1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_LICENSE("GPL v2"); 42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 43 44 static int debug = -1; 45 module_param(debug, int, 0644); 46 #ifndef CONFIG_DYNAMIC_DEBUG 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 48 #else 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 50 #endif /* !CONFIG_DYNAMIC_DEBUG */ 51 52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 53 EXPORT_SYMBOL(ice_xdp_locking_key); 54 55 /** 56 * ice_hw_to_dev - Get device pointer from the hardware structure 57 * @hw: pointer to the device HW structure 58 * 59 * Used to access the device pointer from compilation units which can't easily 60 * include the definition of struct ice_pf without leading to circular header 61 * dependencies. 62 */ 63 struct device *ice_hw_to_dev(struct ice_hw *hw) 64 { 65 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 66 67 return &pf->pdev->dev; 68 } 69 70 static struct workqueue_struct *ice_wq; 71 struct workqueue_struct *ice_lag_wq; 72 static const struct net_device_ops ice_netdev_safe_mode_ops; 73 static const struct net_device_ops ice_netdev_ops; 74 75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 76 77 static void ice_vsi_release_all(struct ice_pf *pf); 78 79 static int ice_rebuild_channels(struct ice_pf *pf); 80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 81 82 static int 83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 84 void *cb_priv, enum tc_setup_type type, void *type_data, 85 void *data, 86 void (*cleanup)(struct flow_block_cb *block_cb)); 87 88 bool netif_is_ice(const struct net_device *dev) 89 { 90 return dev && (dev->netdev_ops == &ice_netdev_ops || 91 dev->netdev_ops == &ice_netdev_safe_mode_ops); 92 } 93 94 /** 95 * ice_get_tx_pending - returns number of Tx descriptors not processed 96 * @ring: the ring of descriptors 97 */ 98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 99 { 100 u16 head, tail; 101 102 head = ring->next_to_clean; 103 tail = ring->next_to_use; 104 105 if (head != tail) 106 return (head < tail) ? 107 tail - head : (tail + ring->count - head); 108 return 0; 109 } 110 111 /** 112 * ice_check_for_hang_subtask - check for and recover hung queues 113 * @pf: pointer to PF struct 114 */ 115 static void ice_check_for_hang_subtask(struct ice_pf *pf) 116 { 117 struct ice_vsi *vsi = NULL; 118 struct ice_hw *hw; 119 unsigned int i; 120 int packets; 121 u32 v; 122 123 ice_for_each_vsi(pf, v) 124 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 125 vsi = pf->vsi[v]; 126 break; 127 } 128 129 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 130 return; 131 132 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 133 return; 134 135 hw = &vsi->back->hw; 136 137 ice_for_each_txq(vsi, i) { 138 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 139 struct ice_ring_stats *ring_stats; 140 141 if (!tx_ring) 142 continue; 143 if (ice_ring_ch_enabled(tx_ring)) 144 continue; 145 146 ring_stats = tx_ring->ring_stats; 147 if (!ring_stats) 148 continue; 149 150 if (tx_ring->desc) { 151 /* If packet counter has not changed the queue is 152 * likely stalled, so force an interrupt for this 153 * queue. 154 * 155 * prev_pkt would be negative if there was no 156 * pending work. 157 */ 158 packets = ring_stats->stats.pkts & INT_MAX; 159 if (ring_stats->tx_stats.prev_pkt == packets) { 160 /* Trigger sw interrupt to revive the queue */ 161 ice_trigger_sw_intr(hw, tx_ring->q_vector); 162 continue; 163 } 164 165 /* Memory barrier between read of packet count and call 166 * to ice_get_tx_pending() 167 */ 168 smp_rmb(); 169 ring_stats->tx_stats.prev_pkt = 170 ice_get_tx_pending(tx_ring) ? packets : -1; 171 } 172 } 173 } 174 175 /** 176 * ice_init_mac_fltr - Set initial MAC filters 177 * @pf: board private structure 178 * 179 * Set initial set of MAC filters for PF VSI; configure filters for permanent 180 * address and broadcast address. If an error is encountered, netdevice will be 181 * unregistered. 182 */ 183 static int ice_init_mac_fltr(struct ice_pf *pf) 184 { 185 struct ice_vsi *vsi; 186 u8 *perm_addr; 187 188 vsi = ice_get_main_vsi(pf); 189 if (!vsi) 190 return -EINVAL; 191 192 perm_addr = vsi->port_info->mac.perm_addr; 193 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 194 } 195 196 /** 197 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 198 * @netdev: the net device on which the sync is happening 199 * @addr: MAC address to sync 200 * 201 * This is a callback function which is called by the in kernel device sync 202 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 203 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 204 * MAC filters from the hardware. 205 */ 206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 207 { 208 struct ice_netdev_priv *np = netdev_priv(netdev); 209 struct ice_vsi *vsi = np->vsi; 210 211 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 212 ICE_FWD_TO_VSI)) 213 return -EINVAL; 214 215 return 0; 216 } 217 218 /** 219 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 220 * @netdev: the net device on which the unsync is happening 221 * @addr: MAC address to unsync 222 * 223 * This is a callback function which is called by the in kernel device unsync 224 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 225 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 226 * delete the MAC filters from the hardware. 227 */ 228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 229 { 230 struct ice_netdev_priv *np = netdev_priv(netdev); 231 struct ice_vsi *vsi = np->vsi; 232 233 /* Under some circumstances, we might receive a request to delete our 234 * own device address from our uc list. Because we store the device 235 * address in the VSI's MAC filter list, we need to ignore such 236 * requests and not delete our device address from this list. 237 */ 238 if (ether_addr_equal(addr, netdev->dev_addr)) 239 return 0; 240 241 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 242 ICE_FWD_TO_VSI)) 243 return -EINVAL; 244 245 return 0; 246 } 247 248 /** 249 * ice_vsi_fltr_changed - check if filter state changed 250 * @vsi: VSI to be checked 251 * 252 * returns true if filter state has changed, false otherwise. 253 */ 254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 255 { 256 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 257 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 258 } 259 260 /** 261 * ice_set_promisc - Enable promiscuous mode for a given PF 262 * @vsi: the VSI being configured 263 * @promisc_m: mask of promiscuous config bits 264 * 265 */ 266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 267 { 268 int status; 269 270 if (vsi->type != ICE_VSI_PF) 271 return 0; 272 273 if (ice_vsi_has_non_zero_vlans(vsi)) { 274 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 275 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 276 promisc_m); 277 } else { 278 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 279 promisc_m, 0); 280 } 281 if (status && status != -EEXIST) 282 return status; 283 284 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 285 vsi->vsi_num, promisc_m); 286 return 0; 287 } 288 289 /** 290 * ice_clear_promisc - Disable promiscuous mode for a given PF 291 * @vsi: the VSI being configured 292 * @promisc_m: mask of promiscuous config bits 293 * 294 */ 295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 296 { 297 int status; 298 299 if (vsi->type != ICE_VSI_PF) 300 return 0; 301 302 if (ice_vsi_has_non_zero_vlans(vsi)) { 303 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 304 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 305 promisc_m); 306 } else { 307 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 308 promisc_m, 0); 309 } 310 311 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 312 vsi->vsi_num, promisc_m); 313 return status; 314 } 315 316 /** 317 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 318 * @vsi: ptr to the VSI 319 * 320 * Push any outstanding VSI filter changes through the AdminQ. 321 */ 322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 323 { 324 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 325 struct device *dev = ice_pf_to_dev(vsi->back); 326 struct net_device *netdev = vsi->netdev; 327 bool promisc_forced_on = false; 328 struct ice_pf *pf = vsi->back; 329 struct ice_hw *hw = &pf->hw; 330 u32 changed_flags = 0; 331 int err; 332 333 if (!vsi->netdev) 334 return -EINVAL; 335 336 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 337 usleep_range(1000, 2000); 338 339 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 340 vsi->current_netdev_flags = vsi->netdev->flags; 341 342 INIT_LIST_HEAD(&vsi->tmp_sync_list); 343 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 344 345 if (ice_vsi_fltr_changed(vsi)) { 346 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 347 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 348 349 /* grab the netdev's addr_list_lock */ 350 netif_addr_lock_bh(netdev); 351 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 352 ice_add_mac_to_unsync_list); 353 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 /* our temp lists are populated. release lock */ 356 netif_addr_unlock_bh(netdev); 357 } 358 359 /* Remove MAC addresses in the unsync list */ 360 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 361 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 362 if (err) { 363 netdev_err(netdev, "Failed to delete MAC filters\n"); 364 /* if we failed because of alloc failures, just bail */ 365 if (err == -ENOMEM) 366 goto out; 367 } 368 369 /* Add MAC addresses in the sync list */ 370 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 371 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 372 /* If filter is added successfully or already exists, do not go into 373 * 'if' condition and report it as error. Instead continue processing 374 * rest of the function. 375 */ 376 if (err && err != -EEXIST) { 377 netdev_err(netdev, "Failed to add MAC filters\n"); 378 /* If there is no more space for new umac filters, VSI 379 * should go into promiscuous mode. There should be some 380 * space reserved for promiscuous filters. 381 */ 382 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 383 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 384 vsi->state)) { 385 promisc_forced_on = true; 386 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 387 vsi->vsi_num); 388 } else { 389 goto out; 390 } 391 } 392 err = 0; 393 /* check for changes in promiscuous modes */ 394 if (changed_flags & IFF_ALLMULTI) { 395 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 396 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 397 if (err) { 398 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 399 goto out_promisc; 400 } 401 } else { 402 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 403 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 404 if (err) { 405 vsi->current_netdev_flags |= IFF_ALLMULTI; 406 goto out_promisc; 407 } 408 } 409 } 410 411 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 412 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 413 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 414 if (vsi->current_netdev_flags & IFF_PROMISC) { 415 /* Apply Rx filter rule to get traffic from wire */ 416 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 417 err = ice_set_dflt_vsi(vsi); 418 if (err && err != -EEXIST) { 419 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 420 err, vsi->vsi_num); 421 vsi->current_netdev_flags &= 422 ~IFF_PROMISC; 423 goto out_promisc; 424 } 425 err = 0; 426 vlan_ops->dis_rx_filtering(vsi); 427 428 /* promiscuous mode implies allmulticast so 429 * that VSIs that are in promiscuous mode are 430 * subscribed to multicast packets coming to 431 * the port 432 */ 433 err = ice_set_promisc(vsi, 434 ICE_MCAST_PROMISC_BITS); 435 if (err) 436 goto out_promisc; 437 } 438 } else { 439 /* Clear Rx filter to remove traffic from wire */ 440 if (ice_is_vsi_dflt_vsi(vsi)) { 441 err = ice_clear_dflt_vsi(vsi); 442 if (err) { 443 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 444 err, vsi->vsi_num); 445 vsi->current_netdev_flags |= 446 IFF_PROMISC; 447 goto out_promisc; 448 } 449 if (vsi->netdev->features & 450 NETIF_F_HW_VLAN_CTAG_FILTER) 451 vlan_ops->ena_rx_filtering(vsi); 452 } 453 454 /* disable allmulti here, but only if allmulti is not 455 * still enabled for the netdev 456 */ 457 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 458 err = ice_clear_promisc(vsi, 459 ICE_MCAST_PROMISC_BITS); 460 if (err) { 461 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 462 err, vsi->vsi_num); 463 } 464 } 465 } 466 } 467 goto exit; 468 469 out_promisc: 470 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 471 goto exit; 472 out: 473 /* if something went wrong then set the changed flag so we try again */ 474 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 475 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 476 exit: 477 clear_bit(ICE_CFG_BUSY, vsi->state); 478 return err; 479 } 480 481 /** 482 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 483 * @pf: board private structure 484 */ 485 static void ice_sync_fltr_subtask(struct ice_pf *pf) 486 { 487 int v; 488 489 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 490 return; 491 492 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 494 ice_for_each_vsi(pf, v) 495 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 496 ice_vsi_sync_fltr(pf->vsi[v])) { 497 /* come back and try again later */ 498 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 499 break; 500 } 501 } 502 503 /** 504 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 505 * @pf: the PF 506 * @locked: is the rtnl_lock already held 507 */ 508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 509 { 510 int node; 511 int v; 512 513 ice_for_each_vsi(pf, v) 514 if (pf->vsi[v]) 515 ice_dis_vsi(pf->vsi[v], locked); 516 517 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 518 pf->pf_agg_node[node].num_vsis = 0; 519 520 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 521 pf->vf_agg_node[node].num_vsis = 0; 522 } 523 524 /** 525 * ice_prepare_for_reset - prep for reset 526 * @pf: board private structure 527 * @reset_type: reset type requested 528 * 529 * Inform or close all dependent features in prep for reset. 530 */ 531 static void 532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 533 { 534 struct ice_hw *hw = &pf->hw; 535 struct ice_vsi *vsi; 536 struct ice_vf *vf; 537 unsigned int bkt; 538 539 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 540 541 /* already prepared for reset */ 542 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 543 return; 544 545 synchronize_irq(pf->oicr_irq.virq); 546 547 ice_unplug_aux_dev(pf); 548 549 /* Notify VFs of impending reset */ 550 if (ice_check_sq_alive(hw, &hw->mailboxq)) 551 ice_vc_notify_reset(pf); 552 553 /* Disable VFs until reset is completed */ 554 mutex_lock(&pf->vfs.table_lock); 555 ice_for_each_vf(pf, bkt, vf) 556 ice_set_vf_state_dis(vf); 557 mutex_unlock(&pf->vfs.table_lock); 558 559 if (ice_is_eswitch_mode_switchdev(pf)) { 560 rtnl_lock(); 561 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 562 rtnl_unlock(); 563 } 564 565 /* release ADQ specific HW and SW resources */ 566 vsi = ice_get_main_vsi(pf); 567 if (!vsi) 568 goto skip; 569 570 /* to be on safe side, reset orig_rss_size so that normal flow 571 * of deciding rss_size can take precedence 572 */ 573 vsi->orig_rss_size = 0; 574 575 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 576 if (reset_type == ICE_RESET_PFR) { 577 vsi->old_ena_tc = vsi->all_enatc; 578 vsi->old_numtc = vsi->all_numtc; 579 } else { 580 ice_remove_q_channels(vsi, true); 581 582 /* for other reset type, do not support channel rebuild 583 * hence reset needed info 584 */ 585 vsi->old_ena_tc = 0; 586 vsi->all_enatc = 0; 587 vsi->old_numtc = 0; 588 vsi->all_numtc = 0; 589 vsi->req_txq = 0; 590 vsi->req_rxq = 0; 591 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 592 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 593 } 594 } 595 596 if (vsi->netdev) 597 netif_device_detach(vsi->netdev); 598 skip: 599 600 /* clear SW filtering DB */ 601 ice_clear_hw_tbls(hw); 602 /* disable the VSIs and their queues that are not already DOWN */ 603 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 604 ice_pf_dis_all_vsi(pf, false); 605 606 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 607 ice_ptp_prepare_for_reset(pf, reset_type); 608 609 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 610 ice_gnss_exit(pf); 611 612 if (hw->port_info) 613 ice_sched_clear_port(hw->port_info); 614 615 ice_shutdown_all_ctrlq(hw, false); 616 617 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 618 } 619 620 /** 621 * ice_do_reset - Initiate one of many types of resets 622 * @pf: board private structure 623 * @reset_type: reset type requested before this function was called. 624 */ 625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 626 { 627 struct device *dev = ice_pf_to_dev(pf); 628 struct ice_hw *hw = &pf->hw; 629 630 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 631 632 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 633 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 634 reset_type = ICE_RESET_CORER; 635 } 636 637 ice_prepare_for_reset(pf, reset_type); 638 639 /* trigger the reset */ 640 if (ice_reset(hw, reset_type)) { 641 dev_err(dev, "reset %d failed\n", reset_type); 642 set_bit(ICE_RESET_FAILED, pf->state); 643 clear_bit(ICE_RESET_OICR_RECV, pf->state); 644 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 645 clear_bit(ICE_PFR_REQ, pf->state); 646 clear_bit(ICE_CORER_REQ, pf->state); 647 clear_bit(ICE_GLOBR_REQ, pf->state); 648 wake_up(&pf->reset_wait_queue); 649 return; 650 } 651 652 /* PFR is a bit of a special case because it doesn't result in an OICR 653 * interrupt. So for PFR, rebuild after the reset and clear the reset- 654 * associated state bits. 655 */ 656 if (reset_type == ICE_RESET_PFR) { 657 pf->pfr_count++; 658 ice_rebuild(pf, reset_type); 659 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 660 clear_bit(ICE_PFR_REQ, pf->state); 661 wake_up(&pf->reset_wait_queue); 662 ice_reset_all_vfs(pf); 663 } 664 } 665 666 /** 667 * ice_reset_subtask - Set up for resetting the device and driver 668 * @pf: board private structure 669 */ 670 static void ice_reset_subtask(struct ice_pf *pf) 671 { 672 enum ice_reset_req reset_type = ICE_RESET_INVAL; 673 674 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 675 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 676 * of reset is pending and sets bits in pf->state indicating the reset 677 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 678 * prepare for pending reset if not already (for PF software-initiated 679 * global resets the software should already be prepared for it as 680 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 681 * by firmware or software on other PFs, that bit is not set so prepare 682 * for the reset now), poll for reset done, rebuild and return. 683 */ 684 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 685 /* Perform the largest reset requested */ 686 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 687 reset_type = ICE_RESET_CORER; 688 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 689 reset_type = ICE_RESET_GLOBR; 690 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 691 reset_type = ICE_RESET_EMPR; 692 /* return if no valid reset type requested */ 693 if (reset_type == ICE_RESET_INVAL) 694 return; 695 ice_prepare_for_reset(pf, reset_type); 696 697 /* make sure we are ready to rebuild */ 698 if (ice_check_reset(&pf->hw)) { 699 set_bit(ICE_RESET_FAILED, pf->state); 700 } else { 701 /* done with reset. start rebuild */ 702 pf->hw.reset_ongoing = false; 703 ice_rebuild(pf, reset_type); 704 /* clear bit to resume normal operations, but 705 * ICE_NEEDS_RESTART bit is set in case rebuild failed 706 */ 707 clear_bit(ICE_RESET_OICR_RECV, pf->state); 708 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 709 clear_bit(ICE_PFR_REQ, pf->state); 710 clear_bit(ICE_CORER_REQ, pf->state); 711 clear_bit(ICE_GLOBR_REQ, pf->state); 712 wake_up(&pf->reset_wait_queue); 713 ice_reset_all_vfs(pf); 714 } 715 716 return; 717 } 718 719 /* No pending resets to finish processing. Check for new resets */ 720 if (test_bit(ICE_PFR_REQ, pf->state)) { 721 reset_type = ICE_RESET_PFR; 722 if (pf->lag && pf->lag->bonded) { 723 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 724 reset_type = ICE_RESET_CORER; 725 } 726 } 727 if (test_bit(ICE_CORER_REQ, pf->state)) 728 reset_type = ICE_RESET_CORER; 729 if (test_bit(ICE_GLOBR_REQ, pf->state)) 730 reset_type = ICE_RESET_GLOBR; 731 /* If no valid reset type requested just return */ 732 if (reset_type == ICE_RESET_INVAL) 733 return; 734 735 /* reset if not already down or busy */ 736 if (!test_bit(ICE_DOWN, pf->state) && 737 !test_bit(ICE_CFG_BUSY, pf->state)) { 738 ice_do_reset(pf, reset_type); 739 } 740 } 741 742 /** 743 * ice_print_topo_conflict - print topology conflict message 744 * @vsi: the VSI whose topology status is being checked 745 */ 746 static void ice_print_topo_conflict(struct ice_vsi *vsi) 747 { 748 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 749 case ICE_AQ_LINK_TOPO_CONFLICT: 750 case ICE_AQ_LINK_MEDIA_CONFLICT: 751 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 752 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 753 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 754 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 755 break; 756 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 757 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 758 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 759 else 760 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 761 break; 762 default: 763 break; 764 } 765 } 766 767 /** 768 * ice_print_link_msg - print link up or down message 769 * @vsi: the VSI whose link status is being queried 770 * @isup: boolean for if the link is now up or down 771 */ 772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 773 { 774 struct ice_aqc_get_phy_caps_data *caps; 775 const char *an_advertised; 776 const char *fec_req; 777 const char *speed; 778 const char *fec; 779 const char *fc; 780 const char *an; 781 int status; 782 783 if (!vsi) 784 return; 785 786 if (vsi->current_isup == isup) 787 return; 788 789 vsi->current_isup = isup; 790 791 if (!isup) { 792 netdev_info(vsi->netdev, "NIC Link is Down\n"); 793 return; 794 } 795 796 switch (vsi->port_info->phy.link_info.link_speed) { 797 case ICE_AQ_LINK_SPEED_200GB: 798 speed = "200 G"; 799 break; 800 case ICE_AQ_LINK_SPEED_100GB: 801 speed = "100 G"; 802 break; 803 case ICE_AQ_LINK_SPEED_50GB: 804 speed = "50 G"; 805 break; 806 case ICE_AQ_LINK_SPEED_40GB: 807 speed = "40 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_25GB: 810 speed = "25 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_20GB: 813 speed = "20 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_10GB: 816 speed = "10 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_5GB: 819 speed = "5 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_2500MB: 822 speed = "2.5 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_1000MB: 825 speed = "1 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_100MB: 828 speed = "100 M"; 829 break; 830 default: 831 speed = "Unknown "; 832 break; 833 } 834 835 switch (vsi->port_info->fc.current_mode) { 836 case ICE_FC_FULL: 837 fc = "Rx/Tx"; 838 break; 839 case ICE_FC_TX_PAUSE: 840 fc = "Tx"; 841 break; 842 case ICE_FC_RX_PAUSE: 843 fc = "Rx"; 844 break; 845 case ICE_FC_NONE: 846 fc = "None"; 847 break; 848 default: 849 fc = "Unknown"; 850 break; 851 } 852 853 /* Get FEC mode based on negotiated link info */ 854 switch (vsi->port_info->phy.link_info.fec_info) { 855 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 856 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 857 fec = "RS-FEC"; 858 break; 859 case ICE_AQ_LINK_25G_KR_FEC_EN: 860 fec = "FC-FEC/BASE-R"; 861 break; 862 default: 863 fec = "NONE"; 864 break; 865 } 866 867 /* check if autoneg completed, might be false due to not supported */ 868 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 869 an = "True"; 870 else 871 an = "False"; 872 873 /* Get FEC mode requested based on PHY caps last SW configuration */ 874 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 875 if (!caps) { 876 fec_req = "Unknown"; 877 an_advertised = "Unknown"; 878 goto done; 879 } 880 881 status = ice_aq_get_phy_caps(vsi->port_info, false, 882 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 883 if (status) 884 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 885 886 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 887 888 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 889 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 890 fec_req = "RS-FEC"; 891 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 892 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 893 fec_req = "FC-FEC/BASE-R"; 894 else 895 fec_req = "NONE"; 896 897 kfree(caps); 898 899 done: 900 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 901 speed, fec_req, fec, an_advertised, an, fc); 902 ice_print_topo_conflict(vsi); 903 } 904 905 /** 906 * ice_vsi_link_event - update the VSI's netdev 907 * @vsi: the VSI on which the link event occurred 908 * @link_up: whether or not the VSI needs to be set up or down 909 */ 910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 911 { 912 if (!vsi) 913 return; 914 915 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 916 return; 917 918 if (vsi->type == ICE_VSI_PF) { 919 if (link_up == netif_carrier_ok(vsi->netdev)) 920 return; 921 922 if (link_up) { 923 netif_carrier_on(vsi->netdev); 924 netif_tx_wake_all_queues(vsi->netdev); 925 } else { 926 netif_carrier_off(vsi->netdev); 927 netif_tx_stop_all_queues(vsi->netdev); 928 } 929 } 930 } 931 932 /** 933 * ice_set_dflt_mib - send a default config MIB to the FW 934 * @pf: private PF struct 935 * 936 * This function sends a default configuration MIB to the FW. 937 * 938 * If this function errors out at any point, the driver is still able to 939 * function. The main impact is that LFC may not operate as expected. 940 * Therefore an error state in this function should be treated with a DBG 941 * message and continue on with driver rebuild/reenable. 942 */ 943 static void ice_set_dflt_mib(struct ice_pf *pf) 944 { 945 struct device *dev = ice_pf_to_dev(pf); 946 u8 mib_type, *buf, *lldpmib = NULL; 947 u16 len, typelen, offset = 0; 948 struct ice_lldp_org_tlv *tlv; 949 struct ice_hw *hw = &pf->hw; 950 u32 ouisubtype; 951 952 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 953 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 954 if (!lldpmib) { 955 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 956 __func__); 957 return; 958 } 959 960 /* Add ETS CFG TLV */ 961 tlv = (struct ice_lldp_org_tlv *)lldpmib; 962 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 963 ICE_IEEE_ETS_TLV_LEN); 964 tlv->typelen = htons(typelen); 965 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 966 ICE_IEEE_SUBTYPE_ETS_CFG); 967 tlv->ouisubtype = htonl(ouisubtype); 968 969 buf = tlv->tlvinfo; 970 buf[0] = 0; 971 972 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 973 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 974 * Octets 13 - 20 are TSA values - leave as zeros 975 */ 976 buf[5] = 0x64; 977 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 978 offset += len + 2; 979 tlv = (struct ice_lldp_org_tlv *) 980 ((char *)tlv + sizeof(tlv->typelen) + len); 981 982 /* Add ETS REC TLV */ 983 buf = tlv->tlvinfo; 984 tlv->typelen = htons(typelen); 985 986 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 987 ICE_IEEE_SUBTYPE_ETS_REC); 988 tlv->ouisubtype = htonl(ouisubtype); 989 990 /* First octet of buf is reserved 991 * Octets 1 - 4 map UP to TC - all UPs map to zero 992 * Octets 5 - 12 are BW values - set TC 0 to 100%. 993 * Octets 13 - 20 are TSA value - leave as zeros 994 */ 995 buf[5] = 0x64; 996 offset += len + 2; 997 tlv = (struct ice_lldp_org_tlv *) 998 ((char *)tlv + sizeof(tlv->typelen) + len); 999 1000 /* Add PFC CFG TLV */ 1001 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1002 ICE_IEEE_PFC_TLV_LEN); 1003 tlv->typelen = htons(typelen); 1004 1005 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1006 ICE_IEEE_SUBTYPE_PFC_CFG); 1007 tlv->ouisubtype = htonl(ouisubtype); 1008 1009 /* Octet 1 left as all zeros - PFC disabled */ 1010 buf[0] = 0x08; 1011 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1012 offset += len + 2; 1013 1014 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1015 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1016 1017 kfree(lldpmib); 1018 } 1019 1020 /** 1021 * ice_check_phy_fw_load - check if PHY FW load failed 1022 * @pf: pointer to PF struct 1023 * @link_cfg_err: bitmap from the link info structure 1024 * 1025 * check if external PHY FW load failed and print an error message if it did 1026 */ 1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1028 { 1029 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1030 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1031 return; 1032 } 1033 1034 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1035 return; 1036 1037 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1038 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1039 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1040 } 1041 } 1042 1043 /** 1044 * ice_check_module_power 1045 * @pf: pointer to PF struct 1046 * @link_cfg_err: bitmap from the link info structure 1047 * 1048 * check module power level returned by a previous call to aq_get_link_info 1049 * and print error messages if module power level is not supported 1050 */ 1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1052 { 1053 /* if module power level is supported, clear the flag */ 1054 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1055 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1056 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1057 return; 1058 } 1059 1060 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1061 * above block didn't clear this bit, there's nothing to do 1062 */ 1063 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1064 return; 1065 1066 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1067 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1068 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1069 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1070 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1071 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1072 } 1073 } 1074 1075 /** 1076 * ice_check_link_cfg_err - check if link configuration failed 1077 * @pf: pointer to the PF struct 1078 * @link_cfg_err: bitmap from the link info structure 1079 * 1080 * print if any link configuration failure happens due to the value in the 1081 * link_cfg_err parameter in the link info structure 1082 */ 1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1084 { 1085 ice_check_module_power(pf, link_cfg_err); 1086 ice_check_phy_fw_load(pf, link_cfg_err); 1087 } 1088 1089 /** 1090 * ice_link_event - process the link event 1091 * @pf: PF that the link event is associated with 1092 * @pi: port_info for the port that the link event is associated with 1093 * @link_up: true if the physical link is up and false if it is down 1094 * @link_speed: current link speed received from the link event 1095 * 1096 * Returns 0 on success and negative on failure 1097 */ 1098 static int 1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1100 u16 link_speed) 1101 { 1102 struct device *dev = ice_pf_to_dev(pf); 1103 struct ice_phy_info *phy_info; 1104 struct ice_vsi *vsi; 1105 u16 old_link_speed; 1106 bool old_link; 1107 int status; 1108 1109 phy_info = &pi->phy; 1110 phy_info->link_info_old = phy_info->link_info; 1111 1112 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1113 old_link_speed = phy_info->link_info_old.link_speed; 1114 1115 /* update the link info structures and re-enable link events, 1116 * don't bail on failure due to other book keeping needed 1117 */ 1118 status = ice_update_link_info(pi); 1119 if (status) 1120 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1121 pi->lport, status, 1122 ice_aq_str(pi->hw->adminq.sq_last_status)); 1123 1124 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1125 1126 /* Check if the link state is up after updating link info, and treat 1127 * this event as an UP event since the link is actually UP now. 1128 */ 1129 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1130 link_up = true; 1131 1132 vsi = ice_get_main_vsi(pf); 1133 if (!vsi || !vsi->port_info) 1134 return -EINVAL; 1135 1136 /* turn off PHY if media was removed */ 1137 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1138 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1139 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1140 ice_set_link(vsi, false); 1141 } 1142 1143 /* if the old link up/down and speed is the same as the new */ 1144 if (link_up == old_link && link_speed == old_link_speed) 1145 return 0; 1146 1147 if (!link_up && old_link) 1148 pf->link_down_events++; 1149 1150 ice_ptp_link_change(pf, link_up); 1151 1152 if (ice_is_dcb_active(pf)) { 1153 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1154 ice_dcb_rebuild(pf); 1155 } else { 1156 if (link_up) 1157 ice_set_dflt_mib(pf); 1158 } 1159 ice_vsi_link_event(vsi, link_up); 1160 ice_print_link_msg(vsi, link_up); 1161 1162 ice_vc_notify_link_state(pf); 1163 1164 return 0; 1165 } 1166 1167 /** 1168 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1169 * @pf: board private structure 1170 */ 1171 static void ice_watchdog_subtask(struct ice_pf *pf) 1172 { 1173 int i; 1174 1175 /* if interface is down do nothing */ 1176 if (test_bit(ICE_DOWN, pf->state) || 1177 test_bit(ICE_CFG_BUSY, pf->state)) 1178 return; 1179 1180 /* make sure we don't do these things too often */ 1181 if (time_before(jiffies, 1182 pf->serv_tmr_prev + pf->serv_tmr_period)) 1183 return; 1184 1185 pf->serv_tmr_prev = jiffies; 1186 1187 /* Update the stats for active netdevs so the network stack 1188 * can look at updated numbers whenever it cares to 1189 */ 1190 ice_update_pf_stats(pf); 1191 ice_for_each_vsi(pf, i) 1192 if (pf->vsi[i] && pf->vsi[i]->netdev) 1193 ice_update_vsi_stats(pf->vsi[i]); 1194 } 1195 1196 /** 1197 * ice_init_link_events - enable/initialize link events 1198 * @pi: pointer to the port_info instance 1199 * 1200 * Returns -EIO on failure, 0 on success 1201 */ 1202 static int ice_init_link_events(struct ice_port_info *pi) 1203 { 1204 u16 mask; 1205 1206 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1207 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1208 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1209 1210 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1211 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1212 pi->lport); 1213 return -EIO; 1214 } 1215 1216 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1217 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1218 pi->lport); 1219 return -EIO; 1220 } 1221 1222 return 0; 1223 } 1224 1225 /** 1226 * ice_handle_link_event - handle link event via ARQ 1227 * @pf: PF that the link event is associated with 1228 * @event: event structure containing link status info 1229 */ 1230 static int 1231 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1232 { 1233 struct ice_aqc_get_link_status_data *link_data; 1234 struct ice_port_info *port_info; 1235 int status; 1236 1237 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1238 port_info = pf->hw.port_info; 1239 if (!port_info) 1240 return -EINVAL; 1241 1242 status = ice_link_event(pf, port_info, 1243 !!