1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 static struct workqueue_struct *ice_wq; 52 static const struct net_device_ops ice_netdev_safe_mode_ops; 53 static const struct net_device_ops ice_netdev_ops; 54 55 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 56 57 static void ice_vsi_release_all(struct ice_pf *pf); 58 59 static int ice_rebuild_channels(struct ice_pf *pf); 60 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 61 62 static int 63 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 64 void *cb_priv, enum tc_setup_type type, void *type_data, 65 void *data, 66 void (*cleanup)(struct flow_block_cb *block_cb)); 67 68 bool netif_is_ice(struct net_device *dev) 69 { 70 return dev && (dev->netdev_ops == &ice_netdev_ops); 71 } 72 73 /** 74 * ice_get_tx_pending - returns number of Tx descriptors not processed 75 * @ring: the ring of descriptors 76 */ 77 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 78 { 79 u16 head, tail; 80 81 head = ring->next_to_clean; 82 tail = ring->next_to_use; 83 84 if (head != tail) 85 return (head < tail) ? 86 tail - head : (tail + ring->count - head); 87 return 0; 88 } 89 90 /** 91 * ice_check_for_hang_subtask - check for and recover hung queues 92 * @pf: pointer to PF struct 93 */ 94 static void ice_check_for_hang_subtask(struct ice_pf *pf) 95 { 96 struct ice_vsi *vsi = NULL; 97 struct ice_hw *hw; 98 unsigned int i; 99 int packets; 100 u32 v; 101 102 ice_for_each_vsi(pf, v) 103 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 104 vsi = pf->vsi[v]; 105 break; 106 } 107 108 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 109 return; 110 111 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 112 return; 113 114 hw = &vsi->back->hw; 115 116 ice_for_each_txq(vsi, i) { 117 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 118 119 if (!tx_ring) 120 continue; 121 if (ice_ring_ch_enabled(tx_ring)) 122 continue; 123 124 if (tx_ring->desc) { 125 /* If packet counter has not changed the queue is 126 * likely stalled, so force an interrupt for this 127 * queue. 128 * 129 * prev_pkt would be negative if there was no 130 * pending work. 131 */ 132 packets = tx_ring->stats.pkts & INT_MAX; 133 if (tx_ring->tx_stats.prev_pkt == packets) { 134 /* Trigger sw interrupt to revive the queue */ 135 ice_trigger_sw_intr(hw, tx_ring->q_vector); 136 continue; 137 } 138 139 /* Memory barrier between read of packet count and call 140 * to ice_get_tx_pending() 141 */ 142 smp_rmb(); 143 tx_ring->tx_stats.prev_pkt = 144 ice_get_tx_pending(tx_ring) ? packets : -1; 145 } 146 } 147 } 148 149 /** 150 * ice_init_mac_fltr - Set initial MAC filters 151 * @pf: board private structure 152 * 153 * Set initial set of MAC filters for PF VSI; configure filters for permanent 154 * address and broadcast address. If an error is encountered, netdevice will be 155 * unregistered. 156 */ 157 static int ice_init_mac_fltr(struct ice_pf *pf) 158 { 159 struct ice_vsi *vsi; 160 u8 *perm_addr; 161 162 vsi = ice_get_main_vsi(pf); 163 if (!vsi) 164 return -EINVAL; 165 166 perm_addr = vsi->port_info->mac.perm_addr; 167 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 168 } 169 170 /** 171 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 172 * @netdev: the net device on which the sync is happening 173 * @addr: MAC address to sync 174 * 175 * This is a callback function which is called by the in kernel device sync 176 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 177 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 178 * MAC filters from the hardware. 179 */ 180 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 181 { 182 struct ice_netdev_priv *np = netdev_priv(netdev); 183 struct ice_vsi *vsi = np->vsi; 184 185 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 186 ICE_FWD_TO_VSI)) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /** 193 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 194 * @netdev: the net device on which the unsync is happening 195 * @addr: MAC address to unsync 196 * 197 * This is a callback function which is called by the in kernel device unsync 198 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 199 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 200 * delete the MAC filters from the hardware. 201 */ 202 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 203 { 204 struct ice_netdev_priv *np = netdev_priv(netdev); 205 struct ice_vsi *vsi = np->vsi; 206 207 /* Under some circumstances, we might receive a request to delete our 208 * own device address from our uc list. Because we store the device 209 * address in the VSI's MAC filter list, we need to ignore such 210 * requests and not delete our device address from this list. 211 */ 212 if (ether_addr_equal(addr, netdev->dev_addr)) 213 return 0; 214 215 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 216 ICE_FWD_TO_VSI)) 217 return -EINVAL; 218 219 return 0; 220 } 221 222 /** 223 * ice_vsi_fltr_changed - check if filter state changed 224 * @vsi: VSI to be checked 225 * 226 * returns true if filter state has changed, false otherwise. 227 */ 228 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 229 { 230 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 231 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 232 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 233 } 234 235 /** 236 * ice_set_promisc - Enable promiscuous mode for a given PF 237 * @vsi: the VSI being configured 238 * @promisc_m: mask of promiscuous config bits 239 * 240 */ 241 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 242 { 243 int status; 244 245 if (vsi->type != ICE_VSI_PF) 246 return 0; 247 248 if (ice_vsi_has_non_zero_vlans(vsi)) 249 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 250 else 251 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 252 return status; 253 } 254 255 /** 256 * ice_clear_promisc - Disable promiscuous mode for a given PF 257 * @vsi: the VSI being configured 258 * @promisc_m: mask of promiscuous config bits 259 * 260 */ 261 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 262 { 263 int status; 264 265 if (vsi->type != ICE_VSI_PF) 266 return 0; 267 268 if (ice_vsi_has_non_zero_vlans(vsi)) 269 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 270 else 271 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 272 return status; 273 } 274 275 /** 276 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 277 * @vsi: ptr to the VSI 278 * 279 * Push any outstanding VSI filter changes through the AdminQ. 280 */ 281 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 282 { 283 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 284 struct device *dev = ice_pf_to_dev(vsi->back); 285 struct net_device *netdev = vsi->netdev; 286 bool promisc_forced_on = false; 287 struct ice_pf *pf = vsi->back; 288 struct ice_hw *hw = &pf->hw; 289 u32 changed_flags = 0; 290 u8 promisc_m; 291 int err; 292 293 if (!vsi->netdev) 294 return -EINVAL; 295 296 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 297 usleep_range(1000, 2000); 298 299 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 300 vsi->current_netdev_flags = vsi->netdev->flags; 301 302 INIT_LIST_HEAD(&vsi->tmp_sync_list); 303 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 304 305 if (ice_vsi_fltr_changed(vsi)) { 306 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 307 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 308 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 309 310 /* grab the netdev's addr_list_lock */ 311 netif_addr_lock_bh(netdev); 312 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 313 ice_add_mac_to_unsync_list); 314 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 315 ice_add_mac_to_unsync_list); 316 /* our temp lists are populated. release lock */ 317 netif_addr_unlock_bh(netdev); 318 } 319 320 /* Remove MAC addresses in the unsync list */ 321 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 322 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 323 if (err) { 324 netdev_err(netdev, "Failed to delete MAC filters\n"); 325 /* if we failed because of alloc failures, just bail */ 326 if (err == -ENOMEM) 327 goto out; 328 } 329 330 /* Add MAC addresses in the sync list */ 331 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 332 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 333 /* If filter is added successfully or already exists, do not go into 334 * 'if' condition and report it as error. Instead continue processing 335 * rest of the function. 336 */ 337 if (err && err != -EEXIST) { 338 netdev_err(netdev, "Failed to add MAC filters\n"); 339 /* If there is no more space for new umac filters, VSI 340 * should go into promiscuous mode. There should be some 341 * space reserved for promiscuous filters. 342 */ 343 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 344 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 345 vsi->state)) { 346 promisc_forced_on = true; 347 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 348 vsi->vsi_num); 349 } else { 350 goto out; 351 } 352 } 353 err = 0; 354 /* check for changes in promiscuous modes */ 355 if (changed_flags & IFF_ALLMULTI) { 356 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 357 if (ice_vsi_has_non_zero_vlans(vsi)) 358 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 359 else 360 promisc_m = ICE_MCAST_PROMISC_BITS; 361 362 err = ice_set_promisc(vsi, promisc_m); 363 if (err) { 364 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 365 vsi->vsi_num); 366 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 367 goto out_promisc; 368 } 369 } else { 370 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 371 if (ice_vsi_has_non_zero_vlans(vsi)) 372 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 373 else 374 promisc_m = ICE_MCAST_PROMISC_BITS; 375 376 err = ice_clear_promisc(vsi, promisc_m); 377 if (err) { 378 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 379 vsi->vsi_num); 380 vsi->current_netdev_flags |= IFF_ALLMULTI; 381 goto out_promisc; 382 } 383 } 384 } 385 386 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 387 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 388 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 389 if (vsi->current_netdev_flags & IFF_PROMISC) { 390 /* Apply Rx filter rule to get traffic from wire */ 391 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 392 err = ice_set_dflt_vsi(pf->first_sw, vsi); 393 if (err && err != -EEXIST) { 394 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 395 err, vsi->vsi_num); 396 vsi->current_netdev_flags &= 397 ~IFF_PROMISC; 398 goto out_promisc; 399 } 400 err = 0; 401 vlan_ops->dis_rx_filtering(vsi); 402 } 403 } else { 404 /* Clear Rx filter to remove traffic from wire */ 405 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 406 err = ice_clear_dflt_vsi(pf->first_sw); 407 if (err) { 408 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 409 err, vsi->vsi_num); 410 vsi->current_netdev_flags |= 411 IFF_PROMISC; 412 goto out_promisc; 413 } 414 if (vsi->current_netdev_flags & 415 NETIF_F_HW_VLAN_CTAG_FILTER) 416 vlan_ops->ena_rx_filtering(vsi); 417 } 418 } 419 } 420 goto exit; 421 422 out_promisc: 423 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 424 goto exit; 425 out: 426 /* if something went wrong then set the changed flag so we try again */ 427 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 428 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 429 exit: 430 clear_bit(ICE_CFG_BUSY, vsi->state); 431 return err; 432 } 433 434 /** 435 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 436 * @pf: board private structure 437 */ 438 static void ice_sync_fltr_subtask(struct ice_pf *pf) 439 { 440 int v; 441 442 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 443 return; 444 445 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 446 447 ice_for_each_vsi(pf, v) 448 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 449 ice_vsi_sync_fltr(pf->vsi[v])) { 450 /* come back and try again later */ 451 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 452 break; 453 } 454 } 455 456 /** 457 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 458 * @pf: the PF 459 * @locked: is the rtnl_lock already held 460 */ 461 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 462 { 463 int node; 464 int v; 465 466 ice_for_each_vsi(pf, v) 467 if (pf->vsi[v]) 468 ice_dis_vsi(pf->vsi[v], locked); 469 470 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 471 pf->pf_agg_node[node].num_vsis = 0; 472 473 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 474 pf->vf_agg_node[node].num_vsis = 0; 475 } 476 477 /** 478 * ice_clear_sw_switch_recipes - clear switch recipes 479 * @pf: board private structure 480 * 481 * Mark switch recipes as not created in sw structures. There are cases where 482 * rules (especially advanced rules) need to be restored, either re-read from 483 * hardware or added again. For example after the reset. 'recp_created' flag 484 * prevents from doing that and need to be cleared upfront. 485 */ 486 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 487 { 488 struct ice_sw_recipe *recp; 489 u8 i; 490 491 recp = pf->hw.switch_info->recp_list; 492 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 493 recp[i].recp_created = false; 494 } 495 496 /** 497 * ice_prepare_for_reset - prep for reset 498 * @pf: board private structure 499 * @reset_type: reset type requested 500 * 501 * Inform or close all dependent features in prep for reset. 502 */ 503 static void 504 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 505 { 506 struct ice_hw *hw = &pf->hw; 507 struct ice_vsi *vsi; 508 unsigned int i; 509 510 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 511 512 /* already prepared for reset */ 513 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 514 return; 515 516 ice_unplug_aux_dev(pf); 517 518 /* Notify VFs of impending reset */ 519 if (ice_check_sq_alive(hw, &hw->mailboxq)) 520 ice_vc_notify_reset(pf); 521 522 /* Disable VFs until reset is completed */ 523 ice_for_each_vf(pf, i) 524 ice_set_vf_state_qs_dis(&pf->vf[i]); 525 526 if (ice_is_eswitch_mode_switchdev(pf)) { 527 if (reset_type != ICE_RESET_PFR) 528 ice_clear_sw_switch_recipes(pf); 529 } 530 531 /* release ADQ specific HW and SW resources */ 532 vsi = ice_get_main_vsi(pf); 533 if (!vsi) 534 goto skip; 535 536 /* to be on safe side, reset orig_rss_size so that normal flow 537 * of deciding rss_size can take precedence 538 */ 539 vsi->orig_rss_size = 0; 540 541 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 542 if (reset_type == ICE_RESET_PFR) { 543 vsi->old_ena_tc = vsi->all_enatc; 544 vsi->old_numtc = vsi->all_numtc; 545 } else { 546 ice_remove_q_channels(vsi, true); 547 548 /* for other reset type, do not support channel rebuild 549 * hence reset needed info 550 */ 551 vsi->old_ena_tc = 0; 552 vsi->all_enatc = 0; 553 vsi->old_numtc = 0; 554 vsi->all_numtc = 0; 555 vsi->req_txq = 0; 556 vsi->req_rxq = 0; 557 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 558 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 559 } 560 } 561 skip: 562 563 /* clear SW filtering DB */ 564 ice_clear_hw_tbls(hw); 565 /* disable the VSIs and their queues that are not already DOWN */ 566 ice_pf_dis_all_vsi(pf, false); 567 568 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 569 ice_ptp_prepare_for_reset(pf); 570 571 if (hw->port_info) 572 ice_sched_clear_port(hw->port_info); 573 574 ice_shutdown_all_ctrlq(hw); 575 576 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 577 } 578 579 /** 580 * ice_do_reset - Initiate one of many types of resets 581 * @pf: board private structure 582 * @reset_type: reset type requested before this function was called. 583 */ 584 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 585 { 586 struct device *dev = ice_pf_to_dev(pf); 587 struct ice_hw *hw = &pf->hw; 588 589 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 590 591 ice_prepare_for_reset(pf, reset_type); 592 593 /* trigger the reset */ 594 if (ice_reset(hw, reset_type)) { 595 dev_err(dev, "reset %d failed\n", reset_type); 596 set_bit(ICE_RESET_FAILED, pf->state); 597 clear_bit(ICE_RESET_OICR_RECV, pf->state); 598 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 599 clear_bit(ICE_PFR_REQ, pf->state); 600 clear_bit(ICE_CORER_REQ, pf->state); 601 clear_bit(ICE_GLOBR_REQ, pf->state); 602 wake_up(&pf->reset_wait_queue); 603 return; 604 } 605 606 /* PFR is a bit of a special case because it doesn't result in an OICR 607 * interrupt. So for PFR, rebuild after the reset and clear the reset- 608 * associated state bits. 609 */ 610 if (reset_type == ICE_RESET_PFR) { 611 pf->pfr_count++; 612 ice_rebuild(pf, reset_type); 613 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 614 clear_bit(ICE_PFR_REQ, pf->state); 615 wake_up(&pf->reset_wait_queue); 616 ice_reset_all_vfs(pf, true); 617 } 618 } 619 620 /** 621 * ice_reset_subtask - Set up for resetting the device and driver 622 * @pf: board private structure 623 */ 624 static void ice_reset_subtask(struct ice_pf *pf) 625 { 626 enum ice_reset_req reset_type = ICE_RESET_INVAL; 627 628 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 629 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 630 * of reset is pending and sets bits in pf->state indicating the reset 631 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 632 * prepare for pending reset if not already (for PF software-initiated 633 * global resets the software should already be prepared for it as 634 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 635 * by firmware or software on other PFs, that bit is not set so prepare 636 * for the reset now), poll for reset done, rebuild and return. 637 */ 638 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 639 /* Perform the largest reset requested */ 640 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 641 reset_type = ICE_RESET_CORER; 642 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 643 reset_type = ICE_RESET_GLOBR; 644 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 645 reset_type = ICE_RESET_EMPR; 646 /* return if no valid reset type requested */ 647 if (reset_type == ICE_RESET_INVAL) 648 return; 649 ice_prepare_for_reset(pf, reset_type); 650 651 /* make sure we are ready to rebuild */ 652 if (ice_check_reset(&pf->hw)) { 653 set_bit(ICE_RESET_FAILED, pf->state); 654 } else { 655 /* done with reset. start rebuild */ 656 pf->hw.reset_ongoing = false; 657 ice_rebuild(pf, reset_type); 658 /* clear bit to resume normal operations, but 659 * ICE_NEEDS_RESTART bit is set in case rebuild failed 660 */ 661 clear_bit(ICE_RESET_OICR_RECV, pf->state); 662 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 663 clear_bit(ICE_PFR_REQ, pf->state); 664 clear_bit(ICE_CORER_REQ, pf->state); 665 clear_bit(ICE_GLOBR_REQ, pf->state); 666 wake_up(&pf->reset_wait_queue); 667 ice_reset_all_vfs(pf, true); 668 } 669 670 return; 671 } 672 673 /* No pending resets to finish processing. Check for new resets */ 674 if (test_bit(ICE_PFR_REQ, pf->state)) 675 reset_type = ICE_RESET_PFR; 676 if (test_bit(ICE_CORER_REQ, pf->state)) 677 reset_type = ICE_RESET_CORER; 678 if (test_bit(ICE_GLOBR_REQ, pf->state)) 679 reset_type = ICE_RESET_GLOBR; 680 /* If no valid reset type requested just return */ 681 if (reset_type == ICE_RESET_INVAL) 682 return; 683 684 /* reset if not already down or busy */ 685 if (!test_bit(ICE_DOWN, pf->state) && 686 !test_bit(ICE_CFG_BUSY, pf->state)) { 687 ice_do_reset(pf, reset_type); 688 } 689 } 690 691 /** 692 * ice_print_topo_conflict - print topology conflict message 693 * @vsi: the VSI whose topology status is being checked 694 */ 695 static void ice_print_topo_conflict(struct ice_vsi *vsi) 696 { 697 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 698 case ICE_AQ_LINK_TOPO_CONFLICT: 699 case ICE_AQ_LINK_MEDIA_CONFLICT: 700 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 701 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 702 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 703 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 704 break; 705 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 706 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 707 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 708 else 709 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 710 break; 711 default: 712 break; 713 } 714 } 715 716 /** 717 * ice_print_link_msg - print link up or down message 718 * @vsi: the VSI whose link status is being queried 719 * @isup: boolean for if the link is now up or down 720 */ 721 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 722 { 723 struct ice_aqc_get_phy_caps_data *caps; 724 const char *an_advertised; 725 const char *fec_req; 726 const char *speed; 727 const char *fec; 728 const char *fc; 729 const char *an; 730 int status; 731 732 if (!vsi) 733 return; 734 735 if (vsi->current_isup == isup) 736 return; 737 738 vsi->current_isup = isup; 739 740 if (!isup) { 741 netdev_info(vsi->netdev, "NIC Link is Down\n"); 742 return; 743 } 744 745 switch (vsi->port_info->phy.link_info.link_speed) { 746 case ICE_AQ_LINK_SPEED_100GB: 747 speed = "100 G"; 748 break; 749 case ICE_AQ_LINK_SPEED_50GB: 750 speed = "50 G"; 751 break; 752 case ICE_AQ_LINK_SPEED_40GB: 753 speed = "40 G"; 754 break; 755 case ICE_AQ_LINK_SPEED_25GB: 756 speed = "25 G"; 757 break; 758 case ICE_AQ_LINK_SPEED_20GB: 759 speed = "20 G"; 760 break; 761 case ICE_AQ_LINK_SPEED_10GB: 762 speed = "10 G"; 763 break; 764 case ICE_AQ_LINK_SPEED_5GB: 765 speed = "5 G"; 766 break; 767 case ICE_AQ_LINK_SPEED_2500MB: 768 speed = "2.5 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_1000MB: 771 speed = "1 G"; 772 break; 773 case ICE_AQ_LINK_SPEED_100MB: 774 speed = "100 M"; 775 break; 776 default: 777 speed = "Unknown "; 778 break; 779 } 780 781 switch (vsi->port_info->fc.current_mode) { 782 case ICE_FC_FULL: 783 fc = "Rx/Tx"; 784 break; 785 case ICE_FC_TX_PAUSE: 786 fc = "Tx"; 787 break; 788 case ICE_FC_RX_PAUSE: 789 fc = "Rx"; 790 break; 791 case ICE_FC_NONE: 792 fc = "None"; 793 break; 794 default: 795 fc = "Unknown"; 796 break; 797 } 798 799 /* Get FEC mode based on negotiated link info */ 800 switch (vsi->port_info->phy.link_info.fec_info) { 801 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 802 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 803 fec = "RS-FEC"; 804 break; 805 case ICE_AQ_LINK_25G_KR_FEC_EN: 806 fec = "FC-FEC/BASE-R"; 807 break; 808 default: 809 fec = "NONE"; 810 break; 811 } 812 813 /* check if autoneg completed, might be false due to not supported */ 814 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 815 an = "True"; 816 else 817 an = "False"; 818 819 /* Get FEC mode requested based on PHY caps last SW configuration */ 820 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 821 if (!caps) { 822 fec_req = "Unknown"; 823 an_advertised = "Unknown"; 824 goto done; 825 } 826 827 status = ice_aq_get_phy_caps(vsi->port_info, false, 828 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 829 if (status) 830 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 831 832 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 833 834 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 835 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 836 fec_req = "RS-FEC"; 837 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 838 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 839 fec_req = "FC-FEC/BASE-R"; 840 else 841 fec_req = "NONE"; 842 843 kfree(caps); 844 845 done: 846 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 847 speed, fec_req, fec, an_advertised, an, fc); 848 ice_print_topo_conflict(vsi); 849 } 850 851 /** 852 * ice_vsi_link_event - update the VSI's netdev 853 * @vsi: the VSI on which the link event occurred 854 * @link_up: whether or not the VSI needs to be set up or down 855 */ 856 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 857 { 858 if (!vsi) 859 return; 860 861 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 862 return; 863 864 if (vsi->type == ICE_VSI_PF) { 865 if (link_up == netif_carrier_ok(vsi->netdev)) 866 return; 867 868 if (link_up) { 869 netif_carrier_on(vsi->netdev); 870 netif_tx_wake_all_queues(vsi->netdev); 871 } else { 872 netif_carrier_off(vsi->netdev); 873 netif_tx_stop_all_queues(vsi->netdev); 874 } 875 } 876 } 877 878 /** 879 * ice_set_dflt_mib - send a default config MIB to the FW 880 * @pf: private PF struct 881 * 882 * This function sends a default configuration MIB to the FW. 883 * 884 * If this function errors out at any point, the driver is still able to 885 * function. The main impact is that LFC may not operate as expected. 886 * Therefore an error state in this function should be treated with a DBG 887 * message and continue on with driver rebuild/reenable. 888 */ 889 static void ice_set_dflt_mib(struct ice_pf *pf) 890 { 891 struct device *dev = ice_pf_to_dev(pf); 892 u8 mib_type, *buf, *lldpmib = NULL; 893 u16 len, typelen, offset = 0; 894 struct ice_lldp_org_tlv *tlv; 895 struct ice_hw *hw = &pf->hw; 896 u32 ouisubtype; 897 898 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 899 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 900 if (!lldpmib) { 901 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 902 __func__); 903 return; 904 } 905 906 /* Add ETS CFG TLV */ 907 tlv = (struct ice_lldp_org_tlv *)lldpmib; 908 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 909 ICE_IEEE_ETS_TLV_LEN); 910 tlv->typelen = htons(typelen); 911 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 912 ICE_IEEE_SUBTYPE_ETS_CFG); 913 tlv->ouisubtype = htonl(ouisubtype); 914 915 buf = tlv->tlvinfo; 916 buf[0] = 0; 917 918 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 919 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 920 * Octets 13 - 20 are TSA values - leave as zeros 921 */ 922 buf[5] = 0x64; 923 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 924 offset += len + 2; 925 tlv = (struct ice_lldp_org_tlv *) 926 ((char *)tlv + sizeof(tlv->typelen) + len); 927 928 /* Add ETS REC TLV */ 929 buf = tlv->tlvinfo; 930 tlv->typelen = htons(typelen); 931 932 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 933 ICE_IEEE_SUBTYPE_ETS_REC); 934 tlv->ouisubtype = htonl(ouisubtype); 935 936 /* First octet of buf is reserved 937 * Octets 1 - 4 map UP to TC - all UPs map to zero 938 * Octets 5 - 12 are BW values - set TC 0 to 100%. 939 * Octets 13 - 20 are TSA value - leave as zeros 940 */ 941 buf[5] = 0x64; 942 offset += len + 2; 943 tlv = (struct ice_lldp_org_tlv *) 944 ((char *)tlv + sizeof(tlv->typelen) + len); 945 946 /* Add PFC CFG TLV */ 947 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 948 ICE_IEEE_PFC_TLV_LEN); 949 tlv->typelen = htons(typelen); 950 951 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 952 ICE_IEEE_SUBTYPE_PFC_CFG); 953 tlv->ouisubtype = htonl(ouisubtype); 954 955 /* Octet 1 left as all zeros - PFC disabled */ 956 buf[0] = 0x08; 957 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 958 offset += len + 2; 959 960 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 961 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 962 963 kfree(lldpmib); 964 } 965 966 /** 967 * ice_check_phy_fw_load - check if PHY FW load failed 968 * @pf: pointer to PF struct 969 * @link_cfg_err: bitmap from the link info structure 970 * 971 * check if external PHY FW load failed and print an error message if it did 972 */ 973 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 974 { 975 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 976 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 977 return; 978 } 979 980 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 981 return; 982 983 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 984 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 985 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 986 } 987 } 988 989 /** 990 * ice_check_module_power 991 * @pf: pointer to PF struct 992 * @link_cfg_err: bitmap from the link info structure 993 * 994 * check module power level returned by a previous call to aq_get_link_info 995 * and print error messages if module power level is not supported 996 */ 997 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 998 { 999 /* if module power level is supported, clear the flag */ 1000 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1001 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1002 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1003 return; 1004 } 1005 1006 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1007 * above block didn't clear this bit, there's nothing to do 1008 */ 1009 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1010 return; 1011 1012 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1013 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1014 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1015 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1016 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1017 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1018 } 1019 } 1020 1021 /** 1022 * ice_check_link_cfg_err - check if link configuration failed 1023 * @pf: pointer to the PF struct 1024 * @link_cfg_err: bitmap from the link info structure 1025 * 1026 * print if any link configuration failure happens due to the value in the 1027 * link_cfg_err parameter in the link info structure 1028 */ 1029 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1030 { 1031 ice_check_module_power(pf, link_cfg_err); 1032 ice_check_phy_fw_load(pf, link_cfg_err); 1033 } 1034 1035 /** 1036 * ice_link_event - process the link event 1037 * @pf: PF that the link event is associated with 1038 * @pi: port_info for the port that the link event is associated with 1039 * @link_up: true if the physical link is up and false if it is down 1040 * @link_speed: current link speed received from the link event 1041 * 1042 * Returns 0 on success and negative on failure 1043 */ 1044 static int 1045 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1046 u16 link_speed) 1047 { 1048 struct device *dev = ice_pf_to_dev(pf); 1049 struct ice_phy_info *phy_info; 1050 struct ice_vsi *vsi; 1051 u16 old_link_speed; 1052 bool old_link; 1053 int status; 1054 1055 phy_info = &pi->phy; 1056 phy_info->link_info_old = phy_info->link_info; 1057 1058 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1059 old_link_speed = phy_info->link_info_old.link_speed; 1060 1061 /* update the link info structures and re-enable link events, 1062 * don't bail on failure due to other book keeping needed 1063 */ 1064 status = ice_update_link_info(pi); 1065 if (status) 1066 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1067 pi->lport, status, 1068 ice_aq_str(pi->hw->adminq.sq_last_status)); 1069 1070 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1071 1072 /* Check if the link state is up after updating link info, and treat 1073 * this event as an UP event since the link is actually UP now. 1074 */ 1075 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1076 link_up = true; 1077 1078 vsi = ice_get_main_vsi(pf); 1079 if (!vsi || !vsi->port_info) 1080 return -EINVAL; 1081 1082 /* turn off PHY if media was removed */ 1083 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1084 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1085 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1086 ice_set_link(vsi, false); 1087 } 1088 1089 /* if the old link up/down and speed is the same as the new */ 1090 if (link_up == old_link && link_speed == old_link_speed) 1091 return 0; 1092 1093 if (!ice_is_e810(&pf->hw)) 1094 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1095 1096 if (ice_is_dcb_active(pf)) { 1097 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1098 ice_dcb_rebuild(pf); 1099 } else { 1100 if (link_up) 1101 ice_set_dflt_mib(pf); 1102 } 1103 ice_vsi_link_event(vsi, link_up); 1104 ice_print_link_msg(vsi, link_up); 1105 1106 ice_vc_notify_link_state(pf); 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1113 * @pf: board private structure 1114 */ 1115 static void ice_watchdog_subtask(struct ice_pf *pf) 1116 { 1117 int i; 1118 1119 /* if interface is down do nothing */ 1120 if (test_bit(ICE_DOWN, pf->state) || 1121 test_bit(ICE_CFG_BUSY, pf->state)) 1122 return; 1123 1124 /* make sure we don't do these things too often */ 1125 if (time_before(jiffies, 1126 pf->serv_tmr_prev + pf->serv_tmr_period)) 1127 return; 1128 1129 pf->serv_tmr_prev = jiffies; 1130 1131 /* Update the stats for active netdevs so the network stack 1132 * can look at updated numbers whenever it cares to 1133 */ 1134 ice_update_pf_stats(pf); 1135 ice_for_each_vsi(pf, i) 1136 if (pf->vsi[i] && pf->vsi[i]->netdev) 1137 ice_update_vsi_stats(pf->vsi[i]); 1138 } 1139 1140 /** 1141 * ice_init_link_events - enable/initialize link events 1142 * @pi: pointer to the port_info instance 1143 * 1144 * Returns -EIO on failure, 0 on success 1145 */ 1146 static int ice_init_link_events(struct ice_port_info *pi) 1147 { 1148 u16 mask; 1149 1150 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1151 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1152 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1153 1154 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1155 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1156 pi->lport); 1157 return -EIO; 1158 } 1159 1160 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1161 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1162 pi->lport); 1163 return -EIO; 1164 } 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * ice_handle_link_event - handle link event via ARQ 1171 * @pf: PF that the link event is associated with 1172 * @event: event structure containing link status info 1173 */ 1174 static int 1175 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1176 { 1177 struct ice_aqc_get_link_status_data *link_data; 1178 struct ice_port_info *port_info; 1179 int status; 1180 1181 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1182 port_info = pf->hw.port_info; 1183 if (!port_info) 1184 return -EINVAL; 1185 1186 status = ice_link_event(pf, port_info, 1187 !!