xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 17cfcb68af3bc7d5e8ae08779b1853310a2949f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "ice.h"
9 #include "ice_lib.h"
10 #include "ice_dcb_lib.h"
11 
12 #define DRV_VERSION_MAJOR 0
13 #define DRV_VERSION_MINOR 8
14 #define DRV_VERSION_BUILD 1
15 
16 #define DRV_VERSION	__stringify(DRV_VERSION_MAJOR) "." \
17 			__stringify(DRV_VERSION_MINOR) "." \
18 			__stringify(DRV_VERSION_BUILD) "-k"
19 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
20 const char ice_drv_ver[] = DRV_VERSION;
21 static const char ice_driver_string[] = DRV_SUMMARY;
22 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
23 
24 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
25 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
26 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
27 
28 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
29 MODULE_DESCRIPTION(DRV_SUMMARY);
30 MODULE_LICENSE("GPL v2");
31 MODULE_VERSION(DRV_VERSION);
32 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
33 
34 static int debug = -1;
35 module_param(debug, int, 0644);
36 #ifndef CONFIG_DYNAMIC_DEBUG
37 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
38 #else
39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
40 #endif /* !CONFIG_DYNAMIC_DEBUG */
41 
42 static struct workqueue_struct *ice_wq;
43 static const struct net_device_ops ice_netdev_safe_mode_ops;
44 static const struct net_device_ops ice_netdev_ops;
45 
46 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
47 
48 static void ice_vsi_release_all(struct ice_pf *pf);
49 
50 /**
51  * ice_get_tx_pending - returns number of Tx descriptors not processed
52  * @ring: the ring of descriptors
53  */
54 static u16 ice_get_tx_pending(struct ice_ring *ring)
55 {
56 	u16 head, tail;
57 
58 	head = ring->next_to_clean;
59 	tail = ring->next_to_use;
60 
61 	if (head != tail)
62 		return (head < tail) ?
63 			tail - head : (tail + ring->count - head);
64 	return 0;
65 }
66 
67 /**
68  * ice_check_for_hang_subtask - check for and recover hung queues
69  * @pf: pointer to PF struct
70  */
71 static void ice_check_for_hang_subtask(struct ice_pf *pf)
72 {
73 	struct ice_vsi *vsi = NULL;
74 	struct ice_hw *hw;
75 	unsigned int i;
76 	int packets;
77 	u32 v;
78 
79 	ice_for_each_vsi(pf, v)
80 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
81 			vsi = pf->vsi[v];
82 			break;
83 		}
84 
85 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
86 		return;
87 
88 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
89 		return;
90 
91 	hw = &vsi->back->hw;
92 
93 	for (i = 0; i < vsi->num_txq; i++) {
94 		struct ice_ring *tx_ring = vsi->tx_rings[i];
95 
96 		if (tx_ring && tx_ring->desc) {
97 			/* If packet counter has not changed the queue is
98 			 * likely stalled, so force an interrupt for this
99 			 * queue.
100 			 *
101 			 * prev_pkt would be negative if there was no
102 			 * pending work.
103 			 */
104 			packets = tx_ring->stats.pkts & INT_MAX;
105 			if (tx_ring->tx_stats.prev_pkt == packets) {
106 				/* Trigger sw interrupt to revive the queue */
107 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
108 				continue;
109 			}
110 
111 			/* Memory barrier between read of packet count and call
112 			 * to ice_get_tx_pending()
113 			 */
114 			smp_rmb();
115 			tx_ring->tx_stats.prev_pkt =
116 			    ice_get_tx_pending(tx_ring) ? packets : -1;
117 		}
118 	}
119 }
120 
121 /**
122  * ice_init_mac_fltr - Set initial MAC filters
123  * @pf: board private structure
124  *
125  * Set initial set of MAC filters for PF VSI; configure filters for permanent
126  * address and broadcast address. If an error is encountered, netdevice will be
127  * unregistered.
128  */
129 static int ice_init_mac_fltr(struct ice_pf *pf)
130 {
131 	enum ice_status status;
132 	u8 broadcast[ETH_ALEN];
133 	struct ice_vsi *vsi;
134 
135 	vsi = ice_get_main_vsi(pf);
136 	if (!vsi)
137 		return -EINVAL;
138 
139 	/* To add a MAC filter, first add the MAC to a list and then
140 	 * pass the list to ice_add_mac.
141 	 */
142 
143 	 /* Add a unicast MAC filter so the VSI can get its packets */
144 	status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
145 	if (status)
146 		goto unregister;
147 
148 	/* VSI needs to receive broadcast traffic, so add the broadcast
149 	 * MAC address to the list as well.
150 	 */
151 	eth_broadcast_addr(broadcast);
152 	status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
153 	if (status)
154 		goto unregister;
155 
156 	return 0;
157 unregister:
158 	/* We aren't useful with no MAC filters, so unregister if we
159 	 * had an error
160 	 */
161 	if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
162 		dev_err(&pf->pdev->dev,
163 			"Could not add MAC filters error %d. Unregistering device\n",
164 			status);
165 		unregister_netdev(vsi->netdev);
166 		free_netdev(vsi->netdev);
167 		vsi->netdev = NULL;
168 	}
169 
170 	return -EIO;
171 }
172 
173 /**
174  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
175  * @netdev: the net device on which the sync is happening
176  * @addr: MAC address to sync
177  *
178  * This is a callback function which is called by the in kernel device sync
179  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
180  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
181  * MAC filters from the hardware.
182  */
183 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
184 {
185 	struct ice_netdev_priv *np = netdev_priv(netdev);
186 	struct ice_vsi *vsi = np->vsi;
187 
188 	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
189 		return -EINVAL;
190 
191 	return 0;
192 }
193 
194 /**
195  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
196  * @netdev: the net device on which the unsync is happening
197  * @addr: MAC address to unsync
198  *
199  * This is a callback function which is called by the in kernel device unsync
200  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
201  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
202  * delete the MAC filters from the hardware.
203  */
204 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
205 {
206 	struct ice_netdev_priv *np = netdev_priv(netdev);
207 	struct ice_vsi *vsi = np->vsi;
208 
209 	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
210 		return -EINVAL;
211 
212 	return 0;
213 }
214 
215 /**
216  * ice_vsi_fltr_changed - check if filter state changed
217  * @vsi: VSI to be checked
218  *
219  * returns true if filter state has changed, false otherwise.
220  */
221 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
222 {
223 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
224 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
225 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
226 }
227 
228 /**
229  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
230  * @vsi: the VSI being configured
231  * @promisc_m: mask of promiscuous config bits
232  * @set_promisc: enable or disable promisc flag request
233  *
234  */
235 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
236 {
237 	struct ice_hw *hw = &vsi->back->hw;
238 	enum ice_status status = 0;
239 
240 	if (vsi->type != ICE_VSI_PF)
241 		return 0;
242 
243 	if (vsi->vlan_ena) {
244 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
245 						  set_promisc);
246 	} else {
247 		if (set_promisc)
248 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
249 						     0);
250 		else
251 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
252 						       0);
253 	}
254 
255 	if (status)
256 		return -EIO;
257 
258 	return 0;
259 }
260 
261 /**
262  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
263  * @vsi: ptr to the VSI
264  *
265  * Push any outstanding VSI filter changes through the AdminQ.
266  */
267 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
268 {
269 	struct device *dev = &vsi->back->pdev->dev;
270 	struct net_device *netdev = vsi->netdev;
271 	bool promisc_forced_on = false;
272 	struct ice_pf *pf = vsi->back;
273 	struct ice_hw *hw = &pf->hw;
274 	enum ice_status status = 0;
275 	u32 changed_flags = 0;
276 	u8 promisc_m;
277 	int err = 0;
278 
279 	if (!vsi->netdev)
280 		return -EINVAL;
281 
282 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
283 		usleep_range(1000, 2000);
284 
285 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
286 	vsi->current_netdev_flags = vsi->netdev->flags;
287 
288 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
289 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
290 
291 	if (ice_vsi_fltr_changed(vsi)) {
292 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
293 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
294 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
295 
296 		/* grab the netdev's addr_list_lock */
297 		netif_addr_lock_bh(netdev);
298 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
299 			      ice_add_mac_to_unsync_list);
300 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
301 			      ice_add_mac_to_unsync_list);
302 		/* our temp lists are populated. release lock */
303 		netif_addr_unlock_bh(netdev);
304 	}
305 
306 	/* Remove MAC addresses in the unsync list */
307 	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
308 	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
309 	if (status) {
310 		netdev_err(netdev, "Failed to delete MAC filters\n");
311 		/* if we failed because of alloc failures, just bail */
312 		if (status == ICE_ERR_NO_MEMORY) {
313 			err = -ENOMEM;
314 			goto out;
315 		}
316 	}
317 
318 	/* Add MAC addresses in the sync list */
319 	status = ice_add_mac(hw, &vsi->tmp_sync_list);
320 	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
321 	/* If filter is added successfully or already exists, do not go into
322 	 * 'if' condition and report it as error. Instead continue processing
323 	 * rest of the function.
324 	 */
325 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
326 		netdev_err(netdev, "Failed to add MAC filters\n");
327 		/* If there is no more space for new umac filters, VSI
328 		 * should go into promiscuous mode. There should be some
329 		 * space reserved for promiscuous filters.
330 		 */
331 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
332 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
333 				      vsi->state)) {
334 			promisc_forced_on = true;
335 			netdev_warn(netdev,
336 				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
337 				    vsi->vsi_num);
338 		} else {
339 			err = -EIO;
340 			goto out;
341 		}
342 	}
343 	/* check for changes in promiscuous modes */
344 	if (changed_flags & IFF_ALLMULTI) {
345 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
346 			if (vsi->vlan_ena)
347 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
348 			else
349 				promisc_m = ICE_MCAST_PROMISC_BITS;
350 
351 			err = ice_cfg_promisc(vsi, promisc_m, true);
352 			if (err) {
353 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
354 					   vsi->vsi_num);
355 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
356 				goto out_promisc;
357 			}
358 		} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
359 			if (vsi->vlan_ena)
360 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
361 			else
362 				promisc_m = ICE_MCAST_PROMISC_BITS;
363 
364 			err = ice_cfg_promisc(vsi, promisc_m, false);
365 			if (err) {
366 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
367 					   vsi->vsi_num);
368 				vsi->current_netdev_flags |= IFF_ALLMULTI;
369 				goto out_promisc;
370 			}
371 		}
372 	}
373 
374 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
375 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
376 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
377 		if (vsi->current_netdev_flags & IFF_PROMISC) {
378 			/* Apply Rx filter rule to get traffic from wire */
379 			status = ice_cfg_dflt_vsi(hw, vsi->idx, true,
380 						  ICE_FLTR_RX);
381 			if (status) {
382 				netdev_err(netdev, "Error setting default VSI %i Rx rule\n",
383 					   vsi->vsi_num);
384 				vsi->current_netdev_flags &= ~IFF_PROMISC;
385 				err = -EIO;
386 				goto out_promisc;
387 			}
388 		} else {
389 			/* Clear Rx filter to remove traffic from wire */
390 			status = ice_cfg_dflt_vsi(hw, vsi->idx, false,
391 						  ICE_FLTR_RX);
392 			if (status) {
393 				netdev_err(netdev, "Error clearing default VSI %i Rx rule\n",
394 					   vsi->vsi_num);
395 				vsi->current_netdev_flags |= IFF_PROMISC;
396 				err = -EIO;
397 				goto out_promisc;
398 			}
399 		}
400 	}
401 	goto exit;
402 
403 out_promisc:
404 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
405 	goto exit;
406 out:
407 	/* if something went wrong then set the changed flag so we try again */
408 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
409 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
410 exit:
411 	clear_bit(__ICE_CFG_BUSY, vsi->state);
412 	return err;
413 }
414 
415 /**
416  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
417  * @pf: board private structure
418  */
419 static void ice_sync_fltr_subtask(struct ice_pf *pf)
420 {
421 	int v;
422 
423 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
424 		return;
425 
426 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
427 
428 	ice_for_each_vsi(pf, v)
429 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
430 		    ice_vsi_sync_fltr(pf->vsi[v])) {
431 			/* come back and try again later */
432 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
433 			break;
434 		}
435 }
436 
437 /**
438  * ice_dis_vsi - pause a VSI
439  * @vsi: the VSI being paused
440  * @locked: is the rtnl_lock already held
441  */
442 static void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
443 {
444 	if (test_bit(__ICE_DOWN, vsi->state))
445 		return;
446 
447 	set_bit(__ICE_NEEDS_RESTART, vsi->state);
448 
449 	if (vsi->type == ICE_VSI_PF && vsi->netdev) {
450 		if (netif_running(vsi->netdev)) {
451 			if (!locked)
452 				rtnl_lock();
453 
454 			ice_stop(vsi->netdev);
455 
456 			if (!locked)
457 				rtnl_unlock();
458 		} else {
459 			ice_vsi_close(vsi);
460 		}
461 	}
462 }
463 
464 /**
465  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
466  * @pf: the PF
467  * @locked: is the rtnl_lock already held
468  */
469 #ifdef CONFIG_DCB
470 void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
471 #else
472 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
473 #endif /* CONFIG_DCB */
474 {
475 	int v;
476 
477 	ice_for_each_vsi(pf, v)
478 		if (pf->vsi[v])
479 			ice_dis_vsi(pf->vsi[v], locked);
480 }
481 
482 /**
483  * ice_prepare_for_reset - prep for the core to reset
484  * @pf: board private structure
485  *
486  * Inform or close all dependent features in prep for reset.
487  */
488 static void
489 ice_prepare_for_reset(struct ice_pf *pf)
490 {
491 	struct ice_hw *hw = &pf->hw;
492 	int i;
493 
494 	/* already prepared for reset */
495 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
496 		return;
497 
498 	/* Notify VFs of impending reset */
499 	if (ice_check_sq_alive(hw, &hw->mailboxq))
500 		ice_vc_notify_reset(pf);
501 
502 	/* Disable VFs until reset is completed */
503 	for (i = 0; i < pf->num_alloc_vfs; i++)
504 		ice_set_vf_state_qs_dis(&pf->vf[i]);
505 
506 	/* clear SW filtering DB */
507 	ice_clear_hw_tbls(hw);
508 	/* disable the VSIs and their queues that are not already DOWN */
509 	ice_pf_dis_all_vsi(pf, false);
510 
511 	if (hw->port_info)
512 		ice_sched_clear_port(hw->port_info);
513 
514 	ice_shutdown_all_ctrlq(hw);
515 
516 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
517 }
518 
519 /**
520  * ice_do_reset - Initiate one of many types of resets
521  * @pf: board private structure
522  * @reset_type: reset type requested
523  * before this function was called.
524  */
525 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
526 {
527 	struct device *dev = &pf->pdev->dev;
528 	struct ice_hw *hw = &pf->hw;
529 
530 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
531 	WARN_ON(in_interrupt());
532 
533 	ice_prepare_for_reset(pf);
534 
535 	/* trigger the reset */
536 	if (ice_reset(hw, reset_type)) {
537 		dev_err(dev, "reset %d failed\n", reset_type);
538 		set_bit(__ICE_RESET_FAILED, pf->state);
539 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
540 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
541 		clear_bit(__ICE_PFR_REQ, pf->state);
542 		clear_bit(__ICE_CORER_REQ, pf->state);
543 		clear_bit(__ICE_GLOBR_REQ, pf->state);
544 		return;
545 	}
546 
547 	/* PFR is a bit of a special case because it doesn't result in an OICR
548 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
549 	 * associated state bits.
550 	 */
551 	if (reset_type == ICE_RESET_PFR) {
552 		pf->pfr_count++;
553 		ice_rebuild(pf, reset_type);
554 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
555 		clear_bit(__ICE_PFR_REQ, pf->state);
556 		ice_reset_all_vfs(pf, true);
557 	}
558 }
559 
560 /**
561  * ice_reset_subtask - Set up for resetting the device and driver
562  * @pf: board private structure
563  */
564 static void ice_reset_subtask(struct ice_pf *pf)
565 {
566 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
567 
568 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
569 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
570 	 * of reset is pending and sets bits in pf->state indicating the reset
571 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
572 	 * prepare for pending reset if not already (for PF software-initiated
573 	 * global resets the software should already be prepared for it as
574 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
575 	 * by firmware or software on other PFs, that bit is not set so prepare
576 	 * for the reset now), poll for reset done, rebuild and return.
