1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 #include <net/xdp_sock_drv.h> 26 27 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 28 static const char ice_driver_string[] = DRV_SUMMARY; 29 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 30 31 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 32 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 33 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 34 35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 36 MODULE_DESCRIPTION(DRV_SUMMARY); 37 MODULE_LICENSE("GPL v2"); 38 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 39 40 static int debug = -1; 41 module_param(debug, int, 0644); 42 #ifndef CONFIG_DYNAMIC_DEBUG 43 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 44 #else 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 46 #endif /* !CONFIG_DYNAMIC_DEBUG */ 47 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 /** 52 * ice_hw_to_dev - Get device pointer from the hardware structure 53 * @hw: pointer to the device HW structure 54 * 55 * Used to access the device pointer from compilation units which can't easily 56 * include the definition of struct ice_pf without leading to circular header 57 * dependencies. 58 */ 59 struct device *ice_hw_to_dev(struct ice_hw *hw) 60 { 61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 62 63 return &pf->pdev->dev; 64 } 65 66 static struct workqueue_struct *ice_wq; 67 static const struct net_device_ops ice_netdev_safe_mode_ops; 68 static const struct net_device_ops ice_netdev_ops; 69 70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 71 72 static void ice_vsi_release_all(struct ice_pf *pf); 73 74 static int ice_rebuild_channels(struct ice_pf *pf); 75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 76 77 static int 78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 79 void *cb_priv, enum tc_setup_type type, void *type_data, 80 void *data, 81 void (*cleanup)(struct flow_block_cb *block_cb)); 82 83 bool netif_is_ice(struct net_device *dev) 84 { 85 return dev && (dev->netdev_ops == &ice_netdev_ops); 86 } 87 88 /** 89 * ice_get_tx_pending - returns number of Tx descriptors not processed 90 * @ring: the ring of descriptors 91 */ 92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 93 { 94 u16 head, tail; 95 96 head = ring->next_to_clean; 97 tail = ring->next_to_use; 98 99 if (head != tail) 100 return (head < tail) ? 101 tail - head : (tail + ring->count - head); 102 return 0; 103 } 104 105 /** 106 * ice_check_for_hang_subtask - check for and recover hung queues 107 * @pf: pointer to PF struct 108 */ 109 static void ice_check_for_hang_subtask(struct ice_pf *pf) 110 { 111 struct ice_vsi *vsi = NULL; 112 struct ice_hw *hw; 113 unsigned int i; 114 int packets; 115 u32 v; 116 117 ice_for_each_vsi(pf, v) 118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 119 vsi = pf->vsi[v]; 120 break; 121 } 122 123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 124 return; 125 126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 127 return; 128 129 hw = &vsi->back->hw; 130 131 ice_for_each_txq(vsi, i) { 132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 133 struct ice_ring_stats *ring_stats; 134 135 if (!tx_ring) 136 continue; 137 if (ice_ring_ch_enabled(tx_ring)) 138 continue; 139 140 ring_stats = tx_ring->ring_stats; 141 if (!ring_stats) 142 continue; 143 144 if (tx_ring->desc) { 145 /* If packet counter has not changed the queue is 146 * likely stalled, so force an interrupt for this 147 * queue. 148 * 149 * prev_pkt would be negative if there was no 150 * pending work. 151 */ 152 packets = ring_stats->stats.pkts & INT_MAX; 153 if (ring_stats->tx_stats.prev_pkt == packets) { 154 /* Trigger sw interrupt to revive the queue */ 155 ice_trigger_sw_intr(hw, tx_ring->q_vector); 156 continue; 157 } 158 159 /* Memory barrier between read of packet count and call 160 * to ice_get_tx_pending() 161 */ 162 smp_rmb(); 163 ring_stats->tx_stats.prev_pkt = 164 ice_get_tx_pending(tx_ring) ? packets : -1; 165 } 166 } 167 } 168 169 /** 170 * ice_init_mac_fltr - Set initial MAC filters 171 * @pf: board private structure 172 * 173 * Set initial set of MAC filters for PF VSI; configure filters for permanent 174 * address and broadcast address. If an error is encountered, netdevice will be 175 * unregistered. 176 */ 177 static int ice_init_mac_fltr(struct ice_pf *pf) 178 { 179 struct ice_vsi *vsi; 180 u8 *perm_addr; 181 182 vsi = ice_get_main_vsi(pf); 183 if (!vsi) 184 return -EINVAL; 185 186 perm_addr = vsi->port_info->mac.perm_addr; 187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 188 } 189 190 /** 191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 192 * @netdev: the net device on which the sync is happening 193 * @addr: MAC address to sync 194 * 195 * This is a callback function which is called by the in kernel device sync 196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 198 * MAC filters from the hardware. 199 */ 200 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 201 { 202 struct ice_netdev_priv *np = netdev_priv(netdev); 203 struct ice_vsi *vsi = np->vsi; 204 205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 206 ICE_FWD_TO_VSI)) 207 return -EINVAL; 208 209 return 0; 210 } 211 212 /** 213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 214 * @netdev: the net device on which the unsync is happening 215 * @addr: MAC address to unsync 216 * 217 * This is a callback function which is called by the in kernel device unsync 218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 220 * delete the MAC filters from the hardware. 221 */ 222 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 223 { 224 struct ice_netdev_priv *np = netdev_priv(netdev); 225 struct ice_vsi *vsi = np->vsi; 226 227 /* Under some circumstances, we might receive a request to delete our 228 * own device address from our uc list. Because we store the device 229 * address in the VSI's MAC filter list, we need to ignore such 230 * requests and not delete our device address from this list. 231 */ 232 if (ether_addr_equal(addr, netdev->dev_addr)) 233 return 0; 234 235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 236 ICE_FWD_TO_VSI)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 /** 243 * ice_vsi_fltr_changed - check if filter state changed 244 * @vsi: VSI to be checked 245 * 246 * returns true if filter state has changed, false otherwise. 247 */ 248 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 249 { 250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 252 } 253 254 /** 255 * ice_set_promisc - Enable promiscuous mode for a given PF 256 * @vsi: the VSI being configured 257 * @promisc_m: mask of promiscuous config bits 258 * 259 */ 260 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 261 { 262 int status; 263 264 if (vsi->type != ICE_VSI_PF) 265 return 0; 266 267 if (ice_vsi_has_non_zero_vlans(vsi)) { 268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 270 promisc_m); 271 } else { 272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 273 promisc_m, 0); 274 } 275 if (status && status != -EEXIST) 276 return status; 277 278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 279 vsi->vsi_num, promisc_m); 280 return 0; 281 } 282 283 /** 284 * ice_clear_promisc - Disable promiscuous mode for a given PF 285 * @vsi: the VSI being configured 286 * @promisc_m: mask of promiscuous config bits 287 * 288 */ 289 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 290 { 291 int status; 292 293 if (vsi->type != ICE_VSI_PF) 294 return 0; 295 296 if (ice_vsi_has_non_zero_vlans(vsi)) { 297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 299 promisc_m); 300 } else { 301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 302 promisc_m, 0); 303 } 304 305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 306 vsi->vsi_num, promisc_m); 307 return status; 308 } 309 310 /** 311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 312 * @vsi: ptr to the VSI 313 * 314 * Push any outstanding VSI filter changes through the AdminQ. 315 */ 316 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 317 { 318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 319 struct device *dev = ice_pf_to_dev(vsi->back); 320 struct net_device *netdev = vsi->netdev; 321 bool promisc_forced_on = false; 322 struct ice_pf *pf = vsi->back; 323 struct ice_hw *hw = &pf->hw; 324 u32 changed_flags = 0; 325 int err; 326 327 if (!vsi->netdev) 328 return -EINVAL; 329 330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 331 usleep_range(1000, 2000); 332 333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 334 vsi->current_netdev_flags = vsi->netdev->flags; 335 336 INIT_LIST_HEAD(&vsi->tmp_sync_list); 337 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 338 339 if (ice_vsi_fltr_changed(vsi)) { 340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 342 343 /* grab the netdev's addr_list_lock */ 344 netif_addr_lock_bh(netdev); 345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 346 ice_add_mac_to_unsync_list); 347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 348 ice_add_mac_to_unsync_list); 349 /* our temp lists are populated. release lock */ 350 netif_addr_unlock_bh(netdev); 351 } 352 353 /* Remove MAC addresses in the unsync list */ 354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 356 if (err) { 357 netdev_err(netdev, "Failed to delete MAC filters\n"); 358 /* if we failed because of alloc failures, just bail */ 359 if (err == -ENOMEM) 360 goto out; 361 } 362 363 /* Add MAC addresses in the sync list */ 364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 365 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 366 /* If filter is added successfully or already exists, do not go into 367 * 'if' condition and report it as error. Instead continue processing 368 * rest of the function. 369 */ 370 if (err && err != -EEXIST) { 371 netdev_err(netdev, "Failed to add MAC filters\n"); 372 /* If there is no more space for new umac filters, VSI 373 * should go into promiscuous mode. There should be some 374 * space reserved for promiscuous filters. 375 */ 376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 378 vsi->state)) { 379 promisc_forced_on = true; 380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 381 vsi->vsi_num); 382 } else { 383 goto out; 384 } 385 } 386 err = 0; 387 /* check for changes in promiscuous modes */ 388 if (changed_flags & IFF_ALLMULTI) { 389 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 391 if (err) { 392 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 393 goto out_promisc; 394 } 395 } else { 396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 398 if (err) { 399 vsi->current_netdev_flags |= IFF_ALLMULTI; 400 goto out_promisc; 401 } 402 } 403 } 404 405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 408 if (vsi->current_netdev_flags & IFF_PROMISC) { 409 /* Apply Rx filter rule to get traffic from wire */ 410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 411 err = ice_set_dflt_vsi(vsi); 412 if (err && err != -EEXIST) { 413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 414 err, vsi->vsi_num); 415 vsi->current_netdev_flags &= 416 ~IFF_PROMISC; 417 goto out_promisc; 418 } 419 err = 0; 420 vlan_ops->dis_rx_filtering(vsi); 421 422 /* promiscuous mode implies allmulticast so 423 * that VSIs that are in promiscuous mode are 424 * subscribed to multicast packets coming to 425 * the port 426 */ 427 err = ice_set_promisc(vsi, 428 ICE_MCAST_PROMISC_BITS); 429 if (err) 430 goto out_promisc; 431 } 432 } else { 433 /* Clear Rx filter to remove traffic from wire */ 434 if (ice_is_vsi_dflt_vsi(vsi)) { 435 err = ice_clear_dflt_vsi(vsi); 436 if (err) { 437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 438 err, vsi->vsi_num); 439 vsi->current_netdev_flags |= 440 IFF_PROMISC; 441 goto out_promisc; 442 } 443 if (vsi->netdev->features & 444 NETIF_F_HW_VLAN_CTAG_FILTER) 445 vlan_ops->ena_rx_filtering(vsi); 446 } 447 448 /* disable allmulti here, but only if allmulti is not 449 * still enabled for the netdev 450 */ 451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 452 err = ice_clear_promisc(vsi, 453 ICE_MCAST_PROMISC_BITS); 454 if (err) { 455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 456 err, vsi->vsi_num); 457 } 458 } 459 } 460 } 461 goto exit; 462 463 out_promisc: 464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 465 goto exit; 466 out: 467 /* if something went wrong then set the changed flag so we try again */ 468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 470 exit: 471 clear_bit(ICE_CFG_BUSY, vsi->state); 472 return err; 473 } 474 475 /** 476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 477 * @pf: board private structure 478 */ 479 static void ice_sync_fltr_subtask(struct ice_pf *pf) 480 { 481 int v; 482 483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 484 return; 485 486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 487 488 ice_for_each_vsi(pf, v) 489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 490 ice_vsi_sync_fltr(pf->vsi[v])) { 491 /* come back and try again later */ 492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 493 break; 494 } 495 } 496 497 /** 498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 499 * @pf: the PF 500 * @locked: is the rtnl_lock already held 501 */ 502 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 503 { 504 int node; 505 int v; 506 507 ice_for_each_vsi(pf, v) 508 if (pf->vsi[v]) 509 ice_dis_vsi(pf->vsi[v], locked); 510 511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 512 pf->pf_agg_node[node].num_vsis = 0; 513 514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 515 pf->vf_agg_node[node].num_vsis = 0; 516 } 517 518 /** 519 * ice_clear_sw_switch_recipes - clear switch recipes 520 * @pf: board private structure 521 * 522 * Mark switch recipes as not created in sw structures. There are cases where 523 * rules (especially advanced rules) need to be restored, either re-read from 524 * hardware or added again. For example after the reset. 'recp_created' flag 525 * prevents from doing that and need to be cleared upfront. 526 */ 527 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 528 { 529 struct ice_sw_recipe *recp; 530 u8 i; 531 532 recp = pf->hw.switch_info->recp_list; 533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 534 recp[i].recp_created = false; 535 } 536 537 /** 538 * ice_prepare_for_reset - prep for reset 539 * @pf: board private structure 540 * @reset_type: reset type requested 541 * 542 * Inform or close all dependent features in prep for reset. 543 */ 544 static void 545 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 546 { 547 struct ice_hw *hw = &pf->hw; 548 struct ice_vsi *vsi; 549 struct ice_vf *vf; 550 unsigned int bkt; 551 552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 553 554 /* already prepared for reset */ 555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 556 return; 557 558 ice_unplug_aux_dev(pf); 559 560 /* Notify VFs of impending reset */ 561 if (ice_check_sq_alive(hw, &hw->mailboxq)) 562 ice_vc_notify_reset(pf); 563 564 /* Disable VFs until reset is completed */ 565 mutex_lock(&pf->vfs.table_lock); 566 ice_for_each_vf(pf, bkt, vf) 567 ice_set_vf_state_dis(vf); 568 mutex_unlock(&pf->vfs.table_lock); 569 570 if (ice_is_eswitch_mode_switchdev(pf)) { 571 if (reset_type != ICE_RESET_PFR) 572 ice_clear_sw_switch_recipes(pf); 573 } 574 575 /* release ADQ specific HW and SW resources */ 576 vsi = ice_get_main_vsi(pf); 577 if (!vsi) 578 goto skip; 579 580 /* to be on safe side, reset orig_rss_size so that normal flow 581 * of deciding rss_size can take precedence 582 */ 583 vsi->orig_rss_size = 0; 584 585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 586 if (reset_type == ICE_RESET_PFR) { 587 vsi->old_ena_tc = vsi->all_enatc; 588 vsi->old_numtc = vsi->all_numtc; 589 } else { 590 ice_remove_q_channels(vsi, true); 591 592 /* for other reset type, do not support channel rebuild 593 * hence reset needed info 594 */ 595 vsi->old_ena_tc = 0; 596 vsi->all_enatc = 0; 597 vsi->old_numtc = 0; 598 vsi->all_numtc = 0; 599 vsi->req_txq = 0; 600 vsi->req_rxq = 0; 601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 603 } 604 } 605 skip: 606 607 /* clear SW filtering DB */ 608 ice_clear_hw_tbls(hw); 609 /* disable the VSIs and their queues that are not already DOWN */ 610 ice_pf_dis_all_vsi(pf, false); 611 612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 613 ice_ptp_prepare_for_reset(pf); 614 615 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 616 ice_gnss_exit(pf); 617 618 if (hw->port_info) 619 ice_sched_clear_port(hw->port_info); 620 621 ice_shutdown_all_ctrlq(hw); 622 623 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 624 } 625 626 /** 627 * ice_do_reset - Initiate one of many types of resets 628 * @pf: board private structure 629 * @reset_type: reset type requested before this function was called. 630 */ 631 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 632 { 633 struct device *dev = ice_pf_to_dev(pf); 634 struct ice_hw *hw = &pf->hw; 635 636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 637 638 ice_prepare_for_reset(pf, reset_type); 639 640 /* trigger the reset */ 641 if (ice_reset(hw, reset_type)) { 642 dev_err(dev, "reset %d failed\n", reset_type); 643 set_bit(ICE_RESET_FAILED, pf->state); 644 clear_bit(ICE_RESET_OICR_RECV, pf->state); 645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 646 clear_bit(ICE_PFR_REQ, pf->state); 647 clear_bit(ICE_CORER_REQ, pf->state); 648 clear_bit(ICE_GLOBR_REQ, pf->state); 649 wake_up(&pf->reset_wait_queue); 650 return; 651 } 652 653 /* PFR is a bit of a special case because it doesn't result in an OICR 654 * interrupt. So for PFR, rebuild after the reset and clear the reset- 655 * associated state bits. 656 */ 657 if (reset_type == ICE_RESET_PFR) { 658 pf->pfr_count++; 659 ice_rebuild(pf, reset_type); 660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 661 clear_bit(ICE_PFR_REQ, pf->state); 662 wake_up(&pf->reset_wait_queue); 663 ice_reset_all_vfs(pf); 664 } 665 } 666 667 /** 668 * ice_reset_subtask - Set up for resetting the device and driver 669 * @pf: board private structure 670 */ 671 static void ice_reset_subtask(struct ice_pf *pf) 672 { 673 enum ice_reset_req reset_type = ICE_RESET_INVAL; 674 675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 677 * of reset is pending and sets bits in pf->state indicating the reset 678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 679 * prepare for pending reset if not already (for PF software-initiated 680 * global resets the software should already be prepared for it as 681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 682 * by firmware or software on other PFs, that bit is not set so prepare 683 * for the reset now), poll for reset done, rebuild and return. 684 */ 685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 686 /* Perform the largest reset requested */ 687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 688 reset_type = ICE_RESET_CORER; 689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 690 reset_type = ICE_RESET_GLOBR; 691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 692 reset_type = ICE_RESET_EMPR; 693 /* return if no valid reset type requested */ 694 if (reset_type == ICE_RESET_INVAL) 695 return; 696 ice_prepare_for_reset(pf, reset_type); 697 698 /* make sure we are ready to rebuild */ 699 if (ice_check_reset(&pf->hw)) { 700 set_bit(ICE_RESET_FAILED, pf->state); 701 } else { 702 /* done with reset. start rebuild */ 703 pf->hw.reset_ongoing = false; 704 ice_rebuild(pf, reset_type); 705 /* clear bit to resume normal operations, but 706 * ICE_NEEDS_RESTART bit is set in case rebuild failed 707 */ 708 clear_bit(ICE_RESET_OICR_RECV, pf->state); 709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 710 clear_bit(ICE_PFR_REQ, pf->state); 711 clear_bit(ICE_CORER_REQ, pf->state); 712 clear_bit(ICE_GLOBR_REQ, pf->state); 713 wake_up(&pf->reset_wait_queue); 714 ice_reset_all_vfs(pf); 715 } 716 717 return; 718 } 719 720 /* No pending resets to finish processing. Check for new resets */ 721 if (test_bit(ICE_PFR_REQ, pf->state)) 722 reset_type = ICE_RESET_PFR; 723 if (test_bit(ICE_CORER_REQ, pf->state)) 724 reset_type = ICE_RESET_CORER; 725 if (test_bit(ICE_GLOBR_REQ, pf->state)) 726 reset_type = ICE_RESET_GLOBR; 727 /* If no valid reset type requested just return */ 728 if (reset_type == ICE_RESET_INVAL) 729 return; 730 731 /* reset if not already down or busy */ 732 if (!test_bit(ICE_DOWN, pf->state) && 733 !test_bit(ICE_CFG_BUSY, pf->state)) { 734 ice_do_reset(pf, reset_type); 735 } 736 } 737 738 /** 739 * ice_print_topo_conflict - print topology conflict message 740 * @vsi: the VSI whose topology status is being checked 741 */ 742 static void ice_print_topo_conflict(struct ice_vsi *vsi) 743 { 744 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 745 case ICE_AQ_LINK_TOPO_CONFLICT: 746 case ICE_AQ_LINK_MEDIA_CONFLICT: 747 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 751 break; 752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 755 else 756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 757 break; 758 default: 759 break; 760 } 761 } 762 763 /** 764 * ice_print_link_msg - print link up or down message 765 * @vsi: the VSI whose link status is being queried 766 * @isup: boolean for if the link is now up or down 767 */ 768 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 769 { 770 struct ice_aqc_get_phy_caps_data *caps; 771 const char *an_advertised; 772 const char *fec_req; 773 const char *speed; 774 const char *fec; 775 const char *fc; 776 const char *an; 777 int status; 778 779 if (!vsi) 780 return; 781 782 if (vsi->current_isup == isup) 783 return; 784 785 vsi->current_isup = isup; 786 787 if (!isup) { 788 netdev_info(vsi->netdev, "NIC Link is Down\n"); 789 return; 790 } 791 792 switch (vsi->port_info->phy.link_info.link_speed) { 793 case ICE_AQ_LINK_SPEED_100GB: 794 speed = "100 G"; 795 break; 796 case ICE_AQ_LINK_SPEED_50GB: 797 speed = "50 G"; 798 break; 799 case ICE_AQ_LINK_SPEED_40GB: 800 speed = "40 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_25GB: 803 speed = "25 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_20GB: 806 speed = "20 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_10GB: 809 speed = "10 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_5GB: 812 speed = "5 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_2500MB: 815 speed = "2.5 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_1000MB: 818 speed = "1 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_100MB: 821 speed = "100 M"; 822 break; 823 default: 824 speed = "Unknown "; 825 break; 826 } 827 828 switch (vsi->port_info->fc.current_mode) { 829 case ICE_FC_FULL: 830 fc = "Rx/Tx"; 831 break; 832 case ICE_FC_TX_PAUSE: 833 fc = "Tx"; 834 break; 835 case ICE_FC_RX_PAUSE: 836 fc = "Rx"; 837 break; 838 case ICE_FC_NONE: 839 fc = "None"; 840 break; 841 default: 842 fc = "Unknown"; 843 break; 844 } 845 846 /* Get FEC mode based on negotiated link info */ 847 switch (vsi->port_info->phy.link_info.fec_info) { 848 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 849 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 850 fec = "RS-FEC"; 851 break; 852 case ICE_AQ_LINK_25G_KR_FEC_EN: 853 fec = "FC-FEC/BASE-R"; 854 break; 855 default: 856 fec = "NONE"; 857 break; 858 } 859 860 /* check if autoneg completed, might be false due to not supported */ 861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 862 an = "True"; 863 else 864 an = "False"; 865 866 /* Get FEC mode requested based on PHY caps last SW configuration */ 867 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 868 if (!caps) { 869 fec_req = "Unknown"; 870 an_advertised = "Unknown"; 871 goto done; 872 } 873 874 status = ice_aq_get_phy_caps(vsi->port_info, false, 875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 876 if (status) 877 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 878 879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 880 881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 883 fec_req = "RS-FEC"; 884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 886 fec_req = "FC-FEC/BASE-R"; 887 else 888 fec_req = "NONE"; 889 890 kfree(caps); 891 892 done: 893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 894 speed, fec_req, fec, an_advertised, an, fc); 895 ice_print_topo_conflict(vsi); 896 } 897 898 /** 899 * ice_vsi_link_event - update the VSI's netdev 900 * @vsi: the VSI on which the link event occurred 901 * @link_up: whether or not the VSI needs to be set up or down 902 */ 903 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 904 { 905 if (!vsi) 906 return; 907 908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 909 return; 910 911 if (vsi->type == ICE_VSI_PF) { 912 if (link_up == netif_carrier_ok(vsi->netdev)) 913 return; 914 915 if (link_up) { 916 netif_carrier_on(vsi->netdev); 917 netif_tx_wake_all_queues(vsi->netdev); 918 } else { 919 netif_carrier_off(vsi->netdev); 920 netif_tx_stop_all_queues(vsi->netdev); 921 } 922 } 923 } 924 925 /** 926 * ice_set_dflt_mib - send a default config MIB to the FW 927 * @pf: private PF struct 928 * 929 * This function sends a default configuration MIB to the FW. 930 * 931 * If this function errors out at any point, the driver is still able to 932 * function. The main impact is that LFC may not operate as expected. 933 * Therefore an error state in this function should be treated with a DBG 934 * message and continue on with driver rebuild/reenable. 935 */ 936 static void ice_set_dflt_mib(struct ice_pf *pf) 937 { 938 struct device *dev = ice_pf_to_dev(pf); 939 u8 mib_type, *buf, *lldpmib = NULL; 940 u16 len, typelen, offset = 0; 941 struct ice_lldp_org_tlv *tlv; 942 struct ice_hw *hw = &pf->hw; 943 u32 ouisubtype; 944 945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 947 if (!lldpmib) { 948 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 949 __func__); 950 return; 951 } 952 953 /* Add ETS CFG TLV */ 954 tlv = (struct ice_lldp_org_tlv *)lldpmib; 955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 956 ICE_IEEE_ETS_TLV_LEN); 957 tlv->typelen = htons(typelen); 958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 959 ICE_IEEE_SUBTYPE_ETS_CFG); 960 tlv->ouisubtype = htonl(ouisubtype); 961 962 buf = tlv->tlvinfo; 963 buf[0] = 0; 964 965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 967 * Octets 13 - 20 are TSA values - leave as zeros 968 */ 969 buf[5] = 0x64; 970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 971 offset += len + 2; 972 tlv = (struct ice_lldp_org_tlv *) 973 ((char *)tlv + sizeof(tlv->typelen) + len); 974 975 /* Add ETS REC TLV */ 976 buf = tlv->tlvinfo; 977 tlv->typelen = htons(typelen); 978 979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 980 ICE_IEEE_SUBTYPE_ETS_REC); 981 tlv->ouisubtype = htonl(ouisubtype); 982 983 /* First octet of buf is reserved 984 * Octets 1 - 4 map UP to TC - all UPs map to zero 985 * Octets 5 - 12 are BW values - set TC 0 to 100%. 986 * Octets 13 - 20 are TSA value - leave as zeros 987 */ 988 buf[5] = 0x64; 989 offset += len + 2; 990 tlv = (struct ice_lldp_org_tlv *) 991 ((char *)tlv + sizeof(tlv->typelen) + len); 992 993 /* Add PFC CFG TLV */ 994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 995 ICE_IEEE_PFC_TLV_LEN); 996 tlv->typelen = htons(typelen); 997 998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 999 ICE_IEEE_SUBTYPE_PFC_CFG); 1000 tlv->ouisubtype = htonl(ouisubtype); 1001 1002 /* Octet 1 left as all zeros - PFC disabled */ 1003 buf[0] = 0x08; 1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1005 offset += len + 2; 1006 1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1009 1010 kfree(lldpmib); 1011 } 1012 1013 /** 1014 * ice_check_phy_fw_load - check if PHY FW load failed 1015 * @pf: pointer to PF struct 1016 * @link_cfg_err: bitmap from the link info structure 1017 * 1018 * check if external PHY FW load failed and print an error message if it did 1019 */ 1020 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1021 { 1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1024 return; 1025 } 1026 1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1028 return; 1029 1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 } 1034 } 1035 1036 /** 1037 * ice_check_module_power 1038 * @pf: pointer to PF struct 1039 * @link_cfg_err: bitmap from the link info structure 1040 * 1041 * check module power level returned by a previous call to aq_get_link_info 1042 * and print error messages if module power level is not supported 1043 */ 1044 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1045 { 1046 /* if module power level is supported, clear the flag */ 1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1050 return; 1051 } 1052 1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1054 * above block didn't clear this bit, there's nothing to do 1055 */ 1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1057 return; 1058 1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1065 } 1066 } 1067 1068 /** 1069 * ice_check_link_cfg_err - check if link configuration failed 1070 * @pf: pointer to the PF struct 1071 * @link_cfg_err: bitmap from the link info structure 1072 * 1073 * print if any link configuration failure happens due to the value in the 1074 * link_cfg_err parameter in the link info structure 1075 */ 1076 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1077 { 1078 ice_check_module_power(pf, link_cfg_err); 1079 ice_check_phy_fw_load(pf, link_cfg_err); 1080 } 1081 1082 /** 1083 * ice_link_event - process the link event 1084 * @pf: PF that the link event is associated with 1085 * @pi: port_info for the port that the link event is associated with 1086 * @link_up: true if the physical link is up and false if it is down 1087 * @link_speed: current link speed received from the link event 1088 * 1089 * Returns 0 on success and negative on failure 1090 */ 1091 static int 1092 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1093 u16 link_speed) 1094 { 1095 struct device *dev = ice_pf_to_dev(pf); 1096 struct ice_phy_info *phy_info; 1097 struct ice_vsi *vsi; 1098 u16 old_link_speed; 1099 bool old_link; 1100 int status; 1101 1102 phy_info = &pi->phy; 1103 phy_info->link_info_old = phy_info->link_info; 1104 1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1106 old_link_speed = phy_info->link_info_old.link_speed; 1107 1108 /* update the link info structures and re-enable link events, 1109 * don't bail on failure due to other book keeping needed 1110 */ 1111 status = ice_update_link_info(pi); 1112 if (status) 1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1114 pi->lport, status, 1115 ice_aq_str(pi->hw->adminq.sq_last_status)); 1116 1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1118 1119 /* Check if the link state is up after updating link info, and treat 1120 * this event as an UP event since the link is actually UP now. 1121 */ 1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1123 link_up = true; 1124 1125 vsi = ice_get_main_vsi(pf); 1126 if (!vsi || !vsi->port_info) 1127 return -EINVAL; 1128 1129 /* turn off PHY if media was removed */ 1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1133 ice_set_link(vsi, false); 1134 } 1135 1136 /* if the old link up/down and speed is the same as the new */ 1137 if (link_up == old_link && link_speed == old_link_speed) 1138 return 0; 1139 1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1141 1142 if (ice_is_dcb_active(pf)) { 1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1144 ice_dcb_rebuild(pf); 1145 } else { 1146 if (link_up) 1147 ice_set_dflt_mib(pf); 1148 } 1149 ice_vsi_link_event(vsi, link_up); 1150 ice_print_link_msg(vsi, link_up); 1151 1152 ice_vc_notify_link_state(pf); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1159 * @pf: board private structure 1160 */ 1161 static void ice_watchdog_subtask(struct ice_pf *pf) 1162 { 1163 int i; 1164 1165 /* if interface is down do nothing */ 1166 if (test_bit(ICE_DOWN, pf->state) || 1167 test_bit(ICE_CFG_BUSY, pf->state)) 1168 return; 1169 1170 /* make sure we don't do these things too often */ 1171 if (time_before(jiffies, 1172 pf->serv_tmr_prev + pf->serv_tmr_period)) 1173 return; 1174 1175 pf->serv_tmr_prev = jiffies; 1176 1177 /* Update the stats for active netdevs so the network stack 1178 * can look at updated numbers whenever it cares to 1179 */ 1180 ice_update_pf_stats(pf); 1181 ice_for_each_vsi(pf, i) 1182 if (pf->vsi[i] && pf->vsi[i]->netdev) 1183 ice_update_vsi_stats(pf->vsi[i]); 1184 } 1185 1186 /** 1187 * ice_init_link_events - enable/initialize link events 1188 * @pi: pointer to the port_info instance 1189 * 1190 * Returns -EIO on failure, 0 on success 1191 */ 1192 static int ice_init_link_events(struct ice_port_info *pi) 1193 { 1194 u16 mask; 1195 1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1199 1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1202 pi->lport); 1203 return -EIO; 1204 } 1205 1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1208 pi->lport); 1209 return -EIO; 1210 } 1211 1212 return 0; 1213 } 1214 1215 /** 1216 * ice_handle_link_event - handle link event via ARQ 1217 * @pf: PF that the link event is associated with 1218 * @event: event structure containing link status info 1219 */ 1220 static int 1221 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1222 { 1223 struct ice_aqc_get_link_status_data *link_data; 1224 struct ice_port_info *port_info; 1225 int status; 1226 1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1228 port_info = pf->hw.port_info; 1229 if (!port_info) 1230 return -EINVAL; 1231 1232 status = ice_link_event(pf, port_info, 1233 !!(link_data->link_info & ICE_AQ_LINK_UP), 1234 le16_to_cpu(link_data->link_speed)); 1235 if (status) 1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1237 status); 1238 1239 return status; 1240 } 1241 1242 enum ice_aq_task_state { 1243 ICE_AQ_TASK_WAITING = 0, 1244 ICE_AQ_TASK_COMPLETE, 1245 ICE_AQ_TASK_CANCELED, 1246 }; 1247 1248 struct ice_aq_task { 1249 struct hlist_node entry; 1250 1251 u16 opcode; 1252 struct ice_rq_event_info *event; 1253 enum ice_aq_task_state state; 1254 }; 1255 1256 /** 1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1258 * @pf: pointer to the PF private structure 1259 * @opcode: the opcode to wait for 1260 * @timeout: how long to wait, in jiffies 1261 * @event: storage for the event info 1262 * 1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1264 * current thread will be put to sleep until the specified event occurs or 1265 * until the given timeout is reached. 