xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 2151003e773c7e7dba4d64bed4bfc483681b5f6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018-2023, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <generated/utsrelease.h>
9 #include <linux/crash_dump.h>
10 #include "ice.h"
11 #include "ice_base.h"
12 #include "ice_lib.h"
13 #include "ice_fltr.h"
14 #include "ice_dcb_lib.h"
15 #include "ice_dcb_nl.h"
16 #include "devlink/devlink.h"
17 #include "devlink/port.h"
18 #include "ice_sf_eth.h"
19 #include "ice_hwmon.h"
20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
21  * ice tracepoint functions. This must be done exactly once across the
22  * ice driver.
23  */
24 #define CREATE_TRACE_POINTS
25 #include "ice_trace.h"
26 #include "ice_eswitch.h"
27 #include "ice_tc_lib.h"
28 #include "ice_vsi_vlan_ops.h"
29 #include <net/xdp_sock_drv.h>
30 
31 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
32 static const char ice_driver_string[] = DRV_SUMMARY;
33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
34 
35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
36 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
37 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
38 
39 MODULE_DESCRIPTION(DRV_SUMMARY);
40 MODULE_IMPORT_NS("LIBIE");
41 MODULE_LICENSE("GPL v2");
42 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
43 
44 static int debug = -1;
45 module_param(debug, int, 0644);
46 #ifndef CONFIG_DYNAMIC_DEBUG
47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
48 #else
49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
50 #endif /* !CONFIG_DYNAMIC_DEBUG */
51 
52 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
53 EXPORT_SYMBOL(ice_xdp_locking_key);
54 
55 /**
56  * ice_hw_to_dev - Get device pointer from the hardware structure
57  * @hw: pointer to the device HW structure
58  *
59  * Used to access the device pointer from compilation units which can't easily
60  * include the definition of struct ice_pf without leading to circular header
61  * dependencies.
62  */
63 struct device *ice_hw_to_dev(struct ice_hw *hw)
64 {
65 	struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
66 
67 	return &pf->pdev->dev;
68 }
69 
70 static struct workqueue_struct *ice_wq;
71 struct workqueue_struct *ice_lag_wq;
72 static const struct net_device_ops ice_netdev_safe_mode_ops;
73 static const struct net_device_ops ice_netdev_ops;
74 
75 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
76 
77 static void ice_vsi_release_all(struct ice_pf *pf);
78 
79 static int ice_rebuild_channels(struct ice_pf *pf);
80 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
81 
82 static int
83 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
84 		     void *cb_priv, enum tc_setup_type type, void *type_data,
85 		     void *data,
86 		     void (*cleanup)(struct flow_block_cb *block_cb));
87 
88 bool netif_is_ice(const struct net_device *dev)
89 {
90 	return dev && (dev->netdev_ops == &ice_netdev_ops ||
91 		       dev->netdev_ops == &ice_netdev_safe_mode_ops);
92 }
93 
94 /**
95  * ice_get_tx_pending - returns number of Tx descriptors not processed
96  * @ring: the ring of descriptors
97  */
98 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
99 {
100 	u16 head, tail;
101 
102 	head = ring->next_to_clean;
103 	tail = ring->next_to_use;
104 
105 	if (head != tail)
106 		return (head < tail) ?
107 			tail - head : (tail + ring->count - head);
108 	return 0;
109 }
110 
111 /**
112  * ice_check_for_hang_subtask - check for and recover hung queues
113  * @pf: pointer to PF struct
114  */
115 static void ice_check_for_hang_subtask(struct ice_pf *pf)
116 {
117 	struct ice_vsi *vsi = NULL;
118 	struct ice_hw *hw;
119 	unsigned int i;
120 	int packets;
121 	u32 v;
122 
123 	ice_for_each_vsi(pf, v)
124 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
125 			vsi = pf->vsi[v];
126 			break;
127 		}
128 
129 	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
130 		return;
131 
132 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
133 		return;
134 
135 	hw = &vsi->back->hw;
136 
137 	ice_for_each_txq(vsi, i) {
138 		struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
139 		struct ice_ring_stats *ring_stats;
140 
141 		if (!tx_ring)
142 			continue;
143 		if (ice_ring_ch_enabled(tx_ring))
144 			continue;
145 
146 		ring_stats = tx_ring->ring_stats;
147 		if (!ring_stats)
148 			continue;
149 
150 		if (tx_ring->desc) {
151 			/* If packet counter has not changed the queue is
152 			 * likely stalled, so force an interrupt for this
153 			 * queue.
154 			 *
155 			 * prev_pkt would be negative if there was no
156 			 * pending work.
157 			 */
158 			packets = ring_stats->stats.pkts & INT_MAX;
159 			if (ring_stats->tx_stats.prev_pkt == packets) {
160 				/* Trigger sw interrupt to revive the queue */
161 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
162 				continue;
163 			}
164 
165 			/* Memory barrier between read of packet count and call
166 			 * to ice_get_tx_pending()
167 			 */
168 			smp_rmb();
169 			ring_stats->tx_stats.prev_pkt =
170 			    ice_get_tx_pending(tx_ring) ? packets : -1;
171 		}
172 	}
173 }
174 
175 /**
176  * ice_init_mac_fltr - Set initial MAC filters
177  * @pf: board private structure
178  *
179  * Set initial set of MAC filters for PF VSI; configure filters for permanent
180  * address and broadcast address. If an error is encountered, netdevice will be
181  * unregistered.
182  */
183 static int ice_init_mac_fltr(struct ice_pf *pf)
184 {
185 	struct ice_vsi *vsi;
186 	u8 *perm_addr;
187 
188 	vsi = ice_get_main_vsi(pf);
189 	if (!vsi)
190 		return -EINVAL;
191 
192 	perm_addr = vsi->port_info->mac.perm_addr;
193 	return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
194 }
195 
196 /**
197  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
198  * @netdev: the net device on which the sync is happening
199  * @addr: MAC address to sync
200  *
201  * This is a callback function which is called by the in kernel device sync
202  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
203  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
204  * MAC filters from the hardware.
205  */
206 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
207 {
208 	struct ice_netdev_priv *np = netdev_priv(netdev);
209 	struct ice_vsi *vsi = np->vsi;
210 
211 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
212 				     ICE_FWD_TO_VSI))
213 		return -EINVAL;
214 
215 	return 0;
216 }
217 
218 /**
219  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
220  * @netdev: the net device on which the unsync is happening
221  * @addr: MAC address to unsync
222  *
223  * This is a callback function which is called by the in kernel device unsync
224  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
225  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
226  * delete the MAC filters from the hardware.
227  */
228 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
229 {
230 	struct ice_netdev_priv *np = netdev_priv(netdev);
231 	struct ice_vsi *vsi = np->vsi;
232 
233 	/* Under some circumstances, we might receive a request to delete our
234 	 * own device address from our uc list. Because we store the device
235 	 * address in the VSI's MAC filter list, we need to ignore such
236 	 * requests and not delete our device address from this list.
237 	 */
238 	if (ether_addr_equal(addr, netdev->dev_addr))
239 		return 0;
240 
241 	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
242 				     ICE_FWD_TO_VSI))
243 		return -EINVAL;
244 
245 	return 0;
246 }
247 
248 /**
249  * ice_vsi_fltr_changed - check if filter state changed
250  * @vsi: VSI to be checked
251  *
252  * returns true if filter state has changed, false otherwise.
253  */
254 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
255 {
256 	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
257 	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
258 }
259 
260 /**
261  * ice_set_promisc - Enable promiscuous mode for a given PF
262  * @vsi: the VSI being configured
263  * @promisc_m: mask of promiscuous config bits
264  *
265  */
266 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
267 {
268 	int status;
269 
270 	if (vsi->type != ICE_VSI_PF)
271 		return 0;
272 
273 	if (ice_vsi_has_non_zero_vlans(vsi)) {
274 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
275 		status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
276 						       promisc_m);
277 	} else {
278 		status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
279 						  promisc_m, 0);
280 	}
281 	if (status && status != -EEXIST)
282 		return status;
283 
284 	netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
285 		   vsi->vsi_num, promisc_m);
286 	return 0;
287 }
288 
289 /**
290  * ice_clear_promisc - Disable promiscuous mode for a given PF
291  * @vsi: the VSI being configured
292  * @promisc_m: mask of promiscuous config bits
293  *
294  */
295 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
296 {
297 	int status;
298 
299 	if (vsi->type != ICE_VSI_PF)
300 		return 0;
301 
302 	if (ice_vsi_has_non_zero_vlans(vsi)) {
303 		promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
304 		status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
305 							 promisc_m);
306 	} else {
307 		status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
308 						    promisc_m, 0);
309 	}
310 
311 	netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
312 		   vsi->vsi_num, promisc_m);
313 	return status;
314 }
315 
316 /**
317  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
318  * @vsi: ptr to the VSI
319  *
320  * Push any outstanding VSI filter changes through the AdminQ.
321  */
322 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
323 {
324 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
325 	struct device *dev = ice_pf_to_dev(vsi->back);
326 	struct net_device *netdev = vsi->netdev;
327 	bool promisc_forced_on = false;
328 	struct ice_pf *pf = vsi->back;
329 	struct ice_hw *hw = &pf->hw;
330 	u32 changed_flags = 0;
331 	int err;
332 
333 	if (!vsi->netdev)
334 		return -EINVAL;
335 
336 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
337 		usleep_range(1000, 2000);
338 
339 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
340 	vsi->current_netdev_flags = vsi->netdev->flags;
341 
342 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
343 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
344 
345 	if (ice_vsi_fltr_changed(vsi)) {
346 		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
347 		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
348 
349 		/* grab the netdev's addr_list_lock */
350 		netif_addr_lock_bh(netdev);
351 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
352 			      ice_add_mac_to_unsync_list);
353 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
354 			      ice_add_mac_to_unsync_list);
355 		/* our temp lists are populated. release lock */
356 		netif_addr_unlock_bh(netdev);
357 	}
358 
359 	/* Remove MAC addresses in the unsync list */
360 	err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
361 	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
362 	if (err) {
363 		netdev_err(netdev, "Failed to delete MAC filters\n");
364 		/* if we failed because of alloc failures, just bail */
365 		if (err == -ENOMEM)
366 			goto out;
367 	}
368 
369 	/* Add MAC addresses in the sync list */
370 	err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
371 	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
372 	/* If filter is added successfully or already exists, do not go into
373 	 * 'if' condition and report it as error. Instead continue processing
374 	 * rest of the function.
375 	 */
376 	if (err && err != -EEXIST) {
377 		netdev_err(netdev, "Failed to add MAC filters\n");
378 		/* If there is no more space for new umac filters, VSI
379 		 * should go into promiscuous mode. There should be some
380 		 * space reserved for promiscuous filters.
381 		 */
382 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
383 		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
384 				      vsi->state)) {
385 			promisc_forced_on = true;
386 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
387 				    vsi->vsi_num);
388 		} else {
389 			goto out;
390 		}
391 	}
392 	err = 0;
393 	/* check for changes in promiscuous modes */
394 	if (changed_flags & IFF_ALLMULTI) {
395 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
396 			err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
397 			if (err) {
398 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
399 				goto out_promisc;
400 			}
401 		} else {
402 			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
403 			err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
404 			if (err) {
405 				vsi->current_netdev_flags |= IFF_ALLMULTI;
406 				goto out_promisc;
407 			}
408 		}
409 	}
410 
411 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
412 	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
413 		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
414 		if (vsi->current_netdev_flags & IFF_PROMISC) {
415 			/* Apply Rx filter rule to get traffic from wire */
416 			if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
417 				err = ice_set_dflt_vsi(vsi);
418 				if (err && err != -EEXIST) {
419 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
420 						   err, vsi->vsi_num);
421 					vsi->current_netdev_flags &=
422 						~IFF_PROMISC;
423 					goto out_promisc;
424 				}
425 				err = 0;
426 				vlan_ops->dis_rx_filtering(vsi);
427 
428 				/* promiscuous mode implies allmulticast so
429 				 * that VSIs that are in promiscuous mode are
430 				 * subscribed to multicast packets coming to
431 				 * the port
432 				 */
433 				err = ice_set_promisc(vsi,
434 						      ICE_MCAST_PROMISC_BITS);
435 				if (err)
436 					goto out_promisc;
437 			}
438 		} else {
439 			/* Clear Rx filter to remove traffic from wire */
440 			if (ice_is_vsi_dflt_vsi(vsi)) {
441 				err = ice_clear_dflt_vsi(vsi);
442 				if (err) {
443 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
444 						   err, vsi->vsi_num);
445 					vsi->current_netdev_flags |=
446 						IFF_PROMISC;
447 					goto out_promisc;
448 				}
449 				if (vsi->netdev->features &
450 				    NETIF_F_HW_VLAN_CTAG_FILTER)
451 					vlan_ops->ena_rx_filtering(vsi);
452 			}
453 
454 			/* disable allmulti here, but only if allmulti is not
455 			 * still enabled for the netdev
456 			 */
457 			if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
458 				err = ice_clear_promisc(vsi,
459 							ICE_MCAST_PROMISC_BITS);
460 				if (err) {
461 					netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
462 						   err, vsi->vsi_num);
463 				}
464 			}
465 		}
466 	}
467 	goto exit;
468 
469 out_promisc:
470 	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
471 	goto exit;
472 out:
473 	/* if something went wrong then set the changed flag so we try again */
474 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
475 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
476 exit:
477 	clear_bit(ICE_CFG_BUSY, vsi->state);
478 	return err;
479 }
480 
481 /**
482  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
483  * @pf: board private structure
484  */
485 static void ice_sync_fltr_subtask(struct ice_pf *pf)
486 {
487 	int v;
488 
489 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
490 		return;
491 
492 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493 
494 	ice_for_each_vsi(pf, v)
495 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
496 		    ice_vsi_sync_fltr(pf->vsi[v])) {
497 			/* come back and try again later */
498 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
499 			break;
500 		}
501 }
502 
503 /**
504  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
505  * @pf: the PF
506  * @locked: is the rtnl_lock already held
507  */
508 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
509 {
510 	int node;
511 	int v;
512 
513 	ice_for_each_vsi(pf, v)
514 		if (pf->vsi[v])
515 			ice_dis_vsi(pf->vsi[v], locked);
516 
517 	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
518 		pf->pf_agg_node[node].num_vsis = 0;
519 
520 	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
521 		pf->vf_agg_node[node].num_vsis = 0;
522 }
523 
524 /**
525  * ice_prepare_for_reset - prep for reset
526  * @pf: board private structure
527  * @reset_type: reset type requested
528  *
529  * Inform or close all dependent features in prep for reset.
530  */
531 static void
532 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
533 {
534 	struct ice_hw *hw = &pf->hw;
535 	struct ice_vsi *vsi;
536 	struct ice_vf *vf;
537 	unsigned int bkt;
538 
539 	dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
540 
541 	/* already prepared for reset */
542 	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
543 		return;
544 
545 	synchronize_irq(pf->oicr_irq.virq);
546 
547 	ice_unplug_aux_dev(pf);
548 
549 	/* Notify VFs of impending reset */
550 	if (ice_check_sq_alive(hw, &hw->mailboxq))
551 		ice_vc_notify_reset(pf);
552 
553 	/* Disable VFs until reset is completed */
554 	mutex_lock(&pf->vfs.table_lock);
555 	ice_for_each_vf(pf, bkt, vf)
556 		ice_set_vf_state_dis(vf);
557 	mutex_unlock(&pf->vfs.table_lock);
558 
559 	if (ice_is_eswitch_mode_switchdev(pf)) {
560 		rtnl_lock();
561 		ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge);
562 		rtnl_unlock();
563 	}
564 
565 	/* release ADQ specific HW and SW resources */
566 	vsi = ice_get_main_vsi(pf);
567 	if (!vsi)
568 		goto skip;
569 
570 	/* to be on safe side, reset orig_rss_size so that normal flow
571 	 * of deciding rss_size can take precedence
572 	 */
573 	vsi->orig_rss_size = 0;
574 
575 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
576 		if (reset_type == ICE_RESET_PFR) {
577 			vsi->old_ena_tc = vsi->all_enatc;
578 			vsi->old_numtc = vsi->all_numtc;
579 		} else {
580 			ice_remove_q_channels(vsi, true);
581 
582 			/* for other reset type, do not support channel rebuild
583 			 * hence reset needed info
584 			 */
585 			vsi->old_ena_tc = 0;
586 			vsi->all_enatc = 0;
587 			vsi->old_numtc = 0;
588 			vsi->all_numtc = 0;
589 			vsi->req_txq = 0;
590 			vsi->req_rxq = 0;
591 			clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
592 			memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
593 		}
594 	}
595 
596 	if (vsi->netdev)
597 		netif_device_detach(vsi->netdev);
598 skip:
599 
600 	/* clear SW filtering DB */
601 	ice_clear_hw_tbls(hw);
602 	/* disable the VSIs and their queues that are not already DOWN */
603 	set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state);
604 	ice_pf_dis_all_vsi(pf, false);
605 
606 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
607 		ice_ptp_prepare_for_reset(pf, reset_type);
608 
609 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
610 		ice_gnss_exit(pf);
611 
612 	if (hw->port_info)
613 		ice_sched_clear_port(hw->port_info);
614 
615 	ice_shutdown_all_ctrlq(hw, false);
616 
617 	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
618 }
619 
620 /**
621  * ice_do_reset - Initiate one of many types of resets
622  * @pf: board private structure
623  * @reset_type: reset type requested before this function was called.
624  */
625 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
626 {
627 	struct device *dev = ice_pf_to_dev(pf);
628 	struct ice_hw *hw = &pf->hw;
629 
630 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
631 
632 	if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) {
633 		dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n");
634 		reset_type = ICE_RESET_CORER;
635 	}
636 
637 	ice_prepare_for_reset(pf, reset_type);
638 
639 	/* trigger the reset */
640 	if (ice_reset(hw, reset_type)) {
641 		dev_err(dev, "reset %d failed\n", reset_type);
642 		set_bit(ICE_RESET_FAILED, pf->state);
643 		clear_bit(ICE_RESET_OICR_RECV, pf->state);
644 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
645 		clear_bit(ICE_PFR_REQ, pf->state);
646 		clear_bit(ICE_CORER_REQ, pf->state);
647 		clear_bit(ICE_GLOBR_REQ, pf->state);
648 		wake_up(&pf->reset_wait_queue);
649 		return;
650 	}
651 
652 	/* PFR is a bit of a special case because it doesn't result in an OICR
653 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
654 	 * associated state bits.
655 	 */
656 	if (reset_type == ICE_RESET_PFR) {
657 		pf->pfr_count++;
658 		ice_rebuild(pf, reset_type);
659 		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
660 		clear_bit(ICE_PFR_REQ, pf->state);
661 		wake_up(&pf->reset_wait_queue);
662 		ice_reset_all_vfs(pf);
663 	}
664 }
665 
666 /**
667  * ice_reset_subtask - Set up for resetting the device and driver
668  * @pf: board private structure
669  */
670 static void ice_reset_subtask(struct ice_pf *pf)
671 {
672 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
673 
674 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
675 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
676 	 * of reset is pending and sets bits in pf->state indicating the reset
677 	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
678 	 * prepare for pending reset if not already (for PF software-initiated
679 	 * global resets the software should already be prepared for it as
680 	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
681 	 * by firmware or software on other PFs, that bit is not set so prepare
682 	 * for the reset now), poll for reset done, rebuild and return.
683 	 */
684 	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
685 		/* Perform the largest reset requested */
686 		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
687 			reset_type = ICE_RESET_CORER;
688 		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
689 			reset_type = ICE_RESET_GLOBR;
690 		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
691 			reset_type = ICE_RESET_EMPR;
692 		/* return if no valid reset type requested */
693 		if (reset_type == ICE_RESET_INVAL)
694 			return;
695 		ice_prepare_for_reset(pf, reset_type);
696 
697 		/* make sure we are ready to rebuild */
698 		if (ice_check_reset(&pf->hw)) {
699 			set_bit(ICE_RESET_FAILED, pf->state);
700 		} else {
701 			/* done with reset. start rebuild */
702 			pf->hw.reset_ongoing = false;
703 			ice_rebuild(pf, reset_type);
704 			/* clear bit to resume normal operations, but
705 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
706 			 */
707 			clear_bit(ICE_RESET_OICR_RECV, pf->state);
708 			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
709 			clear_bit(ICE_PFR_REQ, pf->state);
710 			clear_bit(ICE_CORER_REQ, pf->state);
711 			clear_bit(ICE_GLOBR_REQ, pf->state);
712 			wake_up(&pf->reset_wait_queue);
713 			ice_reset_all_vfs(pf);
714 		}
715 
716 		return;
717 	}
718 
719 	/* No pending resets to finish processing. Check for new resets */
720 	if (test_bit(ICE_PFR_REQ, pf->state)) {
721 		reset_type = ICE_RESET_PFR;
722 		if (pf->lag && pf->lag->bonded) {
723 			dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n");
724 			reset_type = ICE_RESET_CORER;
725 		}
726 	}
727 	if (test_bit(ICE_CORER_REQ, pf->state))
728 		reset_type = ICE_RESET_CORER;
729 	if (test_bit(ICE_GLOBR_REQ, pf->state))
730 		reset_type = ICE_RESET_GLOBR;
731 	/* If no valid reset type requested just return */
732 	if (reset_type == ICE_RESET_INVAL)
733 		return;
734 
735 	/* reset if not already down or busy */
736 	if (!test_bit(ICE_DOWN, pf->state) &&
737 	    !test_bit(ICE_CFG_BUSY, pf->state)) {
738 		ice_do_reset(pf, reset_type);
739 	}
740 }
741 
742 /**
743  * ice_print_topo_conflict - print topology conflict message
744  * @vsi: the VSI whose topology status is being checked
745  */
746 static void ice_print_topo_conflict(struct ice_vsi *vsi)
747 {
748 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
749 	case ICE_AQ_LINK_TOPO_CONFLICT:
750 	case ICE_AQ_LINK_MEDIA_CONFLICT:
751 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
752 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
753 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
754 		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
755 		break;
756 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
757 		if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
758 			netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
759 		else
760 			netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
761 		break;
762 	default:
763 		break;
764 	}
765 }
766 
767 /**
768  * ice_print_link_msg - print link up or down message
769  * @vsi: the VSI whose link status is being queried
770  * @isup: boolean for if the link is now up or down
771  */
772 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
773 {
774 	struct ice_aqc_get_phy_caps_data *caps;
775 	const char *an_advertised;
776 	const char *fec_req;
777 	const char *speed;
778 	const char *fec;
779 	const char *fc;
780 	const char *an;
781 	int status;
782 
783 	if (!vsi)
784 		return;
785 
786 	if (vsi->current_isup == isup)
787 		return;
788 
789 	vsi->current_isup = isup;
790 
791 	if (!isup) {
792 		netdev_info(vsi->netdev, "NIC Link is Down\n");
793 		return;
794 	}
795 
796 	switch (vsi->port_info->phy.link_info.link_speed) {
797 	case ICE_AQ_LINK_SPEED_200GB:
798 		speed = "200 G";
799 		break;
800 	case ICE_AQ_LINK_SPEED_100GB:
801 		speed = "100 G";
802 		break;
803 	case ICE_AQ_LINK_SPEED_50GB:
804 		speed = "50 G";
805 		break;
806 	case ICE_AQ_LINK_SPEED_40GB:
807 		speed = "40 G";
808 		break;
809 	case ICE_AQ_LINK_SPEED_25GB:
810 		speed = "25 G";
811 		break;
812 	case ICE_AQ_LINK_SPEED_20GB:
813 		speed = "20 G";
814 		break;
815 	case ICE_AQ_LINK_SPEED_10GB:
816 		speed = "10 G";
817 		break;
818 	case ICE_AQ_LINK_SPEED_5GB:
819 		speed = "5 G";
820 		break;
821 	case ICE_AQ_LINK_SPEED_2500MB:
822 		speed = "2.5 G";
823 		break;
824 	case ICE_AQ_LINK_SPEED_1000MB:
825 		speed = "1 G";
826 		break;
827 	case ICE_AQ_LINK_SPEED_100MB:
828 		speed = "100 M";
829 		break;
830 	default:
831 		speed = "Unknown ";
832 		break;
833 	}
834 
835 	switch (vsi->port_info->fc.current_mode) {
836 	case ICE_FC_FULL:
837 		fc = "Rx/Tx";
838 		break;
839 	case ICE_FC_TX_PAUSE:
840 		fc = "Tx";
841 		break;
842 	case ICE_FC_RX_PAUSE:
843 		fc = "Rx";
844 		break;
845 	case ICE_FC_NONE:
846 		fc = "None";
847 		break;
848 	default:
849 		fc = "Unknown";
850 		break;
851 	}
852 
853 	/* Get FEC mode based on negotiated link info */
854 	switch (vsi->port_info->phy.link_info.fec_info) {
855 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
856 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
857 		fec = "RS-FEC";
858 		break;
859 	case ICE_AQ_LINK_25G_KR_FEC_EN:
860 		fec = "FC-FEC/BASE-R";
861 		break;
862 	default:
863 		fec = "NONE";
864 		break;
865 	}
866 
867 	/* check if autoneg completed, might be false due to not supported */
868 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
869 		an = "True";
870 	else
871 		an = "False";
872 
873 	/* Get FEC mode requested based on PHY caps last SW configuration */
874 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
875 	if (!caps) {
876 		fec_req = "Unknown";
877 		an_advertised = "Unknown";
878 		goto done;
879 	}
880 
881 	status = ice_aq_get_phy_caps(vsi->port_info, false,
882 				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
883 	if (status)
884 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
885 
886 	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
887 
888 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
889 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
890 		fec_req = "RS-FEC";
891 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
892 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
893 		fec_req = "FC-FEC/BASE-R";
894 	else
895 		fec_req = "NONE";
896 
897 	kfree(caps);
898 
899 done:
900 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
901 		    speed, fec_req, fec, an_advertised, an, fc);
902 	ice_print_topo_conflict(vsi);
903 }
904 
905 /**
906  * ice_vsi_link_event - update the VSI's netdev
907  * @vsi: the VSI on which the link event occurred
908  * @link_up: whether or not the VSI needs to be set up or down
909  */
910 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
911 {
912 	if (!vsi)
913 		return;
914 
915 	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
916 		return;
917 
918 	if (vsi->type == ICE_VSI_PF) {
919 		if (link_up == netif_carrier_ok(vsi->netdev))
920 			return;
921 
922 		if (link_up) {
923 			netif_carrier_on(vsi->netdev);
924 			netif_tx_wake_all_queues(vsi->netdev);
925 		} else {
926 			netif_carrier_off(vsi->netdev);
927 			netif_tx_stop_all_queues(vsi->netdev);
928 		}
929 	}
930 }
931 
932 /**
933  * ice_set_dflt_mib - send a default config MIB to the FW
934  * @pf: private PF struct
935  *
936  * This function sends a default configuration MIB to the FW.
937  *
938  * If this function errors out at any point, the driver is still able to
939  * function.  The main impact is that LFC may not operate as expected.
940  * Therefore an error state in this function should be treated with a DBG
941  * message and continue on with driver rebuild/reenable.
942  */
943 static void ice_set_dflt_mib(struct ice_pf *pf)
944 {
945 	struct device *dev = ice_pf_to_dev(pf);
946 	u8 mib_type, *buf, *lldpmib = NULL;
947 	u16 len, typelen, offset = 0;
948 	struct ice_lldp_org_tlv *tlv;
949 	struct ice_hw *hw = &pf->hw;
950 	u32 ouisubtype;
951 
952 	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
953 	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
954 	if (!lldpmib) {
955 		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
956 			__func__);
957 		return;
958 	}
959 
960 	/* Add ETS CFG TLV */
961 	tlv = (struct ice_lldp_org_tlv *)lldpmib;
962 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
963 		   ICE_IEEE_ETS_TLV_LEN);
964 	tlv->typelen = htons(typelen);
965 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
966 		      ICE_IEEE_SUBTYPE_ETS_CFG);
967 	tlv->ouisubtype = htonl(ouisubtype);
968 
969 	buf = tlv->tlvinfo;
970 	buf[0] = 0;
971 
972 	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
973 	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
974 	 * Octets 13 - 20 are TSA values - leave as zeros
975 	 */
976 	buf[5] = 0x64;
977 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
978 	offset += len + 2;
979 	tlv = (struct ice_lldp_org_tlv *)
980 		((char *)tlv + sizeof(tlv->typelen) + len);
981 
982 	/* Add ETS REC TLV */
983 	buf = tlv->tlvinfo;
984 	tlv->typelen = htons(typelen);
985 
986 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
987 		      ICE_IEEE_SUBTYPE_ETS_REC);
988 	tlv->ouisubtype = htonl(ouisubtype);
989 
990 	/* First octet of buf is reserved
991 	 * Octets 1 - 4 map UP to TC - all UPs map to zero
992 	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
993 	 * Octets 13 - 20 are TSA value - leave as zeros
994 	 */
995 	buf[5] = 0x64;
996 	offset += len + 2;
997 	tlv = (struct ice_lldp_org_tlv *)
998 		((char *)tlv + sizeof(tlv->typelen) + len);
999 
1000 	/* Add PFC CFG TLV */
1001 	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
1002 		   ICE_IEEE_PFC_TLV_LEN);
1003 	tlv->typelen = htons(typelen);
1004 
1005 	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
1006 		      ICE_IEEE_SUBTYPE_PFC_CFG);
1007 	tlv->ouisubtype = htonl(ouisubtype);
1008 
1009 	/* Octet 1 left as all zeros - PFC disabled */
1010 	buf[0] = 0x08;
1011 	len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen);
1012 	offset += len + 2;
1013 
1014 	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1015 		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1016 
1017 	kfree(lldpmib);
1018 }
1019 
1020 /**
1021  * ice_check_phy_fw_load - check if PHY FW load failed
1022  * @pf: pointer to PF struct
1023  * @link_cfg_err: bitmap from the link info structure
1024  *
1025  * check if external PHY FW load failed and print an error message if it did
1026  */
1027 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 	if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1030 		clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1031 		return;
1032 	}
1033 
1034 	if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1035 		return;
1036 
1037 	if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1038 		dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1039 		set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1040 	}
1041 }
1042 
1043 /**
1044  * ice_check_module_power
1045  * @pf: pointer to PF struct
1046  * @link_cfg_err: bitmap from the link info structure
1047  *
1048  * check module power level returned by a previous call to aq_get_link_info
1049  * and print error messages if module power level is not supported
1050  */
1051 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1052 {
1053 	/* if module power level is supported, clear the flag */
1054 	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1055 			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1056 		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1057 		return;
1058 	}
1059 
1060 	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1061 	 * above block didn't clear this bit, there's nothing to do
1062 	 */
1063 	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1064 		return;
1065 
1066 	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1067 		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1068 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1069 	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1070 		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1071 		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1072 	}
1073 }
1074 
1075 /**
1076  * ice_check_link_cfg_err - check if link configuration failed
1077  * @pf: pointer to the PF struct
1078  * @link_cfg_err: bitmap from the link info structure
1079  *
1080  * print if any link configuration failure happens due to the value in the
1081  * link_cfg_err parameter in the link info structure
1082  */
1083 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1084 {
1085 	ice_check_module_power(pf, link_cfg_err);
1086 	ice_check_phy_fw_load(pf, link_cfg_err);
1087 }
1088 
1089 /**
1090  * ice_link_event - process the link event
1091  * @pf: PF that the link event is associated with
1092  * @pi: port_info for the port that the link event is associated with
1093  * @link_up: true if the physical link is up and false if it is down
1094  * @link_speed: current link speed received from the link event
1095  *
1096  * Returns 0 on success and negative on failure
1097  */
1098 static int
1099 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1100 	       u16 link_speed)
1101 {
1102 	struct device *dev = ice_pf_to_dev(pf);
1103 	struct ice_phy_info *phy_info;
1104 	struct ice_vsi *vsi;
1105 	u16 old_link_speed;
1106 	bool old_link;
1107 	int status;
1108 
1109 	phy_info = &pi->phy;
1110 	phy_info->link_info_old = phy_info->link_info;
1111 
1112 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1113 	old_link_speed = phy_info->link_info_old.link_speed;
1114 
1115 	/* update the link info structures and re-enable link events,
1116 	 * don't bail on failure due to other book keeping needed
1117 	 */
1118 	status = ice_update_link_info(pi);
1119 	if (status)
1120 		dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1121 			pi->lport, status,
1122 			ice_aq_str(pi->hw->adminq.sq_last_status));
1123 
1124 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1125 
1126 	/* Check if the link state is up after updating link info, and treat
1127 	 * this event as an UP event since the link is actually UP now.
1128 	 */
1129 	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1130 		link_up = true;
1131 
1132 	vsi = ice_get_main_vsi(pf);
1133 	if (!vsi || !vsi->port_info)
1134 		return -EINVAL;
1135 
1136 	/* turn off PHY if media was removed */
1137 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1138 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1139 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1140 		ice_set_link(vsi, false);
1141 	}
1142 
1143 	/* if the old link up/down and speed is the same as the new */
1144 	if (link_up == old_link && link_speed == old_link_speed)
1145 		return 0;
1146 
1147 	ice_ptp_link_change(pf, link_up);
1148 
1149 	if (ice_is_dcb_active(pf)) {
1150 		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1151 			ice_dcb_rebuild(pf);
1152 	} else {
1153 		if (link_up)
1154 			ice_set_dflt_mib(pf);
1155 	}
1156 	ice_vsi_link_event(vsi, link_up);
1157 	ice_print_link_msg(vsi, link_up);
1158 
1159 	ice_vc_notify_link_state(pf);
1160 
1161 	return 0;
1162 }
1163 
1164 /**
1165  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1166  * @pf: board private structure
1167  */
1168 static void ice_watchdog_subtask(struct ice_pf *pf)
1169 {
1170 	int i;
1171 
1172 	/* if interface is down do nothing */
1173 	if (test_bit(ICE_DOWN, pf->state) ||
1174 	    test_bit(ICE_CFG_BUSY, pf->state))
1175 		return;
1176 
1177 	/* make sure we don't do these things too often */
1178 	if (time_before(jiffies,
1179 			pf->serv_tmr_prev + pf->serv_tmr_period))
1180 		return;
1181 
1182 	pf->serv_tmr_prev = jiffies;
1183 
1184 	/* Update the stats for active netdevs so the network stack
1185 	 * can look at updated numbers whenever it cares to
1186 	 */
1187 	ice_update_pf_stats(pf);
1188 	ice_for_each_vsi(pf, i)
1189 		if (pf->vsi[i] && pf->vsi[i]->netdev)
1190 			ice_update_vsi_stats(pf->vsi[i]);
1191 }
1192 
1193 /**
1194  * ice_init_link_events - enable/initialize link events
1195  * @pi: pointer to the port_info instance
1196  *
1197  * Returns -EIO on failure, 0 on success
1198  */
1199 static int ice_init_link_events(struct ice_port_info *pi)
1200 {
1201 	u16 mask;
1202 
1203 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1204 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1205 		       ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1206 
1207 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1208 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1209 			pi->lport);
1210 		return -EIO;
1211 	}
1212 
1213 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1214 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1215 			pi->lport);
1216 		return -EIO;
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 /**
1223  * ice_handle_link_event - handle link event via ARQ
1224  * @pf: PF that the link event is associated with
1225  * @event: event structure containing link status info
1226  */
1227 static int
1228 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1229 {
1230 	struct ice_aqc_get_link_status_data *link_data;
1231 	struct ice_port_info *port_info;
1232 	int status;
1233 
1234 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1235 	port_info = pf->hw.port_info;
1236 	if (!port_info)
1237 		return -EINVAL;
1238 
1239 	status = ice_link_event(pf, port_info,
1240 				!!(link_data->link_info & ICE_AQ_LINK_UP),
1241 				le16_to_cpu(link_data->link_speed));
1242 	if (status)
1243 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1244 			status);
1245 
1246 	return status;
1247 }
1248 
1249 /**
1250  * ice_get_fwlog_data - copy the FW log data from ARQ event
1251  * @pf: PF that the FW log event is associated with
1252  * @event: event structure containing FW log data
1253  */
1254 static void
1255 ice_get_fwlog_data(struct ice_pf *pf, struct ice_rq_event_info *event)
1256 {
1257 	struct ice_fwlog_data *fwlog;
1258 	struct ice_hw *hw = &pf->hw;
1259 
1260 	fwlog = &hw->fwlog_ring.rings[hw->fwlog_ring.tail];
1261 
1262 	memset(fwlog->data, 0, PAGE_SIZE);
1263 	fwlog->data_size = le16_to_cpu(event->desc.datalen);
1264 
1265 	memcpy(fwlog->data, event->msg_buf, fwlog->data_size);
1266 	ice_fwlog_ring_increment(&hw->fwlog_ring.tail, hw->fwlog_ring.size);
1267 
1268 	if (ice_fwlog_ring_full(&hw->fwlog_ring)) {
1269 		/* the rings are full so bump the head to create room */
1270 		ice_fwlog_ring_increment(&hw->fwlog_ring.head,
1271 					 hw->fwlog_ring.size);
1272 	}
1273 }
1274 
1275 /**
1276  * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware
1277  * @pf: pointer to the PF private structure
1278  * @task: intermediate helper storage and identifier for waiting
1279  * @opcode: the opcode to wait for
1280  *
1281  * Prepares to wait for a specific AdminQ completion event on the ARQ for
1282  * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event().
1283  *
1284  * Calls are separated to allow caller registering for event before sending
1285  * the command, which mitigates a race between registering and FW responding.
1286  *
1287  * To obtain only the descriptor contents, pass an task->event with null
1288  * msg_buf. If the complete data buffer is desired, allocate the
1289  * task->event.msg_buf with enough space ahead of time.
1290  */
1291 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1292 			   u16 opcode)
1293 {
1294 	INIT_HLIST_NODE(&task->entry);
1295 	task->opcode = opcode;
1296 	task->state = ICE_AQ_TASK_WAITING;
1297 
1298 	spin_lock_bh(&pf->aq_wait_lock);
1299 	hlist_add_head(&task->entry, &pf->aq_wait_list);
1300 	spin_unlock_bh(&pf->aq_wait_lock);
1301 }
1302 
1303 /**
1304  * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1305  * @pf: pointer to the PF private structure
1306  * @task: ptr prepared by ice_aq_prep_for_event()
1307  * @timeout: how long to wait, in jiffies
1308  *
1309  * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1310  * current thread will be put to sleep until the specified event occurs or
1311  * until the given timeout is reached.