577 	 */
578 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
579 		/* Perform the largest reset requested */
580 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
581 			reset_type = ICE_RESET_CORER;
582 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
583 			reset_type = ICE_RESET_GLOBR;
584 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
585 			reset_type = ICE_RESET_EMPR;
586 		/* return if no valid reset type requested */
587 		if (reset_type == ICE_RESET_INVAL)
588 			return;
589 		ice_prepare_for_reset(pf);
590 
591 		/* make sure we are ready to rebuild */
592 		if (ice_check_reset(&pf->hw)) {
593 			set_bit(__ICE_RESET_FAILED, pf->state);
594 		} else {
595 			/* done with reset. start rebuild */
596 			pf->hw.reset_ongoing = false;
597 			ice_rebuild(pf, reset_type);
598 			/* clear bit to resume normal operations, but
599 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
600 			 */
601 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
602 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
603 			clear_bit(__ICE_PFR_REQ, pf->state);
604 			clear_bit(__ICE_CORER_REQ, pf->state);
605 			clear_bit(__ICE_GLOBR_REQ, pf->state);
606 			ice_reset_all_vfs(pf, true);
607 		}
608 
609 		return;
610 	}
611 
612 	/* No pending resets to finish processing. Check for new resets */
613 	if (test_bit(__ICE_PFR_REQ, pf->state))
614 		reset_type = ICE_RESET_PFR;
615 	if (test_bit(__ICE_CORER_REQ, pf->state))
616 		reset_type = ICE_RESET_CORER;
617 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
618 		reset_type = ICE_RESET_GLOBR;
619 	/* If no valid reset type requested just return */
620 	if (reset_type == ICE_RESET_INVAL)
621 		return;
622 
623 	/* reset if not already down or busy */
624 	if (!test_bit(__ICE_DOWN, pf->state) &&
625 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
626 		ice_do_reset(pf, reset_type);
627 	}
628 }
629 
630 /**
631  * ice_print_topo_conflict - print topology conflict message
632  * @vsi: the VSI whose topology status is being checked
633  */
634 static void ice_print_topo_conflict(struct ice_vsi *vsi)
635 {
636 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
637 	case ICE_AQ_LINK_TOPO_CONFLICT:
638 	case ICE_AQ_LINK_MEDIA_CONFLICT:
639 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
640 		break;
641 	default:
642 		break;
643 	}
644 }
645 
646 /**
647  * ice_print_link_msg - print link up or down message
648  * @vsi: the VSI whose link status is being queried
649  * @isup: boolean for if the link is now up or down
650  */
651 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
652 {
653 	struct ice_aqc_get_phy_caps_data *caps;
654 	enum ice_status status;
655 	const char *fec_req;
656 	const char *speed;
657 	const char *fec;
658 	const char *fc;
659 	const char *an;
660 
661 	if (!vsi)
662 		return;
663 
664 	if (vsi->current_isup == isup)
665 		return;
666 
667 	vsi->current_isup = isup;
668 
669 	if (!isup) {
670 		netdev_info(vsi->netdev, "NIC Link is Down\n");
671 		return;
672 	}
673 
674 	switch (vsi->port_info->phy.link_info.link_speed) {
675 	case ICE_AQ_LINK_SPEED_100GB:
676 		speed = "100 G";
677 		break;
678 	case ICE_AQ_LINK_SPEED_50GB:
679 		speed = "50 G";
680 		break;
681 	case ICE_AQ_LINK_SPEED_40GB:
682 		speed = "40 G";
683 		break;
684 	case ICE_AQ_LINK_SPEED_25GB:
685 		speed = "25 G";
686 		break;
687 	case ICE_AQ_LINK_SPEED_20GB:
688 		speed = "20 G";
689 		break;
690 	case ICE_AQ_LINK_SPEED_10GB:
691 		speed = "10 G";
692 		break;
693 	case ICE_AQ_LINK_SPEED_5GB:
694 		speed = "5 G";
695 		break;
696 	case ICE_AQ_LINK_SPEED_2500MB:
697 		speed = "2.5 G";
698 		break;
699 	case ICE_AQ_LINK_SPEED_1000MB:
700 		speed = "1 G";
701 		break;
702 	case ICE_AQ_LINK_SPEED_100MB:
703 		speed = "100 M";
704 		break;
705 	default:
706 		speed = "Unknown";
707 		break;
708 	}
709 
710 	switch (vsi->port_info->fc.current_mode) {
711 	case ICE_FC_FULL:
712 		fc = "Rx/Tx";
713 		break;
714 	case ICE_FC_TX_PAUSE:
715 		fc = "Tx";
716 		break;
717 	case ICE_FC_RX_PAUSE:
718 		fc = "Rx";
719 		break;
720 	case ICE_FC_NONE:
721 		fc = "None";
722 		break;
723 	default:
724 		fc = "Unknown";
725 		break;
726 	}
727 
728 	/* Get FEC mode based on negotiated link info */
729 	switch (vsi->port_info->phy.link_info.fec_info) {
730 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
731 		/* fall through */
732 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
733 		fec = "RS-FEC";
734 		break;
735 	case ICE_AQ_LINK_25G_KR_FEC_EN:
736 		fec = "FC-FEC/BASE-R";
737 		break;
738 	default:
739 		fec = "NONE";
740 		break;
741 	}
742 
743 	/* check if autoneg completed, might be false due to not supported */
744 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
745 		an = "True";
746 	else
747 		an = "False";
748 
749 	/* Get FEC mode requested based on PHY caps last SW configuration */
750 	caps = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*caps), GFP_KERNEL);
751 	if (!caps) {
752 		fec_req = "Unknown";
753 		goto done;
754 	}
755 
756 	status = ice_aq_get_phy_caps(vsi->port_info, false,
757 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
758 	if (status)
759 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
760 
761 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
762 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
763 		fec_req = "RS-FEC";
764 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
765 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
766 		fec_req = "FC-FEC/BASE-R";
767 	else
768 		fec_req = "NONE";
769 
770 	devm_kfree(&vsi->back->pdev->dev, caps);
771 
772 done:
773 	netdev_info(vsi->netdev, "NIC Link is up %sbps, Requested FEC: %s, FEC: %s, Autoneg: %s, Flow Control: %s\n",
774 		    speed, fec_req, fec, an, fc);
775 	ice_print_topo_conflict(vsi);
776 }
777 
778 /**
779  * ice_vsi_link_event - update the VSI's netdev
780  * @vsi: the VSI on which the link event occurred
781  * @link_up: whether or not the VSI needs to be set up or down
782  */
783 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
784 {
785 	if (!vsi)
786 		return;
787 
788 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
789 		return;
790 
791 	if (vsi->type == ICE_VSI_PF) {
792 		if (link_up == netif_carrier_ok(vsi->netdev))
793 			return;
794 
795 		if (link_up) {
796 			netif_carrier_on(vsi->netdev);
797 			netif_tx_wake_all_queues(vsi->netdev);
798 		} else {
799 			netif_carrier_off(vsi->netdev);
800 			netif_tx_stop_all_queues(vsi->netdev);
801 		}
802 	}
803 }
804 
805 /**
806  * ice_link_event - process the link event
807  * @pf: PF that the link event is associated with
808  * @pi: port_info for the port that the link event is associated with
809  * @link_up: true if the physical link is up and false if it is down
810  * @link_speed: current link speed received from the link event
811  *
812  * Returns 0 on success and negative on failure
813  */
814 static int
815 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
816 	       u16 link_speed)
817 {
818 	struct ice_phy_info *phy_info;
819 	struct ice_vsi *vsi;
820 	u16 old_link_speed;
821 	bool old_link;
822 	int result;
823 
824 	phy_info = &pi->phy;
825 	phy_info->link_info_old = phy_info->link_info;
826 
827 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
828 	old_link_speed = phy_info->link_info_old.link_speed;
829 
830 	/* update the link info structures and re-enable link events,
831 	 * don't bail on failure due to other book keeping needed
832 	 */
833 	result = ice_update_link_info(pi);
834 	if (result)
835 		dev_dbg(&pf->pdev->dev,
836 			"Failed to update link status and re-enable link events for port %d\n",
837 			pi->lport);
838 
839 	/* if the old link up/down and speed is the same as the new */
840 	if (link_up == old_link && link_speed == old_link_speed)
841 		return result;
842 
843 	vsi = ice_get_main_vsi(pf);
844 	if (!vsi || !vsi->port_info)
845 		return -EINVAL;
846 
847 	/* turn off PHY if media was removed */
848 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
849 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
850 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
851 
852 		result = ice_aq_set_link_restart_an(pi, false, NULL);
853 		if (result) {
854 			dev_dbg(&pf->pdev->dev,
855 				"Failed to set link down, VSI %d error %d\n",
856 				vsi->vsi_num, result);
857 			return result;
858 		}
859 	}
860 
861 	ice_vsi_link_event(vsi, link_up);
862 	ice_print_link_msg(vsi, link_up);
863 
864 	if (pf->num_alloc_vfs)
865 		ice_vc_notify_link_state(pf);
866 
867 	return result;
868 }
869 
870 /**
871  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
872  * @pf: board private structure
873  */
874 static void ice_watchdog_subtask(struct ice_pf *pf)
875 {
876 	int i;
877 
878 	/* if interface is down do nothing */
879 	if (test_bit(__ICE_DOWN, pf->state) ||
880 	    test_bit(__ICE_CFG_BUSY, pf->state))
881 		return;
882 
883 	/* make sure we don't do these things too often */
884 	if (time_before(jiffies,
885 			pf->serv_tmr_prev + pf->serv_tmr_period))
886 		return;
887 
888 	pf->serv_tmr_prev = jiffies;
889 
890 	/* Update the stats for active netdevs so the network stack
891 	 * can look at updated numbers whenever it cares to
892 	 */
893 	ice_update_pf_stats(pf);
894 	ice_for_each_vsi(pf, i)
895 		if (pf->vsi[i] && pf->vsi[i]->netdev)
896 			ice_update_vsi_stats(pf->vsi[i]);
897 }
898 
899 /**
900  * ice_init_link_events - enable/initialize link events
901  * @pi: pointer to the port_info instance
902  *
903  * Returns -EIO on failure, 0 on success
904  */
905 static int ice_init_link_events(struct ice_port_info *pi)
906 {
907 	u16 mask;
908 
909 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
910 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
911 
912 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
913 		dev_dbg(ice_hw_to_dev(pi->hw),
914 			"Failed to set link event mask for port %d\n",
915 			pi->lport);
916 		return -EIO;
917 	}
918 
919 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
920 		dev_dbg(ice_hw_to_dev(pi->hw),
921 			"Failed to enable link events for port %d\n",
922 			pi->lport);
923 		return -EIO;
924 	}
925 
926 	return 0;
927 }
928 
929 /**
930  * ice_handle_link_event - handle link event via ARQ
931  * @pf: PF that the link event is associated with
932  * @event: event structure containing link status info
933  */
934 static int
935 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
936 {
937 	struct ice_aqc_get_link_status_data *link_data;
938 	struct ice_port_info *port_info;
939 	int status;
940 
941 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
942 	port_info = pf->hw.port_info;
943 	if (!port_info)
944 		return -EINVAL;
945 
946 	status = ice_link_event(pf, port_info,
947 				!!(link_data->link_info & ICE_AQ_LINK_UP),
948 				le16_to_cpu(link_data->link_speed));
949 	if (status)
950 		dev_dbg(&pf->pdev->dev,
951 			"Could not process link event, error %d\n", status);
952 
953 	return status;
954 }
955 
956 /**
957  * __ice_clean_ctrlq - helper function to clean controlq rings
958  * @pf: ptr to struct ice_pf
959  * @q_type: specific Control queue type
960  */
961 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
962 {
963 	struct ice_rq_event_info event;
964 	struct ice_hw *hw = &pf->hw;
965 	struct ice_ctl_q_info *cq;
966 	u16 pending, i = 0;
967 	const char *qtype;
968 	u32 oldval, val;
969 
970 	/* Do not clean control queue if/when PF reset fails */
971 	if (test_bit(__ICE_RESET_FAILED, pf->state))
972 		return 0;
973 
974 	switch (q_type) {
975 	case ICE_CTL_Q_ADMIN:
976 		cq = &hw->adminq;
977 		qtype = "Admin";
978 		break;
979 	case ICE_CTL_Q_MAILBOX:
980 		cq = &hw->mailboxq;
981 		qtype = "Mailbox";
982 		break;
983 	default:
984 		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
985 			 q_type);
986 		return 0;
987 	}
988 
989 	/* check for error indications - PF_xx_AxQLEN register layout for
990 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
991 	 */
992 	val = rd32(hw, cq->rq.len);
993 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
994 		   PF_FW_ARQLEN_ARQCRIT_M)) {
995 		oldval = val;
996 		if (val & PF_FW_ARQLEN_ARQVFE_M)
997 			dev_dbg(&pf->pdev->dev,
998 				"%s Receive Queue VF Error detected\n", qtype);
999 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1000 			dev_dbg(&pf->pdev->dev,
1001 				"%s Receive Queue Overflow Error detected\n",
1002 				qtype);
1003 		}
1004 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1005 			dev_dbg(&pf->pdev->dev,
1006 				"%s Receive Queue Critical Error detected\n",
1007 				qtype);
1008 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1009 			 PF_FW_ARQLEN_ARQCRIT_M);
1010 		if (oldval != val)
1011 			wr32(hw, cq->rq.len, val);
1012 	}
1013 
1014 	val = rd32(hw, cq->sq.len);
1015 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1016 		   PF_FW_ATQLEN_ATQCRIT_M)) {
1017 		oldval = val;
1018 		if (val & PF_FW_ATQLEN_ATQVFE_M)
1019 			dev_dbg(&pf->pdev->dev,
1020 				"%s Send Queue VF Error detected\n", qtype);
1021 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1022 			dev_dbg(&pf->pdev->dev,
1023 				"%s Send Queue Overflow Error detected\n",
1024 				qtype);
1025 		}
1026 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1027 			dev_dbg(&pf->pdev->dev,
1028 				"%s Send Queue Critical Error detected\n",
1029 				qtype);
1030 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1031 			 PF_FW_ATQLEN_ATQCRIT_M);
1032 		if (oldval != val)
1033 			wr32(hw, cq->sq.len, val);
1034 	}
1035 
1036 	event.buf_len = cq->rq_buf_size;
1037 	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
1038 				     GFP_KERNEL);
1039 	if (!event.msg_buf)
1040 		return 0;
1041 
1042 	do {
1043 		enum ice_status ret;
1044 		u16 opcode;
1045 
1046 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1047 		if (ret == ICE_ERR_AQ_NO_WORK)
1048 			break;
1049 		if (ret) {
1050 			dev_err(&pf->pdev->dev,
1051 				"%s Receive Queue event error %d\n", qtype,
1052 				ret);
1053 			break;
1054 		}
1055 
1056 		opcode = le16_to_cpu(event.desc.opcode);
1057 
1058 		switch (opcode) {
1059 		case ice_aqc_opc_get_link_status:
1060 			if (ice_handle_link_event(pf, &event))
1061 				dev_err(&pf->pdev->dev,
1062 					"Could not handle link event\n");
1063 			break;
1064 		case ice_mbx_opc_send_msg_to_pf:
1065 			ice_vc_process_vf_msg(pf, &event);
1066 			break;
1067 		case ice_aqc_opc_fw_logging:
1068 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1069 			break;
1070 		case ice_aqc_opc_lldp_set_mib_change:
1071 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1072 			break;
1073 		default:
1074 			dev_dbg(&pf->pdev->dev,
1075 				"%s Receive Queue unknown event 0x%04x ignored\n",
1076 				qtype, opcode);
1077 			break;
1078 		}
1079 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1080 
1081 	devm_kfree(&pf->pdev->dev, event.msg_buf);
1082 
1083 	return pending && (i == ICE_DFLT_IRQ_WORK);
1084 }
1085 
1086 /**
1087  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1088  * @hw: pointer to hardware info
1089  * @cq: control queue information
1090  *
1091  * returns true if there are pending messages in a queue, false if there aren't
1092  */
1093 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1094 {
1095 	u16 ntu;
1096 
1097 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1098 	return cq->rq.next_to_clean != ntu;
1099 }
1100 
1101 /**
1102  * ice_clean_adminq_subtask - clean the AdminQ rings
1103  * @pf: board private structure
1104  */
1105 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1106 {
1107 	struct ice_hw *hw = &pf->hw;
1108 
1109 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1110 		return;
1111 
1112 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1113 		return;
1114 
1115 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1116 
1117 	/* There might be a situation where new messages arrive to a control
1118 	 * queue between processing the last message and clearing the
1119 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1120 	 * ice_ctrlq_pending) and process new messages if any.
1121 	 */
1122 	if (ice_ctrlq_pending(hw, &hw->adminq))
1123 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1124 
1125 	ice_flush(hw);
1126 }
1127 
1128 /**
1129  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1130  * @pf: board private structure
1131  */
1132 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1133 {
1134 	struct ice_hw *hw = &pf->hw;
1135 
1136 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1137 		return;
1138 
1139 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1140 		return;
1141 
1142 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1143 
1144 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1145 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1146 
1147 	ice_flush(hw);
1148 }
1149 
1150 /**
1151  * ice_service_task_schedule - schedule the service task to wake up
1152  * @pf: board private structure
1153  *
1154  * If not already scheduled, this puts the task into the work queue.