(link_data->link_info & ICE_AQ_LINK_UP), 1188 le16_to_cpu(link_data->link_speed)); 1189 if (status) 1190 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1191 status); 1192 1193 return status; 1194 } 1195 1196 enum ice_aq_task_state { 1197 ICE_AQ_TASK_WAITING = 0, 1198 ICE_AQ_TASK_COMPLETE, 1199 ICE_AQ_TASK_CANCELED, 1200 }; 1201 1202 struct ice_aq_task { 1203 struct hlist_node entry; 1204 1205 u16 opcode; 1206 struct ice_rq_event_info *event; 1207 enum ice_aq_task_state state; 1208 }; 1209 1210 /** 1211 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1212 * @pf: pointer to the PF private structure 1213 * @opcode: the opcode to wait for 1214 * @timeout: how long to wait, in jiffies 1215 * @event: storage for the event info 1216 * 1217 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1218 * current thread will be put to sleep until the specified event occurs or 1219 * until the given timeout is reached. 1220 * 1221 * To obtain only the descriptor contents, pass an event without an allocated 1222 * msg_buf. If the complete data buffer is desired, allocate the 1223 * event->msg_buf with enough space ahead of time. 1224 * 1225 * Returns: zero on success, or a negative error code on failure. 1226 */ 1227 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1228 struct ice_rq_event_info *event) 1229 { 1230 struct device *dev = ice_pf_to_dev(pf); 1231 struct ice_aq_task *task; 1232 unsigned long start; 1233 long ret; 1234 int err; 1235 1236 task = kzalloc(sizeof(*task), GFP_KERNEL); 1237 if (!task) 1238 return -ENOMEM; 1239 1240 INIT_HLIST_NODE(&task->entry); 1241 task->opcode = opcode; 1242 task->event = event; 1243 task->state = ICE_AQ_TASK_WAITING; 1244 1245 spin_lock_bh(&pf->aq_wait_lock); 1246 hlist_add_head(&task->entry, &pf->aq_wait_list); 1247 spin_unlock_bh(&pf->aq_wait_lock); 1248 1249 start = jiffies; 1250 1251 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1252 timeout); 1253 switch (task->state) { 1254 case ICE_AQ_TASK_WAITING: 1255 err = ret < 0 ? ret : -ETIMEDOUT; 1256 break; 1257 case ICE_AQ_TASK_CANCELED: 1258 err = ret < 0 ? ret : -ECANCELED; 1259 break; 1260 case ICE_AQ_TASK_COMPLETE: 1261 err = ret < 0 ? ret : 0; 1262 break; 1263 default: 1264 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1265 err = -EINVAL; 1266 break; 1267 } 1268 1269 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1270 jiffies_to_msecs(jiffies - start), 1271 jiffies_to_msecs(timeout), 1272 opcode); 1273 1274 spin_lock_bh(&pf->aq_wait_lock); 1275 hlist_del(&task->entry); 1276 spin_unlock_bh(&pf->aq_wait_lock); 1277 kfree(task); 1278 1279 return err; 1280 } 1281 1282 /** 1283 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1284 * @pf: pointer to the PF private structure 1285 * @opcode: the opcode of the event 1286 * @event: the event to check 1287 * 1288 * Loops over the current list of pending threads waiting for an AdminQ event. 1289 * For each matching task, copy the contents of the event into the task 1290 * structure and wake up the thread. 1291 * 1292 * If multiple threads wait for the same opcode, they will all be woken up. 1293 * 1294 * Note that event->msg_buf will only be duplicated if the event has a buffer 1295 * with enough space already allocated. Otherwise, only the descriptor and 1296 * message length will be copied. 1297 * 1298 * Returns: true if an event was found, false otherwise 1299 */ 1300 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1301 struct ice_rq_event_info *event) 1302 { 1303 struct ice_aq_task *task; 1304 bool found = false; 1305 1306 spin_lock_bh(&pf->aq_wait_lock); 1307 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1308 if (task->state || task->opcode != opcode) 1309 continue; 1310 1311 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1312 task->event->msg_len = event->msg_len; 1313 1314 /* Only copy the data buffer if a destination was set */ 1315 if (task->event->msg_buf && 1316 task->event->buf_len > event->buf_len) { 1317 memcpy(task->event->msg_buf, event->msg_buf, 1318 event->buf_len); 1319 task->event->buf_len = event->buf_len; 1320 } 1321 1322 task->state = ICE_AQ_TASK_COMPLETE; 1323 found = true; 1324 } 1325 spin_unlock_bh(&pf->aq_wait_lock); 1326 1327 if (found) 1328 wake_up(&pf->aq_wait_queue); 1329 } 1330 1331 /** 1332 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1333 * @pf: the PF private structure 1334 * 1335 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1336 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1337 */ 1338 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1339 { 1340 struct ice_aq_task *task; 1341 1342 spin_lock_bh(&pf->aq_wait_lock); 1343 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1344 task->state = ICE_AQ_TASK_CANCELED; 1345 spin_unlock_bh(&pf->aq_wait_lock); 1346 1347 wake_up(&pf->aq_wait_queue); 1348 } 1349 1350 /** 1351 * __ice_clean_ctrlq - helper function to clean controlq rings 1352 * @pf: ptr to struct ice_pf 1353 * @q_type: specific Control queue type 1354 */ 1355 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1356 { 1357 struct device *dev = ice_pf_to_dev(pf); 1358 struct ice_rq_event_info event; 1359 struct ice_hw *hw = &pf->hw; 1360 struct ice_ctl_q_info *cq; 1361 u16 pending, i = 0; 1362 const char *qtype; 1363 u32 oldval, val; 1364 1365 /* Do not clean control queue if/when PF reset fails */ 1366 if (test_bit(ICE_RESET_FAILED, pf->state)) 1367 return 0; 1368 1369 switch (q_type) { 1370 case ICE_CTL_Q_ADMIN: 1371 cq = &hw->adminq; 1372 qtype = "Admin"; 1373 break; 1374 case ICE_CTL_Q_SB: 1375 cq = &hw->sbq; 1376 qtype = "Sideband"; 1377 break; 1378 case ICE_CTL_Q_MAILBOX: 1379 cq = &hw->mailboxq; 1380 qtype = "Mailbox"; 1381 /* we are going to try to detect a malicious VF, so set the 1382 * state to begin detection 1383 */ 1384 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1385 break; 1386 default: 1387 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1388 return 0; 1389 } 1390 1391 /* check for error indications - PF_xx_AxQLEN register layout for 1392 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1393 */ 1394 val = rd32(hw, cq->rq.len); 1395 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1396 PF_FW_ARQLEN_ARQCRIT_M)) { 1397 oldval = val; 1398 if (val & PF_FW_ARQLEN_ARQVFE_M) 1399 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1400 qtype); 1401 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1402 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1403 qtype); 1404 } 1405 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1406 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1407 qtype); 1408 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1409 PF_FW_ARQLEN_ARQCRIT_M); 1410 if (oldval != val) 1411 wr32(hw, cq->rq.len, val); 1412 } 1413 1414 val = rd32(hw, cq->sq.len); 1415 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1416 PF_FW_ATQLEN_ATQCRIT_M)) { 1417 oldval = val; 1418 if (val & PF_FW_ATQLEN_ATQVFE_M) 1419 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1420 qtype); 1421 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1422 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1423 qtype); 1424 } 1425 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1426 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1427 qtype); 1428 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1429 PF_FW_ATQLEN_ATQCRIT_M); 1430 if (oldval != val) 1431 wr32(hw, cq->sq.len, val); 1432 } 1433 1434 event.buf_len = cq->rq_buf_size; 1435 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1436 if (!event.msg_buf) 1437 return 0; 1438 1439 do { 1440 u16 opcode; 1441 int ret; 1442 1443 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1444 if (ret == -EALREADY) 1445 break; 1446 if (ret) { 1447 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1448 ret); 1449 break; 1450 } 1451 1452 opcode = le16_to_cpu(event.desc.opcode); 1453 1454 /* Notify any thread that might be waiting for this event */ 1455 ice_aq_check_events(pf, opcode, &event); 1456 1457 switch (opcode) { 1458 case ice_aqc_opc_get_link_status: 1459 if (ice_handle_link_event(pf, &event)) 1460 dev_err(dev, "Could not handle link event\n"); 1461 break; 1462 case ice_aqc_opc_event_lan_overflow: 1463 ice_vf_lan_overflow_event(pf, &event); 1464 break; 1465 case ice_mbx_opc_send_msg_to_pf: 1466 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1467 ice_vc_process_vf_msg(pf, &event); 1468 break; 1469 case ice_aqc_opc_fw_logging: 1470 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1471 break; 1472 case ice_aqc_opc_lldp_set_mib_change: 1473 ice_dcb_process_lldp_set_mib_change(pf, &event); 1474 break; 1475 default: 1476 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1477 qtype, opcode); 1478 break; 1479 } 1480 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1481 1482 kfree(event.msg_buf); 1483 1484 return pending && (i == ICE_DFLT_IRQ_WORK); 1485 } 1486 1487 /** 1488 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1489 * @hw: pointer to hardware info 1490 * @cq: control queue information 1491 * 1492 * returns true if there are pending messages in a queue, false if there aren't 1493 */ 1494 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1495 { 1496 u16 ntu; 1497 1498 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1499 return cq->rq.next_to_clean != ntu; 1500 } 1501 1502 /** 1503 * ice_clean_adminq_subtask - clean the AdminQ rings 1504 * @pf: board private structure 1505 */ 1506 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1507 { 1508 struct ice_hw *hw = &pf->hw; 1509 1510 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1511 return; 1512 1513 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1514 return; 1515 1516 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1517 1518 /* There might be a situation where new messages arrive to a control 1519 * queue between processing the last message and clearing the 1520 * EVENT_PENDING bit. So before exiting, check queue head again (using 1521 * ice_ctrlq_pending) and process new messages if any. 1522 */ 1523 if (ice_ctrlq_pending(hw, &hw->adminq)) 1524 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1525 1526 ice_flush(hw); 1527 } 1528 1529 /** 1530 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1531 * @pf: board private structure 1532 */ 1533 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1534 { 1535 struct ice_hw *hw = &pf->hw; 1536 1537 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1538 return; 1539 1540 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1541 return; 1542 1543 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1544 1545 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1546 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1547 1548 ice_flush(hw); 1549 } 1550 1551 /** 1552 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1553 * @pf: board private structure 1554 */ 1555 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1556 { 1557 struct ice_hw *hw = &pf->hw; 1558 1559 /* Nothing to do here if sideband queue is not supported */ 1560 if (!ice_is_sbq_supported(hw)) { 1561 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1562 return; 1563 } 1564 1565 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1566 return; 1567 1568 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1569 return; 1570 1571 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1572 1573 if (ice_ctrlq_pending(hw, &hw->sbq)) 1574 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1575 1576 ice_flush(hw); 1577 } 1578 1579 /** 1580 * ice_service_task_schedule - schedule the service task to wake up 1581 * @pf: board private structure 1582 * 1583 * If not already scheduled, this puts the task into the work queue. 1584 */ 1585 void ice_service_task_schedule(struct ice_pf *pf) 1586 { 1587 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1588 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1589 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1590 queue_work(ice_wq, &pf->serv_task); 1591 } 1592 1593 /** 1594 * ice_service_task_complete - finish up the service task 1595 * @pf: board private structure 1596 */ 1597 static void ice_service_task_complete(struct ice_pf *pf) 1598 { 1599 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1600 1601 /* force memory (pf->state) to sync before next service task */ 1602 smp_mb__before_atomic(); 1603 clear_bit(ICE_SERVICE_SCHED, pf->state); 1604 } 1605 1606 /** 1607 * ice_service_task_stop - stop service task and cancel works 1608 * @pf: board private structure 1609 * 1610 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1611 * 1 otherwise. 1612 */ 1613 static int ice_service_task_stop(struct ice_pf *pf) 1614 { 1615 int ret; 1616 1617 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1618 1619 if (pf->serv_tmr.function) 1620 del_timer_sync(&pf->serv_tmr); 1621 if (pf->serv_task.func) 1622 cancel_work_sync(&pf->serv_task); 1623 1624 clear_bit(ICE_SERVICE_SCHED, pf->state); 1625 return ret; 1626 } 1627 1628 /** 1629 * ice_service_task_restart - restart service task and schedule works 1630 * @pf: board private structure 1631 * 1632 * This function is needed for suspend and resume works (e.g WoL scenario) 1633 */ 1634 static void ice_service_task_restart(struct ice_pf *pf) 1635 { 1636 clear_bit(ICE_SERVICE_DIS, pf->state); 1637 ice_service_task_schedule(pf); 1638 } 1639 1640 /** 1641 * ice_service_timer - timer callback to schedule service task 1642 * @t: pointer to timer_list 1643 */ 1644 static void ice_service_timer(struct timer_list *t) 1645 { 1646 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1647 1648 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1649 ice_service_task_schedule(pf); 1650 } 1651 1652 /** 1653 * ice_handle_mdd_event - handle malicious driver detect event 1654 * @pf: pointer to the PF structure 1655 * 1656 * Called from service task. OICR interrupt handler indicates MDD event. 1657 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1658 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1659 * disable the queue, the PF can be configured to reset the VF using ethtool 1660 * private flag mdd-auto-reset-vf. 1661 */ 1662 static void ice_handle_mdd_event(struct ice_pf *pf) 1663 { 1664 struct device *dev = ice_pf_to_dev(pf); 1665 struct ice_hw *hw = &pf->hw; 1666 unsigned int i; 1667 u32 reg; 1668 1669 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1670 /* Since the VF MDD event logging is rate limited, check if 1671 * there are pending MDD events. 1672 */ 1673 ice_print_vfs_mdd_events(pf); 1674 return; 1675 } 1676 1677 /* find what triggered an MDD event */ 1678 reg = rd32(hw, GL_MDET_TX_PQM); 1679 if (reg & GL_MDET_TX_PQM_VALID_M) { 1680 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1681 GL_MDET_TX_PQM_PF_NUM_S; 1682 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1683 GL_MDET_TX_PQM_VF_NUM_S; 1684 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1685 GL_MDET_TX_PQM_MAL_TYPE_S; 1686 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1687 GL_MDET_TX_PQM_QNUM_S); 1688 1689 if (netif_msg_tx_err(pf)) 1690 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1691 event, queue, pf_num, vf_num); 1692 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1693 } 1694 1695 reg = rd32(hw, GL_MDET_TX_TCLAN); 1696 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1697 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1698 GL_MDET_TX_TCLAN_PF_NUM_S; 1699 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1700 GL_MDET_TX_TCLAN_VF_NUM_S; 1701 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1702 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1703 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1704 GL_MDET_TX_TCLAN_QNUM_S); 1705 1706 if (netif_msg_tx_err(pf)) 1707 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1708 event, queue, pf_num, vf_num); 1709 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1710 } 1711 1712 reg = rd32(hw, GL_MDET_RX); 1713 if (reg & GL_MDET_RX_VALID_M) { 1714 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1715 GL_MDET_RX_PF_NUM_S; 1716 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1717 GL_MDET_RX_VF_NUM_S; 1718 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1719 GL_MDET_RX_MAL_TYPE_S; 1720 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1721 GL_MDET_RX_QNUM_S); 1722 1723 if (netif_msg_rx_err(pf)) 1724 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1725 event, queue, pf_num, vf_num); 1726 wr32(hw, GL_MDET_RX, 0xffffffff); 1727 } 1728 1729 /* check to see if this PF caused an MDD event */ 1730 reg = rd32(hw, PF_MDET_TX_PQM); 1731 if (reg & PF_MDET_TX_PQM_VALID_M) { 1732 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1733 if (netif_msg_tx_err(pf)) 1734 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1735 } 1736 1737 reg = rd32(hw, PF_MDET_TX_TCLAN); 1738 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1739 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1740 if (netif_msg_tx_err(pf)) 1741 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1742 } 1743 1744 reg = rd32(hw, PF_MDET_RX); 1745 if (reg & PF_MDET_RX_VALID_M) { 1746 wr32(hw, PF_MDET_RX, 0xFFFF); 1747 if (netif_msg_rx_err(pf)) 1748 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1749 } 1750 1751 /* Check to see if one of the VFs caused an MDD event, and then 1752 * increment counters and set print pending 1753 */ 1754 ice_for_each_vf(pf, i) { 1755 struct ice_vf *vf = &pf->vf[i]; 1756 1757 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1758 if (reg & VP_MDET_TX_PQM_VALID_M) { 1759 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1760 vf->mdd_tx_events.count++; 1761 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1764 i); 1765 } 1766 1767 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1768 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1769 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1770 vf->mdd_tx_events.count++; 1771 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1772 if (netif_msg_tx_err(pf)) 1773 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1774 i); 1775 } 1776 1777 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1778 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1779 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1780 vf->mdd_tx_events.count++; 1781 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1782 if (netif_msg_tx_err(pf)) 1783 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1784 i); 1785 } 1786 1787 reg = rd32(hw, VP_MDET_RX(i)); 1788 if (reg & VP_MDET_RX_VALID_M) { 1789 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1790 vf->mdd_rx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_rx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1794 i); 1795 1796 /* Since the queue is disabled on VF Rx MDD events, the 1797 * PF can be configured to reset the VF through ethtool 1798 * private flag mdd-auto-reset-vf. 1799 */ 1800 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1801 /* VF MDD event counters will be cleared by 1802 * reset, so print the event prior to reset. 1803 */ 1804 ice_print_vf_rx_mdd_event(vf); 1805 ice_reset_vf(&pf->vf[i], false); 1806 } 1807 } 1808 } 1809 1810 ice_print_vfs_mdd_events(pf); 1811 } 1812 1813 /** 1814 * ice_force_phys_link_state - Force the physical link state 1815 * @vsi: VSI to force the physical link state to up/down 1816 * @link_up: true/false indicates to set the physical link to up/down 1817 * 1818 * Force the physical link state by getting the current PHY capabilities from 1819 * hardware and setting the PHY config based on the determined capabilities. If 1820 * link changes a link event will be triggered because both the Enable Automatic 1821 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1822 * 1823 * Returns 0 on success, negative on failure 1824 */ 1825 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1826 { 1827 struct ice_aqc_get_phy_caps_data *pcaps; 1828 struct ice_aqc_set_phy_cfg_data *cfg; 1829 struct ice_port_info *pi; 1830 struct device *dev; 1831 int retcode; 1832 1833 if (!vsi || !vsi->port_info || !vsi->back) 1834 return -EINVAL; 1835 if (vsi->type != ICE_VSI_PF) 1836 return 0; 1837 1838 dev = ice_pf_to_dev(vsi->back); 1839 1840 pi = vsi->port_info; 1841 1842 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1843 if (!pcaps) 1844 return -ENOMEM; 1845 1846 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1847 NULL); 1848 if (retcode) { 1849 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1850 vsi->vsi_num, retcode); 1851 retcode = -EIO; 1852 goto out; 1853 } 1854 1855 /* No change in link */ 1856 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1857 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1858 goto out; 1859 1860 /* Use the current user PHY configuration. The current user PHY 1861 * configuration is initialized during probe from PHY capabilities 1862 * software mode, and updated on set PHY configuration. 1863 */ 1864 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1865 if (!cfg) { 1866 retcode = -ENOMEM; 1867 goto out; 1868 } 1869 1870 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1871 if (link_up) 1872 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1873 else 1874 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1875 1876 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1877 if (retcode) { 1878 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1879 vsi->vsi_num, retcode); 1880 retcode = -EIO; 1881 } 1882 1883 kfree(cfg); 1884 out: 1885 kfree(pcaps); 1886 return retcode; 1887 } 1888 1889 /** 1890 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1891 * @pi: port info structure 1892 * 1893 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1894 */ 1895 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1896 { 1897 struct ice_aqc_get_phy_caps_data *pcaps; 1898 struct ice_pf *pf = pi->hw->back; 1899 int err; 1900 1901 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1902 if (!pcaps) 1903 return -ENOMEM; 1904 1905 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1906 pcaps, NULL); 1907 1908 if (err) { 1909 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1910 goto out; 1911 } 1912 1913 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1914 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1915 1916 out: 1917 kfree(pcaps); 1918 return err; 1919 } 1920 1921 /** 1922 * ice_init_link_dflt_override - Initialize link default override 1923 * @pi: port info structure 1924 * 1925 * Initialize link default override and PHY total port shutdown during probe 1926 */ 1927 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1928 { 1929 struct ice_link_default_override_tlv *ldo; 1930 struct ice_pf *pf = pi->hw->back; 1931 1932 ldo = &pf->link_dflt_override; 1933 if (ice_get_link_default_override(ldo, pi)) 1934 return; 1935 1936 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1937 return; 1938 1939 /* Enable Total Port Shutdown (override/replace link-down-on-close 1940 * ethtool private flag) for ports with Port Disable bit set. 1941 */ 1942 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1943 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1944 } 1945 1946 /** 1947 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1948 * @pi: port info structure 1949 * 1950 * If default override is enabled, initialize the user PHY cfg speed and FEC 1951 * settings using the default override mask from the NVM. 1952 * 1953 * The PHY should only be configured with the default override settings the 1954 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1955 * is used to indicate that the user PHY cfg default override is initialized 1956 * and the PHY has not been configured with the default override settings. The 1957 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1958 * configured. 1959 * 1960 * This function should be called only if the FW doesn't support default 1961 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1962 */ 1963 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1964 { 1965 struct ice_link_default_override_tlv *ldo; 1966 struct ice_aqc_set_phy_cfg_data *cfg; 1967 struct ice_phy_info *phy = &pi->phy; 1968 struct ice_pf *pf = pi->hw->back; 1969 1970 ldo = &pf->link_dflt_override; 1971 1972 /* If link default override is enabled, use to mask NVM PHY capabilities 1973 * for speed and FEC default configuration. 1974 */ 1975 cfg = &phy->curr_user_phy_cfg; 1976 1977 if (ldo->phy_type_low || ldo->phy_type_high) { 1978 cfg->phy_type_low = pf->nvm_phy_type_lo & 1979 cpu_to_le64(ldo->phy_type_low); 1980 cfg->phy_type_high = pf->nvm_phy_type_hi & 1981 cpu_to_le64(ldo->phy_type_high); 1982 } 1983 cfg->link_fec_opt = ldo->fec_options; 1984 phy->curr_user_fec_req = ICE_FEC_AUTO; 1985 1986 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1987 } 1988 1989 /** 1990 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1991 * @pi: port info structure 1992 * 1993 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1994 * mode to default. The PHY defaults are from get PHY capabilities topology 1995 * with media so call when media is first available. An error is returned if 1996 * called when media is not available. The PHY initialization completed state is 1997 * set here. 1998 * 1999 * These configurations are used when setting PHY 2000 * configuration. The user PHY configuration is updated on set PHY 2001 * configuration. Returns 0 on success, negative on failure 2002 */ 2003 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2004 { 2005 struct ice_aqc_get_phy_caps_data *pcaps; 2006 struct ice_phy_info *phy = &pi->phy; 2007 struct ice_pf *pf = pi->hw->back; 2008 int err; 2009 2010 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2011 return -EIO; 2012 2013 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2014 if (!pcaps) 2015 return -ENOMEM; 2016 2017 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2018 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2019 pcaps, NULL); 2020 else 2021 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2022 pcaps, NULL); 2023 if (err) { 2024 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2025 goto err_out; 2026 } 2027 2028 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2029 2030 /* check if lenient mode is supported and enabled */ 2031 if (ice_fw_supports_link_override(pi->hw) && 2032 !(pcaps->module_compliance_enforcement & 2033 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2034 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2035 2036 /* if the FW supports default PHY configuration mode, then the driver 2037 * does not have to apply link override settings. If not, 2038 * initialize user PHY configuration with link override values 2039 */ 2040 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2041 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2042 ice_init_phy_cfg_dflt_override(pi); 2043 goto out; 2044 } 2045 } 2046 2047 /* if link default override is not enabled, set user flow control and 2048 * FEC settings based on what get_phy_caps returned 2049 */ 2050 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2051 pcaps->link_fec_options); 2052 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2053 2054 out: 2055 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2056 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2057 err_out: 2058 kfree(pcaps); 2059 return err; 2060 } 2061 2062 /** 2063 * ice_configure_phy - configure PHY 2064 * @vsi: VSI of PHY 2065 * 2066 * Set the PHY configuration. If the current PHY configuration is the same as 2067 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2068 * configure the based get PHY capabilities for topology with media. 