1312  *
1313  * Returns: zero on success, or a negative error code on failure.
1314  */
1315 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task,
1316 			  unsigned long timeout)
1317 {
1318 	enum ice_aq_task_state *state = &task->state;
1319 	struct device *dev = ice_pf_to_dev(pf);
1320 	unsigned long start = jiffies;
1321 	long ret;
1322 	int err;
1323 
1324 	ret = wait_event_interruptible_timeout(pf->aq_wait_queue,
1325 					       *state != ICE_AQ_TASK_WAITING,
1326 					       timeout);
1327 	switch (*state) {
1328 	case ICE_AQ_TASK_NOT_PREPARED:
1329 		WARN(1, "call to %s without ice_aq_prep_for_event()", __func__);
1330 		err = -EINVAL;
1331 		break;
1332 	case ICE_AQ_TASK_WAITING:
1333 		err = ret < 0 ? ret : -ETIMEDOUT;
1334 		break;
1335 	case ICE_AQ_TASK_CANCELED:
1336 		err = ret < 0 ? ret : -ECANCELED;
1337 		break;
1338 	case ICE_AQ_TASK_COMPLETE:
1339 		err = ret < 0 ? ret : 0;
1340 		break;
1341 	default:
1342 		WARN(1, "Unexpected AdminQ wait task state %u", *state);
1343 		err = -EINVAL;
1344 		break;
1345 	}
1346 
1347 	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1348 		jiffies_to_msecs(jiffies - start),
1349 		jiffies_to_msecs(timeout),
1350 		task->opcode);
1351 
1352 	spin_lock_bh(&pf->aq_wait_lock);
1353 	hlist_del(&task->entry);
1354 	spin_unlock_bh(&pf->aq_wait_lock);
1355 
1356 	return err;
1357 }
1358 
1359 /**
1360  * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1361  * @pf: pointer to the PF private structure
1362  * @opcode: the opcode of the event
1363  * @event: the event to check
1364  *
1365  * Loops over the current list of pending threads waiting for an AdminQ event.
1366  * For each matching task, copy the contents of the event into the task
1367  * structure and wake up the thread.
1368  *
1369  * If multiple threads wait for the same opcode, they will all be woken up.
1370  *
1371  * Note that event->msg_buf will only be duplicated if the event has a buffer
1372  * with enough space already allocated. Otherwise, only the descriptor and
1373  * message length will be copied.
1374  *
1375  * Returns: true if an event was found, false otherwise
1376  */
1377 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1378 				struct ice_rq_event_info *event)
1379 {
1380 	struct ice_rq_event_info *task_ev;
1381 	struct ice_aq_task *task;
1382 	bool found = false;
1383 
1384 	spin_lock_bh(&pf->aq_wait_lock);
1385 	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1386 		if (task->state != ICE_AQ_TASK_WAITING)
1387 			continue;
1388 		if (task->opcode != opcode)
1389 			continue;
1390 
1391 		task_ev = &task->event;
1392 		memcpy(&task_ev->desc, &event->desc, sizeof(event->desc));
1393 		task_ev->msg_len = event->msg_len;
1394 
1395 		/* Only copy the data buffer if a destination was set */
1396 		if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) {
1397 			memcpy(task_ev->msg_buf, event->msg_buf,
1398 			       event->buf_len);
1399 			task_ev->buf_len = event->buf_len;
1400 		}
1401 
1402 		task->state = ICE_AQ_TASK_COMPLETE;
1403 		found = true;
1404 	}
1405 	spin_unlock_bh(&pf->aq_wait_lock);
1406 
1407 	if (found)
1408 		wake_up(&pf->aq_wait_queue);
1409 }
1410 
1411 /**
1412  * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1413  * @pf: the PF private structure
1414  *
1415  * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1416  * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1417  */
1418 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1419 {
1420 	struct ice_aq_task *task;
1421 
1422 	spin_lock_bh(&pf->aq_wait_lock);
1423 	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1424 		task->state = ICE_AQ_TASK_CANCELED;
1425 	spin_unlock_bh(&pf->aq_wait_lock);
1426 
1427 	wake_up(&pf->aq_wait_queue);
1428 }
1429 
1430 #define ICE_MBX_OVERFLOW_WATERMARK 64
1431 
1432 /**
1433  * __ice_clean_ctrlq - helper function to clean controlq rings
1434  * @pf: ptr to struct ice_pf
1435  * @q_type: specific Control queue type
1436  */
1437 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1438 {
1439 	struct device *dev = ice_pf_to_dev(pf);
1440 	struct ice_rq_event_info event;
1441 	struct ice_hw *hw = &pf->hw;
1442 	struct ice_ctl_q_info *cq;
1443 	u16 pending, i = 0;
1444 	const char *qtype;
1445 	u32 oldval, val;
1446 
1447 	/* Do not clean control queue if/when PF reset fails */
1448 	if (test_bit(ICE_RESET_FAILED, pf->state))
1449 		return 0;
1450 
1451 	switch (q_type) {
1452 	case ICE_CTL_Q_ADMIN:
1453 		cq = &hw->adminq;
1454 		qtype = "Admin";
1455 		break;
1456 	case ICE_CTL_Q_SB:
1457 		cq = &hw->sbq;
1458 		qtype = "Sideband";
1459 		break;
1460 	case ICE_CTL_Q_MAILBOX:
1461 		cq = &hw->mailboxq;
1462 		qtype = "Mailbox";
1463 		/* we are going to try to detect a malicious VF, so set the
1464 		 * state to begin detection
1465 		 */
1466 		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1467 		break;
1468 	default:
1469 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1470 		return 0;
1471 	}
1472 
1473 	/* check for error indications - PF_xx_AxQLEN register layout for
1474 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1475 	 */
1476 	val = rd32(hw, cq->rq.len);
1477 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1478 		   PF_FW_ARQLEN_ARQCRIT_M)) {
1479 		oldval = val;
1480 		if (val & PF_FW_ARQLEN_ARQVFE_M)
1481 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1482 				qtype);
1483 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1484 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1485 				qtype);
1486 		}
1487 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1488 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1489 				qtype);
1490 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1491 			 PF_FW_ARQLEN_ARQCRIT_M);
1492 		if (oldval != val)
1493 			wr32(hw, cq->rq.len, val);
1494 	}
1495 
1496 	val = rd32(hw, cq->sq.len);
1497 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1498 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1499 		oldval = val;
1500 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1501 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1502 				qtype);
1503 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1504 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1505 				qtype);
1506 		}
1507 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1508 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1509 				qtype);
1510 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1511 			 PF_FW_ATQLEN_ATQCRIT_M);
1512 		if (oldval != val)
1513 			wr32(hw, cq->sq.len, val);
1514 	}
1515 
1516 	event.buf_len = cq->rq_buf_size;
1517 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1518 	if (!event.msg_buf)
1519 		return 0;
1520 
1521 	do {
1522 		struct ice_mbx_data data = {};
1523 		u16 opcode;
1524 		int ret;
1525 
1526 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1527 		if (ret == -EALREADY)
1528 			break;
1529 		if (ret) {
1530 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1531 				ret);
1532 			break;
1533 		}
1534 
1535 		opcode = le16_to_cpu(event.desc.opcode);
1536 
1537 		/* Notify any thread that might be waiting for this event */
1538 		ice_aq_check_events(pf, opcode, &event);
1539 
1540 		switch (opcode) {
1541 		case ice_aqc_opc_get_link_status:
1542 			if (ice_handle_link_event(pf, &event))
1543 				dev_err(dev, "Could not handle link event\n");
1544 			break;
1545 		case ice_aqc_opc_event_lan_overflow:
1546 			ice_vf_lan_overflow_event(pf, &event);
1547 			break;
1548 		case ice_mbx_opc_send_msg_to_pf:
1549 			if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) {
1550 				ice_vc_process_vf_msg(pf, &event, NULL);
1551 				ice_mbx_vf_dec_trig_e830(hw, &event);
1552 			} else {
1553 				u16 val = hw->mailboxq.num_rq_entries;
1554 
1555 				data.max_num_msgs_mbx = val;
1556 				val = ICE_MBX_OVERFLOW_WATERMARK;
1557 				data.async_watermark_val = val;
1558 				data.num_msg_proc = i;
1559 				data.num_pending_arq = pending;
1560 
1561 				ice_vc_process_vf_msg(pf, &event, &data);
1562 			}
1563 			break;
1564 		case ice_aqc_opc_fw_logs_event:
1565 			ice_get_fwlog_data(pf, &event);
1566 			break;
1567 		case ice_aqc_opc_lldp_set_mib_change:
1568 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1569 			break;
1570 		case ice_aqc_opc_get_health_status:
1571 			ice_process_health_status_event(pf, &event);
1572 			break;
1573 		default:
1574 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1575 				qtype, opcode);
1576 			break;
1577 		}
1578 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1579 
1580 	kfree(event.msg_buf);
1581 
1582 	return pending && (i == ICE_DFLT_IRQ_WORK);
1583 }
1584 
1585 /**
1586  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1587  * @hw: pointer to hardware info
1588  * @cq: control queue information
1589  *
1590  * returns true if there are pending messages in a queue, false if there aren't
1591  */
1592 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1593 {
1594 	u16 ntu;
1595 
1596 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1597 	return cq->rq.next_to_clean != ntu;
1598 }
1599 
1600 /**
1601  * ice_clean_adminq_subtask - clean the AdminQ rings
1602  * @pf: board private structure
1603  */
1604 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1605 {
1606 	struct ice_hw *hw = &pf->hw;
1607 
1608 	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1609 		return;
1610 
1611 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1612 		return;
1613 
1614 	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1615 
1616 	/* There might be a situation where new messages arrive to a control
1617 	 * queue between processing the last message and clearing the
1618 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1619 	 * ice_ctrlq_pending) and process new messages if any.
1620 	 */
1621 	if (ice_ctrlq_pending(hw, &hw->adminq))
1622 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1623 
1624 	ice_flush(hw);
1625 }
1626 
1627 /**
1628  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1629  * @pf: board private structure
1630  */
1631 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1632 {
1633 	struct ice_hw *hw = &pf->hw;
1634 
1635 	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1636 		return;
1637 
1638 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1639 		return;
1640 
1641 	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1642 
1643 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1644 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1645 
1646 	ice_flush(hw);
1647 }
1648 
1649 /**
1650  * ice_clean_sbq_subtask - clean the Sideband Queue rings
1651  * @pf: board private structure
1652  */
1653 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1654 {
1655 	struct ice_hw *hw = &pf->hw;
1656 
1657 	/* if mac_type is not generic, sideband is not supported
1658 	 * and there's nothing to do here
1659 	 */
1660 	if (!ice_is_generic_mac(hw)) {
1661 		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1662 		return;
1663 	}
1664 
1665 	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1666 		return;
1667 
1668 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1669 		return;
1670 
1671 	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1672 
1673 	if (ice_ctrlq_pending(hw, &hw->sbq))
1674 		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1675 
1676 	ice_flush(hw);
1677 }
1678 
1679 /**
1680  * ice_service_task_schedule - schedule the service task to wake up
1681  * @pf: board private structure
1682  *
1683  * If not already scheduled, this puts the task into the work queue.
1684  */
1685 void ice_service_task_schedule(struct ice_pf *pf)
1686 {
1687 	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1688 	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1689 	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1690 		queue_work(ice_wq, &pf->serv_task);
1691 }
1692 
1693 /**
1694  * ice_service_task_complete - finish up the service task
1695  * @pf: board private structure
1696  */
1697 static void ice_service_task_complete(struct ice_pf *pf)
1698 {
1699 	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1700 
1701 	/* force memory (pf->state) to sync before next service task */
1702 	smp_mb__before_atomic();
1703 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1704 }
1705 
1706 /**
1707  * ice_service_task_stop - stop service task and cancel works
1708  * @pf: board private structure
1709  *
1710  * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1711  * 1 otherwise.
1712  */
1713 static int ice_service_task_stop(struct ice_pf *pf)
1714 {
1715 	int ret;
1716 
1717 	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1718 
1719 	if (pf->serv_tmr.function)
1720 		del_timer_sync(&pf->serv_tmr);
1721 	if (pf->serv_task.func)
1722 		cancel_work_sync(&pf->serv_task);
1723 
1724 	clear_bit(ICE_SERVICE_SCHED, pf->state);
1725 	return ret;
1726 }
1727 
1728 /**
1729  * ice_service_task_restart - restart service task and schedule works
1730  * @pf: board private structure
1731  *
1732  * This function is needed for suspend and resume works (e.g WoL scenario)
1733  */
1734 static void ice_service_task_restart(struct ice_pf *pf)
1735 {
1736 	clear_bit(ICE_SERVICE_DIS, pf->state);
1737 	ice_service_task_schedule(pf);
1738 }
1739 
1740 /**
1741  * ice_service_timer - timer callback to schedule service task
1742  * @t: pointer to timer_list
1743  */
1744 static void ice_service_timer(struct timer_list *t)
1745 {
1746 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1747 
1748 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1749 	ice_service_task_schedule(pf);
1750 }
1751 
1752 /**
1753  * ice_mdd_maybe_reset_vf - reset VF after MDD event
1754  * @pf: pointer to the PF structure
1755  * @vf: pointer to the VF structure
1756  * @reset_vf_tx: whether Tx MDD has occurred
1757  * @reset_vf_rx: whether Rx MDD has occurred
1758  *
1759  * Since the queue can get stuck on VF MDD events, the PF can be configured to
1760  * automatically reset the VF by enabling the private ethtool flag
1761  * mdd-auto-reset-vf.
1762  */
1763 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf,
1764 				   bool reset_vf_tx, bool reset_vf_rx)
1765 {
1766 	struct device *dev = ice_pf_to_dev(pf);
1767 
1768 	if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags))
1769 		return;
1770 
1771 	/* VF MDD event counters will be cleared by reset, so print the event
1772 	 * prior to reset.
1773 	 */
1774 	if (reset_vf_tx)
1775 		ice_print_vf_tx_mdd_event(vf);
1776 
1777 	if (reset_vf_rx)
1778 		ice_print_vf_rx_mdd_event(vf);
1779 
1780 	dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n",
1781 		 pf->hw.pf_id, vf->vf_id);
1782 	ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1783 }
1784 
1785 /**
1786  * ice_handle_mdd_event - handle malicious driver detect event
1787  * @pf: pointer to the PF structure
1788  *
1789  * Called from service task. OICR interrupt handler indicates MDD event.
1790  * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1791  * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1792  * disable the queue, the PF can be configured to reset the VF using ethtool
1793  * private flag mdd-auto-reset-vf.
1794  */
1795 static void ice_handle_mdd_event(struct ice_pf *pf)
1796 {
1797 	struct device *dev = ice_pf_to_dev(pf);
1798 	struct ice_hw *hw = &pf->hw;
1799 	struct ice_vf *vf;
1800 	unsigned int bkt;
1801 	u32 reg;
1802 
1803 	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1804 		/* Since the VF MDD event logging is rate limited, check if
1805 		 * there are pending MDD events.
1806 		 */
1807 		ice_print_vfs_mdd_events(pf);
1808 		return;
1809 	}
1810 
1811 	/* find what triggered an MDD event */
1812 	reg = rd32(hw, GL_MDET_TX_PQM);
1813 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1814 		u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg);
1815 		u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg);
1816 		u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg);
1817 		u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg);
1818 
1819 		if (netif_msg_tx_err(pf))
1820 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1821 				 event, queue, pf_num, vf_num);
1822 		ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num,
1823 				     event, queue);
1824 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1825 	}
1826 
1827 	reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw));
1828 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1829 		u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg);
1830 		u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg);
1831 		u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg);
1832 		u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg);
1833 
1834 		if (netif_msg_tx_err(pf))
1835 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1836 				 event, queue, pf_num, vf_num);
1837 		ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num,
1838 				     event, queue);
1839 		wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX);
1840 	}
1841 
1842 	reg = rd32(hw, GL_MDET_RX);
1843 	if (reg & GL_MDET_RX_VALID_M) {
1844 		u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg);
1845 		u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg);
1846 		u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg);
1847 		u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg);
1848 
1849 		if (netif_msg_rx_err(pf))
1850 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1851 				 event, queue, pf_num, vf_num);
1852 		ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event,
1853 				     queue);
1854 		wr32(hw, GL_MDET_RX, 0xffffffff);
1855 	}
1856 
1857 	/* check to see if this PF caused an MDD event */
1858 	reg = rd32(hw, PF_MDET_TX_PQM);
1859 	if (reg & PF_MDET_TX_PQM_VALID_M) {
1860 		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1861 		if (netif_msg_tx_err(pf))
1862 			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1863 	}
1864 
1865 	reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw));
1866 	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1867 		wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff);
1868 		if (netif_msg_tx_err(pf))
1869 			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1870 	}
1871 
1872 	reg = rd32(hw, PF_MDET_RX);
1873 	if (reg & PF_MDET_RX_VALID_M) {
1874 		wr32(hw, PF_MDET_RX, 0xFFFF);
1875 		if (netif_msg_rx_err(pf))
1876 			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1877 	}
1878 
1879 	/* Check to see if one of the VFs caused an MDD event, and then
1880 	 * increment counters and set print pending
1881 	 */
1882 	mutex_lock(&pf->vfs.table_lock);
1883 	ice_for_each_vf(pf, bkt, vf) {
1884 		bool reset_vf_tx = false, reset_vf_rx = false;
1885 
1886 		reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1887 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1888 			wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1889 			vf->mdd_tx_events.count++;
1890 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1891 			if (netif_msg_tx_err(pf))
1892 				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1893 					 vf->vf_id);
1894 
1895 			reset_vf_tx = true;
1896 		}
1897 
1898 		reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1899 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1900 			wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1901 			vf->mdd_tx_events.count++;
1902 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1903 			if (netif_msg_tx_err(pf))
1904 				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1905 					 vf->vf_id);
1906 
1907 			reset_vf_tx = true;
1908 		}
1909 
1910 		reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1911 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1912 			wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1913 			vf->mdd_tx_events.count++;
1914 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1915 			if (netif_msg_tx_err(pf))
1916 				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1917 					 vf->vf_id);
1918 
1919 			reset_vf_tx = true;
1920 		}
1921 
1922 		reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1923 		if (reg & VP_MDET_RX_VALID_M) {
1924 			wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1925 			vf->mdd_rx_events.count++;
1926 			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1927 			if (netif_msg_rx_err(pf))
1928 				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1929 					 vf->vf_id);
1930 
1931 			reset_vf_rx = true;
1932 		}
1933 
1934 		if (reset_vf_tx || reset_vf_rx)
1935 			ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx,
1936 					       reset_vf_rx);
1937 	}
1938 	mutex_unlock(&pf->vfs.table_lock);
1939 
1940 	ice_print_vfs_mdd_events(pf);
1941 }
1942 
1943 /**
1944  * ice_force_phys_link_state - Force the physical link state
1945  * @vsi: VSI to force the physical link state to up/down
1946  * @link_up: true/false indicates to set the physical link to up/down
1947  *
1948  * Force the physical link state by getting the current PHY capabilities from
1949  * hardware and setting the PHY config based on the determined capabilities. If
1950  * link changes a link event will be triggered because both the Enable Automatic
1951  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1952  *
1953  * Returns 0 on success, negative on failure
1954  */
1955 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1956 {
1957 	struct ice_aqc_get_phy_caps_data *pcaps;
1958 	struct ice_aqc_set_phy_cfg_data *cfg;
1959 	struct ice_port_info *pi;
1960 	struct device *dev;
1961 	int retcode;
1962 
1963 	if (!vsi || !vsi->port_info || !vsi->back)
1964 		return -EINVAL;
1965 	if (vsi->type != ICE_VSI_PF)
1966 		return 0;
1967 
1968 	dev = ice_pf_to_dev(vsi->back);
1969 
1970 	pi = vsi->port_info;
1971 
1972 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1973 	if (!pcaps)
1974 		return -ENOMEM;
1975 
1976 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1977 				      NULL);
1978 	if (retcode) {
1979 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1980 			vsi->vsi_num, retcode);
1981 		retcode = -EIO;
1982 		goto out;
1983 	}
1984 
1985 	/* No change in link */
1986 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1987 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1988 		goto out;
1989 
1990 	/* Use the current user PHY configuration. The current user PHY
1991 	 * configuration is initialized during probe from PHY capabilities
1992 	 * software mode, and updated on set PHY configuration.
1993 	 */
1994 	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1995 	if (!cfg) {
1996 		retcode = -ENOMEM;
1997 		goto out;
1998 	}
1999 
2000 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2001 	if (link_up)
2002 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
2003 	else
2004 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
2005 
2006 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
2007 	if (retcode) {
2008 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2009 			vsi->vsi_num, retcode);
2010 		retcode = -EIO;
2011 	}
2012 
2013 	kfree(cfg);
2014 out:
2015 	kfree(pcaps);
2016 	return retcode;
2017 }
2018 
2019 /**
2020  * ice_init_nvm_phy_type - Initialize the NVM PHY type
2021  * @pi: port info structure
2022  *
2023  * Initialize nvm_phy_type_[low|high] for link lenient mode support
2024  */
2025 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
2026 {
2027 	struct ice_aqc_get_phy_caps_data *pcaps;
2028 	struct ice_pf *pf = pi->hw->back;
2029 	int err;
2030 
2031 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2032 	if (!pcaps)
2033 		return -ENOMEM;
2034 
2035 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
2036 				  pcaps, NULL);
2037 
2038 	if (err) {
2039 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2040 		goto out;
2041 	}
2042 
2043 	pf->nvm_phy_type_hi = pcaps->phy_type_high;
2044 	pf->nvm_phy_type_lo = pcaps->phy_type_low;
2045 
2046 out:
2047 	kfree(pcaps);
2048 	return err;
2049 }
2050 
2051 /**
2052  * ice_init_link_dflt_override - Initialize link default override
2053  * @pi: port info structure
2054  *
2055  * Initialize link default override and PHY total port shutdown during probe
2056  */
2057 static void ice_init_link_dflt_override(struct ice_port_info *pi)
2058 {
2059 	struct ice_link_default_override_tlv *ldo;
2060 	struct ice_pf *pf = pi->hw->back;
2061 
2062 	ldo = &pf->link_dflt_override;
2063 	if (ice_get_link_default_override(ldo, pi))
2064 		return;
2065 
2066 	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
2067 		return;
2068 
2069 	/* Enable Total Port Shutdown (override/replace link-down-on-close
2070 	 * ethtool private flag) for ports with Port Disable bit set.
2071 	 */
2072 	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
2073 	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
2074 }
2075 
2076 /**
2077  * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
2078  * @pi: port info structure
2079  *
2080  * If default override is enabled, initialize the user PHY cfg speed and FEC
2081  * settings using the default override mask from the NVM.
2082  *
2083  * The PHY should only be configured with the default override settings the
2084  * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2085  * is used to indicate that the user PHY cfg default override is initialized
2086  * and the PHY has not been configured with the default override settings. The
2087  * state is set here, and cleared in ice_configure_phy the first time the PHY is
2088  * configured.
2089  *
2090  * This function should be called only if the FW doesn't support default
2091  * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2092  */
2093 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2094 {
2095 	struct ice_link_default_override_tlv *ldo;
2096 	struct ice_aqc_set_phy_cfg_data *cfg;
2097 	struct ice_phy_info *phy = &pi->phy;
2098 	struct ice_pf *pf = pi->hw->back;
2099 
2100 	ldo = &pf->link_dflt_override;
2101 
2102 	/* If link default override is enabled, use to mask NVM PHY capabilities
2103 	 * for speed and FEC default configuration.
2104 	 */
2105 	cfg = &phy->curr_user_phy_cfg;
2106 
2107 	if (ldo->phy_type_low || ldo->phy_type_high) {
2108 		cfg->phy_type_low = pf->nvm_phy_type_lo &
2109 				    cpu_to_le64(ldo->phy_type_low);
2110 		cfg->phy_type_high = pf->nvm_phy_type_hi &
2111 				     cpu_to_le64(ldo->phy_type_high);
2112 	}
2113 	cfg->link_fec_opt = ldo->fec_options;
2114 	phy->curr_user_fec_req = ICE_FEC_AUTO;
2115 
2116 	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2117 }
2118 
2119 /**
2120  * ice_init_phy_user_cfg - Initialize the PHY user configuration
2121  * @pi: port info structure
2122  *
2123  * Initialize the current user PHY configuration, speed, FEC, and FC requested
2124  * mode to default. The PHY defaults are from get PHY capabilities topology
2125  * with media so call when media is first available. An error is returned if
2126  * called when media is not available. The PHY initialization completed state is
2127  * set here.
2128  *
2129  * These configurations are used when setting PHY
2130  * configuration. The user PHY configuration is updated on set PHY
2131  * configuration. Returns 0 on success, negative on failure
2132  */
2133 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2134 {
2135 	struct ice_aqc_get_phy_caps_data *pcaps;
2136 	struct ice_phy_info *phy = &pi->phy;
2137 	struct ice_pf *pf = pi->hw->back;
2138 	int err;
2139 
2140 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2141 		return -EIO;
2142 
2143 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2144 	if (!pcaps)
2145 		return -ENOMEM;
2146 
2147 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2148 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2149 					  pcaps, NULL);
2150 	else
2151 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2152 					  pcaps, NULL);
2153 	if (err) {
2154 		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2155 		goto err_out;
2156 	}
2157 
2158 	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2159 
2160 	/* check if lenient mode is supported and enabled */
2161 	if (ice_fw_supports_link_override(pi->hw) &&
2162 	    !(pcaps->module_compliance_enforcement &
2163 	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2164 		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2165 
2166 		/* if the FW supports default PHY configuration mode, then the driver
2167 		 * does not have to apply link override settings. If not,
2168 		 * initialize user PHY configuration with link override values
2169 		 */
2170 		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2171 		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2172 			ice_init_phy_cfg_dflt_override(pi);
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	/* if link default override is not enabled, set user flow control and
2178 	 * FEC settings based on what get_phy_caps returned
2179 	 */
2180 	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2181 						      pcaps->link_fec_options);
2182 	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2183 
2184 out:
2185 	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2186 	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2187 err_out:
2188 	kfree(pcaps);
2189 	return err;
2190 }
2191 
2192 /**
2193  * ice_configure_phy - configure PHY
2194  * @vsi: VSI of PHY
2195  *
2196  * Set the PHY configuration. If the current PHY configuration is the same as
2197  * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2198  * configure the based get PHY capabilities for topology with media.
2199  */
2200 static int ice_configure_phy(struct ice_vsi *vsi)
2201 {
2202 	struct device *dev = ice_pf_to_dev(vsi->back);
2203 	struct ice_port_info *pi = vsi->port_info;
2204 	struct ice_aqc_get_phy_caps_data *pcaps;
2205 	struct ice_aqc_set_phy_cfg_data *cfg;
2206 	struct ice_phy_info *phy = &pi->phy;
2207 	struct ice_pf *pf = vsi->back;
2208 	int err;
2209 
2210 	/* Ensure we have media as we cannot configure a medialess port */
2211 	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2212 		return -ENOMEDIUM;
2213 
2214 	ice_print_topo_conflict(vsi);
2215 
2216 	if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2217 	    phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2218 		return -EPERM;
2219 
2220 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2221 		return ice_force_phys_link_state(vsi, true);
2222 
2223 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2224 	if (!pcaps)
2225 		return -ENOMEM;
2226 
2227 	/* Get current PHY config */
2228 	err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2229 				  NULL);
2230 	if (err) {
2231 		dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2232 			vsi->vsi_num, err);
2233 		goto done;
2234 	}
2235 
2236 	/* If PHY enable link is configured and configuration has not changed,
2237 	 * there's nothing to do
2238 	 */
2239 	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2240 	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2241 		goto done;
2242 
2243 	/* Use PHY topology as baseline for configuration */
2244 	memset(pcaps, 0, sizeof(*pcaps));
2245 	if (ice_fw_supports_report_dflt_cfg(pi->hw))
2246 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2247 					  pcaps, NULL);
2248 	else
2249 		err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2250 					  pcaps, NULL);
2251 	if (err) {
2252 		dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2253 			vsi->vsi_num, err);
2254 		goto done;
2255 	}
2256 
2257 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2258 	if (!cfg) {
2259 		err = -ENOMEM;
2260 		goto done;
2261 	}
2262 
2263 	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2264 
2265 	/* Speed - If default override pending, use curr_user_phy_cfg set in
2266 	 * ice_init_phy_user_cfg_ldo.
2267 	 */
2268 	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2269 			       vsi->back->state)) {
2270 		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2271 		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2272 	} else {
2273 		u64 phy_low = 0, phy_high = 0;
2274 
2275 		ice_update_phy_type(&phy_low, &phy_high,
2276 				    pi->phy.curr_user_speed_req);
2277 		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2278 		cfg->phy_type_high = pcaps->phy_type_high &
2279 				     cpu_to_le64(phy_high);
2280 	}
2281 
2282 	/* Can't provide what was requested; use PHY capabilities */
2283 	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2284 		cfg->phy_type_low = pcaps->phy_type_low;
2285 		cfg->phy_type_high = pcaps->phy_type_high;
2286 	}
2287 
2288 	/* FEC */
2289 	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2290 
2291 	/* Can't provide what was requested; use PHY capabilities */
2292 	if (cfg->link_fec_opt !=
2293 	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2294 		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2295 		cfg->link_fec_opt = pcaps->link_fec_options;
2296 	}
2297 
2298 	/* Flow Control - always supported; no need to check against
2299 	 * capabilities
2300 	 */
2301 	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2302 
2303 	/* Enable link and link update */
2304 	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2305 
2306 	err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2307 	if (err)
2308 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2309 			vsi->vsi_num, err);
2310 
2311 	kfree(cfg);
2312 done:
2313 	kfree(pcaps);
2314 	return err;
2315 }
2316 
2317 /**
2318  * ice_check_media_subtask - Check for media
2319  * @pf: pointer to PF struct
2320  *
2321  * If media is available, then initialize PHY user configuration if it is not
2322  * been, and configure the PHY if the interface is up.
2323  */
2324 static void ice_check_media_subtask(struct ice_pf *pf)
2325 {
2326 	struct ice_port_info *pi;
2327 	struct ice_vsi *vsi;
2328 	int err;
2329 
2330 	/* No need to check for media if it's already present */
2331 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2332 		return;
2333 
2334 	vsi = ice_get_main_vsi(pf);
2335 	if (!vsi)
2336 		return;
2337 
2338 	/* Refresh link info and check if media is present */
2339 	pi = vsi->port_info;
2340 	err = ice_update_link_info(pi);
2341 	if (err)
2342 		return;
2343 
2344 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2345 
2346 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2347 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2348 			ice_init_phy_user_cfg(pi);
2349 
2350 		/* PHY settings are reset on media insertion, reconfigure
2351 		 * PHY to preserve settings.
2352 		 */
2353 		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2354 		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2355 			return;
2356 
2357 		err = ice_configure_phy(vsi);
2358 		if (!err)
2359 			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2360 
2361 		/* A Link Status Event will be generated; the event handler
2362 		 * will complete bringing the interface up
2363 		 */
2364 	}
2365 }
2366 
2367 static void ice_service_task_recovery_mode(struct work_struct *work)
2368 {
2369 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2370 
2371 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2372 	ice_clean_adminq_subtask(pf);
2373 
2374 	ice_service_task_complete(pf);
2375 
2376 	mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100));
2377 }
2378 
2379 /**
2380  * ice_service_task - manage and run subtasks
2381  * @work: pointer to work_struct contained by the PF struct
2382  */
2383 static void ice_service_task(struct work_struct *work)
2384 {
2385 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2386 	unsigned long start_time = jiffies;
2387 
2388 	if (pf->health_reporters.tx_hang_buf.tx_ring) {
2389 		ice_report_tx_hang(pf);
2390 		pf->health_reporters.tx_hang_buf.tx_ring = NULL;
2391 	}
2392 
2393 	ice_reset_subtask(pf);
2394 
2395 	/* bail if a reset/recovery cycle is pending or rebuild failed */
2396 	if (ice_is_reset_in_progress(pf->state) ||
2397 	    test_bit(ICE_SUSPENDED, pf->state) ||
2398 	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2399 		ice_service_task_complete(pf);
2400 		return;
2401 	}
2402 
2403 	if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2404 		struct iidc_event *event;
2405 
2406 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2407 		if (event) {
2408 			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2409 			/* report the entire OICR value to AUX driver */
2410 			swap(event->reg, pf->oicr_err_reg);
2411 			ice_send_event_to_aux(pf, event);
2412 			kfree(event);
2413 		}
2414 	}
2415 
2416 	/* unplug aux dev per request, if an unplug request came in
2417 	 * while processing a plug request, this will handle it
2418 	 */
2419 	if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags))
2420 		ice_unplug_aux_dev(pf);
2421 
2422 	/* Plug aux device per request */
2423 	if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2424 		ice_plug_aux_dev(pf);
2425 
2426 	if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2427 		struct iidc_event *event;
2428 
2429 		event = kzalloc(sizeof(*event), GFP_KERNEL);
2430 		if (event) {
2431 			set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2432 			ice_send_event_to_aux(pf, event);
2433 			kfree(event);
2434 		}
2435 	}
2436 
2437 	ice_clean_adminq_subtask(pf);
2438 	ice_check_media_subtask(pf);
2439 	ice_check_for_hang_subtask(pf);
2440 	ice_sync_fltr_subtask(pf);
2441 	ice_handle_mdd_event(pf);
2442 	ice_watchdog_subtask(pf);
2443 
2444 	if (ice_is_safe_mode(pf)) {
2445 		ice_service_task_complete(pf);
2446 		return;
2447 	}
2448 
2449 	ice_process_vflr_event(pf);
2450 	ice_clean_mailboxq_subtask(pf);
2451 	ice_clean_sbq_subtask(pf);
2452 	ice_sync_arfs_fltrs(pf);
2453 	ice_flush_fdir_ctx(pf);
2454 
2455 	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2456 	ice_service_task_complete(pf);
2457 
2458 	/* If the tasks have taken longer than one service timer period
2459 	 * or there is more work to be done, reset the service timer to
2460 	 * schedule the service task now.
2461 	 */
2462 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2463 	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2464 	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2465 	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2466 	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2467 	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2468 	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2469 		mod_timer(&pf->serv_tmr, jiffies);
2470 }
2471 
2472 /**
2473  * ice_set_ctrlq_len - helper function to set controlq length
2474  * @hw: pointer to the HW instance
2475  */
2476 static void ice_set_ctrlq_len(struct ice_hw *hw)
2477 {
2478 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2479 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2480 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2481 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2482 	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2483 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2484 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2485 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2486 	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2487 	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2488 	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2489 	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2490 }
2491 
2492 /**
2493  * ice_schedule_reset - schedule a reset
2494  * @pf: board private structure
2495  * @reset: reset being requested
2496  */
2497 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2498 {
2499 	struct device *dev = ice_pf_to_dev(pf);
2500 
2501 	/* bail out if earlier reset has failed */
2502 	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2503 		dev_dbg(dev, "earlier reset has failed\n");
2504 		return -EIO;
2505 	}
2506 	/* bail if reset/recovery already in progress */
2507 	if (ice_is_reset_in_progress(pf->state)) {
2508 		dev_dbg(dev, "Reset already in progress\n");
2509 		return -EBUSY;
2510 	}
2511 
2512 	switch (reset) {
2513 	case ICE_RESET_PFR:
2514 		set_bit(ICE_PFR_REQ, pf->state);
2515 		break;
2516 	case ICE_RESET_CORER:
2517 		set_bit(ICE_CORER_REQ, pf->state);
2518 		break;
2519 	case ICE_RESET_GLOBR:
2520 		set_bit(ICE_GLOBR_REQ, pf->state);
2521 		break;
2522 	default:
2523 		return -EINVAL;
2524 	}
2525 
2526 	ice_service_task_schedule(pf);
2527 	return 0;
2528 }
2529 
2530 /**
2531  * ice_irq_affinity_notify - Callback for affinity changes
2532  * @notify: context as to what irq was changed
2533  * @mask: the new affinity mask
2534  *
2535  * This is a callback function used by the irq_set_affinity_notifier function
2536  * so that we may register to receive changes to the irq affinity masks.
2537  */
2538 static void
2539 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2540 			const cpumask_t *mask)
2541 {
2542 	struct ice_q_vector *q_vector =
2543 		container_of(notify, struct ice_q_vector, affinity_notify);
2544 
2545 	cpumask_copy(&q_vector->affinity_mask, mask);
2546 }
2547 
2548 /**
2549  * ice_irq_affinity_release - Callback for affinity notifier release
2550  * @ref: internal core kernel usage
2551  *
2552  * This is a callback function used by the irq_set_affinity_notifier function
2553  * to inform the current notification subscriber that they will no longer
2554  * receive notifications.
