1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_IMPORT_NS("LIBIE_ADMINQ"); 42 MODULE_LICENSE("GPL v2"); 43 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 44 45 static int debug = -1; 46 module_param(debug, int, 0644); 47 #ifndef CONFIG_DYNAMIC_DEBUG 48 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 49 #else 50 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 51 #endif /* !CONFIG_DYNAMIC_DEBUG */ 52 53 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 54 EXPORT_SYMBOL(ice_xdp_locking_key); 55 56 /** 57 * ice_hw_to_dev - Get device pointer from the hardware structure 58 * @hw: pointer to the device HW structure 59 * 60 * Used to access the device pointer from compilation units which can't easily 61 * include the definition of struct ice_pf without leading to circular header 62 * dependencies. 63 */ 64 struct device *ice_hw_to_dev(struct ice_hw *hw) 65 { 66 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 67 68 return &pf->pdev->dev; 69 } 70 71 static struct workqueue_struct *ice_wq; 72 struct workqueue_struct *ice_lag_wq; 73 static const struct net_device_ops ice_netdev_safe_mode_ops; 74 static const struct net_device_ops ice_netdev_ops; 75 76 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 77 78 static void ice_vsi_release_all(struct ice_pf *pf); 79 80 static int ice_rebuild_channels(struct ice_pf *pf); 81 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 82 83 static int 84 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 85 void *cb_priv, enum tc_setup_type type, void *type_data, 86 void *data, 87 void (*cleanup)(struct flow_block_cb *block_cb)); 88 89 bool netif_is_ice(const struct net_device *dev) 90 { 91 return dev && (dev->netdev_ops == &ice_netdev_ops || 92 dev->netdev_ops == &ice_netdev_safe_mode_ops); 93 } 94 95 /** 96 * ice_get_tx_pending - returns number of Tx descriptors not processed 97 * @ring: the ring of descriptors 98 */ 99 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 100 { 101 u16 head, tail; 102 103 head = ring->next_to_clean; 104 tail = ring->next_to_use; 105 106 if (head != tail) 107 return (head < tail) ? 108 tail - head : (tail + ring->count - head); 109 return 0; 110 } 111 112 /** 113 * ice_check_for_hang_subtask - check for and recover hung queues 114 * @pf: pointer to PF struct 115 */ 116 static void ice_check_for_hang_subtask(struct ice_pf *pf) 117 { 118 struct ice_vsi *vsi = NULL; 119 struct ice_hw *hw; 120 unsigned int i; 121 int packets; 122 u32 v; 123 124 ice_for_each_vsi(pf, v) 125 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 126 vsi = pf->vsi[v]; 127 break; 128 } 129 130 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 131 return; 132 133 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 134 return; 135 136 hw = &vsi->back->hw; 137 138 ice_for_each_txq(vsi, i) { 139 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 140 struct ice_ring_stats *ring_stats; 141 142 if (!tx_ring) 143 continue; 144 if (ice_ring_ch_enabled(tx_ring)) 145 continue; 146 147 ring_stats = tx_ring->ring_stats; 148 if (!ring_stats) 149 continue; 150 151 if (tx_ring->desc) { 152 /* If packet counter has not changed the queue is 153 * likely stalled, so force an interrupt for this 154 * queue. 155 * 156 * prev_pkt would be negative if there was no 157 * pending work. 158 */ 159 packets = ring_stats->stats.pkts & INT_MAX; 160 if (ring_stats->tx_stats.prev_pkt == packets) { 161 /* Trigger sw interrupt to revive the queue */ 162 ice_trigger_sw_intr(hw, tx_ring->q_vector); 163 continue; 164 } 165 166 /* Memory barrier between read of packet count and call 167 * to ice_get_tx_pending() 168 */ 169 smp_rmb(); 170 ring_stats->tx_stats.prev_pkt = 171 ice_get_tx_pending(tx_ring) ? packets : -1; 172 } 173 } 174 } 175 176 /** 177 * ice_init_mac_fltr - Set initial MAC filters 178 * @pf: board private structure 179 * 180 * Set initial set of MAC filters for PF VSI; configure filters for permanent 181 * address and broadcast address. If an error is encountered, netdevice will be 182 * unregistered. 183 */ 184 static int ice_init_mac_fltr(struct ice_pf *pf) 185 { 186 struct ice_vsi *vsi; 187 u8 *perm_addr; 188 189 vsi = ice_get_main_vsi(pf); 190 if (!vsi) 191 return -EINVAL; 192 193 perm_addr = vsi->port_info->mac.perm_addr; 194 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 195 } 196 197 /** 198 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 199 * @netdev: the net device on which the sync is happening 200 * @addr: MAC address to sync 201 * 202 * This is a callback function which is called by the in kernel device sync 203 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 204 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 205 * MAC filters from the hardware. 206 */ 207 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 208 { 209 struct ice_netdev_priv *np = netdev_priv(netdev); 210 struct ice_vsi *vsi = np->vsi; 211 212 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 213 ICE_FWD_TO_VSI)) 214 return -EINVAL; 215 216 return 0; 217 } 218 219 /** 220 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 221 * @netdev: the net device on which the unsync is happening 222 * @addr: MAC address to unsync 223 * 224 * This is a callback function which is called by the in kernel device unsync 225 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 226 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 227 * delete the MAC filters from the hardware. 228 */ 229 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 230 { 231 struct ice_netdev_priv *np = netdev_priv(netdev); 232 struct ice_vsi *vsi = np->vsi; 233 234 /* Under some circumstances, we might receive a request to delete our 235 * own device address from our uc list. Because we store the device 236 * address in the VSI's MAC filter list, we need to ignore such 237 * requests and not delete our device address from this list. 238 */ 239 if (ether_addr_equal(addr, netdev->dev_addr)) 240 return 0; 241 242 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 243 ICE_FWD_TO_VSI)) 244 return -EINVAL; 245 246 return 0; 247 } 248 249 /** 250 * ice_vsi_fltr_changed - check if filter state changed 251 * @vsi: VSI to be checked 252 * 253 * returns true if filter state has changed, false otherwise. 254 */ 255 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 256 { 257 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 258 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 259 } 260 261 /** 262 * ice_set_promisc - Enable promiscuous mode for a given PF 263 * @vsi: the VSI being configured 264 * @promisc_m: mask of promiscuous config bits 265 * 266 */ 267 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 268 { 269 int status; 270 271 if (vsi->type != ICE_VSI_PF) 272 return 0; 273 274 if (ice_vsi_has_non_zero_vlans(vsi)) { 275 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 276 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 277 promisc_m); 278 } else { 279 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 280 promisc_m, 0); 281 } 282 if (status && status != -EEXIST) 283 return status; 284 285 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 286 vsi->vsi_num, promisc_m); 287 return 0; 288 } 289 290 /** 291 * ice_clear_promisc - Disable promiscuous mode for a given PF 292 * @vsi: the VSI being configured 293 * @promisc_m: mask of promiscuous config bits 294 * 295 */ 296 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 297 { 298 int status; 299 300 if (vsi->type != ICE_VSI_PF) 301 return 0; 302 303 if (ice_vsi_has_non_zero_vlans(vsi)) { 304 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 305 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 306 promisc_m); 307 } else { 308 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 309 promisc_m, 0); 310 } 311 312 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 313 vsi->vsi_num, promisc_m); 314 return status; 315 } 316 317 /** 318 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 319 * @vsi: ptr to the VSI 320 * 321 * Push any outstanding VSI filter changes through the AdminQ. 322 */ 323 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 324 { 325 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 326 struct device *dev = ice_pf_to_dev(vsi->back); 327 struct net_device *netdev = vsi->netdev; 328 bool promisc_forced_on = false; 329 struct ice_pf *pf = vsi->back; 330 struct ice_hw *hw = &pf->hw; 331 u32 changed_flags = 0; 332 int err; 333 334 if (!vsi->netdev) 335 return -EINVAL; 336 337 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 338 usleep_range(1000, 2000); 339 340 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 341 vsi->current_netdev_flags = vsi->netdev->flags; 342 343 INIT_LIST_HEAD(&vsi->tmp_sync_list); 344 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 345 346 if (ice_vsi_fltr_changed(vsi)) { 347 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 348 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 349 350 /* grab the netdev's addr_list_lock */ 351 netif_addr_lock_bh(netdev); 352 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 353 ice_add_mac_to_unsync_list); 354 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 355 ice_add_mac_to_unsync_list); 356 /* our temp lists are populated. release lock */ 357 netif_addr_unlock_bh(netdev); 358 } 359 360 /* Remove MAC addresses in the unsync list */ 361 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 362 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 363 if (err) { 364 netdev_err(netdev, "Failed to delete MAC filters\n"); 365 /* if we failed because of alloc failures, just bail */ 366 if (err == -ENOMEM) 367 goto out; 368 } 369 370 /* Add MAC addresses in the sync list */ 371 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 372 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 373 /* If filter is added successfully or already exists, do not go into 374 * 'if' condition and report it as error. Instead continue processing 375 * rest of the function. 376 */ 377 if (err && err != -EEXIST) { 378 netdev_err(netdev, "Failed to add MAC filters\n"); 379 /* If there is no more space for new umac filters, VSI 380 * should go into promiscuous mode. There should be some 381 * space reserved for promiscuous filters. 382 */ 383 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC && 384 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 385 vsi->state)) { 386 promisc_forced_on = true; 387 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 388 vsi->vsi_num); 389 } else { 390 goto out; 391 } 392 } 393 err = 0; 394 /* check for changes in promiscuous modes */ 395 if (changed_flags & IFF_ALLMULTI) { 396 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 397 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } else { 403 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 404 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 405 if (err) { 406 vsi->current_netdev_flags |= IFF_ALLMULTI; 407 goto out_promisc; 408 } 409 } 410 } 411 412 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 413 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 414 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 415 if (vsi->current_netdev_flags & IFF_PROMISC) { 416 /* Apply Rx filter rule to get traffic from wire */ 417 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 418 err = ice_set_dflt_vsi(vsi); 419 if (err && err != -EEXIST) { 420 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 421 err, vsi->vsi_num); 422 vsi->current_netdev_flags &= 423 ~IFF_PROMISC; 424 goto out_promisc; 425 } 426 err = 0; 427 vlan_ops->dis_rx_filtering(vsi); 428 429 /* promiscuous mode implies allmulticast so 430 * that VSIs that are in promiscuous mode are 431 * subscribed to multicast packets coming to 432 * the port 433 */ 434 err = ice_set_promisc(vsi, 435 ICE_MCAST_PROMISC_BITS); 436 if (err) 437 goto out_promisc; 438 } 439 } else { 440 /* Clear Rx filter to remove traffic from wire */ 441 if (ice_is_vsi_dflt_vsi(vsi)) { 442 err = ice_clear_dflt_vsi(vsi); 443 if (err) { 444 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 445 err, vsi->vsi_num); 446 vsi->current_netdev_flags |= 447 IFF_PROMISC; 448 goto out_promisc; 449 } 450 if (vsi->netdev->features & 451 NETIF_F_HW_VLAN_CTAG_FILTER) 452 vlan_ops->ena_rx_filtering(vsi); 453 } 454 455 /* disable allmulti here, but only if allmulti is not 456 * still enabled for the netdev 457 */ 458 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 459 err = ice_clear_promisc(vsi, 460 ICE_MCAST_PROMISC_BITS); 461 if (err) { 462 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 463 err, vsi->vsi_num); 464 } 465 } 466 } 467 } 468 goto exit; 469 470 out_promisc: 471 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 472 goto exit; 473 out: 474 /* if something went wrong then set the changed flag so we try again */ 475 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 476 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 477 exit: 478 clear_bit(ICE_CFG_BUSY, vsi->state); 479 return err; 480 } 481 482 /** 483 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 484 * @pf: board private structure 485 */ 486 static void ice_sync_fltr_subtask(struct ice_pf *pf) 487 { 488 int v; 489 490 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 491 return; 492 493 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 494 495 ice_for_each_vsi(pf, v) 496 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 497 ice_vsi_sync_fltr(pf->vsi[v])) { 498 /* come back and try again later */ 499 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 500 break; 501 } 502 } 503 504 /** 505 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 506 * @pf: the PF 507 * @locked: is the rtnl_lock already held 508 */ 509 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 510 { 511 int node; 512 int v; 513 514 ice_for_each_vsi(pf, v) 515 if (pf->vsi[v]) 516 ice_dis_vsi(pf->vsi[v], locked); 517 518 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 519 pf->pf_agg_node[node].num_vsis = 0; 520 521 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 522 pf->vf_agg_node[node].num_vsis = 0; 523 } 524 525 /** 526 * ice_prepare_for_reset - prep for reset 527 * @pf: board private structure 528 * @reset_type: reset type requested 529 * 530 * Inform or close all dependent features in prep for reset. 531 */ 532 static void 533 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 534 { 535 struct ice_hw *hw = &pf->hw; 536 struct ice_vsi *vsi; 537 struct ice_vf *vf; 538 unsigned int bkt; 539 540 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 541 542 /* already prepared for reset */ 543 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 544 return; 545 546 synchronize_irq(pf->oicr_irq.virq); 547 548 ice_unplug_aux_dev(pf); 549 550 /* Notify VFs of impending reset */ 551 if (ice_check_sq_alive(hw, &hw->mailboxq)) 552 ice_vc_notify_reset(pf); 553 554 /* Disable VFs until reset is completed */ 555 mutex_lock(&pf->vfs.table_lock); 556 ice_for_each_vf(pf, bkt, vf) 557 ice_set_vf_state_dis(vf); 558 mutex_unlock(&pf->vfs.table_lock); 559 560 if (ice_is_eswitch_mode_switchdev(pf)) { 561 rtnl_lock(); 562 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 563 rtnl_unlock(); 564 } 565 566 /* release ADQ specific HW and SW resources */ 567 vsi = ice_get_main_vsi(pf); 568 if (!vsi) 569 goto skip; 570 571 /* to be on safe side, reset orig_rss_size so that normal flow 572 * of deciding rss_size can take precedence 573 */ 574 vsi->orig_rss_size = 0; 575 576 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 577 if (reset_type == ICE_RESET_PFR) { 578 vsi->old_ena_tc = vsi->all_enatc; 579 vsi->old_numtc = vsi->all_numtc; 580 } else { 581 ice_remove_q_channels(vsi, true); 582 583 /* for other reset type, do not support channel rebuild 584 * hence reset needed info 585 */ 586 vsi->old_ena_tc = 0; 587 vsi->all_enatc = 0; 588 vsi->old_numtc = 0; 589 vsi->all_numtc = 0; 590 vsi->req_txq = 0; 591 vsi->req_rxq = 0; 592 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 593 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 594 } 595 } 596 597 if (vsi->netdev) 598 netif_device_detach(vsi->netdev); 599 skip: 600 601 /* clear SW filtering DB */ 602 ice_clear_hw_tbls(hw); 603 /* disable the VSIs and their queues that are not already DOWN */ 604 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 605 ice_pf_dis_all_vsi(pf, false); 606 607 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 608 ice_ptp_prepare_for_reset(pf, reset_type); 609 610 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 611 ice_gnss_exit(pf); 612 613 if (hw->port_info) 614 ice_sched_clear_port(hw->port_info); 615 616 ice_shutdown_all_ctrlq(hw, false); 617 618 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 619 } 620 621 /** 622 * ice_do_reset - Initiate one of many types of resets 623 * @pf: board private structure 624 * @reset_type: reset type requested before this function was called. 625 */ 626 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 627 { 628 struct device *dev = ice_pf_to_dev(pf); 629 struct ice_hw *hw = &pf->hw; 630 631 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 632 633 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 634 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 635 reset_type = ICE_RESET_CORER; 636 } 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) { 722 reset_type = ICE_RESET_PFR; 723 if (pf->lag && pf->lag->bonded) { 724 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 725 reset_type = ICE_RESET_CORER; 726 } 727 } 728 if (test_bit(ICE_CORER_REQ, pf->state)) 729 reset_type = ICE_RESET_CORER; 730 if (test_bit(ICE_GLOBR_REQ, pf->state)) 731 reset_type = ICE_RESET_GLOBR; 732 /* If no valid reset type requested just return */ 733 if (reset_type == ICE_RESET_INVAL) 734 return; 735 736 /* reset if not already down or busy */ 737 if (!test_bit(ICE_DOWN, pf->state) && 738 !test_bit(ICE_CFG_BUSY, pf->state)) { 739 ice_do_reset(pf, reset_type); 740 } 741 } 742 743 /** 744 * ice_print_topo_conflict - print topology conflict message 745 * @vsi: the VSI whose topology status is being checked 746 */ 747 static void ice_print_topo_conflict(struct ice_vsi *vsi) 748 { 749 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 750 case ICE_AQ_LINK_TOPO_CONFLICT: 751 case ICE_AQ_LINK_MEDIA_CONFLICT: 752 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 754 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 755 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 756 break; 757 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 758 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 759 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 760 else 761 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 762 break; 763 default: 764 break; 765 } 766 } 767 768 /** 769 * ice_print_link_msg - print link up or down message 770 * @vsi: the VSI whose link status is being queried 771 * @isup: boolean for if the link is now up or down 772 */ 773 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 774 { 775 struct ice_aqc_get_phy_caps_data *caps; 776 const char *an_advertised; 777 const char *fec_req; 778 const char *speed; 779 const char *fec; 780 const char *fc; 781 const char *an; 782 int status; 783 784 if (!vsi) 785 return; 786 787 if (vsi->current_isup == isup) 788 return; 789 790 vsi->current_isup = isup; 791 792 if (!isup) { 793 netdev_info(vsi->netdev, "NIC Link is Down\n"); 794 return; 795 } 796 797 switch (vsi->port_info->phy.link_info.link_speed) { 798 case ICE_AQ_LINK_SPEED_200GB: 799 speed = "200 G"; 800 break; 801 case ICE_AQ_LINK_SPEED_100GB: 802 speed = "100 G"; 803 break; 804 case ICE_AQ_LINK_SPEED_50GB: 805 speed = "50 G"; 806 break; 807 case ICE_AQ_LINK_SPEED_40GB: 808 speed = "40 G"; 809 break; 810 case ICE_AQ_LINK_SPEED_25GB: 811 speed = "25 G"; 812 break; 813 case ICE_AQ_LINK_SPEED_20GB: 814 speed = "20 G"; 815 break; 816 case ICE_AQ_LINK_SPEED_10GB: 817 speed = "10 G"; 818 break; 819 case ICE_AQ_LINK_SPEED_5GB: 820 speed = "5 G"; 821 break; 822 case ICE_AQ_LINK_SPEED_2500MB: 823 speed = "2.5 G"; 824 break; 825 case ICE_AQ_LINK_SPEED_1000MB: 826 speed = "1 G"; 827 break; 828 case ICE_AQ_LINK_SPEED_100MB: 829 speed = "100 M"; 830 break; 831 default: 832 speed = "Unknown "; 833 break; 834 } 835 836 switch (vsi->port_info->fc.current_mode) { 837 case ICE_FC_FULL: 838 fc = "Rx/Tx"; 839 break; 840 case ICE_FC_TX_PAUSE: 841 fc = "Tx"; 842 break; 843 case ICE_FC_RX_PAUSE: 844 fc = "Rx"; 845 break; 846 case ICE_FC_NONE: 847 fc = "None"; 848 break; 849 default: 850 fc = "Unknown"; 851 break; 852 } 853 854 /* Get FEC mode based on negotiated link info */ 855 switch (vsi->port_info->phy.link_info.fec_info) { 856 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 857 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 858 fec = "RS-FEC"; 859 break; 860 case ICE_AQ_LINK_25G_KR_FEC_EN: 861 fec = "FC-FEC/BASE-R"; 862 break; 863 default: 864 fec = "NONE"; 865 break; 866 } 867 868 /* check if autoneg completed, might be false due to not supported */ 869 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 870 an = "True"; 871 else 872 an = "False"; 873 874 /* Get FEC mode requested based on PHY caps last SW configuration */ 875 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 876 if (!caps) { 877 fec_req = "Unknown"; 878 an_advertised = "Unknown"; 879 goto done; 880 } 881 882 status = ice_aq_get_phy_caps(vsi->port_info, false, 883 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 884 if (status) 885 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 886 887 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 888 889 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 890 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 891 fec_req = "RS-FEC"; 892 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 893 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 894 fec_req = "FC-FEC/BASE-R"; 895 else 896 fec_req = "NONE"; 897 898 kfree(caps); 899 900 done: 901 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 902 speed, fec_req, fec, an_advertised, an, fc); 903 ice_print_topo_conflict(vsi); 904 } 905 906 /** 907 * ice_vsi_link_event - update the VSI's netdev 908 * @vsi: the VSI on which the link event occurred 909 * @link_up: whether or not the VSI needs to be set up or down 910 */ 911 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 912 { 913 if (!vsi) 914 return; 915 916 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 917 return; 918 919 if (vsi->type == ICE_VSI_PF) { 920 if (link_up == netif_carrier_ok(vsi->netdev)) 921 return; 922 923 if (link_up) { 924 netif_carrier_on(vsi->netdev); 925 netif_tx_wake_all_queues(vsi->netdev); 926 } else { 927 netif_carrier_off(vsi->netdev); 928 netif_tx_stop_all_queues(vsi->netdev); 929 } 930 } 931 } 932 933 /** 934 * ice_set_dflt_mib - send a default config MIB to the FW 935 * @pf: private PF struct 936 * 937 * This function sends a default configuration MIB to the FW. 938 * 939 * If this function errors out at any point, the driver is still able to 940 * function. The main impact is that LFC may not operate as expected. 941 * Therefore an error state in this function should be treated with a DBG 942 * message and continue on with driver rebuild/reenable. 943 */ 944 static void ice_set_dflt_mib(struct ice_pf *pf) 945 { 946 struct device *dev = ice_pf_to_dev(pf); 947 u8 mib_type, *buf, *lldpmib = NULL; 948 u16 len, typelen, offset = 0; 949 struct ice_lldp_org_tlv *tlv; 950 struct ice_hw *hw = &pf->hw; 951 u32 ouisubtype; 952 953 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 954 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 955 if (!lldpmib) { 956 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 957 __func__); 958 return; 959 } 960 961 /* Add ETS CFG TLV */ 962 tlv = (struct ice_lldp_org_tlv *)lldpmib; 963 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 964 ICE_IEEE_ETS_TLV_LEN); 965 tlv->typelen = htons(typelen); 966 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 967 ICE_IEEE_SUBTYPE_ETS_CFG); 968 tlv->ouisubtype = htonl(ouisubtype); 969 970 buf = tlv->tlvinfo; 971 buf[0] = 0; 972 973 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 974 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 975 * Octets 13 - 20 are TSA values - leave as zeros 976 */ 977 buf[5] = 0x64; 978 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 979 offset += len + 2; 980 tlv = (struct ice_lldp_org_tlv *) 981 ((char *)tlv + sizeof(tlv->typelen) + len); 982 983 /* Add ETS REC TLV */ 984 buf = tlv->tlvinfo; 985 tlv->typelen = htons(typelen); 986 987 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 988 ICE_IEEE_SUBTYPE_ETS_REC); 989 tlv->ouisubtype = htonl(ouisubtype); 990 991 /* First octet of buf is reserved 992 * Octets 1 - 4 map UP to TC - all UPs map to zero 993 * Octets 5 - 12 are BW values - set TC 0 to 100%. 994 * Octets 13 - 20 are TSA value - leave as zeros 995 */ 996 buf[5] = 0x64; 997 offset += len + 2; 998 tlv = (struct ice_lldp_org_tlv *) 999 ((char *)tlv + sizeof(tlv->typelen) + len); 1000 1001 /* Add PFC CFG TLV */ 1002 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1003 ICE_IEEE_PFC_TLV_LEN); 1004 tlv->typelen = htons(typelen); 1005 1006 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1007 ICE_IEEE_SUBTYPE_PFC_CFG); 1008 tlv->ouisubtype = htonl(ouisubtype); 1009 1010 /* Octet 1 left as all zeros - PFC disabled */ 1011 buf[0] = 0x08; 1012 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1013 offset += len + 2; 1014 1015 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1016 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1017 1018 kfree(lldpmib); 1019 } 1020 1021 /** 1022 * ice_check_phy_fw_load - check if PHY FW load failed 1023 * @pf: pointer to PF struct 1024 * @link_cfg_err: bitmap from the link info structure 1025 * 1026 * check if external PHY FW load failed and print an error message if it did 1027 */ 1028 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1029 { 1030 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1031 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1032 return; 1033 } 1034 1035 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1036 return; 1037 1038 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1039 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1040 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1041 } 1042 } 1043 1044 /** 1045 * ice_check_module_power 1046 * @pf: pointer to PF struct 1047 * @link_cfg_err: bitmap from the link info structure 1048 * 1049 * check module power level returned by a previous call to aq_get_link_info 1050 * and print error messages if module power level is not supported 1051 */ 1052 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1053 { 1054 /* if module power level is supported, clear the flag */ 1055 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1056 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1057 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1058 return; 1059 } 1060 1061 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1062 * above block didn't clear this bit, there's nothing to do 1063 */ 1064 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1065 return; 1066 1067 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1068 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1069 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1070 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1071 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1072 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1073 } 1074 } 1075 1076 /** 1077 * ice_check_link_cfg_err - check if link configuration failed 1078 * @pf: pointer to the PF struct 1079 * @link_cfg_err: bitmap from the link info structure 1080 * 1081 * print if any link configuration failure happens due to the value in the 1082 * link_cfg_err parameter in the link info structure 1083 */ 1084 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1085 { 1086 ice_check_module_power(pf, link_cfg_err); 1087 ice_check_phy_fw_load(pf, link_cfg_err); 1088 } 1089 1090 /** 1091 * ice_link_event - process the link event 1092 * @pf: PF that the link event is associated with 1093 * @pi: port_info for the port that the link event is associated with 1094 * @link_up: true if the physical link is up and false if it is down 1095 * @link_speed: current link speed received from the link event 1096 * 1097 * Returns 0 on success and negative on failure 1098 */ 1099 static int 1100 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1101 u16 link_speed) 1102 { 1103 struct device *dev = ice_pf_to_dev(pf); 1104 struct ice_phy_info *phy_info; 1105 struct ice_vsi *vsi; 1106 u16 old_link_speed; 1107 bool old_link; 1108 int status; 1109 1110 phy_info = &pi->phy; 1111 phy_info->link_info_old = phy_info->link_info; 1112 1113 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1114 old_link_speed = phy_info->link_info_old.link_speed; 1115 1116 /* update the link info structures and re-enable link events, 1117 * don't bail on failure due to other book keeping needed 1118 */ 1119 status = ice_update_link_info(pi); 1120 if (status) 1121 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1122 pi->lport, status, 1123 libie_aq_str(pi->hw->adminq.sq_last_status)); 1124 1125 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1126 1127 /* Check if the link state is up after updating link info, and treat 1128 * this event as an UP event since the link is actually UP now. 1129 */ 1130 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1131 link_up = true; 1132 1133 vsi = ice_get_main_vsi(pf); 1134 if (!vsi || !vsi->port_info) 1135 return -EINVAL; 1136 1137 /* turn off PHY if media was removed */ 1138 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1139 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1140 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1141 ice_set_link(vsi, false); 1142 } 1143 1144 /* if the old link up/down and speed is the same as the new */ 1145 if (link_up == old_link && link_speed == old_link_speed) 1146 return 0; 1147 1148 if (!link_up && old_link) 1149 pf->link_down_events++; 1150 1151 ice_ptp_link_change(pf, link_up); 1152 1153 if (ice_is_dcb_active(pf)) { 1154 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1155 ice_dcb_rebuild(pf); 1156 } else { 1157 if (link_up) 1158 ice_set_dflt_mib(pf); 1159 } 1160 ice_vsi_link_event(vsi, link_up); 1161 ice_print_link_msg(vsi, link_up); 1162 1163 ice_vc_notify_link_state(pf); 1164 1165 return 0; 1166 } 1167 1168 /** 1169 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1170 * @pf: board private structure 1171 */ 1172 static void ice_watchdog_subtask(struct ice_pf *pf) 1173 { 1174 int i; 1175 1176 /* if interface is down do nothing */ 1177 if (test_bit(ICE_DOWN, pf->state) || 1178 test_bit(ICE_CFG_BUSY, pf->state)) 1179 return; 1180 1181 /* make sure we don't do these things too often */ 1182 if (time_before(jiffies, 1183 pf->serv_tmr_prev + pf->serv_tmr_period)) 1184 return; 1185 1186 pf->serv_tmr_prev = jiffies; 1187 1188 /* Update the stats for active netdevs so the network stack 1189 * can look at updated numbers whenever it cares to 1190 */ 1191 ice_update_pf_stats(pf); 1192 ice_for_each_vsi(pf, i) 1193 if (pf->vsi[i] && pf->vsi[i]->netdev) 1194 ice_update_vsi_stats(pf->vsi[i]); 1195 } 1196 1197 /** 1198 * ice_init_link_events - enable/initialize link events 1199 * @pi: pointer to the port_info instance 1200 * 1201 * Returns -EIO on failure, 0 on success 1202 */ 1203 static int ice_init_link_events(struct ice_port_info *pi) 1204 { 1205 u16 mask; 1206 1207 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1208 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1209 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1210 1211 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1212 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1213 pi->lport); 1214 return -EIO; 1215 } 1216 1217 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1218 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1219 pi->lport); 1220 return -EIO; 1221 } 1222 1223 return 0; 1224 } 1225 1226 /** 1227 * ice_handle_link_event - handle link event via ARQ 1228 * @pf: PF that the link event is associated with 1229 * @event: event structure containing link status info 1230 */ 1231 static int 1232 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1233 { 1234 struct ice_aqc_get_link_status_data *link_data; 1235 struct ice_port_info *port_info; 1236 int status; 1237 1238 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1239 port_info = pf->hw.port_info; 1240 if (!port_info) 1241 return -EINVAL; 1242 1243 status = ice_link_event(pf, port_info, 1244 !!(link_data->link_info & ICE_AQ_LINK_UP), 1245 le16_to_cpu(link_data->link_speed)); 1246 if (status) 1247 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1248 status); 1249 1250 return status; 1251 } 1252 1253 /** 1254 * ice_get_fwlog_data - copy the FW log data from ARQ event 1255 * @pf: PF that the FW log event is associated with 1256 * @event: event structure containing FW log data 1257 */ 1258 static void 1259 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1260 { 1261 struct ice_fwlog_data *fwlog; 1262 struct ice_hw *hw = &pf->hw; 1263 1264 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1265 1266 memset(fwlog->data, 0, PAGE_SIZE); 1267 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1268 1269 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1270 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1271 1272 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1273 /* the rings are full so bump the head to create room */ 1274 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1275 hw->fwlog_ring.size); 1276 } 1277 } 1278 1279 /** 1280 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1281 * @pf: pointer to the PF private structure 1282 * @task: intermediate helper storage and identifier for waiting 1283 * @opcode: the opcode to wait for 1284 * 1285 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1286 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1287 * 1288 * Calls are separated to allow caller registering for event before sending 1289 * the command, which mitigates a race between registering and FW responding. 1290 * 1291 * To obtain only the descriptor contents, pass an task->event with null 1292 * msg_buf. If the complete data buffer is desired, allocate the 1293 * task->event.msg_buf with enough space ahead of time. 1294 */ 1295 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1296 u16 opcode) 1297 { 1298 INIT_HLIST_NODE(&task->entry); 1299 task->opcode = opcode; 1300 task->state = ICE_AQ_TASK_WAITING; 1301 1302 spin_lock_bh(&pf->aq_wait_lock); 1303 hlist_add_head(&task->entry, &pf->aq_wait_list); 1304 spin_unlock_bh(&pf->aq_wait_lock); 1305 } 1306 1307 /** 1308 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1309 * @pf: pointer to the PF private structure 1310 * @task: ptr prepared by ice_aq_prep_for_event() 1311 * @timeout: how long to wait, in jiffies 1312 * 1313 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1314 * current thread will be put to sleep until the specified event occurs or 1315 * until the given timeout is reached. 1316 * 1317 * Returns: zero on success, or a negative error code on failure. 