(link_data->link_info & ICE_AQ_LINK_UP), 1244 le16_to_cpu(link_data->link_speed)); 1245 if (status) 1246 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1247 status); 1248 1249 return status; 1250 } 1251 1252 /** 1253 * ice_get_fwlog_data - copy the FW log data from ARQ event 1254 * @pf: PF that the FW log event is associated with 1255 * @event: event structure containing FW log data 1256 */ 1257 static void 1258 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event) 1259 { 1260 struct ice_fwlog_data *fwlog; 1261 struct ice_hw *hw = &pf->hw; 1262 1263 fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail]; 1264 1265 memset(fwlog->data, 0, PAGE_SIZE); 1266 fwlog->data_size = le16_to_cpu(event->desc.datalen); 1267 1268 memcpy(fwlog->data, event->msg_buf, fwlog->data_size); 1269 ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size); 1270 1271 if (ice_fwlog_ring_full(&hw->fwlog_ring)) { 1272 /* the rings are full so bump the head to create room */ 1273 ice_fwlog_ring_increment(&hw->fwlog_ring.head, 1274 hw->fwlog_ring.size); 1275 } 1276 } 1277 1278 /** 1279 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1280 * @pf: pointer to the PF private structure 1281 * @task: intermediate helper storage and identifier for waiting 1282 * @opcode: the opcode to wait for 1283 * 1284 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1285 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1286 * 1287 * Calls are separated to allow caller registering for event before sending 1288 * the command, which mitigates a race between registering and FW responding. 1289 * 1290 * To obtain only the descriptor contents, pass an task->event with null 1291 * msg_buf. If the complete data buffer is desired, allocate the 1292 * task->event.msg_buf with enough space ahead of time. 1293 */ 1294 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1295 u16 opcode) 1296 { 1297 INIT_HLIST_NODE(&task->entry); 1298 task->opcode = opcode; 1299 task->state = ICE_AQ_TASK_WAITING; 1300 1301 spin_lock_bh(&pf->aq_wait_lock); 1302 hlist_add_head(&task->entry, &pf->aq_wait_list); 1303 spin_unlock_bh(&pf->aq_wait_lock); 1304 } 1305 1306 /** 1307 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1308 * @pf: pointer to the PF private structure 1309 * @task: ptr prepared by ice_aq_prep_for_event() 1310 * @timeout: how long to wait, in jiffies 1311 * 1312 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1313 * current thread will be put to sleep until the specified event occurs or 1314 * until the given timeout is reached. 1315 * 1316 * Returns: zero on success, or a negative error code on failure. 1317 */ 1318 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1319 unsigned long timeout) 1320 { 1321 enum ice_aq_task_state *state = &task->state; 1322 struct device *dev = ice_pf_to_dev(pf); 1323 unsigned long start = jiffies; 1324 long ret; 1325 int err; 1326 1327 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1328 *state != ICE_AQ_TASK_WAITING, 1329 timeout); 1330 switch (*state) { 1331 case ICE_AQ_TASK_NOT_PREPARED: 1332 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1333 err = -EINVAL; 1334 break; 1335 case ICE_AQ_TASK_WAITING: 1336 err = ret < 0 ? ret : -ETIMEDOUT; 1337 break; 1338 case ICE_AQ_TASK_CANCELED: 1339 err = ret < 0 ? ret : -ECANCELED; 1340 break; 1341 case ICE_AQ_TASK_COMPLETE: 1342 err = ret < 0 ? ret : 0; 1343 break; 1344 default: 1345 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1346 err = -EINVAL; 1347 break; 1348 } 1349 1350 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1351 jiffies_to_msecs(jiffies - start), 1352 jiffies_to_msecs(timeout), 1353 task->opcode); 1354 1355 spin_lock_bh(&pf->aq_wait_lock); 1356 hlist_del(&task->entry); 1357 spin_unlock_bh(&pf->aq_wait_lock); 1358 1359 return err; 1360 } 1361 1362 /** 1363 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1364 * @pf: pointer to the PF private structure 1365 * @opcode: the opcode of the event 1366 * @event: the event to check 1367 * 1368 * Loops over the current list of pending threads waiting for an AdminQ event. 1369 * For each matching task, copy the contents of the event into the task 1370 * structure and wake up the thread. 1371 * 1372 * If multiple threads wait for the same opcode, they will all be woken up. 1373 * 1374 * Note that event->msg_buf will only be duplicated if the event has a buffer 1375 * with enough space already allocated. Otherwise, only the descriptor and 1376 * message length will be copied. 1377 * 1378 * Returns: true if an event was found, false otherwise 1379 */ 1380 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1381 struct ice_rq_event_info *event) 1382 { 1383 struct ice_rq_event_info *task_ev; 1384 struct ice_aq_task *task; 1385 bool found = false; 1386 1387 spin_lock_bh(&pf->aq_wait_lock); 1388 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1389 if (task->state != ICE_AQ_TASK_WAITING) 1390 continue; 1391 if (task->opcode != opcode) 1392 continue; 1393 1394 task_ev = &task->event; 1395 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1396 task_ev->msg_len = event->msg_len; 1397 1398 /* Only copy the data buffer if a destination was set */ 1399 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1400 memcpy(task_ev->msg_buf, event->msg_buf, 1401 event->buf_len); 1402 task_ev->buf_len = event->buf_len; 1403 } 1404 1405 task->state = ICE_AQ_TASK_COMPLETE; 1406 found = true; 1407 } 1408 spin_unlock_bh(&pf->aq_wait_lock); 1409 1410 if (found) 1411 wake_up(&pf->aq_wait_queue); 1412 } 1413 1414 /** 1415 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1416 * @pf: the PF private structure 1417 * 1418 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1419 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1420 */ 1421 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1422 { 1423 struct ice_aq_task *task; 1424 1425 spin_lock_bh(&pf->aq_wait_lock); 1426 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1427 task->state = ICE_AQ_TASK_CANCELED; 1428 spin_unlock_bh(&pf->aq_wait_lock); 1429 1430 wake_up(&pf->aq_wait_queue); 1431 } 1432 1433 #define ICE_MBX_OVERFLOW_WATERMARK 64 1434 1435 /** 1436 * __ice_clean_ctrlq - helper function to clean controlq rings 1437 * @pf: ptr to struct ice_pf 1438 * @q_type: specific Control queue type 1439 */ 1440 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1441 { 1442 struct device *dev = ice_pf_to_dev(pf); 1443 struct ice_rq_event_info event; 1444 struct ice_hw *hw = &pf->hw; 1445 struct ice_ctl_q_info *cq; 1446 u16 pending, i = 0; 1447 const char *qtype; 1448 u32 oldval, val; 1449 1450 /* Do not clean control queue if/when PF reset fails */ 1451 if (test_bit(ICE_RESET_FAILED, pf->state)) 1452 return 0; 1453 1454 switch (q_type) { 1455 case ICE_CTL_Q_ADMIN: 1456 cq = &hw->adminq; 1457 qtype = "Admin"; 1458 break; 1459 case ICE_CTL_Q_SB: 1460 cq = &hw->sbq; 1461 qtype = "Sideband"; 1462 break; 1463 case ICE_CTL_Q_MAILBOX: 1464 cq = &hw->mailboxq; 1465 qtype = "Mailbox"; 1466 /* we are going to try to detect a malicious VF, so set the 1467 * state to begin detection 1468 */ 1469 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1470 break; 1471 default: 1472 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1473 return 0; 1474 } 1475 1476 /* check for error indications - PF_xx_AxQLEN register layout for 1477 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1478 */ 1479 val = rd32(hw, cq->rq.len); 1480 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1481 PF_FW_ARQLEN_ARQCRIT_M)) { 1482 oldval = val; 1483 if (val & PF_FW_ARQLEN_ARQVFE_M) 1484 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1485 qtype); 1486 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1487 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1488 qtype); 1489 } 1490 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1491 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1492 qtype); 1493 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1494 PF_FW_ARQLEN_ARQCRIT_M); 1495 if (oldval != val) 1496 wr32(hw, cq->rq.len, val); 1497 } 1498 1499 val = rd32(hw, cq->sq.len); 1500 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1501 PF_FW_ATQLEN_ATQCRIT_M)) { 1502 oldval = val; 1503 if (val & PF_FW_ATQLEN_ATQVFE_M) 1504 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1505 qtype); 1506 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1507 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1508 qtype); 1509 } 1510 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1511 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1512 qtype); 1513 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1514 PF_FW_ATQLEN_ATQCRIT_M); 1515 if (oldval != val) 1516 wr32(hw, cq->sq.len, val); 1517 } 1518 1519 event.buf_len = cq->rq_buf_size; 1520 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1521 if (!event.msg_buf) 1522 return 0; 1523 1524 do { 1525 struct ice_mbx_data data = {}; 1526 u16 opcode; 1527 int ret; 1528 1529 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1530 if (ret == -EALREADY) 1531 break; 1532 if (ret) { 1533 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1534 ret); 1535 break; 1536 } 1537 1538 opcode = le16_to_cpu(event.desc.opcode); 1539 1540 /* Notify any thread that might be waiting for this event */ 1541 ice_aq_check_events(pf, opcode, &event); 1542 1543 switch (opcode) { 1544 case ice_aqc_opc_get_link_status: 1545 if (ice_handle_link_event(pf, &event)) 1546 dev_err(dev, "Could not handle link event\n"); 1547 break; 1548 case ice_aqc_opc_event_lan_overflow: 1549 ice_vf_lan_overflow_event(pf, &event); 1550 break; 1551 case ice_mbx_opc_send_msg_to_pf: 1552 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1553 ice_vc_process_vf_msg(pf, &event, NULL); 1554 ice_mbx_vf_dec_trig_e830(hw, &event); 1555 } else { 1556 u16 val = hw->mailboxq.num_rq_entries; 1557 1558 data.max_num_msgs_mbx = val; 1559 val = ICE_MBX_OVERFLOW_WATERMARK; 1560 data.async_watermark_val = val; 1561 data.num_msg_proc = i; 1562 data.num_pending_arq = pending; 1563 1564 ice_vc_process_vf_msg(pf, &event, &data); 1565 } 1566 break; 1567 case ice_aqc_opc_fw_logs_event: 1568 ice_get_fwlog_data(pf, &event); 1569 break; 1570 case ice_aqc_opc_lldp_set_mib_change: 1571 ice_dcb_process_lldp_set_mib_change(pf, &event); 1572 break; 1573 case ice_aqc_opc_get_health_status: 1574 ice_process_health_status_event(pf, &event); 1575 break; 1576 default: 1577 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1578 qtype, opcode); 1579 break; 1580 } 1581 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1582 1583 kfree(event.msg_buf); 1584 1585 return pending && (i == ICE_DFLT_IRQ_WORK); 1586 } 1587 1588 /** 1589 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1590 * @hw: pointer to hardware info 1591 * @cq: control queue information 1592 * 1593 * returns true if there are pending messages in a queue, false if there aren't 1594 */ 1595 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1596 { 1597 u16 ntu; 1598 1599 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1600 return cq->rq.next_to_clean != ntu; 1601 } 1602 1603 /** 1604 * ice_clean_adminq_subtask - clean the AdminQ rings 1605 * @pf: board private structure 1606 */ 1607 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1608 { 1609 struct ice_hw *hw = &pf->hw; 1610 1611 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1612 return; 1613 1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1615 return; 1616 1617 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1618 1619 /* There might be a situation where new messages arrive to a control 1620 * queue between processing the last message and clearing the 1621 * EVENT_PENDING bit. So before exiting, check queue head again (using 1622 * ice_ctrlq_pending) and process new messages if any. 1623 */ 1624 if (ice_ctrlq_pending(hw, &hw->adminq)) 1625 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1626 1627 ice_flush(hw); 1628 } 1629 1630 /** 1631 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1632 * @pf: board private structure 1633 */ 1634 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1635 { 1636 struct ice_hw *hw = &pf->hw; 1637 1638 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1639 return; 1640 1641 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1642 return; 1643 1644 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1645 1646 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1647 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1648 1649 ice_flush(hw); 1650 } 1651 1652 /** 1653 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1654 * @pf: board private structure 1655 */ 1656 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1657 { 1658 struct ice_hw *hw = &pf->hw; 1659 1660 /* if mac_type is not generic, sideband is not supported 1661 * and there's nothing to do here 1662 */ 1663 if (!ice_is_generic_mac(hw)) { 1664 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1665 return; 1666 } 1667 1668 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1669 return; 1670 1671 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1672 return; 1673 1674 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1675 1676 if (ice_ctrlq_pending(hw, &hw->sbq)) 1677 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1678 1679 ice_flush(hw); 1680 } 1681 1682 /** 1683 * ice_service_task_schedule - schedule the service task to wake up 1684 * @pf: board private structure 1685 * 1686 * If not already scheduled, this puts the task into the work queue. 1687 */ 1688 void ice_service_task_schedule(struct ice_pf *pf) 1689 { 1690 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1691 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1692 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1693 queue_work(ice_wq, &pf->serv_task); 1694 } 1695 1696 /** 1697 * ice_service_task_complete - finish up the service task 1698 * @pf: board private structure 1699 */ 1700 static void ice_service_task_complete(struct ice_pf *pf) 1701 { 1702 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1703 1704 /* force memory (pf->state) to sync before next service task */ 1705 smp_mb__before_atomic(); 1706 clear_bit(ICE_SERVICE_SCHED, pf->state); 1707 } 1708 1709 /** 1710 * ice_service_task_stop - stop service task and cancel works 1711 * @pf: board private structure 1712 * 1713 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1714 * 1 otherwise. 1715 */ 1716 static int ice_service_task_stop(struct ice_pf *pf) 1717 { 1718 int ret; 1719 1720 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1721 1722 if (pf->serv_tmr.function) 1723 timer_delete_sync(&pf->serv_tmr); 1724 if (pf->serv_task.func) 1725 cancel_work_sync(&pf->serv_task); 1726 1727 clear_bit(ICE_SERVICE_SCHED, pf->state); 1728 return ret; 1729 } 1730 1731 /** 1732 * ice_service_task_restart - restart service task and schedule works 1733 * @pf: board private structure 1734 * 1735 * This function is needed for suspend and resume works (e.g WoL scenario) 1736 */ 1737 static void ice_service_task_restart(struct ice_pf *pf) 1738 { 1739 clear_bit(ICE_SERVICE_DIS, pf->state); 1740 ice_service_task_schedule(pf); 1741 } 1742 1743 /** 1744 * ice_service_timer - timer callback to schedule service task 1745 * @t: pointer to timer_list 1746 */ 1747 static void ice_service_timer(struct timer_list *t) 1748 { 1749 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr); 1750 1751 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1752 ice_service_task_schedule(pf); 1753 } 1754 1755 /** 1756 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1757 * @pf: pointer to the PF structure 1758 * @vf: pointer to the VF structure 1759 * @reset_vf_tx: whether Tx MDD has occurred 1760 * @reset_vf_rx: whether Rx MDD has occurred 1761 * 1762 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1763 * automatically reset the VF by enabling the private ethtool flag 1764 * mdd-auto-reset-vf. 1765 */ 1766 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1767 bool reset_vf_tx, bool reset_vf_rx) 1768 { 1769 struct device *dev = ice_pf_to_dev(pf); 1770 1771 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1772 return; 1773 1774 /* VF MDD event counters will be cleared by reset, so print the event 1775 * prior to reset. 1776 */ 1777 if (reset_vf_tx) 1778 ice_print_vf_tx_mdd_event(vf); 1779 1780 if (reset_vf_rx) 1781 ice_print_vf_rx_mdd_event(vf); 1782 1783 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1784 pf->hw.pf_id, vf->vf_id); 1785 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1786 } 1787 1788 /** 1789 * ice_handle_mdd_event - handle malicious driver detect event 1790 * @pf: pointer to the PF structure 1791 * 1792 * Called from service task. OICR interrupt handler indicates MDD event. 1793 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1794 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1795 * disable the queue, the PF can be configured to reset the VF using ethtool 1796 * private flag mdd-auto-reset-vf. 1797 */ 1798 static void ice_handle_mdd_event(struct ice_pf *pf) 1799 { 1800 struct device *dev = ice_pf_to_dev(pf); 1801 struct ice_hw *hw = &pf->hw; 1802 struct ice_vf *vf; 1803 unsigned int bkt; 1804 u32 reg; 1805 1806 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1807 /* Since the VF MDD event logging is rate limited, check if 1808 * there are pending MDD events. 1809 */ 1810 ice_print_vfs_mdd_events(pf); 1811 return; 1812 } 1813 1814 /* find what triggered an MDD event */ 1815 reg = rd32(hw, GL_MDET_TX_PQM); 1816 if (reg & GL_MDET_TX_PQM_VALID_M) { 1817 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1818 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1819 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1820 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1821 1822 if (netif_msg_tx_err(pf)) 1823 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1824 event, queue, pf_num, vf_num); 1825 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1826 event, queue); 1827 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1828 } 1829 1830 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1831 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1832 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1833 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1834 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1835 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1836 1837 if (netif_msg_tx_err(pf)) 1838 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1839 event, queue, pf_num, vf_num); 1840 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1841 event, queue); 1842 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1843 } 1844 1845 reg = rd32(hw, GL_MDET_RX); 1846 if (reg & GL_MDET_RX_VALID_M) { 1847 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1848 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1849 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1850 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1851 1852 if (netif_msg_rx_err(pf)) 1853 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1854 event, queue, pf_num, vf_num); 1855 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1856 queue); 1857 wr32(hw, GL_MDET_RX, 0xffffffff); 1858 } 1859 1860 /* check to see if this PF caused an MDD event */ 1861 reg = rd32(hw, PF_MDET_TX_PQM); 1862 if (reg & PF_MDET_TX_PQM_VALID_M) { 1863 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1864 if (netif_msg_tx_err(pf)) 1865 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1866 } 1867 1868 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1869 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1870 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1871 if (netif_msg_tx_err(pf)) 1872 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1873 } 1874 1875 reg = rd32(hw, PF_MDET_RX); 1876 if (reg & PF_MDET_RX_VALID_M) { 1877 wr32(hw, PF_MDET_RX, 0xFFFF); 1878 if (netif_msg_rx_err(pf)) 1879 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1880 } 1881 1882 /* Check to see if one of the VFs caused an MDD event, and then 1883 * increment counters and set print pending 1884 */ 1885 mutex_lock(&pf->vfs.table_lock); 1886 ice_for_each_vf(pf, bkt, vf) { 1887 bool reset_vf_tx = false, reset_vf_rx = false; 1888 1889 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1890 if (reg & VP_MDET_TX_PQM_VALID_M) { 1891 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1892 vf->mdd_tx_events.count++; 1893 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1894 if (netif_msg_tx_err(pf)) 1895 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1896 vf->vf_id); 1897 1898 reset_vf_tx = true; 1899 } 1900 1901 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1902 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1903 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1904 vf->mdd_tx_events.count++; 1905 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1906 if (netif_msg_tx_err(pf)) 1907 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1908 vf->vf_id); 1909 1910 reset_vf_tx = true; 1911 } 1912 1913 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1914 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1915 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1916 vf->mdd_tx_events.count++; 1917 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1918 if (netif_msg_tx_err(pf)) 1919 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1920 vf->vf_id); 1921 1922 reset_vf_tx = true; 1923 } 1924 1925 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1926 if (reg & VP_MDET_RX_VALID_M) { 1927 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1928 vf->mdd_rx_events.count++; 1929 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1930 if (netif_msg_rx_err(pf)) 1931 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1932 vf->vf_id); 1933 1934 reset_vf_rx = true; 1935 } 1936 1937 if (reset_vf_tx || reset_vf_rx) 1938 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1939 reset_vf_rx); 1940 } 1941 mutex_unlock(&pf->vfs.table_lock); 1942 1943 ice_print_vfs_mdd_events(pf); 1944 } 1945 1946 /** 1947 * ice_force_phys_link_state - Force the physical link state 1948 * @vsi: VSI to force the physical link state to up/down 1949 * @link_up: true/false indicates to set the physical link to up/down 1950 * 1951 * Force the physical link state by getting the current PHY capabilities from 1952 * hardware and setting the PHY config based on the determined capabilities. If 1953 * link changes a link event will be triggered because both the Enable Automatic 1954 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1955 * 1956 * Returns 0 on success, negative on failure 1957 */ 1958 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1959 { 1960 struct ice_aqc_get_phy_caps_data *pcaps; 1961 struct ice_aqc_set_phy_cfg_data *cfg; 1962 struct ice_port_info *pi; 1963 struct device *dev; 1964 int retcode; 1965 1966 if (!vsi || !vsi->port_info || !vsi->back) 1967 return -EINVAL; 1968 if (vsi->type != ICE_VSI_PF) 1969 return 0; 1970 1971 dev = ice_pf_to_dev(vsi->back); 1972 1973 pi = vsi->port_info; 1974 1975 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1976 if (!pcaps) 1977 return -ENOMEM; 1978 1979 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1980 NULL); 1981 if (retcode) { 1982 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1983 vsi->vsi_num, retcode); 1984 retcode = -EIO; 1985 goto out; 1986 } 1987 1988 /* No change in link */ 1989 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1990 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1991 goto out; 1992 1993 /* Use the current user PHY configuration. The current user PHY 1994 * configuration is initialized during probe from PHY capabilities 1995 * software mode, and updated on set PHY configuration. 1996 */ 1997 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1998 if (!cfg) { 1999 retcode = -ENOMEM; 2000 goto out; 2001 } 2002 2003 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 2004 if (link_up) 2005 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 2006 else 2007 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 2008 2009 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 2010 if (retcode) { 2011 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2012 vsi->vsi_num, retcode); 2013 retcode = -EIO; 2014 } 2015 2016 kfree(cfg); 2017 out: 2018 kfree(pcaps); 2019 return retcode; 2020 } 2021 2022 /** 2023 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2024 * @pi: port info structure 2025 * 2026 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2027 */ 2028 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2029 { 2030 struct ice_aqc_get_phy_caps_data *pcaps; 2031 struct ice_pf *pf = pi->hw->back; 2032 int err; 2033 2034 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2035 if (!pcaps) 2036 return -ENOMEM; 2037 2038 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2039 pcaps, NULL); 2040 2041 if (err) { 2042 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2043 goto out; 2044 } 2045 2046 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2047 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2048 2049 out: 2050 kfree(pcaps); 2051 return err; 2052 } 2053 2054 /** 2055 * ice_init_link_dflt_override - Initialize link default override 2056 * @pi: port info structure 2057 * 2058 * Initialize link default override and PHY total port shutdown during probe 2059 */ 2060 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2061 { 2062 struct ice_link_default_override_tlv *ldo; 2063 struct ice_pf *pf = pi->hw->back; 2064 2065 ldo = &pf->link_dflt_override; 2066 if (ice_get_link_default_override(ldo, pi)) 2067 return; 2068 2069 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2070 return; 2071 2072 /* Enable Total Port Shutdown (override/replace link-down-on-close 2073 * ethtool private flag) for ports with Port Disable bit set. 2074 */ 2075 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2076 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2077 } 2078 2079 /** 2080 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2081 * @pi: port info structure 2082 * 2083 * If default override is enabled, initialize the user PHY cfg speed and FEC 2084 * settings using the default override mask from the NVM. 2085 * 2086 * The PHY should only be configured with the default override settings the 2087 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2088 * is used to indicate that the user PHY cfg default override is initialized 2089 * and the PHY has not been configured with the default override settings. The 2090 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2091 * configured. 2092 * 2093 * This function should be called only if the FW doesn't support default 2094 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2095 */ 2096 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2097 { 2098 struct ice_link_default_override_tlv *ldo; 2099 struct ice_aqc_set_phy_cfg_data *cfg; 2100 struct ice_phy_info *phy = &pi->phy; 2101 struct ice_pf *pf = pi->hw->back; 2102 2103 ldo = &pf->link_dflt_override; 2104 2105 /* If link default override is enabled, use to mask NVM PHY capabilities 2106 * for speed and FEC default configuration. 2107 */ 2108 cfg = &phy->curr_user_phy_cfg; 2109 2110 if (ldo->phy_type_low || ldo->phy_type_high) { 2111 cfg->phy_type_low = pf->nvm_phy_type_lo & 2112 cpu_to_le64(ldo->phy_type_low); 2113 cfg->phy_type_high = pf->nvm_phy_type_hi & 2114 cpu_to_le64(ldo->phy_type_high); 2115 } 2116 cfg->link_fec_opt = ldo->fec_options; 2117 phy->curr_user_fec_req = ICE_FEC_AUTO; 2118 2119 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2120 } 2121 2122 /** 2123 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2124 * @pi: port info structure 2125 * 2126 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2127 * mode to default. The PHY defaults are from get PHY capabilities topology 2128 * with media so call when media is first available. An error is returned if 2129 * called when media is not available. The PHY initialization completed state is 2130 * set here. 2131 * 2132 * These configurations are used when setting PHY 2133 * configuration. The user PHY configuration is updated on set PHY 2134 * configuration. Returns 0 on success, negative on failure 2135 */ 2136 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2137 { 2138 struct ice_aqc_get_phy_caps_data *pcaps; 2139 struct ice_phy_info *phy = &pi->phy; 2140 struct ice_pf *pf = pi->hw->back; 2141 int err; 2142 2143 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2144 return -EIO; 2145 2146 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2147 if (!pcaps) 2148 return -ENOMEM; 2149 2150 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2151 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2152 pcaps, NULL); 2153 else 2154 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2155 pcaps, NULL); 2156 if (err) { 2157 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2158 goto err_out; 2159 } 2160 2161 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2162 2163 /* check if lenient mode is supported and enabled */ 2164 if (ice_fw_supports_link_override(pi->hw) && 2165 !(pcaps->module_compliance_enforcement & 2166 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2167 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2168 2169 /* if the FW supports default PHY configuration mode, then the driver 2170 * does not have to apply link override settings. If not, 2171 * initialize user PHY configuration with link override values 2172 */ 2173 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2174 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2175 ice_init_phy_cfg_dflt_override(pi); 2176 goto out; 2177 } 2178 } 2179 2180 /* if link default override is not enabled, set user flow control and 2181 * FEC settings based on what get_phy_caps returned 2182 */ 2183 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2184 pcaps->link_fec_options); 2185 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2186 2187 out: 2188 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2189 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2190 err_out: 2191 kfree(pcaps); 2192 return err; 2193 } 2194 2195 /** 2196 * ice_configure_phy - configure PHY 2197 * @vsi: VSI of PHY 2198 * 2199 * Set the PHY configuration. If the current PHY configuration is the same as 2200 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2201 * configure the based get PHY capabilities for topology with media. 2202 */ 2203 static int ice_configure_phy(struct ice_vsi *vsi) 2204 { 2205 struct device *dev = ice_pf_to_dev(vsi->back); 2206 struct ice_port_info *pi = vsi->port_info; 2207 struct ice_aqc_get_phy_caps_data *pcaps; 2208 struct ice_aqc_set_phy_cfg_data *cfg; 2209 struct ice_phy_info *phy = &pi->phy; 2210 struct ice_pf *pf = vsi->back; 2211 int err; 2212 2213 /* Ensure we have media as we cannot configure a medialess port */ 2214 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2215 return -ENOMEDIUM; 2216 2217 ice_print_topo_conflict(vsi); 2218 2219 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2220 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2221 return -EPERM; 2222 2223 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2224 return ice_force_phys_link_state(vsi, true); 2225 2226 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2227 if (!pcaps) 2228 return -ENOMEM; 2229 2230 /* Get current PHY config */ 2231 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2232 NULL); 2233 if (err) { 2234 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2235 vsi->vsi_num, err); 2236 goto done; 2237 } 2238 2239 /* If PHY enable link is configured and configuration has not changed, 2240 * there's nothing to do 2241 */ 2242 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2243 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2244 goto done; 2245 2246 /* Use PHY topology as baseline for configuration */ 2247 memset(pcaps, 0, sizeof(*pcaps)); 2248 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2249 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2250 pcaps, NULL); 2251 else 2252 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2253 pcaps, NULL); 2254 if (err) { 2255 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2256 vsi->vsi_num, err); 2257 goto done; 2258 } 2259 2260 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2261 if (!cfg) { 2262 err = -ENOMEM; 2263 goto done; 2264 } 2265 2266 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2267 2268 /* Speed - If default override pending, use curr_user_phy_cfg set in 2269 * ice_init_phy_user_cfg_ldo. 2270 */ 2271 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2272 vsi->back->state)) { 2273 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2274 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2275 } else { 2276 u64 phy_low = 0, phy_high = 0; 2277 2278 ice_update_phy_type(&phy_low, &phy_high, 2279 pi->phy.curr_user_speed_req); 2280 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2281 cfg->phy_type_high = pcaps->phy_type_high & 2282 cpu_to_le64(phy_high); 2283 } 2284 2285 /* Can't provide what was requested; use PHY capabilities */ 2286 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2287 cfg->phy_type_low = pcaps->phy_type_low; 2288 cfg->phy_type_high = pcaps->phy_type_high; 2289 } 2290 2291 /* FEC */ 2292 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2293 2294 /* Can't provide what was requested; use PHY capabilities */ 2295 if (cfg->link_fec_opt != 2296 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2297 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2298 cfg->link_fec_opt = pcaps->link_fec_options; 2299 } 2300 2301 /* Flow Control - always supported; no need to check against 2302 * capabilities 2303 */ 2304 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2305 2306 /* Enable link and link update */ 2307 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2308 2309 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2310 if (err) 2311 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2312 vsi->vsi_num, err); 2313 2314 kfree(cfg); 2315 done: 2316 kfree(pcaps); 2317 return err; 2318 } 2319 2320 /** 2321 * ice_check_media_subtask - Check for media 2322 * @pf: pointer to PF struct 2323 * 2324 * If media is available, then initialize PHY user configuration if it is not 2325 * been, and configure the PHY if the interface is up. 2326 */ 2327 static void ice_check_media_subtask(struct ice_pf *pf) 2328 { 2329 struct ice_port_info *pi; 2330 struct ice_vsi *vsi; 2331 int err; 2332 2333 /* No need to check for media if it's already present */ 2334 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2335 return; 2336 2337 vsi = ice_get_main_vsi(pf); 2338 if (!vsi) 2339 return; 2340 2341 /* Refresh link info and check if media is present */ 2342 pi = vsi->port_info; 2343 err = ice_update_link_info(pi); 2344 if (err) 2345 return; 2346 2347 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2348 2349 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2350 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2351 ice_init_phy_user_cfg(pi); 2352 2353 /* PHY settings are reset on media insertion, reconfigure 2354 * PHY to preserve settings. 