2555  */
2556 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2557 
2558 /**
2559  * ice_vsi_ena_irq - Enable IRQ for the given VSI
2560  * @vsi: the VSI being configured
2561  */
2562 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2563 {
2564 	struct ice_hw *hw = &vsi->back->hw;
2565 	int i;
2566 
2567 	ice_for_each_q_vector(vsi, i)
2568 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2569 
2570 	ice_flush(hw);
2571 	return 0;
2572 }
2573 
2574 /**
2575  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2576  * @vsi: the VSI being configured
2577  * @basename: name for the vector
2578  */
2579 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2580 {
2581 	int q_vectors = vsi->num_q_vectors;
2582 	struct ice_pf *pf = vsi->back;
2583 	struct device *dev;
2584 	int rx_int_idx = 0;
2585 	int tx_int_idx = 0;
2586 	int vector, err;
2587 	int irq_num;
2588 
2589 	dev = ice_pf_to_dev(pf);
2590 	for (vector = 0; vector < q_vectors; vector++) {
2591 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2592 
2593 		irq_num = q_vector->irq.virq;
2594 
2595 		if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2596 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2597 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2598 			tx_int_idx++;
2599 		} else if (q_vector->rx.rx_ring) {
2600 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2601 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2602 		} else if (q_vector->tx.tx_ring) {
2603 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2604 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2605 		} else {
2606 			/* skip this unused q_vector */
2607 			continue;
2608 		}
2609 		if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2610 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2611 					       IRQF_SHARED, q_vector->name,
2612 					       q_vector);
2613 		else
2614 			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2615 					       0, q_vector->name, q_vector);
2616 		if (err) {
2617 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2618 				   err);
2619 			goto free_q_irqs;
2620 		}
2621 
2622 		/* register for affinity change notifications */
2623 		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2624 			struct irq_affinity_notify *affinity_notify;
2625 
2626 			affinity_notify = &q_vector->affinity_notify;
2627 			affinity_notify->notify = ice_irq_affinity_notify;
2628 			affinity_notify->release = ice_irq_affinity_release;
2629 			irq_set_affinity_notifier(irq_num, affinity_notify);
2630 		}
2631 
2632 		/* assign the mask for this irq */
2633 		irq_update_affinity_hint(irq_num, &q_vector->affinity_mask);
2634 	}
2635 
2636 	err = ice_set_cpu_rx_rmap(vsi);
2637 	if (err) {
2638 		netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2639 			   vsi->vsi_num, ERR_PTR(err));
2640 		goto free_q_irqs;
2641 	}
2642 
2643 	vsi->irqs_ready = true;
2644 	return 0;
2645 
2646 free_q_irqs:
2647 	while (vector--) {
2648 		irq_num = vsi->q_vectors[vector]->irq.virq;
2649 		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2650 			irq_set_affinity_notifier(irq_num, NULL);
2651 		irq_update_affinity_hint(irq_num, NULL);
2652 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2653 	}
2654 	return err;
2655 }
2656 
2657 /**
2658  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2659  * @vsi: VSI to setup Tx rings used by XDP
2660  *
2661  * Return 0 on success and negative value on error
2662  */
2663 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2664 {
2665 	struct device *dev = ice_pf_to_dev(vsi->back);
2666 	struct ice_tx_desc *tx_desc;
2667 	int i, j;
2668 
2669 	ice_for_each_xdp_txq(vsi, i) {
2670 		u16 xdp_q_idx = vsi->alloc_txq + i;
2671 		struct ice_ring_stats *ring_stats;
2672 		struct ice_tx_ring *xdp_ring;
2673 
2674 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2675 		if (!xdp_ring)
2676 			goto free_xdp_rings;
2677 
2678 		ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2679 		if (!ring_stats) {
2680 			ice_free_tx_ring(xdp_ring);
2681 			goto free_xdp_rings;
2682 		}
2683 
2684 		xdp_ring->ring_stats = ring_stats;
2685 		xdp_ring->q_index = xdp_q_idx;
2686 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2687 		xdp_ring->vsi = vsi;
2688 		xdp_ring->netdev = NULL;
2689 		xdp_ring->dev = dev;
2690 		xdp_ring->count = vsi->num_tx_desc;
2691 		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2692 		if (ice_setup_tx_ring(xdp_ring))
2693 			goto free_xdp_rings;
2694 		ice_set_ring_xdp(xdp_ring);
2695 		spin_lock_init(&xdp_ring->tx_lock);
2696 		for (j = 0; j < xdp_ring->count; j++) {
2697 			tx_desc = ICE_TX_DESC(xdp_ring, j);
2698 			tx_desc->cmd_type_offset_bsz = 0;
2699 		}
2700 	}
2701 
2702 	return 0;
2703 
2704 free_xdp_rings:
2705 	for (; i >= 0; i--) {
2706 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2707 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2708 			vsi->xdp_rings[i]->ring_stats = NULL;
2709 			ice_free_tx_ring(vsi->xdp_rings[i]);
2710 		}
2711 	}
2712 	return -ENOMEM;
2713 }
2714 
2715 /**
2716  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2717  * @vsi: VSI to set the bpf prog on
2718  * @prog: the bpf prog pointer
2719  */
2720 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2721 {
2722 	struct bpf_prog *old_prog;
2723 	int i;
2724 
2725 	old_prog = xchg(&vsi->xdp_prog, prog);
2726 	ice_for_each_rxq(vsi, i)
2727 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2728 
2729 	if (old_prog)
2730 		bpf_prog_put(old_prog);
2731 }
2732 
2733 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid)
2734 {
2735 	struct ice_q_vector *q_vector;
2736 	struct ice_tx_ring *ring;
2737 
2738 	if (static_key_enabled(&ice_xdp_locking_key))
2739 		return vsi->xdp_rings[qid % vsi->num_xdp_txq];
2740 
2741 	q_vector = vsi->rx_rings[qid]->q_vector;
2742 	ice_for_each_tx_ring(ring, q_vector->tx)
2743 		if (ice_ring_is_xdp(ring))
2744 			return ring;
2745 
2746 	return NULL;
2747 }
2748 
2749 /**
2750  * ice_map_xdp_rings - Map XDP rings to interrupt vectors
2751  * @vsi: the VSI with XDP rings being configured
2752  *
2753  * Map XDP rings to interrupt vectors and perform the configuration steps
2754  * dependent on the mapping.
2755  */
2756 void ice_map_xdp_rings(struct ice_vsi *vsi)
2757 {
2758 	int xdp_rings_rem = vsi->num_xdp_txq;
2759 	int v_idx, q_idx;
2760 
2761 	/* follow the logic from ice_vsi_map_rings_to_vectors */
2762 	ice_for_each_q_vector(vsi, v_idx) {
2763 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2764 		int xdp_rings_per_v, q_id, q_base;
2765 
2766 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2767 					       vsi->num_q_vectors - v_idx);
2768 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2769 
2770 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2771 			struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2772 
2773 			xdp_ring->q_vector = q_vector;
2774 			xdp_ring->next = q_vector->tx.tx_ring;
2775 			q_vector->tx.tx_ring = xdp_ring;
2776 		}
2777 		xdp_rings_rem -= xdp_rings_per_v;
2778 	}
2779 
2780 	ice_for_each_rxq(vsi, q_idx) {
2781 		vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi,
2782 								       q_idx);
2783 		ice_tx_xsk_pool(vsi, q_idx);
2784 	}
2785 }
2786 
2787 /**
2788  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2789  * @vsi: VSI to bring up Tx rings used by XDP
2790  * @prog: bpf program that will be assigned to VSI
2791  * @cfg_type: create from scratch or restore the existing configuration
2792  *
2793  * Return 0 on success and negative value on error
2794  */
2795 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog,
2796 			  enum ice_xdp_cfg cfg_type)
2797 {
2798 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2799 	struct ice_pf *pf = vsi->back;
2800 	struct ice_qs_cfg xdp_qs_cfg = {
2801 		.qs_mutex = &pf->avail_q_mutex,
2802 		.pf_map = pf->avail_txqs,
2803 		.pf_map_size = pf->max_pf_txqs,
2804 		.q_count = vsi->num_xdp_txq,
2805 		.scatter_count = ICE_MAX_SCATTER_TXQS,
2806 		.vsi_map = vsi->txq_map,
2807 		.vsi_map_offset = vsi->alloc_txq,
2808 		.mapping_mode = ICE_VSI_MAP_CONTIG
2809 	};
2810 	struct device *dev;
2811 	int status, i;
2812 
2813 	dev = ice_pf_to_dev(pf);
2814 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2815 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2816 	if (!vsi->xdp_rings)
2817 		return -ENOMEM;
2818 
2819 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2820 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2821 		goto err_map_xdp;
2822 
2823 	if (static_key_enabled(&ice_xdp_locking_key))
2824 		netdev_warn(vsi->netdev,
2825 			    "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2826 
2827 	if (ice_xdp_alloc_setup_rings(vsi))
2828 		goto clear_xdp_rings;
2829 
2830 	/* omit the scheduler update if in reset path; XDP queues will be
2831 	 * taken into account at the end of ice_vsi_rebuild, where
2832 	 * ice_cfg_vsi_lan is being called
2833 	 */
2834 	if (cfg_type == ICE_XDP_CFG_PART)
2835 		return 0;
2836 
2837 	ice_map_xdp_rings(vsi);
2838 
2839 	/* tell the Tx scheduler that right now we have
2840 	 * additional queues
2841 	 */
2842 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2843 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2844 
2845 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2846 				 max_txqs);
2847 	if (status) {
2848 		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2849 			status);
2850 		goto clear_xdp_rings;
2851 	}
2852 
2853 	/* assign the prog only when it's not already present on VSI;
2854 	 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2855 	 * VSI rebuild that happens under ethtool -L can expose us to
2856 	 * the bpf_prog refcount issues as we would be swapping same
2857 	 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2858 	 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2859 	 * this is not harmful as dev_xdp_install bumps the refcount
2860 	 * before calling the op exposed by the driver;
2861 	 */
2862 	if (!ice_is_xdp_ena_vsi(vsi))
2863 		ice_vsi_assign_bpf_prog(vsi, prog);
2864 
2865 	return 0;
2866 clear_xdp_rings:
2867 	ice_for_each_xdp_txq(vsi, i)
2868 		if (vsi->xdp_rings[i]) {
2869 			kfree_rcu(vsi->xdp_rings[i], rcu);
2870 			vsi->xdp_rings[i] = NULL;
2871 		}
2872 
2873 err_map_xdp:
2874 	mutex_lock(&pf->avail_q_mutex);
2875 	ice_for_each_xdp_txq(vsi, i) {
2876 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2877 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2878 	}
2879 	mutex_unlock(&pf->avail_q_mutex);
2880 
2881 	devm_kfree(dev, vsi->xdp_rings);
2882 	return -ENOMEM;
2883 }
2884 
2885 /**
2886  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2887  * @vsi: VSI to remove XDP rings
2888  * @cfg_type: disable XDP permanently or allow it to be restored later
2889  *
2890  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2891  * resources
2892  */
2893 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type)
2894 {
2895 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2896 	struct ice_pf *pf = vsi->back;
2897 	int i, v_idx;
2898 
2899 	/* q_vectors are freed in reset path so there's no point in detaching
2900 	 * rings
2901 	 */
2902 	if (cfg_type == ICE_XDP_CFG_PART)
2903 		goto free_qmap;
2904 
2905 	ice_for_each_q_vector(vsi, v_idx) {
2906 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2907 		struct ice_tx_ring *ring;
2908 
2909 		ice_for_each_tx_ring(ring, q_vector->tx)
2910 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2911 				break;
2912 
2913 		/* restore the value of last node prior to XDP setup */
2914 		q_vector->tx.tx_ring = ring;
2915 	}
2916 
2917 free_qmap:
2918 	mutex_lock(&pf->avail_q_mutex);
2919 	ice_for_each_xdp_txq(vsi, i) {
2920 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2921 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2922 	}
2923 	mutex_unlock(&pf->avail_q_mutex);
2924 
2925 	ice_for_each_xdp_txq(vsi, i)
2926 		if (vsi->xdp_rings[i]) {
2927 			if (vsi->xdp_rings[i]->desc) {
2928 				synchronize_rcu();
2929 				ice_free_tx_ring(vsi->xdp_rings[i]);
2930 			}
2931 			kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2932 			vsi->xdp_rings[i]->ring_stats = NULL;
2933 			kfree_rcu(vsi->xdp_rings[i], rcu);
2934 			vsi->xdp_rings[i] = NULL;
2935 		}
2936 
2937 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2938 	vsi->xdp_rings = NULL;
2939 
2940 	if (static_key_enabled(&ice_xdp_locking_key))
2941 		static_branch_dec(&ice_xdp_locking_key);
2942 
2943 	if (cfg_type == ICE_XDP_CFG_PART)
2944 		return 0;
2945 
2946 	ice_vsi_assign_bpf_prog(vsi, NULL);
2947 
2948 	/* notify Tx scheduler that we destroyed XDP queues and bring
2949 	 * back the old number of child nodes
2950 	 */
2951 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2952 		max_txqs[i] = vsi->num_txq;
2953 
2954 	/* change number of XDP Tx queues to 0 */
2955 	vsi->num_xdp_txq = 0;
2956 
2957 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2958 			       max_txqs);
2959 }
2960 
2961 /**
2962  * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2963  * @vsi: VSI to schedule napi on
2964  */
2965 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2966 {
2967 	int i;
2968 
2969 	ice_for_each_rxq(vsi, i) {
2970 		struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2971 
2972 		if (READ_ONCE(rx_ring->xsk_pool))
2973 			napi_schedule(&rx_ring->q_vector->napi);
2974 	}
2975 }
2976 
2977 /**
2978  * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2979  * @vsi: VSI to determine the count of XDP Tx qs
2980  *
2981  * returns 0 if Tx qs count is higher than at least half of CPU count,
2982  * -ENOMEM otherwise
2983  */
2984 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2985 {
2986 	u16 avail = ice_get_avail_txq_count(vsi->back);
2987 	u16 cpus = num_possible_cpus();
2988 
2989 	if (avail < cpus / 2)
2990 		return -ENOMEM;
2991 
2992 	if (vsi->type == ICE_VSI_SF)
2993 		avail = vsi->alloc_txq;
2994 
2995 	vsi->num_xdp_txq = min_t(u16, avail, cpus);
2996 
2997 	if (vsi->num_xdp_txq < cpus)
2998 		static_branch_inc(&ice_xdp_locking_key);
2999 
3000 	return 0;
3001 }
3002 
3003 /**
3004  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
3005  * @vsi: Pointer to VSI structure
3006  */
3007 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
3008 {
3009 	if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
3010 		return ICE_RXBUF_1664;
3011 	else
3012 		return ICE_RXBUF_3072;
3013 }
3014 
3015 /**
3016  * ice_xdp_setup_prog - Add or remove XDP eBPF program
3017  * @vsi: VSI to setup XDP for
3018  * @prog: XDP program
3019  * @extack: netlink extended ack
3020  */
3021 static int
3022 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
3023 		   struct netlink_ext_ack *extack)
3024 {
3025 	unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
3026 	int ret = 0, xdp_ring_err = 0;
3027 	bool if_running;
3028 
3029 	if (prog && !prog->aux->xdp_has_frags) {
3030 		if (frame_size > ice_max_xdp_frame_size(vsi)) {
3031 			NL_SET_ERR_MSG_MOD(extack,
3032 					   "MTU is too large for linear frames and XDP prog does not support frags");
3033 			return -EOPNOTSUPP;
3034 		}
3035 	}
3036 
3037 	/* hot swap progs and avoid toggling link */
3038 	if (ice_is_xdp_ena_vsi(vsi) == !!prog ||
3039 	    test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) {
3040 		ice_vsi_assign_bpf_prog(vsi, prog);
3041 		return 0;
3042 	}
3043 
3044 	if_running = netif_running(vsi->netdev) &&
3045 		     !test_and_set_bit(ICE_VSI_DOWN, vsi->state);
3046 
3047 	/* need to stop netdev while setting up the program for Rx rings */
3048 	if (if_running) {
3049 		ret = ice_down(vsi);
3050 		if (ret) {
3051 			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
3052 			return ret;
3053 		}
3054 	}
3055 
3056 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
3057 		xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
3058 		if (xdp_ring_err) {
3059 			NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
3060 		} else {
3061 			xdp_ring_err = ice_prepare_xdp_rings(vsi, prog,
3062 							     ICE_XDP_CFG_FULL);
3063 			if (xdp_ring_err)
3064 				NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
3065 		}
3066 		xdp_features_set_redirect_target(vsi->netdev, true);
3067 		/* reallocate Rx queues that are used for zero-copy */
3068 		xdp_ring_err = ice_realloc_zc_buf(vsi, true);
3069 		if (xdp_ring_err)
3070 			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
3071 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
3072 		xdp_features_clear_redirect_target(vsi->netdev);
3073 		xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL);
3074 		if (xdp_ring_err)
3075 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
3076 		/* reallocate Rx queues that were used for zero-copy */
3077 		xdp_ring_err = ice_realloc_zc_buf(vsi, false);
3078 		if (xdp_ring_err)
3079 			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
3080 	}
3081 
3082 	if (if_running)
3083 		ret = ice_up(vsi);
3084 
3085 	if (!ret && prog)
3086 		ice_vsi_rx_napi_schedule(vsi);
3087 
3088 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
3089 }
3090 
3091 /**
3092  * ice_xdp_safe_mode - XDP handler for safe mode
3093  * @dev: netdevice
3094  * @xdp: XDP command
3095  */
3096 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
3097 			     struct netdev_bpf *xdp)
3098 {
3099 	NL_SET_ERR_MSG_MOD(xdp->extack,
3100 			   "Please provide working DDP firmware package in order to use XDP\n"
3101 			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
3102 	return -EOPNOTSUPP;
3103 }
3104 
3105 /**
3106  * ice_xdp - implements XDP handler
3107  * @dev: netdevice
3108  * @xdp: XDP command
3109  */
3110 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
3111 {
3112 	struct ice_netdev_priv *np = netdev_priv(dev);
3113 	struct ice_vsi *vsi = np->vsi;
3114 	int ret;
3115 
3116 	if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) {
3117 		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI");
3118 		return -EINVAL;
3119 	}
3120 
3121 	mutex_lock(&vsi->xdp_state_lock);
3122 
3123 	switch (xdp->command) {
3124 	case XDP_SETUP_PROG:
3125 		ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
3126 		break;
3127 	case XDP_SETUP_XSK_POOL:
3128 		ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id);
3129 		break;
3130 	default:
3131 		ret = -EINVAL;
3132 	}
3133 
3134 	mutex_unlock(&vsi->xdp_state_lock);
3135 	return ret;
3136 }
3137 
3138 /**
3139  * ice_ena_misc_vector - enable the non-queue interrupts
3140  * @pf: board private structure
3141  */
3142 static void ice_ena_misc_vector(struct ice_pf *pf)
3143 {
3144 	struct ice_hw *hw = &pf->hw;
3145 	u32 pf_intr_start_offset;
3146 	u32 val;
3147 
3148 	/* Disable anti-spoof detection interrupt to prevent spurious event
3149 	 * interrupts during a function reset. Anti-spoof functionally is
3150 	 * still supported.
3151 	 */
3152 	val = rd32(hw, GL_MDCK_TX_TDPU);
3153 	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3154 	wr32(hw, GL_MDCK_TX_TDPU, val);
3155 
3156 	/* clear things first */
3157 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
3158 	rd32(hw, PFINT_OICR);		/* read to clear */
3159 
3160 	val = (PFINT_OICR_ECC_ERR_M |
3161 	       PFINT_OICR_MAL_DETECT_M |
3162 	       PFINT_OICR_GRST_M |
3163 	       PFINT_OICR_PCI_EXCEPTION_M |
3164 	       PFINT_OICR_VFLR_M |
3165 	       PFINT_OICR_HMC_ERR_M |
3166 	       PFINT_OICR_PE_PUSH_M |
3167 	       PFINT_OICR_PE_CRITERR_M);
3168 
3169 	wr32(hw, PFINT_OICR_ENA, val);
3170 
3171 	/* SW_ITR_IDX = 0, but don't change INTENA */
3172 	wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
3173 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3174 
3175 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3176 		return;
3177 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3178 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3179 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3180 }
3181 
3182 /**
3183  * ice_ll_ts_intr - ll_ts interrupt handler
3184  * @irq: interrupt number
3185  * @data: pointer to a q_vector
3186  */
3187 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data)
3188 {
3189 	struct ice_pf *pf = data;
3190 	u32 pf_intr_start_offset;
3191 	struct ice_ptp_tx *tx;
3192 	unsigned long flags;
3193 	struct ice_hw *hw;
3194 	u32 val;
3195 	u8 idx;
3196 
3197 	hw = &pf->hw;
3198 	tx = &pf->ptp.port.tx;
3199 	spin_lock_irqsave(&tx->lock, flags);
3200 	ice_ptp_complete_tx_single_tstamp(tx);
3201 
3202 	idx = find_next_bit_wrap(tx->in_use, tx->len,
3203 				 tx->last_ll_ts_idx_read + 1);
3204 	if (idx != tx->len)
3205 		ice_ptp_req_tx_single_tstamp(tx, idx);
3206 	spin_unlock_irqrestore(&tx->lock, flags);
3207 
3208 	val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
3209 	      (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
3210 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3211 	wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset),
3212 	     val);
3213 
3214 	return IRQ_HANDLED;
3215 }
3216 
3217 /**
3218  * ice_misc_intr - misc interrupt handler
3219  * @irq: interrupt number
3220  * @data: pointer to a q_vector
3221  */
3222 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3223 {
3224 	struct ice_pf *pf = (struct ice_pf *)data;
3225 	irqreturn_t ret = IRQ_HANDLED;
3226 	struct ice_hw *hw = &pf->hw;
3227 	struct device *dev;
3228 	u32 oicr, ena_mask;
3229 
3230 	dev = ice_pf_to_dev(pf);
3231 	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3232 	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3233 	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3234 
3235 	oicr = rd32(hw, PFINT_OICR);
3236 	ena_mask = rd32(hw, PFINT_OICR_ENA);
3237 
3238 	if (oicr & PFINT_OICR_SWINT_M) {
3239 		ena_mask &= ~PFINT_OICR_SWINT_M;
3240 		pf->sw_int_count++;
3241 	}
3242 
3243 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
3244 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3245 		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3246 	}
3247 	if (oicr & PFINT_OICR_VFLR_M) {
3248 		/* disable any further VFLR event notifications */
3249 		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3250 			u32 reg = rd32(hw, PFINT_OICR_ENA);
3251 
3252 			reg &= ~PFINT_OICR_VFLR_M;
3253 			wr32(hw, PFINT_OICR_ENA, reg);
3254 		} else {
3255 			ena_mask &= ~PFINT_OICR_VFLR_M;
3256 			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3257 		}
3258 	}
3259 
3260 	if (oicr & PFINT_OICR_GRST_M) {
3261 		u32 reset;
3262 
3263 		/* we have a reset warning */
3264 		ena_mask &= ~PFINT_OICR_GRST_M;
3265 		reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M,
3266 				  rd32(hw, GLGEN_RSTAT));
3267 
3268 		if (reset == ICE_RESET_CORER)
3269 			pf->corer_count++;
3270 		else if (reset == ICE_RESET_GLOBR)
3271 			pf->globr_count++;
3272 		else if (reset == ICE_RESET_EMPR)
3273 			pf->empr_count++;
3274 		else
3275 			dev_dbg(dev, "Invalid reset type %d\n", reset);
3276 
3277 		/* If a reset cycle isn't already in progress, we set a bit in
3278 		 * pf->state so that the service task can start a reset/rebuild.
3279 		 */
3280 		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3281 			if (reset == ICE_RESET_CORER)
3282 				set_bit(ICE_CORER_RECV, pf->state);
3283 			else if (reset == ICE_RESET_GLOBR)
3284 				set_bit(ICE_GLOBR_RECV, pf->state);
3285 			else
3286 				set_bit(ICE_EMPR_RECV, pf->state);
3287 
3288 			/* There are couple of different bits at play here.
3289 			 * hw->reset_ongoing indicates whether the hardware is
3290 			 * in reset. This is set to true when a reset interrupt
3291 			 * is received and set back to false after the driver
3292 			 * has determined that the hardware is out of reset.
3293 			 *
3294 			 * ICE_RESET_OICR_RECV in pf->state indicates
3295 			 * that a post reset rebuild is required before the
3296 			 * driver is operational again. This is set above.
3297 			 *
3298 			 * As this is the start of the reset/rebuild cycle, set
3299 			 * both to indicate that.
3300 			 */
3301 			hw->reset_ongoing = true;
3302 		}
3303 	}
3304 
3305 	if (oicr & PFINT_OICR_TSYN_TX_M) {
3306 		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3307 
3308 		ret = ice_ptp_ts_irq(pf);
3309 	}
3310 
3311 	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3312 		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3313 		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3314 
3315 		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3316 
3317 		if (ice_pf_src_tmr_owned(pf)) {
3318 			/* Save EVENTs from GLTSYN register */
3319 			pf->ptp.ext_ts_irq |= gltsyn_stat &
3320 					      (GLTSYN_STAT_EVENT0_M |
3321 					       GLTSYN_STAT_EVENT1_M |
3322 					       GLTSYN_STAT_EVENT2_M);
3323 
3324 			ice_ptp_extts_event(pf);
3325 		}
3326 	}
3327 
3328 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3329 	if (oicr & ICE_AUX_CRIT_ERR) {
3330 		pf->oicr_err_reg |= oicr;
3331 		set_bit(ICE_AUX_ERR_PENDING, pf->state);
3332 		ena_mask &= ~ICE_AUX_CRIT_ERR;
3333 	}
3334 
3335 	/* Report any remaining unexpected interrupts */
3336 	oicr &= ena_mask;
3337 	if (oicr) {
3338 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3339 		/* If a critical error is pending there is no choice but to
3340 		 * reset the device.
3341 		 */
3342 		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3343 			    PFINT_OICR_ECC_ERR_M)) {
3344 			set_bit(ICE_PFR_REQ, pf->state);
3345 		}
3346 	}
3347 	ice_service_task_schedule(pf);
3348 	if (ret == IRQ_HANDLED)
3349 		ice_irq_dynamic_ena(hw, NULL, NULL);
3350 
3351 	return ret;
3352 }
3353 
3354 /**
3355  * ice_misc_intr_thread_fn - misc interrupt thread function
3356  * @irq: interrupt number
3357  * @data: pointer to a q_vector
3358  */
3359 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3360 {
3361 	struct ice_pf *pf = data;
3362 	struct ice_hw *hw;
3363 
3364 	hw = &pf->hw;
3365 
3366 	if (ice_is_reset_in_progress(pf->state))
3367 		goto skip_irq;
3368 
3369 	if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) {
3370 		/* Process outstanding Tx timestamps. If there is more work,
3371 		 * re-arm the interrupt to trigger again.
3372 		 */
3373 		if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) {
3374 			wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
3375 			ice_flush(hw);
3376 		}
3377 	}
3378 
3379 skip_irq:
3380 	ice_irq_dynamic_ena(hw, NULL, NULL);
3381 
3382 	return IRQ_HANDLED;
3383 }
3384 
3385 /**
3386  * ice_dis_ctrlq_interrupts - disable control queue interrupts
3387  * @hw: pointer to HW structure
3388  */
3389 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3390 {
3391 	/* disable Admin queue Interrupt causes */
3392 	wr32(hw, PFINT_FW_CTL,
3393 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3394 
3395 	/* disable Mailbox queue Interrupt causes */
3396 	wr32(hw, PFINT_MBX_CTL,
3397 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3398 
3399 	wr32(hw, PFINT_SB_CTL,
3400 	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3401 
3402 	/* disable Control queue Interrupt causes */
3403 	wr32(hw, PFINT_OICR_CTL,
3404 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3405 
3406 	ice_flush(hw);
3407 }
3408 
3409 /**
3410  * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup
3411  * @pf: board private structure
3412  */
3413 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf)
3414 {
3415 	int irq_num = pf->ll_ts_irq.virq;
3416 
3417 	synchronize_irq(irq_num);
3418 	devm_free_irq(ice_pf_to_dev(pf), irq_num, pf);
3419 
3420 	ice_free_irq(pf, pf->ll_ts_irq);
3421 }
3422 
3423 /**
3424  * ice_free_irq_msix_misc - Unroll misc vector setup
3425  * @pf: board private structure
3426  */
3427 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3428 {
3429 	int misc_irq_num = pf->oicr_irq.virq;
3430 	struct ice_hw *hw = &pf->hw;
3431 
3432 	ice_dis_ctrlq_interrupts(hw);
3433 
3434 	/* disable OICR interrupt */
3435 	wr32(hw, PFINT_OICR_ENA, 0);
3436 	ice_flush(hw);
3437 
3438 	synchronize_irq(misc_irq_num);
3439 	devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf);
3440 
3441 	ice_free_irq(pf, pf->oicr_irq);
3442 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3443 		ice_free_irq_msix_ll_ts(pf);
3444 }
3445 
3446 /**
3447  * ice_ena_ctrlq_interrupts - enable control queue interrupts
3448  * @hw: pointer to HW structure
3449  * @reg_idx: HW vector index to associate the control queue interrupts with
3450  */
3451 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3452 {
3453 	u32 val;
3454 
3455 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3456 	       PFINT_OICR_CTL_CAUSE_ENA_M);
3457 	wr32(hw, PFINT_OICR_CTL, val);
3458 
3459 	/* enable Admin queue Interrupt causes */
3460 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3461 	       PFINT_FW_CTL_CAUSE_ENA_M);
3462 	wr32(hw, PFINT_FW_CTL, val);
3463 
3464 	/* enable Mailbox queue Interrupt causes */
3465 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3466 	       PFINT_MBX_CTL_CAUSE_ENA_M);
3467 	wr32(hw, PFINT_MBX_CTL, val);
3468 
3469 	if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) {
3470 		/* enable Sideband queue Interrupt causes */
3471 		val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3472 		       PFINT_SB_CTL_CAUSE_ENA_M);
3473 		wr32(hw, PFINT_SB_CTL, val);
3474 	}
3475 
3476 	ice_flush(hw);
3477 }
3478 
3479 /**
3480  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3481  * @pf: board private structure
3482  *
3483  * This sets up the handler for MSIX 0, which is used to manage the
3484  * non-queue interrupts, e.g. AdminQ and errors. This is not used
3485  * when in MSI or Legacy interrupt mode.
3486  */
3487 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3488 {
3489 	struct device *dev = ice_pf_to_dev(pf);
3490 	struct ice_hw *hw = &pf->hw;
3491 	u32 pf_intr_start_offset;
3492 	struct msi_map irq;
3493 	int err = 0;
3494 
3495 	if (!pf->int_name[0])
3496 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3497 			 dev_driver_string(dev), dev_name(dev));
3498 
3499 	if (!pf->int_name_ll_ts[0])
3500 		snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1,
3501 			 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev));
3502 	/* Do not request IRQ but do enable OICR interrupt since settings are
3503 	 * lost during reset. Note that this function is called only during
3504 	 * rebuild path and not while reset is in progress.
3505 	 */
3506 	if (ice_is_reset_in_progress(pf->state))
3507 		goto skip_req_irq;
3508 
3509 	/* reserve one vector in irq_tracker for misc interrupts */
3510 	irq = ice_alloc_irq(pf, false);
3511 	if (irq.index < 0)
3512 		return irq.index;
3513 
3514 	pf->oicr_irq = irq;
3515 	err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr,
3516 					ice_misc_intr_thread_fn, 0,
3517 					pf->int_name, pf);
3518 	if (err) {
3519 		dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3520 			pf->int_name, err);
3521 		ice_free_irq(pf, pf->oicr_irq);
3522 		return err;
3523 	}
3524 
3525 	/* reserve one vector in irq_tracker for ll_ts interrupt */
3526 	if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3527 		goto skip_req_irq;
3528 
3529 	irq = ice_alloc_irq(pf, false);
3530 	if (irq.index < 0)
3531 		return irq.index;
3532 
3533 	pf->ll_ts_irq = irq;
3534 	err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0,
3535 			       pf->int_name_ll_ts, pf);
3536 	if (err) {
3537 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
3538 			pf->int_name_ll_ts, err);
3539 		ice_free_irq(pf, pf->ll_ts_irq);
3540 		return err;
3541 	}
3542 
3543 skip_req_irq:
3544 	ice_ena_misc_vector(pf);
3545 
3546 	ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index);
3547 	/* This enables LL TS interrupt */
3548 	pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST;
3549 	if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read)
3550 		wr32(hw, PFINT_SB_CTL,
3551 		     ((pf->ll_ts_irq.index + pf_intr_start_offset) &
3552 		      PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M);
3553 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index),
3554 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3555 
3556 	ice_flush(hw);
3557 	ice_irq_dynamic_ena(hw, NULL, NULL);
3558 
3559 	return 0;
3560 }
3561 
3562 /**
3563  * ice_set_ops - set netdev and ethtools ops for the given netdev
3564  * @vsi: the VSI associated with the new netdev
3565  */
3566 static void ice_set_ops(struct ice_vsi *vsi)
3567 {
3568 	struct net_device *netdev = vsi->netdev;
3569 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3570 
3571 	if (ice_is_safe_mode(pf)) {
3572 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3573 		ice_set_ethtool_safe_mode_ops(netdev);
3574 		return;
3575 	}
3576 
3577 	netdev->netdev_ops = &ice_netdev_ops;
3578 	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3579 	netdev->xdp_metadata_ops = &ice_xdp_md_ops;
3580 	ice_set_ethtool_ops(netdev);
3581 
3582 	if (vsi->type != ICE_VSI_PF)
3583 		return;
3584 
3585 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
3586 			       NETDEV_XDP_ACT_XSK_ZEROCOPY |
3587 			       NETDEV_XDP_ACT_RX_SG;
3588 	netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD;
3589 }
3590 
3591 /**
3592  * ice_set_netdev_features - set features for the given netdev
3593  * @netdev: netdev instance
3594  */
3595 void ice_set_netdev_features(struct net_device *netdev)
3596 {
3597 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3598 	bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3599 	netdev_features_t csumo_features;
3600 	netdev_features_t vlano_features;
3601 	netdev_features_t dflt_features;
3602 	netdev_features_t tso_features;
3603 
3604 	if (ice_is_safe_mode(pf)) {
3605 		/* safe mode */
3606 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3607 		netdev->hw_features = netdev->features;
3608 		return;
3609 	}
3610 
3611 	dflt_features = NETIF_F_SG	|
3612 			NETIF_F_HIGHDMA	|
3613 			NETIF_F_NTUPLE	|
3614 			NETIF_F_RXHASH;
3615 
3616 	csumo_features = NETIF_F_RXCSUM	  |
3617 			 NETIF_F_IP_CSUM  |
3618 			 NETIF_F_SCTP_CRC |
3619 			 NETIF_F_IPV6_CSUM;
3620 
3621 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3622 			 NETIF_F_HW_VLAN_CTAG_TX     |
3623 			 NETIF_F_HW_VLAN_CTAG_RX;
3624 
3625 	/* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3626 	if (is_dvm_ena)
3627 		vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3628 
3629 	tso_features = NETIF_F_TSO			|
3630 		       NETIF_F_TSO_ECN			|
3631 		       NETIF_F_TSO6			|
3632 		       NETIF_F_GSO_GRE			|
3633 		       NETIF_F_GSO_UDP_TUNNEL		|
3634 		       NETIF_F_GSO_GRE_CSUM		|
3635 		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3636 		       NETIF_F_GSO_PARTIAL		|
3637 		       NETIF_F_GSO_IPXIP4		|
3638 		       NETIF_F_GSO_IPXIP6		|
3639 		       NETIF_F_GSO_UDP_L4;
3640 
3641 	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3642 					NETIF_F_GSO_GRE_CSUM;
3643 	/* set features that user can change */
3644 	netdev->hw_features = dflt_features | csumo_features |
3645 			      vlano_features | tso_features;
3646 
3647 	/* add support for HW_CSUM on packets with MPLS header */
3648 	netdev->mpls_features =  NETIF_F_HW_CSUM |
3649 				 NETIF_F_TSO     |
3650 				 NETIF_F_TSO6;
3651 
3652 	/* enable features */
3653 	netdev->features |= netdev->hw_features;
3654 
3655 	netdev->hw_features |= NETIF_F_HW_TC;
3656 	netdev->hw_features |= NETIF_F_LOOPBACK;
3657 
3658 	/* encap and VLAN devices inherit default, csumo and tso features */
3659 	netdev->hw_enc_features |= dflt_features | csumo_features |
3660 				   tso_features;
3661 	netdev->vlan_features |= dflt_features | csumo_features |
3662 				 tso_features;
3663 
3664 	/* advertise support but don't enable by default since only one type of
3665 	 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3666 	 * type turns on the other has to be turned off. This is enforced by the
3667 	 * ice_fix_features() ndo callback.
3668 	 */
3669 	if (is_dvm_ena)
3670 		netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3671 			NETIF_F_HW_VLAN_STAG_TX;
3672 
3673 	/* Leave CRC / FCS stripping enabled by default, but allow the value to
3674 	 * be changed at runtime
3675 	 */
3676 	netdev->hw_features |= NETIF_F_RXFCS;
3677 
3678 	netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE);
3679 }
3680 
3681 /**
3682  * ice_fill_rss_lut - Fill the RSS lookup table with default values
3683  * @lut: Lookup table
3684  * @rss_table_size: Lookup table size
3685  * @rss_size: Range of queue number for hashing
3686  */
3687 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3688 {
3689 	u16 i;
3690 
3691 	for (i = 0; i < rss_table_size; i++)
3692 		lut[i] = i % rss_size;
3693 }
3694 
3695 /**
3696  * ice_pf_vsi_setup - Set up a PF VSI
3697  * @pf: board private structure
3698  * @pi: pointer to the port_info instance
3699  *
3700  * Returns pointer to the successfully allocated VSI software struct
3701  * on success, otherwise returns NULL on failure.
3702  */
3703 static struct ice_vsi *
3704 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3705 {
3706 	struct ice_vsi_cfg_params params = {};
3707 
3708 	params.type = ICE_VSI_PF;
3709 	params.port_info = pi;
3710 	params.flags = ICE_VSI_FLAG_INIT;
3711 
3712 	return ice_vsi_setup(pf, &params);
3713 }
3714 
3715 static struct ice_vsi *
3716 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3717 		   struct ice_channel *ch)
3718 {
3719 	struct ice_vsi_cfg_params params = {};
3720 
3721 	params.type = ICE_VSI_CHNL;
3722 	params.port_info = pi;
3723 	params.ch = ch;
3724 	params.flags = ICE_VSI_FLAG_INIT;
3725 
3726 	return ice_vsi_setup(pf, &params);
3727 }
3728 
3729 /**
3730  * ice_ctrl_vsi_setup - Set up a control VSI
3731  * @pf: board private structure
3732  * @pi: pointer to the port_info instance
3733  *
3734  * Returns pointer to the successfully allocated VSI software struct
3735  * on success, otherwise returns NULL on failure.