1318 */ 1319 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1320 unsigned long timeout) 1321 { 1322 enum ice_aq_task_state *state = &task->state; 1323 struct device *dev = ice_pf_to_dev(pf); 1324 unsigned long start = jiffies; 1325 long ret; 1326 int err; 1327 1328 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1329 *state != ICE_AQ_TASK_WAITING, 1330 timeout); 1331 switch (*state) { 1332 case ICE_AQ_TASK_NOT_PREPARED: 1333 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1334 err = -EINVAL; 1335 break; 1336 case ICE_AQ_TASK_WAITING: 1337 err = ret < 0 ? ret : -ETIMEDOUT; 1338 break; 1339 case ICE_AQ_TASK_CANCELED: 1340 err = ret < 0 ? ret : -ECANCELED; 1341 break; 1342 case ICE_AQ_TASK_COMPLETE: 1343 err = ret < 0 ? ret : 0; 1344 break; 1345 default: 1346 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1347 err = -EINVAL; 1348 break; 1349 } 1350 1351 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1352 jiffies_to_msecs(jiffies - start), 1353 jiffies_to_msecs(timeout), 1354 task->opcode); 1355 1356 spin_lock_bh(&pf->aq_wait_lock); 1357 hlist_del(&task->entry); 1358 spin_unlock_bh(&pf->aq_wait_lock); 1359 1360 return err; 1361 } 1362 1363 /** 1364 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1365 * @pf: pointer to the PF private structure 1366 * @opcode: the opcode of the event 1367 * @event: the event to check 1368 * 1369 * Loops over the current list of pending threads waiting for an AdminQ event. 1370 * For each matching task, copy the contents of the event into the task 1371 * structure and wake up the thread. 1372 * 1373 * If multiple threads wait for the same opcode, they will all be woken up. 1374 * 1375 * Note that event->msg_buf will only be duplicated if the event has a buffer 1376 * with enough space already allocated. Otherwise, only the descriptor and 1377 * message length will be copied. 1378 * 1379 * Returns: true if an event was found, false otherwise 1380 */ 1381 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1382 struct ice_rq_event_info *event) 1383 { 1384 struct ice_rq_event_info *task_ev; 1385 struct ice_aq_task *task; 1386 bool found = false; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1390 if (task->state != ICE_AQ_TASK_WAITING) 1391 continue; 1392 if (task->opcode != opcode) 1393 continue; 1394 1395 task_ev = &task->event; 1396 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1397 task_ev->msg_len = event->msg_len; 1398 1399 /* Only copy the data buffer if a destination was set */ 1400 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1401 memcpy(task_ev->msg_buf, event->msg_buf, 1402 event->buf_len); 1403 task_ev->buf_len = event->buf_len; 1404 } 1405 1406 task->state = ICE_AQ_TASK_COMPLETE; 1407 found = true; 1408 } 1409 spin_unlock_bh(&pf->aq_wait_lock); 1410 1411 if (found) 1412 wake_up(&pf->aq_wait_queue); 1413 } 1414 1415 /** 1416 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1417 * @pf: the PF private structure 1418 * 1419 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1420 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1421 */ 1422 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1423 { 1424 struct ice_aq_task *task; 1425 1426 spin_lock_bh(&pf->aq_wait_lock); 1427 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1428 task->state = ICE_AQ_TASK_CANCELED; 1429 spin_unlock_bh(&pf->aq_wait_lock); 1430 1431 wake_up(&pf->aq_wait_queue); 1432 } 1433 1434 #define ICE_MBX_OVERFLOW_WATERMARK 64 1435 1436 /** 1437 * __ice_clean_ctrlq - helper function to clean controlq rings 1438 * @pf: ptr to struct ice_pf 1439 * @q_type: specific Control queue type 1440 */ 1441 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1442 { 1443 struct device *dev = ice_pf_to_dev(pf); 1444 struct ice_rq_event_info event; 1445 struct ice_hw *hw = &pf->hw; 1446 struct ice_ctl_q_info *cq; 1447 u16 pending, i = 0; 1448 const char *qtype; 1449 u32 oldval, val; 1450 1451 /* Do not clean control queue if/when PF reset fails */ 1452 if (test_bit(ICE_RESET_FAILED, pf->state)) 1453 return 0; 1454 1455 switch (q_type) { 1456 case ICE_CTL_Q_ADMIN: 1457 cq = &hw->adminq; 1458 qtype = "Admin"; 1459 break; 1460 case ICE_CTL_Q_SB: 1461 cq = &hw->sbq; 1462 qtype = "Sideband"; 1463 break; 1464 case ICE_CTL_Q_MAILBOX: 1465 cq = &hw->mailboxq; 1466 qtype = "Mailbox"; 1467 /* we are going to try to detect a malicious VF, so set the 1468 * state to begin detection 1469 */ 1470 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1471 break; 1472 default: 1473 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1474 return 0; 1475 } 1476 1477 /* check for error indications - PF_xx_AxQLEN register layout for 1478 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1479 */ 1480 val = rd32(hw, cq->rq.len); 1481 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1482 PF_FW_ARQLEN_ARQCRIT_M)) { 1483 oldval = val; 1484 if (val & PF_FW_ARQLEN_ARQVFE_M) 1485 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1486 qtype); 1487 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1488 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1489 qtype); 1490 } 1491 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1492 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1493 qtype); 1494 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1495 PF_FW_ARQLEN_ARQCRIT_M); 1496 if (oldval != val) 1497 wr32(hw, cq->rq.len, val); 1498 } 1499 1500 val = rd32(hw, cq->sq.len); 1501 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1502 PF_FW_ATQLEN_ATQCRIT_M)) { 1503 oldval = val; 1504 if (val & PF_FW_ATQLEN_ATQVFE_M) 1505 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1506 qtype); 1507 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1508 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1509 qtype); 1510 } 1511 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1512 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1513 qtype); 1514 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1515 PF_FW_ATQLEN_ATQCRIT_M); 1516 if (oldval != val) 1517 wr32(hw, cq->sq.len, val); 1518 } 1519 1520 event.buf_len = cq->rq_buf_size; 1521 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1522 if (!event.msg_buf) 1523 return 0; 1524 1525 do { 1526 struct ice_mbx_data data = {}; 1527 u16 opcode; 1528 int ret; 1529 1530 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1531 if (ret == -EALREADY) 1532 break; 1533 if (ret) { 1534 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1535 ret); 1536 break; 1537 } 1538 1539 opcode = le16_to_cpu(event.desc.opcode); 1540 1541 /* Notify any thread that might be waiting for this event */ 1542 ice_aq_check_events(pf, opcode, &event); 1543 1544 switch (opcode) { 1545 case ice_aqc_opc_get_link_status: 1546 if (ice_handle_link_event(pf, &event)) 1547 dev_err(dev, "Could not handle link event\n"); 1548 break; 1549 case ice_aqc_opc_event_lan_overflow: 1550 ice_vf_lan_overflow_event(pf, &event); 1551 break; 1552 case ice_mbx_opc_send_msg_to_pf: 1553 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1554 ice_vc_process_vf_msg(pf, &event, NULL); 1555 ice_mbx_vf_dec_trig_e830(hw, &event); 1556 } else { 1557 u16 val = hw->mailboxq.num_rq_entries; 1558 1559 data.max_num_msgs_mbx = val; 1560 val = ICE_MBX_OVERFLOW_WATERMARK; 1561 data.async_watermark_val = val; 1562 data.num_msg_proc = i; 1563 data.num_pending_arq = pending; 1564 1565 ice_vc_process_vf_msg(pf, &event, &data); 1566 } 1567 break; 1568 case ice_aqc_opc_fw_logs_event: 1569 ice_get_fwlog_data(pf, &event); 1570 break; 1571 case ice_aqc_opc_lldp_set_mib_change: 1572 ice_dcb_process_lldp_set_mib_change(pf, &event); 1573 break; 1574 case ice_aqc_opc_get_health_status: 1575 ice_process_health_status_event(pf, &event); 1576 break; 1577 default: 1578 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1579 qtype, opcode); 1580 break; 1581 } 1582 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1583 1584 kfree(event.msg_buf); 1585 1586 return pending && (i == ICE_DFLT_IRQ_WORK); 1587 } 1588 1589 /** 1590 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1591 * @hw: pointer to hardware info 1592 * @cq: control queue information 1593 * 1594 * returns true if there are pending messages in a queue, false if there aren't 1595 */ 1596 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1597 { 1598 u16 ntu; 1599 1600 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1601 return cq->rq.next_to_clean != ntu; 1602 } 1603 1604 /** 1605 * ice_clean_adminq_subtask - clean the AdminQ rings 1606 * @pf: board private structure 1607 */ 1608 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1609 { 1610 struct ice_hw *hw = &pf->hw; 1611 1612 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1613 return; 1614 1615 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1616 return; 1617 1618 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1619 1620 /* There might be a situation where new messages arrive to a control 1621 * queue between processing the last message and clearing the 1622 * EVENT_PENDING bit. So before exiting, check queue head again (using 1623 * ice_ctrlq_pending) and process new messages if any. 1624 */ 1625 if (ice_ctrlq_pending(hw, &hw->adminq)) 1626 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1627 1628 ice_flush(hw); 1629 } 1630 1631 /** 1632 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1633 * @pf: board private structure 1634 */ 1635 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1636 { 1637 struct ice_hw *hw = &pf->hw; 1638 1639 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1640 return; 1641 1642 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1643 return; 1644 1645 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1646 1647 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1648 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1649 1650 ice_flush(hw); 1651 } 1652 1653 /** 1654 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1655 * @pf: board private structure 1656 */ 1657 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1658 { 1659 struct ice_hw *hw = &pf->hw; 1660 1661 /* if mac_type is not generic, sideband is not supported 1662 * and there's nothing to do here 1663 */ 1664 if (!ice_is_generic_mac(hw)) { 1665 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1666 return; 1667 } 1668 1669 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1670 return; 1671 1672 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1673 return; 1674 1675 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1676 1677 if (ice_ctrlq_pending(hw, &hw->sbq)) 1678 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1679 1680 ice_flush(hw); 1681 } 1682 1683 /** 1684 * ice_service_task_schedule - schedule the service task to wake up 1685 * @pf: board private structure 1686 * 1687 * If not already scheduled, this puts the task into the work queue. 1688 */ 1689 void ice_service_task_schedule(struct ice_pf *pf) 1690 { 1691 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1692 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1693 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1694 queue_work(ice_wq, &pf->serv_task); 1695 } 1696 1697 /** 1698 * ice_service_task_complete - finish up the service task 1699 * @pf: board private structure 1700 */ 1701 static void ice_service_task_complete(struct ice_pf *pf) 1702 { 1703 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1704 1705 /* force memory (pf->state) to sync before next service task */ 1706 smp_mb__before_atomic(); 1707 clear_bit(ICE_SERVICE_SCHED, pf->state); 1708 } 1709 1710 /** 1711 * ice_service_task_stop - stop service task and cancel works 1712 * @pf: board private structure 1713 * 1714 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1715 * 1 otherwise. 1716 */ 1717 static int ice_service_task_stop(struct ice_pf *pf) 1718 { 1719 int ret; 1720 1721 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1722 1723 if (pf->serv_tmr.function) 1724 timer_delete_sync(&pf->serv_tmr); 1725 if (pf->serv_task.func) 1726 cancel_work_sync(&pf->serv_task); 1727 1728 clear_bit(ICE_SERVICE_SCHED, pf->state); 1729 return ret; 1730 } 1731 1732 /** 1733 * ice_service_task_restart - restart service task and schedule works 1734 * @pf: board private structure 1735 * 1736 * This function is needed for suspend and resume works (e.g WoL scenario) 1737 */ 1738 static void ice_service_task_restart(struct ice_pf *pf) 1739 { 1740 clear_bit(ICE_SERVICE_DIS, pf->state); 1741 ice_service_task_schedule(pf); 1742 } 1743 1744 /** 1745 * ice_service_timer - timer callback to schedule service task 1746 * @t: pointer to timer_list 1747 */ 1748 static void ice_service_timer(struct timer_list *t) 1749 { 1750 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr); 1751 1752 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1753 ice_service_task_schedule(pf); 1754 } 1755 1756 /** 1757 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1758 * @pf: pointer to the PF structure 1759 * @vf: pointer to the VF structure 1760 * @reset_vf_tx: whether Tx MDD has occurred 1761 * @reset_vf_rx: whether Rx MDD has occurred 1762 * 1763 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1764 * automatically reset the VF by enabling the private ethtool flag 1765 * mdd-auto-reset-vf. 1766 */ 1767 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1768 bool reset_vf_tx, bool reset_vf_rx) 1769 { 1770 struct device *dev = ice_pf_to_dev(pf); 1771 1772 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1773 return; 1774 1775 /* VF MDD event counters will be cleared by reset, so print the event 1776 * prior to reset. 1777 */ 1778 if (reset_vf_tx) 1779 ice_print_vf_tx_mdd_event(vf); 1780 1781 if (reset_vf_rx) 1782 ice_print_vf_rx_mdd_event(vf); 1783 1784 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1785 pf->hw.pf_id, vf->vf_id); 1786 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1787 } 1788 1789 /** 1790 * ice_handle_mdd_event - handle malicious driver detect event 1791 * @pf: pointer to the PF structure 1792 * 1793 * Called from service task. OICR interrupt handler indicates MDD event. 1794 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1795 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1796 * disable the queue, the PF can be configured to reset the VF using ethtool 1797 * private flag mdd-auto-reset-vf. 1798 */ 1799 static void ice_handle_mdd_event(struct ice_pf *pf) 1800 { 1801 struct device *dev = ice_pf_to_dev(pf); 1802 struct ice_hw *hw = &pf->hw; 1803 struct ice_vf *vf; 1804 unsigned int bkt; 1805 u32 reg; 1806 1807 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1808 /* Since the VF MDD event logging is rate limited, check if 1809 * there are pending MDD events. 1810 */ 1811 ice_print_vfs_mdd_events(pf); 1812 return; 1813 } 1814 1815 /* find what triggered an MDD event */ 1816 reg = rd32(hw, GL_MDET_TX_PQM); 1817 if (reg & GL_MDET_TX_PQM_VALID_M) { 1818 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1819 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1820 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1821 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1822 1823 if (netif_msg_tx_err(pf)) 1824 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1825 event, queue, pf_num, vf_num); 1826 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1827 event, queue); 1828 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1829 } 1830 1831 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1832 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1833 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1834 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1835 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1836 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1837 1838 if (netif_msg_tx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1840 event, queue, pf_num, vf_num); 1841 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1842 event, queue); 1843 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1844 } 1845 1846 reg = rd32(hw, GL_MDET_RX); 1847 if (reg & GL_MDET_RX_VALID_M) { 1848 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1849 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1850 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1851 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1852 1853 if (netif_msg_rx_err(pf)) 1854 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1855 event, queue, pf_num, vf_num); 1856 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1857 queue); 1858 wr32(hw, GL_MDET_RX, 0xffffffff); 1859 } 1860 1861 /* check to see if this PF caused an MDD event */ 1862 reg = rd32(hw, PF_MDET_TX_PQM); 1863 if (reg & PF_MDET_TX_PQM_VALID_M) { 1864 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1865 if (netif_msg_tx_err(pf)) 1866 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1867 } 1868 1869 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1870 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1871 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1872 if (netif_msg_tx_err(pf)) 1873 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1874 } 1875 1876 reg = rd32(hw, PF_MDET_RX); 1877 if (reg & PF_MDET_RX_VALID_M) { 1878 wr32(hw, PF_MDET_RX, 0xFFFF); 1879 if (netif_msg_rx_err(pf)) 1880 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1881 } 1882 1883 /* Check to see if one of the VFs caused an MDD event, and then 1884 * increment counters and set print pending 1885 */ 1886 mutex_lock(&pf->vfs.table_lock); 1887 ice_for_each_vf(pf, bkt, vf) { 1888 bool reset_vf_tx = false, reset_vf_rx = false; 1889 1890 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1891 if (reg & VP_MDET_TX_PQM_VALID_M) { 1892 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1893 vf->mdd_tx_events.count++; 1894 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1895 if (netif_msg_tx_err(pf)) 1896 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1897 vf->vf_id); 1898 1899 reset_vf_tx = true; 1900 } 1901 1902 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1903 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1904 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1905 vf->mdd_tx_events.count++; 1906 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1907 if (netif_msg_tx_err(pf)) 1908 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1909 vf->vf_id); 1910 1911 reset_vf_tx = true; 1912 } 1913 1914 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1915 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1916 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1917 vf->mdd_tx_events.count++; 1918 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1919 if (netif_msg_tx_err(pf)) 1920 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1921 vf->vf_id); 1922 1923 reset_vf_tx = true; 1924 } 1925 1926 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1927 if (reg & VP_MDET_RX_VALID_M) { 1928 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1929 vf->mdd_rx_events.count++; 1930 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1931 if (netif_msg_rx_err(pf)) 1932 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1933 vf->vf_id); 1934 1935 reset_vf_rx = true; 1936 } 1937 1938 if (reset_vf_tx || reset_vf_rx) 1939 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1940 reset_vf_rx); 1941 } 1942 mutex_unlock(&pf->vfs.table_lock); 1943 1944 ice_print_vfs_mdd_events(pf); 1945 } 1946 1947 /** 1948 * ice_force_phys_link_state - Force the physical link state 1949 * @vsi: VSI to force the physical link state to up/down 1950 * @link_up: true/false indicates to set the physical link to up/down 1951 * 1952 * Force the physical link state by getting the current PHY capabilities from 1953 * hardware and setting the PHY config based on the determined capabilities. If 1954 * link changes a link event will be triggered because both the Enable Automatic 1955 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1956 * 1957 * Returns 0 on success, negative on failure 1958 */ 1959 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1960 { 1961 struct ice_aqc_get_phy_caps_data *pcaps; 1962 struct ice_aqc_set_phy_cfg_data *cfg; 1963 struct ice_port_info *pi; 1964 struct device *dev; 1965 int retcode; 1966 1967 if (!vsi || !vsi->port_info || !vsi->back) 1968 return -EINVAL; 1969 if (vsi->type != ICE_VSI_PF) 1970 return 0; 1971 1972 dev = ice_pf_to_dev(vsi->back); 1973 1974 pi = vsi->port_info; 1975 1976 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1977 if (!pcaps) 1978 return -ENOMEM; 1979 1980 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1981 NULL); 1982 if (retcode) { 1983 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1984 vsi->vsi_num, retcode); 1985 retcode = -EIO; 1986 goto out; 1987 } 1988 1989 /* No change in link */ 1990 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1991 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1992 goto out; 1993 1994 /* Use the current user PHY configuration. The current user PHY 1995 * configuration is initialized during probe from PHY capabilities 1996 * software mode, and updated on set PHY configuration. 1997 */ 1998 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1999 if (!cfg) { 2000 retcode = -ENOMEM; 2001 goto out; 2002 } 2003 2004 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2005 if (link_up) 2006 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2007 else 2008 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2009 2010 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2011 if (retcode) { 2012 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2013 vsi->vsi_num, retcode); 2014 retcode = -EIO; 2015 } 2016 2017 kfree(cfg); 2018 out: 2019 kfree(pcaps); 2020 return retcode; 2021 } 2022 2023 /** 2024 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2025 * @pi: port info structure 2026 * 2027 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2028 */ 2029 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2030 { 2031 struct ice_aqc_get_phy_caps_data *pcaps; 2032 struct ice_pf *pf = pi->hw->back; 2033 int err; 2034 2035 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2036 if (!pcaps) 2037 return -ENOMEM; 2038 2039 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2040 pcaps, NULL); 2041 2042 if (err) { 2043 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2044 goto out; 2045 } 2046 2047 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2048 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2049 2050 out: 2051 kfree(pcaps); 2052 return err; 2053 } 2054 2055 /** 2056 * ice_init_link_dflt_override - Initialize link default override 2057 * @pi: port info structure 2058 * 2059 * Initialize link default override and PHY total port shutdown during probe 2060 */ 2061 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2062 { 2063 struct ice_link_default_override_tlv *ldo; 2064 struct ice_pf *pf = pi->hw->back; 2065 2066 ldo = &pf->link_dflt_override; 2067 if (ice_get_link_default_override(ldo, pi)) 2068 return; 2069 2070 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2071 return; 2072 2073 /* Enable Total Port Shutdown (override/replace link-down-on-close 2074 * ethtool private flag) for ports with Port Disable bit set. 2075 */ 2076 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2077 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2078 } 2079 2080 /** 2081 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2082 * @pi: port info structure 2083 * 2084 * If default override is enabled, initialize the user PHY cfg speed and FEC 2085 * settings using the default override mask from the NVM. 2086 * 2087 * The PHY should only be configured with the default override settings the 2088 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2089 * is used to indicate that the user PHY cfg default override is initialized 2090 * and the PHY has not been configured with the default override settings. The 2091 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2092 * configured. 2093 * 2094 * This function should be called only if the FW doesn't support default 2095 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2096 */ 2097 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2098 { 2099 struct ice_link_default_override_tlv *ldo; 2100 struct ice_aqc_set_phy_cfg_data *cfg; 2101 struct ice_phy_info *phy = &pi->phy; 2102 struct ice_pf *pf = pi->hw->back; 2103 2104 ldo = &pf->link_dflt_override; 2105 2106 /* If link default override is enabled, use to mask NVM PHY capabilities 2107 * for speed and FEC default configuration. 2108 */ 2109 cfg = &phy->curr_user_phy_cfg; 2110 2111 if (ldo->phy_type_low || ldo->phy_type_high) { 2112 cfg->phy_type_low = pf->nvm_phy_type_lo & 2113 cpu_to_le64(ldo->phy_type_low); 2114 cfg->phy_type_high = pf->nvm_phy_type_hi & 2115 cpu_to_le64(ldo->phy_type_high); 2116 } 2117 cfg->link_fec_opt = ldo->fec_options; 2118 phy->curr_user_fec_req = ICE_FEC_AUTO; 2119 2120 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2121 } 2122 2123 /** 2124 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2125 * @pi: port info structure 2126 * 2127 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2128 * mode to default. The PHY defaults are from get PHY capabilities topology 2129 * with media so call when media is first available. An error is returned if 2130 * called when media is not available. The PHY initialization completed state is 2131 * set here. 2132 * 2133 * These configurations are used when setting PHY 2134 * configuration. The user PHY configuration is updated on set PHY 2135 * configuration. Returns 0 on success, negative on failure 2136 */ 2137 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2138 { 2139 struct ice_aqc_get_phy_caps_data *pcaps; 2140 struct ice_phy_info *phy = &pi->phy; 2141 struct ice_pf *pf = pi->hw->back; 2142 int err; 2143 2144 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2145 return -EIO; 2146 2147 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2148 if (!pcaps) 2149 return -ENOMEM; 2150 2151 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2152 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2153 pcaps, NULL); 2154 else 2155 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2156 pcaps, NULL); 2157 if (err) { 2158 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2159 goto err_out; 2160 } 2161 2162 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2163 2164 /* check if lenient mode is supported and enabled */ 2165 if (ice_fw_supports_link_override(pi->hw) && 2166 !(pcaps->module_compliance_enforcement & 2167 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2168 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2169 2170 /* if the FW supports default PHY configuration mode, then the driver 2171 * does not have to apply link override settings. If not, 2172 * initialize user PHY configuration with link override values 2173 */ 2174 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2175 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2176 ice_init_phy_cfg_dflt_override(pi); 2177 goto out; 2178 } 2179 } 2180 2181 /* if link default override is not enabled, set user flow control and 2182 * FEC settings based on what get_phy_caps returned 2183 */ 2184 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2185 pcaps->link_fec_options); 2186 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2187 2188 out: 2189 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2190 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2191 err_out: 2192 kfree(pcaps); 2193 return err; 2194 } 2195 2196 /** 2197 * ice_configure_phy - configure PHY 2198 * @vsi: VSI of PHY 2199 * 2200 * Set the PHY configuration. If the current PHY configuration is the same as 2201 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2202 * configure the based get PHY capabilities for topology with media. 2203 */ 2204 static int ice_configure_phy(struct ice_vsi *vsi) 2205 { 2206 struct device *dev = ice_pf_to_dev(vsi->back); 2207 struct ice_port_info *pi = vsi->port_info; 2208 struct ice_aqc_get_phy_caps_data *pcaps; 2209 struct ice_aqc_set_phy_cfg_data *cfg; 2210 struct ice_phy_info *phy = &pi->phy; 2211 struct ice_pf *pf = vsi->back; 2212 int err; 2213 2214 /* Ensure we have media as we cannot configure a medialess port */ 2215 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2216 return -ENOMEDIUM; 2217 2218 ice_print_topo_conflict(vsi); 2219 2220 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2221 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2222 return -EPERM; 2223 2224 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2225 return ice_force_phys_link_state(vsi, true); 2226 2227 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2228 if (!pcaps) 2229 return -ENOMEM; 2230 2231 /* Get current PHY config */ 2232 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2233 NULL); 2234 if (err) { 2235 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2236 vsi->vsi_num, err); 2237 goto done; 2238 } 2239 2240 /* If PHY enable link is configured and configuration has not changed, 2241 * there's nothing to do 2242 */ 2243 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2244 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2245 goto done; 2246 2247 /* Use PHY topology as baseline for configuration */ 2248 memset(pcaps, 0, sizeof(*pcaps)); 2249 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2250 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2251 pcaps, NULL); 2252 else 2253 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2254 pcaps, NULL); 2255 if (err) { 2256 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2257 vsi->vsi_num, err); 2258 goto done; 2259 } 2260 2261 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2262 if (!cfg) { 2263 err = -ENOMEM; 2264 goto done; 2265 } 2266 2267 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2268 2269 /* Speed - If default override pending, use curr_user_phy_cfg set in 2270 * ice_init_phy_user_cfg_ldo. 2271 */ 2272 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2273 vsi->back->state)) { 2274 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2275 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2276 } else { 2277 u64 phy_low = 0, phy_high = 0; 2278 2279 ice_update_phy_type(&phy_low, &phy_high, 2280 pi->phy.curr_user_speed_req); 2281 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2282 cfg->phy_type_high = pcaps->phy_type_high & 2283 cpu_to_le64(phy_high); 2284 } 2285 2286 /* Can't provide what was requested; use PHY capabilities */ 2287 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2288 cfg->phy_type_low = pcaps->phy_type_low; 2289 cfg->phy_type_high = pcaps->phy_type_high; 2290 } 2291 2292 /* FEC */ 2293 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2294 2295 /* Can't provide what was requested; use PHY capabilities */ 2296 if (cfg->link_fec_opt != 2297 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2298 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2299 cfg->link_fec_opt = pcaps->link_fec_options; 2300 } 2301 2302 /* Flow Control - always supported; no need to check against 2303 * capabilities 2304 */ 2305 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2306 2307 /* Enable link and link update */ 2308 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2309 2310 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2311 if (err) 2312 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2313 vsi->vsi_num, err); 2314 2315 kfree(cfg); 2316 done: 2317 kfree(pcaps); 2318 return err; 2319 } 2320 2321 /** 2322 * ice_check_media_subtask - Check for media 2323 * @pf: pointer to PF struct 2324 * 2325 * If media is available, then initialize PHY user configuration if it is not 2326 * been, and configure the PHY if the interface is up. 2327 */ 2328 static void ice_check_media_subtask(struct ice_pf *pf) 2329 { 2330 struct ice_port_info *pi; 2331 struct ice_vsi *vsi; 2332 int err; 2333 2334 /* No need to check for media if it's already present */ 2335 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2336 return; 2337 2338 vsi = ice_get_main_vsi(pf); 2339 if (!vsi) 2340 return; 2341 2342 /* Refresh link info and check if media is present */ 2343 pi = vsi->port_info; 2344 err = ice_update_link_info(pi); 2345 if (err) 2346 return; 2347 2348 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2349 2350 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2351 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2352 ice_init_phy_user_cfg(pi); 2353 2354 /* PHY settings are reset on media insertion, reconfigure 2355 * PHY to preserve settings. 