1266 * 1267 * To obtain only the descriptor contents, pass an event without an allocated 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * event->msg_buf with enough space ahead of time. 1270 * 1271 * Returns: zero on success, or a negative error code on failure. 1272 */ 1273 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1274 struct ice_rq_event_info *event) 1275 { 1276 struct device *dev = ice_pf_to_dev(pf); 1277 struct ice_aq_task *task; 1278 unsigned long start; 1279 long ret; 1280 int err; 1281 1282 task = kzalloc(sizeof(*task), GFP_KERNEL); 1283 if (!task) 1284 return -ENOMEM; 1285 1286 INIT_HLIST_NODE(&task->entry); 1287 task->opcode = opcode; 1288 task->event = event; 1289 task->state = ICE_AQ_TASK_WAITING; 1290 1291 spin_lock_bh(&pf->aq_wait_lock); 1292 hlist_add_head(&task->entry, &pf->aq_wait_list); 1293 spin_unlock_bh(&pf->aq_wait_lock); 1294 1295 start = jiffies; 1296 1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1298 timeout); 1299 switch (task->state) { 1300 case ICE_AQ_TASK_WAITING: 1301 err = ret < 0 ? ret : -ETIMEDOUT; 1302 break; 1303 case ICE_AQ_TASK_CANCELED: 1304 err = ret < 0 ? ret : -ECANCELED; 1305 break; 1306 case ICE_AQ_TASK_COMPLETE: 1307 err = ret < 0 ? ret : 0; 1308 break; 1309 default: 1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1311 err = -EINVAL; 1312 break; 1313 } 1314 1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1316 jiffies_to_msecs(jiffies - start), 1317 jiffies_to_msecs(timeout), 1318 opcode); 1319 1320 spin_lock_bh(&pf->aq_wait_lock); 1321 hlist_del(&task->entry); 1322 spin_unlock_bh(&pf->aq_wait_lock); 1323 kfree(task); 1324 1325 return err; 1326 } 1327 1328 /** 1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1330 * @pf: pointer to the PF private structure 1331 * @opcode: the opcode of the event 1332 * @event: the event to check 1333 * 1334 * Loops over the current list of pending threads waiting for an AdminQ event. 1335 * For each matching task, copy the contents of the event into the task 1336 * structure and wake up the thread. 1337 * 1338 * If multiple threads wait for the same opcode, they will all be woken up. 1339 * 1340 * Note that event->msg_buf will only be duplicated if the event has a buffer 1341 * with enough space already allocated. Otherwise, only the descriptor and 1342 * message length will be copied. 1343 * 1344 * Returns: true if an event was found, false otherwise 1345 */ 1346 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1347 struct ice_rq_event_info *event) 1348 { 1349 struct ice_aq_task *task; 1350 bool found = false; 1351 1352 spin_lock_bh(&pf->aq_wait_lock); 1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1354 if (task->state || task->opcode != opcode) 1355 continue; 1356 1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1358 task->event->msg_len = event->msg_len; 1359 1360 /* Only copy the data buffer if a destination was set */ 1361 if (task->event->msg_buf && 1362 task->event->buf_len > event->buf_len) { 1363 memcpy(task->event->msg_buf, event->msg_buf, 1364 event->buf_len); 1365 task->event->buf_len = event->buf_len; 1366 } 1367 1368 task->state = ICE_AQ_TASK_COMPLETE; 1369 found = true; 1370 } 1371 spin_unlock_bh(&pf->aq_wait_lock); 1372 1373 if (found) 1374 wake_up(&pf->aq_wait_queue); 1375 } 1376 1377 /** 1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1379 * @pf: the PF private structure 1380 * 1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1383 */ 1384 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1385 { 1386 struct ice_aq_task *task; 1387 1388 spin_lock_bh(&pf->aq_wait_lock); 1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1390 task->state = ICE_AQ_TASK_CANCELED; 1391 spin_unlock_bh(&pf->aq_wait_lock); 1392 1393 wake_up(&pf->aq_wait_queue); 1394 } 1395 1396 /** 1397 * __ice_clean_ctrlq - helper function to clean controlq rings 1398 * @pf: ptr to struct ice_pf 1399 * @q_type: specific Control queue type 1400 */ 1401 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1402 { 1403 struct device *dev = ice_pf_to_dev(pf); 1404 struct ice_rq_event_info event; 1405 struct ice_hw *hw = &pf->hw; 1406 struct ice_ctl_q_info *cq; 1407 u16 pending, i = 0; 1408 const char *qtype; 1409 u32 oldval, val; 1410 1411 /* Do not clean control queue if/when PF reset fails */ 1412 if (test_bit(ICE_RESET_FAILED, pf->state)) 1413 return 0; 1414 1415 switch (q_type) { 1416 case ICE_CTL_Q_ADMIN: 1417 cq = &hw->adminq; 1418 qtype = "Admin"; 1419 break; 1420 case ICE_CTL_Q_SB: 1421 cq = &hw->sbq; 1422 qtype = "Sideband"; 1423 break; 1424 case ICE_CTL_Q_MAILBOX: 1425 cq = &hw->mailboxq; 1426 qtype = "Mailbox"; 1427 /* we are going to try to detect a malicious VF, so set the 1428 * state to begin detection 1429 */ 1430 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1431 break; 1432 default: 1433 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1434 return 0; 1435 } 1436 1437 /* check for error indications - PF_xx_AxQLEN register layout for 1438 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1439 */ 1440 val = rd32(hw, cq->rq.len); 1441 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1442 PF_FW_ARQLEN_ARQCRIT_M)) { 1443 oldval = val; 1444 if (val & PF_FW_ARQLEN_ARQVFE_M) 1445 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1446 qtype); 1447 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1448 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1449 qtype); 1450 } 1451 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1452 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1453 qtype); 1454 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1455 PF_FW_ARQLEN_ARQCRIT_M); 1456 if (oldval != val) 1457 wr32(hw, cq->rq.len, val); 1458 } 1459 1460 val = rd32(hw, cq->sq.len); 1461 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1462 PF_FW_ATQLEN_ATQCRIT_M)) { 1463 oldval = val; 1464 if (val & PF_FW_ATQLEN_ATQVFE_M) 1465 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1466 qtype); 1467 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1468 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1469 qtype); 1470 } 1471 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1472 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1473 qtype); 1474 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1475 PF_FW_ATQLEN_ATQCRIT_M); 1476 if (oldval != val) 1477 wr32(hw, cq->sq.len, val); 1478 } 1479 1480 event.buf_len = cq->rq_buf_size; 1481 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1482 if (!event.msg_buf) 1483 return 0; 1484 1485 do { 1486 u16 opcode; 1487 int ret; 1488 1489 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1490 if (ret == -EALREADY) 1491 break; 1492 if (ret) { 1493 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1494 ret); 1495 break; 1496 } 1497 1498 opcode = le16_to_cpu(event.desc.opcode); 1499 1500 /* Notify any thread that might be waiting for this event */ 1501 ice_aq_check_events(pf, opcode, &event); 1502 1503 switch (opcode) { 1504 case ice_aqc_opc_get_link_status: 1505 if (ice_handle_link_event(pf, &event)) 1506 dev_err(dev, "Could not handle link event\n"); 1507 break; 1508 case ice_aqc_opc_event_lan_overflow: 1509 ice_vf_lan_overflow_event(pf, &event); 1510 break; 1511 case ice_mbx_opc_send_msg_to_pf: 1512 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1513 ice_vc_process_vf_msg(pf, &event); 1514 break; 1515 case ice_aqc_opc_fw_logging: 1516 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1517 break; 1518 case ice_aqc_opc_lldp_set_mib_change: 1519 ice_dcb_process_lldp_set_mib_change(pf, &event); 1520 break; 1521 default: 1522 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1523 qtype, opcode); 1524 break; 1525 } 1526 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1527 1528 kfree(event.msg_buf); 1529 1530 return pending && (i == ICE_DFLT_IRQ_WORK); 1531 } 1532 1533 /** 1534 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1535 * @hw: pointer to hardware info 1536 * @cq: control queue information 1537 * 1538 * returns true if there are pending messages in a queue, false if there aren't 1539 */ 1540 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1541 { 1542 u16 ntu; 1543 1544 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1545 return cq->rq.next_to_clean != ntu; 1546 } 1547 1548 /** 1549 * ice_clean_adminq_subtask - clean the AdminQ rings 1550 * @pf: board private structure 1551 */ 1552 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1553 { 1554 struct ice_hw *hw = &pf->hw; 1555 1556 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1557 return; 1558 1559 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1560 return; 1561 1562 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1563 1564 /* There might be a situation where new messages arrive to a control 1565 * queue between processing the last message and clearing the 1566 * EVENT_PENDING bit. So before exiting, check queue head again (using 1567 * ice_ctrlq_pending) and process new messages if any. 1568 */ 1569 if (ice_ctrlq_pending(hw, &hw->adminq)) 1570 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1571 1572 ice_flush(hw); 1573 } 1574 1575 /** 1576 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1577 * @pf: board private structure 1578 */ 1579 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1580 { 1581 struct ice_hw *hw = &pf->hw; 1582 1583 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1584 return; 1585 1586 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1587 return; 1588 1589 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1590 1591 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1593 1594 ice_flush(hw); 1595 } 1596 1597 /** 1598 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1599 * @pf: board private structure 1600 */ 1601 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1602 { 1603 struct ice_hw *hw = &pf->hw; 1604 1605 /* Nothing to do here if sideband queue is not supported */ 1606 if (!ice_is_sbq_supported(hw)) { 1607 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1608 return; 1609 } 1610 1611 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1612 return; 1613 1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1615 return; 1616 1617 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1618 1619 if (ice_ctrlq_pending(hw, &hw->sbq)) 1620 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1621 1622 ice_flush(hw); 1623 } 1624 1625 /** 1626 * ice_service_task_schedule - schedule the service task to wake up 1627 * @pf: board private structure 1628 * 1629 * If not already scheduled, this puts the task into the work queue. 1630 */ 1631 void ice_service_task_schedule(struct ice_pf *pf) 1632 { 1633 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1634 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1635 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1636 queue_work(ice_wq, &pf->serv_task); 1637 } 1638 1639 /** 1640 * ice_service_task_complete - finish up the service task 1641 * @pf: board private structure 1642 */ 1643 static void ice_service_task_complete(struct ice_pf *pf) 1644 { 1645 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1646 1647 /* force memory (pf->state) to sync before next service task */ 1648 smp_mb__before_atomic(); 1649 clear_bit(ICE_SERVICE_SCHED, pf->state); 1650 } 1651 1652 /** 1653 * ice_service_task_stop - stop service task and cancel works 1654 * @pf: board private structure 1655 * 1656 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1657 * 1 otherwise. 1658 */ 1659 static int ice_service_task_stop(struct ice_pf *pf) 1660 { 1661 int ret; 1662 1663 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1664 1665 if (pf->serv_tmr.function) 1666 del_timer_sync(&pf->serv_tmr); 1667 if (pf->serv_task.func) 1668 cancel_work_sync(&pf->serv_task); 1669 1670 clear_bit(ICE_SERVICE_SCHED, pf->state); 1671 return ret; 1672 } 1673 1674 /** 1675 * ice_service_task_restart - restart service task and schedule works 1676 * @pf: board private structure 1677 * 1678 * This function is needed for suspend and resume works (e.g WoL scenario) 1679 */ 1680 static void ice_service_task_restart(struct ice_pf *pf) 1681 { 1682 clear_bit(ICE_SERVICE_DIS, pf->state); 1683 ice_service_task_schedule(pf); 1684 } 1685 1686 /** 1687 * ice_service_timer - timer callback to schedule service task 1688 * @t: pointer to timer_list 1689 */ 1690 static void ice_service_timer(struct timer_list *t) 1691 { 1692 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1693 1694 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1695 ice_service_task_schedule(pf); 1696 } 1697 1698 /** 1699 * ice_handle_mdd_event - handle malicious driver detect event 1700 * @pf: pointer to the PF structure 1701 * 1702 * Called from service task. OICR interrupt handler indicates MDD event. 1703 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1704 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1705 * disable the queue, the PF can be configured to reset the VF using ethtool 1706 * private flag mdd-auto-reset-vf. 1707 */ 1708 static void ice_handle_mdd_event(struct ice_pf *pf) 1709 { 1710 struct device *dev = ice_pf_to_dev(pf); 1711 struct ice_hw *hw = &pf->hw; 1712 struct ice_vf *vf; 1713 unsigned int bkt; 1714 u32 reg; 1715 1716 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1717 /* Since the VF MDD event logging is rate limited, check if 1718 * there are pending MDD events. 1719 */ 1720 ice_print_vfs_mdd_events(pf); 1721 return; 1722 } 1723 1724 /* find what triggered an MDD event */ 1725 reg = rd32(hw, GL_MDET_TX_PQM); 1726 if (reg & GL_MDET_TX_PQM_VALID_M) { 1727 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1728 GL_MDET_TX_PQM_PF_NUM_S; 1729 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1730 GL_MDET_TX_PQM_VF_NUM_S; 1731 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1732 GL_MDET_TX_PQM_MAL_TYPE_S; 1733 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1734 GL_MDET_TX_PQM_QNUM_S); 1735 1736 if (netif_msg_tx_err(pf)) 1737 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1738 event, queue, pf_num, vf_num); 1739 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1740 } 1741 1742 reg = rd32(hw, GL_MDET_TX_TCLAN); 1743 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1744 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1745 GL_MDET_TX_TCLAN_PF_NUM_S; 1746 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1747 GL_MDET_TX_TCLAN_VF_NUM_S; 1748 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1749 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1750 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1751 GL_MDET_TX_TCLAN_QNUM_S); 1752 1753 if (netif_msg_tx_err(pf)) 1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1755 event, queue, pf_num, vf_num); 1756 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1757 } 1758 1759 reg = rd32(hw, GL_MDET_RX); 1760 if (reg & GL_MDET_RX_VALID_M) { 1761 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1762 GL_MDET_RX_PF_NUM_S; 1763 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1764 GL_MDET_RX_VF_NUM_S; 1765 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1766 GL_MDET_RX_MAL_TYPE_S; 1767 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1768 GL_MDET_RX_QNUM_S); 1769 1770 if (netif_msg_rx_err(pf)) 1771 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1772 event, queue, pf_num, vf_num); 1773 wr32(hw, GL_MDET_RX, 0xffffffff); 1774 } 1775 1776 /* check to see if this PF caused an MDD event */ 1777 reg = rd32(hw, PF_MDET_TX_PQM); 1778 if (reg & PF_MDET_TX_PQM_VALID_M) { 1779 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1780 if (netif_msg_tx_err(pf)) 1781 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1782 } 1783 1784 reg = rd32(hw, PF_MDET_TX_TCLAN); 1785 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1786 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1787 if (netif_msg_tx_err(pf)) 1788 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1789 } 1790 1791 reg = rd32(hw, PF_MDET_RX); 1792 if (reg & PF_MDET_RX_VALID_M) { 1793 wr32(hw, PF_MDET_RX, 0xFFFF); 1794 if (netif_msg_rx_err(pf)) 1795 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1796 } 1797 1798 /* Check to see if one of the VFs caused an MDD event, and then 1799 * increment counters and set print pending 1800 */ 1801 mutex_lock(&pf->vfs.table_lock); 1802 ice_for_each_vf(pf, bkt, vf) { 1803 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1804 if (reg & VP_MDET_TX_PQM_VALID_M) { 1805 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1806 vf->mdd_tx_events.count++; 1807 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1808 if (netif_msg_tx_err(pf)) 1809 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1810 vf->vf_id); 1811 } 1812 1813 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1814 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1815 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1816 vf->mdd_tx_events.count++; 1817 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1818 if (netif_msg_tx_err(pf)) 1819 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1820 vf->vf_id); 1821 } 1822 1823 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1824 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1825 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1826 vf->mdd_tx_events.count++; 1827 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1828 if (netif_msg_tx_err(pf)) 1829 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1830 vf->vf_id); 1831 } 1832 1833 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1834 if (reg & VP_MDET_RX_VALID_M) { 1835 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1836 vf->mdd_rx_events.count++; 1837 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1838 if (netif_msg_rx_err(pf)) 1839 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1840 vf->vf_id); 1841 1842 /* Since the queue is disabled on VF Rx MDD events, the 1843 * PF can be configured to reset the VF through ethtool 1844 * private flag mdd-auto-reset-vf. 1845 */ 1846 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1847 /* VF MDD event counters will be cleared by 1848 * reset, so print the event prior to reset. 1849 */ 1850 ice_print_vf_rx_mdd_event(vf); 1851 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1852 } 1853 } 1854 } 1855 mutex_unlock(&pf->vfs.table_lock); 1856 1857 ice_print_vfs_mdd_events(pf); 1858 } 1859 1860 /** 1861 * ice_force_phys_link_state - Force the physical link state 1862 * @vsi: VSI to force the physical link state to up/down 1863 * @link_up: true/false indicates to set the physical link to up/down 1864 * 1865 * Force the physical link state by getting the current PHY capabilities from 1866 * hardware and setting the PHY config based on the determined capabilities. If 1867 * link changes a link event will be triggered because both the Enable Automatic 1868 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1869 * 1870 * Returns 0 on success, negative on failure 1871 */ 1872 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1873 { 1874 struct ice_aqc_get_phy_caps_data *pcaps; 1875 struct ice_aqc_set_phy_cfg_data *cfg; 1876 struct ice_port_info *pi; 1877 struct device *dev; 1878 int retcode; 1879 1880 if (!vsi || !vsi->port_info || !vsi->back) 1881 return -EINVAL; 1882 if (vsi->type != ICE_VSI_PF) 1883 return 0; 1884 1885 dev = ice_pf_to_dev(vsi->back); 1886 1887 pi = vsi->port_info; 1888 1889 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1890 if (!pcaps) 1891 return -ENOMEM; 1892 1893 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1894 NULL); 1895 if (retcode) { 1896 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1897 vsi->vsi_num, retcode); 1898 retcode = -EIO; 1899 goto out; 1900 } 1901 1902 /* No change in link */ 1903 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1904 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1905 goto out; 1906 1907 /* Use the current user PHY configuration. The current user PHY 1908 * configuration is initialized during probe from PHY capabilities 1909 * software mode, and updated on set PHY configuration. 1910 */ 1911 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1912 if (!cfg) { 1913 retcode = -ENOMEM; 1914 goto out; 1915 } 1916 1917 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1918 if (link_up) 1919 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1920 else 1921 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1922 1923 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1924 if (retcode) { 1925 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1926 vsi->vsi_num, retcode); 1927 retcode = -EIO; 1928 } 1929 1930 kfree(cfg); 1931 out: 1932 kfree(pcaps); 1933 return retcode; 1934 } 1935 1936 /** 1937 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1938 * @pi: port info structure 1939 * 1940 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1941 */ 1942 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1943 { 1944 struct ice_aqc_get_phy_caps_data *pcaps; 1945 struct ice_pf *pf = pi->hw->back; 1946 int err; 1947 1948 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1949 if (!pcaps) 1950 return -ENOMEM; 1951 1952 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1953 pcaps, NULL); 1954 1955 if (err) { 1956 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1957 goto out; 1958 } 1959 1960 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1961 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1962 1963 out: 1964 kfree(pcaps); 1965 return err; 1966 } 1967 1968 /** 1969 * ice_init_link_dflt_override - Initialize link default override 1970 * @pi: port info structure 1971 * 1972 * Initialize link default override and PHY total port shutdown during probe 1973 */ 1974 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1975 { 1976 struct ice_link_default_override_tlv *ldo; 1977 struct ice_pf *pf = pi->hw->back; 1978 1979 ldo = &pf->link_dflt_override; 1980 if (ice_get_link_default_override(ldo, pi)) 1981 return; 1982 1983 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1984 return; 1985 1986 /* Enable Total Port Shutdown (override/replace link-down-on-close 1987 * ethtool private flag) for ports with Port Disable bit set. 1988 */ 1989 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1990 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1991 } 1992 1993 /** 1994 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1995 * @pi: port info structure 1996 * 1997 * If default override is enabled, initialize the user PHY cfg speed and FEC 1998 * settings using the default override mask from the NVM. 1999 * 2000 * The PHY should only be configured with the default override settings the 2001 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2002 * is used to indicate that the user PHY cfg default override is initialized 2003 * and the PHY has not been configured with the default override settings. The 2004 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2005 * configured. 2006 * 2007 * This function should be called only if the FW doesn't support default 2008 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2009 */ 2010 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2011 { 2012 struct ice_link_default_override_tlv *ldo; 2013 struct ice_aqc_set_phy_cfg_data *cfg; 2014 struct ice_phy_info *phy = &pi->phy; 2015 struct ice_pf *pf = pi->hw->back; 2016 2017 ldo = &pf->link_dflt_override; 2018 2019 /* If link default override is enabled, use to mask NVM PHY capabilities 2020 * for speed and FEC default configuration. 2021 */ 2022 cfg = &phy->curr_user_phy_cfg; 2023 2024 if (ldo->phy_type_low || ldo->phy_type_high) { 2025 cfg->phy_type_low = pf->nvm_phy_type_lo & 2026 cpu_to_le64(ldo->phy_type_low); 2027 cfg->phy_type_high = pf->nvm_phy_type_hi & 2028 cpu_to_le64(ldo->phy_type_high); 2029 } 2030 cfg->link_fec_opt = ldo->fec_options; 2031 phy->curr_user_fec_req = ICE_FEC_AUTO; 2032 2033 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2034 } 2035 2036 /** 2037 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2038 * @pi: port info structure 2039 * 2040 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2041 * mode to default. The PHY defaults are from get PHY capabilities topology 2042 * with media so call when media is first available. An error is returned if 2043 * called when media is not available. The PHY initialization completed state is 2044 * set here. 2045 * 2046 * These configurations are used when setting PHY 2047 * configuration. The user PHY configuration is updated on set PHY 2048 * configuration. Returns 0 on success, negative on failure 2049 */ 2050 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2051 { 2052 struct ice_aqc_get_phy_caps_data *pcaps; 2053 struct ice_phy_info *phy = &pi->phy; 2054 struct ice_pf *pf = pi->hw->back; 2055 int err; 2056 2057 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2058 return -EIO; 2059 2060 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2061 if (!pcaps) 2062 return -ENOMEM; 2063 2064 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2065 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2066 pcaps, NULL); 2067 else 2068 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2069 pcaps, NULL); 2070 if (err) { 2071 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2072 goto err_out; 2073 } 2074 2075 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2076 2077 /* check if lenient mode is supported and enabled */ 2078 if (ice_fw_supports_link_override(pi->hw) && 2079 !(pcaps->module_compliance_enforcement & 2080 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2081 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2082 2083 /* if the FW supports default PHY configuration mode, then the driver 2084 * does not have to apply link override settings. If not, 2085 * initialize user PHY configuration with link override values 2086 */ 2087 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2088 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2089 ice_init_phy_cfg_dflt_override(pi); 2090 goto out; 2091 } 2092 } 2093 2094 /* if link default override is not enabled, set user flow control and 2095 * FEC settings based on what get_phy_caps returned 2096 */ 2097 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2098 pcaps->link_fec_options); 2099 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2100 2101 out: 2102 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2103 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2104 err_out: 2105 kfree(pcaps); 2106 return err; 2107 } 2108 2109 /** 2110 * ice_configure_phy - configure PHY 2111 * @vsi: VSI of PHY 2112 * 2113 * Set the PHY configuration. If the current PHY configuration is the same as 2114 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2115 * configure the based get PHY capabilities for topology with media. 2116 */ 2117 static int ice_configure_phy(struct ice_vsi *vsi) 2118 { 2119 struct device *dev = ice_pf_to_dev(vsi->back); 2120 struct ice_port_info *pi = vsi->port_info; 2121 struct ice_aqc_get_phy_caps_data *pcaps; 2122 struct ice_aqc_set_phy_cfg_data *cfg; 2123 struct ice_phy_info *phy = &pi->phy; 2124 struct ice_pf *pf = vsi->back; 2125 int err; 2126 2127 /* Ensure we have media as we cannot configure a medialess port */ 2128 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2129 return -EPERM; 2130 2131 ice_print_topo_conflict(vsi); 2132 2133 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2134 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2135 return -EPERM; 2136 2137 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2138 return ice_force_phys_link_state(vsi, true); 2139 2140 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2141 if (!pcaps) 2142 return -ENOMEM; 2143 2144 /* Get current PHY config */ 2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2146 NULL); 2147 if (err) { 2148 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2149 vsi->vsi_num, err); 2150 goto done; 2151 } 2152 2153 /* If PHY enable link is configured and configuration has not changed, 2154 * there's nothing to do 2155 */ 2156 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2157 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2158 goto done; 2159 2160 /* Use PHY topology as baseline for configuration */ 2161 memset(pcaps, 0, sizeof(*pcaps)); 2162 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2163 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2164 pcaps, NULL); 2165 else 2166 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2167 pcaps, NULL); 2168 if (err) { 2169 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2170 vsi->vsi_num, err); 2171 goto done; 2172 } 2173 2174 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2175 if (!cfg) { 2176 err = -ENOMEM; 2177 goto done; 2178 } 2179 2180 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2181 2182 /* Speed - If default override pending, use curr_user_phy_cfg set in 2183 * ice_init_phy_user_cfg_ldo. 2184 */ 2185 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2186 vsi->back->state)) { 2187 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2188 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2189 } else { 2190 u64 phy_low = 0, phy_high = 0; 2191 2192 ice_update_phy_type(&phy_low, &phy_high, 2193 pi->phy.curr_user_speed_req); 2194 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2195 cfg->phy_type_high = pcaps->phy_type_high & 2196 cpu_to_le64(phy_high); 2197 } 2198 2199 /* Can't provide what was requested; use PHY capabilities */ 2200 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2201 cfg->phy_type_low = pcaps->phy_type_low; 2202 cfg->phy_type_high = pcaps->phy_type_high; 2203 } 2204 2205 /* FEC */ 2206 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2207 2208 /* Can't provide what was requested; use PHY capabilities */ 2209 if (cfg->link_fec_opt != 2210 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2211 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2212 cfg->link_fec_opt = pcaps->link_fec_options; 2213 } 2214 2215 /* Flow Control - always supported; no need to check against 2216 * capabilities 2217 */ 2218 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2219 2220 /* Enable link and link update */ 2221 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2222 2223 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2224 if (err) 2225 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2226 vsi->vsi_num, err); 2227 2228 kfree(cfg); 2229 done: 2230 kfree(pcaps); 2231 return err; 2232 } 2233 2234 /** 2235 * ice_check_media_subtask - Check for media 2236 * @pf: pointer to PF struct 2237 * 2238 * If media is available, then initialize PHY user configuration if it is not 2239 * been, and configure the PHY if the interface is up. 2240 */ 2241 static void ice_check_media_subtask(struct ice_pf *pf) 2242 { 2243 struct ice_port_info *pi; 2244 struct ice_vsi *vsi; 2245 int err; 2246 2247 /* No need to check for media if it's already present */ 2248 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2249 return; 2250 2251 vsi = ice_get_main_vsi(pf); 2252 if (!vsi) 2253 return; 2254 2255 /* Refresh link info and check if media is present */ 2256 pi = vsi->port_info; 2257 err = ice_update_link_info(pi); 2258 if (err) 2259 return; 2260 2261 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2262 2263 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2264 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2265 ice_init_phy_user_cfg(pi); 2266 2267 /* PHY settings are reset on media insertion, reconfigure 2268 * PHY to preserve settings. 