3736  */
3737 static struct ice_vsi *
3738 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3739 {
3740 	struct ice_vsi_cfg_params params = {};
3741 
3742 	params.type = ICE_VSI_CTRL;
3743 	params.port_info = pi;
3744 	params.flags = ICE_VSI_FLAG_INIT;
3745 
3746 	return ice_vsi_setup(pf, &params);
3747 }
3748 
3749 /**
3750  * ice_lb_vsi_setup - Set up a loopback VSI
3751  * @pf: board private structure
3752  * @pi: pointer to the port_info instance
3753  *
3754  * Returns pointer to the successfully allocated VSI software struct
3755  * on success, otherwise returns NULL on failure.
3756  */
3757 struct ice_vsi *
3758 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3759 {
3760 	struct ice_vsi_cfg_params params = {};
3761 
3762 	params.type = ICE_VSI_LB;
3763 	params.port_info = pi;
3764 	params.flags = ICE_VSI_FLAG_INIT;
3765 
3766 	return ice_vsi_setup(pf, &params);
3767 }
3768 
3769 /**
3770  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3771  * @netdev: network interface to be adjusted
3772  * @proto: VLAN TPID
3773  * @vid: VLAN ID to be added
3774  *
3775  * net_device_ops implementation for adding VLAN IDs
3776  */
3777 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3778 {
3779 	struct ice_netdev_priv *np = netdev_priv(netdev);
3780 	struct ice_vsi_vlan_ops *vlan_ops;
3781 	struct ice_vsi *vsi = np->vsi;
3782 	struct ice_vlan vlan;
3783 	int ret;
3784 
3785 	/* VLAN 0 is added by default during load/reset */
3786 	if (!vid)
3787 		return 0;
3788 
3789 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3790 		usleep_range(1000, 2000);
3791 
3792 	/* Add multicast promisc rule for the VLAN ID to be added if
3793 	 * all-multicast is currently enabled.
3794 	 */
3795 	if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3796 		ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3797 					       ICE_MCAST_VLAN_PROMISC_BITS,
3798 					       vid);
3799 		if (ret)
3800 			goto finish;
3801 	}
3802 
3803 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3804 
3805 	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3806 	 * packets aren't pruned by the device's internal switch on Rx
3807 	 */
3808 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3809 	ret = vlan_ops->add_vlan(vsi, &vlan);
3810 	if (ret)
3811 		goto finish;
3812 
3813 	/* If all-multicast is currently enabled and this VLAN ID is only one
3814 	 * besides VLAN-0 we have to update look-up type of multicast promisc
3815 	 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3816 	 */
3817 	if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3818 	    ice_vsi_num_non_zero_vlans(vsi) == 1) {
3819 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3820 					   ICE_MCAST_PROMISC_BITS, 0);
3821 		ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3822 					 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3823 	}
3824 
3825 finish:
3826 	clear_bit(ICE_CFG_BUSY, vsi->state);
3827 
3828 	return ret;
3829 }
3830 
3831 /**
3832  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3833  * @netdev: network interface to be adjusted
3834  * @proto: VLAN TPID
3835  * @vid: VLAN ID to be removed
3836  *
3837  * net_device_ops implementation for removing VLAN IDs
3838  */
3839 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3840 {
3841 	struct ice_netdev_priv *np = netdev_priv(netdev);
3842 	struct ice_vsi_vlan_ops *vlan_ops;
3843 	struct ice_vsi *vsi = np->vsi;
3844 	struct ice_vlan vlan;
3845 	int ret;
3846 
3847 	/* don't allow removal of VLAN 0 */
3848 	if (!vid)
3849 		return 0;
3850 
3851 	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3852 		usleep_range(1000, 2000);
3853 
3854 	ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3855 				    ICE_MCAST_VLAN_PROMISC_BITS, vid);
3856 	if (ret) {
3857 		netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3858 			   vsi->vsi_num);
3859 		vsi->current_netdev_flags |= IFF_ALLMULTI;
3860 	}
3861 
3862 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3863 
3864 	/* Make sure VLAN delete is successful before updating VLAN
3865 	 * information
3866 	 */
3867 	vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3868 	ret = vlan_ops->del_vlan(vsi, &vlan);
3869 	if (ret)
3870 		goto finish;
3871 
3872 	/* Remove multicast promisc rule for the removed VLAN ID if
3873 	 * all-multicast is enabled.
3874 	 */
3875 	if (vsi->current_netdev_flags & IFF_ALLMULTI)
3876 		ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3877 					   ICE_MCAST_VLAN_PROMISC_BITS, vid);
3878 
3879 	if (!ice_vsi_has_non_zero_vlans(vsi)) {
3880 		/* Update look-up type of multicast promisc rule for VLAN 0
3881 		 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3882 		 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3883 		 */
3884 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3885 			ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3886 						   ICE_MCAST_VLAN_PROMISC_BITS,
3887 						   0);
3888 			ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3889 						 ICE_MCAST_PROMISC_BITS, 0);
3890 		}
3891 	}
3892 
3893 finish:
3894 	clear_bit(ICE_CFG_BUSY, vsi->state);
3895 
3896 	return ret;
3897 }
3898 
3899 /**
3900  * ice_rep_indr_tc_block_unbind
3901  * @cb_priv: indirection block private data
3902  */
3903 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3904 {
3905 	struct ice_indr_block_priv *indr_priv = cb_priv;
3906 
3907 	list_del(&indr_priv->list);
3908 	kfree(indr_priv);
3909 }
3910 
3911 /**
3912  * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3913  * @vsi: VSI struct which has the netdev
3914  */
3915 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3916 {
3917 	struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3918 
3919 	flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3920 				 ice_rep_indr_tc_block_unbind);
3921 }
3922 
3923 /**
3924  * ice_tc_indir_block_register - Register TC indirect block notifications
3925  * @vsi: VSI struct which has the netdev
3926  *
3927  * Returns 0 on success, negative value on failure
3928  */
3929 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3930 {
3931 	struct ice_netdev_priv *np;
3932 
3933 	if (!vsi || !vsi->netdev)
3934 		return -EINVAL;
3935 
3936 	np = netdev_priv(vsi->netdev);
3937 
3938 	INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3939 	return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3940 }
3941 
3942 /**
3943  * ice_get_avail_q_count - Get count of queues in use
3944  * @pf_qmap: bitmap to get queue use count from
3945  * @lock: pointer to a mutex that protects access to pf_qmap
3946  * @size: size of the bitmap
3947  */
3948 static u16
3949 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3950 {
3951 	unsigned long bit;
3952 	u16 count = 0;
3953 
3954 	mutex_lock(lock);
3955 	for_each_clear_bit(bit, pf_qmap, size)
3956 		count++;
3957 	mutex_unlock(lock);
3958 
3959 	return count;
3960 }
3961 
3962 /**
3963  * ice_get_avail_txq_count - Get count of Tx queues in use
3964  * @pf: pointer to an ice_pf instance
3965  */
3966 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3967 {
3968 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3969 				     pf->max_pf_txqs);
3970 }
3971 
3972 /**
3973  * ice_get_avail_rxq_count - Get count of Rx queues in use
3974  * @pf: pointer to an ice_pf instance
3975  */
3976 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3977 {
3978 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3979 				     pf->max_pf_rxqs);
3980 }
3981 
3982 /**
3983  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3984  * @pf: board private structure to initialize
3985  */
3986 static void ice_deinit_pf(struct ice_pf *pf)
3987 {
3988 	ice_service_task_stop(pf);
3989 	mutex_destroy(&pf->lag_mutex);
3990 	mutex_destroy(&pf->adev_mutex);
3991 	mutex_destroy(&pf->sw_mutex);
3992 	mutex_destroy(&pf->tc_mutex);
3993 	mutex_destroy(&pf->avail_q_mutex);
3994 	mutex_destroy(&pf->vfs.table_lock);
3995 
3996 	if (pf->avail_txqs) {
3997 		bitmap_free(pf->avail_txqs);
3998 		pf->avail_txqs = NULL;
3999 	}
4000 
4001 	if (pf->avail_rxqs) {
4002 		bitmap_free(pf->avail_rxqs);
4003 		pf->avail_rxqs = NULL;
4004 	}
4005 
4006 	if (pf->ptp.clock)
4007 		ptp_clock_unregister(pf->ptp.clock);
4008 
4009 	xa_destroy(&pf->dyn_ports);
4010 	xa_destroy(&pf->sf_nums);
4011 }
4012 
4013 /**
4014  * ice_set_pf_caps - set PFs capability flags
4015  * @pf: pointer to the PF instance
4016  */
4017 static void ice_set_pf_caps(struct ice_pf *pf)
4018 {
4019 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
4020 
4021 	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4022 	if (func_caps->common_cap.rdma)
4023 		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4024 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4025 	if (func_caps->common_cap.dcb)
4026 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4027 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4028 	if (func_caps->common_cap.sr_iov_1_1) {
4029 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
4030 		pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
4031 					      ICE_MAX_SRIOV_VFS);
4032 	}
4033 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
4034 	if (func_caps->common_cap.rss_table_size)
4035 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
4036 
4037 	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
4038 	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
4039 		u16 unused;
4040 
4041 		/* ctrl_vsi_idx will be set to a valid value when flow director
4042 		 * is setup by ice_init_fdir
4043 		 */
4044 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4045 		set_bit(ICE_FLAG_FD_ENA, pf->flags);
4046 		/* force guaranteed filter pool for PF */
4047 		ice_alloc_fd_guar_item(&pf->hw, &unused,
4048 				       func_caps->fd_fltr_guar);
4049 		/* force shared filter pool for PF */
4050 		ice_alloc_fd_shrd_item(&pf->hw, &unused,
4051 				       func_caps->fd_fltr_best_effort);
4052 	}
4053 
4054 	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4055 	if (func_caps->common_cap.ieee_1588)
4056 		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
4057 
4058 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
4059 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
4060 }
4061 
4062 /**
4063  * ice_init_pf - Initialize general software structures (struct ice_pf)
4064  * @pf: board private structure to initialize
4065  */
4066 static int ice_init_pf(struct ice_pf *pf)
4067 {
4068 	ice_set_pf_caps(pf);
4069 
4070 	mutex_init(&pf->sw_mutex);
4071 	mutex_init(&pf->tc_mutex);
4072 	mutex_init(&pf->adev_mutex);
4073 	mutex_init(&pf->lag_mutex);
4074 
4075 	INIT_HLIST_HEAD(&pf->aq_wait_list);
4076 	spin_lock_init(&pf->aq_wait_lock);
4077 	init_waitqueue_head(&pf->aq_wait_queue);
4078 
4079 	init_waitqueue_head(&pf->reset_wait_queue);
4080 
4081 	/* setup service timer and periodic service task */
4082 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
4083 	pf->serv_tmr_period = HZ;
4084 	INIT_WORK(&pf->serv_task, ice_service_task);
4085 	clear_bit(ICE_SERVICE_SCHED, pf->state);
4086 
4087 	mutex_init(&pf->avail_q_mutex);
4088 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
4089 	if (!pf->avail_txqs)
4090 		return -ENOMEM;
4091 
4092 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
4093 	if (!pf->avail_rxqs) {
4094 		bitmap_free(pf->avail_txqs);
4095 		pf->avail_txqs = NULL;
4096 		return -ENOMEM;
4097 	}
4098 
4099 	mutex_init(&pf->vfs.table_lock);
4100 	hash_init(pf->vfs.table);
4101 	if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
4102 		wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH,
4103 		     ICE_MBX_OVERFLOW_WATERMARK);
4104 	else
4105 		ice_mbx_init_snapshot(&pf->hw);
4106 
4107 	xa_init(&pf->dyn_ports);
4108 	xa_init(&pf->sf_nums);
4109 
4110 	return 0;
4111 }
4112 
4113 /**
4114  * ice_is_wol_supported - check if WoL is supported
4115  * @hw: pointer to hardware info
4116  *
4117  * Check if WoL is supported based on the HW configuration.
4118  * Returns true if NVM supports and enables WoL for this port, false otherwise
4119  */
4120 bool ice_is_wol_supported(struct ice_hw *hw)
4121 {
4122 	u16 wol_ctrl;
4123 
4124 	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4125 	 * word) indicates WoL is not supported on the corresponding PF ID.
4126 	 */
4127 	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4128 		return false;
4129 
4130 	return !(BIT(hw->port_info->lport) & wol_ctrl);
4131 }
4132 
4133 /**
4134  * ice_vsi_recfg_qs - Change the number of queues on a VSI
4135  * @vsi: VSI being changed
4136  * @new_rx: new number of Rx queues
4137  * @new_tx: new number of Tx queues
4138  * @locked: is adev device_lock held
4139  *
4140  * Only change the number of queues if new_tx, or new_rx is non-0.
4141  *
4142  * Returns 0 on success.
4143  */
4144 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4145 {
4146 	struct ice_pf *pf = vsi->back;
4147 	int i, err = 0, timeout = 50;
4148 
4149 	if (!new_rx && !new_tx)
4150 		return -EINVAL;
4151 
4152 	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4153 		timeout--;
4154 		if (!timeout)
4155 			return -EBUSY;
4156 		usleep_range(1000, 2000);
4157 	}
4158 
4159 	if (new_tx)
4160 		vsi->req_txq = (u16)new_tx;
4161 	if (new_rx)
4162 		vsi->req_rxq = (u16)new_rx;
4163 
4164 	/* set for the next time the netdev is started */
4165 	if (!netif_running(vsi->netdev)) {
4166 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4167 		if (err)
4168 			goto rebuild_err;
4169 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4170 		goto done;
4171 	}
4172 
4173 	ice_vsi_close(vsi);
4174 	err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
4175 	if (err)
4176 		goto rebuild_err;
4177 
4178 	ice_for_each_traffic_class(i) {
4179 		if (vsi->tc_cfg.ena_tc & BIT(i))
4180 			netdev_set_tc_queue(vsi->netdev,
4181 					    vsi->tc_cfg.tc_info[i].netdev_tc,
4182 					    vsi->tc_cfg.tc_info[i].qcount_tx,
4183 					    vsi->tc_cfg.tc_info[i].qoffset);
4184 	}
4185 	ice_pf_dcb_recfg(pf, locked);
4186 	ice_vsi_open(vsi);
4187 	goto done;
4188 
4189 rebuild_err:
4190 	dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n",
4191 		err);
4192 done:
4193 	clear_bit(ICE_CFG_BUSY, pf->state);
4194 	return err;
4195 }
4196 
4197 /**
4198  * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4199  * @pf: PF to configure
4200  *
4201  * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4202  * VSI can still Tx/Rx VLAN tagged packets.
4203  */
4204 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4205 {
4206 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4207 	struct ice_vsi_ctx *ctxt;
4208 	struct ice_hw *hw;
4209 	int status;
4210 
4211 	if (!vsi)
4212 		return;
4213 
4214 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4215 	if (!ctxt)
4216 		return;
4217 
4218 	hw = &pf->hw;
4219 	ctxt->info = vsi->info;
4220 
4221 	ctxt->info.valid_sections =
4222 		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4223 			    ICE_AQ_VSI_PROP_SECURITY_VALID |
4224 			    ICE_AQ_VSI_PROP_SW_VALID);
4225 
4226 	/* disable VLAN anti-spoof */
4227 	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4228 				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4229 
4230 	/* disable VLAN pruning and keep all other settings */
4231 	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4232 
4233 	/* allow all VLANs on Tx and don't strip on Rx */
4234 	ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4235 		ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4236 
4237 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4238 	if (status) {
4239 		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4240 			status, ice_aq_str(hw->adminq.sq_last_status));
4241 	} else {
4242 		vsi->info.sec_flags = ctxt->info.sec_flags;
4243 		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4244 		vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4245 	}
4246 
4247 	kfree(ctxt);
4248 }
4249 
4250 /**
4251  * ice_log_pkg_init - log result of DDP package load
4252  * @hw: pointer to hardware info
4253  * @state: state of package load
4254  */
4255 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4256 {
4257 	struct ice_pf *pf = hw->back;
4258 	struct device *dev;
4259 
4260 	dev = ice_pf_to_dev(pf);
4261 
4262 	switch (state) {
4263 	case ICE_DDP_PKG_SUCCESS:
4264 		dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4265 			 hw->active_pkg_name,
4266 			 hw->active_pkg_ver.major,
4267 			 hw->active_pkg_ver.minor,
4268 			 hw->active_pkg_ver.update,
4269 			 hw->active_pkg_ver.draft);
4270 		break;
4271 	case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4272 		dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4273 			 hw->active_pkg_name,
4274 			 hw->active_pkg_ver.major,
4275 			 hw->active_pkg_ver.minor,
4276 			 hw->active_pkg_ver.update,
4277 			 hw->active_pkg_ver.draft);
4278 		break;
4279 	case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4280 		dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
4281 			hw->active_pkg_name,
4282 			hw->active_pkg_ver.major,
4283 			hw->active_pkg_ver.minor,
4284 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4285 		break;
4286 	case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4287 		dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4288 			 hw->active_pkg_name,
4289 			 hw->active_pkg_ver.major,
4290 			 hw->active_pkg_ver.minor,
4291 			 hw->active_pkg_ver.update,
4292 			 hw->active_pkg_ver.draft,
4293 			 hw->pkg_name,
4294 			 hw->pkg_ver.major,
4295 			 hw->pkg_ver.minor,
4296 			 hw->pkg_ver.update,
4297 			 hw->pkg_ver.draft);
4298 		break;
4299 	case ICE_DDP_PKG_FW_MISMATCH:
4300 		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
4301 		break;
4302 	case ICE_DDP_PKG_INVALID_FILE:
4303 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4304 		break;
4305 	case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4306 		dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
4307 		break;
4308 	case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4309 		dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
4310 			ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4311 		break;
4312 	case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4313 		dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
4314 		break;
4315 	case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4316 		dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
4317 		break;
4318 	case ICE_DDP_PKG_LOAD_ERROR:
4319 		dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
4320 		/* poll for reset to complete */
4321 		if (ice_check_reset(hw))
4322 			dev_err(dev, "Error resetting device. Please reload the driver\n");
4323 		break;
4324 	case ICE_DDP_PKG_ERR:
4325 	default:
4326 		dev_err(dev, "An unknown error occurred when loading the DDP package.  Entering Safe Mode.\n");
4327 		break;
4328 	}
4329 }
4330 
4331 /**
4332  * ice_load_pkg - load/reload the DDP Package file
4333  * @firmware: firmware structure when firmware requested or NULL for reload
4334  * @pf: pointer to the PF instance
4335  *
4336  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4337  * initialize HW tables.
4338  */
4339 static void
4340 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4341 {
4342 	enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4343 	struct device *dev = ice_pf_to_dev(pf);
4344 	struct ice_hw *hw = &pf->hw;
4345 
4346 	/* Load DDP Package */
4347 	if (firmware && !hw->pkg_copy) {
4348 		state = ice_copy_and_init_pkg(hw, firmware->data,
4349 					      firmware->size);
4350 		ice_log_pkg_init(hw, state);
4351 	} else if (!firmware && hw->pkg_copy) {
4352 		/* Reload package during rebuild after CORER/GLOBR reset */
4353 		state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4354 		ice_log_pkg_init(hw, state);
4355 	} else {
4356 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4357 	}
4358 
4359 	if (!ice_is_init_pkg_successful(state)) {
4360 		/* Safe Mode */
4361 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4362 		return;
4363 	}
4364 
4365 	/* Successful download package is the precondition for advanced
4366 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4367 	 */
4368 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4369 }
4370 
4371 /**
4372  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4373  * @pf: pointer to the PF structure
4374  *
4375  * There is no error returned here because the driver should be able to handle
4376  * 128 Byte cache lines, so we only print a warning in case issues are seen,
4377  * specifically with Tx.
4378  */
4379 static void ice_verify_cacheline_size(struct ice_pf *pf)
4380 {
4381 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4382 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4383 			 ICE_CACHE_LINE_BYTES);
4384 }
4385 
4386 /**
4387  * ice_send_version - update firmware with driver version
4388  * @pf: PF struct
4389  *
4390  * Returns 0 on success, else error code
4391  */
4392 static int ice_send_version(struct ice_pf *pf)
4393 {
4394 	struct ice_driver_ver dv;
4395 
4396 	dv.major_ver = 0xff;
4397 	dv.minor_ver = 0xff;
4398 	dv.build_ver = 0xff;
4399 	dv.subbuild_ver = 0;
4400 	strscpy((char *)dv.driver_string, UTS_RELEASE,
4401 		sizeof(dv.driver_string));
4402 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4403 }
4404 
4405 /**
4406  * ice_init_fdir - Initialize flow director VSI and configuration
4407  * @pf: pointer to the PF instance
4408  *
4409  * returns 0 on success, negative on error
4410  */
4411 static int ice_init_fdir(struct ice_pf *pf)
4412 {
4413 	struct device *dev = ice_pf_to_dev(pf);
4414 	struct ice_vsi *ctrl_vsi;
4415 	int err;
4416 
4417 	/* Side Band Flow Director needs to have a control VSI.
4418 	 * Allocate it and store it in the PF.
4419 	 */
4420 	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4421 	if (!ctrl_vsi) {
4422 		dev_dbg(dev, "could not create control VSI\n");
4423 		return -ENOMEM;
4424 	}
4425 
4426 	err = ice_vsi_open_ctrl(ctrl_vsi);
4427 	if (err) {
4428 		dev_dbg(dev, "could not open control VSI\n");
4429 		goto err_vsi_open;
4430 	}
4431 
4432 	mutex_init(&pf->hw.fdir_fltr_lock);
4433 
4434 	err = ice_fdir_create_dflt_rules(pf);
4435 	if (err)
4436 		goto err_fdir_rule;
4437 
4438 	return 0;
4439 
4440 err_fdir_rule:
4441 	ice_fdir_release_flows(&pf->hw);
4442 	ice_vsi_close(ctrl_vsi);
4443 err_vsi_open:
4444 	ice_vsi_release(ctrl_vsi);
4445 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4446 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4447 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4448 	}
4449 	return err;
4450 }
4451 
4452 static void ice_deinit_fdir(struct ice_pf *pf)
4453 {
4454 	struct ice_vsi *vsi = ice_get_ctrl_vsi(pf);
4455 
4456 	if (!vsi)
4457 		return;
4458 
4459 	ice_vsi_manage_fdir(vsi, false);
4460 	ice_vsi_release(vsi);
4461 	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4462 		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4463 		pf->ctrl_vsi_idx = ICE_NO_VSI;
4464 	}
4465 
4466 	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4467 }
4468 
4469 /**
4470  * ice_get_opt_fw_name - return optional firmware file name or NULL
4471  * @pf: pointer to the PF instance
4472  */
4473 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4474 {
4475 	/* Optional firmware name same as default with additional dash
4476 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4477 	 */
4478 	struct pci_dev *pdev = pf->pdev;
4479 	char *opt_fw_filename;
4480 	u64 dsn;
4481 
4482 	/* Determine the name of the optional file using the DSN (two
4483 	 * dwords following the start of the DSN Capability).
4484 	 */
4485 	dsn = pci_get_dsn(pdev);
4486 	if (!dsn)
4487 		return NULL;
4488 
4489 	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4490 	if (!opt_fw_filename)
4491 		return NULL;
4492 
4493 	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4494 		 ICE_DDP_PKG_PATH, dsn);
4495 
4496 	return opt_fw_filename;
4497 }
4498 
4499 /**
4500  * ice_request_fw - Device initialization routine
4501  * @pf: pointer to the PF instance
4502  * @firmware: double pointer to firmware struct
4503  *
4504  * Return: zero when successful, negative values otherwise.
4505  */
4506 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware)
4507 {
4508 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4509 	struct device *dev = ice_pf_to_dev(pf);
4510 	int err = 0;
4511 
4512 	/* optional device-specific DDP (if present) overrides the default DDP
4513 	 * package file. kernel logs a debug message if the file doesn't exist,
4514 	 * and warning messages for other errors.
4515 	 */
4516 	if (opt_fw_filename) {
4517 		err = firmware_request_nowarn(firmware, opt_fw_filename, dev);
4518 		kfree(opt_fw_filename);
4519 		if (!err)
4520 			return err;
4521 	}
4522 	err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev);
4523 	if (err)
4524 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4525 
4526 	return err;
4527 }
4528 
4529 /**
4530  * ice_init_tx_topology - performs Tx topology initialization
4531  * @hw: pointer to the hardware structure
4532  * @firmware: pointer to firmware structure
4533  *
4534  * Return: zero when init was successful, negative values otherwise.
4535  */
4536 static int
4537 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware)
4538 {
4539 	u8 num_tx_sched_layers = hw->num_tx_sched_layers;
4540 	struct ice_pf *pf = hw->back;
4541 	struct device *dev;
4542 	int err;
4543 
4544 	dev = ice_pf_to_dev(pf);
4545 	err = ice_cfg_tx_topo(hw, firmware->data, firmware->size);
4546 	if (!err) {
4547 		if (hw->num_tx_sched_layers > num_tx_sched_layers)
4548 			dev_info(dev, "Tx scheduling layers switching feature disabled\n");
4549 		else
4550 			dev_info(dev, "Tx scheduling layers switching feature enabled\n");
4551 		/* if there was a change in topology ice_cfg_tx_topo triggered
4552 		 * a CORER and we need to re-init hw
4553 		 */
4554 		ice_deinit_hw(hw);
4555 		err = ice_init_hw(hw);
4556 
4557 		return err;
4558 	} else if (err == -EIO) {
4559 		dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n");
4560 	}
4561 
4562 	return 0;
4563 }
4564 
4565 /**
4566  * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs
4567  * @hw: pointer to the hardware structure
4568  * @pf: pointer to pf structure
4569  *
4570  * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor
4571  * formats the PF hardware supports. The exact list of supported RXDIDs
4572  * depends on the loaded DDP package. The IDs can be determined by reading the
4573  * GLFLXP_RXDID_FLAGS register after the DDP package is loaded.
4574  *
4575  * Note that the legacy 32-byte RXDID 0 is always supported but is not listed
4576  * in the DDP package. The 16-byte legacy descriptor is never supported by
4577  * VFs.
4578  */
4579 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf)
4580 {
4581 	pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1);
4582 
4583 	for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
4584 		u32 regval;
4585 
4586 		regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
4587 		if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
4588 			& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
4589 			pf->supported_rxdids |= BIT(i);
4590 	}
4591 }
4592 
4593 /**
4594  * ice_init_ddp_config - DDP related configuration
4595  * @hw: pointer to the hardware structure
4596  * @pf: pointer to pf structure
4597  *
4598  * This function loads DDP file from the disk, then initializes Tx
4599  * topology. At the end DDP package is loaded on the card.
4600  *
4601  * Return: zero when init was successful, negative values otherwise.
4602  */
4603 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf)
4604 {
4605 	struct device *dev = ice_pf_to_dev(pf);
4606 	const struct firmware *firmware = NULL;
4607 	int err;
4608 
4609 	err = ice_request_fw(pf, &firmware);
4610 	if (err) {
4611 		dev_err(dev, "Fail during requesting FW: %d\n", err);
4612 		return err;
4613 	}
4614 
4615 	err = ice_init_tx_topology(hw, firmware);
4616 	if (err) {
4617 		dev_err(dev, "Fail during initialization of Tx topology: %d\n",
4618 			err);
4619 		release_firmware(firmware);
4620 		return err;
4621 	}
4622 
4623 	/* Download firmware to device */
4624 	ice_load_pkg(firmware, pf);
4625 	release_firmware(firmware);
4626 
4627 	/* Initialize the supported Rx descriptor IDs after loading DDP */
4628 	ice_init_supported_rxdids(hw, pf);
4629 
4630 	return 0;
4631 }
4632 
4633 /**
4634  * ice_print_wake_reason - show the wake up cause in the log
4635  * @pf: pointer to the PF struct
4636  */
4637 static void ice_print_wake_reason(struct ice_pf *pf)
4638 {
4639 	u32 wus = pf->wakeup_reason;
4640 	const char *wake_str;
4641 
4642 	/* if no wake event, nothing to print */
4643 	if (!wus)
4644 		return;
4645 
4646 	if (wus & PFPM_WUS_LNKC_M)
4647 		wake_str = "Link\n";
4648 	else if (wus & PFPM_WUS_MAG_M)
4649 		wake_str = "Magic Packet\n";
4650 	else if (wus & PFPM_WUS_MNG_M)
4651 		wake_str = "Management\n";
4652 	else if (wus & PFPM_WUS_FW_RST_WK_M)
4653 		wake_str = "Firmware Reset\n";
4654 	else
4655 		wake_str = "Unknown\n";
4656 
4657 	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4658 }
4659 
4660 /**
4661  * ice_pf_fwlog_update_module - update 1 module
4662  * @pf: pointer to the PF struct
4663  * @log_level: log_level to use for the @module
4664  * @module: module to update
4665  */
4666 void ice_pf_fwlog_update_module(struct ice_pf *pf, int log_level, int module)
4667 {
4668 	struct ice_hw *hw = &pf->hw;
4669 
4670 	hw->fwlog_cfg.module_entries[module].log_level = log_level;
4671 }
4672 
4673 /**
4674  * ice_register_netdev - register netdev
4675  * @vsi: pointer to the VSI struct
4676  */
4677 static int ice_register_netdev(struct ice_vsi *vsi)
4678 {
4679 	int err;
4680 
4681 	if (!vsi || !vsi->netdev)
4682 		return -EIO;
4683 
4684 	err = register_netdev(vsi->netdev);
4685 	if (err)
4686 		return err;
4687 
4688 	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4689 	netif_carrier_off(vsi->netdev);
4690 	netif_tx_stop_all_queues(vsi->netdev);
4691 
4692 	return 0;
4693 }
4694 
4695 static void ice_unregister_netdev(struct ice_vsi *vsi)
4696 {
4697 	if (!vsi || !vsi->netdev)
4698 		return;
4699 
4700 	unregister_netdev(vsi->netdev);
4701 	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4702 }
4703 
4704 /**
4705  * ice_cfg_netdev - Allocate, configure and register a netdev
4706  * @vsi: the VSI associated with the new netdev
4707  *
4708  * Returns 0 on success, negative value on failure
4709  */
4710 static int ice_cfg_netdev(struct ice_vsi *vsi)
4711 {
4712 	struct ice_netdev_priv *np;
4713 	struct net_device *netdev;
4714 	u8 mac_addr[ETH_ALEN];
4715 
4716 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
4717 				    vsi->alloc_rxq);
4718 	if (!netdev)
4719 		return -ENOMEM;
4720 
4721 	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4722 	vsi->netdev = netdev;
4723 	np = netdev_priv(netdev);
4724 	np->vsi = vsi;
4725 
4726 	ice_set_netdev_features(netdev);
4727 	ice_set_ops(vsi);
4728 
4729 	if (vsi->type == ICE_VSI_PF) {
4730 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
4731 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4732 		eth_hw_addr_set(netdev, mac_addr);
4733 	}
4734 
4735 	netdev->priv_flags |= IFF_UNICAST_FLT;
4736 
4737 	/* Setup netdev TC information */
4738 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
4739 
4740 	netdev->max_mtu = ICE_MAX_MTU;
4741 
4742 	return 0;
4743 }
4744 
4745 static void ice_decfg_netdev(struct ice_vsi *vsi)
4746 {
4747 	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4748 	free_netdev(vsi->netdev);
4749 	vsi->netdev = NULL;
4750 }
4751 
4752 int ice_init_dev(struct ice_pf *pf)
4753 {
4754 	struct device *dev = ice_pf_to_dev(pf);
4755 	struct ice_hw *hw = &pf->hw;
4756 	int err;
4757 
4758 	ice_init_feature_support(pf);
4759 
4760 	err = ice_init_ddp_config(hw, pf);
4761 
4762 	/* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be
4763 	 * set in pf->state, which will cause ice_is_safe_mode to return
4764 	 * true
4765 	 */
4766 	if (err || ice_is_safe_mode(pf)) {
4767 		/* we already got function/device capabilities but these don't
4768 		 * reflect what the driver needs to do in safe mode. Instead of
4769 		 * adding conditional logic everywhere to ignore these
4770 		 * device/function capabilities, override them.
4771 		 */
4772 		ice_set_safe_mode_caps(hw);
4773 	}
4774 
4775 	err = ice_init_pf(pf);
4776 	if (err) {
4777 		dev_err(dev, "ice_init_pf failed: %d\n", err);
4778 		return err;
4779 	}
4780 
4781 	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4782 	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4783 	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4784 	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4785 	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4786 		pf->hw.udp_tunnel_nic.tables[0].n_entries =
4787 			pf->hw.tnl.valid_count[TNL_VXLAN];
4788 		pf->hw.udp_tunnel_nic.tables[0].tunnel_types =
4789 			UDP_TUNNEL_TYPE_VXLAN;
4790 	}
4791 	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4792 		pf->hw.udp_tunnel_nic.tables[1].n_entries =
4793 			pf->hw.tnl.valid_count[TNL_GENEVE];
4794 		pf->hw.udp_tunnel_nic.tables[1].tunnel_types =
4795 			UDP_TUNNEL_TYPE_GENEVE;
4796 	}
4797 
4798 	err = ice_init_interrupt_scheme(pf);
4799 	if (err) {
4800 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4801 		err = -EIO;
4802 		goto unroll_pf_init;
4803 	}
4804 
4805 	/* In case of MSIX we are going to setup the misc vector right here
4806 	 * to handle admin queue events etc. In case of legacy and MSI
4807 	 * the misc functionality and queue processing is combined in
4808 	 * the same vector and that gets setup at open.