2356 */ 2357 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2358 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2359 return; 2360 2361 err = ice_configure_phy(vsi); 2362 if (!err) 2363 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2364 2365 /* A Link Status Event will be generated; the event handler 2366 * will complete bringing the interface up 2367 */ 2368 } 2369 } 2370 2371 static void ice_service_task_recovery_mode(struct work_struct *work) 2372 { 2373 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2374 2375 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2376 ice_clean_adminq_subtask(pf); 2377 2378 ice_service_task_complete(pf); 2379 2380 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2381 } 2382 2383 /** 2384 * ice_service_task - manage and run subtasks 2385 * @work: pointer to work_struct contained by the PF struct 2386 */ 2387 static void ice_service_task(struct work_struct *work) 2388 { 2389 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2390 unsigned long start_time = jiffies; 2391 2392 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2393 ice_report_tx_hang(pf); 2394 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2395 } 2396 2397 ice_reset_subtask(pf); 2398 2399 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2400 if (ice_is_reset_in_progress(pf->state) || 2401 test_bit(ICE_SUSPENDED, pf->state) || 2402 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2403 ice_service_task_complete(pf); 2404 return; 2405 } 2406 2407 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2408 struct iidc_rdma_event *event; 2409 2410 event = kzalloc(sizeof(*event), GFP_KERNEL); 2411 if (event) { 2412 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type); 2413 /* report the entire OICR value to AUX driver */ 2414 swap(event->reg, pf->oicr_err_reg); 2415 ice_send_event_to_aux(pf, event); 2416 kfree(event); 2417 } 2418 } 2419 2420 /* unplug aux dev per request, if an unplug request came in 2421 * while processing a plug request, this will handle it 2422 */ 2423 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2424 ice_unplug_aux_dev(pf); 2425 2426 /* Plug aux device per request */ 2427 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2428 ice_plug_aux_dev(pf); 2429 2430 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2431 struct iidc_rdma_event *event; 2432 2433 event = kzalloc(sizeof(*event), GFP_KERNEL); 2434 if (event) { 2435 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type); 2436 ice_send_event_to_aux(pf, event); 2437 kfree(event); 2438 } 2439 } 2440 2441 ice_clean_adminq_subtask(pf); 2442 ice_check_media_subtask(pf); 2443 ice_check_for_hang_subtask(pf); 2444 ice_sync_fltr_subtask(pf); 2445 ice_handle_mdd_event(pf); 2446 ice_watchdog_subtask(pf); 2447 2448 if (ice_is_safe_mode(pf)) { 2449 ice_service_task_complete(pf); 2450 return; 2451 } 2452 2453 ice_process_vflr_event(pf); 2454 ice_clean_mailboxq_subtask(pf); 2455 ice_clean_sbq_subtask(pf); 2456 ice_sync_arfs_fltrs(pf); 2457 ice_flush_fdir_ctx(pf); 2458 2459 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2460 ice_service_task_complete(pf); 2461 2462 /* If the tasks have taken longer than one service timer period 2463 * or there is more work to be done, reset the service timer to 2464 * schedule the service task now. 2465 */ 2466 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2467 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2468 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2469 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2470 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2471 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2472 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2473 mod_timer(&pf->serv_tmr, jiffies); 2474 } 2475 2476 /** 2477 * ice_set_ctrlq_len - helper function to set controlq length 2478 * @hw: pointer to the HW instance 2479 */ 2480 static void ice_set_ctrlq_len(struct ice_hw *hw) 2481 { 2482 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2483 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2484 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2485 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2486 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2487 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2488 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2489 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2490 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2491 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2492 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2493 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2494 } 2495 2496 /** 2497 * ice_schedule_reset - schedule a reset 2498 * @pf: board private structure 2499 * @reset: reset being requested 2500 */ 2501 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2502 { 2503 struct device *dev = ice_pf_to_dev(pf); 2504 2505 /* bail out if earlier reset has failed */ 2506 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2507 dev_dbg(dev, "earlier reset has failed\n"); 2508 return -EIO; 2509 } 2510 /* bail if reset/recovery already in progress */ 2511 if (ice_is_reset_in_progress(pf->state)) { 2512 dev_dbg(dev, "Reset already in progress\n"); 2513 return -EBUSY; 2514 } 2515 2516 switch (reset) { 2517 case ICE_RESET_PFR: 2518 set_bit(ICE_PFR_REQ, pf->state); 2519 break; 2520 case ICE_RESET_CORER: 2521 set_bit(ICE_CORER_REQ, pf->state); 2522 break; 2523 case ICE_RESET_GLOBR: 2524 set_bit(ICE_GLOBR_REQ, pf->state); 2525 break; 2526 default: 2527 return -EINVAL; 2528 } 2529 2530 ice_service_task_schedule(pf); 2531 return 0; 2532 } 2533 2534 /** 2535 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2536 * @vsi: the VSI being configured 2537 */ 2538 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2539 { 2540 struct ice_hw *hw = &vsi->back->hw; 2541 int i; 2542 2543 ice_for_each_q_vector(vsi, i) 2544 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2545 2546 ice_flush(hw); 2547 return 0; 2548 } 2549 2550 /** 2551 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2552 * @vsi: the VSI being configured 2553 * @basename: name for the vector 2554 */ 2555 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2556 { 2557 int q_vectors = vsi->num_q_vectors; 2558 struct ice_pf *pf = vsi->back; 2559 struct device *dev; 2560 int rx_int_idx = 0; 2561 int tx_int_idx = 0; 2562 int vector, err; 2563 int irq_num; 2564 2565 dev = ice_pf_to_dev(pf); 2566 for (vector = 0; vector < q_vectors; vector++) { 2567 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2568 2569 irq_num = q_vector->irq.virq; 2570 2571 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2572 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2573 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2574 tx_int_idx++; 2575 } else if (q_vector->rx.rx_ring) { 2576 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2577 "%s-%s-%d", basename, "rx", rx_int_idx++); 2578 } else if (q_vector->tx.tx_ring) { 2579 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2580 "%s-%s-%d", basename, "tx", tx_int_idx++); 2581 } else { 2582 /* skip this unused q_vector */ 2583 continue; 2584 } 2585 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2586 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2587 IRQF_SHARED, q_vector->name, 2588 q_vector); 2589 else 2590 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2591 0, q_vector->name, q_vector); 2592 if (err) { 2593 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2594 err); 2595 goto free_q_irqs; 2596 } 2597 } 2598 2599 err = ice_set_cpu_rx_rmap(vsi); 2600 if (err) { 2601 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2602 vsi->vsi_num, ERR_PTR(err)); 2603 goto free_q_irqs; 2604 } 2605 2606 vsi->irqs_ready = true; 2607 return 0; 2608 2609 free_q_irqs: 2610 while (vector--) { 2611 irq_num = vsi->q_vectors[vector]->irq.virq; 2612 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2613 } 2614 return err; 2615 } 2616 2617 /** 2618 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2619 * @vsi: VSI to setup Tx rings used by XDP 2620 * 2621 * Return 0 on success and negative value on error 2622 */ 2623 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2624 { 2625 struct device *dev = ice_pf_to_dev(vsi->back); 2626 struct ice_tx_desc *tx_desc; 2627 int i, j; 2628 2629 ice_for_each_xdp_txq(vsi, i) { 2630 u16 xdp_q_idx = vsi->alloc_txq + i; 2631 struct ice_ring_stats *ring_stats; 2632 struct ice_tx_ring *xdp_ring; 2633 2634 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2635 if (!xdp_ring) 2636 goto free_xdp_rings; 2637 2638 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2639 if (!ring_stats) { 2640 ice_free_tx_ring(xdp_ring); 2641 goto free_xdp_rings; 2642 } 2643 2644 xdp_ring->ring_stats = ring_stats; 2645 xdp_ring->q_index = xdp_q_idx; 2646 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2647 xdp_ring->vsi = vsi; 2648 xdp_ring->netdev = NULL; 2649 xdp_ring->dev = dev; 2650 xdp_ring->count = vsi->num_tx_desc; 2651 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2652 if (ice_setup_tx_ring(xdp_ring)) 2653 goto free_xdp_rings; 2654 ice_set_ring_xdp(xdp_ring); 2655 spin_lock_init(&xdp_ring->tx_lock); 2656 for (j = 0; j < xdp_ring->count; j++) { 2657 tx_desc = ICE_TX_DESC(xdp_ring, j); 2658 tx_desc->cmd_type_offset_bsz = 0; 2659 } 2660 } 2661 2662 return 0; 2663 2664 free_xdp_rings: 2665 for (; i >= 0; i--) { 2666 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2667 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2668 vsi->xdp_rings[i]->ring_stats = NULL; 2669 ice_free_tx_ring(vsi->xdp_rings[i]); 2670 } 2671 } 2672 return -ENOMEM; 2673 } 2674 2675 /** 2676 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2677 * @vsi: VSI to set the bpf prog on 2678 * @prog: the bpf prog pointer 2679 */ 2680 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2681 { 2682 struct bpf_prog *old_prog; 2683 int i; 2684 2685 old_prog = xchg(&vsi->xdp_prog, prog); 2686 ice_for_each_rxq(vsi, i) 2687 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2688 2689 if (old_prog) 2690 bpf_prog_put(old_prog); 2691 } 2692 2693 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2694 { 2695 struct ice_q_vector *q_vector; 2696 struct ice_tx_ring *ring; 2697 2698 if (static_key_enabled(&ice_xdp_locking_key)) 2699 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2700 2701 q_vector = vsi->rx_rings[qid]->q_vector; 2702 ice_for_each_tx_ring(ring, q_vector->tx) 2703 if (ice_ring_is_xdp(ring)) 2704 return ring; 2705 2706 return NULL; 2707 } 2708 2709 /** 2710 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2711 * @vsi: the VSI with XDP rings being configured 2712 * 2713 * Map XDP rings to interrupt vectors and perform the configuration steps 2714 * dependent on the mapping. 2715 */ 2716 void ice_map_xdp_rings(struct ice_vsi *vsi) 2717 { 2718 int xdp_rings_rem = vsi->num_xdp_txq; 2719 int v_idx, q_idx; 2720 2721 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2722 ice_for_each_q_vector(vsi, v_idx) { 2723 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2724 int xdp_rings_per_v, q_id, q_base; 2725 2726 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2727 vsi->num_q_vectors - v_idx); 2728 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2729 2730 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2731 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2732 2733 xdp_ring->q_vector = q_vector; 2734 xdp_ring->next = q_vector->tx.tx_ring; 2735 q_vector->tx.tx_ring = xdp_ring; 2736 } 2737 xdp_rings_rem -= xdp_rings_per_v; 2738 } 2739 2740 ice_for_each_rxq(vsi, q_idx) { 2741 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2742 q_idx); 2743 ice_tx_xsk_pool(vsi, q_idx); 2744 } 2745 } 2746 2747 /** 2748 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors 2749 * @vsi: the VSI with XDP rings being unmapped 2750 */ 2751 static void ice_unmap_xdp_rings(struct ice_vsi *vsi) 2752 { 2753 int v_idx; 2754 2755 ice_for_each_q_vector(vsi, v_idx) { 2756 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2757 struct ice_tx_ring *ring; 2758 2759 ice_for_each_tx_ring(ring, q_vector->tx) 2760 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2761 break; 2762 2763 /* restore the value of last node prior to XDP setup */ 2764 q_vector->tx.tx_ring = ring; 2765 } 2766 } 2767 2768 /** 2769 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2770 * @vsi: VSI to bring up Tx rings used by XDP 2771 * @prog: bpf program that will be assigned to VSI 2772 * @cfg_type: create from scratch or restore the existing configuration 2773 * 2774 * Return 0 on success and negative value on error 2775 */ 2776 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2777 enum ice_xdp_cfg cfg_type) 2778 { 2779 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2780 struct ice_pf *pf = vsi->back; 2781 struct ice_qs_cfg xdp_qs_cfg = { 2782 .qs_mutex = &pf->avail_q_mutex, 2783 .pf_map = pf->avail_txqs, 2784 .pf_map_size = pf->max_pf_txqs, 2785 .q_count = vsi->num_xdp_txq, 2786 .scatter_count = ICE_MAX_SCATTER_TXQS, 2787 .vsi_map = vsi->txq_map, 2788 .vsi_map_offset = vsi->alloc_txq, 2789 .mapping_mode = ICE_VSI_MAP_CONTIG 2790 }; 2791 struct device *dev; 2792 int status, i; 2793 2794 dev = ice_pf_to_dev(pf); 2795 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2796 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2797 if (!vsi->xdp_rings) 2798 return -ENOMEM; 2799 2800 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2801 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2802 goto err_map_xdp; 2803 2804 if (static_key_enabled(&ice_xdp_locking_key)) 2805 netdev_warn(vsi->netdev, 2806 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2807 2808 if (ice_xdp_alloc_setup_rings(vsi)) 2809 goto clear_xdp_rings; 2810 2811 /* omit the scheduler update if in reset path; XDP queues will be 2812 * taken into account at the end of ice_vsi_rebuild, where 2813 * ice_cfg_vsi_lan is being called 2814 */ 2815 if (cfg_type == ICE_XDP_CFG_PART) 2816 return 0; 2817 2818 ice_map_xdp_rings(vsi); 2819 2820 /* tell the Tx scheduler that right now we have 2821 * additional queues 2822 */ 2823 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2824 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2825 2826 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2827 max_txqs); 2828 if (status) { 2829 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2830 status); 2831 goto unmap_xdp_rings; 2832 } 2833 2834 /* assign the prog only when it's not already present on VSI; 2835 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2836 * VSI rebuild that happens under ethtool -L can expose us to 2837 * the bpf_prog refcount issues as we would be swapping same 2838 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2839 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2840 * this is not harmful as dev_xdp_install bumps the refcount 2841 * before calling the op exposed by the driver; 2842 */ 2843 if (!ice_is_xdp_ena_vsi(vsi)) 2844 ice_vsi_assign_bpf_prog(vsi, prog); 2845 2846 return 0; 2847 unmap_xdp_rings: 2848 ice_unmap_xdp_rings(vsi); 2849 clear_xdp_rings: 2850 ice_for_each_xdp_txq(vsi, i) 2851 if (vsi->xdp_rings[i]) { 2852 kfree_rcu(vsi->xdp_rings[i], rcu); 2853 vsi->xdp_rings[i] = NULL; 2854 } 2855 2856 err_map_xdp: 2857 mutex_lock(&pf->avail_q_mutex); 2858 ice_for_each_xdp_txq(vsi, i) { 2859 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2860 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2861 } 2862 mutex_unlock(&pf->avail_q_mutex); 2863 2864 devm_kfree(dev, vsi->xdp_rings); 2865 vsi->xdp_rings = NULL; 2866 2867 return -ENOMEM; 2868 } 2869 2870 /** 2871 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2872 * @vsi: VSI to remove XDP rings 2873 * @cfg_type: disable XDP permanently or allow it to be restored later 2874 * 2875 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2876 * resources 2877 */ 2878 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2879 { 2880 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2881 struct ice_pf *pf = vsi->back; 2882 int i; 2883 2884 /* q_vectors are freed in reset path so there's no point in detaching 2885 * rings 2886 */ 2887 if (cfg_type == ICE_XDP_CFG_PART) 2888 goto free_qmap; 2889 2890 ice_unmap_xdp_rings(vsi); 2891 2892 free_qmap: 2893 mutex_lock(&pf->avail_q_mutex); 2894 ice_for_each_xdp_txq(vsi, i) { 2895 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2896 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2897 } 2898 mutex_unlock(&pf->avail_q_mutex); 2899 2900 ice_for_each_xdp_txq(vsi, i) 2901 if (vsi->xdp_rings[i]) { 2902 if (vsi->xdp_rings[i]->desc) { 2903 synchronize_rcu(); 2904 ice_free_tx_ring(vsi->xdp_rings[i]); 2905 } 2906 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2907 vsi->xdp_rings[i]->ring_stats = NULL; 2908 kfree_rcu(vsi->xdp_rings[i], rcu); 2909 vsi->xdp_rings[i] = NULL; 2910 } 2911 2912 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2913 vsi->xdp_rings = NULL; 2914 2915 if (static_key_enabled(&ice_xdp_locking_key)) 2916 static_branch_dec(&ice_xdp_locking_key); 2917 2918 if (cfg_type == ICE_XDP_CFG_PART) 2919 return 0; 2920 2921 ice_vsi_assign_bpf_prog(vsi, NULL); 2922 2923 /* notify Tx scheduler that we destroyed XDP queues and bring 2924 * back the old number of child nodes 2925 */ 2926 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2927 max_txqs[i] = vsi->num_txq; 2928 2929 /* change number of XDP Tx queues to 0 */ 2930 vsi->num_xdp_txq = 0; 2931 2932 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2933 max_txqs); 2934 } 2935 2936 /** 2937 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2938 * @vsi: VSI to schedule napi on 2939 */ 2940 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2941 { 2942 int i; 2943 2944 ice_for_each_rxq(vsi, i) { 2945 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2946 2947 if (READ_ONCE(rx_ring->xsk_pool)) 2948 napi_schedule(&rx_ring->q_vector->napi); 2949 } 2950 } 2951 2952 /** 2953 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2954 * @vsi: VSI to determine the count of XDP Tx qs 2955 * 2956 * returns 0 if Tx qs count is higher than at least half of CPU count, 2957 * -ENOMEM otherwise 2958 */ 2959 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2960 { 2961 u16 avail = ice_get_avail_txq_count(vsi->back); 2962 u16 cpus = num_possible_cpus(); 2963 2964 if (avail < cpus / 2) 2965 return -ENOMEM; 2966 2967 if (vsi->type == ICE_VSI_SF) 2968 avail = vsi->alloc_txq; 2969 2970 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2971 2972 if (vsi->num_xdp_txq < cpus) 2973 static_branch_inc(&ice_xdp_locking_key); 2974 2975 return 0; 2976 } 2977 2978 /** 2979 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2980 * @vsi: Pointer to VSI structure 2981 */ 2982 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2983 { 2984 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2985 return ICE_RXBUF_1664; 2986 else 2987 return ICE_RXBUF_3072; 2988 } 2989 2990 /** 2991 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2992 * @vsi: VSI to setup XDP for 2993 * @prog: XDP program 2994 * @extack: netlink extended ack 2995 */ 2996 static int 2997 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2998 struct netlink_ext_ack *extack) 2999 { 3000 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3001 int ret = 0, xdp_ring_err = 0; 3002 bool if_running; 3003 3004 if (prog && !prog->aux->xdp_has_frags) { 3005 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3006 NL_SET_ERR_MSG_MOD(extack, 3007 "MTU is too large for linear frames and XDP prog does not support frags"); 3008 return -EOPNOTSUPP; 3009 } 3010 } 3011 3012 /* hot swap progs and avoid toggling link */ 3013 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3014 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3015 ice_vsi_assign_bpf_prog(vsi, prog); 3016 return 0; 3017 } 3018 3019 if_running = netif_running(vsi->netdev) && 3020 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3021 3022 /* need to stop netdev while setting up the program for Rx rings */ 3023 if (if_running) { 3024 ret = ice_down(vsi); 3025 if (ret) { 3026 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3027 return ret; 3028 } 3029 } 3030 3031 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3032 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3033 if (xdp_ring_err) { 3034 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3035 goto resume_if; 3036 } else { 3037 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3038 ICE_XDP_CFG_FULL); 3039 if (xdp_ring_err) { 3040 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3041 goto resume_if; 3042 } 3043 } 3044 xdp_features_set_redirect_target(vsi->netdev, true); 3045 /* reallocate Rx queues that are used for zero-copy */ 3046 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3047 if (xdp_ring_err) 3048 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3049 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3050 xdp_features_clear_redirect_target(vsi->netdev); 3051 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3052 if (xdp_ring_err) 3053 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3054 /* reallocate Rx queues that were used for zero-copy */ 3055 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3056 if (xdp_ring_err) 3057 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3058 } 3059 3060 resume_if: 3061 if (if_running) 3062 ret = ice_up(vsi); 3063 3064 if (!ret && prog) 3065 ice_vsi_rx_napi_schedule(vsi); 3066 3067 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3068 } 3069 3070 /** 3071 * ice_xdp_safe_mode - XDP handler for safe mode 3072 * @dev: netdevice 3073 * @xdp: XDP command 3074 */ 3075 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3076 struct netdev_bpf *xdp) 3077 { 3078 NL_SET_ERR_MSG_MOD(xdp->extack, 3079 "Please provide working DDP firmware package in order to use XDP\n" 3080 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3081 return -EOPNOTSUPP; 3082 } 3083 3084 /** 3085 * ice_xdp - implements XDP handler 3086 * @dev: netdevice 3087 * @xdp: XDP command 3088 */ 3089 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3090 { 3091 struct ice_netdev_priv *np = netdev_priv(dev); 3092 struct ice_vsi *vsi = np->vsi; 3093 int ret; 3094 3095 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3096 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3097 return -EINVAL; 3098 } 3099 3100 mutex_lock(&vsi->xdp_state_lock); 3101 3102 switch (xdp->command) { 3103 case XDP_SETUP_PROG: 3104 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3105 break; 3106 case XDP_SETUP_XSK_POOL: 3107 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3108 break; 3109 default: 3110 ret = -EINVAL; 3111 } 3112 3113 mutex_unlock(&vsi->xdp_state_lock); 3114 return ret; 3115 } 3116 3117 /** 3118 * ice_ena_misc_vector - enable the non-queue interrupts 3119 * @pf: board private structure 3120 */ 3121 static void ice_ena_misc_vector(struct ice_pf *pf) 3122 { 3123 struct ice_hw *hw = &pf->hw; 3124 u32 pf_intr_start_offset; 3125 u32 val; 3126 3127 /* Disable anti-spoof detection interrupt to prevent spurious event 3128 * interrupts during a function reset. Anti-spoof functionally is 3129 * still supported. 3130 */ 3131 val = rd32(hw, GL_MDCK_TX_TDPU); 3132 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3133 wr32(hw, GL_MDCK_TX_TDPU, val); 3134 3135 /* clear things first */ 3136 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3137 rd32(hw, PFINT_OICR); /* read to clear */ 3138 3139 val = (PFINT_OICR_ECC_ERR_M | 3140 PFINT_OICR_MAL_DETECT_M | 3141 PFINT_OICR_GRST_M | 3142 PFINT_OICR_PCI_EXCEPTION_M | 3143 PFINT_OICR_VFLR_M | 3144 PFINT_OICR_HMC_ERR_M | 3145 PFINT_OICR_PE_PUSH_M | 3146 PFINT_OICR_PE_CRITERR_M); 3147 3148 wr32(hw, PFINT_OICR_ENA, val); 3149 3150 /* SW_ITR_IDX = 0, but don't change INTENA */ 3151 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3152 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3153 3154 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3155 return; 3156 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3157 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3158 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3159 } 3160 3161 /** 3162 * ice_ll_ts_intr - ll_ts interrupt handler 3163 * @irq: interrupt number 3164 * @data: pointer to a q_vector 3165 */ 3166 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3167 { 3168 struct ice_pf *pf = data; 3169 u32 pf_intr_start_offset; 3170 struct ice_ptp_tx *tx; 3171 unsigned long flags; 3172 struct ice_hw *hw; 3173 u32 val; 3174 u8 idx; 3175 3176 hw = &pf->hw; 3177 tx = &pf->ptp.port.tx; 3178 spin_lock_irqsave(&tx->lock, flags); 3179 ice_ptp_complete_tx_single_tstamp(tx); 3180 3181 idx = find_next_bit_wrap(tx->in_use, tx->len, 3182 tx->last_ll_ts_idx_read + 1); 3183 if (idx != tx->len) 3184 ice_ptp_req_tx_single_tstamp(tx, idx); 3185 spin_unlock_irqrestore(&tx->lock, flags); 3186 3187 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3188 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3189 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3190 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3191 val); 3192 3193 return IRQ_HANDLED; 3194 } 3195 3196 /** 3197 * ice_misc_intr - misc interrupt handler 3198 * @irq: interrupt number 3199 * @data: pointer to a q_vector 3200 */ 3201 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3202 { 3203 struct ice_pf *pf = (struct ice_pf *)data; 3204 irqreturn_t ret = IRQ_HANDLED; 3205 struct ice_hw *hw = &pf->hw; 3206 struct device *dev; 3207 u32 oicr, ena_mask; 3208 3209 dev = ice_pf_to_dev(pf); 3210 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3211 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3212 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3213 3214 oicr = rd32(hw, PFINT_OICR); 3215 ena_mask = rd32(hw, PFINT_OICR_ENA); 3216 3217 if (oicr & PFINT_OICR_SWINT_M) { 3218 ena_mask &= ~PFINT_OICR_SWINT_M; 3219 pf->sw_int_count++; 3220 } 3221 3222 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3223 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3224 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3225 } 3226 if (oicr & PFINT_OICR_VFLR_M) { 3227 /* disable any further VFLR event notifications */ 3228 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3229 u32 reg = rd32(hw, PFINT_OICR_ENA); 3230 3231 reg &= ~PFINT_OICR_VFLR_M; 3232 wr32(hw, PFINT_OICR_ENA, reg); 3233 } else { 3234 ena_mask &= ~PFINT_OICR_VFLR_M; 3235 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3236 } 3237 } 3238 3239 if (oicr & PFINT_OICR_GRST_M) { 3240 u32 reset; 3241 3242 /* we have a reset warning */ 3243 ena_mask &= ~PFINT_OICR_GRST_M; 3244 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3245 rd32(hw, GLGEN_RSTAT)); 3246 3247 if (reset == ICE_RESET_CORER) 3248 pf->corer_count++; 3249 else if (reset == ICE_RESET_GLOBR) 3250 pf->globr_count++; 3251 else if (reset == ICE_RESET_EMPR) 3252 pf->empr_count++; 3253 else 3254 dev_dbg(dev, "Invalid reset type %d\n", reset); 3255 3256 /* If a reset cycle isn't already in progress, we set a bit in 3257 * pf->state so that the service task can start a reset/rebuild. 3258 */ 3259 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3260 if (reset == ICE_RESET_CORER) 3261 set_bit(ICE_CORER_RECV, pf->state); 3262 else if (reset == ICE_RESET_GLOBR) 3263 set_bit(ICE_GLOBR_RECV, pf->state); 3264 else 3265 set_bit(ICE_EMPR_RECV, pf->state); 3266 3267 /* There are couple of different bits at play here. 3268 * hw->reset_ongoing indicates whether the hardware is 3269 * in reset. This is set to true when a reset interrupt 3270 * is received and set back to false after the driver 3271 * has determined that the hardware is out of reset. 3272 * 3273 * ICE_RESET_OICR_RECV in pf->state indicates 3274 * that a post reset rebuild is required before the 3275 * driver is operational again. This is set above. 3276 * 3277 * As this is the start of the reset/rebuild cycle, set 3278 * both to indicate that. 3279 */ 3280 hw->reset_ongoing = true; 3281 } 3282 } 3283 3284 if (oicr & PFINT_OICR_TSYN_TX_M) { 3285 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3286 3287 ret = ice_ptp_ts_irq(pf); 3288 } 3289 3290 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3291 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3292 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3293 3294 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3295 3296 if (ice_pf_src_tmr_owned(pf)) { 3297 /* Save EVENTs from GLTSYN register */ 3298 pf->ptp.ext_ts_irq |= gltsyn_stat & 3299 (GLTSYN_STAT_EVENT0_M | 3300 GLTSYN_STAT_EVENT1_M | 3301 GLTSYN_STAT_EVENT2_M); 3302 3303 ice_ptp_extts_event(pf); 3304 } 3305 } 3306 3307 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3308 if (oicr & ICE_AUX_CRIT_ERR) { 3309 pf->oicr_err_reg |= oicr; 3310 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3311 ena_mask &= ~ICE_AUX_CRIT_ERR; 3312 } 3313 3314 /* Report any remaining unexpected interrupts */ 3315 oicr &= ena_mask; 3316 if (oicr) { 3317 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3318 /* If a critical error is pending there is no choice but to 3319 * reset the device. 3320 */ 3321 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3322 PFINT_OICR_ECC_ERR_M)) { 3323 set_bit(ICE_PFR_REQ, pf->state); 3324 } 3325 } 3326 ice_service_task_schedule(pf); 3327 if (ret == IRQ_HANDLED) 3328 ice_irq_dynamic_ena(hw, NULL, NULL); 3329 3330 return ret; 3331 } 3332 3333 /** 3334 * ice_misc_intr_thread_fn - misc interrupt thread function 3335 * @irq: interrupt number 3336 * @data: pointer to a q_vector 3337 */ 3338 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3339 { 3340 struct ice_pf *pf = data; 3341 struct ice_hw *hw; 3342 3343 hw = &pf->hw; 3344 3345 if (ice_is_reset_in_progress(pf->state)) 3346 goto skip_irq; 3347 3348 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3349 /* Process outstanding Tx timestamps. If there is more work, 3350 * re-arm the interrupt to trigger again. 3351 */ 3352 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3353 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3354 ice_flush(hw); 3355 } 3356 } 3357 3358 skip_irq: 3359 ice_irq_dynamic_ena(hw, NULL, NULL); 3360 3361 return IRQ_HANDLED; 3362 } 3363 3364 /** 3365 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3366 * @hw: pointer to HW structure 3367 */ 3368 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3369 { 3370 /* disable Admin queue Interrupt causes */ 3371 wr32(hw, PFINT_FW_CTL, 3372 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3373 3374 /* disable Mailbox queue Interrupt causes */ 3375 wr32(hw, PFINT_MBX_CTL, 3376 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3377 3378 wr32(hw, PFINT_SB_CTL, 3379 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3380 3381 /* disable Control queue Interrupt causes */ 3382 wr32(hw, PFINT_OICR_CTL, 3383 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3384 3385 ice_flush(hw); 3386 } 3387 3388 /** 3389 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3390 * @pf: board private structure 3391 */ 3392 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3393 { 3394 int irq_num = pf->ll_ts_irq.virq; 3395 3396 synchronize_irq(irq_num); 3397 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3398 3399 ice_free_irq(pf, pf->ll_ts_irq); 3400 } 3401 3402 /** 3403 * ice_free_irq_msix_misc - Unroll misc vector setup 3404 * @pf: board private structure 3405 */ 3406 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3407 { 3408 int misc_irq_num = pf->oicr_irq.virq; 3409 struct ice_hw *hw = &pf->hw; 3410 3411 ice_dis_ctrlq_interrupts(hw); 3412 3413 /* disable OICR interrupt */ 3414 wr32(hw, PFINT_OICR_ENA, 0); 3415 ice_flush(hw); 3416 3417 synchronize_irq(misc_irq_num); 3418 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3419 3420 ice_free_irq(pf, pf->oicr_irq); 3421 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3422 ice_free_irq_msix_ll_ts(pf); 3423 } 3424 3425 /** 3426 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3427 * @hw: pointer to HW structure 3428 * @reg_idx: HW vector index to associate the control queue interrupts with 3429 */ 3430 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3431 { 3432 u32 val; 3433 3434 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3435 PFINT_OICR_CTL_CAUSE_ENA_M); 3436 wr32(hw, PFINT_OICR_CTL, val); 3437 3438 /* enable Admin queue Interrupt causes */ 3439 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3440 PFINT_FW_CTL_CAUSE_ENA_M); 3441 wr32(hw, PFINT_FW_CTL, val); 3442 3443 /* enable Mailbox queue Interrupt causes */ 3444 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3445 PFINT_MBX_CTL_CAUSE_ENA_M); 3446 wr32(hw, PFINT_MBX_CTL, val); 3447 3448 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3449 /* enable Sideband queue Interrupt causes */ 3450 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3451 PFINT_SB_CTL_CAUSE_ENA_M); 3452 wr32(hw, PFINT_SB_CTL, val); 3453 } 3454 3455 ice_flush(hw); 3456 } 3457 3458 /** 3459 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3460 * @pf: board private structure 3461 * 3462 * This sets up the handler for MSIX 0, which is used to manage the 3463 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3464 * when in MSI or Legacy interrupt mode. 3465 */ 3466 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3467 { 3468 struct device *dev = ice_pf_to_dev(pf); 3469 struct ice_hw *hw = &pf->hw; 3470 u32 pf_intr_start_offset; 3471 struct msi_map irq; 3472 int err = 0; 3473 3474 if (!pf->int_name[0]) 3475 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3476 dev_driver_string(dev), dev_name(dev)); 3477 3478 if (!pf->int_name_ll_ts[0]) 3479 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3480 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3481 /* Do not request IRQ but do enable OICR interrupt since settings are 3482 * lost during reset. Note that this function is called only during 3483 * rebuild path and not while reset is in progress. 3484 */ 3485 if (ice_is_reset_in_progress(pf->state)) 3486 goto skip_req_irq; 3487 3488 /* reserve one vector in irq_tracker for misc interrupts */ 3489 irq = ice_alloc_irq(pf, false); 3490 if (irq.index < 0) 3491 return irq.index; 3492 3493 pf->oicr_irq = irq; 3494 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3495 ice_misc_intr_thread_fn, 0, 3496 pf->int_name, pf); 3497 if (err) { 3498 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3499 pf->int_name, err); 3500 ice_free_irq(pf, pf->oicr_irq); 3501 return err; 3502 } 3503 3504 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3505 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3506 goto skip_req_irq; 3507 3508 irq = ice_alloc_irq(pf, false); 3509 if (irq.index < 0) 3510 return irq.index; 3511 3512 pf->ll_ts_irq = irq; 3513 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3514 pf->int_name_ll_ts, pf); 3515 if (err) { 3516 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3517 pf->int_name_ll_ts, err); 3518 ice_free_irq(pf, pf->ll_ts_irq); 3519 return err; 3520 } 3521 3522 skip_req_irq: 3523 ice_ena_misc_vector(pf); 3524 3525 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3526 /* This enables LL TS interrupt */ 3527 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3528 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3529 wr32(hw, PFINT_SB_CTL, 3530 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3531 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3532 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3533 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3534 3535 ice_flush(hw); 3536 ice_irq_dynamic_ena(hw, NULL, NULL); 3537 3538 return 0; 3539 } 3540 3541 /** 3542 * ice_set_ops - set netdev and ethtools ops for the given netdev 3543 * @vsi: the VSI associated with the new netdev 3544 */ 3545 static void ice_set_ops(struct ice_vsi *vsi) 3546 { 3547 struct net_device *netdev = vsi->netdev; 3548 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3549 3550 if (ice_is_safe_mode(pf)) { 3551 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3552 ice_set_ethtool_safe_mode_ops(netdev); 3553 return; 3554 } 3555 3556 netdev->netdev_ops = &ice_netdev_ops; 3557 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3558 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3559 ice_set_ethtool_ops(netdev); 3560 3561 if (vsi->type != ICE_VSI_PF) 3562 return; 3563 3564 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3565 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3566 NETDEV_XDP_ACT_RX_SG; 3567 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3568 } 3569 3570 /** 3571 * ice_set_netdev_features - set features for the given netdev 3572 * @netdev: netdev instance 3573 */ 3574 void ice_set_netdev_features(struct net_device *netdev) 3575 { 3576 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3577 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3578 netdev_features_t csumo_features; 3579 netdev_features_t vlano_features; 3580 netdev_features_t dflt_features; 3581 netdev_features_t tso_features; 3582 3583 if (ice_is_safe_mode(pf)) { 3584 /* safe mode */ 3585 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3586 netdev->hw_features = netdev->features; 3587 return; 3588 } 3589 3590 dflt_features = NETIF_F_SG | 3591 NETIF_F_HIGHDMA | 3592 NETIF_F_NTUPLE | 3593 NETIF_F_RXHASH; 3594 3595 csumo_features = NETIF_F_RXCSUM | 3596 NETIF_F_IP_CSUM | 3597 NETIF_F_SCTP_CRC | 3598 NETIF_F_IPV6_CSUM; 3599 3600 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3601 NETIF_F_HW_VLAN_CTAG_TX | 3602 NETIF_F_HW_VLAN_CTAG_RX; 3603 3604 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3605 if (is_dvm_ena) 3606 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3607 3608 tso_features = NETIF_F_TSO | 3609 NETIF_F_TSO_ECN | 3610 NETIF_F_TSO6 | 3611 NETIF_F_GSO_GRE | 3612 NETIF_F_GSO_UDP_TUNNEL | 3613 NETIF_F_GSO_GRE_CSUM | 3614 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3615 NETIF_F_GSO_PARTIAL | 3616 NETIF_F_GSO_IPXIP4 | 3617 NETIF_F_GSO_IPXIP6 | 3618 NETIF_F_GSO_UDP_L4; 3619 3620 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3621 NETIF_F_GSO_GRE_CSUM; 3622 /* set features that user can change */ 3623 netdev->hw_features = dflt_features | csumo_features | 3624 vlano_features | tso_features; 3625 3626 /* add support for HW_CSUM on packets with MPLS header */ 3627 netdev->mpls_features = NETIF_F_HW_CSUM | 3628 NETIF_F_TSO | 3629 NETIF_F_TSO6; 3630 3631 /* enable features */ 3632 netdev->features |= netdev->hw_features; 3633 3634 netdev->hw_features |= NETIF_F_HW_TC; 3635 netdev->hw_features |= NETIF_F_LOOPBACK; 3636 3637 /* encap and VLAN devices inherit default, csumo and tso features */ 3638 netdev->hw_enc_features |= dflt_features | csumo_features | 3639 tso_features; 3640 netdev->vlan_features |= dflt_features | csumo_features | 3641 tso_features; 3642 3643 /* advertise support but don't enable by default since only one type of 3644 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3645 * type turns on the other has to be turned off. This is enforced by the 3646 * ice_fix_features() ndo callback. 