2269 */ 2270 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2271 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2272 return; 2273 2274 err = ice_configure_phy(vsi); 2275 if (!err) 2276 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2277 2278 /* A Link Status Event will be generated; the event handler 2279 * will complete bringing the interface up 2280 */ 2281 } 2282 } 2283 2284 /** 2285 * ice_service_task - manage and run subtasks 2286 * @work: pointer to work_struct contained by the PF struct 2287 */ 2288 static void ice_service_task(struct work_struct *work) 2289 { 2290 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2291 unsigned long start_time = jiffies; 2292 2293 /* subtasks */ 2294 2295 /* process reset requests first */ 2296 ice_reset_subtask(pf); 2297 2298 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2299 if (ice_is_reset_in_progress(pf->state) || 2300 test_bit(ICE_SUSPENDED, pf->state) || 2301 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2302 ice_service_task_complete(pf); 2303 return; 2304 } 2305 2306 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2307 struct iidc_event *event; 2308 2309 event = kzalloc(sizeof(*event), GFP_KERNEL); 2310 if (event) { 2311 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2312 /* report the entire OICR value to AUX driver */ 2313 swap(event->reg, pf->oicr_err_reg); 2314 ice_send_event_to_aux(pf, event); 2315 kfree(event); 2316 } 2317 } 2318 2319 /* unplug aux dev per request, if an unplug request came in 2320 * while processing a plug request, this will handle it 2321 */ 2322 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2323 ice_unplug_aux_dev(pf); 2324 2325 /* Plug aux device per request */ 2326 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2327 ice_plug_aux_dev(pf); 2328 2329 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2330 struct iidc_event *event; 2331 2332 event = kzalloc(sizeof(*event), GFP_KERNEL); 2333 if (event) { 2334 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2335 ice_send_event_to_aux(pf, event); 2336 kfree(event); 2337 } 2338 } 2339 2340 ice_clean_adminq_subtask(pf); 2341 ice_check_media_subtask(pf); 2342 ice_check_for_hang_subtask(pf); 2343 ice_sync_fltr_subtask(pf); 2344 ice_handle_mdd_event(pf); 2345 ice_watchdog_subtask(pf); 2346 2347 if (ice_is_safe_mode(pf)) { 2348 ice_service_task_complete(pf); 2349 return; 2350 } 2351 2352 ice_process_vflr_event(pf); 2353 ice_clean_mailboxq_subtask(pf); 2354 ice_clean_sbq_subtask(pf); 2355 ice_sync_arfs_fltrs(pf); 2356 ice_flush_fdir_ctx(pf); 2357 2358 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2359 ice_service_task_complete(pf); 2360 2361 /* If the tasks have taken longer than one service timer period 2362 * or there is more work to be done, reset the service timer to 2363 * schedule the service task now. 2364 */ 2365 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2366 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2367 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2368 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2369 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2370 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2371 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2372 mod_timer(&pf->serv_tmr, jiffies); 2373 } 2374 2375 /** 2376 * ice_set_ctrlq_len - helper function to set controlq length 2377 * @hw: pointer to the HW instance 2378 */ 2379 static void ice_set_ctrlq_len(struct ice_hw *hw) 2380 { 2381 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2382 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2383 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2384 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2385 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2386 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2387 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2388 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2389 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2390 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2391 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2392 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2393 } 2394 2395 /** 2396 * ice_schedule_reset - schedule a reset 2397 * @pf: board private structure 2398 * @reset: reset being requested 2399 */ 2400 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2401 { 2402 struct device *dev = ice_pf_to_dev(pf); 2403 2404 /* bail out if earlier reset has failed */ 2405 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2406 dev_dbg(dev, "earlier reset has failed\n"); 2407 return -EIO; 2408 } 2409 /* bail if reset/recovery already in progress */ 2410 if (ice_is_reset_in_progress(pf->state)) { 2411 dev_dbg(dev, "Reset already in progress\n"); 2412 return -EBUSY; 2413 } 2414 2415 switch (reset) { 2416 case ICE_RESET_PFR: 2417 set_bit(ICE_PFR_REQ, pf->state); 2418 break; 2419 case ICE_RESET_CORER: 2420 set_bit(ICE_CORER_REQ, pf->state); 2421 break; 2422 case ICE_RESET_GLOBR: 2423 set_bit(ICE_GLOBR_REQ, pf->state); 2424 break; 2425 default: 2426 return -EINVAL; 2427 } 2428 2429 ice_service_task_schedule(pf); 2430 return 0; 2431 } 2432 2433 /** 2434 * ice_irq_affinity_notify - Callback for affinity changes 2435 * @notify: context as to what irq was changed 2436 * @mask: the new affinity mask 2437 * 2438 * This is a callback function used by the irq_set_affinity_notifier function 2439 * so that we may register to receive changes to the irq affinity masks. 2440 */ 2441 static void 2442 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2443 const cpumask_t *mask) 2444 { 2445 struct ice_q_vector *q_vector = 2446 container_of(notify, struct ice_q_vector, affinity_notify); 2447 2448 cpumask_copy(&q_vector->affinity_mask, mask); 2449 } 2450 2451 /** 2452 * ice_irq_affinity_release - Callback for affinity notifier release 2453 * @ref: internal core kernel usage 2454 * 2455 * This is a callback function used by the irq_set_affinity_notifier function 2456 * to inform the current notification subscriber that they will no longer 2457 * receive notifications. 2458 */ 2459 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2460 2461 /** 2462 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2463 * @vsi: the VSI being configured 2464 */ 2465 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2466 { 2467 struct ice_hw *hw = &vsi->back->hw; 2468 int i; 2469 2470 ice_for_each_q_vector(vsi, i) 2471 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2472 2473 ice_flush(hw); 2474 return 0; 2475 } 2476 2477 /** 2478 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2479 * @vsi: the VSI being configured 2480 * @basename: name for the vector 2481 */ 2482 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2483 { 2484 int q_vectors = vsi->num_q_vectors; 2485 struct ice_pf *pf = vsi->back; 2486 int base = vsi->base_vector; 2487 struct device *dev; 2488 int rx_int_idx = 0; 2489 int tx_int_idx = 0; 2490 int vector, err; 2491 int irq_num; 2492 2493 dev = ice_pf_to_dev(pf); 2494 for (vector = 0; vector < q_vectors; vector++) { 2495 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2496 2497 irq_num = pf->msix_entries[base + vector].vector; 2498 2499 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2500 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2501 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2502 tx_int_idx++; 2503 } else if (q_vector->rx.rx_ring) { 2504 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2505 "%s-%s-%d", basename, "rx", rx_int_idx++); 2506 } else if (q_vector->tx.tx_ring) { 2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2508 "%s-%s-%d", basename, "tx", tx_int_idx++); 2509 } else { 2510 /* skip this unused q_vector */ 2511 continue; 2512 } 2513 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2514 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2515 IRQF_SHARED, q_vector->name, 2516 q_vector); 2517 else 2518 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2519 0, q_vector->name, q_vector); 2520 if (err) { 2521 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2522 err); 2523 goto free_q_irqs; 2524 } 2525 2526 /* register for affinity change notifications */ 2527 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2528 struct irq_affinity_notify *affinity_notify; 2529 2530 affinity_notify = &q_vector->affinity_notify; 2531 affinity_notify->notify = ice_irq_affinity_notify; 2532 affinity_notify->release = ice_irq_affinity_release; 2533 irq_set_affinity_notifier(irq_num, affinity_notify); 2534 } 2535 2536 /* assign the mask for this irq */ 2537 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2538 } 2539 2540 err = ice_set_cpu_rx_rmap(vsi); 2541 if (err) { 2542 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2543 vsi->vsi_num, ERR_PTR(err)); 2544 goto free_q_irqs; 2545 } 2546 2547 vsi->irqs_ready = true; 2548 return 0; 2549 2550 free_q_irqs: 2551 while (vector) { 2552 vector--; 2553 irq_num = pf->msix_entries[base + vector].vector; 2554 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2555 irq_set_affinity_notifier(irq_num, NULL); 2556 irq_set_affinity_hint(irq_num, NULL); 2557 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2558 } 2559 return err; 2560 } 2561 2562 /** 2563 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2564 * @vsi: VSI to setup Tx rings used by XDP 2565 * 2566 * Return 0 on success and negative value on error 2567 */ 2568 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2569 { 2570 struct device *dev = ice_pf_to_dev(vsi->back); 2571 struct ice_tx_desc *tx_desc; 2572 int i, j; 2573 2574 ice_for_each_xdp_txq(vsi, i) { 2575 u16 xdp_q_idx = vsi->alloc_txq + i; 2576 struct ice_ring_stats *ring_stats; 2577 struct ice_tx_ring *xdp_ring; 2578 2579 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2580 if (!xdp_ring) 2581 goto free_xdp_rings; 2582 2583 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2584 if (!ring_stats) { 2585 ice_free_tx_ring(xdp_ring); 2586 goto free_xdp_rings; 2587 } 2588 2589 xdp_ring->ring_stats = ring_stats; 2590 xdp_ring->q_index = xdp_q_idx; 2591 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2592 xdp_ring->vsi = vsi; 2593 xdp_ring->netdev = NULL; 2594 xdp_ring->dev = dev; 2595 xdp_ring->count = vsi->num_tx_desc; 2596 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2597 if (ice_setup_tx_ring(xdp_ring)) 2598 goto free_xdp_rings; 2599 ice_set_ring_xdp(xdp_ring); 2600 spin_lock_init(&xdp_ring->tx_lock); 2601 for (j = 0; j < xdp_ring->count; j++) { 2602 tx_desc = ICE_TX_DESC(xdp_ring, j); 2603 tx_desc->cmd_type_offset_bsz = 0; 2604 } 2605 } 2606 2607 return 0; 2608 2609 free_xdp_rings: 2610 for (; i >= 0; i--) { 2611 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2612 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2613 vsi->xdp_rings[i]->ring_stats = NULL; 2614 ice_free_tx_ring(vsi->xdp_rings[i]); 2615 } 2616 } 2617 return -ENOMEM; 2618 } 2619 2620 /** 2621 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2622 * @vsi: VSI to set the bpf prog on 2623 * @prog: the bpf prog pointer 2624 */ 2625 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2626 { 2627 struct bpf_prog *old_prog; 2628 int i; 2629 2630 old_prog = xchg(&vsi->xdp_prog, prog); 2631 if (old_prog) 2632 bpf_prog_put(old_prog); 2633 2634 ice_for_each_rxq(vsi, i) 2635 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2636 } 2637 2638 /** 2639 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2640 * @vsi: VSI to bring up Tx rings used by XDP 2641 * @prog: bpf program that will be assigned to VSI 2642 * 2643 * Return 0 on success and negative value on error 2644 */ 2645 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2646 { 2647 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2648 int xdp_rings_rem = vsi->num_xdp_txq; 2649 struct ice_pf *pf = vsi->back; 2650 struct ice_qs_cfg xdp_qs_cfg = { 2651 .qs_mutex = &pf->avail_q_mutex, 2652 .pf_map = pf->avail_txqs, 2653 .pf_map_size = pf->max_pf_txqs, 2654 .q_count = vsi->num_xdp_txq, 2655 .scatter_count = ICE_MAX_SCATTER_TXQS, 2656 .vsi_map = vsi->txq_map, 2657 .vsi_map_offset = vsi->alloc_txq, 2658 .mapping_mode = ICE_VSI_MAP_CONTIG 2659 }; 2660 struct device *dev; 2661 int i, v_idx; 2662 int status; 2663 2664 dev = ice_pf_to_dev(pf); 2665 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2666 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2667 if (!vsi->xdp_rings) 2668 return -ENOMEM; 2669 2670 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2671 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2672 goto err_map_xdp; 2673 2674 if (static_key_enabled(&ice_xdp_locking_key)) 2675 netdev_warn(vsi->netdev, 2676 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2677 2678 if (ice_xdp_alloc_setup_rings(vsi)) 2679 goto clear_xdp_rings; 2680 2681 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2682 ice_for_each_q_vector(vsi, v_idx) { 2683 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2684 int xdp_rings_per_v, q_id, q_base; 2685 2686 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2687 vsi->num_q_vectors - v_idx); 2688 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2689 2690 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2691 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2692 2693 xdp_ring->q_vector = q_vector; 2694 xdp_ring->next = q_vector->tx.tx_ring; 2695 q_vector->tx.tx_ring = xdp_ring; 2696 } 2697 xdp_rings_rem -= xdp_rings_per_v; 2698 } 2699 2700 ice_for_each_rxq(vsi, i) { 2701 if (static_key_enabled(&ice_xdp_locking_key)) { 2702 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2703 } else { 2704 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2705 struct ice_tx_ring *ring; 2706 2707 ice_for_each_tx_ring(ring, q_vector->tx) { 2708 if (ice_ring_is_xdp(ring)) { 2709 vsi->rx_rings[i]->xdp_ring = ring; 2710 break; 2711 } 2712 } 2713 } 2714 ice_tx_xsk_pool(vsi, i); 2715 } 2716 2717 /* omit the scheduler update if in reset path; XDP queues will be 2718 * taken into account at the end of ice_vsi_rebuild, where 2719 * ice_cfg_vsi_lan is being called 2720 */ 2721 if (ice_is_reset_in_progress(pf->state)) 2722 return 0; 2723 2724 /* tell the Tx scheduler that right now we have 2725 * additional queues 2726 */ 2727 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2728 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2729 2730 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2731 max_txqs); 2732 if (status) { 2733 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2734 status); 2735 goto clear_xdp_rings; 2736 } 2737 2738 /* assign the prog only when it's not already present on VSI; 2739 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2740 * VSI rebuild that happens under ethtool -L can expose us to 2741 * the bpf_prog refcount issues as we would be swapping same 2742 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2743 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2744 * this is not harmful as dev_xdp_install bumps the refcount 2745 * before calling the op exposed by the driver; 2746 */ 2747 if (!ice_is_xdp_ena_vsi(vsi)) 2748 ice_vsi_assign_bpf_prog(vsi, prog); 2749 2750 return 0; 2751 clear_xdp_rings: 2752 ice_for_each_xdp_txq(vsi, i) 2753 if (vsi->xdp_rings[i]) { 2754 kfree_rcu(vsi->xdp_rings[i], rcu); 2755 vsi->xdp_rings[i] = NULL; 2756 } 2757 2758 err_map_xdp: 2759 mutex_lock(&pf->avail_q_mutex); 2760 ice_for_each_xdp_txq(vsi, i) { 2761 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2762 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2763 } 2764 mutex_unlock(&pf->avail_q_mutex); 2765 2766 devm_kfree(dev, vsi->xdp_rings); 2767 return -ENOMEM; 2768 } 2769 2770 /** 2771 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2772 * @vsi: VSI to remove XDP rings 2773 * 2774 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2775 * resources 2776 */ 2777 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2778 { 2779 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2780 struct ice_pf *pf = vsi->back; 2781 int i, v_idx; 2782 2783 /* q_vectors are freed in reset path so there's no point in detaching 2784 * rings; in case of rebuild being triggered not from reset bits 2785 * in pf->state won't be set, so additionally check first q_vector 2786 * against NULL 2787 */ 2788 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2789 goto free_qmap; 2790 2791 ice_for_each_q_vector(vsi, v_idx) { 2792 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2793 struct ice_tx_ring *ring; 2794 2795 ice_for_each_tx_ring(ring, q_vector->tx) 2796 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2797 break; 2798 2799 /* restore the value of last node prior to XDP setup */ 2800 q_vector->tx.tx_ring = ring; 2801 } 2802 2803 free_qmap: 2804 mutex_lock(&pf->avail_q_mutex); 2805 ice_for_each_xdp_txq(vsi, i) { 2806 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2807 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2808 } 2809 mutex_unlock(&pf->avail_q_mutex); 2810 2811 ice_for_each_xdp_txq(vsi, i) 2812 if (vsi->xdp_rings[i]) { 2813 if (vsi->xdp_rings[i]->desc) { 2814 synchronize_rcu(); 2815 ice_free_tx_ring(vsi->xdp_rings[i]); 2816 } 2817 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2818 vsi->xdp_rings[i]->ring_stats = NULL; 2819 kfree_rcu(vsi->xdp_rings[i], rcu); 2820 vsi->xdp_rings[i] = NULL; 2821 } 2822 2823 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2824 vsi->xdp_rings = NULL; 2825 2826 if (static_key_enabled(&ice_xdp_locking_key)) 2827 static_branch_dec(&ice_xdp_locking_key); 2828 2829 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2830 return 0; 2831 2832 ice_vsi_assign_bpf_prog(vsi, NULL); 2833 2834 /* notify Tx scheduler that we destroyed XDP queues and bring 2835 * back the old number of child nodes 2836 */ 2837 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2838 max_txqs[i] = vsi->num_txq; 2839 2840 /* change number of XDP Tx queues to 0 */ 2841 vsi->num_xdp_txq = 0; 2842 2843 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2844 max_txqs); 2845 } 2846 2847 /** 2848 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2849 * @vsi: VSI to schedule napi on 2850 */ 2851 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2852 { 2853 int i; 2854 2855 ice_for_each_rxq(vsi, i) { 2856 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2857 2858 if (rx_ring->xsk_pool) 2859 napi_schedule(&rx_ring->q_vector->napi); 2860 } 2861 } 2862 2863 /** 2864 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2865 * @vsi: VSI to determine the count of XDP Tx qs 2866 * 2867 * returns 0 if Tx qs count is higher than at least half of CPU count, 2868 * -ENOMEM otherwise 2869 */ 2870 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2871 { 2872 u16 avail = ice_get_avail_txq_count(vsi->back); 2873 u16 cpus = num_possible_cpus(); 2874 2875 if (avail < cpus / 2) 2876 return -ENOMEM; 2877 2878 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2879 2880 if (vsi->num_xdp_txq < cpus) 2881 static_branch_inc(&ice_xdp_locking_key); 2882 2883 return 0; 2884 } 2885 2886 /** 2887 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2888 * @vsi: Pointer to VSI structure 2889 */ 2890 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2891 { 2892 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2893 return ICE_RXBUF_1664; 2894 else 2895 return ICE_RXBUF_3072; 2896 } 2897 2898 /** 2899 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2900 * @vsi: VSI to setup XDP for 2901 * @prog: XDP program 2902 * @extack: netlink extended ack 2903 */ 2904 static int 2905 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2906 struct netlink_ext_ack *extack) 2907 { 2908 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2909 bool if_running = netif_running(vsi->netdev); 2910 int ret = 0, xdp_ring_err = 0; 2911 2912 if (prog && !prog->aux->xdp_has_frags) { 2913 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2914 NL_SET_ERR_MSG_MOD(extack, 2915 "MTU is too large for linear frames and XDP prog does not support frags"); 2916 return -EOPNOTSUPP; 2917 } 2918 } 2919 2920 /* need to stop netdev while setting up the program for Rx rings */ 2921 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2922 ret = ice_down(vsi); 2923 if (ret) { 2924 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2925 return ret; 2926 } 2927 } 2928 2929 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2930 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2931 if (xdp_ring_err) { 2932 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2933 } else { 2934 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2935 if (xdp_ring_err) 2936 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2937 } 2938 xdp_features_set_redirect_target(vsi->netdev, true); 2939 /* reallocate Rx queues that are used for zero-copy */ 2940 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2941 if (xdp_ring_err) 2942 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2943 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2944 xdp_features_clear_redirect_target(vsi->netdev); 2945 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2946 if (xdp_ring_err) 2947 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2948 /* reallocate Rx queues that were used for zero-copy */ 2949 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2950 if (xdp_ring_err) 2951 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2952 } else { 2953 /* safe to call even when prog == vsi->xdp_prog as 2954 * dev_xdp_install in net/core/dev.c incremented prog's 2955 * refcount so corresponding bpf_prog_put won't cause 2956 * underflow 2957 */ 2958 ice_vsi_assign_bpf_prog(vsi, prog); 2959 } 2960 2961 if (if_running) 2962 ret = ice_up(vsi); 2963 2964 if (!ret && prog) 2965 ice_vsi_rx_napi_schedule(vsi); 2966 2967 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2968 } 2969 2970 /** 2971 * ice_xdp_safe_mode - XDP handler for safe mode 2972 * @dev: netdevice 2973 * @xdp: XDP command 2974 */ 2975 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2976 struct netdev_bpf *xdp) 2977 { 2978 NL_SET_ERR_MSG_MOD(xdp->extack, 2979 "Please provide working DDP firmware package in order to use XDP\n" 2980 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2981 return -EOPNOTSUPP; 2982 } 2983 2984 /** 2985 * ice_xdp - implements XDP handler 2986 * @dev: netdevice 2987 * @xdp: XDP command 2988 */ 2989 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2990 { 2991 struct ice_netdev_priv *np = netdev_priv(dev); 2992 struct ice_vsi *vsi = np->vsi; 2993 2994 if (vsi->type != ICE_VSI_PF) { 2995 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2996 return -EINVAL; 2997 } 2998 2999 switch (xdp->command) { 3000 case XDP_SETUP_PROG: 3001 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3002 case XDP_SETUP_XSK_POOL: 3003 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3004 xdp->xsk.queue_id); 3005 default: 3006 return -EINVAL; 3007 } 3008 } 3009 3010 /** 3011 * ice_ena_misc_vector - enable the non-queue interrupts 3012 * @pf: board private structure 3013 */ 3014 static void ice_ena_misc_vector(struct ice_pf *pf) 3015 { 3016 struct ice_hw *hw = &pf->hw; 3017 u32 val; 3018 3019 /* Disable anti-spoof detection interrupt to prevent spurious event 3020 * interrupts during a function reset. Anti-spoof functionally is 3021 * still supported. 3022 */ 3023 val = rd32(hw, GL_MDCK_TX_TDPU); 3024 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3025 wr32(hw, GL_MDCK_TX_TDPU, val); 3026 3027 /* clear things first */ 3028 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3029 rd32(hw, PFINT_OICR); /* read to clear */ 3030 3031 val = (PFINT_OICR_ECC_ERR_M | 3032 PFINT_OICR_MAL_DETECT_M | 3033 PFINT_OICR_GRST_M | 3034 PFINT_OICR_PCI_EXCEPTION_M | 3035 PFINT_OICR_VFLR_M | 3036 PFINT_OICR_HMC_ERR_M | 3037 PFINT_OICR_PE_PUSH_M | 3038 PFINT_OICR_PE_CRITERR_M); 3039 3040 wr32(hw, PFINT_OICR_ENA, val); 3041 3042 /* SW_ITR_IDX = 0, but don't change INTENA */ 3043 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 3044 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3045 } 3046 3047 /** 3048 * ice_misc_intr - misc interrupt handler 3049 * @irq: interrupt number 3050 * @data: pointer to a q_vector 3051 */ 3052 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3053 { 3054 struct ice_pf *pf = (struct ice_pf *)data; 3055 struct ice_hw *hw = &pf->hw; 3056 irqreturn_t ret = IRQ_NONE; 3057 struct device *dev; 3058 u32 oicr, ena_mask; 3059 3060 dev = ice_pf_to_dev(pf); 3061 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3062 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3063 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3064 3065 oicr = rd32(hw, PFINT_OICR); 3066 ena_mask = rd32(hw, PFINT_OICR_ENA); 3067 3068 if (oicr & PFINT_OICR_SWINT_M) { 3069 ena_mask &= ~PFINT_OICR_SWINT_M; 3070 pf->sw_int_count++; 3071 } 3072 3073 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3074 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3075 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3076 } 3077 if (oicr & PFINT_OICR_VFLR_M) { 3078 /* disable any further VFLR event notifications */ 3079 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3080 u32 reg = rd32(hw, PFINT_OICR_ENA); 3081 3082 reg &= ~PFINT_OICR_VFLR_M; 3083 wr32(hw, PFINT_OICR_ENA, reg); 3084 } else { 3085 ena_mask &= ~PFINT_OICR_VFLR_M; 3086 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3087 } 3088 } 3089 3090 if (oicr & PFINT_OICR_GRST_M) { 3091 u32 reset; 3092 3093 /* we have a reset warning */ 3094 ena_mask &= ~PFINT_OICR_GRST_M; 3095 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3096 GLGEN_RSTAT_RESET_TYPE_S; 3097 3098 if (reset == ICE_RESET_CORER) 3099 pf->corer_count++; 3100 else if (reset == ICE_RESET_GLOBR) 3101 pf->globr_count++; 3102 else if (reset == ICE_RESET_EMPR) 3103 pf->empr_count++; 3104 else 3105 dev_dbg(dev, "Invalid reset type %d\n", reset); 3106 3107 /* If a reset cycle isn't already in progress, we set a bit in 3108 * pf->state so that the service task can start a reset/rebuild. 3109 */ 3110 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3111 if (reset == ICE_RESET_CORER) 3112 set_bit(ICE_CORER_RECV, pf->state); 3113 else if (reset == ICE_RESET_GLOBR) 3114 set_bit(ICE_GLOBR_RECV, pf->state); 3115 else 3116 set_bit(ICE_EMPR_RECV, pf->state); 3117 3118 /* There are couple of different bits at play here. 3119 * hw->reset_ongoing indicates whether the hardware is 3120 * in reset. This is set to true when a reset interrupt 3121 * is received and set back to false after the driver 3122 * has determined that the hardware is out of reset. 3123 * 3124 * ICE_RESET_OICR_RECV in pf->state indicates 3125 * that a post reset rebuild is required before the 3126 * driver is operational again. This is set above. 3127 * 3128 * As this is the start of the reset/rebuild cycle, set 3129 * both to indicate that. 3130 */ 3131 hw->reset_ongoing = true; 3132 } 3133 } 3134 3135 if (oicr & PFINT_OICR_TSYN_TX_M) { 3136 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3137 if (!hw->reset_ongoing) 3138 ret = IRQ_WAKE_THREAD; 3139 } 3140 3141 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3142 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3143 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3144 3145 /* Save EVENTs from GTSYN register */ 3146 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3147 GLTSYN_STAT_EVENT1_M | 3148 GLTSYN_STAT_EVENT2_M); 3149 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3150 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3151 } 3152 3153 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3154 if (oicr & ICE_AUX_CRIT_ERR) { 3155 pf->oicr_err_reg |= oicr; 3156 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3157 ena_mask &= ~ICE_AUX_CRIT_ERR; 3158 } 3159 3160 /* Report any remaining unexpected interrupts */ 3161 oicr &= ena_mask; 3162 if (oicr) { 3163 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3164 /* If a critical error is pending there is no choice but to 3165 * reset the device. 3166 */ 3167 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3168 PFINT_OICR_ECC_ERR_M)) { 3169 set_bit(ICE_PFR_REQ, pf->state); 3170 ice_service_task_schedule(pf); 3171 } 3172 } 3173 if (!ret) 3174 ret = IRQ_HANDLED; 3175 3176 ice_service_task_schedule(pf); 3177 ice_irq_dynamic_ena(hw, NULL, NULL); 3178 3179 return ret; 3180 } 3181 3182 /** 3183 * ice_misc_intr_thread_fn - misc interrupt thread function 3184 * @irq: interrupt number 3185 * @data: pointer to a q_vector 3186 */ 3187 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3188 { 3189 struct ice_pf *pf = data; 3190 3191 if (ice_is_reset_in_progress(pf->state)) 3192 return IRQ_HANDLED; 3193 3194 while (!ice_ptp_process_ts(pf)) 3195 usleep_range(50, 100); 3196 3197 return IRQ_HANDLED; 3198 } 3199 3200 /** 3201 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3202 * @hw: pointer to HW structure 3203 */ 3204 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3205 { 3206 /* disable Admin queue Interrupt causes */ 3207 wr32(hw, PFINT_FW_CTL, 3208 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3209 3210 /* disable Mailbox queue Interrupt causes */ 3211 wr32(hw, PFINT_MBX_CTL, 3212 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3213 3214 wr32(hw, PFINT_SB_CTL, 3215 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3216 3217 /* disable Control queue Interrupt causes */ 3218 wr32(hw, PFINT_OICR_CTL, 3219 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3220 3221 ice_flush(hw); 3222 } 3223 3224 /** 3225 * ice_free_irq_msix_misc - Unroll misc vector setup 3226 * @pf: board private structure 3227 */ 3228 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3229 { 3230 struct ice_hw *hw = &pf->hw; 3231 3232 ice_dis_ctrlq_interrupts(hw); 3233 3234 /* disable OICR interrupt */ 3235 wr32(hw, PFINT_OICR_ENA, 0); 3236 ice_flush(hw); 3237 3238 if (pf->msix_entries) { 3239 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3240 devm_free_irq(ice_pf_to_dev(pf), 3241 pf->msix_entries[pf->oicr_idx].vector, pf); 3242 } 3243 3244 pf->num_avail_sw_msix += 1; 3245 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3246 } 3247 3248 /** 3249 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3250 * @hw: pointer to HW structure 3251 * @reg_idx: HW vector index to associate the control queue interrupts with 3252 */ 3253 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3254 { 3255 u32 val; 3256 3257 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3258 PFINT_OICR_CTL_CAUSE_ENA_M); 3259 wr32(hw, PFINT_OICR_CTL, val); 3260 3261 /* enable Admin queue Interrupt causes */ 3262 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3263 PFINT_FW_CTL_CAUSE_ENA_M); 3264 wr32(hw, PFINT_FW_CTL, val); 3265 3266 /* enable Mailbox queue Interrupt causes */ 3267 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3268 PFINT_MBX_CTL_CAUSE_ENA_M); 3269 wr32(hw, PFINT_MBX_CTL, val); 3270 3271 /* This enables Sideband queue Interrupt causes */ 3272 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3273 PFINT_SB_CTL_CAUSE_ENA_M); 3274 wr32(hw, PFINT_SB_CTL, val); 3275 3276 ice_flush(hw); 3277 } 3278 3279 /** 3280 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3281 * @pf: board private structure 3282 * 3283 * This sets up the handler for MSIX 0, which is used to manage the 3284 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3285 * when in MSI or Legacy interrupt mode. 3286 */ 3287 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3288 { 3289 struct device *dev = ice_pf_to_dev(pf); 3290 struct ice_hw *hw = &pf->hw; 3291 int oicr_idx, err = 0; 3292 3293 if (!pf->int_name[0]) 3294 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3295 dev_driver_string(dev), dev_name(dev)); 3296 3297 /* Do not request IRQ but do enable OICR interrupt since settings are 3298 * lost during reset. Note that this function is called only during 3299 * rebuild path and not while reset is in progress. 3300 */ 3301 if (ice_is_reset_in_progress(pf->state)) 3302 goto skip_req_irq; 3303 3304 /* reserve one vector in irq_tracker for misc interrupts */ 3305 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3306 if (oicr_idx < 0) 3307 return oicr_idx; 3308 3309 pf->num_avail_sw_msix -= 1; 3310 pf->oicr_idx = (u16)oicr_idx; 3311 3312 err = devm_request_threaded_irq(dev, 3313 pf->msix_entries[pf->oicr_idx].vector, 3314 ice_misc_intr, ice_misc_intr_thread_fn, 3315 0, pf->int_name, pf); 3316 if (err) { 3317 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3318 pf->int_name, err); 3319 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3320 pf->num_avail_sw_msix += 1; 3321 return err; 3322 } 3323 3324 skip_req_irq: 3325 ice_ena_misc_vector(pf); 3326 3327 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3328 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3329 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3330 3331 ice_flush(hw); 3332 ice_irq_dynamic_ena(hw, NULL, NULL); 3333 3334 return 0; 3335 } 3336 3337 /** 3338 * ice_napi_add - register NAPI handler for the VSI 3339 * @vsi: VSI for which NAPI handler is to be registered 3340 * 3341 * This function is only called in the driver's load path. Registering the NAPI 3342 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3343 * reset/rebuild, etc.) 3344 */ 3345 static void ice_napi_add(struct ice_vsi *vsi) 3346 { 3347 int v_idx; 3348 3349 if (!vsi->netdev) 3350 return; 3351 3352 ice_for_each_q_vector(vsi, v_idx) 3353 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3354 ice_napi_poll); 3355 } 3356 3357 /** 3358 * ice_set_ops - set netdev and ethtools ops for the given netdev 3359 * @vsi: the VSI associated with the new netdev 3360 */ 3361 static void ice_set_ops(struct ice_vsi *vsi) 3362 { 3363 struct net_device *netdev = vsi->netdev; 3364 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3365 3366 if (ice_is_safe_mode(pf)) { 3367 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3368 ice_set_ethtool_safe_mode_ops(netdev); 3369 return; 3370 } 3371 3372 netdev->netdev_ops = &ice_netdev_ops; 3373 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3374 ice_set_ethtool_ops(netdev); 3375 3376 if (vsi->type != ICE_VSI_PF) 3377 return; 3378 3379 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3380 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3381 NETDEV_XDP_ACT_RX_SG; 3382 } 3383 3384 /** 3385 * ice_set_netdev_features - set features for the given netdev 3386 * @netdev: netdev instance 3387 */ 3388 static void ice_set_netdev_features(struct net_device *netdev) 3389 { 3390 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3391 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3392 netdev_features_t csumo_features; 3393 netdev_features_t vlano_features; 3394 netdev_features_t dflt_features; 3395 netdev_features_t tso_features; 3396 3397 if (ice_is_safe_mode(pf)) { 3398 /* safe mode */ 3399 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3400 netdev->hw_features = netdev->features; 3401 return; 3402 } 3403 3404 dflt_features = NETIF_F_SG | 3405 NETIF_F_HIGHDMA | 3406 NETIF_F_NTUPLE | 3407 NETIF_F_RXHASH; 3408 3409 csumo_features = NETIF_F_RXCSUM | 3410 NETIF_F_IP_CSUM | 3411 NETIF_F_SCTP_CRC | 3412 NETIF_F_IPV6_CSUM; 3413 3414 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3415 NETIF_F_HW_VLAN_CTAG_TX | 3416 NETIF_F_HW_VLAN_CTAG_RX; 3417 3418 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3419 if (is_dvm_ena) 3420 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3421 3422 tso_features = NETIF_F_TSO | 3423 NETIF_F_TSO_ECN | 3424 NETIF_F_TSO6 | 3425 NETIF_F_GSO_GRE | 3426 NETIF_F_GSO_UDP_TUNNEL | 3427 NETIF_F_GSO_GRE_CSUM | 3428 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3429 NETIF_F_GSO_PARTIAL | 3430 NETIF_F_GSO_IPXIP4 | 3431 NETIF_F_GSO_IPXIP6 | 3432 NETIF_F_GSO_UDP_L4; 3433 3434 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3435 NETIF_F_GSO_GRE_CSUM; 3436 /* set features that user can change */ 3437 netdev->hw_features = dflt_features | csumo_features | 3438 vlano_features | tso_features; 3439 3440 /* add support for HW_CSUM on packets with MPLS header */ 3441 netdev->mpls_features = NETIF_F_HW_CSUM | 3442 NETIF_F_TSO | 3443 NETIF_F_TSO6; 3444 3445 /* enable features */ 3446 netdev->features |= netdev->hw_features; 3447 3448 netdev->hw_features |= NETIF_F_HW_TC; 3449 netdev->hw_features |= NETIF_F_LOOPBACK; 3450 3451 /* encap and VLAN devices inherit default, csumo and tso features */ 3452 netdev->hw_enc_features |= dflt_features | csumo_features | 3453 tso_features; 3454 netdev->vlan_features |= dflt_features | csumo_features | 3455 tso_features; 3456 3457 /* advertise support but don't enable by default since only one type of 3458 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3459 * type turns on the other has to be turned off. This is enforced by the 3460 * ice_fix_features() ndo callback. 