4809 	 */
4810 	err = ice_req_irq_msix_misc(pf);
4811 	if (err) {
4812 		dev_err(dev, "setup of misc vector failed: %d\n", err);
4813 		goto unroll_irq_scheme_init;
4814 	}
4815 
4816 	return 0;
4817 
4818 unroll_irq_scheme_init:
4819 	ice_clear_interrupt_scheme(pf);
4820 unroll_pf_init:
4821 	ice_deinit_pf(pf);
4822 	return err;
4823 }
4824 
4825 void ice_deinit_dev(struct ice_pf *pf)
4826 {
4827 	ice_free_irq_msix_misc(pf);
4828 	ice_deinit_pf(pf);
4829 	ice_deinit_hw(&pf->hw);
4830 
4831 	/* Service task is already stopped, so call reset directly. */
4832 	ice_reset(&pf->hw, ICE_RESET_PFR);
4833 	pci_wait_for_pending_transaction(pf->pdev);
4834 	ice_clear_interrupt_scheme(pf);
4835 }
4836 
4837 static void ice_init_features(struct ice_pf *pf)
4838 {
4839 	struct device *dev = ice_pf_to_dev(pf);
4840 
4841 	if (ice_is_safe_mode(pf))
4842 		return;
4843 
4844 	/* initialize DDP driven features */
4845 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4846 		ice_ptp_init(pf);
4847 
4848 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4849 		ice_gnss_init(pf);
4850 
4851 	if (ice_is_feature_supported(pf, ICE_F_CGU) ||
4852 	    ice_is_feature_supported(pf, ICE_F_PHY_RCLK))
4853 		ice_dpll_init(pf);
4854 
4855 	/* Note: Flow director init failure is non-fatal to load */
4856 	if (ice_init_fdir(pf))
4857 		dev_err(dev, "could not initialize flow director\n");
4858 
4859 	/* Note: DCB init failure is non-fatal to load */
4860 	if (ice_init_pf_dcb(pf, false)) {
4861 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4862 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4863 	} else {
4864 		ice_cfg_lldp_mib_change(&pf->hw, true);
4865 	}
4866 
4867 	if (ice_init_lag(pf))
4868 		dev_warn(dev, "Failed to init link aggregation support\n");
4869 
4870 	ice_hwmon_init(pf);
4871 }
4872 
4873 static void ice_deinit_features(struct ice_pf *pf)
4874 {
4875 	if (ice_is_safe_mode(pf))
4876 		return;
4877 
4878 	ice_deinit_lag(pf);
4879 	if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags))
4880 		ice_cfg_lldp_mib_change(&pf->hw, false);
4881 	ice_deinit_fdir(pf);
4882 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
4883 		ice_gnss_exit(pf);
4884 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4885 		ice_ptp_release(pf);
4886 	if (test_bit(ICE_FLAG_DPLL, pf->flags))
4887 		ice_dpll_deinit(pf);
4888 	if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV)
4889 		xa_destroy(&pf->eswitch.reprs);
4890 }
4891 
4892 static void ice_init_wakeup(struct ice_pf *pf)
4893 {
4894 	/* Save wakeup reason register for later use */
4895 	pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS);
4896 
4897 	/* check for a power management event */
4898 	ice_print_wake_reason(pf);
4899 
4900 	/* clear wake status, all bits */
4901 	wr32(&pf->hw, PFPM_WUS, U32_MAX);
4902 
4903 	/* Disable WoL at init, wait for user to enable */
4904 	device_set_wakeup_enable(ice_pf_to_dev(pf), false);
4905 }
4906 
4907 static int ice_init_link(struct ice_pf *pf)
4908 {
4909 	struct device *dev = ice_pf_to_dev(pf);
4910 	int err;
4911 
4912 	err = ice_init_link_events(pf->hw.port_info);
4913 	if (err) {
4914 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4915 		return err;
4916 	}
4917 
4918 	/* not a fatal error if this fails */
4919 	err = ice_init_nvm_phy_type(pf->hw.port_info);
4920 	if (err)
4921 		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4922 
4923 	/* not a fatal error if this fails */
4924 	err = ice_update_link_info(pf->hw.port_info);
4925 	if (err)
4926 		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4927 
4928 	ice_init_link_dflt_override(pf->hw.port_info);
4929 
4930 	ice_check_link_cfg_err(pf,
4931 			       pf->hw.port_info->phy.link_info.link_cfg_err);
4932 
4933 	/* if media available, initialize PHY settings */
4934 	if (pf->hw.port_info->phy.link_info.link_info &
4935 	    ICE_AQ_MEDIA_AVAILABLE) {
4936 		/* not a fatal error if this fails */
4937 		err = ice_init_phy_user_cfg(pf->hw.port_info);
4938 		if (err)
4939 			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4940 
4941 		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4942 			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4943 
4944 			if (vsi)
4945 				ice_configure_phy(vsi);
4946 		}
4947 	} else {
4948 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4949 	}
4950 
4951 	return err;
4952 }
4953 
4954 static int ice_init_pf_sw(struct ice_pf *pf)
4955 {
4956 	bool dvm = ice_is_dvm_ena(&pf->hw);
4957 	struct ice_vsi *vsi;
4958 	int err;
4959 
4960 	/* create switch struct for the switch element created by FW on boot */
4961 	pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL);
4962 	if (!pf->first_sw)
4963 		return -ENOMEM;
4964 
4965 	if (pf->hw.evb_veb)
4966 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4967 	else
4968 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4969 
4970 	pf->first_sw->pf = pf;
4971 
4972 	/* record the sw_id available for later use */
4973 	pf->first_sw->sw_id = pf->hw.port_info->sw_id;
4974 
4975 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
4976 	if (err)
4977 		goto err_aq_set_port_params;
4978 
4979 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
4980 	if (!vsi) {
4981 		err = -ENOMEM;
4982 		goto err_pf_vsi_setup;
4983 	}
4984 
4985 	return 0;
4986 
4987 err_pf_vsi_setup:
4988 err_aq_set_port_params:
4989 	kfree(pf->first_sw);
4990 	return err;
4991 }
4992 
4993 static void ice_deinit_pf_sw(struct ice_pf *pf)
4994 {
4995 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
4996 
4997 	if (!vsi)
4998 		return;
4999 
5000 	ice_vsi_release(vsi);
5001 	kfree(pf->first_sw);
5002 }
5003 
5004 static int ice_alloc_vsis(struct ice_pf *pf)
5005 {
5006 	struct device *dev = ice_pf_to_dev(pf);
5007 
5008 	pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi;
5009 	if (!pf->num_alloc_vsi)
5010 		return -EIO;
5011 
5012 	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
5013 		dev_warn(dev,
5014 			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
5015 			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
5016 		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
5017 	}
5018 
5019 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
5020 			       GFP_KERNEL);
5021 	if (!pf->vsi)
5022 		return -ENOMEM;
5023 
5024 	pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
5025 				     sizeof(*pf->vsi_stats), GFP_KERNEL);
5026 	if (!pf->vsi_stats) {
5027 		devm_kfree(dev, pf->vsi);
5028 		return -ENOMEM;
5029 	}
5030 
5031 	return 0;
5032 }
5033 
5034 static void ice_dealloc_vsis(struct ice_pf *pf)
5035 {
5036 	devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats);
5037 	pf->vsi_stats = NULL;
5038 
5039 	pf->num_alloc_vsi = 0;
5040 	devm_kfree(ice_pf_to_dev(pf), pf->vsi);
5041 	pf->vsi = NULL;
5042 }
5043 
5044 static int ice_init_devlink(struct ice_pf *pf)
5045 {
5046 	int err;
5047 
5048 	err = ice_devlink_register_params(pf);
5049 	if (err)
5050 		return err;
5051 
5052 	ice_devlink_init_regions(pf);
5053 	ice_health_init(pf);
5054 	ice_devlink_register(pf);
5055 
5056 	return 0;
5057 }
5058 
5059 static void ice_deinit_devlink(struct ice_pf *pf)
5060 {
5061 	ice_devlink_unregister(pf);
5062 	ice_health_deinit(pf);
5063 	ice_devlink_destroy_regions(pf);
5064 	ice_devlink_unregister_params(pf);
5065 }
5066 
5067 static int ice_init(struct ice_pf *pf)
5068 {
5069 	int err;
5070 
5071 	err = ice_init_dev(pf);
5072 	if (err)
5073 		return err;
5074 
5075 	if (pf->hw.mac_type == ICE_MAC_E830) {
5076 		err = pci_enable_ptm(pf->pdev, NULL);
5077 		if (err)
5078 			dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n");
5079 	}
5080 
5081 	err = ice_alloc_vsis(pf);
5082 	if (err)
5083 		goto err_alloc_vsis;
5084 
5085 	err = ice_init_pf_sw(pf);
5086 	if (err)
5087 		goto err_init_pf_sw;
5088 
5089 	ice_init_wakeup(pf);
5090 
5091 	err = ice_init_link(pf);
5092 	if (err)
5093 		goto err_init_link;
5094 
5095 	err = ice_send_version(pf);
5096 	if (err)
5097 		goto err_init_link;
5098 
5099 	ice_verify_cacheline_size(pf);
5100 
5101 	if (ice_is_safe_mode(pf))
5102 		ice_set_safe_mode_vlan_cfg(pf);
5103 	else
5104 		/* print PCI link speed and width */
5105 		pcie_print_link_status(pf->pdev);
5106 
5107 	/* ready to go, so clear down state bit */
5108 	clear_bit(ICE_DOWN, pf->state);
5109 	clear_bit(ICE_SERVICE_DIS, pf->state);
5110 
5111 	/* since everything is good, start the service timer */
5112 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5113 
5114 	return 0;
5115 
5116 err_init_link:
5117 	ice_deinit_pf_sw(pf);
5118 err_init_pf_sw:
5119 	ice_dealloc_vsis(pf);
5120 err_alloc_vsis:
5121 	ice_deinit_dev(pf);
5122 	return err;
5123 }
5124 
5125 static void ice_deinit(struct ice_pf *pf)
5126 {
5127 	set_bit(ICE_SERVICE_DIS, pf->state);
5128 	set_bit(ICE_DOWN, pf->state);
5129 
5130 	ice_deinit_pf_sw(pf);
5131 	ice_dealloc_vsis(pf);
5132 	ice_deinit_dev(pf);
5133 }
5134 
5135 /**
5136  * ice_load - load pf by init hw and starting VSI
5137  * @pf: pointer to the pf instance
5138  *
5139  * This function has to be called under devl_lock.
5140  */
5141 int ice_load(struct ice_pf *pf)
5142 {
5143 	struct ice_vsi *vsi;
5144 	int err;
5145 
5146 	devl_assert_locked(priv_to_devlink(pf));
5147 
5148 	vsi = ice_get_main_vsi(pf);
5149 
5150 	/* init channel list */
5151 	INIT_LIST_HEAD(&vsi->ch_list);
5152 
5153 	err = ice_cfg_netdev(vsi);
5154 	if (err)
5155 		return err;
5156 
5157 	/* Setup DCB netlink interface */
5158 	ice_dcbnl_setup(vsi);
5159 
5160 	err = ice_init_mac_fltr(pf);
5161 	if (err)
5162 		goto err_init_mac_fltr;
5163 
5164 	err = ice_devlink_create_pf_port(pf);
5165 	if (err)
5166 		goto err_devlink_create_pf_port;
5167 
5168 	SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
5169 
5170 	err = ice_register_netdev(vsi);
5171 	if (err)
5172 		goto err_register_netdev;
5173 
5174 	err = ice_tc_indir_block_register(vsi);
5175 	if (err)
5176 		goto err_tc_indir_block_register;
5177 
5178 	ice_napi_add(vsi);
5179 
5180 	ice_init_features(pf);
5181 
5182 	err = ice_init_rdma(pf);
5183 	if (err)
5184 		goto err_init_rdma;
5185 
5186 	ice_service_task_restart(pf);
5187 
5188 	clear_bit(ICE_DOWN, pf->state);
5189 
5190 	return 0;
5191 
5192 err_init_rdma:
5193 	ice_deinit_features(pf);
5194 	ice_tc_indir_block_unregister(vsi);
5195 err_tc_indir_block_register:
5196 	ice_unregister_netdev(vsi);
5197 err_register_netdev:
5198 	ice_devlink_destroy_pf_port(pf);
5199 err_devlink_create_pf_port:
5200 err_init_mac_fltr:
5201 	ice_decfg_netdev(vsi);
5202 	return err;
5203 }
5204 
5205 /**
5206  * ice_unload - unload pf by stopping VSI and deinit hw
5207  * @pf: pointer to the pf instance
5208  *
5209  * This function has to be called under devl_lock.
5210  */
5211 void ice_unload(struct ice_pf *pf)
5212 {
5213 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
5214 
5215 	devl_assert_locked(priv_to_devlink(pf));
5216 
5217 	ice_deinit_rdma(pf);
5218 	ice_deinit_features(pf);
5219 	ice_tc_indir_block_unregister(vsi);
5220 	ice_unregister_netdev(vsi);
5221 	ice_devlink_destroy_pf_port(pf);
5222 	ice_decfg_netdev(vsi);
5223 }
5224 
5225 static int ice_probe_recovery_mode(struct ice_pf *pf)
5226 {
5227 	struct device *dev = ice_pf_to_dev(pf);
5228 	int err;
5229 
5230 	dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n");
5231 
5232 	INIT_HLIST_HEAD(&pf->aq_wait_list);
5233 	spin_lock_init(&pf->aq_wait_lock);
5234 	init_waitqueue_head(&pf->aq_wait_queue);
5235 
5236 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
5237 	pf->serv_tmr_period = HZ;
5238 	INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode);
5239 	clear_bit(ICE_SERVICE_SCHED, pf->state);
5240 	err = ice_create_all_ctrlq(&pf->hw);
5241 	if (err)
5242 		return err;
5243 
5244 	scoped_guard(devl, priv_to_devlink(pf)) {
5245 		err = ice_init_devlink(pf);
5246 		if (err)
5247 			return err;
5248 	}
5249 
5250 	ice_service_task_restart(pf);
5251 
5252 	return 0;
5253 }
5254 
5255 /**
5256  * ice_probe - Device initialization routine
5257  * @pdev: PCI device information struct
5258  * @ent: entry in ice_pci_tbl
5259  *
5260  * Returns 0 on success, negative on failure
5261  */
5262 static int
5263 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
5264 {
5265 	struct device *dev = &pdev->dev;
5266 	struct ice_adapter *adapter;
5267 	struct ice_pf *pf;
5268 	struct ice_hw *hw;
5269 	int err;
5270 
5271 	if (pdev->is_virtfn) {
5272 		dev_err(dev, "can't probe a virtual function\n");
5273 		return -EINVAL;
5274 	}
5275 
5276 	/* when under a kdump kernel initiate a reset before enabling the
5277 	 * device in order to clear out any pending DMA transactions. These
5278 	 * transactions can cause some systems to machine check when doing
5279 	 * the pcim_enable_device() below.
5280 	 */
5281 	if (is_kdump_kernel()) {
5282 		pci_save_state(pdev);
5283 		pci_clear_master(pdev);
5284 		err = pcie_flr(pdev);
5285 		if (err)
5286 			return err;
5287 		pci_restore_state(pdev);
5288 	}
5289 
5290 	/* this driver uses devres, see
5291 	 * Documentation/driver-api/driver-model/devres.rst
5292 	 */
5293 	err = pcim_enable_device(pdev);
5294 	if (err)
5295 		return err;
5296 
5297 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
5298 	if (err) {
5299 		dev_err(dev, "BAR0 I/O map error %d\n", err);
5300 		return err;
5301 	}
5302 
5303 	pf = ice_allocate_pf(dev);
5304 	if (!pf)
5305 		return -ENOMEM;
5306 
5307 	/* initialize Auxiliary index to invalid value */
5308 	pf->aux_idx = -1;
5309 
5310 	/* set up for high or low DMA */
5311 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
5312 	if (err) {
5313 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
5314 		return err;
5315 	}
5316 
5317 	pci_set_master(pdev);
5318 	pf->pdev = pdev;
5319 	pci_set_drvdata(pdev, pf);
5320 	set_bit(ICE_DOWN, pf->state);
5321 	/* Disable service task until DOWN bit is cleared */
5322 	set_bit(ICE_SERVICE_DIS, pf->state);
5323 
5324 	hw = &pf->hw;
5325 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
5326 	pci_save_state(pdev);
5327 
5328 	hw->back = pf;
5329 	hw->port_info = NULL;
5330 	hw->vendor_id = pdev->vendor;
5331 	hw->device_id = pdev->device;
5332 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
5333 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5334 	hw->subsystem_device_id = pdev->subsystem_device;
5335 	hw->bus.device = PCI_SLOT(pdev->devfn);
5336 	hw->bus.func = PCI_FUNC(pdev->devfn);
5337 	ice_set_ctrlq_len(hw);
5338 
5339 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
5340 
5341 #ifndef CONFIG_DYNAMIC_DEBUG
5342 	if (debug < -1)
5343 		hw->debug_mask = debug;
5344 #endif
5345 
5346 	if (ice_is_recovery_mode(hw))
5347 		return ice_probe_recovery_mode(pf);
5348 
5349 	err = ice_init_hw(hw);
5350 	if (err) {
5351 		dev_err(dev, "ice_init_hw failed: %d\n", err);
5352 		return err;
5353 	}
5354 
5355 	adapter = ice_adapter_get(pdev);
5356 	if (IS_ERR(adapter)) {
5357 		err = PTR_ERR(adapter);
5358 		goto unroll_hw_init;
5359 	}
5360 	pf->adapter = adapter;
5361 
5362 	err = ice_init(pf);
5363 	if (err)
5364 		goto unroll_adapter;
5365 
5366 	devl_lock(priv_to_devlink(pf));
5367 	err = ice_load(pf);
5368 	if (err)
5369 		goto unroll_init;
5370 
5371 	err = ice_init_devlink(pf);
5372 	if (err)
5373 		goto unroll_load;
5374 	devl_unlock(priv_to_devlink(pf));
5375 
5376 	return 0;
5377 
5378 unroll_load:
5379 	ice_unload(pf);
5380 unroll_init:
5381 	devl_unlock(priv_to_devlink(pf));
5382 	ice_deinit(pf);
5383 unroll_adapter:
5384 	ice_adapter_put(pdev);
5385 unroll_hw_init:
5386 	ice_deinit_hw(hw);
5387 	return err;
5388 }
5389 
5390 /**
5391  * ice_set_wake - enable or disable Wake on LAN
5392  * @pf: pointer to the PF struct
5393  *
5394  * Simple helper for WoL control
5395  */
5396 static void ice_set_wake(struct ice_pf *pf)
5397 {
5398 	struct ice_hw *hw = &pf->hw;
5399 	bool wol = pf->wol_ena;
5400 
5401 	/* clear wake state, otherwise new wake events won't fire */
5402 	wr32(hw, PFPM_WUS, U32_MAX);
5403 
5404 	/* enable / disable APM wake up, no RMW needed */
5405 	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5406 
5407 	/* set magic packet filter enabled */
5408 	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5409 }
5410 
5411 /**
5412  * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5413  * @pf: pointer to the PF struct
5414  *
5415  * Issue firmware command to enable multicast magic wake, making
5416  * sure that any locally administered address (LAA) is used for
5417  * wake, and that PF reset doesn't undo the LAA.
5418  */
5419 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5420 {
5421 	struct device *dev = ice_pf_to_dev(pf);
5422 	struct ice_hw *hw = &pf->hw;
5423 	u8 mac_addr[ETH_ALEN];
5424 	struct ice_vsi *vsi;
5425 	int status;
5426 	u8 flags;
5427 
5428 	if (!pf->wol_ena)
5429 		return;
5430 
5431 	vsi = ice_get_main_vsi(pf);
5432 	if (!vsi)
5433 		return;
5434 
5435 	/* Get current MAC address in case it's an LAA */
5436 	if (vsi->netdev)
5437 		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5438 	else
5439 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5440 
5441 	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5442 		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5443 		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5444 
5445 	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5446 	if (status)
5447 		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5448 			status, ice_aq_str(hw->adminq.sq_last_status));
5449 }
5450 
5451 /**
5452  * ice_remove - Device removal routine
5453  * @pdev: PCI device information struct
5454  */
5455 static void ice_remove(struct pci_dev *pdev)
5456 {
5457 	struct ice_pf *pf = pci_get_drvdata(pdev);
5458 	int i;
5459 
5460 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5461 		if (!ice_is_reset_in_progress(pf->state))
5462 			break;
5463 		msleep(100);
5464 	}
5465 
5466 	if (ice_is_recovery_mode(&pf->hw)) {
5467 		ice_service_task_stop(pf);
5468 		scoped_guard(devl, priv_to_devlink(pf)) {
5469 			ice_deinit_devlink(pf);
5470 		}
5471 		return;
5472 	}
5473 
5474 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5475 		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5476 		ice_free_vfs(pf);
5477 	}
5478 
5479 	ice_hwmon_exit(pf);
5480 
5481 	ice_service_task_stop(pf);
5482 	ice_aq_cancel_waiting_tasks(pf);
5483 	set_bit(ICE_DOWN, pf->state);
5484 
5485 	if (!ice_is_safe_mode(pf))
5486 		ice_remove_arfs(pf);
5487 
5488 	devl_lock(priv_to_devlink(pf));
5489 	ice_dealloc_all_dynamic_ports(pf);
5490 	ice_deinit_devlink(pf);
5491 
5492 	ice_unload(pf);
5493 	devl_unlock(priv_to_devlink(pf));
5494 
5495 	ice_deinit(pf);
5496 	ice_vsi_release_all(pf);
5497 
5498 	ice_setup_mc_magic_wake(pf);
5499 	ice_set_wake(pf);
5500 
5501 	ice_adapter_put(pdev);
5502 }
5503 
5504 /**
5505  * ice_shutdown - PCI callback for shutting down device
5506  * @pdev: PCI device information struct
5507  */
5508 static void ice_shutdown(struct pci_dev *pdev)
5509 {
5510 	struct ice_pf *pf = pci_get_drvdata(pdev);
5511 
5512 	ice_remove(pdev);
5513 
5514 	if (system_state == SYSTEM_POWER_OFF) {
5515 		pci_wake_from_d3(pdev, pf->wol_ena);
5516 		pci_set_power_state(pdev, PCI_D3hot);
5517 	}
5518 }
5519 
5520 /**
5521  * ice_prepare_for_shutdown - prep for PCI shutdown
5522  * @pf: board private structure
5523  *
5524  * Inform or close all dependent features in prep for PCI device shutdown
5525  */
5526 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5527 {
5528 	struct ice_hw *hw = &pf->hw;
5529 	u32 v;
5530 
5531 	/* Notify VFs of impending reset */
5532 	if (ice_check_sq_alive(hw, &hw->mailboxq))
5533 		ice_vc_notify_reset(pf);
5534 
5535 	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5536 
5537 	/* disable the VSIs and their queues that are not already DOWN */
5538 	ice_pf_dis_all_vsi(pf, false);
5539 
5540 	ice_for_each_vsi(pf, v)
5541 		if (pf->vsi[v])
5542 			pf->vsi[v]->vsi_num = 0;
5543 
5544 	ice_shutdown_all_ctrlq(hw, true);
5545 }
5546 
5547 /**
5548  * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5549  * @pf: board private structure to reinitialize
5550  *
5551  * This routine reinitialize interrupt scheme that was cleared during
5552  * power management suspend callback.
5553  *
5554  * This should be called during resume routine to re-allocate the q_vectors
5555  * and reacquire interrupts.
5556  */
5557 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5558 {
5559 	struct device *dev = ice_pf_to_dev(pf);
5560 	int ret, v;
5561 
5562 	/* Since we clear MSIX flag during suspend, we need to
5563 	 * set it back during resume...
5564 	 */
5565 
5566 	ret = ice_init_interrupt_scheme(pf);
5567 	if (ret) {
5568 		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5569 		return ret;
5570 	}
5571 
5572 	/* Remap vectors and rings, after successful re-init interrupts */
5573 	ice_for_each_vsi(pf, v) {
5574 		if (!pf->vsi[v])
5575 			continue;
5576 
5577 		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5578 		if (ret)
5579 			goto err_reinit;
5580 		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5581 		rtnl_lock();
5582 		ice_vsi_set_napi_queues(pf->vsi[v]);
5583 		rtnl_unlock();
5584 	}
5585 
5586 	ret = ice_req_irq_msix_misc(pf);
5587 	if (ret) {
5588 		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5589 			ret);
5590 		goto err_reinit;
5591 	}
5592 
5593 	return 0;
5594 
5595 err_reinit:
5596 	while (v--)
5597 		if (pf->vsi[v]) {
5598 			rtnl_lock();
5599 			ice_vsi_clear_napi_queues(pf->vsi[v]);
5600 			rtnl_unlock();
5601 			ice_vsi_free_q_vectors(pf->vsi[v]);
5602 		}
5603 
5604 	return ret;
5605 }
5606 
5607 /**
5608  * ice_suspend
5609  * @dev: generic device information structure
5610  *
5611  * Power Management callback to quiesce the device and prepare
5612  * for D3 transition.
5613  */
5614 static int ice_suspend(struct device *dev)
5615 {
5616 	struct pci_dev *pdev = to_pci_dev(dev);
5617 	struct ice_pf *pf;
5618 	int disabled, v;
5619 
5620 	pf = pci_get_drvdata(pdev);
5621 
5622 	if (!ice_pf_state_is_nominal(pf)) {
5623 		dev_err(dev, "Device is not ready, no need to suspend it\n");
5624 		return -EBUSY;
5625 	}
5626 
5627 	/* Stop watchdog tasks until resume completion.
5628 	 * Even though it is most likely that the service task is
5629 	 * disabled if the device is suspended or down, the service task's
5630 	 * state is controlled by a different state bit, and we should
5631 	 * store and honor whatever state that bit is in at this point.
5632 	 */
5633 	disabled = ice_service_task_stop(pf);
5634 
5635 	ice_deinit_rdma(pf);
5636 
5637 	/* Already suspended?, then there is nothing to do */
5638 	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5639 		if (!disabled)
5640 			ice_service_task_restart(pf);
5641 		return 0;
5642 	}
5643 
5644 	if (test_bit(ICE_DOWN, pf->state) ||
5645 	    ice_is_reset_in_progress(pf->state)) {
5646 		dev_err(dev, "can't suspend device in reset or already down\n");
5647 		if (!disabled)
5648 			ice_service_task_restart(pf);
5649 		return 0;
5650 	}
5651 
5652 	ice_setup_mc_magic_wake(pf);
5653 
5654 	ice_prepare_for_shutdown(pf);
5655 
5656 	ice_set_wake(pf);
5657 
5658 	/* Free vectors, clear the interrupt scheme and release IRQs
5659 	 * for proper hibernation, especially with large number of CPUs.
5660 	 * Otherwise hibernation might fail when mapping all the vectors back
5661 	 * to CPU0.
5662 	 */
5663 	ice_free_irq_msix_misc(pf);
5664 	ice_for_each_vsi(pf, v) {
5665 		if (!pf->vsi[v])
5666 			continue;
5667 		rtnl_lock();
5668 		ice_vsi_clear_napi_queues(pf->vsi[v]);
5669 		rtnl_unlock();
5670 		ice_vsi_free_q_vectors(pf->vsi[v]);
5671 	}
5672 	ice_clear_interrupt_scheme(pf);
5673 
5674 	pci_save_state(pdev);
5675 	pci_wake_from_d3(pdev, pf->wol_ena);
5676 	pci_set_power_state(pdev, PCI_D3hot);
5677 	return 0;
5678 }
5679 
5680 /**
5681  * ice_resume - PM callback for waking up from D3
5682  * @dev: generic device information structure
5683  */
5684 static int ice_resume(struct device *dev)
5685 {
5686 	struct pci_dev *pdev = to_pci_dev(dev);
5687 	enum ice_reset_req reset_type;
5688 	struct ice_pf *pf;
5689 	struct ice_hw *hw;
5690 	int ret;
5691 
5692 	pci_set_power_state(pdev, PCI_D0);
5693 	pci_restore_state(pdev);
5694 	pci_save_state(pdev);
5695 
5696 	if (!pci_device_is_present(pdev))
5697 		return -ENODEV;
5698 
5699 	ret = pci_enable_device_mem(pdev);
5700 	if (ret) {
5701 		dev_err(dev, "Cannot enable device after suspend\n");
5702 		return ret;
5703 	}
5704 
5705 	pf = pci_get_drvdata(pdev);
5706 	hw = &pf->hw;
5707 
5708 	pf->wakeup_reason = rd32(hw, PFPM_WUS);
5709 	ice_print_wake_reason(pf);
5710 
5711 	/* We cleared the interrupt scheme when we suspended, so we need to
5712 	 * restore it now to resume device functionality.
5713 	 */
5714 	ret = ice_reinit_interrupt_scheme(pf);
5715 	if (ret)
5716 		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5717 
5718 	ret = ice_init_rdma(pf);
5719 	if (ret)
5720 		dev_err(dev, "Reinitialize RDMA during resume failed: %d\n",
5721 			ret);
5722 
5723 	clear_bit(ICE_DOWN, pf->state);
5724 	/* Now perform PF reset and rebuild */
5725 	reset_type = ICE_RESET_PFR;
5726 	/* re-enable service task for reset, but allow reset to schedule it */
5727 	clear_bit(ICE_SERVICE_DIS, pf->state);
5728 
5729 	if (ice_schedule_reset(pf, reset_type))
5730 		dev_err(dev, "Reset during resume failed.\n");
5731 
5732 	clear_bit(ICE_SUSPENDED, pf->state);
5733 	ice_service_task_restart(pf);
5734 
5735 	/* Restart the service task */
5736 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5737 
5738 	return 0;
5739 }
5740 
5741 /**
5742  * ice_pci_err_detected - warning that PCI error has been detected
5743  * @pdev: PCI device information struct
5744  * @err: the type of PCI error
5745  *
5746  * Called to warn that something happened on the PCI bus and the error handling
5747  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
5748  */
5749 static pci_ers_result_t
5750 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5751 {
5752 	struct ice_pf *pf = pci_get_drvdata(pdev);
5753 
5754 	if (!pf) {
5755 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5756 			__func__, err);
5757 		return PCI_ERS_RESULT_DISCONNECT;
5758 	}
5759 
5760 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5761 		ice_service_task_stop(pf);
5762 
5763 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5764 			set_bit(ICE_PFR_REQ, pf->state);
5765 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5766 		}
5767 	}
5768 
5769 	return PCI_ERS_RESULT_NEED_RESET;
5770 }
5771 
5772 /**
5773  * ice_pci_err_slot_reset - a PCI slot reset has just happened
5774  * @pdev: PCI device information struct
5775  *
5776  * Called to determine if the driver can recover from the PCI slot reset by
5777  * using a register read to determine if the device is recoverable.
5778  */
5779 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5780 {
5781 	struct ice_pf *pf = pci_get_drvdata(pdev);
5782 	pci_ers_result_t result;
5783 	int err;
5784 	u32 reg;
5785 
5786 	err = pci_enable_device_mem(pdev);
5787 	if (err) {
5788 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5789 			err);
5790 		result = PCI_ERS_RESULT_DISCONNECT;
5791 	} else {
5792 		pci_set_master(pdev);
5793 		pci_restore_state(pdev);
5794 		pci_save_state(pdev);
5795 		pci_wake_from_d3(pdev, false);
5796 
5797 		/* Check for life */
5798 		reg = rd32(&pf->hw, GLGEN_RTRIG);
5799 		if (!reg)
5800 			result = PCI_ERS_RESULT_RECOVERED;
5801 		else
5802 			result = PCI_ERS_RESULT_DISCONNECT;
5803 	}
5804 
5805 	return result;
5806 }
5807 
5808 /**
5809  * ice_pci_err_resume - restart operations after PCI error recovery
5810  * @pdev: PCI device information struct
5811  *
5812  * Called to allow the driver to bring things back up after PCI error and/or
5813  * reset recovery have finished
5814  */
5815 static void ice_pci_err_resume(struct pci_dev *pdev)
5816 {
5817 	struct ice_pf *pf = pci_get_drvdata(pdev);
5818 
5819 	if (!pf) {
5820 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5821 			__func__);
5822 		return;
5823 	}
5824 
5825 	if (test_bit(ICE_SUSPENDED, pf->state)) {
5826 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5827 			__func__);
5828 		return;
5829 	}
5830 
5831 	ice_restore_all_vfs_msi_state(pf);
5832 
5833 	ice_do_reset(pf, ICE_RESET_PFR);
5834 	ice_service_task_restart(pf);
5835 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5836 }
5837 
5838 /**
5839  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5840  * @pdev: PCI device information struct
5841  */
5842 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5843 {
5844 	struct ice_pf *pf = pci_get_drvdata(pdev);
5845 
5846 	if (!test_bit(ICE_SUSPENDED, pf->state)) {
5847 		ice_service_task_stop(pf);
5848 
5849 		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5850 			set_bit(ICE_PFR_REQ, pf->state);
5851 			ice_prepare_for_reset(pf, ICE_RESET_PFR);
5852 		}
5853 	}
5854 }
5855 
5856 /**
5857  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5858  * @pdev: PCI device information struct
5859  */
5860 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5861 {
5862 	ice_pci_err_resume(pdev);
5863 }
5864 
5865 /* ice_pci_tbl - PCI Device ID Table
5866  *
5867  * Wildcard entries (PCI_ANY_ID) should come last
5868  * Last entry must be all 0s
5869  *
5870  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5871  *   Class, Class Mask, private data (not used) }
5872  */
5873 static const struct pci_device_id ice_pci_tbl[] = {
5874 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) },
5875 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) },
5876 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) },
5877 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) },
5878 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) },
5879 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) },
5880 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) },
5881 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) },
5882 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) },
5883 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) },
5884 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) },
5885 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) },
5886 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) },
5887 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) },
5888 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) },
5889 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) },
5890 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) },
5891 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) },
5892 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) },
5893 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) },
5894 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) },
5895 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) },
5896 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) },
5897 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) },
5898 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) },
5899 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) },
5900 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), },
5901 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), },
5902 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), },
5903 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), },
5904 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) },
5905 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) },
5906 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) },
5907 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) },
5908 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), },
5909 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), },
5910 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), },
5911 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), },
5912 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), },
5913 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), },
5914 	/* required last entry */
5915 	{}
5916 };
5917 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5918 
5919 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5920 
5921 static const struct pci_error_handlers ice_pci_err_handler = {
5922 	.error_detected = ice_pci_err_detected,
5923 	.slot_reset = ice_pci_err_slot_reset,
5924 	.reset_prepare = ice_pci_err_reset_prepare,
5925 	.reset_done = ice_pci_err_reset_done,
5926 	.resume = ice_pci_err_resume
5927 };
5928 
5929 static struct pci_driver ice_driver = {
5930 	.name = KBUILD_MODNAME,
5931 	.id_table = ice_pci_tbl,
5932 	.probe = ice_probe,
5933 	.remove = ice_remove,
5934 	.driver.pm = pm_sleep_ptr(&ice_pm_ops),
5935 	.shutdown = ice_shutdown,
5936 	.sriov_configure = ice_sriov_configure,
5937 	.sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix,
5938 	.sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count,
5939 	.err_handler = &ice_pci_err_handler
5940 };
5941 
5942 /**
5943  * ice_module_init - Driver registration routine
5944  *
5945  * ice_module_init is the first routine called when the driver is
5946  * loaded. All it does is register with the PCI subsystem.
5947  */
5948 static int __init ice_module_init(void)
5949 {
5950 	int status = -ENOMEM;
5951 
5952 	pr_info("%s\n", ice_driver_string);
5953 	pr_info("%s\n", ice_copyright);
5954 
5955 	ice_adv_lnk_speed_maps_init();
5956 
5957 	ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME);
5958 	if (!ice_wq) {
5959 		pr_err("Failed to create workqueue\n");
5960 		return status;
5961 	}
5962 
5963 	ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0);
5964 	if (!ice_lag_wq) {
5965 		pr_err("Failed to create LAG workqueue\n");
5966 		goto err_dest_wq;
5967 	}
5968 
5969 	ice_debugfs_init();
5970 
5971 	status = pci_register_driver(&ice_driver);
5972 	if (status) {
5973 		pr_err("failed to register PCI driver, err %d\n", status);
5974 		goto err_dest_lag_wq;
5975 	}
5976 
5977 	status = ice_sf_driver_register();
5978 	if (status) {
5979 		pr_err("Failed to register SF driver, err %d\n", status);
5980 		goto err_sf_driver;
5981 	}
5982 
5983 	return 0;
5984 
5985 err_sf_driver:
5986 	pci_unregister_driver(&ice_driver);
5987 err_dest_lag_wq:
5988 	destroy_workqueue(ice_lag_wq);
5989 	ice_debugfs_exit();
5990 err_dest_wq:
5991 	destroy_workqueue(ice_wq);
5992 	return status;
5993 }
5994 module_init(ice_module_init);
5995 
5996 /**
5997  * ice_module_exit - Driver exit cleanup routine
5998  *
5999  * ice_module_exit is called just before the driver is removed
6000  * from memory.
6001  */
6002 static void __exit ice_module_exit(void)
6003 {
6004 	ice_sf_driver_unregister();
6005 	pci_unregister_driver(&ice_driver);
6006 	ice_debugfs_exit();
6007 	destroy_workqueue(ice_wq);
6008 	destroy_workqueue(ice_lag_wq);
6009 	pr_info("module unloaded\n");
6010 }
6011 module_exit(ice_module_exit);
6012 
6013 /**
6014  * ice_set_mac_address - NDO callback to set MAC address
6015  * @netdev: network interface device structure
6016  * @pi: pointer to an address structure
6017  *
6018  * Returns 0 on success, negative on failure
6019  */
6020 static int ice_set_mac_address(struct net_device *netdev, void *pi)
6021 {
6022 	struct ice_netdev_priv *np = netdev_priv(netdev);
6023 	struct ice_vsi *vsi = np->vsi;
6024 	struct ice_pf *pf = vsi->back;
6025 	struct ice_hw *hw = &pf->hw;
6026 	struct sockaddr *addr = pi;
6027 	u8 old_mac[ETH_ALEN];
6028 	u8 flags = 0;
6029 	u8 *mac;
6030 	int err;
6031 
6032 	mac = (u8 *)addr->sa_data;
6033 
6034 	if (!is_valid_ether_addr(mac))
6035 		return -EADDRNOTAVAIL;
6036 
6037 	if (test_bit(ICE_DOWN, pf->state) ||
6038 	    ice_is_reset_in_progress(pf->state)) {
6039 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
6040 			   mac);
6041 		return -EBUSY;
6042 	}
6043 
6044 	if (ice_chnl_dmac_fltr_cnt(pf)) {
6045 		netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
6046 			   mac);
6047 		return -EAGAIN;
6048 	}
6049 
6050 	netif_addr_lock_bh(netdev);
6051 	ether_addr_copy(old_mac, netdev->dev_addr);
6052 	/* change the netdev's MAC address */
6053 	eth_hw_addr_set(netdev, mac);
6054 	netif_addr_unlock_bh(netdev);
6055 
6056 	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
6057 	err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
6058 	if (err && err != -ENOENT) {
6059 		err = -EADDRNOTAVAIL;
6060 		goto err_update_filters;
6061 	}
6062 
6063 	/* Add filter for new MAC. If filter exists, return success */
6064 	err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
6065 	if (err == -EEXIST) {
6066 		/* Although this MAC filter is already present in hardware it's
6067 		 * possible in some cases (e.g. bonding) that dev_addr was
6068 		 * modified outside of the driver and needs to be restored back
6069 		 * to this value.
6070 		 */
6071 		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
6072 
6073 		return 0;
6074 	} else if (err) {
6075 		/* error if the new filter addition failed */
6076 		err = -EADDRNOTAVAIL;
6077 	}
6078 
6079 err_update_filters:
6080 	if (err) {
6081 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
6082 			   mac);
6083 		netif_addr_lock_bh(netdev);
6084 		eth_hw_addr_set(netdev, old_mac);
6085 		netif_addr_unlock_bh(netdev);
6086 		return err;
6087 	}
6088 
6089 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
6090 		   netdev->dev_addr);
6091 
6092 	/* write new MAC address to the firmware */
6093 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
6094 	err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
6095 	if (err) {
6096 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
6097 			   mac, err);
6098 	}
6099 	return 0;
6100 }
6101 
6102 /**
6103  * ice_set_rx_mode - NDO callback to set the netdev filters
6104  * @netdev: network interface device structure
6105  */
6106 static void ice_set_rx_mode(struct net_device *netdev)
6107 {
6108 	struct ice_netdev_priv *np = netdev_priv(netdev);
6109 	struct ice_vsi *vsi = np->vsi;
6110 
6111 	if (!vsi || ice_is_switchdev_running(vsi->back))
6112 		return;
6113 
6114 	/* Set the flags to synchronize filters
6115 	 * ndo_set_rx_mode may be triggered even without a change in netdev
6116 	 * flags
6117 	 */
6118 	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
6119 	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
6120 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
6121 
6122 	/* schedule our worker thread which will take care of
6123 	 * applying the new filter changes
6124 	 */
6125 	ice_service_task_schedule(vsi->back);
6126 }
6127 
6128 /**
6129  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
6130  * @netdev: network interface device structure
6131  * @queue_index: Queue ID
6132  * @maxrate: maximum bandwidth in Mbps
6133  */
6134 static int
6135 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
6136 {
6137 	struct ice_netdev_priv *np = netdev_priv(netdev);
6138 	struct ice_vsi *vsi = np->vsi;
6139 	u16 q_handle;
6140 	int status;
6141 	u8 tc;
6142 
6143 	/* Validate maxrate requested is within permitted range */
6144 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
6145 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
6146 			   maxrate, queue_index);
6147 		return -EINVAL;
6148 	}
6149 
6150 	q_handle = vsi->tx_rings[queue_index]->q_handle;
6151 	tc = ice_dcb_get_tc(vsi, queue_index);
6152 
6153 	vsi = ice_locate_vsi_using_queue(vsi, queue_index);
6154 	if (!vsi) {
6155 		netdev_err(netdev, "Invalid VSI for given queue %d\n",
6156 			   queue_index);
6157 		return -EINVAL;
6158 	}
6159 
6160 	/* Set BW back to default, when user set maxrate to 0 */
6161 	if (!maxrate)
6162 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
6163 					       q_handle, ICE_MAX_BW);
6164 	else
6165 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
6166 					  q_handle, ICE_MAX_BW, maxrate * 1000);
6167 	if (status)
6168 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
6169 			   status);
6170 
6171 	return status;
6172 }
6173 
6174 /**
6175  * ice_fdb_add - add an entry to the hardware database
6176  * @ndm: the input from the stack
6177  * @tb: pointer to array of nladdr (unused)
6178  * @dev: the net device pointer
6179  * @addr: the MAC address entry being added
6180  * @vid: VLAN ID
6181  * @flags: instructions from stack about fdb operation
6182  * @notified: whether notification was emitted
6183  * @extack: netlink extended ack
6184  */
6185 static int
6186 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
6187 	    struct net_device *dev, const unsigned char *addr, u16 vid,
6188 	    u16 flags, bool *notified,
6189 	    struct netlink_ext_ack __always_unused *extack)
6190 {
6191 	int err;
6192 
6193 	if (vid) {
6194 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
6195 		return -EINVAL;
6196 	}
6197 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
6198 		netdev_err(dev, "FDB only supports static addresses\n");
6199 		return -EINVAL;
6200 	}
6201 
6202 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
6203 		err = dev_uc_add_excl(dev, addr);
6204 	else if (is_multicast_ether_addr(addr))
6205 		err = dev_mc_add_excl(dev, addr);
6206 	else
6207 		err = -EINVAL;
6208 
6209 	/* Only return duplicate errors if NLM_F_EXCL is set */
6210 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
6211 		err = 0;
6212 
6213 	return err;
6214 }
6215 
6216 /**
6217  * ice_fdb_del - delete an entry from the hardware database
6218  * @ndm: the input from the stack
6219  * @tb: pointer to array of nladdr (unused)
6220  * @dev: the net device pointer
6221  * @addr: the MAC address entry being added
6222  * @vid: VLAN ID
6223  * @notified: whether notification was emitted
6224  * @extack: netlink extended ack
6225  */
6226 static int
6227 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
6228 	    struct net_device *dev, const unsigned char *addr,
6229 	    __always_unused u16 vid, bool *notified,
6230 	    struct netlink_ext_ack *extack)
6231 {
6232 	int err;
6233 
6234 	if (ndm->ndm_state & NUD_PERMANENT) {
6235 		netdev_err(dev, "FDB only supports static addresses\n");
6236 		return -EINVAL;
6237 	}
6238 
6239 	if (is_unicast_ether_addr(addr))
6240 		err = dev_uc_del(dev, addr);
6241 	else if (is_multicast_ether_addr(addr))
6242 		err = dev_mc_del(dev, addr);
6243 	else
6244 		err = -EINVAL;
6245 
6246 	return err;
6247 }
6248 
6249 #define NETIF_VLAN_OFFLOAD_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6250 					 NETIF_F_HW_VLAN_CTAG_TX | \
6251 					 NETIF_F_HW_VLAN_STAG_RX | \
6252 					 NETIF_F_HW_VLAN_STAG_TX)
6253 
6254 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
6255 					 NETIF_F_HW_VLAN_STAG_RX)
6256 
6257 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
6258 					 NETIF_F_HW_VLAN_STAG_FILTER)
6259 
6260 /**
6261  * ice_fix_features - fix the netdev features flags based on device limitations
6262  * @netdev: ptr to the netdev that flags are being fixed on
6263  * @features: features that need to be checked and possibly fixed
6264  *
6265  * Make sure any fixups are made to features in this callback. This enables the
6266  * driver to not have to check unsupported configurations throughout the driver
6267  * because that's the responsiblity of this callback.