3647 */ 3648 if (is_dvm_ena) 3649 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3650 NETIF_F_HW_VLAN_STAG_TX; 3651 3652 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3653 * be changed at runtime 3654 */ 3655 netdev->hw_features |= NETIF_F_RXFCS; 3656 3657 /* Allow core to manage IRQs affinity */ 3658 netif_set_affinity_auto(netdev); 3659 3660 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3661 * ndo callback. 3662 */ 3663 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3664 netdev->hw_features |= NETIF_F_HW_CSUM; 3665 3666 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3667 } 3668 3669 /** 3670 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3671 * @lut: Lookup table 3672 * @rss_table_size: Lookup table size 3673 * @rss_size: Range of queue number for hashing 3674 */ 3675 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3676 { 3677 u16 i; 3678 3679 for (i = 0; i < rss_table_size; i++) 3680 lut[i] = i % rss_size; 3681 } 3682 3683 /** 3684 * ice_pf_vsi_setup - Set up a PF VSI 3685 * @pf: board private structure 3686 * @pi: pointer to the port_info instance 3687 * 3688 * Returns pointer to the successfully allocated VSI software struct 3689 * on success, otherwise returns NULL on failure. 3690 */ 3691 static struct ice_vsi * 3692 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3693 { 3694 struct ice_vsi_cfg_params params = {}; 3695 3696 params.type = ICE_VSI_PF; 3697 params.port_info = pi; 3698 params.flags = ICE_VSI_FLAG_INIT; 3699 3700 return ice_vsi_setup(pf, ¶ms); 3701 } 3702 3703 static struct ice_vsi * 3704 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3705 struct ice_channel *ch) 3706 { 3707 struct ice_vsi_cfg_params params = {}; 3708 3709 params.type = ICE_VSI_CHNL; 3710 params.port_info = pi; 3711 params.ch = ch; 3712 params.flags = ICE_VSI_FLAG_INIT; 3713 3714 return ice_vsi_setup(pf, ¶ms); 3715 } 3716 3717 /** 3718 * ice_ctrl_vsi_setup - Set up a control VSI 3719 * @pf: board private structure 3720 * @pi: pointer to the port_info instance 3721 * 3722 * Returns pointer to the successfully allocated VSI software struct 3723 * on success, otherwise returns NULL on failure. 3724 */ 3725 static struct ice_vsi * 3726 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3727 { 3728 struct ice_vsi_cfg_params params = {}; 3729 3730 params.type = ICE_VSI_CTRL; 3731 params.port_info = pi; 3732 params.flags = ICE_VSI_FLAG_INIT; 3733 3734 return ice_vsi_setup(pf, ¶ms); 3735 } 3736 3737 /** 3738 * ice_lb_vsi_setup - Set up a loopback VSI 3739 * @pf: board private structure 3740 * @pi: pointer to the port_info instance 3741 * 3742 * Returns pointer to the successfully allocated VSI software struct 3743 * on success, otherwise returns NULL on failure. 3744 */ 3745 struct ice_vsi * 3746 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3747 { 3748 struct ice_vsi_cfg_params params = {}; 3749 3750 params.type = ICE_VSI_LB; 3751 params.port_info = pi; 3752 params.flags = ICE_VSI_FLAG_INIT; 3753 3754 return ice_vsi_setup(pf, ¶ms); 3755 } 3756 3757 /** 3758 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3759 * @netdev: network interface to be adjusted 3760 * @proto: VLAN TPID 3761 * @vid: VLAN ID to be added 3762 * 3763 * net_device_ops implementation for adding VLAN IDs 3764 */ 3765 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3766 { 3767 struct ice_netdev_priv *np = netdev_priv(netdev); 3768 struct ice_vsi_vlan_ops *vlan_ops; 3769 struct ice_vsi *vsi = np->vsi; 3770 struct ice_vlan vlan; 3771 int ret; 3772 3773 /* VLAN 0 is added by default during load/reset */ 3774 if (!vid) 3775 return 0; 3776 3777 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3778 usleep_range(1000, 2000); 3779 3780 /* Add multicast promisc rule for the VLAN ID to be added if 3781 * all-multicast is currently enabled. 3782 */ 3783 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3784 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3785 ICE_MCAST_VLAN_PROMISC_BITS, 3786 vid); 3787 if (ret) 3788 goto finish; 3789 } 3790 3791 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3792 3793 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3794 * packets aren't pruned by the device's internal switch on Rx 3795 */ 3796 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3797 ret = vlan_ops->add_vlan(vsi, &vlan); 3798 if (ret) 3799 goto finish; 3800 3801 /* If all-multicast is currently enabled and this VLAN ID is only one 3802 * besides VLAN-0 we have to update look-up type of multicast promisc 3803 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3804 */ 3805 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3806 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3807 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3808 ICE_MCAST_PROMISC_BITS, 0); 3809 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3810 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3811 } 3812 3813 finish: 3814 clear_bit(ICE_CFG_BUSY, vsi->state); 3815 3816 return ret; 3817 } 3818 3819 /** 3820 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3821 * @netdev: network interface to be adjusted 3822 * @proto: VLAN TPID 3823 * @vid: VLAN ID to be removed 3824 * 3825 * net_device_ops implementation for removing VLAN IDs 3826 */ 3827 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3828 { 3829 struct ice_netdev_priv *np = netdev_priv(netdev); 3830 struct ice_vsi_vlan_ops *vlan_ops; 3831 struct ice_vsi *vsi = np->vsi; 3832 struct ice_vlan vlan; 3833 int ret; 3834 3835 /* don't allow removal of VLAN 0 */ 3836 if (!vid) 3837 return 0; 3838 3839 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3840 usleep_range(1000, 2000); 3841 3842 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3843 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3844 if (ret) { 3845 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3846 vsi->vsi_num); 3847 vsi->current_netdev_flags |= IFF_ALLMULTI; 3848 } 3849 3850 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3851 3852 /* Make sure VLAN delete is successful before updating VLAN 3853 * information 3854 */ 3855 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3856 ret = vlan_ops->del_vlan(vsi, &vlan); 3857 if (ret) 3858 goto finish; 3859 3860 /* Remove multicast promisc rule for the removed VLAN ID if 3861 * all-multicast is enabled. 3862 */ 3863 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3864 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3865 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3866 3867 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3868 /* Update look-up type of multicast promisc rule for VLAN 0 3869 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3870 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3871 */ 3872 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3873 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3874 ICE_MCAST_VLAN_PROMISC_BITS, 3875 0); 3876 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3877 ICE_MCAST_PROMISC_BITS, 0); 3878 } 3879 } 3880 3881 finish: 3882 clear_bit(ICE_CFG_BUSY, vsi->state); 3883 3884 return ret; 3885 } 3886 3887 /** 3888 * ice_rep_indr_tc_block_unbind 3889 * @cb_priv: indirection block private data 3890 */ 3891 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3892 { 3893 struct ice_indr_block_priv *indr_priv = cb_priv; 3894 3895 list_del(&indr_priv->list); 3896 kfree(indr_priv); 3897 } 3898 3899 /** 3900 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3901 * @vsi: VSI struct which has the netdev 3902 */ 3903 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3904 { 3905 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3906 3907 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3908 ice_rep_indr_tc_block_unbind); 3909 } 3910 3911 /** 3912 * ice_tc_indir_block_register - Register TC indirect block notifications 3913 * @vsi: VSI struct which has the netdev 3914 * 3915 * Returns 0 on success, negative value on failure 3916 */ 3917 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3918 { 3919 struct ice_netdev_priv *np; 3920 3921 if (!vsi || !vsi->netdev) 3922 return -EINVAL; 3923 3924 np = netdev_priv(vsi->netdev); 3925 3926 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3927 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3928 } 3929 3930 /** 3931 * ice_get_avail_q_count - Get count of queues in use 3932 * @pf_qmap: bitmap to get queue use count from 3933 * @lock: pointer to a mutex that protects access to pf_qmap 3934 * @size: size of the bitmap 3935 */ 3936 static u16 3937 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3938 { 3939 unsigned long bit; 3940 u16 count = 0; 3941 3942 mutex_lock(lock); 3943 for_each_clear_bit(bit, pf_qmap, size) 3944 count++; 3945 mutex_unlock(lock); 3946 3947 return count; 3948 } 3949 3950 /** 3951 * ice_get_avail_txq_count - Get count of Tx queues in use 3952 * @pf: pointer to an ice_pf instance 3953 */ 3954 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3955 { 3956 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3957 pf->max_pf_txqs); 3958 } 3959 3960 /** 3961 * ice_get_avail_rxq_count - Get count of Rx queues in use 3962 * @pf: pointer to an ice_pf instance 3963 */ 3964 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3965 { 3966 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3967 pf->max_pf_rxqs); 3968 } 3969 3970 /** 3971 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3972 * @pf: board private structure to initialize 3973 */ 3974 static void ice_deinit_pf(struct ice_pf *pf) 3975 { 3976 ice_service_task_stop(pf); 3977 mutex_destroy(&pf->lag_mutex); 3978 mutex_destroy(&pf->adev_mutex); 3979 mutex_destroy(&pf->sw_mutex); 3980 mutex_destroy(&pf->tc_mutex); 3981 mutex_destroy(&pf->avail_q_mutex); 3982 mutex_destroy(&pf->vfs.table_lock); 3983 3984 if (pf->avail_txqs) { 3985 bitmap_free(pf->avail_txqs); 3986 pf->avail_txqs = NULL; 3987 } 3988 3989 if (pf->avail_rxqs) { 3990 bitmap_free(pf->avail_rxqs); 3991 pf->avail_rxqs = NULL; 3992 } 3993 3994 if (pf->ptp.clock) 3995 ptp_clock_unregister(pf->ptp.clock); 3996 3997 xa_destroy(&pf->dyn_ports); 3998 xa_destroy(&pf->sf_nums); 3999 } 4000 4001 /** 4002 * ice_set_pf_caps - set PFs capability flags 4003 * @pf: pointer to the PF instance 4004 */ 4005 static void ice_set_pf_caps(struct ice_pf *pf) 4006 { 4007 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4008 4009 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4010 if (func_caps->common_cap.rdma) 4011 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4012 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4013 if (func_caps->common_cap.dcb) 4014 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4015 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4016 if (func_caps->common_cap.sr_iov_1_1) { 4017 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4018 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4019 ICE_MAX_SRIOV_VFS); 4020 } 4021 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4022 if (func_caps->common_cap.rss_table_size) 4023 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4024 4025 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4026 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4027 u16 unused; 4028 4029 /* ctrl_vsi_idx will be set to a valid value when flow director 4030 * is setup by ice_init_fdir 4031 */ 4032 pf->ctrl_vsi_idx = ICE_NO_VSI; 4033 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4034 /* force guaranteed filter pool for PF */ 4035 ice_alloc_fd_guar_item(&pf->hw, &unused, 4036 func_caps->fd_fltr_guar); 4037 /* force shared filter pool for PF */ 4038 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4039 func_caps->fd_fltr_best_effort); 4040 } 4041 4042 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4043 if (func_caps->common_cap.ieee_1588) 4044 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4045 4046 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4047 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4048 } 4049 4050 /** 4051 * ice_init_pf - Initialize general software structures (struct ice_pf) 4052 * @pf: board private structure to initialize 4053 */ 4054 static int ice_init_pf(struct ice_pf *pf) 4055 { 4056 ice_set_pf_caps(pf); 4057 4058 mutex_init(&pf->sw_mutex); 4059 mutex_init(&pf->tc_mutex); 4060 mutex_init(&pf->adev_mutex); 4061 mutex_init(&pf->lag_mutex); 4062 4063 INIT_HLIST_HEAD(&pf->aq_wait_list); 4064 spin_lock_init(&pf->aq_wait_lock); 4065 init_waitqueue_head(&pf->aq_wait_queue); 4066 4067 init_waitqueue_head(&pf->reset_wait_queue); 4068 4069 /* setup service timer and periodic service task */ 4070 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4071 pf->serv_tmr_period = HZ; 4072 INIT_WORK(&pf->serv_task, ice_service_task); 4073 clear_bit(ICE_SERVICE_SCHED, pf->state); 4074 4075 mutex_init(&pf->avail_q_mutex); 4076 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4077 if (!pf->avail_txqs) 4078 return -ENOMEM; 4079 4080 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4081 if (!pf->avail_rxqs) { 4082 bitmap_free(pf->avail_txqs); 4083 pf->avail_txqs = NULL; 4084 return -ENOMEM; 4085 } 4086 4087 mutex_init(&pf->vfs.table_lock); 4088 hash_init(pf->vfs.table); 4089 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4090 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4091 ICE_MBX_OVERFLOW_WATERMARK); 4092 else 4093 ice_mbx_init_snapshot(&pf->hw); 4094 4095 xa_init(&pf->dyn_ports); 4096 xa_init(&pf->sf_nums); 4097 4098 return 0; 4099 } 4100 4101 /** 4102 * ice_is_wol_supported - check if WoL is supported 4103 * @hw: pointer to hardware info 4104 * 4105 * Check if WoL is supported based on the HW configuration. 4106 * Returns true if NVM supports and enables WoL for this port, false otherwise 4107 */ 4108 bool ice_is_wol_supported(struct ice_hw *hw) 4109 { 4110 u16 wol_ctrl; 4111 4112 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4113 * word) indicates WoL is not supported on the corresponding PF ID. 4114 */ 4115 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4116 return false; 4117 4118 return !(BIT(hw->port_info->lport) & wol_ctrl); 4119 } 4120 4121 /** 4122 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4123 * @vsi: VSI being changed 4124 * @new_rx: new number of Rx queues 4125 * @new_tx: new number of Tx queues 4126 * @locked: is adev device_lock held 4127 * 4128 * Only change the number of queues if new_tx, or new_rx is non-0. 4129 * 4130 * Returns 0 on success. 4131 */ 4132 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4133 { 4134 struct ice_pf *pf = vsi->back; 4135 int i, err = 0, timeout = 50; 4136 4137 if (!new_rx && !new_tx) 4138 return -EINVAL; 4139 4140 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4141 timeout--; 4142 if (!timeout) 4143 return -EBUSY; 4144 usleep_range(1000, 2000); 4145 } 4146 4147 if (new_tx) 4148 vsi->req_txq = (u16)new_tx; 4149 if (new_rx) 4150 vsi->req_rxq = (u16)new_rx; 4151 4152 /* set for the next time the netdev is started */ 4153 if (!netif_running(vsi->netdev)) { 4154 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4155 if (err) 4156 goto rebuild_err; 4157 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4158 goto done; 4159 } 4160 4161 ice_vsi_close(vsi); 4162 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4163 if (err) 4164 goto rebuild_err; 4165 4166 ice_for_each_traffic_class(i) { 4167 if (vsi->tc_cfg.ena_tc & BIT(i)) 4168 netdev_set_tc_queue(vsi->netdev, 4169 vsi->tc_cfg.tc_info[i].netdev_tc, 4170 vsi->tc_cfg.tc_info[i].qcount_tx, 4171 vsi->tc_cfg.tc_info[i].qoffset); 4172 } 4173 ice_pf_dcb_recfg(pf, locked); 4174 ice_vsi_open(vsi); 4175 goto done; 4176 4177 rebuild_err: 4178 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4179 err); 4180 done: 4181 clear_bit(ICE_CFG_BUSY, pf->state); 4182 return err; 4183 } 4184 4185 /** 4186 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4187 * @pf: PF to configure 4188 * 4189 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4190 * VSI can still Tx/Rx VLAN tagged packets. 4191 */ 4192 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4193 { 4194 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4195 struct ice_vsi_ctx *ctxt; 4196 struct ice_hw *hw; 4197 int status; 4198 4199 if (!vsi) 4200 return; 4201 4202 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4203 if (!ctxt) 4204 return; 4205 4206 hw = &pf->hw; 4207 ctxt->info = vsi->info; 4208 4209 ctxt->info.valid_sections = 4210 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4211 ICE_AQ_VSI_PROP_SECURITY_VALID | 4212 ICE_AQ_VSI_PROP_SW_VALID); 4213 4214 /* disable VLAN anti-spoof */ 4215 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4216 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4217 4218 /* disable VLAN pruning and keep all other settings */ 4219 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4220 4221 /* allow all VLANs on Tx and don't strip on Rx */ 4222 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4223 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4224 4225 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4226 if (status) { 4227 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4228 status, libie_aq_str(hw->adminq.sq_last_status)); 4229 } else { 4230 vsi->info.sec_flags = ctxt->info.sec_flags; 4231 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4232 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4233 } 4234 4235 kfree(ctxt); 4236 } 4237 4238 /** 4239 * ice_log_pkg_init - log result of DDP package load 4240 * @hw: pointer to hardware info 4241 * @state: state of package load 4242 */ 4243 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4244 { 4245 struct ice_pf *pf = hw->back; 4246 struct device *dev; 4247 4248 dev = ice_pf_to_dev(pf); 4249 4250 switch (state) { 4251 case ICE_DDP_PKG_SUCCESS: 4252 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4253 hw->active_pkg_name, 4254 hw->active_pkg_ver.major, 4255 hw->active_pkg_ver.minor, 4256 hw->active_pkg_ver.update, 4257 hw->active_pkg_ver.draft); 4258 break; 4259 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4260 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4261 hw->active_pkg_name, 4262 hw->active_pkg_ver.major, 4263 hw->active_pkg_ver.minor, 4264 hw->active_pkg_ver.update, 4265 hw->active_pkg_ver.draft); 4266 break; 4267 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4268 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4269 hw->active_pkg_name, 4270 hw->active_pkg_ver.major, 4271 hw->active_pkg_ver.minor, 4272 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4273 break; 4274 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4275 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4276 hw->active_pkg_name, 4277 hw->active_pkg_ver.major, 4278 hw->active_pkg_ver.minor, 4279 hw->active_pkg_ver.update, 4280 hw->active_pkg_ver.draft, 4281 hw->pkg_name, 4282 hw->pkg_ver.major, 4283 hw->pkg_ver.minor, 4284 hw->pkg_ver.update, 4285 hw->pkg_ver.draft); 4286 break; 4287 case ICE_DDP_PKG_FW_MISMATCH: 4288 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4289 break; 4290 case ICE_DDP_PKG_INVALID_FILE: 4291 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4292 break; 4293 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4294 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4295 break; 4296 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4297 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4298 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4299 break; 4300 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4301 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4302 break; 4303 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4304 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4305 break; 4306 case ICE_DDP_PKG_LOAD_ERROR: 4307 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4308 /* poll for reset to complete */ 4309 if (ice_check_reset(hw)) 4310 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4311 break; 4312 case ICE_DDP_PKG_ERR: 4313 default: 4314 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4315 break; 4316 } 4317 } 4318 4319 /** 4320 * ice_load_pkg - load/reload the DDP Package file 4321 * @firmware: firmware structure when firmware requested or NULL for reload 4322 * @pf: pointer to the PF instance 4323 * 4324 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4325 * initialize HW tables. 4326 */ 4327 static void 4328 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4329 { 4330 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4331 struct device *dev = ice_pf_to_dev(pf); 4332 struct ice_hw *hw = &pf->hw; 4333 4334 /* Load DDP Package */ 4335 if (firmware && !hw->pkg_copy) { 4336 state = ice_copy_and_init_pkg(hw, firmware->data, 4337 firmware->size); 4338 ice_log_pkg_init(hw, state); 4339 } else if (!firmware && hw->pkg_copy) { 4340 /* Reload package during rebuild after CORER/GLOBR reset */ 4341 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4342 ice_log_pkg_init(hw, state); 4343 } else { 4344 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4345 } 4346 4347 if (!ice_is_init_pkg_successful(state)) { 4348 /* Safe Mode */ 4349 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4350 return; 4351 } 4352 4353 /* Successful download package is the precondition for advanced 4354 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4355 */ 4356 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4357 } 4358 4359 /** 4360 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4361 * @pf: pointer to the PF structure 4362 * 4363 * There is no error returned here because the driver should be able to handle 4364 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4365 * specifically with Tx. 4366 */ 4367 static void ice_verify_cacheline_size(struct ice_pf *pf) 4368 { 4369 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4370 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4371 ICE_CACHE_LINE_BYTES); 4372 } 4373 4374 /** 4375 * ice_send_version - update firmware with driver version 4376 * @pf: PF struct 4377 * 4378 * Returns 0 on success, else error code 4379 */ 4380 static int ice_send_version(struct ice_pf *pf) 4381 { 4382 struct ice_driver_ver dv; 4383 4384 dv.major_ver = 0xff; 4385 dv.minor_ver = 0xff; 4386 dv.build_ver = 0xff; 4387 dv.subbuild_ver = 0; 4388 strscpy((char *)dv.driver_string, UTS_RELEASE, 4389 sizeof(dv.driver_string)); 4390 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4391 } 4392 4393 /** 4394 * ice_init_fdir - Initialize flow director VSI and configuration 4395 * @pf: pointer to the PF instance 4396 * 4397 * returns 0 on success, negative on error 4398 */ 4399 static int ice_init_fdir(struct ice_pf *pf) 4400 { 4401 struct device *dev = ice_pf_to_dev(pf); 4402 struct ice_vsi *ctrl_vsi; 4403 int err; 4404 4405 /* Side Band Flow Director needs to have a control VSI. 4406 * Allocate it and store it in the PF. 4407 */ 4408 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4409 if (!ctrl_vsi) { 4410 dev_dbg(dev, "could not create control VSI\n"); 4411 return -ENOMEM; 4412 } 4413 4414 err = ice_vsi_open_ctrl(ctrl_vsi); 4415 if (err) { 4416 dev_dbg(dev, "could not open control VSI\n"); 4417 goto err_vsi_open; 4418 } 4419 4420 mutex_init(&pf->hw.fdir_fltr_lock); 4421 4422 err = ice_fdir_create_dflt_rules(pf); 4423 if (err) 4424 goto err_fdir_rule; 4425 4426 return 0; 4427 4428 err_fdir_rule: 4429 ice_fdir_release_flows(&pf->hw); 4430 ice_vsi_close(ctrl_vsi); 4431 err_vsi_open: 4432 ice_vsi_release(ctrl_vsi); 4433 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4434 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4435 pf->ctrl_vsi_idx = ICE_NO_VSI; 4436 } 4437 return err; 4438 } 4439 4440 static void ice_deinit_fdir(struct ice_pf *pf) 4441 { 4442 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4443 4444 if (!vsi) 4445 return; 4446 4447 ice_vsi_manage_fdir(vsi, false); 4448 ice_vsi_release(vsi); 4449 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4450 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4451 pf->ctrl_vsi_idx = ICE_NO_VSI; 4452 } 4453 4454 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4455 } 4456 4457 /** 4458 * ice_get_opt_fw_name - return optional firmware file name or NULL 4459 * @pf: pointer to the PF instance 4460 */ 4461 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4462 { 4463 /* Optional firmware name same as default with additional dash 4464 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4465 */ 4466 struct pci_dev *pdev = pf->pdev; 4467 char *opt_fw_filename; 4468 u64 dsn; 4469 4470 /* Determine the name of the optional file using the DSN (two 4471 * dwords following the start of the DSN Capability). 4472 */ 4473 dsn = pci_get_dsn(pdev); 4474 if (!dsn) 4475 return NULL; 4476 4477 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4478 if (!opt_fw_filename) 4479 return NULL; 4480 4481 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4482 ICE_DDP_PKG_PATH, dsn); 4483 4484 return opt_fw_filename; 4485 } 4486 4487 /** 4488 * ice_request_fw - Device initialization routine 4489 * @pf: pointer to the PF instance 4490 * @firmware: double pointer to firmware struct 4491 * 4492 * Return: zero when successful, negative values otherwise. 4493 */ 4494 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4495 { 4496 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4497 struct device *dev = ice_pf_to_dev(pf); 4498 int err = 0; 4499 4500 /* optional device-specific DDP (if present) overrides the default DDP 4501 * package file. kernel logs a debug message if the file doesn't exist, 4502 * and warning messages for other errors. 4503 */ 4504 if (opt_fw_filename) { 4505 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4506 kfree(opt_fw_filename); 4507 if (!err) 4508 return err; 4509 } 4510 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4511 if (err) 4512 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4513 4514 return err; 4515 } 4516 4517 /** 4518 * ice_init_tx_topology - performs Tx topology initialization 4519 * @hw: pointer to the hardware structure 4520 * @firmware: pointer to firmware structure 4521 * 4522 * Return: zero when init was successful, negative values otherwise. 4523 */ 4524 static int 4525 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4526 { 4527 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4528 struct ice_pf *pf = hw->back; 4529 struct device *dev; 4530 int err; 4531 4532 dev = ice_pf_to_dev(pf); 4533 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4534 if (!err) { 4535 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4536 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4537 else 4538 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4539 /* if there was a change in topology ice_cfg_tx_topo triggered 4540 * a CORER and we need to re-init hw 4541 */ 4542 ice_deinit_hw(hw); 4543 err = ice_init_hw(hw); 4544 4545 return err; 4546 } else if (err == -EIO) { 4547 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4548 } 4549 4550 return 0; 4551 } 4552 4553 /** 4554 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4555 * @hw: pointer to the hardware structure 4556 * @pf: pointer to pf structure 4557 * 4558 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4559 * formats the PF hardware supports. The exact list of supported RXDIDs 4560 * depends on the loaded DDP package. The IDs can be determined by reading the 4561 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4562 * 4563 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4564 * in the DDP package. The 16-byte legacy descriptor is never supported by 4565 * VFs. 4566 */ 4567 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4568 { 4569 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4570 4571 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4572 u32 regval; 4573 4574 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4575 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4576 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4577 pf->supported_rxdids |= BIT(i); 4578 } 4579 } 4580 4581 /** 4582 * ice_init_ddp_config - DDP related configuration 4583 * @hw: pointer to the hardware structure 4584 * @pf: pointer to pf structure 4585 * 4586 * This function loads DDP file from the disk, then initializes Tx 4587 * topology. At the end DDP package is loaded on the card. 4588 * 4589 * Return: zero when init was successful, negative values otherwise. 4590 */ 4591 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4592 { 4593 struct device *dev = ice_pf_to_dev(pf); 4594 const struct firmware *firmware = NULL; 4595 int err; 4596 4597 err = ice_request_fw(pf, &firmware); 4598 if (err) { 4599 dev_err(dev, "Fail during requesting FW: %d\n", err); 4600 return err; 4601 } 4602 4603 err = ice_init_tx_topology(hw, firmware); 4604 if (err) { 4605 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4606 err); 4607 release_firmware(firmware); 4608 return err; 4609 } 4610 4611 /* Download firmware to device */ 4612 ice_load_pkg(firmware, pf); 4613 release_firmware(firmware); 4614 4615 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4616 ice_init_supported_rxdids(hw, pf); 4617 4618 return 0; 4619 } 4620 4621 /** 4622 * ice_print_wake_reason - show the wake up cause in the log 4623 * @pf: pointer to the PF struct 4624 */ 4625 static void ice_print_wake_reason(struct ice_pf *pf) 4626 { 4627 u32 wus = pf->wakeup_reason; 4628 const char *wake_str; 4629 4630 /* if no wake event, nothing to print */ 4631 if (!wus) 4632 return; 4633 4634 if (wus & PFPM_WUS_LNKC_M) 4635 wake_str = "Link\n"; 4636 else if (wus & PFPM_WUS_MAG_M) 4637 wake_str = "Magic Packet\n"; 4638 else if (wus & PFPM_WUS_MNG_M) 4639 wake_str = "Management\n"; 4640 else if (wus & PFPM_WUS_FW_RST_WK_M) 4641 wake_str = "Firmware Reset\n"; 4642 else 4643 wake_str = "Unknown\n"; 4644 4645 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4646 } 4647 4648 /** 4649 * ice_pf_fwlog_update_module - update 1 module 4650 * @pf: pointer to the PF struct 4651 * @log_level: log_level to use for the @module 4652 * @module: module to update 4653 */ 4654 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4655 { 4656 struct ice_hw *hw = &pf->hw; 4657 4658 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4659 } 4660 4661 /** 4662 * ice_register_netdev - register netdev 4663 * @vsi: pointer to the VSI struct 4664 */ 4665 static int ice_register_netdev(struct ice_vsi *vsi) 4666 { 4667 int err; 4668 4669 if (!vsi || !vsi->netdev) 4670 return -EIO; 4671 4672 err = register_netdev(vsi->netdev); 4673 if (err) 4674 return err; 4675 4676 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4677 netif_carrier_off(vsi->netdev); 4678 netif_tx_stop_all_queues(vsi->netdev); 4679 4680 return 0; 4681 } 4682 4683 static void ice_unregister_netdev(struct ice_vsi *vsi) 4684 { 4685 if (!vsi || !vsi->netdev) 4686 return; 4687 4688 unregister_netdev(vsi->netdev); 4689 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4690 } 4691 4692 /** 4693 * ice_cfg_netdev - Allocate, configure and register a netdev 4694 * @vsi: the VSI associated with the new netdev 4695 * 4696 * Returns 0 on success, negative value on failure 4697 */ 4698 static int ice_cfg_netdev(struct ice_vsi *vsi) 4699 { 4700 struct ice_netdev_priv *np; 4701 struct net_device *netdev; 4702 u8 mac_addr[ETH_ALEN]; 4703 4704 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4705 vsi->alloc_rxq); 4706 if (!netdev) 4707 return -ENOMEM; 4708 4709 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4710 vsi->netdev = netdev; 4711 np = netdev_priv(netdev); 4712 np->vsi = vsi; 4713 4714 ice_set_netdev_features(netdev); 4715 ice_set_ops(vsi); 4716 4717 if (vsi->type == ICE_VSI_PF) { 4718 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4719 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4720 eth_hw_addr_set(netdev, mac_addr); 4721 } 4722 4723 netdev->priv_flags |= IFF_UNICAST_FLT; 4724 4725 /* Setup netdev TC information */ 4726 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4727 4728 netdev->max_mtu = ICE_MAX_MTU; 4729 4730 return 0; 4731 } 4732 4733 static void ice_decfg_netdev(struct ice_vsi *vsi) 4734 { 4735 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4736 free_netdev(vsi->netdev); 4737 vsi->netdev = NULL; 4738 } 4739 4740 int ice_init_dev(struct ice_pf *pf) 4741 { 4742 struct device *dev = ice_pf_to_dev(pf); 4743 struct ice_hw *hw = &pf->hw; 4744 int err; 4745 4746 ice_init_feature_support(pf); 4747 4748 err = ice_init_ddp_config(hw, pf); 4749 4750 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4751 * set in pf->state, which will cause ice_is_safe_mode to return 4752 * true 4753 */ 4754 if (err || ice_is_safe_mode(pf)) { 4755 /* we already got function/device capabilities but these don't 4756 * reflect what the driver needs to do in safe mode. Instead of 4757 * adding conditional logic everywhere to ignore these 4758 * device/function capabilities, override them. 4759 */ 4760 ice_set_safe_mode_caps(hw); 4761 } 4762 4763 err = ice_init_pf(pf); 4764 if (err) { 4765 dev_err(dev, "ice_init_pf failed: %d\n", err); 4766 return err; 4767 } 4768 4769 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4770 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4771 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4772 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4773 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4774 pf->hw.tnl.valid_count[TNL_VXLAN]; 4775 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4776 UDP_TUNNEL_TYPE_VXLAN; 4777 } 4778 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4779 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4780 pf->hw.tnl.valid_count[TNL_GENEVE]; 4781 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4782 UDP_TUNNEL_TYPE_GENEVE; 4783 } 4784 4785 err = ice_init_interrupt_scheme(pf); 4786 if (err) { 4787 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4788 err = -EIO; 4789 goto unroll_pf_init; 4790 } 4791 4792 /* In case of MSIX we are going to setup the misc vector right here 4793 * to handle admin queue events etc. In case of legacy and MSI 4794 * the misc functionality and queue processing is combined in 4795 * the same vector and that gets setup at open. 4796 */ 4797 err = ice_req_irq_msix_misc(pf); 4798 if (err) { 4799 dev_err(dev, "setup of misc vector failed: %d\n", err); 4800 goto unroll_irq_scheme_init; 4801 } 4802 4803 return 0; 4804 4805 unroll_irq_scheme_init: 4806 ice_clear_interrupt_scheme(pf); 4807 unroll_pf_init: 4808 ice_deinit_pf(pf); 4809 return err; 4810 } 4811 4812 void ice_deinit_dev(struct