3461 */ 3462 if (is_dvm_ena) 3463 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3464 NETIF_F_HW_VLAN_STAG_TX; 3465 3466 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3467 * be changed at runtime 3468 */ 3469 netdev->hw_features |= NETIF_F_RXFCS; 3470 3471 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3472 } 3473 3474 /** 3475 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3476 * @lut: Lookup table 3477 * @rss_table_size: Lookup table size 3478 * @rss_size: Range of queue number for hashing 3479 */ 3480 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3481 { 3482 u16 i; 3483 3484 for (i = 0; i < rss_table_size; i++) 3485 lut[i] = i % rss_size; 3486 } 3487 3488 /** 3489 * ice_pf_vsi_setup - Set up a PF VSI 3490 * @pf: board private structure 3491 * @pi: pointer to the port_info instance 3492 * 3493 * Returns pointer to the successfully allocated VSI software struct 3494 * on success, otherwise returns NULL on failure. 3495 */ 3496 static struct ice_vsi * 3497 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3498 { 3499 struct ice_vsi_cfg_params params = {}; 3500 3501 params.type = ICE_VSI_PF; 3502 params.pi = pi; 3503 params.flags = ICE_VSI_FLAG_INIT; 3504 3505 return ice_vsi_setup(pf, ¶ms); 3506 } 3507 3508 static struct ice_vsi * 3509 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3510 struct ice_channel *ch) 3511 { 3512 struct ice_vsi_cfg_params params = {}; 3513 3514 params.type = ICE_VSI_CHNL; 3515 params.pi = pi; 3516 params.ch = ch; 3517 params.flags = ICE_VSI_FLAG_INIT; 3518 3519 return ice_vsi_setup(pf, ¶ms); 3520 } 3521 3522 /** 3523 * ice_ctrl_vsi_setup - Set up a control VSI 3524 * @pf: board private structure 3525 * @pi: pointer to the port_info instance 3526 * 3527 * Returns pointer to the successfully allocated VSI software struct 3528 * on success, otherwise returns NULL on failure. 3529 */ 3530 static struct ice_vsi * 3531 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3532 { 3533 struct ice_vsi_cfg_params params = {}; 3534 3535 params.type = ICE_VSI_CTRL; 3536 params.pi = pi; 3537 params.flags = ICE_VSI_FLAG_INIT; 3538 3539 return ice_vsi_setup(pf, ¶ms); 3540 } 3541 3542 /** 3543 * ice_lb_vsi_setup - Set up a loopback VSI 3544 * @pf: board private structure 3545 * @pi: pointer to the port_info instance 3546 * 3547 * Returns pointer to the successfully allocated VSI software struct 3548 * on success, otherwise returns NULL on failure. 3549 */ 3550 struct ice_vsi * 3551 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3552 { 3553 struct ice_vsi_cfg_params params = {}; 3554 3555 params.type = ICE_VSI_LB; 3556 params.pi = pi; 3557 params.flags = ICE_VSI_FLAG_INIT; 3558 3559 return ice_vsi_setup(pf, ¶ms); 3560 } 3561 3562 /** 3563 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3564 * @netdev: network interface to be adjusted 3565 * @proto: VLAN TPID 3566 * @vid: VLAN ID to be added 3567 * 3568 * net_device_ops implementation for adding VLAN IDs 3569 */ 3570 static int 3571 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3572 { 3573 struct ice_netdev_priv *np = netdev_priv(netdev); 3574 struct ice_vsi_vlan_ops *vlan_ops; 3575 struct ice_vsi *vsi = np->vsi; 3576 struct ice_vlan vlan; 3577 int ret; 3578 3579 /* VLAN 0 is added by default during load/reset */ 3580 if (!vid) 3581 return 0; 3582 3583 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3584 usleep_range(1000, 2000); 3585 3586 /* Add multicast promisc rule for the VLAN ID to be added if 3587 * all-multicast is currently enabled. 3588 */ 3589 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3590 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3591 ICE_MCAST_VLAN_PROMISC_BITS, 3592 vid); 3593 if (ret) 3594 goto finish; 3595 } 3596 3597 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3598 3599 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3600 * packets aren't pruned by the device's internal switch on Rx 3601 */ 3602 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3603 ret = vlan_ops->add_vlan(vsi, &vlan); 3604 if (ret) 3605 goto finish; 3606 3607 /* If all-multicast is currently enabled and this VLAN ID is only one 3608 * besides VLAN-0 we have to update look-up type of multicast promisc 3609 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3610 */ 3611 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3612 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3613 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3614 ICE_MCAST_PROMISC_BITS, 0); 3615 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3616 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3617 } 3618 3619 finish: 3620 clear_bit(ICE_CFG_BUSY, vsi->state); 3621 3622 return ret; 3623 } 3624 3625 /** 3626 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3627 * @netdev: network interface to be adjusted 3628 * @proto: VLAN TPID 3629 * @vid: VLAN ID to be removed 3630 * 3631 * net_device_ops implementation for removing VLAN IDs 3632 */ 3633 static int 3634 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3635 { 3636 struct ice_netdev_priv *np = netdev_priv(netdev); 3637 struct ice_vsi_vlan_ops *vlan_ops; 3638 struct ice_vsi *vsi = np->vsi; 3639 struct ice_vlan vlan; 3640 int ret; 3641 3642 /* don't allow removal of VLAN 0 */ 3643 if (!vid) 3644 return 0; 3645 3646 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3647 usleep_range(1000, 2000); 3648 3649 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3650 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3651 if (ret) { 3652 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3653 vsi->vsi_num); 3654 vsi->current_netdev_flags |= IFF_ALLMULTI; 3655 } 3656 3657 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3658 3659 /* Make sure VLAN delete is successful before updating VLAN 3660 * information 3661 */ 3662 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3663 ret = vlan_ops->del_vlan(vsi, &vlan); 3664 if (ret) 3665 goto finish; 3666 3667 /* Remove multicast promisc rule for the removed VLAN ID if 3668 * all-multicast is enabled. 3669 */ 3670 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3671 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3672 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3673 3674 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3675 /* Update look-up type of multicast promisc rule for VLAN 0 3676 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3677 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3678 */ 3679 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3680 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3681 ICE_MCAST_VLAN_PROMISC_BITS, 3682 0); 3683 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3684 ICE_MCAST_PROMISC_BITS, 0); 3685 } 3686 } 3687 3688 finish: 3689 clear_bit(ICE_CFG_BUSY, vsi->state); 3690 3691 return ret; 3692 } 3693 3694 /** 3695 * ice_rep_indr_tc_block_unbind 3696 * @cb_priv: indirection block private data 3697 */ 3698 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3699 { 3700 struct ice_indr_block_priv *indr_priv = cb_priv; 3701 3702 list_del(&indr_priv->list); 3703 kfree(indr_priv); 3704 } 3705 3706 /** 3707 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3708 * @vsi: VSI struct which has the netdev 3709 */ 3710 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3711 { 3712 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3713 3714 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3715 ice_rep_indr_tc_block_unbind); 3716 } 3717 3718 /** 3719 * ice_tc_indir_block_register - Register TC indirect block notifications 3720 * @vsi: VSI struct which has the netdev 3721 * 3722 * Returns 0 on success, negative value on failure 3723 */ 3724 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3725 { 3726 struct ice_netdev_priv *np; 3727 3728 if (!vsi || !vsi->netdev) 3729 return -EINVAL; 3730 3731 np = netdev_priv(vsi->netdev); 3732 3733 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3734 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3735 } 3736 3737 /** 3738 * ice_get_avail_q_count - Get count of queues in use 3739 * @pf_qmap: bitmap to get queue use count from 3740 * @lock: pointer to a mutex that protects access to pf_qmap 3741 * @size: size of the bitmap 3742 */ 3743 static u16 3744 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3745 { 3746 unsigned long bit; 3747 u16 count = 0; 3748 3749 mutex_lock(lock); 3750 for_each_clear_bit(bit, pf_qmap, size) 3751 count++; 3752 mutex_unlock(lock); 3753 3754 return count; 3755 } 3756 3757 /** 3758 * ice_get_avail_txq_count - Get count of Tx queues in use 3759 * @pf: pointer to an ice_pf instance 3760 */ 3761 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3762 { 3763 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3764 pf->max_pf_txqs); 3765 } 3766 3767 /** 3768 * ice_get_avail_rxq_count - Get count of Rx queues in use 3769 * @pf: pointer to an ice_pf instance 3770 */ 3771 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3772 { 3773 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3774 pf->max_pf_rxqs); 3775 } 3776 3777 /** 3778 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3779 * @pf: board private structure to initialize 3780 */ 3781 static void ice_deinit_pf(struct ice_pf *pf) 3782 { 3783 ice_service_task_stop(pf); 3784 mutex_destroy(&pf->adev_mutex); 3785 mutex_destroy(&pf->sw_mutex); 3786 mutex_destroy(&pf->tc_mutex); 3787 mutex_destroy(&pf->avail_q_mutex); 3788 mutex_destroy(&pf->vfs.table_lock); 3789 3790 if (pf->avail_txqs) { 3791 bitmap_free(pf->avail_txqs); 3792 pf->avail_txqs = NULL; 3793 } 3794 3795 if (pf->avail_rxqs) { 3796 bitmap_free(pf->avail_rxqs); 3797 pf->avail_rxqs = NULL; 3798 } 3799 3800 if (pf->ptp.clock) 3801 ptp_clock_unregister(pf->ptp.clock); 3802 } 3803 3804 /** 3805 * ice_set_pf_caps - set PFs capability flags 3806 * @pf: pointer to the PF instance 3807 */ 3808 static void ice_set_pf_caps(struct ice_pf *pf) 3809 { 3810 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3811 3812 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3813 if (func_caps->common_cap.rdma) 3814 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3815 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3816 if (func_caps->common_cap.dcb) 3817 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3818 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3819 if (func_caps->common_cap.sr_iov_1_1) { 3820 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3821 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3822 ICE_MAX_SRIOV_VFS); 3823 } 3824 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3825 if (func_caps->common_cap.rss_table_size) 3826 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3827 3828 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3829 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3830 u16 unused; 3831 3832 /* ctrl_vsi_idx will be set to a valid value when flow director 3833 * is setup by ice_init_fdir 3834 */ 3835 pf->ctrl_vsi_idx = ICE_NO_VSI; 3836 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3837 /* force guaranteed filter pool for PF */ 3838 ice_alloc_fd_guar_item(&pf->hw, &unused, 3839 func_caps->fd_fltr_guar); 3840 /* force shared filter pool for PF */ 3841 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3842 func_caps->fd_fltr_best_effort); 3843 } 3844 3845 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3846 if (func_caps->common_cap.ieee_1588) 3847 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3848 3849 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3850 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3851 } 3852 3853 /** 3854 * ice_init_pf - Initialize general software structures (struct ice_pf) 3855 * @pf: board private structure to initialize 3856 */ 3857 static int ice_init_pf(struct ice_pf *pf) 3858 { 3859 ice_set_pf_caps(pf); 3860 3861 mutex_init(&pf->sw_mutex); 3862 mutex_init(&pf->tc_mutex); 3863 mutex_init(&pf->adev_mutex); 3864 3865 INIT_HLIST_HEAD(&pf->aq_wait_list); 3866 spin_lock_init(&pf->aq_wait_lock); 3867 init_waitqueue_head(&pf->aq_wait_queue); 3868 3869 init_waitqueue_head(&pf->reset_wait_queue); 3870 3871 /* setup service timer and periodic service task */ 3872 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3873 pf->serv_tmr_period = HZ; 3874 INIT_WORK(&pf->serv_task, ice_service_task); 3875 clear_bit(ICE_SERVICE_SCHED, pf->state); 3876 3877 mutex_init(&pf->avail_q_mutex); 3878 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3879 if (!pf->avail_txqs) 3880 return -ENOMEM; 3881 3882 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3883 if (!pf->avail_rxqs) { 3884 bitmap_free(pf->avail_txqs); 3885 pf->avail_txqs = NULL; 3886 return -ENOMEM; 3887 } 3888 3889 mutex_init(&pf->vfs.table_lock); 3890 hash_init(pf->vfs.table); 3891 3892 return 0; 3893 } 3894 3895 /** 3896 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors 3897 * @pf: board private structure 3898 * @v_remain: number of remaining MSI-X vectors to be distributed 3899 * 3900 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled. 3901 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of 3902 * remaining vectors. 3903 */ 3904 static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain) 3905 { 3906 int v_rdma; 3907 3908 if (!ice_is_rdma_ena(pf)) { 3909 pf->num_lan_msix = v_remain; 3910 return; 3911 } 3912 3913 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */ 3914 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3915 3916 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) { 3917 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n"); 3918 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3919 3920 pf->num_rdma_msix = 0; 3921 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3922 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3923 (v_remain - v_rdma < v_rdma)) { 3924 /* Support minimum RDMA and give remaining vectors to LAN MSIX */ 3925 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX; 3926 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX; 3927 } else { 3928 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX 3929 */ 3930 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3931 ICE_RDMA_NUM_AEQ_MSIX; 3932 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3933 } 3934 } 3935 3936 /** 3937 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3938 * @pf: board private structure 3939 * 3940 * Compute the number of MSIX vectors wanted and request from the OS. Adjust 3941 * device usage if there are not enough vectors. Return the number of vectors 3942 * reserved or negative on failure. 3943 */ 3944 static int ice_ena_msix_range(struct ice_pf *pf) 3945 { 3946 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual; 3947 struct device *dev = ice_pf_to_dev(pf); 3948 int err, i; 3949 3950 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors; 3951 num_cpus = num_online_cpus(); 3952 3953 /* LAN miscellaneous handler */ 3954 v_other = ICE_MIN_LAN_OICR_MSIX; 3955 3956 /* Flow Director */ 3957 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 3958 v_other += ICE_FDIR_MSIX; 3959 3960 /* switchdev */ 3961 v_other += ICE_ESWITCH_MSIX; 3962 3963 v_wanted = v_other; 3964 3965 /* LAN traffic */ 3966 pf->num_lan_msix = num_cpus; 3967 v_wanted += pf->num_lan_msix; 3968 3969 /* RDMA auxiliary driver */ 3970 if (ice_is_rdma_ena(pf)) { 3971 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3972 v_wanted += pf->num_rdma_msix; 3973 } 3974 3975 if (v_wanted > hw_num_msix) { 3976 int v_remain; 3977 3978 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n", 3979 v_wanted, hw_num_msix); 3980 3981 if (hw_num_msix < ICE_MIN_MSIX) { 3982 err = -ERANGE; 3983 goto exit_err; 3984 } 3985 3986 v_remain = hw_num_msix - v_other; 3987 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) { 3988 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX; 3989 v_remain = ICE_MIN_LAN_TXRX_MSIX; 3990 } 3991 3992 ice_reduce_msix_usage(pf, v_remain); 3993 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other; 3994 3995 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n", 3996 pf->num_lan_msix); 3997 if (ice_is_rdma_ena(pf)) 3998 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n", 3999 pf->num_rdma_msix); 4000 } 4001 4002 pf->msix_entries = devm_kcalloc(dev, v_wanted, 4003 sizeof(*pf->msix_entries), GFP_KERNEL); 4004 if (!pf->msix_entries) { 4005 err = -ENOMEM; 4006 goto exit_err; 4007 } 4008 4009 for (i = 0; i < v_wanted; i++) 4010 pf->msix_entries[i].entry = i; 4011 4012 /* actually reserve the vectors */ 4013 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 4014 ICE_MIN_MSIX, v_wanted); 4015 if (v_actual < 0) { 4016 dev_err(dev, "unable to reserve MSI-X vectors\n"); 4017 err = v_actual; 4018 goto msix_err; 4019 } 4020 4021 if (v_actual < v_wanted) { 4022 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 4023 v_wanted, v_actual); 4024 4025 if (v_actual < ICE_MIN_MSIX) { 4026 /* error if we can't get minimum vectors */ 4027 pci_disable_msix(pf->pdev); 4028 err = -ERANGE; 4029 goto msix_err; 4030 } else { 4031 int v_remain = v_actual - v_other; 4032 4033 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) 4034 v_remain = ICE_MIN_LAN_TXRX_MSIX; 4035 4036 ice_reduce_msix_usage(pf, v_remain); 4037 4038 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 4039 pf->num_lan_msix); 4040 4041 if (ice_is_rdma_ena(pf)) 4042 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 4043 pf->num_rdma_msix); 4044 } 4045 } 4046 4047 return v_actual; 4048 4049 msix_err: 4050 devm_kfree(dev, pf->msix_entries); 4051 4052 exit_err: 4053 pf->num_rdma_msix = 0; 4054 pf->num_lan_msix = 0; 4055 return err; 4056 } 4057 4058 /** 4059 * ice_dis_msix - Disable MSI-X interrupt setup in OS 4060 * @pf: board private structure 4061 */ 4062 static void ice_dis_msix(struct ice_pf *pf) 4063 { 4064 pci_disable_msix(pf->pdev); 4065 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 4066 pf->msix_entries = NULL; 4067 } 4068 4069 /** 4070 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 4071 * @pf: board private structure 4072 */ 4073 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 4074 { 4075 ice_dis_msix(pf); 4076 4077 if (pf->irq_tracker) { 4078 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 4079 pf->irq_tracker = NULL; 4080 } 4081 } 4082 4083 /** 4084 * ice_init_interrupt_scheme - Determine proper interrupt scheme 4085 * @pf: board private structure to initialize 4086 */ 4087 static int ice_init_interrupt_scheme(struct ice_pf *pf) 4088 { 4089 int vectors; 4090 4091 vectors = ice_ena_msix_range(pf); 4092 4093 if (vectors < 0) 4094 return vectors; 4095 4096 /* set up vector assignment tracking */ 4097 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 4098 struct_size(pf->irq_tracker, list, vectors), 4099 GFP_KERNEL); 4100 if (!pf->irq_tracker) { 4101 ice_dis_msix(pf); 4102 return -ENOMEM; 4103 } 4104 4105 /* populate SW interrupts pool with number of OS granted IRQs. */ 4106 pf->num_avail_sw_msix = (u16)vectors; 4107 pf->irq_tracker->num_entries = (u16)vectors; 4108 pf->irq_tracker->end = pf->irq_tracker->num_entries; 4109 4110 return 0; 4111 } 4112 4113 /** 4114 * ice_is_wol_supported - check if WoL is supported 4115 * @hw: pointer to hardware info 4116 * 4117 * Check if WoL is supported based on the HW configuration. 4118 * Returns true if NVM supports and enables WoL for this port, false otherwise 4119 */ 4120 bool ice_is_wol_supported(struct ice_hw *hw) 4121 { 4122 u16 wol_ctrl; 4123 4124 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4125 * word) indicates WoL is not supported on the corresponding PF ID. 4126 */ 4127 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4128 return false; 4129 4130 return !(BIT(hw->port_info->lport) & wol_ctrl); 4131 } 4132 4133 /** 4134 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4135 * @vsi: VSI being changed 4136 * @new_rx: new number of Rx queues 4137 * @new_tx: new number of Tx queues 4138 * @locked: is adev device_lock held 4139 * 4140 * Only change the number of queues if new_tx, or new_rx is non-0. 4141 * 4142 * Returns 0 on success. 4143 */ 4144 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4145 { 4146 struct ice_pf *pf = vsi->back; 4147 int err = 0, timeout = 50; 4148 4149 if (!new_rx && !new_tx) 4150 return -EINVAL; 4151 4152 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4153 timeout--; 4154 if (!timeout) 4155 return -EBUSY; 4156 usleep_range(1000, 2000); 4157 } 4158 4159 if (new_tx) 4160 vsi->req_txq = (u16)new_tx; 4161 if (new_rx) 4162 vsi->req_rxq = (u16)new_rx; 4163 4164 /* set for the next time the netdev is started */ 4165 if (!netif_running(vsi->netdev)) { 4166 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4167 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4168 goto done; 4169 } 4170 4171 ice_vsi_close(vsi); 4172 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4173 ice_pf_dcb_recfg(pf, locked); 4174 ice_vsi_open(vsi); 4175 done: 4176 clear_bit(ICE_CFG_BUSY, pf->state); 4177 return err; 4178 } 4179 4180 /** 4181 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4182 * @pf: PF to configure 4183 * 4184 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4185 * VSI can still Tx/Rx VLAN tagged packets. 4186 */ 4187 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4188 { 4189 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4190 struct ice_vsi_ctx *ctxt; 4191 struct ice_hw *hw; 4192 int status; 4193 4194 if (!vsi) 4195 return; 4196 4197 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4198 if (!ctxt) 4199 return; 4200 4201 hw = &pf->hw; 4202 ctxt->info = vsi->info; 4203 4204 ctxt->info.valid_sections = 4205 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4206 ICE_AQ_VSI_PROP_SECURITY_VALID | 4207 ICE_AQ_VSI_PROP_SW_VALID); 4208 4209 /* disable VLAN anti-spoof */ 4210 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4211 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4212 4213 /* disable VLAN pruning and keep all other settings */ 4214 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4215 4216 /* allow all VLANs on Tx and don't strip on Rx */ 4217 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4218 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4219 4220 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4221 if (status) { 4222 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4223 status, ice_aq_str(hw->adminq.sq_last_status)); 4224 } else { 4225 vsi->info.sec_flags = ctxt->info.sec_flags; 4226 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4227 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4228 } 4229 4230 kfree(ctxt); 4231 } 4232 4233 /** 4234 * ice_log_pkg_init - log result of DDP package load 4235 * @hw: pointer to hardware info 4236 * @state: state of package load 4237 */ 4238 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4239 { 4240 struct ice_pf *pf = hw->back; 4241 struct device *dev; 4242 4243 dev = ice_pf_to_dev(pf); 4244 4245 switch (state) { 4246 case ICE_DDP_PKG_SUCCESS: 4247 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4248 hw->active_pkg_name, 4249 hw->active_pkg_ver.major, 4250 hw->active_pkg_ver.minor, 4251 hw->active_pkg_ver.update, 4252 hw->active_pkg_ver.draft); 4253 break; 4254 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4255 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4256 hw->active_pkg_name, 4257 hw->active_pkg_ver.major, 4258 hw->active_pkg_ver.minor, 4259 hw->active_pkg_ver.update, 4260 hw->active_pkg_ver.draft); 4261 break; 4262 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4263 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4264 hw->active_pkg_name, 4265 hw->active_pkg_ver.major, 4266 hw->active_pkg_ver.minor, 4267 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4268 break; 4269 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4270 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4271 hw->active_pkg_name, 4272 hw->active_pkg_ver.major, 4273 hw->active_pkg_ver.minor, 4274 hw->active_pkg_ver.update, 4275 hw->active_pkg_ver.draft, 4276 hw->pkg_name, 4277 hw->pkg_ver.major, 4278 hw->pkg_ver.minor, 4279 hw->pkg_ver.update, 4280 hw->pkg_ver.draft); 4281 break; 4282 case ICE_DDP_PKG_FW_MISMATCH: 4283 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4284 break; 4285 case ICE_DDP_PKG_INVALID_FILE: 4286 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4287 break; 4288 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4289 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4290 break; 4291 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4292 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4293 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4294 break; 4295 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4296 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4297 break; 4298 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4299 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4300 break; 4301 case ICE_DDP_PKG_LOAD_ERROR: 4302 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4303 /* poll for reset to complete */ 4304 if (ice_check_reset(hw)) 4305 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4306 break; 4307 case ICE_DDP_PKG_ERR: 4308 default: 4309 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4310 break; 4311 } 4312 } 4313 4314 /** 4315 * ice_load_pkg - load/reload the DDP Package file 4316 * @firmware: firmware structure when firmware requested or NULL for reload 4317 * @pf: pointer to the PF instance 4318 * 4319 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4320 * initialize HW tables. 4321 */ 4322 static void 4323 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4324 { 4325 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4326 struct device *dev = ice_pf_to_dev(pf); 4327 struct ice_hw *hw = &pf->hw; 4328 4329 /* Load DDP Package */ 4330 if (firmware && !hw->pkg_copy) { 4331 state = ice_copy_and_init_pkg(hw, firmware->data, 4332 firmware->size); 4333 ice_log_pkg_init(hw, state); 4334 } else if (!firmware && hw->pkg_copy) { 4335 /* Reload package during rebuild after CORER/GLOBR reset */ 4336 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4337 ice_log_pkg_init(hw, state); 4338 } else { 4339 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4340 } 4341 4342 if (!ice_is_init_pkg_successful(state)) { 4343 /* Safe Mode */ 4344 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4345 return; 4346 } 4347 4348 /* Successful download package is the precondition for advanced 4349 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4350 */ 4351 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4352 } 4353 4354 /** 4355 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4356 * @pf: pointer to the PF structure 4357 * 4358 * There is no error returned here because the driver should be able to handle 4359 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4360 * specifically with Tx. 4361 */ 4362 static void ice_verify_cacheline_size(struct ice_pf *pf) 4363 { 4364 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4365 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4366 ICE_CACHE_LINE_BYTES); 4367 } 4368 4369 /** 4370 * ice_send_version - update firmware with driver version 4371 * @pf: PF struct 4372 * 4373 * Returns 0 on success, else error code 4374 */ 4375 static int ice_send_version(struct ice_pf *pf) 4376 { 4377 struct ice_driver_ver dv; 4378 4379 dv.major_ver = 0xff; 4380 dv.minor_ver = 0xff; 4381 dv.build_ver = 0xff; 4382 dv.subbuild_ver = 0; 4383 strscpy((char *)dv.driver_string, UTS_RELEASE, 4384 sizeof(dv.driver_string)); 4385 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4386 } 4387 4388 /** 4389 * ice_init_fdir - Initialize flow director VSI and configuration 4390 * @pf: pointer to the PF instance 4391 * 4392 * returns 0 on success, negative on error 4393 */ 4394 static int ice_init_fdir(struct ice_pf *pf) 4395 { 4396 struct device *dev = ice_pf_to_dev(pf); 4397 struct ice_vsi *ctrl_vsi; 4398 int err; 4399 4400 /* Side Band Flow Director needs to have a control VSI. 4401 * Allocate it and store it in the PF. 4402 */ 4403 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4404 if (!ctrl_vsi) { 4405 dev_dbg(dev, "could not create control VSI\n"); 4406 return -ENOMEM; 4407 } 4408 4409 err = ice_vsi_open_ctrl(ctrl_vsi); 4410 if (err) { 4411 dev_dbg(dev, "could not open control VSI\n"); 4412 goto err_vsi_open; 4413 } 4414 4415 mutex_init(&pf->hw.fdir_fltr_lock); 4416 4417 err = ice_fdir_create_dflt_rules(pf); 4418 if (err) 4419 goto err_fdir_rule; 4420 4421 return 0; 4422 4423 err_fdir_rule: 4424 ice_fdir_release_flows(&pf->hw); 4425 ice_vsi_close(ctrl_vsi); 4426 err_vsi_open: 4427 ice_vsi_release(ctrl_vsi); 4428 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4429 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4430 pf->ctrl_vsi_idx = ICE_NO_VSI; 4431 } 4432 return err; 4433 } 4434 4435 static void ice_deinit_fdir(struct ice_pf *pf) 4436 { 4437 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4438 4439 if (!vsi) 4440 return; 4441 4442 ice_vsi_manage_fdir(vsi, false); 4443 ice_vsi_release(vsi); 4444 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4445 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4446 pf->ctrl_vsi_idx = ICE_NO_VSI; 4447 } 4448 4449 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4450 } 4451 4452 /** 4453 * ice_get_opt_fw_name - return optional firmware file name or NULL 4454 * @pf: pointer to the PF instance 4455 */ 4456 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4457 { 4458 /* Optional firmware name same as default with additional dash 4459 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4460 */ 4461 struct pci_dev *pdev = pf->pdev; 4462 char *opt_fw_filename; 4463 u64 dsn; 4464 4465 /* Determine the name of the optional file using the DSN (two 4466 * dwords following the start of the DSN Capability). 4467 */ 4468 dsn = pci_get_dsn(pdev); 4469 if (!dsn) 4470 return NULL; 4471 4472 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4473 if (!opt_fw_filename) 4474 return NULL; 4475 4476 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4477 ICE_DDP_PKG_PATH, dsn); 4478 4479 return opt_fw_filename; 4480 } 4481 4482 /** 4483 * ice_request_fw - Device initialization routine 4484 * @pf: pointer to the PF instance 4485 */ 4486 static void ice_request_fw(struct ice_pf *pf) 4487 { 4488 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4489 const struct firmware *firmware = NULL; 4490 struct device *dev = ice_pf_to_dev(pf); 4491 int err = 0; 4492 4493 /* optional device-specific DDP (if present) overrides the default DDP 4494 * package file. kernel logs a debug message if the file doesn't exist, 4495 * and warning messages for other errors. 