2069 */ 2070 static int ice_configure_phy(struct ice_vsi *vsi) 2071 { 2072 struct device *dev = ice_pf_to_dev(vsi->back); 2073 struct ice_port_info *pi = vsi->port_info; 2074 struct ice_aqc_get_phy_caps_data *pcaps; 2075 struct ice_aqc_set_phy_cfg_data *cfg; 2076 struct ice_phy_info *phy = &pi->phy; 2077 struct ice_pf *pf = vsi->back; 2078 int err; 2079 2080 /* Ensure we have media as we cannot configure a medialess port */ 2081 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2082 return -EPERM; 2083 2084 ice_print_topo_conflict(vsi); 2085 2086 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2087 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2088 return -EPERM; 2089 2090 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2091 return ice_force_phys_link_state(vsi, true); 2092 2093 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2094 if (!pcaps) 2095 return -ENOMEM; 2096 2097 /* Get current PHY config */ 2098 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2099 NULL); 2100 if (err) { 2101 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2102 vsi->vsi_num, err); 2103 goto done; 2104 } 2105 2106 /* If PHY enable link is configured and configuration has not changed, 2107 * there's nothing to do 2108 */ 2109 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2110 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2111 goto done; 2112 2113 /* Use PHY topology as baseline for configuration */ 2114 memset(pcaps, 0, sizeof(*pcaps)); 2115 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2116 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2117 pcaps, NULL); 2118 else 2119 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2120 pcaps, NULL); 2121 if (err) { 2122 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2123 vsi->vsi_num, err); 2124 goto done; 2125 } 2126 2127 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2128 if (!cfg) { 2129 err = -ENOMEM; 2130 goto done; 2131 } 2132 2133 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2134 2135 /* Speed - If default override pending, use curr_user_phy_cfg set in 2136 * ice_init_phy_user_cfg_ldo. 2137 */ 2138 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2139 vsi->back->state)) { 2140 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2141 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2142 } else { 2143 u64 phy_low = 0, phy_high = 0; 2144 2145 ice_update_phy_type(&phy_low, &phy_high, 2146 pi->phy.curr_user_speed_req); 2147 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2148 cfg->phy_type_high = pcaps->phy_type_high & 2149 cpu_to_le64(phy_high); 2150 } 2151 2152 /* Can't provide what was requested; use PHY capabilities */ 2153 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2154 cfg->phy_type_low = pcaps->phy_type_low; 2155 cfg->phy_type_high = pcaps->phy_type_high; 2156 } 2157 2158 /* FEC */ 2159 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2160 2161 /* Can't provide what was requested; use PHY capabilities */ 2162 if (cfg->link_fec_opt != 2163 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2164 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2165 cfg->link_fec_opt = pcaps->link_fec_options; 2166 } 2167 2168 /* Flow Control - always supported; no need to check against 2169 * capabilities 2170 */ 2171 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2172 2173 /* Enable link and link update */ 2174 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2175 2176 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2177 if (err) 2178 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2179 vsi->vsi_num, err); 2180 2181 kfree(cfg); 2182 done: 2183 kfree(pcaps); 2184 return err; 2185 } 2186 2187 /** 2188 * ice_check_media_subtask - Check for media 2189 * @pf: pointer to PF struct 2190 * 2191 * If media is available, then initialize PHY user configuration if it is not 2192 * been, and configure the PHY if the interface is up. 2193 */ 2194 static void ice_check_media_subtask(struct ice_pf *pf) 2195 { 2196 struct ice_port_info *pi; 2197 struct ice_vsi *vsi; 2198 int err; 2199 2200 /* No need to check for media if it's already present */ 2201 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2202 return; 2203 2204 vsi = ice_get_main_vsi(pf); 2205 if (!vsi) 2206 return; 2207 2208 /* Refresh link info and check if media is present */ 2209 pi = vsi->port_info; 2210 err = ice_update_link_info(pi); 2211 if (err) 2212 return; 2213 2214 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2215 2216 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2217 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2218 ice_init_phy_user_cfg(pi); 2219 2220 /* PHY settings are reset on media insertion, reconfigure 2221 * PHY to preserve settings. 2222 */ 2223 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2224 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2225 return; 2226 2227 err = ice_configure_phy(vsi); 2228 if (!err) 2229 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2230 2231 /* A Link Status Event will be generated; the event handler 2232 * will complete bringing the interface up 2233 */ 2234 } 2235 } 2236 2237 /** 2238 * ice_service_task - manage and run subtasks 2239 * @work: pointer to work_struct contained by the PF struct 2240 */ 2241 static void ice_service_task(struct work_struct *work) 2242 { 2243 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2244 unsigned long start_time = jiffies; 2245 2246 /* subtasks */ 2247 2248 /* process reset requests first */ 2249 ice_reset_subtask(pf); 2250 2251 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2252 if (ice_is_reset_in_progress(pf->state) || 2253 test_bit(ICE_SUSPENDED, pf->state) || 2254 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2255 ice_service_task_complete(pf); 2256 return; 2257 } 2258 2259 ice_clean_adminq_subtask(pf); 2260 ice_check_media_subtask(pf); 2261 ice_check_for_hang_subtask(pf); 2262 ice_sync_fltr_subtask(pf); 2263 ice_handle_mdd_event(pf); 2264 ice_watchdog_subtask(pf); 2265 2266 if (ice_is_safe_mode(pf)) { 2267 ice_service_task_complete(pf); 2268 return; 2269 } 2270 2271 ice_process_vflr_event(pf); 2272 ice_clean_mailboxq_subtask(pf); 2273 ice_clean_sbq_subtask(pf); 2274 ice_sync_arfs_fltrs(pf); 2275 ice_flush_fdir_ctx(pf); 2276 2277 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2278 ice_service_task_complete(pf); 2279 2280 /* If the tasks have taken longer than one service timer period 2281 * or there is more work to be done, reset the service timer to 2282 * schedule the service task now. 2283 */ 2284 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2285 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2286 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2287 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2288 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2289 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2290 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2291 mod_timer(&pf->serv_tmr, jiffies); 2292 } 2293 2294 /** 2295 * ice_set_ctrlq_len - helper function to set controlq length 2296 * @hw: pointer to the HW instance 2297 */ 2298 static void ice_set_ctrlq_len(struct ice_hw *hw) 2299 { 2300 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2301 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2302 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2303 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2304 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2305 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2306 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2307 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2308 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2309 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2310 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2311 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2312 } 2313 2314 /** 2315 * ice_schedule_reset - schedule a reset 2316 * @pf: board private structure 2317 * @reset: reset being requested 2318 */ 2319 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2320 { 2321 struct device *dev = ice_pf_to_dev(pf); 2322 2323 /* bail out if earlier reset has failed */ 2324 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2325 dev_dbg(dev, "earlier reset has failed\n"); 2326 return -EIO; 2327 } 2328 /* bail if reset/recovery already in progress */ 2329 if (ice_is_reset_in_progress(pf->state)) { 2330 dev_dbg(dev, "Reset already in progress\n"); 2331 return -EBUSY; 2332 } 2333 2334 ice_unplug_aux_dev(pf); 2335 2336 switch (reset) { 2337 case ICE_RESET_PFR: 2338 set_bit(ICE_PFR_REQ, pf->state); 2339 break; 2340 case ICE_RESET_CORER: 2341 set_bit(ICE_CORER_REQ, pf->state); 2342 break; 2343 case ICE_RESET_GLOBR: 2344 set_bit(ICE_GLOBR_REQ, pf->state); 2345 break; 2346 default: 2347 return -EINVAL; 2348 } 2349 2350 ice_service_task_schedule(pf); 2351 return 0; 2352 } 2353 2354 /** 2355 * ice_irq_affinity_notify - Callback for affinity changes 2356 * @notify: context as to what irq was changed 2357 * @mask: the new affinity mask 2358 * 2359 * This is a callback function used by the irq_set_affinity_notifier function 2360 * so that we may register to receive changes to the irq affinity masks. 2361 */ 2362 static void 2363 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2364 const cpumask_t *mask) 2365 { 2366 struct ice_q_vector *q_vector = 2367 container_of(notify, struct ice_q_vector, affinity_notify); 2368 2369 cpumask_copy(&q_vector->affinity_mask, mask); 2370 } 2371 2372 /** 2373 * ice_irq_affinity_release - Callback for affinity notifier release 2374 * @ref: internal core kernel usage 2375 * 2376 * This is a callback function used by the irq_set_affinity_notifier function 2377 * to inform the current notification subscriber that they will no longer 2378 * receive notifications. 2379 */ 2380 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2381 2382 /** 2383 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2384 * @vsi: the VSI being configured 2385 */ 2386 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2387 { 2388 struct ice_hw *hw = &vsi->back->hw; 2389 int i; 2390 2391 ice_for_each_q_vector(vsi, i) 2392 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2393 2394 ice_flush(hw); 2395 return 0; 2396 } 2397 2398 /** 2399 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2400 * @vsi: the VSI being configured 2401 * @basename: name for the vector 2402 */ 2403 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2404 { 2405 int q_vectors = vsi->num_q_vectors; 2406 struct ice_pf *pf = vsi->back; 2407 int base = vsi->base_vector; 2408 struct device *dev; 2409 int rx_int_idx = 0; 2410 int tx_int_idx = 0; 2411 int vector, err; 2412 int irq_num; 2413 2414 dev = ice_pf_to_dev(pf); 2415 for (vector = 0; vector < q_vectors; vector++) { 2416 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2417 2418 irq_num = pf->msix_entries[base + vector].vector; 2419 2420 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2421 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2422 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2423 tx_int_idx++; 2424 } else if (q_vector->rx.rx_ring) { 2425 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2426 "%s-%s-%d", basename, "rx", rx_int_idx++); 2427 } else if (q_vector->tx.tx_ring) { 2428 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2429 "%s-%s-%d", basename, "tx", tx_int_idx++); 2430 } else { 2431 /* skip this unused q_vector */ 2432 continue; 2433 } 2434 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2435 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2436 IRQF_SHARED, q_vector->name, 2437 q_vector); 2438 else 2439 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2440 0, q_vector->name, q_vector); 2441 if (err) { 2442 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2443 err); 2444 goto free_q_irqs; 2445 } 2446 2447 /* register for affinity change notifications */ 2448 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2449 struct irq_affinity_notify *affinity_notify; 2450 2451 affinity_notify = &q_vector->affinity_notify; 2452 affinity_notify->notify = ice_irq_affinity_notify; 2453 affinity_notify->release = ice_irq_affinity_release; 2454 irq_set_affinity_notifier(irq_num, affinity_notify); 2455 } 2456 2457 /* assign the mask for this irq */ 2458 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2459 } 2460 2461 vsi->irqs_ready = true; 2462 return 0; 2463 2464 free_q_irqs: 2465 while (vector) { 2466 vector--; 2467 irq_num = pf->msix_entries[base + vector].vector; 2468 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2469 irq_set_affinity_notifier(irq_num, NULL); 2470 irq_set_affinity_hint(irq_num, NULL); 2471 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2472 } 2473 return err; 2474 } 2475 2476 /** 2477 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2478 * @vsi: VSI to setup Tx rings used by XDP 2479 * 2480 * Return 0 on success and negative value on error 2481 */ 2482 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2483 { 2484 struct device *dev = ice_pf_to_dev(vsi->back); 2485 struct ice_tx_desc *tx_desc; 2486 int i, j; 2487 2488 ice_for_each_xdp_txq(vsi, i) { 2489 u16 xdp_q_idx = vsi->alloc_txq + i; 2490 struct ice_tx_ring *xdp_ring; 2491 2492 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2493 2494 if (!xdp_ring) 2495 goto free_xdp_rings; 2496 2497 xdp_ring->q_index = xdp_q_idx; 2498 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2499 xdp_ring->vsi = vsi; 2500 xdp_ring->netdev = NULL; 2501 xdp_ring->dev = dev; 2502 xdp_ring->count = vsi->num_tx_desc; 2503 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2504 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2505 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2506 if (ice_setup_tx_ring(xdp_ring)) 2507 goto free_xdp_rings; 2508 ice_set_ring_xdp(xdp_ring); 2509 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2510 spin_lock_init(&xdp_ring->tx_lock); 2511 for (j = 0; j < xdp_ring->count; j++) { 2512 tx_desc = ICE_TX_DESC(xdp_ring, j); 2513 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2514 } 2515 } 2516 2517 ice_for_each_rxq(vsi, i) { 2518 if (static_key_enabled(&ice_xdp_locking_key)) 2519 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2520 else 2521 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2522 } 2523 2524 return 0; 2525 2526 free_xdp_rings: 2527 for (; i >= 0; i--) 2528 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2529 ice_free_tx_ring(vsi->xdp_rings[i]); 2530 return -ENOMEM; 2531 } 2532 2533 /** 2534 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2535 * @vsi: VSI to set the bpf prog on 2536 * @prog: the bpf prog pointer 2537 */ 2538 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2539 { 2540 struct bpf_prog *old_prog; 2541 int i; 2542 2543 old_prog = xchg(&vsi->xdp_prog, prog); 2544 if (old_prog) 2545 bpf_prog_put(old_prog); 2546 2547 ice_for_each_rxq(vsi, i) 2548 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2549 } 2550 2551 /** 2552 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2553 * @vsi: VSI to bring up Tx rings used by XDP 2554 * @prog: bpf program that will be assigned to VSI 2555 * 2556 * Return 0 on success and negative value on error 2557 */ 2558 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2559 { 2560 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2561 int xdp_rings_rem = vsi->num_xdp_txq; 2562 struct ice_pf *pf = vsi->back; 2563 struct ice_qs_cfg xdp_qs_cfg = { 2564 .qs_mutex = &pf->avail_q_mutex, 2565 .pf_map = pf->avail_txqs, 2566 .pf_map_size = pf->max_pf_txqs, 2567 .q_count = vsi->num_xdp_txq, 2568 .scatter_count = ICE_MAX_SCATTER_TXQS, 2569 .vsi_map = vsi->txq_map, 2570 .vsi_map_offset = vsi->alloc_txq, 2571 .mapping_mode = ICE_VSI_MAP_CONTIG 2572 }; 2573 struct device *dev; 2574 int i, v_idx; 2575 int status; 2576 2577 dev = ice_pf_to_dev(pf); 2578 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2579 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2580 if (!vsi->xdp_rings) 2581 return -ENOMEM; 2582 2583 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2584 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2585 goto err_map_xdp; 2586 2587 if (static_key_enabled(&ice_xdp_locking_key)) 2588 netdev_warn(vsi->netdev, 2589 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2590 2591 if (ice_xdp_alloc_setup_rings(vsi)) 2592 goto clear_xdp_rings; 2593 2594 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2595 ice_for_each_q_vector(vsi, v_idx) { 2596 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2597 int xdp_rings_per_v, q_id, q_base; 2598 2599 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2600 vsi->num_q_vectors - v_idx); 2601 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2602 2603 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2604 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2605 2606 xdp_ring->q_vector = q_vector; 2607 xdp_ring->next = q_vector->tx.tx_ring; 2608 q_vector->tx.tx_ring = xdp_ring; 2609 } 2610 xdp_rings_rem -= xdp_rings_per_v; 2611 } 2612 2613 /* omit the scheduler update if in reset path; XDP queues will be 2614 * taken into account at the end of ice_vsi_rebuild, where 2615 * ice_cfg_vsi_lan is being called 2616 */ 2617 if (ice_is_reset_in_progress(pf->state)) 2618 return 0; 2619 2620 /* tell the Tx scheduler that right now we have 2621 * additional queues 2622 */ 2623 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2624 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2625 2626 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2627 max_txqs); 2628 if (status) { 2629 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2630 status); 2631 goto clear_xdp_rings; 2632 } 2633 2634 /* assign the prog only when it's not already present on VSI; 2635 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2636 * VSI rebuild that happens under ethtool -L can expose us to 2637 * the bpf_prog refcount issues as we would be swapping same 2638 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2639 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2640 * this is not harmful as dev_xdp_install bumps the refcount 2641 * before calling the op exposed by the driver; 2642 */ 2643 if (!ice_is_xdp_ena_vsi(vsi)) 2644 ice_vsi_assign_bpf_prog(vsi, prog); 2645 2646 return 0; 2647 clear_xdp_rings: 2648 ice_for_each_xdp_txq(vsi, i) 2649 if (vsi->xdp_rings[i]) { 2650 kfree_rcu(vsi->xdp_rings[i], rcu); 2651 vsi->xdp_rings[i] = NULL; 2652 } 2653 2654 err_map_xdp: 2655 mutex_lock(&pf->avail_q_mutex); 2656 ice_for_each_xdp_txq(vsi, i) { 2657 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2658 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2659 } 2660 mutex_unlock(&pf->avail_q_mutex); 2661 2662 devm_kfree(dev, vsi->xdp_rings); 2663 return -ENOMEM; 2664 } 2665 2666 /** 2667 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2668 * @vsi: VSI to remove XDP rings 2669 * 2670 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2671 * resources 2672 */ 2673 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2674 { 2675 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2676 struct ice_pf *pf = vsi->back; 2677 int i, v_idx; 2678 2679 /* q_vectors are freed in reset path so there's no point in detaching 2680 * rings; in case of rebuild being triggered not from reset bits 2681 * in pf->state won't be set, so additionally check first q_vector 2682 * against NULL 2683 */ 2684 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2685 goto free_qmap; 2686 2687 ice_for_each_q_vector(vsi, v_idx) { 2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2689 struct ice_tx_ring *ring; 2690 2691 ice_for_each_tx_ring(ring, q_vector->tx) 2692 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2693 break; 2694 2695 /* restore the value of last node prior to XDP setup */ 2696 q_vector->tx.tx_ring = ring; 2697 } 2698 2699 free_qmap: 2700 mutex_lock(&pf->avail_q_mutex); 2701 ice_for_each_xdp_txq(vsi, i) { 2702 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2703 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2704 } 2705 mutex_unlock(&pf->avail_q_mutex); 2706 2707 ice_for_each_xdp_txq(vsi, i) 2708 if (vsi->xdp_rings[i]) { 2709 if (vsi->xdp_rings[i]->desc) 2710 ice_free_tx_ring(vsi->xdp_rings[i]); 2711 kfree_rcu(vsi->xdp_rings[i], rcu); 2712 vsi->xdp_rings[i] = NULL; 2713 } 2714 2715 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2716 vsi->xdp_rings = NULL; 2717 2718 if (static_key_enabled(&ice_xdp_locking_key)) 2719 static_branch_dec(&ice_xdp_locking_key); 2720 2721 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2722 return 0; 2723 2724 ice_vsi_assign_bpf_prog(vsi, NULL); 2725 2726 /* notify Tx scheduler that we destroyed XDP queues and bring 2727 * back the old number of child nodes 2728 */ 2729 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2730 max_txqs[i] = vsi->num_txq; 2731 2732 /* change number of XDP Tx queues to 0 */ 2733 vsi->num_xdp_txq = 0; 2734 2735 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2736 max_txqs); 2737 } 2738 2739 /** 2740 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2741 * @vsi: VSI to schedule napi on 2742 */ 2743 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2744 { 2745 int i; 2746 2747 ice_for_each_rxq(vsi, i) { 2748 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2749 2750 if (rx_ring->xsk_pool) 2751 napi_schedule(&rx_ring->q_vector->napi); 2752 } 2753 } 2754 2755 /** 2756 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2757 * @vsi: VSI to determine the count of XDP Tx qs 2758 * 2759 * returns 0 if Tx qs count is higher than at least half of CPU count, 2760 * -ENOMEM otherwise 2761 */ 2762 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2763 { 2764 u16 avail = ice_get_avail_txq_count(vsi->back); 2765 u16 cpus = num_possible_cpus(); 2766 2767 if (avail < cpus / 2) 2768 return -ENOMEM; 2769 2770 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2771 2772 if (vsi->num_xdp_txq < cpus) 2773 static_branch_inc(&ice_xdp_locking_key); 2774 2775 return 0; 2776 } 2777 2778 /** 2779 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2780 * @vsi: VSI to setup XDP for 2781 * @prog: XDP program 2782 * @extack: netlink extended ack 2783 */ 2784 static int 2785 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2786 struct netlink_ext_ack *extack) 2787 { 2788 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2789 bool if_running = netif_running(vsi->netdev); 2790 int ret = 0, xdp_ring_err = 0; 2791 2792 if (frame_size > vsi->rx_buf_len) { 2793 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2794 return -EOPNOTSUPP; 2795 } 2796 2797 /* need to stop netdev while setting up the program for Rx rings */ 2798 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2799 ret = ice_down(vsi); 2800 if (ret) { 2801 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2802 return ret; 2803 } 2804 } 2805 2806 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2807 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2808 if (xdp_ring_err) { 2809 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2810 } else { 2811 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2812 if (xdp_ring_err) 2813 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2814 } 2815 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2816 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2817 if (xdp_ring_err) 2818 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2819 } else { 2820 /* safe to call even when prog == vsi->xdp_prog as 2821 * dev_xdp_install in net/core/dev.c incremented prog's 2822 * refcount so corresponding bpf_prog_put won't cause 2823 * underflow 2824 */ 2825 ice_vsi_assign_bpf_prog(vsi, prog); 2826 } 2827 2828 if (if_running) 2829 ret = ice_up(vsi); 2830 2831 if (!ret && prog) 2832 ice_vsi_rx_napi_schedule(vsi); 2833 2834 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2835 } 2836 2837 /** 2838 * ice_xdp_safe_mode - XDP handler for safe mode 2839 * @dev: netdevice 2840 * @xdp: XDP command 2841 */ 2842 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2843 struct netdev_bpf *xdp) 2844 { 2845 NL_SET_ERR_MSG_MOD(xdp->extack, 2846 "Please provide working DDP firmware package in order to use XDP\n" 2847 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2848 return -EOPNOTSUPP; 2849 } 2850 2851 /** 2852 * ice_xdp - implements XDP handler 2853 * @dev: netdevice 2854 * @xdp: XDP command 2855 */ 2856 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2857 { 2858 struct ice_netdev_priv *np = netdev_priv(dev); 2859 struct ice_vsi *vsi = np->vsi; 2860 2861 if (vsi->type != ICE_VSI_PF) { 2862 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2863 return -EINVAL; 2864 } 2865 2866 switch (xdp->command) { 2867 case XDP_SETUP_PROG: 2868 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2869 case XDP_SETUP_XSK_POOL: 2870 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2871 xdp->xsk.queue_id); 2872 default: 2873 return -EINVAL; 2874 } 2875 } 2876 2877 /** 2878 * ice_ena_misc_vector - enable the non-queue interrupts 2879 * @pf: board private structure 2880 */ 2881 static void ice_ena_misc_vector(struct ice_pf *pf) 2882 { 2883 struct ice_hw *hw = &pf->hw; 2884 u32 val; 2885 2886 /* Disable anti-spoof detection interrupt to prevent spurious event 2887 * interrupts during a function reset. Anti-spoof functionally is 2888 * still supported. 2889 */ 2890 val = rd32(hw, GL_MDCK_TX_TDPU); 2891 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2892 wr32(hw, GL_MDCK_TX_TDPU, val); 2893 2894 /* clear things first */ 2895 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2896 rd32(hw, PFINT_OICR); /* read to clear */ 2897 2898 val = (PFINT_OICR_ECC_ERR_M | 2899 PFINT_OICR_MAL_DETECT_M | 2900 PFINT_OICR_GRST_M | 2901 PFINT_OICR_PCI_EXCEPTION_M | 2902 PFINT_OICR_VFLR_M | 2903 PFINT_OICR_HMC_ERR_M | 2904 PFINT_OICR_PE_PUSH_M | 2905 PFINT_OICR_PE_CRITERR_M); 2906 2907 wr32(hw, PFINT_OICR_ENA, val); 2908 2909 /* SW_ITR_IDX = 0, but don't change INTENA */ 2910 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2911 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2912 } 2913 2914 /** 2915 * ice_misc_intr - misc interrupt handler 2916 * @irq: interrupt number 2917 * @data: pointer to a q_vector 2918 */ 2919 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2920 { 2921 struct ice_pf *pf = (struct ice_pf *)data; 2922 struct ice_hw *hw = &pf->hw; 2923 irqreturn_t ret = IRQ_NONE; 2924 struct device *dev; 2925 u32 oicr, ena_mask; 2926 2927 dev = ice_pf_to_dev(pf); 2928 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2929 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2930 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2931 2932 oicr = rd32(hw, PFINT_OICR); 2933 ena_mask = rd32(hw, PFINT_OICR_ENA); 2934 2935 if (oicr & PFINT_OICR_SWINT_M) { 2936 ena_mask &= ~PFINT_OICR_SWINT_M; 2937 pf->sw_int_count++; 2938 } 2939 2940 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2941 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2942 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2943 } 2944 if (oicr & PFINT_OICR_VFLR_M) { 2945 /* disable any further VFLR event notifications */ 2946 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2947 u32 reg = rd32(hw, PFINT_OICR_ENA); 2948 2949 reg &= ~PFINT_OICR_VFLR_M; 2950 wr32(hw, PFINT_OICR_ENA, reg); 2951 } else { 2952 ena_mask &= ~PFINT_OICR_VFLR_M; 2953 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2954 } 2955 } 2956 2957 if (oicr & PFINT_OICR_GRST_M) { 2958 u32 reset; 2959 2960 /* we have a reset warning */ 2961 ena_mask &= ~PFINT_OICR_GRST_M; 2962 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2963 GLGEN_RSTAT_RESET_TYPE_S; 2964 2965 if (reset == ICE_RESET_CORER) 2966 pf->corer_count++; 2967 else if (reset == ICE_RESET_GLOBR) 2968 pf->globr_count++; 2969 else if (reset == ICE_RESET_EMPR) 2970 pf->empr_count++; 2971 else 2972 dev_dbg(dev, "Invalid reset type %d\n", reset); 2973 2974 /* If a reset cycle isn't already in progress, we set a bit in 2975 * pf->state so that the service task can start a reset/rebuild. 2976 */ 2977 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2978 if (reset == ICE_RESET_CORER) 2979 set_bit(ICE_CORER_RECV, pf->state); 2980 else if (reset == ICE_RESET_GLOBR) 2981 set_bit(ICE_GLOBR_RECV, pf->state); 2982 else 2983 set_bit(ICE_EMPR_RECV, pf->state); 2984 2985 /* There are couple of different bits at play here. 2986 * hw->reset_ongoing indicates whether the hardware is 2987 * in reset. This is set to true when a reset interrupt 2988 * is received and set back to false after the driver 2989 * has determined that the hardware is out of reset. 2990 * 2991 * ICE_RESET_OICR_RECV in pf->state indicates 2992 * that a post reset rebuild is required before the 2993 * driver is operational again. This is set above. 2994 * 2995 * As this is the start of the reset/rebuild cycle, set 2996 * both to indicate that. 2997 */ 2998 hw->reset_ongoing = true; 2999 } 3000 } 3001 3002 if (oicr & PFINT_OICR_TSYN_TX_M) { 3003 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3004 ice_ptp_process_ts(pf); 3005 } 3006 3007 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3008 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3009 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3010 3011 /* Save EVENTs from GTSYN register */ 3012 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3013 GLTSYN_STAT_EVENT1_M | 3014 GLTSYN_STAT_EVENT2_M); 3015 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3016 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3017 } 3018 3019 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3020 if (oicr & ICE_AUX_CRIT_ERR) { 3021 struct iidc_event *event; 3022 3023 ena_mask &= ~ICE_AUX_CRIT_ERR; 3024 event = kzalloc(sizeof(*event), GFP_KERNEL); 3025 if (event) { 3026 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3027 /* report the entire OICR value to AUX driver */ 3028 event->reg = oicr; 3029 ice_send_event_to_aux(pf, event); 3030 kfree(event); 3031 } 3032 } 3033 3034 /* Report any remaining unexpected interrupts */ 3035 oicr &= ena_mask; 3036 if (oicr) { 3037 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3038 /* If a critical error is pending there is no choice but to 3039 * reset the device. 3040 */ 3041 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3042 PFINT_OICR_ECC_ERR_M)) { 3043 set_bit(ICE_PFR_REQ, pf->state); 3044 ice_service_task_schedule(pf); 3045 } 3046 } 3047 ret = IRQ_HANDLED; 3048 3049 ice_service_task_schedule(pf); 3050 ice_irq_dynamic_ena(hw, NULL, NULL); 3051 3052 return ret; 3053 } 3054 3055 /** 3056 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3057 * @hw: pointer to HW structure 3058 */ 3059 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3060 { 3061 /* disable Admin queue Interrupt causes */ 3062 wr32(hw, PFINT_FW_CTL, 3063 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3064 3065 /* disable Mailbox queue Interrupt causes */ 3066 wr32(hw, PFINT_MBX_CTL, 3067 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3068 3069 wr32(hw, PFINT_SB_CTL, 3070 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3071 3072 /* disable Control queue Interrupt causes */ 3073 wr32(hw, PFINT_OICR_CTL, 3074 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3075 3076 ice_flush(hw); 3077 } 3078 3079 /** 3080 * ice_free_irq_msix_misc - Unroll misc vector setup 3081 * @pf: board private structure 3082 */ 3083 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3084 { 3085 struct ice_hw *hw = &pf->hw; 3086 3087 ice_dis_ctrlq_interrupts(hw); 3088 3089 /* disable OICR interrupt */ 3090 wr32(hw, PFINT_OICR_ENA, 0); 3091 ice_flush(hw); 3092 3093 if (pf->msix_entries) { 3094 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3095 devm_free_irq(ice_pf_to_dev(pf), 3096 pf->msix_entries[pf->oicr_idx].vector, pf); 3097 } 3098 3099 pf->num_avail_sw_msix += 1; 3100 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3101 } 3102 3103 /** 3104 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3105 * @hw: pointer to HW structure 3106 * @reg_idx: HW vector index to associate the control queue interrupts with 3107 */ 3108 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3109 { 3110 u32 val; 3111 3112 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3113 PFINT_OICR_CTL_CAUSE_ENA_M); 3114 wr32(hw, PFINT_OICR_CTL, val); 3115 3116 /* enable Admin queue Interrupt causes */ 3117 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3118 PFINT_FW_CTL_CAUSE_ENA_M); 3119 wr32(hw, PFINT_FW_CTL, val); 3120 3121 /* enable Mailbox queue Interrupt causes */ 3122 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3123 PFINT_MBX_CTL_CAUSE_ENA_M); 3124 wr32(hw, PFINT_MBX_CTL, val); 3125 3126 /* This enables Sideband queue Interrupt causes */ 3127 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3128 PFINT_SB_CTL_CAUSE_ENA_M); 3129 wr32(hw, PFINT_SB_CTL, val); 3130 3131 ice_flush(hw); 3132 } 3133 3134 /** 3135 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3136 * @pf: board private structure 3137 * 3138 * This sets up the handler for MSIX 0, which is used to manage the 3139 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3140 * when in MSI or Legacy interrupt mode. 3141 */ 3142 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3143 { 3144 struct device *dev = ice_pf_to_dev(pf); 3145 struct ice_hw *hw = &pf->hw; 3146 int oicr_idx, err = 0; 3147 3148 if (!pf->int_name[0]) 3149 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3150 dev_driver_string(dev), dev_name(dev)); 3151 3152 /* Do not request IRQ but do enable OICR interrupt since settings are 3153 * lost during reset. Note that this function is called only during 3154 * rebuild path and not while reset is in progress. 