ice_pf *pf) 4813 { 4814 ice_free_irq_msix_misc(pf); 4815 ice_deinit_pf(pf); 4816 ice_deinit_hw(&pf->hw); 4817 4818 /* Service task is already stopped, so call reset directly. */ 4819 ice_reset(&pf->hw, ICE_RESET_PFR); 4820 pci_wait_for_pending_transaction(pf->pdev); 4821 ice_clear_interrupt_scheme(pf); 4822 } 4823 4824 static void ice_init_features(struct ice_pf *pf) 4825 { 4826 struct device *dev = ice_pf_to_dev(pf); 4827 4828 if (ice_is_safe_mode(pf)) 4829 return; 4830 4831 /* initialize DDP driven features */ 4832 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4833 ice_ptp_init(pf); 4834 4835 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4836 ice_gnss_init(pf); 4837 4838 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4839 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4840 ice_dpll_init(pf); 4841 4842 /* Note: Flow director init failure is non-fatal to load */ 4843 if (ice_init_fdir(pf)) 4844 dev_err(dev, "could not initialize flow director\n"); 4845 4846 /* Note: DCB init failure is non-fatal to load */ 4847 if (ice_init_pf_dcb(pf, false)) { 4848 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4849 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4850 } else { 4851 ice_cfg_lldp_mib_change(&pf->hw, true); 4852 } 4853 4854 if (ice_init_lag(pf)) 4855 dev_warn(dev, "Failed to init link aggregation support\n"); 4856 4857 ice_hwmon_init(pf); 4858 } 4859 4860 static void ice_deinit_features(struct ice_pf *pf) 4861 { 4862 if (ice_is_safe_mode(pf)) 4863 return; 4864 4865 ice_deinit_lag(pf); 4866 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4867 ice_cfg_lldp_mib_change(&pf->hw, false); 4868 ice_deinit_fdir(pf); 4869 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4870 ice_gnss_exit(pf); 4871 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4872 ice_ptp_release(pf); 4873 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4874 ice_dpll_deinit(pf); 4875 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4876 xa_destroy(&pf->eswitch.reprs); 4877 } 4878 4879 static void ice_init_wakeup(struct ice_pf *pf) 4880 { 4881 /* Save wakeup reason register for later use */ 4882 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4883 4884 /* check for a power management event */ 4885 ice_print_wake_reason(pf); 4886 4887 /* clear wake status, all bits */ 4888 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4889 4890 /* Disable WoL at init, wait for user to enable */ 4891 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4892 } 4893 4894 static int ice_init_link(struct ice_pf *pf) 4895 { 4896 struct device *dev = ice_pf_to_dev(pf); 4897 int err; 4898 4899 err = ice_init_link_events(pf->hw.port_info); 4900 if (err) { 4901 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4902 return err; 4903 } 4904 4905 /* not a fatal error if this fails */ 4906 err = ice_init_nvm_phy_type(pf->hw.port_info); 4907 if (err) 4908 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4909 4910 /* not a fatal error if this fails */ 4911 err = ice_update_link_info(pf->hw.port_info); 4912 if (err) 4913 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4914 4915 ice_init_link_dflt_override(pf->hw.port_info); 4916 4917 ice_check_link_cfg_err(pf, 4918 pf->hw.port_info->phy.link_info.link_cfg_err); 4919 4920 /* if media available, initialize PHY settings */ 4921 if (pf->hw.port_info->phy.link_info.link_info & 4922 ICE_AQ_MEDIA_AVAILABLE) { 4923 /* not a fatal error if this fails */ 4924 err = ice_init_phy_user_cfg(pf->hw.port_info); 4925 if (err) 4926 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4927 4928 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4929 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4930 4931 if (vsi) 4932 ice_configure_phy(vsi); 4933 } 4934 } else { 4935 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4936 } 4937 4938 return err; 4939 } 4940 4941 static int ice_init_pf_sw(struct ice_pf *pf) 4942 { 4943 bool dvm = ice_is_dvm_ena(&pf->hw); 4944 struct ice_vsi *vsi; 4945 int err; 4946 4947 /* create switch struct for the switch element created by FW on boot */ 4948 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4949 if (!pf->first_sw) 4950 return -ENOMEM; 4951 4952 if (pf->hw.evb_veb) 4953 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4954 else 4955 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4956 4957 pf->first_sw->pf = pf; 4958 4959 /* record the sw_id available for later use */ 4960 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4961 4962 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4963 if (err) 4964 goto err_aq_set_port_params; 4965 4966 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4967 if (!vsi) { 4968 err = -ENOMEM; 4969 goto err_pf_vsi_setup; 4970 } 4971 4972 return 0; 4973 4974 err_pf_vsi_setup: 4975 err_aq_set_port_params: 4976 kfree(pf->first_sw); 4977 return err; 4978 } 4979 4980 static void ice_deinit_pf_sw(struct ice_pf *pf) 4981 { 4982 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4983 4984 if (!vsi) 4985 return; 4986 4987 ice_vsi_release(vsi); 4988 kfree(pf->first_sw); 4989 } 4990 4991 static int ice_alloc_vsis(struct ice_pf *pf) 4992 { 4993 struct device *dev = ice_pf_to_dev(pf); 4994 4995 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4996 if (!pf->num_alloc_vsi) 4997 return -EIO; 4998 4999 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 5000 dev_warn(dev, 5001 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5002 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5003 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5004 } 5005 5006 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5007 GFP_KERNEL); 5008 if (!pf->vsi) 5009 return -ENOMEM; 5010 5011 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5012 sizeof(*pf->vsi_stats), GFP_KERNEL); 5013 if (!pf->vsi_stats) { 5014 devm_kfree(dev, pf->vsi); 5015 return -ENOMEM; 5016 } 5017 5018 return 0; 5019 } 5020 5021 static void ice_dealloc_vsis(struct ice_pf *pf) 5022 { 5023 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5024 pf->vsi_stats = NULL; 5025 5026 pf->num_alloc_vsi = 0; 5027 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5028 pf->vsi = NULL; 5029 } 5030 5031 static int ice_init_devlink(struct ice_pf *pf) 5032 { 5033 int err; 5034 5035 err = ice_devlink_register_params(pf); 5036 if (err) 5037 return err; 5038 5039 ice_devlink_init_regions(pf); 5040 ice_devlink_register(pf); 5041 ice_health_init(pf); 5042 5043 return 0; 5044 } 5045 5046 static void ice_deinit_devlink(struct ice_pf *pf) 5047 { 5048 ice_health_deinit(pf); 5049 ice_devlink_unregister(pf); 5050 ice_devlink_destroy_regions(pf); 5051 ice_devlink_unregister_params(pf); 5052 } 5053 5054 static int ice_init(struct ice_pf *pf) 5055 { 5056 int err; 5057 5058 err = ice_init_dev(pf); 5059 if (err) 5060 return err; 5061 5062 if (pf->hw.mac_type == ICE_MAC_E830) { 5063 err = pci_enable_ptm(pf->pdev, NULL); 5064 if (err) 5065 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5066 } 5067 5068 err = ice_alloc_vsis(pf); 5069 if (err) 5070 goto err_alloc_vsis; 5071 5072 err = ice_init_pf_sw(pf); 5073 if (err) 5074 goto err_init_pf_sw; 5075 5076 ice_init_wakeup(pf); 5077 5078 err = ice_init_link(pf); 5079 if (err) 5080 goto err_init_link; 5081 5082 err = ice_send_version(pf); 5083 if (err) 5084 goto err_init_link; 5085 5086 ice_verify_cacheline_size(pf); 5087 5088 if (ice_is_safe_mode(pf)) 5089 ice_set_safe_mode_vlan_cfg(pf); 5090 else 5091 /* print PCI link speed and width */ 5092 pcie_print_link_status(pf->pdev); 5093 5094 /* ready to go, so clear down state bit */ 5095 clear_bit(ICE_DOWN, pf->state); 5096 clear_bit(ICE_SERVICE_DIS, pf->state); 5097 5098 /* since everything is good, start the service timer */ 5099 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5100 5101 return 0; 5102 5103 err_init_link: 5104 ice_deinit_pf_sw(pf); 5105 err_init_pf_sw: 5106 ice_dealloc_vsis(pf); 5107 err_alloc_vsis: 5108 ice_deinit_dev(pf); 5109 return err; 5110 } 5111 5112 static void ice_deinit(struct ice_pf *pf) 5113 { 5114 set_bit(ICE_SERVICE_DIS, pf->state); 5115 set_bit(ICE_DOWN, pf->state); 5116 5117 ice_deinit_pf_sw(pf); 5118 ice_dealloc_vsis(pf); 5119 ice_deinit_dev(pf); 5120 } 5121 5122 /** 5123 * ice_load - load pf by init hw and starting VSI 5124 * @pf: pointer to the pf instance 5125 * 5126 * This function has to be called under devl_lock. 5127 */ 5128 int ice_load(struct ice_pf *pf) 5129 { 5130 struct ice_vsi *vsi; 5131 int err; 5132 5133 devl_assert_locked(priv_to_devlink(pf)); 5134 5135 vsi = ice_get_main_vsi(pf); 5136 5137 /* init channel list */ 5138 INIT_LIST_HEAD(&vsi->ch_list); 5139 5140 err = ice_cfg_netdev(vsi); 5141 if (err) 5142 return err; 5143 5144 /* Setup DCB netlink interface */ 5145 ice_dcbnl_setup(vsi); 5146 5147 err = ice_init_mac_fltr(pf); 5148 if (err) 5149 goto err_init_mac_fltr; 5150 5151 err = ice_devlink_create_pf_port(pf); 5152 if (err) 5153 goto err_devlink_create_pf_port; 5154 5155 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5156 5157 err = ice_register_netdev(vsi); 5158 if (err) 5159 goto err_register_netdev; 5160 5161 err = ice_tc_indir_block_register(vsi); 5162 if (err) 5163 goto err_tc_indir_block_register; 5164 5165 ice_napi_add(vsi); 5166 5167 ice_init_features(pf); 5168 5169 err = ice_init_rdma(pf); 5170 if (err) 5171 goto err_init_rdma; 5172 5173 ice_service_task_restart(pf); 5174 5175 clear_bit(ICE_DOWN, pf->state); 5176 5177 return 0; 5178 5179 err_init_rdma: 5180 ice_deinit_features(pf); 5181 ice_tc_indir_block_unregister(vsi); 5182 err_tc_indir_block_register: 5183 ice_unregister_netdev(vsi); 5184 err_register_netdev: 5185 ice_devlink_destroy_pf_port(pf); 5186 err_devlink_create_pf_port: 5187 err_init_mac_fltr: 5188 ice_decfg_netdev(vsi); 5189 return err; 5190 } 5191 5192 /** 5193 * ice_unload - unload pf by stopping VSI and deinit hw 5194 * @pf: pointer to the pf instance 5195 * 5196 * This function has to be called under devl_lock. 5197 */ 5198 void ice_unload(struct ice_pf *pf) 5199 { 5200 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5201 5202 devl_assert_locked(priv_to_devlink(pf)); 5203 5204 ice_deinit_rdma(pf); 5205 ice_deinit_features(pf); 5206 ice_tc_indir_block_unregister(vsi); 5207 ice_unregister_netdev(vsi); 5208 ice_devlink_destroy_pf_port(pf); 5209 ice_decfg_netdev(vsi); 5210 } 5211 5212 static int ice_probe_recovery_mode(struct ice_pf *pf) 5213 { 5214 struct device *dev = ice_pf_to_dev(pf); 5215 int err; 5216 5217 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5218 5219 INIT_HLIST_HEAD(&pf->aq_wait_list); 5220 spin_lock_init(&pf->aq_wait_lock); 5221 init_waitqueue_head(&pf->aq_wait_queue); 5222 5223 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5224 pf->serv_tmr_period = HZ; 5225 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5226 clear_bit(ICE_SERVICE_SCHED, pf->state); 5227 err = ice_create_all_ctrlq(&pf->hw); 5228 if (err) 5229 return err; 5230 5231 scoped_guard(devl, priv_to_devlink(pf)) { 5232 err = ice_init_devlink(pf); 5233 if (err) 5234 return err; 5235 } 5236 5237 ice_service_task_restart(pf); 5238 5239 return 0; 5240 } 5241 5242 /** 5243 * ice_probe - Device initialization routine 5244 * @pdev: PCI device information struct 5245 * @ent: entry in ice_pci_tbl 5246 * 5247 * Returns 0 on success, negative on failure 5248 */ 5249 static int 5250 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5251 { 5252 struct device *dev = &pdev->dev; 5253 struct ice_adapter *adapter; 5254 struct ice_pf *pf; 5255 struct ice_hw *hw; 5256 int err; 5257 5258 if (pdev->is_virtfn) { 5259 dev_err(dev, "can't probe a virtual function\n"); 5260 return -EINVAL; 5261 } 5262 5263 /* when under a kdump kernel initiate a reset before enabling the 5264 * device in order to clear out any pending DMA transactions. These 5265 * transactions can cause some systems to machine check when doing 5266 * the pcim_enable_device() below. 5267 */ 5268 if (is_kdump_kernel()) { 5269 pci_save_state(pdev); 5270 pci_clear_master(pdev); 5271 err = pcie_flr(pdev); 5272 if (err) 5273 return err; 5274 pci_restore_state(pdev); 5275 } 5276 5277 /* this driver uses devres, see 5278 * Documentation/driver-api/driver-model/devres.rst 5279 */ 5280 err = pcim_enable_device(pdev); 5281 if (err) 5282 return err; 5283 5284 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5285 if (err) { 5286 dev_err(dev, "BAR0 I/O map error %d\n", err); 5287 return err; 5288 } 5289 5290 pf = ice_allocate_pf(dev); 5291 if (!pf) 5292 return -ENOMEM; 5293 5294 /* initialize Auxiliary index to invalid value */ 5295 pf->aux_idx = -1; 5296 5297 /* set up for high or low DMA */ 5298 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5299 if (err) { 5300 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5301 return err; 5302 } 5303 5304 pci_set_master(pdev); 5305 pf->pdev = pdev; 5306 pci_set_drvdata(pdev, pf); 5307 set_bit(ICE_DOWN, pf->state); 5308 /* Disable service task until DOWN bit is cleared */ 5309 set_bit(ICE_SERVICE_DIS, pf->state); 5310 5311 hw = &pf->hw; 5312 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5313 pci_save_state(pdev); 5314 5315 hw->back = pf; 5316 hw->port_info = NULL; 5317 hw->vendor_id = pdev->vendor; 5318 hw->device_id = pdev->device; 5319 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5320 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5321 hw->subsystem_device_id = pdev->subsystem_device; 5322 hw->bus.device = PCI_SLOT(pdev->devfn); 5323 hw->bus.func = PCI_FUNC(pdev->devfn); 5324 ice_set_ctrlq_len(hw); 5325 5326 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5327 5328 #ifndef CONFIG_DYNAMIC_DEBUG 5329 if (debug < -1) 5330 hw->debug_mask = debug; 5331 #endif 5332 5333 if (ice_is_recovery_mode(hw)) 5334 return ice_probe_recovery_mode(pf); 5335 5336 err = ice_init_hw(hw); 5337 if (err) { 5338 dev_err(dev, "ice_init_hw failed: %d\n", err); 5339 return err; 5340 } 5341 5342 adapter = ice_adapter_get(pdev); 5343 if (IS_ERR(adapter)) { 5344 err = PTR_ERR(adapter); 5345 goto unroll_hw_init; 5346 } 5347 pf->adapter = adapter; 5348 5349 err = ice_init(pf); 5350 if (err) 5351 goto unroll_adapter; 5352 5353 devl_lock(priv_to_devlink(pf)); 5354 err = ice_load(pf); 5355 if (err) 5356 goto unroll_init; 5357 5358 err = ice_init_devlink(pf); 5359 if (err) 5360 goto unroll_load; 5361 devl_unlock(priv_to_devlink(pf)); 5362 5363 return 0; 5364 5365 unroll_load: 5366 ice_unload(pf); 5367 unroll_init: 5368 devl_unlock(priv_to_devlink(pf)); 5369 ice_deinit(pf); 5370 unroll_adapter: 5371 ice_adapter_put(pdev); 5372 unroll_hw_init: 5373 ice_deinit_hw(hw); 5374 return err; 5375 } 5376 5377 /** 5378 * ice_set_wake - enable or disable Wake on LAN 5379 * @pf: pointer to the PF struct 5380 * 5381 * Simple helper for WoL control 5382 */ 5383 static void ice_set_wake(struct ice_pf *pf) 5384 { 5385 struct ice_hw *hw = &pf->hw; 5386 bool wol = pf->wol_ena; 5387 5388 /* clear wake state, otherwise new wake events won't fire */ 5389 wr32(hw, PFPM_WUS, U32_MAX); 5390 5391 /* enable / disable APM wake up, no RMW needed */ 5392 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5393 5394 /* set magic packet filter enabled */ 5395 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5396 } 5397 5398 /** 5399 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5400 * @pf: pointer to the PF struct 5401 * 5402 * Issue firmware command to enable multicast magic wake, making 5403 * sure that any locally administered address (LAA) is used for 5404 * wake, and that PF reset doesn't undo the LAA. 5405 */ 5406 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5407 { 5408 struct device *dev = ice_pf_to_dev(pf); 5409 struct ice_hw *hw = &pf->hw; 5410 u8 mac_addr[ETH_ALEN]; 5411 struct ice_vsi *vsi; 5412 int status; 5413 u8 flags; 5414 5415 if (!pf->wol_ena) 5416 return; 5417 5418 vsi = ice_get_main_vsi(pf); 5419 if (!vsi) 5420 return; 5421 5422 /* Get current MAC address in case it's an LAA */ 5423 if (vsi->netdev) 5424 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5425 else 5426 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5427 5428 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5429 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5430 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5431 5432 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5433 if (status) 5434 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5435 status, libie_aq_str(hw->adminq.sq_last_status)); 5436 } 5437 5438 /** 5439 * ice_remove - Device removal routine 5440 * @pdev: PCI device information struct 5441 */ 5442 static void ice_remove(struct pci_dev *pdev) 5443 { 5444 struct ice_pf *pf = pci_get_drvdata(pdev); 5445 int i; 5446 5447 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5448 if (!ice_is_reset_in_progress(pf->state)) 5449 break; 5450 msleep(100); 5451 } 5452 5453 if (ice_is_recovery_mode(&pf->hw)) { 5454 ice_service_task_stop(pf); 5455 scoped_guard(devl, priv_to_devlink(pf)) { 5456 ice_deinit_devlink(pf); 5457 } 5458 return; 5459 } 5460 5461 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5462 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5463 ice_free_vfs(pf); 5464 } 5465 5466 ice_hwmon_exit(pf); 5467 5468 ice_service_task_stop(pf); 5469 ice_aq_cancel_waiting_tasks(pf); 5470 set_bit(ICE_DOWN, pf->state); 5471 5472 if (!ice_is_safe_mode(pf)) 5473 ice_remove_arfs(pf); 5474 5475 devl_lock(priv_to_devlink(pf)); 5476 ice_dealloc_all_dynamic_ports(pf); 5477 ice_deinit_devlink(pf); 5478 5479 ice_unload(pf); 5480 devl_unlock(priv_to_devlink(pf)); 5481 5482 ice_deinit(pf); 5483 ice_vsi_release_all(pf); 5484 5485 ice_setup_mc_magic_wake(pf); 5486 ice_set_wake(pf); 5487 5488 ice_adapter_put(pdev); 5489 } 5490 5491 /** 5492 * ice_shutdown - PCI callback for shutting down device 5493 * @pdev: PCI device information struct 5494 */ 5495 static void ice_shutdown(struct pci_dev *pdev) 5496 { 5497 struct ice_pf *pf = pci_get_drvdata(pdev); 5498 5499 ice_remove(pdev); 5500 5501 if (system_state == SYSTEM_POWER_OFF) { 5502 pci_wake_from_d3(pdev, pf->wol_ena); 5503 pci_set_power_state(pdev, PCI_D3hot); 5504 } 5505 } 5506 5507 /** 5508 * ice_prepare_for_shutdown - prep for PCI shutdown 5509 * @pf: board private structure 5510 * 5511 * Inform or close all dependent features in prep for PCI device shutdown 5512 */ 5513 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5514 { 5515 struct ice_hw *hw = &pf->hw; 5516 u32 v; 5517 5518 /* Notify VFs of impending reset */ 5519 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5520 ice_vc_notify_reset(pf); 5521 5522 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5523 5524 /* disable the VSIs and their queues that are not already DOWN */ 5525 ice_pf_dis_all_vsi(pf, false); 5526 5527 ice_for_each_vsi(pf, v) 5528 if (pf->vsi[v]) 5529 pf->vsi[v]->vsi_num = 0; 5530 5531 ice_shutdown_all_ctrlq(hw, true); 5532 } 5533 5534 /** 5535 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5536 * @pf: board private structure to reinitialize 5537 * 5538 * This routine reinitialize interrupt scheme that was cleared during 5539 * power management suspend callback. 5540 * 5541 * This should be called during resume routine to re-allocate the q_vectors 5542 * and reacquire interrupts. 5543 */ 5544 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5545 { 5546 struct device *dev = ice_pf_to_dev(pf); 5547 int ret, v; 5548 5549 /* Since we clear MSIX flag during suspend, we need to 5550 * set it back during resume... 5551 */ 5552 5553 ret = ice_init_interrupt_scheme(pf); 5554 if (ret) { 5555 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5556 return ret; 5557 } 5558 5559 /* Remap vectors and rings, after successful re-init interrupts */ 5560 ice_for_each_vsi(pf, v) { 5561 if (!pf->vsi[v]) 5562 continue; 5563 5564 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5565 if (ret) 5566 goto err_reinit; 5567 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5568 rtnl_lock(); 5569 ice_vsi_set_napi_queues(pf->vsi[v]); 5570 rtnl_unlock(); 5571 } 5572 5573 ret = ice_req_irq_msix_misc(pf); 5574 if (ret) { 5575 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5576 ret); 5577 goto err_reinit; 5578 } 5579 5580 return 0; 5581 5582 err_reinit: 5583 while (v--) 5584 if (pf->vsi[v]) { 5585 rtnl_lock(); 5586 ice_vsi_clear_napi_queues(pf->vsi[v]); 5587 rtnl_unlock(); 5588 ice_vsi_free_q_vectors(pf->vsi[v]); 5589 } 5590 5591 return ret; 5592 } 5593 5594 /** 5595 * ice_suspend 5596 * @dev: generic device information structure 5597 * 5598 * Power Management callback to quiesce the device and prepare 5599 * for D3 transition. 5600 */ 5601 static int ice_suspend(struct device *dev) 5602 { 5603 struct pci_dev *pdev = to_pci_dev(dev); 5604 struct ice_pf *pf; 5605 int disabled, v; 5606 5607 pf = pci_get_drvdata(pdev); 5608 5609 if (!ice_pf_state_is_nominal(pf)) { 5610 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5611 return -EBUSY; 5612 } 5613 5614 /* Stop watchdog tasks until resume completion. 5615 * Even though it is most likely that the service task is 5616 * disabled if the device is suspended or down, the service task's 5617 * state is controlled by a different state bit, and we should 5618 * store and honor whatever state that bit is in at this point. 5619 */ 5620 disabled = ice_service_task_stop(pf); 5621 5622 ice_deinit_rdma(pf); 5623 5624 /* Already suspended?, then there is nothing to do */ 5625 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5626 if (!disabled) 5627 ice_service_task_restart(pf); 5628 return 0; 5629 } 5630 5631 if (test_bit(ICE_DOWN, pf->state) || 5632 ice_is_reset_in_progress(pf->state)) { 5633 dev_err(dev, "can't suspend device in reset or already down\n"); 5634 if (!disabled) 5635 ice_service_task_restart(pf); 5636 return 0; 5637 } 5638 5639 ice_setup_mc_magic_wake(pf); 5640 5641 ice_prepare_for_shutdown(pf); 5642 5643 ice_set_wake(pf); 5644 5645 /* Free vectors, clear the interrupt scheme and release IRQs 5646 * for proper hibernation, especially with large number of CPUs. 5647 * Otherwise hibernation might fail when mapping all the vectors back 5648 * to CPU0. 5649 */ 5650 ice_free_irq_msix_misc(pf); 5651 ice_for_each_vsi(pf, v) { 5652 if (!pf->vsi[v]) 5653 continue; 5654 rtnl_lock(); 5655 ice_vsi_clear_napi_queues(pf->vsi[v]); 5656 rtnl_unlock(); 5657 ice_vsi_free_q_vectors(pf->vsi[v]); 5658 } 5659 ice_clear_interrupt_scheme(pf); 5660 5661 pci_save_state(pdev); 5662 pci_wake_from_d3(pdev, pf->wol_ena); 5663 pci_set_power_state(pdev, PCI_D3hot); 5664 return 0; 5665 } 5666 5667 /** 5668 * ice_resume - PM callback for waking up from D3 5669 * @dev: generic device information structure 5670 */ 5671 static int ice_resume(struct device *dev) 5672 { 5673 struct pci_dev *pdev = to_pci_dev(dev); 5674 enum ice_reset_req reset_type; 5675 struct ice_pf *pf; 5676 struct ice_hw *hw; 5677 int ret; 5678 5679 pci_set_power_state(pdev, PCI_D0); 5680 pci_restore_state(pdev); 5681 pci_save_state(pdev); 5682 5683 if (!pci_device_is_present(pdev)) 5684 return -ENODEV; 5685 5686 ret = pci_enable_device_mem(pdev); 5687 if (ret) { 5688 dev_err(dev, "Cannot enable device after suspend\n"); 5689 return ret; 5690 } 5691 5692 pf = pci_get_drvdata(pdev); 5693 hw = &pf->hw; 5694 5695 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5696 ice_print_wake_reason(pf); 5697 5698 /* We cleared the interrupt scheme when we suspended, so we need to 5699 * restore it now to resume device functionality. 5700 */ 5701 ret = ice_reinit_interrupt_scheme(pf); 5702 if (ret) 5703 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5704 5705 ret = ice_init_rdma(pf); 5706 if (ret) 5707 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5708 ret); 5709 5710 clear_bit(ICE_DOWN, pf->state); 5711 /* Now perform PF reset and rebuild */ 5712 reset_type = ICE_RESET_PFR; 5713 /* re-enable service task for reset, but allow reset to schedule it */ 5714 clear_bit(ICE_SERVICE_DIS, pf->state); 5715 5716 if (ice_schedule_reset(pf, reset_type)) 5717 dev_err(dev, "Reset during resume failed.\n"); 5718 5719 clear_bit(ICE_SUSPENDED, pf->state); 5720 ice_service_task_restart(pf); 5721 5722 /* Restart the service task */ 5723 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5724 5725 return 0; 5726 } 5727 5728 /** 5729 * ice_pci_err_detected - warning that PCI error has been detected 5730 * @pdev: PCI device information struct 5731 * @err: the type of PCI error 5732 * 5733 * Called to warn that something happened on the PCI bus and the error handling 5734 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5735 */ 5736 static pci_ers_result_t 5737 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5738 { 5739 struct ice_pf *pf = pci_get_drvdata(pdev); 5740 5741 if (!pf) { 5742 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5743 __func__, err); 5744 return PCI_ERS_RESULT_DISCONNECT; 5745 } 5746 5747 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5748 ice_service_task_stop(pf); 5749 5750 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5751 set_bit(ICE_PFR_REQ, pf->state); 5752 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5753 } 5754 } 5755 5756 return PCI_ERS_RESULT_NEED_RESET; 5757 } 5758 5759 /** 5760 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5761 * @pdev: PCI device information struct 5762 * 5763 * Called to determine if the driver can recover from the PCI slot reset by 5764 * using a register read to determine if the device is recoverable. 5765 */ 5766 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5767 { 5768 struct ice_pf *pf = pci_get_drvdata(pdev); 5769 pci_ers_result_t result; 5770 int err; 5771 u32 reg; 5772 5773 err = pci_enable_device_mem(pdev); 5774 if (err) { 5775 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5776 err); 5777 result = PCI_ERS_RESULT_DISCONNECT; 5778 } else { 5779 pci_set_master(pdev); 5780 pci_restore_state(pdev); 5781 pci_save_state(pdev); 5782 pci_wake_from_d3(pdev, false); 5783 5784 /* Check for life */ 5785 reg = rd32(&pf->hw, GLGEN_RTRIG); 5786 if (!reg) 5787 result = PCI_ERS_RESULT_RECOVERED; 5788 else 5789 result = PCI_ERS_RESULT_DISCONNECT; 5790 } 5791 5792 return result; 5793 } 5794 5795 /** 5796 * ice_pci_err_resume - restart operations after PCI error recovery 5797 * @pdev: PCI device information struct 5798 * 5799 * Called to allow the driver to bring things back up after PCI error and/or 5800 * reset recovery have finished 5801 */ 5802 static void ice_pci_err_resume(struct pci_dev *pdev) 5803 { 5804 struct ice_pf *pf = pci_get_drvdata(pdev); 5805 5806 if (!pf) { 5807 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5808 __func__); 5809 return; 5810 } 5811 5812 if (test_bit(ICE_SUSPENDED, pf->state)) { 5813 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5814 __func__); 5815 return; 5816 } 5817 5818 ice_restore_all_vfs_msi_state(pf); 5819 5820 ice_do_reset(pf, ICE_RESET_PFR); 5821 ice_service_task_restart(pf); 5822 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5823 } 5824 5825 /** 5826 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5827 * @pdev: PCI device information struct 5828 */ 5829 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5830 { 5831 struct ice_pf *pf = pci_get_drvdata(pdev); 5832 5833 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5834 ice_service_task_stop(pf); 5835 5836 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5837 set_bit(ICE_PFR_REQ, pf->state); 5838 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5839 } 5840 } 5841 } 5842 5843 /** 5844 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5845 * @pdev: PCI device information struct 5846 */ 5847 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5848 { 5849 ice_pci_err_resume(pdev); 5850 } 5851 5852 /* ice_pci_tbl - PCI Device ID Table 5853 * 5854 * Wildcard entries (PCI_ANY_ID) should come last 5855 * Last entry must be all 0s 5856 * 5857 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5858 * Class, Class Mask, private data (not used) } 5859 */ 5860 static const struct pci_device_id ice_pci_tbl[] = { 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5898 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5899 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5900 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5901 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), }, 5902 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), }, 5903 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), }, 5904 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), }, 5905 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), }, 5906 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), }, 5907 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), }, 5908 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), }, 5909 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), }, 5910 /* required last entry */ 5911 {} 5912 }; 5913 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5914 5915 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5916 5917 static const struct pci_error_handlers ice_pci_err_handler = { 5918 .error_detected = ice_pci_err_detected, 5919 .slot_reset = ice_pci_err_slot_reset, 5920 .reset_prepare = ice_pci_err_reset_prepare, 5921 .reset_done = ice_pci_err_reset_done, 5922 .resume = ice_pci_err_resume 5923 }; 5924 5925 static struct pci_driver ice_driver = { 5926 .name = KBUILD_MODNAME, 5927 .id_table = ice_pci_tbl, 5928 .probe = ice_probe, 5929 .remove = ice_remove, 5930 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5931 .shutdown = ice_shutdown, 5932 .sriov_configure = ice_sriov_configure, 5933 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5934 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5935 .err_handler = &ice_pci_err_handler 5936 }; 5937 5938 /** 5939 * ice_module_init - Driver registration routine 5940 * 5941 * ice_module_init is the first routine called when the driver is 5942 * loaded. All it does is register with the PCI subsystem. 5943 */ 5944 static int __init ice_module_init(void) 5945 { 5946 int status = -ENOMEM; 5947 5948 pr_info("%s\n", ice_driver_string); 5949 pr_info("%s\n", ice_copyright); 5950 5951 ice_adv_lnk_speed_maps_init(); 5952 5953 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5954 if (!ice_wq) { 5955 pr_err("Failed to create workqueue\n"); 5956 return status; 5957 } 5958 5959 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5960 if (!ice_lag_wq) { 5961 pr_err("Failed to create LAG workqueue\n"); 5962 goto err_dest_wq; 5963 } 5964 5965 ice_debugfs_init(); 5966 5967 status = pci_register_driver(&ice_driver); 5968 if (status) { 5969 pr_err("failed to register PCI driver, err %d\n", status); 5970 goto err_dest_lag_wq; 5971 } 5972 5973 status = ice_sf_driver_register(); 5974 if (status) { 5975 pr_err("Failed to register SF driver, err %d\n", status); 5976 goto err_sf_driver; 5977 } 5978 5979 return 0; 5980 5981 err_sf_driver: 5982 pci_unregister_driver(&ice_driver); 5983 err_dest_lag_wq: 5984 destroy_workqueue(ice_lag_wq); 5985 ice_debugfs_exit(); 5986 err_dest_wq: 5987 destroy_workqueue(ice_wq); 5988 return status; 5989 } 5990 module_init(ice_module_init); 5991 5992 /** 5993 * ice_module_exit - Driver exit cleanup routine 5994 * 5995 * ice_module_exit is called just before the driver is removed 5996 * from memory. 5997 */ 5998 static void __exit ice_module_exit(void) 5999 { 6000 ice_sf_driver_unregister(); 6001 pci_unregister_driver(&ice_driver); 6002 ice_debugfs_exit(); 6003 destroy_workqueue(ice_wq); 6004 destroy_workqueue(ice_lag_wq); 6005 pr_info("module unloaded\n"); 6006 } 6007 module_exit(ice_module_exit); 6008 6009 /** 6010 * ice_set_mac_address - NDO callback to set MAC address 6011 * @netdev: network interface device structure 6012 * @pi: pointer to an address structure 6013 * 6014 * Returns 0 on success, negative on failure 6015 */ 6016 static int ice_set_mac_address(struct net_device *netdev, void *pi) 6017 { 6018 struct ice_netdev_priv *np = netdev_priv(netdev); 6019 struct ice_vsi *vsi = np->vsi; 6020 struct ice_pf *pf = vsi->back; 6021 struct ice_hw *hw = &pf->hw; 6022 struct sockaddr *addr = pi; 6023 u8 old_mac[ETH_ALEN]; 6024 u8 flags = 0; 6025 u8 *mac; 6026 int err; 6027 6028 mac = (u8 *)addr->sa_data; 6029 6030 if (!is_valid_ether_addr(mac)) 6031 return -EADDRNOTAVAIL; 6032 6033 if (test_bit(ICE_DOWN, pf->state) || 6034 ice_is_reset_in_progress(pf->state)) { 6035 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6036 mac); 6037 return -EBUSY; 6038 } 6039 6040 if (ice_chnl_dmac_fltr_cnt(pf)) { 6041 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6042 mac); 6043 return -EAGAIN; 6044 } 6045 6046 netif_addr_lock_bh(netdev); 6047 ether_addr_copy(old_mac, netdev->dev_addr); 6048 /* change the netdev's MAC address */ 6049 eth_hw_addr_set(netdev, mac); 6050 netif_addr_unlock_bh(netdev); 6051 6052 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6053 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6054 if (err && err != -ENOENT) { 6055 err = -EADDRNOTAVAIL; 6056 goto err_update_filters; 6057 } 6058 6059 /* Add filter for new MAC. If filter exists, return success */ 6060 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6061 if (err == -EEXIST) { 6062 /* Although this MAC filter is already present in hardware it's 6063 * possible in some cases (e.g. bonding) that dev_addr was 6064 * modified outside of the driver and needs to be restored back 6065 * to this value. 