1155  */
1156 static void ice_service_task_schedule(struct ice_pf *pf)
1157 {
1158 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1159 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1160 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1161 		queue_work(ice_wq, &pf->serv_task);
1162 }
1163 
1164 /**
1165  * ice_service_task_complete - finish up the service task
1166  * @pf: board private structure
1167  */
1168 static void ice_service_task_complete(struct ice_pf *pf)
1169 {
1170 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1171 
1172 	/* force memory (pf->state) to sync before next service task */
1173 	smp_mb__before_atomic();
1174 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1175 }
1176 
1177 /**
1178  * ice_service_task_stop - stop service task and cancel works
1179  * @pf: board private structure
1180  */
1181 static void ice_service_task_stop(struct ice_pf *pf)
1182 {
1183 	set_bit(__ICE_SERVICE_DIS, pf->state);
1184 
1185 	if (pf->serv_tmr.function)
1186 		del_timer_sync(&pf->serv_tmr);
1187 	if (pf->serv_task.func)
1188 		cancel_work_sync(&pf->serv_task);
1189 
1190 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1191 }
1192 
1193 /**
1194  * ice_service_task_restart - restart service task and schedule works
1195  * @pf: board private structure
1196  *
1197  * This function is needed for suspend and resume works (e.g WoL scenario)
1198  */
1199 static void ice_service_task_restart(struct ice_pf *pf)
1200 {
1201 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1202 	ice_service_task_schedule(pf);
1203 }
1204 
1205 /**
1206  * ice_service_timer - timer callback to schedule service task
1207  * @t: pointer to timer_list
1208  */
1209 static void ice_service_timer(struct timer_list *t)
1210 {
1211 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1212 
1213 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1214 	ice_service_task_schedule(pf);
1215 }
1216 
1217 /**
1218  * ice_handle_mdd_event - handle malicious driver detect event
1219  * @pf: pointer to the PF structure
1220  *
1221  * Called from service task. OICR interrupt handler indicates MDD event
1222  */
1223 static void ice_handle_mdd_event(struct ice_pf *pf)
1224 {
1225 	struct ice_hw *hw = &pf->hw;
1226 	bool mdd_detected = false;
1227 	u32 reg;
1228 	int i;
1229 
1230 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
1231 		return;
1232 
1233 	/* find what triggered the MDD event */
1234 	reg = rd32(hw, GL_MDET_TX_PQM);
1235 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1236 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1237 				GL_MDET_TX_PQM_PF_NUM_S;
1238 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1239 				GL_MDET_TX_PQM_VF_NUM_S;
1240 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1241 				GL_MDET_TX_PQM_MAL_TYPE_S;
1242 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1243 				GL_MDET_TX_PQM_QNUM_S);
1244 
1245 		if (netif_msg_tx_err(pf))
1246 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1247 				 event, queue, pf_num, vf_num);
1248 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1249 		mdd_detected = true;
1250 	}
1251 
1252 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1253 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1254 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1255 				GL_MDET_TX_TCLAN_PF_NUM_S;
1256 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1257 				GL_MDET_TX_TCLAN_VF_NUM_S;
1258 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1259 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1260 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1261 				GL_MDET_TX_TCLAN_QNUM_S);
1262 
1263 		if (netif_msg_rx_err(pf))
1264 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1265 				 event, queue, pf_num, vf_num);
1266 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1267 		mdd_detected = true;
1268 	}
1269 
1270 	reg = rd32(hw, GL_MDET_RX);
1271 	if (reg & GL_MDET_RX_VALID_M) {
1272 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1273 				GL_MDET_RX_PF_NUM_S;
1274 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1275 				GL_MDET_RX_VF_NUM_S;
1276 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1277 				GL_MDET_RX_MAL_TYPE_S;
1278 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1279 				GL_MDET_RX_QNUM_S);
1280 
1281 		if (netif_msg_rx_err(pf))
1282 			dev_info(&pf->pdev->dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1283 				 event, queue, pf_num, vf_num);
1284 		wr32(hw, GL_MDET_RX, 0xffffffff);
1285 		mdd_detected = true;
1286 	}
1287 
1288 	if (mdd_detected) {
1289 		bool pf_mdd_detected = false;
1290 
1291 		reg = rd32(hw, PF_MDET_TX_PQM);
1292 		if (reg & PF_MDET_TX_PQM_VALID_M) {
1293 			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1294 			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1295 			pf_mdd_detected = true;
1296 		}
1297 
1298 		reg = rd32(hw, PF_MDET_TX_TCLAN);
1299 		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1300 			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1301 			dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
1302 			pf_mdd_detected = true;
1303 		}
1304 
1305 		reg = rd32(hw, PF_MDET_RX);
1306 		if (reg & PF_MDET_RX_VALID_M) {
1307 			wr32(hw, PF_MDET_RX, 0xFFFF);
1308 			dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
1309 			pf_mdd_detected = true;
1310 		}
1311 		/* Queue belongs to the PF initiate a reset */
1312 		if (pf_mdd_detected) {
1313 			set_bit(__ICE_NEEDS_RESTART, pf->state);
1314 			ice_service_task_schedule(pf);
1315 		}
1316 	}
1317 
1318 	/* check to see if one of the VFs caused the MDD */
1319 	for (i = 0; i < pf->num_alloc_vfs; i++) {
1320 		struct ice_vf *vf = &pf->vf[i];
1321 
1322 		bool vf_mdd_detected = false;
1323 
1324 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1325 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1326 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1327 			vf_mdd_detected = true;
1328 			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1329 				 i);
1330 		}
1331 
1332 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1333 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1334 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1335 			vf_mdd_detected = true;
1336 			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1337 				 i);
1338 		}
1339 
1340 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1341 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1342 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1343 			vf_mdd_detected = true;
1344 			dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
1345 				 i);
1346 		}
1347 
1348 		reg = rd32(hw, VP_MDET_RX(i));
1349 		if (reg & VP_MDET_RX_VALID_M) {
1350 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1351 			vf_mdd_detected = true;
1352 			dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
1353 				 i);
1354 		}
1355 
1356 		if (vf_mdd_detected) {
1357 			vf->num_mdd_events++;
1358 			if (vf->num_mdd_events &&
1359 			    vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD)
1360 				dev_info(&pf->pdev->dev,
1361 					 "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n",
1362 					 i, vf->num_mdd_events);
1363 		}
1364 	}
1365 }
1366 
1367 /**
1368  * ice_force_phys_link_state - Force the physical link state
1369  * @vsi: VSI to force the physical link state to up/down
1370  * @link_up: true/false indicates to set the physical link to up/down
1371  *
1372  * Force the physical link state by getting the current PHY capabilities from
1373  * hardware and setting the PHY config based on the determined capabilities. If
1374  * link changes a link event will be triggered because both the Enable Automatic
1375  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1376  *
1377  * Returns 0 on success, negative on failure
1378  */
1379 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1380 {
1381 	struct ice_aqc_get_phy_caps_data *pcaps;
1382 	struct ice_aqc_set_phy_cfg_data *cfg;
1383 	struct ice_port_info *pi;
1384 	struct device *dev;
1385 	int retcode;
1386 
1387 	if (!vsi || !vsi->port_info || !vsi->back)
1388 		return -EINVAL;
1389 	if (vsi->type != ICE_VSI_PF)
1390 		return 0;
1391 
1392 	dev = &vsi->back->pdev->dev;
1393 
1394 	pi = vsi->port_info;
1395 
1396 	pcaps = devm_kzalloc(dev, sizeof(*pcaps), GFP_KERNEL);
1397 	if (!pcaps)
1398 		return -ENOMEM;
1399 
1400 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1401 				      NULL);
1402 	if (retcode) {
1403 		dev_err(dev,
1404 			"Failed to get phy capabilities, VSI %d error %d\n",
1405 			vsi->vsi_num, retcode);
1406 		retcode = -EIO;
1407 		goto out;
1408 	}
1409 
1410 	/* No change in link */
1411 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1412 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1413 		goto out;
1414 
1415 	cfg = devm_kzalloc(dev, sizeof(*cfg), GFP_KERNEL);
1416 	if (!cfg) {
1417 		retcode = -ENOMEM;
1418 		goto out;
1419 	}
1420 
1421 	cfg->phy_type_low = pcaps->phy_type_low;
1422 	cfg->phy_type_high = pcaps->phy_type_high;
1423 	cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1424 	cfg->low_power_ctrl = pcaps->low_power_ctrl;
1425 	cfg->eee_cap = pcaps->eee_cap;
1426 	cfg->eeer_value = pcaps->eeer_value;
1427 	cfg->link_fec_opt = pcaps->link_fec_options;
1428 	if (link_up)
1429 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1430 	else
1431 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1432 
1433 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1434 	if (retcode) {
1435 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1436 			vsi->vsi_num, retcode);
1437 		retcode = -EIO;
1438 	}
1439 
1440 	devm_kfree(dev, cfg);
1441 out:
1442 	devm_kfree(dev, pcaps);
1443 	return retcode;
1444 }
1445 
1446 /**
1447  * ice_check_media_subtask - Check for media; bring link up if detected.
1448  * @pf: pointer to PF struct
1449  */
1450 static void ice_check_media_subtask(struct ice_pf *pf)
1451 {
1452 	struct ice_port_info *pi;
1453 	struct ice_vsi *vsi;
1454 	int err;
1455 
1456 	vsi = ice_get_main_vsi(pf);
1457 	if (!vsi)
1458 		return;
1459 
1460 	/* No need to check for media if it's already present or the interface
1461 	 * is down
1462 	 */
1463 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1464 	    test_bit(__ICE_DOWN, vsi->state))
1465 		return;
1466 
1467 	/* Refresh link info and check if media is present */
1468 	pi = vsi->port_info;
1469 	err = ice_update_link_info(pi);
1470 	if (err)
1471 		return;
1472 
1473 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1474 		err = ice_force_phys_link_state(vsi, true);
1475 		if (err)
1476 			return;
1477 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1478 
1479 		/* A Link Status Event will be generated; the event handler
1480 		 * will complete bringing the interface up
1481 		 */
1482 	}
1483 }
1484 
1485 /**
1486  * ice_service_task - manage and run subtasks
1487  * @work: pointer to work_struct contained by the PF struct
1488  */
1489 static void ice_service_task(struct work_struct *work)
1490 {
1491 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1492 	unsigned long start_time = jiffies;
1493 
1494 	/* subtasks */
1495 
1496 	/* process reset requests first */
1497 	ice_reset_subtask(pf);
1498 
1499 	/* bail if a reset/recovery cycle is pending or rebuild failed */
1500 	if (ice_is_reset_in_progress(pf->state) ||
1501 	    test_bit(__ICE_SUSPENDED, pf->state) ||
1502 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1503 		ice_service_task_complete(pf);
1504 		return;
1505 	}
1506 
1507 	ice_clean_adminq_subtask(pf);
1508 	ice_check_media_subtask(pf);
1509 	ice_check_for_hang_subtask(pf);
1510 	ice_sync_fltr_subtask(pf);
1511 	ice_handle_mdd_event(pf);
1512 	ice_watchdog_subtask(pf);
1513 
1514 	if (ice_is_safe_mode(pf)) {
1515 		ice_service_task_complete(pf);
1516 		return;
1517 	}
1518 
1519 	ice_process_vflr_event(pf);
1520 	ice_clean_mailboxq_subtask(pf);
1521 
1522 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1523 	ice_service_task_complete(pf);
1524 
1525 	/* If the tasks have taken longer than one service timer period
1526 	 * or there is more work to be done, reset the service timer to
1527 	 * schedule the service task now.
1528 	 */
1529 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1530 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1531 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1532 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1533 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1534 		mod_timer(&pf->serv_tmr, jiffies);
1535 }
1536 
1537 /**
1538  * ice_set_ctrlq_len - helper function to set controlq length
1539  * @hw: pointer to the HW instance
1540  */
1541 static void ice_set_ctrlq_len(struct ice_hw *hw)
1542 {
1543 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1544 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1545 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1546 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1547 	hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN;
1548 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
1549 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1550 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1551 }
1552 
1553 /**
1554  * ice_irq_affinity_notify - Callback for affinity changes
1555  * @notify: context as to what irq was changed
1556  * @mask: the new affinity mask
1557  *
1558  * This is a callback function used by the irq_set_affinity_notifier function
1559  * so that we may register to receive changes to the irq affinity masks.
1560  */
1561 static void
1562 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1563 			const cpumask_t *mask)
1564 {
1565 	struct ice_q_vector *q_vector =
1566 		container_of(notify, struct ice_q_vector, affinity_notify);
1567 
1568 	cpumask_copy(&q_vector->affinity_mask, mask);
1569 }
1570 
1571 /**
1572  * ice_irq_affinity_release - Callback for affinity notifier release
1573  * @ref: internal core kernel usage
1574  *
1575  * This is a callback function used by the irq_set_affinity_notifier function
1576  * to inform the current notification subscriber that they will no longer
1577  * receive notifications.
1578  */
1579 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1580 
1581 /**
1582  * ice_vsi_ena_irq - Enable IRQ for the given VSI
1583  * @vsi: the VSI being configured
1584  */
1585 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1586 {
1587 	struct ice_hw *hw = &vsi->back->hw;
1588 	int i;
1589 
1590 	ice_for_each_q_vector(vsi, i)
1591 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1592 
1593 	ice_flush(hw);
1594 	return 0;
1595 }
1596 
1597 /**
1598  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1599  * @vsi: the VSI being configured
1600  * @basename: name for the vector
1601  */
1602 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1603 {
1604 	int q_vectors = vsi->num_q_vectors;
1605 	struct ice_pf *pf = vsi->back;
1606 	int base = vsi->base_vector;
1607 	int rx_int_idx = 0;
1608 	int tx_int_idx = 0;
1609 	int vector, err;
1610 	int irq_num;
1611 
1612 	for (vector = 0; vector < q_vectors; vector++) {
1613 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1614 
1615 		irq_num = pf->msix_entries[base + vector].vector;
1616 
1617 		if (q_vector->tx.ring && q_vector->rx.ring) {
1618 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1619 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1620 			tx_int_idx++;
1621 		} else if (q_vector->rx.ring) {
1622 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1623 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1624 		} else if (q_vector->tx.ring) {
1625 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1626 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1627 		} else {
1628 			/* skip this unused q_vector */
1629 			continue;
1630 		}
1631 		err = devm_request_irq(&pf->pdev->dev, irq_num,
1632 				       vsi->irq_handler, 0,
1633 				       q_vector->name, q_vector);
1634 		if (err) {
1635 			netdev_err(vsi->netdev,
1636 				   "MSIX request_irq failed, error: %d\n", err);
1637 			goto free_q_irqs;
1638 		}
1639 
1640 		/* register for affinity change notifications */
1641 		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1642 		q_vector->affinity_notify.release = ice_irq_affinity_release;
1643 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1644 
1645 		/* assign the mask for this irq */
1646 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1647 	}
1648 
1649 	vsi->irqs_ready = true;
1650 	return 0;
1651 
1652 free_q_irqs:
1653 	while (vector) {
1654 		vector--;
1655 		irq_num = pf->msix_entries[base + vector].vector,
1656 		irq_set_affinity_notifier(irq_num, NULL);
1657 		irq_set_affinity_hint(irq_num, NULL);
1658 		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1659 	}
1660 	return err;
1661 }
1662 
1663 /**
1664  * ice_ena_misc_vector - enable the non-queue interrupts
1665  * @pf: board private structure
1666  */
1667 static void ice_ena_misc_vector(struct ice_pf *pf)
1668 {
1669 	struct ice_hw *hw = &pf->hw;
1670 	u32 val;
1671 
1672 	/* clear things first */
1673 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
1674 	rd32(hw, PFINT_OICR);		/* read to clear */
1675 
1676 	val = (PFINT_OICR_ECC_ERR_M |
1677 	       PFINT_OICR_MAL_DETECT_M |
1678 	       PFINT_OICR_GRST_M |
1679 	       PFINT_OICR_PCI_EXCEPTION_M |
1680 	       PFINT_OICR_VFLR_M |
1681 	       PFINT_OICR_HMC_ERR_M |
1682 	       PFINT_OICR_PE_CRITERR_M);
1683 
1684 	wr32(hw, PFINT_OICR_ENA, val);
1685 
1686 	/* SW_ITR_IDX = 0, but don't change INTENA */
1687 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1688 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1689 }
1690 
1691 /**
1692  * ice_misc_intr - misc interrupt handler
1693  * @irq: interrupt number
1694  * @data: pointer to a q_vector
1695  */
1696 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1697 {
1698 	struct ice_pf *pf = (struct ice_pf *)data;
1699 	struct ice_hw *hw = &pf->hw;
1700 	irqreturn_t ret = IRQ_NONE;
1701 	u32 oicr, ena_mask;
1702 
1703 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1704 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1705 
1706 	oicr = rd32(hw, PFINT_OICR);
1707 	ena_mask = rd32(hw, PFINT_OICR_ENA);
1708 
1709 	if (oicr & PFINT_OICR_SWINT_M) {
1710 		ena_mask &= ~PFINT_OICR_SWINT_M;
1711 		pf->sw_int_count++;
1712 	}
1713 
1714 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
1715 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
1716 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
1717 	}
1718 	if (oicr & PFINT_OICR_VFLR_M) {
1719 		ena_mask &= ~PFINT_OICR_VFLR_M;
1720 		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
1721 	}
1722 
1723 	if (oicr & PFINT_OICR_GRST_M) {
1724 		u32 reset;
1725 
1726 		/* we have a reset warning */
1727 		ena_mask &= ~PFINT_OICR_GRST_M;
1728 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1729 			GLGEN_RSTAT_RESET_TYPE_S;
1730 
1731 		if (reset == ICE_RESET_CORER)
1732 			pf->corer_count++;
1733 		else if (reset == ICE_RESET_GLOBR)
1734 			pf->globr_count++;
1735 		else if (reset == ICE_RESET_EMPR)
1736 			pf->empr_count++;
1737 		else
1738 			dev_dbg(&pf->pdev->dev, "Invalid reset type %d\n",
1739 				reset);
1740 
1741 		/* If a reset cycle isn't already in progress, we set a bit in
1742 		 * pf->state so that the service task can start a reset/rebuild.
1743 		 * We also make note of which reset happened so that peer
1744 		 * devices/drivers can be informed.
1745 		 */
1746 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
1747 			if (reset == ICE_RESET_CORER)
1748 				set_bit(__ICE_CORER_RECV, pf->state);
1749 			else if (reset == ICE_RESET_GLOBR)
1750 				set_bit(__ICE_GLOBR_RECV, pf->state);
1751 			else
1752 				set_bit(__ICE_EMPR_RECV, pf->state);
1753 
1754 			/* There are couple of different bits at play here.
1755 			 * hw->reset_ongoing indicates whether the hardware is
1756 			 * in reset. This is set to true when a reset interrupt
1757 			 * is received and set back to false after the driver
1758 			 * has determined that the hardware is out of reset.
1759 			 *
1760 			 * __ICE_RESET_OICR_RECV in pf->state indicates
1761 			 * that a post reset rebuild is required before the
1762 			 * driver is operational again. This is set above.
1763 			 *
1764 			 * As this is the start of the reset/rebuild cycle, set
1765 			 * both to indicate that.
1766 			 */
1767 			hw->reset_ongoing = true;
1768 		}
1769 	}
1770 
1771 	if (oicr & PFINT_OICR_HMC_ERR_M) {
1772 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1773 		dev_dbg(&pf->pdev->dev,
1774 			"HMC Error interrupt - info 0x%x, data 0x%x\n",
1775 			rd32(hw, PFHMC_ERRORINFO),
1776 			rd32(hw, PFHMC_ERRORDATA));
1777 	}
1778 
1779 	/* Report any remaining unexpected interrupts */
1780 	oicr &= ena_mask;
1781 	if (oicr) {
1782 		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1783 			oicr);
1784 		/* If a critical error is pending there is no choice but to
1785 		 * reset the device.
1786 		 */
1787 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
1788 			    PFINT_OICR_PCI_EXCEPTION_M |
1789 			    PFINT_OICR_ECC_ERR_M)) {
1790 			set_bit(__ICE_PFR_REQ, pf->state);
1791 			ice_service_task_schedule(pf);
1792 		}
1793 	}
1794 	ret = IRQ_HANDLED;
1795 
1796 	if (!test_bit(__ICE_DOWN, pf->state)) {
1797 		ice_service_task_schedule(pf);
1798 		ice_irq_dynamic_ena(hw, NULL, NULL);
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 /**
1805  * ice_dis_ctrlq_interrupts - disable control queue interrupts
1806  * @hw: pointer to HW structure
1807  */
1808 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
1809 {
1810 	/* disable Admin queue Interrupt causes */
1811 	wr32(hw, PFINT_FW_CTL,
1812 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
1813 
1814 	/* disable Mailbox queue Interrupt causes */
1815 	wr32(hw, PFINT_MBX_CTL,
1816 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
1817 
1818 	/* disable Control queue Interrupt causes */
1819 	wr32(hw, PFINT_OICR_CTL,
1820 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
1821 
1822 	ice_flush(hw);
1823 }
1824 
1825 /**
1826  * ice_free_irq_msix_misc - Unroll misc vector setup
1827  * @pf: board private structure
1828  */
1829 static void ice_free_irq_msix_misc(struct ice_pf *pf)
1830 {
1831 	struct ice_hw *hw = &pf->hw;
1832 
1833 	ice_dis_ctrlq_interrupts(hw);
1834 
1835 	/* disable OICR interrupt */
1836 	wr32(hw, PFINT_OICR_ENA, 0);
1837 	ice_flush(hw);
1838 
1839 	if (pf->msix_entries) {
1840 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
1841 		devm_free_irq(&pf->pdev->dev,
1842 			      pf->msix_entries[pf->oicr_idx].vector, pf);
1843 	}
1844 
1845 	pf->num_avail_sw_msix += 1;
1846 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
1847 }
1848 
1849 /**
1850  * ice_ena_ctrlq_interrupts - enable control queue interrupts
1851  * @hw: pointer to HW structure
1852  * @reg_idx: HW vector index to associate the control queue interrupts with
1853  */
1854 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
1855 {
1856 	u32 val;
1857 
1858 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
1859 	       PFINT_OICR_CTL_CAUSE_ENA_M);
1860 	wr32(hw, PFINT_OICR_CTL, val);
1861 
1862 	/* enable Admin queue Interrupt causes */
1863 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
1864 	       PFINT_FW_CTL_CAUSE_ENA_M);
1865 	wr32(hw, PFINT_FW_CTL, val);
1866 
1867 	/* enable Mailbox queue Interrupt causes */
1868 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
1869 	       PFINT_MBX_CTL_CAUSE_ENA_M);
1870 	wr32(hw, PFINT_MBX_CTL, val);
1871 
1872 	ice_flush(hw);
1873 }
1874 
1875 /**
1876  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
1877  * @pf: board private structure
1878  *
1879  * This sets up the handler for MSIX 0, which is used to manage the
1880  * non-queue interrupts, e.g. AdminQ and errors. This is not used
1881  * when in MSI or Legacy interrupt mode.
1882  */
1883 static int ice_req_irq_msix_misc(struct ice_pf *pf)
1884 {
1885 	struct ice_hw *hw = &pf->hw;
1886 	int oicr_idx, err = 0;
1887 
1888 	if (!pf->int_name[0])
1889 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
1890 			 dev_driver_string(&pf->pdev->dev),
1891 			 dev_name(&pf->pdev->dev));
1892 
1893 	/* Do not request IRQ but do enable OICR interrupt since settings are
1894 	 * lost during reset. Note that this function is called only during
1895 	 * rebuild path and not while reset is in progress.
