ps->fd_sb_match); 5488 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 5489 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 5490 5491 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 5492 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 5493 5494 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 5495 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 5496 5497 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 5498 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 5499 5500 ice_update_dcb_stats(pf); 5501 5502 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 5503 &prev_ps->crc_errors, &cur_ps->crc_errors); 5504 5505 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 5506 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 5507 5508 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 5509 &prev_ps->mac_local_faults, 5510 &cur_ps->mac_local_faults); 5511 5512 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 5513 &prev_ps->mac_remote_faults, 5514 &cur_ps->mac_remote_faults); 5515 5516 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 5517 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 5518 5519 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 5520 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 5521 5522 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 5523 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 5524 5525 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 5526 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 5527 5528 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 5529 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 5530 5531 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 5532 5533 pf->stat_prev_loaded = true; 5534 } 5535 5536 /** 5537 * ice_get_stats64 - get statistics for network device structure 5538 * @netdev: network interface device structure 5539 * @stats: main device statistics structure 5540 */ 5541 static 5542 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 5543 { 5544 struct ice_netdev_priv *np = netdev_priv(netdev); 5545 struct rtnl_link_stats64 *vsi_stats; 5546 struct ice_vsi *vsi = np->vsi; 5547 5548 vsi_stats = &vsi->net_stats; 5549 5550 if (!vsi->num_txq || !vsi->num_rxq) 5551 return; 5552 5553 /* netdev packet/byte stats come from ring counter. These are obtained 5554 * by summing up ring counters (done by ice_update_vsi_ring_stats). 5555 * But, only call the update routine and read the registers if VSI is 5556 * not down. 5557 */ 5558 if (!test_bit(__ICE_DOWN, vsi->state)) 5559 ice_update_vsi_ring_stats(vsi); 5560 stats->tx_packets = vsi_stats->tx_packets; 5561 stats->tx_bytes = vsi_stats->tx_bytes; 5562 stats->rx_packets = vsi_stats->rx_packets; 5563 stats->rx_bytes = vsi_stats->rx_bytes; 5564 5565 /* The rest of the stats can be read from the hardware but instead we 5566 * just return values that the watchdog task has already obtained from 5567 * the hardware. 5568 */ 5569 stats->multicast = vsi_stats->multicast; 5570 stats->tx_errors = vsi_stats->tx_errors; 5571 stats->tx_dropped = vsi_stats->tx_dropped; 5572 stats->rx_errors = vsi_stats->rx_errors; 5573 stats->rx_dropped = vsi_stats->rx_dropped; 5574 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 5575 stats->rx_length_errors = vsi_stats->rx_length_errors; 5576 } 5577 5578 /** 5579 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 5580 * @vsi: VSI having NAPI disabled 5581 */ 5582 static void ice_napi_disable_all(struct ice_vsi *vsi) 5583 { 5584 int q_idx; 5585 5586 if (!vsi->netdev) 5587 return; 5588 5589 ice_for_each_q_vector(vsi, q_idx) { 5590 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 5591 5592 if (q_vector->rx.ring || q_vector->tx.ring) 5593 napi_disable(&q_vector->napi); 5594 } 5595 } 5596 5597 /** 5598 * ice_down - Shutdown the connection 5599 * @vsi: The VSI being stopped 5600 */ 5601 int ice_down(struct ice_vsi *vsi) 5602 { 5603 int i, tx_err, rx_err, link_err = 0; 5604 5605 /* Caller of this function is expected to set the 5606 * vsi->state __ICE_DOWN bit 5607 */ 5608 if (vsi->netdev) { 5609 netif_carrier_off(vsi->netdev); 5610 netif_tx_disable(vsi->netdev); 5611 } 5612 5613 ice_vsi_dis_irq(vsi); 5614 5615 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 5616 if (tx_err) 5617 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 5618 vsi->vsi_num, tx_err); 5619 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 5620 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 5621 if (tx_err) 5622 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 5623 vsi->vsi_num, tx_err); 5624 } 5625 5626 rx_err = ice_vsi_stop_all_rx_rings(vsi); 5627 if (rx_err) 5628 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 5629 