6066 */ 6067 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6068 6069 return 0; 6070 } else if (err) { 6071 /* error if the new filter addition failed */ 6072 err = -EADDRNOTAVAIL; 6073 } 6074 6075 err_update_filters: 6076 if (err) { 6077 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6078 mac); 6079 netif_addr_lock_bh(netdev); 6080 eth_hw_addr_set(netdev, old_mac); 6081 netif_addr_unlock_bh(netdev); 6082 return err; 6083 } 6084 6085 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6086 netdev->dev_addr); 6087 6088 /* write new MAC address to the firmware */ 6089 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6090 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6091 if (err) { 6092 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6093 mac, err); 6094 } 6095 return 0; 6096 } 6097 6098 /** 6099 * ice_set_rx_mode - NDO callback to set the netdev filters 6100 * @netdev: network interface device structure 6101 */ 6102 static void ice_set_rx_mode(struct net_device *netdev) 6103 { 6104 struct ice_netdev_priv *np = netdev_priv(netdev); 6105 struct ice_vsi *vsi = np->vsi; 6106 6107 if (!vsi || ice_is_switchdev_running(vsi->back)) 6108 return; 6109 6110 /* Set the flags to synchronize filters 6111 * ndo_set_rx_mode may be triggered even without a change in netdev 6112 * flags 6113 */ 6114 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6115 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6116 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6117 6118 /* schedule our worker thread which will take care of 6119 * applying the new filter changes 6120 */ 6121 ice_service_task_schedule(vsi->back); 6122 } 6123 6124 /** 6125 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6126 * @netdev: network interface device structure 6127 * @queue_index: Queue ID 6128 * @maxrate: maximum bandwidth in Mbps 6129 */ 6130 static int 6131 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6132 { 6133 struct ice_netdev_priv *np = netdev_priv(netdev); 6134 struct ice_vsi *vsi = np->vsi; 6135 u16 q_handle; 6136 int status; 6137 u8 tc; 6138 6139 /* Validate maxrate requested is within permitted range */ 6140 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6141 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6142 maxrate, queue_index); 6143 return -EINVAL; 6144 } 6145 6146 q_handle = vsi->tx_rings[queue_index]->q_handle; 6147 tc = ice_dcb_get_tc(vsi, queue_index); 6148 6149 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6150 if (!vsi) { 6151 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6152 queue_index); 6153 return -EINVAL; 6154 } 6155 6156 /* Set BW back to default, when user set maxrate to 0 */ 6157 if (!maxrate) 6158 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6159 q_handle, ICE_MAX_BW); 6160 else 6161 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6162 q_handle, ICE_MAX_BW, maxrate * 1000); 6163 if (status) 6164 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6165 status); 6166 6167 return status; 6168 } 6169 6170 /** 6171 * ice_fdb_add - add an entry to the hardware database 6172 * @ndm: the input from the stack 6173 * @tb: pointer to array of nladdr (unused) 6174 * @dev: the net device pointer 6175 * @addr: the MAC address entry being added 6176 * @vid: VLAN ID 6177 * @flags: instructions from stack about fdb operation 6178 * @notified: whether notification was emitted 6179 * @extack: netlink extended ack 6180 */ 6181 static int 6182 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6183 struct net_device *dev, const unsigned char *addr, u16 vid, 6184 u16 flags, bool *notified, 6185 struct netlink_ext_ack __always_unused *extack) 6186 { 6187 int err; 6188 6189 if (vid) { 6190 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6191 return -EINVAL; 6192 } 6193 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6194 netdev_err(dev, "FDB only supports static addresses\n"); 6195 return -EINVAL; 6196 } 6197 6198 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6199 err = dev_uc_add_excl(dev, addr); 6200 else if (is_multicast_ether_addr(addr)) 6201 err = dev_mc_add_excl(dev, addr); 6202 else 6203 err = -EINVAL; 6204 6205 /* Only return duplicate errors if NLM_F_EXCL is set */ 6206 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6207 err = 0; 6208 6209 return err; 6210 } 6211 6212 /** 6213 * ice_fdb_del - delete an entry from the hardware database 6214 * @ndm: the input from the stack 6215 * @tb: pointer to array of nladdr (unused) 6216 * @dev: the net device pointer 6217 * @addr: the MAC address entry being added 6218 * @vid: VLAN ID 6219 * @notified: whether notification was emitted 6220 * @extack: netlink extended ack 6221 */ 6222 static int 6223 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6224 struct net_device *dev, const unsigned char *addr, 6225 __always_unused u16 vid, bool *notified, 6226 struct netlink_ext_ack *extack) 6227 { 6228 int err; 6229 6230 if (ndm->ndm_state & NUD_PERMANENT) { 6231 netdev_err(dev, "FDB only supports static addresses\n"); 6232 return -EINVAL; 6233 } 6234 6235 if (is_unicast_ether_addr(addr)) 6236 err = dev_uc_del(dev, addr); 6237 else if (is_multicast_ether_addr(addr)) 6238 err = dev_mc_del(dev, addr); 6239 else 6240 err = -EINVAL; 6241 6242 return err; 6243 } 6244 6245 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6246 NETIF_F_HW_VLAN_CTAG_TX | \ 6247 NETIF_F_HW_VLAN_STAG_RX | \ 6248 NETIF_F_HW_VLAN_STAG_TX) 6249 6250 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6251 NETIF_F_HW_VLAN_STAG_RX) 6252 6253 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6254 NETIF_F_HW_VLAN_STAG_FILTER) 6255 6256 /** 6257 * ice_fix_features - fix the netdev features flags based on device limitations 6258 * @netdev: ptr to the netdev that flags are being fixed on 6259 * @features: features that need to be checked and possibly fixed 6260 * 6261 * Make sure any fixups are made to features in this callback. This enables the 6262 * driver to not have to check unsupported configurations throughout the driver 6263 * because that's the responsiblity of this callback. 6264 * 6265 * Single VLAN Mode (SVM) Supported Features: 6266 * NETIF_F_HW_VLAN_CTAG_FILTER 6267 * NETIF_F_HW_VLAN_CTAG_RX 6268 * NETIF_F_HW_VLAN_CTAG_TX 6269 * 6270 * Double VLAN Mode (DVM) Supported Features: 6271 * NETIF_F_HW_VLAN_CTAG_FILTER 6272 * NETIF_F_HW_VLAN_CTAG_RX 6273 * NETIF_F_HW_VLAN_CTAG_TX 6274 * 6275 * NETIF_F_HW_VLAN_STAG_FILTER 6276 * NETIF_HW_VLAN_STAG_RX 6277 * NETIF_HW_VLAN_STAG_TX 6278 * 6279 * Features that need fixing: 6280 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6281 * These are mutually exlusive as the VSI context cannot support multiple 6282 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6283 * is not done, then default to clearing the requested STAG offload 6284 * settings. 6285 * 6286 * All supported filtering has to be enabled or disabled together. For 6287 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6288 * together. If this is not done, then default to VLAN filtering disabled. 6289 * These are mutually exclusive as there is currently no way to 6290 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6291 * prune rules. 6292 */ 6293 static netdev_features_t 6294 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6295 { 6296 struct ice_netdev_priv *np = netdev_priv(netdev); 6297 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6298 bool cur_ctag, cur_stag, req_ctag, req_stag; 6299 6300 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6301 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6302 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6303 6304 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6305 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6306 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6307 6308 if (req_vlan_fltr != cur_vlan_fltr) { 6309 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6310 if (req_ctag && req_stag) { 6311 features |= NETIF_VLAN_FILTERING_FEATURES; 6312 } else if (!req_ctag && !req_stag) { 6313 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6314 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6315 (!cur_stag && req_stag && !cur_ctag)) { 6316 features |= NETIF_VLAN_FILTERING_FEATURES; 6317 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6318 } else if ((cur_ctag && !req_ctag && cur_stag) || 6319 (cur_stag && !req_stag && cur_ctag)) { 6320 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6321 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6322 } 6323 } else { 6324 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6325 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6326 6327 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6328 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6329 } 6330 } 6331 6332 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6333 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6334 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6335 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6336 NETIF_F_HW_VLAN_STAG_TX); 6337 } 6338 6339 if (!(netdev->features & NETIF_F_RXFCS) && 6340 (features & NETIF_F_RXFCS) && 6341 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6342 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6343 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6344 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6345 } 6346 6347 return features; 6348 } 6349 6350 /** 6351 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6352 * @vsi: PF's VSI 6353 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6354 * 6355 * Store current stripped VLAN proto in ring packet context, 6356 * so it can be accessed more efficiently by packet processing code. 6357 */ 6358 static void 6359 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6360 { 6361 u16 i; 6362 6363 ice_for_each_alloc_rxq(vsi, i) 6364 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6365 } 6366 6367 /** 6368 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6369 * @vsi: PF's VSI 6370 * @features: features used to determine VLAN offload settings 6371 * 6372 * First, determine the vlan_ethertype based on the VLAN offload bits in 6373 * features. Then determine if stripping and insertion should be enabled or 6374 * disabled. Finally enable or disable VLAN stripping and insertion. 6375 */ 6376 static int 6377 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6378 { 6379 bool enable_stripping = true, enable_insertion = true; 6380 struct ice_vsi_vlan_ops *vlan_ops; 6381 int strip_err = 0, insert_err = 0; 6382 u16 vlan_ethertype = 0; 6383 6384 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6385 6386 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6387 vlan_ethertype = ETH_P_8021AD; 6388 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6389 vlan_ethertype = ETH_P_8021Q; 6390 6391 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6392 enable_stripping = false; 6393 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6394 enable_insertion = false; 6395 6396 if (enable_stripping) 6397 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6398 else 6399 strip_err = vlan_ops->dis_stripping(vsi); 6400 6401 if (enable_insertion) 6402 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6403 else 6404 insert_err = vlan_ops->dis_insertion(vsi); 6405 6406 if (strip_err || insert_err) 6407 return -EIO; 6408 6409 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6410 htons(vlan_ethertype) : 0); 6411 6412 return 0; 6413 } 6414 6415 /** 6416 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6417 * @vsi: PF's VSI 6418 * @features: features used to determine VLAN filtering settings 6419 * 6420 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6421 * features. 6422 */ 6423 static int 6424 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6425 { 6426 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6427 int err = 0; 6428 6429 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6430 * if either bit is set. In switchdev mode Rx filtering should never be 6431 * enabled. 6432 */ 6433 if ((features & 6434 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6435 !ice_is_eswitch_mode_switchdev(vsi->back)) 6436 err = vlan_ops->ena_rx_filtering(vsi); 6437 else 6438 err = vlan_ops->dis_rx_filtering(vsi); 6439 6440 return err; 6441 } 6442 6443 /** 6444 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6445 * @netdev: ptr to the netdev being adjusted 6446 * @features: the feature set that the stack is suggesting 6447 * 6448 * Only update VLAN settings if the requested_vlan_features are different than 6449 * the current_vlan_features. 6450 */ 6451 static int 6452 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6453 { 6454 netdev_features_t current_vlan_features, requested_vlan_features; 6455 struct ice_netdev_priv *np = netdev_priv(netdev); 6456 struct ice_vsi *vsi = np->vsi; 6457 int err; 6458 6459 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6460 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6461 if (current_vlan_features ^ requested_vlan_features) { 6462 if ((features & NETIF_F_RXFCS) && 6463 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6464 dev_err(ice_pf_to_dev(vsi->back), 6465 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6466 return -EIO; 6467 } 6468 6469 err = ice_set_vlan_offload_features(vsi, features); 6470 if (err) 6471 return err; 6472 } 6473 6474 current_vlan_features = netdev->features & 6475 NETIF_VLAN_FILTERING_FEATURES; 6476 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6477 if (current_vlan_features ^ requested_vlan_features) { 6478 err = ice_set_vlan_filtering_features(vsi, features); 6479 if (err) 6480 return err; 6481 } 6482 6483 return 0; 6484 } 6485 6486 /** 6487 * ice_set_loopback - turn on/off loopback mode on underlying PF 6488 * @vsi: ptr to VSI 6489 * @ena: flag to indicate the on/off setting 6490 */ 6491 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6492 { 6493 bool if_running = netif_running(vsi->netdev); 6494 int ret; 6495 6496 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6497 ret = ice_down(vsi); 6498 if (ret) { 6499 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6500 return ret; 6501 } 6502 } 6503 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6504 if (ret) 6505 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6506 if (if_running) 6507 ret = ice_up(vsi); 6508 6509 return ret; 6510 } 6511 6512 /** 6513 * ice_set_features - set the netdev feature flags 6514 * @netdev: ptr to the netdev being adjusted 6515 * @features: the feature set that the stack is suggesting 6516 */ 6517 static int 6518 ice_set_features(struct net_device *netdev, netdev_features_t features) 6519 { 6520 netdev_features_t changed = netdev->features ^ features; 6521 struct ice_netdev_priv *np = netdev_priv(netdev); 6522 struct ice_vsi *vsi = np->vsi; 6523 struct ice_pf *pf = vsi->back; 6524 int ret = 0; 6525 6526 /* Don't set any netdev advanced features with device in Safe Mode */ 6527 if (ice_is_safe_mode(pf)) { 6528 dev_err(ice_pf_to_dev(pf), 6529 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6530 return ret; 6531 } 6532 6533 /* Do not change setting during reset */ 6534 if (ice_is_reset_in_progress(pf->state)) { 6535 dev_err(ice_pf_to_dev(pf), 6536 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6537 return -EBUSY; 6538 } 6539 6540 /* Multiple features can be changed in one call so keep features in 6541 * separate if/else statements to guarantee each feature is checked 6542 */ 6543 if (changed & NETIF_F_RXHASH) 6544 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6545 6546 ret = ice_set_vlan_features(netdev, features); 6547 if (ret) 6548 return ret; 6549 6550 /* Turn on receive of FCS aka CRC, and after setting this 6551 * flag the packet data will have the 4 byte CRC appended 6552 */ 6553 if (changed & NETIF_F_RXFCS) { 6554 if ((features & NETIF_F_RXFCS) && 6555 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6556 dev_err(ice_pf_to_dev(vsi->back), 6557 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6558 return -EIO; 6559 } 6560 6561 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6562 ret = ice_down_up(vsi); 6563 if (ret) 6564 return ret; 6565 } 6566 6567 if (changed & NETIF_F_NTUPLE) { 6568 bool ena = !!(features & NETIF_F_NTUPLE); 6569 6570 ice_vsi_manage_fdir(vsi, ena); 6571 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6572 } 6573 6574 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6575 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6576 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6577 return -EACCES; 6578 } 6579 6580 if (changed & NETIF_F_HW_TC) { 6581 bool ena = !!(features & NETIF_F_HW_TC); 6582 6583 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6584 } 6585 6586 if (changed & NETIF_F_LOOPBACK) 6587 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6588 6589 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6590 * (NETIF_F_HW_CSUM) is not supported. 6591 */ 6592 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6593 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6594 if (netdev->features & NETIF_F_HW_CSUM) 6595 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6596 else 6597 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6598 return -EIO; 6599 } 6600 6601 return ret; 6602 } 6603 6604 /** 6605 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6606 * @vsi: VSI to setup VLAN properties for 6607 */ 6608 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6609 { 6610 int err; 6611 6612 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6613 if (err) 6614 return err; 6615 6616 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6617 if (err) 6618 return err; 6619 6620 return ice_vsi_add_vlan_zero(vsi); 6621 } 6622 6623 /** 6624 * ice_vsi_cfg_lan - Setup the VSI lan related config 6625 * @vsi: the VSI being configured 6626 * 6627 * Return 0 on success and negative value on error 6628 */ 6629 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6630 { 6631 int err; 6632 6633 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6634 ice_set_rx_mode(vsi->netdev); 6635 6636 err = ice_vsi_vlan_setup(vsi); 6637 if (err) 6638 return err; 6639 } 6640 ice_vsi_cfg_dcb_rings(vsi); 6641 6642 err = ice_vsi_cfg_lan_txqs(vsi); 6643 if (!err && ice_is_xdp_ena_vsi(vsi)) 6644 err = ice_vsi_cfg_xdp_txqs(vsi); 6645 if (!err) 6646 err = ice_vsi_cfg_rxqs(vsi); 6647 6648 return err; 6649 } 6650 6651 /* THEORY OF MODERATION: 6652 * The ice driver hardware works differently than the hardware that DIMLIB was 6653 * originally made for. ice hardware doesn't have packet count limits that 6654 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6655 * which is hard-coded to a limit of 250,000 ints/second. 6656 * If not using dynamic moderation, the INTRL value can be modified 6657 * by ethtool rx-usecs-high. 6658 */ 6659 struct ice_dim { 6660 /* the throttle rate for interrupts, basically worst case delay before 6661 * an initial interrupt fires, value is stored in microseconds. 6662 */ 6663 u16 itr; 6664 }; 6665 6666 /* Make a different profile for Rx that doesn't allow quite so aggressive 6667 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6668 * second. 6669 */ 6670 static const struct ice_dim rx_profile[] = { 6671 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6672 {8}, /* 125,000 ints/s */ 6673 {16}, /* 62,500 ints/s */ 6674 {62}, /* 16,129 ints/s */ 6675 {126} /* 7,936 ints/s */ 6676 }; 6677 6678 /* The transmit profile, which has the same sorts of values 6679 * as the previous struct 6680 */ 6681 static const struct ice_dim tx_profile[] = { 6682 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6683 {8}, /* 125,000 ints/s */ 6684 {40}, /* 16,125 ints/s */ 6685 {128}, /* 7,812 ints/s */ 6686 {256} /* 3,906 ints/s */ 6687 }; 6688 6689 static void ice_tx_dim_work(struct work_struct *work) 6690 { 6691 struct ice_ring_container *rc; 6692 struct dim *dim; 6693 u16 itr; 6694 6695 dim = container_of(work, struct dim, work); 6696 rc = dim->priv; 6697 6698 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6699 6700 /* look up the values in our local table */ 6701 itr = tx_profile[dim->profile_ix].itr; 6702 6703 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6704 ice_write_itr(rc, itr); 6705 6706 dim->state = DIM_START_MEASURE; 6707 } 6708 6709 static void ice_rx_dim_work(struct work_struct *work) 6710 { 6711 struct ice_ring_container *rc; 6712 struct dim *dim; 6713 u16 itr; 6714 6715 dim = container_of(work, struct dim, work); 6716 rc = dim->priv; 6717 6718 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6719 6720 /* look up the values in our local table */ 6721 itr = rx_profile[dim->profile_ix].itr; 6722 6723 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6724 ice_write_itr(rc, itr); 6725 6726 dim->state = DIM_START_MEASURE; 6727 } 6728 6729 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6730 6731 /** 6732 * ice_init_moderation - set up interrupt moderation 6733 * @q_vector: the vector containing rings to be configured 6734 * 6735 * Set up interrupt moderation registers, with the intent to do the right thing 6736 * when called from reset or from probe, and whether or not dynamic moderation 6737 * is enabled or not. Take special care to write all the registers in both 6738 * dynamic moderation mode or not in order to make sure hardware is in a known 6739 * state. 6740 */ 6741 static void ice_init_moderation(struct ice_q_vector *q_vector) 6742 { 6743 struct ice_ring_container *rc; 6744 bool tx_dynamic, rx_dynamic; 6745 6746 rc = &q_vector->tx; 6747 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6748 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6749 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6750 rc->dim.priv = rc; 6751 tx_dynamic = ITR_IS_DYNAMIC(rc); 6752 6753 /* set the initial TX ITR to match the above */ 6754 ice_write_itr(rc, tx_dynamic ? 6755 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6756 6757 rc = &q_vector->rx; 6758 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6759 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6760 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6761 rc->dim.priv = rc; 6762 rx_dynamic = ITR_IS_DYNAMIC(rc); 6763 6764 /* set the initial RX ITR to match the above */ 6765 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6766 rc->itr_setting); 6767 6768 ice_set_q_vector_intrl(q_vector); 6769 } 6770 6771 /** 6772 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6773 * @vsi: the VSI being configured 6774 */ 6775 static void ice_napi_enable_all(struct ice_vsi *vsi) 6776 { 6777 int q_idx; 6778 6779 if (!vsi->netdev) 6780 return; 6781 6782 ice_for_each_q_vector(vsi, q_idx) { 6783 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6784 6785 ice_init_moderation(q_vector); 6786 6787 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6788 napi_enable(&q_vector->napi); 6789 } 6790 } 6791 6792 /** 6793 * ice_up_complete - Finish the last steps of bringing up a connection 6794 * @vsi: The VSI being configured 6795 * 6796 * Return 0 on success and negative value on error 6797 */ 6798 static int ice_up_complete(struct ice_vsi *vsi) 6799 { 6800 struct ice_pf *pf = vsi->back; 6801 int err; 6802 6803 ice_vsi_cfg_msix(vsi); 6804 6805 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6806 * Tx queue group list was configured and the context bits were 6807 * programmed using ice_vsi_cfg_txqs 6808 */ 6809 err = ice_vsi_start_all_rx_rings(vsi); 6810 if (err) 6811 return err; 6812 6813 clear_bit(ICE_VSI_DOWN, vsi->state); 6814 ice_napi_enable_all(vsi); 6815 ice_vsi_ena_irq(vsi); 6816 6817 if (vsi->port_info && 6818 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6819 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6820 vsi->type == ICE_VSI_SF)))) { 6821 ice_print_link_msg(vsi, true); 6822 netif_tx_start_all_queues(vsi->netdev); 6823 netif_carrier_on(vsi->netdev); 6824 ice_ptp_link_change(pf, true); 6825 } 6826 6827 /* Perform an initial read of the statistics registers now to 6828 * set the baseline so counters are ready when interface is up 6829 */ 6830 ice_update_eth_stats(vsi); 6831 6832 if (vsi->type == ICE_VSI_PF) 6833 ice_service_task_schedule(pf); 6834 6835 return 0; 6836 } 6837 6838 /** 6839 * ice_up - Bring the connection back up after being down 6840 * @vsi: VSI being configured 6841 */ 6842 int ice_up(struct ice_vsi *vsi) 6843 { 6844 int err; 6845 6846 err = ice_vsi_cfg_lan(vsi); 6847 if (!err) 6848 err = ice_up_complete(vsi); 6849 6850 return err; 6851 } 6852 6853 /** 6854 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6855 * @syncp: pointer to u64_stats_sync 6856 * @stats: stats that pkts and bytes count will be taken from 6857 * @pkts: packets stats counter 6858 * @bytes: bytes stats counter 6859 * 6860 * This function fetches stats from the ring considering the atomic operations 6861 * that needs to be performed to read u64 values in 32 bit machine. 6862 */ 6863 void 6864 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6865 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6866 { 6867 unsigned int start; 6868 6869 do { 6870 start = u64_stats_fetch_begin(syncp); 6871 *pkts = stats.pkts; 6872 *bytes = stats.bytes; 6873 } while (u64_stats_fetch_retry(syncp, start)); 6874 } 6875 6876 /** 6877 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6878 * @vsi: the VSI to be updated 6879 * @vsi_stats: the stats struct to be updated 6880 * @rings: rings to work on 6881 * @count: number of rings 6882 */ 6883 static void 6884 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6885 struct rtnl_link_stats64 *vsi_stats, 6886 struct ice_tx_ring **rings, u16 count) 6887 { 6888 u16 i; 6889 6890 for (i = 0; i < count; i++) { 6891 struct ice_tx_ring *ring; 6892 u64 pkts = 0, bytes = 0; 6893 6894 ring = READ_ONCE(rings[i]); 6895 if (!ring || !ring->ring_stats) 6896 continue; 6897 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6898 ring->ring_stats->stats, &pkts, 6899 &bytes); 6900 vsi_stats->tx_packets += pkts; 6901 vsi_stats->tx_bytes += bytes; 6902 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6903 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6904 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6905 } 6906 } 6907 6908 /** 6909 * ice_update_vsi_ring_stats - Update VSI stats counters 6910 * @vsi: the VSI to be updated 6911 */ 6912 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6913 { 6914 struct rtnl_link_stats64 *net_stats, *stats_prev; 6915 struct rtnl_link_stats64 *vsi_stats; 6916 struct ice_pf *pf = vsi->back; 6917 u64 pkts, bytes; 6918 int i; 6919 6920 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6921 if (!vsi_stats) 6922 return; 6923 6924 /* reset non-netdev (extended) stats */ 6925 vsi->tx_restart = 0; 6926 vsi->tx_busy = 0; 6927 vsi->tx_linearize = 0; 6928 vsi->rx_buf_failed = 0; 6929 vsi->rx_page_failed = 0; 6930 6931 rcu_read_lock(); 6932 6933 /* update Tx rings counters */ 6934 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6935 vsi->num_txq); 6936 6937 /* update Rx rings counters */ 6938 ice_for_each_rxq(vsi, i) { 6939 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6940 struct ice_ring_stats *ring_stats; 6941 6942 ring_stats = ring->ring_stats; 6943 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6944 ring_stats->stats, &pkts, 6945 &bytes); 6946 vsi_stats->rx_packets += pkts; 6947 vsi_stats->rx_bytes += bytes; 6948 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6949 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6950 } 6951 6952 /* update XDP Tx rings counters */ 6953 if (ice_is_xdp_ena_vsi(vsi)) 6954 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6955 vsi->num_xdp_txq); 6956 6957 rcu_read_unlock(); 6958 6959 net_stats = &vsi->net_stats; 6960 stats_prev = &vsi->net_stats_prev; 6961 6962 /* Update netdev counters, but keep in mind that values could start at 6963 * random value after PF reset. And as we increase the reported stat by 6964 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6965 * let's skip this round. 6966 */ 6967 if (likely(pf->stat_prev_loaded)) { 6968 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6969 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6970 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6971 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6972 } 6973 6974 stats_prev->tx_packets = vsi_stats->tx_packets; 6975 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6976 stats_prev->rx_packets = vsi_stats->rx_packets; 6977 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6978 6979 kfree(vsi_stats); 6980 } 6981 6982 /** 6983 * ice_update_vsi_stats - Update VSI stats counters 6984 * @vsi: the VSI to be updated 6985 */ 6986 void ice_update_vsi_stats(struct ice_vsi *vsi) 6987 { 6988 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6989 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6990 struct ice_pf *pf = vsi->back; 6991 6992 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6993 test_bit(ICE_CFG_BUSY, pf->state)) 6994 return; 6995 6996 /* get stats as recorded by Tx/Rx rings */ 6997 ice_update_vsi_ring_stats(vsi); 6998 6999 /* get VSI stats as recorded by the hardware */ 7000 ice_update_eth_stats(vsi); 7001 7002 cur_ns->tx_errors = cur_es->tx_errors; 7003 cur_ns->rx_dropped = cur_es->rx_discards; 7004 cur_ns->tx_dropped = cur_es->tx_discards; 7005 cur_ns->multicast = cur_es->rx_multicast; 7006 7007 /* update some more netdev stats if this is main VSI */ 7008 if (vsi->type == ICE_VSI_PF) { 7009 cur_ns->rx_crc_errors = pf->stats.crc_errors; 7010 cur_ns->rx_errors = pf->stats.crc_errors + 7011 pf->stats.illegal_bytes + 7012 pf->stats.rx_undersize + 7013 pf->hw_csum_rx_error + 7014 pf->stats.rx_jabber + 7015 pf->stats.rx_fragments + 7016 pf->stats.rx_oversize; 7017 /* record drops from the port level */ 7018 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 7019 } 7020 } 7021 7022 /** 7023 * ice_update_pf_stats - Update PF port stats counters 7024 * @pf: PF whose stats needs to be updated 7025 */ 7026 void ice_update_pf_stats(struct ice_pf *pf) 7027 { 7028 struct ice_hw_port_stats *prev_ps, *cur_ps; 7029 struct ice_hw *hw = &pf->hw; 7030 u16 fd_ctr_base; 7031 u8 port; 7032 7033 port = hw->port_info->lport; 7034 prev_ps = &pf->stats_prev; 7035 cur_ps = &pf->stats; 7036 7037 if (ice_is_reset_in_progress(pf->state)) 7038 pf->stat_prev_loaded = false; 7039 7040 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7041 &prev_ps->eth.rx_bytes, 7042 &cur_ps->eth.rx_bytes); 7043 7044 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7045 &prev_ps->eth.rx_unicast, 7046 &cur_ps->eth.rx_unicast); 7047 7048 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7049 &prev_ps->eth.rx_multicast, 7050 &cur_ps->eth.rx_multicast); 7051 7052 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7053 &prev_ps->eth.rx_broadcast, 7054 &cur_ps->eth.rx_broadcast); 7055 7056 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7057 &prev_ps->eth.rx_discards, 7058 &cur_ps->eth.rx_discards); 7059 7060 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7061 &prev_ps->eth.tx_bytes, 7062 &cur_ps->eth.tx_bytes); 7063 7064 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7065 &prev_ps->eth.tx_unicast, 7066 &cur_ps->eth.tx_unicast); 7067 7068 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7069 &prev_ps->eth.tx_multicast, 7070 &cur_ps->eth.tx_multicast); 7071 7072 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7073 &prev_ps->eth.tx_broadcast, 7074 &cur_ps->eth.tx_broadcast); 7075 7076 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7077 &prev_ps->tx_dropped_link_down, 7078 &cur_ps->tx_dropped_link_down); 7079 7080 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7081 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7082 7083 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7084 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7085 7086 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7087 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7088 7089 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7090 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7091 7092 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7093 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7094 7095 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7096 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7097 7098 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7099 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7100 7101 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7102 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7103 7104 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7105 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7106 7107 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7108 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7109 7110 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7111 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7112 7113 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7114 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7115 7116 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7117 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7118 7119 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7120 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7121 7122 fd_ctr_base = hw->fd_ctr_base; 7123 7124 ice_stat_update40(hw, 7125 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7126 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7127 &cur_ps->fd_sb_match); 7128 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7129 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7130 7131 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7132 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7133 7134 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7135 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7136 7137 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7138 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7139 7140 ice_update_dcb_stats(pf); 7141 7142 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7143 &prev_ps->crc_errors, &cur_ps->crc_errors); 7144 7145 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7146 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7147 7148 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7149 &prev_ps->mac_local_faults, 7150 &cur_ps->mac_local_faults); 7151 7152 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7153 &prev_ps->mac_remote_faults, 7154 &cur_ps->mac_remote_faults); 7155 7156 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7157 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7158 7159 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7160 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7161 7162 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7163 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7164 7165 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7166 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7167 7168 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7169 7170 pf->stat_prev_loaded = true; 7171 } 7172 7173 /** 7174 * ice_get_stats64 - get statistics for network device structure 7175 * @netdev: network interface device structure 7176 * @stats: main device statistics structure 7177 */ 7178 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7179 { 7180 struct ice_netdev_priv *np = netdev_priv(netdev); 7181 struct rtnl_link_stats64 *vsi_stats; 7182 struct ice_vsi *vsi = np->vsi; 7183 7184 vsi_stats = &vsi->net_stats; 7185 7186 if (!vsi->num_txq || !vsi->num_rxq) 7187 return; 7188 7189 /* netdev packet/byte stats come from ring counter. These are obtained 7190 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7191 * But, only call the update routine and read the registers if VSI is 7192 * not down. 7193 */ 7194 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7195 ice_update_vsi_ring_stats(vsi); 7196 stats->tx_packets = vsi_stats->tx_packets; 7197 stats->tx_bytes = vsi_stats->tx_bytes; 7198 stats->rx_packets = vsi_stats->rx_packets; 7199 stats->rx_bytes = vsi_stats->rx_bytes; 7200 7201 /* The rest of the stats can be read from the hardware but instead we 7202 * just return values that the watchdog task has already obtained from 7203 * the hardware. 