1896 	 */
1897 	if (ice_is_reset_in_progress(pf->state))
1898 		goto skip_req_irq;
1899 
1900 	/* reserve one vector in irq_tracker for misc interrupts */
1901 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1902 	if (oicr_idx < 0)
1903 		return oicr_idx;
1904 
1905 	pf->num_avail_sw_msix -= 1;
1906 	pf->oicr_idx = oicr_idx;
1907 
1908 	err = devm_request_irq(&pf->pdev->dev,
1909 			       pf->msix_entries[pf->oicr_idx].vector,
1910 			       ice_misc_intr, 0, pf->int_name, pf);
1911 	if (err) {
1912 		dev_err(&pf->pdev->dev,
1913 			"devm_request_irq for %s failed: %d\n",
1914 			pf->int_name, err);
1915 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
1916 		pf->num_avail_sw_msix += 1;
1917 		return err;
1918 	}
1919 
1920 skip_req_irq:
1921 	ice_ena_misc_vector(pf);
1922 
1923 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
1924 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
1925 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
1926 
1927 	ice_flush(hw);
1928 	ice_irq_dynamic_ena(hw, NULL, NULL);
1929 
1930 	return 0;
1931 }
1932 
1933 /**
1934  * ice_napi_add - register NAPI handler for the VSI
1935  * @vsi: VSI for which NAPI handler is to be registered
1936  *
1937  * This function is only called in the driver's load path. Registering the NAPI
1938  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
1939  * reset/rebuild, etc.)
1940  */
1941 static void ice_napi_add(struct ice_vsi *vsi)
1942 {
1943 	int v_idx;
1944 
1945 	if (!vsi->netdev)
1946 		return;
1947 
1948 	ice_for_each_q_vector(vsi, v_idx)
1949 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
1950 			       ice_napi_poll, NAPI_POLL_WEIGHT);
1951 }
1952 
1953 /**
1954  * ice_set_ops - set netdev and ethtools ops for the given netdev
1955  * @netdev: netdev instance
1956  */
1957 static void ice_set_ops(struct net_device *netdev)
1958 {
1959 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1960 
1961 	if (ice_is_safe_mode(pf)) {
1962 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
1963 		ice_set_ethtool_safe_mode_ops(netdev);
1964 		return;
1965 	}
1966 
1967 	netdev->netdev_ops = &ice_netdev_ops;
1968 	ice_set_ethtool_ops(netdev);
1969 }
1970 
1971 /**
1972  * ice_set_netdev_features - set features for the given netdev
1973  * @netdev: netdev instance
1974  */
1975 static void ice_set_netdev_features(struct net_device *netdev)
1976 {
1977 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
1978 	netdev_features_t csumo_features;
1979 	netdev_features_t vlano_features;
1980 	netdev_features_t dflt_features;
1981 	netdev_features_t tso_features;
1982 
1983 	if (ice_is_safe_mode(pf)) {
1984 		/* safe mode */
1985 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
1986 		netdev->hw_features = netdev->features;
1987 		return;
1988 	}
1989 
1990 	dflt_features = NETIF_F_SG	|
1991 			NETIF_F_HIGHDMA	|
1992 			NETIF_F_RXHASH;
1993 
1994 	csumo_features = NETIF_F_RXCSUM	  |
1995 			 NETIF_F_IP_CSUM  |
1996 			 NETIF_F_SCTP_CRC |
1997 			 NETIF_F_IPV6_CSUM;
1998 
1999 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2000 			 NETIF_F_HW_VLAN_CTAG_TX     |
2001 			 NETIF_F_HW_VLAN_CTAG_RX;
2002 
2003 	tso_features = NETIF_F_TSO;
2004 
2005 	/* set features that user can change */
2006 	netdev->hw_features = dflt_features | csumo_features |
2007 			      vlano_features | tso_features;
2008 
2009 	/* enable features */
2010 	netdev->features |= netdev->hw_features;
2011 	/* encap and VLAN devices inherit default, csumo and tso features */
2012 	netdev->hw_enc_features |= dflt_features | csumo_features |
2013 				   tso_features;
2014 	netdev->vlan_features |= dflt_features | csumo_features |
2015 				 tso_features;
2016 }
2017 
2018 /**
2019  * ice_cfg_netdev - Allocate, configure and register a netdev
2020  * @vsi: the VSI associated with the new netdev
2021  *
2022  * Returns 0 on success, negative value on failure
2023  */
2024 static int ice_cfg_netdev(struct ice_vsi *vsi)
2025 {
2026 	struct ice_pf *pf = vsi->back;
2027 	struct ice_netdev_priv *np;
2028 	struct net_device *netdev;
2029 	u8 mac_addr[ETH_ALEN];
2030 	int err;
2031 
2032 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2033 				    vsi->alloc_rxq);
2034 	if (!netdev)
2035 		return -ENOMEM;
2036 
2037 	vsi->netdev = netdev;
2038 	np = netdev_priv(netdev);
2039 	np->vsi = vsi;
2040 
2041 	ice_set_netdev_features(netdev);
2042 
2043 	ice_set_ops(netdev);
2044 
2045 	if (vsi->type == ICE_VSI_PF) {
2046 		SET_NETDEV_DEV(netdev, &pf->pdev->dev);
2047 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2048 		ether_addr_copy(netdev->dev_addr, mac_addr);
2049 		ether_addr_copy(netdev->perm_addr, mac_addr);
2050 	}
2051 
2052 	netdev->priv_flags |= IFF_UNICAST_FLT;
2053 
2054 	/* Setup netdev TC information */
2055 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2056 
2057 	/* setup watchdog timeout value to be 5 second */
2058 	netdev->watchdog_timeo = 5 * HZ;
2059 
2060 	netdev->min_mtu = ETH_MIN_MTU;
2061 	netdev->max_mtu = ICE_MAX_MTU;
2062 
2063 	err = register_netdev(vsi->netdev);
2064 	if (err)
2065 		return err;
2066 
2067 	netif_carrier_off(vsi->netdev);
2068 
2069 	/* make sure transmit queues start off as stopped */
2070 	netif_tx_stop_all_queues(vsi->netdev);
2071 
2072 	return 0;
2073 }
2074 
2075 /**
2076  * ice_fill_rss_lut - Fill the RSS lookup table with default values
2077  * @lut: Lookup table
2078  * @rss_table_size: Lookup table size
2079  * @rss_size: Range of queue number for hashing
2080  */
2081 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2082 {
2083 	u16 i;
2084 
2085 	for (i = 0; i < rss_table_size; i++)
2086 		lut[i] = i % rss_size;
2087 }
2088 
2089 /**
2090  * ice_pf_vsi_setup - Set up a PF VSI
2091  * @pf: board private structure
2092  * @pi: pointer to the port_info instance
2093  *
2094  * Returns pointer to the successfully allocated VSI software struct
2095  * on success, otherwise returns NULL on failure.
2096  */
2097 static struct ice_vsi *
2098 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2099 {
2100 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2101 }
2102 
2103 /**
2104  * ice_lb_vsi_setup - Set up a loopback VSI
2105  * @pf: board private structure
2106  * @pi: pointer to the port_info instance
2107  *
2108  * Returns pointer to the successfully allocated VSI software struct
2109  * on success, otherwise returns NULL on failure.
2110  */
2111 struct ice_vsi *
2112 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2113 {
2114 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2115 }
2116 
2117 /**
2118  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2119  * @netdev: network interface to be adjusted
2120  * @proto: unused protocol
2121  * @vid: VLAN ID to be added
2122  *
2123  * net_device_ops implementation for adding VLAN IDs
2124  */
2125 static int
2126 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2127 		    u16 vid)
2128 {
2129 	struct ice_netdev_priv *np = netdev_priv(netdev);
2130 	struct ice_vsi *vsi = np->vsi;
2131 	int ret;
2132 
2133 	if (vid >= VLAN_N_VID) {
2134 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2135 			   vid, VLAN_N_VID);
2136 		return -EINVAL;
2137 	}
2138 
2139 	if (vsi->info.pvid)
2140 		return -EINVAL;
2141 
2142 	/* Enable VLAN pruning when VLAN 0 is added */
2143 	if (unlikely(!vid)) {
2144 		ret = ice_cfg_vlan_pruning(vsi, true, false);
2145 		if (ret)
2146 			return ret;
2147 	}
2148 
2149 	/* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
2150 	 * needed to continue allowing all untagged packets since VLAN prune
2151 	 * list is applied to all packets by the switch
2152 	 */
2153 	ret = ice_vsi_add_vlan(vsi, vid);
2154 	if (!ret) {
2155 		vsi->vlan_ena = true;
2156 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2157 	}
2158 
2159 	return ret;
2160 }
2161 
2162 /**
2163  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2164  * @netdev: network interface to be adjusted
2165  * @proto: unused protocol
2166  * @vid: VLAN ID to be removed
2167  *
2168  * net_device_ops implementation for removing VLAN IDs
2169  */
2170 static int
2171 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2172 		     u16 vid)
2173 {
2174 	struct ice_netdev_priv *np = netdev_priv(netdev);
2175 	struct ice_vsi *vsi = np->vsi;
2176 	int ret;
2177 
2178 	if (vsi->info.pvid)
2179 		return -EINVAL;
2180 
2181 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2182 	 * information
2183 	 */
2184 	ret = ice_vsi_kill_vlan(vsi, vid);
2185 	if (ret)
2186 		return ret;
2187 
2188 	/* Disable VLAN pruning when VLAN 0 is removed */
2189 	if (unlikely(!vid))
2190 		ret = ice_cfg_vlan_pruning(vsi, false, false);
2191 
2192 	vsi->vlan_ena = false;
2193 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2194 	return ret;
2195 }
2196 
2197 /**
2198  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2199  * @pf: board private structure
2200  *
2201  * Returns 0 on success, negative value on failure
2202  */
2203 static int ice_setup_pf_sw(struct ice_pf *pf)
2204 {
2205 	struct ice_vsi *vsi;
2206 	int status = 0;
2207 
2208 	if (ice_is_reset_in_progress(pf->state))
2209 		return -EBUSY;
2210 
2211 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2212 	if (!vsi) {
2213 		status = -ENOMEM;
2214 		goto unroll_vsi_setup;
2215 	}
2216 
2217 	status = ice_cfg_netdev(vsi);
2218 	if (status) {
2219 		status = -ENODEV;
2220 		goto unroll_vsi_setup;
2221 	}
2222 
2223 	/* registering the NAPI handler requires both the queues and
2224 	 * netdev to be created, which are done in ice_pf_vsi_setup()
2225 	 * and ice_cfg_netdev() respectively
2226 	 */
2227 	ice_napi_add(vsi);
2228 
2229 	status = ice_init_mac_fltr(pf);
2230 	if (status)
2231 		goto unroll_napi_add;
2232 
2233 	return status;
2234 
2235 unroll_napi_add:
2236 	if (vsi) {
2237 		ice_napi_del(vsi);
2238 		if (vsi->netdev) {
2239 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
2240 				unregister_netdev(vsi->netdev);
2241 			free_netdev(vsi->netdev);
2242 			vsi->netdev = NULL;
2243 		}
2244 	}
2245 
2246 unroll_vsi_setup:
2247 	if (vsi) {
2248 		ice_vsi_free_q_vectors(vsi);
2249 		ice_vsi_delete(vsi);
2250 		ice_vsi_put_qs(vsi);
2251 		ice_vsi_clear(vsi);
2252 	}
2253 	return status;
2254 }
2255 
2256 /**
2257  * ice_get_avail_q_count - Get count of queues in use
2258  * @pf_qmap: bitmap to get queue use count from
2259  * @lock: pointer to a mutex that protects access to pf_qmap
2260  * @size: size of the bitmap
2261  */
2262 static u16
2263 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
2264 {
2265 	u16 count = 0, bit;
2266 
2267 	mutex_lock(lock);
2268 	for_each_clear_bit(bit, pf_qmap, size)
2269 		count++;
2270 	mutex_unlock(lock);
2271 
2272 	return count;
2273 }
2274 
2275 /**
2276  * ice_get_avail_txq_count - Get count of Tx queues in use
2277  * @pf: pointer to an ice_pf instance
2278  */
2279 u16 ice_get_avail_txq_count(struct ice_pf *pf)
2280 {
2281 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
2282 				     pf->max_pf_txqs);
2283 }
2284 
2285 /**
2286  * ice_get_avail_rxq_count - Get count of Rx queues in use
2287  * @pf: pointer to an ice_pf instance
2288  */
2289 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
2290 {
2291 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
2292 				     pf->max_pf_rxqs);
2293 }
2294 
2295 /**
2296  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2297  * @pf: board private structure to initialize
2298  */
2299 static void ice_deinit_pf(struct ice_pf *pf)
2300 {
2301 	ice_service_task_stop(pf);
2302 	mutex_destroy(&pf->sw_mutex);
2303 	mutex_destroy(&pf->avail_q_mutex);
2304 
2305 	if (pf->avail_txqs) {
2306 		bitmap_free(pf->avail_txqs);
2307 		pf->avail_txqs = NULL;
2308 	}
2309 
2310 	if (pf->avail_rxqs) {
2311 		bitmap_free(pf->avail_rxqs);
2312 		pf->avail_rxqs = NULL;
2313 	}
2314 }
2315 
2316 /**
2317  * ice_set_pf_caps - set PFs capability flags
2318  * @pf: pointer to the PF instance
2319  */
2320 static void ice_set_pf_caps(struct ice_pf *pf)
2321 {
2322 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
2323 
2324 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2325 	if (func_caps->common_cap.dcb)
2326 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2327 #ifdef CONFIG_PCI_IOV
2328 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2329 	if (func_caps->common_cap.sr_iov_1_1) {
2330 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2331 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
2332 					      ICE_MAX_VF_COUNT);
2333 	}
2334 #endif /* CONFIG_PCI_IOV */
2335 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
2336 	if (func_caps->common_cap.rss_table_size)
2337 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2338 
2339 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
2340 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
2341 }
2342 
2343 /**
2344  * ice_init_pf - Initialize general software structures (struct ice_pf)
2345  * @pf: board private structure to initialize
2346  */
2347 static int ice_init_pf(struct ice_pf *pf)
2348 {
2349 	ice_set_pf_caps(pf);
2350 
2351 	mutex_init(&pf->sw_mutex);
2352 
2353 	/* setup service timer and periodic service task */
2354 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2355 	pf->serv_tmr_period = HZ;
2356 	INIT_WORK(&pf->serv_task, ice_service_task);
2357 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
2358 
2359 	mutex_init(&pf->avail_q_mutex);
2360 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
2361 	if (!pf->avail_txqs)
2362 		return -ENOMEM;
2363 
2364 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
2365 	if (!pf->avail_rxqs) {
2366 		devm_kfree(&pf->pdev->dev, pf->avail_txqs);
2367 		pf->avail_txqs = NULL;
2368 		return -ENOMEM;
2369 	}
2370 
2371 	return 0;
2372 }
2373 
2374 /**
2375  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2376  * @pf: board private structure
2377  *
2378  * compute the number of MSIX vectors required (v_budget) and request from
2379  * the OS. Return the number of vectors reserved or negative on failure
2380  */
2381 static int ice_ena_msix_range(struct ice_pf *pf)
2382 {
2383 	int v_left, v_actual, v_budget = 0;
2384 	int needed, err, i;
2385 
2386 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2387 
2388 	/* reserve one vector for miscellaneous handler */
2389 	needed = 1;
2390 	if (v_left < needed)
2391 		goto no_hw_vecs_left_err;
2392 	v_budget += needed;
2393 	v_left -= needed;
2394 
2395 	/* reserve vectors for LAN traffic */
2396 	needed = min_t(int, num_online_cpus(), v_left);
2397 	if (v_left < needed)
2398 		goto no_hw_vecs_left_err;
2399 	pf->num_lan_msix = needed;
2400 	v_budget += needed;
2401 	v_left -= needed;
2402 
2403 	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
2404 					sizeof(*pf->msix_entries), GFP_KERNEL);
2405 
2406 	if (!pf->msix_entries) {
2407 		err = -ENOMEM;
2408 		goto exit_err;
2409 	}
2410 
2411 	for (i = 0; i < v_budget; i++)
2412 		pf->msix_entries[i].entry = i;
2413 
2414 	/* actually reserve the vectors */
2415 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2416 					 ICE_MIN_MSIX, v_budget);
2417 
2418 	if (v_actual < 0) {
2419 		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
2420 		err = v_actual;
2421 		goto msix_err;
2422 	}
2423 
2424 	if (v_actual < v_budget) {
2425 		dev_warn(&pf->pdev->dev,
2426 			 "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
2427 			 v_budget, v_actual);
2428 /* 2 vectors for LAN (traffic + OICR) */
2429 #define ICE_MIN_LAN_VECS 2
2430 
2431 		if (v_actual < ICE_MIN_LAN_VECS) {
2432 			/* error if we can't get minimum vectors */
2433 			pci_disable_msix(pf->pdev);
2434 			err = -ERANGE;
2435 			goto msix_err;
2436 		} else {
2437 			pf->num_lan_msix = ICE_MIN_LAN_VECS;
2438 		}
2439 	}
2440 
2441 	return v_actual;
2442 
2443 msix_err:
2444 	devm_kfree(&pf->pdev->dev, pf->msix_entries);
2445 	goto exit_err;
2446 
2447 no_hw_vecs_left_err:
2448 	dev_err(&pf->pdev->dev,
2449 		"not enough device MSI-X vectors. requested = %d, available = %d\n",
2450 		needed, v_left);
2451 	err = -ERANGE;
2452 exit_err:
2453 	pf->num_lan_msix = 0;
2454 	return err;
2455 }
2456 
2457 /**
2458  * ice_dis_msix - Disable MSI-X interrupt setup in OS
2459  * @pf: board private structure
2460  */
2461 static void ice_dis_msix(struct ice_pf *pf)
2462 {
2463 	pci_disable_msix(pf->pdev);
2464 	devm_kfree(&pf->pdev->dev, pf->msix_entries);
2465 	pf->msix_entries = NULL;
2466 }
2467 
2468 /**
2469  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2470  * @pf: board private structure
2471  */
2472 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2473 {
2474 	ice_dis_msix(pf);
2475 
2476 	if (pf->irq_tracker) {
2477 		devm_kfree(&pf->pdev->dev, pf->irq_tracker);
2478 		pf->irq_tracker = NULL;
2479 	}
2480 }
2481 
2482 /**
2483  * ice_init_interrupt_scheme - Determine proper interrupt scheme
2484  * @pf: board private structure to initialize
2485  */
2486 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2487 {
2488 	int vectors;
2489 
2490 	vectors = ice_ena_msix_range(pf);
2491 
2492 	if (vectors < 0)
2493 		return vectors;
2494 
2495 	/* set up vector assignment tracking */
2496 	pf->irq_tracker =
2497 		devm_kzalloc(&pf->pdev->dev, sizeof(*pf->irq_tracker) +
2498 			     (sizeof(u16) * vectors), GFP_KERNEL);
2499 	if (!pf->irq_tracker) {
2500 		ice_dis_msix(pf);
2501 		return -ENOMEM;
2502 	}
2503 
2504 	/* populate SW interrupts pool with number of OS granted IRQs. */
2505 	pf->num_avail_sw_msix = vectors;
2506 	pf->irq_tracker->num_entries = vectors;
2507 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
2508 
2509 	return 0;
2510 }
2511 
2512 /**
2513  * ice_log_pkg_init - log result of DDP package load
2514  * @hw: pointer to hardware info
2515  * @status: status of package load
2516  */
2517 static void
2518 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
2519 {
2520 	struct ice_pf *pf = (struct ice_pf *)hw->back;
2521 	struct device *dev = &pf->pdev->dev;
2522 
2523 	switch (*status) {
2524 	case ICE_SUCCESS:
2525 		/* The package download AdminQ command returned success because
2526 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
2527 		 * already a package loaded on the device.