4496 */ 4497 if (opt_fw_filename) { 4498 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4499 if (err) { 4500 kfree(opt_fw_filename); 4501 goto dflt_pkg_load; 4502 } 4503 4504 /* request for firmware was successful. Download to device */ 4505 ice_load_pkg(firmware, pf); 4506 kfree(opt_fw_filename); 4507 release_firmware(firmware); 4508 return; 4509 } 4510 4511 dflt_pkg_load: 4512 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4513 if (err) { 4514 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4515 return; 4516 } 4517 4518 /* request for firmware was successful. Download to device */ 4519 ice_load_pkg(firmware, pf); 4520 release_firmware(firmware); 4521 } 4522 4523 /** 4524 * ice_print_wake_reason - show the wake up cause in the log 4525 * @pf: pointer to the PF struct 4526 */ 4527 static void ice_print_wake_reason(struct ice_pf *pf) 4528 { 4529 u32 wus = pf->wakeup_reason; 4530 const char *wake_str; 4531 4532 /* if no wake event, nothing to print */ 4533 if (!wus) 4534 return; 4535 4536 if (wus & PFPM_WUS_LNKC_M) 4537 wake_str = "Link\n"; 4538 else if (wus & PFPM_WUS_MAG_M) 4539 wake_str = "Magic Packet\n"; 4540 else if (wus & PFPM_WUS_MNG_M) 4541 wake_str = "Management\n"; 4542 else if (wus & PFPM_WUS_FW_RST_WK_M) 4543 wake_str = "Firmware Reset\n"; 4544 else 4545 wake_str = "Unknown\n"; 4546 4547 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4548 } 4549 4550 /** 4551 * ice_register_netdev - register netdev 4552 * @vsi: pointer to the VSI struct 4553 */ 4554 static int ice_register_netdev(struct ice_vsi *vsi) 4555 { 4556 int err; 4557 4558 if (!vsi || !vsi->netdev) 4559 return -EIO; 4560 4561 err = register_netdev(vsi->netdev); 4562 if (err) 4563 return err; 4564 4565 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4566 netif_carrier_off(vsi->netdev); 4567 netif_tx_stop_all_queues(vsi->netdev); 4568 4569 return 0; 4570 } 4571 4572 static void ice_unregister_netdev(struct ice_vsi *vsi) 4573 { 4574 if (!vsi || !vsi->netdev) 4575 return; 4576 4577 unregister_netdev(vsi->netdev); 4578 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4579 } 4580 4581 /** 4582 * ice_cfg_netdev - Allocate, configure and register a netdev 4583 * @vsi: the VSI associated with the new netdev 4584 * 4585 * Returns 0 on success, negative value on failure 4586 */ 4587 static int ice_cfg_netdev(struct ice_vsi *vsi) 4588 { 4589 struct ice_netdev_priv *np; 4590 struct net_device *netdev; 4591 u8 mac_addr[ETH_ALEN]; 4592 4593 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4594 vsi->alloc_rxq); 4595 if (!netdev) 4596 return -ENOMEM; 4597 4598 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4599 vsi->netdev = netdev; 4600 np = netdev_priv(netdev); 4601 np->vsi = vsi; 4602 4603 ice_set_netdev_features(netdev); 4604 ice_set_ops(vsi); 4605 4606 if (vsi->type == ICE_VSI_PF) { 4607 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4608 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4609 eth_hw_addr_set(netdev, mac_addr); 4610 } 4611 4612 netdev->priv_flags |= IFF_UNICAST_FLT; 4613 4614 /* Setup netdev TC information */ 4615 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4616 4617 netdev->max_mtu = ICE_MAX_MTU; 4618 4619 return 0; 4620 } 4621 4622 static void ice_decfg_netdev(struct ice_vsi *vsi) 4623 { 4624 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4625 free_netdev(vsi->netdev); 4626 vsi->netdev = NULL; 4627 } 4628 4629 static int ice_start_eth(struct ice_vsi *vsi) 4630 { 4631 int err; 4632 4633 err = ice_init_mac_fltr(vsi->back); 4634 if (err) 4635 return err; 4636 4637 rtnl_lock(); 4638 err = ice_vsi_open(vsi); 4639 rtnl_unlock(); 4640 4641 return err; 4642 } 4643 4644 static int ice_init_eth(struct ice_pf *pf) 4645 { 4646 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4647 int err; 4648 4649 if (!vsi) 4650 return -EINVAL; 4651 4652 /* init channel list */ 4653 INIT_LIST_HEAD(&vsi->ch_list); 4654 4655 err = ice_cfg_netdev(vsi); 4656 if (err) 4657 return err; 4658 /* Setup DCB netlink interface */ 4659 ice_dcbnl_setup(vsi); 4660 4661 err = ice_init_mac_fltr(pf); 4662 if (err) 4663 goto err_init_mac_fltr; 4664 4665 err = ice_devlink_create_pf_port(pf); 4666 if (err) 4667 goto err_devlink_create_pf_port; 4668 4669 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4670 4671 err = ice_register_netdev(vsi); 4672 if (err) 4673 goto err_register_netdev; 4674 4675 err = ice_tc_indir_block_register(vsi); 4676 if (err) 4677 goto err_tc_indir_block_register; 4678 4679 ice_napi_add(vsi); 4680 4681 return 0; 4682 4683 err_tc_indir_block_register: 4684 ice_unregister_netdev(vsi); 4685 err_register_netdev: 4686 ice_devlink_destroy_pf_port(pf); 4687 err_devlink_create_pf_port: 4688 err_init_mac_fltr: 4689 ice_decfg_netdev(vsi); 4690 return err; 4691 } 4692 4693 static void ice_deinit_eth(struct ice_pf *pf) 4694 { 4695 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4696 4697 if (!vsi) 4698 return; 4699 4700 ice_vsi_close(vsi); 4701 ice_unregister_netdev(vsi); 4702 ice_devlink_destroy_pf_port(pf); 4703 ice_tc_indir_block_unregister(vsi); 4704 ice_decfg_netdev(vsi); 4705 } 4706 4707 static int ice_init_dev(struct ice_pf *pf) 4708 { 4709 struct device *dev = ice_pf_to_dev(pf); 4710 struct ice_hw *hw = &pf->hw; 4711 int err; 4712 4713 err = ice_init_hw(hw); 4714 if (err) { 4715 dev_err(dev, "ice_init_hw failed: %d\n", err); 4716 return err; 4717 } 4718 4719 ice_init_feature_support(pf); 4720 4721 ice_request_fw(pf); 4722 4723 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4724 * set in pf->state, which will cause ice_is_safe_mode to return 4725 * true 4726 */ 4727 if (ice_is_safe_mode(pf)) { 4728 /* we already got function/device capabilities but these don't 4729 * reflect what the driver needs to do in safe mode. Instead of 4730 * adding conditional logic everywhere to ignore these 4731 * device/function capabilities, override them. 4732 */ 4733 ice_set_safe_mode_caps(hw); 4734 } 4735 4736 err = ice_init_pf(pf); 4737 if (err) { 4738 dev_err(dev, "ice_init_pf failed: %d\n", err); 4739 goto err_init_pf; 4740 } 4741 4742 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4743 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4744 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4745 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4746 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4747 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4748 pf->hw.tnl.valid_count[TNL_VXLAN]; 4749 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4750 UDP_TUNNEL_TYPE_VXLAN; 4751 } 4752 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4753 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4754 pf->hw.tnl.valid_count[TNL_GENEVE]; 4755 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4756 UDP_TUNNEL_TYPE_GENEVE; 4757 } 4758 4759 err = ice_init_interrupt_scheme(pf); 4760 if (err) { 4761 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4762 err = -EIO; 4763 goto err_init_interrupt_scheme; 4764 } 4765 4766 /* In case of MSIX we are going to setup the misc vector right here 4767 * to handle admin queue events etc. In case of legacy and MSI 4768 * the misc functionality and queue processing is combined in 4769 * the same vector and that gets setup at open. 4770 */ 4771 err = ice_req_irq_msix_misc(pf); 4772 if (err) { 4773 dev_err(dev, "setup of misc vector failed: %d\n", err); 4774 goto err_req_irq_msix_misc; 4775 } 4776 4777 return 0; 4778 4779 err_req_irq_msix_misc: 4780 ice_clear_interrupt_scheme(pf); 4781 err_init_interrupt_scheme: 4782 ice_deinit_pf(pf); 4783 err_init_pf: 4784 ice_deinit_hw(hw); 4785 return err; 4786 } 4787 4788 static void ice_deinit_dev(struct ice_pf *pf) 4789 { 4790 ice_free_irq_msix_misc(pf); 4791 ice_clear_interrupt_scheme(pf); 4792 ice_deinit_pf(pf); 4793 ice_deinit_hw(&pf->hw); 4794 } 4795 4796 static void ice_init_features(struct ice_pf *pf) 4797 { 4798 struct device *dev = ice_pf_to_dev(pf); 4799 4800 if (ice_is_safe_mode(pf)) 4801 return; 4802 4803 /* initialize DDP driven features */ 4804 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4805 ice_ptp_init(pf); 4806 4807 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4808 ice_gnss_init(pf); 4809 4810 /* Note: Flow director init failure is non-fatal to load */ 4811 if (ice_init_fdir(pf)) 4812 dev_err(dev, "could not initialize flow director\n"); 4813 4814 /* Note: DCB init failure is non-fatal to load */ 4815 if (ice_init_pf_dcb(pf, false)) { 4816 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4817 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4818 } else { 4819 ice_cfg_lldp_mib_change(&pf->hw, true); 4820 } 4821 4822 if (ice_init_lag(pf)) 4823 dev_warn(dev, "Failed to init link aggregation support\n"); 4824 } 4825 4826 static void ice_deinit_features(struct ice_pf *pf) 4827 { 4828 ice_deinit_lag(pf); 4829 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4830 ice_cfg_lldp_mib_change(&pf->hw, false); 4831 ice_deinit_fdir(pf); 4832 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4833 ice_gnss_exit(pf); 4834 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4835 ice_ptp_release(pf); 4836 } 4837 4838 static void ice_init_wakeup(struct ice_pf *pf) 4839 { 4840 /* Save wakeup reason register for later use */ 4841 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4842 4843 /* check for a power management event */ 4844 ice_print_wake_reason(pf); 4845 4846 /* clear wake status, all bits */ 4847 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4848 4849 /* Disable WoL at init, wait for user to enable */ 4850 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4851 } 4852 4853 static int ice_init_link(struct ice_pf *pf) 4854 { 4855 struct device *dev = ice_pf_to_dev(pf); 4856 int err; 4857 4858 err = ice_init_link_events(pf->hw.port_info); 4859 if (err) { 4860 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4861 return err; 4862 } 4863 4864 /* not a fatal error if this fails */ 4865 err = ice_init_nvm_phy_type(pf->hw.port_info); 4866 if (err) 4867 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4868 4869 /* not a fatal error if this fails */ 4870 err = ice_update_link_info(pf->hw.port_info); 4871 if (err) 4872 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4873 4874 ice_init_link_dflt_override(pf->hw.port_info); 4875 4876 ice_check_link_cfg_err(pf, 4877 pf->hw.port_info->phy.link_info.link_cfg_err); 4878 4879 /* if media available, initialize PHY settings */ 4880 if (pf->hw.port_info->phy.link_info.link_info & 4881 ICE_AQ_MEDIA_AVAILABLE) { 4882 /* not a fatal error if this fails */ 4883 err = ice_init_phy_user_cfg(pf->hw.port_info); 4884 if (err) 4885 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4886 4887 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4888 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4889 4890 if (vsi) 4891 ice_configure_phy(vsi); 4892 } 4893 } else { 4894 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4895 } 4896 4897 return err; 4898 } 4899 4900 static int ice_init_pf_sw(struct ice_pf *pf) 4901 { 4902 bool dvm = ice_is_dvm_ena(&pf->hw); 4903 struct ice_vsi *vsi; 4904 int err; 4905 4906 /* create switch struct for the switch element created by FW on boot */ 4907 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4908 if (!pf->first_sw) 4909 return -ENOMEM; 4910 4911 if (pf->hw.evb_veb) 4912 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4913 else 4914 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4915 4916 pf->first_sw->pf = pf; 4917 4918 /* record the sw_id available for later use */ 4919 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4920 4921 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4922 if (err) 4923 goto err_aq_set_port_params; 4924 4925 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4926 if (!vsi) { 4927 err = -ENOMEM; 4928 goto err_pf_vsi_setup; 4929 } 4930 4931 return 0; 4932 4933 err_pf_vsi_setup: 4934 err_aq_set_port_params: 4935 kfree(pf->first_sw); 4936 return err; 4937 } 4938 4939 static void ice_deinit_pf_sw(struct ice_pf *pf) 4940 { 4941 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4942 4943 if (!vsi) 4944 return; 4945 4946 ice_vsi_release(vsi); 4947 kfree(pf->first_sw); 4948 } 4949 4950 static int ice_alloc_vsis(struct ice_pf *pf) 4951 { 4952 struct device *dev = ice_pf_to_dev(pf); 4953 4954 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4955 if (!pf->num_alloc_vsi) 4956 return -EIO; 4957 4958 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4959 dev_warn(dev, 4960 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4961 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4962 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4963 } 4964 4965 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4966 GFP_KERNEL); 4967 if (!pf->vsi) 4968 return -ENOMEM; 4969 4970 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4971 sizeof(*pf->vsi_stats), GFP_KERNEL); 4972 if (!pf->vsi_stats) { 4973 devm_kfree(dev, pf->vsi); 4974 return -ENOMEM; 4975 } 4976 4977 return 0; 4978 } 4979 4980 static void ice_dealloc_vsis(struct ice_pf *pf) 4981 { 4982 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4983 pf->vsi_stats = NULL; 4984 4985 pf->num_alloc_vsi = 0; 4986 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4987 pf->vsi = NULL; 4988 } 4989 4990 static int ice_init_devlink(struct ice_pf *pf) 4991 { 4992 int err; 4993 4994 err = ice_devlink_register_params(pf); 4995 if (err) 4996 return err; 4997 4998 ice_devlink_init_regions(pf); 4999 ice_devlink_register(pf); 5000 5001 return 0; 5002 } 5003 5004 static void ice_deinit_devlink(struct ice_pf *pf) 5005 { 5006 ice_devlink_unregister(pf); 5007 ice_devlink_destroy_regions(pf); 5008 ice_devlink_unregister_params(pf); 5009 } 5010 5011 static int ice_init(struct ice_pf *pf) 5012 { 5013 int err; 5014 5015 err = ice_init_dev(pf); 5016 if (err) 5017 return err; 5018 5019 err = ice_alloc_vsis(pf); 5020 if (err) 5021 goto err_alloc_vsis; 5022 5023 err = ice_init_pf_sw(pf); 5024 if (err) 5025 goto err_init_pf_sw; 5026 5027 ice_init_wakeup(pf); 5028 5029 err = ice_init_link(pf); 5030 if (err) 5031 goto err_init_link; 5032 5033 err = ice_send_version(pf); 5034 if (err) 5035 goto err_init_link; 5036 5037 ice_verify_cacheline_size(pf); 5038 5039 if (ice_is_safe_mode(pf)) 5040 ice_set_safe_mode_vlan_cfg(pf); 5041 else 5042 /* print PCI link speed and width */ 5043 pcie_print_link_status(pf->pdev); 5044 5045 /* ready to go, so clear down state bit */ 5046 clear_bit(ICE_DOWN, pf->state); 5047 clear_bit(ICE_SERVICE_DIS, pf->state); 5048 5049 /* since everything is good, start the service timer */ 5050 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5051 5052 return 0; 5053 5054 err_init_link: 5055 ice_deinit_pf_sw(pf); 5056 err_init_pf_sw: 5057 ice_dealloc_vsis(pf); 5058 err_alloc_vsis: 5059 ice_deinit_dev(pf); 5060 return err; 5061 } 5062 5063 static void ice_deinit(struct ice_pf *pf) 5064 { 5065 set_bit(ICE_SERVICE_DIS, pf->state); 5066 set_bit(ICE_DOWN, pf->state); 5067 5068 ice_deinit_pf_sw(pf); 5069 ice_dealloc_vsis(pf); 5070 ice_deinit_dev(pf); 5071 } 5072 5073 /** 5074 * ice_load - load pf by init hw and starting VSI 5075 * @pf: pointer to the pf instance 5076 */ 5077 int ice_load(struct ice_pf *pf) 5078 { 5079 struct ice_vsi_cfg_params params = {}; 5080 struct ice_vsi *vsi; 5081 int err; 5082 5083 err = ice_reset(&pf->hw, ICE_RESET_PFR); 5084 if (err) 5085 return err; 5086 5087 err = ice_init_dev(pf); 5088 if (err) 5089 return err; 5090 5091 vsi = ice_get_main_vsi(pf); 5092 5093 params = ice_vsi_to_params(vsi); 5094 params.flags = ICE_VSI_FLAG_INIT; 5095 5096 err = ice_vsi_cfg(vsi, ¶ms); 5097 if (err) 5098 goto err_vsi_cfg; 5099 5100 err = ice_start_eth(ice_get_main_vsi(pf)); 5101 if (err) 5102 goto err_start_eth; 5103 5104 err = ice_init_rdma(pf); 5105 if (err) 5106 goto err_init_rdma; 5107 5108 ice_init_features(pf); 5109 ice_service_task_restart(pf); 5110 5111 clear_bit(ICE_DOWN, pf->state); 5112 5113 return 0; 5114 5115 err_init_rdma: 5116 ice_vsi_close(ice_get_main_vsi(pf)); 5117 err_start_eth: 5118 ice_vsi_decfg(ice_get_main_vsi(pf)); 5119 err_vsi_cfg: 5120 ice_deinit_dev(pf); 5121 return err; 5122 } 5123 5124 /** 5125 * ice_unload - unload pf by stopping VSI and deinit hw 5126 * @pf: pointer to the pf instance 5127 */ 5128 void ice_unload(struct ice_pf *pf) 5129 { 5130 ice_deinit_features(pf); 5131 ice_deinit_rdma(pf); 5132 ice_vsi_close(ice_get_main_vsi(pf)); 5133 ice_vsi_decfg(ice_get_main_vsi(pf)); 5134 ice_deinit_dev(pf); 5135 } 5136 5137 /** 5138 * ice_probe - Device initialization routine 5139 * @pdev: PCI device information struct 5140 * @ent: entry in ice_pci_tbl 5141 * 5142 * Returns 0 on success, negative on failure 5143 */ 5144 static int 5145 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5146 { 5147 struct device *dev = &pdev->dev; 5148 struct ice_pf *pf; 5149 struct ice_hw *hw; 5150 int err; 5151 5152 if (pdev->is_virtfn) { 5153 dev_err(dev, "can't probe a virtual function\n"); 5154 return -EINVAL; 5155 } 5156 5157 /* this driver uses devres, see 5158 * Documentation/driver-api/driver-model/devres.rst 5159 */ 5160 err = pcim_enable_device(pdev); 5161 if (err) 5162 return err; 5163 5164 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5165 if (err) { 5166 dev_err(dev, "BAR0 I/O map error %d\n", err); 5167 return err; 5168 } 5169 5170 pf = ice_allocate_pf(dev); 5171 if (!pf) 5172 return -ENOMEM; 5173 5174 /* initialize Auxiliary index to invalid value */ 5175 pf->aux_idx = -1; 5176 5177 /* set up for high or low DMA */ 5178 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5179 if (err) { 5180 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5181 return err; 5182 } 5183 5184 pci_set_master(pdev); 5185 5186 pf->pdev = pdev; 5187 pci_set_drvdata(pdev, pf); 5188 set_bit(ICE_DOWN, pf->state); 5189 /* Disable service task until DOWN bit is cleared */ 5190 set_bit(ICE_SERVICE_DIS, pf->state); 5191 5192 hw = &pf->hw; 5193 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5194 pci_save_state(pdev); 5195 5196 hw->back = pf; 5197 hw->port_info = NULL; 5198 hw->vendor_id = pdev->vendor; 5199 hw->device_id = pdev->device; 5200 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5201 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5202 hw->subsystem_device_id = pdev->subsystem_device; 5203 hw->bus.device = PCI_SLOT(pdev->devfn); 5204 hw->bus.func = PCI_FUNC(pdev->devfn); 5205 ice_set_ctrlq_len(hw); 5206 5207 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5208 5209 #ifndef CONFIG_DYNAMIC_DEBUG 5210 if (debug < -1) 5211 hw->debug_mask = debug; 5212 #endif 5213 5214 err = ice_init(pf); 5215 if (err) 5216 goto err_init; 5217 5218 err = ice_init_eth(pf); 5219 if (err) 5220 goto err_init_eth; 5221 5222 err = ice_init_rdma(pf); 5223 if (err) 5224 goto err_init_rdma; 5225 5226 err = ice_init_devlink(pf); 5227 if (err) 5228 goto err_init_devlink; 5229 5230 ice_init_features(pf); 5231 5232 return 0; 5233 5234 err_init_devlink: 5235 ice_deinit_rdma(pf); 5236 err_init_rdma: 5237 ice_deinit_eth(pf); 5238 err_init_eth: 5239 ice_deinit(pf); 5240 err_init: 5241 pci_disable_device(pdev); 5242 return err; 5243 } 5244 5245 /** 5246 * ice_set_wake - enable or disable Wake on LAN 5247 * @pf: pointer to the PF struct 5248 * 5249 * Simple helper for WoL control 5250 */ 5251 static void ice_set_wake(struct ice_pf *pf) 5252 { 5253 struct ice_hw *hw = &pf->hw; 5254 bool wol = pf->wol_ena; 5255 5256 /* clear wake state, otherwise new wake events won't fire */ 5257 wr32(hw, PFPM_WUS, U32_MAX); 5258 5259 /* enable / disable APM wake up, no RMW needed */ 5260 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5261 5262 /* set magic packet filter enabled */ 5263 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5264 } 5265 5266 /** 5267 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5268 * @pf: pointer to the PF struct 5269 * 5270 * Issue firmware command to enable multicast magic wake, making 5271 * sure that any locally administered address (LAA) is used for 5272 * wake, and that PF reset doesn't undo the LAA. 5273 */ 5274 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5275 { 5276 struct device *dev = ice_pf_to_dev(pf); 5277 struct ice_hw *hw = &pf->hw; 5278 u8 mac_addr[ETH_ALEN]; 5279 struct ice_vsi *vsi; 5280 int status; 5281 u8 flags; 5282 5283 if (!pf->wol_ena) 5284 return; 5285 5286 vsi = ice_get_main_vsi(pf); 5287 if (!vsi) 5288 return; 5289 5290 /* Get current MAC address in case it's an LAA */ 5291 if (vsi->netdev) 5292 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5293 else 5294 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5295 5296 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5297 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5298 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5299 5300 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5301 if (status) 5302 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5303 status, ice_aq_str(hw->adminq.sq_last_status)); 5304 } 5305 5306 /** 5307 * ice_remove - Device removal routine 5308 * @pdev: PCI device information struct 5309 */ 5310 static void ice_remove(struct pci_dev *pdev) 5311 { 5312 struct ice_pf *pf = pci_get_drvdata(pdev); 5313 int i; 5314 5315 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5316 if (!ice_is_reset_in_progress(pf->state)) 5317 break; 5318 msleep(100); 5319 } 5320 5321 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5322 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5323 ice_free_vfs(pf); 5324 } 5325 5326 ice_service_task_stop(pf); 5327 ice_aq_cancel_waiting_tasks(pf); 5328 set_bit(ICE_DOWN, pf->state); 5329 5330 if (!ice_is_safe_mode(pf)) 5331 ice_remove_arfs(pf); 5332 ice_deinit_features(pf); 5333 ice_deinit_devlink(pf); 5334 ice_deinit_rdma(pf); 5335 ice_deinit_eth(pf); 5336 ice_deinit(pf); 5337 5338 ice_vsi_release_all(pf); 5339 5340 ice_setup_mc_magic_wake(pf); 5341 ice_set_wake(pf); 5342 5343 /* Issue a PFR as part of the prescribed driver unload flow. Do not 5344 * do it via ice_schedule_reset() since there is no need to rebuild 5345 * and the service task is already stopped. 5346 */ 5347 ice_reset(&pf->hw, ICE_RESET_PFR); 5348 pci_wait_for_pending_transaction(pdev); 5349 pci_disable_device(pdev); 5350 } 5351 5352 /** 5353 * ice_shutdown - PCI callback for shutting down device 5354 * @pdev: PCI device information struct 5355 */ 5356 static void ice_shutdown(struct pci_dev *pdev) 5357 { 5358 struct ice_pf *pf = pci_get_drvdata(pdev); 5359 5360 ice_remove(pdev); 5361 5362 if (system_state == SYSTEM_POWER_OFF) { 5363 pci_wake_from_d3(pdev, pf->wol_ena); 5364 pci_set_power_state(pdev, PCI_D3hot); 5365 } 5366 } 5367 5368 #ifdef CONFIG_PM 5369 /** 5370 * ice_prepare_for_shutdown - prep for PCI shutdown 5371 * @pf: board private structure 5372 * 5373 * Inform or close all dependent features in prep for PCI device shutdown 5374 */ 5375 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5376 { 5377 struct ice_hw *hw = &pf->hw; 5378 u32 v; 5379 5380 /* Notify VFs of impending reset */ 5381 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5382 ice_vc_notify_reset(pf); 5383 5384 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5385 5386 /* disable the VSIs and their queues that are not already DOWN */ 5387 ice_pf_dis_all_vsi(pf, false); 5388 5389 ice_for_each_vsi(pf, v) 5390 if (pf->vsi[v]) 5391 pf->vsi[v]->vsi_num = 0; 5392 5393 ice_shutdown_all_ctrlq(hw); 5394 } 5395 5396 /** 5397 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5398 * @pf: board private structure to reinitialize 5399 * 5400 * This routine reinitialize interrupt scheme that was cleared during 5401 * power management suspend callback. 5402 * 5403 * This should be called during resume routine to re-allocate the q_vectors 5404 * and reacquire interrupts. 5405 */ 5406 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5407 { 5408 struct device *dev = ice_pf_to_dev(pf); 5409 int ret, v; 5410 5411 /* Since we clear MSIX flag during suspend, we need to 5412 * set it back during resume... 5413 */ 5414 5415 ret = ice_init_interrupt_scheme(pf); 5416 if (ret) { 5417 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5418 return ret; 5419 } 5420 5421 /* Remap vectors and rings, after successful re-init interrupts */ 5422 ice_for_each_vsi(pf, v) { 5423 if (!pf->vsi[v]) 5424 continue; 5425 5426 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5427 if (ret) 5428 goto err_reinit; 5429 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5430 } 5431 5432 ret = ice_req_irq_msix_misc(pf); 5433 if (ret) { 5434 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5435 ret); 5436 goto err_reinit; 5437 } 5438 5439 return 0; 5440 5441 err_reinit: 5442 while (v--) 5443 if (pf->vsi[v]) 5444 ice_vsi_free_q_vectors(pf->vsi[v]); 5445 5446 return ret; 5447 } 5448 5449 /** 5450 * ice_suspend 5451 * @dev: generic device information structure 5452 * 5453 * Power Management callback to quiesce the device and prepare 5454 * for D3 transition. 5455 */ 5456 static int __maybe_unused ice_suspend(struct device *dev) 5457 { 5458 struct pci_dev *pdev = to_pci_dev(dev); 5459 struct ice_pf *pf; 5460 int disabled, v; 5461 5462 pf = pci_get_drvdata(pdev); 5463 5464 if (!ice_pf_state_is_nominal(pf)) { 5465 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5466 return -EBUSY; 5467 } 5468 5469 /* Stop watchdog tasks until resume completion. 5470 * Even though it is most likely that the service task is 5471 * disabled if the device is suspended or down, the service task's 5472 * state is controlled by a different state bit, and we should 5473 * store and honor whatever state that bit is in at this point. 5474 */ 5475 disabled = ice_service_task_stop(pf); 5476 5477 ice_unplug_aux_dev(pf); 5478 5479 /* Already suspended?, then there is nothing to do */ 5480 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5481 if (!disabled) 5482 ice_service_task_restart(pf); 5483 return 0; 5484 } 5485 5486 if (test_bit(ICE_DOWN, pf->state) || 5487 ice_is_reset_in_progress(pf->state)) { 5488 dev_err(dev, "can't suspend device in reset or already down\n"); 5489 if (!disabled) 5490 ice_service_task_restart(pf); 5491 return 0; 5492 } 5493 5494 ice_setup_mc_magic_wake(pf); 5495 5496 ice_prepare_for_shutdown(pf); 5497 5498 ice_set_wake(pf); 5499 5500 /* Free vectors, clear the interrupt scheme and release IRQs 5501 * for proper hibernation, especially with large number of CPUs. 5502 * Otherwise hibernation might fail when mapping all the vectors back 5503 * to CPU0. 5504 */ 5505 ice_free_irq_msix_misc(pf); 5506 ice_for_each_vsi(pf, v) { 5507 if (!pf->vsi[v]) 5508 continue; 5509 ice_vsi_free_q_vectors(pf->vsi[v]); 5510 } 5511 ice_clear_interrupt_scheme(pf); 5512 5513 pci_save_state(pdev); 5514 pci_wake_from_d3(pdev, pf->wol_ena); 5515 pci_set_power_state(pdev, PCI_D3hot); 5516 return 0; 5517 } 5518 5519 /** 5520 * ice_resume - PM callback for waking up from D3 5521 * @dev: generic device information structure 5522 */ 5523 static int __maybe_unused ice_resume(struct device *dev) 5524 { 5525 struct pci_dev *pdev = to_pci_dev(dev); 5526 enum ice_reset_req reset_type; 5527 struct ice_pf *pf; 5528 struct ice_hw *hw; 5529 int ret; 5530 5531 pci_set_power_state(pdev, PCI_D0); 5532 pci_restore_state(pdev); 5533 pci_save_state(pdev); 5534 5535 if (!pci_device_is_present(pdev)) 5536 return -ENODEV; 5537 5538 ret = pci_enable_device_mem(pdev); 5539 if (ret) { 5540 dev_err(dev, "Cannot enable device after suspend\n"); 5541 return ret; 5542 } 5543 5544 pf = pci_get_drvdata(pdev); 5545 hw = &pf->hw; 5546 5547 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5548 ice_print_wake_reason(pf); 5549 5550 /* We cleared the interrupt scheme when we suspended, so we need to 5551 * restore it now to resume device functionality. 5552 */ 5553 ret = ice_reinit_interrupt_scheme(pf); 5554 if (ret) 5555 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5556 5557 clear_bit(ICE_DOWN, pf->state); 5558 /* Now perform PF reset and rebuild */ 5559 reset_type = ICE_RESET_PFR; 5560 /* re-enable service task for reset, but allow reset to schedule it */ 5561 clear_bit(ICE_SERVICE_DIS, pf->state); 5562 5563 if (ice_schedule_reset(pf, reset_type)) 5564 dev_err(dev, "Reset during resume failed.\n"); 5565 5566 clear_bit(ICE_SUSPENDED, pf->state); 5567 ice_service_task_restart(pf); 5568 5569 /* Restart the service task */ 5570 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5571 5572 return 0; 5573 } 5574 #endif /* CONFIG_PM */ 5575 5576 /** 5577 * ice_pci_err_detected - warning that PCI error has been detected 5578 * @pdev: PCI device information struct 5579 * @err: the type of PCI error 5580 * 5581 * Called to warn that something happened on the PCI bus and the error handling 5582 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5583 */ 5584 static pci_ers_result_t 5585 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5586 { 5587 struct ice_pf *pf = pci_get_drvdata(pdev); 5588 5589 if (!pf) { 5590 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5591 __func__, err); 5592 return PCI_ERS_RESULT_DISCONNECT; 5593 } 5594 5595 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5596 ice_service_task_stop(pf); 5597 5598 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5599 set_bit(ICE_PFR_REQ, pf->state); 5600 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5601 } 5602 } 5603 5604 return PCI_ERS_RESULT_NEED_RESET; 5605 } 5606 5607 /** 5608 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5609 * @pdev: PCI device information struct 5610 * 5611 * Called to determine if the driver can recover from the PCI slot reset by 5612 * using a register read to determine if the device is recoverable. 5613 */ 5614 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5615 { 5616 struct ice_pf *pf = pci_get_drvdata(pdev); 5617 pci_ers_result_t result; 5618 int err; 5619 u32 reg; 5620 5621 err = pci_enable_device_mem(pdev); 5622 if (err) { 5623 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5624 err); 5625 result = PCI_ERS_RESULT_DISCONNECT; 5626 } else { 5627 pci_set_master(pdev); 5628 pci_restore_state(pdev); 5629 pci_save_state(pdev); 5630 pci_wake_from_d3(pdev, false); 5631 5632 /* Check for life */ 5633 reg = rd32(&pf->hw, GLGEN_RTRIG); 5634 if (!reg) 5635 result = PCI_ERS_RESULT_RECOVERED; 5636 else 5637 result = PCI_ERS_RESULT_DISCONNECT; 5638 } 5639 5640 return result; 5641 } 5642 5643 /** 5644 * ice_pci_err_resume - restart operations after PCI error recovery 5645 * @pdev: PCI device information struct 5646 * 5647 * Called to allow the driver to bring things back up after PCI error and/or 5648 * reset recovery have finished 5649 */ 5650 static void ice_pci_err_resume(struct pci_dev *pdev) 5651 { 5652 struct ice_pf *pf = pci_get_drvdata(pdev); 5653 5654 if (!pf) { 5655 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5656 __func__); 5657 return; 5658 } 5659 5660 if (test_bit(ICE_SUSPENDED, pf->state)) { 5661 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5662 __func__); 5663 return; 5664 } 5665 5666 ice_restore_all_vfs_msi_state(pdev); 5667 5668 ice_do_reset(pf, ICE_RESET_PFR); 5669 ice_service_task_restart(pf); 5670 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5671 } 5672 5673 /** 5674 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5675 * @pdev: PCI device information struct 5676 */ 5677 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5678 { 5679 struct ice_pf *pf = pci_get_drvdata(pdev); 5680 5681 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5682 ice_service_task_stop(pf); 5683 5684 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5685 set_bit(ICE_PFR_REQ, pf->state); 5686 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5687 } 5688 } 5689 } 5690 5691 /** 5692 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5693 * @pdev: PCI device information struct 5694 */ 5695 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5696 { 5697 ice_pci_err_resume(pdev); 5698 } 5699 5700 /* ice_pci_tbl - PCI Device ID Table 5701 * 5702 * Wildcard entries (PCI_ANY_ID) should come last 5703 * Last entry must be all 0s 5704 * 5705 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5706 * Class, Class Mask, private data (not used) } 5707 */ 5708 static const struct pci_device_id ice_pci_tbl[] = { 5709 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5710 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5711 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5712 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5713 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5714 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5715 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5716 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5717 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5718 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5719 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 }, 5735 /* required last entry */ 5736 { 0, } 5737 }; 5738 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5739 5740 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5741 5742 static const struct pci_error_handlers ice_pci_err_handler = { 5743 .error_detected = ice_pci_err_detected, 5744 .slot_reset = ice_pci_err_slot_reset, 5745 .reset_prepare = ice_pci_err_reset_prepare, 5746 .reset_done = ice_pci_err_reset_done, 5747 .resume = ice_pci_err_resume 5748 }; 5749 5750 static struct pci_driver ice_driver = { 5751 .name = KBUILD_MODNAME, 5752 .id_table = ice_pci_tbl, 5753 .probe = ice_probe, 5754 .remove = ice_remove, 5755 #ifdef CONFIG_PM 5756 .driver.pm = &ice_pm_ops, 5757 #endif /* CONFIG_PM */ 5758 .shutdown = ice_shutdown, 5759 .sriov_configure = ice_sriov_configure, 5760 .err_handler = &ice_pci_err_handler 5761 }; 5762 5763 /** 5764 * ice_module_init - Driver registration routine 5765 * 5766 * ice_module_init is the first routine called when the driver is 5767 * loaded. All it does is register with the PCI subsystem. 5768 */ 5769 static int __init ice_module_init(void) 5770 { 5771 int status; 5772 5773 pr_info("%s\n", ice_driver_string); 5774 pr_info("%s\n", ice_copyright); 5775 5776 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5777 if (!ice_wq) { 5778 pr_err("Failed to create workqueue\n"); 5779 return -ENOMEM; 5780 } 5781 5782 status = pci_register_driver(&ice_driver); 5783 if (status) { 5784 pr_err("failed to register PCI driver, err %d\n", status); 5785 destroy_workqueue(ice_wq); 5786 } 5787 5788 return status; 5789 } 5790 module_init(ice_module_init); 5791 5792 /** 5793 * ice_module_exit - Driver exit cleanup routine 5794 * 5795 * ice_module_exit is called just before the driver is removed 5796 * from memory. 5797 */ 5798 static void __exit ice_module_exit(void) 5799 { 5800 pci_unregister_driver(&ice_driver); 5801 destroy_workqueue(ice_wq); 5802 pr_info("module unloaded\n"); 5803 } 5804 module_exit(ice_module_exit); 5805 5806 /** 5807 * ice_set_mac_address - NDO callback to set MAC address 5808 * @netdev: network interface device structure 5809 * @pi: pointer to an address structure 5810 * 5811 * Returns 0 on success, negative on failure 5812 */ 5813 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5814 { 5815 struct ice_netdev_priv *np = netdev_priv(netdev); 5816 struct ice_vsi *vsi = np->vsi; 5817 struct ice_pf *pf = vsi->back; 5818 struct ice_hw *hw = &pf->hw; 5819 struct sockaddr *addr = pi; 5820 u8 old_mac[ETH_ALEN]; 5821 u8 flags = 0; 5822 u8 *mac; 5823 int err; 5824 5825 mac = (u8 *)addr->sa_data; 5826 5827 if (!is_valid_ether_addr(mac)) 5828 return -EADDRNOTAVAIL; 5829 5830 if (ether_addr_equal(netdev->dev_addr, mac)) { 5831 netdev_dbg(netdev, "already using mac %pM\n", mac); 5832 return 0; 5833 } 5834 5835 if (test_bit(ICE_DOWN, pf->state) || 5836 ice_is_reset_in_progress(pf->state)) { 5837 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5838 mac); 5839 return -EBUSY; 5840 } 5841 5842 if (ice_chnl_dmac_fltr_cnt(pf)) { 5843 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5844 mac); 5845 return -EAGAIN; 5846 } 5847 5848 netif_addr_lock_bh(netdev); 5849 ether_addr_copy(old_mac, netdev->dev_addr); 5850 /* change the netdev's MAC address */ 5851 eth_hw_addr_set(netdev, mac); 5852 netif_addr_unlock_bh(netdev); 5853 5854 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5855 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5856 if (err && err != -ENOENT) { 5857 err = -EADDRNOTAVAIL; 5858 goto err_update_filters; 5859 } 5860 5861 /* Add filter for new MAC. If filter exists, return success */ 5862 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5863 if (err == -EEXIST) { 5864 /* Although this MAC filter is already present in hardware it's 5865 * possible in some cases (e.g. bonding) that dev_addr was 5866 * modified outside of the driver and needs to be restored back 5867 * to this value. 