3155 */ 3156 if (ice_is_reset_in_progress(pf->state)) 3157 goto skip_req_irq; 3158 3159 /* reserve one vector in irq_tracker for misc interrupts */ 3160 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3161 if (oicr_idx < 0) 3162 return oicr_idx; 3163 3164 pf->num_avail_sw_msix -= 1; 3165 pf->oicr_idx = (u16)oicr_idx; 3166 3167 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3168 ice_misc_intr, 0, pf->int_name, pf); 3169 if (err) { 3170 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3171 pf->int_name, err); 3172 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3173 pf->num_avail_sw_msix += 1; 3174 return err; 3175 } 3176 3177 skip_req_irq: 3178 ice_ena_misc_vector(pf); 3179 3180 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3181 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3182 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3183 3184 ice_flush(hw); 3185 ice_irq_dynamic_ena(hw, NULL, NULL); 3186 3187 return 0; 3188 } 3189 3190 /** 3191 * ice_napi_add - register NAPI handler for the VSI 3192 * @vsi: VSI for which NAPI handler is to be registered 3193 * 3194 * This function is only called in the driver's load path. Registering the NAPI 3195 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3196 * reset/rebuild, etc.) 3197 */ 3198 static void ice_napi_add(struct ice_vsi *vsi) 3199 { 3200 int v_idx; 3201 3202 if (!vsi->netdev) 3203 return; 3204 3205 ice_for_each_q_vector(vsi, v_idx) 3206 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3207 ice_napi_poll, NAPI_POLL_WEIGHT); 3208 } 3209 3210 /** 3211 * ice_set_ops - set netdev and ethtools ops for the given netdev 3212 * @netdev: netdev instance 3213 */ 3214 static void ice_set_ops(struct net_device *netdev) 3215 { 3216 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3217 3218 if (ice_is_safe_mode(pf)) { 3219 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3220 ice_set_ethtool_safe_mode_ops(netdev); 3221 return; 3222 } 3223 3224 netdev->netdev_ops = &ice_netdev_ops; 3225 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3226 ice_set_ethtool_ops(netdev); 3227 } 3228 3229 /** 3230 * ice_set_netdev_features - set features for the given netdev 3231 * @netdev: netdev instance 3232 */ 3233 static void ice_set_netdev_features(struct net_device *netdev) 3234 { 3235 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3236 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3237 netdev_features_t csumo_features; 3238 netdev_features_t vlano_features; 3239 netdev_features_t dflt_features; 3240 netdev_features_t tso_features; 3241 3242 if (ice_is_safe_mode(pf)) { 3243 /* safe mode */ 3244 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3245 netdev->hw_features = netdev->features; 3246 return; 3247 } 3248 3249 dflt_features = NETIF_F_SG | 3250 NETIF_F_HIGHDMA | 3251 NETIF_F_NTUPLE | 3252 NETIF_F_RXHASH; 3253 3254 csumo_features = NETIF_F_RXCSUM | 3255 NETIF_F_IP_CSUM | 3256 NETIF_F_SCTP_CRC | 3257 NETIF_F_IPV6_CSUM; 3258 3259 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3260 NETIF_F_HW_VLAN_CTAG_TX | 3261 NETIF_F_HW_VLAN_CTAG_RX; 3262 3263 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3264 if (is_dvm_ena) 3265 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3266 3267 tso_features = NETIF_F_TSO | 3268 NETIF_F_TSO_ECN | 3269 NETIF_F_TSO6 | 3270 NETIF_F_GSO_GRE | 3271 NETIF_F_GSO_UDP_TUNNEL | 3272 NETIF_F_GSO_GRE_CSUM | 3273 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3274 NETIF_F_GSO_PARTIAL | 3275 NETIF_F_GSO_IPXIP4 | 3276 NETIF_F_GSO_IPXIP6 | 3277 NETIF_F_GSO_UDP_L4; 3278 3279 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3280 NETIF_F_GSO_GRE_CSUM; 3281 /* set features that user can change */ 3282 netdev->hw_features = dflt_features | csumo_features | 3283 vlano_features | tso_features; 3284 3285 /* add support for HW_CSUM on packets with MPLS header */ 3286 netdev->mpls_features = NETIF_F_HW_CSUM; 3287 3288 /* enable features */ 3289 netdev->features |= netdev->hw_features; 3290 3291 netdev->hw_features |= NETIF_F_HW_TC; 3292 3293 /* encap and VLAN devices inherit default, csumo and tso features */ 3294 netdev->hw_enc_features |= dflt_features | csumo_features | 3295 tso_features; 3296 netdev->vlan_features |= dflt_features | csumo_features | 3297 tso_features; 3298 3299 /* advertise support but don't enable by default since only one type of 3300 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3301 * type turns on the other has to be turned off. This is enforced by the 3302 * ice_fix_features() ndo callback. 3303 */ 3304 if (is_dvm_ena) 3305 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3306 NETIF_F_HW_VLAN_STAG_TX; 3307 } 3308 3309 /** 3310 * ice_cfg_netdev - Allocate, configure and register a netdev 3311 * @vsi: the VSI associated with the new netdev 3312 * 3313 * Returns 0 on success, negative value on failure 3314 */ 3315 static int ice_cfg_netdev(struct ice_vsi *vsi) 3316 { 3317 struct ice_netdev_priv *np; 3318 struct net_device *netdev; 3319 u8 mac_addr[ETH_ALEN]; 3320 3321 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3322 vsi->alloc_rxq); 3323 if (!netdev) 3324 return -ENOMEM; 3325 3326 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3327 vsi->netdev = netdev; 3328 np = netdev_priv(netdev); 3329 np->vsi = vsi; 3330 3331 ice_set_netdev_features(netdev); 3332 3333 ice_set_ops(netdev); 3334 3335 if (vsi->type == ICE_VSI_PF) { 3336 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3337 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3338 eth_hw_addr_set(netdev, mac_addr); 3339 ether_addr_copy(netdev->perm_addr, mac_addr); 3340 } 3341 3342 netdev->priv_flags |= IFF_UNICAST_FLT; 3343 3344 /* Setup netdev TC information */ 3345 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3346 3347 /* setup watchdog timeout value to be 5 second */ 3348 netdev->watchdog_timeo = 5 * HZ; 3349 3350 netdev->min_mtu = ETH_MIN_MTU; 3351 netdev->max_mtu = ICE_MAX_MTU; 3352 3353 return 0; 3354 } 3355 3356 /** 3357 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3358 * @lut: Lookup table 3359 * @rss_table_size: Lookup table size 3360 * @rss_size: Range of queue number for hashing 3361 */ 3362 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3363 { 3364 u16 i; 3365 3366 for (i = 0; i < rss_table_size; i++) 3367 lut[i] = i % rss_size; 3368 } 3369 3370 /** 3371 * ice_pf_vsi_setup - Set up a PF VSI 3372 * @pf: board private structure 3373 * @pi: pointer to the port_info instance 3374 * 3375 * Returns pointer to the successfully allocated VSI software struct 3376 * on success, otherwise returns NULL on failure. 3377 */ 3378 static struct ice_vsi * 3379 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3380 { 3381 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3382 } 3383 3384 static struct ice_vsi * 3385 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3386 struct ice_channel *ch) 3387 { 3388 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3389 } 3390 3391 /** 3392 * ice_ctrl_vsi_setup - Set up a control VSI 3393 * @pf: board private structure 3394 * @pi: pointer to the port_info instance 3395 * 3396 * Returns pointer to the successfully allocated VSI software struct 3397 * on success, otherwise returns NULL on failure. 3398 */ 3399 static struct ice_vsi * 3400 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3401 { 3402 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3403 } 3404 3405 /** 3406 * ice_lb_vsi_setup - Set up a loopback VSI 3407 * @pf: board private structure 3408 * @pi: pointer to the port_info instance 3409 * 3410 * Returns pointer to the successfully allocated VSI software struct 3411 * on success, otherwise returns NULL on failure. 3412 */ 3413 struct ice_vsi * 3414 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3415 { 3416 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3417 } 3418 3419 /** 3420 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3421 * @netdev: network interface to be adjusted 3422 * @proto: VLAN TPID 3423 * @vid: VLAN ID to be added 3424 * 3425 * net_device_ops implementation for adding VLAN IDs 3426 */ 3427 static int 3428 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3429 { 3430 struct ice_netdev_priv *np = netdev_priv(netdev); 3431 struct ice_vsi_vlan_ops *vlan_ops; 3432 struct ice_vsi *vsi = np->vsi; 3433 struct ice_vlan vlan; 3434 int ret; 3435 3436 /* VLAN 0 is added by default during load/reset */ 3437 if (!vid) 3438 return 0; 3439 3440 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3441 3442 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3443 * packets aren't pruned by the device's internal switch on Rx 3444 */ 3445 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3446 ret = vlan_ops->add_vlan(vsi, &vlan); 3447 if (!ret) 3448 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3449 3450 return ret; 3451 } 3452 3453 /** 3454 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3455 * @netdev: network interface to be adjusted 3456 * @proto: VLAN TPID 3457 * @vid: VLAN ID to be removed 3458 * 3459 * net_device_ops implementation for removing VLAN IDs 3460 */ 3461 static int 3462 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3463 { 3464 struct ice_netdev_priv *np = netdev_priv(netdev); 3465 struct ice_vsi_vlan_ops *vlan_ops; 3466 struct ice_vsi *vsi = np->vsi; 3467 struct ice_vlan vlan; 3468 int ret; 3469 3470 /* don't allow removal of VLAN 0 */ 3471 if (!vid) 3472 return 0; 3473 3474 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3475 3476 /* Make sure VLAN delete is successful before updating VLAN 3477 * information 3478 */ 3479 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3480 ret = vlan_ops->del_vlan(vsi, &vlan); 3481 if (ret) 3482 return ret; 3483 3484 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3485 return 0; 3486 } 3487 3488 /** 3489 * ice_rep_indr_tc_block_unbind 3490 * @cb_priv: indirection block private data 3491 */ 3492 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3493 { 3494 struct ice_indr_block_priv *indr_priv = cb_priv; 3495 3496 list_del(&indr_priv->list); 3497 kfree(indr_priv); 3498 } 3499 3500 /** 3501 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3502 * @vsi: VSI struct which has the netdev 3503 */ 3504 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3505 { 3506 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3507 3508 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3509 ice_rep_indr_tc_block_unbind); 3510 } 3511 3512 /** 3513 * ice_tc_indir_block_remove - clean indirect TC block notifications 3514 * @pf: PF structure 3515 */ 3516 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3517 { 3518 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3519 3520 if (!pf_vsi) 3521 return; 3522 3523 ice_tc_indir_block_unregister(pf_vsi); 3524 } 3525 3526 /** 3527 * ice_tc_indir_block_register - Register TC indirect block notifications 3528 * @vsi: VSI struct which has the netdev 3529 * 3530 * Returns 0 on success, negative value on failure 3531 */ 3532 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3533 { 3534 struct ice_netdev_priv *np; 3535 3536 if (!vsi || !vsi->netdev) 3537 return -EINVAL; 3538 3539 np = netdev_priv(vsi->netdev); 3540 3541 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3542 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3543 } 3544 3545 /** 3546 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3547 * @pf: board private structure 3548 * 3549 * Returns 0 on success, negative value on failure 3550 */ 3551 static int ice_setup_pf_sw(struct ice_pf *pf) 3552 { 3553 struct device *dev = ice_pf_to_dev(pf); 3554 bool dvm = ice_is_dvm_ena(&pf->hw); 3555 struct ice_vsi *vsi; 3556 int status; 3557 3558 if (ice_is_reset_in_progress(pf->state)) 3559 return -EBUSY; 3560 3561 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3562 if (status) 3563 return -EIO; 3564 3565 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3566 if (!vsi) 3567 return -ENOMEM; 3568 3569 /* init channel list */ 3570 INIT_LIST_HEAD(&vsi->ch_list); 3571 3572 status = ice_cfg_netdev(vsi); 3573 if (status) 3574 goto unroll_vsi_setup; 3575 /* netdev has to be configured before setting frame size */ 3576 ice_vsi_cfg_frame_size(vsi); 3577 3578 /* init indirect block notifications */ 3579 status = ice_tc_indir_block_register(vsi); 3580 if (status) { 3581 dev_err(dev, "Failed to register netdev notifier\n"); 3582 goto unroll_cfg_netdev; 3583 } 3584 3585 /* Setup DCB netlink interface */ 3586 ice_dcbnl_setup(vsi); 3587 3588 /* registering the NAPI handler requires both the queues and 3589 * netdev to be created, which are done in ice_pf_vsi_setup() 3590 * and ice_cfg_netdev() respectively 3591 */ 3592 ice_napi_add(vsi); 3593 3594 status = ice_set_cpu_rx_rmap(vsi); 3595 if (status) { 3596 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3597 vsi->vsi_num, status); 3598 goto unroll_napi_add; 3599 } 3600 status = ice_init_mac_fltr(pf); 3601 if (status) 3602 goto free_cpu_rx_map; 3603 3604 return 0; 3605 3606 free_cpu_rx_map: 3607 ice_free_cpu_rx_rmap(vsi); 3608 unroll_napi_add: 3609 ice_tc_indir_block_unregister(vsi); 3610 unroll_cfg_netdev: 3611 if (vsi) { 3612 ice_napi_del(vsi); 3613 if (vsi->netdev) { 3614 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3615 free_netdev(vsi->netdev); 3616 vsi->netdev = NULL; 3617 } 3618 } 3619 3620 unroll_vsi_setup: 3621 ice_vsi_release(vsi); 3622 return status; 3623 } 3624 3625 /** 3626 * ice_get_avail_q_count - Get count of queues in use 3627 * @pf_qmap: bitmap to get queue use count from 3628 * @lock: pointer to a mutex that protects access to pf_qmap 3629 * @size: size of the bitmap 3630 */ 3631 static u16 3632 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3633 { 3634 unsigned long bit; 3635 u16 count = 0; 3636 3637 mutex_lock(lock); 3638 for_each_clear_bit(bit, pf_qmap, size) 3639 count++; 3640 mutex_unlock(lock); 3641 3642 return count; 3643 } 3644 3645 /** 3646 * ice_get_avail_txq_count - Get count of Tx queues in use 3647 * @pf: pointer to an ice_pf instance 3648 */ 3649 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3650 { 3651 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3652 pf->max_pf_txqs); 3653 } 3654 3655 /** 3656 * ice_get_avail_rxq_count - Get count of Rx queues in use 3657 * @pf: pointer to an ice_pf instance 3658 */ 3659 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3660 { 3661 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3662 pf->max_pf_rxqs); 3663 } 3664 3665 /** 3666 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3667 * @pf: board private structure to initialize 3668 */ 3669 static void ice_deinit_pf(struct ice_pf *pf) 3670 { 3671 ice_service_task_stop(pf); 3672 mutex_destroy(&pf->sw_mutex); 3673 mutex_destroy(&pf->tc_mutex); 3674 mutex_destroy(&pf->avail_q_mutex); 3675 3676 if (pf->avail_txqs) { 3677 bitmap_free(pf->avail_txqs); 3678 pf->avail_txqs = NULL; 3679 } 3680 3681 if (pf->avail_rxqs) { 3682 bitmap_free(pf->avail_rxqs); 3683 pf->avail_rxqs = NULL; 3684 } 3685 3686 if (pf->ptp.clock) 3687 ptp_clock_unregister(pf->ptp.clock); 3688 } 3689 3690 /** 3691 * ice_set_pf_caps - set PFs capability flags 3692 * @pf: pointer to the PF instance 3693 */ 3694 static void ice_set_pf_caps(struct ice_pf *pf) 3695 { 3696 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3697 3698 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3699 clear_bit(ICE_FLAG_AUX_ENA, pf->flags); 3700 if (func_caps->common_cap.rdma) { 3701 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3702 set_bit(ICE_FLAG_AUX_ENA, pf->flags); 3703 } 3704 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3705 if (func_caps->common_cap.dcb) 3706 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3707 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3708 if (func_caps->common_cap.sr_iov_1_1) { 3709 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3710 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3711 ICE_MAX_VF_COUNT); 3712 } 3713 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3714 if (func_caps->common_cap.rss_table_size) 3715 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3716 3717 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3718 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3719 u16 unused; 3720 3721 /* ctrl_vsi_idx will be set to a valid value when flow director 3722 * is setup by ice_init_fdir 3723 */ 3724 pf->ctrl_vsi_idx = ICE_NO_VSI; 3725 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3726 /* force guaranteed filter pool for PF */ 3727 ice_alloc_fd_guar_item(&pf->hw, &unused, 3728 func_caps->fd_fltr_guar); 3729 /* force shared filter pool for PF */ 3730 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3731 func_caps->fd_fltr_best_effort); 3732 } 3733 3734 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3735 if (func_caps->common_cap.ieee_1588) 3736 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3737 3738 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3739 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3740 } 3741 3742 /** 3743 * ice_init_pf - Initialize general software structures (struct ice_pf) 3744 * @pf: board private structure to initialize 3745 */ 3746 static int ice_init_pf(struct ice_pf *pf) 3747 { 3748 ice_set_pf_caps(pf); 3749 3750 mutex_init(&pf->sw_mutex); 3751 mutex_init(&pf->tc_mutex); 3752 3753 INIT_HLIST_HEAD(&pf->aq_wait_list); 3754 spin_lock_init(&pf->aq_wait_lock); 3755 init_waitqueue_head(&pf->aq_wait_queue); 3756 3757 init_waitqueue_head(&pf->reset_wait_queue); 3758 3759 /* setup service timer and periodic service task */ 3760 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3761 pf->serv_tmr_period = HZ; 3762 INIT_WORK(&pf->serv_task, ice_service_task); 3763 clear_bit(ICE_SERVICE_SCHED, pf->state); 3764 3765 mutex_init(&pf->avail_q_mutex); 3766 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3767 if (!pf->avail_txqs) 3768 return -ENOMEM; 3769 3770 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3771 if (!pf->avail_rxqs) { 3772 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3773 pf->avail_txqs = NULL; 3774 return -ENOMEM; 3775 } 3776 3777 return 0; 3778 } 3779 3780 /** 3781 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3782 * @pf: board private structure 3783 * 3784 * compute the number of MSIX vectors required (v_budget) and request from 3785 * the OS. Return the number of vectors reserved or negative on failure 3786 */ 3787 static int ice_ena_msix_range(struct ice_pf *pf) 3788 { 3789 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3790 struct device *dev = ice_pf_to_dev(pf); 3791 int needed, err, i; 3792 3793 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3794 num_cpus = num_online_cpus(); 3795 3796 /* reserve for LAN miscellaneous handler */ 3797 needed = ICE_MIN_LAN_OICR_MSIX; 3798 if (v_left < needed) 3799 goto no_hw_vecs_left_err; 3800 v_budget += needed; 3801 v_left -= needed; 3802 3803 /* reserve for flow director */ 3804 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3805 needed = ICE_FDIR_MSIX; 3806 if (v_left < needed) 3807 goto no_hw_vecs_left_err; 3808 v_budget += needed; 3809 v_left -= needed; 3810 } 3811 3812 /* reserve for switchdev */ 3813 needed = ICE_ESWITCH_MSIX; 3814 if (v_left < needed) 3815 goto no_hw_vecs_left_err; 3816 v_budget += needed; 3817 v_left -= needed; 3818 3819 /* total used for non-traffic vectors */ 3820 v_other = v_budget; 3821 3822 /* reserve vectors for LAN traffic */ 3823 needed = num_cpus; 3824 if (v_left < needed) 3825 goto no_hw_vecs_left_err; 3826 pf->num_lan_msix = needed; 3827 v_budget += needed; 3828 v_left -= needed; 3829 3830 /* reserve vectors for RDMA auxiliary driver */ 3831 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3832 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3833 if (v_left < needed) 3834 goto no_hw_vecs_left_err; 3835 pf->num_rdma_msix = needed; 3836 v_budget += needed; 3837 v_left -= needed; 3838 } 3839 3840 pf->msix_entries = devm_kcalloc(dev, v_budget, 3841 sizeof(*pf->msix_entries), GFP_KERNEL); 3842 if (!pf->msix_entries) { 3843 err = -ENOMEM; 3844 goto exit_err; 3845 } 3846 3847 for (i = 0; i < v_budget; i++) 3848 pf->msix_entries[i].entry = i; 3849 3850 /* actually reserve the vectors */ 3851 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3852 ICE_MIN_MSIX, v_budget); 3853 if (v_actual < 0) { 3854 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3855 err = v_actual; 3856 goto msix_err; 3857 } 3858 3859 if (v_actual < v_budget) { 3860 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3861 v_budget, v_actual); 3862 3863 if (v_actual < ICE_MIN_MSIX) { 3864 /* error if we can't get minimum vectors */ 3865 pci_disable_msix(pf->pdev); 3866 err = -ERANGE; 3867 goto msix_err; 3868 } else { 3869 int v_remain = v_actual - v_other; 3870 int v_rdma = 0, v_min_rdma = 0; 3871 3872 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) { 3873 /* Need at least 1 interrupt in addition to 3874 * AEQ MSIX 3875 */ 3876 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3877 v_min_rdma = ICE_MIN_RDMA_MSIX; 3878 } 3879 3880 if (v_actual == ICE_MIN_MSIX || 3881 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3882 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3883 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3884 3885 pf->num_rdma_msix = 0; 3886 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3887 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3888 (v_remain - v_rdma < v_rdma)) { 3889 /* Support minimum RDMA and give remaining 3890 * vectors to LAN MSIX 3891 */ 3892 pf->num_rdma_msix = v_min_rdma; 3893 pf->num_lan_msix = v_remain - v_min_rdma; 3894 } else { 3895 /* Split remaining MSIX with RDMA after 3896 * accounting for AEQ MSIX 3897 */ 3898 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3899 ICE_RDMA_NUM_AEQ_MSIX; 3900 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3901 } 3902 3903 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3904 pf->num_lan_msix); 3905 3906 if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) 3907 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3908 pf->num_rdma_msix); 3909 } 3910 } 3911 3912 return v_actual; 3913 3914 msix_err: 3915 devm_kfree(dev, pf->msix_entries); 3916 goto exit_err; 3917 3918 no_hw_vecs_left_err: 3919 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3920 needed, v_left); 3921 err = -ERANGE; 3922 exit_err: 3923 pf->num_rdma_msix = 0; 3924 pf->num_lan_msix = 0; 3925 return err; 3926 } 3927 3928 /** 3929 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3930 * @pf: board private structure 3931 */ 3932 static void ice_dis_msix(struct ice_pf *pf) 3933 { 3934 pci_disable_msix(pf->pdev); 3935 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3936 pf->msix_entries = NULL; 3937 } 3938 3939 /** 3940 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3941 * @pf: board private structure 3942 */ 3943 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3944 { 3945 ice_dis_msix(pf); 3946 3947 if (pf->irq_tracker) { 3948 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3949 pf->irq_tracker = NULL; 3950 } 3951 } 3952 3953 /** 3954 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3955 * @pf: board private structure to initialize 3956 */ 3957 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3958 { 3959 int vectors; 3960 3961 vectors = ice_ena_msix_range(pf); 3962 3963 if (vectors < 0) 3964 return vectors; 3965 3966 /* set up vector assignment tracking */ 3967 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3968 struct_size(pf->irq_tracker, list, vectors), 3969 GFP_KERNEL); 3970 if (!pf->irq_tracker) { 3971 ice_dis_msix(pf); 3972 return -ENOMEM; 3973 } 3974 3975 /* populate SW interrupts pool with number of OS granted IRQs. */ 3976 pf->num_avail_sw_msix = (u16)vectors; 3977 pf->irq_tracker->num_entries = (u16)vectors; 3978 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3979 3980 return 0; 3981 } 3982 3983 /** 3984 * ice_is_wol_supported - check if WoL is supported 3985 * @hw: pointer to hardware info 3986 * 3987 * Check if WoL is supported based on the HW configuration. 3988 * Returns true if NVM supports and enables WoL for this port, false otherwise 3989 */ 3990 bool ice_is_wol_supported(struct ice_hw *hw) 3991 { 3992 u16 wol_ctrl; 3993 3994 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3995 * word) indicates WoL is not supported on the corresponding PF ID. 3996 */ 3997 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3998 return false; 3999 4000 return !(BIT(hw->port_info->lport) & wol_ctrl); 4001 } 4002 4003 /** 4004 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4005 * @vsi: VSI being changed 4006 * @new_rx: new number of Rx queues 4007 * @new_tx: new number of Tx queues 4008 * 4009 * Only change the number of queues if new_tx, or new_rx is non-0. 4010 * 4011 * Returns 0 on success. 4012 */ 4013 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4014 { 4015 struct ice_pf *pf = vsi->back; 4016 int err = 0, timeout = 50; 4017 4018 if (!new_rx && !new_tx) 4019 return -EINVAL; 4020 4021 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4022 timeout--; 4023 if (!timeout) 4024 return -EBUSY; 4025 usleep_range(1000, 2000); 4026 } 4027 4028 if (new_tx) 4029 vsi->req_txq = (u16)new_tx; 4030 if (new_rx) 4031 vsi->req_rxq = (u16)new_rx; 4032 4033 /* set for the next time the netdev is started */ 4034 if (!netif_running(vsi->netdev)) { 4035 ice_vsi_rebuild(vsi, false); 4036 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4037 goto done; 4038 } 4039 4040 ice_vsi_close(vsi); 4041 ice_vsi_rebuild(vsi, false); 4042 ice_pf_dcb_recfg(pf); 4043 ice_vsi_open(vsi); 4044 done: 4045 clear_bit(ICE_CFG_BUSY, pf->state); 4046 return err; 4047 } 4048 4049 /** 4050 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4051 * @pf: PF to configure 4052 * 4053 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4054 * VSI can still Tx/Rx VLAN tagged packets. 4055 */ 4056 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4057 { 4058 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4059 struct ice_vsi_ctx *ctxt; 4060 struct ice_hw *hw; 4061 int status; 4062 4063 if (!vsi) 4064 return; 4065 4066 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4067 if (!ctxt) 4068 return; 4069 4070 hw = &pf->hw; 4071 ctxt->info = vsi->info; 4072 4073 ctxt->info.valid_sections = 4074 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4075 ICE_AQ_VSI_PROP_SECURITY_VALID | 4076 ICE_AQ_VSI_PROP_SW_VALID); 4077 4078 /* disable VLAN anti-spoof */ 4079 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4080 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4081 4082 /* disable VLAN pruning and keep all other settings */ 4083 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4084 4085 /* allow all VLANs on Tx and don't strip on Rx */ 4086 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4087 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4088 4089 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4090 if (status) { 4091 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4092 status, ice_aq_str(hw->adminq.sq_last_status)); 4093 } else { 4094 vsi->info.sec_flags = ctxt->info.sec_flags; 4095 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4096 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4097 } 4098 4099 kfree(ctxt); 4100 } 4101 4102 /** 4103 * ice_log_pkg_init - log result of DDP package load 4104 * @hw: pointer to hardware info 4105 * @state: state of package load 4106 */ 4107 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4108 { 4109 struct ice_pf *pf = hw->back; 4110 struct device *dev; 4111 4112 dev = ice_pf_to_dev(pf); 4113 4114 switch (state) { 4115 case ICE_DDP_PKG_SUCCESS: 4116 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4117 hw->active_pkg_name, 4118 hw->active_pkg_ver.major, 4119 hw->active_pkg_ver.minor, 4120 hw->active_pkg_ver.update, 4121 hw->active_pkg_ver.draft); 4122 break; 4123 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4124 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4125 hw->active_pkg_name, 4126 hw->active_pkg_ver.major, 4127 hw->active_pkg_ver.minor, 4128 hw->active_pkg_ver.update, 4129 hw->active_pkg_ver.draft); 4130 break; 4131 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4132 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4133 hw->active_pkg_name, 4134 hw->active_pkg_ver.major, 4135 hw->active_pkg_ver.minor, 4136 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4137 break; 4138 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4139 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4140 hw->active_pkg_name, 4141 hw->active_pkg_ver.major, 4142 hw->active_pkg_ver.minor, 4143 hw->active_pkg_ver.update, 4144 hw->active_pkg_ver.draft, 4145 hw->pkg_name, 4146 hw->pkg_ver.major, 4147 hw->pkg_ver.minor, 4148 hw->pkg_ver.update, 4149 hw->pkg_ver.draft); 4150 break; 4151 case ICE_DDP_PKG_FW_MISMATCH: 4152 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4153 break; 4154 case ICE_DDP_PKG_INVALID_FILE: 4155 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4156 break; 4157 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4158 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4159 break; 4160 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4161 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4162 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4163 break; 4164 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4165 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4166 break; 4167 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4168 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4169 break; 4170 case ICE_DDP_PKG_LOAD_ERROR: 4171 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4172 /* poll for reset to complete */ 4173 if (ice_check_reset(hw)) 4174 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4175 break; 4176 case ICE_DDP_PKG_ERR: 4177 default: 4178 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4179 break; 4180 } 4181 } 4182 4183 /** 4184 * ice_load_pkg - load/reload the DDP Package file 4185 * @firmware: firmware structure when firmware requested or NULL for reload 4186 * @pf: pointer to the PF instance 4187 * 4188 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4189 * initialize HW tables. 