7204 */ 7205 stats->multicast = vsi_stats->multicast; 7206 stats->tx_errors = vsi_stats->tx_errors; 7207 stats->tx_dropped = vsi_stats->tx_dropped; 7208 stats->rx_errors = vsi_stats->rx_errors; 7209 stats->rx_dropped = vsi_stats->rx_dropped; 7210 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7211 stats->rx_length_errors = vsi_stats->rx_length_errors; 7212 } 7213 7214 /** 7215 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7216 * @vsi: VSI having NAPI disabled 7217 */ 7218 static void ice_napi_disable_all(struct ice_vsi *vsi) 7219 { 7220 int q_idx; 7221 7222 if (!vsi->netdev) 7223 return; 7224 7225 ice_for_each_q_vector(vsi, q_idx) { 7226 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7227 7228 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7229 napi_disable(&q_vector->napi); 7230 7231 cancel_work_sync(&q_vector->tx.dim.work); 7232 cancel_work_sync(&q_vector->rx.dim.work); 7233 } 7234 } 7235 7236 /** 7237 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7238 * @vsi: the VSI being un-configured 7239 */ 7240 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7241 { 7242 struct ice_pf *pf = vsi->back; 7243 struct ice_hw *hw = &pf->hw; 7244 u32 val; 7245 int i; 7246 7247 /* disable interrupt causation from each Rx queue; Tx queues are 7248 * handled in ice_vsi_stop_tx_ring() 7249 */ 7250 if (vsi->rx_rings) { 7251 ice_for_each_rxq(vsi, i) { 7252 if (vsi->rx_rings[i]) { 7253 u16 reg; 7254 7255 reg = vsi->rx_rings[i]->reg_idx; 7256 val = rd32(hw, QINT_RQCTL(reg)); 7257 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7258 wr32(hw, QINT_RQCTL(reg), val); 7259 } 7260 } 7261 } 7262 7263 /* disable each interrupt */ 7264 ice_for_each_q_vector(vsi, i) { 7265 if (!vsi->q_vectors[i]) 7266 continue; 7267 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7268 } 7269 7270 ice_flush(hw); 7271 7272 /* don't call synchronize_irq() for VF's from the host */ 7273 if (vsi->type == ICE_VSI_VF) 7274 return; 7275 7276 ice_for_each_q_vector(vsi, i) 7277 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7278 } 7279 7280 /** 7281 * ice_down - Shutdown the connection 7282 * @vsi: The VSI being stopped 7283 * 7284 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7285 */ 7286 int ice_down(struct ice_vsi *vsi) 7287 { 7288 int i, tx_err, rx_err, vlan_err = 0; 7289 7290 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7291 7292 if (vsi->netdev) { 7293 vlan_err = ice_vsi_del_vlan_zero(vsi); 7294 ice_ptp_link_change(vsi->back, false); 7295 netif_carrier_off(vsi->netdev); 7296 netif_tx_disable(vsi->netdev); 7297 } 7298 7299 ice_vsi_dis_irq(vsi); 7300 7301 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7302 if (tx_err) 7303 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7304 vsi->vsi_num, tx_err); 7305 if (!tx_err && vsi->xdp_rings) { 7306 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7307 if (tx_err) 7308 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7309 vsi->vsi_num, tx_err); 7310 } 7311 7312 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7313 if (rx_err) 7314 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7315 vsi->vsi_num, rx_err); 7316 7317 ice_napi_disable_all(vsi); 7318 7319 ice_for_each_txq(vsi, i) 7320 ice_clean_tx_ring(vsi->tx_rings[i]); 7321 7322 if (vsi->xdp_rings) 7323 ice_for_each_xdp_txq(vsi, i) 7324 ice_clean_tx_ring(vsi->xdp_rings[i]); 7325 7326 ice_for_each_rxq(vsi, i) 7327 ice_clean_rx_ring(vsi->rx_rings[i]); 7328 7329 if (tx_err || rx_err || vlan_err) { 7330 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7331 vsi->vsi_num, vsi->vsw->sw_id); 7332 return -EIO; 7333 } 7334 7335 return 0; 7336 } 7337 7338 /** 7339 * ice_down_up - shutdown the VSI connection and bring it up 7340 * @vsi: the VSI to be reconnected 7341 */ 7342 int ice_down_up(struct ice_vsi *vsi) 7343 { 7344 int ret; 7345 7346 /* if DOWN already set, nothing to do */ 7347 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7348 return 0; 7349 7350 ret = ice_down(vsi); 7351 if (ret) 7352 return ret; 7353 7354 ret = ice_up(vsi); 7355 if (ret) { 7356 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7357 return ret; 7358 } 7359 7360 return 0; 7361 } 7362 7363 /** 7364 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7365 * @vsi: VSI having resources allocated 7366 * 7367 * Return 0 on success, negative on failure 7368 */ 7369 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7370 { 7371 int i, err = 0; 7372 7373 if (!vsi->num_txq) { 7374 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7375 vsi->vsi_num); 7376 return -EINVAL; 7377 } 7378 7379 ice_for_each_txq(vsi, i) { 7380 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7381 7382 if (!ring) 7383 return -EINVAL; 7384 7385 if (vsi->netdev) 7386 ring->netdev = vsi->netdev; 7387 err = ice_setup_tx_ring(ring); 7388 if (err) 7389 break; 7390 } 7391 7392 return err; 7393 } 7394 7395 /** 7396 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7397 * @vsi: VSI having resources allocated 7398 * 7399 * Return 0 on success, negative on failure 7400 */ 7401 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7402 { 7403 int i, err = 0; 7404 7405 if (!vsi->num_rxq) { 7406 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7407 vsi->vsi_num); 7408 return -EINVAL; 7409 } 7410 7411 ice_for_each_rxq(vsi, i) { 7412 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7413 7414 if (!ring) 7415 return -EINVAL; 7416 7417 if (vsi->netdev) 7418 ring->netdev = vsi->netdev; 7419 err = ice_setup_rx_ring(ring); 7420 if (err) 7421 break; 7422 } 7423 7424 return err; 7425 } 7426 7427 /** 7428 * ice_vsi_open_ctrl - open control VSI for use 7429 * @vsi: the VSI to open 7430 * 7431 * Initialization of the Control VSI 7432 * 7433 * Returns 0 on success, negative value on error 7434 */ 7435 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7436 { 7437 char int_name[ICE_INT_NAME_STR_LEN]; 7438 struct ice_pf *pf = vsi->back; 7439 struct device *dev; 7440 int err; 7441 7442 dev = ice_pf_to_dev(pf); 7443 /* allocate descriptors */ 7444 err = ice_vsi_setup_tx_rings(vsi); 7445 if (err) 7446 goto err_setup_tx; 7447 7448 err = ice_vsi_setup_rx_rings(vsi); 7449 if (err) 7450 goto err_setup_rx; 7451 7452 err = ice_vsi_cfg_lan(vsi); 7453 if (err) 7454 goto err_setup_rx; 7455 7456 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7457 dev_driver_string(dev), dev_name(dev)); 7458 err = ice_vsi_req_irq_msix(vsi, int_name); 7459 if (err) 7460 goto err_setup_rx; 7461 7462 ice_vsi_cfg_msix(vsi); 7463 7464 err = ice_vsi_start_all_rx_rings(vsi); 7465 if (err) 7466 goto err_up_complete; 7467 7468 clear_bit(ICE_VSI_DOWN, vsi->state); 7469 ice_vsi_ena_irq(vsi); 7470 7471 return 0; 7472 7473 err_up_complete: 7474 ice_down(vsi); 7475 err_setup_rx: 7476 ice_vsi_free_rx_rings(vsi); 7477 err_setup_tx: 7478 ice_vsi_free_tx_rings(vsi); 7479 7480 return err; 7481 } 7482 7483 /** 7484 * ice_vsi_open - Called when a network interface is made active 7485 * @vsi: the VSI to open 7486 * 7487 * Initialization of the VSI 7488 * 7489 * Returns 0 on success, negative value on error 7490 */ 7491 int ice_vsi_open(struct ice_vsi *vsi) 7492 { 7493 char int_name[ICE_INT_NAME_STR_LEN]; 7494 struct ice_pf *pf = vsi->back; 7495 int err; 7496 7497 /* allocate descriptors */ 7498 err = ice_vsi_setup_tx_rings(vsi); 7499 if (err) 7500 goto err_setup_tx; 7501 7502 err = ice_vsi_setup_rx_rings(vsi); 7503 if (err) 7504 goto err_setup_rx; 7505 7506 err = ice_vsi_cfg_lan(vsi); 7507 if (err) 7508 goto err_setup_rx; 7509 7510 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7511 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7512 err = ice_vsi_req_irq_msix(vsi, int_name); 7513 if (err) 7514 goto err_setup_rx; 7515 7516 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7517 7518 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7519 /* Notify the stack of the actual queue counts. */ 7520 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7521 if (err) 7522 goto err_set_qs; 7523 7524 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7525 if (err) 7526 goto err_set_qs; 7527 7528 ice_vsi_set_napi_queues(vsi); 7529 } 7530 7531 err = ice_up_complete(vsi); 7532 if (err) 7533 goto err_up_complete; 7534 7535 return 0; 7536 7537 err_up_complete: 7538 ice_down(vsi); 7539 err_set_qs: 7540 ice_vsi_free_irq(vsi); 7541 err_setup_rx: 7542 ice_vsi_free_rx_rings(vsi); 7543 err_setup_tx: 7544 ice_vsi_free_tx_rings(vsi); 7545 7546 return err; 7547 } 7548 7549 /** 7550 * ice_vsi_release_all - Delete all VSIs 7551 * @pf: PF from which all VSIs are being removed 7552 */ 7553 static void ice_vsi_release_all(struct ice_pf *pf) 7554 { 7555 int err, i; 7556 7557 if (!pf->vsi) 7558 return; 7559 7560 ice_for_each_vsi(pf, i) { 7561 if (!pf->vsi[i]) 7562 continue; 7563 7564 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7565 continue; 7566 7567 err = ice_vsi_release(pf->vsi[i]); 7568 if (err) 7569 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7570 i, err, pf->vsi[i]->vsi_num); 7571 } 7572 } 7573 7574 /** 7575 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7576 * @pf: pointer to the PF instance 7577 * @type: VSI type to rebuild 7578 * 7579 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7580 */ 7581 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7582 { 7583 struct device *dev = ice_pf_to_dev(pf); 7584 int i, err; 7585 7586 ice_for_each_vsi(pf, i) { 7587 struct ice_vsi *vsi = pf->vsi[i]; 7588 7589 if (!vsi || vsi->type != type) 7590 continue; 7591 7592 /* rebuild the VSI */ 7593 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7594 if (err) { 7595 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7596 err, vsi->idx, ice_vsi_type_str(type)); 7597 return err; 7598 } 7599 7600 /* replay filters for the VSI */ 7601 err = ice_replay_vsi(&pf->hw, vsi->idx); 7602 if (err) { 7603 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7604 err, vsi->idx, ice_vsi_type_str(type)); 7605 return err; 7606 } 7607 7608 /* Re-map HW VSI number, using VSI handle that has been 7609 * previously validated in ice_replay_vsi() call above 7610 */ 7611 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7612 7613 /* enable the VSI */ 7614 err = ice_ena_vsi(vsi, false); 7615 if (err) { 7616 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7617 err, vsi->idx, ice_vsi_type_str(type)); 7618 return err; 7619 } 7620 7621 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7622 ice_vsi_type_str(type)); 7623 } 7624 7625 return 0; 7626 } 7627 7628 /** 7629 * ice_update_pf_netdev_link - Update PF netdev link status 7630 * @pf: pointer to the PF instance 7631 */ 7632 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7633 { 7634 bool link_up; 7635 int i; 7636 7637 ice_for_each_vsi(pf, i) { 7638 struct ice_vsi *vsi = pf->vsi[i]; 7639 7640 if (!vsi || vsi->type != ICE_VSI_PF) 7641 return; 7642 7643 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7644 if (link_up) { 7645 netif_carrier_on(pf->vsi[i]->netdev); 7646 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7647 } else { 7648 netif_carrier_off(pf->vsi[i]->netdev); 7649 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7650 } 7651 } 7652 } 7653 7654 /** 7655 * ice_rebuild - rebuild after reset 7656 * @pf: PF to rebuild 7657 * @reset_type: type of reset 7658 * 7659 * Do not rebuild VF VSI in this flow because that is already handled via 7660 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7661 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7662 * to reset/rebuild all the VF VSI twice. 7663 */ 7664 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7665 { 7666 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7667 struct device *dev = ice_pf_to_dev(pf); 7668 struct ice_hw *hw = &pf->hw; 7669 bool dvm; 7670 int err; 7671 7672 if (test_bit(ICE_DOWN, pf->state)) 7673 goto clear_recovery; 7674 7675 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7676 7677 #define ICE_EMP_RESET_SLEEP_MS 5000 7678 if (reset_type == ICE_RESET_EMPR) { 7679 /* If an EMP reset has occurred, any previously pending flash 7680 * update will have completed. We no longer know whether or 7681 * not the NVM update EMP reset is restricted. 7682 */ 7683 pf->fw_emp_reset_disabled = false; 7684 7685 msleep(ICE_EMP_RESET_SLEEP_MS); 7686 } 7687 7688 err = ice_init_all_ctrlq(hw); 7689 if (err) { 7690 dev_err(dev, "control queues init failed %d\n", err); 7691 goto err_init_ctrlq; 7692 } 7693 7694 /* if DDP was previously loaded successfully */ 7695 if (!ice_is_safe_mode(pf)) { 7696 /* reload the SW DB of filter tables */ 7697 if (reset_type == ICE_RESET_PFR) 7698 ice_fill_blk_tbls(hw); 7699 else 7700 /* Reload DDP Package after CORER/GLOBR reset */ 7701 ice_load_pkg(NULL, pf); 7702 } 7703 7704 err = ice_clear_pf_cfg(hw); 7705 if (err) { 7706 dev_err(dev, "clear PF configuration failed %d\n", err); 7707 goto err_init_ctrlq; 7708 } 7709 7710 ice_clear_pxe_mode(hw); 7711 7712 err = ice_init_nvm(hw); 7713 if (err) { 7714 dev_err(dev, "ice_init_nvm failed %d\n", err); 7715 goto err_init_ctrlq; 7716 } 7717 7718 err = ice_get_caps(hw); 7719 if (err) { 7720 dev_err(dev, "ice_get_caps failed %d\n", err); 7721 goto err_init_ctrlq; 7722 } 7723 7724 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7725 if (err) { 7726 dev_err(dev, "set_mac_cfg failed %d\n", err); 7727 goto err_init_ctrlq; 7728 } 7729 7730 dvm = ice_is_dvm_ena(hw); 7731 7732 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7733 if (err) 7734 goto err_init_ctrlq; 7735 7736 err = ice_sched_init_port(hw->port_info); 7737 if (err) 7738 goto err_sched_init_port; 7739 7740 /* start misc vector */ 7741 err = ice_req_irq_msix_misc(pf); 7742 if (err) { 7743 dev_err(dev, "misc vector setup failed: %d\n", err); 7744 goto err_sched_init_port; 7745 } 7746 7747 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7748 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7749 if (!rd32(hw, PFQF_FD_SIZE)) { 7750 u16 unused, guar, b_effort; 7751 7752 guar = hw->func_caps.fd_fltr_guar; 7753 b_effort = hw->func_caps.fd_fltr_best_effort; 7754 7755 /* force guaranteed filter pool for PF */ 7756 ice_alloc_fd_guar_item(hw, &unused, guar); 7757 /* force shared filter pool for PF */ 7758 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7759 } 7760 } 7761 7762 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7763 ice_dcb_rebuild(pf); 7764 7765 /* If the PF previously had enabled PTP, PTP init needs to happen before 7766 * the VSI rebuild. If not, this causes the PTP link status events to 7767 * fail. 7768 */ 7769 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7770 ice_ptp_rebuild(pf, reset_type); 7771 7772 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7773 ice_gnss_init(pf); 7774 7775 /* rebuild PF VSI */ 7776 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7777 if (err) { 7778 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7779 goto err_vsi_rebuild; 7780 } 7781 7782 if (reset_type == ICE_RESET_PFR) { 7783 err = ice_rebuild_channels(pf); 7784 if (err) { 7785 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7786 err); 7787 goto err_vsi_rebuild; 7788 } 7789 } 7790 7791 /* If Flow Director is active */ 7792 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7793 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7794 if (err) { 7795 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7796 goto err_vsi_rebuild; 7797 } 7798 7799 /* replay HW Flow Director recipes */ 7800 if (hw->fdir_prof) 7801 ice_fdir_replay_flows(hw); 7802 7803 /* replay Flow Director filters */ 7804 ice_fdir_replay_fltrs(pf); 7805 7806 ice_rebuild_arfs(pf); 7807 } 7808 7809 if (vsi && vsi->netdev) 7810 netif_device_attach(vsi->netdev); 7811 7812 ice_update_pf_netdev_link(pf); 7813 7814 /* tell the firmware we are up */ 7815 err = ice_send_version(pf); 7816 if (err) { 7817 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7818 err); 7819 goto err_vsi_rebuild; 7820 } 7821 7822 ice_replay_post(hw); 7823 7824 /* if we get here, reset flow is successful */ 7825 clear_bit(ICE_RESET_FAILED, pf->state); 7826 7827 ice_health_clear(pf); 7828 7829 ice_plug_aux_dev(pf); 7830 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7831 ice_lag_rebuild(pf); 7832 7833 /* Restore timestamp mode settings after VSI rebuild */ 7834 ice_ptp_restore_timestamp_mode(pf); 7835 return; 7836 7837 err_vsi_rebuild: 7838 err_sched_init_port: 7839 ice_sched_cleanup_all(hw); 7840 err_init_ctrlq: 7841 ice_shutdown_all_ctrlq(hw, false); 7842 set_bit(ICE_RESET_FAILED, pf->state); 7843 clear_recovery: 7844 /* set this bit in PF state to control service task scheduling */ 7845 set_bit(ICE_NEEDS_RESTART, pf->state); 7846 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7847 } 7848 7849 /** 7850 * ice_change_mtu - NDO callback to change the MTU 7851 * @netdev: network interface device structure 7852 * @new_mtu: new value for maximum frame size 7853 * 7854 * Returns 0 on success, negative on failure 7855 */ 7856 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7857 { 7858 struct ice_netdev_priv *np = netdev_priv(netdev); 7859 struct ice_vsi *vsi = np->vsi; 7860 struct ice_pf *pf = vsi->back; 7861 struct bpf_prog *prog; 7862 u8 count = 0; 7863 int err = 0; 7864 7865 if (new_mtu == (int)netdev->mtu) { 7866 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7867 return 0; 7868 } 7869 7870 prog = vsi->xdp_prog; 7871 if (prog && !prog->aux->xdp_has_frags) { 7872 int frame_size = ice_max_xdp_frame_size(vsi); 7873 7874 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7875 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7876 frame_size - ICE_ETH_PKT_HDR_PAD); 7877 return -EINVAL; 7878 } 7879 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7880 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7881 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7882 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7883 return -EINVAL; 7884 } 7885 } 7886 7887 /* if a reset is in progress, wait for some time for it to complete */ 7888 do { 7889 if (ice_is_reset_in_progress(pf->state)) { 7890 count++; 7891 usleep_range(1000, 2000); 7892 } else { 7893 break; 7894 } 7895 7896 } while (count < 100); 7897 7898 if (count == 100) { 7899 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7900 return -EBUSY; 7901 } 7902 7903 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7904 err = ice_down_up(vsi); 7905 if (err) 7906 return err; 7907 7908 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7909 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7910 7911 return err; 7912 } 7913 7914 /** 7915 * ice_set_rss_lut - Set RSS LUT 7916 * @vsi: Pointer to VSI structure 7917 * @lut: Lookup table 7918 * @lut_size: Lookup table size 7919 * 7920 * Returns 0 on success, negative on failure 7921 */ 7922 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7923 { 7924 struct ice_aq_get_set_rss_lut_params params = {}; 7925 struct ice_hw *hw = &vsi->back->hw; 7926 int status; 7927 7928 if (!lut) 7929 return -EINVAL; 7930 7931 params.vsi_handle = vsi->idx; 7932 params.lut_size = lut_size; 7933 params.lut_type = vsi->rss_lut_type; 7934 params.lut = lut; 7935 7936 status = ice_aq_set_rss_lut(hw, ¶ms); 7937 if (status) 7938 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7939 status, libie_aq_str(hw->adminq.sq_last_status)); 7940 7941 return status; 7942 } 7943 7944 /** 7945 * ice_set_rss_key - Set RSS key 7946 * @vsi: Pointer to the VSI structure 7947 * @seed: RSS hash seed 7948 * 7949 * Returns 0 on success, negative on failure 7950 */ 7951 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7952 { 7953 struct ice_hw *hw = &vsi->back->hw; 7954 int status; 7955 7956 if (!seed) 7957 return -EINVAL; 7958 7959 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7960 if (status) 7961 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7962 status, libie_aq_str(hw->adminq.sq_last_status)); 7963 7964 return status; 7965 } 7966 7967 /** 7968 * ice_get_rss_lut - Get RSS LUT 7969 * @vsi: Pointer to VSI structure 7970 * @lut: Buffer to store the lookup table entries 7971 * @lut_size: Size of buffer to store the lookup table entries 7972 * 7973 * Returns 0 on success, negative on failure 7974 */ 7975 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7976 { 7977 struct ice_aq_get_set_rss_lut_params params = {}; 7978 struct ice_hw *hw = &vsi->back->hw; 7979 int status; 7980 7981 if (!lut) 7982 return -EINVAL; 7983 7984 params.vsi_handle = vsi->idx; 7985 params.lut_size = lut_size; 7986 params.lut_type = vsi->rss_lut_type; 7987 params.lut = lut; 7988 7989 status = ice_aq_get_rss_lut(hw, ¶ms); 7990 if (status) 7991 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7992 status, libie_aq_str(hw->adminq.sq_last_status)); 7993 7994 return status; 7995 } 7996 7997 /** 7998 * ice_get_rss_key - Get RSS key 7999 * @vsi: Pointer to VSI structure 8000 * @seed: Buffer to store the key in 8001 * 8002 * Returns 0 on success, negative on failure 8003 */ 8004 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8005 { 8006 struct ice_hw *hw = &vsi->back->hw; 8007 int status; 8008 8009 if (!seed) 8010 return -EINVAL; 8011 8012 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8013 if (status) 8014 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8015 status, libie_aq_str(hw->adminq.sq_last_status)); 8016 8017 return status; 8018 } 8019 8020 /** 8021 * ice_set_rss_hfunc - Set RSS HASH function 8022 * @vsi: Pointer to VSI structure 8023 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8024 * 8025 * Returns 0 on success, negative on failure 8026 */ 8027 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8028 { 8029 struct ice_hw *hw = &vsi->back->hw; 8030 struct ice_vsi_ctx *ctx; 8031 bool symm; 8032 int err; 8033 8034 if (hfunc == vsi->rss_hfunc) 8035 return 0; 8036 8037 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8038 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8039 return -EOPNOTSUPP; 8040 8041 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8042 if (!ctx) 8043 return -ENOMEM; 8044 8045 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8046 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8047 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8048 ctx->info.q_opt_rss |= 8049 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8050 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8051 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8052 8053 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8054 if (err) { 8055 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8056 vsi->vsi_num, err); 8057 } else { 8058 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8059 vsi->rss_hfunc = hfunc; 8060 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8061 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8062 "Symmetric " : ""); 8063 } 8064 kfree(ctx); 8065 if (err) 8066 return err; 8067 8068 /* Fix the symmetry setting for all existing RSS configurations */ 8069 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8070 return ice_set_rss_cfg_symm(hw, vsi, symm); 8071 } 8072 8073 /** 8074 * ice_bridge_getlink - Get the hardware bridge mode 8075 * @skb: skb buff 8076 * @pid: process ID 8077 * @seq: RTNL message seq 8078 * @dev: the netdev being configured 8079 * @filter_mask: filter mask passed in 8080 * @nlflags: netlink flags passed in 8081 * 8082 * Return the bridge mode (VEB/VEPA) 8083 */ 8084 static int 8085 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8086 struct net_device *dev, u32 filter_mask, int nlflags) 8087 { 8088 struct ice_netdev_priv *np = netdev_priv(dev); 8089 struct ice_vsi *vsi = np->vsi; 8090 struct ice_pf *pf = vsi->back; 8091 u16 bmode; 8092 8093 bmode = pf->first_sw->bridge_mode; 8094 8095 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8096 filter_mask, NULL); 8097 } 8098 8099 /** 8100 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8101 * @vsi: Pointer to VSI structure 8102 * @bmode: Hardware bridge mode (VEB/VEPA) 8103 * 8104 * Returns 0 on success, negative on failure 8105 */ 8106 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8107 { 8108 struct ice_aqc_vsi_props *vsi_props; 8109 struct ice_hw *hw = &vsi->back->hw; 8110 struct ice_vsi_ctx *ctxt; 8111 int ret; 8112 8113 vsi_props = &vsi->info; 8114 8115 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8116 if (!ctxt) 8117 return -ENOMEM; 8118 8119 ctxt->info = vsi->info; 8120 8121 if (bmode == BRIDGE_MODE_VEB) 8122 /* change from VEPA to VEB mode */ 8123 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8124 else 8125 /* change from VEB to VEPA mode */ 8126 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8127 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8128 8129 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8130 if (ret) { 8131 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8132 bmode, ret, libie_aq_str(hw->adminq.sq_last_status)); 8133 goto out; 8134 } 8135 /* Update sw flags for book keeping */ 8136 vsi_props->sw_flags = ctxt->info.sw_flags; 8137 8138 out: 8139 kfree(ctxt); 8140 return ret; 8141 } 8142 8143 /** 8144 * ice_bridge_setlink - Set the hardware bridge mode 8145 * @dev: the netdev being configured 8146 * @nlh: RTNL message 8147 * @flags: bridge setlink flags 8148 * @extack: netlink extended ack 8149 * 8150 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8151 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8152 * not already set for all VSIs connected to this switch. And also update the 8153 * unicast switch filter rules for the corresponding switch of the netdev. 8154 */ 8155 static int 8156 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8157 u16 __always_unused flags, 8158 struct netlink_ext_ack __always_unused *extack) 8159 { 8160 struct ice_netdev_priv *np = netdev_priv(dev); 8161 struct ice_pf *pf = np->vsi->back; 8162 struct nlattr *attr, *br_spec; 8163 struct ice_hw *hw = &pf->hw; 8164 struct ice_sw *pf_sw; 8165 int rem, v, err = 0; 8166 8167 pf_sw = pf->first_sw; 8168 /* find the attribute in the netlink message */ 8169 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8170 if (!br_spec) 8171 return -EINVAL; 8172 8173 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8174 __u16 mode = nla_get_u16(attr); 8175 8176 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8177 return -EINVAL; 8178 /* Continue if bridge mode is not being flipped */ 8179 if (mode == pf_sw->bridge_mode) 8180 continue; 8181 /* Iterates through the PF VSI list and update the loopback 8182 * mode of the VSI 8183 */ 8184 ice_for_each_vsi(pf, v) { 8185 if (!pf->vsi[v]) 8186 continue; 8187 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8188 if (err) 8189 return err; 8190 } 8191 8192 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8193 /* Update the unicast switch filter rules for the corresponding 8194 * switch of the netdev 8195 */ 8196 err = ice_update_sw_rule_bridge_mode(hw); 8197 if (err) { 8198 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8199 mode, err, 8200 libie_aq_str(hw->adminq.sq_last_status)); 8201 /* revert hw->evb_veb */ 8202 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8203 return err; 8204 } 8205 8206 pf_sw->bridge_mode = mode; 8207 } 8208 8209 return 0; 8210 } 8211 8212 /** 8213 * ice_tx_timeout - Respond to a Tx Hang 8214 * @netdev: network interface device structure 8215 * @txqueue: Tx queue 8216 */ 8217 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8218 { 8219 struct ice_netdev_priv *np = netdev_priv(netdev); 8220 struct ice_tx_ring *tx_ring = NULL; 8221 struct ice_vsi *vsi = np->vsi; 8222 struct ice_pf *pf = vsi->back; 8223 u32 i; 8224 8225 pf->tx_timeout_count++; 8226 8227 /* Check if PFC is enabled for the TC to which the queue belongs 8228 * to. If yes then Tx timeout is not caused by a hung queue, no 8229 * need to reset and rebuild 8230 */ 8231 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8232 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8233 txqueue); 8234 return; 8235 } 8236 8237 /* now that we have an index, find the tx_ring struct */ 8238 ice_for_each_txq(vsi, i) 8239 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8240 if (txqueue == vsi->tx_rings[i]->q_index) { 8241 tx_ring = vsi->tx_rings[i]; 8242 break; 8243 } 8244 8245 /* Reset recovery level if enough time has elapsed after last timeout. 8246 * Also ensure no new reset action happens before next timeout period. 8247 */ 8248 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8249 pf->tx_timeout_recovery_level = 1; 8250 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8251 netdev->watchdog_timeo))) 8252 return; 8253 8254 if (tx_ring) { 8255 struct ice_hw *hw = &pf->hw; 8256 u32 head, intr = 0; 8257 8258 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8259 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8260 /* Read interrupt register */ 8261 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8262 8263 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8264 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8265 head, tx_ring->next_to_use, intr); 8266 8267 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8268 } 8269 8270 pf->tx_timeout_last_recovery = jiffies; 8271 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8272 pf->tx_timeout_recovery_level, txqueue); 8273 8274 switch (pf->tx_timeout_recovery_level) { 8275 case 1: 8276 set_bit(ICE_PFR_REQ, pf->state); 8277 break; 8278 case 2: 8279 set_bit(ICE_CORER_REQ, pf->state); 8280 break; 8281 case 3: 8282 set_bit(ICE_GLOBR_REQ, pf->state); 8283 break; 8284 default: 8285 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8286 set_bit(ICE_DOWN, pf->state); 8287 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8288 set_bit(ICE_SERVICE_DIS, pf->state); 8289 break; 8290 } 8291 8292 ice_service_task_schedule(pf); 8293 pf->tx_timeout_recovery_level++; 8294 } 8295 8296 /** 8297 * ice_setup_tc_cls_flower - flower classifier offloads 8298 * @np: net device to configure 8299 * @filter_dev: device on which filter is added 8300 * @cls_flower: offload data 8301 * @ingress: if the rule is added to an ingress block 8302 * 8303 * Return: 0 if the flower was successfully added or deleted, 8304 * negative error code otherwise. 8305 */ 8306 static int 8307 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8308 struct net_device *filter_dev, 8309 struct flow_cls_offload *cls_flower, 8310 bool ingress) 8311 { 8312 struct ice_vsi *vsi = np->vsi; 8313 8314 if (cls_flower->common.chain_index) 8315 return -EOPNOTSUPP; 8316 8317 switch (cls_flower->command) { 8318 case FLOW_CLS_REPLACE: 8319 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress); 8320 case FLOW_CLS_DESTROY: 8321 return ice_del_cls_flower(vsi, cls_flower); 8322 default: 8323 return -EINVAL; 8324 } 8325 } 8326 8327 /** 8328 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block 8329 * @type: TC SETUP type 8330 * @type_data: TC flower offload data that contains user input 8331 * @cb_priv: netdev private data 8332 * 8333 * Return: 0 if the setup was successful, negative error code otherwise. 8334 */ 8335 static int 8336 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data, 8337 void *cb_priv) 8338 { 8339 struct ice_netdev_priv *np = cb_priv; 8340 8341 switch (type) { 8342 case TC_SETUP_CLSFLOWER: 8343 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8344 type_data, true); 8345 default: 8346 return -EOPNOTSUPP; 8347 } 8348 } 8349 8350 /** 8351 * ice_setup_tc_block_cb_egress - callback handler for egress TC block 8352 * @type: TC SETUP type 8353 * @type_data: TC flower offload data that contains user input 8354 * @cb_priv: netdev private data 8355 * 8356 * Return: 0 if the setup was successful, negative error code otherwise. 8357 */ 8358 static int 8359 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data, 8360 void *cb_priv) 8361 { 8362 struct ice_netdev_priv *np = cb_priv; 8363 8364 switch (type) { 8365 case TC_SETUP_CLSFLOWER: 8366 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8367 type_data, false); 8368 default: 8369 return -EOPNOTSUPP; 8370 } 8371 } 8372 8373 /** 8374 * ice_validate_mqprio_qopt - Validate TCF input parameters 8375 * @vsi: Pointer to VSI 8376 * @mqprio_qopt: input parameters for mqprio queue configuration 8377 * 8378 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8379 * needed), and make sure user doesn't specify qcount and BW rate limit 8380 * for TCs, which are more than "num_tc" 8381 */ 8382 static int 8383 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8384 struct tc_mqprio_qopt_offload *mqprio_qopt) 8385 { 8386 int non_power_of_2_qcount = 0; 8387 struct ice_pf *pf = vsi->back; 8388 int max_rss_q_cnt = 0; 8389 u64 sum_min_rate = 0; 8390 struct device *dev; 8391 int i, speed; 8392 u8 num_tc; 8393 8394 if (vsi->type != ICE_VSI_PF) 8395 return -EINVAL; 8396 8397 if (mqprio_qopt->qopt.offset[0] != 0 || 8398 mqprio_qopt->qopt.num_tc < 1 || 8399 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8400 return -EINVAL; 8401 8402 dev = ice_pf_to_dev(pf); 8403 vsi->ch_rss_size = 0; 8404 num_tc = mqprio_qopt->qopt.num_tc; 8405 speed = ice_get_link_speed_kbps(vsi); 8406 8407 for (i = 0; num_tc; i++) { 8408 int qcount = mqprio_qopt->qopt.count[i]; 8409 u64 max_rate, min_rate, rem; 8410 8411 if (!qcount) 8412 return -EINVAL; 8413 8414 if (is_power_of_2(qcount)) { 8415 if (non_power_of_2_qcount && 8416 qcount > non_power_of_2_qcount) { 8417 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8418 qcount, non_power_of_2_qcount); 8419 return -EINVAL; 8420 } 8421 if (qcount > max_rss_q_cnt) 8422 max_rss_q_cnt = qcount; 8423 } else { 8424 if (non_power_of_2_qcount && 8425 qcount != non_power_of_2_qcount) { 8426 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8427 qcount, non_power_of_2_qcount); 8428 return -EINVAL; 8429 } 8430 if (qcount < max_rss_q_cnt) { 8431 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8432 qcount, max_rss_q_cnt); 8433 return -EINVAL; 8434 } 8435 max_rss_q_cnt = qcount; 8436 non_power_of_2_qcount = qcount; 8437 } 8438 8439 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8440 * converts the bandwidth rate limit into Bytes/s when 8441 * passing it down to the driver. So convert input bandwidth 8442 * from Bytes/s to Kbps 8443 */ 8444 max_rate = mqprio_qopt->max_rate[i]; 8445 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8446 8447 /* min_rate is minimum guaranteed rate and it can't be zero */ 8448 min_rate = mqprio_qopt->min_rate[i]; 8449 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8450 sum_min_rate += min_rate; 8451 8452 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8453 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8454 min_rate, ICE_MIN_BW_LIMIT); 8455 return -EINVAL; 8456 } 8457 8458 if (max_rate && max_rate > speed) { 8459 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8460 i, max_rate, speed); 8461 return -EINVAL; 8462 } 8463 8464 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8465 if (rem) { 8466 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8467 i, ICE_MIN_BW_LIMIT); 8468 return -EINVAL; 8469 } 8470 8471 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8472 if (rem) { 8473 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8474 i, ICE_MIN_BW_LIMIT); 8475 return -EINVAL; 8476 } 8477 8478 /* min_rate can't be more than max_rate, except when max_rate 8479 * is zero (implies max_rate sought is max line rate). In such 8480 * a case min_rate can be more than max. 8481 */ 8482 if (max_rate && min_rate > max_rate) { 8483 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8484 min_rate, max_rate); 8485 return -EINVAL; 8486 } 8487 8488 if (i >= mqprio_qopt->qopt.num_tc - 1) 8489 break; 8490 if (mqprio_qopt->qopt.offset[i + 1] != 8491 (mqprio_qopt->qopt.offset[i] + qcount)) 8492 return -EINVAL; 8493 } 8494 if (vsi->num_rxq < 8495 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8496 return -EINVAL; 8497 if (vsi->num_txq < 8498 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8499 return -EINVAL; 8500 8501 if (sum_min_rate && sum_min_rate > (u64)speed) { 8502 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8503 sum_min_rate, speed); 8504 return -EINVAL; 8505 } 8506 8507 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8508 vsi->ch_rss_size = max_rss_q_cnt; 8509 8510 return 0; 8511 } 8512 8513 /** 8514 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8515 * @pf: ptr to PF device 8516 * @vsi: ptr to VSI 8517 */ 8518 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8519 { 8520 struct device *dev = ice_pf_to_dev(pf); 8521 bool added = false; 8522 struct ice_hw *hw; 8523 int flow; 8524 8525 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8526 return -EINVAL; 8527 8528 hw = &pf->hw; 8529 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8530 struct ice_fd_hw_prof *prof; 8531 int tun, status; 8532 u64 entry_h; 8533 8534 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8535 hw->fdir_prof[flow]->cnt)) 8536 continue; 8537 8538 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8539 enum ice_flow_priority prio; 8540 8541 /* add this VSI to FDir profile for this flow */ 8542 prio = ICE_FLOW_PRIO_NORMAL; 8543 prof = hw->fdir_prof[flow]; 8544 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8545 prof->prof_id[tun], 8546 prof->vsi_h[0], vsi->idx, 8547 prio, prof->fdir_seg[tun], 8548 &entry_h); 8549 if (status) { 8550 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8551 vsi->idx, flow); 8552 continue; 8553 } 8554 8555 prof->entry_h[prof->cnt][tun] = entry_h; 8556 } 8557 8558 /* store VSI for filter replay and delete */ 8559 prof->vsi_h[prof->cnt] = vsi->idx; 8560 prof->cnt++; 8561 8562 added = true; 8563 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8564 flow); 8565 } 8566 8567 if (!added) 8568 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8569 8570 return 0; 8571 } 8572 8573 /** 8574 * ice_add_channel - add a channel by adding VSI 8575 * @pf: ptr to PF device 8576 * @sw_id: underlying HW switching element ID 8577 * @ch: ptr to channel structure 8578 * 8579 * Add a channel (VSI) using add_vsi and queue_map 8580 */ 8581 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8582 { 8583 struct device *dev = ice_pf_to_dev(pf); 8584 struct ice_vsi *vsi; 8585 8586 if (ch->type != ICE_VSI_CHNL) { 8587 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8588 return -EINVAL; 8589 } 8590 8591 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8592 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8593 dev_err(dev, "create chnl VSI failure\n"); 8594 return -EINVAL; 8595 } 8596 8597 ice_add_vsi_to_fdir(pf, vsi); 8598 8599 ch->sw_id = sw_id; 8600 ch->vsi_num = vsi->vsi_num; 8601 ch->info.mapping_flags = vsi->info.mapping_flags; 8602 ch->ch_vsi = vsi; 8603 /* set the back pointer of channel for newly created VSI */ 8604 vsi->ch = ch; 8605 8606 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8607 sizeof(vsi->info.q_mapping)); 8608 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8609 sizeof(vsi->info.tc_mapping)); 8610 8611 return 0; 8612 } 8613 8614 /** 8615 * ice_chnl_cfg_res 8616 * @vsi: the VSI being setup 8617 * @ch: ptr to channel structure 8618 * 8619 * Configure channel specific resources such as rings, vector. 