2355 */ 2356 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2357 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2358 return; 2359 2360 err = ice_configure_phy(vsi); 2361 if (!err) 2362 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2363 2364 /* A Link Status Event will be generated; the event handler 2365 * will complete bringing the interface up 2366 */ 2367 } 2368 } 2369 2370 static void ice_service_task_recovery_mode(struct work_struct *work) 2371 { 2372 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2373 2374 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2375 ice_clean_adminq_subtask(pf); 2376 2377 ice_service_task_complete(pf); 2378 2379 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2380 } 2381 2382 /** 2383 * ice_service_task - manage and run subtasks 2384 * @work: pointer to work_struct contained by the PF struct 2385 */ 2386 static void ice_service_task(struct work_struct *work) 2387 { 2388 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2389 unsigned long start_time = jiffies; 2390 2391 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2392 ice_report_tx_hang(pf); 2393 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2394 } 2395 2396 ice_reset_subtask(pf); 2397 2398 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2399 if (ice_is_reset_in_progress(pf->state) || 2400 test_bit(ICE_SUSPENDED, pf->state) || 2401 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2402 ice_service_task_complete(pf); 2403 return; 2404 } 2405 2406 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2407 struct iidc_rdma_event *event; 2408 2409 event = kzalloc(sizeof(*event), GFP_KERNEL); 2410 if (event) { 2411 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type); 2412 /* report the entire OICR value to AUX driver */ 2413 swap(event->reg, pf->oicr_err_reg); 2414 ice_send_event_to_aux(pf, event); 2415 kfree(event); 2416 } 2417 } 2418 2419 /* unplug aux dev per request, if an unplug request came in 2420 * while processing a plug request, this will handle it 2421 */ 2422 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2423 ice_unplug_aux_dev(pf); 2424 2425 /* Plug aux device per request */ 2426 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2427 ice_plug_aux_dev(pf); 2428 2429 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2430 struct iidc_rdma_event *event; 2431 2432 event = kzalloc(sizeof(*event), GFP_KERNEL); 2433 if (event) { 2434 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type); 2435 ice_send_event_to_aux(pf, event); 2436 kfree(event); 2437 } 2438 } 2439 2440 ice_clean_adminq_subtask(pf); 2441 ice_check_media_subtask(pf); 2442 ice_check_for_hang_subtask(pf); 2443 ice_sync_fltr_subtask(pf); 2444 ice_handle_mdd_event(pf); 2445 ice_watchdog_subtask(pf); 2446 2447 if (ice_is_safe_mode(pf)) { 2448 ice_service_task_complete(pf); 2449 return; 2450 } 2451 2452 ice_process_vflr_event(pf); 2453 ice_clean_mailboxq_subtask(pf); 2454 ice_clean_sbq_subtask(pf); 2455 ice_sync_arfs_fltrs(pf); 2456 ice_flush_fdir_ctx(pf); 2457 2458 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2459 ice_service_task_complete(pf); 2460 2461 /* If the tasks have taken longer than one service timer period 2462 * or there is more work to be done, reset the service timer to 2463 * schedule the service task now. 2464 */ 2465 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2466 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2467 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2468 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2469 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2470 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2471 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2472 mod_timer(&pf->serv_tmr, jiffies); 2473 } 2474 2475 /** 2476 * ice_set_ctrlq_len - helper function to set controlq length 2477 * @hw: pointer to the HW instance 2478 */ 2479 static void ice_set_ctrlq_len(struct ice_hw *hw) 2480 { 2481 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2482 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2483 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2484 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2485 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2486 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2487 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2488 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2489 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2490 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2491 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2492 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2493 } 2494 2495 /** 2496 * ice_schedule_reset - schedule a reset 2497 * @pf: board private structure 2498 * @reset: reset being requested 2499 */ 2500 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2501 { 2502 struct device *dev = ice_pf_to_dev(pf); 2503 2504 /* bail out if earlier reset has failed */ 2505 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2506 dev_dbg(dev, "earlier reset has failed\n"); 2507 return -EIO; 2508 } 2509 /* bail if reset/recovery already in progress */ 2510 if (ice_is_reset_in_progress(pf->state)) { 2511 dev_dbg(dev, "Reset already in progress\n"); 2512 return -EBUSY; 2513 } 2514 2515 switch (reset) { 2516 case ICE_RESET_PFR: 2517 set_bit(ICE_PFR_REQ, pf->state); 2518 break; 2519 case ICE_RESET_CORER: 2520 set_bit(ICE_CORER_REQ, pf->state); 2521 break; 2522 case ICE_RESET_GLOBR: 2523 set_bit(ICE_GLOBR_REQ, pf->state); 2524 break; 2525 default: 2526 return -EINVAL; 2527 } 2528 2529 ice_service_task_schedule(pf); 2530 return 0; 2531 } 2532 2533 /** 2534 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2535 * @vsi: the VSI being configured 2536 */ 2537 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2538 { 2539 struct ice_hw *hw = &vsi->back->hw; 2540 int i; 2541 2542 ice_for_each_q_vector(vsi, i) 2543 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2544 2545 ice_flush(hw); 2546 return 0; 2547 } 2548 2549 /** 2550 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2551 * @vsi: the VSI being configured 2552 * @basename: name for the vector 2553 */ 2554 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2555 { 2556 int q_vectors = vsi->num_q_vectors; 2557 struct ice_pf *pf = vsi->back; 2558 struct device *dev; 2559 int rx_int_idx = 0; 2560 int tx_int_idx = 0; 2561 int vector, err; 2562 int irq_num; 2563 2564 dev = ice_pf_to_dev(pf); 2565 for (vector = 0; vector < q_vectors; vector++) { 2566 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2567 2568 irq_num = q_vector->irq.virq; 2569 2570 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2571 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2572 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2573 tx_int_idx++; 2574 } else if (q_vector->rx.rx_ring) { 2575 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2576 "%s-%s-%d", basename, "rx", rx_int_idx++); 2577 } else if (q_vector->tx.tx_ring) { 2578 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2579 "%s-%s-%d", basename, "tx", tx_int_idx++); 2580 } else { 2581 /* skip this unused q_vector */ 2582 continue; 2583 } 2584 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2585 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2586 IRQF_SHARED, q_vector->name, 2587 q_vector); 2588 else 2589 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2590 0, q_vector->name, q_vector); 2591 if (err) { 2592 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2593 err); 2594 goto free_q_irqs; 2595 } 2596 } 2597 2598 err = ice_set_cpu_rx_rmap(vsi); 2599 if (err) { 2600 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2601 vsi->vsi_num, ERR_PTR(err)); 2602 goto free_q_irqs; 2603 } 2604 2605 vsi->irqs_ready = true; 2606 return 0; 2607 2608 free_q_irqs: 2609 while (vector--) { 2610 irq_num = vsi->q_vectors[vector]->irq.virq; 2611 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2612 } 2613 return err; 2614 } 2615 2616 /** 2617 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2618 * @vsi: VSI to setup Tx rings used by XDP 2619 * 2620 * Return 0 on success and negative value on error 2621 */ 2622 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2623 { 2624 struct device *dev = ice_pf_to_dev(vsi->back); 2625 struct ice_tx_desc *tx_desc; 2626 int i, j; 2627 2628 ice_for_each_xdp_txq(vsi, i) { 2629 u16 xdp_q_idx = vsi->alloc_txq + i; 2630 struct ice_ring_stats *ring_stats; 2631 struct ice_tx_ring *xdp_ring; 2632 2633 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2634 if (!xdp_ring) 2635 goto free_xdp_rings; 2636 2637 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2638 if (!ring_stats) { 2639 ice_free_tx_ring(xdp_ring); 2640 goto free_xdp_rings; 2641 } 2642 2643 xdp_ring->ring_stats = ring_stats; 2644 xdp_ring->q_index = xdp_q_idx; 2645 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2646 xdp_ring->vsi = vsi; 2647 xdp_ring->netdev = NULL; 2648 xdp_ring->dev = dev; 2649 xdp_ring->count = vsi->num_tx_desc; 2650 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2651 if (ice_setup_tx_ring(xdp_ring)) 2652 goto free_xdp_rings; 2653 ice_set_ring_xdp(xdp_ring); 2654 spin_lock_init(&xdp_ring->tx_lock); 2655 for (j = 0; j < xdp_ring->count; j++) { 2656 tx_desc = ICE_TX_DESC(xdp_ring, j); 2657 tx_desc->cmd_type_offset_bsz = 0; 2658 } 2659 } 2660 2661 return 0; 2662 2663 free_xdp_rings: 2664 for (; i >= 0; i--) { 2665 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2666 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2667 vsi->xdp_rings[i]->ring_stats = NULL; 2668 ice_free_tx_ring(vsi->xdp_rings[i]); 2669 } 2670 } 2671 return -ENOMEM; 2672 } 2673 2674 /** 2675 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2676 * @vsi: VSI to set the bpf prog on 2677 * @prog: the bpf prog pointer 2678 */ 2679 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2680 { 2681 struct bpf_prog *old_prog; 2682 int i; 2683 2684 old_prog = xchg(&vsi->xdp_prog, prog); 2685 ice_for_each_rxq(vsi, i) 2686 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2687 2688 if (old_prog) 2689 bpf_prog_put(old_prog); 2690 } 2691 2692 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2693 { 2694 struct ice_q_vector *q_vector; 2695 struct ice_tx_ring *ring; 2696 2697 if (static_key_enabled(&ice_xdp_locking_key)) 2698 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2699 2700 q_vector = vsi->rx_rings[qid]->q_vector; 2701 ice_for_each_tx_ring(ring, q_vector->tx) 2702 if (ice_ring_is_xdp(ring)) 2703 return ring; 2704 2705 return NULL; 2706 } 2707 2708 /** 2709 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2710 * @vsi: the VSI with XDP rings being configured 2711 * 2712 * Map XDP rings to interrupt vectors and perform the configuration steps 2713 * dependent on the mapping. 2714 */ 2715 void ice_map_xdp_rings(struct ice_vsi *vsi) 2716 { 2717 int xdp_rings_rem = vsi->num_xdp_txq; 2718 int v_idx, q_idx; 2719 2720 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2721 ice_for_each_q_vector(vsi, v_idx) { 2722 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2723 int xdp_rings_per_v, q_id, q_base; 2724 2725 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2726 vsi->num_q_vectors - v_idx); 2727 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2728 2729 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2730 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2731 2732 xdp_ring->q_vector = q_vector; 2733 xdp_ring->next = q_vector->tx.tx_ring; 2734 q_vector->tx.tx_ring = xdp_ring; 2735 } 2736 xdp_rings_rem -= xdp_rings_per_v; 2737 } 2738 2739 ice_for_each_rxq(vsi, q_idx) { 2740 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2741 q_idx); 2742 ice_tx_xsk_pool(vsi, q_idx); 2743 } 2744 } 2745 2746 /** 2747 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors 2748 * @vsi: the VSI with XDP rings being unmapped 2749 */ 2750 static void ice_unmap_xdp_rings(struct ice_vsi *vsi) 2751 { 2752 int v_idx; 2753 2754 ice_for_each_q_vector(vsi, v_idx) { 2755 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2756 struct ice_tx_ring *ring; 2757 2758 ice_for_each_tx_ring(ring, q_vector->tx) 2759 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2760 break; 2761 2762 /* restore the value of last node prior to XDP setup */ 2763 q_vector->tx.tx_ring = ring; 2764 } 2765 } 2766 2767 /** 2768 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2769 * @vsi: VSI to bring up Tx rings used by XDP 2770 * @prog: bpf program that will be assigned to VSI 2771 * @cfg_type: create from scratch or restore the existing configuration 2772 * 2773 * Return 0 on success and negative value on error 2774 */ 2775 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2776 enum ice_xdp_cfg cfg_type) 2777 { 2778 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2779 struct ice_pf *pf = vsi->back; 2780 struct ice_qs_cfg xdp_qs_cfg = { 2781 .qs_mutex = &pf->avail_q_mutex, 2782 .pf_map = pf->avail_txqs, 2783 .pf_map_size = pf->max_pf_txqs, 2784 .q_count = vsi->num_xdp_txq, 2785 .scatter_count = ICE_MAX_SCATTER_TXQS, 2786 .vsi_map = vsi->txq_map, 2787 .vsi_map_offset = vsi->alloc_txq, 2788 .mapping_mode = ICE_VSI_MAP_CONTIG 2789 }; 2790 struct device *dev; 2791 int status, i; 2792 2793 dev = ice_pf_to_dev(pf); 2794 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2795 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2796 if (!vsi->xdp_rings) 2797 return -ENOMEM; 2798 2799 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2800 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2801 goto err_map_xdp; 2802 2803 if (static_key_enabled(&ice_xdp_locking_key)) 2804 netdev_warn(vsi->netdev, 2805 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2806 2807 if (ice_xdp_alloc_setup_rings(vsi)) 2808 goto clear_xdp_rings; 2809 2810 /* omit the scheduler update if in reset path; XDP queues will be 2811 * taken into account at the end of ice_vsi_rebuild, where 2812 * ice_cfg_vsi_lan is being called 2813 */ 2814 if (cfg_type == ICE_XDP_CFG_PART) 2815 return 0; 2816 2817 ice_map_xdp_rings(vsi); 2818 2819 /* tell the Tx scheduler that right now we have 2820 * additional queues 2821 */ 2822 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2823 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2824 2825 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2826 max_txqs); 2827 if (status) { 2828 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2829 status); 2830 goto unmap_xdp_rings; 2831 } 2832 2833 /* assign the prog only when it's not already present on VSI; 2834 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2835 * VSI rebuild that happens under ethtool -L can expose us to 2836 * the bpf_prog refcount issues as we would be swapping same 2837 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2838 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2839 * this is not harmful as dev_xdp_install bumps the refcount 2840 * before calling the op exposed by the driver; 2841 */ 2842 if (!ice_is_xdp_ena_vsi(vsi)) 2843 ice_vsi_assign_bpf_prog(vsi, prog); 2844 2845 return 0; 2846 unmap_xdp_rings: 2847 ice_unmap_xdp_rings(vsi); 2848 clear_xdp_rings: 2849 ice_for_each_xdp_txq(vsi, i) 2850 if (vsi->xdp_rings[i]) { 2851 kfree_rcu(vsi->xdp_rings[i], rcu); 2852 vsi->xdp_rings[i] = NULL; 2853 } 2854 2855 err_map_xdp: 2856 mutex_lock(&pf->avail_q_mutex); 2857 ice_for_each_xdp_txq(vsi, i) { 2858 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2859 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2860 } 2861 mutex_unlock(&pf->avail_q_mutex); 2862 2863 devm_kfree(dev, vsi->xdp_rings); 2864 vsi->xdp_rings = NULL; 2865 2866 return -ENOMEM; 2867 } 2868 2869 /** 2870 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2871 * @vsi: VSI to remove XDP rings 2872 * @cfg_type: disable XDP permanently or allow it to be restored later 2873 * 2874 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2875 * resources 2876 */ 2877 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2878 { 2879 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2880 struct ice_pf *pf = vsi->back; 2881 int i; 2882 2883 /* q_vectors are freed in reset path so there's no point in detaching 2884 * rings 2885 */ 2886 if (cfg_type == ICE_XDP_CFG_PART) 2887 goto free_qmap; 2888 2889 ice_unmap_xdp_rings(vsi); 2890 2891 free_qmap: 2892 mutex_lock(&pf->avail_q_mutex); 2893 ice_for_each_xdp_txq(vsi, i) { 2894 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2895 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2896 } 2897 mutex_unlock(&pf->avail_q_mutex); 2898 2899 ice_for_each_xdp_txq(vsi, i) 2900 if (vsi->xdp_rings[i]) { 2901 if (vsi->xdp_rings[i]->desc) { 2902 synchronize_rcu(); 2903 ice_free_tx_ring(vsi->xdp_rings[i]); 2904 } 2905 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2906 vsi->xdp_rings[i]->ring_stats = NULL; 2907 kfree_rcu(vsi->xdp_rings[i], rcu); 2908 vsi->xdp_rings[i] = NULL; 2909 } 2910 2911 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2912 vsi->xdp_rings = NULL; 2913 2914 if (static_key_enabled(&ice_xdp_locking_key)) 2915 static_branch_dec(&ice_xdp_locking_key); 2916 2917 if (cfg_type == ICE_XDP_CFG_PART) 2918 return 0; 2919 2920 ice_vsi_assign_bpf_prog(vsi, NULL); 2921 2922 /* notify Tx scheduler that we destroyed XDP queues and bring 2923 * back the old number of child nodes 2924 */ 2925 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2926 max_txqs[i] = vsi->num_txq; 2927 2928 /* change number of XDP Tx queues to 0 */ 2929 vsi->num_xdp_txq = 0; 2930 2931 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2932 max_txqs); 2933 } 2934 2935 /** 2936 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2937 * @vsi: VSI to schedule napi on 2938 */ 2939 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2940 { 2941 int i; 2942 2943 ice_for_each_rxq(vsi, i) { 2944 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2945 2946 if (READ_ONCE(rx_ring->xsk_pool)) 2947 napi_schedule(&rx_ring->q_vector->napi); 2948 } 2949 } 2950 2951 /** 2952 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2953 * @vsi: VSI to determine the count of XDP Tx qs 2954 * 2955 * returns 0 if Tx qs count is higher than at least half of CPU count, 2956 * -ENOMEM otherwise 2957 */ 2958 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2959 { 2960 u16 avail = ice_get_avail_txq_count(vsi->back); 2961 u16 cpus = num_possible_cpus(); 2962 2963 if (avail < cpus / 2) 2964 return -ENOMEM; 2965 2966 if (vsi->type == ICE_VSI_SF) 2967 avail = vsi->alloc_txq; 2968 2969 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2970 2971 if (vsi->num_xdp_txq < cpus) 2972 static_branch_inc(&ice_xdp_locking_key); 2973 2974 return 0; 2975 } 2976 2977 /** 2978 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2979 * @vsi: Pointer to VSI structure 2980 */ 2981 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2982 { 2983 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2984 return ICE_RXBUF_1664; 2985 else 2986 return ICE_RXBUF_3072; 2987 } 2988 2989 /** 2990 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2991 * @vsi: VSI to setup XDP for 2992 * @prog: XDP program 2993 * @extack: netlink extended ack 2994 */ 2995 static int 2996 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2997 struct netlink_ext_ack *extack) 2998 { 2999 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 3000 int ret = 0, xdp_ring_err = 0; 3001 bool if_running; 3002 3003 if (prog && !prog->aux->xdp_has_frags) { 3004 if (frame_size > ice_max_xdp_frame_size(vsi)) { 3005 NL_SET_ERR_MSG_MOD(extack, 3006 "MTU is too large for linear frames and XDP prog does not support frags"); 3007 return -EOPNOTSUPP; 3008 } 3009 } 3010 3011 /* hot swap progs and avoid toggling link */ 3012 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 3013 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 3014 ice_vsi_assign_bpf_prog(vsi, prog); 3015 return 0; 3016 } 3017 3018 if_running = netif_running(vsi->netdev) && 3019 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 3020 3021 /* need to stop netdev while setting up the program for Rx rings */ 3022 if (if_running) { 3023 ret = ice_down(vsi); 3024 if (ret) { 3025 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3026 return ret; 3027 } 3028 } 3029 3030 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3031 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3032 if (xdp_ring_err) { 3033 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3034 goto resume_if; 3035 } else { 3036 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3037 ICE_XDP_CFG_FULL); 3038 if (xdp_ring_err) { 3039 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3040 goto resume_if; 3041 } 3042 } 3043 xdp_features_set_redirect_target(vsi->netdev, true); 3044 /* reallocate Rx queues that are used for zero-copy */ 3045 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3046 if (xdp_ring_err) 3047 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3048 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3049 xdp_features_clear_redirect_target(vsi->netdev); 3050 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3051 if (xdp_ring_err) 3052 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3053 /* reallocate Rx queues that were used for zero-copy */ 3054 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3055 if (xdp_ring_err) 3056 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3057 } 3058 3059 resume_if: 3060 if (if_running) 3061 ret = ice_up(vsi); 3062 3063 if (!ret && prog) 3064 ice_vsi_rx_napi_schedule(vsi); 3065 3066 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3067 } 3068 3069 /** 3070 * ice_xdp_safe_mode - XDP handler for safe mode 3071 * @dev: netdevice 3072 * @xdp: XDP command 3073 */ 3074 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3075 struct netdev_bpf *xdp) 3076 { 3077 NL_SET_ERR_MSG_MOD(xdp->extack, 3078 "Please provide working DDP firmware package in order to use XDP\n" 3079 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3080 return -EOPNOTSUPP; 3081 } 3082 3083 /** 3084 * ice_xdp - implements XDP handler 3085 * @dev: netdevice 3086 * @xdp: XDP command 3087 */ 3088 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3089 { 3090 struct ice_netdev_priv *np = netdev_priv(dev); 3091 struct ice_vsi *vsi = np->vsi; 3092 int ret; 3093 3094 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3095 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3096 return -EINVAL; 3097 } 3098 3099 mutex_lock(&vsi->xdp_state_lock); 3100 3101 switch (xdp->command) { 3102 case XDP_SETUP_PROG: 3103 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3104 break; 3105 case XDP_SETUP_XSK_POOL: 3106 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3107 break; 3108 default: 3109 ret = -EINVAL; 3110 } 3111 3112 mutex_unlock(&vsi->xdp_state_lock); 3113 return ret; 3114 } 3115 3116 /** 3117 * ice_ena_misc_vector - enable the non-queue interrupts 3118 * @pf: board private structure 3119 */ 3120 static void ice_ena_misc_vector(struct ice_pf *pf) 3121 { 3122 struct ice_hw *hw = &pf->hw; 3123 u32 pf_intr_start_offset; 3124 u32 val; 3125 3126 /* Disable anti-spoof detection interrupt to prevent spurious event 3127 * interrupts during a function reset. Anti-spoof functionally is 3128 * still supported. 3129 */ 3130 val = rd32(hw, GL_MDCK_TX_TDPU); 3131 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3132 wr32(hw, GL_MDCK_TX_TDPU, val); 3133 3134 /* clear things first */ 3135 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3136 rd32(hw, PFINT_OICR); /* read to clear */ 3137 3138 val = (PFINT_OICR_ECC_ERR_M | 3139 PFINT_OICR_MAL_DETECT_M | 3140 PFINT_OICR_GRST_M | 3141 PFINT_OICR_PCI_EXCEPTION_M | 3142 PFINT_OICR_VFLR_M | 3143 PFINT_OICR_HMC_ERR_M | 3144 PFINT_OICR_PE_PUSH_M | 3145 PFINT_OICR_PE_CRITERR_M); 3146 3147 wr32(hw, PFINT_OICR_ENA, val); 3148 3149 /* SW_ITR_IDX = 0, but don't change INTENA */ 3150 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3151 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3152 3153 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3154 return; 3155 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3156 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3157 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3158 } 3159 3160 /** 3161 * ice_ll_ts_intr - ll_ts interrupt handler 3162 * @irq: interrupt number 3163 * @data: pointer to a q_vector 3164 */ 3165 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3166 { 3167 struct ice_pf *pf = data; 3168 u32 pf_intr_start_offset; 3169 struct ice_ptp_tx *tx; 3170 unsigned long flags; 3171 struct ice_hw *hw; 3172 u32 val; 3173 u8 idx; 3174 3175 hw = &pf->hw; 3176 tx = &pf->ptp.port.tx; 3177 spin_lock_irqsave(&tx->lock, flags); 3178 ice_ptp_complete_tx_single_tstamp(tx); 3179 3180 idx = find_next_bit_wrap(tx->in_use, tx->len, 3181 tx->last_ll_ts_idx_read + 1); 3182 if (idx != tx->len) 3183 ice_ptp_req_tx_single_tstamp(tx, idx); 3184 spin_unlock_irqrestore(&tx->lock, flags); 3185 3186 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3187 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3188 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3189 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3190 val); 3191 3192 return IRQ_HANDLED; 3193 } 3194 3195 /** 3196 * ice_misc_intr - misc interrupt handler 3197 * @irq: interrupt number 3198 * @data: pointer to a q_vector 3199 */ 3200 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3201 { 3202 struct ice_pf *pf = (struct ice_pf *)data; 3203 irqreturn_t ret = IRQ_HANDLED; 3204 struct ice_hw *hw = &pf->hw; 3205 struct device *dev; 3206 u32 oicr, ena_mask; 3207 3208 dev = ice_pf_to_dev(pf); 3209 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3210 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3211 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3212 3213 oicr = rd32(hw, PFINT_OICR); 3214 ena_mask = rd32(hw, PFINT_OICR_ENA); 3215 3216 if (oicr & PFINT_OICR_SWINT_M) { 3217 ena_mask &= ~PFINT_OICR_SWINT_M; 3218 pf->sw_int_count++; 3219 } 3220 3221 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3222 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3223 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3224 } 3225 if (oicr & PFINT_OICR_VFLR_M) { 3226 /* disable any further VFLR event notifications */ 3227 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3228 u32 reg = rd32(hw, PFINT_OICR_ENA); 3229 3230 reg &= ~PFINT_OICR_VFLR_M; 3231 wr32(hw, PFINT_OICR_ENA, reg); 3232 } else { 3233 ena_mask &= ~PFINT_OICR_VFLR_M; 3234 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3235 } 3236 } 3237 3238 if (oicr & PFINT_OICR_GRST_M) { 3239 u32 reset; 3240 3241 /* we have a reset warning */ 3242 ena_mask &= ~PFINT_OICR_GRST_M; 3243 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3244 rd32(hw, GLGEN_RSTAT)); 3245 3246 if (reset == ICE_RESET_CORER) 3247 pf->corer_count++; 3248 else if (reset == ICE_RESET_GLOBR) 3249 pf->globr_count++; 3250 else if (reset == ICE_RESET_EMPR) 3251 pf->empr_count++; 3252 else 3253 dev_dbg(dev, "Invalid reset type %d\n", reset); 3254 3255 /* If a reset cycle isn't already in progress, we set a bit in 3256 * pf->state so that the service task can start a reset/rebuild. 3257 */ 3258 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3259 if (reset == ICE_RESET_CORER) 3260 set_bit(ICE_CORER_RECV, pf->state); 3261 else if (reset == ICE_RESET_GLOBR) 3262 set_bit(ICE_GLOBR_RECV, pf->state); 3263 else 3264 set_bit(ICE_EMPR_RECV, pf->state); 3265 3266 /* There are couple of different bits at play here. 3267 * hw->reset_ongoing indicates whether the hardware is 3268 * in reset. This is set to true when a reset interrupt 3269 * is received and set back to false after the driver 3270 * has determined that the hardware is out of reset. 3271 * 3272 * ICE_RESET_OICR_RECV in pf->state indicates 3273 * that a post reset rebuild is required before the 3274 * driver is operational again. This is set above. 3275 * 3276 * As this is the start of the reset/rebuild cycle, set 3277 * both to indicate that. 3278 */ 3279 hw->reset_ongoing = true; 3280 } 3281 } 3282 3283 if (oicr & PFINT_OICR_TSYN_TX_M) { 3284 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3285 3286 ret = ice_ptp_ts_irq(pf); 3287 } 3288 3289 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3290 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3291 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3292 3293 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3294 3295 if (ice_pf_src_tmr_owned(pf)) { 3296 /* Save EVENTs from GLTSYN register */ 3297 pf->ptp.ext_ts_irq |= gltsyn_stat & 3298 (GLTSYN_STAT_EVENT0_M | 3299 GLTSYN_STAT_EVENT1_M | 3300 GLTSYN_STAT_EVENT2_M); 3301 3302 ice_ptp_extts_event(pf); 3303 } 3304 } 3305 3306 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3307 if (oicr & ICE_AUX_CRIT_ERR) { 3308 pf->oicr_err_reg |= oicr; 3309 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3310 ena_mask &= ~ICE_AUX_CRIT_ERR; 3311 } 3312 3313 /* Report any remaining unexpected interrupts */ 3314 oicr &= ena_mask; 3315 if (oicr) { 3316 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3317 /* If a critical error is pending there is no choice but to 3318 * reset the device. 3319 */ 3320 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3321 PFINT_OICR_ECC_ERR_M)) { 3322 set_bit(ICE_PFR_REQ, pf->state); 3323 } 3324 } 3325 ice_service_task_schedule(pf); 3326 if (ret == IRQ_HANDLED) 3327 ice_irq_dynamic_ena(hw, NULL, NULL); 3328 3329 return ret; 3330 } 3331 3332 /** 3333 * ice_misc_intr_thread_fn - misc interrupt thread function 3334 * @irq: interrupt number 3335 * @data: pointer to a q_vector 3336 */ 3337 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3338 { 3339 struct ice_pf *pf = data; 3340 struct ice_hw *hw; 3341 3342 hw = &pf->hw; 3343 3344 if (ice_is_reset_in_progress(pf->state)) 3345 goto skip_irq; 3346 3347 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3348 /* Process outstanding Tx timestamps. If there is more work, 3349 * re-arm the interrupt to trigger again. 3350 */ 3351 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3352 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3353 ice_flush(hw); 3354 } 3355 } 3356 3357 skip_irq: 3358 ice_irq_dynamic_ena(hw, NULL, NULL); 3359 3360 return IRQ_HANDLED; 3361 } 3362 3363 /** 3364 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3365 * @hw: pointer to HW structure 3366 */ 3367 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3368 { 3369 /* disable Admin queue Interrupt causes */ 3370 wr32(hw, PFINT_FW_CTL, 3371 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3372 3373 /* disable Mailbox queue Interrupt causes */ 3374 wr32(hw, PFINT_MBX_CTL, 3375 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3376 3377 wr32(hw, PFINT_SB_CTL, 3378 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3379 3380 /* disable Control queue Interrupt causes */ 3381 wr32(hw, PFINT_OICR_CTL, 3382 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3383 3384 ice_flush(hw); 3385 } 3386 3387 /** 3388 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3389 * @pf: board private structure 3390 */ 3391 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3392 { 3393 int irq_num = pf->ll_ts_irq.virq; 3394 3395 synchronize_irq(irq_num); 3396 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3397 3398 ice_free_irq(pf, pf->ll_ts_irq); 3399 } 3400 3401 /** 3402 * ice_free_irq_msix_misc - Unroll misc vector setup 3403 * @pf: board private structure 3404 */ 3405 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3406 { 3407 int misc_irq_num = pf->oicr_irq.virq; 3408 struct ice_hw *hw = &pf->hw; 3409 3410 ice_dis_ctrlq_interrupts(hw); 3411 3412 /* disable OICR interrupt */ 3413 wr32(hw, PFINT_OICR_ENA, 0); 3414 ice_flush(hw); 3415 3416 synchronize_irq(misc_irq_num); 3417 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3418 3419 ice_free_irq(pf, pf->oicr_irq); 3420 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3421 ice_free_irq_msix_ll_ts(pf); 3422 } 3423 3424 /** 3425 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3426 * @hw: pointer to HW structure 3427 * @reg_idx: HW vector index to associate the control queue interrupts with 3428 */ 3429 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3430 { 3431 u32 val; 3432 3433 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3434 PFINT_OICR_CTL_CAUSE_ENA_M); 3435 wr32(hw, PFINT_OICR_CTL, val); 3436 3437 /* enable Admin queue Interrupt causes */ 3438 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3439 PFINT_FW_CTL_CAUSE_ENA_M); 3440 wr32(hw, PFINT_FW_CTL, val); 3441 3442 /* enable Mailbox queue Interrupt causes */ 3443 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3444 PFINT_MBX_CTL_CAUSE_ENA_M); 3445 wr32(hw, PFINT_MBX_CTL, val); 3446 3447 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3448 /* enable Sideband queue Interrupt causes */ 3449 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3450 PFINT_SB_CTL_CAUSE_ENA_M); 3451 wr32(hw, PFINT_SB_CTL, val); 3452 } 3453 3454 ice_flush(hw); 3455 } 3456 3457 /** 3458 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3459 * @pf: board private structure 3460 * 3461 * This sets up the handler for MSIX 0, which is used to manage the 3462 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3463 * when in MSI or Legacy interrupt mode. 3464 */ 3465 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3466 { 3467 struct device *dev = ice_pf_to_dev(pf); 3468 struct ice_hw *hw = &pf->hw; 3469 u32 pf_intr_start_offset; 3470 struct msi_map irq; 3471 int err = 0; 3472 3473 if (!pf->int_name[0]) 3474 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3475 dev_driver_string(dev), dev_name(dev)); 3476 3477 if (!pf->int_name_ll_ts[0]) 3478 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3479 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3480 /* Do not request IRQ but do enable OICR interrupt since settings are 3481 * lost during reset. Note that this function is called only during 3482 * rebuild path and not while reset is in progress. 