4190 */ 4191 static void 4192 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4193 { 4194 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4195 struct device *dev = ice_pf_to_dev(pf); 4196 struct ice_hw *hw = &pf->hw; 4197 4198 /* Load DDP Package */ 4199 if (firmware && !hw->pkg_copy) { 4200 state = ice_copy_and_init_pkg(hw, firmware->data, 4201 firmware->size); 4202 ice_log_pkg_init(hw, state); 4203 } else if (!firmware && hw->pkg_copy) { 4204 /* Reload package during rebuild after CORER/GLOBR reset */ 4205 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4206 ice_log_pkg_init(hw, state); 4207 } else { 4208 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4209 } 4210 4211 if (!ice_is_init_pkg_successful(state)) { 4212 /* Safe Mode */ 4213 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4214 return; 4215 } 4216 4217 /* Successful download package is the precondition for advanced 4218 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4219 */ 4220 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4221 } 4222 4223 /** 4224 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4225 * @pf: pointer to the PF structure 4226 * 4227 * There is no error returned here because the driver should be able to handle 4228 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4229 * specifically with Tx. 4230 */ 4231 static void ice_verify_cacheline_size(struct ice_pf *pf) 4232 { 4233 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4234 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4235 ICE_CACHE_LINE_BYTES); 4236 } 4237 4238 /** 4239 * ice_send_version - update firmware with driver version 4240 * @pf: PF struct 4241 * 4242 * Returns 0 on success, else error code 4243 */ 4244 static int ice_send_version(struct ice_pf *pf) 4245 { 4246 struct ice_driver_ver dv; 4247 4248 dv.major_ver = 0xff; 4249 dv.minor_ver = 0xff; 4250 dv.build_ver = 0xff; 4251 dv.subbuild_ver = 0; 4252 strscpy((char *)dv.driver_string, UTS_RELEASE, 4253 sizeof(dv.driver_string)); 4254 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4255 } 4256 4257 /** 4258 * ice_init_fdir - Initialize flow director VSI and configuration 4259 * @pf: pointer to the PF instance 4260 * 4261 * returns 0 on success, negative on error 4262 */ 4263 static int ice_init_fdir(struct ice_pf *pf) 4264 { 4265 struct device *dev = ice_pf_to_dev(pf); 4266 struct ice_vsi *ctrl_vsi; 4267 int err; 4268 4269 /* Side Band Flow Director needs to have a control VSI. 4270 * Allocate it and store it in the PF. 4271 */ 4272 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4273 if (!ctrl_vsi) { 4274 dev_dbg(dev, "could not create control VSI\n"); 4275 return -ENOMEM; 4276 } 4277 4278 err = ice_vsi_open_ctrl(ctrl_vsi); 4279 if (err) { 4280 dev_dbg(dev, "could not open control VSI\n"); 4281 goto err_vsi_open; 4282 } 4283 4284 mutex_init(&pf->hw.fdir_fltr_lock); 4285 4286 err = ice_fdir_create_dflt_rules(pf); 4287 if (err) 4288 goto err_fdir_rule; 4289 4290 return 0; 4291 4292 err_fdir_rule: 4293 ice_fdir_release_flows(&pf->hw); 4294 ice_vsi_close(ctrl_vsi); 4295 err_vsi_open: 4296 ice_vsi_release(ctrl_vsi); 4297 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4298 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4299 pf->ctrl_vsi_idx = ICE_NO_VSI; 4300 } 4301 return err; 4302 } 4303 4304 /** 4305 * ice_get_opt_fw_name - return optional firmware file name or NULL 4306 * @pf: pointer to the PF instance 4307 */ 4308 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4309 { 4310 /* Optional firmware name same as default with additional dash 4311 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4312 */ 4313 struct pci_dev *pdev = pf->pdev; 4314 char *opt_fw_filename; 4315 u64 dsn; 4316 4317 /* Determine the name of the optional file using the DSN (two 4318 * dwords following the start of the DSN Capability). 4319 */ 4320 dsn = pci_get_dsn(pdev); 4321 if (!dsn) 4322 return NULL; 4323 4324 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4325 if (!opt_fw_filename) 4326 return NULL; 4327 4328 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4329 ICE_DDP_PKG_PATH, dsn); 4330 4331 return opt_fw_filename; 4332 } 4333 4334 /** 4335 * ice_request_fw - Device initialization routine 4336 * @pf: pointer to the PF instance 4337 */ 4338 static void ice_request_fw(struct ice_pf *pf) 4339 { 4340 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4341 const struct firmware *firmware = NULL; 4342 struct device *dev = ice_pf_to_dev(pf); 4343 int err = 0; 4344 4345 /* optional device-specific DDP (if present) overrides the default DDP 4346 * package file. kernel logs a debug message if the file doesn't exist, 4347 * and warning messages for other errors. 4348 */ 4349 if (opt_fw_filename) { 4350 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4351 if (err) { 4352 kfree(opt_fw_filename); 4353 goto dflt_pkg_load; 4354 } 4355 4356 /* request for firmware was successful. Download to device */ 4357 ice_load_pkg(firmware, pf); 4358 kfree(opt_fw_filename); 4359 release_firmware(firmware); 4360 return; 4361 } 4362 4363 dflt_pkg_load: 4364 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4365 if (err) { 4366 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4367 return; 4368 } 4369 4370 /* request for firmware was successful. Download to device */ 4371 ice_load_pkg(firmware, pf); 4372 release_firmware(firmware); 4373 } 4374 4375 /** 4376 * ice_print_wake_reason - show the wake up cause in the log 4377 * @pf: pointer to the PF struct 4378 */ 4379 static void ice_print_wake_reason(struct ice_pf *pf) 4380 { 4381 u32 wus = pf->wakeup_reason; 4382 const char *wake_str; 4383 4384 /* if no wake event, nothing to print */ 4385 if (!wus) 4386 return; 4387 4388 if (wus & PFPM_WUS_LNKC_M) 4389 wake_str = "Link\n"; 4390 else if (wus & PFPM_WUS_MAG_M) 4391 wake_str = "Magic Packet\n"; 4392 else if (wus & PFPM_WUS_MNG_M) 4393 wake_str = "Management\n"; 4394 else if (wus & PFPM_WUS_FW_RST_WK_M) 4395 wake_str = "Firmware Reset\n"; 4396 else 4397 wake_str = "Unknown\n"; 4398 4399 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4400 } 4401 4402 /** 4403 * ice_register_netdev - register netdev and devlink port 4404 * @pf: pointer to the PF struct 4405 */ 4406 static int ice_register_netdev(struct ice_pf *pf) 4407 { 4408 struct ice_vsi *vsi; 4409 int err = 0; 4410 4411 vsi = ice_get_main_vsi(pf); 4412 if (!vsi || !vsi->netdev) 4413 return -EIO; 4414 4415 err = register_netdev(vsi->netdev); 4416 if (err) 4417 goto err_register_netdev; 4418 4419 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4420 netif_carrier_off(vsi->netdev); 4421 netif_tx_stop_all_queues(vsi->netdev); 4422 err = ice_devlink_create_pf_port(pf); 4423 if (err) 4424 goto err_devlink_create; 4425 4426 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4427 4428 return 0; 4429 err_devlink_create: 4430 unregister_netdev(vsi->netdev); 4431 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4432 err_register_netdev: 4433 free_netdev(vsi->netdev); 4434 vsi->netdev = NULL; 4435 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4436 return err; 4437 } 4438 4439 /** 4440 * ice_probe - Device initialization routine 4441 * @pdev: PCI device information struct 4442 * @ent: entry in ice_pci_tbl 4443 * 4444 * Returns 0 on success, negative on failure 4445 */ 4446 static int 4447 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4448 { 4449 struct device *dev = &pdev->dev; 4450 struct ice_pf *pf; 4451 struct ice_hw *hw; 4452 int i, err; 4453 4454 if (pdev->is_virtfn) { 4455 dev_err(dev, "can't probe a virtual function\n"); 4456 return -EINVAL; 4457 } 4458 4459 /* this driver uses devres, see 4460 * Documentation/driver-api/driver-model/devres.rst 4461 */ 4462 err = pcim_enable_device(pdev); 4463 if (err) 4464 return err; 4465 4466 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4467 if (err) { 4468 dev_err(dev, "BAR0 I/O map error %d\n", err); 4469 return err; 4470 } 4471 4472 pf = ice_allocate_pf(dev); 4473 if (!pf) 4474 return -ENOMEM; 4475 4476 /* initialize Auxiliary index to invalid value */ 4477 pf->aux_idx = -1; 4478 4479 /* set up for high or low DMA */ 4480 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4481 if (err) { 4482 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4483 return err; 4484 } 4485 4486 pci_enable_pcie_error_reporting(pdev); 4487 pci_set_master(pdev); 4488 4489 pf->pdev = pdev; 4490 pci_set_drvdata(pdev, pf); 4491 set_bit(ICE_DOWN, pf->state); 4492 /* Disable service task until DOWN bit is cleared */ 4493 set_bit(ICE_SERVICE_DIS, pf->state); 4494 4495 hw = &pf->hw; 4496 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4497 pci_save_state(pdev); 4498 4499 hw->back = pf; 4500 hw->vendor_id = pdev->vendor; 4501 hw->device_id = pdev->device; 4502 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4503 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4504 hw->subsystem_device_id = pdev->subsystem_device; 4505 hw->bus.device = PCI_SLOT(pdev->devfn); 4506 hw->bus.func = PCI_FUNC(pdev->devfn); 4507 ice_set_ctrlq_len(hw); 4508 4509 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4510 4511 #ifndef CONFIG_DYNAMIC_DEBUG 4512 if (debug < -1) 4513 hw->debug_mask = debug; 4514 #endif 4515 4516 err = ice_init_hw(hw); 4517 if (err) { 4518 dev_err(dev, "ice_init_hw failed: %d\n", err); 4519 err = -EIO; 4520 goto err_exit_unroll; 4521 } 4522 4523 ice_init_feature_support(pf); 4524 4525 ice_request_fw(pf); 4526 4527 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4528 * set in pf->state, which will cause ice_is_safe_mode to return 4529 * true 4530 */ 4531 if (ice_is_safe_mode(pf)) { 4532 /* we already got function/device capabilities but these don't 4533 * reflect what the driver needs to do in safe mode. Instead of 4534 * adding conditional logic everywhere to ignore these 4535 * device/function capabilities, override them. 4536 */ 4537 ice_set_safe_mode_caps(hw); 4538 } 4539 4540 err = ice_init_pf(pf); 4541 if (err) { 4542 dev_err(dev, "ice_init_pf failed: %d\n", err); 4543 goto err_init_pf_unroll; 4544 } 4545 4546 ice_devlink_init_regions(pf); 4547 4548 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4549 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4550 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4551 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4552 i = 0; 4553 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4554 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4555 pf->hw.tnl.valid_count[TNL_VXLAN]; 4556 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4557 UDP_TUNNEL_TYPE_VXLAN; 4558 i++; 4559 } 4560 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4561 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4562 pf->hw.tnl.valid_count[TNL_GENEVE]; 4563 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4564 UDP_TUNNEL_TYPE_GENEVE; 4565 i++; 4566 } 4567 4568 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4569 if (!pf->num_alloc_vsi) { 4570 err = -EIO; 4571 goto err_init_pf_unroll; 4572 } 4573 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4574 dev_warn(&pf->pdev->dev, 4575 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4576 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4577 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4578 } 4579 4580 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4581 GFP_KERNEL); 4582 if (!pf->vsi) { 4583 err = -ENOMEM; 4584 goto err_init_pf_unroll; 4585 } 4586 4587 err = ice_init_interrupt_scheme(pf); 4588 if (err) { 4589 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4590 err = -EIO; 4591 goto err_init_vsi_unroll; 4592 } 4593 4594 /* In case of MSIX we are going to setup the misc vector right here 4595 * to handle admin queue events etc. In case of legacy and MSI 4596 * the misc functionality and queue processing is combined in 4597 * the same vector and that gets setup at open. 4598 */ 4599 err = ice_req_irq_msix_misc(pf); 4600 if (err) { 4601 dev_err(dev, "setup of misc vector failed: %d\n", err); 4602 goto err_init_interrupt_unroll; 4603 } 4604 4605 /* create switch struct for the switch element created by FW on boot */ 4606 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4607 if (!pf->first_sw) { 4608 err = -ENOMEM; 4609 goto err_msix_misc_unroll; 4610 } 4611 4612 if (hw->evb_veb) 4613 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4614 else 4615 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4616 4617 pf->first_sw->pf = pf; 4618 4619 /* record the sw_id available for later use */ 4620 pf->first_sw->sw_id = hw->port_info->sw_id; 4621 4622 err = ice_setup_pf_sw(pf); 4623 if (err) { 4624 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4625 goto err_alloc_sw_unroll; 4626 } 4627 4628 clear_bit(ICE_SERVICE_DIS, pf->state); 4629 4630 /* tell the firmware we are up */ 4631 err = ice_send_version(pf); 4632 if (err) { 4633 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4634 UTS_RELEASE, err); 4635 goto err_send_version_unroll; 4636 } 4637 4638 /* since everything is good, start the service timer */ 4639 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4640 4641 err = ice_init_link_events(pf->hw.port_info); 4642 if (err) { 4643 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4644 goto err_send_version_unroll; 4645 } 4646 4647 /* not a fatal error if this fails */ 4648 err = ice_init_nvm_phy_type(pf->hw.port_info); 4649 if (err) 4650 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4651 4652 /* not a fatal error if this fails */ 4653 err = ice_update_link_info(pf->hw.port_info); 4654 if (err) 4655 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4656 4657 ice_init_link_dflt_override(pf->hw.port_info); 4658 4659 ice_check_link_cfg_err(pf, 4660 pf->hw.port_info->phy.link_info.link_cfg_err); 4661 4662 /* if media available, initialize PHY settings */ 4663 if (pf->hw.port_info->phy.link_info.link_info & 4664 ICE_AQ_MEDIA_AVAILABLE) { 4665 /* not a fatal error if this fails */ 4666 err = ice_init_phy_user_cfg(pf->hw.port_info); 4667 if (err) 4668 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4669 4670 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4671 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4672 4673 if (vsi) 4674 ice_configure_phy(vsi); 4675 } 4676 } else { 4677 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4678 } 4679 4680 ice_verify_cacheline_size(pf); 4681 4682 /* Save wakeup reason register for later use */ 4683 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4684 4685 /* check for a power management event */ 4686 ice_print_wake_reason(pf); 4687 4688 /* clear wake status, all bits */ 4689 wr32(hw, PFPM_WUS, U32_MAX); 4690 4691 /* Disable WoL at init, wait for user to enable */ 4692 device_set_wakeup_enable(dev, false); 4693 4694 if (ice_is_safe_mode(pf)) { 4695 ice_set_safe_mode_vlan_cfg(pf); 4696 goto probe_done; 4697 } 4698 4699 /* initialize DDP driven features */ 4700 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4701 ice_ptp_init(pf); 4702 4703 /* Note: Flow director init failure is non-fatal to load */ 4704 if (ice_init_fdir(pf)) 4705 dev_err(dev, "could not initialize flow director\n"); 4706 4707 /* Note: DCB init failure is non-fatal to load */ 4708 if (ice_init_pf_dcb(pf, false)) { 4709 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4710 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4711 } else { 4712 ice_cfg_lldp_mib_change(&pf->hw, true); 4713 } 4714 4715 if (ice_init_lag(pf)) 4716 dev_warn(dev, "Failed to init link aggregation support\n"); 4717 4718 /* print PCI link speed and width */ 4719 pcie_print_link_status(pf->pdev); 4720 4721 probe_done: 4722 err = ice_register_netdev(pf); 4723 if (err) 4724 goto err_netdev_reg; 4725 4726 err = ice_devlink_register_params(pf); 4727 if (err) 4728 goto err_netdev_reg; 4729 4730 /* ready to go, so clear down state bit */ 4731 clear_bit(ICE_DOWN, pf->state); 4732 if (ice_is_aux_ena(pf)) { 4733 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4734 if (pf->aux_idx < 0) { 4735 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4736 err = -ENOMEM; 4737 goto err_devlink_reg_param; 4738 } 4739 4740 err = ice_init_rdma(pf); 4741 if (err) { 4742 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4743 err = -EIO; 4744 goto err_init_aux_unroll; 4745 } 4746 } else { 4747 dev_warn(dev, "RDMA is not supported on this device\n"); 4748 } 4749 4750 ice_devlink_register(pf); 4751 return 0; 4752 4753 err_init_aux_unroll: 4754 pf->adev = NULL; 4755 ida_free(&ice_aux_ida, pf->aux_idx); 4756 err_devlink_reg_param: 4757 ice_devlink_unregister_params(pf); 4758 err_netdev_reg: 4759 err_send_version_unroll: 4760 ice_vsi_release_all(pf); 4761 err_alloc_sw_unroll: 4762 set_bit(ICE_SERVICE_DIS, pf->state); 4763 set_bit(ICE_DOWN, pf->state); 4764 devm_kfree(dev, pf->first_sw); 4765 err_msix_misc_unroll: 4766 ice_free_irq_msix_misc(pf); 4767 err_init_interrupt_unroll: 4768 ice_clear_interrupt_scheme(pf); 4769 err_init_vsi_unroll: 4770 devm_kfree(dev, pf->vsi); 4771 err_init_pf_unroll: 4772 ice_deinit_pf(pf); 4773 ice_devlink_destroy_regions(pf); 4774 ice_deinit_hw(hw); 4775 err_exit_unroll: 4776 pci_disable_pcie_error_reporting(pdev); 4777 pci_disable_device(pdev); 4778 return err; 4779 } 4780 4781 /** 4782 * ice_set_wake - enable or disable Wake on LAN 4783 * @pf: pointer to the PF struct 4784 * 4785 * Simple helper for WoL control 4786 */ 4787 static void ice_set_wake(struct ice_pf *pf) 4788 { 4789 struct ice_hw *hw = &pf->hw; 4790 bool wol = pf->wol_ena; 4791 4792 /* clear wake state, otherwise new wake events won't fire */ 4793 wr32(hw, PFPM_WUS, U32_MAX); 4794 4795 /* enable / disable APM wake up, no RMW needed */ 4796 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4797 4798 /* set magic packet filter enabled */ 4799 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4800 } 4801 4802 /** 4803 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4804 * @pf: pointer to the PF struct 4805 * 4806 * Issue firmware command to enable multicast magic wake, making 4807 * sure that any locally administered address (LAA) is used for 4808 * wake, and that PF reset doesn't undo the LAA. 4809 */ 4810 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4811 { 4812 struct device *dev = ice_pf_to_dev(pf); 4813 struct ice_hw *hw = &pf->hw; 4814 u8 mac_addr[ETH_ALEN]; 4815 struct ice_vsi *vsi; 4816 int status; 4817 u8 flags; 4818 4819 if (!pf->wol_ena) 4820 return; 4821 4822 vsi = ice_get_main_vsi(pf); 4823 if (!vsi) 4824 return; 4825 4826 /* Get current MAC address in case it's an LAA */ 4827 if (vsi->netdev) 4828 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4829 else 4830 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4831 4832 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4833 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4834 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4835 4836 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4837 if (status) 4838 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4839 status, ice_aq_str(hw->adminq.sq_last_status)); 4840 } 4841 4842 /** 4843 * ice_remove - Device removal routine 4844 * @pdev: PCI device information struct 4845 */ 4846 static void ice_remove(struct pci_dev *pdev) 4847 { 4848 struct ice_pf *pf = pci_get_drvdata(pdev); 4849 int i; 4850 4851 ice_devlink_unregister(pf); 4852 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4853 if (!ice_is_reset_in_progress(pf->state)) 4854 break; 4855 msleep(100); 4856 } 4857 4858 ice_tc_indir_block_remove(pf); 4859 4860 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4861 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4862 ice_free_vfs(pf); 4863 } 4864 4865 ice_service_task_stop(pf); 4866 4867 ice_aq_cancel_waiting_tasks(pf); 4868 ice_unplug_aux_dev(pf); 4869 if (pf->aux_idx >= 0) 4870 ida_free(&ice_aux_ida, pf->aux_idx); 4871 ice_devlink_unregister_params(pf); 4872 set_bit(ICE_DOWN, pf->state); 4873 4874 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4875 ice_deinit_lag(pf); 4876 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4877 ice_ptp_release(pf); 4878 if (!ice_is_safe_mode(pf)) 4879 ice_remove_arfs(pf); 4880 ice_setup_mc_magic_wake(pf); 4881 ice_vsi_release_all(pf); 4882 ice_set_wake(pf); 4883 ice_free_irq_msix_misc(pf); 4884 ice_for_each_vsi(pf, i) { 4885 if (!pf->vsi[i]) 4886 continue; 4887 ice_vsi_free_q_vectors(pf->vsi[i]); 4888 } 4889 ice_deinit_pf(pf); 4890 ice_devlink_destroy_regions(pf); 4891 ice_deinit_hw(&pf->hw); 4892 4893 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4894 * do it via ice_schedule_reset() since there is no need to rebuild 4895 * and the service task is already stopped. 4896 */ 4897 ice_reset(&pf->hw, ICE_RESET_PFR); 4898 pci_wait_for_pending_transaction(pdev); 4899 ice_clear_interrupt_scheme(pf); 4900 pci_disable_pcie_error_reporting(pdev); 4901 pci_disable_device(pdev); 4902 } 4903 4904 /** 4905 * ice_shutdown - PCI callback for shutting down device 4906 * @pdev: PCI device information struct 4907 */ 4908 static void ice_shutdown(struct pci_dev *pdev) 4909 { 4910 struct ice_pf *pf = pci_get_drvdata(pdev); 4911 4912 ice_remove(pdev); 4913 4914 if (system_state == SYSTEM_POWER_OFF) { 4915 pci_wake_from_d3(pdev, pf->wol_ena); 4916 pci_set_power_state(pdev, PCI_D3hot); 4917 } 4918 } 4919 4920 #ifdef CONFIG_PM 4921 /** 4922 * ice_prepare_for_shutdown - prep for PCI shutdown 4923 * @pf: board private structure 4924 * 4925 * Inform or close all dependent features in prep for PCI device shutdown 4926 */ 4927 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4928 { 4929 struct ice_hw *hw = &pf->hw; 4930 u32 v; 4931 4932 /* Notify VFs of impending reset */ 4933 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4934 ice_vc_notify_reset(pf); 4935 4936 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4937 4938 /* disable the VSIs and their queues that are not already DOWN */ 4939 ice_pf_dis_all_vsi(pf, false); 4940 4941 ice_for_each_vsi(pf, v) 4942 if (pf->vsi[v]) 4943 pf->vsi[v]->vsi_num = 0; 4944 4945 ice_shutdown_all_ctrlq(hw); 4946 } 4947 4948 /** 4949 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4950 * @pf: board private structure to reinitialize 4951 * 4952 * This routine reinitialize interrupt scheme that was cleared during 4953 * power management suspend callback. 4954 * 4955 * This should be called during resume routine to re-allocate the q_vectors 4956 * and reacquire interrupts. 4957 */ 4958 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4959 { 4960 struct device *dev = ice_pf_to_dev(pf); 4961 int ret, v; 4962 4963 /* Since we clear MSIX flag during suspend, we need to 4964 * set it back during resume... 4965 */ 4966 4967 ret = ice_init_interrupt_scheme(pf); 4968 if (ret) { 4969 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4970 return ret; 4971 } 4972 4973 /* Remap vectors and rings, after successful re-init interrupts */ 4974 ice_for_each_vsi(pf, v) { 4975 if (!pf->vsi[v]) 4976 continue; 4977 4978 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4979 if (ret) 4980 goto err_reinit; 4981 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4982 } 4983 4984 ret = ice_req_irq_msix_misc(pf); 4985 if (ret) { 4986 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4987 ret); 4988 goto err_reinit; 4989 } 4990 4991 return 0; 4992 4993 err_reinit: 4994 while (v--) 4995 if (pf->vsi[v]) 4996 ice_vsi_free_q_vectors(pf->vsi[v]); 4997 4998 return ret; 4999 } 5000 5001 /** 5002 * ice_suspend 5003 * @dev: generic device information structure 5004 * 5005 * Power Management callback to quiesce the device and prepare 5006 * for D3 transition. 5007 */ 5008 static int __maybe_unused ice_suspend(struct device *dev) 5009 { 5010 struct pci_dev *pdev = to_pci_dev(dev); 5011 struct ice_pf *pf; 5012 int disabled, v; 5013 5014 pf = pci_get_drvdata(pdev); 5015 5016 if (!ice_pf_state_is_nominal(pf)) { 5017 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5018 return -EBUSY; 5019 } 5020 5021 /* Stop watchdog tasks until resume completion. 5022 * Even though it is most likely that the service task is 5023 * disabled if the device is suspended or down, the service task's 5024 * state is controlled by a different state bit, and we should 5025 * store and honor whatever state that bit is in at this point. 5026 */ 5027 disabled = ice_service_task_stop(pf); 5028 5029 ice_unplug_aux_dev(pf); 5030 5031 /* Already suspended?, then there is nothing to do */ 5032 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5033 if (!disabled) 5034 ice_service_task_restart(pf); 5035 return 0; 5036 } 5037 5038 if (test_bit(ICE_DOWN, pf->state) || 5039 ice_is_reset_in_progress(pf->state)) { 5040 dev_err(dev, "can't suspend device in reset or already down\n"); 5041 if (!disabled) 5042 ice_service_task_restart(pf); 5043 return 0; 5044 } 5045 5046 ice_setup_mc_magic_wake(pf); 5047 5048 ice_prepare_for_shutdown(pf); 5049 5050 ice_set_wake(pf); 5051 5052 /* Free vectors, clear the interrupt scheme and release IRQs 5053 * for proper hibernation, especially with large number of CPUs. 5054 * Otherwise hibernation might fail when mapping all the vectors back 5055 * to CPU0. 5056 */ 5057 ice_free_irq_msix_misc(pf); 5058 ice_for_each_vsi(pf, v) { 5059 if (!pf->vsi[v]) 5060 continue; 5061 ice_vsi_free_q_vectors(pf->vsi[v]); 5062 } 5063 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5064 ice_clear_interrupt_scheme(pf); 5065 5066 pci_save_state(pdev); 5067 pci_wake_from_d3(pdev, pf->wol_ena); 5068 pci_set_power_state(pdev, PCI_D3hot); 5069 return 0; 5070 } 5071 5072 /** 5073 * ice_resume - PM callback for waking up from D3 5074 * @dev: generic device information structure 5075 */ 5076 static int __maybe_unused ice_resume(struct device *dev) 5077 { 5078 struct pci_dev *pdev = to_pci_dev(dev); 5079 enum ice_reset_req reset_type; 5080 struct ice_pf *pf; 5081 struct ice_hw *hw; 5082 int ret; 5083 5084 pci_set_power_state(pdev, PCI_D0); 5085 pci_restore_state(pdev); 5086 pci_save_state(pdev); 5087 5088 if (!pci_device_is_present(pdev)) 5089 return -ENODEV; 5090 5091 ret = pci_enable_device_mem(pdev); 5092 if (ret) { 5093 dev_err(dev, "Cannot enable device after suspend\n"); 5094 return ret; 5095 } 5096 5097 pf = pci_get_drvdata(pdev); 5098 hw = &pf->hw; 5099 5100 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5101 ice_print_wake_reason(pf); 5102 5103 /* We cleared the interrupt scheme when we suspended, so we need to 5104 * restore it now to resume device functionality. 5105 */ 5106 ret = ice_reinit_interrupt_scheme(pf); 5107 if (ret) 5108 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5109 5110 clear_bit(ICE_DOWN, pf->state); 5111 /* Now perform PF reset and rebuild */ 5112 reset_type = ICE_RESET_PFR; 5113 /* re-enable service task for reset, but allow reset to schedule it */ 5114 clear_bit(ICE_SERVICE_DIS, pf->state); 5115 5116 if (ice_schedule_reset(pf, reset_type)) 5117 dev_err(dev, "Reset during resume failed.\n"); 5118 5119 clear_bit(ICE_SUSPENDED, pf->state); 5120 ice_service_task_restart(pf); 5121 5122 /* Restart the service task */ 5123 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5124 5125 return 0; 5126 } 5127 #endif /* CONFIG_PM */ 5128 5129 /** 5130 * ice_pci_err_detected - warning that PCI error has been detected 5131 * @pdev: PCI device information struct 5132 * @err: the type of PCI error 5133 * 5134 * Called to warn that something happened on the PCI bus and the error handling 5135 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5136 */ 5137 static pci_ers_result_t 5138 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5139 { 5140 struct ice_pf *pf = pci_get_drvdata(pdev); 5141 5142 if (!pf) { 5143 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5144 __func__, err); 5145 return PCI_ERS_RESULT_DISCONNECT; 5146 } 5147 5148 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5149 ice_service_task_stop(pf); 5150 5151 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5152 set_bit(ICE_PFR_REQ, pf->state); 5153 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5154 } 5155 } 5156 5157 return PCI_ERS_RESULT_NEED_RESET; 5158 } 5159 5160 /** 5161 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5162 * @pdev: PCI device information struct 5163 * 5164 * Called to determine if the driver can recover from the PCI slot reset by 5165 * using a register read to determine if the device is recoverable. 5166 */ 5167 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5168 { 5169 struct ice_pf *pf = pci_get_drvdata(pdev); 5170 pci_ers_result_t result; 5171 int err; 5172 u32 reg; 5173 5174 err = pci_enable_device_mem(pdev); 5175 if (err) { 5176 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5177 err); 5178 result = PCI_ERS_RESULT_DISCONNECT; 5179 } else { 5180 pci_set_master(pdev); 5181 pci_restore_state(pdev); 5182 pci_save_state(pdev); 5183 pci_wake_from_d3(pdev, false); 5184 5185 /* Check for life */ 5186 reg = rd32(&pf->hw, GLGEN_RTRIG); 5187 if (!reg) 5188 result = PCI_ERS_RESULT_RECOVERED; 5189 else 5190 result = PCI_ERS_RESULT_DISCONNECT; 5191 } 5192 5193 err = pci_aer_clear_nonfatal_status(pdev); 5194 if (err) 5195 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5196 err); 5197 /* non-fatal, continue */ 5198 5199 return result; 5200 } 5201 5202 /** 5203 * ice_pci_err_resume - restart operations after PCI error recovery 5204 * @pdev: PCI device information struct 5205 * 5206 * Called to allow the driver to bring things back up after PCI error and/or 5207 * reset recovery have finished 5208 */ 5209 static void ice_pci_err_resume(struct pci_dev *pdev) 5210 { 5211 struct ice_pf *pf = pci_get_drvdata(pdev); 5212 5213 if (!pf) { 5214 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5215 __func__); 5216 return; 5217 } 5218 5219 if (test_bit(ICE_SUSPENDED, pf->state)) { 5220 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5221 __func__); 5222 return; 5223 } 5224 5225 ice_restore_all_vfs_msi_state(pdev); 5226 5227 ice_do_reset(pf, ICE_RESET_PFR); 5228 ice_service_task_restart(pf); 5229 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5230 } 5231 5232 /** 5233 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5234 * @pdev: PCI device information struct 5235 */ 5236 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5237 { 5238 struct ice_pf *pf = pci_get_drvdata(pdev); 5239 5240 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5241 ice_service_task_stop(pf); 5242 5243 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5244 set_bit(ICE_PFR_REQ, pf->state); 5245 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5246 } 5247 } 5248 } 5249 5250 /** 5251 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5252 * @pdev: PCI device information struct 5253 */ 5254 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5255 { 5256 ice_pci_err_resume(pdev); 5257 } 5258 5259 /* ice_pci_tbl - PCI Device ID Table 5260 * 5261 * Wildcard entries (PCI_ANY_ID) should come last 5262 * Last entry must be all 0s 5263 * 5264 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5265 * Class, Class Mask, private data (not used) } 5266 */ 5267 static const struct pci_device_id ice_pci_tbl[] = { 5268 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5269 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5270 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5271 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5272 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5273 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5274 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5275 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5276 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5277 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5278 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5279 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5280 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5281 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5282 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5283 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5284 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5285 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5286 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5287 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5288 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5289 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5290 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5291 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5292 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5293 /* required last entry */ 5294 { 0, } 5295 }; 5296 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5297 5298 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5299 5300 static const struct pci_error_handlers ice_pci_err_handler = { 5301 .error_detected = ice_pci_err_detected, 5302 .slot_reset = ice_pci_err_slot_reset, 5303 .reset_prepare = ice_pci_err_reset_prepare, 5304 .reset_done = ice_pci_err_reset_done, 5305 .resume = ice_pci_err_resume 5306 }; 5307 5308 static struct pci_driver ice_driver = { 5309 .name = KBUILD_MODNAME, 5310 .id_table = ice_pci_tbl, 5311 .probe = ice_probe, 5312 .remove = ice_remove, 5313 #ifdef CONFIG_PM 5314 .driver.pm = &ice_pm_ops, 5315 #endif /* CONFIG_PM */ 5316 .shutdown = ice_shutdown, 5317 .sriov_configure = ice_sriov_configure, 5318 .err_handler = &ice_pci_err_handler 5319 }; 5320 5321 /** 5322 * ice_module_init - Driver registration routine 5323 * 5324 * ice_module_init is the first routine called when the driver is 5325 * loaded. All it does is register with the PCI subsystem. 