vsi->vsi_num, rx_err); 5630 5631 ice_napi_disable_all(vsi); 5632 5633 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 5634 link_err = ice_force_phys_link_state(vsi, false); 5635 if (link_err) 5636 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 5637 vsi->vsi_num, link_err); 5638 } 5639 5640 ice_for_each_txq(vsi, i) 5641 ice_clean_tx_ring(vsi->tx_rings[i]); 5642 5643 ice_for_each_rxq(vsi, i) 5644 ice_clean_rx_ring(vsi->rx_rings[i]); 5645 5646 if (tx_err || rx_err || link_err) { 5647 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 5648 vsi->vsi_num, vsi->vsw->sw_id); 5649 return -EIO; 5650 } 5651 5652 return 0; 5653 } 5654 5655 /** 5656 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 5657 * @vsi: VSI having resources allocated 5658 * 5659 * Return 0 on success, negative on failure 5660 */ 5661 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 5662 { 5663 int i, err = 0; 5664 5665 if (!vsi->num_txq) { 5666 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 5667 vsi->vsi_num); 5668 return -EINVAL; 5669 } 5670 5671 ice_for_each_txq(vsi, i) { 5672 struct ice_ring *ring = vsi->tx_rings[i]; 5673 5674 if (!ring) 5675 return -EINVAL; 5676 5677 ring->netdev = vsi->netdev; 5678 err = ice_setup_tx_ring(ring); 5679 if (err) 5680 break; 5681 } 5682 5683 return err; 5684 } 5685 5686 /** 5687 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 5688 * @vsi: VSI having resources allocated 5689 * 5690 * Return 0 on success, negative on failure 5691 */ 5692 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 5693 { 5694 int i, err = 0; 5695 5696 if (!vsi->num_rxq) { 5697 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 5698 vsi->vsi_num); 5699 return -EINVAL; 5700 } 5701 5702 ice_for_each_rxq(vsi, i) { 5703 struct ice_ring *ring = vsi->rx_rings[i]; 5704 5705 if (!ring) 5706 return -EINVAL; 5707 5708 ring->netdev = vsi->netdev; 5709 err = ice_setup_rx_ring(ring); 5710 if (err) 5711 break; 5712 } 5713 5714 return err; 5715 } 5716 5717 /** 5718 * ice_vsi_open_ctrl - open control VSI for use 5719 * @vsi: the VSI to open 5720 * 5721 * Initialization of the Control VSI 5722 * 5723 * Returns 0 on success, negative value on error 5724 */ 5725 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 5726 { 5727 char int_name[ICE_INT_NAME_STR_LEN]; 5728 struct ice_pf *pf = vsi->back; 5729 struct device *dev; 5730 int err; 5731 5732 dev = ice_pf_to_dev(pf); 5733 /* allocate descriptors */ 5734 err = ice_vsi_setup_tx_rings(vsi); 5735 if (err) 5736 goto err_setup_tx; 5737 5738 err = ice_vsi_setup_rx_rings(vsi); 5739 if (err) 5740 goto err_setup_rx; 5741 5742 err = ice_vsi_cfg(vsi); 5743 if (err) 5744 goto err_setup_rx; 5745 5746 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 5747 dev_driver_string(dev), dev_name(dev)); 5748 err = ice_vsi_req_irq_msix(vsi, int_name); 5749 if (err) 5750 goto err_setup_rx; 5751 5752 ice_vsi_cfg_msix(vsi); 5753 5754 err = ice_vsi_start_all_rx_rings(vsi); 5755 if (err) 5756 goto err_up_complete; 5757 5758 clear_bit(__ICE_DOWN, vsi->state); 5759 ice_vsi_ena_irq(vsi); 5760 5761 return 0; 5762 5763 err_up_complete: 5764 ice_down(vsi); 5765 err_setup_rx: 5766 ice_vsi_free_rx_rings(vsi); 5767 err_setup_tx: 5768 ice_vsi_free_tx_rings(vsi); 5769 5770 return err; 5771 } 5772 5773 /** 5774 * ice_vsi_open - Called when a network interface is made active 5775 * @vsi: the VSI to open 5776 * 5777 * Initialization of the VSI 5778 * 5779 * Returns 0 on success, negative value on error 5780 */ 5781 static int ice_vsi_open(struct ice_vsi *vsi) 5782 { 5783 char int_name[ICE_INT_NAME_STR_LEN]; 5784 struct ice_pf *pf = vsi->back; 5785 int err; 5786 5787 /* allocate descriptors */ 5788 err = ice_vsi_setup_tx_rings(vsi); 5789 if (err) 5790 goto err_setup_tx; 5791 5792 err = ice_vsi_setup_rx_rings(vsi); 5793 if (err) 5794 goto err_setup_rx; 5795 5796 err = ice_vsi_cfg(vsi); 5797 if (err) 5798 goto err_setup_rx; 5799 5800 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 5801 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 5802 err = ice_vsi_req_irq_msix(vsi, int_name); 5803 if (err) 5804 goto err_setup_rx; 5805 5806 /* Notify the stack of the actual queue counts. */ 5807 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 5808 if (err) 5809 goto err_set_qs; 5810 5811 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 5812 if (err) 5813 goto err_set_qs; 5814 5815 err = ice_up_complete(vsi); 5816 if (err) 5817 goto err_up_complete; 5818 5819 return 0; 5820 5821 err_up_complete: 5822 ice_down(vsi); 5823 err_set_qs: 5824 ice_vsi_free_irq(vsi); 5825 err_setup_rx: 5826 ice_vsi_free_rx_rings(vsi); 5827 err_setup_tx: 5828 ice_vsi_free_tx_rings(vsi); 5829 5830 return err; 5831 } 5832 5833 /** 5834 * ice_vsi_release_all - Delete all VSIs 5835 * @pf: PF from which all VSIs are being removed 5836 */ 5837 static void ice_vsi_release_all(struct ice_pf *pf) 5838 { 5839 int err, i; 5840 5841 if (!pf->vsi) 5842 return; 5843 5844 ice_for_each_vsi(pf, i) { 5845 if (!pf->vsi[i]) 5846 continue; 5847 5848 err = ice_vsi_release(pf->vsi[i]); 5849 if (err) 5850 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 5851 i, err, pf->vsi[i]->vsi_num); 5852 } 5853 } 5854 5855 /** 5856 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 5857 * @pf: pointer to the PF instance 5858 * @type: VSI type to rebuild 5859 * 5860 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 5861 */ 5862 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 5863 { 5864 struct device *dev = ice_pf_to_dev(pf); 5865 enum ice_status status; 5866 int i, err; 5867 5868 ice_for_each_vsi(pf, i) { 5869 struct ice_vsi *vsi = pf->vsi[i]; 5870 5871 if (!vsi || vsi->type != type) 5872 continue; 5873 5874 /* rebuild the VSI */ 5875 err = ice_vsi_rebuild(vsi, true); 5876 if (err) { 5877 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 5878 err, vsi->idx, ice_vsi_type_str(type)); 5879 return err; 5880 } 5881 5882 /* replay filters for the VSI */ 5883 status = ice_replay_vsi(&pf->hw, vsi->idx); 5884 if (status) { 5885 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n", 5886 ice_stat_str(status), vsi->idx, 5887 ice_vsi_type_str(type)); 5888 return -EIO; 5889 } 5890 5891 /* Re-map HW VSI number, using VSI handle that has been 5892 * previously validated in ice_replay_vsi() call above 5893 */ 5894 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 5895 5896 /* enable the VSI */ 5897 err = ice_ena_vsi(vsi, false); 5898 if (err) { 5899 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 5900 err, vsi->idx, ice_vsi_type_str(type)); 5901 return err; 5902 } 5903 5904 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 5905 ice_vsi_type_str(type)); 5906 } 5907 5908 return 0; 5909 } 5910 5911 /** 5912 * ice_update_pf_netdev_link - Update PF netdev link status 5913 * @pf: pointer to the PF instance 5914 */ 5915 static void ice_update_pf_netdev_link(struct ice_pf *pf) 5916 { 5917 bool link_up; 5918 int i; 5919 5920 ice_for_each_vsi(pf, i) { 5921 struct ice_vsi *vsi = pf->vsi[i]; 5922 5923 if (!vsi || vsi->type != ICE_VSI_PF) 5924 return; 5925 5926 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 5927 if (link_up) { 5928 netif_carrier_on(pf->vsi[i]->netdev); 5929 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 5930 } else { 5931 netif_carrier_off(pf->vsi[i]->netdev); 5932 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 5933 } 5934 } 5935 } 5936 5937 /** 5938 * ice_rebuild - rebuild after reset 5939 * @pf: PF to rebuild 5940 * @reset_type: type of reset 5941 * 5942 * Do not rebuild VF VSI in this flow because that is already handled via 5943 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 5944 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 5945 * to reset/rebuild all the VF VSI twice. 5946 */ 5947 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 5948 { 5949 struct device *dev = ice_pf_to_dev(pf); 5950 struct ice_hw *hw = &pf->hw; 5951 enum ice_status ret; 5952 int err; 5953 5954 if (test_bit(__ICE_DOWN, pf->state)) 5955 goto clear_recovery; 5956 5957 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 5958 5959 ret = ice_init_all_ctrlq(hw); 5960 if (ret) { 5961 dev_err(dev, "control queues init failed %s\n", 5962 ice_stat_str(ret)); 5963 goto err_init_ctrlq; 5964 } 5965 5966 /* if DDP was previously loaded successfully */ 5967 if (!ice_is_safe_mode(pf)) { 5968 /* reload the SW DB of filter tables */ 5969 if (reset_type == ICE_RESET_PFR) 5970 ice_fill_blk_tbls(hw); 5971 else 5972 /* Reload DDP Package after CORER/GLOBR reset */ 5973 ice_load_pkg(NULL, pf); 5974 } 5975 5976 ret = ice_clear_pf_cfg(hw); 5977 if (ret) { 5978 dev_err(dev, "clear PF configuration failed %s\n", 5979 ice_stat_str(ret)); 5980 goto err_init_ctrlq; 5981 } 5982 5983 if (pf->first_sw->dflt_vsi_ena) 5984 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 5985 /* clear the default VSI configuration if it exists */ 5986 pf->first_sw->dflt_vsi = NULL; 5987 pf->first_sw->dflt_vsi_ena = false; 5988 5989 ice_clear_pxe_mode(hw); 5990 5991 ret = ice_get_caps(hw); 5992 if (ret) { 5993 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret)); 5994 goto err_init_ctrlq; 5995 } 5996 5997 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 5998 if (ret) { 5999 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret)); 6000 goto err_init_ctrlq; 6001 } 6002 6003 err = ice_sched_init_port(hw->port_info); 6004 if (err) 6005 goto err_sched_init_port; 6006 6007 /* start misc vector */ 6008 err = ice_req_irq_msix_misc(pf); 