6268  *
6269  * Single VLAN Mode (SVM) Supported Features:
6270  *	NETIF_F_HW_VLAN_CTAG_FILTER
6271  *	NETIF_F_HW_VLAN_CTAG_RX
6272  *	NETIF_F_HW_VLAN_CTAG_TX
6273  *
6274  * Double VLAN Mode (DVM) Supported Features:
6275  *	NETIF_F_HW_VLAN_CTAG_FILTER
6276  *	NETIF_F_HW_VLAN_CTAG_RX
6277  *	NETIF_F_HW_VLAN_CTAG_TX
6278  *
6279  *	NETIF_F_HW_VLAN_STAG_FILTER
6280  *	NETIF_HW_VLAN_STAG_RX
6281  *	NETIF_HW_VLAN_STAG_TX
6282  *
6283  * Features that need fixing:
6284  *	Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
6285  *	These are mutually exlusive as the VSI context cannot support multiple
6286  *	VLAN ethertypes simultaneously for stripping and/or insertion. If this
6287  *	is not done, then default to clearing the requested STAG offload
6288  *	settings.
6289  *
6290  *	All supported filtering has to be enabled or disabled together. For
6291  *	example, in DVM, CTAG and STAG filtering have to be enabled and disabled
6292  *	together. If this is not done, then default to VLAN filtering disabled.
6293  *	These are mutually exclusive as there is currently no way to
6294  *	enable/disable VLAN filtering based on VLAN ethertype when using VLAN
6295  *	prune rules.
6296  */
6297 static netdev_features_t
6298 ice_fix_features(struct net_device *netdev, netdev_features_t features)
6299 {
6300 	struct ice_netdev_priv *np = netdev_priv(netdev);
6301 	netdev_features_t req_vlan_fltr, cur_vlan_fltr;
6302 	bool cur_ctag, cur_stag, req_ctag, req_stag;
6303 
6304 	cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
6305 	cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6306 	cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6307 
6308 	req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
6309 	req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
6310 	req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
6311 
6312 	if (req_vlan_fltr != cur_vlan_fltr) {
6313 		if (ice_is_dvm_ena(&np->vsi->back->hw)) {
6314 			if (req_ctag && req_stag) {
6315 				features |= NETIF_VLAN_FILTERING_FEATURES;
6316 			} else if (!req_ctag && !req_stag) {
6317 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6318 			} else if ((!cur_ctag && req_ctag && !cur_stag) ||
6319 				   (!cur_stag && req_stag && !cur_ctag)) {
6320 				features |= NETIF_VLAN_FILTERING_FEATURES;
6321 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
6322 			} else if ((cur_ctag && !req_ctag && cur_stag) ||
6323 				   (cur_stag && !req_stag && cur_ctag)) {
6324 				features &= ~NETIF_VLAN_FILTERING_FEATURES;
6325 				netdev_warn(netdev,  "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
6326 			}
6327 		} else {
6328 			if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
6329 				netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
6330 
6331 			if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
6332 				features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6333 		}
6334 	}
6335 
6336 	if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
6337 	    (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
6338 		netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
6339 		features &= ~(NETIF_F_HW_VLAN_STAG_RX |
6340 			      NETIF_F_HW_VLAN_STAG_TX);
6341 	}
6342 
6343 	if (!(netdev->features & NETIF_F_RXFCS) &&
6344 	    (features & NETIF_F_RXFCS) &&
6345 	    (features & NETIF_VLAN_STRIPPING_FEATURES) &&
6346 	    !ice_vsi_has_non_zero_vlans(np->vsi)) {
6347 		netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
6348 		features &= ~NETIF_VLAN_STRIPPING_FEATURES;
6349 	}
6350 
6351 	return features;
6352 }
6353 
6354 /**
6355  * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto
6356  * @vsi: PF's VSI
6357  * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order
6358  *
6359  * Store current stripped VLAN proto in ring packet context,
6360  * so it can be accessed more efficiently by packet processing code.
6361  */
6362 static void
6363 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype)
6364 {
6365 	u16 i;
6366 
6367 	ice_for_each_alloc_rxq(vsi, i)
6368 		vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype;
6369 }
6370 
6371 /**
6372  * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
6373  * @vsi: PF's VSI
6374  * @features: features used to determine VLAN offload settings
6375  *
6376  * First, determine the vlan_ethertype based on the VLAN offload bits in
6377  * features. Then determine if stripping and insertion should be enabled or
6378  * disabled. Finally enable or disable VLAN stripping and insertion.
6379  */
6380 static int
6381 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
6382 {
6383 	bool enable_stripping = true, enable_insertion = true;
6384 	struct ice_vsi_vlan_ops *vlan_ops;
6385 	int strip_err = 0, insert_err = 0;
6386 	u16 vlan_ethertype = 0;
6387 
6388 	vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6389 
6390 	if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
6391 		vlan_ethertype = ETH_P_8021AD;
6392 	else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
6393 		vlan_ethertype = ETH_P_8021Q;
6394 
6395 	if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
6396 		enable_stripping = false;
6397 	if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
6398 		enable_insertion = false;
6399 
6400 	if (enable_stripping)
6401 		strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
6402 	else
6403 		strip_err = vlan_ops->dis_stripping(vsi);
6404 
6405 	if (enable_insertion)
6406 		insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
6407 	else
6408 		insert_err = vlan_ops->dis_insertion(vsi);
6409 
6410 	if (strip_err || insert_err)
6411 		return -EIO;
6412 
6413 	ice_set_rx_rings_vlan_proto(vsi, enable_stripping ?
6414 				    htons(vlan_ethertype) : 0);
6415 
6416 	return 0;
6417 }
6418 
6419 /**
6420  * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
6421  * @vsi: PF's VSI
6422  * @features: features used to determine VLAN filtering settings
6423  *
6424  * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
6425  * features.
6426  */
6427 static int
6428 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
6429 {
6430 	struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
6431 	int err = 0;
6432 
6433 	/* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
6434 	 * if either bit is set. In switchdev mode Rx filtering should never be
6435 	 * enabled.
6436 	 */
6437 	if ((features &
6438 	     (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) &&
6439 	     !ice_is_eswitch_mode_switchdev(vsi->back))
6440 		err = vlan_ops->ena_rx_filtering(vsi);
6441 	else
6442 		err = vlan_ops->dis_rx_filtering(vsi);
6443 
6444 	return err;
6445 }
6446 
6447 /**
6448  * ice_set_vlan_features - set VLAN settings based on suggested feature set
6449  * @netdev: ptr to the netdev being adjusted
6450  * @features: the feature set that the stack is suggesting
6451  *
6452  * Only update VLAN settings if the requested_vlan_features are different than
6453  * the current_vlan_features.
6454  */
6455 static int
6456 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6457 {
6458 	netdev_features_t current_vlan_features, requested_vlan_features;
6459 	struct ice_netdev_priv *np = netdev_priv(netdev);
6460 	struct ice_vsi *vsi = np->vsi;
6461 	int err;
6462 
6463 	current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6464 	requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6465 	if (current_vlan_features ^ requested_vlan_features) {
6466 		if ((features & NETIF_F_RXFCS) &&
6467 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6468 			dev_err(ice_pf_to_dev(vsi->back),
6469 				"To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6470 			return -EIO;
6471 		}
6472 
6473 		err = ice_set_vlan_offload_features(vsi, features);
6474 		if (err)
6475 			return err;
6476 	}
6477 
6478 	current_vlan_features = netdev->features &
6479 		NETIF_VLAN_FILTERING_FEATURES;
6480 	requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6481 	if (current_vlan_features ^ requested_vlan_features) {
6482 		err = ice_set_vlan_filtering_features(vsi, features);
6483 		if (err)
6484 			return err;
6485 	}
6486 
6487 	return 0;
6488 }
6489 
6490 /**
6491  * ice_set_loopback - turn on/off loopback mode on underlying PF
6492  * @vsi: ptr to VSI
6493  * @ena: flag to indicate the on/off setting
6494  */
6495 static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6496 {
6497 	bool if_running = netif_running(vsi->netdev);
6498 	int ret;
6499 
6500 	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6501 		ret = ice_down(vsi);
6502 		if (ret) {
6503 			netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6504 			return ret;
6505 		}
6506 	}
6507 	ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6508 	if (ret)
6509 		netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6510 	if (if_running)
6511 		ret = ice_up(vsi);
6512 
6513 	return ret;
6514 }
6515 
6516 /**
6517  * ice_set_features - set the netdev feature flags
6518  * @netdev: ptr to the netdev being adjusted
6519  * @features: the feature set that the stack is suggesting
6520  */
6521 static int
6522 ice_set_features(struct net_device *netdev, netdev_features_t features)
6523 {
6524 	netdev_features_t changed = netdev->features ^ features;
6525 	struct ice_netdev_priv *np = netdev_priv(netdev);
6526 	struct ice_vsi *vsi = np->vsi;
6527 	struct ice_pf *pf = vsi->back;
6528 	int ret = 0;
6529 
6530 	/* Don't set any netdev advanced features with device in Safe Mode */
6531 	if (ice_is_safe_mode(pf)) {
6532 		dev_err(ice_pf_to_dev(pf),
6533 			"Device is in Safe Mode - not enabling advanced netdev features\n");
6534 		return ret;
6535 	}
6536 
6537 	/* Do not change setting during reset */
6538 	if (ice_is_reset_in_progress(pf->state)) {
6539 		dev_err(ice_pf_to_dev(pf),
6540 			"Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6541 		return -EBUSY;
6542 	}
6543 
6544 	/* Multiple features can be changed in one call so keep features in
6545 	 * separate if/else statements to guarantee each feature is checked
6546 	 */
6547 	if (changed & NETIF_F_RXHASH)
6548 		ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6549 
6550 	ret = ice_set_vlan_features(netdev, features);
6551 	if (ret)
6552 		return ret;
6553 
6554 	/* Turn on receive of FCS aka CRC, and after setting this
6555 	 * flag the packet data will have the 4 byte CRC appended
6556 	 */
6557 	if (changed & NETIF_F_RXFCS) {
6558 		if ((features & NETIF_F_RXFCS) &&
6559 		    (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6560 			dev_err(ice_pf_to_dev(vsi->back),
6561 				"To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6562 			return -EIO;
6563 		}
6564 
6565 		ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6566 		ret = ice_down_up(vsi);
6567 		if (ret)
6568 			return ret;
6569 	}
6570 
6571 	if (changed & NETIF_F_NTUPLE) {
6572 		bool ena = !!(features & NETIF_F_NTUPLE);
6573 
6574 		ice_vsi_manage_fdir(vsi, ena);
6575 		ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6576 	}
6577 
6578 	/* don't turn off hw_tc_offload when ADQ is already enabled */
6579 	if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6580 		dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6581 		return -EACCES;
6582 	}
6583 
6584 	if (changed & NETIF_F_HW_TC) {
6585 		bool ena = !!(features & NETIF_F_HW_TC);
6586 
6587 		assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena);
6588 	}
6589 
6590 	if (changed & NETIF_F_LOOPBACK)
6591 		ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6592 
6593 	return ret;
6594 }
6595 
6596 /**
6597  * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6598  * @vsi: VSI to setup VLAN properties for
6599  */
6600 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6601 {
6602 	int err;
6603 
6604 	err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6605 	if (err)
6606 		return err;
6607 
6608 	err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6609 	if (err)
6610 		return err;
6611 
6612 	return ice_vsi_add_vlan_zero(vsi);
6613 }
6614 
6615 /**
6616  * ice_vsi_cfg_lan - Setup the VSI lan related config
6617  * @vsi: the VSI being configured
6618  *
6619  * Return 0 on success and negative value on error
6620  */
6621 int ice_vsi_cfg_lan(struct ice_vsi *vsi)
6622 {
6623 	int err;
6624 
6625 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6626 		ice_set_rx_mode(vsi->netdev);
6627 
6628 		err = ice_vsi_vlan_setup(vsi);
6629 		if (err)
6630 			return err;
6631 	}
6632 	ice_vsi_cfg_dcb_rings(vsi);
6633 
6634 	err = ice_vsi_cfg_lan_txqs(vsi);
6635 	if (!err && ice_is_xdp_ena_vsi(vsi))
6636 		err = ice_vsi_cfg_xdp_txqs(vsi);
6637 	if (!err)
6638 		err = ice_vsi_cfg_rxqs(vsi);
6639 
6640 	return err;
6641 }
6642 
6643 /* THEORY OF MODERATION:
6644  * The ice driver hardware works differently than the hardware that DIMLIB was
6645  * originally made for. ice hardware doesn't have packet count limits that
6646  * can trigger an interrupt, but it *does* have interrupt rate limit support,
6647  * which is hard-coded to a limit of 250,000 ints/second.
6648  * If not using dynamic moderation, the INTRL value can be modified
6649  * by ethtool rx-usecs-high.
6650  */
6651 struct ice_dim {
6652 	/* the throttle rate for interrupts, basically worst case delay before
6653 	 * an initial interrupt fires, value is stored in microseconds.
6654 	 */
6655 	u16 itr;
6656 };
6657 
6658 /* Make a different profile for Rx that doesn't allow quite so aggressive
6659  * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6660  * second.
6661  */
6662 static const struct ice_dim rx_profile[] = {
6663 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6664 	{8},    /* 125,000 ints/s */
6665 	{16},   /*  62,500 ints/s */
6666 	{62},   /*  16,129 ints/s */
6667 	{126}   /*   7,936 ints/s */
6668 };
6669 
6670 /* The transmit profile, which has the same sorts of values
6671  * as the previous struct
6672  */
6673 static const struct ice_dim tx_profile[] = {
6674 	{2},    /* 500,000 ints/s, capped at 250K by INTRL */
6675 	{8},    /* 125,000 ints/s */
6676 	{40},   /*  16,125 ints/s */
6677 	{128},  /*   7,812 ints/s */
6678 	{256}   /*   3,906 ints/s */
6679 };
6680 
6681 static void ice_tx_dim_work(struct work_struct *work)
6682 {
6683 	struct ice_ring_container *rc;
6684 	struct dim *dim;
6685 	u16 itr;
6686 
6687 	dim = container_of(work, struct dim, work);
6688 	rc = dim->priv;
6689 
6690 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6691 
6692 	/* look up the values in our local table */
6693 	itr = tx_profile[dim->profile_ix].itr;
6694 
6695 	ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6696 	ice_write_itr(rc, itr);
6697 
6698 	dim->state = DIM_START_MEASURE;
6699 }
6700 
6701 static void ice_rx_dim_work(struct work_struct *work)
6702 {
6703 	struct ice_ring_container *rc;
6704 	struct dim *dim;
6705 	u16 itr;
6706 
6707 	dim = container_of(work, struct dim, work);
6708 	rc = dim->priv;
6709 
6710 	WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6711 
6712 	/* look up the values in our local table */
6713 	itr = rx_profile[dim->profile_ix].itr;
6714 
6715 	ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6716 	ice_write_itr(rc, itr);
6717 
6718 	dim->state = DIM_START_MEASURE;
6719 }
6720 
6721 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6722 
6723 /**
6724  * ice_init_moderation - set up interrupt moderation
6725  * @q_vector: the vector containing rings to be configured
6726  *
6727  * Set up interrupt moderation registers, with the intent to do the right thing
6728  * when called from reset or from probe, and whether or not dynamic moderation
6729  * is enabled or not. Take special care to write all the registers in both
6730  * dynamic moderation mode or not in order to make sure hardware is in a known
6731  * state.
6732  */
6733 static void ice_init_moderation(struct ice_q_vector *q_vector)
6734 {
6735 	struct ice_ring_container *rc;
6736 	bool tx_dynamic, rx_dynamic;
6737 
6738 	rc = &q_vector->tx;
6739 	INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6740 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6741 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6742 	rc->dim.priv = rc;
6743 	tx_dynamic = ITR_IS_DYNAMIC(rc);
6744 
6745 	/* set the initial TX ITR to match the above */
6746 	ice_write_itr(rc, tx_dynamic ?
6747 		      tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6748 
6749 	rc = &q_vector->rx;
6750 	INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6751 	rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6752 	rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6753 	rc->dim.priv = rc;
6754 	rx_dynamic = ITR_IS_DYNAMIC(rc);
6755 
6756 	/* set the initial RX ITR to match the above */
6757 	ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6758 				       rc->itr_setting);
6759 
6760 	ice_set_q_vector_intrl(q_vector);
6761 }
6762 
6763 /**
6764  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6765  * @vsi: the VSI being configured
6766  */
6767 static void ice_napi_enable_all(struct ice_vsi *vsi)
6768 {
6769 	int q_idx;
6770 
6771 	if (!vsi->netdev)
6772 		return;
6773 
6774 	ice_for_each_q_vector(vsi, q_idx) {
6775 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6776 
6777 		ice_init_moderation(q_vector);
6778 
6779 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6780 			napi_enable(&q_vector->napi);
6781 	}
6782 }
6783 
6784 /**
6785  * ice_up_complete - Finish the last steps of bringing up a connection
6786  * @vsi: The VSI being configured
6787  *
6788  * Return 0 on success and negative value on error
6789  */
6790 static int ice_up_complete(struct ice_vsi *vsi)
6791 {
6792 	struct ice_pf *pf = vsi->back;
6793 	int err;
6794 
6795 	ice_vsi_cfg_msix(vsi);
6796 
6797 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
6798 	 * Tx queue group list was configured and the context bits were
6799 	 * programmed using ice_vsi_cfg_txqs
6800 	 */
6801 	err = ice_vsi_start_all_rx_rings(vsi);
6802 	if (err)
6803 		return err;
6804 
6805 	clear_bit(ICE_VSI_DOWN, vsi->state);
6806 	ice_napi_enable_all(vsi);
6807 	ice_vsi_ena_irq(vsi);
6808 
6809 	if (vsi->port_info &&
6810 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6811 	    ((vsi->netdev && (vsi->type == ICE_VSI_PF ||
6812 			      vsi->type == ICE_VSI_SF)))) {
6813 		ice_print_link_msg(vsi, true);
6814 		netif_tx_start_all_queues(vsi->netdev);
6815 		netif_carrier_on(vsi->netdev);
6816 		ice_ptp_link_change(pf, true);
6817 	}
6818 
6819 	/* Perform an initial read of the statistics registers now to
6820 	 * set the baseline so counters are ready when interface is up
6821 	 */
6822 	ice_update_eth_stats(vsi);
6823 
6824 	if (vsi->type == ICE_VSI_PF)
6825 		ice_service_task_schedule(pf);
6826 
6827 	return 0;
6828 }
6829 
6830 /**
6831  * ice_up - Bring the connection back up after being down
6832  * @vsi: VSI being configured
6833  */
6834 int ice_up(struct ice_vsi *vsi)
6835 {
6836 	int err;
6837 
6838 	err = ice_vsi_cfg_lan(vsi);
6839 	if (!err)
6840 		err = ice_up_complete(vsi);
6841 
6842 	return err;
6843 }
6844 
6845 /**
6846  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6847  * @syncp: pointer to u64_stats_sync
6848  * @stats: stats that pkts and bytes count will be taken from
6849  * @pkts: packets stats counter
6850  * @bytes: bytes stats counter
6851  *
6852  * This function fetches stats from the ring considering the atomic operations
6853  * that needs to be performed to read u64 values in 32 bit machine.
6854  */
6855 void
6856 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6857 			     struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6858 {
6859 	unsigned int start;
6860 
6861 	do {
6862 		start = u64_stats_fetch_begin(syncp);
6863 		*pkts = stats.pkts;
6864 		*bytes = stats.bytes;
6865 	} while (u64_stats_fetch_retry(syncp, start));
6866 }
6867 
6868 /**
6869  * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6870  * @vsi: the VSI to be updated
6871  * @vsi_stats: the stats struct to be updated
6872  * @rings: rings to work on
6873  * @count: number of rings
6874  */
6875 static void
6876 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6877 			     struct rtnl_link_stats64 *vsi_stats,
6878 			     struct ice_tx_ring **rings, u16 count)
6879 {
6880 	u16 i;
6881 
6882 	for (i = 0; i < count; i++) {
6883 		struct ice_tx_ring *ring;
6884 		u64 pkts = 0, bytes = 0;
6885 
6886 		ring = READ_ONCE(rings[i]);
6887 		if (!ring || !ring->ring_stats)
6888 			continue;
6889 		ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6890 					     ring->ring_stats->stats, &pkts,
6891 					     &bytes);
6892 		vsi_stats->tx_packets += pkts;
6893 		vsi_stats->tx_bytes += bytes;
6894 		vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6895 		vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6896 		vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6897 	}
6898 }
6899 
6900 /**
6901  * ice_update_vsi_ring_stats - Update VSI stats counters
6902  * @vsi: the VSI to be updated
6903  */
6904 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6905 {
6906 	struct rtnl_link_stats64 *net_stats, *stats_prev;
6907 	struct rtnl_link_stats64 *vsi_stats;
6908 	struct ice_pf *pf = vsi->back;
6909 	u64 pkts, bytes;
6910 	int i;
6911 
6912 	vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6913 	if (!vsi_stats)
6914 		return;
6915 
6916 	/* reset non-netdev (extended) stats */
6917 	vsi->tx_restart = 0;
6918 	vsi->tx_busy = 0;
6919 	vsi->tx_linearize = 0;
6920 	vsi->rx_buf_failed = 0;
6921 	vsi->rx_page_failed = 0;
6922 
6923 	rcu_read_lock();
6924 
6925 	/* update Tx rings counters */
6926 	ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6927 				     vsi->num_txq);
6928 
6929 	/* update Rx rings counters */
6930 	ice_for_each_rxq(vsi, i) {
6931 		struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6932 		struct ice_ring_stats *ring_stats;
6933 
6934 		ring_stats = ring->ring_stats;
6935 		ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6936 					     ring_stats->stats, &pkts,
6937 					     &bytes);
6938 		vsi_stats->rx_packets += pkts;
6939 		vsi_stats->rx_bytes += bytes;
6940 		vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6941 		vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6942 	}
6943 
6944 	/* update XDP Tx rings counters */
6945 	if (ice_is_xdp_ena_vsi(vsi))
6946 		ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6947 					     vsi->num_xdp_txq);
6948 
6949 	rcu_read_unlock();
6950 
6951 	net_stats = &vsi->net_stats;
6952 	stats_prev = &vsi->net_stats_prev;
6953 
6954 	/* Update netdev counters, but keep in mind that values could start at
6955 	 * random value after PF reset. And as we increase the reported stat by
6956 	 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not,
6957 	 * let's skip this round.
6958 	 */
6959 	if (likely(pf->stat_prev_loaded)) {
6960 		net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6961 		net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6962 		net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6963 		net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6964 	}
6965 
6966 	stats_prev->tx_packets = vsi_stats->tx_packets;
6967 	stats_prev->tx_bytes = vsi_stats->tx_bytes;
6968 	stats_prev->rx_packets = vsi_stats->rx_packets;
6969 	stats_prev->rx_bytes = vsi_stats->rx_bytes;
6970 
6971 	kfree(vsi_stats);
6972 }
6973 
6974 /**
6975  * ice_update_vsi_stats - Update VSI stats counters
6976  * @vsi: the VSI to be updated
6977  */
6978 void ice_update_vsi_stats(struct ice_vsi *vsi)
6979 {
6980 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6981 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
6982 	struct ice_pf *pf = vsi->back;
6983 
6984 	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6985 	    test_bit(ICE_CFG_BUSY, pf->state))
6986 		return;
6987 
6988 	/* get stats as recorded by Tx/Rx rings */
6989 	ice_update_vsi_ring_stats(vsi);
6990 
6991 	/* get VSI stats as recorded by the hardware */
6992 	ice_update_eth_stats(vsi);
6993 
6994 	cur_ns->tx_errors = cur_es->tx_errors;
6995 	cur_ns->rx_dropped = cur_es->rx_discards;
6996 	cur_ns->tx_dropped = cur_es->tx_discards;
6997 	cur_ns->multicast = cur_es->rx_multicast;
6998 
6999 	/* update some more netdev stats if this is main VSI */
7000 	if (vsi->type == ICE_VSI_PF) {
7001 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
7002 		cur_ns->rx_errors = pf->stats.crc_errors +
7003 				    pf->stats.illegal_bytes +
7004 				    pf->stats.rx_undersize +
7005 				    pf->hw_csum_rx_error +
7006 				    pf->stats.rx_jabber +
7007 				    pf->stats.rx_fragments +
7008 				    pf->stats.rx_oversize;
7009 		/* record drops from the port level */
7010 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
7011 	}
7012 }
7013 
7014 /**
7015  * ice_update_pf_stats - Update PF port stats counters
7016  * @pf: PF whose stats needs to be updated
7017  */
7018 void ice_update_pf_stats(struct ice_pf *pf)
7019 {
7020 	struct ice_hw_port_stats *prev_ps, *cur_ps;
7021 	struct ice_hw *hw = &pf->hw;
7022 	u16 fd_ctr_base;
7023 	u8 port;
7024 
7025 	port = hw->port_info->lport;
7026 	prev_ps = &pf->stats_prev;
7027 	cur_ps = &pf->stats;
7028 
7029 	if (ice_is_reset_in_progress(pf->state))
7030 		pf->stat_prev_loaded = false;
7031 
7032 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
7033 			  &prev_ps->eth.rx_bytes,
7034 			  &cur_ps->eth.rx_bytes);
7035 
7036 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
7037 			  &prev_ps->eth.rx_unicast,
7038 			  &cur_ps->eth.rx_unicast);
7039 
7040 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
7041 			  &prev_ps->eth.rx_multicast,
7042 			  &cur_ps->eth.rx_multicast);
7043 
7044 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
7045 			  &prev_ps->eth.rx_broadcast,
7046 			  &cur_ps->eth.rx_broadcast);
7047 
7048 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
7049 			  &prev_ps->eth.rx_discards,
7050 			  &cur_ps->eth.rx_discards);
7051 
7052 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
7053 			  &prev_ps->eth.tx_bytes,
7054 			  &cur_ps->eth.tx_bytes);
7055 
7056 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
7057 			  &prev_ps->eth.tx_unicast,
7058 			  &cur_ps->eth.tx_unicast);
7059 
7060 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
7061 			  &prev_ps->eth.tx_multicast,
7062 			  &cur_ps->eth.tx_multicast);
7063 
7064 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
7065 			  &prev_ps->eth.tx_broadcast,
7066 			  &cur_ps->eth.tx_broadcast);
7067 
7068 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
7069 			  &prev_ps->tx_dropped_link_down,
7070 			  &cur_ps->tx_dropped_link_down);
7071 
7072 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
7073 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
7074 
7075 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
7076 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
7077 
7078 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
7079 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
7080 
7081 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
7082 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
7083 
7084 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
7085 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
7086 
7087 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
7088 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
7089 
7090 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
7091 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
7092 
7093 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
7094 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
7095 
7096 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
7097 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
7098 
7099 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
7100 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
7101 
7102 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
7103 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
7104 
7105 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
7106 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
7107 
7108 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
7109 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
7110 
7111 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
7112 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
7113 
7114 	fd_ctr_base = hw->fd_ctr_base;
7115 
7116 	ice_stat_update40(hw,
7117 			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
7118 			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
7119 			  &cur_ps->fd_sb_match);
7120 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
7121 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
7122 
7123 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
7124 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
7125 
7126 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
7127 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
7128 
7129 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
7130 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
7131 
7132 	ice_update_dcb_stats(pf);
7133 
7134 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
7135 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
7136 
7137 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
7138 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
7139 
7140 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
7141 			  &prev_ps->mac_local_faults,
7142 			  &cur_ps->mac_local_faults);
7143 
7144 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
7145 			  &prev_ps->mac_remote_faults,
7146 			  &cur_ps->mac_remote_faults);
7147 
7148 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
7149 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
7150 
7151 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
7152 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
7153 
7154 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
7155 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
7156 
7157 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
7158 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
7159 
7160 	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
7161 
7162 	pf->stat_prev_loaded = true;
7163 }
7164 
7165 /**
7166  * ice_get_stats64 - get statistics for network device structure
7167  * @netdev: network interface device structure
7168  * @stats: main device statistics structure
7169  */
7170 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
7171 {
7172 	struct ice_netdev_priv *np = netdev_priv(netdev);
7173 	struct rtnl_link_stats64 *vsi_stats;
7174 	struct ice_vsi *vsi = np->vsi;
7175 
7176 	vsi_stats = &vsi->net_stats;
7177 
7178 	if (!vsi->num_txq || !vsi->num_rxq)
7179 		return;
7180 
7181 	/* netdev packet/byte stats come from ring counter. These are obtained
7182 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
7183 	 * But, only call the update routine and read the registers if VSI is
7184 	 * not down.
7185 	 */
7186 	if (!test_bit(ICE_VSI_DOWN, vsi->state))
7187 		ice_update_vsi_ring_stats(vsi);
7188 	stats->tx_packets = vsi_stats->tx_packets;
7189 	stats->tx_bytes = vsi_stats->tx_bytes;
7190 	stats->rx_packets = vsi_stats->rx_packets;
7191 	stats->rx_bytes = vsi_stats->rx_bytes;
7192 
7193 	/* The rest of the stats can be read from the hardware but instead we
7194 	 * just return values that the watchdog task has already obtained from
7195 	 * the hardware.