3483 */ 3484 if (ice_is_reset_in_progress(pf->state)) 3485 goto skip_req_irq; 3486 3487 /* reserve one vector in irq_tracker for misc interrupts */ 3488 irq = ice_alloc_irq(pf, false); 3489 if (irq.index < 0) 3490 return irq.index; 3491 3492 pf->oicr_irq = irq; 3493 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3494 ice_misc_intr_thread_fn, 0, 3495 pf->int_name, pf); 3496 if (err) { 3497 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3498 pf->int_name, err); 3499 ice_free_irq(pf, pf->oicr_irq); 3500 return err; 3501 } 3502 3503 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3504 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3505 goto skip_req_irq; 3506 3507 irq = ice_alloc_irq(pf, false); 3508 if (irq.index < 0) 3509 return irq.index; 3510 3511 pf->ll_ts_irq = irq; 3512 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3513 pf->int_name_ll_ts, pf); 3514 if (err) { 3515 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3516 pf->int_name_ll_ts, err); 3517 ice_free_irq(pf, pf->ll_ts_irq); 3518 return err; 3519 } 3520 3521 skip_req_irq: 3522 ice_ena_misc_vector(pf); 3523 3524 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3525 /* This enables LL TS interrupt */ 3526 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3527 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3528 wr32(hw, PFINT_SB_CTL, 3529 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3530 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3531 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3532 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3533 3534 ice_flush(hw); 3535 ice_irq_dynamic_ena(hw, NULL, NULL); 3536 3537 return 0; 3538 } 3539 3540 /** 3541 * ice_set_ops - set netdev and ethtools ops for the given netdev 3542 * @vsi: the VSI associated with the new netdev 3543 */ 3544 static void ice_set_ops(struct ice_vsi *vsi) 3545 { 3546 struct net_device *netdev = vsi->netdev; 3547 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3548 3549 if (ice_is_safe_mode(pf)) { 3550 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3551 ice_set_ethtool_safe_mode_ops(netdev); 3552 return; 3553 } 3554 3555 netdev->netdev_ops = &ice_netdev_ops; 3556 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3557 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3558 ice_set_ethtool_ops(netdev); 3559 3560 if (vsi->type != ICE_VSI_PF) 3561 return; 3562 3563 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3564 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3565 NETDEV_XDP_ACT_RX_SG; 3566 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3567 } 3568 3569 /** 3570 * ice_set_netdev_features - set features for the given netdev 3571 * @netdev: netdev instance 3572 */ 3573 void ice_set_netdev_features(struct net_device *netdev) 3574 { 3575 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3576 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3577 netdev_features_t csumo_features; 3578 netdev_features_t vlano_features; 3579 netdev_features_t dflt_features; 3580 netdev_features_t tso_features; 3581 3582 if (ice_is_safe_mode(pf)) { 3583 /* safe mode */ 3584 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3585 netdev->hw_features = netdev->features; 3586 return; 3587 } 3588 3589 dflt_features = NETIF_F_SG | 3590 NETIF_F_HIGHDMA | 3591 NETIF_F_NTUPLE | 3592 NETIF_F_RXHASH; 3593 3594 csumo_features = NETIF_F_RXCSUM | 3595 NETIF_F_IP_CSUM | 3596 NETIF_F_SCTP_CRC | 3597 NETIF_F_IPV6_CSUM; 3598 3599 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3600 NETIF_F_HW_VLAN_CTAG_TX | 3601 NETIF_F_HW_VLAN_CTAG_RX; 3602 3603 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3604 if (is_dvm_ena) 3605 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3606 3607 tso_features = NETIF_F_TSO | 3608 NETIF_F_TSO_ECN | 3609 NETIF_F_TSO6 | 3610 NETIF_F_GSO_GRE | 3611 NETIF_F_GSO_UDP_TUNNEL | 3612 NETIF_F_GSO_GRE_CSUM | 3613 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3614 NETIF_F_GSO_PARTIAL | 3615 NETIF_F_GSO_IPXIP4 | 3616 NETIF_F_GSO_IPXIP6 | 3617 NETIF_F_GSO_UDP_L4; 3618 3619 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3620 NETIF_F_GSO_GRE_CSUM; 3621 /* set features that user can change */ 3622 netdev->hw_features = dflt_features | csumo_features | 3623 vlano_features | tso_features; 3624 3625 /* add support for HW_CSUM on packets with MPLS header */ 3626 netdev->mpls_features = NETIF_F_HW_CSUM | 3627 NETIF_F_TSO | 3628 NETIF_F_TSO6; 3629 3630 /* enable features */ 3631 netdev->features |= netdev->hw_features; 3632 3633 netdev->hw_features |= NETIF_F_HW_TC; 3634 netdev->hw_features |= NETIF_F_LOOPBACK; 3635 3636 /* encap and VLAN devices inherit default, csumo and tso features */ 3637 netdev->hw_enc_features |= dflt_features | csumo_features | 3638 tso_features; 3639 netdev->vlan_features |= dflt_features | csumo_features | 3640 tso_features; 3641 3642 /* advertise support but don't enable by default since only one type of 3643 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3644 * type turns on the other has to be turned off. This is enforced by the 3645 * ice_fix_features() ndo callback. 3646 */ 3647 if (is_dvm_ena) 3648 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3649 NETIF_F_HW_VLAN_STAG_TX; 3650 3651 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3652 * be changed at runtime 3653 */ 3654 netdev->hw_features |= NETIF_F_RXFCS; 3655 3656 /* Allow core to manage IRQs affinity */ 3657 netif_set_affinity_auto(netdev); 3658 3659 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3660 * ndo callback. 3661 */ 3662 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3663 netdev->hw_features |= NETIF_F_HW_CSUM; 3664 3665 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3666 } 3667 3668 /** 3669 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3670 * @lut: Lookup table 3671 * @rss_table_size: Lookup table size 3672 * @rss_size: Range of queue number for hashing 3673 */ 3674 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3675 { 3676 u16 i; 3677 3678 for (i = 0; i < rss_table_size; i++) 3679 lut[i] = i % rss_size; 3680 } 3681 3682 /** 3683 * ice_pf_vsi_setup - Set up a PF VSI 3684 * @pf: board private structure 3685 * @pi: pointer to the port_info instance 3686 * 3687 * Returns pointer to the successfully allocated VSI software struct 3688 * on success, otherwise returns NULL on failure. 3689 */ 3690 static struct ice_vsi * 3691 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3692 { 3693 struct ice_vsi_cfg_params params = {}; 3694 3695 params.type = ICE_VSI_PF; 3696 params.port_info = pi; 3697 params.flags = ICE_VSI_FLAG_INIT; 3698 3699 return ice_vsi_setup(pf, ¶ms); 3700 } 3701 3702 static struct ice_vsi * 3703 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3704 struct ice_channel *ch) 3705 { 3706 struct ice_vsi_cfg_params params = {}; 3707 3708 params.type = ICE_VSI_CHNL; 3709 params.port_info = pi; 3710 params.ch = ch; 3711 params.flags = ICE_VSI_FLAG_INIT; 3712 3713 return ice_vsi_setup(pf, ¶ms); 3714 } 3715 3716 /** 3717 * ice_ctrl_vsi_setup - Set up a control VSI 3718 * @pf: board private structure 3719 * @pi: pointer to the port_info instance 3720 * 3721 * Returns pointer to the successfully allocated VSI software struct 3722 * on success, otherwise returns NULL on failure. 3723 */ 3724 static struct ice_vsi * 3725 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3726 { 3727 struct ice_vsi_cfg_params params = {}; 3728 3729 params.type = ICE_VSI_CTRL; 3730 params.port_info = pi; 3731 params.flags = ICE_VSI_FLAG_INIT; 3732 3733 return ice_vsi_setup(pf, ¶ms); 3734 } 3735 3736 /** 3737 * ice_lb_vsi_setup - Set up a loopback VSI 3738 * @pf: board private structure 3739 * @pi: pointer to the port_info instance 3740 * 3741 * Returns pointer to the successfully allocated VSI software struct 3742 * on success, otherwise returns NULL on failure. 3743 */ 3744 struct ice_vsi * 3745 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3746 { 3747 struct ice_vsi_cfg_params params = {}; 3748 3749 params.type = ICE_VSI_LB; 3750 params.port_info = pi; 3751 params.flags = ICE_VSI_FLAG_INIT; 3752 3753 return ice_vsi_setup(pf, ¶ms); 3754 } 3755 3756 /** 3757 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3758 * @netdev: network interface to be adjusted 3759 * @proto: VLAN TPID 3760 * @vid: VLAN ID to be added 3761 * 3762 * net_device_ops implementation for adding VLAN IDs 3763 */ 3764 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3765 { 3766 struct ice_netdev_priv *np = netdev_priv(netdev); 3767 struct ice_vsi_vlan_ops *vlan_ops; 3768 struct ice_vsi *vsi = np->vsi; 3769 struct ice_vlan vlan; 3770 int ret; 3771 3772 /* VLAN 0 is added by default during load/reset */ 3773 if (!vid) 3774 return 0; 3775 3776 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3777 usleep_range(1000, 2000); 3778 3779 /* Add multicast promisc rule for the VLAN ID to be added if 3780 * all-multicast is currently enabled. 3781 */ 3782 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3783 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3784 ICE_MCAST_VLAN_PROMISC_BITS, 3785 vid); 3786 if (ret) 3787 goto finish; 3788 } 3789 3790 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3791 3792 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3793 * packets aren't pruned by the device's internal switch on Rx 3794 */ 3795 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3796 ret = vlan_ops->add_vlan(vsi, &vlan); 3797 if (ret) 3798 goto finish; 3799 3800 /* If all-multicast is currently enabled and this VLAN ID is only one 3801 * besides VLAN-0 we have to update look-up type of multicast promisc 3802 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3803 */ 3804 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3805 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3806 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3807 ICE_MCAST_PROMISC_BITS, 0); 3808 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3809 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3810 } 3811 3812 finish: 3813 clear_bit(ICE_CFG_BUSY, vsi->state); 3814 3815 return ret; 3816 } 3817 3818 /** 3819 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3820 * @netdev: network interface to be adjusted 3821 * @proto: VLAN TPID 3822 * @vid: VLAN ID to be removed 3823 * 3824 * net_device_ops implementation for removing VLAN IDs 3825 */ 3826 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3827 { 3828 struct ice_netdev_priv *np = netdev_priv(netdev); 3829 struct ice_vsi_vlan_ops *vlan_ops; 3830 struct ice_vsi *vsi = np->vsi; 3831 struct ice_vlan vlan; 3832 int ret; 3833 3834 /* don't allow removal of VLAN 0 */ 3835 if (!vid) 3836 return 0; 3837 3838 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3839 usleep_range(1000, 2000); 3840 3841 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3842 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3843 if (ret) { 3844 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3845 vsi->vsi_num); 3846 vsi->current_netdev_flags |= IFF_ALLMULTI; 3847 } 3848 3849 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3850 3851 /* Make sure VLAN delete is successful before updating VLAN 3852 * information 3853 */ 3854 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3855 ret = vlan_ops->del_vlan(vsi, &vlan); 3856 if (ret) 3857 goto finish; 3858 3859 /* Remove multicast promisc rule for the removed VLAN ID if 3860 * all-multicast is enabled. 3861 */ 3862 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3863 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3864 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3865 3866 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3867 /* Update look-up type of multicast promisc rule for VLAN 0 3868 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3869 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3870 */ 3871 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3872 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3873 ICE_MCAST_VLAN_PROMISC_BITS, 3874 0); 3875 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3876 ICE_MCAST_PROMISC_BITS, 0); 3877 } 3878 } 3879 3880 finish: 3881 clear_bit(ICE_CFG_BUSY, vsi->state); 3882 3883 return ret; 3884 } 3885 3886 /** 3887 * ice_rep_indr_tc_block_unbind 3888 * @cb_priv: indirection block private data 3889 */ 3890 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3891 { 3892 struct ice_indr_block_priv *indr_priv = cb_priv; 3893 3894 list_del(&indr_priv->list); 3895 kfree(indr_priv); 3896 } 3897 3898 /** 3899 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3900 * @vsi: VSI struct which has the netdev 3901 */ 3902 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3903 { 3904 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3905 3906 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3907 ice_rep_indr_tc_block_unbind); 3908 } 3909 3910 /** 3911 * ice_tc_indir_block_register - Register TC indirect block notifications 3912 * @vsi: VSI struct which has the netdev 3913 * 3914 * Returns 0 on success, negative value on failure 3915 */ 3916 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3917 { 3918 struct ice_netdev_priv *np; 3919 3920 if (!vsi || !vsi->netdev) 3921 return -EINVAL; 3922 3923 np = netdev_priv(vsi->netdev); 3924 3925 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3926 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3927 } 3928 3929 /** 3930 * ice_get_avail_q_count - Get count of queues in use 3931 * @pf_qmap: bitmap to get queue use count from 3932 * @lock: pointer to a mutex that protects access to pf_qmap 3933 * @size: size of the bitmap 3934 */ 3935 static u16 3936 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3937 { 3938 unsigned long bit; 3939 u16 count = 0; 3940 3941 mutex_lock(lock); 3942 for_each_clear_bit(bit, pf_qmap, size) 3943 count++; 3944 mutex_unlock(lock); 3945 3946 return count; 3947 } 3948 3949 /** 3950 * ice_get_avail_txq_count - Get count of Tx queues in use 3951 * @pf: pointer to an ice_pf instance 3952 */ 3953 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3954 { 3955 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3956 pf->max_pf_txqs); 3957 } 3958 3959 /** 3960 * ice_get_avail_rxq_count - Get count of Rx queues in use 3961 * @pf: pointer to an ice_pf instance 3962 */ 3963 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3964 { 3965 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3966 pf->max_pf_rxqs); 3967 } 3968 3969 /** 3970 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3971 * @pf: board private structure to initialize 3972 */ 3973 static void ice_deinit_pf(struct ice_pf *pf) 3974 { 3975 ice_service_task_stop(pf); 3976 mutex_destroy(&pf->lag_mutex); 3977 mutex_destroy(&pf->adev_mutex); 3978 mutex_destroy(&pf->sw_mutex); 3979 mutex_destroy(&pf->tc_mutex); 3980 mutex_destroy(&pf->avail_q_mutex); 3981 mutex_destroy(&pf->vfs.table_lock); 3982 3983 if (pf->avail_txqs) { 3984 bitmap_free(pf->avail_txqs); 3985 pf->avail_txqs = NULL; 3986 } 3987 3988 if (pf->avail_rxqs) { 3989 bitmap_free(pf->avail_rxqs); 3990 pf->avail_rxqs = NULL; 3991 } 3992 3993 if (pf->ptp.clock) 3994 ptp_clock_unregister(pf->ptp.clock); 3995 3996 xa_destroy(&pf->dyn_ports); 3997 xa_destroy(&pf->sf_nums); 3998 } 3999 4000 /** 4001 * ice_set_pf_caps - set PFs capability flags 4002 * @pf: pointer to the PF instance 4003 */ 4004 static void ice_set_pf_caps(struct ice_pf *pf) 4005 { 4006 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 4007 4008 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4009 if (func_caps->common_cap.rdma) 4010 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 4011 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4012 if (func_caps->common_cap.dcb) 4013 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4014 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4015 if (func_caps->common_cap.sr_iov_1_1) { 4016 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4017 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4018 ICE_MAX_SRIOV_VFS); 4019 } 4020 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4021 if (func_caps->common_cap.rss_table_size) 4022 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4023 4024 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4025 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4026 u16 unused; 4027 4028 /* ctrl_vsi_idx will be set to a valid value when flow director 4029 * is setup by ice_init_fdir 4030 */ 4031 pf->ctrl_vsi_idx = ICE_NO_VSI; 4032 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4033 /* force guaranteed filter pool for PF */ 4034 ice_alloc_fd_guar_item(&pf->hw, &unused, 4035 func_caps->fd_fltr_guar); 4036 /* force shared filter pool for PF */ 4037 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4038 func_caps->fd_fltr_best_effort); 4039 } 4040 4041 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4042 if (func_caps->common_cap.ieee_1588) 4043 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4044 4045 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4046 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4047 } 4048 4049 /** 4050 * ice_init_pf - Initialize general software structures (struct ice_pf) 4051 * @pf: board private structure to initialize 4052 */ 4053 static int ice_init_pf(struct ice_pf *pf) 4054 { 4055 ice_set_pf_caps(pf); 4056 4057 mutex_init(&pf->sw_mutex); 4058 mutex_init(&pf->tc_mutex); 4059 mutex_init(&pf->adev_mutex); 4060 mutex_init(&pf->lag_mutex); 4061 4062 INIT_HLIST_HEAD(&pf->aq_wait_list); 4063 spin_lock_init(&pf->aq_wait_lock); 4064 init_waitqueue_head(&pf->aq_wait_queue); 4065 4066 init_waitqueue_head(&pf->reset_wait_queue); 4067 4068 /* setup service timer and periodic service task */ 4069 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4070 pf->serv_tmr_period = HZ; 4071 INIT_WORK(&pf->serv_task, ice_service_task); 4072 clear_bit(ICE_SERVICE_SCHED, pf->state); 4073 4074 mutex_init(&pf->avail_q_mutex); 4075 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4076 if (!pf->avail_txqs) 4077 return -ENOMEM; 4078 4079 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4080 if (!pf->avail_rxqs) { 4081 bitmap_free(pf->avail_txqs); 4082 pf->avail_txqs = NULL; 4083 return -ENOMEM; 4084 } 4085 4086 mutex_init(&pf->vfs.table_lock); 4087 hash_init(pf->vfs.table); 4088 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4089 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4090 ICE_MBX_OVERFLOW_WATERMARK); 4091 else 4092 ice_mbx_init_snapshot(&pf->hw); 4093 4094 xa_init(&pf->dyn_ports); 4095 xa_init(&pf->sf_nums); 4096 4097 return 0; 4098 } 4099 4100 /** 4101 * ice_is_wol_supported - check if WoL is supported 4102 * @hw: pointer to hardware info 4103 * 4104 * Check if WoL is supported based on the HW configuration. 4105 * Returns true if NVM supports and enables WoL for this port, false otherwise 4106 */ 4107 bool ice_is_wol_supported(struct ice_hw *hw) 4108 { 4109 u16 wol_ctrl; 4110 4111 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4112 * word) indicates WoL is not supported on the corresponding PF ID. 4113 */ 4114 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4115 return false; 4116 4117 return !(BIT(hw->port_info->lport) & wol_ctrl); 4118 } 4119 4120 /** 4121 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4122 * @vsi: VSI being changed 4123 * @new_rx: new number of Rx queues 4124 * @new_tx: new number of Tx queues 4125 * @locked: is adev device_lock held 4126 * 4127 * Only change the number of queues if new_tx, or new_rx is non-0. 4128 * 4129 * Returns 0 on success. 4130 */ 4131 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4132 { 4133 struct ice_pf *pf = vsi->back; 4134 int i, err = 0, timeout = 50; 4135 4136 if (!new_rx && !new_tx) 4137 return -EINVAL; 4138 4139 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4140 timeout--; 4141 if (!timeout) 4142 return -EBUSY; 4143 usleep_range(1000, 2000); 4144 } 4145 4146 if (new_tx) 4147 vsi->req_txq = (u16)new_tx; 4148 if (new_rx) 4149 vsi->req_rxq = (u16)new_rx; 4150 4151 /* set for the next time the netdev is started */ 4152 if (!netif_running(vsi->netdev)) { 4153 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4154 if (err) 4155 goto rebuild_err; 4156 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4157 goto done; 4158 } 4159 4160 ice_vsi_close(vsi); 4161 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4162 if (err) 4163 goto rebuild_err; 4164 4165 ice_for_each_traffic_class(i) { 4166 if (vsi->tc_cfg.ena_tc & BIT(i)) 4167 netdev_set_tc_queue(vsi->netdev, 4168 vsi->tc_cfg.tc_info[i].netdev_tc, 4169 vsi->tc_cfg.tc_info[i].qcount_tx, 4170 vsi->tc_cfg.tc_info[i].qoffset); 4171 } 4172 ice_pf_dcb_recfg(pf, locked); 4173 ice_vsi_open(vsi); 4174 goto done; 4175 4176 rebuild_err: 4177 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4178 err); 4179 done: 4180 clear_bit(ICE_CFG_BUSY, pf->state); 4181 return err; 4182 } 4183 4184 /** 4185 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4186 * @pf: PF to configure 4187 * 4188 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4189 * VSI can still Tx/Rx VLAN tagged packets. 4190 */ 4191 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4192 { 4193 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4194 struct ice_vsi_ctx *ctxt; 4195 struct ice_hw *hw; 4196 int status; 4197 4198 if (!vsi) 4199 return; 4200 4201 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4202 if (!ctxt) 4203 return; 4204 4205 hw = &pf->hw; 4206 ctxt->info = vsi->info; 4207 4208 ctxt->info.valid_sections = 4209 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4210 ICE_AQ_VSI_PROP_SECURITY_VALID | 4211 ICE_AQ_VSI_PROP_SW_VALID); 4212 4213 /* disable VLAN anti-spoof */ 4214 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4215 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4216 4217 /* disable VLAN pruning and keep all other settings */ 4218 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4219 4220 /* allow all VLANs on Tx and don't strip on Rx */ 4221 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4222 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4223 4224 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4225 if (status) { 4226 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4227 status, ice_aq_str(hw->adminq.sq_last_status)); 4228 } else { 4229 vsi->info.sec_flags = ctxt->info.sec_flags; 4230 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4231 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4232 } 4233 4234 kfree(ctxt); 4235 } 4236 4237 /** 4238 * ice_log_pkg_init - log result of DDP package load 4239 * @hw: pointer to hardware info 4240 * @state: state of package load 4241 */ 4242 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4243 { 4244 struct ice_pf *pf = hw->back; 4245 struct device *dev; 4246 4247 dev = ice_pf_to_dev(pf); 4248 4249 switch (state) { 4250 case ICE_DDP_PKG_SUCCESS: 4251 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4252 hw->active_pkg_name, 4253 hw->active_pkg_ver.major, 4254 hw->active_pkg_ver.minor, 4255 hw->active_pkg_ver.update, 4256 hw->active_pkg_ver.draft); 4257 break; 4258 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4259 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4260 hw->active_pkg_name, 4261 hw->active_pkg_ver.major, 4262 hw->active_pkg_ver.minor, 4263 hw->active_pkg_ver.update, 4264 hw->active_pkg_ver.draft); 4265 break; 4266 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4267 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4268 hw->active_pkg_name, 4269 hw->active_pkg_ver.major, 4270 hw->active_pkg_ver.minor, 4271 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4272 break; 4273 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4274 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4275 hw->active_pkg_name, 4276 hw->active_pkg_ver.major, 4277 hw->active_pkg_ver.minor, 4278 hw->active_pkg_ver.update, 4279 hw->active_pkg_ver.draft, 4280 hw->pkg_name, 4281 hw->pkg_ver.major, 4282 hw->pkg_ver.minor, 4283 hw->pkg_ver.update, 4284 hw->pkg_ver.draft); 4285 break; 4286 case ICE_DDP_PKG_FW_MISMATCH: 4287 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4288 break; 4289 case ICE_DDP_PKG_INVALID_FILE: 4290 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4291 break; 4292 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4293 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4294 break; 4295 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4296 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4297 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4298 break; 4299 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4300 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4301 break; 4302 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4303 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4304 break; 4305 case ICE_DDP_PKG_LOAD_ERROR: 4306 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4307 /* poll for reset to complete */ 4308 if (ice_check_reset(hw)) 4309 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4310 break; 4311 case ICE_DDP_PKG_ERR: 4312 default: 4313 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4314 break; 4315 } 4316 } 4317 4318 /** 4319 * ice_load_pkg - load/reload the DDP Package file 4320 * @firmware: firmware structure when firmware requested or NULL for reload 4321 * @pf: pointer to the PF instance 4322 * 4323 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4324 * initialize HW tables. 4325 */ 4326 static void 4327 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4328 { 4329 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4330 struct device *dev = ice_pf_to_dev(pf); 4331 struct ice_hw *hw = &pf->hw; 4332 4333 /* Load DDP Package */ 4334 if (firmware && !hw->pkg_copy) { 4335 state = ice_copy_and_init_pkg(hw, firmware->data, 4336 firmware->size); 4337 ice_log_pkg_init(hw, state); 4338 } else if (!firmware && hw->pkg_copy) { 4339 /* Reload package during rebuild after CORER/GLOBR reset */ 4340 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4341 ice_log_pkg_init(hw, state); 4342 } else { 4343 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4344 } 4345 4346 if (!ice_is_init_pkg_successful(state)) { 4347 /* Safe Mode */ 4348 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4349 return; 4350 } 4351 4352 /* Successful download package is the precondition for advanced 4353 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4354 */ 4355 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4356 } 4357 4358 /** 4359 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4360 * @pf: pointer to the PF structure 4361 * 4362 * There is no error returned here because the driver should be able to handle 4363 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4364 * specifically with Tx. 4365 */ 4366 static void ice_verify_cacheline_size(struct ice_pf *pf) 4367 { 4368 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4369 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4370 ICE_CACHE_LINE_BYTES); 4371 } 4372 4373 /** 4374 * ice_send_version - update firmware with driver version 4375 * @pf: PF struct 4376 * 4377 * Returns 0 on success, else error code 4378 */ 4379 static int ice_send_version(struct ice_pf *pf) 4380 { 4381 struct ice_driver_ver dv; 4382 4383 dv.major_ver = 0xff; 4384 dv.minor_ver = 0xff; 4385 dv.build_ver = 0xff; 4386 dv.subbuild_ver = 0; 4387 strscpy((char *)dv.driver_string, UTS_RELEASE, 4388 sizeof(dv.driver_string)); 4389 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4390 } 4391 4392 /** 4393 * ice_init_fdir - Initialize flow director VSI and configuration 4394 * @pf: pointer to the PF instance 4395 * 4396 * returns 0 on success, negative on error 4397 */ 4398 static int ice_init_fdir(struct ice_pf *pf) 4399 { 4400 struct device *dev = ice_pf_to_dev(pf); 4401 struct ice_vsi *ctrl_vsi; 4402 int err; 4403 4404 /* Side Band Flow Director needs to have a control VSI. 4405 * Allocate it and store it in the PF. 4406 */ 4407 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4408 if (!ctrl_vsi) { 4409 dev_dbg(dev, "could not create control VSI\n"); 4410 return -ENOMEM; 4411 } 4412 4413 err = ice_vsi_open_ctrl(ctrl_vsi); 4414 if (err) { 4415 dev_dbg(dev, "could not open control VSI\n"); 4416 goto err_vsi_open; 4417 } 4418 4419 mutex_init(&pf->hw.fdir_fltr_lock); 4420 4421 err = ice_fdir_create_dflt_rules(pf); 4422 if (err) 4423 goto err_fdir_rule; 4424 4425 return 0; 4426 4427 err_fdir_rule: 4428 ice_fdir_release_flows(&pf->hw); 4429 ice_vsi_close(ctrl_vsi); 4430 err_vsi_open: 4431 ice_vsi_release(ctrl_vsi); 4432 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4433 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4434 pf->ctrl_vsi_idx = ICE_NO_VSI; 4435 } 4436 return err; 4437 } 4438 4439 static void ice_deinit_fdir(struct ice_pf *pf) 4440 { 4441 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4442 4443 if (!vsi) 4444 return; 4445 4446 ice_vsi_manage_fdir(vsi, false); 4447 ice_vsi_release(vsi); 4448 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4449 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4450 pf->ctrl_vsi_idx = ICE_NO_VSI; 4451 } 4452 4453 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4454 } 4455 4456 /** 4457 * ice_get_opt_fw_name - return optional firmware file name or NULL 4458 * @pf: pointer to the PF instance 4459 */ 4460 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4461 { 4462 /* Optional firmware name same as default with additional dash 4463 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4464 */ 4465 struct pci_dev *pdev = pf->pdev; 4466 char *opt_fw_filename; 4467 u64 dsn; 4468 4469 /* Determine the name of the optional file using the DSN (two 4470 * dwords following the start of the DSN Capability). 4471 */ 4472 dsn = pci_get_dsn(pdev); 4473 if (!dsn) 4474 return NULL; 4475 4476 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4477 if (!opt_fw_filename) 4478 return NULL; 4479 4480 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4481 ICE_DDP_PKG_PATH, dsn); 4482 4483 return opt_fw_filename; 4484 } 4485 4486 /** 4487 * ice_request_fw - Device initialization routine 4488 * @pf: pointer to the PF instance 4489 * @firmware: double pointer to firmware struct 4490 * 4491 * Return: zero when successful, negative values otherwise. 4492 */ 4493 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4494 { 4495 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4496 struct device *dev = ice_pf_to_dev(pf); 4497 int err = 0; 4498 4499 /* optional device-specific DDP (if present) overrides the default DDP 4500 * package file. kernel logs a debug message if the file doesn't exist, 4501 * and warning messages for other errors. 4502 */ 4503 if (opt_fw_filename) { 4504 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4505 kfree(opt_fw_filename); 4506 if (!err) 4507 return err; 4508 } 4509 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4510 if (err) 4511 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4512 4513 return err; 4514 } 4515 4516 /** 4517 * ice_init_tx_topology - performs Tx topology initialization 4518 * @hw: pointer to the hardware structure 4519 * @firmware: pointer to firmware structure 4520 * 4521 * Return: zero when init was successful, negative values otherwise. 4522 */ 4523 static int 4524 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4525 { 4526 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4527 struct ice_pf *pf = hw->back; 4528 struct device *dev; 4529 int err; 4530 4531 dev = ice_pf_to_dev(pf); 4532 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4533 if (!err) { 4534 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4535 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4536 else 4537 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4538 /* if there was a change in topology ice_cfg_tx_topo triggered 4539 * a CORER and we need to re-init hw 4540 */ 4541 ice_deinit_hw(hw); 4542 err = ice_init_hw(hw); 4543 4544 return err; 4545 } else if (err == -EIO) { 4546 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4547 } 4548 4549 return 0; 4550 } 4551 4552 /** 4553 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4554 * @hw: pointer to the hardware structure 4555 * @pf: pointer to pf structure 4556 * 4557 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4558 * formats the PF hardware supports. The exact list of supported RXDIDs 4559 * depends on the loaded DDP package. The IDs can be determined by reading the 4560 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4561 * 4562 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4563 * in the DDP package. The 16-byte legacy descriptor is never supported by 4564 * VFs. 4565 */ 4566 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4567 { 4568 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4569 4570 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4571 u32 regval; 4572 4573 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4574 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4575 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4576 pf->supported_rxdids |= BIT(i); 4577 } 4578 } 4579 4580 /** 4581 * ice_init_ddp_config - DDP related configuration 4582 * @hw: pointer to the hardware structure 4583 * @pf: pointer to pf structure 4584 * 4585 * This function loads DDP file from the disk, then initializes Tx 4586 * topology. At the end DDP package is loaded on the card. 4587 * 4588 * Return: zero when init was successful, negative values otherwise. 