5868 */ 5869 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5870 5871 return 0; 5872 } else if (err) { 5873 /* error if the new filter addition failed */ 5874 err = -EADDRNOTAVAIL; 5875 } 5876 5877 err_update_filters: 5878 if (err) { 5879 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5880 mac); 5881 netif_addr_lock_bh(netdev); 5882 eth_hw_addr_set(netdev, old_mac); 5883 netif_addr_unlock_bh(netdev); 5884 return err; 5885 } 5886 5887 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5888 netdev->dev_addr); 5889 5890 /* write new MAC address to the firmware */ 5891 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5892 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5893 if (err) { 5894 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5895 mac, err); 5896 } 5897 return 0; 5898 } 5899 5900 /** 5901 * ice_set_rx_mode - NDO callback to set the netdev filters 5902 * @netdev: network interface device structure 5903 */ 5904 static void ice_set_rx_mode(struct net_device *netdev) 5905 { 5906 struct ice_netdev_priv *np = netdev_priv(netdev); 5907 struct ice_vsi *vsi = np->vsi; 5908 5909 if (!vsi) 5910 return; 5911 5912 /* Set the flags to synchronize filters 5913 * ndo_set_rx_mode may be triggered even without a change in netdev 5914 * flags 5915 */ 5916 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5917 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5918 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5919 5920 /* schedule our worker thread which will take care of 5921 * applying the new filter changes 5922 */ 5923 ice_service_task_schedule(vsi->back); 5924 } 5925 5926 /** 5927 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5928 * @netdev: network interface device structure 5929 * @queue_index: Queue ID 5930 * @maxrate: maximum bandwidth in Mbps 5931 */ 5932 static int 5933 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5934 { 5935 struct ice_netdev_priv *np = netdev_priv(netdev); 5936 struct ice_vsi *vsi = np->vsi; 5937 u16 q_handle; 5938 int status; 5939 u8 tc; 5940 5941 /* Validate maxrate requested is within permitted range */ 5942 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5943 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5944 maxrate, queue_index); 5945 return -EINVAL; 5946 } 5947 5948 q_handle = vsi->tx_rings[queue_index]->q_handle; 5949 tc = ice_dcb_get_tc(vsi, queue_index); 5950 5951 /* Set BW back to default, when user set maxrate to 0 */ 5952 if (!maxrate) 5953 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5954 q_handle, ICE_MAX_BW); 5955 else 5956 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5957 q_handle, ICE_MAX_BW, maxrate * 1000); 5958 if (status) 5959 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5960 status); 5961 5962 return status; 5963 } 5964 5965 /** 5966 * ice_fdb_add - add an entry to the hardware database 5967 * @ndm: the input from the stack 5968 * @tb: pointer to array of nladdr (unused) 5969 * @dev: the net device pointer 5970 * @addr: the MAC address entry being added 5971 * @vid: VLAN ID 5972 * @flags: instructions from stack about fdb operation 5973 * @extack: netlink extended ack 5974 */ 5975 static int 5976 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5977 struct net_device *dev, const unsigned char *addr, u16 vid, 5978 u16 flags, struct netlink_ext_ack __always_unused *extack) 5979 { 5980 int err; 5981 5982 if (vid) { 5983 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5984 return -EINVAL; 5985 } 5986 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5987 netdev_err(dev, "FDB only supports static addresses\n"); 5988 return -EINVAL; 5989 } 5990 5991 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5992 err = dev_uc_add_excl(dev, addr); 5993 else if (is_multicast_ether_addr(addr)) 5994 err = dev_mc_add_excl(dev, addr); 5995 else 5996 err = -EINVAL; 5997 5998 /* Only return duplicate errors if NLM_F_EXCL is set */ 5999 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6000 err = 0; 6001 6002 return err; 6003 } 6004 6005 /** 6006 * ice_fdb_del - delete an entry from the hardware database 6007 * @ndm: the input from the stack 6008 * @tb: pointer to array of nladdr (unused) 6009 * @dev: the net device pointer 6010 * @addr: the MAC address entry being added 6011 * @vid: VLAN ID 6012 * @extack: netlink extended ack 6013 */ 6014 static int 6015 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6016 struct net_device *dev, const unsigned char *addr, 6017 __always_unused u16 vid, struct netlink_ext_ack *extack) 6018 { 6019 int err; 6020 6021 if (ndm->ndm_state & NUD_PERMANENT) { 6022 netdev_err(dev, "FDB only supports static addresses\n"); 6023 return -EINVAL; 6024 } 6025 6026 if (is_unicast_ether_addr(addr)) 6027 err = dev_uc_del(dev, addr); 6028 else if (is_multicast_ether_addr(addr)) 6029 err = dev_mc_del(dev, addr); 6030 else 6031 err = -EINVAL; 6032 6033 return err; 6034 } 6035 6036 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6037 NETIF_F_HW_VLAN_CTAG_TX | \ 6038 NETIF_F_HW_VLAN_STAG_RX | \ 6039 NETIF_F_HW_VLAN_STAG_TX) 6040 6041 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6042 NETIF_F_HW_VLAN_STAG_RX) 6043 6044 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6045 NETIF_F_HW_VLAN_STAG_FILTER) 6046 6047 /** 6048 * ice_fix_features - fix the netdev features flags based on device limitations 6049 * @netdev: ptr to the netdev that flags are being fixed on 6050 * @features: features that need to be checked and possibly fixed 6051 * 6052 * Make sure any fixups are made to features in this callback. This enables the 6053 * driver to not have to check unsupported configurations throughout the driver 6054 * because that's the responsiblity of this callback. 6055 * 6056 * Single VLAN Mode (SVM) Supported Features: 6057 * NETIF_F_HW_VLAN_CTAG_FILTER 6058 * NETIF_F_HW_VLAN_CTAG_RX 6059 * NETIF_F_HW_VLAN_CTAG_TX 6060 * 6061 * Double VLAN Mode (DVM) Supported Features: 6062 * NETIF_F_HW_VLAN_CTAG_FILTER 6063 * NETIF_F_HW_VLAN_CTAG_RX 6064 * NETIF_F_HW_VLAN_CTAG_TX 6065 * 6066 * NETIF_F_HW_VLAN_STAG_FILTER 6067 * NETIF_HW_VLAN_STAG_RX 6068 * NETIF_HW_VLAN_STAG_TX 6069 * 6070 * Features that need fixing: 6071 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6072 * These are mutually exlusive as the VSI context cannot support multiple 6073 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6074 * is not done, then default to clearing the requested STAG offload 6075 * settings. 6076 * 6077 * All supported filtering has to be enabled or disabled together. For 6078 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6079 * together. If this is not done, then default to VLAN filtering disabled. 6080 * These are mutually exclusive as there is currently no way to 6081 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6082 * prune rules. 6083 */ 6084 static netdev_features_t 6085 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6086 { 6087 struct ice_netdev_priv *np = netdev_priv(netdev); 6088 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6089 bool cur_ctag, cur_stag, req_ctag, req_stag; 6090 6091 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6092 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6093 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6094 6095 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6096 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6097 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6098 6099 if (req_vlan_fltr != cur_vlan_fltr) { 6100 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6101 if (req_ctag && req_stag) { 6102 features |= NETIF_VLAN_FILTERING_FEATURES; 6103 } else if (!req_ctag && !req_stag) { 6104 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6105 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6106 (!cur_stag && req_stag && !cur_ctag)) { 6107 features |= NETIF_VLAN_FILTERING_FEATURES; 6108 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6109 } else if ((cur_ctag && !req_ctag && cur_stag) || 6110 (cur_stag && !req_stag && cur_ctag)) { 6111 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6112 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6113 } 6114 } else { 6115 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6116 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6117 6118 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6119 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6120 } 6121 } 6122 6123 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6124 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6125 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6126 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6127 NETIF_F_HW_VLAN_STAG_TX); 6128 } 6129 6130 if (!(netdev->features & NETIF_F_RXFCS) && 6131 (features & NETIF_F_RXFCS) && 6132 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6133 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6134 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6135 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6136 } 6137 6138 return features; 6139 } 6140 6141 /** 6142 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6143 * @vsi: PF's VSI 6144 * @features: features used to determine VLAN offload settings 6145 * 6146 * First, determine the vlan_ethertype based on the VLAN offload bits in 6147 * features. Then determine if stripping and insertion should be enabled or 6148 * disabled. Finally enable or disable VLAN stripping and insertion. 6149 */ 6150 static int 6151 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6152 { 6153 bool enable_stripping = true, enable_insertion = true; 6154 struct ice_vsi_vlan_ops *vlan_ops; 6155 int strip_err = 0, insert_err = 0; 6156 u16 vlan_ethertype = 0; 6157 6158 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6159 6160 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6161 vlan_ethertype = ETH_P_8021AD; 6162 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6163 vlan_ethertype = ETH_P_8021Q; 6164 6165 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6166 enable_stripping = false; 6167 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6168 enable_insertion = false; 6169 6170 if (enable_stripping) 6171 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6172 else 6173 strip_err = vlan_ops->dis_stripping(vsi); 6174 6175 if (enable_insertion) 6176 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6177 else 6178 insert_err = vlan_ops->dis_insertion(vsi); 6179 6180 if (strip_err || insert_err) 6181 return -EIO; 6182 6183 return 0; 6184 } 6185 6186 /** 6187 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6188 * @vsi: PF's VSI 6189 * @features: features used to determine VLAN filtering settings 6190 * 6191 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6192 * features. 6193 */ 6194 static int 6195 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6196 { 6197 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6198 int err = 0; 6199 6200 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6201 * if either bit is set 6202 */ 6203 if (features & 6204 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6205 err = vlan_ops->ena_rx_filtering(vsi); 6206 else 6207 err = vlan_ops->dis_rx_filtering(vsi); 6208 6209 return err; 6210 } 6211 6212 /** 6213 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6214 * @netdev: ptr to the netdev being adjusted 6215 * @features: the feature set that the stack is suggesting 6216 * 6217 * Only update VLAN settings if the requested_vlan_features are different than 6218 * the current_vlan_features. 6219 */ 6220 static int 6221 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6222 { 6223 netdev_features_t current_vlan_features, requested_vlan_features; 6224 struct ice_netdev_priv *np = netdev_priv(netdev); 6225 struct ice_vsi *vsi = np->vsi; 6226 int err; 6227 6228 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6229 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6230 if (current_vlan_features ^ requested_vlan_features) { 6231 if ((features & NETIF_F_RXFCS) && 6232 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6233 dev_err(ice_pf_to_dev(vsi->back), 6234 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6235 return -EIO; 6236 } 6237 6238 err = ice_set_vlan_offload_features(vsi, features); 6239 if (err) 6240 return err; 6241 } 6242 6243 current_vlan_features = netdev->features & 6244 NETIF_VLAN_FILTERING_FEATURES; 6245 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6246 if (current_vlan_features ^ requested_vlan_features) { 6247 err = ice_set_vlan_filtering_features(vsi, features); 6248 if (err) 6249 return err; 6250 } 6251 6252 return 0; 6253 } 6254 6255 /** 6256 * ice_set_loopback - turn on/off loopback mode on underlying PF 6257 * @vsi: ptr to VSI 6258 * @ena: flag to indicate the on/off setting 6259 */ 6260 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6261 { 6262 bool if_running = netif_running(vsi->netdev); 6263 int ret; 6264 6265 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6266 ret = ice_down(vsi); 6267 if (ret) { 6268 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6269 return ret; 6270 } 6271 } 6272 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6273 if (ret) 6274 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6275 if (if_running) 6276 ret = ice_up(vsi); 6277 6278 return ret; 6279 } 6280 6281 /** 6282 * ice_set_features - set the netdev feature flags 6283 * @netdev: ptr to the netdev being adjusted 6284 * @features: the feature set that the stack is suggesting 6285 */ 6286 static int 6287 ice_set_features(struct net_device *netdev, netdev_features_t features) 6288 { 6289 netdev_features_t changed = netdev->features ^ features; 6290 struct ice_netdev_priv *np = netdev_priv(netdev); 6291 struct ice_vsi *vsi = np->vsi; 6292 struct ice_pf *pf = vsi->back; 6293 int ret = 0; 6294 6295 /* Don't set any netdev advanced features with device in Safe Mode */ 6296 if (ice_is_safe_mode(pf)) { 6297 dev_err(ice_pf_to_dev(pf), 6298 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6299 return ret; 6300 } 6301 6302 /* Do not change setting during reset */ 6303 if (ice_is_reset_in_progress(pf->state)) { 6304 dev_err(ice_pf_to_dev(pf), 6305 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6306 return -EBUSY; 6307 } 6308 6309 /* Multiple features can be changed in one call so keep features in 6310 * separate if/else statements to guarantee each feature is checked 6311 */ 6312 if (changed & NETIF_F_RXHASH) 6313 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6314 6315 ret = ice_set_vlan_features(netdev, features); 6316 if (ret) 6317 return ret; 6318 6319 /* Turn on receive of FCS aka CRC, and after setting this 6320 * flag the packet data will have the 4 byte CRC appended 6321 */ 6322 if (changed & NETIF_F_RXFCS) { 6323 if ((features & NETIF_F_RXFCS) && 6324 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6325 dev_err(ice_pf_to_dev(vsi->back), 6326 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6327 return -EIO; 6328 } 6329 6330 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6331 ret = ice_down_up(vsi); 6332 if (ret) 6333 return ret; 6334 } 6335 6336 if (changed & NETIF_F_NTUPLE) { 6337 bool ena = !!(features & NETIF_F_NTUPLE); 6338 6339 ice_vsi_manage_fdir(vsi, ena); 6340 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6341 } 6342 6343 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6344 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6345 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6346 return -EACCES; 6347 } 6348 6349 if (changed & NETIF_F_HW_TC) { 6350 bool ena = !!(features & NETIF_F_HW_TC); 6351 6352 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6353 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6354 } 6355 6356 if (changed & NETIF_F_LOOPBACK) 6357 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6358 6359 return ret; 6360 } 6361 6362 /** 6363 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6364 * @vsi: VSI to setup VLAN properties for 6365 */ 6366 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6367 { 6368 int err; 6369 6370 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6371 if (err) 6372 return err; 6373 6374 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6375 if (err) 6376 return err; 6377 6378 return ice_vsi_add_vlan_zero(vsi); 6379 } 6380 6381 /** 6382 * ice_vsi_cfg_lan - Setup the VSI lan related config 6383 * @vsi: the VSI being configured 6384 * 6385 * Return 0 on success and negative value on error 6386 */ 6387 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6388 { 6389 int err; 6390 6391 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6392 ice_set_rx_mode(vsi->netdev); 6393 6394 err = ice_vsi_vlan_setup(vsi); 6395 if (err) 6396 return err; 6397 } 6398 ice_vsi_cfg_dcb_rings(vsi); 6399 6400 err = ice_vsi_cfg_lan_txqs(vsi); 6401 if (!err && ice_is_xdp_ena_vsi(vsi)) 6402 err = ice_vsi_cfg_xdp_txqs(vsi); 6403 if (!err) 6404 err = ice_vsi_cfg_rxqs(vsi); 6405 6406 return err; 6407 } 6408 6409 /* THEORY OF MODERATION: 6410 * The ice driver hardware works differently than the hardware that DIMLIB was 6411 * originally made for. ice hardware doesn't have packet count limits that 6412 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6413 * which is hard-coded to a limit of 250,000 ints/second. 6414 * If not using dynamic moderation, the INTRL value can be modified 6415 * by ethtool rx-usecs-high. 6416 */ 6417 struct ice_dim { 6418 /* the throttle rate for interrupts, basically worst case delay before 6419 * an initial interrupt fires, value is stored in microseconds. 6420 */ 6421 u16 itr; 6422 }; 6423 6424 /* Make a different profile for Rx that doesn't allow quite so aggressive 6425 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6426 * second. 6427 */ 6428 static const struct ice_dim rx_profile[] = { 6429 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6430 {8}, /* 125,000 ints/s */ 6431 {16}, /* 62,500 ints/s */ 6432 {62}, /* 16,129 ints/s */ 6433 {126} /* 7,936 ints/s */ 6434 }; 6435 6436 /* The transmit profile, which has the same sorts of values 6437 * as the previous struct 6438 */ 6439 static const struct ice_dim tx_profile[] = { 6440 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6441 {8}, /* 125,000 ints/s */ 6442 {40}, /* 16,125 ints/s */ 6443 {128}, /* 7,812 ints/s */ 6444 {256} /* 3,906 ints/s */ 6445 }; 6446 6447 static void ice_tx_dim_work(struct work_struct *work) 6448 { 6449 struct ice_ring_container *rc; 6450 struct dim *dim; 6451 u16 itr; 6452 6453 dim = container_of(work, struct dim, work); 6454 rc = (struct ice_ring_container *)dim->priv; 6455 6456 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6457 6458 /* look up the values in our local table */ 6459 itr = tx_profile[dim->profile_ix].itr; 6460 6461 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6462 ice_write_itr(rc, itr); 6463 6464 dim->state = DIM_START_MEASURE; 6465 } 6466 6467 static void ice_rx_dim_work(struct work_struct *work) 6468 { 6469 struct ice_ring_container *rc; 6470 struct dim *dim; 6471 u16 itr; 6472 6473 dim = container_of(work, struct dim, work); 6474 rc = (struct ice_ring_container *)dim->priv; 6475 6476 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6477 6478 /* look up the values in our local table */ 6479 itr = rx_profile[dim->profile_ix].itr; 6480 6481 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6482 ice_write_itr(rc, itr); 6483 6484 dim->state = DIM_START_MEASURE; 6485 } 6486 6487 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6488 6489 /** 6490 * ice_init_moderation - set up interrupt moderation 6491 * @q_vector: the vector containing rings to be configured 6492 * 6493 * Set up interrupt moderation registers, with the intent to do the right thing 6494 * when called from reset or from probe, and whether or not dynamic moderation 6495 * is enabled or not. Take special care to write all the registers in both 6496 * dynamic moderation mode or not in order to make sure hardware is in a known 6497 * state. 6498 */ 6499 static void ice_init_moderation(struct ice_q_vector *q_vector) 6500 { 6501 struct ice_ring_container *rc; 6502 bool tx_dynamic, rx_dynamic; 6503 6504 rc = &q_vector->tx; 6505 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6506 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6507 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6508 rc->dim.priv = rc; 6509 tx_dynamic = ITR_IS_DYNAMIC(rc); 6510 6511 /* set the initial TX ITR to match the above */ 6512 ice_write_itr(rc, tx_dynamic ? 6513 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6514 6515 rc = &q_vector->rx; 6516 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6517 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6518 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6519 rc->dim.priv = rc; 6520 rx_dynamic = ITR_IS_DYNAMIC(rc); 6521 6522 /* set the initial RX ITR to match the above */ 6523 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6524 rc->itr_setting); 6525 6526 ice_set_q_vector_intrl(q_vector); 6527 } 6528 6529 /** 6530 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6531 * @vsi: the VSI being configured 6532 */ 6533 static void ice_napi_enable_all(struct ice_vsi *vsi) 6534 { 6535 int q_idx; 6536 6537 if (!vsi->netdev) 6538 return; 6539 6540 ice_for_each_q_vector(vsi, q_idx) { 6541 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6542 6543 ice_init_moderation(q_vector); 6544 6545 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6546 napi_enable(&q_vector->napi); 6547 } 6548 } 6549 6550 /** 6551 * ice_up_complete - Finish the last steps of bringing up a connection 6552 * @vsi: The VSI being configured 6553 * 6554 * Return 0 on success and negative value on error 6555 */ 6556 static int ice_up_complete(struct ice_vsi *vsi) 6557 { 6558 struct ice_pf *pf = vsi->back; 6559 int err; 6560 6561 ice_vsi_cfg_msix(vsi); 6562 6563 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6564 * Tx queue group list was configured and the context bits were 6565 * programmed using ice_vsi_cfg_txqs 6566 */ 6567 err = ice_vsi_start_all_rx_rings(vsi); 6568 if (err) 6569 return err; 6570 6571 clear_bit(ICE_VSI_DOWN, vsi->state); 6572 ice_napi_enable_all(vsi); 6573 ice_vsi_ena_irq(vsi); 6574 6575 if (vsi->port_info && 6576 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6577 vsi->netdev && vsi->type == ICE_VSI_PF) { 6578 ice_print_link_msg(vsi, true); 6579 netif_tx_start_all_queues(vsi->netdev); 6580 netif_carrier_on(vsi->netdev); 6581 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6582 } 6583 6584 /* Perform an initial read of the statistics registers now to 6585 * set the baseline so counters are ready when interface is up 6586 */ 6587 ice_update_eth_stats(vsi); 6588 6589 if (vsi->type == ICE_VSI_PF) 6590 ice_service_task_schedule(pf); 6591 6592 return 0; 6593 } 6594 6595 /** 6596 * ice_up - Bring the connection back up after being down 6597 * @vsi: VSI being configured 6598 */ 6599 int ice_up(struct ice_vsi *vsi) 6600 { 6601 int err; 6602 6603 err = ice_vsi_cfg_lan(vsi); 6604 if (!err) 6605 err = ice_up_complete(vsi); 6606 6607 return err; 6608 } 6609 6610 /** 6611 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6612 * @syncp: pointer to u64_stats_sync 6613 * @stats: stats that pkts and bytes count will be taken from 6614 * @pkts: packets stats counter 6615 * @bytes: bytes stats counter 6616 * 6617 * This function fetches stats from the ring considering the atomic operations 6618 * that needs to be performed to read u64 values in 32 bit machine. 6619 */ 6620 void 6621 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6622 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6623 { 6624 unsigned int start; 6625 6626 do { 6627 start = u64_stats_fetch_begin(syncp); 6628 *pkts = stats.pkts; 6629 *bytes = stats.bytes; 6630 } while (u64_stats_fetch_retry(syncp, start)); 6631 } 6632 6633 /** 6634 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6635 * @vsi: the VSI to be updated 6636 * @vsi_stats: the stats struct to be updated 6637 * @rings: rings to work on 6638 * @count: number of rings 6639 */ 6640 static void 6641 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6642 struct rtnl_link_stats64 *vsi_stats, 6643 struct ice_tx_ring **rings, u16 count) 6644 { 6645 u16 i; 6646 6647 for (i = 0; i < count; i++) { 6648 struct ice_tx_ring *ring; 6649 u64 pkts = 0, bytes = 0; 6650 6651 ring = READ_ONCE(rings[i]); 6652 if (!ring || !ring->ring_stats) 6653 continue; 6654 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6655 ring->ring_stats->stats, &pkts, 6656 &bytes); 6657 vsi_stats->tx_packets += pkts; 6658 vsi_stats->tx_bytes += bytes; 6659 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6660 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6661 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6662 } 6663 } 6664 6665 /** 6666 * ice_update_vsi_ring_stats - Update VSI stats counters 6667 * @vsi: the VSI to be updated 6668 */ 6669 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6670 { 6671 struct rtnl_link_stats64 *net_stats, *stats_prev; 6672 struct rtnl_link_stats64 *vsi_stats; 6673 u64 pkts, bytes; 6674 int i; 6675 6676 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6677 if (!vsi_stats) 6678 return; 6679 6680 /* reset non-netdev (extended) stats */ 6681 vsi->tx_restart = 0; 6682 vsi->tx_busy = 0; 6683 vsi->tx_linearize = 0; 6684 vsi->rx_buf_failed = 0; 6685 vsi->rx_page_failed = 0; 6686 6687 rcu_read_lock(); 6688 6689 /* update Tx rings counters */ 6690 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6691 vsi->num_txq); 6692 6693 /* update Rx rings counters */ 6694 ice_for_each_rxq(vsi, i) { 6695 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6696 struct ice_ring_stats *ring_stats; 6697 6698 ring_stats = ring->ring_stats; 6699 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6700 ring_stats->stats, &pkts, 6701 &bytes); 6702 vsi_stats->rx_packets += pkts; 6703 vsi_stats->rx_bytes += bytes; 6704 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6705 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6706 } 6707 6708 /* update XDP Tx rings counters */ 6709 if (ice_is_xdp_ena_vsi(vsi)) 6710 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6711 vsi->num_xdp_txq); 6712 6713 rcu_read_unlock(); 6714 6715 net_stats = &vsi->net_stats; 6716 stats_prev = &vsi->net_stats_prev; 6717 6718 /* clear prev counters after reset */ 6719 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6720 vsi_stats->rx_packets < stats_prev->rx_packets) { 6721 stats_prev->tx_packets = 0; 6722 stats_prev->tx_bytes = 0; 6723 stats_prev->rx_packets = 0; 6724 stats_prev->rx_bytes = 0; 6725 } 6726 6727 /* update netdev counters */ 6728 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6729 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6730 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6731 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6732 6733 stats_prev->tx_packets = vsi_stats->tx_packets; 6734 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6735 stats_prev->rx_packets = vsi_stats->rx_packets; 6736 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6737 6738 kfree(vsi_stats); 6739 } 6740 6741 /** 6742 * ice_update_vsi_stats - Update VSI stats counters 6743 * @vsi: the VSI to be updated 6744 */ 6745 void ice_update_vsi_stats(struct ice_vsi *vsi) 6746 { 6747 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6748 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6749 struct ice_pf *pf = vsi->back; 6750 6751 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6752 test_bit(ICE_CFG_BUSY, pf->state)) 6753 return; 6754 6755 /* get stats as recorded by Tx/Rx rings */ 6756 ice_update_vsi_ring_stats(vsi); 6757 6758 /* get VSI stats as recorded by the hardware */ 6759 ice_update_eth_stats(vsi); 6760 6761 cur_ns->tx_errors = cur_es->tx_errors; 6762 cur_ns->rx_dropped = cur_es->rx_discards; 6763 cur_ns->tx_dropped = cur_es->tx_discards; 6764 cur_ns->multicast = cur_es->rx_multicast; 6765 6766 /* update some more netdev stats if this is main VSI */ 6767 if (vsi->type == ICE_VSI_PF) { 6768 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6769 cur_ns->rx_errors = pf->stats.crc_errors + 6770 pf->stats.illegal_bytes + 6771 pf->stats.rx_len_errors + 6772 pf->stats.rx_undersize + 6773 pf->hw_csum_rx_error + 6774 pf->stats.rx_jabber + 6775 pf->stats.rx_fragments + 6776 pf->stats.rx_oversize; 6777 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6778 /* record drops from the port level */ 6779 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6780 } 6781 } 6782 6783 /** 6784 * ice_update_pf_stats - Update PF port stats counters 6785 * @pf: PF whose stats needs to be updated 6786 */ 6787 void ice_update_pf_stats(struct ice_pf *pf) 6788 { 6789 struct ice_hw_port_stats *prev_ps, *cur_ps; 6790 struct ice_hw *hw = &pf->hw; 6791 u16 fd_ctr_base; 6792 u8 port; 6793 6794 port = hw->port_info->lport; 6795 prev_ps = &pf->stats_prev; 6796 cur_ps = &pf->stats; 6797 6798 if (ice_is_reset_in_progress(pf->state)) 6799 pf->stat_prev_loaded = false; 6800 6801 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6802 &prev_ps->eth.rx_bytes, 6803 &cur_ps->eth.rx_bytes); 6804 6805 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6806 &prev_ps->eth.rx_unicast, 6807 &cur_ps->eth.rx_unicast); 6808 6809 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6810 &prev_ps->eth.rx_multicast, 6811 &cur_ps->eth.rx_multicast); 6812 6813 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6814 &prev_ps->eth.rx_broadcast, 6815 &cur_ps->eth.rx_broadcast); 6816 6817 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6818 &prev_ps->eth.rx_discards, 6819 &cur_ps->eth.rx_discards); 6820 6821 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6822 &prev_ps->eth.tx_bytes, 6823 &cur_ps->eth.tx_bytes); 6824 6825 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6826 &prev_ps->eth.tx_unicast, 6827 &cur_ps->eth.tx_unicast); 6828 6829 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6830 &prev_ps->eth.tx_multicast, 6831 &cur_ps->eth.tx_multicast); 6832 6833 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6834 &prev_ps->eth.tx_broadcast, 6835 &cur_ps->eth.tx_broadcast); 6836 6837 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6838 &prev_ps->tx_dropped_link_down, 6839 &cur_ps->tx_dropped_link_down); 6840 6841 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6842 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6843 6844 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6845 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6846 6847 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6848 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6849 6850 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6851 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6852 6853 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6854 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6855 6856 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6857 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6858 6859 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6860 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6861 6862 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6863 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6864 6865 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6866 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6867 6868 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6869 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6870 6871 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6872 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6873 6874 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6875 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6876 6877 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6878 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6879 6880 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6881 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6882 6883 fd_ctr_base = hw->fd_ctr_base; 6884 6885 ice_stat_update40(hw, 6886 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6887 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6888 &cur_ps->fd_sb_match); 6889 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6890 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6891 6892 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6893 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6894 6895 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6896 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6897 6898 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6899 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6900 6901 ice_update_dcb_stats(pf); 6902 6903 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6904 &prev_ps->crc_errors, &cur_ps->crc_errors); 6905 6906 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6907 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6908 6909 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6910 &prev_ps->mac_local_faults, 6911 &cur_ps->mac_local_faults); 6912 6913 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6914 &prev_ps->mac_remote_faults, 6915 &cur_ps->mac_remote_faults); 6916 6917 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6918 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6919 6920 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6921 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6922 6923 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6924 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6925 6926 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6927 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6928 6929 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6930 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6931 6932 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6933 6934 pf->stat_prev_loaded = true; 6935 } 6936 6937 /** 6938 * ice_get_stats64 - get statistics for network device structure 6939 * @netdev: network interface device structure 6940 * @stats: main device statistics structure 6941 */ 6942 static 6943 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6944 { 6945 struct ice_netdev_priv *np = netdev_priv(netdev); 6946 struct rtnl_link_stats64 *vsi_stats; 6947 struct ice_vsi *vsi = np->vsi; 6948 6949 vsi_stats = &vsi->net_stats; 6950 6951 if (!vsi->num_txq || !vsi->num_rxq) 6952 return; 6953 6954 /* netdev packet/byte stats come from ring counter. These are obtained 6955 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6956 * But, only call the update routine and read the registers if VSI is 6957 * not down. 6958 */ 6959 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6960 ice_update_vsi_ring_stats(vsi); 6961 stats->tx_packets = vsi_stats->tx_packets; 6962 stats->tx_bytes = vsi_stats->tx_bytes; 6963 stats->rx_packets = vsi_stats->rx_packets; 6964 stats->rx_bytes = vsi_stats->rx_bytes; 6965 6966 /* The rest of the stats can be read from the hardware but instead we 6967 * just return values that the watchdog task has already obtained from 6968 * the hardware. 