5326 */ 5327 static int __init ice_module_init(void) 5328 { 5329 int status; 5330 5331 pr_info("%s\n", ice_driver_string); 5332 pr_info("%s\n", ice_copyright); 5333 5334 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5335 if (!ice_wq) { 5336 pr_err("Failed to create workqueue\n"); 5337 return -ENOMEM; 5338 } 5339 5340 status = pci_register_driver(&ice_driver); 5341 if (status) { 5342 pr_err("failed to register PCI driver, err %d\n", status); 5343 destroy_workqueue(ice_wq); 5344 } 5345 5346 return status; 5347 } 5348 module_init(ice_module_init); 5349 5350 /** 5351 * ice_module_exit - Driver exit cleanup routine 5352 * 5353 * ice_module_exit is called just before the driver is removed 5354 * from memory. 5355 */ 5356 static void __exit ice_module_exit(void) 5357 { 5358 pci_unregister_driver(&ice_driver); 5359 destroy_workqueue(ice_wq); 5360 pr_info("module unloaded\n"); 5361 } 5362 module_exit(ice_module_exit); 5363 5364 /** 5365 * ice_set_mac_address - NDO callback to set MAC address 5366 * @netdev: network interface device structure 5367 * @pi: pointer to an address structure 5368 * 5369 * Returns 0 on success, negative on failure 5370 */ 5371 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5372 { 5373 struct ice_netdev_priv *np = netdev_priv(netdev); 5374 struct ice_vsi *vsi = np->vsi; 5375 struct ice_pf *pf = vsi->back; 5376 struct ice_hw *hw = &pf->hw; 5377 struct sockaddr *addr = pi; 5378 u8 old_mac[ETH_ALEN]; 5379 u8 flags = 0; 5380 u8 *mac; 5381 int err; 5382 5383 mac = (u8 *)addr->sa_data; 5384 5385 if (!is_valid_ether_addr(mac)) 5386 return -EADDRNOTAVAIL; 5387 5388 if (ether_addr_equal(netdev->dev_addr, mac)) { 5389 netdev_dbg(netdev, "already using mac %pM\n", mac); 5390 return 0; 5391 } 5392 5393 if (test_bit(ICE_DOWN, pf->state) || 5394 ice_is_reset_in_progress(pf->state)) { 5395 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5396 mac); 5397 return -EBUSY; 5398 } 5399 5400 if (ice_chnl_dmac_fltr_cnt(pf)) { 5401 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5402 mac); 5403 return -EAGAIN; 5404 } 5405 5406 netif_addr_lock_bh(netdev); 5407 ether_addr_copy(old_mac, netdev->dev_addr); 5408 /* change the netdev's MAC address */ 5409 eth_hw_addr_set(netdev, mac); 5410 netif_addr_unlock_bh(netdev); 5411 5412 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5413 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5414 if (err && err != -ENOENT) { 5415 err = -EADDRNOTAVAIL; 5416 goto err_update_filters; 5417 } 5418 5419 /* Add filter for new MAC. If filter exists, return success */ 5420 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5421 if (err == -EEXIST) 5422 /* Although this MAC filter is already present in hardware it's 5423 * possible in some cases (e.g. bonding) that dev_addr was 5424 * modified outside of the driver and needs to be restored back 5425 * to this value. 5426 */ 5427 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5428 else if (err) 5429 /* error if the new filter addition failed */ 5430 err = -EADDRNOTAVAIL; 5431 5432 err_update_filters: 5433 if (err) { 5434 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5435 mac); 5436 netif_addr_lock_bh(netdev); 5437 eth_hw_addr_set(netdev, old_mac); 5438 netif_addr_unlock_bh(netdev); 5439 return err; 5440 } 5441 5442 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5443 netdev->dev_addr); 5444 5445 /* write new MAC address to the firmware */ 5446 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5447 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5448 if (err) { 5449 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5450 mac, err); 5451 } 5452 return 0; 5453 } 5454 5455 /** 5456 * ice_set_rx_mode - NDO callback to set the netdev filters 5457 * @netdev: network interface device structure 5458 */ 5459 static void ice_set_rx_mode(struct net_device *netdev) 5460 { 5461 struct ice_netdev_priv *np = netdev_priv(netdev); 5462 struct ice_vsi *vsi = np->vsi; 5463 5464 if (!vsi) 5465 return; 5466 5467 /* Set the flags to synchronize filters 5468 * ndo_set_rx_mode may be triggered even without a change in netdev 5469 * flags 5470 */ 5471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5473 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5474 5475 /* schedule our worker thread which will take care of 5476 * applying the new filter changes 5477 */ 5478 ice_service_task_schedule(vsi->back); 5479 } 5480 5481 /** 5482 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5483 * @netdev: network interface device structure 5484 * @queue_index: Queue ID 5485 * @maxrate: maximum bandwidth in Mbps 5486 */ 5487 static int 5488 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5489 { 5490 struct ice_netdev_priv *np = netdev_priv(netdev); 5491 struct ice_vsi *vsi = np->vsi; 5492 u16 q_handle; 5493 int status; 5494 u8 tc; 5495 5496 /* Validate maxrate requested is within permitted range */ 5497 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5498 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5499 maxrate, queue_index); 5500 return -EINVAL; 5501 } 5502 5503 q_handle = vsi->tx_rings[queue_index]->q_handle; 5504 tc = ice_dcb_get_tc(vsi, queue_index); 5505 5506 /* Set BW back to default, when user set maxrate to 0 */ 5507 if (!maxrate) 5508 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5509 q_handle, ICE_MAX_BW); 5510 else 5511 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5512 q_handle, ICE_MAX_BW, maxrate * 1000); 5513 if (status) 5514 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5515 status); 5516 5517 return status; 5518 } 5519 5520 /** 5521 * ice_fdb_add - add an entry to the hardware database 5522 * @ndm: the input from the stack 5523 * @tb: pointer to array of nladdr (unused) 5524 * @dev: the net device pointer 5525 * @addr: the MAC address entry being added 5526 * @vid: VLAN ID 5527 * @flags: instructions from stack about fdb operation 5528 * @extack: netlink extended ack 5529 */ 5530 static int 5531 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5532 struct net_device *dev, const unsigned char *addr, u16 vid, 5533 u16 flags, struct netlink_ext_ack __always_unused *extack) 5534 { 5535 int err; 5536 5537 if (vid) { 5538 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5539 return -EINVAL; 5540 } 5541 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5542 netdev_err(dev, "FDB only supports static addresses\n"); 5543 return -EINVAL; 5544 } 5545 5546 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5547 err = dev_uc_add_excl(dev, addr); 5548 else if (is_multicast_ether_addr(addr)) 5549 err = dev_mc_add_excl(dev, addr); 5550 else 5551 err = -EINVAL; 5552 5553 /* Only return duplicate errors if NLM_F_EXCL is set */ 5554 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5555 err = 0; 5556 5557 return err; 5558 } 5559 5560 /** 5561 * ice_fdb_del - delete an entry from the hardware database 5562 * @ndm: the input from the stack 5563 * @tb: pointer to array of nladdr (unused) 5564 * @dev: the net device pointer 5565 * @addr: the MAC address entry being added 5566 * @vid: VLAN ID 5567 */ 5568 static int 5569 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5570 struct net_device *dev, const unsigned char *addr, 5571 __always_unused u16 vid) 5572 { 5573 int err; 5574 5575 if (ndm->ndm_state & NUD_PERMANENT) { 5576 netdev_err(dev, "FDB only supports static addresses\n"); 5577 return -EINVAL; 5578 } 5579 5580 if (is_unicast_ether_addr(addr)) 5581 err = dev_uc_del(dev, addr); 5582 else if (is_multicast_ether_addr(addr)) 5583 err = dev_mc_del(dev, addr); 5584 else 5585 err = -EINVAL; 5586 5587 return err; 5588 } 5589 5590 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5591 NETIF_F_HW_VLAN_CTAG_TX | \ 5592 NETIF_F_HW_VLAN_STAG_RX | \ 5593 NETIF_F_HW_VLAN_STAG_TX) 5594 5595 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5596 NETIF_F_HW_VLAN_STAG_FILTER) 5597 5598 /** 5599 * ice_fix_features - fix the netdev features flags based on device limitations 5600 * @netdev: ptr to the netdev that flags are being fixed on 5601 * @features: features that need to be checked and possibly fixed 5602 * 5603 * Make sure any fixups are made to features in this callback. This enables the 5604 * driver to not have to check unsupported configurations throughout the driver 5605 * because that's the responsiblity of this callback. 5606 * 5607 * Single VLAN Mode (SVM) Supported Features: 5608 * NETIF_F_HW_VLAN_CTAG_FILTER 5609 * NETIF_F_HW_VLAN_CTAG_RX 5610 * NETIF_F_HW_VLAN_CTAG_TX 5611 * 5612 * Double VLAN Mode (DVM) Supported Features: 5613 * NETIF_F_HW_VLAN_CTAG_FILTER 5614 * NETIF_F_HW_VLAN_CTAG_RX 5615 * NETIF_F_HW_VLAN_CTAG_TX 5616 * 5617 * NETIF_F_HW_VLAN_STAG_FILTER 5618 * NETIF_HW_VLAN_STAG_RX 5619 * NETIF_HW_VLAN_STAG_TX 5620 * 5621 * Features that need fixing: 5622 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5623 * These are mutually exlusive as the VSI context cannot support multiple 5624 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5625 * is not done, then default to clearing the requested STAG offload 5626 * settings. 5627 * 5628 * All supported filtering has to be enabled or disabled together. For 5629 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5630 * together. If this is not done, then default to VLAN filtering disabled. 5631 * These are mutually exclusive as there is currently no way to 5632 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5633 * prune rules. 5634 */ 5635 static netdev_features_t 5636 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5637 { 5638 struct ice_netdev_priv *np = netdev_priv(netdev); 5639 netdev_features_t supported_vlan_filtering; 5640 netdev_features_t requested_vlan_filtering; 5641 struct ice_vsi *vsi = np->vsi; 5642 5643 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5644 5645 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5646 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5647 if (ice_is_dvm_ena(&vsi->back->hw)) 5648 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5649 5650 if (requested_vlan_filtering && 5651 requested_vlan_filtering != supported_vlan_filtering) { 5652 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5653 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5654 features |= supported_vlan_filtering; 5655 } else { 5656 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5657 features &= ~supported_vlan_filtering; 5658 } 5659 } 5660 5661 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5662 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5663 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5664 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5665 NETIF_F_HW_VLAN_STAG_TX); 5666 } 5667 5668 return features; 5669 } 5670 5671 /** 5672 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5673 * @vsi: PF's VSI 5674 * @features: features used to determine VLAN offload settings 5675 * 5676 * First, determine the vlan_ethertype based on the VLAN offload bits in 5677 * features. Then determine if stripping and insertion should be enabled or 5678 * disabled. Finally enable or disable VLAN stripping and insertion. 5679 */ 5680 static int 5681 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5682 { 5683 bool enable_stripping = true, enable_insertion = true; 5684 struct ice_vsi_vlan_ops *vlan_ops; 5685 int strip_err = 0, insert_err = 0; 5686 u16 vlan_ethertype = 0; 5687 5688 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5689 5690 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5691 vlan_ethertype = ETH_P_8021AD; 5692 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5693 vlan_ethertype = ETH_P_8021Q; 5694 5695 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5696 enable_stripping = false; 5697 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5698 enable_insertion = false; 5699 5700 if (enable_stripping) 5701 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5702 else 5703 strip_err = vlan_ops->dis_stripping(vsi); 5704 5705 if (enable_insertion) 5706 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5707 else 5708 insert_err = vlan_ops->dis_insertion(vsi); 5709 5710 if (strip_err || insert_err) 5711 return -EIO; 5712 5713 return 0; 5714 } 5715 5716 /** 5717 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5718 * @vsi: PF's VSI 5719 * @features: features used to determine VLAN filtering settings 5720 * 5721 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5722 * features. 5723 */ 5724 static int 5725 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5726 { 5727 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5728 int err = 0; 5729 5730 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5731 * if either bit is set 5732 */ 5733 if (features & 5734 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5735 err = vlan_ops->ena_rx_filtering(vsi); 5736 else 5737 err = vlan_ops->dis_rx_filtering(vsi); 5738 5739 return err; 5740 } 5741 5742 /** 5743 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5744 * @netdev: ptr to the netdev being adjusted 5745 * @features: the feature set that the stack is suggesting 5746 * 5747 * Only update VLAN settings if the requested_vlan_features are different than 5748 * the current_vlan_features. 5749 */ 5750 static int 5751 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5752 { 5753 netdev_features_t current_vlan_features, requested_vlan_features; 5754 struct ice_netdev_priv *np = netdev_priv(netdev); 5755 struct ice_vsi *vsi = np->vsi; 5756 int err; 5757 5758 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5759 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5760 if (current_vlan_features ^ requested_vlan_features) { 5761 err = ice_set_vlan_offload_features(vsi, features); 5762 if (err) 5763 return err; 5764 } 5765 5766 current_vlan_features = netdev->features & 5767 NETIF_VLAN_FILTERING_FEATURES; 5768 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5769 if (current_vlan_features ^ requested_vlan_features) { 5770 err = ice_set_vlan_filtering_features(vsi, features); 5771 if (err) 5772 return err; 5773 } 5774 5775 return 0; 5776 } 5777 5778 /** 5779 * ice_set_features - set the netdev feature flags 5780 * @netdev: ptr to the netdev being adjusted 5781 * @features: the feature set that the stack is suggesting 5782 */ 5783 static int 5784 ice_set_features(struct net_device *netdev, netdev_features_t features) 5785 { 5786 struct ice_netdev_priv *np = netdev_priv(netdev); 5787 struct ice_vsi *vsi = np->vsi; 5788 struct ice_pf *pf = vsi->back; 5789 int ret = 0; 5790 5791 /* Don't set any netdev advanced features with device in Safe Mode */ 5792 if (ice_is_safe_mode(vsi->back)) { 5793 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5794 return ret; 5795 } 5796 5797 /* Do not change setting during reset */ 5798 if (ice_is_reset_in_progress(pf->state)) { 5799 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5800 return -EBUSY; 5801 } 5802 5803 /* Multiple features can be changed in one call so keep features in 5804 * separate if/else statements to guarantee each feature is checked 5805 */ 5806 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5807 ice_vsi_manage_rss_lut(vsi, true); 5808 else if (!(features & NETIF_F_RXHASH) && 5809 netdev->features & NETIF_F_RXHASH) 5810 ice_vsi_manage_rss_lut(vsi, false); 5811 5812 ret = ice_set_vlan_features(netdev, features); 5813 if (ret) 5814 return ret; 5815 5816 if ((features & NETIF_F_NTUPLE) && 5817 !(netdev->features & NETIF_F_NTUPLE)) { 5818 ice_vsi_manage_fdir(vsi, true); 5819 ice_init_arfs(vsi); 5820 } else if (!(features & NETIF_F_NTUPLE) && 5821 (netdev->features & NETIF_F_NTUPLE)) { 5822 ice_vsi_manage_fdir(vsi, false); 5823 ice_clear_arfs(vsi); 5824 } 5825 5826 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5827 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5828 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5829 return -EACCES; 5830 } 5831 5832 if ((features & NETIF_F_HW_TC) && 5833 !(netdev->features & NETIF_F_HW_TC)) 5834 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5835 else 5836 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5837 5838 return 0; 5839 } 5840 5841 /** 5842 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5843 * @vsi: VSI to setup VLAN properties for 5844 */ 5845 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5846 { 5847 int err; 5848 5849 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5850 if (err) 5851 return err; 5852 5853 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5854 if (err) 5855 return err; 5856 5857 return ice_vsi_add_vlan_zero(vsi); 5858 } 5859 5860 /** 5861 * ice_vsi_cfg - Setup the VSI 5862 * @vsi: the VSI being configured 5863 * 5864 * Return 0 on success and negative value on error 5865 */ 5866 int ice_vsi_cfg(struct ice_vsi *vsi) 5867 { 5868 int err; 5869 5870 if (vsi->netdev) { 5871 ice_set_rx_mode(vsi->netdev); 5872 5873 err = ice_vsi_vlan_setup(vsi); 5874 5875 if (err) 5876 return err; 5877 } 5878 ice_vsi_cfg_dcb_rings(vsi); 5879 5880 err = ice_vsi_cfg_lan_txqs(vsi); 5881 if (!err && ice_is_xdp_ena_vsi(vsi)) 5882 err = ice_vsi_cfg_xdp_txqs(vsi); 5883 if (!err) 5884 err = ice_vsi_cfg_rxqs(vsi); 5885 5886 return err; 5887 } 5888 5889 /* THEORY OF MODERATION: 5890 * The ice driver hardware works differently than the hardware that DIMLIB was 5891 * originally made for. ice hardware doesn't have packet count limits that 5892 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5893 * which is hard-coded to a limit of 250,000 ints/second. 5894 * If not using dynamic moderation, the INTRL value can be modified 5895 * by ethtool rx-usecs-high. 5896 */ 5897 struct ice_dim { 5898 /* the throttle rate for interrupts, basically worst case delay before 5899 * an initial interrupt fires, value is stored in microseconds. 5900 */ 5901 u16 itr; 5902 }; 5903 5904 /* Make a different profile for Rx that doesn't allow quite so aggressive 5905 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5906 * second. 5907 */ 5908 static const struct ice_dim rx_profile[] = { 5909 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5910 {8}, /* 125,000 ints/s */ 5911 {16}, /* 62,500 ints/s */ 5912 {62}, /* 16,129 ints/s */ 5913 {126} /* 7,936 ints/s */ 5914 }; 5915 5916 /* The transmit profile, which has the same sorts of values 5917 * as the previous struct 5918 */ 5919 static const struct ice_dim tx_profile[] = { 5920 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5921 {8}, /* 125,000 ints/s */ 5922 {40}, /* 16,125 ints/s */ 5923 {128}, /* 7,812 ints/s */ 5924 {256} /* 3,906 ints/s */ 5925 }; 5926 5927 static void ice_tx_dim_work(struct work_struct *work) 5928 { 5929 struct ice_ring_container *rc; 5930 struct dim *dim; 5931 u16 itr; 5932 5933 dim = container_of(work, struct dim, work); 5934 rc = (struct ice_ring_container *)dim->priv; 5935 5936 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5937 5938 /* look up the values in our local table */ 5939 itr = tx_profile[dim->profile_ix].itr; 5940 5941 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5942 ice_write_itr(rc, itr); 5943 5944 dim->state = DIM_START_MEASURE; 5945 } 5946 5947 static void ice_rx_dim_work(struct work_struct *work) 5948 { 5949 struct ice_ring_container *rc; 5950 struct dim *dim; 5951 u16 itr; 5952 5953 dim = container_of(work, struct dim, work); 5954 rc = (struct ice_ring_container *)dim->priv; 5955 5956 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5957 5958 /* look up the values in our local table */ 5959 itr = rx_profile[dim->profile_ix].itr; 5960 5961 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5962 ice_write_itr(rc, itr); 5963 5964 dim->state = DIM_START_MEASURE; 5965 } 5966 5967 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5968 5969 /** 5970 * ice_init_moderation - set up interrupt moderation 5971 * @q_vector: the vector containing rings to be configured 5972 * 5973 * Set up interrupt moderation registers, with the intent to do the right thing 5974 * when called from reset or from probe, and whether or not dynamic moderation 5975 * is enabled or not. Take special care to write all the registers in both 5976 * dynamic moderation mode or not in order to make sure hardware is in a known 5977 * state. 5978 */ 5979 static void ice_init_moderation(struct ice_q_vector *q_vector) 5980 { 5981 struct ice_ring_container *rc; 5982 bool tx_dynamic, rx_dynamic; 5983 5984 rc = &q_vector->tx; 5985 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5986 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5987 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5988 rc->dim.priv = rc; 5989 tx_dynamic = ITR_IS_DYNAMIC(rc); 5990 5991 /* set the initial TX ITR to match the above */ 5992 ice_write_itr(rc, tx_dynamic ? 5993 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5994 5995 rc = &q_vector->rx; 5996 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5997 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5998 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5999 rc->dim.priv = rc; 6000 rx_dynamic = ITR_IS_DYNAMIC(rc); 6001 6002 /* set the initial RX ITR to match the above */ 6003 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6004 rc->itr_setting); 6005 6006 ice_set_q_vector_intrl(q_vector); 6007 } 6008 6009 /** 6010 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6011 * @vsi: the VSI being configured 6012 */ 6013 static void ice_napi_enable_all(struct ice_vsi *vsi) 6014 { 6015 int q_idx; 6016 6017 if (!vsi->netdev) 6018 return; 6019 6020 ice_for_each_q_vector(vsi, q_idx) { 6021 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6022 6023 ice_init_moderation(q_vector); 6024 6025 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6026 napi_enable(&q_vector->napi); 6027 } 6028 } 6029 6030 /** 6031 * ice_up_complete - Finish the last steps of bringing up a connection 6032 * @vsi: The VSI being configured 6033 * 6034 * Return 0 on success and negative value on error 6035 */ 6036 static int ice_up_complete(struct ice_vsi *vsi) 6037 { 6038 struct ice_pf *pf = vsi->back; 6039 int err; 6040 6041 ice_vsi_cfg_msix(vsi); 6042 6043 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6044 * Tx queue group list was configured and the context bits were 6045 * programmed using ice_vsi_cfg_txqs 6046 */ 6047 err = ice_vsi_start_all_rx_rings(vsi); 6048 if (err) 6049 return err; 6050 6051 clear_bit(ICE_VSI_DOWN, vsi->state); 6052 ice_napi_enable_all(vsi); 6053 ice_vsi_ena_irq(vsi); 6054 6055 if (vsi->port_info && 6056 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6057 vsi->netdev) { 6058 ice_print_link_msg(vsi, true); 6059 netif_tx_start_all_queues(vsi->netdev); 6060 netif_carrier_on(vsi->netdev); 6061 if (!ice_is_e810(&pf->hw)) 6062 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6063 } 6064 6065 /* clear this now, and the first stats read will be used as baseline */ 6066 vsi->stat_offsets_loaded = false; 6067 6068 ice_service_task_schedule(pf); 6069 6070 return 0; 6071 } 6072 6073 /** 6074 * ice_up - Bring the connection back up after being down 6075 * @vsi: VSI being configured 6076 */ 6077 int ice_up(struct ice_vsi *vsi) 6078 { 6079 int err; 6080 6081 err = ice_vsi_cfg(vsi); 6082 if (!err) 6083 err = ice_up_complete(vsi); 6084 6085 return err; 6086 } 6087 6088 /** 6089 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6090 * @syncp: pointer to u64_stats_sync 6091 * @stats: stats that pkts and bytes count will be taken from 6092 * @pkts: packets stats counter 6093 * @bytes: bytes stats counter 6094 * 6095 * This function fetches stats from the ring considering the atomic operations 6096 * that needs to be performed to read u64 values in 32 bit machine. 6097 */ 6098 static void 6099 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 6100 u64 *pkts, u64 *bytes) 6101 { 6102 unsigned int start; 6103 6104 do { 6105 start = u64_stats_fetch_begin_irq(syncp); 6106 *pkts = stats.pkts; 6107 *bytes = stats.bytes; 6108 } while (u64_stats_fetch_retry_irq(syncp, start)); 6109 } 6110 6111 /** 6112 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6113 * @vsi: the VSI to be updated 6114 * @vsi_stats: the stats struct to be updated 6115 * @rings: rings to work on 6116 * @count: number of rings 6117 */ 6118 static void 6119 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6120 struct rtnl_link_stats64 *vsi_stats, 6121 struct ice_tx_ring **rings, u16 count) 6122 { 6123 u16 i; 6124 6125 for (i = 0; i < count; i++) { 6126 struct ice_tx_ring *ring; 6127 u64 pkts = 0, bytes = 0; 6128 6129 ring = READ_ONCE(rings[i]); 6130 if (ring) 6131 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6132 vsi_stats->tx_packets += pkts; 6133 vsi_stats->tx_bytes += bytes; 6134 vsi->tx_restart += ring->tx_stats.restart_q; 6135 vsi->tx_busy += ring->tx_stats.tx_busy; 6136 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6137 } 6138 } 6139 6140 /** 6141 * ice_update_vsi_ring_stats - Update VSI stats counters 6142 * @vsi: the VSI to be updated 6143 */ 6144 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6145 { 6146 struct rtnl_link_stats64 *vsi_stats; 6147 u64 pkts, bytes; 6148 int i; 6149 6150 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6151 if (!vsi_stats) 6152 return; 6153 6154 /* reset non-netdev (extended) stats */ 6155 vsi->tx_restart = 0; 6156 vsi->tx_busy = 0; 6157 vsi->tx_linearize = 0; 6158 vsi->rx_buf_failed = 0; 6159 vsi->rx_page_failed = 0; 6160 6161 rcu_read_lock(); 6162 6163 /* update Tx rings counters */ 6164 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6165 vsi->num_txq); 6166 6167 /* update Rx rings counters */ 6168 ice_for_each_rxq(vsi, i) { 6169 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6170 6171 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6172 vsi_stats->rx_packets += pkts; 6173 vsi_stats->rx_bytes += bytes; 6174 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6175 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6176 } 6177 6178 /* update XDP Tx rings counters */ 6179 if (ice_is_xdp_ena_vsi(vsi)) 6180 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6181 vsi->num_xdp_txq); 6182 6183 rcu_read_unlock(); 6184 6185 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6186 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6187 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6188 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6189 6190 kfree(vsi_stats); 6191 } 6192 6193 /** 6194 * ice_update_vsi_stats - Update VSI stats counters 6195 * @vsi: the VSI to be updated 6196 */ 6197 void ice_update_vsi_stats(struct ice_vsi *vsi) 6198 { 6199 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6200 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6201 struct ice_pf *pf = vsi->back; 6202 6203 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6204 test_bit(ICE_CFG_BUSY, pf->state)) 6205 return; 6206 6207 /* get stats as recorded by Tx/Rx rings */ 6208 ice_update_vsi_ring_stats(vsi); 6209 6210 /* get VSI stats as recorded by the hardware */ 6211 ice_update_eth_stats(vsi); 6212 6213 cur_ns->tx_errors = cur_es->tx_errors; 6214 cur_ns->rx_dropped = cur_es->rx_discards; 6215 cur_ns->tx_dropped = cur_es->tx_discards; 6216 cur_ns->multicast = cur_es->rx_multicast; 6217 6218 /* update some more netdev stats if this is main VSI */ 6219 if (vsi->type == ICE_VSI_PF) { 6220 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6221 cur_ns->rx_errors = pf->stats.crc_errors + 6222 pf->stats.illegal_bytes + 6223 pf->stats.rx_len_errors + 6224 pf->stats.rx_undersize + 6225 pf->hw_csum_rx_error + 6226 pf->stats.rx_jabber + 6227 pf->stats.rx_fragments + 6228 pf->stats.rx_oversize; 6229 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6230 /* record drops from the port level */ 6231 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6232 } 6233 } 6234 6235 /** 6236 * ice_update_pf_stats - Update PF port stats counters 6237 * @pf: PF whose stats needs to be updated 6238 */ 6239 void ice_update_pf_stats(struct ice_pf *pf) 6240 { 6241 struct ice_hw_port_stats *prev_ps, *cur_ps; 6242 struct ice_hw *hw = &pf->hw; 6243 u16 fd_ctr_base; 6244 u8 port; 6245 6246 port = hw->port_info->lport; 6247 prev_ps = &pf->stats_prev; 6248 cur_ps = &pf->stats; 6249 6250 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6251 &prev_ps->eth.rx_bytes, 6252 &cur_ps->eth.rx_bytes); 6253 6254 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6255 &prev_ps->eth.rx_unicast, 6256 &cur_ps->eth.rx_unicast); 6257 6258 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6259 &prev_ps->eth.rx_multicast, 6260 &cur_ps->eth.rx_multicast); 6261 6262 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6263 &prev_ps->eth.rx_broadcast, 6264 &cur_ps->eth.rx_broadcast); 6265 6266 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6267 &prev_ps->eth.rx_discards, 6268 &cur_ps->eth.rx_discards); 6269 6270 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6271 &prev_ps->eth.tx_bytes, 6272 &cur_ps->eth.tx_bytes); 6273 6274 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6275 &prev_ps->eth.tx_unicast, 6276 &cur_ps->eth.tx_unicast); 6277 6278 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6279 &prev_ps->eth.tx_multicast, 6280 &cur_ps->eth.tx_multicast); 6281 6282 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6283 &prev_ps->eth.tx_broadcast, 6284 &cur_ps->eth.tx_broadcast); 6285 6286 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6287 &prev_ps->tx_dropped_link_down, 6288 &cur_ps->tx_dropped_link_down); 6289 6290 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6291 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6292 6293 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6294 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6295 6296 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6297 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6298 6299 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6300 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6301 6302 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6303 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6304 6305 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6306 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6307 6308 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6309 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6310 6311 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6312 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6313 6314 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6315 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6316 6317 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6318 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6319 6320 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6321 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6322 6323 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6324 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6325 6326 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6327 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6328 6329 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6330 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6331 6332 fd_ctr_base = hw->fd_ctr_base; 6333 6334 ice_stat_update40(hw, 6335 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6336 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6337 &cur_ps->fd_sb_match); 6338 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6339 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6340 6341 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6342 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6343 6344 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6345 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6346 6347 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6348 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6349 6350 ice_update_dcb_stats(pf); 6351 6352 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6353 &prev_ps->crc_errors, &cur_ps->crc_errors); 6354 6355 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6356 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6357 6358 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6359 &prev_ps->mac_local_faults, 6360 &cur_ps->mac_local_faults); 6361 6362 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6363 &prev_ps->mac_remote_faults, 6364 &cur_ps->mac_remote_faults); 6365 6366 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6367 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6368 6369 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6370 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6371 6372 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6373 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6374 6375 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6376 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6377 6378 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6379 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6380 6381 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6382 6383 pf->stat_prev_loaded = true; 6384 } 6385 6386 /** 6387 * ice_get_stats64 - get statistics for network device structure 6388 * @netdev: network interface device structure 6389 * @stats: main device statistics structure 6390 */ 6391 static 6392 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6393 { 6394 struct ice_netdev_priv *np = netdev_priv(netdev); 6395 struct rtnl_link_stats64 *vsi_stats; 6396 struct ice_vsi *vsi = np->vsi; 6397 6398 vsi_stats = &vsi->net_stats; 6399 6400 if (!vsi->num_txq || !vsi->num_rxq) 6401 return; 6402 6403 /* netdev packet/byte stats come from ring counter. These are obtained 6404 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6405 * But, only call the update routine and read the registers if VSI is 6406 * not down. 6407 */ 6408 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6409 ice_update_vsi_ring_stats(vsi); 6410 stats->tx_packets = vsi_stats->tx_packets; 6411 stats->tx_bytes = vsi_stats->tx_bytes; 6412 stats->rx_packets = vsi_stats->rx_packets; 6413 stats->rx_bytes = vsi_stats->rx_bytes; 6414 6415 /* The rest of the stats can be read from the hardware but instead we 6416 * just return values that the watchdog task has already obtained from 6417 * the hardware. 6418 */ 6419 stats->multicast = vsi_stats->multicast; 6420 stats->tx_errors = vsi_stats->tx_errors; 6421 stats->tx_dropped = vsi_stats->tx_dropped; 6422 stats->rx_errors = vsi_stats->rx_errors; 6423 stats->rx_dropped = vsi_stats->rx_dropped; 6424 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6425 stats->rx_length_errors = vsi_stats->rx_length_errors; 6426 } 6427 6428 /** 6429 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6430 * @vsi: VSI having NAPI disabled 6431 */ 6432 static void ice_napi_disable_all(struct ice_vsi *vsi) 6433 { 6434 int q_idx; 6435 6436 if (!vsi->netdev) 6437 return; 6438 6439 ice_for_each_q_vector(vsi, q_idx) { 6440 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6441 6442 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6443 napi_disable(&q_vector->napi); 6444 6445 cancel_work_sync(&q_vector->tx.dim.work); 6446 cancel_work_sync(&q_vector->rx.dim.work); 6447 } 6448 } 6449 6450 /** 6451 * ice_down - Shutdown the connection 6452 * @vsi: The VSI being stopped 6453 * 6454 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6455 */ 6456 int ice_down(struct ice_vsi *vsi) 6457 { 6458 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6459 6460 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6461 6462 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6463 vlan_err = ice_vsi_del_vlan_zero(vsi); 6464 if (!ice_is_e810(&vsi->back->hw)) 6465 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6466 netif_carrier_off(vsi->netdev); 6467 netif_tx_disable(vsi->netdev); 6468 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6469 ice_eswitch_stop_all_tx_queues(vsi->back); 6470 } 6471 6472 ice_vsi_dis_irq(vsi); 6473 6474 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6475 if (tx_err) 6476 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6477 vsi->vsi_num, tx_err); 6478 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6479 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6480 if (tx_err) 6481 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6482 vsi->vsi_num, tx_err); 6483 } 6484 6485 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6486 if (rx_err) 6487 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6488 vsi->vsi_num, rx_err); 6489 6490 ice_napi_disable_all(vsi); 6491 6492 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6493 link_err = ice_force_phys_link_state(vsi, false); 6494 if (link_err) 6495 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6496 vsi->vsi_num, link_err); 6497 } 6498 6499 ice_for_each_txq(vsi, i) 6500 ice_clean_tx_ring(vsi->tx_rings[i]); 6501 6502 ice_for_each_rxq(vsi, i) 6503 ice_clean_rx_ring(vsi->rx_rings[i]); 6504 6505 if (tx_err || rx_err || link_err || vlan_err) { 6506 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6507 vsi->vsi_num, vsi->vsw->sw_id); 6508 return -EIO; 6509 } 6510 6511 return 0; 6512 } 6513 6514 /** 6515 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6516 * @vsi: VSI having resources allocated 6517 * 6518 * Return 0 on success, negative on failure 6519 */ 6520 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6521 { 6522 int i, err = 0; 6523 6524 if (!vsi->num_txq) { 6525 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6526 vsi->vsi_num); 6527 return -EINVAL; 6528 } 6529 6530 ice_for_each_txq(vsi, i) { 6531 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6532 6533 if (!ring) 6534 return -EINVAL; 6535 6536 if (vsi->netdev) 6537 ring->netdev = vsi->netdev; 6538 err = ice_setup_tx_ring(ring); 6539 if (err) 6540 break; 6541 } 6542 6543 return err; 6544 } 6545 6546 /** 6547 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6548 * @vsi: VSI having resources allocated 6549 * 6550 * Return 0 on success, negative on failure 6551 */ 6552 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6553 { 6554 int i, err = 0; 6555 6556 if (!vsi->num_rxq) { 6557 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6558 vsi->vsi_num); 6559 return -EINVAL; 6560 } 6561 6562 ice_for_each_rxq(vsi, i) { 6563 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6564 6565 if (!ring) 6566 return -EINVAL; 6567 6568 if (vsi->netdev) 6569 ring->netdev = vsi->netdev; 6570 err = ice_setup_rx_ring(ring); 6571 if (err) 6572 break; 6573 } 6574 6575 return err; 6576 } 6577 6578 /** 6579 * ice_vsi_open_ctrl - open control VSI for use 6580 * @vsi: the VSI to open 6581 * 6582 * Initialization of the Control VSI 6583 * 6584 * Returns 0 on success, negative value on error 6585 */ 6586 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6587 { 6588 char int_name[ICE_INT_NAME_STR_LEN]; 6589 struct ice_pf *pf = vsi->back; 6590 struct device *dev; 6591 int err; 6592 6593 dev = ice_pf_to_dev(pf); 6594 /* allocate descriptors */ 6595 err = ice_vsi_setup_tx_rings(vsi); 6596 if (err) 6597 goto err_setup_tx; 6598 6599 err = ice_vsi_setup_rx_rings(vsi); 6600 if (err) 6601 goto err_setup_rx; 6602 6603 err = ice_vsi_cfg(vsi); 6604 if (err) 6605 goto err_setup_rx; 6606 6607 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6608 dev_driver_string(dev), dev_name(dev)); 6609 err = ice_vsi_req_irq_msix(vsi, int_name); 6610 if (err) 6611 goto err_setup_rx; 6612 6613 ice_vsi_cfg_msix(vsi); 6614 6615 err = ice_vsi_start_all_rx_rings(vsi); 6616 if (err) 6617 goto err_up_complete; 6618 6619 clear_bit(ICE_VSI_DOWN, vsi->state); 6620 ice_vsi_ena_irq(vsi); 6621 6622 return 0; 6623 6624 err_up_complete: 6625 ice_down(vsi); 6626 err_setup_rx: 6627 ice_vsi_free_rx_rings(vsi); 6628 err_setup_tx: 6629 ice_vsi_free_tx_rings(vsi); 6630 6631 return err; 6632 } 6633 6634 /** 6635 * ice_vsi_open - Called when a network interface is made active 6636 * @vsi: the VSI to open 6637 * 6638 * Initialization of the VSI 6639 * 6640 * Returns 0 on success, negative value on error 6641 */ 6642 int ice_vsi_open(struct ice_vsi *vsi) 6643 { 6644 char int_name[ICE_INT_NAME_STR_LEN]; 6645 struct ice_pf *pf = vsi->back; 6646 int err; 6647 6648 /* allocate descriptors */ 6649 err = ice_vsi_setup_tx_rings(vsi); 6650 if (err) 6651 goto err_setup_tx; 6652 6653 err = ice_vsi_setup_rx_rings(vsi); 6654 if (err) 6655 goto err_setup_rx; 6656 6657 err = ice_vsi_cfg(vsi); 6658 if (err) 6659 goto err_setup_rx; 6660 6661 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6662 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6663 err = ice_vsi_req_irq_msix(vsi, int_name); 6664 if (err) 6665 goto err_setup_rx; 6666 6667 if (vsi->type == ICE_VSI_PF) { 6668 /* Notify the stack of the actual queue counts. */ 6669 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6670 if (err) 6671 goto err_set_qs; 6672 6673 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6674 if (err) 6675 goto err_set_qs; 6676 } 6677 6678 err = ice_up_complete(vsi); 6679 if (err) 6680 goto err_up_complete; 6681 6682 return 0; 6683 6684 err_up_complete: 6685 ice_down(vsi); 6686 err_set_qs: 6687 ice_vsi_free_irq(vsi); 6688 err_setup_rx: 6689 ice_vsi_free_rx_rings(vsi); 6690 err_setup_tx: 6691 ice_vsi_free_tx_rings(vsi); 6692 6693 return err; 6694 } 6695 6696 /** 6697 * ice_vsi_release_all - Delete all VSIs 6698 * @pf: PF from which all VSIs are being removed 6699 */ 6700 static void ice_vsi_release_all(struct ice_pf *pf) 6701 { 6702 int err, i; 6703 6704 if (!pf->vsi) 6705 return; 6706 6707 ice_for_each_vsi(pf, i) { 6708 if (!pf->vsi[i]) 6709 continue; 6710 6711 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6712 continue; 6713 6714 err = ice_vsi_release(pf->vsi[i]); 6715 if (err) 6716 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6717 i, err, pf->vsi[i]->vsi_num); 6718 } 6719 } 6720 6721 /** 6722 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6723 * @pf: pointer to the PF instance 6724 * @type: VSI type to rebuild 6725 * 6726 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6727 */ 6728 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6729 { 6730 struct device *dev = ice_pf_to_dev(pf); 6731 int i, err; 6732 6733 ice_for_each_vsi(pf, i) { 6734 struct ice_vsi *vsi = pf->vsi[i]; 6735 6736 if (!vsi || vsi->type != type) 6737 continue; 6738 6739 /* rebuild the VSI */ 6740 err = ice_vsi_rebuild(vsi, true); 6741 if (err) { 6742 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6743 err, vsi->idx, ice_vsi_type_str(type)); 6744 return err; 6745 } 6746 6747 /* replay filters for the VSI */ 6748 err = ice_replay_vsi(&pf->hw, vsi->idx); 6749 if (err) { 6750 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6751 err, vsi->idx, ice_vsi_type_str(type)); 6752 return err; 6753 } 6754 6755 /* Re-map HW VSI number, using VSI handle that has been 6756 * previously validated in ice_replay_vsi() call above 6757 */ 6758 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6759 6760 /* enable the VSI */ 6761 err = ice_ena_vsi(vsi, false); 6762 if (err) { 6763 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6764 err, vsi->idx, ice_vsi_type_str(type)); 6765 return err; 6766 } 6767 6768 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6769 ice_vsi_type_str(type)); 6770 } 6771 6772 return 0; 6773 } 6774 6775 /** 6776 * ice_update_pf_netdev_link - Update PF netdev link status 6777 * @pf: pointer to the PF instance 6778 */ 6779 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6780 { 6781 bool link_up; 6782 int i; 6783 6784 ice_for_each_vsi(pf, i) { 6785 struct ice_vsi *vsi = pf->vsi[i]; 6786 6787 if (!vsi || vsi->type != ICE_VSI_PF) 6788 return; 6789 6790 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6791 if (link_up) { 6792 netif_carrier_on(pf->vsi[i]->netdev); 6793 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6794 } else { 6795 netif_carrier_off(pf->vsi[i]->netdev); 6796 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6797 } 6798 } 6799 } 6800 6801 /** 6802 * ice_rebuild - rebuild after reset 6803 * @pf: PF to rebuild 6804 * @reset_type: type of reset 6805 * 6806 * Do not rebuild VF VSI in this flow because that is already handled via 6807 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6808 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6809 * to reset/rebuild all the VF VSI twice. 6810 */ 6811 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6812 { 6813 struct device *dev = ice_pf_to_dev(pf); 6814 struct ice_hw *hw = &pf->hw; 6815 bool dvm; 6816 int err; 6817 6818 if (test_bit(ICE_DOWN, pf->state)) 6819 goto clear_recovery; 6820 6821 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6822 6823 if (reset_type == ICE_RESET_EMPR) { 6824 /* If an EMP reset has occurred, any previously pending flash 6825 * update will have completed. We no longer know whether or 6826 * not the NVM update EMP reset is restricted. 6827 */ 6828 pf->fw_emp_reset_disabled = false; 6829 } 6830 6831 err = ice_init_all_ctrlq(hw); 6832 if (err) { 6833 dev_err(dev, "control queues init failed %d\n", err); 6834 goto err_init_ctrlq; 6835 } 6836 6837 /* if DDP was previously loaded successfully */ 6838 if (!ice_is_safe_mode(pf)) { 6839 /* reload the SW DB of filter tables */ 6840 if (reset_type == ICE_RESET_PFR) 6841 ice_fill_blk_tbls(hw); 6842 else 6843 /* Reload DDP Package after CORER/GLOBR reset */ 6844 ice_load_pkg(NULL, pf); 6845 } 6846 6847 err = ice_clear_pf_cfg(hw); 6848 if (err) { 6849 dev_err(dev, "clear PF configuration failed %d\n", err); 6850 goto err_init_ctrlq; 6851 } 6852 6853 if (pf->first_sw->dflt_vsi_ena) 6854 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6855 /* clear the default VSI configuration if it exists */ 6856 pf->first_sw->dflt_vsi = NULL; 6857 pf->first_sw->dflt_vsi_ena = false; 6858 6859 ice_clear_pxe_mode(hw); 6860 6861 err = ice_init_nvm(hw); 6862 if (err) { 6863 dev_err(dev, "ice_init_nvm failed %d\n", err); 6864 goto err_init_ctrlq; 6865 } 6866 6867 err = ice_get_caps(hw); 6868 if (err) { 6869 dev_err(dev, "ice_get_caps failed %d\n", err); 6870 goto err_init_ctrlq; 6871 } 6872 6873 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6874 if (err) { 6875 dev_err(dev, "set_mac_cfg failed %d\n", err); 6876 goto err_init_ctrlq; 6877 } 6878 6879 dvm = ice_is_dvm_ena(hw); 6880 6881 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 6882 if (err) 6883 goto err_init_ctrlq; 6884 6885 err = ice_sched_init_port(hw->port_info); 6886 if (err) 6887 goto err_sched_init_port; 6888 6889 /* start misc vector */ 6890 err = ice_req_irq_msix_misc(pf); 6891 if (err) { 6892 dev_err(dev, "misc vector setup failed: %d\n", err); 6893 goto err_sched_init_port; 6894 } 6895 6896 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6897 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6898 if (!rd32(hw, PFQF_FD_SIZE)) { 6899 u16 unused, guar, b_effort; 6900 6901 guar = hw->func_caps.fd_fltr_guar; 6902 b_effort = hw->func_caps.fd_fltr_best_effort; 6903 6904 /* force guaranteed filter pool for PF */ 6905 ice_alloc_fd_guar_item(hw, &unused, guar); 6906 /* force shared filter pool for PF */ 6907 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6908 } 6909 } 6910 6911 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6912 ice_dcb_rebuild(pf); 6913 6914 /* If the PF previously had enabled PTP, PTP init needs to happen before 6915 * the VSI rebuild. If not, this causes the PTP link status events to 6916 * fail. 6917 */ 6918 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6919 ice_ptp_reset(pf); 6920 6921 /* rebuild PF VSI */ 6922 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6923 if (err) { 6924 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6925 goto err_vsi_rebuild; 6926 } 6927 6928 /* configure PTP timestamping after VSI rebuild */ 6929 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6930 ice_ptp_cfg_timestamp(pf, false); 6931 6932 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6933 if (err) { 6934 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6935 goto err_vsi_rebuild; 6936 } 6937 6938 if (reset_type == ICE_RESET_PFR) { 6939 err = ice_rebuild_channels(pf); 6940 if (err) { 6941 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6942 err); 6943 goto err_vsi_rebuild; 6944 } 6945 } 6946 6947 /* If Flow Director is active */ 6948 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6949 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6950 if (err) { 6951 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6952 goto err_vsi_rebuild; 6953 } 6954 6955 /* replay HW Flow Director recipes */ 6956 if (hw->fdir_prof) 6957 ice_fdir_replay_flows(hw); 6958 6959 /* replay Flow Director filters */ 6960 ice_fdir_replay_fltrs(pf); 6961 6962 ice_rebuild_arfs(pf); 6963 } 6964 6965 ice_update_pf_netdev_link(pf); 6966 6967 /* tell the firmware we are up */ 6968 err = ice_send_version(pf); 6969 if (err) { 6970 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 6971 err); 6972 goto err_vsi_rebuild; 6973 } 6974 6975 ice_replay_post(hw); 6976 6977 /* if we get here, reset flow is successful */ 6978 clear_bit(ICE_RESET_FAILED, pf->state); 6979 6980 ice_plug_aux_dev(pf); 6981 return; 6982 6983 err_vsi_rebuild: 6984 err_sched_init_port: 6985 ice_sched_cleanup_all(hw); 6986 err_init_ctrlq: 6987 ice_shutdown_all_ctrlq(hw); 6988 set_bit(ICE_RESET_FAILED, pf->state); 6989 clear_recovery: 6990 /* set this bit in PF state to control service task scheduling */ 6991 set_bit(ICE_NEEDS_RESTART, pf->state); 6992 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6993 } 6994 6995 /** 6996 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6997 * @vsi: Pointer to VSI structure 6998 */ 6999 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7000 { 7001 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7002 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7003 else 7004 return ICE_RXBUF_3072; 7005 } 7006 7007 /** 7008 * ice_change_mtu - NDO callback to change the MTU 7009 * @netdev: network interface device structure 7010 * @new_mtu: new value for maximum frame size 7011 * 7012 * Returns 0 on success, negative on failure 7013 */ 7014 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7015 { 7016 struct ice_netdev_priv *np = netdev_priv(netdev); 7017 struct ice_vsi *vsi = np->vsi; 7018 struct ice_pf *pf = vsi->back; 7019 struct iidc_event *event; 7020 u8 count = 0; 7021 int err = 0; 7022 7023 if (new_mtu == (int)netdev->mtu) { 7024 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7025 return 0; 7026 } 7027 7028 if (ice_is_xdp_ena_vsi(vsi)) { 7029 int frame_size = ice_max_xdp_frame_size(vsi); 7030 7031 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7032 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7033 frame_size - ICE_ETH_PKT_HDR_PAD); 7034 return -EINVAL; 7035 } 7036 } 7037 7038 /* if a reset is in progress, wait for some time for it to complete */ 7039 do { 7040 if (ice_is_reset_in_progress(pf->state)) { 7041 count++; 7042 usleep_range(1000, 2000); 7043 } else { 7044 break; 7045 } 7046 7047 } while (count < 100); 7048 7049 if (count == 100) { 7050 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7051 return -EBUSY; 7052 } 7053 7054 event = kzalloc(sizeof(*event), GFP_KERNEL); 7055 if (!event) 7056 return -ENOMEM; 7057 7058 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 7059 ice_send_event_to_aux(pf, event); 7060 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 7061 7062 netdev->mtu = (unsigned int)new_mtu; 7063 7064 /* if VSI is up, bring it down and then back up */ 7065 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7066 err = ice_down(vsi); 7067 if (err) { 7068 netdev_err(netdev, "change MTU if_down err %d\n", err); 7069 goto event_after; 7070 } 7071 7072 err = ice_up(vsi); 7073 if (err) { 7074 netdev_err(netdev, "change MTU if_up err %d\n", err); 7075 goto event_after; 7076 } 7077 } 7078 7079 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7080 event_after: 7081 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 7082 ice_send_event_to_aux(pf, event); 7083 kfree(event); 7084 7085 return err; 7086 } 7087 7088 /** 7089 * ice_eth_ioctl - Access the hwtstamp interface 7090 * @netdev: network interface device structure 7091 * @ifr: interface request data 7092 * @cmd: ioctl command 7093 */ 7094 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7095 { 7096 struct ice_netdev_priv *np = netdev_priv(netdev); 7097 struct ice_pf *pf = np->vsi->back; 7098 7099 switch (cmd) { 7100 case SIOCGHWTSTAMP: 7101 return ice_ptp_get_ts_config(pf, ifr); 7102 case SIOCSHWTSTAMP: 7103 return ice_ptp_set_ts_config(pf, ifr); 7104 default: 7105 return -EOPNOTSUPP; 7106 } 7107 } 7108 7109 /** 7110 * ice_aq_str - convert AQ err code to a string 7111 * @aq_err: the AQ error code to convert 7112 */ 7113 const char *ice_aq_str(enum ice_aq_err aq_err) 7114 { 7115 switch (aq_err) { 7116 case ICE_AQ_RC_OK: 7117 return "OK"; 7118 case ICE_AQ_RC_EPERM: 7119 return "ICE_AQ_RC_EPERM"; 7120 case ICE_AQ_RC_ENOENT: 7121 return "ICE_AQ_RC_ENOENT"; 7122 case ICE_AQ_RC_ENOMEM: 7123 return "ICE_AQ_RC_ENOMEM"; 7124 case ICE_AQ_RC_EBUSY: 7125 return "ICE_AQ_RC_EBUSY"; 7126 case ICE_AQ_RC_EEXIST: 7127 return "ICE_AQ_RC_EEXIST"; 7128 case ICE_AQ_RC_EINVAL: 7129 return "ICE_AQ_RC_EINVAL"; 7130 case ICE_AQ_RC_ENOSPC: 7131 return "ICE_AQ_RC_ENOSPC"; 7132 case ICE_AQ_RC_ENOSYS: 7133 return "ICE_AQ_RC_ENOSYS"; 7134 case ICE_AQ_RC_EMODE: 7135 return "ICE_AQ_RC_EMODE"; 7136 case ICE_AQ_RC_ENOSEC: 7137 return "ICE_AQ_RC_ENOSEC"; 7138 case ICE_AQ_RC_EBADSIG: 7139 return "ICE_AQ_RC_EBADSIG"; 7140 case ICE_AQ_RC_ESVN: 7141 return "ICE_AQ_RC_ESVN"; 7142 case ICE_AQ_RC_EBADMAN: 7143 return "ICE_AQ_RC_EBADMAN"; 7144 case ICE_AQ_RC_EBADBUF: 7145 return "ICE_AQ_RC_EBADBUF"; 7146 } 7147 7148 return "ICE_AQ_RC_UNKNOWN"; 7149 } 7150 7151 /** 7152 * ice_set_rss_lut - Set RSS LUT 7153 * @vsi: Pointer to VSI structure 7154 * @lut: Lookup table 7155 * @lut_size: Lookup table size 7156 * 7157 * Returns 0 on success, negative on failure 7158 */ 7159 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7160 { 7161 struct ice_aq_get_set_rss_lut_params params = {}; 7162 struct ice_hw *hw = &vsi->back->hw; 7163 int status; 7164 7165 if (!lut) 7166 return -EINVAL; 7167 7168 params.vsi_handle = vsi->idx; 7169 params.lut_size = lut_size; 7170 params.lut_type = vsi->rss_lut_type; 7171 params.lut = lut; 7172 7173 status = ice_aq_set_rss_lut(hw, ¶ms); 7174 if (status) 7175 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7176 status, ice_aq_str(hw->adminq.sq_last_status)); 7177 7178 return status; 7179 } 7180 7181 /** 7182 * ice_set_rss_key - Set RSS key 7183 * @vsi: Pointer to the VSI structure 7184 * @seed: RSS hash seed 7185 * 7186 * Returns 0 on success, negative on failure 7187 */ 7188 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7189 { 7190 struct ice_hw *hw = &vsi->back->hw; 7191 int status; 7192 7193 if (!seed) 7194 return -EINVAL; 7195 7196 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7197 if (status) 7198 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7199 status, ice_aq_str(hw->adminq.sq_last_status)); 7200 7201 return status; 7202 } 7203 7204 /** 7205 * ice_get_rss_lut - Get RSS LUT 7206 * @vsi: Pointer to VSI structure 7207 * @lut: Buffer to store the lookup table entries 7208 * @lut_size: Size of buffer to store the lookup table entries 7209 * 7210 * Returns 0 on success, negative on failure 7211 */ 7212 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7213 { 7214 struct ice_aq_get_set_rss_lut_params params = {}; 7215 struct ice_hw *hw = &vsi->back->hw; 7216 int status; 7217 7218 if (!lut) 7219 return -EINVAL; 7220 7221 params.vsi_handle = vsi->idx; 7222 params.lut_size = lut_size; 7223 params.lut_type = vsi->rss_lut_type; 7224 params.lut = lut; 7225 7226 status = ice_aq_get_rss_lut(hw, ¶ms); 7227 if (status) 7228 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7229 status, ice_aq_str(hw->adminq.sq_last_status)); 7230 7231 return status; 7232 } 7233 7234 /** 7235 * ice_get_rss_key - Get RSS key 7236 * @vsi: Pointer to VSI structure 7237 * @seed: Buffer to store the key in 7238 * 7239 * Returns 0 on success, negative on failure 7240 */ 7241 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7242 { 7243 struct ice_hw *hw = &vsi->back->hw; 7244 int status; 7245 7246 if (!seed) 7247 return -EINVAL; 7248 7249 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7250 if (status) 7251 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7252 status, ice_aq_str(hw->adminq.sq_last_status)); 7253 7254 return status; 7255 } 7256 7257 /** 7258 * ice_bridge_getlink - Get the hardware bridge mode 7259 * @skb: skb buff 7260 * @pid: process ID 7261 * @seq: RTNL message seq 7262 * @dev: the netdev being configured 7263 * @filter_mask: filter mask passed in 7264 * @nlflags: netlink flags passed in 7265 * 7266 * Return the bridge mode (VEB/VEPA) 7267 */ 7268 static int 7269 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7270 struct net_device *dev, u32 filter_mask, int nlflags) 7271 { 7272 struct ice_netdev_priv *np = netdev_priv(dev); 7273 struct ice_vsi *vsi = np->vsi; 7274 struct ice_pf *pf = vsi->back; 7275 u16 bmode; 7276 7277 bmode = pf->first_sw->bridge_mode; 7278 7279 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7280 filter_mask, NULL); 7281 } 7282 7283 /** 7284 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7285 * @vsi: Pointer to VSI structure 7286 * @bmode: Hardware bridge mode (VEB/VEPA) 7287 * 7288 * Returns 0 on success, negative on failure 7289 */ 7290 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7291 { 7292 struct ice_aqc_vsi_props *vsi_props; 7293 struct ice_hw *hw = &vsi->back->hw; 7294 struct ice_vsi_ctx *ctxt; 7295 int ret; 7296 7297 vsi_props = &vsi->info; 7298 7299 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7300 if (!ctxt) 7301 return -ENOMEM; 7302 7303 ctxt->info = vsi->info; 7304 7305 if (bmode == BRIDGE_MODE_VEB) 7306 /* change from VEPA to VEB mode */ 7307 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7308 else 7309 /* change from VEB to VEPA mode */ 7310 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7311 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7312 7313 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7314 if (ret) { 7315 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7316 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7317 goto out; 7318 } 7319 /* Update sw flags for book keeping */ 7320 vsi_props->sw_flags = ctxt->info.sw_flags; 7321 7322 out: 7323 kfree(ctxt); 7324 return ret; 7325 } 7326 7327 /** 7328 * ice_bridge_setlink - Set the hardware bridge mode 7329 * @dev: the netdev being configured 7330 * @nlh: RTNL message 7331 * @flags: bridge setlink flags 7332 * @extack: netlink extended ack 7333 * 7334 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7335 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7336 * not already set for all VSIs connected to this switch. And also update the 7337 * unicast switch filter rules for the corresponding switch of the netdev. 7338 */ 7339 static int 7340 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7341 u16 __always_unused flags, 7342 struct netlink_ext_ack __always_unused *extack) 7343 { 7344 struct ice_netdev_priv *np = netdev_priv(dev); 7345 struct ice_pf *pf = np->vsi->back; 7346 struct nlattr *attr, *br_spec; 7347 struct ice_hw *hw = &pf->hw; 7348 struct ice_sw *pf_sw; 7349 int rem, v, err = 0; 7350 7351 pf_sw = pf->first_sw; 7352 /* find the attribute in the netlink message */ 7353 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7354 7355 nla_for_each_nested(attr, br_spec, rem) { 7356 __u16 mode; 7357 7358 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7359 continue; 7360 mode = nla_get_u16(attr); 7361 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7362 return -EINVAL; 7363 /* Continue if bridge mode is not being flipped */ 7364 if (mode == pf_sw->bridge_mode) 7365 continue; 7366 /* Iterates through the PF VSI list and update the loopback 7367 * mode of the VSI 7368 */ 7369 ice_for_each_vsi(pf, v) { 7370 if (!pf->vsi[v]) 7371 continue; 7372 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7373 if (err) 7374 return err; 7375 } 7376 7377 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7378 /* Update the unicast switch filter rules for the corresponding 7379 * switch of the netdev 7380 */ 7381 err = ice_update_sw_rule_bridge_mode(hw); 7382 if (err) { 7383 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7384 mode, err, 7385 ice_aq_str(hw->adminq.sq_last_status)); 7386 /* revert hw->evb_veb */ 7387 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7388 return err; 7389 } 7390 7391 pf_sw->bridge_mode = mode; 7392 } 7393 7394 return 0; 7395 } 7396 7397 /** 7398 * ice_tx_timeout - Respond to a Tx Hang 7399 * @netdev: network interface device structure 7400 * @txqueue: Tx queue 7401 */ 7402 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7403 { 7404 struct ice_netdev_priv *np = netdev_priv(netdev); 7405 struct ice_tx_ring *tx_ring = NULL; 7406 struct ice_vsi *vsi = np->vsi; 7407 struct ice_pf *pf = vsi->back; 7408 u32 i; 7409 7410 pf->tx_timeout_count++; 7411 7412 /* Check if PFC is enabled for the TC to which the queue belongs 7413 * to. If yes then Tx timeout is not caused by a hung queue, no 7414 * need to reset and rebuild 7415 */ 7416 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7417 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7418 txqueue); 7419 return; 7420 } 7421 7422 /* now that we have an index, find the tx_ring struct */ 7423 ice_for_each_txq(vsi, i) 7424 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7425 if (txqueue == vsi->tx_rings[i]->q_index) { 7426 tx_ring = vsi->tx_rings[i]; 7427 break; 7428 } 7429 7430 /* Reset recovery level if enough time has elapsed after last timeout. 