2528 		 */
2529 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
2530 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
2531 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
2532 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
2533 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
2534 			    sizeof(hw->pkg_name))) {
2535 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
2536 				dev_info(dev,
2537 					 "DDP package already present on device: %s version %d.%d.%d.%d\n",
2538 					 hw->active_pkg_name,
2539 					 hw->active_pkg_ver.major,
2540 					 hw->active_pkg_ver.minor,
2541 					 hw->active_pkg_ver.update,
2542 					 hw->active_pkg_ver.draft);
2543 			else
2544 				dev_info(dev,
2545 					 "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
2546 					 hw->active_pkg_name,
2547 					 hw->active_pkg_ver.major,
2548 					 hw->active_pkg_ver.minor,
2549 					 hw->active_pkg_ver.update,
2550 					 hw->active_pkg_ver.draft);
2551 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
2552 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
2553 			dev_err(dev,
2554 				"The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
2555 				hw->active_pkg_name,
2556 				hw->active_pkg_ver.major,
2557 				hw->active_pkg_ver.minor,
2558 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2559 			*status = ICE_ERR_NOT_SUPPORTED;
2560 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2561 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
2562 			dev_info(dev,
2563 				 "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
2564 				 hw->active_pkg_name,
2565 				 hw->active_pkg_ver.major,
2566 				 hw->active_pkg_ver.minor,
2567 				 hw->active_pkg_ver.update,
2568 				 hw->active_pkg_ver.draft,
2569 				 hw->pkg_name,
2570 				 hw->pkg_ver.major,
2571 				 hw->pkg_ver.minor,
2572 				 hw->pkg_ver.update,
2573 				 hw->pkg_ver.draft);
2574 		} else {
2575 			dev_err(dev,
2576 				"An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
2577 			*status = ICE_ERR_NOT_SUPPORTED;
2578 		}
2579 		break;
2580 	case ICE_ERR_BUF_TOO_SHORT:
2581 		/* fall-through */
2582 	case ICE_ERR_CFG:
2583 		dev_err(dev,
2584 			"The DDP package file is invalid. Entering Safe Mode.\n");
2585 		break;
2586 	case ICE_ERR_NOT_SUPPORTED:
2587 		/* Package File version not supported */
2588 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
2589 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2590 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
2591 			dev_err(dev,
2592 				"The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
2593 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
2594 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2595 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
2596 			dev_err(dev,
2597 				"The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
2598 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2599 		break;
2600 	case ICE_ERR_AQ_ERROR:
2601 		switch (hw->adminq.sq_last_status) {
2602 		case ICE_AQ_RC_ENOSEC:
2603 		case ICE_AQ_RC_EBADSIG:
2604 			dev_err(dev,
2605 				"The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
2606 			return;
2607 		case ICE_AQ_RC_ESVN:
2608 			dev_err(dev,
2609 				"The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
2610 			return;
2611 		case ICE_AQ_RC_EBADMAN:
2612 		case ICE_AQ_RC_EBADBUF:
2613 			dev_err(dev,
2614 				"An error occurred on the device while loading the DDP package.  The device will be reset.\n");
2615 			return;
2616 		default:
2617 			break;
2618 		}
2619 		/* fall-through */
2620 	default:
2621 		dev_err(dev,
2622 			"An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
2623 			*status);
2624 		break;
2625 	}
2626 }
2627 
2628 /**
2629  * ice_load_pkg - load/reload the DDP Package file
2630  * @firmware: firmware structure when firmware requested or NULL for reload
2631  * @pf: pointer to the PF instance
2632  *
2633  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
2634  * initialize HW tables.
2635  */
2636 static void
2637 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
2638 {
2639 	enum ice_status status = ICE_ERR_PARAM;
2640 	struct device *dev = &pf->pdev->dev;
2641 	struct ice_hw *hw = &pf->hw;
2642 
2643 	/* Load DDP Package */
2644 	if (firmware && !hw->pkg_copy) {
2645 		status = ice_copy_and_init_pkg(hw, firmware->data,
2646 					       firmware->size);
2647 		ice_log_pkg_init(hw, &status);
2648 	} else if (!firmware && hw->pkg_copy) {
2649 		/* Reload package during rebuild after CORER/GLOBR reset */
2650 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
2651 		ice_log_pkg_init(hw, &status);
2652 	} else {
2653 		dev_err(dev,
2654 			"The DDP package file failed to load. Entering Safe Mode.\n");
2655 	}
2656 
2657 	if (status) {
2658 		/* Safe Mode */
2659 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
2660 		return;
2661 	}
2662 
2663 	/* Successful download package is the precondition for advanced
2664 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
2665 	 */
2666 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
2667 }
2668 
2669 /**
2670  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
2671  * @pf: pointer to the PF structure
2672  *
2673  * There is no error returned here because the driver should be able to handle
2674  * 128 Byte cache lines, so we only print a warning in case issues are seen,
2675  * specifically with Tx.
2676  */
2677 static void ice_verify_cacheline_size(struct ice_pf *pf)
2678 {
2679 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
2680 		dev_warn(&pf->pdev->dev,
2681 			 "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
2682 			 ICE_CACHE_LINE_BYTES);
2683 }
2684 
2685 /**
2686  * ice_send_version - update firmware with driver version
2687  * @pf: PF struct
2688  *
2689  * Returns ICE_SUCCESS on success, else error code
2690  */
2691 static enum ice_status ice_send_version(struct ice_pf *pf)
2692 {
2693 	struct ice_driver_ver dv;
2694 
2695 	dv.major_ver = DRV_VERSION_MAJOR;
2696 	dv.minor_ver = DRV_VERSION_MINOR;
2697 	dv.build_ver = DRV_VERSION_BUILD;
2698 	dv.subbuild_ver = 0;
2699 	strscpy((char *)dv.driver_string, DRV_VERSION,
2700 		sizeof(dv.driver_string));
2701 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
2702 }
2703 
2704 /**
2705  * ice_get_opt_fw_name - return optional firmware file name or NULL
2706  * @pf: pointer to the PF instance
2707  */
2708 static char *ice_get_opt_fw_name(struct ice_pf *pf)
2709 {
2710 	/* Optional firmware name same as default with additional dash
2711 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
2712 	 */
2713 	struct pci_dev *pdev = pf->pdev;
2714 	char *opt_fw_filename = NULL;
2715 	u32 dword;
2716 	u8 dsn[8];
2717 	int pos;
2718 
2719 	/* Determine the name of the optional file using the DSN (two
2720 	 * dwords following the start of the DSN Capability).
2721 	 */
2722 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
2723 	if (pos) {
2724 		opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
2725 		if (!opt_fw_filename)
2726 			return NULL;
2727 
2728 		pci_read_config_dword(pdev, pos + 4, &dword);
2729 		put_unaligned_le32(dword, &dsn[0]);
2730 		pci_read_config_dword(pdev, pos + 8, &dword);
2731 		put_unaligned_le32(dword, &dsn[4]);
2732 		snprintf(opt_fw_filename, NAME_MAX,
2733 			 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg",
2734 			 ICE_DDP_PKG_PATH,
2735 			 dsn[7], dsn[6], dsn[5], dsn[4],
2736 			 dsn[3], dsn[2], dsn[1], dsn[0]);
2737 	}
2738 
2739 	return opt_fw_filename;
2740 }
2741 
2742 /**
2743  * ice_request_fw - Device initialization routine
2744  * @pf: pointer to the PF instance
2745  */
2746 static void ice_request_fw(struct ice_pf *pf)
2747 {
2748 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
2749 	const struct firmware *firmware = NULL;
2750 	struct device *dev = &pf->pdev->dev;
2751 	int err = 0;
2752 
2753 	/* optional device-specific DDP (if present) overrides the default DDP
2754 	 * package file. kernel logs a debug message if the file doesn't exist,
2755 	 * and warning messages for other errors.
2756 	 */
2757 	if (opt_fw_filename) {
2758 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
2759 		if (err) {
2760 			kfree(opt_fw_filename);
2761 			goto dflt_pkg_load;
2762 		}
2763 
2764 		/* request for firmware was successful. Download to device */
2765 		ice_load_pkg(firmware, pf);
2766 		kfree(opt_fw_filename);
2767 		release_firmware(firmware);
2768 		return;
2769 	}
2770 
2771 dflt_pkg_load:
2772 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
2773 	if (err) {
2774 		dev_err(dev,
2775 			"The DDP package file was not found or could not be read. Entering Safe Mode\n");
2776 		return;
2777 	}
2778 
2779 	/* request for firmware was successful. Download to device */
2780 	ice_load_pkg(firmware, pf);
2781 	release_firmware(firmware);
2782 }
2783 
2784 /**
2785  * ice_probe - Device initialization routine
2786  * @pdev: PCI device information struct
2787  * @ent: entry in ice_pci_tbl
2788  *
2789  * Returns 0 on success, negative on failure
2790  */
2791 static int
2792 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
2793 {
2794 	struct device *dev = &pdev->dev;
2795 	struct ice_pf *pf;
2796 	struct ice_hw *hw;
2797 	int err;
2798 
2799 	/* this driver uses devres, see Documentation/driver-api/driver-model/devres.rst */
2800 	err = pcim_enable_device(pdev);
2801 	if (err)
2802 		return err;
2803 
2804 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
2805 	if (err) {
2806 		dev_err(dev, "BAR0 I/O map error %d\n", err);
2807 		return err;
2808 	}
2809 
2810 	pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
2811 	if (!pf)
2812 		return -ENOMEM;
2813 
2814 	/* set up for high or low DMA */
2815 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
2816 	if (err)
2817 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2818 	if (err) {
2819 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
2820 		return err;
2821 	}
2822 
2823 	pci_enable_pcie_error_reporting(pdev);
2824 	pci_set_master(pdev);
2825 
2826 	pf->pdev = pdev;
2827 	pci_set_drvdata(pdev, pf);
2828 	set_bit(__ICE_DOWN, pf->state);
2829 	/* Disable service task until DOWN bit is cleared */
2830 	set_bit(__ICE_SERVICE_DIS, pf->state);
2831 
2832 	hw = &pf->hw;
2833 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
2834 	hw->back = pf;
2835 	hw->vendor_id = pdev->vendor;
2836 	hw->device_id = pdev->device;
2837 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2838 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2839 	hw->subsystem_device_id = pdev->subsystem_device;
2840 	hw->bus.device = PCI_SLOT(pdev->devfn);
2841 	hw->bus.func = PCI_FUNC(pdev->devfn);
2842 	ice_set_ctrlq_len(hw);
2843 
2844 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
2845 
2846 #ifndef CONFIG_DYNAMIC_DEBUG
2847 	if (debug < -1)
2848 		hw->debug_mask = debug;
2849 #endif
2850 
2851 	err = ice_init_hw(hw);
2852 	if (err) {
2853 		dev_err(dev, "ice_init_hw failed: %d\n", err);
2854 		err = -EIO;
2855 		goto err_exit_unroll;
2856 	}
2857 
2858 	dev_info(dev, "firmware %d.%d.%d api %d.%d.%d nvm %s build 0x%08x\n",
2859 		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_patch,
2860 		 hw->api_maj_ver, hw->api_min_ver, hw->api_patch,
2861 		 ice_nvm_version_str(hw), hw->fw_build);
2862 
2863 	ice_request_fw(pf);
2864 
2865 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
2866 	 * set in pf->state, which will cause ice_is_safe_mode to return
2867 	 * true
2868 	 */
2869 	if (ice_is_safe_mode(pf)) {
2870 		dev_err(dev,
2871 			"Package download failed. Advanced features disabled - Device now in Safe Mode\n");
2872 		/* we already got function/device capabilities but these don't
2873 		 * reflect what the driver needs to do in safe mode. Instead of
2874 		 * adding conditional logic everywhere to ignore these
2875 		 * device/function capabilities, override them.
2876 		 */
2877 		ice_set_safe_mode_caps(hw);
2878 	}
2879 
2880 	err = ice_init_pf(pf);
2881 	if (err) {
2882 		dev_err(dev, "ice_init_pf failed: %d\n", err);
2883 		goto err_init_pf_unroll;
2884 	}
2885 
2886 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
2887 	if (!pf->num_alloc_vsi) {
2888 		err = -EIO;
2889 		goto err_init_pf_unroll;
2890 	}
2891 
2892 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
2893 			       GFP_KERNEL);
2894 	if (!pf->vsi) {
2895 		err = -ENOMEM;
2896 		goto err_init_pf_unroll;
2897 	}
2898 
2899 	err = ice_init_interrupt_scheme(pf);
2900 	if (err) {
2901 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
2902 		err = -EIO;
2903 		goto err_init_interrupt_unroll;
2904 	}
2905 
2906 	/* Driver is mostly up */
2907 	clear_bit(__ICE_DOWN, pf->state);
2908 
2909 	/* In case of MSIX we are going to setup the misc vector right here
2910 	 * to handle admin queue events etc. In case of legacy and MSI
2911 	 * the misc functionality and queue processing is combined in
2912 	 * the same vector and that gets setup at open.
2913 	 */
2914 	err = ice_req_irq_msix_misc(pf);
2915 	if (err) {
2916 		dev_err(dev, "setup of misc vector failed: %d\n", err);
2917 		goto err_init_interrupt_unroll;
2918 	}
2919 
2920 	/* create switch struct for the switch element created by FW on boot */
2921 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
2922 	if (!pf->first_sw) {
2923 		err = -ENOMEM;
2924 		goto err_msix_misc_unroll;
2925 	}
2926 
2927 	if (hw->evb_veb)
2928 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
2929 	else
2930 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
2931 
2932 	pf->first_sw->pf = pf;
2933 
2934 	/* record the sw_id available for later use */
2935 	pf->first_sw->sw_id = hw->port_info->sw_id;
2936 
2937 	err = ice_setup_pf_sw(pf);
2938 	if (err) {
2939 		dev_err(dev, "probe failed due to setup PF switch:%d\n", err);
2940 		goto err_alloc_sw_unroll;
2941 	}
2942 
2943 	clear_bit(__ICE_SERVICE_DIS, pf->state);
2944 
2945 	/* tell the firmware we are up */
2946 	err = ice_send_version(pf);
2947 	if (err) {
2948 		dev_err(dev,
2949 			"probe failed sending driver version %s. error: %d\n",
2950 			ice_drv_ver, err);
2951 		goto err_alloc_sw_unroll;
2952 	}
2953 
2954 	/* since everything is good, start the service timer */
2955 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
2956 
2957 	err = ice_init_link_events(pf->hw.port_info);
2958 	if (err) {
2959 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
2960 		goto err_alloc_sw_unroll;
2961 	}
2962 
2963 	ice_verify_cacheline_size(pf);
2964 
2965 	/* If no DDP driven features have to be setup, return here */
2966 	if (ice_is_safe_mode(pf))
2967 		return 0;
2968 
2969 	/* initialize DDP driven features */
2970 
2971 	/* Note: DCB init failure is non-fatal to load */
2972 	if (ice_init_pf_dcb(pf, false)) {
2973 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2974 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
2975 	} else {
2976 		ice_cfg_lldp_mib_change(&pf->hw, true);
2977 	}
2978 
2979 	return 0;
2980 
2981 err_alloc_sw_unroll:
2982 	set_bit(__ICE_SERVICE_DIS, pf->state);
2983 	set_bit(__ICE_DOWN, pf->state);
2984 	devm_kfree(&pf->pdev->dev, pf->first_sw);
2985 err_msix_misc_unroll:
2986 	ice_free_irq_msix_misc(pf);
2987 err_init_interrupt_unroll:
2988 	ice_clear_interrupt_scheme(pf);
2989 	devm_kfree(dev, pf->vsi);
2990 err_init_pf_unroll:
2991 	ice_deinit_pf(pf);
2992 	ice_deinit_hw(hw);
2993 err_exit_unroll:
2994 	pci_disable_pcie_error_reporting(pdev);
2995 	return err;
2996 }
2997 
2998 /**
2999  * ice_remove - Device removal routine
3000  * @pdev: PCI device information struct
3001  */
3002 static void ice_remove(struct pci_dev *pdev)
3003 {
3004 	struct ice_pf *pf = pci_get_drvdata(pdev);
3005 	int i;
3006 
3007 	if (!pf)
3008 		return;
3009 
3010 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
3011 		if (!ice_is_reset_in_progress(pf->state))
3012 			break;
3013 		msleep(100);
3014 	}
3015 
3016 	set_bit(__ICE_DOWN, pf->state);
3017 	ice_service_task_stop(pf);
3018 
3019 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
3020 		ice_free_vfs(pf);
3021 	ice_vsi_release_all(pf);
3022 	ice_free_irq_msix_misc(pf);
3023 	ice_for_each_vsi(pf, i) {
3024 		if (!pf->vsi[i])
3025 			continue;
3026 		ice_vsi_free_q_vectors(pf->vsi[i]);
3027 	}
3028 	ice_deinit_pf(pf);
3029 	ice_deinit_hw(&pf->hw);
3030 	ice_clear_interrupt_scheme(pf);
3031 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
3032 	 * do it via ice_schedule_reset() since there is no need to rebuild
3033 	 * and the service task is already stopped.
3034 	 */
3035 	ice_reset(&pf->hw, ICE_RESET_PFR);
3036 	pci_disable_pcie_error_reporting(pdev);
3037 }
3038 
3039 /**
3040  * ice_pci_err_detected - warning that PCI error has been detected
3041  * @pdev: PCI device information struct
3042  * @err: the type of PCI error
3043  *
3044  * Called to warn that something happened on the PCI bus and the error handling
3045  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
3046  */
3047 static pci_ers_result_t
3048 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
3049 {
3050 	struct ice_pf *pf = pci_get_drvdata(pdev);
3051 
3052 	if (!pf) {
3053 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
3054 			__func__, err);
3055 		return PCI_ERS_RESULT_DISCONNECT;
3056 	}
3057 
3058 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3059 		ice_service_task_stop(pf);
3060 
3061 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3062 			set_bit(__ICE_PFR_REQ, pf->state);
3063 			ice_prepare_for_reset(pf);
3064 		}
3065 	}
3066 
3067 	return PCI_ERS_RESULT_NEED_RESET;
3068 }
3069 
3070 /**
3071  * ice_pci_err_slot_reset - a PCI slot reset has just happened
3072  * @pdev: PCI device information struct
3073  *
3074  * Called to determine if the driver can recover from the PCI slot reset by
3075  * using a register read to determine if the device is recoverable.