4589 */ 4590 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4591 { 4592 struct device *dev = ice_pf_to_dev(pf); 4593 const struct firmware *firmware = NULL; 4594 int err; 4595 4596 err = ice_request_fw(pf, &firmware); 4597 if (err) { 4598 dev_err(dev, "Fail during requesting FW: %d\n", err); 4599 return err; 4600 } 4601 4602 err = ice_init_tx_topology(hw, firmware); 4603 if (err) { 4604 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4605 err); 4606 release_firmware(firmware); 4607 return err; 4608 } 4609 4610 /* Download firmware to device */ 4611 ice_load_pkg(firmware, pf); 4612 release_firmware(firmware); 4613 4614 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4615 ice_init_supported_rxdids(hw, pf); 4616 4617 return 0; 4618 } 4619 4620 /** 4621 * ice_print_wake_reason - show the wake up cause in the log 4622 * @pf: pointer to the PF struct 4623 */ 4624 static void ice_print_wake_reason(struct ice_pf *pf) 4625 { 4626 u32 wus = pf->wakeup_reason; 4627 const char *wake_str; 4628 4629 /* if no wake event, nothing to print */ 4630 if (!wus) 4631 return; 4632 4633 if (wus & PFPM_WUS_LNKC_M) 4634 wake_str = "Link\n"; 4635 else if (wus & PFPM_WUS_MAG_M) 4636 wake_str = "Magic Packet\n"; 4637 else if (wus & PFPM_WUS_MNG_M) 4638 wake_str = "Management\n"; 4639 else if (wus & PFPM_WUS_FW_RST_WK_M) 4640 wake_str = "Firmware Reset\n"; 4641 else 4642 wake_str = "Unknown\n"; 4643 4644 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4645 } 4646 4647 /** 4648 * ice_pf_fwlog_update_module - update 1 module 4649 * @pf: pointer to the PF struct 4650 * @log_level: log_level to use for the @module 4651 * @module: module to update 4652 */ 4653 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module) 4654 { 4655 struct ice_hw *hw = &pf->hw; 4656 4657 hw->fwlog_cfg.module_entries[module].log_level = log_level; 4658 } 4659 4660 /** 4661 * ice_register_netdev - register netdev 4662 * @vsi: pointer to the VSI struct 4663 */ 4664 static int ice_register_netdev(struct ice_vsi *vsi) 4665 { 4666 int err; 4667 4668 if (!vsi || !vsi->netdev) 4669 return -EIO; 4670 4671 err = register_netdev(vsi->netdev); 4672 if (err) 4673 return err; 4674 4675 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4676 netif_carrier_off(vsi->netdev); 4677 netif_tx_stop_all_queues(vsi->netdev); 4678 4679 return 0; 4680 } 4681 4682 static void ice_unregister_netdev(struct ice_vsi *vsi) 4683 { 4684 if (!vsi || !vsi->netdev) 4685 return; 4686 4687 unregister_netdev(vsi->netdev); 4688 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4689 } 4690 4691 /** 4692 * ice_cfg_netdev - Allocate, configure and register a netdev 4693 * @vsi: the VSI associated with the new netdev 4694 * 4695 * Returns 0 on success, negative value on failure 4696 */ 4697 static int ice_cfg_netdev(struct ice_vsi *vsi) 4698 { 4699 struct ice_netdev_priv *np; 4700 struct net_device *netdev; 4701 u8 mac_addr[ETH_ALEN]; 4702 4703 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4704 vsi->alloc_rxq); 4705 if (!netdev) 4706 return -ENOMEM; 4707 4708 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4709 vsi->netdev = netdev; 4710 np = netdev_priv(netdev); 4711 np->vsi = vsi; 4712 4713 ice_set_netdev_features(netdev); 4714 ice_set_ops(vsi); 4715 4716 if (vsi->type == ICE_VSI_PF) { 4717 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4718 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4719 eth_hw_addr_set(netdev, mac_addr); 4720 } 4721 4722 netdev->priv_flags |= IFF_UNICAST_FLT; 4723 4724 /* Setup netdev TC information */ 4725 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4726 4727 netdev->max_mtu = ICE_MAX_MTU; 4728 4729 return 0; 4730 } 4731 4732 static void ice_decfg_netdev(struct ice_vsi *vsi) 4733 { 4734 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4735 free_netdev(vsi->netdev); 4736 vsi->netdev = NULL; 4737 } 4738 4739 int ice_init_dev(struct ice_pf *pf) 4740 { 4741 struct device *dev = ice_pf_to_dev(pf); 4742 struct ice_hw *hw = &pf->hw; 4743 int err; 4744 4745 ice_init_feature_support(pf); 4746 4747 err = ice_init_ddp_config(hw, pf); 4748 4749 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4750 * set in pf->state, which will cause ice_is_safe_mode to return 4751 * true 4752 */ 4753 if (err || ice_is_safe_mode(pf)) { 4754 /* we already got function/device capabilities but these don't 4755 * reflect what the driver needs to do in safe mode. Instead of 4756 * adding conditional logic everywhere to ignore these 4757 * device/function capabilities, override them. 4758 */ 4759 ice_set_safe_mode_caps(hw); 4760 } 4761 4762 err = ice_init_pf(pf); 4763 if (err) { 4764 dev_err(dev, "ice_init_pf failed: %d\n", err); 4765 return err; 4766 } 4767 4768 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4769 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4770 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4771 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4772 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4773 pf->hw.tnl.valid_count[TNL_VXLAN]; 4774 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4775 UDP_TUNNEL_TYPE_VXLAN; 4776 } 4777 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4778 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4779 pf->hw.tnl.valid_count[TNL_GENEVE]; 4780 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4781 UDP_TUNNEL_TYPE_GENEVE; 4782 } 4783 4784 err = ice_init_interrupt_scheme(pf); 4785 if (err) { 4786 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4787 err = -EIO; 4788 goto unroll_pf_init; 4789 } 4790 4791 /* In case of MSIX we are going to setup the misc vector right here 4792 * to handle admin queue events etc. In case of legacy and MSI 4793 * the misc functionality and queue processing is combined in 4794 * the same vector and that gets setup at open. 4795 */ 4796 err = ice_req_irq_msix_misc(pf); 4797 if (err) { 4798 dev_err(dev, "setup of misc vector failed: %d\n", err); 4799 goto unroll_irq_scheme_init; 4800 } 4801 4802 return 0; 4803 4804 unroll_irq_scheme_init: 4805 ice_clear_interrupt_scheme(pf); 4806 unroll_pf_init: 4807 ice_deinit_pf(pf); 4808 return err; 4809 } 4810 4811 void ice_deinit_dev(struct ice_pf *pf) 4812 { 4813 ice_free_irq_msix_misc(pf); 4814 ice_deinit_pf(pf); 4815 ice_deinit_hw(&pf->hw); 4816 4817 /* Service task is already stopped, so call reset directly. */ 4818 ice_reset(&pf->hw, ICE_RESET_PFR); 4819 pci_wait_for_pending_transaction(pf->pdev); 4820 ice_clear_interrupt_scheme(pf); 4821 } 4822 4823 static void ice_init_features(struct ice_pf *pf) 4824 { 4825 struct device *dev = ice_pf_to_dev(pf); 4826 4827 if (ice_is_safe_mode(pf)) 4828 return; 4829 4830 /* initialize DDP driven features */ 4831 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4832 ice_ptp_init(pf); 4833 4834 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4835 ice_gnss_init(pf); 4836 4837 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4838 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4839 ice_dpll_init(pf); 4840 4841 /* Note: Flow director init failure is non-fatal to load */ 4842 if (ice_init_fdir(pf)) 4843 dev_err(dev, "could not initialize flow director\n"); 4844 4845 /* Note: DCB init failure is non-fatal to load */ 4846 if (ice_init_pf_dcb(pf, false)) { 4847 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4848 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4849 } else { 4850 ice_cfg_lldp_mib_change(&pf->hw, true); 4851 } 4852 4853 if (ice_init_lag(pf)) 4854 dev_warn(dev, "Failed to init link aggregation support\n"); 4855 4856 ice_hwmon_init(pf); 4857 } 4858 4859 static void ice_deinit_features(struct ice_pf *pf) 4860 { 4861 if (ice_is_safe_mode(pf)) 4862 return; 4863 4864 ice_deinit_lag(pf); 4865 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4866 ice_cfg_lldp_mib_change(&pf->hw, false); 4867 ice_deinit_fdir(pf); 4868 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4869 ice_gnss_exit(pf); 4870 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4871 ice_ptp_release(pf); 4872 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4873 ice_dpll_deinit(pf); 4874 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4875 xa_destroy(&pf->eswitch.reprs); 4876 } 4877 4878 static void ice_init_wakeup(struct ice_pf *pf) 4879 { 4880 /* Save wakeup reason register for later use */ 4881 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4882 4883 /* check for a power management event */ 4884 ice_print_wake_reason(pf); 4885 4886 /* clear wake status, all bits */ 4887 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4888 4889 /* Disable WoL at init, wait for user to enable */ 4890 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4891 } 4892 4893 static int ice_init_link(struct ice_pf *pf) 4894 { 4895 struct device *dev = ice_pf_to_dev(pf); 4896 int err; 4897 4898 err = ice_init_link_events(pf->hw.port_info); 4899 if (err) { 4900 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4901 return err; 4902 } 4903 4904 /* not a fatal error if this fails */ 4905 err = ice_init_nvm_phy_type(pf->hw.port_info); 4906 if (err) 4907 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4908 4909 /* not a fatal error if this fails */ 4910 err = ice_update_link_info(pf->hw.port_info); 4911 if (err) 4912 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4913 4914 ice_init_link_dflt_override(pf->hw.port_info); 4915 4916 ice_check_link_cfg_err(pf, 4917 pf->hw.port_info->phy.link_info.link_cfg_err); 4918 4919 /* if media available, initialize PHY settings */ 4920 if (pf->hw.port_info->phy.link_info.link_info & 4921 ICE_AQ_MEDIA_AVAILABLE) { 4922 /* not a fatal error if this fails */ 4923 err = ice_init_phy_user_cfg(pf->hw.port_info); 4924 if (err) 4925 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4926 4927 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4928 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4929 4930 if (vsi) 4931 ice_configure_phy(vsi); 4932 } 4933 } else { 4934 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4935 } 4936 4937 return err; 4938 } 4939 4940 static int ice_init_pf_sw(struct ice_pf *pf) 4941 { 4942 bool dvm = ice_is_dvm_ena(&pf->hw); 4943 struct ice_vsi *vsi; 4944 int err; 4945 4946 /* create switch struct for the switch element created by FW on boot */ 4947 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4948 if (!pf->first_sw) 4949 return -ENOMEM; 4950 4951 if (pf->hw.evb_veb) 4952 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4953 else 4954 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4955 4956 pf->first_sw->pf = pf; 4957 4958 /* record the sw_id available for later use */ 4959 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4960 4961 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4962 if (err) 4963 goto err_aq_set_port_params; 4964 4965 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4966 if (!vsi) { 4967 err = -ENOMEM; 4968 goto err_pf_vsi_setup; 4969 } 4970 4971 return 0; 4972 4973 err_pf_vsi_setup: 4974 err_aq_set_port_params: 4975 kfree(pf->first_sw); 4976 return err; 4977 } 4978 4979 static void ice_deinit_pf_sw(struct ice_pf *pf) 4980 { 4981 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4982 4983 if (!vsi) 4984 return; 4985 4986 ice_vsi_release(vsi); 4987 kfree(pf->first_sw); 4988 } 4989 4990 static int ice_alloc_vsis(struct ice_pf *pf) 4991 { 4992 struct device *dev = ice_pf_to_dev(pf); 4993 4994 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4995 if (!pf->num_alloc_vsi) 4996 return -EIO; 4997 4998 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4999 dev_warn(dev, 5000 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 5001 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 5002 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 5003 } 5004 5005 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 5006 GFP_KERNEL); 5007 if (!pf->vsi) 5008 return -ENOMEM; 5009 5010 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 5011 sizeof(*pf->vsi_stats), GFP_KERNEL); 5012 if (!pf->vsi_stats) { 5013 devm_kfree(dev, pf->vsi); 5014 return -ENOMEM; 5015 } 5016 5017 return 0; 5018 } 5019 5020 static void ice_dealloc_vsis(struct ice_pf *pf) 5021 { 5022 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5023 pf->vsi_stats = NULL; 5024 5025 pf->num_alloc_vsi = 0; 5026 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5027 pf->vsi = NULL; 5028 } 5029 5030 static int ice_init_devlink(struct ice_pf *pf) 5031 { 5032 int err; 5033 5034 err = ice_devlink_register_params(pf); 5035 if (err) 5036 return err; 5037 5038 ice_devlink_init_regions(pf); 5039 ice_devlink_register(pf); 5040 ice_health_init(pf); 5041 5042 return 0; 5043 } 5044 5045 static void ice_deinit_devlink(struct ice_pf *pf) 5046 { 5047 ice_health_deinit(pf); 5048 ice_devlink_unregister(pf); 5049 ice_devlink_destroy_regions(pf); 5050 ice_devlink_unregister_params(pf); 5051 } 5052 5053 static int ice_init(struct ice_pf *pf) 5054 { 5055 int err; 5056 5057 err = ice_init_dev(pf); 5058 if (err) 5059 return err; 5060 5061 if (pf->hw.mac_type == ICE_MAC_E830) { 5062 err = pci_enable_ptm(pf->pdev, NULL); 5063 if (err) 5064 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5065 } 5066 5067 err = ice_alloc_vsis(pf); 5068 if (err) 5069 goto err_alloc_vsis; 5070 5071 err = ice_init_pf_sw(pf); 5072 if (err) 5073 goto err_init_pf_sw; 5074 5075 ice_init_wakeup(pf); 5076 5077 err = ice_init_link(pf); 5078 if (err) 5079 goto err_init_link; 5080 5081 err = ice_send_version(pf); 5082 if (err) 5083 goto err_init_link; 5084 5085 ice_verify_cacheline_size(pf); 5086 5087 if (ice_is_safe_mode(pf)) 5088 ice_set_safe_mode_vlan_cfg(pf); 5089 else 5090 /* print PCI link speed and width */ 5091 pcie_print_link_status(pf->pdev); 5092 5093 /* ready to go, so clear down state bit */ 5094 clear_bit(ICE_DOWN, pf->state); 5095 clear_bit(ICE_SERVICE_DIS, pf->state); 5096 5097 /* since everything is good, start the service timer */ 5098 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5099 5100 return 0; 5101 5102 err_init_link: 5103 ice_deinit_pf_sw(pf); 5104 err_init_pf_sw: 5105 ice_dealloc_vsis(pf); 5106 err_alloc_vsis: 5107 ice_deinit_dev(pf); 5108 return err; 5109 } 5110 5111 static void ice_deinit(struct ice_pf *pf) 5112 { 5113 set_bit(ICE_SERVICE_DIS, pf->state); 5114 set_bit(ICE_DOWN, pf->state); 5115 5116 ice_deinit_pf_sw(pf); 5117 ice_dealloc_vsis(pf); 5118 ice_deinit_dev(pf); 5119 } 5120 5121 /** 5122 * ice_load - load pf by init hw and starting VSI 5123 * @pf: pointer to the pf instance 5124 * 5125 * This function has to be called under devl_lock. 5126 */ 5127 int ice_load(struct ice_pf *pf) 5128 { 5129 struct ice_vsi *vsi; 5130 int err; 5131 5132 devl_assert_locked(priv_to_devlink(pf)); 5133 5134 vsi = ice_get_main_vsi(pf); 5135 5136 /* init channel list */ 5137 INIT_LIST_HEAD(&vsi->ch_list); 5138 5139 err = ice_cfg_netdev(vsi); 5140 if (err) 5141 return err; 5142 5143 /* Setup DCB netlink interface */ 5144 ice_dcbnl_setup(vsi); 5145 5146 err = ice_init_mac_fltr(pf); 5147 if (err) 5148 goto err_init_mac_fltr; 5149 5150 err = ice_devlink_create_pf_port(pf); 5151 if (err) 5152 goto err_devlink_create_pf_port; 5153 5154 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5155 5156 err = ice_register_netdev(vsi); 5157 if (err) 5158 goto err_register_netdev; 5159 5160 err = ice_tc_indir_block_register(vsi); 5161 if (err) 5162 goto err_tc_indir_block_register; 5163 5164 ice_napi_add(vsi); 5165 5166 ice_init_features(pf); 5167 5168 err = ice_init_rdma(pf); 5169 if (err) 5170 goto err_init_rdma; 5171 5172 ice_service_task_restart(pf); 5173 5174 clear_bit(ICE_DOWN, pf->state); 5175 5176 return 0; 5177 5178 err_init_rdma: 5179 ice_deinit_features(pf); 5180 ice_tc_indir_block_unregister(vsi); 5181 err_tc_indir_block_register: 5182 ice_unregister_netdev(vsi); 5183 err_register_netdev: 5184 ice_devlink_destroy_pf_port(pf); 5185 err_devlink_create_pf_port: 5186 err_init_mac_fltr: 5187 ice_decfg_netdev(vsi); 5188 return err; 5189 } 5190 5191 /** 5192 * ice_unload - unload pf by stopping VSI and deinit hw 5193 * @pf: pointer to the pf instance 5194 * 5195 * This function has to be called under devl_lock. 5196 */ 5197 void ice_unload(struct ice_pf *pf) 5198 { 5199 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5200 5201 devl_assert_locked(priv_to_devlink(pf)); 5202 5203 ice_deinit_rdma(pf); 5204 ice_deinit_features(pf); 5205 ice_tc_indir_block_unregister(vsi); 5206 ice_unregister_netdev(vsi); 5207 ice_devlink_destroy_pf_port(pf); 5208 ice_decfg_netdev(vsi); 5209 } 5210 5211 static int ice_probe_recovery_mode(struct ice_pf *pf) 5212 { 5213 struct device *dev = ice_pf_to_dev(pf); 5214 int err; 5215 5216 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5217 5218 INIT_HLIST_HEAD(&pf->aq_wait_list); 5219 spin_lock_init(&pf->aq_wait_lock); 5220 init_waitqueue_head(&pf->aq_wait_queue); 5221 5222 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5223 pf->serv_tmr_period = HZ; 5224 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5225 clear_bit(ICE_SERVICE_SCHED, pf->state); 5226 err = ice_create_all_ctrlq(&pf->hw); 5227 if (err) 5228 return err; 5229 5230 scoped_guard(devl, priv_to_devlink(pf)) { 5231 err = ice_init_devlink(pf); 5232 if (err) 5233 return err; 5234 } 5235 5236 ice_service_task_restart(pf); 5237 5238 return 0; 5239 } 5240 5241 /** 5242 * ice_probe - Device initialization routine 5243 * @pdev: PCI device information struct 5244 * @ent: entry in ice_pci_tbl 5245 * 5246 * Returns 0 on success, negative on failure 5247 */ 5248 static int 5249 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5250 { 5251 struct device *dev = &pdev->dev; 5252 struct ice_adapter *adapter; 5253 struct ice_pf *pf; 5254 struct ice_hw *hw; 5255 int err; 5256 5257 if (pdev->is_virtfn) { 5258 dev_err(dev, "can't probe a virtual function\n"); 5259 return -EINVAL; 5260 } 5261 5262 /* when under a kdump kernel initiate a reset before enabling the 5263 * device in order to clear out any pending DMA transactions. These 5264 * transactions can cause some systems to machine check when doing 5265 * the pcim_enable_device() below. 5266 */ 5267 if (is_kdump_kernel()) { 5268 pci_save_state(pdev); 5269 pci_clear_master(pdev); 5270 err = pcie_flr(pdev); 5271 if (err) 5272 return err; 5273 pci_restore_state(pdev); 5274 } 5275 5276 /* this driver uses devres, see 5277 * Documentation/driver-api/driver-model/devres.rst 5278 */ 5279 err = pcim_enable_device(pdev); 5280 if (err) 5281 return err; 5282 5283 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5284 if (err) { 5285 dev_err(dev, "BAR0 I/O map error %d\n", err); 5286 return err; 5287 } 5288 5289 pf = ice_allocate_pf(dev); 5290 if (!pf) 5291 return -ENOMEM; 5292 5293 /* initialize Auxiliary index to invalid value */ 5294 pf->aux_idx = -1; 5295 5296 /* set up for high or low DMA */ 5297 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5298 if (err) { 5299 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5300 return err; 5301 } 5302 5303 pci_set_master(pdev); 5304 pf->pdev = pdev; 5305 pci_set_drvdata(pdev, pf); 5306 set_bit(ICE_DOWN, pf->state); 5307 /* Disable service task until DOWN bit is cleared */ 5308 set_bit(ICE_SERVICE_DIS, pf->state); 5309 5310 hw = &pf->hw; 5311 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5312 pci_save_state(pdev); 5313 5314 hw->back = pf; 5315 hw->port_info = NULL; 5316 hw->vendor_id = pdev->vendor; 5317 hw->device_id = pdev->device; 5318 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5319 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5320 hw->subsystem_device_id = pdev->subsystem_device; 5321 hw->bus.device = PCI_SLOT(pdev->devfn); 5322 hw->bus.func = PCI_FUNC(pdev->devfn); 5323 ice_set_ctrlq_len(hw); 5324 5325 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5326 5327 #ifndef CONFIG_DYNAMIC_DEBUG 5328 if (debug < -1) 5329 hw->debug_mask = debug; 5330 #endif 5331 5332 if (ice_is_recovery_mode(hw)) 5333 return ice_probe_recovery_mode(pf); 5334 5335 err = ice_init_hw(hw); 5336 if (err) { 5337 dev_err(dev, "ice_init_hw failed: %d\n", err); 5338 return err; 5339 } 5340 5341 adapter = ice_adapter_get(pdev); 5342 if (IS_ERR(adapter)) { 5343 err = PTR_ERR(adapter); 5344 goto unroll_hw_init; 5345 } 5346 pf->adapter = adapter; 5347 5348 err = ice_init(pf); 5349 if (err) 5350 goto unroll_adapter; 5351 5352 devl_lock(priv_to_devlink(pf)); 5353 err = ice_load(pf); 5354 if (err) 5355 goto unroll_init; 5356 5357 err = ice_init_devlink(pf); 5358 if (err) 5359 goto unroll_load; 5360 devl_unlock(priv_to_devlink(pf)); 5361 5362 return 0; 5363 5364 unroll_load: 5365 ice_unload(pf); 5366 unroll_init: 5367 devl_unlock(priv_to_devlink(pf)); 5368 ice_deinit(pf); 5369 unroll_adapter: 5370 ice_adapter_put(pdev); 5371 unroll_hw_init: 5372 ice_deinit_hw(hw); 5373 return err; 5374 } 5375 5376 /** 5377 * ice_set_wake - enable or disable Wake on LAN 5378 * @pf: pointer to the PF struct 5379 * 5380 * Simple helper for WoL control 5381 */ 5382 static void ice_set_wake(struct ice_pf *pf) 5383 { 5384 struct ice_hw *hw = &pf->hw; 5385 bool wol = pf->wol_ena; 5386 5387 /* clear wake state, otherwise new wake events won't fire */ 5388 wr32(hw, PFPM_WUS, U32_MAX); 5389 5390 /* enable / disable APM wake up, no RMW needed */ 5391 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5392 5393 /* set magic packet filter enabled */ 5394 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5395 } 5396 5397 /** 5398 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5399 * @pf: pointer to the PF struct 5400 * 5401 * Issue firmware command to enable multicast magic wake, making 5402 * sure that any locally administered address (LAA) is used for 5403 * wake, and that PF reset doesn't undo the LAA. 5404 */ 5405 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5406 { 5407 struct device *dev = ice_pf_to_dev(pf); 5408 struct ice_hw *hw = &pf->hw; 5409 u8 mac_addr[ETH_ALEN]; 5410 struct ice_vsi *vsi; 5411 int status; 5412 u8 flags; 5413 5414 if (!pf->wol_ena) 5415 return; 5416 5417 vsi = ice_get_main_vsi(pf); 5418 if (!vsi) 5419 return; 5420 5421 /* Get current MAC address in case it's an LAA */ 5422 if (vsi->netdev) 5423 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5424 else 5425 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5426 5427 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5428 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5429 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5430 5431 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5432 if (status) 5433 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5434 status, ice_aq_str(hw->adminq.sq_last_status)); 5435 } 5436 5437 /** 5438 * ice_remove - Device removal routine 5439 * @pdev: PCI device information struct 5440 */ 5441 static void ice_remove(struct pci_dev *pdev) 5442 { 5443 struct ice_pf *pf = pci_get_drvdata(pdev); 5444 int i; 5445 5446 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5447 if (!ice_is_reset_in_progress(pf->state)) 5448 break; 5449 msleep(100); 5450 } 5451 5452 if (ice_is_recovery_mode(&pf->hw)) { 5453 ice_service_task_stop(pf); 5454 scoped_guard(devl, priv_to_devlink(pf)) { 5455 ice_deinit_devlink(pf); 5456 } 5457 return; 5458 } 5459 5460 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5461 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5462 ice_free_vfs(pf); 5463 } 5464 5465 ice_hwmon_exit(pf); 5466 5467 ice_service_task_stop(pf); 5468 ice_aq_cancel_waiting_tasks(pf); 5469 set_bit(ICE_DOWN, pf->state); 5470 5471 if (!ice_is_safe_mode(pf)) 5472 ice_remove_arfs(pf); 5473 5474 devl_lock(priv_to_devlink(pf)); 5475 ice_dealloc_all_dynamic_ports(pf); 5476 ice_deinit_devlink(pf); 5477 5478 ice_unload(pf); 5479 devl_unlock(priv_to_devlink(pf)); 5480 5481 ice_deinit(pf); 5482 ice_vsi_release_all(pf); 5483 5484 ice_setup_mc_magic_wake(pf); 5485 ice_set_wake(pf); 5486 5487 ice_adapter_put(pdev); 5488 } 5489 5490 /** 5491 * ice_shutdown - PCI callback for shutting down device 5492 * @pdev: PCI device information struct 5493 */ 5494 static void ice_shutdown(struct pci_dev *pdev) 5495 { 5496 struct ice_pf *pf = pci_get_drvdata(pdev); 5497 5498 ice_remove(pdev); 5499 5500 if (system_state == SYSTEM_POWER_OFF) { 5501 pci_wake_from_d3(pdev, pf->wol_ena); 5502 pci_set_power_state(pdev, PCI_D3hot); 5503 } 5504 } 5505 5506 /** 5507 * ice_prepare_for_shutdown - prep for PCI shutdown 5508 * @pf: board private structure 5509 * 5510 * Inform or close all dependent features in prep for PCI device shutdown 5511 */ 5512 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5513 { 5514 struct ice_hw *hw = &pf->hw; 5515 u32 v; 5516 5517 /* Notify VFs of impending reset */ 5518 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5519 ice_vc_notify_reset(pf); 5520 5521 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5522 5523 /* disable the VSIs and their queues that are not already DOWN */ 5524 ice_pf_dis_all_vsi(pf, false); 5525 5526 ice_for_each_vsi(pf, v) 5527 if (pf->vsi[v]) 5528 pf->vsi[v]->vsi_num = 0; 5529 5530 ice_shutdown_all_ctrlq(hw, true); 5531 } 5532 5533 /** 5534 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5535 * @pf: board private structure to reinitialize 5536 * 5537 * This routine reinitialize interrupt scheme that was cleared during 5538 * power management suspend callback. 5539 * 5540 * This should be called during resume routine to re-allocate the q_vectors 5541 * and reacquire interrupts. 5542 */ 5543 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5544 { 5545 struct device *dev = ice_pf_to_dev(pf); 5546 int ret, v; 5547 5548 /* Since we clear MSIX flag during suspend, we need to 5549 * set it back during resume... 5550 */ 5551 5552 ret = ice_init_interrupt_scheme(pf); 5553 if (ret) { 5554 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5555 return ret; 5556 } 5557 5558 /* Remap vectors and rings, after successful re-init interrupts */ 5559 ice_for_each_vsi(pf, v) { 5560 if (!pf->vsi[v]) 5561 continue; 5562 5563 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5564 if (ret) 5565 goto err_reinit; 5566 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5567 rtnl_lock(); 5568 ice_vsi_set_napi_queues(pf->vsi[v]); 5569 rtnl_unlock(); 5570 } 5571 5572 ret = ice_req_irq_msix_misc(pf); 5573 if (ret) { 5574 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5575 ret); 5576 goto err_reinit; 5577 } 5578 5579 return 0; 5580 5581 err_reinit: 5582 while (v--) 5583 if (pf->vsi[v]) { 5584 rtnl_lock(); 5585 ice_vsi_clear_napi_queues(pf->vsi[v]); 5586 rtnl_unlock(); 5587 ice_vsi_free_q_vectors(pf->vsi[v]); 5588 } 5589 5590 return ret; 5591 } 5592 5593 /** 5594 * ice_suspend 5595 * @dev: generic device information structure 5596 * 5597 * Power Management callback to quiesce the device and prepare 5598 * for D3 transition. 5599 */ 5600 static int ice_suspend(struct device *dev) 5601 { 5602 struct pci_dev *pdev = to_pci_dev(dev); 5603 struct ice_pf *pf; 5604 int disabled, v; 5605 5606 pf = pci_get_drvdata(pdev); 5607 5608 if (!ice_pf_state_is_nominal(pf)) { 5609 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5610 return -EBUSY; 5611 } 5612 5613 /* Stop watchdog tasks until resume completion. 5614 * Even though it is most likely that the service task is 5615 * disabled if the device is suspended or down, the service task's 5616 * state is controlled by a different state bit, and we should 5617 * store and honor whatever state that bit is in at this point. 5618 */ 5619 disabled = ice_service_task_stop(pf); 5620 5621 ice_deinit_rdma(pf); 5622 5623 /* Already suspended?, then there is nothing to do */ 5624 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5625 if (!disabled) 5626 ice_service_task_restart(pf); 5627 return 0; 5628 } 5629 5630 if (test_bit(ICE_DOWN, pf->state) || 5631 ice_is_reset_in_progress(pf->state)) { 5632 dev_err(dev, "can't suspend device in reset or already down\n"); 5633 if (!disabled) 5634 ice_service_task_restart(pf); 5635 return 0; 5636 } 5637 5638 ice_setup_mc_magic_wake(pf); 5639 5640 ice_prepare_for_shutdown(pf); 5641 5642 ice_set_wake(pf); 5643 5644 /* Free vectors, clear the interrupt scheme and release IRQs 5645 * for proper hibernation, especially with large number of CPUs. 5646 * Otherwise hibernation might fail when mapping all the vectors back 5647 * to CPU0. 5648 */ 5649 ice_free_irq_msix_misc(pf); 5650 ice_for_each_vsi(pf, v) { 5651 if (!pf->vsi[v]) 5652 continue; 5653 rtnl_lock(); 5654 ice_vsi_clear_napi_queues(pf->vsi[v]); 5655 rtnl_unlock(); 5656 ice_vsi_free_q_vectors(pf->vsi[v]); 5657 } 5658 ice_clear_interrupt_scheme(pf); 5659 5660 pci_save_state(pdev); 5661 pci_wake_from_d3(pdev, pf->wol_ena); 5662 pci_set_power_state(pdev, PCI_D3hot); 5663 return 0; 5664 } 5665 5666 /** 5667 * ice_resume - PM callback for waking up from D3 5668 * @dev: generic device information structure 5669 */ 5670 static int ice_resume(struct device *dev) 5671 { 5672 struct pci_dev *pdev = to_pci_dev(dev); 5673 enum ice_reset_req reset_type; 5674 struct ice_pf *pf; 5675 struct ice_hw *hw; 5676 int ret; 5677 5678 pci_set_power_state(pdev, PCI_D0); 5679 pci_restore_state(pdev); 5680 pci_save_state(pdev); 5681 5682 if (!pci_device_is_present(pdev)) 5683 return -ENODEV; 5684 5685 ret = pci_enable_device_mem(pdev); 5686 if (ret) { 5687 dev_err(dev, "Cannot enable device after suspend\n"); 5688 return ret; 5689 } 5690 5691 pf = pci_get_drvdata(pdev); 5692 hw = &pf->hw; 5693 5694 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5695 ice_print_wake_reason(pf); 5696 5697 /* We cleared the interrupt scheme when we suspended, so we need to 5698 * restore it now to resume device functionality. 5699 */ 5700 ret = ice_reinit_interrupt_scheme(pf); 5701 if (ret) 5702 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5703 5704 ret = ice_init_rdma(pf); 5705 if (ret) 5706 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5707 ret); 5708 5709 clear_bit(ICE_DOWN, pf->state); 5710 /* Now perform PF reset and rebuild */ 5711 reset_type = ICE_RESET_PFR; 5712 /* re-enable service task for reset, but allow reset to schedule it */ 5713 clear_bit(ICE_SERVICE_DIS, pf->state); 5714 5715 if (ice_schedule_reset(pf, reset_type)) 5716 dev_err(dev, "Reset during resume failed.\n"); 5717 5718 clear_bit(ICE_SUSPENDED, pf->state); 5719 ice_service_task_restart(pf); 5720 5721 /* Restart the service task */ 5722 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5723 5724 return 0; 5725 } 5726 5727 /** 5728 * ice_pci_err_detected - warning that PCI error has been detected 5729 * @pdev: PCI device information struct 5730 * @err: the type of PCI error 5731 * 5732 * Called to warn that something happened on the PCI bus and the error handling 5733 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5734 */ 5735 static pci_ers_result_t 5736 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5737 { 5738 struct ice_pf *pf = pci_get_drvdata(pdev); 5739 5740 if (!pf) { 5741 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5742 __func__, err); 5743 return PCI_ERS_RESULT_DISCONNECT; 5744 } 5745 5746 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5747 ice_service_task_stop(pf); 5748 5749 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5750 set_bit(ICE_PFR_REQ, pf->state); 5751 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5752 } 5753 } 5754 5755 return PCI_ERS_RESULT_NEED_RESET; 5756 } 5757 5758 /** 5759 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5760 * @pdev: PCI device information struct 5761 * 5762 * Called to determine if the driver can recover from the PCI slot reset by 5763 * using a register read to determine if the device is recoverable. 5764 */ 5765 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5766 { 5767 struct ice_pf *pf = pci_get_drvdata(pdev); 5768 pci_ers_result_t result; 5769 int err; 5770 u32 reg; 5771 5772 err = pci_enable_device_mem(pdev); 5773 if (err) { 5774 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5775 err); 5776 result = PCI_ERS_RESULT_DISCONNECT; 5777 } else { 5778 pci_set_master(pdev); 5779 pci_restore_state(pdev); 5780 pci_save_state(pdev); 5781 pci_wake_from_d3(pdev, false); 5782 5783 /* Check for life */ 5784 reg = rd32(&pf->hw, GLGEN_RTRIG); 5785 if (!reg) 5786 result = PCI_ERS_RESULT_RECOVERED; 5787 else 5788 result = PCI_ERS_RESULT_DISCONNECT; 5789 } 5790 5791 return result; 5792 } 5793 5794 /** 5795 * ice_pci_err_resume - restart operations after PCI error recovery 5796 * @pdev: PCI device information struct 5797 * 5798 * Called to allow the driver to bring things back up after PCI error and/or 5799 * reset recovery have finished 5800 */ 5801 static void ice_pci_err_resume(struct pci_dev *pdev) 5802 { 5803 struct ice_pf *pf = pci_get_drvdata(pdev); 5804 5805 if (!pf) { 5806 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5807 __func__); 5808 return; 5809 } 5810 5811 if (test_bit(ICE_SUSPENDED, pf->state)) { 5812 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5813 __func__); 5814 return; 5815 } 5816 5817 ice_restore_all_vfs_msi_state(pf); 5818 5819 ice_do_reset(pf, ICE_RESET_PFR); 5820 ice_service_task_restart(pf); 5821 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5822 } 5823 5824 /** 5825 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5826 * @pdev: PCI device information struct 5827 */ 5828 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5829 { 5830 struct ice_pf *pf = pci_get_drvdata(pdev); 5831 5832 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5833 ice_service_task_stop(pf); 5834 5835 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5836 set_bit(ICE_PFR_REQ, pf->state); 5837 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5838 } 5839 } 5840 } 5841 5842 /** 5843 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5844 * @pdev: PCI device information struct 5845 */ 5846 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5847 { 5848 ice_pci_err_resume(pdev); 5849 } 5850 5851 /* ice_pci_tbl - PCI Device ID Table 5852 * 5853 * Wildcard entries (PCI_ANY_ID) should come last 5854 * Last entry must be all 0s 5855 * 5856 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5857 * Class, Class Mask, private data (not used) } 5858 */ 5859 static const struct pci_device_id ice_pci_tbl[] = { 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5895 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5896 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5897 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5898 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5899 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5900 /* required last entry */ 5901 {} 5902 }; 5903 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5904 5905 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5906 5907 static const struct pci_error_handlers ice_pci_err_handler = { 5908 .error_detected = ice_pci_err_detected, 5909 .slot_reset = ice_pci_err_slot_reset, 5910 .reset_prepare = ice_pci_err_reset_prepare, 5911 .reset_done = ice_pci_err_reset_done, 5912 .resume = ice_pci_err_resume 5913 }; 5914 5915 static struct pci_driver ice_driver = { 5916 .name = KBUILD_MODNAME, 5917 .id_table = ice_pci_tbl, 5918 .probe = ice_probe, 5919 .remove = ice_remove, 5920 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5921 .shutdown = ice_shutdown, 5922 .sriov_configure = ice_sriov_configure, 5923 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5924 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5925 .err_handler = &ice_pci_err_handler 5926 }; 5927 5928 /** 5929 * ice_module_init - Driver registration routine 5930 * 5931 * ice_module_init is the first routine called when the driver is 5932 * loaded. All it does is register with the PCI subsystem. 5933 */ 5934 static int __init ice_module_init(void) 5935 { 5936 int status = -ENOMEM; 5937 5938 pr_info("%s\n", ice_driver_string); 5939 pr_info("%s\n", ice_copyright); 5940 5941 ice_adv_lnk_speed_maps_init(); 5942 5943 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5944 if (!ice_wq) { 5945 pr_err("Failed to create workqueue\n"); 5946 return status; 5947 } 5948 5949 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5950 if (!ice_lag_wq) { 5951 pr_err("Failed to create LAG workqueue\n"); 5952 goto err_dest_wq; 5953 } 5954 5955 ice_debugfs_init(); 5956 5957 status = pci_register_driver(&ice_driver); 5958 if (status) { 5959 pr_err("failed to register PCI driver, err %d\n", status); 5960 goto err_dest_lag_wq; 5961 } 5962 5963 status = ice_sf_driver_register(); 5964 if (status) { 5965 pr_err("Failed to register SF driver, err %d\n", status); 5966 goto err_sf_driver; 5967 } 5968 5969 return 0; 5970 5971 err_sf_driver: 5972 pci_unregister_driver(&ice_driver); 5973 err_dest_lag_wq: 5974 destroy_workqueue(ice_lag_wq); 5975 ice_debugfs_exit(); 5976 err_dest_wq: 5977 destroy_workqueue(ice_wq); 5978 return status; 5979 } 5980 module_init(ice_module_init); 5981 5982 /** 5983 * ice_module_exit - Driver exit cleanup routine 5984 * 5985 * ice_module_exit is called just before the driver is removed 5986 * from memory. 5987 */ 5988 static void __exit ice_module_exit(void) 5989 { 5990 ice_sf_driver_unregister(); 5991 pci_unregister_driver(&ice_driver); 5992 ice_debugfs_exit(); 5993 destroy_workqueue(ice_wq); 5994 destroy_workqueue(ice_lag_wq); 5995 pr_info("module unloaded\n"); 5996 } 5997 module_exit(ice_module_exit); 5998 5999 /** 6000 * ice_set_mac_address - NDO callback to set MAC address 6001 * @netdev: network interface device structure 6002 * @pi: pointer to an address structure 6003 * 6004 * Returns 0 on success, negative on failure 6005 */ 6006 static int ice_set_mac_address(struct net_device *netdev, void *pi) 6007 { 6008 struct ice_netdev_priv *np = netdev_priv(netdev); 6009 struct ice_vsi *vsi = np->vsi; 6010 struct ice_pf *pf = vsi->back; 6011 struct ice_hw *hw = &pf->hw; 6012 struct sockaddr *addr = pi; 6013 u8 old_mac[ETH_ALEN]; 6014 u8 flags = 0; 6015 u8 *mac; 6016 int err; 6017 6018 mac = (u8 *)addr->sa_data; 6019 6020 if (!is_valid_ether_addr(mac)) 6021 return -EADDRNOTAVAIL; 6022 6023 if (test_bit(ICE_DOWN, pf->state) || 6024 ice_is_reset_in_progress(pf->state)) { 6025 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6026 mac); 6027 return -EBUSY; 6028 } 6029 6030 if (ice_chnl_dmac_fltr_cnt(pf)) { 6031 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6032 mac); 6033 return -EAGAIN; 6034 } 6035 6036 netif_addr_lock_bh(netdev); 6037 ether_addr_copy(old_mac, netdev->dev_addr); 6038 /* change the netdev's MAC address */ 6039 eth_hw_addr_set(netdev, mac); 6040 netif_addr_unlock_bh(netdev); 6041 6042 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6043 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6044 if (err && err != -ENOENT) { 6045 err = -EADDRNOTAVAIL; 6046 goto err_update_filters; 6047 } 6048 6049 /* Add filter for new MAC. If filter exists, return success */ 6050 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6051 if (err == -EEXIST) { 6052 /* Although this MAC filter is already present in hardware it's 6053 * possible in some cases (e.g. bonding) that dev_addr was 6054 * modified outside of the driver and needs to be restored back 6055 * to this value. 