6969 */ 6970 stats->multicast = vsi_stats->multicast; 6971 stats->tx_errors = vsi_stats->tx_errors; 6972 stats->tx_dropped = vsi_stats->tx_dropped; 6973 stats->rx_errors = vsi_stats->rx_errors; 6974 stats->rx_dropped = vsi_stats->rx_dropped; 6975 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6976 stats->rx_length_errors = vsi_stats->rx_length_errors; 6977 } 6978 6979 /** 6980 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6981 * @vsi: VSI having NAPI disabled 6982 */ 6983 static void ice_napi_disable_all(struct ice_vsi *vsi) 6984 { 6985 int q_idx; 6986 6987 if (!vsi->netdev) 6988 return; 6989 6990 ice_for_each_q_vector(vsi, q_idx) { 6991 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6992 6993 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6994 napi_disable(&q_vector->napi); 6995 6996 cancel_work_sync(&q_vector->tx.dim.work); 6997 cancel_work_sync(&q_vector->rx.dim.work); 6998 } 6999 } 7000 7001 /** 7002 * ice_down - Shutdown the connection 7003 * @vsi: The VSI being stopped 7004 * 7005 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7006 */ 7007 int ice_down(struct ice_vsi *vsi) 7008 { 7009 int i, tx_err, rx_err, vlan_err = 0; 7010 7011 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7012 7013 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 7014 vlan_err = ice_vsi_del_vlan_zero(vsi); 7015 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 7016 netif_carrier_off(vsi->netdev); 7017 netif_tx_disable(vsi->netdev); 7018 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 7019 ice_eswitch_stop_all_tx_queues(vsi->back); 7020 } 7021 7022 ice_vsi_dis_irq(vsi); 7023 7024 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7025 if (tx_err) 7026 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7027 vsi->vsi_num, tx_err); 7028 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 7029 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7030 if (tx_err) 7031 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7032 vsi->vsi_num, tx_err); 7033 } 7034 7035 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7036 if (rx_err) 7037 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7038 vsi->vsi_num, rx_err); 7039 7040 ice_napi_disable_all(vsi); 7041 7042 ice_for_each_txq(vsi, i) 7043 ice_clean_tx_ring(vsi->tx_rings[i]); 7044 7045 ice_for_each_rxq(vsi, i) 7046 ice_clean_rx_ring(vsi->rx_rings[i]); 7047 7048 if (tx_err || rx_err || vlan_err) { 7049 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7050 vsi->vsi_num, vsi->vsw->sw_id); 7051 return -EIO; 7052 } 7053 7054 return 0; 7055 } 7056 7057 /** 7058 * ice_down_up - shutdown the VSI connection and bring it up 7059 * @vsi: the VSI to be reconnected 7060 */ 7061 int ice_down_up(struct ice_vsi *vsi) 7062 { 7063 int ret; 7064 7065 /* if DOWN already set, nothing to do */ 7066 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7067 return 0; 7068 7069 ret = ice_down(vsi); 7070 if (ret) 7071 return ret; 7072 7073 ret = ice_up(vsi); 7074 if (ret) { 7075 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7076 return ret; 7077 } 7078 7079 return 0; 7080 } 7081 7082 /** 7083 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7084 * @vsi: VSI having resources allocated 7085 * 7086 * Return 0 on success, negative on failure 7087 */ 7088 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7089 { 7090 int i, err = 0; 7091 7092 if (!vsi->num_txq) { 7093 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7094 vsi->vsi_num); 7095 return -EINVAL; 7096 } 7097 7098 ice_for_each_txq(vsi, i) { 7099 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7100 7101 if (!ring) 7102 return -EINVAL; 7103 7104 if (vsi->netdev) 7105 ring->netdev = vsi->netdev; 7106 err = ice_setup_tx_ring(ring); 7107 if (err) 7108 break; 7109 } 7110 7111 return err; 7112 } 7113 7114 /** 7115 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7116 * @vsi: VSI having resources allocated 7117 * 7118 * Return 0 on success, negative on failure 7119 */ 7120 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7121 { 7122 int i, err = 0; 7123 7124 if (!vsi->num_rxq) { 7125 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7126 vsi->vsi_num); 7127 return -EINVAL; 7128 } 7129 7130 ice_for_each_rxq(vsi, i) { 7131 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7132 7133 if (!ring) 7134 return -EINVAL; 7135 7136 if (vsi->netdev) 7137 ring->netdev = vsi->netdev; 7138 err = ice_setup_rx_ring(ring); 7139 if (err) 7140 break; 7141 } 7142 7143 return err; 7144 } 7145 7146 /** 7147 * ice_vsi_open_ctrl - open control VSI for use 7148 * @vsi: the VSI to open 7149 * 7150 * Initialization of the Control VSI 7151 * 7152 * Returns 0 on success, negative value on error 7153 */ 7154 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7155 { 7156 char int_name[ICE_INT_NAME_STR_LEN]; 7157 struct ice_pf *pf = vsi->back; 7158 struct device *dev; 7159 int err; 7160 7161 dev = ice_pf_to_dev(pf); 7162 /* allocate descriptors */ 7163 err = ice_vsi_setup_tx_rings(vsi); 7164 if (err) 7165 goto err_setup_tx; 7166 7167 err = ice_vsi_setup_rx_rings(vsi); 7168 if (err) 7169 goto err_setup_rx; 7170 7171 err = ice_vsi_cfg_lan(vsi); 7172 if (err) 7173 goto err_setup_rx; 7174 7175 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7176 dev_driver_string(dev), dev_name(dev)); 7177 err = ice_vsi_req_irq_msix(vsi, int_name); 7178 if (err) 7179 goto err_setup_rx; 7180 7181 ice_vsi_cfg_msix(vsi); 7182 7183 err = ice_vsi_start_all_rx_rings(vsi); 7184 if (err) 7185 goto err_up_complete; 7186 7187 clear_bit(ICE_VSI_DOWN, vsi->state); 7188 ice_vsi_ena_irq(vsi); 7189 7190 return 0; 7191 7192 err_up_complete: 7193 ice_down(vsi); 7194 err_setup_rx: 7195 ice_vsi_free_rx_rings(vsi); 7196 err_setup_tx: 7197 ice_vsi_free_tx_rings(vsi); 7198 7199 return err; 7200 } 7201 7202 /** 7203 * ice_vsi_open - Called when a network interface is made active 7204 * @vsi: the VSI to open 7205 * 7206 * Initialization of the VSI 7207 * 7208 * Returns 0 on success, negative value on error 7209 */ 7210 int ice_vsi_open(struct ice_vsi *vsi) 7211 { 7212 char int_name[ICE_INT_NAME_STR_LEN]; 7213 struct ice_pf *pf = vsi->back; 7214 int err; 7215 7216 /* allocate descriptors */ 7217 err = ice_vsi_setup_tx_rings(vsi); 7218 if (err) 7219 goto err_setup_tx; 7220 7221 err = ice_vsi_setup_rx_rings(vsi); 7222 if (err) 7223 goto err_setup_rx; 7224 7225 err = ice_vsi_cfg_lan(vsi); 7226 if (err) 7227 goto err_setup_rx; 7228 7229 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7230 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7231 err = ice_vsi_req_irq_msix(vsi, int_name); 7232 if (err) 7233 goto err_setup_rx; 7234 7235 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7236 7237 if (vsi->type == ICE_VSI_PF) { 7238 /* Notify the stack of the actual queue counts. */ 7239 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7240 if (err) 7241 goto err_set_qs; 7242 7243 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7244 if (err) 7245 goto err_set_qs; 7246 } 7247 7248 err = ice_up_complete(vsi); 7249 if (err) 7250 goto err_up_complete; 7251 7252 return 0; 7253 7254 err_up_complete: 7255 ice_down(vsi); 7256 err_set_qs: 7257 ice_vsi_free_irq(vsi); 7258 err_setup_rx: 7259 ice_vsi_free_rx_rings(vsi); 7260 err_setup_tx: 7261 ice_vsi_free_tx_rings(vsi); 7262 7263 return err; 7264 } 7265 7266 /** 7267 * ice_vsi_release_all - Delete all VSIs 7268 * @pf: PF from which all VSIs are being removed 7269 */ 7270 static void ice_vsi_release_all(struct ice_pf *pf) 7271 { 7272 int err, i; 7273 7274 if (!pf->vsi) 7275 return; 7276 7277 ice_for_each_vsi(pf, i) { 7278 if (!pf->vsi[i]) 7279 continue; 7280 7281 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7282 continue; 7283 7284 err = ice_vsi_release(pf->vsi[i]); 7285 if (err) 7286 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7287 i, err, pf->vsi[i]->vsi_num); 7288 } 7289 } 7290 7291 /** 7292 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7293 * @pf: pointer to the PF instance 7294 * @type: VSI type to rebuild 7295 * 7296 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7297 */ 7298 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7299 { 7300 struct device *dev = ice_pf_to_dev(pf); 7301 int i, err; 7302 7303 ice_for_each_vsi(pf, i) { 7304 struct ice_vsi *vsi = pf->vsi[i]; 7305 7306 if (!vsi || vsi->type != type) 7307 continue; 7308 7309 /* rebuild the VSI */ 7310 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7311 if (err) { 7312 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7313 err, vsi->idx, ice_vsi_type_str(type)); 7314 return err; 7315 } 7316 7317 /* replay filters for the VSI */ 7318 err = ice_replay_vsi(&pf->hw, vsi->idx); 7319 if (err) { 7320 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7321 err, vsi->idx, ice_vsi_type_str(type)); 7322 return err; 7323 } 7324 7325 /* Re-map HW VSI number, using VSI handle that has been 7326 * previously validated in ice_replay_vsi() call above 7327 */ 7328 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7329 7330 /* enable the VSI */ 7331 err = ice_ena_vsi(vsi, false); 7332 if (err) { 7333 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7334 err, vsi->idx, ice_vsi_type_str(type)); 7335 return err; 7336 } 7337 7338 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7339 ice_vsi_type_str(type)); 7340 } 7341 7342 return 0; 7343 } 7344 7345 /** 7346 * ice_update_pf_netdev_link - Update PF netdev link status 7347 * @pf: pointer to the PF instance 7348 */ 7349 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7350 { 7351 bool link_up; 7352 int i; 7353 7354 ice_for_each_vsi(pf, i) { 7355 struct ice_vsi *vsi = pf->vsi[i]; 7356 7357 if (!vsi || vsi->type != ICE_VSI_PF) 7358 return; 7359 7360 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7361 if (link_up) { 7362 netif_carrier_on(pf->vsi[i]->netdev); 7363 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7364 } else { 7365 netif_carrier_off(pf->vsi[i]->netdev); 7366 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7367 } 7368 } 7369 } 7370 7371 /** 7372 * ice_rebuild - rebuild after reset 7373 * @pf: PF to rebuild 7374 * @reset_type: type of reset 7375 * 7376 * Do not rebuild VF VSI in this flow because that is already handled via 7377 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7378 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7379 * to reset/rebuild all the VF VSI twice. 7380 */ 7381 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7382 { 7383 struct device *dev = ice_pf_to_dev(pf); 7384 struct ice_hw *hw = &pf->hw; 7385 bool dvm; 7386 int err; 7387 7388 if (test_bit(ICE_DOWN, pf->state)) 7389 goto clear_recovery; 7390 7391 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7392 7393 #define ICE_EMP_RESET_SLEEP_MS 5000 7394 if (reset_type == ICE_RESET_EMPR) { 7395 /* If an EMP reset has occurred, any previously pending flash 7396 * update will have completed. We no longer know whether or 7397 * not the NVM update EMP reset is restricted. 7398 */ 7399 pf->fw_emp_reset_disabled = false; 7400 7401 msleep(ICE_EMP_RESET_SLEEP_MS); 7402 } 7403 7404 err = ice_init_all_ctrlq(hw); 7405 if (err) { 7406 dev_err(dev, "control queues init failed %d\n", err); 7407 goto err_init_ctrlq; 7408 } 7409 7410 /* if DDP was previously loaded successfully */ 7411 if (!ice_is_safe_mode(pf)) { 7412 /* reload the SW DB of filter tables */ 7413 if (reset_type == ICE_RESET_PFR) 7414 ice_fill_blk_tbls(hw); 7415 else 7416 /* Reload DDP Package after CORER/GLOBR reset */ 7417 ice_load_pkg(NULL, pf); 7418 } 7419 7420 err = ice_clear_pf_cfg(hw); 7421 if (err) { 7422 dev_err(dev, "clear PF configuration failed %d\n", err); 7423 goto err_init_ctrlq; 7424 } 7425 7426 ice_clear_pxe_mode(hw); 7427 7428 err = ice_init_nvm(hw); 7429 if (err) { 7430 dev_err(dev, "ice_init_nvm failed %d\n", err); 7431 goto err_init_ctrlq; 7432 } 7433 7434 err = ice_get_caps(hw); 7435 if (err) { 7436 dev_err(dev, "ice_get_caps failed %d\n", err); 7437 goto err_init_ctrlq; 7438 } 7439 7440 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7441 if (err) { 7442 dev_err(dev, "set_mac_cfg failed %d\n", err); 7443 goto err_init_ctrlq; 7444 } 7445 7446 dvm = ice_is_dvm_ena(hw); 7447 7448 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7449 if (err) 7450 goto err_init_ctrlq; 7451 7452 err = ice_sched_init_port(hw->port_info); 7453 if (err) 7454 goto err_sched_init_port; 7455 7456 /* start misc vector */ 7457 err = ice_req_irq_msix_misc(pf); 7458 if (err) { 7459 dev_err(dev, "misc vector setup failed: %d\n", err); 7460 goto err_sched_init_port; 7461 } 7462 7463 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7464 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7465 if (!rd32(hw, PFQF_FD_SIZE)) { 7466 u16 unused, guar, b_effort; 7467 7468 guar = hw->func_caps.fd_fltr_guar; 7469 b_effort = hw->func_caps.fd_fltr_best_effort; 7470 7471 /* force guaranteed filter pool for PF */ 7472 ice_alloc_fd_guar_item(hw, &unused, guar); 7473 /* force shared filter pool for PF */ 7474 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7475 } 7476 } 7477 7478 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7479 ice_dcb_rebuild(pf); 7480 7481 /* If the PF previously had enabled PTP, PTP init needs to happen before 7482 * the VSI rebuild. If not, this causes the PTP link status events to 7483 * fail. 7484 */ 7485 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7486 ice_ptp_reset(pf); 7487 7488 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7489 ice_gnss_init(pf); 7490 7491 /* rebuild PF VSI */ 7492 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7493 if (err) { 7494 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7495 goto err_vsi_rebuild; 7496 } 7497 7498 /* configure PTP timestamping after VSI rebuild */ 7499 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7500 ice_ptp_cfg_timestamp(pf, false); 7501 7502 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 7503 if (err) { 7504 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 7505 goto err_vsi_rebuild; 7506 } 7507 7508 if (reset_type == ICE_RESET_PFR) { 7509 err = ice_rebuild_channels(pf); 7510 if (err) { 7511 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7512 err); 7513 goto err_vsi_rebuild; 7514 } 7515 } 7516 7517 /* If Flow Director is active */ 7518 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7519 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7520 if (err) { 7521 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7522 goto err_vsi_rebuild; 7523 } 7524 7525 /* replay HW Flow Director recipes */ 7526 if (hw->fdir_prof) 7527 ice_fdir_replay_flows(hw); 7528 7529 /* replay Flow Director filters */ 7530 ice_fdir_replay_fltrs(pf); 7531 7532 ice_rebuild_arfs(pf); 7533 } 7534 7535 ice_update_pf_netdev_link(pf); 7536 7537 /* tell the firmware we are up */ 7538 err = ice_send_version(pf); 7539 if (err) { 7540 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7541 err); 7542 goto err_vsi_rebuild; 7543 } 7544 7545 ice_replay_post(hw); 7546 7547 /* if we get here, reset flow is successful */ 7548 clear_bit(ICE_RESET_FAILED, pf->state); 7549 7550 ice_plug_aux_dev(pf); 7551 return; 7552 7553 err_vsi_rebuild: 7554 err_sched_init_port: 7555 ice_sched_cleanup_all(hw); 7556 err_init_ctrlq: 7557 ice_shutdown_all_ctrlq(hw); 7558 set_bit(ICE_RESET_FAILED, pf->state); 7559 clear_recovery: 7560 /* set this bit in PF state to control service task scheduling */ 7561 set_bit(ICE_NEEDS_RESTART, pf->state); 7562 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7563 } 7564 7565 /** 7566 * ice_change_mtu - NDO callback to change the MTU 7567 * @netdev: network interface device structure 7568 * @new_mtu: new value for maximum frame size 7569 * 7570 * Returns 0 on success, negative on failure 7571 */ 7572 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7573 { 7574 struct ice_netdev_priv *np = netdev_priv(netdev); 7575 struct ice_vsi *vsi = np->vsi; 7576 struct ice_pf *pf = vsi->back; 7577 struct bpf_prog *prog; 7578 u8 count = 0; 7579 int err = 0; 7580 7581 if (new_mtu == (int)netdev->mtu) { 7582 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7583 return 0; 7584 } 7585 7586 prog = vsi->xdp_prog; 7587 if (prog && !prog->aux->xdp_has_frags) { 7588 int frame_size = ice_max_xdp_frame_size(vsi); 7589 7590 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7591 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7592 frame_size - ICE_ETH_PKT_HDR_PAD); 7593 return -EINVAL; 7594 } 7595 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7596 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7597 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7598 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7599 return -EINVAL; 7600 } 7601 } 7602 7603 /* if a reset is in progress, wait for some time for it to complete */ 7604 do { 7605 if (ice_is_reset_in_progress(pf->state)) { 7606 count++; 7607 usleep_range(1000, 2000); 7608 } else { 7609 break; 7610 } 7611 7612 } while (count < 100); 7613 7614 if (count == 100) { 7615 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7616 return -EBUSY; 7617 } 7618 7619 netdev->mtu = (unsigned int)new_mtu; 7620 7621 /* if VSI is up, bring it down and then back up */ 7622 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7623 err = ice_down(vsi); 7624 if (err) { 7625 netdev_err(netdev, "change MTU if_down err %d\n", err); 7626 return err; 7627 } 7628 7629 err = ice_up(vsi); 7630 if (err) { 7631 netdev_err(netdev, "change MTU if_up err %d\n", err); 7632 return err; 7633 } 7634 } 7635 7636 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7637 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7638 7639 return err; 7640 } 7641 7642 /** 7643 * ice_eth_ioctl - Access the hwtstamp interface 7644 * @netdev: network interface device structure 7645 * @ifr: interface request data 7646 * @cmd: ioctl command 7647 */ 7648 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7649 { 7650 struct ice_netdev_priv *np = netdev_priv(netdev); 7651 struct ice_pf *pf = np->vsi->back; 7652 7653 switch (cmd) { 7654 case SIOCGHWTSTAMP: 7655 return ice_ptp_get_ts_config(pf, ifr); 7656 case SIOCSHWTSTAMP: 7657 return ice_ptp_set_ts_config(pf, ifr); 7658 default: 7659 return -EOPNOTSUPP; 7660 } 7661 } 7662 7663 /** 7664 * ice_aq_str - convert AQ err code to a string 7665 * @aq_err: the AQ error code to convert 7666 */ 7667 const char *ice_aq_str(enum ice_aq_err aq_err) 7668 { 7669 switch (aq_err) { 7670 case ICE_AQ_RC_OK: 7671 return "OK"; 7672 case ICE_AQ_RC_EPERM: 7673 return "ICE_AQ_RC_EPERM"; 7674 case ICE_AQ_RC_ENOENT: 7675 return "ICE_AQ_RC_ENOENT"; 7676 case ICE_AQ_RC_ENOMEM: 7677 return "ICE_AQ_RC_ENOMEM"; 7678 case ICE_AQ_RC_EBUSY: 7679 return "ICE_AQ_RC_EBUSY"; 7680 case ICE_AQ_RC_EEXIST: 7681 return "ICE_AQ_RC_EEXIST"; 7682 case ICE_AQ_RC_EINVAL: 7683 return "ICE_AQ_RC_EINVAL"; 7684 case ICE_AQ_RC_ENOSPC: 7685 return "ICE_AQ_RC_ENOSPC"; 7686 case ICE_AQ_RC_ENOSYS: 7687 return "ICE_AQ_RC_ENOSYS"; 7688 case ICE_AQ_RC_EMODE: 7689 return "ICE_AQ_RC_EMODE"; 7690 case ICE_AQ_RC_ENOSEC: 7691 return "ICE_AQ_RC_ENOSEC"; 7692 case ICE_AQ_RC_EBADSIG: 7693 return "ICE_AQ_RC_EBADSIG"; 7694 case ICE_AQ_RC_ESVN: 7695 return "ICE_AQ_RC_ESVN"; 7696 case ICE_AQ_RC_EBADMAN: 7697 return "ICE_AQ_RC_EBADMAN"; 7698 case ICE_AQ_RC_EBADBUF: 7699 return "ICE_AQ_RC_EBADBUF"; 7700 } 7701 7702 return "ICE_AQ_RC_UNKNOWN"; 7703 } 7704 7705 /** 7706 * ice_set_rss_lut - Set RSS LUT 7707 * @vsi: Pointer to VSI structure 7708 * @lut: Lookup table 7709 * @lut_size: Lookup table size 7710 * 7711 * Returns 0 on success, negative on failure 7712 */ 7713 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7714 { 7715 struct ice_aq_get_set_rss_lut_params params = {}; 7716 struct ice_hw *hw = &vsi->back->hw; 7717 int status; 7718 7719 if (!lut) 7720 return -EINVAL; 7721 7722 params.vsi_handle = vsi->idx; 7723 params.lut_size = lut_size; 7724 params.lut_type = vsi->rss_lut_type; 7725 params.lut = lut; 7726 7727 status = ice_aq_set_rss_lut(hw, ¶ms); 7728 if (status) 7729 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7730 status, ice_aq_str(hw->adminq.sq_last_status)); 7731 7732 return status; 7733 } 7734 7735 /** 7736 * ice_set_rss_key - Set RSS key 7737 * @vsi: Pointer to the VSI structure 7738 * @seed: RSS hash seed 7739 * 7740 * Returns 0 on success, negative on failure 7741 */ 7742 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7743 { 7744 struct ice_hw *hw = &vsi->back->hw; 7745 int status; 7746 7747 if (!seed) 7748 return -EINVAL; 7749 7750 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7751 if (status) 7752 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7753 status, ice_aq_str(hw->adminq.sq_last_status)); 7754 7755 return status; 7756 } 7757 7758 /** 7759 * ice_get_rss_lut - Get RSS LUT 7760 * @vsi: Pointer to VSI structure 7761 * @lut: Buffer to store the lookup table entries 7762 * @lut_size: Size of buffer to store the lookup table entries 7763 * 7764 * Returns 0 on success, negative on failure 7765 */ 7766 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7767 { 7768 struct ice_aq_get_set_rss_lut_params params = {}; 7769 struct ice_hw *hw = &vsi->back->hw; 7770 int status; 7771 7772 if (!lut) 7773 return -EINVAL; 7774 7775 params.vsi_handle = vsi->idx; 7776 params.lut_size = lut_size; 7777 params.lut_type = vsi->rss_lut_type; 7778 params.lut = lut; 7779 7780 status = ice_aq_get_rss_lut(hw, ¶ms); 7781 if (status) 7782 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7783 status, ice_aq_str(hw->adminq.sq_last_status)); 7784 7785 return status; 7786 } 7787 7788 /** 7789 * ice_get_rss_key - Get RSS key 7790 * @vsi: Pointer to VSI structure 7791 * @seed: Buffer to store the key in 7792 * 7793 * Returns 0 on success, negative on failure 7794 */ 7795 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7796 { 7797 struct ice_hw *hw = &vsi->back->hw; 7798 int status; 7799 7800 if (!seed) 7801 return -EINVAL; 7802 7803 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7804 if (status) 7805 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7806 status, ice_aq_str(hw->adminq.sq_last_status)); 7807 7808 return status; 7809 } 7810 7811 /** 7812 * ice_bridge_getlink - Get the hardware bridge mode 7813 * @skb: skb buff 7814 * @pid: process ID 7815 * @seq: RTNL message seq 7816 * @dev: the netdev being configured 7817 * @filter_mask: filter mask passed in 7818 * @nlflags: netlink flags passed in 7819 * 7820 * Return the bridge mode (VEB/VEPA) 7821 */ 7822 static int 7823 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7824 struct net_device *dev, u32 filter_mask, int nlflags) 7825 { 7826 struct ice_netdev_priv *np = netdev_priv(dev); 7827 struct ice_vsi *vsi = np->vsi; 7828 struct ice_pf *pf = vsi->back; 7829 u16 bmode; 7830 7831 bmode = pf->first_sw->bridge_mode; 7832 7833 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7834 filter_mask, NULL); 7835 } 7836 7837 /** 7838 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7839 * @vsi: Pointer to VSI structure 7840 * @bmode: Hardware bridge mode (VEB/VEPA) 7841 * 7842 * Returns 0 on success, negative on failure 7843 */ 7844 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7845 { 7846 struct ice_aqc_vsi_props *vsi_props; 7847 struct ice_hw *hw = &vsi->back->hw; 7848 struct ice_vsi_ctx *ctxt; 7849 int ret; 7850 7851 vsi_props = &vsi->info; 7852 7853 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7854 if (!ctxt) 7855 return -ENOMEM; 7856 7857 ctxt->info = vsi->info; 7858 7859 if (bmode == BRIDGE_MODE_VEB) 7860 /* change from VEPA to VEB mode */ 7861 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7862 else 7863 /* change from VEB to VEPA mode */ 7864 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7865 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7866 7867 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7868 if (ret) { 7869 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7870 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7871 goto out; 7872 } 7873 /* Update sw flags for book keeping */ 7874 vsi_props->sw_flags = ctxt->info.sw_flags; 7875 7876 out: 7877 kfree(ctxt); 7878 return ret; 7879 } 7880 7881 /** 7882 * ice_bridge_setlink - Set the hardware bridge mode 7883 * @dev: the netdev being configured 7884 * @nlh: RTNL message 7885 * @flags: bridge setlink flags 7886 * @extack: netlink extended ack 7887 * 7888 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7889 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7890 * not already set for all VSIs connected to this switch. And also update the 7891 * unicast switch filter rules for the corresponding switch of the netdev. 7892 */ 7893 static int 7894 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7895 u16 __always_unused flags, 7896 struct netlink_ext_ack __always_unused *extack) 7897 { 7898 struct ice_netdev_priv *np = netdev_priv(dev); 7899 struct ice_pf *pf = np->vsi->back; 7900 struct nlattr *attr, *br_spec; 7901 struct ice_hw *hw = &pf->hw; 7902 struct ice_sw *pf_sw; 7903 int rem, v, err = 0; 7904 7905 pf_sw = pf->first_sw; 7906 /* find the attribute in the netlink message */ 7907 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7908 7909 nla_for_each_nested(attr, br_spec, rem) { 7910 __u16 mode; 7911 7912 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7913 continue; 7914 mode = nla_get_u16(attr); 7915 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7916 return -EINVAL; 7917 /* Continue if bridge mode is not being flipped */ 7918 if (mode == pf_sw->bridge_mode) 7919 continue; 7920 /* Iterates through the PF VSI list and update the loopback 7921 * mode of the VSI 7922 */ 7923 ice_for_each_vsi(pf, v) { 7924 if (!pf->vsi[v]) 7925 continue; 7926 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7927 if (err) 7928 return err; 7929 } 7930 7931 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7932 /* Update the unicast switch filter rules for the corresponding 7933 * switch of the netdev 7934 */ 7935 err = ice_update_sw_rule_bridge_mode(hw); 7936 if (err) { 7937 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7938 mode, err, 7939 ice_aq_str(hw->adminq.sq_last_status)); 7940 /* revert hw->evb_veb */ 7941 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7942 return err; 7943 } 7944 7945 pf_sw->bridge_mode = mode; 7946 } 7947 7948 return 0; 7949 } 7950 7951 /** 7952 * ice_tx_timeout - Respond to a Tx Hang 7953 * @netdev: network interface device structure 7954 * @txqueue: Tx queue 7955 */ 7956 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7957 { 7958 struct ice_netdev_priv *np = netdev_priv(netdev); 7959 struct ice_tx_ring *tx_ring = NULL; 7960 struct ice_vsi *vsi = np->vsi; 7961 struct ice_pf *pf = vsi->back; 7962 u32 i; 7963 7964 pf->tx_timeout_count++; 7965 7966 /* Check if PFC is enabled for the TC to which the queue belongs 7967 * to. If yes then Tx timeout is not caused by a hung queue, no 7968 * need to reset and rebuild 7969 */ 7970 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7971 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7972 txqueue); 7973 return; 7974 } 7975 7976 /* now that we have an index, find the tx_ring struct */ 7977 ice_for_each_txq(vsi, i) 7978 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7979 if (txqueue == vsi->tx_rings[i]->q_index) { 7980 tx_ring = vsi->tx_rings[i]; 7981 break; 7982 } 7983 7984 /* Reset recovery level if enough time has elapsed after last timeout. 7985 * Also ensure no new reset action happens before next timeout period. 7986 */ 7987 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7988 pf->tx_timeout_recovery_level = 1; 7989 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7990 netdev->watchdog_timeo))) 7991 return; 7992 7993 if (tx_ring) { 7994 struct ice_hw *hw = &pf->hw; 7995 u32 head, val = 0; 7996 7997 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7998 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7999 /* Read interrupt register */ 8000 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8001 8002 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8003 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8004 head, tx_ring->next_to_use, val); 8005 } 8006 8007 pf->tx_timeout_last_recovery = jiffies; 8008 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8009 pf->tx_timeout_recovery_level, txqueue); 8010 8011 switch (pf->tx_timeout_recovery_level) { 8012 case 1: 8013 set_bit(ICE_PFR_REQ, pf->state); 8014 break; 8015 case 2: 8016 set_bit(ICE_CORER_REQ, pf->state); 8017 break; 8018 case 3: 8019 set_bit(ICE_GLOBR_REQ, pf->state); 8020 break; 8021 default: 8022 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8023 set_bit(ICE_DOWN, pf->state); 8024 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8025 set_bit(ICE_SERVICE_DIS, pf->state); 8026 break; 8027 } 8028 8029 ice_service_task_schedule(pf); 8030 pf->tx_timeout_recovery_level++; 8031 } 8032 8033 /** 8034 * ice_setup_tc_cls_flower - flower classifier offloads 8035 * @np: net device to configure 8036 * @filter_dev: device on which filter is added 8037 * @cls_flower: offload data 8038 */ 8039 static int 8040 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8041 struct net_device *filter_dev, 8042 struct flow_cls_offload *cls_flower) 8043 { 8044 struct ice_vsi *vsi = np->vsi; 8045 8046 if (cls_flower->common.chain_index) 8047 return -EOPNOTSUPP; 8048 8049 switch (cls_flower->command) { 8050 case FLOW_CLS_REPLACE: 8051 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 8052 case FLOW_CLS_DESTROY: 8053 return ice_del_cls_flower(vsi, cls_flower); 8054 default: 8055 return -EINVAL; 8056 } 8057 } 8058 8059 /** 8060 * ice_setup_tc_block_cb - callback handler registered for TC block 8061 * @type: TC SETUP type 8062 * @type_data: TC flower offload data that contains user input 8063 * @cb_priv: netdev private data 8064 */ 8065 static int 8066 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 8067 { 8068 struct ice_netdev_priv *np = cb_priv; 8069 8070 switch (type) { 8071 case TC_SETUP_CLSFLOWER: 8072 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8073 type_data); 8074 default: 8075 return -EOPNOTSUPP; 8076 } 8077 } 8078 8079 /** 8080 * ice_validate_mqprio_qopt - Validate TCF input parameters 8081 * @vsi: Pointer to VSI 8082 * @mqprio_qopt: input parameters for mqprio queue configuration 8083 * 8084 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8085 * needed), and make sure user doesn't specify qcount and BW rate limit 8086 * for TCs, which are more than "num_tc" 8087 */ 8088 static int 8089 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8090 struct tc_mqprio_qopt_offload *mqprio_qopt) 8091 { 8092 u64 sum_max_rate = 0, sum_min_rate = 0; 8093 int non_power_of_2_qcount = 0; 8094 struct ice_pf *pf = vsi->back; 8095 int max_rss_q_cnt = 0; 8096 struct device *dev; 8097 int i, speed; 8098 u8 num_tc; 8099 8100 if (vsi->type != ICE_VSI_PF) 8101 return -EINVAL; 8102 8103 if (mqprio_qopt->qopt.offset[0] != 0 || 8104 mqprio_qopt->qopt.num_tc < 1 || 8105 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8106 return -EINVAL; 8107 8108 dev = ice_pf_to_dev(pf); 8109 vsi->ch_rss_size = 0; 8110 num_tc = mqprio_qopt->qopt.num_tc; 8111 8112 for (i = 0; num_tc; i++) { 8113 int qcount = mqprio_qopt->qopt.count[i]; 8114 u64 max_rate, min_rate, rem; 8115 8116 if (!qcount) 8117 return -EINVAL; 8118 8119 if (is_power_of_2(qcount)) { 8120 if (non_power_of_2_qcount && 8121 qcount > non_power_of_2_qcount) { 8122 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8123 qcount, non_power_of_2_qcount); 8124 return -EINVAL; 8125 } 8126 if (qcount > max_rss_q_cnt) 8127 max_rss_q_cnt = qcount; 8128 } else { 8129 if (non_power_of_2_qcount && 8130 qcount != non_power_of_2_qcount) { 8131 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8132 qcount, non_power_of_2_qcount); 8133 return -EINVAL; 8134 } 8135 if (qcount < max_rss_q_cnt) { 8136 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8137 qcount, max_rss_q_cnt); 8138 return -EINVAL; 8139 } 8140 max_rss_q_cnt = qcount; 8141 non_power_of_2_qcount = qcount; 8142 } 8143 8144 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8145 * converts the bandwidth rate limit into Bytes/s when 8146 * passing it down to the driver. So convert input bandwidth 8147 * from Bytes/s to Kbps 8148 */ 8149 max_rate = mqprio_qopt->max_rate[i]; 8150 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8151 sum_max_rate += max_rate; 8152 8153 /* min_rate is minimum guaranteed rate and it can't be zero */ 8154 min_rate = mqprio_qopt->min_rate[i]; 8155 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8156 sum_min_rate += min_rate; 8157 8158 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8159 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8160 min_rate, ICE_MIN_BW_LIMIT); 8161 return -EINVAL; 8162 } 8163 8164 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8165 if (rem) { 8166 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8167 i, ICE_MIN_BW_LIMIT); 8168 return -EINVAL; 8169 } 8170 8171 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8172 if (rem) { 8173 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8174 i, ICE_MIN_BW_LIMIT); 8175 return -EINVAL; 8176 } 8177 8178 /* min_rate can't be more than max_rate, except when max_rate 8179 * is zero (implies max_rate sought is max line rate). In such 8180 * a case min_rate can be more than max. 8181 */ 8182 if (max_rate && min_rate > max_rate) { 8183 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8184 min_rate, max_rate); 8185 return -EINVAL; 8186 } 8187 8188 if (i >= mqprio_qopt->qopt.num_tc - 1) 8189 break; 8190 if (mqprio_qopt->qopt.offset[i + 1] != 8191 (mqprio_qopt->qopt.offset[i] + qcount)) 8192 return -EINVAL; 8193 } 8194 if (vsi->num_rxq < 8195 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8196 return -EINVAL; 8197 if (vsi->num_txq < 8198 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8199 return -EINVAL; 8200 8201 speed = ice_get_link_speed_kbps(vsi); 8202 if (sum_max_rate && sum_max_rate > (u64)speed) { 8203 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 8204 sum_max_rate, speed); 8205 return -EINVAL; 8206 } 8207 if (sum_min_rate && sum_min_rate > (u64)speed) { 8208 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8209 sum_min_rate, speed); 8210 return -EINVAL; 8211 } 8212 8213 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8214 vsi->ch_rss_size = max_rss_q_cnt; 8215 8216 return 0; 8217 } 8218 8219 /** 8220 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8221 * @pf: ptr to PF device 8222 * @vsi: ptr to VSI 8223 */ 8224 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8225 { 8226 struct device *dev = ice_pf_to_dev(pf); 8227 bool added = false; 8228 struct ice_hw *hw; 8229 int flow; 8230 8231 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8232 return -EINVAL; 8233 8234 hw = &pf->hw; 8235 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8236 struct ice_fd_hw_prof *prof; 8237 int tun, status; 8238 u64 entry_h; 8239 8240 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8241 hw->fdir_prof[flow]->cnt)) 8242 continue; 8243 8244 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8245 enum ice_flow_priority prio; 8246 u64 prof_id; 8247 8248 /* add this VSI to FDir profile for this flow */ 8249 prio = ICE_FLOW_PRIO_NORMAL; 8250 prof = hw->fdir_prof[flow]; 8251 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8252 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8253 prof->vsi_h[0], vsi->idx, 8254 prio, prof->fdir_seg[tun], 8255 &entry_h); 8256 if (status) { 8257 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8258 vsi->idx, flow); 8259 continue; 8260 } 8261 8262 prof->entry_h[prof->cnt][tun] = entry_h; 8263 } 8264 8265 /* store VSI for filter replay and delete */ 8266 prof->vsi_h[prof->cnt] = vsi->idx; 8267 prof->cnt++; 8268 8269 added = true; 8270 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8271 flow); 8272 } 8273 8274 if (!added) 8275 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8276 8277 return 0; 8278 } 8279 8280 /** 8281 * ice_add_channel - add a channel by adding VSI 8282 * @pf: ptr to PF device 8283 * @sw_id: underlying HW switching element ID 8284 * @ch: ptr to channel structure 8285 * 8286 * Add a channel (VSI) using add_vsi and queue_map 8287 */ 8288 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8289 { 8290 struct device *dev = ice_pf_to_dev(pf); 8291 struct ice_vsi *vsi; 8292 8293 if (ch->type != ICE_VSI_CHNL) { 8294 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8295 return -EINVAL; 8296 } 8297 8298 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8299 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8300 dev_err(dev, "create chnl VSI failure\n"); 8301 return -EINVAL; 8302 } 8303 8304 ice_add_vsi_to_fdir(pf, vsi); 8305 8306 ch->sw_id = sw_id; 8307 ch->vsi_num = vsi->vsi_num; 8308 ch->info.mapping_flags = vsi->info.mapping_flags; 8309 ch->ch_vsi = vsi; 8310 /* set the back pointer of channel for newly created VSI */ 8311 vsi->ch = ch; 8312 8313 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8314 sizeof(vsi->info.q_mapping)); 8315 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8316 sizeof(vsi->info.tc_mapping)); 8317 8318 return 0; 8319 } 8320 8321 /** 8322 * ice_chnl_cfg_res 8323 * @vsi: the VSI being setup 8324 * @ch: ptr to channel structure 8325 * 8326 * Configure channel specific resources such as rings, vector. 