6009 if (err) { 6010 dev_err(dev, "misc vector setup failed: %d\n", err); 6011 goto err_sched_init_port; 6012 } 6013 6014 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6015 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6016 if (!rd32(hw, PFQF_FD_SIZE)) { 6017 u16 unused, guar, b_effort; 6018 6019 guar = hw->func_caps.fd_fltr_guar; 6020 b_effort = hw->func_caps.fd_fltr_best_effort; 6021 6022 /* force guaranteed filter pool for PF */ 6023 ice_alloc_fd_guar_item(hw, &unused, guar); 6024 /* force shared filter pool for PF */ 6025 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6026 } 6027 } 6028 6029 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6030 ice_dcb_rebuild(pf); 6031 6032 /* rebuild PF VSI */ 6033 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6034 if (err) { 6035 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6036 goto err_vsi_rebuild; 6037 } 6038 6039 /* If Flow Director is active */ 6040 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6041 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6042 if (err) { 6043 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6044 goto err_vsi_rebuild; 6045 } 6046 6047 /* replay HW Flow Director recipes */ 6048 if (hw->fdir_prof) 6049 ice_fdir_replay_flows(hw); 6050 6051 /* replay Flow Director filters */ 6052 ice_fdir_replay_fltrs(pf); 6053 6054 ice_rebuild_arfs(pf); 6055 } 6056 6057 ice_update_pf_netdev_link(pf); 6058 6059 /* tell the firmware we are up */ 6060 ret = ice_send_version(pf); 6061 if (ret) { 6062 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n", 6063 ice_stat_str(ret)); 6064 goto err_vsi_rebuild; 6065 } 6066 6067 ice_replay_post(hw); 6068 6069 /* if we get here, reset flow is successful */ 6070 clear_bit(__ICE_RESET_FAILED, pf->state); 6071 return; 6072 6073 err_vsi_rebuild: 6074 err_sched_init_port: 6075 ice_sched_cleanup_all(hw); 6076 err_init_ctrlq: 6077 ice_shutdown_all_ctrlq(hw); 6078 set_bit(__ICE_RESET_FAILED, pf->state); 6079 clear_recovery: 6080 /* set this bit in PF state to control service task scheduling */ 6081 set_bit(__ICE_NEEDS_RESTART, pf->state); 6082 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6083 } 6084 6085 /** 6086 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6087 * @vsi: Pointer to VSI structure 6088 */ 6089 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 6090 { 6091 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 6092 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 6093 else 6094 return ICE_RXBUF_3072; 6095 } 6096 6097 /** 6098 * ice_change_mtu - NDO callback to change the MTU 6099 * @netdev: network interface device structure 6100 * @new_mtu: new value for maximum frame size 6101 * 6102 * Returns 0 on success, negative on failure 6103 */ 6104 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 6105 { 6106 struct ice_netdev_priv *np = netdev_priv(netdev); 6107 struct ice_vsi *vsi = np->vsi; 6108 struct ice_pf *pf = vsi->back; 6109 u8 count = 0; 6110 6111 if (new_mtu == (int)netdev->mtu) { 6112 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 6113 return 0; 6114 } 6115 6116 if (ice_is_xdp_ena_vsi(vsi)) { 6117 int frame_size = ice_max_xdp_frame_size(vsi); 6118 6119 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 6120 netdev_err(netdev, "max MTU for XDP usage is %d\n", 6121 frame_size - ICE_ETH_PKT_HDR_PAD); 6122 return -EINVAL; 6123 } 6124 } 6125 6126 if (new_mtu < (int)netdev->min_mtu) { 6127 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n", 6128 netdev->min_mtu); 6129 return -EINVAL; 6130 } else if (new_mtu > (int)netdev->max_mtu) { 6131 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n", 6132 netdev->min_mtu); 6133 return -EINVAL; 6134 } 6135 /* if a reset is in progress, wait for some time for it to complete */ 6136 do { 6137 if (ice_is_reset_in_progress(pf->state)) { 6138 count++; 6139 usleep_range(1000, 2000); 6140 } else { 6141 break; 6142 } 6143 6144 } while (count < 100); 6145 6146 if (count == 100) { 6147 netdev_err(netdev, "can't change MTU. Device is busy\n"); 6148 return -EBUSY; 6149 } 6150 6151 netdev->mtu = (unsigned int)new_mtu; 6152 6153 /* if VSI is up, bring it down and then back up */ 6154 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) { 6155 int err; 6156 6157 err = ice_down(vsi); 6158 if (err) { 6159 netdev_err(netdev, "change MTU if_up err %d\n", err); 6160 return err; 6161 } 6162 6163 err = ice_up(vsi); 6164 if (err) { 6165 netdev_err(netdev, "change MTU if_up err %d\n", err); 6166 return err; 6167 } 6168 } 6169 6170 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 6171 return 0; 6172 } 6173 6174 /** 6175 * ice_aq_str - convert AQ err code to a string 6176 * @aq_err: the AQ error code to convert 6177 */ 6178 const char *ice_aq_str(enum ice_aq_err aq_err) 6179 { 6180 switch (aq_err) { 6181 case ICE_AQ_RC_OK: 6182 return "OK"; 6183 case ICE_AQ_RC_EPERM: 6184 return "ICE_AQ_RC_EPERM"; 6185 case ICE_AQ_RC_ENOENT: 6186 return "ICE_AQ_RC_ENOENT"; 6187 case ICE_AQ_RC_ENOMEM: 6188 return "ICE_AQ_RC_ENOMEM"; 6189 case ICE_AQ_RC_EBUSY: 6190 return "ICE_AQ_RC_EBUSY"; 6191 case ICE_AQ_RC_EEXIST: 6192 return "ICE_AQ_RC_EEXIST"; 6193 case ICE_AQ_RC_EINVAL: 6194 return "ICE_AQ_RC_EINVAL"; 6195 case ICE_AQ_RC_ENOSPC: 6196 return "ICE_AQ_RC_ENOSPC"; 6197 case ICE_AQ_RC_ENOSYS: 6198 return "ICE_AQ_RC_ENOSYS"; 6199 case ICE_AQ_RC_EMODE: 6200 return "ICE_AQ_RC_EMODE"; 6201 case ICE_AQ_RC_ENOSEC: 6202 return "ICE_AQ_RC_ENOSEC"; 6203 case ICE_AQ_RC_EBADSIG: 6204 return "ICE_AQ_RC_EBADSIG"; 6205 case ICE_AQ_RC_ESVN: 6206 return "ICE_AQ_RC_ESVN"; 6207 case ICE_AQ_RC_EBADMAN: 6208 return "ICE_AQ_RC_EBADMAN"; 6209 case ICE_AQ_RC_EBADBUF: 6210 return "ICE_AQ_RC_EBADBUF"; 6211 } 6212 6213 return "ICE_AQ_RC_UNKNOWN"; 6214 } 6215 6216 /** 6217 * ice_stat_str - convert status err code to a string 6218 * @stat_err: the status error code to convert 6219 */ 6220 const char *ice_stat_str(enum ice_status stat_err) 6221 { 6222 switch (stat_err) { 6223 case ICE_SUCCESS: 6224 return "OK"; 6225 case ICE_ERR_PARAM: 6226 return "ICE_ERR_PARAM"; 6227 case ICE_ERR_NOT_IMPL: 6228 return "ICE_ERR_NOT_IMPL"; 6229 case ICE_ERR_NOT_READY: 6230 return "ICE_ERR_NOT_READY"; 6231 case ICE_ERR_NOT_SUPPORTED: 6232 return "ICE_ERR_NOT_SUPPORTED"; 6233 case ICE_ERR_BAD_PTR: 6234 return "ICE_ERR_BAD_PTR"; 6235 case ICE_ERR_INVAL_SIZE: 6236 return "ICE_ERR_INVAL_SIZE"; 6237 case ICE_ERR_DEVICE_NOT_SUPPORTED: 6238 return "ICE_ERR_DEVICE_NOT_SUPPORTED"; 6239 case ICE_ERR_RESET_FAILED: 6240 return "ICE_ERR_RESET_FAILED"; 6241 case ICE_ERR_FW_API_VER: 6242 return "ICE_ERR_FW_API_VER"; 6243 case ICE_ERR_NO_MEMORY: 6244 return "ICE_ERR_NO_MEMORY"; 6245 case ICE_ERR_CFG: 6246 return "ICE_ERR_CFG"; 6247 case ICE_ERR_OUT_OF_RANGE: 6248 return "ICE_ERR_OUT_OF_RANGE"; 6249 case ICE_ERR_ALREADY_EXISTS: 6250 return "ICE_ERR_ALREADY_EXISTS"; 6251 case ICE_ERR_NVM_CHECKSUM: 6252 return "ICE_ERR_NVM_CHECKSUM"; 6253 case ICE_ERR_BUF_TOO_SHORT: 6254 return "ICE_ERR_BUF_TOO_SHORT"; 6255 case ICE_ERR_NVM_BLANK_MODE: 6256 return "ICE_ERR_NVM_BLANK_MODE"; 6257 case ICE_ERR_IN_USE: 6258 return "ICE_ERR_IN_USE"; 6259 case ICE_ERR_MAX_LIMIT: 6260 return "ICE_ERR_MAX_LIMIT"; 6261 case ICE_ERR_RESET_ONGOING: 6262 return "ICE_ERR_RESET_ONGOING"; 6263 case ICE_ERR_HW_TABLE: 6264 return "ICE_ERR_HW_TABLE"; 6265 case ICE_ERR_DOES_NOT_EXIST: 6266 return "ICE_ERR_DOES_NOT_EXIST"; 6267 case ICE_ERR_FW_DDP_MISMATCH: 6268 return "ICE_ERR_FW_DDP_MISMATCH"; 6269 case ICE_ERR_AQ_ERROR: 6270 return "ICE_ERR_AQ_ERROR"; 6271 case ICE_ERR_AQ_TIMEOUT: 6272 return "ICE_ERR_AQ_TIMEOUT"; 6273 case ICE_ERR_AQ_FULL: 6274 return "ICE_ERR_AQ_FULL"; 6275 case ICE_ERR_AQ_NO_WORK: 6276 return "ICE_ERR_AQ_NO_WORK"; 6277 case ICE_ERR_AQ_EMPTY: 6278 return "ICE_ERR_AQ_EMPTY"; 6279 case ICE_ERR_AQ_FW_CRITICAL: 6280 return "ICE_ERR_AQ_FW_CRITICAL"; 6281 } 6282 6283 return "ICE_ERR_UNKNOWN"; 6284 } 6285 6286 /** 6287 * ice_set_rss - Set RSS keys and lut 6288 * @vsi: Pointer to VSI structure 6289 * @seed: RSS hash seed 6290 * @lut: Lookup table 6291 * @lut_size: Lookup table size 6292 * 6293 * Returns 0 on success, negative on failure 6294 */ 6295 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6296 { 6297 struct ice_pf *pf = vsi->back; 6298 struct ice_hw *hw = &pf->hw; 6299 enum ice_status status; 6300 struct device *dev; 6301 6302 dev = ice_pf_to_dev(pf); 6303 if (seed) { 6304 struct ice_aqc_get_set_rss_keys *buf = 6305 (struct ice_aqc_get_set_rss_keys *)seed; 6306 6307 status = ice_aq_set_rss_key(hw, vsi->idx, buf); 6308 6309 if (status) { 6310 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n", 6311 ice_stat_str(status), 6312 ice_aq_str(hw->adminq.sq_last_status)); 6313 return -EIO; 6314 } 6315 } 6316 6317 if (lut) { 6318 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6319 lut, lut_size); 6320 if (status) { 6321 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n", 6322 ice_stat_str(status), 6323 ice_aq_str(hw->adminq.sq_last_status)); 6324 return -EIO; 6325 } 6326 } 6327 6328 return 0; 6329 } 6330 6331 /** 6332 * ice_get_rss - Get RSS keys and lut 6333 * @vsi: Pointer to VSI structure 6334 * @seed: Buffer to store the keys 6335 * @lut: Buffer to store the lookup table entries 6336 * @lut_size: Size of buffer to store the lookup table entries 6337 * 6338 * Returns 0 on success, negative on failure 6339 */ 6340 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size) 6341 { 6342 struct ice_pf *pf = vsi->back; 6343 struct ice_hw *hw = &pf->hw; 6344 enum ice_status status; 6345 struct device *dev; 6346 6347 dev = ice_pf_to_dev(pf); 6348 if (seed) { 6349 struct ice_aqc_get_set_rss_keys *buf = 6350 (struct ice_aqc_get_set_rss_keys *)seed; 6351 6352 status = ice_aq_get_rss_key(hw, vsi->idx, buf); 6353 if (status) { 6354 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n", 6355 ice_stat_str(status), 6356 ice_aq_str(hw->adminq.sq_last_status)); 6357 return -EIO; 6358 } 6359 } 6360 6361 if (lut) { 6362 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type, 6363 lut, lut_size); 6364 if (status) { 6365 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n", 6366 ice_stat_str(status), 6367 ice_aq_str(hw->adminq.sq_last_status)); 6368 return -EIO; 6369 } 6370 } 6371 6372 return 0; 6373 } 6374 6375 /** 6376 * ice_bridge_getlink - Get the hardware bridge mode 6377 * @skb: skb buff 6378 * @pid: process ID 6379 * @seq: RTNL message seq 6380 * @dev: the netdev being configured 6381 * @filter_mask: filter mask passed in 6382 * @nlflags: netlink flags passed in 6383 * 6384 * Return the bridge mode (VEB/VEPA) 6385 */ 6386 static int 6387 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 6388 struct net_device *dev, u32 filter_mask, int nlflags) 6389 { 6390 struct ice_netdev_priv *np = netdev_priv(dev); 6391 struct ice_vsi *vsi = np->vsi; 6392 struct ice_pf *pf = vsi->back; 6393 u16 bmode; 6394 6395 bmode = pf->first_sw->bridge_mode; 6396 6397 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 6398 filter_mask, NULL); 6399 } 6400 6401 /** 6402 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 6403 * @vsi: Pointer to VSI structure 6404 * @bmode: Hardware bridge mode (VEB/VEPA) 6405 * 6406 * Returns 0 on success, negative on failure 6407 */ 6408 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 6409 { 6410 struct ice_aqc_vsi_props *vsi_props; 6411 struct ice_hw *hw = &vsi->back->hw; 6412 struct ice_vsi_ctx *ctxt; 6413 enum ice_status status; 6414 int ret = 0; 6415 6416 vsi_props = &vsi->info; 6417 6418 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 6419 if (!ctxt) 6420 return -ENOMEM; 6421 6422 ctxt->info = vsi->info; 6423 6424 if (bmode == BRIDGE_MODE_VEB) 6425 /* change from VEPA to VEB mode */ 6426 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6427 else 6428 /* change from VEB to VEPA mode */ 6429 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 6430 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 6431 6432 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 6433 if (status) { 6434 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n", 6435 bmode, ice_stat_str(status), 6436 ice_aq_str(hw->adminq.sq_last_status)); 6437 ret = -EIO; 6438 goto out; 6439 } 6440 /* Update sw flags for book keeping */ 6441 vsi_props->sw_flags = ctxt->info.sw_flags; 6442 6443 out: 6444 kfree(ctxt); 6445 return ret; 6446 } 6447 6448 /** 6449 * ice_bridge_setlink - Set the hardware bridge mode 6450 * @dev: the netdev being configured 6451 * @nlh: RTNL message 6452 * @flags: bridge setlink flags 6453 * @extack: netlink extended ack 6454 * 6455 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 6456 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 6457 * not already set for all VSIs connected to this switch. And also update the 6458 * unicast switch filter rules for the corresponding switch of the netdev. 6459 */ 6460 static int 6461 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 6462 u16 __always_unused flags, 6463 struct netlink_ext_ack __always_unused *extack) 6464 { 6465 struct ice_netdev_priv *np = netdev_priv(dev); 6466 struct ice_pf *pf = np->vsi->back; 6467 struct nlattr *attr, *br_spec; 6468 struct ice_hw *hw = &pf->hw; 6469 enum ice_status status; 6470 struct ice_sw *pf_sw; 6471 int rem, v, err = 0; 6472 6473 pf_sw = pf->first_sw; 6474 /* find the attribute in the netlink message */ 6475 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 6476 6477 nla_for_each_nested(attr, br_spec, rem) { 6478 __u16 mode; 6479 6480 if (nla_type(attr) != IFLA_BRIDGE_MODE) 6481 continue; 6482 mode = nla_get_u16(attr); 6483 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 6484 return -EINVAL; 6485 /* Continue if bridge mode is not being flipped */ 6486 if (mode == pf_sw->bridge_mode) 6487 continue; 6488 /* Iterates through the PF VSI list and update the loopback 6489 * mode of the VSI 6490 */ 6491 ice_for_each_vsi(pf, v) { 6492 if (!pf->vsi[v]) 6493 continue; 6494 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 6495 if (err) 6496 return err; 6497 } 6498 6499 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 6500 /* Update the unicast switch filter rules for the corresponding 6501 * switch of the netdev 6502 */ 6503 status = ice_update_sw_rule_bridge_mode(hw); 6504 if (status) { 6505 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n", 6506 mode, ice_stat_str(status), 6507 ice_aq_str(hw->adminq.sq_last_status)); 6508 /* revert hw->evb_veb */ 6509 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 6510 return -EIO; 6511 } 6512 6513 pf_sw->bridge_mode = mode; 6514 } 6515 6516 return 0; 6517 } 6518 6519 /** 6520 * ice_tx_timeout - Respond to a Tx Hang 6521 * @netdev: network interface device structure 6522 * @txqueue: Tx queue 6523 */ 6524 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 6525 { 6526 struct ice_netdev_priv *np = netdev_priv(netdev); 6527 struct ice_ring *tx_ring = NULL; 6528 struct ice_vsi *vsi = np->vsi; 6529 struct ice_pf *pf = vsi->back; 6530 u32 i; 6531 6532 pf->tx_timeout_count++; 6533 6534 /* Check if PFC is enabled for the TC to which the queue belongs 6535 * to. If yes then Tx timeout is not caused by a hung queue, no 6536 * need to reset and rebuild 6537 */ 6538 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 6539 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 6540 txqueue); 6541 return; 6542 } 6543 6544 /* now that we have an index, find the tx_ring struct */ 6545 for (i = 0; i < vsi->num_txq; i++) 6546 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 6547 if (txqueue == vsi->tx_rings[i]->q_index) { 6548 tx_ring = vsi->tx_rings[i]; 6549 break; 6550 } 6551 6552 /* Reset recovery level if enough time has elapsed after last timeout. 6553 * Also ensure no new reset action happens before next timeout period. 6554 */ 6555 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 6556 pf->tx_timeout_recovery_level = 1; 6557 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 6558 netdev->watchdog_timeo))) 6559 return; 6560 6561 if (tx_ring) { 6562 struct ice_hw *hw = &pf->hw; 6563 u32 head, val = 0; 6564 6565 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 6566 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 6567 /* Read interrupt register */ 6568 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 6569 6570 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 6571 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 6572 head, tx_ring->next_to_use, val); 6573 } 6574 6575 pf->tx_timeout_last_recovery = jiffies; 6576 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 6577 pf->tx_timeout_recovery_level, txqueue); 6578 6579 switch (pf->tx_timeout_recovery_level) { 6580 case 1: 6581 set_bit(__ICE_PFR_REQ, pf->state); 6582 break; 6583 case 2: 6584 set_bit(__ICE_CORER_REQ, pf->state); 6585 break; 6586 case 3: 6587 set_bit(__ICE_GLOBR_REQ, pf->state); 6588 break; 6589 default: 6590 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 6591 set_bit(__ICE_DOWN, pf->state); 6592 set_bit(__ICE_NEEDS_RESTART, vsi->state); 6593 set_bit(__ICE_SERVICE_DIS, pf->state); 6594 break; 6595 } 6596 6597 ice_service_task_schedule(pf); 6598 pf->tx_timeout_recovery_level++; 6599 } 6600 6601 /** 6602 * ice_open - Called when a network interface becomes active 6603 * @netdev: network interface device structure 6604 * 6605 * The open entry point is called when a network interface is made 6606 * active by the system (IFF_UP). At this point all resources needed 6607 * for transmit and receive operations are allocated, the interrupt 6608 * handler is registered with the OS, the netdev watchdog is enabled, 6609 * and the stack is notified that the interface is ready. 6610 * 6611 * Returns 0 on success, negative value on failure 6612 */ 6613 int ice_open(struct net_device *netdev) 6614 { 6615 struct ice_netdev_priv *np = netdev_priv(netdev); 6616 struct ice_vsi *vsi = np->vsi; 6617 struct ice_pf *pf = vsi->back; 6618 struct ice_port_info *pi; 6619 int err; 6620 6621 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) { 6622 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 6623 return -EIO; 6624 } 6625 6626 if (test_bit(__ICE_DOWN, pf->state)) { 6627 netdev_err(netdev, "device is not ready yet\n"); 6628 return -EBUSY; 6629 } 6630 6631 netif_carrier_off(netdev); 6632 6633 pi = vsi->port_info; 6634 err = ice_update_link_info(pi); 6635 if (err) { 6636 netdev_err(netdev, "Failed to get link info, error %d\n", 6637 err); 6638 return err; 6639 } 6640 6641 /* Set PHY if there is media, otherwise, turn off PHY */ 6642 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 6643 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6644 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) { 6645 err = ice_init_phy_user_cfg(pi); 6646 if (err) { 6647 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 6648 err); 6649 return err; 6650 } 6651 } 6652 6653 err = ice_configure_phy(vsi); 6654 if (err) { 6655 netdev_err(netdev, "Failed to set physical link