7196 	 */
7197 	stats->multicast = vsi_stats->multicast;
7198 	stats->tx_errors = vsi_stats->tx_errors;
7199 	stats->tx_dropped = vsi_stats->tx_dropped;
7200 	stats->rx_errors = vsi_stats->rx_errors;
7201 	stats->rx_dropped = vsi_stats->rx_dropped;
7202 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
7203 	stats->rx_length_errors = vsi_stats->rx_length_errors;
7204 }
7205 
7206 /**
7207  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
7208  * @vsi: VSI having NAPI disabled
7209  */
7210 static void ice_napi_disable_all(struct ice_vsi *vsi)
7211 {
7212 	int q_idx;
7213 
7214 	if (!vsi->netdev)
7215 		return;
7216 
7217 	ice_for_each_q_vector(vsi, q_idx) {
7218 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
7219 
7220 		if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
7221 			napi_disable(&q_vector->napi);
7222 
7223 		cancel_work_sync(&q_vector->tx.dim.work);
7224 		cancel_work_sync(&q_vector->rx.dim.work);
7225 	}
7226 }
7227 
7228 /**
7229  * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
7230  * @vsi: the VSI being un-configured
7231  */
7232 static void ice_vsi_dis_irq(struct ice_vsi *vsi)
7233 {
7234 	struct ice_pf *pf = vsi->back;
7235 	struct ice_hw *hw = &pf->hw;
7236 	u32 val;
7237 	int i;
7238 
7239 	/* disable interrupt causation from each Rx queue; Tx queues are
7240 	 * handled in ice_vsi_stop_tx_ring()
7241 	 */
7242 	if (vsi->rx_rings) {
7243 		ice_for_each_rxq(vsi, i) {
7244 			if (vsi->rx_rings[i]) {
7245 				u16 reg;
7246 
7247 				reg = vsi->rx_rings[i]->reg_idx;
7248 				val = rd32(hw, QINT_RQCTL(reg));
7249 				val &= ~QINT_RQCTL_CAUSE_ENA_M;
7250 				wr32(hw, QINT_RQCTL(reg), val);
7251 			}
7252 		}
7253 	}
7254 
7255 	/* disable each interrupt */
7256 	ice_for_each_q_vector(vsi, i) {
7257 		if (!vsi->q_vectors[i])
7258 			continue;
7259 		wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
7260 	}
7261 
7262 	ice_flush(hw);
7263 
7264 	/* don't call synchronize_irq() for VF's from the host */
7265 	if (vsi->type == ICE_VSI_VF)
7266 		return;
7267 
7268 	ice_for_each_q_vector(vsi, i)
7269 		synchronize_irq(vsi->q_vectors[i]->irq.virq);
7270 }
7271 
7272 /**
7273  * ice_down - Shutdown the connection
7274  * @vsi: The VSI being stopped
7275  *
7276  * Caller of this function is expected to set the vsi->state ICE_DOWN bit
7277  */
7278 int ice_down(struct ice_vsi *vsi)
7279 {
7280 	int i, tx_err, rx_err, vlan_err = 0;
7281 
7282 	WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
7283 
7284 	if (vsi->netdev) {
7285 		vlan_err = ice_vsi_del_vlan_zero(vsi);
7286 		ice_ptp_link_change(vsi->back, false);
7287 		netif_carrier_off(vsi->netdev);
7288 		netif_tx_disable(vsi->netdev);
7289 	}
7290 
7291 	ice_vsi_dis_irq(vsi);
7292 
7293 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
7294 	if (tx_err)
7295 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
7296 			   vsi->vsi_num, tx_err);
7297 	if (!tx_err && vsi->xdp_rings) {
7298 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
7299 		if (tx_err)
7300 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
7301 				   vsi->vsi_num, tx_err);
7302 	}
7303 
7304 	rx_err = ice_vsi_stop_all_rx_rings(vsi);
7305 	if (rx_err)
7306 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
7307 			   vsi->vsi_num, rx_err);
7308 
7309 	ice_napi_disable_all(vsi);
7310 
7311 	ice_for_each_txq(vsi, i)
7312 		ice_clean_tx_ring(vsi->tx_rings[i]);
7313 
7314 	if (vsi->xdp_rings)
7315 		ice_for_each_xdp_txq(vsi, i)
7316 			ice_clean_tx_ring(vsi->xdp_rings[i]);
7317 
7318 	ice_for_each_rxq(vsi, i)
7319 		ice_clean_rx_ring(vsi->rx_rings[i]);
7320 
7321 	if (tx_err || rx_err || vlan_err) {
7322 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
7323 			   vsi->vsi_num, vsi->vsw->sw_id);
7324 		return -EIO;
7325 	}
7326 
7327 	return 0;
7328 }
7329 
7330 /**
7331  * ice_down_up - shutdown the VSI connection and bring it up
7332  * @vsi: the VSI to be reconnected
7333  */
7334 int ice_down_up(struct ice_vsi *vsi)
7335 {
7336 	int ret;
7337 
7338 	/* if DOWN already set, nothing to do */
7339 	if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
7340 		return 0;
7341 
7342 	ret = ice_down(vsi);
7343 	if (ret)
7344 		return ret;
7345 
7346 	ret = ice_up(vsi);
7347 	if (ret) {
7348 		netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
7349 		return ret;
7350 	}
7351 
7352 	return 0;
7353 }
7354 
7355 /**
7356  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
7357  * @vsi: VSI having resources allocated
7358  *
7359  * Return 0 on success, negative on failure
7360  */
7361 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
7362 {
7363 	int i, err = 0;
7364 
7365 	if (!vsi->num_txq) {
7366 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
7367 			vsi->vsi_num);
7368 		return -EINVAL;
7369 	}
7370 
7371 	ice_for_each_txq(vsi, i) {
7372 		struct ice_tx_ring *ring = vsi->tx_rings[i];
7373 
7374 		if (!ring)
7375 			return -EINVAL;
7376 
7377 		if (vsi->netdev)
7378 			ring->netdev = vsi->netdev;
7379 		err = ice_setup_tx_ring(ring);
7380 		if (err)
7381 			break;
7382 	}
7383 
7384 	return err;
7385 }
7386 
7387 /**
7388  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
7389  * @vsi: VSI having resources allocated
7390  *
7391  * Return 0 on success, negative on failure
7392  */
7393 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
7394 {
7395 	int i, err = 0;
7396 
7397 	if (!vsi->num_rxq) {
7398 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
7399 			vsi->vsi_num);
7400 		return -EINVAL;
7401 	}
7402 
7403 	ice_for_each_rxq(vsi, i) {
7404 		struct ice_rx_ring *ring = vsi->rx_rings[i];
7405 
7406 		if (!ring)
7407 			return -EINVAL;
7408 
7409 		if (vsi->netdev)
7410 			ring->netdev = vsi->netdev;
7411 		err = ice_setup_rx_ring(ring);
7412 		if (err)
7413 			break;
7414 	}
7415 
7416 	return err;
7417 }
7418 
7419 /**
7420  * ice_vsi_open_ctrl - open control VSI for use
7421  * @vsi: the VSI to open
7422  *
7423  * Initialization of the Control VSI
7424  *
7425  * Returns 0 on success, negative value on error
7426  */
7427 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
7428 {
7429 	char int_name[ICE_INT_NAME_STR_LEN];
7430 	struct ice_pf *pf = vsi->back;
7431 	struct device *dev;
7432 	int err;
7433 
7434 	dev = ice_pf_to_dev(pf);
7435 	/* allocate descriptors */
7436 	err = ice_vsi_setup_tx_rings(vsi);
7437 	if (err)
7438 		goto err_setup_tx;
7439 
7440 	err = ice_vsi_setup_rx_rings(vsi);
7441 	if (err)
7442 		goto err_setup_rx;
7443 
7444 	err = ice_vsi_cfg_lan(vsi);
7445 	if (err)
7446 		goto err_setup_rx;
7447 
7448 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
7449 		 dev_driver_string(dev), dev_name(dev));
7450 	err = ice_vsi_req_irq_msix(vsi, int_name);
7451 	if (err)
7452 		goto err_setup_rx;
7453 
7454 	ice_vsi_cfg_msix(vsi);
7455 
7456 	err = ice_vsi_start_all_rx_rings(vsi);
7457 	if (err)
7458 		goto err_up_complete;
7459 
7460 	clear_bit(ICE_VSI_DOWN, vsi->state);
7461 	ice_vsi_ena_irq(vsi);
7462 
7463 	return 0;
7464 
7465 err_up_complete:
7466 	ice_down(vsi);
7467 err_setup_rx:
7468 	ice_vsi_free_rx_rings(vsi);
7469 err_setup_tx:
7470 	ice_vsi_free_tx_rings(vsi);
7471 
7472 	return err;
7473 }
7474 
7475 /**
7476  * ice_vsi_open - Called when a network interface is made active
7477  * @vsi: the VSI to open
7478  *
7479  * Initialization of the VSI
7480  *
7481  * Returns 0 on success, negative value on error
7482  */
7483 int ice_vsi_open(struct ice_vsi *vsi)
7484 {
7485 	char int_name[ICE_INT_NAME_STR_LEN];
7486 	struct ice_pf *pf = vsi->back;
7487 	int err;
7488 
7489 	/* allocate descriptors */
7490 	err = ice_vsi_setup_tx_rings(vsi);
7491 	if (err)
7492 		goto err_setup_tx;
7493 
7494 	err = ice_vsi_setup_rx_rings(vsi);
7495 	if (err)
7496 		goto err_setup_rx;
7497 
7498 	err = ice_vsi_cfg_lan(vsi);
7499 	if (err)
7500 		goto err_setup_rx;
7501 
7502 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7503 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7504 	err = ice_vsi_req_irq_msix(vsi, int_name);
7505 	if (err)
7506 		goto err_setup_rx;
7507 
7508 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7509 
7510 	if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) {
7511 		/* Notify the stack of the actual queue counts. */
7512 		err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7513 		if (err)
7514 			goto err_set_qs;
7515 
7516 		err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7517 		if (err)
7518 			goto err_set_qs;
7519 
7520 		ice_vsi_set_napi_queues(vsi);
7521 	}
7522 
7523 	err = ice_up_complete(vsi);
7524 	if (err)
7525 		goto err_up_complete;
7526 
7527 	return 0;
7528 
7529 err_up_complete:
7530 	ice_down(vsi);
7531 err_set_qs:
7532 	ice_vsi_free_irq(vsi);
7533 err_setup_rx:
7534 	ice_vsi_free_rx_rings(vsi);
7535 err_setup_tx:
7536 	ice_vsi_free_tx_rings(vsi);
7537 
7538 	return err;
7539 }
7540 
7541 /**
7542  * ice_vsi_release_all - Delete all VSIs
7543  * @pf: PF from which all VSIs are being removed
7544  */
7545 static void ice_vsi_release_all(struct ice_pf *pf)
7546 {
7547 	int err, i;
7548 
7549 	if (!pf->vsi)
7550 		return;
7551 
7552 	ice_for_each_vsi(pf, i) {
7553 		if (!pf->vsi[i])
7554 			continue;
7555 
7556 		if (pf->vsi[i]->type == ICE_VSI_CHNL)
7557 			continue;
7558 
7559 		err = ice_vsi_release(pf->vsi[i]);
7560 		if (err)
7561 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7562 				i, err, pf->vsi[i]->vsi_num);
7563 	}
7564 }
7565 
7566 /**
7567  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7568  * @pf: pointer to the PF instance
7569  * @type: VSI type to rebuild
7570  *
7571  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7572  */
7573 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7574 {
7575 	struct device *dev = ice_pf_to_dev(pf);
7576 	int i, err;
7577 
7578 	ice_for_each_vsi(pf, i) {
7579 		struct ice_vsi *vsi = pf->vsi[i];
7580 
7581 		if (!vsi || vsi->type != type)
7582 			continue;
7583 
7584 		/* rebuild the VSI */
7585 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
7586 		if (err) {
7587 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7588 				err, vsi->idx, ice_vsi_type_str(type));
7589 			return err;
7590 		}
7591 
7592 		/* replay filters for the VSI */
7593 		err = ice_replay_vsi(&pf->hw, vsi->idx);
7594 		if (err) {
7595 			dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7596 				err, vsi->idx, ice_vsi_type_str(type));
7597 			return err;
7598 		}
7599 
7600 		/* Re-map HW VSI number, using VSI handle that has been
7601 		 * previously validated in ice_replay_vsi() call above
7602 		 */
7603 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7604 
7605 		/* enable the VSI */
7606 		err = ice_ena_vsi(vsi, false);
7607 		if (err) {
7608 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7609 				err, vsi->idx, ice_vsi_type_str(type));
7610 			return err;
7611 		}
7612 
7613 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7614 			 ice_vsi_type_str(type));
7615 	}
7616 
7617 	return 0;
7618 }
7619 
7620 /**
7621  * ice_update_pf_netdev_link - Update PF netdev link status
7622  * @pf: pointer to the PF instance
7623  */
7624 static void ice_update_pf_netdev_link(struct ice_pf *pf)
7625 {
7626 	bool link_up;
7627 	int i;
7628 
7629 	ice_for_each_vsi(pf, i) {
7630 		struct ice_vsi *vsi = pf->vsi[i];
7631 
7632 		if (!vsi || vsi->type != ICE_VSI_PF)
7633 			return;
7634 
7635 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7636 		if (link_up) {
7637 			netif_carrier_on(pf->vsi[i]->netdev);
7638 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7639 		} else {
7640 			netif_carrier_off(pf->vsi[i]->netdev);
7641 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7642 		}
7643 	}
7644 }
7645 
7646 /**
7647  * ice_rebuild - rebuild after reset
7648  * @pf: PF to rebuild
7649  * @reset_type: type of reset
7650  *
7651  * Do not rebuild VF VSI in this flow because that is already handled via
7652  * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7653  * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7654  * to reset/rebuild all the VF VSI twice.
7655  */
7656 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7657 {
7658 	struct ice_vsi *vsi = ice_get_main_vsi(pf);
7659 	struct device *dev = ice_pf_to_dev(pf);
7660 	struct ice_hw *hw = &pf->hw;
7661 	bool dvm;
7662 	int err;
7663 
7664 	if (test_bit(ICE_DOWN, pf->state))
7665 		goto clear_recovery;
7666 
7667 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7668 
7669 #define ICE_EMP_RESET_SLEEP_MS 5000
7670 	if (reset_type == ICE_RESET_EMPR) {
7671 		/* If an EMP reset has occurred, any previously pending flash
7672 		 * update will have completed. We no longer know whether or
7673 		 * not the NVM update EMP reset is restricted.
7674 		 */
7675 		pf->fw_emp_reset_disabled = false;
7676 
7677 		msleep(ICE_EMP_RESET_SLEEP_MS);
7678 	}
7679 
7680 	err = ice_init_all_ctrlq(hw);
7681 	if (err) {
7682 		dev_err(dev, "control queues init failed %d\n", err);
7683 		goto err_init_ctrlq;
7684 	}
7685 
7686 	/* if DDP was previously loaded successfully */
7687 	if (!ice_is_safe_mode(pf)) {
7688 		/* reload the SW DB of filter tables */
7689 		if (reset_type == ICE_RESET_PFR)
7690 			ice_fill_blk_tbls(hw);
7691 		else
7692 			/* Reload DDP Package after CORER/GLOBR reset */
7693 			ice_load_pkg(NULL, pf);
7694 	}
7695 
7696 	err = ice_clear_pf_cfg(hw);
7697 	if (err) {
7698 		dev_err(dev, "clear PF configuration failed %d\n", err);
7699 		goto err_init_ctrlq;
7700 	}
7701 
7702 	ice_clear_pxe_mode(hw);
7703 
7704 	err = ice_init_nvm(hw);
7705 	if (err) {
7706 		dev_err(dev, "ice_init_nvm failed %d\n", err);
7707 		goto err_init_ctrlq;
7708 	}
7709 
7710 	err = ice_get_caps(hw);
7711 	if (err) {
7712 		dev_err(dev, "ice_get_caps failed %d\n", err);
7713 		goto err_init_ctrlq;
7714 	}
7715 
7716 	err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7717 	if (err) {
7718 		dev_err(dev, "set_mac_cfg failed %d\n", err);
7719 		goto err_init_ctrlq;
7720 	}
7721 
7722 	dvm = ice_is_dvm_ena(hw);
7723 
7724 	err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7725 	if (err)
7726 		goto err_init_ctrlq;
7727 
7728 	err = ice_sched_init_port(hw->port_info);
7729 	if (err)
7730 		goto err_sched_init_port;
7731 
7732 	/* start misc vector */
7733 	err = ice_req_irq_msix_misc(pf);
7734 	if (err) {
7735 		dev_err(dev, "misc vector setup failed: %d\n", err);
7736 		goto err_sched_init_port;
7737 	}
7738 
7739 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7740 		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7741 		if (!rd32(hw, PFQF_FD_SIZE)) {
7742 			u16 unused, guar, b_effort;
7743 
7744 			guar = hw->func_caps.fd_fltr_guar;
7745 			b_effort = hw->func_caps.fd_fltr_best_effort;
7746 
7747 			/* force guaranteed filter pool for PF */
7748 			ice_alloc_fd_guar_item(hw, &unused, guar);
7749 			/* force shared filter pool for PF */
7750 			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7751 		}
7752 	}
7753 
7754 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7755 		ice_dcb_rebuild(pf);
7756 
7757 	/* If the PF previously had enabled PTP, PTP init needs to happen before
7758 	 * the VSI rebuild. If not, this causes the PTP link status events to
7759 	 * fail.
7760 	 */
7761 	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7762 		ice_ptp_rebuild(pf, reset_type);
7763 
7764 	if (ice_is_feature_supported(pf, ICE_F_GNSS))
7765 		ice_gnss_init(pf);
7766 
7767 	/* rebuild PF VSI */
7768 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7769 	if (err) {
7770 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7771 		goto err_vsi_rebuild;
7772 	}
7773 
7774 	if (reset_type == ICE_RESET_PFR) {
7775 		err = ice_rebuild_channels(pf);
7776 		if (err) {
7777 			dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7778 				err);
7779 			goto err_vsi_rebuild;
7780 		}
7781 	}
7782 
7783 	/* If Flow Director is active */
7784 	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7785 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7786 		if (err) {
7787 			dev_err(dev, "control VSI rebuild failed: %d\n", err);
7788 			goto err_vsi_rebuild;
7789 		}
7790 
7791 		/* replay HW Flow Director recipes */
7792 		if (hw->fdir_prof)
7793 			ice_fdir_replay_flows(hw);
7794 
7795 		/* replay Flow Director filters */
7796 		ice_fdir_replay_fltrs(pf);
7797 
7798 		ice_rebuild_arfs(pf);
7799 	}
7800 
7801 	if (vsi && vsi->netdev)
7802 		netif_device_attach(vsi->netdev);
7803 
7804 	ice_update_pf_netdev_link(pf);
7805 
7806 	/* tell the firmware we are up */
7807 	err = ice_send_version(pf);
7808 	if (err) {
7809 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7810 			err);
7811 		goto err_vsi_rebuild;
7812 	}
7813 
7814 	ice_replay_post(hw);
7815 
7816 	/* if we get here, reset flow is successful */
7817 	clear_bit(ICE_RESET_FAILED, pf->state);
7818 
7819 	ice_health_clear(pf);
7820 
7821 	ice_plug_aux_dev(pf);
7822 	if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG))
7823 		ice_lag_rebuild(pf);
7824 
7825 	/* Restore timestamp mode settings after VSI rebuild */
7826 	ice_ptp_restore_timestamp_mode(pf);
7827 	return;
7828 
7829 err_vsi_rebuild:
7830 err_sched_init_port:
7831 	ice_sched_cleanup_all(hw);
7832 err_init_ctrlq:
7833 	ice_shutdown_all_ctrlq(hw, false);
7834 	set_bit(ICE_RESET_FAILED, pf->state);
7835 clear_recovery:
7836 	/* set this bit in PF state to control service task scheduling */
7837 	set_bit(ICE_NEEDS_RESTART, pf->state);
7838 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
7839 }
7840 
7841 /**
7842  * ice_change_mtu - NDO callback to change the MTU
7843  * @netdev: network interface device structure
7844  * @new_mtu: new value for maximum frame size
7845  *
7846  * Returns 0 on success, negative on failure
7847  */
7848 int ice_change_mtu(struct net_device *netdev, int new_mtu)
7849 {
7850 	struct ice_netdev_priv *np = netdev_priv(netdev);
7851 	struct ice_vsi *vsi = np->vsi;
7852 	struct ice_pf *pf = vsi->back;
7853 	struct bpf_prog *prog;
7854 	u8 count = 0;
7855 	int err = 0;
7856 
7857 	if (new_mtu == (int)netdev->mtu) {
7858 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7859 		return 0;
7860 	}
7861 
7862 	prog = vsi->xdp_prog;
7863 	if (prog && !prog->aux->xdp_has_frags) {
7864 		int frame_size = ice_max_xdp_frame_size(vsi);
7865 
7866 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7867 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
7868 				   frame_size - ICE_ETH_PKT_HDR_PAD);
7869 			return -EINVAL;
7870 		}
7871 	} else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) {
7872 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) {
7873 			netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n",
7874 				   ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD);
7875 			return -EINVAL;
7876 		}
7877 	}
7878 
7879 	/* if a reset is in progress, wait for some time for it to complete */
7880 	do {
7881 		if (ice_is_reset_in_progress(pf->state)) {
7882 			count++;
7883 			usleep_range(1000, 2000);
7884 		} else {
7885 			break;
7886 		}
7887 
7888 	} while (count < 100);
7889 
7890 	if (count == 100) {
7891 		netdev_err(netdev, "can't change MTU. Device is busy\n");
7892 		return -EBUSY;
7893 	}
7894 
7895 	WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu);
7896 	err = ice_down_up(vsi);
7897 	if (err)
7898 		return err;
7899 
7900 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7901 	set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7902 
7903 	return err;
7904 }
7905 
7906 /**
7907  * ice_eth_ioctl - Access the hwtstamp interface
7908  * @netdev: network interface device structure
7909  * @ifr: interface request data
7910  * @cmd: ioctl command
7911  */
7912 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7913 {
7914 	struct ice_netdev_priv *np = netdev_priv(netdev);
7915 	struct ice_pf *pf = np->vsi->back;
7916 
7917 	switch (cmd) {
7918 	case SIOCGHWTSTAMP:
7919 		return ice_ptp_get_ts_config(pf, ifr);
7920 	case SIOCSHWTSTAMP:
7921 		return ice_ptp_set_ts_config(pf, ifr);
7922 	default:
7923 		return -EOPNOTSUPP;
7924 	}
7925 }
7926 
7927 /**
7928  * ice_aq_str - convert AQ err code to a string
7929  * @aq_err: the AQ error code to convert
7930  */
7931 const char *ice_aq_str(enum ice_aq_err aq_err)
7932 {
7933 	switch (aq_err) {
7934 	case ICE_AQ_RC_OK:
7935 		return "OK";
7936 	case ICE_AQ_RC_EPERM:
7937 		return "ICE_AQ_RC_EPERM";
7938 	case ICE_AQ_RC_ENOENT:
7939 		return "ICE_AQ_RC_ENOENT";
7940 	case ICE_AQ_RC_ENOMEM:
7941 		return "ICE_AQ_RC_ENOMEM";
7942 	case ICE_AQ_RC_EBUSY:
7943 		return "ICE_AQ_RC_EBUSY";
7944 	case ICE_AQ_RC_EEXIST:
7945 		return "ICE_AQ_RC_EEXIST";
7946 	case ICE_AQ_RC_EINVAL:
7947 		return "ICE_AQ_RC_EINVAL";
7948 	case ICE_AQ_RC_ENOSPC:
7949 		return "ICE_AQ_RC_ENOSPC";
7950 	case ICE_AQ_RC_ENOSYS:
7951 		return "ICE_AQ_RC_ENOSYS";
7952 	case ICE_AQ_RC_EMODE:
7953 		return "ICE_AQ_RC_EMODE";
7954 	case ICE_AQ_RC_ENOSEC:
7955 		return "ICE_AQ_RC_ENOSEC";
7956 	case ICE_AQ_RC_EBADSIG:
7957 		return "ICE_AQ_RC_EBADSIG";
7958 	case ICE_AQ_RC_ESVN:
7959 		return "ICE_AQ_RC_ESVN";
7960 	case ICE_AQ_RC_EBADMAN:
7961 		return "ICE_AQ_RC_EBADMAN";
7962 	case ICE_AQ_RC_EBADBUF:
7963 		return "ICE_AQ_RC_EBADBUF";
7964 	}
7965 
7966 	return "ICE_AQ_RC_UNKNOWN";
7967 }
7968 
7969 /**
7970  * ice_set_rss_lut - Set RSS LUT
7971  * @vsi: Pointer to VSI structure
7972  * @lut: Lookup table
7973  * @lut_size: Lookup table size
7974  *
7975  * Returns 0 on success, negative on failure
7976  */
7977 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7978 {
7979 	struct ice_aq_get_set_rss_lut_params params = {};
7980 	struct ice_hw *hw = &vsi->back->hw;
7981 	int status;
7982 
7983 	if (!lut)
7984 		return -EINVAL;
7985 
7986 	params.vsi_handle = vsi->idx;
7987 	params.lut_size = lut_size;
7988 	params.lut_type = vsi->rss_lut_type;
7989 	params.lut = lut;
7990 
7991 	status = ice_aq_set_rss_lut(hw, &params);
7992 	if (status)
7993 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7994 			status, ice_aq_str(hw->adminq.sq_last_status));
7995 
7996 	return status;
7997 }
7998 
7999 /**
8000  * ice_set_rss_key - Set RSS key
8001  * @vsi: Pointer to the VSI structure
8002  * @seed: RSS hash seed
8003  *
8004  * Returns 0 on success, negative on failure
8005  */
8006 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
8007 {
8008 	struct ice_hw *hw = &vsi->back->hw;
8009 	int status;
8010 
8011 	if (!seed)
8012 		return -EINVAL;
8013 
8014 	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8015 	if (status)
8016 		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
8017 			status, ice_aq_str(hw->adminq.sq_last_status));
8018 
8019 	return status;
8020 }
8021 
8022 /**
8023  * ice_get_rss_lut - Get RSS LUT
8024  * @vsi: Pointer to VSI structure
8025  * @lut: Buffer to store the lookup table entries
8026  * @lut_size: Size of buffer to store the lookup table entries
8027  *
8028  * Returns 0 on success, negative on failure
8029  */
8030 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
8031 {
8032 	struct ice_aq_get_set_rss_lut_params params = {};
8033 	struct ice_hw *hw = &vsi->back->hw;
8034 	int status;
8035 
8036 	if (!lut)
8037 		return -EINVAL;
8038 
8039 	params.vsi_handle = vsi->idx;
8040 	params.lut_size = lut_size;
8041 	params.lut_type = vsi->rss_lut_type;
8042 	params.lut = lut;
8043 
8044 	status = ice_aq_get_rss_lut(hw, &params);
8045 	if (status)
8046 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
8047 			status, ice_aq_str(hw->adminq.sq_last_status));
8048 
8049 	return status;
8050 }
8051 
8052 /**
8053  * ice_get_rss_key - Get RSS key
8054  * @vsi: Pointer to VSI structure
8055  * @seed: Buffer to store the key in
8056  *
8057  * Returns 0 on success, negative on failure
8058  */
8059 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
8060 {
8061 	struct ice_hw *hw = &vsi->back->hw;
8062 	int status;
8063 
8064 	if (!seed)
8065 		return -EINVAL;
8066 
8067 	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
8068 	if (status)
8069 		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
8070 			status, ice_aq_str(hw->adminq.sq_last_status));
8071 
8072 	return status;
8073 }
8074 
8075 /**
8076  * ice_set_rss_hfunc - Set RSS HASH function
8077  * @vsi: Pointer to VSI structure
8078  * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*)
8079  *
8080  * Returns 0 on success, negative on failure
8081  */
8082 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc)
8083 {
8084 	struct ice_hw *hw = &vsi->back->hw;
8085 	struct ice_vsi_ctx *ctx;
8086 	bool symm;
8087 	int err;
8088 
8089 	if (hfunc == vsi->rss_hfunc)
8090 		return 0;
8091 
8092 	if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ &&
8093 	    hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ)
8094 		return -EOPNOTSUPP;
8095 
8096 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
8097 	if (!ctx)
8098 		return -ENOMEM;
8099 
8100 	ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
8101 	ctx->info.q_opt_rss = vsi->info.q_opt_rss;
8102 	ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M;
8103 	ctx->info.q_opt_rss |=
8104 		FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc);
8105 	ctx->info.q_opt_tc = vsi->info.q_opt_tc;
8106 	ctx->info.q_opt_flags = vsi->info.q_opt_rss;
8107 
8108 	err = ice_update_vsi(hw, vsi->idx, ctx, NULL);
8109 	if (err) {
8110 		dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n",
8111 			vsi->vsi_num, err);
8112 	} else {
8113 		vsi->info.q_opt_rss = ctx->info.q_opt_rss;
8114 		vsi->rss_hfunc = hfunc;
8115 		netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n",
8116 			    hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ?
8117 			    "Symmetric " : "");
8118 	}
8119 	kfree(ctx);
8120 	if (err)
8121 		return err;
8122 
8123 	/* Fix the symmetry setting for all existing RSS configurations */
8124 	symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ);
8125 	return ice_set_rss_cfg_symm(hw, vsi, symm);
8126 }
8127 
8128 /**
8129  * ice_bridge_getlink - Get the hardware bridge mode
8130  * @skb: skb buff
8131  * @pid: process ID
8132  * @seq: RTNL message seq
8133  * @dev: the netdev being configured
8134  * @filter_mask: filter mask passed in
8135  * @nlflags: netlink flags passed in
8136  *
8137  * Return the bridge mode (VEB/VEPA)
8138  */
8139 static int
8140 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
8141 		   struct net_device *dev, u32 filter_mask, int nlflags)
8142 {
8143 	struct ice_netdev_priv *np = netdev_priv(dev);
8144 	struct ice_vsi *vsi = np->vsi;
8145 	struct ice_pf *pf = vsi->back;
8146 	u16 bmode;
8147 
8148 	bmode = pf->first_sw->bridge_mode;
8149 
8150 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
8151 				       filter_mask, NULL);
8152 }
8153 
8154 /**
8155  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
8156  * @vsi: Pointer to VSI structure
8157  * @bmode: Hardware bridge mode (VEB/VEPA)
8158  *
8159  * Returns 0 on success, negative on failure
8160  */
8161 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
8162 {
8163 	struct ice_aqc_vsi_props *vsi_props;
8164 	struct ice_hw *hw = &vsi->back->hw;
8165 	struct ice_vsi_ctx *ctxt;
8166 	int ret;
8167 
8168 	vsi_props = &vsi->info;
8169 
8170 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
8171 	if (!ctxt)
8172 		return -ENOMEM;
8173 
8174 	ctxt->info = vsi->info;
8175 
8176 	if (bmode == BRIDGE_MODE_VEB)
8177 		/* change from VEPA to VEB mode */
8178 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8179 	else
8180 		/* change from VEB to VEPA mode */
8181 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
8182 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
8183 
8184 	ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
8185 	if (ret) {
8186 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
8187 			bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
8188 		goto out;
8189 	}
8190 	/* Update sw flags for book keeping */
8191 	vsi_props->sw_flags = ctxt->info.sw_flags;
8192 
8193 out:
8194 	kfree(ctxt);
8195 	return ret;
8196 }
8197 
8198 /**
8199  * ice_bridge_setlink - Set the hardware bridge mode
8200  * @dev: the netdev being configured
8201  * @nlh: RTNL message
8202  * @flags: bridge setlink flags
8203  * @extack: netlink extended ack
8204  *
8205  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
8206  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
8207  * not already set for all VSIs connected to this switch. And also update the
8208  * unicast switch filter rules for the corresponding switch of the netdev.
8209  */
8210 static int
8211 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
8212 		   u16 __always_unused flags,
8213 		   struct netlink_ext_ack __always_unused *extack)
8214 {
8215 	struct ice_netdev_priv *np = netdev_priv(dev);
8216 	struct ice_pf *pf = np->vsi->back;
8217 	struct nlattr *attr, *br_spec;
8218 	struct ice_hw *hw = &pf->hw;
8219 	struct ice_sw *pf_sw;
8220 	int rem, v, err = 0;
8221 
8222 	pf_sw = pf->first_sw;
8223 	/* find the attribute in the netlink message */
8224 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
8225 	if (!br_spec)
8226 		return -EINVAL;
8227 
8228 	nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) {
8229 		__u16 mode = nla_get_u16(attr);
8230 
8231 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
8232 			return -EINVAL;
8233 		/* Continue  if bridge mode is not being flipped */
8234 		if (mode == pf_sw->bridge_mode)
8235 			continue;
8236 		/* Iterates through the PF VSI list and update the loopback
8237 		 * mode of the VSI
8238 		 */
8239 		ice_for_each_vsi(pf, v) {
8240 			if (!pf->vsi[v])
8241 				continue;
8242 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
8243 			if (err)
8244 				return err;
8245 		}
8246 
8247 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
8248 		/* Update the unicast switch filter rules for the corresponding
8249 		 * switch of the netdev
8250 		 */
8251 		err = ice_update_sw_rule_bridge_mode(hw);
8252 		if (err) {
8253 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
8254 				   mode, err,
8255 				   ice_aq_str(hw->adminq.sq_last_status));
8256 			/* revert hw->evb_veb */
8257 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
8258 			return err;
8259 		}
8260 
8261 		pf_sw->bridge_mode = mode;
8262 	}
8263 
8264 	return 0;
8265 }
8266 
8267 /**
8268  * ice_tx_timeout - Respond to a Tx Hang
8269  * @netdev: network interface device structure
8270  * @txqueue: Tx queue
8271  */
8272 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
8273 {
8274 	struct ice_netdev_priv *np = netdev_priv(netdev);
8275 	struct ice_tx_ring *tx_ring = NULL;
8276 	struct ice_vsi *vsi = np->vsi;
8277 	struct ice_pf *pf = vsi->back;
8278 	u32 i;
8279 
8280 	pf->tx_timeout_count++;
8281 
8282 	/* Check if PFC is enabled for the TC to which the queue belongs
8283 	 * to. If yes then Tx timeout is not caused by a hung queue, no
8284 	 * need to reset and rebuild
8285 	 */
8286 	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
8287 		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
8288 			 txqueue);
8289 		return;
8290 	}
8291 
8292 	/* now that we have an index, find the tx_ring struct */
8293 	ice_for_each_txq(vsi, i)
8294 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
8295 			if (txqueue == vsi->tx_rings[i]->q_index) {
8296 				tx_ring = vsi->tx_rings[i];
8297 				break;
8298 			}
8299 
8300 	/* Reset recovery level if enough time has elapsed after last timeout.
8301 	 * Also ensure no new reset action happens before next timeout period.
8302 	 */
8303 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
8304 		pf->tx_timeout_recovery_level = 1;
8305 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
8306 				       netdev->watchdog_timeo)))
8307 		return;
8308 
8309 	if (tx_ring) {
8310 		struct ice_hw *hw = &pf->hw;
8311 		u32 head, intr = 0;
8312 
8313 		head = FIELD_GET(QTX_COMM_HEAD_HEAD_M,
8314 				 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])));
8315 		/* Read interrupt register */
8316 		intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
8317 
8318 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
8319 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
8320 			    head, tx_ring->next_to_use, intr);
8321 
8322 		ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr);
8323 	}
8324 
8325 	pf->tx_timeout_last_recovery = jiffies;
8326 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
8327 		    pf->tx_timeout_recovery_level, txqueue);
8328 
8329 	switch (pf->tx_timeout_recovery_level) {
8330 	case 1:
8331 		set_bit(ICE_PFR_REQ, pf->state);
8332 		break;
8333 	case 2:
8334 		set_bit(ICE_CORER_REQ, pf->state);
8335 		break;
8336 	case 3:
8337 		set_bit(ICE_GLOBR_REQ, pf->state);
8338 		break;
8339 	default:
8340 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
8341 		set_bit(ICE_DOWN, pf->state);
8342 		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
8343 		set_bit(ICE_SERVICE_DIS, pf->state);
8344 		break;
8345 	}
8346 
8347 	ice_service_task_schedule(pf);
8348 	pf->tx_timeout_recovery_level++;
8349 }
8350 
8351 /**
8352  * ice_setup_tc_cls_flower - flower classifier offloads
8353  * @np: net device to configure
8354  * @filter_dev: device on which filter is added
8355  * @cls_flower: offload data
8356  */
8357 static int
8358 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
8359 			struct net_device *filter_dev,
8360 			struct flow_cls_offload *cls_flower)
8361 {
8362 	struct ice_vsi *vsi = np->vsi;
8363 
8364 	if (cls_flower->common.chain_index)
8365 		return -EOPNOTSUPP;
8366 
8367 	switch (cls_flower->command) {
8368 	case FLOW_CLS_REPLACE:
8369 		return ice_add_cls_flower(filter_dev, vsi, cls_flower);
8370 	case FLOW_CLS_DESTROY:
8371 		return ice_del_cls_flower(vsi, cls_flower);
8372 	default:
8373 		return -EINVAL;
8374 	}
8375 }
8376 
8377 /**
8378  * ice_setup_tc_block_cb - callback handler registered for TC block
8379  * @type: TC SETUP type
8380  * @type_data: TC flower offload data that contains user input
8381  * @cb_priv: netdev private data
8382  */
8383 static int
8384 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
8385 {
8386 	struct ice_netdev_priv *np = cb_priv;
8387 
8388 	switch (type) {
8389 	case TC_SETUP_CLSFLOWER:
8390 		return ice_setup_tc_cls_flower(np, np->vsi->netdev,
8391 					       type_data);
8392 	default:
8393 		return -EOPNOTSUPP;
8394 	}
8395 }
8396 
8397 /**
8398  * ice_validate_mqprio_qopt - Validate TCF input parameters
8399  * @vsi: Pointer to VSI
8400  * @mqprio_qopt: input parameters for mqprio queue configuration
8401  *
8402  * This function validates MQPRIO params, such as qcount (power of 2 wherever
8403  * needed), and make sure user doesn't specify qcount and BW rate limit
8404  * for TCs, which are more than "num_tc"
8405  */
8406 static int
8407 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
8408 			 struct tc_mqprio_qopt_offload *mqprio_qopt)
8409 {
8410 	int non_power_of_2_qcount = 0;
8411 	struct ice_pf *pf = vsi->back;
8412 	int max_rss_q_cnt = 0;
8413 	u64 sum_min_rate = 0;
8414 	struct device *dev;
8415 	int i, speed;
8416 	u8 num_tc;
8417 
8418 	if (vsi->type != ICE_VSI_PF)
8419 		return -EINVAL;
8420 
8421 	if (mqprio_qopt->qopt.offset[0] != 0 ||
8422 	    mqprio_qopt->qopt.num_tc < 1 ||
8423 	    mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
8424 		return -EINVAL;
8425 
8426 	dev = ice_pf_to_dev(pf);
8427 	vsi->ch_rss_size = 0;
8428 	num_tc = mqprio_qopt->qopt.num_tc;
8429 	speed = ice_get_link_speed_kbps(vsi);
8430 
8431 	for (i = 0; num_tc; i++) {
8432 		int qcount = mqprio_qopt->qopt.count[i];
8433 		u64 max_rate, min_rate, rem;
8434 
8435 		if (!qcount)
8436 			return -EINVAL;
8437 
8438 		if (is_power_of_2(qcount)) {
8439 			if (non_power_of_2_qcount &&
8440 			    qcount > non_power_of_2_qcount) {
8441 				dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
8442 					qcount, non_power_of_2_qcount);
8443 				return -EINVAL;
8444 			}
8445 			if (qcount > max_rss_q_cnt)
8446 				max_rss_q_cnt = qcount;
8447 		} else {
8448 			if (non_power_of_2_qcount &&
8449 			    qcount != non_power_of_2_qcount) {
8450 				dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
8451 					qcount, non_power_of_2_qcount);
8452 				return -EINVAL;
8453 			}
8454 			if (qcount < max_rss_q_cnt) {
8455 				dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
8456 					qcount, max_rss_q_cnt);
8457 				return -EINVAL;
8458 			}
8459 			max_rss_q_cnt = qcount;
8460 			non_power_of_2_qcount = qcount;
8461 		}
8462 
8463 		/* TC command takes input in K/N/Gbps or K/M/Gbit etc but
8464 		 * converts the bandwidth rate limit into Bytes/s when
8465 		 * passing it down to the driver. So convert input bandwidth
8466 		 * from Bytes/s to Kbps
8467 		 */
8468 		max_rate = mqprio_qopt->max_rate[i];
8469 		max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
8470 
8471 		/* min_rate is minimum guaranteed rate and it can't be zero */
8472 		min_rate = mqprio_qopt->min_rate[i];
8473 		min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
8474 		sum_min_rate += min_rate;
8475 
8476 		if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
8477 			dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
8478 				min_rate, ICE_MIN_BW_LIMIT);
8479 			return -EINVAL;
8480 		}
8481 
8482 		if (max_rate && max_rate > speed) {
8483 			dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n",
8484 				i, max_rate, speed);
8485 			return -EINVAL;
8486 		}
8487 
8488 		iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
8489 		if (rem) {
8490 			dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
8491 				i, ICE_MIN_BW_LIMIT);
8492 			return -EINVAL;
8493 		}
8494 
8495 		iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
8496 		if (rem) {
8497 			dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
8498 				i, ICE_MIN_BW_LIMIT);
8499 			return -EINVAL;
8500 		}
8501 
8502 		/* min_rate can't be more than max_rate, except when max_rate
8503 		 * is zero (implies max_rate sought is max line rate). In such
8504 		 * a case min_rate can be more than max.
8505 		 */
8506 		if (max_rate && min_rate > max_rate) {
8507 			dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
8508 				min_rate, max_rate);
8509 			return -EINVAL;
8510 		}
8511 
8512 		if (i >= mqprio_qopt->qopt.num_tc - 1)
8513 			break;
8514 		if (mqprio_qopt->qopt.offset[i + 1] !=
8515 		    (mqprio_qopt->qopt.offset[i] + qcount))
8516 			return -EINVAL;
8517 	}
8518 	if (vsi->num_rxq <
8519 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8520 		return -EINVAL;
8521 	if (vsi->num_txq <
8522 	    (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
8523 		return -EINVAL;
8524 
8525 	if (sum_min_rate && sum_min_rate > (u64)speed) {
8526 		dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8527 			sum_min_rate, speed);
8528 		return -EINVAL;
8529 	}
8530 
8531 	/* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8532 	vsi->ch_rss_size = max_rss_q_cnt;
8533 
8534 	return 0;
8535 }
8536 
8537 /**
8538  * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8539  * @pf: ptr to PF device
8540  * @vsi: ptr to VSI
8541  */
8542 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8543 {
8544 	struct device *dev = ice_pf_to_dev(pf);
8545 	bool added = false;
8546 	struct ice_hw *hw;
8547 	int flow;
8548 
8549 	if (!(vsi->num_gfltr || vsi->num_bfltr))
8550 		return -EINVAL;
8551 
8552 	hw = &pf->hw;
8553 	for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8554 		struct ice_fd_hw_prof *prof;
8555 		int tun, status;
8556 		u64 entry_h;
8557 
8558 		if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8559 		      hw->fdir_prof[flow]->cnt))
8560 			continue;
8561 
8562 		for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8563 			enum ice_flow_priority prio;
8564 
8565 			/* add this VSI to FDir profile for this flow */
8566 			prio = ICE_FLOW_PRIO_NORMAL;
8567 			prof = hw->fdir_prof[flow];
8568 			status = ice_flow_add_entry(hw, ICE_BLK_FD,
8569 						    prof->prof_id[tun],
8570 						    prof->vsi_h[0], vsi->idx,
8571 						    prio, prof->fdir_seg[tun],
8572 						    &entry_h);
8573 			if (status) {
8574 				dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8575 					vsi->idx, flow);
8576 				continue;
8577 			}
8578 
8579 			prof->entry_h[prof->cnt][tun] = entry_h;
8580 		}
8581 
8582 		/* store VSI for filter replay and delete */
8583 		prof->vsi_h[prof->cnt] = vsi->idx;
8584 		prof->cnt++;
8585 
8586 		added = true;
8587 		dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8588 			flow);
8589 	}
8590 
8591 	if (!added)
8592 		dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8593 
8594 	return 0;
8595 }
8596 
8597 /**
8598  * ice_add_channel - add a channel by adding VSI
8599  * @pf: ptr to PF device
8600  * @sw_id: underlying HW switching element ID
8601  * @ch: ptr to channel structure
8602  *
8603  * Add a channel (VSI) using add_vsi and queue_map
8604  */
8605 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8606 {
8607 	struct device *dev = ice_pf_to_dev(pf);
8608 	struct ice_vsi *vsi;
8609 
8610 	if (ch->type != ICE_VSI_CHNL) {
8611 		dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8612 		return -EINVAL;
8613 	}
8614 
8615 	vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8616 	if (!vsi || vsi->type != ICE_VSI_CHNL) {
8617 		dev_err(dev, "create chnl VSI failure\n");
8618 		return -EINVAL;
8619 	}
8620 
8621 	ice_add_vsi_to_fdir(pf, vsi);
8622 
8623 	ch->sw_id = sw_id;
8624 	ch->vsi_num = vsi->vsi_num;
8625 	ch->info.mapping_flags = vsi->info.mapping_flags;
8626 	ch->ch_vsi = vsi;
8627 	/* set the back pointer of channel for newly created VSI */
8628 	vsi->ch = ch;
8629 
8630 	memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8631 	       sizeof(vsi->info.q_mapping));
8632 	memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8633 	       sizeof(vsi->info.tc_mapping));
8634 
8635 	return 0;
8636 }
8637 
8638 /**
8639  * ice_chnl_cfg_res
8640  * @vsi: the VSI being setup
8641  * @ch: ptr to channel structure
8642  *
8643  * Configure channel specific resources such as rings, vector.