6056 */ 6057 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6058 6059 return 0; 6060 } else if (err) { 6061 /* error if the new filter addition failed */ 6062 err = -EADDRNOTAVAIL; 6063 } 6064 6065 err_update_filters: 6066 if (err) { 6067 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6068 mac); 6069 netif_addr_lock_bh(netdev); 6070 eth_hw_addr_set(netdev, old_mac); 6071 netif_addr_unlock_bh(netdev); 6072 return err; 6073 } 6074 6075 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6076 netdev->dev_addr); 6077 6078 /* write new MAC address to the firmware */ 6079 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6080 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6081 if (err) { 6082 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6083 mac, err); 6084 } 6085 return 0; 6086 } 6087 6088 /** 6089 * ice_set_rx_mode - NDO callback to set the netdev filters 6090 * @netdev: network interface device structure 6091 */ 6092 static void ice_set_rx_mode(struct net_device *netdev) 6093 { 6094 struct ice_netdev_priv *np = netdev_priv(netdev); 6095 struct ice_vsi *vsi = np->vsi; 6096 6097 if (!vsi || ice_is_switchdev_running(vsi->back)) 6098 return; 6099 6100 /* Set the flags to synchronize filters 6101 * ndo_set_rx_mode may be triggered even without a change in netdev 6102 * flags 6103 */ 6104 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6105 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6106 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6107 6108 /* schedule our worker thread which will take care of 6109 * applying the new filter changes 6110 */ 6111 ice_service_task_schedule(vsi->back); 6112 } 6113 6114 /** 6115 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6116 * @netdev: network interface device structure 6117 * @queue_index: Queue ID 6118 * @maxrate: maximum bandwidth in Mbps 6119 */ 6120 static int 6121 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6122 { 6123 struct ice_netdev_priv *np = netdev_priv(netdev); 6124 struct ice_vsi *vsi = np->vsi; 6125 u16 q_handle; 6126 int status; 6127 u8 tc; 6128 6129 /* Validate maxrate requested is within permitted range */ 6130 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6131 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6132 maxrate, queue_index); 6133 return -EINVAL; 6134 } 6135 6136 q_handle = vsi->tx_rings[queue_index]->q_handle; 6137 tc = ice_dcb_get_tc(vsi, queue_index); 6138 6139 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6140 if (!vsi) { 6141 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6142 queue_index); 6143 return -EINVAL; 6144 } 6145 6146 /* Set BW back to default, when user set maxrate to 0 */ 6147 if (!maxrate) 6148 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6149 q_handle, ICE_MAX_BW); 6150 else 6151 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6152 q_handle, ICE_MAX_BW, maxrate * 1000); 6153 if (status) 6154 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6155 status); 6156 6157 return status; 6158 } 6159 6160 /** 6161 * ice_fdb_add - add an entry to the hardware database 6162 * @ndm: the input from the stack 6163 * @tb: pointer to array of nladdr (unused) 6164 * @dev: the net device pointer 6165 * @addr: the MAC address entry being added 6166 * @vid: VLAN ID 6167 * @flags: instructions from stack about fdb operation 6168 * @notified: whether notification was emitted 6169 * @extack: netlink extended ack 6170 */ 6171 static int 6172 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6173 struct net_device *dev, const unsigned char *addr, u16 vid, 6174 u16 flags, bool *notified, 6175 struct netlink_ext_ack __always_unused *extack) 6176 { 6177 int err; 6178 6179 if (vid) { 6180 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6181 return -EINVAL; 6182 } 6183 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6184 netdev_err(dev, "FDB only supports static addresses\n"); 6185 return -EINVAL; 6186 } 6187 6188 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6189 err = dev_uc_add_excl(dev, addr); 6190 else if (is_multicast_ether_addr(addr)) 6191 err = dev_mc_add_excl(dev, addr); 6192 else 6193 err = -EINVAL; 6194 6195 /* Only return duplicate errors if NLM_F_EXCL is set */ 6196 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6197 err = 0; 6198 6199 return err; 6200 } 6201 6202 /** 6203 * ice_fdb_del - delete an entry from the hardware database 6204 * @ndm: the input from the stack 6205 * @tb: pointer to array of nladdr (unused) 6206 * @dev: the net device pointer 6207 * @addr: the MAC address entry being added 6208 * @vid: VLAN ID 6209 * @notified: whether notification was emitted 6210 * @extack: netlink extended ack 6211 */ 6212 static int 6213 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6214 struct net_device *dev, const unsigned char *addr, 6215 __always_unused u16 vid, bool *notified, 6216 struct netlink_ext_ack *extack) 6217 { 6218 int err; 6219 6220 if (ndm->ndm_state & NUD_PERMANENT) { 6221 netdev_err(dev, "FDB only supports static addresses\n"); 6222 return -EINVAL; 6223 } 6224 6225 if (is_unicast_ether_addr(addr)) 6226 err = dev_uc_del(dev, addr); 6227 else if (is_multicast_ether_addr(addr)) 6228 err = dev_mc_del(dev, addr); 6229 else 6230 err = -EINVAL; 6231 6232 return err; 6233 } 6234 6235 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6236 NETIF_F_HW_VLAN_CTAG_TX | \ 6237 NETIF_F_HW_VLAN_STAG_RX | \ 6238 NETIF_F_HW_VLAN_STAG_TX) 6239 6240 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6241 NETIF_F_HW_VLAN_STAG_RX) 6242 6243 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6244 NETIF_F_HW_VLAN_STAG_FILTER) 6245 6246 /** 6247 * ice_fix_features - fix the netdev features flags based on device limitations 6248 * @netdev: ptr to the netdev that flags are being fixed on 6249 * @features: features that need to be checked and possibly fixed 6250 * 6251 * Make sure any fixups are made to features in this callback. This enables the 6252 * driver to not have to check unsupported configurations throughout the driver 6253 * because that's the responsiblity of this callback. 6254 * 6255 * Single VLAN Mode (SVM) Supported Features: 6256 * NETIF_F_HW_VLAN_CTAG_FILTER 6257 * NETIF_F_HW_VLAN_CTAG_RX 6258 * NETIF_F_HW_VLAN_CTAG_TX 6259 * 6260 * Double VLAN Mode (DVM) Supported Features: 6261 * NETIF_F_HW_VLAN_CTAG_FILTER 6262 * NETIF_F_HW_VLAN_CTAG_RX 6263 * NETIF_F_HW_VLAN_CTAG_TX 6264 * 6265 * NETIF_F_HW_VLAN_STAG_FILTER 6266 * NETIF_HW_VLAN_STAG_RX 6267 * NETIF_HW_VLAN_STAG_TX 6268 * 6269 * Features that need fixing: 6270 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6271 * These are mutually exlusive as the VSI context cannot support multiple 6272 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6273 * is not done, then default to clearing the requested STAG offload 6274 * settings. 6275 * 6276 * All supported filtering has to be enabled or disabled together. For 6277 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6278 * together. If this is not done, then default to VLAN filtering disabled. 6279 * These are mutually exclusive as there is currently no way to 6280 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6281 * prune rules. 6282 */ 6283 static netdev_features_t 6284 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6285 { 6286 struct ice_netdev_priv *np = netdev_priv(netdev); 6287 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6288 bool cur_ctag, cur_stag, req_ctag, req_stag; 6289 6290 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6291 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6292 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6293 6294 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6295 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6296 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6297 6298 if (req_vlan_fltr != cur_vlan_fltr) { 6299 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6300 if (req_ctag && req_stag) { 6301 features |= NETIF_VLAN_FILTERING_FEATURES; 6302 } else if (!req_ctag && !req_stag) { 6303 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6304 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6305 (!cur_stag && req_stag && !cur_ctag)) { 6306 features |= NETIF_VLAN_FILTERING_FEATURES; 6307 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6308 } else if ((cur_ctag && !req_ctag && cur_stag) || 6309 (cur_stag && !req_stag && cur_ctag)) { 6310 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6311 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6312 } 6313 } else { 6314 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6315 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6316 6317 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6318 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6319 } 6320 } 6321 6322 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6323 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6324 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6325 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6326 NETIF_F_HW_VLAN_STAG_TX); 6327 } 6328 6329 if (!(netdev->features & NETIF_F_RXFCS) && 6330 (features & NETIF_F_RXFCS) && 6331 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6332 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6333 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6334 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6335 } 6336 6337 return features; 6338 } 6339 6340 /** 6341 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6342 * @vsi: PF's VSI 6343 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6344 * 6345 * Store current stripped VLAN proto in ring packet context, 6346 * so it can be accessed more efficiently by packet processing code. 6347 */ 6348 static void 6349 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6350 { 6351 u16 i; 6352 6353 ice_for_each_alloc_rxq(vsi, i) 6354 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6355 } 6356 6357 /** 6358 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6359 * @vsi: PF's VSI 6360 * @features: features used to determine VLAN offload settings 6361 * 6362 * First, determine the vlan_ethertype based on the VLAN offload bits in 6363 * features. Then determine if stripping and insertion should be enabled or 6364 * disabled. Finally enable or disable VLAN stripping and insertion. 6365 */ 6366 static int 6367 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6368 { 6369 bool enable_stripping = true, enable_insertion = true; 6370 struct ice_vsi_vlan_ops *vlan_ops; 6371 int strip_err = 0, insert_err = 0; 6372 u16 vlan_ethertype = 0; 6373 6374 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6375 6376 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6377 vlan_ethertype = ETH_P_8021AD; 6378 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6379 vlan_ethertype = ETH_P_8021Q; 6380 6381 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6382 enable_stripping = false; 6383 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6384 enable_insertion = false; 6385 6386 if (enable_stripping) 6387 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6388 else 6389 strip_err = vlan_ops->dis_stripping(vsi); 6390 6391 if (enable_insertion) 6392 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6393 else 6394 insert_err = vlan_ops->dis_insertion(vsi); 6395 6396 if (strip_err || insert_err) 6397 return -EIO; 6398 6399 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6400 htons(vlan_ethertype) : 0); 6401 6402 return 0; 6403 } 6404 6405 /** 6406 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6407 * @vsi: PF's VSI 6408 * @features: features used to determine VLAN filtering settings 6409 * 6410 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6411 * features. 6412 */ 6413 static int 6414 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6415 { 6416 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6417 int err = 0; 6418 6419 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6420 * if either bit is set. In switchdev mode Rx filtering should never be 6421 * enabled. 6422 */ 6423 if ((features & 6424 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6425 !ice_is_eswitch_mode_switchdev(vsi->back)) 6426 err = vlan_ops->ena_rx_filtering(vsi); 6427 else 6428 err = vlan_ops->dis_rx_filtering(vsi); 6429 6430 return err; 6431 } 6432 6433 /** 6434 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6435 * @netdev: ptr to the netdev being adjusted 6436 * @features: the feature set that the stack is suggesting 6437 * 6438 * Only update VLAN settings if the requested_vlan_features are different than 6439 * the current_vlan_features. 6440 */ 6441 static int 6442 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6443 { 6444 netdev_features_t current_vlan_features, requested_vlan_features; 6445 struct ice_netdev_priv *np = netdev_priv(netdev); 6446 struct ice_vsi *vsi = np->vsi; 6447 int err; 6448 6449 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6450 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6451 if (current_vlan_features ^ requested_vlan_features) { 6452 if ((features & NETIF_F_RXFCS) && 6453 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6454 dev_err(ice_pf_to_dev(vsi->back), 6455 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6456 return -EIO; 6457 } 6458 6459 err = ice_set_vlan_offload_features(vsi, features); 6460 if (err) 6461 return err; 6462 } 6463 6464 current_vlan_features = netdev->features & 6465 NETIF_VLAN_FILTERING_FEATURES; 6466 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6467 if (current_vlan_features ^ requested_vlan_features) { 6468 err = ice_set_vlan_filtering_features(vsi, features); 6469 if (err) 6470 return err; 6471 } 6472 6473 return 0; 6474 } 6475 6476 /** 6477 * ice_set_loopback - turn on/off loopback mode on underlying PF 6478 * @vsi: ptr to VSI 6479 * @ena: flag to indicate the on/off setting 6480 */ 6481 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6482 { 6483 bool if_running = netif_running(vsi->netdev); 6484 int ret; 6485 6486 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6487 ret = ice_down(vsi); 6488 if (ret) { 6489 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6490 return ret; 6491 } 6492 } 6493 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6494 if (ret) 6495 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6496 if (if_running) 6497 ret = ice_up(vsi); 6498 6499 return ret; 6500 } 6501 6502 /** 6503 * ice_set_features - set the netdev feature flags 6504 * @netdev: ptr to the netdev being adjusted 6505 * @features: the feature set that the stack is suggesting 6506 */ 6507 static int 6508 ice_set_features(struct net_device *netdev, netdev_features_t features) 6509 { 6510 netdev_features_t changed = netdev->features ^ features; 6511 struct ice_netdev_priv *np = netdev_priv(netdev); 6512 struct ice_vsi *vsi = np->vsi; 6513 struct ice_pf *pf = vsi->back; 6514 int ret = 0; 6515 6516 /* Don't set any netdev advanced features with device in Safe Mode */ 6517 if (ice_is_safe_mode(pf)) { 6518 dev_err(ice_pf_to_dev(pf), 6519 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6520 return ret; 6521 } 6522 6523 /* Do not change setting during reset */ 6524 if (ice_is_reset_in_progress(pf->state)) { 6525 dev_err(ice_pf_to_dev(pf), 6526 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6527 return -EBUSY; 6528 } 6529 6530 /* Multiple features can be changed in one call so keep features in 6531 * separate if/else statements to guarantee each feature is checked 6532 */ 6533 if (changed & NETIF_F_RXHASH) 6534 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6535 6536 ret = ice_set_vlan_features(netdev, features); 6537 if (ret) 6538 return ret; 6539 6540 /* Turn on receive of FCS aka CRC, and after setting this 6541 * flag the packet data will have the 4 byte CRC appended 6542 */ 6543 if (changed & NETIF_F_RXFCS) { 6544 if ((features & NETIF_F_RXFCS) && 6545 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6546 dev_err(ice_pf_to_dev(vsi->back), 6547 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6548 return -EIO; 6549 } 6550 6551 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6552 ret = ice_down_up(vsi); 6553 if (ret) 6554 return ret; 6555 } 6556 6557 if (changed & NETIF_F_NTUPLE) { 6558 bool ena = !!(features & NETIF_F_NTUPLE); 6559 6560 ice_vsi_manage_fdir(vsi, ena); 6561 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6562 } 6563 6564 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6565 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6566 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6567 return -EACCES; 6568 } 6569 6570 if (changed & NETIF_F_HW_TC) { 6571 bool ena = !!(features & NETIF_F_HW_TC); 6572 6573 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6574 } 6575 6576 if (changed & NETIF_F_LOOPBACK) 6577 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6578 6579 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6580 * (NETIF_F_HW_CSUM) is not supported. 6581 */ 6582 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6583 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6584 if (netdev->features & NETIF_F_HW_CSUM) 6585 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6586 else 6587 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6588 return -EIO; 6589 } 6590 6591 return ret; 6592 } 6593 6594 /** 6595 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6596 * @vsi: VSI to setup VLAN properties for 6597 */ 6598 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6599 { 6600 int err; 6601 6602 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6603 if (err) 6604 return err; 6605 6606 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6607 if (err) 6608 return err; 6609 6610 return ice_vsi_add_vlan_zero(vsi); 6611 } 6612 6613 /** 6614 * ice_vsi_cfg_lan - Setup the VSI lan related config 6615 * @vsi: the VSI being configured 6616 * 6617 * Return 0 on success and negative value on error 6618 */ 6619 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6620 { 6621 int err; 6622 6623 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6624 ice_set_rx_mode(vsi->netdev); 6625 6626 err = ice_vsi_vlan_setup(vsi); 6627 if (err) 6628 return err; 6629 } 6630 ice_vsi_cfg_dcb_rings(vsi); 6631 6632 err = ice_vsi_cfg_lan_txqs(vsi); 6633 if (!err && ice_is_xdp_ena_vsi(vsi)) 6634 err = ice_vsi_cfg_xdp_txqs(vsi); 6635 if (!err) 6636 err = ice_vsi_cfg_rxqs(vsi); 6637 6638 return err; 6639 } 6640 6641 /* THEORY OF MODERATION: 6642 * The ice driver hardware works differently than the hardware that DIMLIB was 6643 * originally made for. ice hardware doesn't have packet count limits that 6644 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6645 * which is hard-coded to a limit of 250,000 ints/second. 6646 * If not using dynamic moderation, the INTRL value can be modified 6647 * by ethtool rx-usecs-high. 6648 */ 6649 struct ice_dim { 6650 /* the throttle rate for interrupts, basically worst case delay before 6651 * an initial interrupt fires, value is stored in microseconds. 6652 */ 6653 u16 itr; 6654 }; 6655 6656 /* Make a different profile for Rx that doesn't allow quite so aggressive 6657 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6658 * second. 6659 */ 6660 static const struct ice_dim rx_profile[] = { 6661 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6662 {8}, /* 125,000 ints/s */ 6663 {16}, /* 62,500 ints/s */ 6664 {62}, /* 16,129 ints/s */ 6665 {126} /* 7,936 ints/s */ 6666 }; 6667 6668 /* The transmit profile, which has the same sorts of values 6669 * as the previous struct 6670 */ 6671 static const struct ice_dim tx_profile[] = { 6672 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6673 {8}, /* 125,000 ints/s */ 6674 {40}, /* 16,125 ints/s */ 6675 {128}, /* 7,812 ints/s */ 6676 {256} /* 3,906 ints/s */ 6677 }; 6678 6679 static void ice_tx_dim_work(struct work_struct *work) 6680 { 6681 struct ice_ring_container *rc; 6682 struct dim *dim; 6683 u16 itr; 6684 6685 dim = container_of(work, struct dim, work); 6686 rc = dim->priv; 6687 6688 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6689 6690 /* look up the values in our local table */ 6691 itr = tx_profile[dim->profile_ix].itr; 6692 6693 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6694 ice_write_itr(rc, itr); 6695 6696 dim->state = DIM_START_MEASURE; 6697 } 6698 6699 static void ice_rx_dim_work(struct work_struct *work) 6700 { 6701 struct ice_ring_container *rc; 6702 struct dim *dim; 6703 u16 itr; 6704 6705 dim = container_of(work, struct dim, work); 6706 rc = dim->priv; 6707 6708 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6709 6710 /* look up the values in our local table */ 6711 itr = rx_profile[dim->profile_ix].itr; 6712 6713 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6714 ice_write_itr(rc, itr); 6715 6716 dim->state = DIM_START_MEASURE; 6717 } 6718 6719 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6720 6721 /** 6722 * ice_init_moderation - set up interrupt moderation 6723 * @q_vector: the vector containing rings to be configured 6724 * 6725 * Set up interrupt moderation registers, with the intent to do the right thing 6726 * when called from reset or from probe, and whether or not dynamic moderation 6727 * is enabled or not. Take special care to write all the registers in both 6728 * dynamic moderation mode or not in order to make sure hardware is in a known 6729 * state. 6730 */ 6731 static void ice_init_moderation(struct ice_q_vector *q_vector) 6732 { 6733 struct ice_ring_container *rc; 6734 bool tx_dynamic, rx_dynamic; 6735 6736 rc = &q_vector->tx; 6737 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6738 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6739 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6740 rc->dim.priv = rc; 6741 tx_dynamic = ITR_IS_DYNAMIC(rc); 6742 6743 /* set the initial TX ITR to match the above */ 6744 ice_write_itr(rc, tx_dynamic ? 6745 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6746 6747 rc = &q_vector->rx; 6748 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6749 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6750 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6751 rc->dim.priv = rc; 6752 rx_dynamic = ITR_IS_DYNAMIC(rc); 6753 6754 /* set the initial RX ITR to match the above */ 6755 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6756 rc->itr_setting); 6757 6758 ice_set_q_vector_intrl(q_vector); 6759 } 6760 6761 /** 6762 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6763 * @vsi: the VSI being configured 6764 */ 6765 static void ice_napi_enable_all(struct ice_vsi *vsi) 6766 { 6767 int q_idx; 6768 6769 if (!vsi->netdev) 6770 return; 6771 6772 ice_for_each_q_vector(vsi, q_idx) { 6773 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6774 6775 ice_init_moderation(q_vector); 6776 6777 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6778 napi_enable(&q_vector->napi); 6779 } 6780 } 6781 6782 /** 6783 * ice_up_complete - Finish the last steps of bringing up a connection 6784 * @vsi: The VSI being configured 6785 * 6786 * Return 0 on success and negative value on error 6787 */ 6788 static int ice_up_complete(struct ice_vsi *vsi) 6789 { 6790 struct ice_pf *pf = vsi->back; 6791 int err; 6792 6793 ice_vsi_cfg_msix(vsi); 6794 6795 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6796 * Tx queue group list was configured and the context bits were 6797 * programmed using ice_vsi_cfg_txqs 6798 */ 6799 err = ice_vsi_start_all_rx_rings(vsi); 6800 if (err) 6801 return err; 6802 6803 clear_bit(ICE_VSI_DOWN, vsi->state); 6804 ice_napi_enable_all(vsi); 6805 ice_vsi_ena_irq(vsi); 6806 6807 if (vsi->port_info && 6808 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6809 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6810 vsi->type == ICE_VSI_SF)))) { 6811 ice_print_link_msg(vsi, true); 6812 netif_tx_start_all_queues(vsi->netdev); 6813 netif_carrier_on(vsi->netdev); 6814 ice_ptp_link_change(pf, true); 6815 } 6816 6817 /* Perform an initial read of the statistics registers now to 6818 * set the baseline so counters are ready when interface is up 6819 */ 6820 ice_update_eth_stats(vsi); 6821 6822 if (vsi->type == ICE_VSI_PF) 6823 ice_service_task_schedule(pf); 6824 6825 return 0; 6826 } 6827 6828 /** 6829 * ice_up - Bring the connection back up after being down 6830 * @vsi: VSI being configured 6831 */ 6832 int ice_up(struct ice_vsi *vsi) 6833 { 6834 int err; 6835 6836 err = ice_vsi_cfg_lan(vsi); 6837 if (!err) 6838 err = ice_up_complete(vsi); 6839 6840 return err; 6841 } 6842 6843 /** 6844 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6845 * @syncp: pointer to u64_stats_sync 6846 * @stats: stats that pkts and bytes count will be taken from 6847 * @pkts: packets stats counter 6848 * @bytes: bytes stats counter 6849 * 6850 * This function fetches stats from the ring considering the atomic operations 6851 * that needs to be performed to read u64 values in 32 bit machine. 6852 */ 6853 void 6854 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6855 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6856 { 6857 unsigned int start; 6858 6859 do { 6860 start = u64_stats_fetch_begin(syncp); 6861 *pkts = stats.pkts; 6862 *bytes = stats.bytes; 6863 } while (u64_stats_fetch_retry(syncp, start)); 6864 } 6865 6866 /** 6867 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6868 * @vsi: the VSI to be updated 6869 * @vsi_stats: the stats struct to be updated 6870 * @rings: rings to work on 6871 * @count: number of rings 6872 */ 6873 static void 6874 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6875 struct rtnl_link_stats64 *vsi_stats, 6876 struct ice_tx_ring **rings, u16 count) 6877 { 6878 u16 i; 6879 6880 for (i = 0; i < count; i++) { 6881 struct ice_tx_ring *ring; 6882 u64 pkts = 0, bytes = 0; 6883 6884 ring = READ_ONCE(rings[i]); 6885 if (!ring || !ring->ring_stats) 6886 continue; 6887 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6888 ring->ring_stats->stats, &pkts, 6889 &bytes); 6890 vsi_stats->tx_packets += pkts; 6891 vsi_stats->tx_bytes += bytes; 6892 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6893 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6894 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6895 } 6896 } 6897 6898 /** 6899 * ice_update_vsi_ring_stats - Update VSI stats counters 6900 * @vsi: the VSI to be updated 6901 */ 6902 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6903 { 6904 struct rtnl_link_stats64 *net_stats, *stats_prev; 6905 struct rtnl_link_stats64 *vsi_stats; 6906 struct ice_pf *pf = vsi->back; 6907 u64 pkts, bytes; 6908 int i; 6909 6910 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6911 if (!vsi_stats) 6912 return; 6913 6914 /* reset non-netdev (extended) stats */ 6915 vsi->tx_restart = 0; 6916 vsi->tx_busy = 0; 6917 vsi->tx_linearize = 0; 6918 vsi->rx_buf_failed = 0; 6919 vsi->rx_page_failed = 0; 6920 6921 rcu_read_lock(); 6922 6923 /* update Tx rings counters */ 6924 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6925 vsi->num_txq); 6926 6927 /* update Rx rings counters */ 6928 ice_for_each_rxq(vsi, i) { 6929 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6930 struct ice_ring_stats *ring_stats; 6931 6932 ring_stats = ring->ring_stats; 6933 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6934 ring_stats->stats, &pkts, 6935 &bytes); 6936 vsi_stats->rx_packets += pkts; 6937 vsi_stats->rx_bytes += bytes; 6938 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6939 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6940 } 6941 6942 /* update XDP Tx rings counters */ 6943 if (ice_is_xdp_ena_vsi(vsi)) 6944 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6945 vsi->num_xdp_txq); 6946 6947 rcu_read_unlock(); 6948 6949 net_stats = &vsi->net_stats; 6950 stats_prev = &vsi->net_stats_prev; 6951 6952 /* Update netdev counters, but keep in mind that values could start at 6953 * random value after PF reset. And as we increase the reported stat by 6954 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6955 * let's skip this round. 6956 */ 6957 if (likely(pf->stat_prev_loaded)) { 6958 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6959 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6960 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6961 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6962 } 6963 6964 stats_prev->tx_packets = vsi_stats->tx_packets; 6965 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6966 stats_prev->rx_packets = vsi_stats->rx_packets; 6967 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6968 6969 kfree(vsi_stats); 6970 } 6971 6972 /** 6973 * ice_update_vsi_stats - Update VSI stats counters 6974 * @vsi: the VSI to be updated 6975 */ 6976 void ice_update_vsi_stats(struct ice_vsi *vsi) 6977 { 6978 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6979 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6980 struct ice_pf *pf = vsi->back; 6981 6982 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6983 test_bit(ICE_CFG_BUSY, pf->state)) 6984 return; 6985 6986 /* get stats as recorded by Tx/Rx rings */ 6987 ice_update_vsi_ring_stats(vsi); 6988 6989 /* get VSI stats as recorded by the hardware */ 6990 ice_update_eth_stats(vsi); 6991 6992 cur_ns->tx_errors = cur_es->tx_errors; 6993 cur_ns->rx_dropped = cur_es->rx_discards; 6994 cur_ns->tx_dropped = cur_es->tx_discards; 6995 cur_ns->multicast = cur_es->rx_multicast; 6996 6997 /* update some more netdev stats if this is main VSI */ 6998 if (vsi->type == ICE_VSI_PF) { 6999 cur_ns->rx_crc_errors = pf->stats.crc_errors; 7000 cur_ns->rx_errors = pf->stats.crc_errors + 7001 pf->stats.illegal_bytes + 7002 pf->stats.rx_undersize + 7003 pf->hw_csum_rx_error + 7004 pf->stats.rx_jabber + 7005 pf->stats.rx_fragments + 7006 pf->stats.rx_oversize; 7007 /* record drops from the port level */ 7008 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 7009 } 7010 } 7011 7012 /** 7013 * ice_update_pf_stats - Update PF port stats counters 7014 * @pf: PF whose stats needs to be updated 7015 */ 7016 void ice_update_pf_stats(struct ice_pf *pf) 7017 { 7018 struct ice_hw_port_stats *prev_ps, *cur_ps; 7019 struct ice_hw *hw = &pf->hw; 7020 u16 fd_ctr_base; 7021 u8 port; 7022 7023 port = hw->port_info->lport; 7024 prev_ps = &pf->stats_prev; 7025 cur_ps = &pf->stats; 7026 7027 if (ice_is_reset_in_progress(pf->state)) 7028 pf->stat_prev_loaded = false; 7029 7030 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7031 &prev_ps->eth.rx_bytes, 7032 &cur_ps->eth.rx_bytes); 7033 7034 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7035 &prev_ps->eth.rx_unicast, 7036 &cur_ps->eth.rx_unicast); 7037 7038 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7039 &prev_ps->eth.rx_multicast, 7040 &cur_ps->eth.rx_multicast); 7041 7042 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7043 &prev_ps->eth.rx_broadcast, 7044 &cur_ps->eth.rx_broadcast); 7045 7046 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7047 &prev_ps->eth.rx_discards, 7048 &cur_ps->eth.rx_discards); 7049 7050 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7051 &prev_ps->eth.tx_bytes, 7052 &cur_ps->eth.tx_bytes); 7053 7054 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7055 &prev_ps->eth.tx_unicast, 7056 &cur_ps->eth.tx_unicast); 7057 7058 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7059 &prev_ps->eth.tx_multicast, 7060 &cur_ps->eth.tx_multicast); 7061 7062 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7063 &prev_ps->eth.tx_broadcast, 7064 &cur_ps->eth.tx_broadcast); 7065 7066 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7067 &prev_ps->tx_dropped_link_down, 7068 &cur_ps->tx_dropped_link_down); 7069 7070 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7071 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7072 7073 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7074 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7075 7076 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7077 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7078 7079 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7080 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7081 7082 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7083 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7084 7085 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7086 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7087 7088 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7089 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7090 7091 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7092 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7093 7094 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7095 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7096 7097 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7098 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7099 7100 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7101 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7102 7103 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7104 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7105 7106 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7107 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7108 7109 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7110 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7111 7112 fd_ctr_base = hw->fd_ctr_base; 7113 7114 ice_stat_update40(hw, 7115 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7116 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7117 &cur_ps->fd_sb_match); 7118 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7119 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7120 7121 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7122 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7123 7124 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7125 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7126 7127 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7128 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7129 7130 ice_update_dcb_stats(pf); 7131 7132 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7133 &prev_ps->crc_errors, &cur_ps->crc_errors); 7134 7135 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7136 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7137 7138 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7139 &prev_ps->mac_local_faults, 7140 &cur_ps->mac_local_faults); 7141 7142 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7143 &prev_ps->mac_remote_faults, 7144 &cur_ps->mac_remote_faults); 7145 7146 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7147 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7148 7149 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7150 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7151 7152 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7153 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7154 7155 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7156 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7157 7158 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7159 7160 pf->stat_prev_loaded = true; 7161 } 7162 7163 /** 7164 * ice_get_stats64 - get statistics for network device structure 7165 * @netdev: network interface device structure 7166 * @stats: main device statistics structure 7167 */ 7168 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7169 { 7170 struct ice_netdev_priv *np = netdev_priv(netdev); 7171 struct rtnl_link_stats64 *vsi_stats; 7172 struct ice_vsi *vsi = np->vsi; 7173 7174 vsi_stats = &vsi->net_stats; 7175 7176 if (!vsi->num_txq || !vsi->num_rxq) 7177 return; 7178 7179 /* netdev packet/byte stats come from ring counter. These are obtained 7180 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7181 * But, only call the update routine and read the registers if VSI is 7182 * not down. 7183 */ 7184 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7185 ice_update_vsi_ring_stats(vsi); 7186 stats->tx_packets = vsi_stats->tx_packets; 7187 stats->tx_bytes = vsi_stats->tx_bytes; 7188 stats->rx_packets = vsi_stats->rx_packets; 7189 stats->rx_bytes = vsi_stats->rx_bytes; 7190 7191 /* The rest of the stats can be read from the hardware but instead we 7192 * just return values that the watchdog task has already obtained from 7193 * the hardware. 