3076  */
3077 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
3078 {
3079 	struct ice_pf *pf = pci_get_drvdata(pdev);
3080 	pci_ers_result_t result;
3081 	int err;
3082 	u32 reg;
3083 
3084 	err = pci_enable_device_mem(pdev);
3085 	if (err) {
3086 		dev_err(&pdev->dev,
3087 			"Cannot re-enable PCI device after reset, error %d\n",
3088 			err);
3089 		result = PCI_ERS_RESULT_DISCONNECT;
3090 	} else {
3091 		pci_set_master(pdev);
3092 		pci_restore_state(pdev);
3093 		pci_save_state(pdev);
3094 		pci_wake_from_d3(pdev, false);
3095 
3096 		/* Check for life */
3097 		reg = rd32(&pf->hw, GLGEN_RTRIG);
3098 		if (!reg)
3099 			result = PCI_ERS_RESULT_RECOVERED;
3100 		else
3101 			result = PCI_ERS_RESULT_DISCONNECT;
3102 	}
3103 
3104 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
3105 	if (err)
3106 		dev_dbg(&pdev->dev,
3107 			"pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
3108 			err);
3109 		/* non-fatal, continue */
3110 
3111 	return result;
3112 }
3113 
3114 /**
3115  * ice_pci_err_resume - restart operations after PCI error recovery
3116  * @pdev: PCI device information struct
3117  *
3118  * Called to allow the driver to bring things back up after PCI error and/or
3119  * reset recovery have finished
3120  */
3121 static void ice_pci_err_resume(struct pci_dev *pdev)
3122 {
3123 	struct ice_pf *pf = pci_get_drvdata(pdev);
3124 
3125 	if (!pf) {
3126 		dev_err(&pdev->dev,
3127 			"%s failed, device is unrecoverable\n", __func__);
3128 		return;
3129 	}
3130 
3131 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
3132 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
3133 			__func__);
3134 		return;
3135 	}
3136 
3137 	ice_do_reset(pf, ICE_RESET_PFR);
3138 	ice_service_task_restart(pf);
3139 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3140 }
3141 
3142 /**
3143  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
3144  * @pdev: PCI device information struct
3145  */
3146 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
3147 {
3148 	struct ice_pf *pf = pci_get_drvdata(pdev);
3149 
3150 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3151 		ice_service_task_stop(pf);
3152 
3153 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3154 			set_bit(__ICE_PFR_REQ, pf->state);
3155 			ice_prepare_for_reset(pf);
3156 		}
3157 	}
3158 }
3159 
3160 /**
3161  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
3162  * @pdev: PCI device information struct
3163  */
3164 static void ice_pci_err_reset_done(struct pci_dev *pdev)
3165 {
3166 	ice_pci_err_resume(pdev);
3167 }
3168 
3169 /* ice_pci_tbl - PCI Device ID Table
3170  *
3171  * Wildcard entries (PCI_ANY_ID) should come last
3172  * Last entry must be all 0s
3173  *
3174  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3175  *   Class, Class Mask, private data (not used) }
3176  */
3177 static const struct pci_device_id ice_pci_tbl[] = {
3178 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
3179 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
3180 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
3181 	/* required last entry */
3182 	{ 0, }
3183 };
3184 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3185 
3186 static const struct pci_error_handlers ice_pci_err_handler = {
3187 	.error_detected = ice_pci_err_detected,
3188 	.slot_reset = ice_pci_err_slot_reset,
3189 	.reset_prepare = ice_pci_err_reset_prepare,
3190 	.reset_done = ice_pci_err_reset_done,
3191 	.resume = ice_pci_err_resume
3192 };
3193 
3194 static struct pci_driver ice_driver = {
3195 	.name = KBUILD_MODNAME,
3196 	.id_table = ice_pci_tbl,
3197 	.probe = ice_probe,
3198 	.remove = ice_remove,
3199 	.sriov_configure = ice_sriov_configure,
3200 	.err_handler = &ice_pci_err_handler
3201 };
3202 
3203 /**
3204  * ice_module_init - Driver registration routine
3205  *
3206  * ice_module_init is the first routine called when the driver is
3207  * loaded. All it does is register with the PCI subsystem.
3208  */
3209 static int __init ice_module_init(void)
3210 {
3211 	int status;
3212 
3213 	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3214 	pr_info("%s\n", ice_copyright);
3215 
3216 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
3217 	if (!ice_wq) {
3218 		pr_err("Failed to create workqueue\n");
3219 		return -ENOMEM;
3220 	}
3221 
3222 	status = pci_register_driver(&ice_driver);
3223 	if (status) {
3224 		pr_err("failed to register PCI driver, err %d\n", status);
3225 		destroy_workqueue(ice_wq);
3226 	}
3227 
3228 	return status;
3229 }
3230 module_init(ice_module_init);
3231 
3232 /**
3233  * ice_module_exit - Driver exit cleanup routine
3234  *
3235  * ice_module_exit is called just before the driver is removed
3236  * from memory.
3237  */
3238 static void __exit ice_module_exit(void)
3239 {
3240 	pci_unregister_driver(&ice_driver);
3241 	destroy_workqueue(ice_wq);
3242 	pr_info("module unloaded\n");
3243 }
3244 module_exit(ice_module_exit);
3245 
3246 /**
3247  * ice_set_mac_address - NDO callback to set MAC address
3248  * @netdev: network interface device structure
3249  * @pi: pointer to an address structure
3250  *
3251  * Returns 0 on success, negative on failure
3252  */
3253 static int ice_set_mac_address(struct net_device *netdev, void *pi)
3254 {
3255 	struct ice_netdev_priv *np = netdev_priv(netdev);
3256 	struct ice_vsi *vsi = np->vsi;
3257 	struct ice_pf *pf = vsi->back;
3258 	struct ice_hw *hw = &pf->hw;
3259 	struct sockaddr *addr = pi;
3260 	enum ice_status status;
3261 	u8 flags = 0;
3262 	int err = 0;
3263 	u8 *mac;
3264 
3265 	mac = (u8 *)addr->sa_data;
3266 
3267 	if (!is_valid_ether_addr(mac))
3268 		return -EADDRNOTAVAIL;
3269 
3270 	if (ether_addr_equal(netdev->dev_addr, mac)) {
3271 		netdev_warn(netdev, "already using mac %pM\n", mac);
3272 		return 0;
3273 	}
3274 
3275 	if (test_bit(__ICE_DOWN, pf->state) ||
3276 	    ice_is_reset_in_progress(pf->state)) {
3277 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
3278 			   mac);
3279 		return -EBUSY;
3280 	}
3281 
3282 	/* When we change the MAC address we also have to change the MAC address
3283 	 * based filter rules that were created previously for the old MAC
3284 	 * address. So first, we remove the old filter rule using ice_remove_mac
3285 	 * and then create a new filter rule using ice_add_mac via
3286 	 * ice_vsi_cfg_mac_fltr function call for both add and/or remove
3287 	 * filters.
3288 	 */
3289 	status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false);
3290 	if (status) {
3291 		err = -EADDRNOTAVAIL;
3292 		goto err_update_filters;
3293 	}
3294 
3295 	status = ice_vsi_cfg_mac_fltr(vsi, mac, true);
3296 	if (status) {
3297 		err = -EADDRNOTAVAIL;
3298 		goto err_update_filters;
3299 	}
3300 
3301 err_update_filters:
3302 	if (err) {
3303 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
3304 			   mac);
3305 		return err;
3306 	}
3307 
3308 	/* change the netdev's MAC address */
3309 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
3310 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
3311 		   netdev->dev_addr);
3312 
3313 	/* write new MAC address to the firmware */
3314 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3315 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3316 	if (status) {
3317 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
3318 			   mac, status);
3319 	}
3320 	return 0;
3321 }
3322 
3323 /**
3324  * ice_set_rx_mode - NDO callback to set the netdev filters
3325  * @netdev: network interface device structure
3326  */
3327 static void ice_set_rx_mode(struct net_device *netdev)
3328 {
3329 	struct ice_netdev_priv *np = netdev_priv(netdev);
3330 	struct ice_vsi *vsi = np->vsi;
3331 
3332 	if (!vsi)
3333 		return;
3334 
3335 	/* Set the flags to synchronize filters
3336 	 * ndo_set_rx_mode may be triggered even without a change in netdev
3337 	 * flags
3338 	 */
3339 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3340 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3341 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3342 
3343 	/* schedule our worker thread which will take care of
3344 	 * applying the new filter changes
3345 	 */
3346 	ice_service_task_schedule(vsi->back);
3347 }
3348 
3349 /**
3350  * ice_fdb_add - add an entry to the hardware database
3351  * @ndm: the input from the stack
3352  * @tb: pointer to array of nladdr (unused)
3353  * @dev: the net device pointer
3354  * @addr: the MAC address entry being added
3355  * @vid: VLAN ID
3356  * @flags: instructions from stack about fdb operation
3357  * @extack: netlink extended ack
3358  */
3359 static int
3360 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3361 	    struct net_device *dev, const unsigned char *addr, u16 vid,
3362 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
3363 {
3364 	int err;
3365 
3366 	if (vid) {
3367 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3368 		return -EINVAL;
3369 	}
3370 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3371 		netdev_err(dev, "FDB only supports static addresses\n");
3372 		return -EINVAL;
3373 	}
3374 
3375 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3376 		err = dev_uc_add_excl(dev, addr);
3377 	else if (is_multicast_ether_addr(addr))
3378 		err = dev_mc_add_excl(dev, addr);
3379 	else
3380 		err = -EINVAL;
3381 
3382 	/* Only return duplicate errors if NLM_F_EXCL is set */
3383 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
3384 		err = 0;
3385 
3386 	return err;
3387 }
3388 
3389 /**
3390  * ice_fdb_del - delete an entry from the hardware database
3391  * @ndm: the input from the stack
3392  * @tb: pointer to array of nladdr (unused)
3393  * @dev: the net device pointer
3394  * @addr: the MAC address entry being added
3395  * @vid: VLAN ID
3396  */
3397 static int
3398 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3399 	    struct net_device *dev, const unsigned char *addr,
3400 	    __always_unused u16 vid)
3401 {
3402 	int err;
3403 
3404 	if (ndm->ndm_state & NUD_PERMANENT) {
3405 		netdev_err(dev, "FDB only supports static addresses\n");
3406 		return -EINVAL;
3407 	}
3408 
3409 	if (is_unicast_ether_addr(addr))
3410 		err = dev_uc_del(dev, addr);
3411 	else if (is_multicast_ether_addr(addr))
3412 		err = dev_mc_del(dev, addr);
3413 	else
3414 		err = -EINVAL;
3415 
3416 	return err;
3417 }
3418 
3419 /**
3420  * ice_set_features - set the netdev feature flags
3421  * @netdev: ptr to the netdev being adjusted
3422  * @features: the feature set that the stack is suggesting
3423  */
3424 static int
3425 ice_set_features(struct net_device *netdev, netdev_features_t features)
3426 {
3427 	struct ice_netdev_priv *np = netdev_priv(netdev);
3428 	struct ice_vsi *vsi = np->vsi;
3429 	int ret = 0;
3430 
3431 	/* Don't set any netdev advanced features with device in Safe Mode */
3432 	if (ice_is_safe_mode(vsi->back)) {
3433 		dev_err(&vsi->back->pdev->dev,
3434 			"Device is in Safe Mode - not enabling advanced netdev features\n");
3435 		return ret;
3436 	}
3437 
3438 	/* Multiple features can be changed in one call so keep features in
3439 	 * separate if/else statements to guarantee each feature is checked
3440 	 */
3441 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3442 		ret = ice_vsi_manage_rss_lut(vsi, true);
3443 	else if (!(features & NETIF_F_RXHASH) &&
3444 		 netdev->features & NETIF_F_RXHASH)
3445 		ret = ice_vsi_manage_rss_lut(vsi, false);
3446 
3447 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3448 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3449 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3450 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3451 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3452 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
3453 
3454 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3455 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3456 		ret = ice_vsi_manage_vlan_insertion(vsi);
3457 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3458 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3459 		ret = ice_vsi_manage_vlan_insertion(vsi);
3460 
3461 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3462 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3463 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3464 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3465 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3466 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3467 
3468 	return ret;
3469 }
3470 
3471 /**
3472  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3473  * @vsi: VSI to setup VLAN properties for
3474  */
3475 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3476 {
3477 	int ret = 0;
3478 
3479 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3480 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3481 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3482 		ret = ice_vsi_manage_vlan_insertion(vsi);
3483 
3484 	return ret;
3485 }
3486 
3487 /**
3488  * ice_vsi_cfg - Setup the VSI
3489  * @vsi: the VSI being configured
3490  *
3491  * Return 0 on success and negative value on error
3492  */
3493 int ice_vsi_cfg(struct ice_vsi *vsi)
3494 {
3495 	int err;
3496 
3497 	if (vsi->netdev) {
3498 		ice_set_rx_mode(vsi->netdev);
3499 
3500 		err = ice_vsi_vlan_setup(vsi);
3501 
3502 		if (err)
3503 			return err;
3504 	}
3505 	ice_vsi_cfg_dcb_rings(vsi);
3506 
3507 	err = ice_vsi_cfg_lan_txqs(vsi);
3508 	if (!err)
3509 		err = ice_vsi_cfg_rxqs(vsi);
3510 
3511 	return err;
3512 }
3513 
3514 /**
3515  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3516  * @vsi: the VSI being configured
3517  */
3518 static void ice_napi_enable_all(struct ice_vsi *vsi)
3519 {
3520 	int q_idx;
3521 
3522 	if (!vsi->netdev)
3523 		return;
3524 
3525 	ice_for_each_q_vector(vsi, q_idx) {
3526 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3527 
3528 		if (q_vector->rx.ring || q_vector->tx.ring)
3529 			napi_enable(&q_vector->napi);
3530 	}
3531 }
3532 
3533 /**
3534  * ice_up_complete - Finish the last steps of bringing up a connection
3535  * @vsi: The VSI being configured
3536  *
3537  * Return 0 on success and negative value on error
3538  */
3539 static int ice_up_complete(struct ice_vsi *vsi)
3540 {
3541 	struct ice_pf *pf = vsi->back;
3542 	int err;
3543 
3544 	ice_vsi_cfg_msix(vsi);
3545 
3546 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
3547 	 * Tx queue group list was configured and the context bits were
3548 	 * programmed using ice_vsi_cfg_txqs
3549 	 */
3550 	err = ice_vsi_start_rx_rings(vsi);
3551 	if (err)
3552 		return err;
3553 
3554 	clear_bit(__ICE_DOWN, vsi->state);
3555 	ice_napi_enable_all(vsi);
3556 	ice_vsi_ena_irq(vsi);
3557 
3558 	if (vsi->port_info &&
3559 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
3560 	    vsi->netdev) {
3561 		ice_print_link_msg(vsi, true);
3562 		netif_tx_start_all_queues(vsi->netdev);
3563 		netif_carrier_on(vsi->netdev);
3564 	}
3565 
3566 	ice_service_task_schedule(pf);
3567 
3568 	return 0;
3569 }
3570 
3571 /**
3572  * ice_up - Bring the connection back up after being down
3573  * @vsi: VSI being configured
3574  */
3575 int ice_up(struct ice_vsi *vsi)
3576 {
3577 	int err;
3578 
3579 	err = ice_vsi_cfg(vsi);
3580 	if (!err)
3581 		err = ice_up_complete(vsi);
3582 
3583 	return err;
3584 }
3585 
3586 /**
3587  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
3588  * @ring: Tx or Rx ring to read stats from
3589  * @pkts: packets stats counter
3590  * @bytes: bytes stats counter
3591  *
3592  * This function fetches stats from the ring considering the atomic operations
3593  * that needs to be performed to read u64 values in 32 bit machine.