up, error %d\n", 6656 err); 6657 return err; 6658 } 6659 } else { 6660 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 6661 err = ice_aq_set_link_restart_an(pi, false, NULL); 6662 if (err) { 6663 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n", 6664 vsi->vsi_num, err); 6665 return err; 6666 } 6667 } 6668 6669 err = ice_vsi_open(vsi); 6670 if (err) 6671 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 6672 vsi->vsi_num, vsi->vsw->sw_id); 6673 6674 /* Update existing tunnels information */ 6675 udp_tunnel_get_rx_info(netdev); 6676 6677 return err; 6678 } 6679 6680 /** 6681 * ice_stop - Disables a network interface 6682 * @netdev: network interface device structure 6683 * 6684 * The stop entry point is called when an interface is de-activated by the OS, 6685 * and the netdevice enters the DOWN state. The hardware is still under the 6686 * driver's control, but the netdev interface is disabled. 6687 * 6688 * Returns success only - not allowed to fail 6689 */ 6690 int ice_stop(struct net_device *netdev) 6691 { 6692 struct ice_netdev_priv *np = netdev_priv(netdev); 6693 struct ice_vsi *vsi = np->vsi; 6694 6695 ice_vsi_close(vsi); 6696 6697 return 0; 6698 } 6699 6700 /** 6701 * ice_features_check - Validate encapsulated packet conforms to limits 6702 * @skb: skb buffer 6703 * @netdev: This port's netdev 6704 * @features: Offload features that the stack believes apply 6705 */ 6706 static netdev_features_t 6707 ice_features_check(struct sk_buff *skb, 6708 struct net_device __always_unused *netdev, 6709 netdev_features_t features) 6710 { 6711 size_t len; 6712 6713 /* No point in doing any of this if neither checksum nor GSO are 6714 * being requested for this frame. We can rule out both by just 6715 * checking for CHECKSUM_PARTIAL 6716 */ 6717 if (skb->ip_summed != CHECKSUM_PARTIAL) 6718 return features; 6719 6720 /* We cannot support GSO if the MSS is going to be less than 6721 * 64 bytes. If it is then we need to drop support for GSO. 6722 */ 6723 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 6724 features &= ~NETIF_F_GSO_MASK; 6725 6726 len = skb_network_header(skb) - skb->data; 6727 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 6728 goto out_rm_features; 6729 6730 len = skb_transport_header(skb) - skb_network_header(skb); 6731 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6732 goto out_rm_features; 6733 6734 if (skb->encapsulation) { 6735 len = skb_inner_network_header(skb) - skb_transport_header(skb); 6736 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 6737 goto out_rm_features; 6738 6739 len = skb_inner_transport_header(skb) - 6740 skb_inner_network_header(skb); 6741 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 6742 goto out_rm_features; 6743 } 6744 6745 return features; 6746 out_rm_features: 6747 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 6748 } 6749 6750 static const struct net_device_ops ice_netdev_safe_mode_ops = { 6751 .ndo_open = ice_open, 6752 .ndo_stop = ice_stop, 6753 .ndo_start_xmit = ice_start_xmit, 6754 .ndo_set_mac_address = ice_set_mac_address, 6755 .ndo_validate_addr = eth_validate_addr, 6756 .ndo_change_mtu = ice_change_mtu, 6757 .ndo_get_stats64 = ice_get_stats64, 6758 .ndo_tx_timeout = ice_tx_timeout, 6759 }; 6760 6761 static const struct net_device_ops ice_netdev_ops = { 6762 .ndo_open = ice_open, 6763 .ndo_stop = ice_stop, 6764 .ndo_start_xmit = ice_start_xmit, 6765 .ndo_features_check = ice_features_check, 6766 .ndo_set_rx_mode = ice_set_rx_mode, 6767 .ndo_set_mac_address = ice_set_mac_address, 6768 .ndo_validate_addr = eth_validate_addr, 6769 .ndo_change_mtu = ice_change_mtu, 6770 .ndo_get_stats64 = ice_get_stats64, 6771 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 6772 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 6773 .ndo_set_vf_mac = ice_set_vf_mac, 6774 .ndo_get_vf_config = ice_get_vf_cfg, 6775 .ndo_set_vf_trust = ice_set_vf_trust, 6776 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 6777 .ndo_set_vf_link_state = ice_set_vf_link_state, 6778 .ndo_get_vf_stats = ice_get_vf_stats, 6779 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 6780 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 6781 .ndo_set_features = ice_set_features, 6782 .ndo_bridge_getlink = ice_bridge_getlink, 6783 .ndo_bridge_setlink = ice_bridge_setlink, 6784 .ndo_fdb_add = ice_fdb_add, 6785 .ndo_fdb_del = ice_fdb_del, 6786 #ifdef CONFIG_RFS_ACCEL 6787 .ndo_rx_flow_steer = ice_rx_flow_steer, 6788 #endif 6789 .ndo_tx_timeout = ice_tx_timeout, 6790 .ndo_bpf = ice_xdp, 6791 .ndo_xdp_xmit = ice_xdp_xmit, 6792 .ndo_xsk_wakeup = ice_xsk_wakeup, 6793 .ndo_udp_tunnel_add = udp_tunnel_nic_add_port, 6794 .ndo_udp_tunnel_del = udp_tunnel_nic_del_port, 6795 }; 6796