8327 */ 8328 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8329 { 8330 int i; 8331 8332 for (i = 0; i < ch->num_txq; i++) { 8333 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8334 struct ice_ring_container *rc; 8335 struct ice_tx_ring *tx_ring; 8336 struct ice_rx_ring *rx_ring; 8337 8338 tx_ring = vsi->tx_rings[ch->base_q + i]; 8339 rx_ring = vsi->rx_rings[ch->base_q + i]; 8340 if (!tx_ring || !rx_ring) 8341 continue; 8342 8343 /* setup ring being channel enabled */ 8344 tx_ring->ch = ch; 8345 rx_ring->ch = ch; 8346 8347 /* following code block sets up vector specific attributes */ 8348 tx_q_vector = tx_ring->q_vector; 8349 rx_q_vector = rx_ring->q_vector; 8350 if (!tx_q_vector && !rx_q_vector) 8351 continue; 8352 8353 if (tx_q_vector) { 8354 tx_q_vector->ch = ch; 8355 /* setup Tx and Rx ITR setting if DIM is off */ 8356 rc = &tx_q_vector->tx; 8357 if (!ITR_IS_DYNAMIC(rc)) 8358 ice_write_itr(rc, rc->itr_setting); 8359 } 8360 if (rx_q_vector) { 8361 rx_q_vector->ch = ch; 8362 /* setup Tx and Rx ITR setting if DIM is off */ 8363 rc = &rx_q_vector->rx; 8364 if (!ITR_IS_DYNAMIC(rc)) 8365 ice_write_itr(rc, rc->itr_setting); 8366 } 8367 } 8368 8369 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8370 * GLINT_ITR register would have written to perform in-context 8371 * update, hence perform flush 8372 */ 8373 if (ch->num_txq || ch->num_rxq) 8374 ice_flush(&vsi->back->hw); 8375 } 8376 8377 /** 8378 * ice_cfg_chnl_all_res - configure channel resources 8379 * @vsi: pte to main_vsi 8380 * @ch: ptr to channel structure 8381 * 8382 * This function configures channel specific resources such as flow-director 8383 * counter index, and other resources such as queues, vectors, ITR settings 8384 */ 8385 static void 8386 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8387 { 8388 /* configure channel (aka ADQ) resources such as queues, vectors, 8389 * ITR settings for channel specific vectors and anything else 8390 */ 8391 ice_chnl_cfg_res(vsi, ch); 8392 } 8393 8394 /** 8395 * ice_setup_hw_channel - setup new channel 8396 * @pf: ptr to PF device 8397 * @vsi: the VSI being setup 8398 * @ch: ptr to channel structure 8399 * @sw_id: underlying HW switching element ID 8400 * @type: type of channel to be created (VMDq2/VF) 8401 * 8402 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8403 * and configures Tx rings accordingly 8404 */ 8405 static int 8406 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8407 struct ice_channel *ch, u16 sw_id, u8 type) 8408 { 8409 struct device *dev = ice_pf_to_dev(pf); 8410 int ret; 8411 8412 ch->base_q = vsi->next_base_q; 8413 ch->type = type; 8414 8415 ret = ice_add_channel(pf, sw_id, ch); 8416 if (ret) { 8417 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8418 return ret; 8419 } 8420 8421 /* configure/setup ADQ specific resources */ 8422 ice_cfg_chnl_all_res(vsi, ch); 8423 8424 /* make sure to update the next_base_q so that subsequent channel's 8425 * (aka ADQ) VSI queue map is correct 8426 */ 8427 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8428 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8429 ch->num_rxq); 8430 8431 return 0; 8432 } 8433 8434 /** 8435 * ice_setup_channel - setup new channel using uplink element 8436 * @pf: ptr to PF device 8437 * @vsi: the VSI being setup 8438 * @ch: ptr to channel structure 8439 * 8440 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8441 * and uplink switching element 8442 */ 8443 static bool 8444 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8445 struct ice_channel *ch) 8446 { 8447 struct device *dev = ice_pf_to_dev(pf); 8448 u16 sw_id; 8449 int ret; 8450 8451 if (vsi->type != ICE_VSI_PF) { 8452 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8453 return false; 8454 } 8455 8456 sw_id = pf->first_sw->sw_id; 8457 8458 /* create channel (VSI) */ 8459 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8460 if (ret) { 8461 dev_err(dev, "failed to setup hw_channel\n"); 8462 return false; 8463 } 8464 dev_dbg(dev, "successfully created channel()\n"); 8465 8466 return ch->ch_vsi ? true : false; 8467 } 8468 8469 /** 8470 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8471 * @vsi: VSI to be configured 8472 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8473 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8474 */ 8475 static int 8476 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8477 { 8478 int err; 8479 8480 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8481 if (err) 8482 return err; 8483 8484 return ice_set_max_bw_limit(vsi, max_tx_rate); 8485 } 8486 8487 /** 8488 * ice_create_q_channel - function to create channel 8489 * @vsi: VSI to be configured 8490 * @ch: ptr to channel (it contains channel specific params) 8491 * 8492 * This function creates channel (VSI) using num_queues specified by user, 8493 * reconfigs RSS if needed. 8494 */ 8495 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8496 { 8497 struct ice_pf *pf = vsi->back; 8498 struct device *dev; 8499 8500 if (!ch) 8501 return -EINVAL; 8502 8503 dev = ice_pf_to_dev(pf); 8504 if (!ch->num_txq || !ch->num_rxq) { 8505 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8506 return -EINVAL; 8507 } 8508 8509 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8510 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8511 vsi->cnt_q_avail, ch->num_txq); 8512 return -EINVAL; 8513 } 8514 8515 if (!ice_setup_channel(pf, vsi, ch)) { 8516 dev_info(dev, "Failed to setup channel\n"); 8517 return -EINVAL; 8518 } 8519 /* configure BW rate limit */ 8520 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8521 int ret; 8522 8523 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8524 ch->min_tx_rate); 8525 if (ret) 8526 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8527 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8528 else 8529 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8530 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8531 } 8532 8533 vsi->cnt_q_avail -= ch->num_txq; 8534 8535 return 0; 8536 } 8537 8538 /** 8539 * ice_rem_all_chnl_fltrs - removes all channel filters 8540 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8541 * 8542 * Remove all advanced switch filters only if they are channel specific 8543 * tc-flower based filter 8544 */ 8545 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8546 { 8547 struct ice_tc_flower_fltr *fltr; 8548 struct hlist_node *node; 8549 8550 /* to remove all channel filters, iterate an ordered list of filters */ 8551 hlist_for_each_entry_safe(fltr, node, 8552 &pf->tc_flower_fltr_list, 8553 tc_flower_node) { 8554 struct ice_rule_query_data rule; 8555 int status; 8556 8557 /* for now process only channel specific filters */ 8558 if (!ice_is_chnl_fltr(fltr)) 8559 continue; 8560 8561 rule.rid = fltr->rid; 8562 rule.rule_id = fltr->rule_id; 8563 rule.vsi_handle = fltr->dest_vsi_handle; 8564 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8565 if (status) { 8566 if (status == -ENOENT) 8567 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8568 rule.rule_id); 8569 else 8570 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8571 status); 8572 } else if (fltr->dest_vsi) { 8573 /* update advanced switch filter count */ 8574 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8575 u32 flags = fltr->flags; 8576 8577 fltr->dest_vsi->num_chnl_fltr--; 8578 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8579 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8580 pf->num_dmac_chnl_fltrs--; 8581 } 8582 } 8583 8584 hlist_del(&fltr->tc_flower_node); 8585 kfree(fltr); 8586 } 8587 } 8588 8589 /** 8590 * ice_remove_q_channels - Remove queue channels for the TCs 8591 * @vsi: VSI to be configured 8592 * @rem_fltr: delete advanced switch filter or not 8593 * 8594 * Remove queue channels for the TCs 8595 */ 8596 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8597 { 8598 struct ice_channel *ch, *ch_tmp; 8599 struct ice_pf *pf = vsi->back; 8600 int i; 8601 8602 /* remove all tc-flower based filter if they are channel filters only */ 8603 if (rem_fltr) 8604 ice_rem_all_chnl_fltrs(pf); 8605 8606 /* remove ntuple filters since queue configuration is being changed */ 8607 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8608 struct ice_hw *hw = &pf->hw; 8609 8610 mutex_lock(&hw->fdir_fltr_lock); 8611 ice_fdir_del_all_fltrs(vsi); 8612 mutex_unlock(&hw->fdir_fltr_lock); 8613 } 8614 8615 /* perform cleanup for channels if they exist */ 8616 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8617 struct ice_vsi *ch_vsi; 8618 8619 list_del(&ch->list); 8620 ch_vsi = ch->ch_vsi; 8621 if (!ch_vsi) { 8622 kfree(ch); 8623 continue; 8624 } 8625 8626 /* Reset queue contexts */ 8627 for (i = 0; i < ch->num_rxq; i++) { 8628 struct ice_tx_ring *tx_ring; 8629 struct ice_rx_ring *rx_ring; 8630 8631 tx_ring = vsi->tx_rings[ch->base_q + i]; 8632 rx_ring = vsi->rx_rings[ch->base_q + i]; 8633 if (tx_ring) { 8634 tx_ring->ch = NULL; 8635 if (tx_ring->q_vector) 8636 tx_ring->q_vector->ch = NULL; 8637 } 8638 if (rx_ring) { 8639 rx_ring->ch = NULL; 8640 if (rx_ring->q_vector) 8641 rx_ring->q_vector->ch = NULL; 8642 } 8643 } 8644 8645 /* Release FD resources for the channel VSI */ 8646 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8647 8648 /* clear the VSI from scheduler tree */ 8649 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8650 8651 /* Delete VSI from FW, PF and HW VSI arrays */ 8652 ice_vsi_delete(ch->ch_vsi); 8653 8654 /* free the channel */ 8655 kfree(ch); 8656 } 8657 8658 /* clear the channel VSI map which is stored in main VSI */ 8659 ice_for_each_chnl_tc(i) 8660 vsi->tc_map_vsi[i] = NULL; 8661 8662 /* reset main VSI's all TC information */ 8663 vsi->all_enatc = 0; 8664 vsi->all_numtc = 0; 8665 } 8666 8667 /** 8668 * ice_rebuild_channels - rebuild channel 8669 * @pf: ptr to PF 8670 * 8671 * Recreate channel VSIs and replay filters 8672 */ 8673 static int ice_rebuild_channels(struct ice_pf *pf) 8674 { 8675 struct device *dev = ice_pf_to_dev(pf); 8676 struct ice_vsi *main_vsi; 8677 bool rem_adv_fltr = true; 8678 struct ice_channel *ch; 8679 struct ice_vsi *vsi; 8680 int tc_idx = 1; 8681 int i, err; 8682 8683 main_vsi = ice_get_main_vsi(pf); 8684 if (!main_vsi) 8685 return 0; 8686 8687 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8688 main_vsi->old_numtc == 1) 8689 return 0; /* nothing to be done */ 8690 8691 /* reconfigure main VSI based on old value of TC and cached values 8692 * for MQPRIO opts 8693 */ 8694 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8695 if (err) { 8696 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8697 main_vsi->old_ena_tc, main_vsi->vsi_num); 8698 return err; 8699 } 8700 8701 /* rebuild ADQ VSIs */ 8702 ice_for_each_vsi(pf, i) { 8703 enum ice_vsi_type type; 8704 8705 vsi = pf->vsi[i]; 8706 if (!vsi || vsi->type != ICE_VSI_CHNL) 8707 continue; 8708 8709 type = vsi->type; 8710 8711 /* rebuild ADQ VSI */ 8712 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8713 if (err) { 8714 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8715 ice_vsi_type_str(type), vsi->idx, err); 8716 goto cleanup; 8717 } 8718 8719 /* Re-map HW VSI number, using VSI handle that has been 8720 * previously validated in ice_replay_vsi() call above 8721 */ 8722 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8723 8724 /* replay filters for the VSI */ 8725 err = ice_replay_vsi(&pf->hw, vsi->idx); 8726 if (err) { 8727 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8728 ice_vsi_type_str(type), err, vsi->idx); 8729 rem_adv_fltr = false; 8730 goto cleanup; 8731 } 8732 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8733 ice_vsi_type_str(type), vsi->idx); 8734 8735 /* store ADQ VSI at correct TC index in main VSI's 8736 * map of TC to VSI 8737 */ 8738 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8739 } 8740 8741 /* ADQ VSI(s) has been rebuilt successfully, so setup 8742 * channel for main VSI's Tx and Rx rings 8743 */ 8744 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8745 struct ice_vsi *ch_vsi; 8746 8747 ch_vsi = ch->ch_vsi; 8748 if (!ch_vsi) 8749 continue; 8750 8751 /* reconfig channel resources */ 8752 ice_cfg_chnl_all_res(main_vsi, ch); 8753 8754 /* replay BW rate limit if it is non-zero */ 8755 if (!ch->max_tx_rate && !ch->min_tx_rate) 8756 continue; 8757 8758 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8759 ch->min_tx_rate); 8760 if (err) 8761 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8762 err, ch->max_tx_rate, ch->min_tx_rate, 8763 ch_vsi->vsi_num); 8764 else 8765 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8766 ch->max_tx_rate, ch->min_tx_rate, 8767 ch_vsi->vsi_num); 8768 } 8769 8770 /* reconfig RSS for main VSI */ 8771 if (main_vsi->ch_rss_size) 8772 ice_vsi_cfg_rss_lut_key(main_vsi); 8773 8774 return 0; 8775 8776 cleanup: 8777 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8778 return err; 8779 } 8780 8781 /** 8782 * ice_create_q_channels - Add queue channel for the given TCs 8783 * @vsi: VSI to be configured 8784 * 8785 * Configures queue channel mapping to the given TCs 8786 */ 8787 static int ice_create_q_channels(struct ice_vsi *vsi) 8788 { 8789 struct ice_pf *pf = vsi->back; 8790 struct ice_channel *ch; 8791 int ret = 0, i; 8792 8793 ice_for_each_chnl_tc(i) { 8794 if (!(vsi->all_enatc & BIT(i))) 8795 continue; 8796 8797 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8798 if (!ch) { 8799 ret = -ENOMEM; 8800 goto err_free; 8801 } 8802 INIT_LIST_HEAD(&ch->list); 8803 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8804 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8805 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8806 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8807 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8808 8809 /* convert to Kbits/s */ 8810 if (ch->max_tx_rate) 8811 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8812 ICE_BW_KBPS_DIVISOR); 8813 if (ch->min_tx_rate) 8814 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8815 ICE_BW_KBPS_DIVISOR); 8816 8817 ret = ice_create_q_channel(vsi, ch); 8818 if (ret) { 8819 dev_err(ice_pf_to_dev(pf), 8820 "failed creating channel TC:%d\n", i); 8821 kfree(ch); 8822 goto err_free; 8823 } 8824 list_add_tail(&ch->list, &vsi->ch_list); 8825 vsi->tc_map_vsi[i] = ch->ch_vsi; 8826 dev_dbg(ice_pf_to_dev(pf), 8827 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8828 } 8829 return 0; 8830 8831 err_free: 8832 ice_remove_q_channels(vsi, false); 8833 8834 return ret; 8835 } 8836 8837 /** 8838 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8839 * @netdev: net device to configure 8840 * @type_data: TC offload data 8841 */ 8842 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8843 { 8844 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8845 struct ice_netdev_priv *np = netdev_priv(netdev); 8846 struct ice_vsi *vsi = np->vsi; 8847 struct ice_pf *pf = vsi->back; 8848 u16 mode, ena_tc_qdisc = 0; 8849 int cur_txq, cur_rxq; 8850 u8 hw = 0, num_tcf; 8851 struct device *dev; 8852 int ret, i; 8853 8854 dev = ice_pf_to_dev(pf); 8855 num_tcf = mqprio_qopt->qopt.num_tc; 8856 hw = mqprio_qopt->qopt.hw; 8857 mode = mqprio_qopt->mode; 8858 if (!hw) { 8859 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8860 vsi->ch_rss_size = 0; 8861 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8862 goto config_tcf; 8863 } 8864 8865 /* Generate queue region map for number of TCF requested */ 8866 for (i = 0; i < num_tcf; i++) 8867 ena_tc_qdisc |= BIT(i); 8868 8869 switch (mode) { 8870 case TC_MQPRIO_MODE_CHANNEL: 8871 8872 if (pf->hw.port_info->is_custom_tx_enabled) { 8873 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8874 return -EBUSY; 8875 } 8876 ice_tear_down_devlink_rate_tree(pf); 8877 8878 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8879 if (ret) { 8880 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8881 ret); 8882 return ret; 8883 } 8884 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8885 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8886 /* don't assume state of hw_tc_offload during driver load 8887 * and set the flag for TC flower filter if hw_tc_offload 8888 * already ON 8889 */ 8890 if (vsi->netdev->features & NETIF_F_HW_TC) 8891 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8892 break; 8893 default: 8894 return -EINVAL; 8895 } 8896 8897 config_tcf: 8898 8899 /* Requesting same TCF configuration as already enabled */ 8900 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8901 mode != TC_MQPRIO_MODE_CHANNEL) 8902 return 0; 8903 8904 /* Pause VSI queues */ 8905 ice_dis_vsi(vsi, true); 8906 8907 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8908 ice_remove_q_channels(vsi, true); 8909 8910 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8911 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8912 num_online_cpus()); 8913 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8914 num_online_cpus()); 8915 } else { 8916 /* logic to rebuild VSI, same like ethtool -L */ 8917 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8918 8919 for (i = 0; i < num_tcf; i++) { 8920 if (!(ena_tc_qdisc & BIT(i))) 8921 continue; 8922 8923 offset = vsi->mqprio_qopt.qopt.offset[i]; 8924 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8925 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8926 } 8927 vsi->req_txq = offset + qcount_tx; 8928 vsi->req_rxq = offset + qcount_rx; 8929 8930 /* store away original rss_size info, so that it gets reused 8931 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8932 * determine, what should be the rss_sizefor main VSI 8933 */ 8934 vsi->orig_rss_size = vsi->rss_size; 8935 } 8936 8937 /* save current values of Tx and Rx queues before calling VSI rebuild 8938 * for fallback option 8939 */ 8940 cur_txq = vsi->num_txq; 8941 cur_rxq = vsi->num_rxq; 8942 8943 /* proceed with rebuild main VSI using correct number of queues */ 8944 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8945 if (ret) { 8946 /* fallback to current number of queues */ 8947 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8948 vsi->req_txq = cur_txq; 8949 vsi->req_rxq = cur_rxq; 8950 clear_bit(ICE_RESET_FAILED, pf->state); 8951 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8952 dev_err(dev, "Rebuild of main VSI failed again\n"); 8953 return ret; 8954 } 8955 } 8956 8957 vsi->all_numtc = num_tcf; 8958 vsi->all_enatc = ena_tc_qdisc; 8959 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8960 if (ret) { 8961 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8962 vsi->vsi_num); 8963 goto exit; 8964 } 8965 8966 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8967 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8968 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8969 8970 /* set TC0 rate limit if specified */ 8971 if (max_tx_rate || min_tx_rate) { 8972 /* convert to Kbits/s */ 8973 if (max_tx_rate) 8974 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8975 if (min_tx_rate) 8976 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8977 8978 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8979 if (!ret) { 8980 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8981 max_tx_rate, min_tx_rate, vsi->vsi_num); 8982 } else { 8983 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8984 max_tx_rate, min_tx_rate, vsi->vsi_num); 8985 goto exit; 8986 } 8987 } 8988 ret = ice_create_q_channels(vsi); 8989 if (ret) { 8990 netdev_err(netdev, "failed configuring queue channels\n"); 8991 goto exit; 8992 } else { 8993 netdev_dbg(netdev, "successfully configured channels\n"); 8994 } 8995 } 8996 8997 if (vsi->ch_rss_size) 8998 ice_vsi_cfg_rss_lut_key(vsi); 8999 9000 exit: 9001 /* if error, reset the all_numtc and all_enatc */ 9002 if (ret) { 9003 vsi->all_numtc = 0; 9004 vsi->all_enatc = 0; 9005 } 9006 /* resume VSI */ 9007 ice_ena_vsi(vsi, true); 9008 9009 return ret; 9010 } 9011 9012 static LIST_HEAD(ice_block_cb_list); 9013 9014 static int 9015 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9016 void *type_data) 9017 { 9018 struct ice_netdev_priv *np = netdev_priv(netdev); 9019 struct ice_pf *pf = np->vsi->back; 9020 int err; 9021 9022 switch (type) { 9023 case TC_SETUP_BLOCK: 9024 return flow_block_cb_setup_simple(type_data, 9025 &ice_block_cb_list, 9026 ice_setup_tc_block_cb, 9027 np, np, true); 9028 case TC_SETUP_QDISC_MQPRIO: 9029 /* setup traffic classifier for receive side */ 9030 mutex_lock(&pf->tc_mutex); 9031 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9032 mutex_unlock(&pf->tc_mutex); 9033 return err; 9034 default: 9035 return -EOPNOTSUPP; 9036 } 9037 return -EOPNOTSUPP; 9038 } 9039 9040 static struct ice_indr_block_priv * 9041 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9042 struct net_device *netdev) 9043 { 9044 struct ice_indr_block_priv *cb_priv; 9045 9046 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9047 if (!cb_priv->netdev) 9048 return NULL; 9049 if (cb_priv->netdev == netdev) 9050 return cb_priv; 9051 } 9052 return NULL; 9053 } 9054 9055 static int 9056 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9057 void *indr_priv) 9058 { 9059 struct ice_indr_block_priv *priv = indr_priv; 9060 struct ice_netdev_priv *np = priv->np; 9061 9062 switch (type) { 9063 case TC_SETUP_CLSFLOWER: 9064 return ice_setup_tc_cls_flower(np, priv->netdev, 9065 (struct flow_cls_offload *) 9066 type_data); 9067 default: 9068 return -EOPNOTSUPP; 9069 } 9070 } 9071 9072 static int 9073 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9074 struct ice_netdev_priv *np, 9075 struct flow_block_offload *f, void *data, 9076 void (*cleanup)(struct flow_block_cb *block_cb)) 9077 { 9078 struct ice_indr_block_priv *indr_priv; 9079 struct flow_block_cb *block_cb; 9080 9081 if (!ice_is_tunnel_supported(netdev) && 9082 !(is_vlan_dev(netdev) && 9083 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9084 return -EOPNOTSUPP; 9085 9086 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9087 return -EOPNOTSUPP; 9088 9089 switch (f->command) { 9090 case FLOW_BLOCK_BIND: 9091 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9092 if (indr_priv) 9093 return -EEXIST; 9094 9095 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9096 if (!indr_priv) 9097 return -ENOMEM; 9098 9099 indr_priv->netdev = netdev; 9100 indr_priv->np = np; 9101 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9102 9103 block_cb = 9104 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9105 indr_priv, indr_priv, 9106 ice_rep_indr_tc_block_unbind, 9107 f, netdev, sch, data, np, 9108 cleanup); 9109 9110 if (IS_ERR(block_cb)) { 9111 list_del(&indr_priv->list); 9112 kfree(indr_priv); 9113 return PTR_ERR(block_cb); 9114 } 9115 flow_block_cb_add(block_cb, f); 9116 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9117 break; 9118 case FLOW_BLOCK_UNBIND: 9119 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9120 if (!indr_priv) 9121 return -ENOENT; 9122 9123 block_cb = flow_block_cb_lookup(f->block, 9124 ice_indr_setup_block_cb, 9125 indr_priv); 9126 if (!block_cb) 9127 return -ENOENT; 9128 9129 flow_indr_block_cb_remove(block_cb, f); 9130 9131 list_del(&block_cb->driver_list); 9132 break; 9133 default: 9134 return -EOPNOTSUPP; 9135 } 9136 return 0; 9137 } 9138 9139 static int 9140 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9141 void *cb_priv, enum tc_setup_type type, void *type_data, 9142 void *data, 9143 void (*cleanup)(struct flow_block_cb *block_cb)) 9144 { 9145 switch (type) { 9146 case TC_SETUP_BLOCK: 9147 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9148 data, cleanup); 9149 9150 default: 9151 return -EOPNOTSUPP; 9152 } 9153 } 9154 9155 /** 9156 * ice_open - Called when a network interface becomes active 9157 * @netdev: network interface device structure 9158 * 9159 * The open entry point is called when a network interface is made 9160 * active by the system (IFF_UP). At this point all resources needed 9161 * for transmit and receive operations are allocated, the interrupt 9162 * handler is registered with the OS, the netdev watchdog is enabled, 9163 * and the stack is notified that the interface is ready. 9164 * 9165 * Returns 0 on success, negative value on failure 9166 */ 9167 int ice_open(struct net_device *netdev) 9168 { 9169 struct ice_netdev_priv *np = netdev_priv(netdev); 9170 struct ice_pf *pf = np->vsi->back; 9171 9172 if (ice_is_reset_in_progress(pf->state)) { 9173 netdev_err(netdev, "can't open net device while reset is in progress"); 9174 return -EBUSY; 9175 } 9176 9177 return ice_open_internal(netdev); 9178 } 9179 9180 /** 9181 * ice_open_internal - Called when a network interface becomes active 9182 * @netdev: network interface device structure 9183 * 9184 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9185 * handling routine 9186 * 9187 * Returns 0 on success, negative value on failure 9188 */ 9189 int ice_open_internal(struct net_device *netdev) 9190 { 9191 struct ice_netdev_priv *np = netdev_priv(netdev); 9192 struct ice_vsi *vsi = np->vsi; 9193 struct ice_pf *pf = vsi->back; 9194 struct ice_port_info *pi; 9195 int err; 9196 9197 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9198 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9199 return -EIO; 9200 } 9201 9202 netif_carrier_off(netdev); 9203 9204 pi = vsi->port_info; 9205 err = ice_update_link_info(pi); 9206 if (err) { 9207 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9208 return err; 9209 } 9210 9211 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9212 9213 /* Set PHY if there is media, otherwise, turn off PHY */ 9214 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9215 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9216 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9217 err = ice_init_phy_user_cfg(pi); 9218 if (err) { 9219 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9220 err); 9221 return err; 9222 } 9223 } 9224 9225 err = ice_configure_phy(vsi); 9226 if (err) { 9227 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9228 err); 9229 return err; 9230 } 9231 } else { 9232 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9233 ice_set_link(vsi, false); 9234 } 9235 9236 err = ice_vsi_open(vsi); 9237 if (err) 9238 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9239 vsi->vsi_num, vsi->vsw->sw_id); 9240 9241 /* Update existing tunnels information */ 9242 udp_tunnel_get_rx_info(netdev); 9243 9244 return err; 9245 } 9246 9247 /** 9248 * ice_stop - Disables a network interface 9249 * @netdev: network interface device structure 9250 * 9251 * The stop entry point is called when an interface is de-activated by the OS, 9252 * and the netdevice enters the DOWN state. The hardware is still under the 9253 * driver's control, but the netdev interface is disabled. 9254 * 9255 * Returns success only - not allowed to fail 9256 */ 9257 int ice_stop(struct net_device *netdev) 9258 { 9259 struct ice_netdev_priv *np = netdev_priv(netdev); 9260 struct ice_vsi *vsi = np->vsi; 9261 struct ice_pf *pf = vsi->back; 9262 9263 if (ice_is_reset_in_progress(pf->state)) { 9264 netdev_err(netdev, "can't stop net device while reset is in progress"); 9265 return -EBUSY; 9266 } 9267 9268 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9269 int link_err = ice_force_phys_link_state(vsi, false); 9270 9271 if (link_err) { 9272 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9273 vsi->vsi_num, link_err); 9274 return -EIO; 9275 } 9276 } 9277 9278 ice_vsi_close(vsi); 9279 9280 return 0; 9281 } 9282 9283 /** 9284 * ice_features_check - Validate encapsulated packet conforms to limits 9285 * @skb: skb buffer 9286 * @netdev: This port's netdev 9287 * @features: Offload features that the stack believes apply 9288 */ 9289 static netdev_features_t 9290 ice_features_check(struct sk_buff *skb, 9291 struct net_device __always_unused *netdev, 9292 netdev_features_t features) 9293 { 9294 bool gso = skb_is_gso(skb); 9295 size_t len; 9296 9297 /* No point in doing any of this if neither checksum nor GSO are 9298 * being requested for this frame. We can rule out both by just 9299 * checking for CHECKSUM_PARTIAL 9300 */ 9301 if (skb->ip_summed != CHECKSUM_PARTIAL) 9302 return features; 9303 9304 /* We cannot support GSO if the MSS is going to be less than 9305 * 64 bytes. If it is then we need to drop support for GSO. 9306 */ 9307 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9308 features &= ~NETIF_F_GSO_MASK; 9309 9310 len = skb_network_offset(skb); 9311 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9312 goto out_rm_features; 9313 9314 len = skb_network_header_len(skb); 9315 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9316 goto out_rm_features; 9317 9318 if (skb->encapsulation) { 9319 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9320 * the case of IPIP frames, the transport header pointer is 9321 * after the inner header! So check to make sure that this 9322 * is a GRE or UDP_TUNNEL frame before doing that math. 9323 */ 9324 if (gso && (skb_shinfo(skb)->gso_type & 9325 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9326 len = skb_inner_network_header(skb) - 9327 skb_transport_header(skb); 9328 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9329 goto out_rm_features; 9330 } 9331 9332 len = skb_inner_network_header_len(skb); 9333 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9334 goto out_rm_features; 9335 } 9336 9337 return features; 9338 out_rm_features: 9339 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9340 } 9341 9342 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9343 .ndo_open = ice_open, 9344 .ndo_stop = ice_stop, 9345 .ndo_start_xmit = ice_start_xmit, 9346 .ndo_set_mac_address = ice_set_mac_address, 9347 .ndo_validate_addr = eth_validate_addr, 9348 .ndo_change_mtu = ice_change_mtu, 9349 .ndo_get_stats64 = ice_get_stats64, 9350 .ndo_tx_timeout = ice_tx_timeout, 9351 .ndo_bpf = ice_xdp_safe_mode, 9352 }; 9353 9354 static const struct net_device_ops ice_netdev_ops = { 9355 .ndo_open = ice_open, 9356 .ndo_stop = ice_stop, 9357 .ndo_start_xmit = ice_start_xmit, 9358 .ndo_select_queue = ice_select_queue, 9359 .ndo_features_check = ice_features_check, 9360 .ndo_fix_features = ice_fix_features, 9361 .ndo_set_rx_mode = ice_set_rx_mode, 9362 .ndo_set_mac_address = ice_set_mac_address, 9363 .ndo_validate_addr = eth_validate_addr, 9364 .ndo_change_mtu = ice_change_mtu, 9365 .ndo_get_stats64 = ice_get_stats64, 9366 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9367 .ndo_eth_ioctl = ice_eth_ioctl, 9368 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9369 .ndo_set_vf_mac = ice_set_vf_mac, 9370 .ndo_get_vf_config = ice_get_vf_cfg, 9371 .ndo_set_vf_trust = ice_set_vf_trust, 9372 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9373 .ndo_set_vf_link_state = ice_set_vf_link_state, 9374 .ndo_get_vf_stats = ice_get_vf_stats, 9375 .ndo_set_vf_rate = ice_set_vf_bw, 9376 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9377 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9378 .ndo_setup_tc = ice_setup_tc, 9379 .ndo_set_features = ice_set_features, 9380 .ndo_bridge_getlink = ice_bridge_getlink, 9381 .ndo_bridge_setlink = ice_bridge_setlink, 9382 .ndo_fdb_add = ice_fdb_add, 9383 .ndo_fdb_del = ice_fdb_del, 9384 #ifdef CONFIG_RFS_ACCEL 9385 .ndo_rx_flow_steer = ice_rx_flow_steer, 9386 #endif 9387 .ndo_tx_timeout = ice_tx_timeout, 9388 .ndo_bpf = ice_xdp, 9389 .ndo_xdp_xmit = ice_xdp_xmit, 9390 .ndo_xsk_wakeup = ice_xsk_wakeup, 9391 }; 9392