3594  */
3595 static void
3596 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
3597 {
3598 	unsigned int start;
3599 	*pkts = 0;
3600 	*bytes = 0;
3601 
3602 	if (!ring)
3603 		return;
3604 	do {
3605 		start = u64_stats_fetch_begin_irq(&ring->syncp);
3606 		*pkts = ring->stats.pkts;
3607 		*bytes = ring->stats.bytes;
3608 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3609 }
3610 
3611 /**
3612  * ice_update_vsi_ring_stats - Update VSI stats counters
3613  * @vsi: the VSI to be updated
3614  */
3615 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
3616 {
3617 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
3618 	struct ice_ring *ring;
3619 	u64 pkts, bytes;
3620 	int i;
3621 
3622 	/* reset netdev stats */
3623 	vsi_stats->tx_packets = 0;
3624 	vsi_stats->tx_bytes = 0;
3625 	vsi_stats->rx_packets = 0;
3626 	vsi_stats->rx_bytes = 0;
3627 
3628 	/* reset non-netdev (extended) stats */
3629 	vsi->tx_restart = 0;
3630 	vsi->tx_busy = 0;
3631 	vsi->tx_linearize = 0;
3632 	vsi->rx_buf_failed = 0;
3633 	vsi->rx_page_failed = 0;
3634 
3635 	rcu_read_lock();
3636 
3637 	/* update Tx rings counters */
3638 	ice_for_each_txq(vsi, i) {
3639 		ring = READ_ONCE(vsi->tx_rings[i]);
3640 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3641 		vsi_stats->tx_packets += pkts;
3642 		vsi_stats->tx_bytes += bytes;
3643 		vsi->tx_restart += ring->tx_stats.restart_q;
3644 		vsi->tx_busy += ring->tx_stats.tx_busy;
3645 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
3646 	}
3647 
3648 	/* update Rx rings counters */
3649 	ice_for_each_rxq(vsi, i) {
3650 		ring = READ_ONCE(vsi->rx_rings[i]);
3651 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
3652 		vsi_stats->rx_packets += pkts;
3653 		vsi_stats->rx_bytes += bytes;
3654 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
3655 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
3656 	}
3657 
3658 	rcu_read_unlock();
3659 }
3660 
3661 /**
3662  * ice_update_vsi_stats - Update VSI stats counters
3663  * @vsi: the VSI to be updated
3664  */
3665 void ice_update_vsi_stats(struct ice_vsi *vsi)
3666 {
3667 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
3668 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
3669 	struct ice_pf *pf = vsi->back;
3670 
3671 	if (test_bit(__ICE_DOWN, vsi->state) ||
3672 	    test_bit(__ICE_CFG_BUSY, pf->state))
3673 		return;
3674 
3675 	/* get stats as recorded by Tx/Rx rings */
3676 	ice_update_vsi_ring_stats(vsi);
3677 
3678 	/* get VSI stats as recorded by the hardware */
3679 	ice_update_eth_stats(vsi);
3680 
3681 	cur_ns->tx_errors = cur_es->tx_errors;
3682 	cur_ns->rx_dropped = cur_es->rx_discards;
3683 	cur_ns->tx_dropped = cur_es->tx_discards;
3684 	cur_ns->multicast = cur_es->rx_multicast;
3685 
3686 	/* update some more netdev stats if this is main VSI */
3687 	if (vsi->type == ICE_VSI_PF) {
3688 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
3689 		cur_ns->rx_errors = pf->stats.crc_errors +
3690 				    pf->stats.illegal_bytes;
3691 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
3692 		/* record drops from the port level */
3693 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
3694 	}
3695 }
3696 
3697 /**
3698  * ice_update_pf_stats - Update PF port stats counters
3699  * @pf: PF whose stats needs to be updated
3700  */
3701 void ice_update_pf_stats(struct ice_pf *pf)
3702 {
3703 	struct ice_hw_port_stats *prev_ps, *cur_ps;
3704 	struct ice_hw *hw = &pf->hw;
3705 	u8 port;
3706 
3707 	port = hw->port_info->lport;
3708 	prev_ps = &pf->stats_prev;
3709 	cur_ps = &pf->stats;
3710 
3711 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
3712 			  &prev_ps->eth.rx_bytes,
3713 			  &cur_ps->eth.rx_bytes);
3714 
3715 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
3716 			  &prev_ps->eth.rx_unicast,
3717 			  &cur_ps->eth.rx_unicast);
3718 
3719 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
3720 			  &prev_ps->eth.rx_multicast,
3721 			  &cur_ps->eth.rx_multicast);
3722 
3723 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
3724 			  &prev_ps->eth.rx_broadcast,
3725 			  &cur_ps->eth.rx_broadcast);
3726 
3727 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
3728 			  &prev_ps->eth.rx_discards,
3729 			  &cur_ps->eth.rx_discards);
3730 
3731 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
3732 			  &prev_ps->eth.tx_bytes,
3733 			  &cur_ps->eth.tx_bytes);
3734 
3735 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
3736 			  &prev_ps->eth.tx_unicast,
3737 			  &cur_ps->eth.tx_unicast);
3738 
3739 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
3740 			  &prev_ps->eth.tx_multicast,
3741 			  &cur_ps->eth.tx_multicast);
3742 
3743 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
3744 			  &prev_ps->eth.tx_broadcast,
3745 			  &cur_ps->eth.tx_broadcast);
3746 
3747 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
3748 			  &prev_ps->tx_dropped_link_down,
3749 			  &cur_ps->tx_dropped_link_down);
3750 
3751 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
3752 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
3753 
3754 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
3755 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
3756 
3757 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
3758 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
3759 
3760 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
3761 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
3762 
3763 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
3764 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
3765 
3766 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
3767 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
3768 
3769 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
3770 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
3771 
3772 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
3773 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
3774 
3775 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
3776 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
3777 
3778 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
3779 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
3780 
3781 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
3782 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
3783 
3784 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
3785 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
3786 
3787 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
3788 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
3789 
3790 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
3791 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
3792 
3793 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
3794 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
3795 
3796 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
3797 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
3798 
3799 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
3800 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
3801 
3802 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
3803 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
3804 
3805 	ice_update_dcb_stats(pf);
3806 
3807 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
3808 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
3809 
3810 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
3811 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
3812 
3813 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
3814 			  &prev_ps->mac_local_faults,
3815 			  &cur_ps->mac_local_faults);
3816 
3817 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
3818 			  &prev_ps->mac_remote_faults,
3819 			  &cur_ps->mac_remote_faults);
3820 
3821 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
3822 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
3823 
3824 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
3825 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
3826 
3827 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
3828 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
3829 
3830 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
3831 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
3832 
3833 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
3834 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
3835 
3836 	pf->stat_prev_loaded = true;
3837 }
3838 
3839 /**
3840  * ice_get_stats64 - get statistics for network device structure
3841  * @netdev: network interface device structure
3842  * @stats: main device statistics structure
3843  */
3844 static
3845 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3846 {
3847 	struct ice_netdev_priv *np = netdev_priv(netdev);
3848 	struct rtnl_link_stats64 *vsi_stats;
3849 	struct ice_vsi *vsi = np->vsi;
3850 
3851 	vsi_stats = &vsi->net_stats;
3852 
3853 	if (!vsi->num_txq || !vsi->num_rxq)
3854 		return;
3855 
3856 	/* netdev packet/byte stats come from ring counter. These are obtained
3857 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
3858 	 * But, only call the update routine and read the registers if VSI is
3859 	 * not down.
3860 	 */
3861 	if (!test_bit(__ICE_DOWN, vsi->state))
3862 		ice_update_vsi_ring_stats(vsi);
3863 	stats->tx_packets = vsi_stats->tx_packets;
3864 	stats->tx_bytes = vsi_stats->tx_bytes;
3865 	stats->rx_packets = vsi_stats->rx_packets;
3866 	stats->rx_bytes = vsi_stats->rx_bytes;
3867 
3868 	/* The rest of the stats can be read from the hardware but instead we
3869 	 * just return values that the watchdog task has already obtained from
3870 	 * the hardware.
3871 	 */
3872 	stats->multicast = vsi_stats->multicast;
3873 	stats->tx_errors = vsi_stats->tx_errors;
3874 	stats->tx_dropped = vsi_stats->tx_dropped;
3875 	stats->rx_errors = vsi_stats->rx_errors;
3876 	stats->rx_dropped = vsi_stats->rx_dropped;
3877 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
3878 	stats->rx_length_errors = vsi_stats->rx_length_errors;
3879 }
3880 
3881 /**
3882  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
3883  * @vsi: VSI having NAPI disabled
3884  */
3885 static void ice_napi_disable_all(struct ice_vsi *vsi)
3886 {
3887 	int q_idx;
3888 
3889 	if (!vsi->netdev)
3890 		return;
3891 
3892 	ice_for_each_q_vector(vsi, q_idx) {
3893 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3894 
3895 		if (q_vector->rx.ring || q_vector->tx.ring)
3896 			napi_disable(&q_vector->napi);
3897 	}
3898 }
3899 
3900 /**
3901  * ice_down - Shutdown the connection
3902  * @vsi: The VSI being stopped
3903  */
3904 int ice_down(struct ice_vsi *vsi)
3905 {
3906 	int i, tx_err, rx_err, link_err = 0;
3907 
3908 	/* Caller of this function is expected to set the
3909 	 * vsi->state __ICE_DOWN bit
3910 	 */
3911 	if (vsi->netdev) {
3912 		netif_carrier_off(vsi->netdev);
3913 		netif_tx_disable(vsi->netdev);
3914 	}
3915 
3916 	ice_vsi_dis_irq(vsi);
3917 
3918 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
3919 	if (tx_err)
3920 		netdev_err(vsi->netdev,
3921 			   "Failed stop Tx rings, VSI %d error %d\n",
3922 			   vsi->vsi_num, tx_err);
3923 
3924 	rx_err = ice_vsi_stop_rx_rings(vsi);
3925 	if (rx_err)
3926 		netdev_err(vsi->netdev,
3927 			   "Failed stop Rx rings, VSI %d error %d\n",
3928 			   vsi->vsi_num, rx_err);
3929 
3930 	ice_napi_disable_all(vsi);
3931 
3932 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
3933 		link_err = ice_force_phys_link_state(vsi, false);
3934 		if (link_err)
3935 			netdev_err(vsi->netdev,
3936 				   "Failed to set physical link down, VSI %d error %d\n",
3937 				   vsi->vsi_num, link_err);
3938 	}
3939 
3940 	ice_for_each_txq(vsi, i)
3941 		ice_clean_tx_ring(vsi->tx_rings[i]);
3942 
3943 	ice_for_each_rxq(vsi, i)
3944 		ice_clean_rx_ring(vsi->rx_rings[i]);
3945 
3946 	if (tx_err || rx_err || link_err) {
3947 		netdev_err(vsi->netdev,
3948 			   "Failed to close VSI 0x%04X on switch 0x%04X\n",
3949 			   vsi->vsi_num, vsi->vsw->sw_id);
3950 		return -EIO;
3951 	}
3952 
3953 	return 0;
3954 }
3955 
3956 /**
3957  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
3958  * @vsi: VSI having resources allocated
3959  *
3960  * Return 0 on success, negative on failure
3961  */
3962 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
3963 {
3964 	int i, err = 0;
3965 
3966 	if (!vsi->num_txq) {
3967 		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
3968 			vsi->vsi_num);
3969 		return -EINVAL;
3970 	}
3971 
3972 	ice_for_each_txq(vsi, i) {
3973 		vsi->tx_rings[i]->netdev = vsi->netdev;
3974 		err = ice_setup_tx_ring(vsi->tx_rings[i]);
3975 		if (err)
3976 			break;
3977 	}
3978 
3979 	return err;
3980 }
3981 
3982 /**
3983  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
3984  * @vsi: VSI having resources allocated
3985  *
3986  * Return 0 on success, negative on failure
3987  */
3988 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
3989 {
3990 	int i, err = 0;
3991 
3992 	if (!vsi->num_rxq) {
3993 		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
3994 			vsi->vsi_num);
3995 		return -EINVAL;
3996 	}
3997 
3998 	ice_for_each_rxq(vsi, i) {
3999 		vsi->rx_rings[i]->netdev = vsi->netdev;
4000 		err = ice_setup_rx_ring(vsi->rx_rings[i]);
4001 		if (err)
4002 			break;
4003 	}
4004 
4005 	return err;
4006 }
4007 
4008 /**
4009  * ice_vsi_open - Called when a network interface is made active
4010  * @vsi: the VSI to open
4011  *
4012  * Initialization of the VSI
4013  *
4014  * Returns 0 on success, negative value on error
4015  */
4016 static int ice_vsi_open(struct ice_vsi *vsi)
4017 {
4018 	char int_name[ICE_INT_NAME_STR_LEN];
4019 	struct ice_pf *pf = vsi->back;
4020 	int err;
4021 
4022 	/* allocate descriptors */
4023 	err = ice_vsi_setup_tx_rings(vsi);
4024 	if (err)
4025 		goto err_setup_tx;
4026 
4027 	err = ice_vsi_setup_rx_rings(vsi);
4028 	if (err)
4029 		goto err_setup_rx;
4030 
4031 	err = ice_vsi_cfg(vsi);
4032 	if (err)
4033 		goto err_setup_rx;
4034 
4035 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4036 		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
4037 	err = ice_vsi_req_irq_msix(vsi, int_name);
4038 	if (err)
4039 		goto err_setup_rx;
4040 
4041 	/* Notify the stack of the actual queue counts. */
4042 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4043 	if (err)
4044 		goto err_set_qs;
4045 
4046 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
4047 	if (err)
4048 		goto err_set_qs;
4049 
4050 	err = ice_up_complete(vsi);
4051 	if (err)
4052 		goto err_up_complete;
4053 
4054 	return 0;
4055 
4056 err_up_complete:
4057 	ice_down(vsi);
4058 err_set_qs:
4059 	ice_vsi_free_irq(vsi);
4060 err_setup_rx:
4061 	ice_vsi_free_rx_rings(vsi);
4062 err_setup_tx:
4063 	ice_vsi_free_tx_rings(vsi);
4064 
4065 	return err;
4066 }
4067 
4068 /**
4069  * ice_vsi_release_all - Delete all VSIs
4070  * @pf: PF from which all VSIs are being removed
4071  */
4072 static void ice_vsi_release_all(struct ice_pf *pf)
4073 {
4074 	int err, i;
4075 
4076 	if (!pf->vsi)
4077 		return;
4078 
4079 	ice_for_each_vsi(pf, i) {
4080 		if (!pf->vsi[i])
4081 			continue;
4082 
4083 		err = ice_vsi_release(pf->vsi[i]);
4084 		if (err)
4085 			dev_dbg(&pf->pdev->dev,
4086 				"Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
4087 				i, err, pf->vsi[i]->vsi_num);
4088 	}
4089 }
4090 
4091 /**
4092  * ice_ena_vsi - resume a VSI
4093  * @vsi: the VSI being resume
4094  * @locked: is the rtnl_lock already held
4095  */
4096 static int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
4097 {
4098 	int err = 0;
4099 
4100 	if (!test_bit(__ICE_NEEDS_RESTART, vsi->state))
4101 		return 0;
4102 
4103 	clear_bit(__ICE_NEEDS_RESTART, vsi->state);
4104 
4105 	if (vsi->netdev && vsi->type == ICE_VSI_PF) {
4106 		if (netif_running(vsi->netdev)) {
4107 			if (!locked)
4108 				rtnl_lock();
4109 
4110 			err = ice_open(vsi->netdev);
4111 
4112 			if (!locked)
4113 				rtnl_unlock();
4114 		}
4115 	}
4116 
4117 	return err;
4118 }
4119 
4120 /**
4121  * ice_pf_ena_all_vsi - Resume all VSIs on a PF
4122  * @pf: the PF
4123  * @locked: is the rtnl_lock already held
4124  */
4125 #ifdef CONFIG_DCB
4126 int ice_pf_ena_all_vsi(struct ice_pf *pf, bool locked)
4127 {
4128 	int v;
4129 
4130 	ice_for_each_vsi(pf, v)
4131 		if (pf->vsi[v])
4132 			if (ice_ena_vsi(pf->vsi[v], locked))
4133 				return -EIO;
4134 
4135 	return 0;
4136 }
4137 #endif /* CONFIG_DCB */
4138 
4139 /**
4140  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
4141  * @pf: pointer to the PF instance
4142  * @type: VSI type to rebuild
4143  *
4144  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
4145  */
4146 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
4147 {
4148 	enum ice_status status;
4149 	int i, err;
4150 
4151 	ice_for_each_vsi(pf, i) {
4152 		struct ice_vsi *vsi = pf->vsi[i];
4153 
4154 		if (!vsi || vsi->type != type)
4155 			continue;
4156 
4157 		/* rebuild the VSI */
4158 		err = ice_vsi_rebuild(vsi);
4159 		if (err) {
4160 			dev_err(&pf->pdev->dev,
4161 				"rebuild VSI failed, err %d, VSI index %d, type %d\n",
4162 				err, vsi->idx, type);
4163 			return err;
4164 		}
4165 
4166 		/* replay filters for the VSI */
4167 		status = ice_replay_vsi(&pf->hw, vsi->idx);
4168 		if (status) {
4169 			dev_err(&pf->pdev->dev,
4170 				"replay VSI failed, status %d, VSI index %d, type %d\n",
4171 				status, vsi->idx, type);
4172 			return -EIO;
4173 		}
4174 
4175 		/* Re-map HW VSI number, using VSI handle that has been
4176 		 * previously validated in ice_replay_vsi() call above
4177 		 */
4178 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
4179 
4180 		/* enable the VSI */
4181 		err = ice_ena_vsi(vsi, false);
4182 		if (err) {
4183 			dev_err(&pf->pdev->dev,
4184 				"enable VSI failed, err %d, VSI index %d, type %d\n",
4185 				err, vsi->idx, type);
4186 			return err;
4187 		}
4188 
4189 		dev_info(&pf->pdev->dev, "VSI rebuilt. VSI index %d, type %d\n",
4190 			 vsi->idx, type);
4191 	}
4192 
4193 	return 0;
4194 }
4195 
4196 /**
4197  * ice_update_pf_netdev_link - Update PF netdev link status
4198  * @pf: pointer to the PF instance
4199  */
4200 static void ice_update_pf_netdev_link(struct ice_pf *pf)
4201 {
4202 	bool link_up;
4203 	int i;
4204 
4205 	ice_for_each_vsi(pf, i) {
4206 		struct ice_vsi *vsi = pf->vsi[i];
4207 
4208 		if (!vsi || vsi->type != ICE_VSI_PF)
4209 			return;
4210 
4211 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
4212 		if (link_up) {
4213 			netif_carrier_on(pf->vsi[i]->netdev);
4214 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
4215 		} else {
4216 			netif_carrier_off(pf->vsi[i]->netdev);
4217 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
4218 		}
4219 	}
4220 }
4221 
4222 /**
4223  * ice_rebuild - rebuild after reset
4224  * @pf: PF to rebuild
4225  * @reset_type: type of reset
4226  */
4227 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
4228 {
4229 	struct device *dev = &pf->pdev->dev;
4230 	struct ice_hw *hw = &pf->hw;
4231 	enum ice_status ret;
4232 	int err;
4233 
4234 	if (test_bit(__ICE_DOWN, pf->state))
4235 		goto clear_recovery;
4236 
4237 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
4238 
4239 	ret = ice_init_all_ctrlq(hw);
4240 	if (ret) {
4241 		dev_err(dev, "control queues init failed %d\n", ret);
4242 		goto err_init_ctrlq;
4243 	}
4244 
4245 	/* if DDP was previously loaded successfully */
4246 	if (!ice_is_safe_mode(pf)) {
4247 		/* reload the SW DB of filter tables */
4248 		if (reset_type == ICE_RESET_PFR)
4249 			ice_fill_blk_tbls(hw);
4250 		else
4251 			/* Reload DDP Package after CORER/GLOBR reset */