8644  */
8645 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8646 {
8647 	int i;
8648 
8649 	for (i = 0; i < ch->num_txq; i++) {
8650 		struct ice_q_vector *tx_q_vector, *rx_q_vector;
8651 		struct ice_ring_container *rc;
8652 		struct ice_tx_ring *tx_ring;
8653 		struct ice_rx_ring *rx_ring;
8654 
8655 		tx_ring = vsi->tx_rings[ch->base_q + i];
8656 		rx_ring = vsi->rx_rings[ch->base_q + i];
8657 		if (!tx_ring || !rx_ring)
8658 			continue;
8659 
8660 		/* setup ring being channel enabled */
8661 		tx_ring->ch = ch;
8662 		rx_ring->ch = ch;
8663 
8664 		/* following code block sets up vector specific attributes */
8665 		tx_q_vector = tx_ring->q_vector;
8666 		rx_q_vector = rx_ring->q_vector;
8667 		if (!tx_q_vector && !rx_q_vector)
8668 			continue;
8669 
8670 		if (tx_q_vector) {
8671 			tx_q_vector->ch = ch;
8672 			/* setup Tx and Rx ITR setting if DIM is off */
8673 			rc = &tx_q_vector->tx;
8674 			if (!ITR_IS_DYNAMIC(rc))
8675 				ice_write_itr(rc, rc->itr_setting);
8676 		}
8677 		if (rx_q_vector) {
8678 			rx_q_vector->ch = ch;
8679 			/* setup Tx and Rx ITR setting if DIM is off */
8680 			rc = &rx_q_vector->rx;
8681 			if (!ITR_IS_DYNAMIC(rc))
8682 				ice_write_itr(rc, rc->itr_setting);
8683 		}
8684 	}
8685 
8686 	/* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8687 	 * GLINT_ITR register would have written to perform in-context
8688 	 * update, hence perform flush
8689 	 */
8690 	if (ch->num_txq || ch->num_rxq)
8691 		ice_flush(&vsi->back->hw);
8692 }
8693 
8694 /**
8695  * ice_cfg_chnl_all_res - configure channel resources
8696  * @vsi: pte to main_vsi
8697  * @ch: ptr to channel structure
8698  *
8699  * This function configures channel specific resources such as flow-director
8700  * counter index, and other resources such as queues, vectors, ITR settings
8701  */
8702 static void
8703 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8704 {
8705 	/* configure channel (aka ADQ) resources such as queues, vectors,
8706 	 * ITR settings for channel specific vectors and anything else
8707 	 */
8708 	ice_chnl_cfg_res(vsi, ch);
8709 }
8710 
8711 /**
8712  * ice_setup_hw_channel - setup new channel
8713  * @pf: ptr to PF device
8714  * @vsi: the VSI being setup
8715  * @ch: ptr to channel structure
8716  * @sw_id: underlying HW switching element ID
8717  * @type: type of channel to be created (VMDq2/VF)
8718  *
8719  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8720  * and configures Tx rings accordingly
8721  */
8722 static int
8723 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8724 		     struct ice_channel *ch, u16 sw_id, u8 type)
8725 {
8726 	struct device *dev = ice_pf_to_dev(pf);
8727 	int ret;
8728 
8729 	ch->base_q = vsi->next_base_q;
8730 	ch->type = type;
8731 
8732 	ret = ice_add_channel(pf, sw_id, ch);
8733 	if (ret) {
8734 		dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8735 		return ret;
8736 	}
8737 
8738 	/* configure/setup ADQ specific resources */
8739 	ice_cfg_chnl_all_res(vsi, ch);
8740 
8741 	/* make sure to update the next_base_q so that subsequent channel's
8742 	 * (aka ADQ) VSI queue map is correct
8743 	 */
8744 	vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8745 	dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8746 		ch->num_rxq);
8747 
8748 	return 0;
8749 }
8750 
8751 /**
8752  * ice_setup_channel - setup new channel using uplink element
8753  * @pf: ptr to PF device
8754  * @vsi: the VSI being setup
8755  * @ch: ptr to channel structure
8756  *
8757  * Setup new channel (VSI) based on specified type (VMDq2/VF)
8758  * and uplink switching element
8759  */
8760 static bool
8761 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8762 		  struct ice_channel *ch)
8763 {
8764 	struct device *dev = ice_pf_to_dev(pf);
8765 	u16 sw_id;
8766 	int ret;
8767 
8768 	if (vsi->type != ICE_VSI_PF) {
8769 		dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8770 		return false;
8771 	}
8772 
8773 	sw_id = pf->first_sw->sw_id;
8774 
8775 	/* create channel (VSI) */
8776 	ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8777 	if (ret) {
8778 		dev_err(dev, "failed to setup hw_channel\n");
8779 		return false;
8780 	}
8781 	dev_dbg(dev, "successfully created channel()\n");
8782 
8783 	return ch->ch_vsi ? true : false;
8784 }
8785 
8786 /**
8787  * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8788  * @vsi: VSI to be configured
8789  * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8790  * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8791  */
8792 static int
8793 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8794 {
8795 	int err;
8796 
8797 	err = ice_set_min_bw_limit(vsi, min_tx_rate);
8798 	if (err)
8799 		return err;
8800 
8801 	return ice_set_max_bw_limit(vsi, max_tx_rate);
8802 }
8803 
8804 /**
8805  * ice_create_q_channel - function to create channel
8806  * @vsi: VSI to be configured
8807  * @ch: ptr to channel (it contains channel specific params)
8808  *
8809  * This function creates channel (VSI) using num_queues specified by user,
8810  * reconfigs RSS if needed.
8811  */
8812 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8813 {
8814 	struct ice_pf *pf = vsi->back;
8815 	struct device *dev;
8816 
8817 	if (!ch)
8818 		return -EINVAL;
8819 
8820 	dev = ice_pf_to_dev(pf);
8821 	if (!ch->num_txq || !ch->num_rxq) {
8822 		dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8823 		return -EINVAL;
8824 	}
8825 
8826 	if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8827 		dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8828 			vsi->cnt_q_avail, ch->num_txq);
8829 		return -EINVAL;
8830 	}
8831 
8832 	if (!ice_setup_channel(pf, vsi, ch)) {
8833 		dev_info(dev, "Failed to setup channel\n");
8834 		return -EINVAL;
8835 	}
8836 	/* configure BW rate limit */
8837 	if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8838 		int ret;
8839 
8840 		ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8841 				       ch->min_tx_rate);
8842 		if (ret)
8843 			dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8844 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8845 		else
8846 			dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8847 				ch->max_tx_rate, ch->ch_vsi->vsi_num);
8848 	}
8849 
8850 	vsi->cnt_q_avail -= ch->num_txq;
8851 
8852 	return 0;
8853 }
8854 
8855 /**
8856  * ice_rem_all_chnl_fltrs - removes all channel filters
8857  * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8858  *
8859  * Remove all advanced switch filters only if they are channel specific
8860  * tc-flower based filter
8861  */
8862 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8863 {
8864 	struct ice_tc_flower_fltr *fltr;
8865 	struct hlist_node *node;
8866 
8867 	/* to remove all channel filters, iterate an ordered list of filters */
8868 	hlist_for_each_entry_safe(fltr, node,
8869 				  &pf->tc_flower_fltr_list,
8870 				  tc_flower_node) {
8871 		struct ice_rule_query_data rule;
8872 		int status;
8873 
8874 		/* for now process only channel specific filters */
8875 		if (!ice_is_chnl_fltr(fltr))
8876 			continue;
8877 
8878 		rule.rid = fltr->rid;
8879 		rule.rule_id = fltr->rule_id;
8880 		rule.vsi_handle = fltr->dest_vsi_handle;
8881 		status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8882 		if (status) {
8883 			if (status == -ENOENT)
8884 				dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8885 					rule.rule_id);
8886 			else
8887 				dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8888 					status);
8889 		} else if (fltr->dest_vsi) {
8890 			/* update advanced switch filter count */
8891 			if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8892 				u32 flags = fltr->flags;
8893 
8894 				fltr->dest_vsi->num_chnl_fltr--;
8895 				if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8896 					     ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8897 					pf->num_dmac_chnl_fltrs--;
8898 			}
8899 		}
8900 
8901 		hlist_del(&fltr->tc_flower_node);
8902 		kfree(fltr);
8903 	}
8904 }
8905 
8906 /**
8907  * ice_remove_q_channels - Remove queue channels for the TCs
8908  * @vsi: VSI to be configured
8909  * @rem_fltr: delete advanced switch filter or not
8910  *
8911  * Remove queue channels for the TCs
8912  */
8913 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8914 {
8915 	struct ice_channel *ch, *ch_tmp;
8916 	struct ice_pf *pf = vsi->back;
8917 	int i;
8918 
8919 	/* remove all tc-flower based filter if they are channel filters only */
8920 	if (rem_fltr)
8921 		ice_rem_all_chnl_fltrs(pf);
8922 
8923 	/* remove ntuple filters since queue configuration is being changed */
8924 	if  (vsi->netdev->features & NETIF_F_NTUPLE) {
8925 		struct ice_hw *hw = &pf->hw;
8926 
8927 		mutex_lock(&hw->fdir_fltr_lock);
8928 		ice_fdir_del_all_fltrs(vsi);
8929 		mutex_unlock(&hw->fdir_fltr_lock);
8930 	}
8931 
8932 	/* perform cleanup for channels if they exist */
8933 	list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8934 		struct ice_vsi *ch_vsi;
8935 
8936 		list_del(&ch->list);
8937 		ch_vsi = ch->ch_vsi;
8938 		if (!ch_vsi) {
8939 			kfree(ch);
8940 			continue;
8941 		}
8942 
8943 		/* Reset queue contexts */
8944 		for (i = 0; i < ch->num_rxq; i++) {
8945 			struct ice_tx_ring *tx_ring;
8946 			struct ice_rx_ring *rx_ring;
8947 
8948 			tx_ring = vsi->tx_rings[ch->base_q + i];
8949 			rx_ring = vsi->rx_rings[ch->base_q + i];
8950 			if (tx_ring) {
8951 				tx_ring->ch = NULL;
8952 				if (tx_ring->q_vector)
8953 					tx_ring->q_vector->ch = NULL;
8954 			}
8955 			if (rx_ring) {
8956 				rx_ring->ch = NULL;
8957 				if (rx_ring->q_vector)
8958 					rx_ring->q_vector->ch = NULL;
8959 			}
8960 		}
8961 
8962 		/* Release FD resources for the channel VSI */
8963 		ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8964 
8965 		/* clear the VSI from scheduler tree */
8966 		ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8967 
8968 		/* Delete VSI from FW, PF and HW VSI arrays */
8969 		ice_vsi_delete(ch->ch_vsi);
8970 
8971 		/* free the channel */
8972 		kfree(ch);
8973 	}
8974 
8975 	/* clear the channel VSI map which is stored in main VSI */
8976 	ice_for_each_chnl_tc(i)
8977 		vsi->tc_map_vsi[i] = NULL;
8978 
8979 	/* reset main VSI's all TC information */
8980 	vsi->all_enatc = 0;
8981 	vsi->all_numtc = 0;
8982 }
8983 
8984 /**
8985  * ice_rebuild_channels - rebuild channel
8986  * @pf: ptr to PF
8987  *
8988  * Recreate channel VSIs and replay filters
8989  */
8990 static int ice_rebuild_channels(struct ice_pf *pf)
8991 {
8992 	struct device *dev = ice_pf_to_dev(pf);
8993 	struct ice_vsi *main_vsi;
8994 	bool rem_adv_fltr = true;
8995 	struct ice_channel *ch;
8996 	struct ice_vsi *vsi;
8997 	int tc_idx = 1;
8998 	int i, err;
8999 
9000 	main_vsi = ice_get_main_vsi(pf);
9001 	if (!main_vsi)
9002 		return 0;
9003 
9004 	if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
9005 	    main_vsi->old_numtc == 1)
9006 		return 0; /* nothing to be done */
9007 
9008 	/* reconfigure main VSI based on old value of TC and cached values
9009 	 * for MQPRIO opts
9010 	 */
9011 	err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
9012 	if (err) {
9013 		dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
9014 			main_vsi->old_ena_tc, main_vsi->vsi_num);
9015 		return err;
9016 	}
9017 
9018 	/* rebuild ADQ VSIs */
9019 	ice_for_each_vsi(pf, i) {
9020 		enum ice_vsi_type type;
9021 
9022 		vsi = pf->vsi[i];
9023 		if (!vsi || vsi->type != ICE_VSI_CHNL)
9024 			continue;
9025 
9026 		type = vsi->type;
9027 
9028 		/* rebuild ADQ VSI */
9029 		err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT);
9030 		if (err) {
9031 			dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
9032 				ice_vsi_type_str(type), vsi->idx, err);
9033 			goto cleanup;
9034 		}
9035 
9036 		/* Re-map HW VSI number, using VSI handle that has been
9037 		 * previously validated in ice_replay_vsi() call above
9038 		 */
9039 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
9040 
9041 		/* replay filters for the VSI */
9042 		err = ice_replay_vsi(&pf->hw, vsi->idx);
9043 		if (err) {
9044 			dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
9045 				ice_vsi_type_str(type), err, vsi->idx);
9046 			rem_adv_fltr = false;
9047 			goto cleanup;
9048 		}
9049 		dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
9050 			 ice_vsi_type_str(type), vsi->idx);
9051 
9052 		/* store ADQ VSI at correct TC index in main VSI's
9053 		 * map of TC to VSI
9054 		 */
9055 		main_vsi->tc_map_vsi[tc_idx++] = vsi;
9056 	}
9057 
9058 	/* ADQ VSI(s) has been rebuilt successfully, so setup
9059 	 * channel for main VSI's Tx and Rx rings
9060 	 */
9061 	list_for_each_entry(ch, &main_vsi->ch_list, list) {
9062 		struct ice_vsi *ch_vsi;
9063 
9064 		ch_vsi = ch->ch_vsi;
9065 		if (!ch_vsi)
9066 			continue;
9067 
9068 		/* reconfig channel resources */
9069 		ice_cfg_chnl_all_res(main_vsi, ch);
9070 
9071 		/* replay BW rate limit if it is non-zero */
9072 		if (!ch->max_tx_rate && !ch->min_tx_rate)
9073 			continue;
9074 
9075 		err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
9076 				       ch->min_tx_rate);
9077 		if (err)
9078 			dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9079 				err, ch->max_tx_rate, ch->min_tx_rate,
9080 				ch_vsi->vsi_num);
9081 		else
9082 			dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
9083 				ch->max_tx_rate, ch->min_tx_rate,
9084 				ch_vsi->vsi_num);
9085 	}
9086 
9087 	/* reconfig RSS for main VSI */
9088 	if (main_vsi->ch_rss_size)
9089 		ice_vsi_cfg_rss_lut_key(main_vsi);
9090 
9091 	return 0;
9092 
9093 cleanup:
9094 	ice_remove_q_channels(main_vsi, rem_adv_fltr);
9095 	return err;
9096 }
9097 
9098 /**
9099  * ice_create_q_channels - Add queue channel for the given TCs
9100  * @vsi: VSI to be configured
9101  *
9102  * Configures queue channel mapping to the given TCs
9103  */
9104 static int ice_create_q_channels(struct ice_vsi *vsi)
9105 {
9106 	struct ice_pf *pf = vsi->back;
9107 	struct ice_channel *ch;
9108 	int ret = 0, i;
9109 
9110 	ice_for_each_chnl_tc(i) {
9111 		if (!(vsi->all_enatc & BIT(i)))
9112 			continue;
9113 
9114 		ch = kzalloc(sizeof(*ch), GFP_KERNEL);
9115 		if (!ch) {
9116 			ret = -ENOMEM;
9117 			goto err_free;
9118 		}
9119 		INIT_LIST_HEAD(&ch->list);
9120 		ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
9121 		ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
9122 		ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
9123 		ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
9124 		ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
9125 
9126 		/* convert to Kbits/s */
9127 		if (ch->max_tx_rate)
9128 			ch->max_tx_rate = div_u64(ch->max_tx_rate,
9129 						  ICE_BW_KBPS_DIVISOR);
9130 		if (ch->min_tx_rate)
9131 			ch->min_tx_rate = div_u64(ch->min_tx_rate,
9132 						  ICE_BW_KBPS_DIVISOR);
9133 
9134 		ret = ice_create_q_channel(vsi, ch);
9135 		if (ret) {
9136 			dev_err(ice_pf_to_dev(pf),
9137 				"failed creating channel TC:%d\n", i);
9138 			kfree(ch);
9139 			goto err_free;
9140 		}
9141 		list_add_tail(&ch->list, &vsi->ch_list);
9142 		vsi->tc_map_vsi[i] = ch->ch_vsi;
9143 		dev_dbg(ice_pf_to_dev(pf),
9144 			"successfully created channel: VSI %pK\n", ch->ch_vsi);
9145 	}
9146 	return 0;
9147 
9148 err_free:
9149 	ice_remove_q_channels(vsi, false);
9150 
9151 	return ret;
9152 }
9153 
9154 /**
9155  * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
9156  * @netdev: net device to configure
9157  * @type_data: TC offload data
9158  */
9159 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
9160 {
9161 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
9162 	struct ice_netdev_priv *np = netdev_priv(netdev);
9163 	struct ice_vsi *vsi = np->vsi;
9164 	struct ice_pf *pf = vsi->back;
9165 	u16 mode, ena_tc_qdisc = 0;
9166 	int cur_txq, cur_rxq;
9167 	u8 hw = 0, num_tcf;
9168 	struct device *dev;
9169 	int ret, i;
9170 
9171 	dev = ice_pf_to_dev(pf);
9172 	num_tcf = mqprio_qopt->qopt.num_tc;
9173 	hw = mqprio_qopt->qopt.hw;
9174 	mode = mqprio_qopt->mode;
9175 	if (!hw) {
9176 		clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9177 		vsi->ch_rss_size = 0;
9178 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9179 		goto config_tcf;
9180 	}
9181 
9182 	/* Generate queue region map for number of TCF requested */
9183 	for (i = 0; i < num_tcf; i++)
9184 		ena_tc_qdisc |= BIT(i);
9185 
9186 	switch (mode) {
9187 	case TC_MQPRIO_MODE_CHANNEL:
9188 
9189 		if (pf->hw.port_info->is_custom_tx_enabled) {
9190 			dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
9191 			return -EBUSY;
9192 		}
9193 		ice_tear_down_devlink_rate_tree(pf);
9194 
9195 		ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
9196 		if (ret) {
9197 			netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
9198 				   ret);
9199 			return ret;
9200 		}
9201 		memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
9202 		set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
9203 		/* don't assume state of hw_tc_offload during driver load
9204 		 * and set the flag for TC flower filter if hw_tc_offload
9205 		 * already ON
9206 		 */
9207 		if (vsi->netdev->features & NETIF_F_HW_TC)
9208 			set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
9209 		break;
9210 	default:
9211 		return -EINVAL;
9212 	}
9213 
9214 config_tcf:
9215 
9216 	/* Requesting same TCF configuration as already enabled */
9217 	if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
9218 	    mode != TC_MQPRIO_MODE_CHANNEL)
9219 		return 0;
9220 
9221 	/* Pause VSI queues */
9222 	ice_dis_vsi(vsi, true);
9223 
9224 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
9225 		ice_remove_q_channels(vsi, true);
9226 
9227 	if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9228 		vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
9229 				     num_online_cpus());
9230 		vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
9231 				     num_online_cpus());
9232 	} else {
9233 		/* logic to rebuild VSI, same like ethtool -L */
9234 		u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
9235 
9236 		for (i = 0; i < num_tcf; i++) {
9237 			if (!(ena_tc_qdisc & BIT(i)))
9238 				continue;
9239 
9240 			offset = vsi->mqprio_qopt.qopt.offset[i];
9241 			qcount_rx = vsi->mqprio_qopt.qopt.count[i];
9242 			qcount_tx = vsi->mqprio_qopt.qopt.count[i];
9243 		}
9244 		vsi->req_txq = offset + qcount_tx;
9245 		vsi->req_rxq = offset + qcount_rx;
9246 
9247 		/* store away original rss_size info, so that it gets reused
9248 		 * form ice_vsi_rebuild during tc-qdisc delete stage - to
9249 		 * determine, what should be the rss_sizefor main VSI
9250 		 */
9251 		vsi->orig_rss_size = vsi->rss_size;
9252 	}
9253 
9254 	/* save current values of Tx and Rx queues before calling VSI rebuild
9255 	 * for fallback option
9256 	 */
9257 	cur_txq = vsi->num_txq;
9258 	cur_rxq = vsi->num_rxq;
9259 
9260 	/* proceed with rebuild main VSI using correct number of queues */
9261 	ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
9262 	if (ret) {
9263 		/* fallback to current number of queues */
9264 		dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
9265 		vsi->req_txq = cur_txq;
9266 		vsi->req_rxq = cur_rxq;
9267 		clear_bit(ICE_RESET_FAILED, pf->state);
9268 		if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
9269 			dev_err(dev, "Rebuild of main VSI failed again\n");
9270 			return ret;
9271 		}
9272 	}
9273 
9274 	vsi->all_numtc = num_tcf;
9275 	vsi->all_enatc = ena_tc_qdisc;
9276 	ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
9277 	if (ret) {
9278 		netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
9279 			   vsi->vsi_num);
9280 		goto exit;
9281 	}
9282 
9283 	if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
9284 		u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9285 		u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
9286 
9287 		/* set TC0 rate limit if specified */
9288 		if (max_tx_rate || min_tx_rate) {
9289 			/* convert to Kbits/s */
9290 			if (max_tx_rate)
9291 				max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
9292 			if (min_tx_rate)
9293 				min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
9294 
9295 			ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
9296 			if (!ret) {
9297 				dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
9298 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9299 			} else {
9300 				dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
9301 					max_tx_rate, min_tx_rate, vsi->vsi_num);
9302 				goto exit;
9303 			}
9304 		}
9305 		ret = ice_create_q_channels(vsi);
9306 		if (ret) {
9307 			netdev_err(netdev, "failed configuring queue channels\n");
9308 			goto exit;
9309 		} else {
9310 			netdev_dbg(netdev, "successfully configured channels\n");
9311 		}
9312 	}
9313 
9314 	if (vsi->ch_rss_size)
9315 		ice_vsi_cfg_rss_lut_key(vsi);
9316 
9317 exit:
9318 	/* if error, reset the all_numtc and all_enatc */
9319 	if (ret) {
9320 		vsi->all_numtc = 0;
9321 		vsi->all_enatc = 0;
9322 	}
9323 	/* resume VSI */
9324 	ice_ena_vsi(vsi, true);
9325 
9326 	return ret;
9327 }
9328 
9329 static LIST_HEAD(ice_block_cb_list);
9330 
9331 static int
9332 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
9333 	     void *type_data)
9334 {
9335 	struct ice_netdev_priv *np = netdev_priv(netdev);
9336 	struct ice_pf *pf = np->vsi->back;
9337 	bool locked = false;
9338 	int err;
9339 
9340 	switch (type) {
9341 	case TC_SETUP_BLOCK:
9342 		return flow_block_cb_setup_simple(type_data,
9343 						  &ice_block_cb_list,
9344 						  ice_setup_tc_block_cb,
9345 						  np, np, true);
9346 	case TC_SETUP_QDISC_MQPRIO:
9347 		if (ice_is_eswitch_mode_switchdev(pf)) {
9348 			netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n");
9349 			return -EOPNOTSUPP;
9350 		}
9351 
9352 		if (pf->adev) {
9353 			mutex_lock(&pf->adev_mutex);
9354 			device_lock(&pf->adev->dev);
9355 			locked = true;
9356 			if (pf->adev->dev.driver) {
9357 				netdev_err(netdev, "Cannot change qdisc when RDMA is active\n");
9358 				err = -EBUSY;
9359 				goto adev_unlock;
9360 			}
9361 		}
9362 
9363 		/* setup traffic classifier for receive side */
9364 		mutex_lock(&pf->tc_mutex);
9365 		err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
9366 		mutex_unlock(&pf->tc_mutex);
9367 
9368 adev_unlock:
9369 		if (locked) {
9370 			device_unlock(&pf->adev->dev);
9371 			mutex_unlock(&pf->adev_mutex);
9372 		}
9373 		return err;
9374 	default:
9375 		return -EOPNOTSUPP;
9376 	}
9377 	return -EOPNOTSUPP;
9378 }
9379 
9380 static struct ice_indr_block_priv *
9381 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
9382 			   struct net_device *netdev)
9383 {
9384 	struct ice_indr_block_priv *cb_priv;
9385 
9386 	list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
9387 		if (!cb_priv->netdev)
9388 			return NULL;
9389 		if (cb_priv->netdev == netdev)
9390 			return cb_priv;
9391 	}
9392 	return NULL;
9393 }
9394 
9395 static int
9396 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
9397 			void *indr_priv)
9398 {
9399 	struct ice_indr_block_priv *priv = indr_priv;
9400 	struct ice_netdev_priv *np = priv->np;
9401 
9402 	switch (type) {
9403 	case TC_SETUP_CLSFLOWER:
9404 		return ice_setup_tc_cls_flower(np, priv->netdev,
9405 					       (struct flow_cls_offload *)
9406 					       type_data);
9407 	default:
9408 		return -EOPNOTSUPP;
9409 	}
9410 }
9411 
9412 static int
9413 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
9414 			struct ice_netdev_priv *np,
9415 			struct flow_block_offload *f, void *data,
9416 			void (*cleanup)(struct flow_block_cb *block_cb))
9417 {
9418 	struct ice_indr_block_priv *indr_priv;
9419 	struct flow_block_cb *block_cb;
9420 
9421 	if (!ice_is_tunnel_supported(netdev) &&
9422 	    !(is_vlan_dev(netdev) &&
9423 	      vlan_dev_real_dev(netdev) == np->vsi->netdev))
9424 		return -EOPNOTSUPP;
9425 
9426 	if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
9427 		return -EOPNOTSUPP;
9428 
9429 	switch (f->command) {
9430 	case FLOW_BLOCK_BIND:
9431 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9432 		if (indr_priv)
9433 			return -EEXIST;
9434 
9435 		indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
9436 		if (!indr_priv)
9437 			return -ENOMEM;
9438 
9439 		indr_priv->netdev = netdev;
9440 		indr_priv->np = np;
9441 		list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
9442 
9443 		block_cb =
9444 			flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
9445 						 indr_priv, indr_priv,
9446 						 ice_rep_indr_tc_block_unbind,
9447 						 f, netdev, sch, data, np,
9448 						 cleanup);
9449 
9450 		if (IS_ERR(block_cb)) {
9451 			list_del(&indr_priv->list);
9452 			kfree(indr_priv);
9453 			return PTR_ERR(block_cb);
9454 		}
9455 		flow_block_cb_add(block_cb, f);
9456 		list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
9457 		break;
9458 	case FLOW_BLOCK_UNBIND:
9459 		indr_priv = ice_indr_block_priv_lookup(np, netdev);
9460 		if (!indr_priv)
9461 			return -ENOENT;
9462 
9463 		block_cb = flow_block_cb_lookup(f->block,
9464 						ice_indr_setup_block_cb,
9465 						indr_priv);
9466 		if (!block_cb)
9467 			return -ENOENT;
9468 
9469 		flow_indr_block_cb_remove(block_cb, f);
9470 
9471 		list_del(&block_cb->driver_list);
9472 		break;
9473 	default:
9474 		return -EOPNOTSUPP;
9475 	}
9476 	return 0;
9477 }
9478 
9479 static int
9480 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
9481 		     void *cb_priv, enum tc_setup_type type, void *type_data,
9482 		     void *data,
9483 		     void (*cleanup)(struct flow_block_cb *block_cb))
9484 {
9485 	switch (type) {
9486 	case TC_SETUP_BLOCK:
9487 		return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
9488 					       data, cleanup);
9489 
9490 	default:
9491 		return -EOPNOTSUPP;
9492 	}
9493 }
9494 
9495 /**
9496  * ice_open - Called when a network interface becomes active
9497  * @netdev: network interface device structure
9498  *
9499  * The open entry point is called when a network interface is made
9500  * active by the system (IFF_UP). At this point all resources needed
9501  * for transmit and receive operations are allocated, the interrupt
9502  * handler is registered with the OS, the netdev watchdog is enabled,
9503  * and the stack is notified that the interface is ready.
9504  *
9505  * Returns 0 on success, negative value on failure
9506  */
9507 int ice_open(struct net_device *netdev)
9508 {
9509 	struct ice_netdev_priv *np = netdev_priv(netdev);
9510 	struct ice_pf *pf = np->vsi->back;
9511 
9512 	if (ice_is_reset_in_progress(pf->state)) {
9513 		netdev_err(netdev, "can't open net device while reset is in progress");
9514 		return -EBUSY;
9515 	}
9516 
9517 	return ice_open_internal(netdev);
9518 }
9519 
9520 /**
9521  * ice_open_internal - Called when a network interface becomes active
9522  * @netdev: network interface device structure
9523  *
9524  * Internal ice_open implementation. Should not be used directly except for ice_open and reset
9525  * handling routine
9526  *
9527  * Returns 0 on success, negative value on failure
9528  */
9529 int ice_open_internal(struct net_device *netdev)
9530 {
9531 	struct ice_netdev_priv *np = netdev_priv(netdev);
9532 	struct ice_vsi *vsi = np->vsi;
9533 	struct ice_pf *pf = vsi->back;
9534 	struct ice_port_info *pi;
9535 	int err;
9536 
9537 	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9538 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9539 		return -EIO;
9540 	}
9541 
9542 	netif_carrier_off(netdev);
9543 
9544 	pi = vsi->port_info;
9545 	err = ice_update_link_info(pi);
9546 	if (err) {
9547 		netdev_err(netdev, "Failed to get link info, error %d\n", err);
9548 		return err;
9549 	}
9550 
9551 	ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9552 
9553 	/* Set PHY if there is media, otherwise, turn off PHY */
9554 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9555 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9556 		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9557 			err = ice_init_phy_user_cfg(pi);
9558 			if (err) {
9559 				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9560 					   err);
9561 				return err;
9562 			}
9563 		}
9564 
9565 		err = ice_configure_phy(vsi);
9566 		if (err) {
9567 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
9568 				   err);
9569 			return err;
9570 		}
9571 	} else {
9572 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9573 		ice_set_link(vsi, false);
9574 	}
9575 
9576 	err = ice_vsi_open(vsi);
9577 	if (err)
9578 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9579 			   vsi->vsi_num, vsi->vsw->sw_id);
9580 
9581 	/* Update existing tunnels information */
9582 	udp_tunnel_get_rx_info(netdev);
9583 
9584 	return err;
9585 }
9586 
9587 /**
9588  * ice_stop - Disables a network interface
9589  * @netdev: network interface device structure
9590  *
9591  * The stop entry point is called when an interface is de-activated by the OS,
9592  * and the netdevice enters the DOWN state. The hardware is still under the
9593  * driver's control, but the netdev interface is disabled.
9594  *
9595  * Returns success only - not allowed to fail
9596  */
9597 int ice_stop(struct net_device *netdev)
9598 {
9599 	struct ice_netdev_priv *np = netdev_priv(netdev);
9600 	struct ice_vsi *vsi = np->vsi;
9601 	struct ice_pf *pf = vsi->back;
9602 
9603 	if (ice_is_reset_in_progress(pf->state)) {
9604 		netdev_err(netdev, "can't stop net device while reset is in progress");
9605 		return -EBUSY;
9606 	}
9607 
9608 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9609 		int link_err = ice_force_phys_link_state(vsi, false);
9610 
9611 		if (link_err) {
9612 			if (link_err == -ENOMEDIUM)
9613 				netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n",
9614 					    vsi->vsi_num);
9615 			else
9616 				netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9617 					   vsi->vsi_num, link_err);
9618 
9619 			ice_vsi_close(vsi);
9620 			return -EIO;
9621 		}
9622 	}
9623 
9624 	ice_vsi_close(vsi);
9625 
9626 	return 0;
9627 }
9628 
9629 /**
9630  * ice_features_check - Validate encapsulated packet conforms to limits
9631  * @skb: skb buffer
9632  * @netdev: This port's netdev
9633  * @features: Offload features that the stack believes apply
9634  */
9635 static netdev_features_t
9636 ice_features_check(struct sk_buff *skb,
9637 		   struct net_device __always_unused *netdev,
9638 		   netdev_features_t features)
9639 {
9640 	bool gso = skb_is_gso(skb);
9641 	size_t len;
9642 
9643 	/* No point in doing any of this if neither checksum nor GSO are
9644 	 * being requested for this frame. We can rule out both by just
9645 	 * checking for CHECKSUM_PARTIAL
9646 	 */
9647 	if (skb->ip_summed != CHECKSUM_PARTIAL)
9648 		return features;
9649 
9650 	/* We cannot support GSO if the MSS is going to be less than
9651 	 * 64 bytes. If it is then we need to drop support for GSO.
9652 	 */
9653 	if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9654 		features &= ~NETIF_F_GSO_MASK;
9655 
9656 	len = skb_network_offset(skb);
9657 	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9658 		goto out_rm_features;
9659 
9660 	len = skb_network_header_len(skb);
9661 	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9662 		goto out_rm_features;
9663 
9664 	if (skb->encapsulation) {
9665 		/* this must work for VXLAN frames AND IPIP/SIT frames, and in
9666 		 * the case of IPIP frames, the transport header pointer is
9667 		 * after the inner header! So check to make sure that this
9668 		 * is a GRE or UDP_TUNNEL frame before doing that math.
9669 		 */
9670 		if (gso && (skb_shinfo(skb)->gso_type &
9671 			    (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9672 			len = skb_inner_network_header(skb) -
9673 			      skb_transport_header(skb);
9674 			if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9675 				goto out_rm_features;
9676 		}
9677 
9678 		len = skb_inner_network_header_len(skb);
9679 		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9680 			goto out_rm_features;
9681 	}
9682 
9683 	return features;
9684 out_rm_features:
9685 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9686 }
9687 
9688 static const struct net_device_ops ice_netdev_safe_mode_ops = {
9689 	.ndo_open = ice_open,
9690 	.ndo_stop = ice_stop,
9691 	.ndo_start_xmit = ice_start_xmit,
9692 	.ndo_set_mac_address = ice_set_mac_address,
9693 	.ndo_validate_addr = eth_validate_addr,
9694 	.ndo_change_mtu = ice_change_mtu,
9695 	.ndo_get_stats64 = ice_get_stats64,
9696 	.ndo_tx_timeout = ice_tx_timeout,
9697 	.ndo_bpf = ice_xdp_safe_mode,
9698 };
9699 
9700 static const struct net_device_ops ice_netdev_ops = {
9701 	.ndo_open = ice_open,
9702 	.ndo_stop = ice_stop,
9703 	.ndo_start_xmit = ice_start_xmit,
9704 	.ndo_select_queue = ice_select_queue,
9705 	.ndo_features_check = ice_features_check,
9706 	.ndo_fix_features = ice_fix_features,
9707 	.ndo_set_rx_mode = ice_set_rx_mode,
9708 	.ndo_set_mac_address = ice_set_mac_address,
9709 	.ndo_validate_addr = eth_validate_addr,
9710 	.ndo_change_mtu = ice_change_mtu,
9711 	.ndo_get_stats64 = ice_get_stats64,
9712 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
9713 	.ndo_eth_ioctl = ice_eth_ioctl,
9714 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9715 	.ndo_set_vf_mac = ice_set_vf_mac,
9716 	.ndo_get_vf_config = ice_get_vf_cfg,
9717 	.ndo_set_vf_trust = ice_set_vf_trust,
9718 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
9719 	.ndo_set_vf_link_state = ice_set_vf_link_state,
9720 	.ndo_get_vf_stats = ice_get_vf_stats,
9721 	.ndo_set_vf_rate = ice_set_vf_bw,
9722 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9723 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9724 	.ndo_setup_tc = ice_setup_tc,
9725 	.ndo_set_features = ice_set_features,
9726 	.ndo_bridge_getlink = ice_bridge_getlink,
9727 	.ndo_bridge_setlink = ice_bridge_setlink,
9728 	.ndo_fdb_add = ice_fdb_add,
9729 	.ndo_fdb_del = ice_fdb_del,
9730 #ifdef CONFIG_RFS_ACCEL
9731 	.ndo_rx_flow_steer = ice_rx_flow_steer,
9732 #endif
9733 	.ndo_tx_timeout = ice_tx_timeout,
9734 	.ndo_bpf = ice_xdp,
9735 	.ndo_xdp_xmit = ice_xdp_xmit,
9736 	.ndo_xsk_wakeup = ice_xsk_wakeup,
9737 };
9738