7194 */ 7195 stats->multicast = vsi_stats->multicast; 7196 stats->tx_errors = vsi_stats->tx_errors; 7197 stats->tx_dropped = vsi_stats->tx_dropped; 7198 stats->rx_errors = vsi_stats->rx_errors; 7199 stats->rx_dropped = vsi_stats->rx_dropped; 7200 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7201 stats->rx_length_errors = vsi_stats->rx_length_errors; 7202 } 7203 7204 /** 7205 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7206 * @vsi: VSI having NAPI disabled 7207 */ 7208 static void ice_napi_disable_all(struct ice_vsi *vsi) 7209 { 7210 int q_idx; 7211 7212 if (!vsi->netdev) 7213 return; 7214 7215 ice_for_each_q_vector(vsi, q_idx) { 7216 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7217 7218 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7219 napi_disable(&q_vector->napi); 7220 7221 cancel_work_sync(&q_vector->tx.dim.work); 7222 cancel_work_sync(&q_vector->rx.dim.work); 7223 } 7224 } 7225 7226 /** 7227 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7228 * @vsi: the VSI being un-configured 7229 */ 7230 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7231 { 7232 struct ice_pf *pf = vsi->back; 7233 struct ice_hw *hw = &pf->hw; 7234 u32 val; 7235 int i; 7236 7237 /* disable interrupt causation from each Rx queue; Tx queues are 7238 * handled in ice_vsi_stop_tx_ring() 7239 */ 7240 if (vsi->rx_rings) { 7241 ice_for_each_rxq(vsi, i) { 7242 if (vsi->rx_rings[i]) { 7243 u16 reg; 7244 7245 reg = vsi->rx_rings[i]->reg_idx; 7246 val = rd32(hw, QINT_RQCTL(reg)); 7247 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7248 wr32(hw, QINT_RQCTL(reg), val); 7249 } 7250 } 7251 } 7252 7253 /* disable each interrupt */ 7254 ice_for_each_q_vector(vsi, i) { 7255 if (!vsi->q_vectors[i]) 7256 continue; 7257 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7258 } 7259 7260 ice_flush(hw); 7261 7262 /* don't call synchronize_irq() for VF's from the host */ 7263 if (vsi->type == ICE_VSI_VF) 7264 return; 7265 7266 ice_for_each_q_vector(vsi, i) 7267 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7268 } 7269 7270 /** 7271 * ice_down - Shutdown the connection 7272 * @vsi: The VSI being stopped 7273 * 7274 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7275 */ 7276 int ice_down(struct ice_vsi *vsi) 7277 { 7278 int i, tx_err, rx_err, vlan_err = 0; 7279 7280 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7281 7282 if (vsi->netdev) { 7283 vlan_err = ice_vsi_del_vlan_zero(vsi); 7284 ice_ptp_link_change(vsi->back, false); 7285 netif_carrier_off(vsi->netdev); 7286 netif_tx_disable(vsi->netdev); 7287 } 7288 7289 ice_vsi_dis_irq(vsi); 7290 7291 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7292 if (tx_err) 7293 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7294 vsi->vsi_num, tx_err); 7295 if (!tx_err && vsi->xdp_rings) { 7296 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7297 if (tx_err) 7298 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7299 vsi->vsi_num, tx_err); 7300 } 7301 7302 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7303 if (rx_err) 7304 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7305 vsi->vsi_num, rx_err); 7306 7307 ice_napi_disable_all(vsi); 7308 7309 ice_for_each_txq(vsi, i) 7310 ice_clean_tx_ring(vsi->tx_rings[i]); 7311 7312 if (vsi->xdp_rings) 7313 ice_for_each_xdp_txq(vsi, i) 7314 ice_clean_tx_ring(vsi->xdp_rings[i]); 7315 7316 ice_for_each_rxq(vsi, i) 7317 ice_clean_rx_ring(vsi->rx_rings[i]); 7318 7319 if (tx_err || rx_err || vlan_err) { 7320 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7321 vsi->vsi_num, vsi->vsw->sw_id); 7322 return -EIO; 7323 } 7324 7325 return 0; 7326 } 7327 7328 /** 7329 * ice_down_up - shutdown the VSI connection and bring it up 7330 * @vsi: the VSI to be reconnected 7331 */ 7332 int ice_down_up(struct ice_vsi *vsi) 7333 { 7334 int ret; 7335 7336 /* if DOWN already set, nothing to do */ 7337 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7338 return 0; 7339 7340 ret = ice_down(vsi); 7341 if (ret) 7342 return ret; 7343 7344 ret = ice_up(vsi); 7345 if (ret) { 7346 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7347 return ret; 7348 } 7349 7350 return 0; 7351 } 7352 7353 /** 7354 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7355 * @vsi: VSI having resources allocated 7356 * 7357 * Return 0 on success, negative on failure 7358 */ 7359 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7360 { 7361 int i, err = 0; 7362 7363 if (!vsi->num_txq) { 7364 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7365 vsi->vsi_num); 7366 return -EINVAL; 7367 } 7368 7369 ice_for_each_txq(vsi, i) { 7370 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7371 7372 if (!ring) 7373 return -EINVAL; 7374 7375 if (vsi->netdev) 7376 ring->netdev = vsi->netdev; 7377 err = ice_setup_tx_ring(ring); 7378 if (err) 7379 break; 7380 } 7381 7382 return err; 7383 } 7384 7385 /** 7386 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7387 * @vsi: VSI having resources allocated 7388 * 7389 * Return 0 on success, negative on failure 7390 */ 7391 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7392 { 7393 int i, err = 0; 7394 7395 if (!vsi->num_rxq) { 7396 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7397 vsi->vsi_num); 7398 return -EINVAL; 7399 } 7400 7401 ice_for_each_rxq(vsi, i) { 7402 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7403 7404 if (!ring) 7405 return -EINVAL; 7406 7407 if (vsi->netdev) 7408 ring->netdev = vsi->netdev; 7409 err = ice_setup_rx_ring(ring); 7410 if (err) 7411 break; 7412 } 7413 7414 return err; 7415 } 7416 7417 /** 7418 * ice_vsi_open_ctrl - open control VSI for use 7419 * @vsi: the VSI to open 7420 * 7421 * Initialization of the Control VSI 7422 * 7423 * Returns 0 on success, negative value on error 7424 */ 7425 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7426 { 7427 char int_name[ICE_INT_NAME_STR_LEN]; 7428 struct ice_pf *pf = vsi->back; 7429 struct device *dev; 7430 int err; 7431 7432 dev = ice_pf_to_dev(pf); 7433 /* allocate descriptors */ 7434 err = ice_vsi_setup_tx_rings(vsi); 7435 if (err) 7436 goto err_setup_tx; 7437 7438 err = ice_vsi_setup_rx_rings(vsi); 7439 if (err) 7440 goto err_setup_rx; 7441 7442 err = ice_vsi_cfg_lan(vsi); 7443 if (err) 7444 goto err_setup_rx; 7445 7446 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7447 dev_driver_string(dev), dev_name(dev)); 7448 err = ice_vsi_req_irq_msix(vsi, int_name); 7449 if (err) 7450 goto err_setup_rx; 7451 7452 ice_vsi_cfg_msix(vsi); 7453 7454 err = ice_vsi_start_all_rx_rings(vsi); 7455 if (err) 7456 goto err_up_complete; 7457 7458 clear_bit(ICE_VSI_DOWN, vsi->state); 7459 ice_vsi_ena_irq(vsi); 7460 7461 return 0; 7462 7463 err_up_complete: 7464 ice_down(vsi); 7465 err_setup_rx: 7466 ice_vsi_free_rx_rings(vsi); 7467 err_setup_tx: 7468 ice_vsi_free_tx_rings(vsi); 7469 7470 return err; 7471 } 7472 7473 /** 7474 * ice_vsi_open - Called when a network interface is made active 7475 * @vsi: the VSI to open 7476 * 7477 * Initialization of the VSI 7478 * 7479 * Returns 0 on success, negative value on error 7480 */ 7481 int ice_vsi_open(struct ice_vsi *vsi) 7482 { 7483 char int_name[ICE_INT_NAME_STR_LEN]; 7484 struct ice_pf *pf = vsi->back; 7485 int err; 7486 7487 /* allocate descriptors */ 7488 err = ice_vsi_setup_tx_rings(vsi); 7489 if (err) 7490 goto err_setup_tx; 7491 7492 err = ice_vsi_setup_rx_rings(vsi); 7493 if (err) 7494 goto err_setup_rx; 7495 7496 err = ice_vsi_cfg_lan(vsi); 7497 if (err) 7498 goto err_setup_rx; 7499 7500 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7501 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7502 err = ice_vsi_req_irq_msix(vsi, int_name); 7503 if (err) 7504 goto err_setup_rx; 7505 7506 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7507 7508 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7509 /* Notify the stack of the actual queue counts. */ 7510 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7511 if (err) 7512 goto err_set_qs; 7513 7514 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7515 if (err) 7516 goto err_set_qs; 7517 7518 ice_vsi_set_napi_queues(vsi); 7519 } 7520 7521 err = ice_up_complete(vsi); 7522 if (err) 7523 goto err_up_complete; 7524 7525 return 0; 7526 7527 err_up_complete: 7528 ice_down(vsi); 7529 err_set_qs: 7530 ice_vsi_free_irq(vsi); 7531 err_setup_rx: 7532 ice_vsi_free_rx_rings(vsi); 7533 err_setup_tx: 7534 ice_vsi_free_tx_rings(vsi); 7535 7536 return err; 7537 } 7538 7539 /** 7540 * ice_vsi_release_all - Delete all VSIs 7541 * @pf: PF from which all VSIs are being removed 7542 */ 7543 static void ice_vsi_release_all(struct ice_pf *pf) 7544 { 7545 int err, i; 7546 7547 if (!pf->vsi) 7548 return; 7549 7550 ice_for_each_vsi(pf, i) { 7551 if (!pf->vsi[i]) 7552 continue; 7553 7554 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7555 continue; 7556 7557 err = ice_vsi_release(pf->vsi[i]); 7558 if (err) 7559 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7560 i, err, pf->vsi[i]->vsi_num); 7561 } 7562 } 7563 7564 /** 7565 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7566 * @pf: pointer to the PF instance 7567 * @type: VSI type to rebuild 7568 * 7569 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7570 */ 7571 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7572 { 7573 struct device *dev = ice_pf_to_dev(pf); 7574 int i, err; 7575 7576 ice_for_each_vsi(pf, i) { 7577 struct ice_vsi *vsi = pf->vsi[i]; 7578 7579 if (!vsi || vsi->type != type) 7580 continue; 7581 7582 /* rebuild the VSI */ 7583 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7584 if (err) { 7585 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7586 err, vsi->idx, ice_vsi_type_str(type)); 7587 return err; 7588 } 7589 7590 /* replay filters for the VSI */ 7591 err = ice_replay_vsi(&pf->hw, vsi->idx); 7592 if (err) { 7593 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7594 err, vsi->idx, ice_vsi_type_str(type)); 7595 return err; 7596 } 7597 7598 /* Re-map HW VSI number, using VSI handle that has been 7599 * previously validated in ice_replay_vsi() call above 7600 */ 7601 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7602 7603 /* enable the VSI */ 7604 err = ice_ena_vsi(vsi, false); 7605 if (err) { 7606 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7607 err, vsi->idx, ice_vsi_type_str(type)); 7608 return err; 7609 } 7610 7611 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7612 ice_vsi_type_str(type)); 7613 } 7614 7615 return 0; 7616 } 7617 7618 /** 7619 * ice_update_pf_netdev_link - Update PF netdev link status 7620 * @pf: pointer to the PF instance 7621 */ 7622 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7623 { 7624 bool link_up; 7625 int i; 7626 7627 ice_for_each_vsi(pf, i) { 7628 struct ice_vsi *vsi = pf->vsi[i]; 7629 7630 if (!vsi || vsi->type != ICE_VSI_PF) 7631 return; 7632 7633 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7634 if (link_up) { 7635 netif_carrier_on(pf->vsi[i]->netdev); 7636 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7637 } else { 7638 netif_carrier_off(pf->vsi[i]->netdev); 7639 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7640 } 7641 } 7642 } 7643 7644 /** 7645 * ice_rebuild - rebuild after reset 7646 * @pf: PF to rebuild 7647 * @reset_type: type of reset 7648 * 7649 * Do not rebuild VF VSI in this flow because that is already handled via 7650 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7651 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7652 * to reset/rebuild all the VF VSI twice. 7653 */ 7654 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7655 { 7656 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7657 struct device *dev = ice_pf_to_dev(pf); 7658 struct ice_hw *hw = &pf->hw; 7659 bool dvm; 7660 int err; 7661 7662 if (test_bit(ICE_DOWN, pf->state)) 7663 goto clear_recovery; 7664 7665 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7666 7667 #define ICE_EMP_RESET_SLEEP_MS 5000 7668 if (reset_type == ICE_RESET_EMPR) { 7669 /* If an EMP reset has occurred, any previously pending flash 7670 * update will have completed. We no longer know whether or 7671 * not the NVM update EMP reset is restricted. 7672 */ 7673 pf->fw_emp_reset_disabled = false; 7674 7675 msleep(ICE_EMP_RESET_SLEEP_MS); 7676 } 7677 7678 err = ice_init_all_ctrlq(hw); 7679 if (err) { 7680 dev_err(dev, "control queues init failed %d\n", err); 7681 goto err_init_ctrlq; 7682 } 7683 7684 /* if DDP was previously loaded successfully */ 7685 if (!ice_is_safe_mode(pf)) { 7686 /* reload the SW DB of filter tables */ 7687 if (reset_type == ICE_RESET_PFR) 7688 ice_fill_blk_tbls(hw); 7689 else 7690 /* Reload DDP Package after CORER/GLOBR reset */ 7691 ice_load_pkg(NULL, pf); 7692 } 7693 7694 err = ice_clear_pf_cfg(hw); 7695 if (err) { 7696 dev_err(dev, "clear PF configuration failed %d\n", err); 7697 goto err_init_ctrlq; 7698 } 7699 7700 ice_clear_pxe_mode(hw); 7701 7702 err = ice_init_nvm(hw); 7703 if (err) { 7704 dev_err(dev, "ice_init_nvm failed %d\n", err); 7705 goto err_init_ctrlq; 7706 } 7707 7708 err = ice_get_caps(hw); 7709 if (err) { 7710 dev_err(dev, "ice_get_caps failed %d\n", err); 7711 goto err_init_ctrlq; 7712 } 7713 7714 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7715 if (err) { 7716 dev_err(dev, "set_mac_cfg failed %d\n", err); 7717 goto err_init_ctrlq; 7718 } 7719 7720 dvm = ice_is_dvm_ena(hw); 7721 7722 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7723 if (err) 7724 goto err_init_ctrlq; 7725 7726 err = ice_sched_init_port(hw->port_info); 7727 if (err) 7728 goto err_sched_init_port; 7729 7730 /* start misc vector */ 7731 err = ice_req_irq_msix_misc(pf); 7732 if (err) { 7733 dev_err(dev, "misc vector setup failed: %d\n", err); 7734 goto err_sched_init_port; 7735 } 7736 7737 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7738 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7739 if (!rd32(hw, PFQF_FD_SIZE)) { 7740 u16 unused, guar, b_effort; 7741 7742 guar = hw->func_caps.fd_fltr_guar; 7743 b_effort = hw->func_caps.fd_fltr_best_effort; 7744 7745 /* force guaranteed filter pool for PF */ 7746 ice_alloc_fd_guar_item(hw, &unused, guar); 7747 /* force shared filter pool for PF */ 7748 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7749 } 7750 } 7751 7752 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7753 ice_dcb_rebuild(pf); 7754 7755 /* If the PF previously had enabled PTP, PTP init needs to happen before 7756 * the VSI rebuild. If not, this causes the PTP link status events to 7757 * fail. 7758 */ 7759 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7760 ice_ptp_rebuild(pf, reset_type); 7761 7762 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7763 ice_gnss_init(pf); 7764 7765 /* rebuild PF VSI */ 7766 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7767 if (err) { 7768 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7769 goto err_vsi_rebuild; 7770 } 7771 7772 if (reset_type == ICE_RESET_PFR) { 7773 err = ice_rebuild_channels(pf); 7774 if (err) { 7775 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7776 err); 7777 goto err_vsi_rebuild; 7778 } 7779 } 7780 7781 /* If Flow Director is active */ 7782 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7783 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7784 if (err) { 7785 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7786 goto err_vsi_rebuild; 7787 } 7788 7789 /* replay HW Flow Director recipes */ 7790 if (hw->fdir_prof) 7791 ice_fdir_replay_flows(hw); 7792 7793 /* replay Flow Director filters */ 7794 ice_fdir_replay_fltrs(pf); 7795 7796 ice_rebuild_arfs(pf); 7797 } 7798 7799 if (vsi && vsi->netdev) 7800 netif_device_attach(vsi->netdev); 7801 7802 ice_update_pf_netdev_link(pf); 7803 7804 /* tell the firmware we are up */ 7805 err = ice_send_version(pf); 7806 if (err) { 7807 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7808 err); 7809 goto err_vsi_rebuild; 7810 } 7811 7812 ice_replay_post(hw); 7813 7814 /* if we get here, reset flow is successful */ 7815 clear_bit(ICE_RESET_FAILED, pf->state); 7816 7817 ice_health_clear(pf); 7818 7819 ice_plug_aux_dev(pf); 7820 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7821 ice_lag_rebuild(pf); 7822 7823 /* Restore timestamp mode settings after VSI rebuild */ 7824 ice_ptp_restore_timestamp_mode(pf); 7825 return; 7826 7827 err_vsi_rebuild: 7828 err_sched_init_port: 7829 ice_sched_cleanup_all(hw); 7830 err_init_ctrlq: 7831 ice_shutdown_all_ctrlq(hw, false); 7832 set_bit(ICE_RESET_FAILED, pf->state); 7833 clear_recovery: 7834 /* set this bit in PF state to control service task scheduling */ 7835 set_bit(ICE_NEEDS_RESTART, pf->state); 7836 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7837 } 7838 7839 /** 7840 * ice_change_mtu - NDO callback to change the MTU 7841 * @netdev: network interface device structure 7842 * @new_mtu: new value for maximum frame size 7843 * 7844 * Returns 0 on success, negative on failure 7845 */ 7846 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7847 { 7848 struct ice_netdev_priv *np = netdev_priv(netdev); 7849 struct ice_vsi *vsi = np->vsi; 7850 struct ice_pf *pf = vsi->back; 7851 struct bpf_prog *prog; 7852 u8 count = 0; 7853 int err = 0; 7854 7855 if (new_mtu == (int)netdev->mtu) { 7856 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7857 return 0; 7858 } 7859 7860 prog = vsi->xdp_prog; 7861 if (prog && !prog->aux->xdp_has_frags) { 7862 int frame_size = ice_max_xdp_frame_size(vsi); 7863 7864 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7865 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7866 frame_size - ICE_ETH_PKT_HDR_PAD); 7867 return -EINVAL; 7868 } 7869 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7870 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7871 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7872 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7873 return -EINVAL; 7874 } 7875 } 7876 7877 /* if a reset is in progress, wait for some time for it to complete */ 7878 do { 7879 if (ice_is_reset_in_progress(pf->state)) { 7880 count++; 7881 usleep_range(1000, 2000); 7882 } else { 7883 break; 7884 } 7885 7886 } while (count < 100); 7887 7888 if (count == 100) { 7889 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7890 return -EBUSY; 7891 } 7892 7893 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7894 err = ice_down_up(vsi); 7895 if (err) 7896 return err; 7897 7898 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7899 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7900 7901 return err; 7902 } 7903 7904 /** 7905 * ice_aq_str - convert AQ err code to a string 7906 * @aq_err: the AQ error code to convert 7907 */ 7908 const char *ice_aq_str(enum ice_aq_err aq_err) 7909 { 7910 switch (aq_err) { 7911 case ICE_AQ_RC_OK: 7912 return "OK"; 7913 case ICE_AQ_RC_EPERM: 7914 return "ICE_AQ_RC_EPERM"; 7915 case ICE_AQ_RC_ENOENT: 7916 return "ICE_AQ_RC_ENOENT"; 7917 case ICE_AQ_RC_ESRCH: 7918 return "ICE_AQ_RC_ESRCH"; 7919 case ICE_AQ_RC_EAGAIN: 7920 return "ICE_AQ_RC_EAGAIN"; 7921 case ICE_AQ_RC_ENOMEM: 7922 return "ICE_AQ_RC_ENOMEM"; 7923 case ICE_AQ_RC_EBUSY: 7924 return "ICE_AQ_RC_EBUSY"; 7925 case ICE_AQ_RC_EEXIST: 7926 return "ICE_AQ_RC_EEXIST"; 7927 case ICE_AQ_RC_EINVAL: 7928 return "ICE_AQ_RC_EINVAL"; 7929 case ICE_AQ_RC_ENOSPC: 7930 return "ICE_AQ_RC_ENOSPC"; 7931 case ICE_AQ_RC_ENOSYS: 7932 return "ICE_AQ_RC_ENOSYS"; 7933 case ICE_AQ_RC_EMODE: 7934 return "ICE_AQ_RC_EMODE"; 7935 case ICE_AQ_RC_ENOSEC: 7936 return "ICE_AQ_RC_ENOSEC"; 7937 case ICE_AQ_RC_EBADSIG: 7938 return "ICE_AQ_RC_EBADSIG"; 7939 case ICE_AQ_RC_ESVN: 7940 return "ICE_AQ_RC_ESVN"; 7941 case ICE_AQ_RC_EBADMAN: 7942 return "ICE_AQ_RC_EBADMAN"; 7943 case ICE_AQ_RC_EBADBUF: 7944 return "ICE_AQ_RC_EBADBUF"; 7945 } 7946 7947 return "ICE_AQ_RC_UNKNOWN"; 7948 } 7949 7950 /** 7951 * ice_set_rss_lut - Set RSS LUT 7952 * @vsi: Pointer to VSI structure 7953 * @lut: Lookup table 7954 * @lut_size: Lookup table size 7955 * 7956 * Returns 0 on success, negative on failure 7957 */ 7958 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7959 { 7960 struct ice_aq_get_set_rss_lut_params params = {}; 7961 struct ice_hw *hw = &vsi->back->hw; 7962 int status; 7963 7964 if (!lut) 7965 return -EINVAL; 7966 7967 params.vsi_handle = vsi->idx; 7968 params.lut_size = lut_size; 7969 params.lut_type = vsi->rss_lut_type; 7970 params.lut = lut; 7971 7972 status = ice_aq_set_rss_lut(hw, ¶ms); 7973 if (status) 7974 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7975 status, ice_aq_str(hw->adminq.sq_last_status)); 7976 7977 return status; 7978 } 7979 7980 /** 7981 * ice_set_rss_key - Set RSS key 7982 * @vsi: Pointer to the VSI structure 7983 * @seed: RSS hash seed 7984 * 7985 * Returns 0 on success, negative on failure 7986 */ 7987 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7988 { 7989 struct ice_hw *hw = &vsi->back->hw; 7990 int status; 7991 7992 if (!seed) 7993 return -EINVAL; 7994 7995 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7996 if (status) 7997 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7998 status, ice_aq_str(hw->adminq.sq_last_status)); 7999 8000 return status; 8001 } 8002 8003 /** 8004 * ice_get_rss_lut - Get RSS LUT 8005 * @vsi: Pointer to VSI structure 8006 * @lut: Buffer to store the lookup table entries 8007 * @lut_size: Size of buffer to store the lookup table entries 8008 * 8009 * Returns 0 on success, negative on failure 8010 */ 8011 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 8012 { 8013 struct ice_aq_get_set_rss_lut_params params = {}; 8014 struct ice_hw *hw = &vsi->back->hw; 8015 int status; 8016 8017 if (!lut) 8018 return -EINVAL; 8019 8020 params.vsi_handle = vsi->idx; 8021 params.lut_size = lut_size; 8022 params.lut_type = vsi->rss_lut_type; 8023 params.lut = lut; 8024 8025 status = ice_aq_get_rss_lut(hw, ¶ms); 8026 if (status) 8027 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 8028 status, ice_aq_str(hw->adminq.sq_last_status)); 8029 8030 return status; 8031 } 8032 8033 /** 8034 * ice_get_rss_key - Get RSS key 8035 * @vsi: Pointer to VSI structure 8036 * @seed: Buffer to store the key in 8037 * 8038 * Returns 0 on success, negative on failure 8039 */ 8040 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 8041 { 8042 struct ice_hw *hw = &vsi->back->hw; 8043 int status; 8044 8045 if (!seed) 8046 return -EINVAL; 8047 8048 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 8049 if (status) 8050 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8051 status, ice_aq_str(hw->adminq.sq_last_status)); 8052 8053 return status; 8054 } 8055 8056 /** 8057 * ice_set_rss_hfunc - Set RSS HASH function 8058 * @vsi: Pointer to VSI structure 8059 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8060 * 8061 * Returns 0 on success, negative on failure 8062 */ 8063 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8064 { 8065 struct ice_hw *hw = &vsi->back->hw; 8066 struct ice_vsi_ctx *ctx; 8067 bool symm; 8068 int err; 8069 8070 if (hfunc == vsi->rss_hfunc) 8071 return 0; 8072 8073 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8074 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8075 return -EOPNOTSUPP; 8076 8077 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8078 if (!ctx) 8079 return -ENOMEM; 8080 8081 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8082 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8083 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8084 ctx->info.q_opt_rss |= 8085 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8086 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8087 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8088 8089 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8090 if (err) { 8091 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8092 vsi->vsi_num, err); 8093 } else { 8094 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8095 vsi->rss_hfunc = hfunc; 8096 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8097 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8098 "Symmetric " : ""); 8099 } 8100 kfree(ctx); 8101 if (err) 8102 return err; 8103 8104 /* Fix the symmetry setting for all existing RSS configurations */ 8105 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8106 return ice_set_rss_cfg_symm(hw, vsi, symm); 8107 } 8108 8109 /** 8110 * ice_bridge_getlink - Get the hardware bridge mode 8111 * @skb: skb buff 8112 * @pid: process ID 8113 * @seq: RTNL message seq 8114 * @dev: the netdev being configured 8115 * @filter_mask: filter mask passed in 8116 * @nlflags: netlink flags passed in 8117 * 8118 * Return the bridge mode (VEB/VEPA) 8119 */ 8120 static int 8121 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8122 struct net_device *dev, u32 filter_mask, int nlflags) 8123 { 8124 struct ice_netdev_priv *np = netdev_priv(dev); 8125 struct ice_vsi *vsi = np->vsi; 8126 struct ice_pf *pf = vsi->back; 8127 u16 bmode; 8128 8129 bmode = pf->first_sw->bridge_mode; 8130 8131 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8132 filter_mask, NULL); 8133 } 8134 8135 /** 8136 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8137 * @vsi: Pointer to VSI structure 8138 * @bmode: Hardware bridge mode (VEB/VEPA) 8139 * 8140 * Returns 0 on success, negative on failure 8141 */ 8142 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8143 { 8144 struct ice_aqc_vsi_props *vsi_props; 8145 struct ice_hw *hw = &vsi->back->hw; 8146 struct ice_vsi_ctx *ctxt; 8147 int ret; 8148 8149 vsi_props = &vsi->info; 8150 8151 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8152 if (!ctxt) 8153 return -ENOMEM; 8154 8155 ctxt->info = vsi->info; 8156 8157 if (bmode == BRIDGE_MODE_VEB) 8158 /* change from VEPA to VEB mode */ 8159 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8160 else 8161 /* change from VEB to VEPA mode */ 8162 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8163 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8164 8165 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8166 if (ret) { 8167 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8168 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 8169 goto out; 8170 } 8171 /* Update sw flags for book keeping */ 8172 vsi_props->sw_flags = ctxt->info.sw_flags; 8173 8174 out: 8175 kfree(ctxt); 8176 return ret; 8177 } 8178 8179 /** 8180 * ice_bridge_setlink - Set the hardware bridge mode 8181 * @dev: the netdev being configured 8182 * @nlh: RTNL message 8183 * @flags: bridge setlink flags 8184 * @extack: netlink extended ack 8185 * 8186 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8187 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8188 * not already set for all VSIs connected to this switch. And also update the 8189 * unicast switch filter rules for the corresponding switch of the netdev. 8190 */ 8191 static int 8192 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8193 u16 __always_unused flags, 8194 struct netlink_ext_ack __always_unused *extack) 8195 { 8196 struct ice_netdev_priv *np = netdev_priv(dev); 8197 struct ice_pf *pf = np->vsi->back; 8198 struct nlattr *attr, *br_spec; 8199 struct ice_hw *hw = &pf->hw; 8200 struct ice_sw *pf_sw; 8201 int rem, v, err = 0; 8202 8203 pf_sw = pf->first_sw; 8204 /* find the attribute in the netlink message */ 8205 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8206 if (!br_spec) 8207 return -EINVAL; 8208 8209 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8210 __u16 mode = nla_get_u16(attr); 8211 8212 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8213 return -EINVAL; 8214 /* Continue if bridge mode is not being flipped */ 8215 if (mode == pf_sw->bridge_mode) 8216 continue; 8217 /* Iterates through the PF VSI list and update the loopback 8218 * mode of the VSI 8219 */ 8220 ice_for_each_vsi(pf, v) { 8221 if (!pf->vsi[v]) 8222 continue; 8223 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8224 if (err) 8225 return err; 8226 } 8227 8228 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8229 /* Update the unicast switch filter rules for the corresponding 8230 * switch of the netdev 8231 */ 8232 err = ice_update_sw_rule_bridge_mode(hw); 8233 if (err) { 8234 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8235 mode, err, 8236 ice_aq_str(hw->adminq.sq_last_status)); 8237 /* revert hw->evb_veb */ 8238 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8239 return err; 8240 } 8241 8242 pf_sw->bridge_mode = mode; 8243 } 8244 8245 return 0; 8246 } 8247 8248 /** 8249 * ice_tx_timeout - Respond to a Tx Hang 8250 * @netdev: network interface device structure 8251 * @txqueue: Tx queue 8252 */ 8253 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8254 { 8255 struct ice_netdev_priv *np = netdev_priv(netdev); 8256 struct ice_tx_ring *tx_ring = NULL; 8257 struct ice_vsi *vsi = np->vsi; 8258 struct ice_pf *pf = vsi->back; 8259 u32 i; 8260 8261 pf->tx_timeout_count++; 8262 8263 /* Check if PFC is enabled for the TC to which the queue belongs 8264 * to. If yes then Tx timeout is not caused by a hung queue, no 8265 * need to reset and rebuild 8266 */ 8267 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8268 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8269 txqueue); 8270 return; 8271 } 8272 8273 /* now that we have an index, find the tx_ring struct */ 8274 ice_for_each_txq(vsi, i) 8275 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8276 if (txqueue == vsi->tx_rings[i]->q_index) { 8277 tx_ring = vsi->tx_rings[i]; 8278 break; 8279 } 8280 8281 /* Reset recovery level if enough time has elapsed after last timeout. 8282 * Also ensure no new reset action happens before next timeout period. 8283 */ 8284 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8285 pf->tx_timeout_recovery_level = 1; 8286 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8287 netdev->watchdog_timeo))) 8288 return; 8289 8290 if (tx_ring) { 8291 struct ice_hw *hw = &pf->hw; 8292 u32 head, intr = 0; 8293 8294 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8295 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8296 /* Read interrupt register */ 8297 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8298 8299 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8300 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8301 head, tx_ring->next_to_use, intr); 8302 8303 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8304 } 8305 8306 pf->tx_timeout_last_recovery = jiffies; 8307 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8308 pf->tx_timeout_recovery_level, txqueue); 8309 8310 switch (pf->tx_timeout_recovery_level) { 8311 case 1: 8312 set_bit(ICE_PFR_REQ, pf->state); 8313 break; 8314 case 2: 8315 set_bit(ICE_CORER_REQ, pf->state); 8316 break; 8317 case 3: 8318 set_bit(ICE_GLOBR_REQ, pf->state); 8319 break; 8320 default: 8321 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8322 set_bit(ICE_DOWN, pf->state); 8323 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8324 set_bit(ICE_SERVICE_DIS, pf->state); 8325 break; 8326 } 8327 8328 ice_service_task_schedule(pf); 8329 pf->tx_timeout_recovery_level++; 8330 } 8331 8332 /** 8333 * ice_setup_tc_cls_flower - flower classifier offloads 8334 * @np: net device to configure 8335 * @filter_dev: device on which filter is added 8336 * @cls_flower: offload data 8337 * @ingress: if the rule is added to an ingress block 8338 * 8339 * Return: 0 if the flower was successfully added or deleted, 8340 * negative error code otherwise. 8341 */ 8342 static int 8343 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8344 struct net_device *filter_dev, 8345 struct flow_cls_offload *cls_flower, 8346 bool ingress) 8347 { 8348 struct ice_vsi *vsi = np->vsi; 8349 8350 if (cls_flower->common.chain_index) 8351 return -EOPNOTSUPP; 8352 8353 switch (cls_flower->command) { 8354 case FLOW_CLS_REPLACE: 8355 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress); 8356 case FLOW_CLS_DESTROY: 8357 return ice_del_cls_flower(vsi, cls_flower); 8358 default: 8359 return -EINVAL; 8360 } 8361 } 8362 8363 /** 8364 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block 8365 * @type: TC SETUP type 8366 * @type_data: TC flower offload data that contains user input 8367 * @cb_priv: netdev private data 8368 * 8369 * Return: 0 if the setup was successful, negative error code otherwise. 8370 */ 8371 static int 8372 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data, 8373 void *cb_priv) 8374 { 8375 struct ice_netdev_priv *np = cb_priv; 8376 8377 switch (type) { 8378 case TC_SETUP_CLSFLOWER: 8379 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8380 type_data, true); 8381 default: 8382 return -EOPNOTSUPP; 8383 } 8384 } 8385 8386 /** 8387 * ice_setup_tc_block_cb_egress - callback handler for egress TC block 8388 * @type: TC SETUP type 8389 * @type_data: TC flower offload data that contains user input 8390 * @cb_priv: netdev private data 8391 * 8392 * Return: 0 if the setup was successful, negative error code otherwise. 8393 */ 8394 static int 8395 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data, 8396 void *cb_priv) 8397 { 8398 struct ice_netdev_priv *np = cb_priv; 8399 8400 switch (type) { 8401 case TC_SETUP_CLSFLOWER: 8402 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8403 type_data, false); 8404 default: 8405 return -EOPNOTSUPP; 8406 } 8407 } 8408 8409 /** 8410 * ice_validate_mqprio_qopt - Validate TCF input parameters 8411 * @vsi: Pointer to VSI 8412 * @mqprio_qopt: input parameters for mqprio queue configuration 8413 * 8414 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8415 * needed), and make sure user doesn't specify qcount and BW rate limit 8416 * for TCs, which are more than "num_tc" 8417 */ 8418 static int 8419 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8420 struct tc_mqprio_qopt_offload *mqprio_qopt) 8421 { 8422 int non_power_of_2_qcount = 0; 8423 struct ice_pf *pf = vsi->back; 8424 int max_rss_q_cnt = 0; 8425 u64 sum_min_rate = 0; 8426 struct device *dev; 8427 int i, speed; 8428 u8 num_tc; 8429 8430 if (vsi->type != ICE_VSI_PF) 8431 return -EINVAL; 8432 8433 if (mqprio_qopt->qopt.offset[0] != 0 || 8434 mqprio_qopt->qopt.num_tc < 1 || 8435 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8436 return -EINVAL; 8437 8438 dev = ice_pf_to_dev(pf); 8439 vsi->ch_rss_size = 0; 8440 num_tc = mqprio_qopt->qopt.num_tc; 8441 speed = ice_get_link_speed_kbps(vsi); 8442 8443 for (i = 0; num_tc; i++) { 8444 int qcount = mqprio_qopt->qopt.count[i]; 8445 u64 max_rate, min_rate, rem; 8446 8447 if (!qcount) 8448 return -EINVAL; 8449 8450 if (is_power_of_2(qcount)) { 8451 if (non_power_of_2_qcount && 8452 qcount > non_power_of_2_qcount) { 8453 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8454 qcount, non_power_of_2_qcount); 8455 return -EINVAL; 8456 } 8457 if (qcount > max_rss_q_cnt) 8458 max_rss_q_cnt = qcount; 8459 } else { 8460 if (non_power_of_2_qcount && 8461 qcount != non_power_of_2_qcount) { 8462 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8463 qcount, non_power_of_2_qcount); 8464 return -EINVAL; 8465 } 8466 if (qcount < max_rss_q_cnt) { 8467 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8468 qcount, max_rss_q_cnt); 8469 return -EINVAL; 8470 } 8471 max_rss_q_cnt = qcount; 8472 non_power_of_2_qcount = qcount; 8473 } 8474 8475 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8476 * converts the bandwidth rate limit into Bytes/s when 8477 * passing it down to the driver. So convert input bandwidth 8478 * from Bytes/s to Kbps 8479 */ 8480 max_rate = mqprio_qopt->max_rate[i]; 8481 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8482 8483 /* min_rate is minimum guaranteed rate and it can't be zero */ 8484 min_rate = mqprio_qopt->min_rate[i]; 8485 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8486 sum_min_rate += min_rate; 8487 8488 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8489 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8490 min_rate, ICE_MIN_BW_LIMIT); 8491 return -EINVAL; 8492 } 8493 8494 if (max_rate && max_rate > speed) { 8495 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8496 i, max_rate, speed); 8497 return -EINVAL; 8498 } 8499 8500 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8501 if (rem) { 8502 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8503 i, ICE_MIN_BW_LIMIT); 8504 return -EINVAL; 8505 } 8506 8507 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8508 if (rem) { 8509 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8510 i, ICE_MIN_BW_LIMIT); 8511 return -EINVAL; 8512 } 8513 8514 /* min_rate can't be more than max_rate, except when max_rate 8515 * is zero (implies max_rate sought is max line rate). In such 8516 * a case min_rate can be more than max. 8517 */ 8518 if (max_rate && min_rate > max_rate) { 8519 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8520 min_rate, max_rate); 8521 return -EINVAL; 8522 } 8523 8524 if (i >= mqprio_qopt->qopt.num_tc - 1) 8525 break; 8526 if (mqprio_qopt->qopt.offset[i + 1] != 8527 (mqprio_qopt->qopt.offset[i] + qcount)) 8528 return -EINVAL; 8529 } 8530 if (vsi->num_rxq < 8531 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8532 return -EINVAL; 8533 if (vsi->num_txq < 8534 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8535 return -EINVAL; 8536 8537 if (sum_min_rate && sum_min_rate > (u64)speed) { 8538 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8539 sum_min_rate, speed); 8540 return -EINVAL; 8541 } 8542 8543 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8544 vsi->ch_rss_size = max_rss_q_cnt; 8545 8546 return 0; 8547 } 8548 8549 /** 8550 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8551 * @pf: ptr to PF device 8552 * @vsi: ptr to VSI 8553 */ 8554 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8555 { 8556 struct device *dev = ice_pf_to_dev(pf); 8557 bool added = false; 8558 struct ice_hw *hw; 8559 int flow; 8560 8561 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8562 return -EINVAL; 8563 8564 hw = &pf->hw; 8565 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8566 struct ice_fd_hw_prof *prof; 8567 int tun, status; 8568 u64 entry_h; 8569 8570 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8571 hw->fdir_prof[flow]->cnt)) 8572 continue; 8573 8574 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8575 enum ice_flow_priority prio; 8576 8577 /* add this VSI to FDir profile for this flow */ 8578 prio = ICE_FLOW_PRIO_NORMAL; 8579 prof = hw->fdir_prof[flow]; 8580 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8581 prof->prof_id[tun], 8582 prof->vsi_h[0], vsi->idx, 8583 prio, prof->fdir_seg[tun], 8584 &entry_h); 8585 if (status) { 8586 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8587 vsi->idx, flow); 8588 continue; 8589 } 8590 8591 prof->entry_h[prof->cnt][tun] = entry_h; 8592 } 8593 8594 /* store VSI for filter replay and delete */ 8595 prof->vsi_h[prof->cnt] = vsi->idx; 8596 prof->cnt++; 8597 8598 added = true; 8599 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8600 flow); 8601 } 8602 8603 if (!added) 8604 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8605 8606 return 0; 8607 } 8608 8609 /** 8610 * ice_add_channel - add a channel by adding VSI 8611 * @pf: ptr to PF device 8612 * @sw_id: underlying HW switching element ID 8613 * @ch: ptr to channel structure 8614 * 8615 * Add a channel (VSI) using add_vsi and queue_map 8616 */ 8617 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8618 { 8619 struct device *dev = ice_pf_to_dev(pf); 8620 struct ice_vsi *vsi; 8621 8622 if (ch->type != ICE_VSI_CHNL) { 8623 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8624 return -EINVAL; 8625 } 8626 8627 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8628 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8629 dev_err(dev, "create chnl VSI failure\n"); 8630 return -EINVAL; 8631 } 8632 8633 ice_add_vsi_to_fdir(pf, vsi); 8634 8635 ch->sw_id = sw_id; 8636 ch->vsi_num = vsi->vsi_num; 8637 ch->info.mapping_flags = vsi->info.mapping_flags; 8638 ch->ch_vsi = vsi; 8639 /* set the back pointer of channel for newly created VSI */ 8640 vsi->ch = ch; 8641 8642 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8643 sizeof(vsi->info.q_mapping)); 8644 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8645 sizeof(vsi->info.tc_mapping)); 8646 8647 return 0; 8648 } 8649 8650 /** 8651 * ice_chnl_cfg_res 8652 * @vsi: the VSI being setup 8653 * @ch: ptr to channel structure 8654 * 8655 * Configure channel specific resources such as rings, vector. 