4252 			ice_load_pkg(NULL, pf);
4253 	}
4254 
4255 	ret = ice_clear_pf_cfg(hw);
4256 	if (ret) {
4257 		dev_err(dev, "clear PF configuration failed %d\n", ret);
4258 		goto err_init_ctrlq;
4259 	}
4260 
4261 	ice_clear_pxe_mode(hw);
4262 
4263 	ret = ice_get_caps(hw);
4264 	if (ret) {
4265 		dev_err(dev, "ice_get_caps failed %d\n", ret);
4266 		goto err_init_ctrlq;
4267 	}
4268 
4269 	err = ice_sched_init_port(hw->port_info);
4270 	if (err)
4271 		goto err_sched_init_port;
4272 
4273 	err = ice_update_link_info(hw->port_info);
4274 	if (err)
4275 		dev_err(&pf->pdev->dev, "Get link status error %d\n", err);
4276 
4277 	/* start misc vector */
4278 	err = ice_req_irq_msix_misc(pf);
4279 	if (err) {
4280 		dev_err(dev, "misc vector setup failed: %d\n", err);
4281 		goto err_sched_init_port;
4282 	}
4283 
4284 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
4285 		ice_dcb_rebuild(pf);
4286 
4287 	/* rebuild PF VSI */
4288 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
4289 	if (err) {
4290 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
4291 		goto err_vsi_rebuild;
4292 	}
4293 
4294 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4295 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
4296 		if (err) {
4297 			dev_err(dev, "VF VSI rebuild failed: %d\n", err);
4298 			goto err_vsi_rebuild;
4299 		}
4300 	}
4301 
4302 	ice_update_pf_netdev_link(pf);
4303 
4304 	/* tell the firmware we are up */
4305 	ret = ice_send_version(pf);
4306 	if (ret) {
4307 		dev_err(dev,
4308 			"Rebuild failed due to error sending driver version: %d\n",
4309 			ret);
4310 		goto err_vsi_rebuild;
4311 	}
4312 
4313 	ice_replay_post(hw);
4314 
4315 	/* if we get here, reset flow is successful */
4316 	clear_bit(__ICE_RESET_FAILED, pf->state);
4317 	return;
4318 
4319 err_vsi_rebuild:
4320 err_sched_init_port:
4321 	ice_sched_cleanup_all(hw);
4322 err_init_ctrlq:
4323 	ice_shutdown_all_ctrlq(hw);
4324 	set_bit(__ICE_RESET_FAILED, pf->state);
4325 clear_recovery:
4326 	/* set this bit in PF state to control service task scheduling */
4327 	set_bit(__ICE_NEEDS_RESTART, pf->state);
4328 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
4329 }
4330 
4331 /**
4332  * ice_change_mtu - NDO callback to change the MTU
4333  * @netdev: network interface device structure
4334  * @new_mtu: new value for maximum frame size
4335  *
4336  * Returns 0 on success, negative on failure
4337  */
4338 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
4339 {
4340 	struct ice_netdev_priv *np = netdev_priv(netdev);
4341 	struct ice_vsi *vsi = np->vsi;
4342 	struct ice_pf *pf = vsi->back;
4343 	u8 count = 0;
4344 
4345 	if (new_mtu == netdev->mtu) {
4346 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
4347 		return 0;
4348 	}
4349 
4350 	if (new_mtu < netdev->min_mtu) {
4351 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
4352 			   netdev->min_mtu);
4353 		return -EINVAL;
4354 	} else if (new_mtu > netdev->max_mtu) {
4355 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
4356 			   netdev->min_mtu);
4357 		return -EINVAL;
4358 	}
4359 	/* if a reset is in progress, wait for some time for it to complete */
4360 	do {
4361 		if (ice_is_reset_in_progress(pf->state)) {
4362 			count++;
4363 			usleep_range(1000, 2000);
4364 		} else {
4365 			break;
4366 		}
4367 
4368 	} while (count < 100);
4369 
4370 	if (count == 100) {
4371 		netdev_err(netdev, "can't change MTU. Device is busy\n");
4372 		return -EBUSY;
4373 	}
4374 
4375 	netdev->mtu = new_mtu;
4376 
4377 	/* if VSI is up, bring it down and then back up */
4378 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
4379 		int err;
4380 
4381 		err = ice_down(vsi);
4382 		if (err) {
4383 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4384 			return err;
4385 		}
4386 
4387 		err = ice_up(vsi);
4388 		if (err) {
4389 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4390 			return err;
4391 		}
4392 	}
4393 
4394 	netdev_info(netdev, "changed MTU to %d\n", new_mtu);
4395 	return 0;
4396 }
4397 
4398 /**
4399  * ice_set_rss - Set RSS keys and lut
4400  * @vsi: Pointer to VSI structure
4401  * @seed: RSS hash seed
4402  * @lut: Lookup table
4403  * @lut_size: Lookup table size
4404  *
4405  * Returns 0 on success, negative on failure
4406  */
4407 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4408 {
4409 	struct ice_pf *pf = vsi->back;
4410 	struct ice_hw *hw = &pf->hw;
4411 	enum ice_status status;
4412 
4413 	if (seed) {
4414 		struct ice_aqc_get_set_rss_keys *buf =
4415 				  (struct ice_aqc_get_set_rss_keys *)seed;
4416 
4417 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
4418 
4419 		if (status) {
4420 			dev_err(&pf->pdev->dev,
4421 				"Cannot set RSS key, err %d aq_err %d\n",
4422 				status, hw->adminq.rq_last_status);
4423 			return -EIO;
4424 		}
4425 	}
4426 
4427 	if (lut) {
4428 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4429 					    lut, lut_size);
4430 		if (status) {
4431 			dev_err(&pf->pdev->dev,
4432 				"Cannot set RSS lut, err %d aq_err %d\n",
4433 				status, hw->adminq.rq_last_status);
4434 			return -EIO;
4435 		}
4436 	}
4437 
4438 	return 0;
4439 }
4440 
4441 /**
4442  * ice_get_rss - Get RSS keys and lut
4443  * @vsi: Pointer to VSI structure
4444  * @seed: Buffer to store the keys
4445  * @lut: Buffer to store the lookup table entries
4446  * @lut_size: Size of buffer to store the lookup table entries
4447  *
4448  * Returns 0 on success, negative on failure
4449  */
4450 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4451 {
4452 	struct ice_pf *pf = vsi->back;
4453 	struct ice_hw *hw = &pf->hw;
4454 	enum ice_status status;
4455 
4456 	if (seed) {
4457 		struct ice_aqc_get_set_rss_keys *buf =
4458 				  (struct ice_aqc_get_set_rss_keys *)seed;
4459 
4460 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4461 		if (status) {
4462 			dev_err(&pf->pdev->dev,
4463 				"Cannot get RSS key, err %d aq_err %d\n",
4464 				status, hw->adminq.rq_last_status);
4465 			return -EIO;
4466 		}
4467 	}
4468 
4469 	if (lut) {
4470 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4471 					    lut, lut_size);
4472 		if (status) {
4473 			dev_err(&pf->pdev->dev,
4474 				"Cannot get RSS lut, err %d aq_err %d\n",
4475 				status, hw->adminq.rq_last_status);
4476 			return -EIO;
4477 		}
4478 	}
4479 
4480 	return 0;
4481 }
4482 
4483 /**
4484  * ice_bridge_getlink - Get the hardware bridge mode
4485  * @skb: skb buff
4486  * @pid: process ID
4487  * @seq: RTNL message seq
4488  * @dev: the netdev being configured
4489  * @filter_mask: filter mask passed in
4490  * @nlflags: netlink flags passed in
4491  *
4492  * Return the bridge mode (VEB/VEPA)
4493  */
4494 static int
4495 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4496 		   struct net_device *dev, u32 filter_mask, int nlflags)
4497 {
4498 	struct ice_netdev_priv *np = netdev_priv(dev);
4499 	struct ice_vsi *vsi = np->vsi;
4500 	struct ice_pf *pf = vsi->back;
4501 	u16 bmode;
4502 
4503 	bmode = pf->first_sw->bridge_mode;
4504 
4505 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4506 				       filter_mask, NULL);
4507 }
4508 
4509 /**
4510  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4511  * @vsi: Pointer to VSI structure
4512  * @bmode: Hardware bridge mode (VEB/VEPA)
4513  *
4514  * Returns 0 on success, negative on failure
4515  */
4516 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4517 {
4518 	struct device *dev = &vsi->back->pdev->dev;
4519 	struct ice_aqc_vsi_props *vsi_props;
4520 	struct ice_hw *hw = &vsi->back->hw;
4521 	struct ice_vsi_ctx *ctxt;
4522 	enum ice_status status;
4523 	int ret = 0;
4524 
4525 	vsi_props = &vsi->info;
4526 
4527 	ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
4528 	if (!ctxt)
4529 		return -ENOMEM;
4530 
4531 	ctxt->info = vsi->info;
4532 
4533 	if (bmode == BRIDGE_MODE_VEB)
4534 		/* change from VEPA to VEB mode */
4535 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4536 	else
4537 		/* change from VEB to VEPA mode */
4538 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4539 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4540 
4541 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4542 	if (status) {
4543 		dev_err(dev, "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4544 			bmode, status, hw->adminq.sq_last_status);
4545 		ret = -EIO;
4546 		goto out;
4547 	}
4548 	/* Update sw flags for book keeping */
4549 	vsi_props->sw_flags = ctxt->info.sw_flags;
4550 
4551 out:
4552 	devm_kfree(dev, ctxt);
4553 	return ret;
4554 }
4555 
4556 /**
4557  * ice_bridge_setlink - Set the hardware bridge mode
4558  * @dev: the netdev being configured
4559  * @nlh: RTNL message
4560  * @flags: bridge setlink flags
4561  * @extack: netlink extended ack
4562  *
4563  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
4564  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
4565  * not already set for all VSIs connected to this switch. And also update the
4566  * unicast switch filter rules for the corresponding switch of the netdev.
4567  */
4568 static int
4569 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
4570 		   u16 __always_unused flags,
4571 		   struct netlink_ext_ack __always_unused *extack)
4572 {
4573 	struct ice_netdev_priv *np = netdev_priv(dev);
4574 	struct ice_pf *pf = np->vsi->back;
4575 	struct nlattr *attr, *br_spec;
4576 	struct ice_hw *hw = &pf->hw;
4577 	enum ice_status status;
4578 	struct ice_sw *pf_sw;
4579 	int rem, v, err = 0;
4580 
4581 	pf_sw = pf->first_sw;
4582 	/* find the attribute in the netlink message */
4583 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
4584 
4585 	nla_for_each_nested(attr, br_spec, rem) {
4586 		__u16 mode;
4587 
4588 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
4589 			continue;
4590 		mode = nla_get_u16(attr);
4591 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
4592 			return -EINVAL;
4593 		/* Continue  if bridge mode is not being flipped */
4594 		if (mode == pf_sw->bridge_mode)
4595 			continue;
4596 		/* Iterates through the PF VSI list and update the loopback
4597 		 * mode of the VSI
4598 		 */
4599 		ice_for_each_vsi(pf, v) {
4600 			if (!pf->vsi[v])
4601 				continue;
4602 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
4603 			if (err)
4604 				return err;
4605 		}
4606 
4607 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
4608 		/* Update the unicast switch filter rules for the corresponding
4609 		 * switch of the netdev
4610 		 */
4611 		status = ice_update_sw_rule_bridge_mode(hw);
4612 		if (status) {
4613 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
4614 				   mode, status, hw->adminq.sq_last_status);
4615 			/* revert hw->evb_veb */
4616 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
4617 			return -EIO;
4618 		}
4619 
4620 		pf_sw->bridge_mode = mode;
4621 	}
4622 
4623 	return 0;
4624 }
4625 
4626 /**
4627  * ice_tx_timeout - Respond to a Tx Hang
4628  * @netdev: network interface device structure
4629  */
4630 static void ice_tx_timeout(struct net_device *netdev)
4631 {
4632 	struct ice_netdev_priv *np = netdev_priv(netdev);
4633 	struct ice_ring *tx_ring = NULL;
4634 	struct ice_vsi *vsi = np->vsi;
4635 	struct ice_pf *pf = vsi->back;
4636 	int hung_queue = -1;
4637 	u32 i;
4638 
4639 	pf->tx_timeout_count++;
4640 
4641 	/* find the stopped queue the same way dev_watchdog() does */
4642 	for (i = 0; i < netdev->num_tx_queues; i++) {
4643 		unsigned long trans_start;
4644 		struct netdev_queue *q;
4645 
4646 		q = netdev_get_tx_queue(netdev, i);
4647 		trans_start = q->trans_start;
4648 		if (netif_xmit_stopped(q) &&
4649 		    time_after(jiffies,
4650 			       trans_start + netdev->watchdog_timeo)) {
4651 			hung_queue = i;
4652 			break;
4653 		}
4654 	}
4655 
4656 	if (i == netdev->num_tx_queues)
4657 		netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
4658 	else
4659 		/* now that we have an index, find the tx_ring struct */
4660 		for (i = 0; i < vsi->num_txq; i++)
4661 			if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4662 				if (hung_queue == vsi->tx_rings[i]->q_index) {
4663 					tx_ring = vsi->tx_rings[i];
4664 					break;
4665 				}
4666 
4667 	/* Reset recovery level if enough time has elapsed after last timeout.
4668 	 * Also ensure no new reset action happens before next timeout period.
4669 	 */
4670 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
4671 		pf->tx_timeout_recovery_level = 1;
4672 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
4673 				       netdev->watchdog_timeo)))
4674 		return;
4675 
4676 	if (tx_ring) {
4677 		struct ice_hw *hw = &pf->hw;
4678 		u32 head, val = 0;
4679 
4680 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[hung_queue])) &
4681 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
4682 		/* Read interrupt register */
4683 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
4684 
4685 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
4686 			    vsi->vsi_num, hung_queue, tx_ring->next_to_clean,
4687 			    head, tx_ring->next_to_use, val);
4688 	}
4689 
4690 	pf->tx_timeout_last_recovery = jiffies;
4691 	netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
4692 		    pf->tx_timeout_recovery_level, hung_queue);
4693 
4694 	switch (pf->tx_timeout_recovery_level) {
4695 	case 1:
4696 		set_bit(__ICE_PFR_REQ, pf->state);
4697 		break;
4698 	case 2:
4699 		set_bit(__ICE_CORER_REQ, pf->state);
4700 		break;
4701 	case 3:
4702 		set_bit(__ICE_GLOBR_REQ, pf->state);
4703 		break;
4704 	default:
4705 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
4706 		set_bit(__ICE_DOWN, pf->state);
4707 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
4708 		set_bit(__ICE_SERVICE_DIS, pf->state);
4709 		break;
4710 	}
4711 
4712 	ice_service_task_schedule(pf);
4713 	pf->tx_timeout_recovery_level++;
4714 }
4715 
4716 /**
4717  * ice_open - Called when a network interface becomes active
4718  * @netdev: network interface device structure
4719  *
4720  * The open entry point is called when a network interface is made
4721  * active by the system (IFF_UP). At this point all resources needed
4722  * for transmit and receive operations are allocated, the interrupt
4723  * handler is registered with the OS, the netdev watchdog is enabled,
4724  * and the stack is notified that the interface is ready.
4725  *
4726  * Returns 0 on success, negative value on failure
4727  */
4728 int ice_open(struct net_device *netdev)
4729 {
4730 	struct ice_netdev_priv *np = netdev_priv(netdev);
4731 	struct ice_vsi *vsi = np->vsi;
4732 	struct ice_port_info *pi;
4733 	int err;
4734 
4735 	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
4736 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
4737 		return -EIO;
4738 	}
4739 
4740 	netif_carrier_off(netdev);
4741 
4742 	pi = vsi->port_info;
4743 	err = ice_update_link_info(pi);
4744 	if (err) {
4745 		netdev_err(netdev, "Failed to get link info, error %d\n",
4746 			   err);
4747 		return err;
4748 	}
4749 
4750 	/* Set PHY if there is media, otherwise, turn off PHY */
4751 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
4752 		err = ice_force_phys_link_state(vsi, true);
4753 		if (err) {
4754 			netdev_err(netdev,
4755 				   "Failed to set physical link up, error %d\n",
4756 				   err);
4757 			return err;
4758 		}
4759 	} else {
4760 		err = ice_aq_set_link_restart_an(pi, false, NULL);
4761 		if (err) {
4762 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
4763 				   vsi->vsi_num, err);
4764 			return err;
4765 		}
4766 		set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
4767 	}
4768 
4769 	err = ice_vsi_open(vsi);
4770 	if (err)
4771 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
4772 			   vsi->vsi_num, vsi->vsw->sw_id);
4773 	return err;
4774 }
4775 
4776 /**
4777  * ice_stop - Disables a network interface
4778  * @netdev: network interface device structure
4779  *
4780  * The stop entry point is called when an interface is de-activated by the OS,
4781  * and the netdevice enters the DOWN state. The hardware is still under the
4782  * driver's control, but the netdev interface is disabled.
4783  *
4784  * Returns success only - not allowed to fail
4785  */
4786 int ice_stop(struct net_device *netdev)
4787 {
4788 	struct ice_netdev_priv *np = netdev_priv(netdev);
4789 	struct ice_vsi *vsi = np->vsi;
4790 
4791 	ice_vsi_close(vsi);
4792 
4793 	return 0;
4794 }
4795 
4796 /**
4797  * ice_features_check - Validate encapsulated packet conforms to limits
4798  * @skb: skb buffer
4799  * @netdev: This port's netdev
4800  * @features: Offload features that the stack believes apply
4801  */
4802 static netdev_features_t
4803 ice_features_check(struct sk_buff *skb,
4804 		   struct net_device __always_unused *netdev,
4805 		   netdev_features_t features)
4806 {
4807 	size_t len;
4808 
4809 	/* No point in doing any of this if neither checksum nor GSO are
4810 	 * being requested for this frame. We can rule out both by just
4811 	 * checking for CHECKSUM_PARTIAL
4812 	 */
4813 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4814 		return features;
4815 
4816 	/* We cannot support GSO if the MSS is going to be less than
4817 	 * 64 bytes. If it is then we need to drop support for GSO.
4818 	 */
4819 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
4820 		features &= ~NETIF_F_GSO_MASK;
4821 
4822 	len = skb_network_header(skb) - skb->data;
4823 	if (len & ~(ICE_TXD_MACLEN_MAX))
4824 		goto out_rm_features;
4825 
4826 	len = skb_transport_header(skb) - skb_network_header(skb);
4827 	if (len & ~(ICE_TXD_IPLEN_MAX))
4828 		goto out_rm_features;
4829 
4830 	if (skb->encapsulation) {
4831 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
4832 		if (len & ~(ICE_TXD_L4LEN_MAX))
4833 			goto out_rm_features;
4834 
4835 		len = skb_inner_transport_header(skb) -
4836 		      skb_inner_network_header(skb);
4837 		if (len & ~(ICE_TXD_IPLEN_MAX))
4838 			goto out_rm_features;
4839 	}
4840 
4841 	return features;
4842 out_rm_features:
4843 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
4844 }
4845 
4846 static const struct net_device_ops ice_netdev_safe_mode_ops = {
4847 	.ndo_open = ice_open,
4848 	.ndo_stop = ice_stop,
4849 	.ndo_start_xmit = ice_start_xmit,
4850 	.ndo_set_mac_address = ice_set_mac_address,
4851 	.ndo_validate_addr = eth_validate_addr,
4852 	.ndo_change_mtu = ice_change_mtu,
4853 	.ndo_get_stats64 = ice_get_stats64,
4854 	.ndo_tx_timeout = ice_tx_timeout,
4855 };
4856 
4857 static const struct net_device_ops ice_netdev_ops = {
4858 	.ndo_open = ice_open,
4859 	.ndo_stop = ice_stop,
4860 	.ndo_start_xmit = ice_start_xmit,
4861 	.ndo_features_check = ice_features_check,
4862 	.ndo_set_rx_mode = ice_set_rx_mode,
4863 	.ndo_set_mac_address = ice_set_mac_address,
4864 	.ndo_validate_addr = eth_validate_addr,
4865 	.ndo_change_mtu = ice_change_mtu,
4866 	.ndo_get_stats64 = ice_get_stats64,
4867 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
4868 	.ndo_set_vf_mac = ice_set_vf_mac,
4869 	.ndo_get_vf_config = ice_get_vf_cfg,
4870 	.ndo_set_vf_trust = ice_set_vf_trust,
4871 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
4872 	.ndo_set_vf_link_state = ice_set_vf_link_state,
4873 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
4874 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
4875 	.ndo_set_features = ice_set_features,
4876 	.ndo_bridge_getlink = ice_bridge_getlink,
4877 	.ndo_bridge_setlink = ice_bridge_setlink,
4878 	.ndo_fdb_add = ice_fdb_add,
4879 	.ndo_fdb_del = ice_fdb_del,
4880 	.ndo_tx_timeout = ice_tx_timeout,
4881 };
4882