8620 */ 8621 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8622 { 8623 int i; 8624 8625 for (i = 0; i < ch->num_txq; i++) { 8626 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8627 struct ice_ring_container *rc; 8628 struct ice_tx_ring *tx_ring; 8629 struct ice_rx_ring *rx_ring; 8630 8631 tx_ring = vsi->tx_rings[ch->base_q + i]; 8632 rx_ring = vsi->rx_rings[ch->base_q + i]; 8633 if (!tx_ring || !rx_ring) 8634 continue; 8635 8636 /* setup ring being channel enabled */ 8637 tx_ring->ch = ch; 8638 rx_ring->ch = ch; 8639 8640 /* following code block sets up vector specific attributes */ 8641 tx_q_vector = tx_ring->q_vector; 8642 rx_q_vector = rx_ring->q_vector; 8643 if (!tx_q_vector && !rx_q_vector) 8644 continue; 8645 8646 if (tx_q_vector) { 8647 tx_q_vector->ch = ch; 8648 /* setup Tx and Rx ITR setting if DIM is off */ 8649 rc = &tx_q_vector->tx; 8650 if (!ITR_IS_DYNAMIC(rc)) 8651 ice_write_itr(rc, rc->itr_setting); 8652 } 8653 if (rx_q_vector) { 8654 rx_q_vector->ch = ch; 8655 /* setup Tx and Rx ITR setting if DIM is off */ 8656 rc = &rx_q_vector->rx; 8657 if (!ITR_IS_DYNAMIC(rc)) 8658 ice_write_itr(rc, rc->itr_setting); 8659 } 8660 } 8661 8662 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8663 * GLINT_ITR register would have written to perform in-context 8664 * update, hence perform flush 8665 */ 8666 if (ch->num_txq || ch->num_rxq) 8667 ice_flush(&vsi->back->hw); 8668 } 8669 8670 /** 8671 * ice_cfg_chnl_all_res - configure channel resources 8672 * @vsi: pte to main_vsi 8673 * @ch: ptr to channel structure 8674 * 8675 * This function configures channel specific resources such as flow-director 8676 * counter index, and other resources such as queues, vectors, ITR settings 8677 */ 8678 static void 8679 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8680 { 8681 /* configure channel (aka ADQ) resources such as queues, vectors, 8682 * ITR settings for channel specific vectors and anything else 8683 */ 8684 ice_chnl_cfg_res(vsi, ch); 8685 } 8686 8687 /** 8688 * ice_setup_hw_channel - setup new channel 8689 * @pf: ptr to PF device 8690 * @vsi: the VSI being setup 8691 * @ch: ptr to channel structure 8692 * @sw_id: underlying HW switching element ID 8693 * @type: type of channel to be created (VMDq2/VF) 8694 * 8695 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8696 * and configures Tx rings accordingly 8697 */ 8698 static int 8699 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8700 struct ice_channel *ch, u16 sw_id, u8 type) 8701 { 8702 struct device *dev = ice_pf_to_dev(pf); 8703 int ret; 8704 8705 ch->base_q = vsi->next_base_q; 8706 ch->type = type; 8707 8708 ret = ice_add_channel(pf, sw_id, ch); 8709 if (ret) { 8710 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8711 return ret; 8712 } 8713 8714 /* configure/setup ADQ specific resources */ 8715 ice_cfg_chnl_all_res(vsi, ch); 8716 8717 /* make sure to update the next_base_q so that subsequent channel's 8718 * (aka ADQ) VSI queue map is correct 8719 */ 8720 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8721 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8722 ch->num_rxq); 8723 8724 return 0; 8725 } 8726 8727 /** 8728 * ice_setup_channel - setup new channel using uplink element 8729 * @pf: ptr to PF device 8730 * @vsi: the VSI being setup 8731 * @ch: ptr to channel structure 8732 * 8733 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8734 * and uplink switching element 8735 */ 8736 static bool 8737 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8738 struct ice_channel *ch) 8739 { 8740 struct device *dev = ice_pf_to_dev(pf); 8741 u16 sw_id; 8742 int ret; 8743 8744 if (vsi->type != ICE_VSI_PF) { 8745 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8746 return false; 8747 } 8748 8749 sw_id = pf->first_sw->sw_id; 8750 8751 /* create channel (VSI) */ 8752 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8753 if (ret) { 8754 dev_err(dev, "failed to setup hw_channel\n"); 8755 return false; 8756 } 8757 dev_dbg(dev, "successfully created channel()\n"); 8758 8759 return ch->ch_vsi ? true : false; 8760 } 8761 8762 /** 8763 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8764 * @vsi: VSI to be configured 8765 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8766 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8767 */ 8768 static int 8769 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8770 { 8771 int err; 8772 8773 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8774 if (err) 8775 return err; 8776 8777 return ice_set_max_bw_limit(vsi, max_tx_rate); 8778 } 8779 8780 /** 8781 * ice_create_q_channel - function to create channel 8782 * @vsi: VSI to be configured 8783 * @ch: ptr to channel (it contains channel specific params) 8784 * 8785 * This function creates channel (VSI) using num_queues specified by user, 8786 * reconfigs RSS if needed. 8787 */ 8788 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8789 { 8790 struct ice_pf *pf = vsi->back; 8791 struct device *dev; 8792 8793 if (!ch) 8794 return -EINVAL; 8795 8796 dev = ice_pf_to_dev(pf); 8797 if (!ch->num_txq || !ch->num_rxq) { 8798 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8799 return -EINVAL; 8800 } 8801 8802 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8803 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8804 vsi->cnt_q_avail, ch->num_txq); 8805 return -EINVAL; 8806 } 8807 8808 if (!ice_setup_channel(pf, vsi, ch)) { 8809 dev_info(dev, "Failed to setup channel\n"); 8810 return -EINVAL; 8811 } 8812 /* configure BW rate limit */ 8813 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8814 int ret; 8815 8816 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8817 ch->min_tx_rate); 8818 if (ret) 8819 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8820 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8821 else 8822 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8823 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8824 } 8825 8826 vsi->cnt_q_avail -= ch->num_txq; 8827 8828 return 0; 8829 } 8830 8831 /** 8832 * ice_rem_all_chnl_fltrs - removes all channel filters 8833 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8834 * 8835 * Remove all advanced switch filters only if they are channel specific 8836 * tc-flower based filter 8837 */ 8838 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8839 { 8840 struct ice_tc_flower_fltr *fltr; 8841 struct hlist_node *node; 8842 8843 /* to remove all channel filters, iterate an ordered list of filters */ 8844 hlist_for_each_entry_safe(fltr, node, 8845 &pf->tc_flower_fltr_list, 8846 tc_flower_node) { 8847 struct ice_rule_query_data rule; 8848 int status; 8849 8850 /* for now process only channel specific filters */ 8851 if (!ice_is_chnl_fltr(fltr)) 8852 continue; 8853 8854 rule.rid = fltr->rid; 8855 rule.rule_id = fltr->rule_id; 8856 rule.vsi_handle = fltr->dest_vsi_handle; 8857 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8858 if (status) { 8859 if (status == -ENOENT) 8860 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8861 rule.rule_id); 8862 else 8863 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8864 status); 8865 } else if (fltr->dest_vsi) { 8866 /* update advanced switch filter count */ 8867 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8868 u32 flags = fltr->flags; 8869 8870 fltr->dest_vsi->num_chnl_fltr--; 8871 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8872 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8873 pf->num_dmac_chnl_fltrs--; 8874 } 8875 } 8876 8877 hlist_del(&fltr->tc_flower_node); 8878 kfree(fltr); 8879 } 8880 } 8881 8882 /** 8883 * ice_remove_q_channels - Remove queue channels for the TCs 8884 * @vsi: VSI to be configured 8885 * @rem_fltr: delete advanced switch filter or not 8886 * 8887 * Remove queue channels for the TCs 8888 */ 8889 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8890 { 8891 struct ice_channel *ch, *ch_tmp; 8892 struct ice_pf *pf = vsi->back; 8893 int i; 8894 8895 /* remove all tc-flower based filter if they are channel filters only */ 8896 if (rem_fltr) 8897 ice_rem_all_chnl_fltrs(pf); 8898 8899 /* remove ntuple filters since queue configuration is being changed */ 8900 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8901 struct ice_hw *hw = &pf->hw; 8902 8903 mutex_lock(&hw->fdir_fltr_lock); 8904 ice_fdir_del_all_fltrs(vsi); 8905 mutex_unlock(&hw->fdir_fltr_lock); 8906 } 8907 8908 /* perform cleanup for channels if they exist */ 8909 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8910 struct ice_vsi *ch_vsi; 8911 8912 list_del(&ch->list); 8913 ch_vsi = ch->ch_vsi; 8914 if (!ch_vsi) { 8915 kfree(ch); 8916 continue; 8917 } 8918 8919 /* Reset queue contexts */ 8920 for (i = 0; i < ch->num_rxq; i++) { 8921 struct ice_tx_ring *tx_ring; 8922 struct ice_rx_ring *rx_ring; 8923 8924 tx_ring = vsi->tx_rings[ch->base_q + i]; 8925 rx_ring = vsi->rx_rings[ch->base_q + i]; 8926 if (tx_ring) { 8927 tx_ring->ch = NULL; 8928 if (tx_ring->q_vector) 8929 tx_ring->q_vector->ch = NULL; 8930 } 8931 if (rx_ring) { 8932 rx_ring->ch = NULL; 8933 if (rx_ring->q_vector) 8934 rx_ring->q_vector->ch = NULL; 8935 } 8936 } 8937 8938 /* Release FD resources for the channel VSI */ 8939 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8940 8941 /* clear the VSI from scheduler tree */ 8942 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8943 8944 /* Delete VSI from FW, PF and HW VSI arrays */ 8945 ice_vsi_delete(ch->ch_vsi); 8946 8947 /* free the channel */ 8948 kfree(ch); 8949 } 8950 8951 /* clear the channel VSI map which is stored in main VSI */ 8952 ice_for_each_chnl_tc(i) 8953 vsi->tc_map_vsi[i] = NULL; 8954 8955 /* reset main VSI's all TC information */ 8956 vsi->all_enatc = 0; 8957 vsi->all_numtc = 0; 8958 } 8959 8960 /** 8961 * ice_rebuild_channels - rebuild channel 8962 * @pf: ptr to PF 8963 * 8964 * Recreate channel VSIs and replay filters 8965 */ 8966 static int ice_rebuild_channels(struct ice_pf *pf) 8967 { 8968 struct device *dev = ice_pf_to_dev(pf); 8969 struct ice_vsi *main_vsi; 8970 bool rem_adv_fltr = true; 8971 struct ice_channel *ch; 8972 struct ice_vsi *vsi; 8973 int tc_idx = 1; 8974 int i, err; 8975 8976 main_vsi = ice_get_main_vsi(pf); 8977 if (!main_vsi) 8978 return 0; 8979 8980 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8981 main_vsi->old_numtc == 1) 8982 return 0; /* nothing to be done */ 8983 8984 /* reconfigure main VSI based on old value of TC and cached values 8985 * for MQPRIO opts 8986 */ 8987 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8988 if (err) { 8989 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8990 main_vsi->old_ena_tc, main_vsi->vsi_num); 8991 return err; 8992 } 8993 8994 /* rebuild ADQ VSIs */ 8995 ice_for_each_vsi(pf, i) { 8996 enum ice_vsi_type type; 8997 8998 vsi = pf->vsi[i]; 8999 if (!vsi || vsi->type != ICE_VSI_CHNL) 9000 continue; 9001 9002 type = vsi->type; 9003 9004 /* rebuild ADQ VSI */ 9005 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 9006 if (err) { 9007 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 9008 ice_vsi_type_str(type), vsi->idx, err); 9009 goto cleanup; 9010 } 9011 9012 /* Re-map HW VSI number, using VSI handle that has been 9013 * previously validated in ice_replay_vsi() call above 9014 */ 9015 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9016 9017 /* replay filters for the VSI */ 9018 err = ice_replay_vsi(&pf->hw, vsi->idx); 9019 if (err) { 9020 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9021 ice_vsi_type_str(type), err, vsi->idx); 9022 rem_adv_fltr = false; 9023 goto cleanup; 9024 } 9025 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9026 ice_vsi_type_str(type), vsi->idx); 9027 9028 /* store ADQ VSI at correct TC index in main VSI's 9029 * map of TC to VSI 9030 */ 9031 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9032 } 9033 9034 /* ADQ VSI(s) has been rebuilt successfully, so setup 9035 * channel for main VSI's Tx and Rx rings 9036 */ 9037 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9038 struct ice_vsi *ch_vsi; 9039 9040 ch_vsi = ch->ch_vsi; 9041 if (!ch_vsi) 9042 continue; 9043 9044 /* reconfig channel resources */ 9045 ice_cfg_chnl_all_res(main_vsi, ch); 9046 9047 /* replay BW rate limit if it is non-zero */ 9048 if (!ch->max_tx_rate && !ch->min_tx_rate) 9049 continue; 9050 9051 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9052 ch->min_tx_rate); 9053 if (err) 9054 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9055 err, ch->max_tx_rate, ch->min_tx_rate, 9056 ch_vsi->vsi_num); 9057 else 9058 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9059 ch->max_tx_rate, ch->min_tx_rate, 9060 ch_vsi->vsi_num); 9061 } 9062 9063 /* reconfig RSS for main VSI */ 9064 if (main_vsi->ch_rss_size) 9065 ice_vsi_cfg_rss_lut_key(main_vsi); 9066 9067 return 0; 9068 9069 cleanup: 9070 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9071 return err; 9072 } 9073 9074 /** 9075 * ice_create_q_channels - Add queue channel for the given TCs 9076 * @vsi: VSI to be configured 9077 * 9078 * Configures queue channel mapping to the given TCs 9079 */ 9080 static int ice_create_q_channels(struct ice_vsi *vsi) 9081 { 9082 struct ice_pf *pf = vsi->back; 9083 struct ice_channel *ch; 9084 int ret = 0, i; 9085 9086 ice_for_each_chnl_tc(i) { 9087 if (!(vsi->all_enatc & BIT(i))) 9088 continue; 9089 9090 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9091 if (!ch) { 9092 ret = -ENOMEM; 9093 goto err_free; 9094 } 9095 INIT_LIST_HEAD(&ch->list); 9096 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9097 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9098 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9099 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9100 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9101 9102 /* convert to Kbits/s */ 9103 if (ch->max_tx_rate) 9104 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9105 ICE_BW_KBPS_DIVISOR); 9106 if (ch->min_tx_rate) 9107 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9108 ICE_BW_KBPS_DIVISOR); 9109 9110 ret = ice_create_q_channel(vsi, ch); 9111 if (ret) { 9112 dev_err(ice_pf_to_dev(pf), 9113 "failed creating channel TC:%d\n", i); 9114 kfree(ch); 9115 goto err_free; 9116 } 9117 list_add_tail(&ch->list, &vsi->ch_list); 9118 vsi->tc_map_vsi[i] = ch->ch_vsi; 9119 dev_dbg(ice_pf_to_dev(pf), 9120 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9121 } 9122 return 0; 9123 9124 err_free: 9125 ice_remove_q_channels(vsi, false); 9126 9127 return ret; 9128 } 9129 9130 /** 9131 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9132 * @netdev: net device to configure 9133 * @type_data: TC offload data 9134 */ 9135 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9136 { 9137 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9138 struct ice_netdev_priv *np = netdev_priv(netdev); 9139 struct ice_vsi *vsi = np->vsi; 9140 struct ice_pf *pf = vsi->back; 9141 u16 mode, ena_tc_qdisc = 0; 9142 int cur_txq, cur_rxq; 9143 u8 hw = 0, num_tcf; 9144 struct device *dev; 9145 int ret, i; 9146 9147 dev = ice_pf_to_dev(pf); 9148 num_tcf = mqprio_qopt->qopt.num_tc; 9149 hw = mqprio_qopt->qopt.hw; 9150 mode = mqprio_qopt->mode; 9151 if (!hw) { 9152 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9153 vsi->ch_rss_size = 0; 9154 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9155 goto config_tcf; 9156 } 9157 9158 /* Generate queue region map for number of TCF requested */ 9159 for (i = 0; i < num_tcf; i++) 9160 ena_tc_qdisc |= BIT(i); 9161 9162 switch (mode) { 9163 case TC_MQPRIO_MODE_CHANNEL: 9164 9165 if (pf->hw.port_info->is_custom_tx_enabled) { 9166 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9167 return -EBUSY; 9168 } 9169 ice_tear_down_devlink_rate_tree(pf); 9170 9171 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9172 if (ret) { 9173 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9174 ret); 9175 return ret; 9176 } 9177 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9178 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9179 /* don't assume state of hw_tc_offload during driver load 9180 * and set the flag for TC flower filter if hw_tc_offload 9181 * already ON 9182 */ 9183 if (vsi->netdev->features & NETIF_F_HW_TC) 9184 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9185 break; 9186 default: 9187 return -EINVAL; 9188 } 9189 9190 config_tcf: 9191 9192 /* Requesting same TCF configuration as already enabled */ 9193 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9194 mode != TC_MQPRIO_MODE_CHANNEL) 9195 return 0; 9196 9197 /* Pause VSI queues */ 9198 ice_dis_vsi(vsi, true); 9199 9200 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9201 ice_remove_q_channels(vsi, true); 9202 9203 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9204 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9205 num_online_cpus()); 9206 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9207 num_online_cpus()); 9208 } else { 9209 /* logic to rebuild VSI, same like ethtool -L */ 9210 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9211 9212 for (i = 0; i < num_tcf; i++) { 9213 if (!(ena_tc_qdisc & BIT(i))) 9214 continue; 9215 9216 offset = vsi->mqprio_qopt.qopt.offset[i]; 9217 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9218 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9219 } 9220 vsi->req_txq = offset + qcount_tx; 9221 vsi->req_rxq = offset + qcount_rx; 9222 9223 /* store away original rss_size info, so that it gets reused 9224 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9225 * determine, what should be the rss_sizefor main VSI 9226 */ 9227 vsi->orig_rss_size = vsi->rss_size; 9228 } 9229 9230 /* save current values of Tx and Rx queues before calling VSI rebuild 9231 * for fallback option 9232 */ 9233 cur_txq = vsi->num_txq; 9234 cur_rxq = vsi->num_rxq; 9235 9236 /* proceed with rebuild main VSI using correct number of queues */ 9237 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9238 if (ret) { 9239 /* fallback to current number of queues */ 9240 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9241 vsi->req_txq = cur_txq; 9242 vsi->req_rxq = cur_rxq; 9243 clear_bit(ICE_RESET_FAILED, pf->state); 9244 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9245 dev_err(dev, "Rebuild of main VSI failed again\n"); 9246 return ret; 9247 } 9248 } 9249 9250 vsi->all_numtc = num_tcf; 9251 vsi->all_enatc = ena_tc_qdisc; 9252 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9253 if (ret) { 9254 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9255 vsi->vsi_num); 9256 goto exit; 9257 } 9258 9259 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9260 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9261 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9262 9263 /* set TC0 rate limit if specified */ 9264 if (max_tx_rate || min_tx_rate) { 9265 /* convert to Kbits/s */ 9266 if (max_tx_rate) 9267 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9268 if (min_tx_rate) 9269 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9270 9271 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9272 if (!ret) { 9273 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9274 max_tx_rate, min_tx_rate, vsi->vsi_num); 9275 } else { 9276 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9277 max_tx_rate, min_tx_rate, vsi->vsi_num); 9278 goto exit; 9279 } 9280 } 9281 ret = ice_create_q_channels(vsi); 9282 if (ret) { 9283 netdev_err(netdev, "failed configuring queue channels\n"); 9284 goto exit; 9285 } else { 9286 netdev_dbg(netdev, "successfully configured channels\n"); 9287 } 9288 } 9289 9290 if (vsi->ch_rss_size) 9291 ice_vsi_cfg_rss_lut_key(vsi); 9292 9293 exit: 9294 /* if error, reset the all_numtc and all_enatc */ 9295 if (ret) { 9296 vsi->all_numtc = 0; 9297 vsi->all_enatc = 0; 9298 } 9299 /* resume VSI */ 9300 ice_ena_vsi(vsi, true); 9301 9302 return ret; 9303 } 9304 9305 static LIST_HEAD(ice_block_cb_list); 9306 9307 static int 9308 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9309 void *type_data) 9310 { 9311 struct ice_netdev_priv *np = netdev_priv(netdev); 9312 enum flow_block_binder_type binder_type; 9313 struct iidc_rdma_core_dev_info *cdev; 9314 struct ice_pf *pf = np->vsi->back; 9315 flow_setup_cb_t *flower_handler; 9316 bool locked = false; 9317 int err; 9318 9319 switch (type) { 9320 case TC_SETUP_BLOCK: 9321 binder_type = 9322 ((struct flow_block_offload *)type_data)->binder_type; 9323 9324 switch (binder_type) { 9325 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS: 9326 flower_handler = ice_setup_tc_block_cb_ingress; 9327 break; 9328 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS: 9329 flower_handler = ice_setup_tc_block_cb_egress; 9330 break; 9331 default: 9332 return -EOPNOTSUPP; 9333 } 9334 9335 return flow_block_cb_setup_simple(type_data, 9336 &ice_block_cb_list, 9337 flower_handler, 9338 np, np, false); 9339 case TC_SETUP_QDISC_MQPRIO: 9340 if (ice_is_eswitch_mode_switchdev(pf)) { 9341 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9342 return -EOPNOTSUPP; 9343 } 9344 9345 cdev = pf->cdev_info; 9346 if (cdev && cdev->adev) { 9347 mutex_lock(&pf->adev_mutex); 9348 device_lock(&cdev->adev->dev); 9349 locked = true; 9350 if (cdev->adev->dev.driver) { 9351 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9352 err = -EBUSY; 9353 goto adev_unlock; 9354 } 9355 } 9356 9357 /* setup traffic classifier for receive side */ 9358 mutex_lock(&pf->tc_mutex); 9359 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9360 mutex_unlock(&pf->tc_mutex); 9361 9362 adev_unlock: 9363 if (locked) { 9364 device_unlock(&cdev->adev->dev); 9365 mutex_unlock(&pf->adev_mutex); 9366 } 9367 return err; 9368 default: 9369 return -EOPNOTSUPP; 9370 } 9371 return -EOPNOTSUPP; 9372 } 9373 9374 static struct ice_indr_block_priv * 9375 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9376 struct net_device *netdev) 9377 { 9378 struct ice_indr_block_priv *cb_priv; 9379 9380 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9381 if (!cb_priv->netdev) 9382 return NULL; 9383 if (cb_priv->netdev == netdev) 9384 return cb_priv; 9385 } 9386 return NULL; 9387 } 9388 9389 static int 9390 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9391 void *indr_priv) 9392 { 9393 struct ice_indr_block_priv *priv = indr_priv; 9394 struct ice_netdev_priv *np = priv->np; 9395 9396 switch (type) { 9397 case TC_SETUP_CLSFLOWER: 9398 return ice_setup_tc_cls_flower(np, priv->netdev, 9399 (struct flow_cls_offload *) 9400 type_data, false); 9401 default: 9402 return -EOPNOTSUPP; 9403 } 9404 } 9405 9406 static int 9407 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9408 struct ice_netdev_priv *np, 9409 struct flow_block_offload *f, void *data, 9410 void (*cleanup)(struct flow_block_cb *block_cb)) 9411 { 9412 struct ice_indr_block_priv *indr_priv; 9413 struct flow_block_cb *block_cb; 9414 9415 if (!ice_is_tunnel_supported(netdev) && 9416 !(is_vlan_dev(netdev) && 9417 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9418 return -EOPNOTSUPP; 9419 9420 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9421 return -EOPNOTSUPP; 9422 9423 switch (f->command) { 9424 case FLOW_BLOCK_BIND: 9425 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9426 if (indr_priv) 9427 return -EEXIST; 9428 9429 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9430 if (!indr_priv) 9431 return -ENOMEM; 9432 9433 indr_priv->netdev = netdev; 9434 indr_priv->np = np; 9435 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9436 9437 block_cb = 9438 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9439 indr_priv, indr_priv, 9440 ice_rep_indr_tc_block_unbind, 9441 f, netdev, sch, data, np, 9442 cleanup); 9443 9444 if (IS_ERR(block_cb)) { 9445 list_del(&indr_priv->list); 9446 kfree(indr_priv); 9447 return PTR_ERR(block_cb); 9448 } 9449 flow_block_cb_add(block_cb, f); 9450 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9451 break; 9452 case FLOW_BLOCK_UNBIND: 9453 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9454 if (!indr_priv) 9455 return -ENOENT; 9456 9457 block_cb = flow_block_cb_lookup(f->block, 9458 ice_indr_setup_block_cb, 9459 indr_priv); 9460 if (!block_cb) 9461 return -ENOENT; 9462 9463 flow_indr_block_cb_remove(block_cb, f); 9464 9465 list_del(&block_cb->driver_list); 9466 break; 9467 default: 9468 return -EOPNOTSUPP; 9469 } 9470 return 0; 9471 } 9472 9473 static int 9474 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9475 void *cb_priv, enum tc_setup_type type, void *type_data, 9476 void *data, 9477 void (*cleanup)(struct flow_block_cb *block_cb)) 9478 { 9479 switch (type) { 9480 case TC_SETUP_BLOCK: 9481 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9482 data, cleanup); 9483 9484 default: 9485 return -EOPNOTSUPP; 9486 } 9487 } 9488 9489 /** 9490 * ice_open - Called when a network interface becomes active 9491 * @netdev: network interface device structure 9492 * 9493 * The open entry point is called when a network interface is made 9494 * active by the system (IFF_UP). At this point all resources needed 9495 * for transmit and receive operations are allocated, the interrupt 9496 * handler is registered with the OS, the netdev watchdog is enabled, 9497 * and the stack is notified that the interface is ready. 9498 * 9499 * Returns 0 on success, negative value on failure 9500 */ 9501 int ice_open(struct net_device *netdev) 9502 { 9503 struct ice_netdev_priv *np = netdev_priv(netdev); 9504 struct ice_pf *pf = np->vsi->back; 9505 9506 if (ice_is_reset_in_progress(pf->state)) { 9507 netdev_err(netdev, "can't open net device while reset is in progress"); 9508 return -EBUSY; 9509 } 9510 9511 return ice_open_internal(netdev); 9512 } 9513 9514 /** 9515 * ice_open_internal - Called when a network interface becomes active 9516 * @netdev: network interface device structure 9517 * 9518 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9519 * handling routine 9520 * 9521 * Returns 0 on success, negative value on failure 9522 */ 9523 int ice_open_internal(struct net_device *netdev) 9524 { 9525 struct ice_netdev_priv *np = netdev_priv(netdev); 9526 struct ice_vsi *vsi = np->vsi; 9527 struct ice_pf *pf = vsi->back; 9528 struct ice_port_info *pi; 9529 int err; 9530 9531 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9532 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9533 return -EIO; 9534 } 9535 9536 netif_carrier_off(netdev); 9537 9538 pi = vsi->port_info; 9539 err = ice_update_link_info(pi); 9540 if (err) { 9541 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9542 return err; 9543 } 9544 9545 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9546 9547 /* Set PHY if there is media, otherwise, turn off PHY */ 9548 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9549 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9550 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9551 err = ice_init_phy_user_cfg(pi); 9552 if (err) { 9553 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9554 err); 9555 return err; 9556 } 9557 } 9558 9559 err = ice_configure_phy(vsi); 9560 if (err) { 9561 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9562 err); 9563 return err; 9564 } 9565 } else { 9566 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9567 ice_set_link(vsi, false); 9568 } 9569 9570 err = ice_vsi_open(vsi); 9571 if (err) 9572 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9573 vsi->vsi_num, vsi->vsw->sw_id); 9574 9575 /* Update existing tunnels information */ 9576 udp_tunnel_get_rx_info(netdev); 9577 9578 return err; 9579 } 9580 9581 /** 9582 * ice_stop - Disables a network interface 9583 * @netdev: network interface device structure 9584 * 9585 * The stop entry point is called when an interface is de-activated by the OS, 9586 * and the netdevice enters the DOWN state. The hardware is still under the 9587 * driver's control, but the netdev interface is disabled. 9588 * 9589 * Returns success only - not allowed to fail 9590 */ 9591 int ice_stop(struct net_device *netdev) 9592 { 9593 struct ice_netdev_priv *np = netdev_priv(netdev); 9594 struct ice_vsi *vsi = np->vsi; 9595 struct ice_pf *pf = vsi->back; 9596 9597 if (ice_is_reset_in_progress(pf->state)) { 9598 netdev_err(netdev, "can't stop net device while reset is in progress"); 9599 return -EBUSY; 9600 } 9601 9602 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9603 int link_err = ice_force_phys_link_state(vsi, false); 9604 9605 if (link_err) { 9606 if (link_err == -ENOMEDIUM) 9607 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9608 vsi->vsi_num); 9609 else 9610 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9611 vsi->vsi_num, link_err); 9612 9613 ice_vsi_close(vsi); 9614 return -EIO; 9615 } 9616 } 9617 9618 ice_vsi_close(vsi); 9619 9620 return 0; 9621 } 9622 9623 /** 9624 * ice_features_check - Validate encapsulated packet conforms to limits 9625 * @skb: skb buffer 9626 * @netdev: This port's netdev 9627 * @features: Offload features that the stack believes apply 9628 */ 9629 static netdev_features_t 9630 ice_features_check(struct sk_buff *skb, 9631 struct net_device __always_unused *netdev, 9632 netdev_features_t features) 9633 { 9634 bool gso = skb_is_gso(skb); 9635 size_t len; 9636 9637 /* No point in doing any of this if neither checksum nor GSO are 9638 * being requested for this frame. We can rule out both by just 9639 * checking for CHECKSUM_PARTIAL 9640 */ 9641 if (skb->ip_summed != CHECKSUM_PARTIAL) 9642 return features; 9643 9644 /* We cannot support GSO if the MSS is going to be less than 9645 * 64 bytes. If it is then we need to drop support for GSO. 9646 */ 9647 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9648 features &= ~NETIF_F_GSO_MASK; 9649 9650 len = skb_network_offset(skb); 9651 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9652 goto out_rm_features; 9653 9654 len = skb_network_header_len(skb); 9655 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9656 goto out_rm_features; 9657 9658 if (skb->encapsulation) { 9659 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9660 * the case of IPIP frames, the transport header pointer is 9661 * after the inner header! So check to make sure that this 9662 * is a GRE or UDP_TUNNEL frame before doing that math. 9663 */ 9664 if (gso && (skb_shinfo(skb)->gso_type & 9665 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9666 len = skb_inner_network_header(skb) - 9667 skb_transport_header(skb); 9668 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9669 goto out_rm_features; 9670 } 9671 9672 len = skb_inner_network_header_len(skb); 9673 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9674 goto out_rm_features; 9675 } 9676 9677 return features; 9678 out_rm_features: 9679 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9680 } 9681 9682 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9683 .ndo_open = ice_open, 9684 .ndo_stop = ice_stop, 9685 .ndo_start_xmit = ice_start_xmit, 9686 .ndo_set_mac_address = ice_set_mac_address, 9687 .ndo_validate_addr = eth_validate_addr, 9688 .ndo_change_mtu = ice_change_mtu, 9689 .ndo_get_stats64 = ice_get_stats64, 9690 .ndo_tx_timeout = ice_tx_timeout, 9691 .ndo_bpf = ice_xdp_safe_mode, 9692 }; 9693 9694 static const struct net_device_ops ice_netdev_ops = { 9695 .ndo_open = ice_open, 9696 .ndo_stop = ice_stop, 9697 .ndo_start_xmit = ice_start_xmit, 9698 .ndo_select_queue = ice_select_queue, 9699 .ndo_features_check = ice_features_check, 9700 .ndo_fix_features = ice_fix_features, 9701 .ndo_set_rx_mode = ice_set_rx_mode, 9702 .ndo_set_mac_address = ice_set_mac_address, 9703 .ndo_validate_addr = eth_validate_addr, 9704 .ndo_change_mtu = ice_change_mtu, 9705 .ndo_get_stats64 = ice_get_stats64, 9706 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9707 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9708 .ndo_set_vf_mac = ice_set_vf_mac, 9709 .ndo_get_vf_config = ice_get_vf_cfg, 9710 .ndo_set_vf_trust = ice_set_vf_trust, 9711 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9712 .ndo_set_vf_link_state = ice_set_vf_link_state, 9713 .ndo_get_vf_stats = ice_get_vf_stats, 9714 .ndo_set_vf_rate = ice_set_vf_bw, 9715 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9716 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9717 .ndo_setup_tc = ice_setup_tc, 9718 .ndo_set_features = ice_set_features, 9719 .ndo_bridge_getlink = ice_bridge_getlink, 9720 .ndo_bridge_setlink = ice_bridge_setlink, 9721 .ndo_fdb_add = ice_fdb_add, 9722 .ndo_fdb_del = ice_fdb_del, 9723 #ifdef CONFIG_RFS_ACCEL 9724 .ndo_rx_flow_steer = ice_rx_flow_steer, 9725 #endif 9726 .ndo_tx_timeout = ice_tx_timeout, 9727 .ndo_bpf = ice_xdp, 9728 .ndo_xdp_xmit = ice_xdp_xmit, 9729 .ndo_xsk_wakeup = ice_xsk_wakeup, 9730 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get, 9731 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set, 9732 }; 9733