8656 */ 8657 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8658 { 8659 int i; 8660 8661 for (i = 0; i < ch->num_txq; i++) { 8662 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8663 struct ice_ring_container *rc; 8664 struct ice_tx_ring *tx_ring; 8665 struct ice_rx_ring *rx_ring; 8666 8667 tx_ring = vsi->tx_rings[ch->base_q + i]; 8668 rx_ring = vsi->rx_rings[ch->base_q + i]; 8669 if (!tx_ring || !rx_ring) 8670 continue; 8671 8672 /* setup ring being channel enabled */ 8673 tx_ring->ch = ch; 8674 rx_ring->ch = ch; 8675 8676 /* following code block sets up vector specific attributes */ 8677 tx_q_vector = tx_ring->q_vector; 8678 rx_q_vector = rx_ring->q_vector; 8679 if (!tx_q_vector && !rx_q_vector) 8680 continue; 8681 8682 if (tx_q_vector) { 8683 tx_q_vector->ch = ch; 8684 /* setup Tx and Rx ITR setting if DIM is off */ 8685 rc = &tx_q_vector->tx; 8686 if (!ITR_IS_DYNAMIC(rc)) 8687 ice_write_itr(rc, rc->itr_setting); 8688 } 8689 if (rx_q_vector) { 8690 rx_q_vector->ch = ch; 8691 /* setup Tx and Rx ITR setting if DIM is off */ 8692 rc = &rx_q_vector->rx; 8693 if (!ITR_IS_DYNAMIC(rc)) 8694 ice_write_itr(rc, rc->itr_setting); 8695 } 8696 } 8697 8698 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8699 * GLINT_ITR register would have written to perform in-context 8700 * update, hence perform flush 8701 */ 8702 if (ch->num_txq || ch->num_rxq) 8703 ice_flush(&vsi->back->hw); 8704 } 8705 8706 /** 8707 * ice_cfg_chnl_all_res - configure channel resources 8708 * @vsi: pte to main_vsi 8709 * @ch: ptr to channel structure 8710 * 8711 * This function configures channel specific resources such as flow-director 8712 * counter index, and other resources such as queues, vectors, ITR settings 8713 */ 8714 static void 8715 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8716 { 8717 /* configure channel (aka ADQ) resources such as queues, vectors, 8718 * ITR settings for channel specific vectors and anything else 8719 */ 8720 ice_chnl_cfg_res(vsi, ch); 8721 } 8722 8723 /** 8724 * ice_setup_hw_channel - setup new channel 8725 * @pf: ptr to PF device 8726 * @vsi: the VSI being setup 8727 * @ch: ptr to channel structure 8728 * @sw_id: underlying HW switching element ID 8729 * @type: type of channel to be created (VMDq2/VF) 8730 * 8731 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8732 * and configures Tx rings accordingly 8733 */ 8734 static int 8735 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8736 struct ice_channel *ch, u16 sw_id, u8 type) 8737 { 8738 struct device *dev = ice_pf_to_dev(pf); 8739 int ret; 8740 8741 ch->base_q = vsi->next_base_q; 8742 ch->type = type; 8743 8744 ret = ice_add_channel(pf, sw_id, ch); 8745 if (ret) { 8746 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8747 return ret; 8748 } 8749 8750 /* configure/setup ADQ specific resources */ 8751 ice_cfg_chnl_all_res(vsi, ch); 8752 8753 /* make sure to update the next_base_q so that subsequent channel's 8754 * (aka ADQ) VSI queue map is correct 8755 */ 8756 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8757 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8758 ch->num_rxq); 8759 8760 return 0; 8761 } 8762 8763 /** 8764 * ice_setup_channel - setup new channel using uplink element 8765 * @pf: ptr to PF device 8766 * @vsi: the VSI being setup 8767 * @ch: ptr to channel structure 8768 * 8769 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8770 * and uplink switching element 8771 */ 8772 static bool 8773 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8774 struct ice_channel *ch) 8775 { 8776 struct device *dev = ice_pf_to_dev(pf); 8777 u16 sw_id; 8778 int ret; 8779 8780 if (vsi->type != ICE_VSI_PF) { 8781 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8782 return false; 8783 } 8784 8785 sw_id = pf->first_sw->sw_id; 8786 8787 /* create channel (VSI) */ 8788 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8789 if (ret) { 8790 dev_err(dev, "failed to setup hw_channel\n"); 8791 return false; 8792 } 8793 dev_dbg(dev, "successfully created channel()\n"); 8794 8795 return ch->ch_vsi ? true : false; 8796 } 8797 8798 /** 8799 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8800 * @vsi: VSI to be configured 8801 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8802 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8803 */ 8804 static int 8805 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8806 { 8807 int err; 8808 8809 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8810 if (err) 8811 return err; 8812 8813 return ice_set_max_bw_limit(vsi, max_tx_rate); 8814 } 8815 8816 /** 8817 * ice_create_q_channel - function to create channel 8818 * @vsi: VSI to be configured 8819 * @ch: ptr to channel (it contains channel specific params) 8820 * 8821 * This function creates channel (VSI) using num_queues specified by user, 8822 * reconfigs RSS if needed. 8823 */ 8824 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8825 { 8826 struct ice_pf *pf = vsi->back; 8827 struct device *dev; 8828 8829 if (!ch) 8830 return -EINVAL; 8831 8832 dev = ice_pf_to_dev(pf); 8833 if (!ch->num_txq || !ch->num_rxq) { 8834 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8835 return -EINVAL; 8836 } 8837 8838 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8839 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8840 vsi->cnt_q_avail, ch->num_txq); 8841 return -EINVAL; 8842 } 8843 8844 if (!ice_setup_channel(pf, vsi, ch)) { 8845 dev_info(dev, "Failed to setup channel\n"); 8846 return -EINVAL; 8847 } 8848 /* configure BW rate limit */ 8849 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8850 int ret; 8851 8852 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8853 ch->min_tx_rate); 8854 if (ret) 8855 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8856 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8857 else 8858 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8859 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8860 } 8861 8862 vsi->cnt_q_avail -= ch->num_txq; 8863 8864 return 0; 8865 } 8866 8867 /** 8868 * ice_rem_all_chnl_fltrs - removes all channel filters 8869 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8870 * 8871 * Remove all advanced switch filters only if they are channel specific 8872 * tc-flower based filter 8873 */ 8874 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8875 { 8876 struct ice_tc_flower_fltr *fltr; 8877 struct hlist_node *node; 8878 8879 /* to remove all channel filters, iterate an ordered list of filters */ 8880 hlist_for_each_entry_safe(fltr, node, 8881 &pf->tc_flower_fltr_list, 8882 tc_flower_node) { 8883 struct ice_rule_query_data rule; 8884 int status; 8885 8886 /* for now process only channel specific filters */ 8887 if (!ice_is_chnl_fltr(fltr)) 8888 continue; 8889 8890 rule.rid = fltr->rid; 8891 rule.rule_id = fltr->rule_id; 8892 rule.vsi_handle = fltr->dest_vsi_handle; 8893 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8894 if (status) { 8895 if (status == -ENOENT) 8896 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8897 rule.rule_id); 8898 else 8899 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8900 status); 8901 } else if (fltr->dest_vsi) { 8902 /* update advanced switch filter count */ 8903 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8904 u32 flags = fltr->flags; 8905 8906 fltr->dest_vsi->num_chnl_fltr--; 8907 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8908 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8909 pf->num_dmac_chnl_fltrs--; 8910 } 8911 } 8912 8913 hlist_del(&fltr->tc_flower_node); 8914 kfree(fltr); 8915 } 8916 } 8917 8918 /** 8919 * ice_remove_q_channels - Remove queue channels for the TCs 8920 * @vsi: VSI to be configured 8921 * @rem_fltr: delete advanced switch filter or not 8922 * 8923 * Remove queue channels for the TCs 8924 */ 8925 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8926 { 8927 struct ice_channel *ch, *ch_tmp; 8928 struct ice_pf *pf = vsi->back; 8929 int i; 8930 8931 /* remove all tc-flower based filter if they are channel filters only */ 8932 if (rem_fltr) 8933 ice_rem_all_chnl_fltrs(pf); 8934 8935 /* remove ntuple filters since queue configuration is being changed */ 8936 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8937 struct ice_hw *hw = &pf->hw; 8938 8939 mutex_lock(&hw->fdir_fltr_lock); 8940 ice_fdir_del_all_fltrs(vsi); 8941 mutex_unlock(&hw->fdir_fltr_lock); 8942 } 8943 8944 /* perform cleanup for channels if they exist */ 8945 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8946 struct ice_vsi *ch_vsi; 8947 8948 list_del(&ch->list); 8949 ch_vsi = ch->ch_vsi; 8950 if (!ch_vsi) { 8951 kfree(ch); 8952 continue; 8953 } 8954 8955 /* Reset queue contexts */ 8956 for (i = 0; i < ch->num_rxq; i++) { 8957 struct ice_tx_ring *tx_ring; 8958 struct ice_rx_ring *rx_ring; 8959 8960 tx_ring = vsi->tx_rings[ch->base_q + i]; 8961 rx_ring = vsi->rx_rings[ch->base_q + i]; 8962 if (tx_ring) { 8963 tx_ring->ch = NULL; 8964 if (tx_ring->q_vector) 8965 tx_ring->q_vector->ch = NULL; 8966 } 8967 if (rx_ring) { 8968 rx_ring->ch = NULL; 8969 if (rx_ring->q_vector) 8970 rx_ring->q_vector->ch = NULL; 8971 } 8972 } 8973 8974 /* Release FD resources for the channel VSI */ 8975 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8976 8977 /* clear the VSI from scheduler tree */ 8978 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8979 8980 /* Delete VSI from FW, PF and HW VSI arrays */ 8981 ice_vsi_delete(ch->ch_vsi); 8982 8983 /* free the channel */ 8984 kfree(ch); 8985 } 8986 8987 /* clear the channel VSI map which is stored in main VSI */ 8988 ice_for_each_chnl_tc(i) 8989 vsi->tc_map_vsi[i] = NULL; 8990 8991 /* reset main VSI's all TC information */ 8992 vsi->all_enatc = 0; 8993 vsi->all_numtc = 0; 8994 } 8995 8996 /** 8997 * ice_rebuild_channels - rebuild channel 8998 * @pf: ptr to PF 8999 * 9000 * Recreate channel VSIs and replay filters 9001 */ 9002 static int ice_rebuild_channels(struct ice_pf *pf) 9003 { 9004 struct device *dev = ice_pf_to_dev(pf); 9005 struct ice_vsi *main_vsi; 9006 bool rem_adv_fltr = true; 9007 struct ice_channel *ch; 9008 struct ice_vsi *vsi; 9009 int tc_idx = 1; 9010 int i, err; 9011 9012 main_vsi = ice_get_main_vsi(pf); 9013 if (!main_vsi) 9014 return 0; 9015 9016 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 9017 main_vsi->old_numtc == 1) 9018 return 0; /* nothing to be done */ 9019 9020 /* reconfigure main VSI based on old value of TC and cached values 9021 * for MQPRIO opts 9022 */ 9023 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 9024 if (err) { 9025 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 9026 main_vsi->old_ena_tc, main_vsi->vsi_num); 9027 return err; 9028 } 9029 9030 /* rebuild ADQ VSIs */ 9031 ice_for_each_vsi(pf, i) { 9032 enum ice_vsi_type type; 9033 9034 vsi = pf->vsi[i]; 9035 if (!vsi || vsi->type != ICE_VSI_CHNL) 9036 continue; 9037 9038 type = vsi->type; 9039 9040 /* rebuild ADQ VSI */ 9041 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 9042 if (err) { 9043 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 9044 ice_vsi_type_str(type), vsi->idx, err); 9045 goto cleanup; 9046 } 9047 9048 /* Re-map HW VSI number, using VSI handle that has been 9049 * previously validated in ice_replay_vsi() call above 9050 */ 9051 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9052 9053 /* replay filters for the VSI */ 9054 err = ice_replay_vsi(&pf->hw, vsi->idx); 9055 if (err) { 9056 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9057 ice_vsi_type_str(type), err, vsi->idx); 9058 rem_adv_fltr = false; 9059 goto cleanup; 9060 } 9061 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9062 ice_vsi_type_str(type), vsi->idx); 9063 9064 /* store ADQ VSI at correct TC index in main VSI's 9065 * map of TC to VSI 9066 */ 9067 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9068 } 9069 9070 /* ADQ VSI(s) has been rebuilt successfully, so setup 9071 * channel for main VSI's Tx and Rx rings 9072 */ 9073 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9074 struct ice_vsi *ch_vsi; 9075 9076 ch_vsi = ch->ch_vsi; 9077 if (!ch_vsi) 9078 continue; 9079 9080 /* reconfig channel resources */ 9081 ice_cfg_chnl_all_res(main_vsi, ch); 9082 9083 /* replay BW rate limit if it is non-zero */ 9084 if (!ch->max_tx_rate && !ch->min_tx_rate) 9085 continue; 9086 9087 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9088 ch->min_tx_rate); 9089 if (err) 9090 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9091 err, ch->max_tx_rate, ch->min_tx_rate, 9092 ch_vsi->vsi_num); 9093 else 9094 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9095 ch->max_tx_rate, ch->min_tx_rate, 9096 ch_vsi->vsi_num); 9097 } 9098 9099 /* reconfig RSS for main VSI */ 9100 if (main_vsi->ch_rss_size) 9101 ice_vsi_cfg_rss_lut_key(main_vsi); 9102 9103 return 0; 9104 9105 cleanup: 9106 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9107 return err; 9108 } 9109 9110 /** 9111 * ice_create_q_channels - Add queue channel for the given TCs 9112 * @vsi: VSI to be configured 9113 * 9114 * Configures queue channel mapping to the given TCs 9115 */ 9116 static int ice_create_q_channels(struct ice_vsi *vsi) 9117 { 9118 struct ice_pf *pf = vsi->back; 9119 struct ice_channel *ch; 9120 int ret = 0, i; 9121 9122 ice_for_each_chnl_tc(i) { 9123 if (!(vsi->all_enatc & BIT(i))) 9124 continue; 9125 9126 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9127 if (!ch) { 9128 ret = -ENOMEM; 9129 goto err_free; 9130 } 9131 INIT_LIST_HEAD(&ch->list); 9132 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9133 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9134 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9135 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9136 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9137 9138 /* convert to Kbits/s */ 9139 if (ch->max_tx_rate) 9140 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9141 ICE_BW_KBPS_DIVISOR); 9142 if (ch->min_tx_rate) 9143 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9144 ICE_BW_KBPS_DIVISOR); 9145 9146 ret = ice_create_q_channel(vsi, ch); 9147 if (ret) { 9148 dev_err(ice_pf_to_dev(pf), 9149 "failed creating channel TC:%d\n", i); 9150 kfree(ch); 9151 goto err_free; 9152 } 9153 list_add_tail(&ch->list, &vsi->ch_list); 9154 vsi->tc_map_vsi[i] = ch->ch_vsi; 9155 dev_dbg(ice_pf_to_dev(pf), 9156 "successfully created channel: VSI %pK\n", ch->ch_vsi); 9157 } 9158 return 0; 9159 9160 err_free: 9161 ice_remove_q_channels(vsi, false); 9162 9163 return ret; 9164 } 9165 9166 /** 9167 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9168 * @netdev: net device to configure 9169 * @type_data: TC offload data 9170 */ 9171 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9172 { 9173 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9174 struct ice_netdev_priv *np = netdev_priv(netdev); 9175 struct ice_vsi *vsi = np->vsi; 9176 struct ice_pf *pf = vsi->back; 9177 u16 mode, ena_tc_qdisc = 0; 9178 int cur_txq, cur_rxq; 9179 u8 hw = 0, num_tcf; 9180 struct device *dev; 9181 int ret, i; 9182 9183 dev = ice_pf_to_dev(pf); 9184 num_tcf = mqprio_qopt->qopt.num_tc; 9185 hw = mqprio_qopt->qopt.hw; 9186 mode = mqprio_qopt->mode; 9187 if (!hw) { 9188 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9189 vsi->ch_rss_size = 0; 9190 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9191 goto config_tcf; 9192 } 9193 9194 /* Generate queue region map for number of TCF requested */ 9195 for (i = 0; i < num_tcf; i++) 9196 ena_tc_qdisc |= BIT(i); 9197 9198 switch (mode) { 9199 case TC_MQPRIO_MODE_CHANNEL: 9200 9201 if (pf->hw.port_info->is_custom_tx_enabled) { 9202 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9203 return -EBUSY; 9204 } 9205 ice_tear_down_devlink_rate_tree(pf); 9206 9207 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9208 if (ret) { 9209 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9210 ret); 9211 return ret; 9212 } 9213 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9214 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9215 /* don't assume state of hw_tc_offload during driver load 9216 * and set the flag for TC flower filter if hw_tc_offload 9217 * already ON 9218 */ 9219 if (vsi->netdev->features & NETIF_F_HW_TC) 9220 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9221 break; 9222 default: 9223 return -EINVAL; 9224 } 9225 9226 config_tcf: 9227 9228 /* Requesting same TCF configuration as already enabled */ 9229 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9230 mode != TC_MQPRIO_MODE_CHANNEL) 9231 return 0; 9232 9233 /* Pause VSI queues */ 9234 ice_dis_vsi(vsi, true); 9235 9236 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9237 ice_remove_q_channels(vsi, true); 9238 9239 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9240 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9241 num_online_cpus()); 9242 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9243 num_online_cpus()); 9244 } else { 9245 /* logic to rebuild VSI, same like ethtool -L */ 9246 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9247 9248 for (i = 0; i < num_tcf; i++) { 9249 if (!(ena_tc_qdisc & BIT(i))) 9250 continue; 9251 9252 offset = vsi->mqprio_qopt.qopt.offset[i]; 9253 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9254 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9255 } 9256 vsi->req_txq = offset + qcount_tx; 9257 vsi->req_rxq = offset + qcount_rx; 9258 9259 /* store away original rss_size info, so that it gets reused 9260 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9261 * determine, what should be the rss_sizefor main VSI 9262 */ 9263 vsi->orig_rss_size = vsi->rss_size; 9264 } 9265 9266 /* save current values of Tx and Rx queues before calling VSI rebuild 9267 * for fallback option 9268 */ 9269 cur_txq = vsi->num_txq; 9270 cur_rxq = vsi->num_rxq; 9271 9272 /* proceed with rebuild main VSI using correct number of queues */ 9273 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9274 if (ret) { 9275 /* fallback to current number of queues */ 9276 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9277 vsi->req_txq = cur_txq; 9278 vsi->req_rxq = cur_rxq; 9279 clear_bit(ICE_RESET_FAILED, pf->state); 9280 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9281 dev_err(dev, "Rebuild of main VSI failed again\n"); 9282 return ret; 9283 } 9284 } 9285 9286 vsi->all_numtc = num_tcf; 9287 vsi->all_enatc = ena_tc_qdisc; 9288 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9289 if (ret) { 9290 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9291 vsi->vsi_num); 9292 goto exit; 9293 } 9294 9295 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9296 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9297 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9298 9299 /* set TC0 rate limit if specified */ 9300 if (max_tx_rate || min_tx_rate) { 9301 /* convert to Kbits/s */ 9302 if (max_tx_rate) 9303 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9304 if (min_tx_rate) 9305 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9306 9307 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9308 if (!ret) { 9309 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9310 max_tx_rate, min_tx_rate, vsi->vsi_num); 9311 } else { 9312 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9313 max_tx_rate, min_tx_rate, vsi->vsi_num); 9314 goto exit; 9315 } 9316 } 9317 ret = ice_create_q_channels(vsi); 9318 if (ret) { 9319 netdev_err(netdev, "failed configuring queue channels\n"); 9320 goto exit; 9321 } else { 9322 netdev_dbg(netdev, "successfully configured channels\n"); 9323 } 9324 } 9325 9326 if (vsi->ch_rss_size) 9327 ice_vsi_cfg_rss_lut_key(vsi); 9328 9329 exit: 9330 /* if error, reset the all_numtc and all_enatc */ 9331 if (ret) { 9332 vsi->all_numtc = 0; 9333 vsi->all_enatc = 0; 9334 } 9335 /* resume VSI */ 9336 ice_ena_vsi(vsi, true); 9337 9338 return ret; 9339 } 9340 9341 static LIST_HEAD(ice_block_cb_list); 9342 9343 static int 9344 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9345 void *type_data) 9346 { 9347 struct ice_netdev_priv *np = netdev_priv(netdev); 9348 enum flow_block_binder_type binder_type; 9349 struct iidc_rdma_core_dev_info *cdev; 9350 struct ice_pf *pf = np->vsi->back; 9351 flow_setup_cb_t *flower_handler; 9352 bool locked = false; 9353 int err; 9354 9355 switch (type) { 9356 case TC_SETUP_BLOCK: 9357 binder_type = 9358 ((struct flow_block_offload *)type_data)->binder_type; 9359 9360 switch (binder_type) { 9361 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS: 9362 flower_handler = ice_setup_tc_block_cb_ingress; 9363 break; 9364 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS: 9365 flower_handler = ice_setup_tc_block_cb_egress; 9366 break; 9367 default: 9368 return -EOPNOTSUPP; 9369 } 9370 9371 return flow_block_cb_setup_simple(type_data, 9372 &ice_block_cb_list, 9373 flower_handler, 9374 np, np, false); 9375 case TC_SETUP_QDISC_MQPRIO: 9376 if (ice_is_eswitch_mode_switchdev(pf)) { 9377 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9378 return -EOPNOTSUPP; 9379 } 9380 9381 cdev = pf->cdev_info; 9382 if (cdev && cdev->adev) { 9383 mutex_lock(&pf->adev_mutex); 9384 device_lock(&cdev->adev->dev); 9385 locked = true; 9386 if (cdev->adev->dev.driver) { 9387 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9388 err = -EBUSY; 9389 goto adev_unlock; 9390 } 9391 } 9392 9393 /* setup traffic classifier for receive side */ 9394 mutex_lock(&pf->tc_mutex); 9395 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9396 mutex_unlock(&pf->tc_mutex); 9397 9398 adev_unlock: 9399 if (locked) { 9400 device_unlock(&cdev->adev->dev); 9401 mutex_unlock(&pf->adev_mutex); 9402 } 9403 return err; 9404 default: 9405 return -EOPNOTSUPP; 9406 } 9407 return -EOPNOTSUPP; 9408 } 9409 9410 static struct ice_indr_block_priv * 9411 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9412 struct net_device *netdev) 9413 { 9414 struct ice_indr_block_priv *cb_priv; 9415 9416 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9417 if (!cb_priv->netdev) 9418 return NULL; 9419 if (cb_priv->netdev == netdev) 9420 return cb_priv; 9421 } 9422 return NULL; 9423 } 9424 9425 static int 9426 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9427 void *indr_priv) 9428 { 9429 struct ice_indr_block_priv *priv = indr_priv; 9430 struct ice_netdev_priv *np = priv->np; 9431 9432 switch (type) { 9433 case TC_SETUP_CLSFLOWER: 9434 return ice_setup_tc_cls_flower(np, priv->netdev, 9435 (struct flow_cls_offload *) 9436 type_data, false); 9437 default: 9438 return -EOPNOTSUPP; 9439 } 9440 } 9441 9442 static int 9443 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9444 struct ice_netdev_priv *np, 9445 struct flow_block_offload *f, void *data, 9446 void (*cleanup)(struct flow_block_cb *block_cb)) 9447 { 9448 struct ice_indr_block_priv *indr_priv; 9449 struct flow_block_cb *block_cb; 9450 9451 if (!ice_is_tunnel_supported(netdev) && 9452 !(is_vlan_dev(netdev) && 9453 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9454 return -EOPNOTSUPP; 9455 9456 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9457 return -EOPNOTSUPP; 9458 9459 switch (f->command) { 9460 case FLOW_BLOCK_BIND: 9461 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9462 if (indr_priv) 9463 return -EEXIST; 9464 9465 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9466 if (!indr_priv) 9467 return -ENOMEM; 9468 9469 indr_priv->netdev = netdev; 9470 indr_priv->np = np; 9471 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9472 9473 block_cb = 9474 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9475 indr_priv, indr_priv, 9476 ice_rep_indr_tc_block_unbind, 9477 f, netdev, sch, data, np, 9478 cleanup); 9479 9480 if (IS_ERR(block_cb)) { 9481 list_del(&indr_priv->list); 9482 kfree(indr_priv); 9483 return PTR_ERR(block_cb); 9484 } 9485 flow_block_cb_add(block_cb, f); 9486 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9487 break; 9488 case FLOW_BLOCK_UNBIND: 9489 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9490 if (!indr_priv) 9491 return -ENOENT; 9492 9493 block_cb = flow_block_cb_lookup(f->block, 9494 ice_indr_setup_block_cb, 9495 indr_priv); 9496 if (!block_cb) 9497 return -ENOENT; 9498 9499 flow_indr_block_cb_remove(block_cb, f); 9500 9501 list_del(&block_cb->driver_list); 9502 break; 9503 default: 9504 return -EOPNOTSUPP; 9505 } 9506 return 0; 9507 } 9508 9509 static int 9510 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9511 void *cb_priv, enum tc_setup_type type, void *type_data, 9512 void *data, 9513 void (*cleanup)(struct flow_block_cb *block_cb)) 9514 { 9515 switch (type) { 9516 case TC_SETUP_BLOCK: 9517 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9518 data, cleanup); 9519 9520 default: 9521 return -EOPNOTSUPP; 9522 } 9523 } 9524 9525 /** 9526 * ice_open - Called when a network interface becomes active 9527 * @netdev: network interface device structure 9528 * 9529 * The open entry point is called when a network interface is made 9530 * active by the system (IFF_UP). At this point all resources needed 9531 * for transmit and receive operations are allocated, the interrupt 9532 * handler is registered with the OS, the netdev watchdog is enabled, 9533 * and the stack is notified that the interface is ready. 9534 * 9535 * Returns 0 on success, negative value on failure 9536 */ 9537 int ice_open(struct net_device *netdev) 9538 { 9539 struct ice_netdev_priv *np = netdev_priv(netdev); 9540 struct ice_pf *pf = np->vsi->back; 9541 9542 if (ice_is_reset_in_progress(pf->state)) { 9543 netdev_err(netdev, "can't open net device while reset is in progress"); 9544 return -EBUSY; 9545 } 9546 9547 return ice_open_internal(netdev); 9548 } 9549 9550 /** 9551 * ice_open_internal - Called when a network interface becomes active 9552 * @netdev: network interface device structure 9553 * 9554 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9555 * handling routine 9556 * 9557 * Returns 0 on success, negative value on failure 9558 */ 9559 int ice_open_internal(struct net_device *netdev) 9560 { 9561 struct ice_netdev_priv *np = netdev_priv(netdev); 9562 struct ice_vsi *vsi = np->vsi; 9563 struct ice_pf *pf = vsi->back; 9564 struct ice_port_info *pi; 9565 int err; 9566 9567 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9568 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9569 return -EIO; 9570 } 9571 9572 netif_carrier_off(netdev); 9573 9574 pi = vsi->port_info; 9575 err = ice_update_link_info(pi); 9576 if (err) { 9577 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9578 return err; 9579 } 9580 9581 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9582 9583 /* Set PHY if there is media, otherwise, turn off PHY */ 9584 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9585 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9586 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9587 err = ice_init_phy_user_cfg(pi); 9588 if (err) { 9589 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9590 err); 9591 return err; 9592 } 9593 } 9594 9595 err = ice_configure_phy(vsi); 9596 if (err) { 9597 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9598 err); 9599 return err; 9600 } 9601 } else { 9602 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9603 ice_set_link(vsi, false); 9604 } 9605 9606 err = ice_vsi_open(vsi); 9607 if (err) 9608 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9609 vsi->vsi_num, vsi->vsw->sw_id); 9610 9611 /* Update existing tunnels information */ 9612 udp_tunnel_get_rx_info(netdev); 9613 9614 return err; 9615 } 9616 9617 /** 9618 * ice_stop - Disables a network interface 9619 * @netdev: network interface device structure 9620 * 9621 * The stop entry point is called when an interface is de-activated by the OS, 9622 * and the netdevice enters the DOWN state. The hardware is still under the 9623 * driver's control, but the netdev interface is disabled. 9624 * 9625 * Returns success only - not allowed to fail 9626 */ 9627 int ice_stop(struct net_device *netdev) 9628 { 9629 struct ice_netdev_priv *np = netdev_priv(netdev); 9630 struct ice_vsi *vsi = np->vsi; 9631 struct ice_pf *pf = vsi->back; 9632 9633 if (ice_is_reset_in_progress(pf->state)) { 9634 netdev_err(netdev, "can't stop net device while reset is in progress"); 9635 return -EBUSY; 9636 } 9637 9638 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9639 int link_err = ice_force_phys_link_state(vsi, false); 9640 9641 if (link_err) { 9642 if (link_err == -ENOMEDIUM) 9643 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9644 vsi->vsi_num); 9645 else 9646 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9647 vsi->vsi_num, link_err); 9648 9649 ice_vsi_close(vsi); 9650 return -EIO; 9651 } 9652 } 9653 9654 ice_vsi_close(vsi); 9655 9656 return 0; 9657 } 9658 9659 /** 9660 * ice_features_check - Validate encapsulated packet conforms to limits 9661 * @skb: skb buffer 9662 * @netdev: This port's netdev 9663 * @features: Offload features that the stack believes apply 9664 */ 9665 static netdev_features_t 9666 ice_features_check(struct sk_buff *skb, 9667 struct net_device __always_unused *netdev, 9668 netdev_features_t features) 9669 { 9670 bool gso = skb_is_gso(skb); 9671 size_t len; 9672 9673 /* No point in doing any of this if neither checksum nor GSO are 9674 * being requested for this frame. We can rule out both by just 9675 * checking for CHECKSUM_PARTIAL 9676 */ 9677 if (skb->ip_summed != CHECKSUM_PARTIAL) 9678 return features; 9679 9680 /* We cannot support GSO if the MSS is going to be less than 9681 * 64 bytes. If it is then we need to drop support for GSO. 9682 */ 9683 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9684 features &= ~NETIF_F_GSO_MASK; 9685 9686 len = skb_network_offset(skb); 9687 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9688 goto out_rm_features; 9689 9690 len = skb_network_header_len(skb); 9691 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9692 goto out_rm_features; 9693 9694 if (skb->encapsulation) { 9695 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9696 * the case of IPIP frames, the transport header pointer is 9697 * after the inner header! So check to make sure that this 9698 * is a GRE or UDP_TUNNEL frame before doing that math. 9699 */ 9700 if (gso && (skb_shinfo(skb)->gso_type & 9701 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9702 len = skb_inner_network_header(skb) - 9703 skb_transport_header(skb); 9704 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9705 goto out_rm_features; 9706 } 9707 9708 len = skb_inner_network_header_len(skb); 9709 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9710 goto out_rm_features; 9711 } 9712 9713 return features; 9714 out_rm_features: 9715 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9716 } 9717 9718 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9719 .ndo_open = ice_open, 9720 .ndo_stop = ice_stop, 9721 .ndo_start_xmit = ice_start_xmit, 9722 .ndo_set_mac_address = ice_set_mac_address, 9723 .ndo_validate_addr = eth_validate_addr, 9724 .ndo_change_mtu = ice_change_mtu, 9725 .ndo_get_stats64 = ice_get_stats64, 9726 .ndo_tx_timeout = ice_tx_timeout, 9727 .ndo_bpf = ice_xdp_safe_mode, 9728 }; 9729 9730 static const struct net_device_ops ice_netdev_ops = { 9731 .ndo_open = ice_open, 9732 .ndo_stop = ice_stop, 9733 .ndo_start_xmit = ice_start_xmit, 9734 .ndo_select_queue = ice_select_queue, 9735 .ndo_features_check = ice_features_check, 9736 .ndo_fix_features = ice_fix_features, 9737 .ndo_set_rx_mode = ice_set_rx_mode, 9738 .ndo_set_mac_address = ice_set_mac_address, 9739 .ndo_validate_addr = eth_validate_addr, 9740 .ndo_change_mtu = ice_change_mtu, 9741 .ndo_get_stats64 = ice_get_stats64, 9742 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9743 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9744 .ndo_set_vf_mac = ice_set_vf_mac, 9745 .ndo_get_vf_config = ice_get_vf_cfg, 9746 .ndo_set_vf_trust = ice_set_vf_trust, 9747 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9748 .ndo_set_vf_link_state = ice_set_vf_link_state, 9749 .ndo_get_vf_stats = ice_get_vf_stats, 9750 .ndo_set_vf_rate = ice_set_vf_bw, 9751 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9752 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9753 .ndo_setup_tc = ice_setup_tc, 9754 .ndo_set_features = ice_set_features, 9755 .ndo_bridge_getlink = ice_bridge_getlink, 9756 .ndo_bridge_setlink = ice_bridge_setlink, 9757 .ndo_fdb_add = ice_fdb_add, 9758 .ndo_fdb_del = ice_fdb_del, 9759 #ifdef CONFIG_RFS_ACCEL 9760 .ndo_rx_flow_steer = ice_rx_flow_steer, 9761 #endif 9762 .ndo_tx_timeout = ice_tx_timeout, 9763 .ndo_bpf = ice_xdp, 9764 .ndo_xdp_xmit = ice_xdp_xmit, 9765 .ndo_xsk_wakeup = ice_xsk_wakeup, 9766 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get, 9767 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set, 9768 }; 9769