7431 * Also ensure no new reset action happens before next timeout period. 7432 */ 7433 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7434 pf->tx_timeout_recovery_level = 1; 7435 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7436 netdev->watchdog_timeo))) 7437 return; 7438 7439 if (tx_ring) { 7440 struct ice_hw *hw = &pf->hw; 7441 u32 head, val = 0; 7442 7443 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7444 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7445 /* Read interrupt register */ 7446 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7447 7448 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7449 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7450 head, tx_ring->next_to_use, val); 7451 } 7452 7453 pf->tx_timeout_last_recovery = jiffies; 7454 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7455 pf->tx_timeout_recovery_level, txqueue); 7456 7457 switch (pf->tx_timeout_recovery_level) { 7458 case 1: 7459 set_bit(ICE_PFR_REQ, pf->state); 7460 break; 7461 case 2: 7462 set_bit(ICE_CORER_REQ, pf->state); 7463 break; 7464 case 3: 7465 set_bit(ICE_GLOBR_REQ, pf->state); 7466 break; 7467 default: 7468 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7469 set_bit(ICE_DOWN, pf->state); 7470 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7471 set_bit(ICE_SERVICE_DIS, pf->state); 7472 break; 7473 } 7474 7475 ice_service_task_schedule(pf); 7476 pf->tx_timeout_recovery_level++; 7477 } 7478 7479 /** 7480 * ice_setup_tc_cls_flower - flower classifier offloads 7481 * @np: net device to configure 7482 * @filter_dev: device on which filter is added 7483 * @cls_flower: offload data 7484 */ 7485 static int 7486 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7487 struct net_device *filter_dev, 7488 struct flow_cls_offload *cls_flower) 7489 { 7490 struct ice_vsi *vsi = np->vsi; 7491 7492 if (cls_flower->common.chain_index) 7493 return -EOPNOTSUPP; 7494 7495 switch (cls_flower->command) { 7496 case FLOW_CLS_REPLACE: 7497 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7498 case FLOW_CLS_DESTROY: 7499 return ice_del_cls_flower(vsi, cls_flower); 7500 default: 7501 return -EINVAL; 7502 } 7503 } 7504 7505 /** 7506 * ice_setup_tc_block_cb - callback handler registered for TC block 7507 * @type: TC SETUP type 7508 * @type_data: TC flower offload data that contains user input 7509 * @cb_priv: netdev private data 7510 */ 7511 static int 7512 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7513 { 7514 struct ice_netdev_priv *np = cb_priv; 7515 7516 switch (type) { 7517 case TC_SETUP_CLSFLOWER: 7518 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7519 type_data); 7520 default: 7521 return -EOPNOTSUPP; 7522 } 7523 } 7524 7525 /** 7526 * ice_validate_mqprio_qopt - Validate TCF input parameters 7527 * @vsi: Pointer to VSI 7528 * @mqprio_qopt: input parameters for mqprio queue configuration 7529 * 7530 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7531 * needed), and make sure user doesn't specify qcount and BW rate limit 7532 * for TCs, which are more than "num_tc" 7533 */ 7534 static int 7535 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7536 struct tc_mqprio_qopt_offload *mqprio_qopt) 7537 { 7538 u64 sum_max_rate = 0, sum_min_rate = 0; 7539 int non_power_of_2_qcount = 0; 7540 struct ice_pf *pf = vsi->back; 7541 int max_rss_q_cnt = 0; 7542 struct device *dev; 7543 int i, speed; 7544 u8 num_tc; 7545 7546 if (vsi->type != ICE_VSI_PF) 7547 return -EINVAL; 7548 7549 if (mqprio_qopt->qopt.offset[0] != 0 || 7550 mqprio_qopt->qopt.num_tc < 1 || 7551 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7552 return -EINVAL; 7553 7554 dev = ice_pf_to_dev(pf); 7555 vsi->ch_rss_size = 0; 7556 num_tc = mqprio_qopt->qopt.num_tc; 7557 7558 for (i = 0; num_tc; i++) { 7559 int qcount = mqprio_qopt->qopt.count[i]; 7560 u64 max_rate, min_rate, rem; 7561 7562 if (!qcount) 7563 return -EINVAL; 7564 7565 if (is_power_of_2(qcount)) { 7566 if (non_power_of_2_qcount && 7567 qcount > non_power_of_2_qcount) { 7568 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7569 qcount, non_power_of_2_qcount); 7570 return -EINVAL; 7571 } 7572 if (qcount > max_rss_q_cnt) 7573 max_rss_q_cnt = qcount; 7574 } else { 7575 if (non_power_of_2_qcount && 7576 qcount != non_power_of_2_qcount) { 7577 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7578 qcount, non_power_of_2_qcount); 7579 return -EINVAL; 7580 } 7581 if (qcount < max_rss_q_cnt) { 7582 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7583 qcount, max_rss_q_cnt); 7584 return -EINVAL; 7585 } 7586 max_rss_q_cnt = qcount; 7587 non_power_of_2_qcount = qcount; 7588 } 7589 7590 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7591 * converts the bandwidth rate limit into Bytes/s when 7592 * passing it down to the driver. So convert input bandwidth 7593 * from Bytes/s to Kbps 7594 */ 7595 max_rate = mqprio_qopt->max_rate[i]; 7596 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7597 sum_max_rate += max_rate; 7598 7599 /* min_rate is minimum guaranteed rate and it can't be zero */ 7600 min_rate = mqprio_qopt->min_rate[i]; 7601 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7602 sum_min_rate += min_rate; 7603 7604 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7605 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7606 min_rate, ICE_MIN_BW_LIMIT); 7607 return -EINVAL; 7608 } 7609 7610 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7611 if (rem) { 7612 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7613 i, ICE_MIN_BW_LIMIT); 7614 return -EINVAL; 7615 } 7616 7617 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7618 if (rem) { 7619 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7620 i, ICE_MIN_BW_LIMIT); 7621 return -EINVAL; 7622 } 7623 7624 /* min_rate can't be more than max_rate, except when max_rate 7625 * is zero (implies max_rate sought is max line rate). In such 7626 * a case min_rate can be more than max. 7627 */ 7628 if (max_rate && min_rate > max_rate) { 7629 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7630 min_rate, max_rate); 7631 return -EINVAL; 7632 } 7633 7634 if (i >= mqprio_qopt->qopt.num_tc - 1) 7635 break; 7636 if (mqprio_qopt->qopt.offset[i + 1] != 7637 (mqprio_qopt->qopt.offset[i] + qcount)) 7638 return -EINVAL; 7639 } 7640 if (vsi->num_rxq < 7641 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7642 return -EINVAL; 7643 if (vsi->num_txq < 7644 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7645 return -EINVAL; 7646 7647 speed = ice_get_link_speed_kbps(vsi); 7648 if (sum_max_rate && sum_max_rate > (u64)speed) { 7649 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7650 sum_max_rate, speed); 7651 return -EINVAL; 7652 } 7653 if (sum_min_rate && sum_min_rate > (u64)speed) { 7654 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7655 sum_min_rate, speed); 7656 return -EINVAL; 7657 } 7658 7659 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7660 vsi->ch_rss_size = max_rss_q_cnt; 7661 7662 return 0; 7663 } 7664 7665 /** 7666 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7667 * @pf: ptr to PF device 7668 * @vsi: ptr to VSI 7669 */ 7670 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7671 { 7672 struct device *dev = ice_pf_to_dev(pf); 7673 bool added = false; 7674 struct ice_hw *hw; 7675 int flow; 7676 7677 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7678 return -EINVAL; 7679 7680 hw = &pf->hw; 7681 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7682 struct ice_fd_hw_prof *prof; 7683 int tun, status; 7684 u64 entry_h; 7685 7686 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7687 hw->fdir_prof[flow]->cnt)) 7688 continue; 7689 7690 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7691 enum ice_flow_priority prio; 7692 u64 prof_id; 7693 7694 /* add this VSI to FDir profile for this flow */ 7695 prio = ICE_FLOW_PRIO_NORMAL; 7696 prof = hw->fdir_prof[flow]; 7697 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7698 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7699 prof->vsi_h[0], vsi->idx, 7700 prio, prof->fdir_seg[tun], 7701 &entry_h); 7702 if (status) { 7703 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7704 vsi->idx, flow); 7705 continue; 7706 } 7707 7708 prof->entry_h[prof->cnt][tun] = entry_h; 7709 } 7710 7711 /* store VSI for filter replay and delete */ 7712 prof->vsi_h[prof->cnt] = vsi->idx; 7713 prof->cnt++; 7714 7715 added = true; 7716 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7717 flow); 7718 } 7719 7720 if (!added) 7721 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7722 7723 return 0; 7724 } 7725 7726 /** 7727 * ice_add_channel - add a channel by adding VSI 7728 * @pf: ptr to PF device 7729 * @sw_id: underlying HW switching element ID 7730 * @ch: ptr to channel structure 7731 * 7732 * Add a channel (VSI) using add_vsi and queue_map 7733 */ 7734 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7735 { 7736 struct device *dev = ice_pf_to_dev(pf); 7737 struct ice_vsi *vsi; 7738 7739 if (ch->type != ICE_VSI_CHNL) { 7740 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7741 return -EINVAL; 7742 } 7743 7744 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7745 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7746 dev_err(dev, "create chnl VSI failure\n"); 7747 return -EINVAL; 7748 } 7749 7750 ice_add_vsi_to_fdir(pf, vsi); 7751 7752 ch->sw_id = sw_id; 7753 ch->vsi_num = vsi->vsi_num; 7754 ch->info.mapping_flags = vsi->info.mapping_flags; 7755 ch->ch_vsi = vsi; 7756 /* set the back pointer of channel for newly created VSI */ 7757 vsi->ch = ch; 7758 7759 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7760 sizeof(vsi->info.q_mapping)); 7761 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7762 sizeof(vsi->info.tc_mapping)); 7763 7764 return 0; 7765 } 7766 7767 /** 7768 * ice_chnl_cfg_res 7769 * @vsi: the VSI being setup 7770 * @ch: ptr to channel structure 7771 * 7772 * Configure channel specific resources such as rings, vector. 7773 */ 7774 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7775 { 7776 int i; 7777 7778 for (i = 0; i < ch->num_txq; i++) { 7779 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7780 struct ice_ring_container *rc; 7781 struct ice_tx_ring *tx_ring; 7782 struct ice_rx_ring *rx_ring; 7783 7784 tx_ring = vsi->tx_rings[ch->base_q + i]; 7785 rx_ring = vsi->rx_rings[ch->base_q + i]; 7786 if (!tx_ring || !rx_ring) 7787 continue; 7788 7789 /* setup ring being channel enabled */ 7790 tx_ring->ch = ch; 7791 rx_ring->ch = ch; 7792 7793 /* following code block sets up vector specific attributes */ 7794 tx_q_vector = tx_ring->q_vector; 7795 rx_q_vector = rx_ring->q_vector; 7796 if (!tx_q_vector && !rx_q_vector) 7797 continue; 7798 7799 if (tx_q_vector) { 7800 tx_q_vector->ch = ch; 7801 /* setup Tx and Rx ITR setting if DIM is off */ 7802 rc = &tx_q_vector->tx; 7803 if (!ITR_IS_DYNAMIC(rc)) 7804 ice_write_itr(rc, rc->itr_setting); 7805 } 7806 if (rx_q_vector) { 7807 rx_q_vector->ch = ch; 7808 /* setup Tx and Rx ITR setting if DIM is off */ 7809 rc = &rx_q_vector->rx; 7810 if (!ITR_IS_DYNAMIC(rc)) 7811 ice_write_itr(rc, rc->itr_setting); 7812 } 7813 } 7814 7815 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7816 * GLINT_ITR register would have written to perform in-context 7817 * update, hence perform flush 7818 */ 7819 if (ch->num_txq || ch->num_rxq) 7820 ice_flush(&vsi->back->hw); 7821 } 7822 7823 /** 7824 * ice_cfg_chnl_all_res - configure channel resources 7825 * @vsi: pte to main_vsi 7826 * @ch: ptr to channel structure 7827 * 7828 * This function configures channel specific resources such as flow-director 7829 * counter index, and other resources such as queues, vectors, ITR settings 7830 */ 7831 static void 7832 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7833 { 7834 /* configure channel (aka ADQ) resources such as queues, vectors, 7835 * ITR settings for channel specific vectors and anything else 7836 */ 7837 ice_chnl_cfg_res(vsi, ch); 7838 } 7839 7840 /** 7841 * ice_setup_hw_channel - setup new channel 7842 * @pf: ptr to PF device 7843 * @vsi: the VSI being setup 7844 * @ch: ptr to channel structure 7845 * @sw_id: underlying HW switching element ID 7846 * @type: type of channel to be created (VMDq2/VF) 7847 * 7848 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7849 * and configures Tx rings accordingly 7850 */ 7851 static int 7852 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7853 struct ice_channel *ch, u16 sw_id, u8 type) 7854 { 7855 struct device *dev = ice_pf_to_dev(pf); 7856 int ret; 7857 7858 ch->base_q = vsi->next_base_q; 7859 ch->type = type; 7860 7861 ret = ice_add_channel(pf, sw_id, ch); 7862 if (ret) { 7863 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7864 return ret; 7865 } 7866 7867 /* configure/setup ADQ specific resources */ 7868 ice_cfg_chnl_all_res(vsi, ch); 7869 7870 /* make sure to update the next_base_q so that subsequent channel's 7871 * (aka ADQ) VSI queue map is correct 7872 */ 7873 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7874 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7875 ch->num_rxq); 7876 7877 return 0; 7878 } 7879 7880 /** 7881 * ice_setup_channel - setup new channel using uplink element 7882 * @pf: ptr to PF device 7883 * @vsi: the VSI being setup 7884 * @ch: ptr to channel structure 7885 * 7886 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7887 * and uplink switching element 7888 */ 7889 static bool 7890 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7891 struct ice_channel *ch) 7892 { 7893 struct device *dev = ice_pf_to_dev(pf); 7894 u16 sw_id; 7895 int ret; 7896 7897 if (vsi->type != ICE_VSI_PF) { 7898 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7899 return false; 7900 } 7901 7902 sw_id = pf->first_sw->sw_id; 7903 7904 /* create channel (VSI) */ 7905 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7906 if (ret) { 7907 dev_err(dev, "failed to setup hw_channel\n"); 7908 return false; 7909 } 7910 dev_dbg(dev, "successfully created channel()\n"); 7911 7912 return ch->ch_vsi ? true : false; 7913 } 7914 7915 /** 7916 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7917 * @vsi: VSI to be configured 7918 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7919 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7920 */ 7921 static int 7922 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7923 { 7924 int err; 7925 7926 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7927 if (err) 7928 return err; 7929 7930 return ice_set_max_bw_limit(vsi, max_tx_rate); 7931 } 7932 7933 /** 7934 * ice_create_q_channel - function to create channel 7935 * @vsi: VSI to be configured 7936 * @ch: ptr to channel (it contains channel specific params) 7937 * 7938 * This function creates channel (VSI) using num_queues specified by user, 7939 * reconfigs RSS if needed. 7940 */ 7941 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7942 { 7943 struct ice_pf *pf = vsi->back; 7944 struct device *dev; 7945 7946 if (!ch) 7947 return -EINVAL; 7948 7949 dev = ice_pf_to_dev(pf); 7950 if (!ch->num_txq || !ch->num_rxq) { 7951 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7952 return -EINVAL; 7953 } 7954 7955 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7956 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7957 vsi->cnt_q_avail, ch->num_txq); 7958 return -EINVAL; 7959 } 7960 7961 if (!ice_setup_channel(pf, vsi, ch)) { 7962 dev_info(dev, "Failed to setup channel\n"); 7963 return -EINVAL; 7964 } 7965 /* configure BW rate limit */ 7966 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7967 int ret; 7968 7969 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7970 ch->min_tx_rate); 7971 if (ret) 7972 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7973 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7974 else 7975 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7976 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7977 } 7978 7979 vsi->cnt_q_avail -= ch->num_txq; 7980 7981 return 0; 7982 } 7983 7984 /** 7985 * ice_rem_all_chnl_fltrs - removes all channel filters 7986 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7987 * 7988 * Remove all advanced switch filters only if they are channel specific 7989 * tc-flower based filter 7990 */ 7991 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7992 { 7993 struct ice_tc_flower_fltr *fltr; 7994 struct hlist_node *node; 7995 7996 /* to remove all channel filters, iterate an ordered list of filters */ 7997 hlist_for_each_entry_safe(fltr, node, 7998 &pf->tc_flower_fltr_list, 7999 tc_flower_node) { 8000 struct ice_rule_query_data rule; 8001 int status; 8002 8003 /* for now process only channel specific filters */ 8004 if (!ice_is_chnl_fltr(fltr)) 8005 continue; 8006 8007 rule.rid = fltr->rid; 8008 rule.rule_id = fltr->rule_id; 8009 rule.vsi_handle = fltr->dest_id; 8010 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8011 if (status) { 8012 if (status == -ENOENT) 8013 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8014 rule.rule_id); 8015 else 8016 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8017 status); 8018 } else if (fltr->dest_vsi) { 8019 /* update advanced switch filter count */ 8020 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8021 u32 flags = fltr->flags; 8022 8023 fltr->dest_vsi->num_chnl_fltr--; 8024 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8025 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8026 pf->num_dmac_chnl_fltrs--; 8027 } 8028 } 8029 8030 hlist_del(&fltr->tc_flower_node); 8031 kfree(fltr); 8032 } 8033 } 8034 8035 /** 8036 * ice_remove_q_channels - Remove queue channels for the TCs 8037 * @vsi: VSI to be configured 8038 * @rem_fltr: delete advanced switch filter or not 8039 * 8040 * Remove queue channels for the TCs 8041 */ 8042 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8043 { 8044 struct ice_channel *ch, *ch_tmp; 8045 struct ice_pf *pf = vsi->back; 8046 int i; 8047 8048 /* remove all tc-flower based filter if they are channel filters only */ 8049 if (rem_fltr) 8050 ice_rem_all_chnl_fltrs(pf); 8051 8052 /* remove ntuple filters since queue configuration is being changed */ 8053 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8054 struct ice_hw *hw = &pf->hw; 8055 8056 mutex_lock(&hw->fdir_fltr_lock); 8057 ice_fdir_del_all_fltrs(vsi); 8058 mutex_unlock(&hw->fdir_fltr_lock); 8059 } 8060 8061 /* perform cleanup for channels if they exist */ 8062 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8063 struct ice_vsi *ch_vsi; 8064 8065 list_del(&ch->list); 8066 ch_vsi = ch->ch_vsi; 8067 if (!ch_vsi) { 8068 kfree(ch); 8069 continue; 8070 } 8071 8072 /* Reset queue contexts */ 8073 for (i = 0; i < ch->num_rxq; i++) { 8074 struct ice_tx_ring *tx_ring; 8075 struct ice_rx_ring *rx_ring; 8076 8077 tx_ring = vsi->tx_rings[ch->base_q + i]; 8078 rx_ring = vsi->rx_rings[ch->base_q + i]; 8079 if (tx_ring) { 8080 tx_ring->ch = NULL; 8081 if (tx_ring->q_vector) 8082 tx_ring->q_vector->ch = NULL; 8083 } 8084 if (rx_ring) { 8085 rx_ring->ch = NULL; 8086 if (rx_ring->q_vector) 8087 rx_ring->q_vector->ch = NULL; 8088 } 8089 } 8090 8091 /* Release FD resources for the channel VSI */ 8092 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8093 8094 /* clear the VSI from scheduler tree */ 8095 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8096 8097 /* Delete VSI from FW */ 8098 ice_vsi_delete(ch->ch_vsi); 8099 8100 /* Delete VSI from PF and HW VSI arrays */ 8101 ice_vsi_clear(ch->ch_vsi); 8102 8103 /* free the channel */ 8104 kfree(ch); 8105 } 8106 8107 /* clear the channel VSI map which is stored in main VSI */ 8108 ice_for_each_chnl_tc(i) 8109 vsi->tc_map_vsi[i] = NULL; 8110 8111 /* reset main VSI's all TC information */ 8112 vsi->all_enatc = 0; 8113 vsi->all_numtc = 0; 8114 } 8115 8116 /** 8117 * ice_rebuild_channels - rebuild channel 8118 * @pf: ptr to PF 8119 * 8120 * Recreate channel VSIs and replay filters 8121 */ 8122 static int ice_rebuild_channels(struct ice_pf *pf) 8123 { 8124 struct device *dev = ice_pf_to_dev(pf); 8125 struct ice_vsi *main_vsi; 8126 bool rem_adv_fltr = true; 8127 struct ice_channel *ch; 8128 struct ice_vsi *vsi; 8129 int tc_idx = 1; 8130 int i, err; 8131 8132 main_vsi = ice_get_main_vsi(pf); 8133 if (!main_vsi) 8134 return 0; 8135 8136 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8137 main_vsi->old_numtc == 1) 8138 return 0; /* nothing to be done */ 8139 8140 /* reconfigure main VSI based on old value of TC and cached values 8141 * for MQPRIO opts 8142 */ 8143 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8144 if (err) { 8145 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8146 main_vsi->old_ena_tc, main_vsi->vsi_num); 8147 return err; 8148 } 8149 8150 /* rebuild ADQ VSIs */ 8151 ice_for_each_vsi(pf, i) { 8152 enum ice_vsi_type type; 8153 8154 vsi = pf->vsi[i]; 8155 if (!vsi || vsi->type != ICE_VSI_CHNL) 8156 continue; 8157 8158 type = vsi->type; 8159 8160 /* rebuild ADQ VSI */ 8161 err = ice_vsi_rebuild(vsi, true); 8162 if (err) { 8163 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8164 ice_vsi_type_str(type), vsi->idx, err); 8165 goto cleanup; 8166 } 8167 8168 /* Re-map HW VSI number, using VSI handle that has been 8169 * previously validated in ice_replay_vsi() call above 8170 */ 8171 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8172 8173 /* replay filters for the VSI */ 8174 err = ice_replay_vsi(&pf->hw, vsi->idx); 8175 if (err) { 8176 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8177 ice_vsi_type_str(type), err, vsi->idx); 8178 rem_adv_fltr = false; 8179 goto cleanup; 8180 } 8181 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8182 ice_vsi_type_str(type), vsi->idx); 8183 8184 /* store ADQ VSI at correct TC index in main VSI's 8185 * map of TC to VSI 8186 */ 8187 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8188 } 8189 8190 /* ADQ VSI(s) has been rebuilt successfully, so setup 8191 * channel for main VSI's Tx and Rx rings 8192 */ 8193 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8194 struct ice_vsi *ch_vsi; 8195 8196 ch_vsi = ch->ch_vsi; 8197 if (!ch_vsi) 8198 continue; 8199 8200 /* reconfig channel resources */ 8201 ice_cfg_chnl_all_res(main_vsi, ch); 8202 8203 /* replay BW rate limit if it is non-zero */ 8204 if (!ch->max_tx_rate && !ch->min_tx_rate) 8205 continue; 8206 8207 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8208 ch->min_tx_rate); 8209 if (err) 8210 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8211 err, ch->max_tx_rate, ch->min_tx_rate, 8212 ch_vsi->vsi_num); 8213 else 8214 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8215 ch->max_tx_rate, ch->min_tx_rate, 8216 ch_vsi->vsi_num); 8217 } 8218 8219 /* reconfig RSS for main VSI */ 8220 if (main_vsi->ch_rss_size) 8221 ice_vsi_cfg_rss_lut_key(main_vsi); 8222 8223 return 0; 8224 8225 cleanup: 8226 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8227 return err; 8228 } 8229 8230 /** 8231 * ice_create_q_channels - Add queue channel for the given TCs 8232 * @vsi: VSI to be configured 8233 * 8234 * Configures queue channel mapping to the given TCs 8235 */ 8236 static int ice_create_q_channels(struct ice_vsi *vsi) 8237 { 8238 struct ice_pf *pf = vsi->back; 8239 struct ice_channel *ch; 8240 int ret = 0, i; 8241 8242 ice_for_each_chnl_tc(i) { 8243 if (!(vsi->all_enatc & BIT(i))) 8244 continue; 8245 8246 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8247 if (!ch) { 8248 ret = -ENOMEM; 8249 goto err_free; 8250 } 8251 INIT_LIST_HEAD(&ch->list); 8252 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8253 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8254 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8255 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8256 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8257 8258 /* convert to Kbits/s */ 8259 if (ch->max_tx_rate) 8260 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8261 ICE_BW_KBPS_DIVISOR); 8262 if (ch->min_tx_rate) 8263 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8264 ICE_BW_KBPS_DIVISOR); 8265 8266 ret = ice_create_q_channel(vsi, ch); 8267 if (ret) { 8268 dev_err(ice_pf_to_dev(pf), 8269 "failed creating channel TC:%d\n", i); 8270 kfree(ch); 8271 goto err_free; 8272 } 8273 list_add_tail(&ch->list, &vsi->ch_list); 8274 vsi->tc_map_vsi[i] = ch->ch_vsi; 8275 dev_dbg(ice_pf_to_dev(pf), 8276 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8277 } 8278 return 0; 8279 8280 err_free: 8281 ice_remove_q_channels(vsi, false); 8282 8283 return ret; 8284 } 8285 8286 /** 8287 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8288 * @netdev: net device to configure 8289 * @type_data: TC offload data 8290 */ 8291 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8292 { 8293 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8294 struct ice_netdev_priv *np = netdev_priv(netdev); 8295 struct ice_vsi *vsi = np->vsi; 8296 struct ice_pf *pf = vsi->back; 8297 u16 mode, ena_tc_qdisc = 0; 8298 int cur_txq, cur_rxq; 8299 u8 hw = 0, num_tcf; 8300 struct device *dev; 8301 int ret, i; 8302 8303 dev = ice_pf_to_dev(pf); 8304 num_tcf = mqprio_qopt->qopt.num_tc; 8305 hw = mqprio_qopt->qopt.hw; 8306 mode = mqprio_qopt->mode; 8307 if (!hw) { 8308 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8309 vsi->ch_rss_size = 0; 8310 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8311 goto config_tcf; 8312 } 8313 8314 /* Generate queue region map for number of TCF requested */ 8315 for (i = 0; i < num_tcf; i++) 8316 ena_tc_qdisc |= BIT(i); 8317 8318 switch (mode) { 8319 case TC_MQPRIO_MODE_CHANNEL: 8320 8321 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8322 if (ret) { 8323 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8324 ret); 8325 return ret; 8326 } 8327 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8328 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8329 /* don't assume state of hw_tc_offload during driver load 8330 * and set the flag for TC flower filter if hw_tc_offload 8331 * already ON 8332 */ 8333 if (vsi->netdev->features & NETIF_F_HW_TC) 8334 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8335 break; 8336 default: 8337 return -EINVAL; 8338 } 8339 8340 config_tcf: 8341 8342 /* Requesting same TCF configuration as already enabled */ 8343 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8344 mode != TC_MQPRIO_MODE_CHANNEL) 8345 return 0; 8346 8347 /* Pause VSI queues */ 8348 ice_dis_vsi(vsi, true); 8349 8350 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8351 ice_remove_q_channels(vsi, true); 8352 8353 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8354 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8355 num_online_cpus()); 8356 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8357 num_online_cpus()); 8358 } else { 8359 /* logic to rebuild VSI, same like ethtool -L */ 8360 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8361 8362 for (i = 0; i < num_tcf; i++) { 8363 if (!(ena_tc_qdisc & BIT(i))) 8364 continue; 8365 8366 offset = vsi->mqprio_qopt.qopt.offset[i]; 8367 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8368 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8369 } 8370 vsi->req_txq = offset + qcount_tx; 8371 vsi->req_rxq = offset + qcount_rx; 8372 8373 /* store away original rss_size info, so that it gets reused 8374 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8375 * determine, what should be the rss_sizefor main VSI 8376 */ 8377 vsi->orig_rss_size = vsi->rss_size; 8378 } 8379 8380 /* save current values of Tx and Rx queues before calling VSI rebuild 8381 * for fallback option 8382 */ 8383 cur_txq = vsi->num_txq; 8384 cur_rxq = vsi->num_rxq; 8385 8386 /* proceed with rebuild main VSI using correct number of queues */ 8387 ret = ice_vsi_rebuild(vsi, false); 8388 if (ret) { 8389 /* fallback to current number of queues */ 8390 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8391 vsi->req_txq = cur_txq; 8392 vsi->req_rxq = cur_rxq; 8393 clear_bit(ICE_RESET_FAILED, pf->state); 8394 if (ice_vsi_rebuild(vsi, false)) { 8395 dev_err(dev, "Rebuild of main VSI failed again\n"); 8396 return ret; 8397 } 8398 } 8399 8400 vsi->all_numtc = num_tcf; 8401 vsi->all_enatc = ena_tc_qdisc; 8402 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8403 if (ret) { 8404 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8405 vsi->vsi_num); 8406 goto exit; 8407 } 8408 8409 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8410 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8411 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8412 8413 /* set TC0 rate limit if specified */ 8414 if (max_tx_rate || min_tx_rate) { 8415 /* convert to Kbits/s */ 8416 if (max_tx_rate) 8417 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8418 if (min_tx_rate) 8419 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8420 8421 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8422 if (!ret) { 8423 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8424 max_tx_rate, min_tx_rate, vsi->vsi_num); 8425 } else { 8426 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8427 max_tx_rate, min_tx_rate, vsi->vsi_num); 8428 goto exit; 8429 } 8430 } 8431 ret = ice_create_q_channels(vsi); 8432 if (ret) { 8433 netdev_err(netdev, "failed configuring queue channels\n"); 8434 goto exit; 8435 } else { 8436 netdev_dbg(netdev, "successfully configured channels\n"); 8437 } 8438 } 8439 8440 if (vsi->ch_rss_size) 8441 ice_vsi_cfg_rss_lut_key(vsi); 8442 8443 exit: 8444 /* if error, reset the all_numtc and all_enatc */ 8445 if (ret) { 8446 vsi->all_numtc = 0; 8447 vsi->all_enatc = 0; 8448 } 8449 /* resume VSI */ 8450 ice_ena_vsi(vsi, true); 8451 8452 return ret; 8453 } 8454 8455 static LIST_HEAD(ice_block_cb_list); 8456 8457 static int 8458 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8459 void *type_data) 8460 { 8461 struct ice_netdev_priv *np = netdev_priv(netdev); 8462 struct ice_pf *pf = np->vsi->back; 8463 int err; 8464 8465 switch (type) { 8466 case TC_SETUP_BLOCK: 8467 return flow_block_cb_setup_simple(type_data, 8468 &ice_block_cb_list, 8469 ice_setup_tc_block_cb, 8470 np, np, true); 8471 case TC_SETUP_QDISC_MQPRIO: 8472 /* setup traffic classifier for receive side */ 8473 mutex_lock(&pf->tc_mutex); 8474 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8475 mutex_unlock(&pf->tc_mutex); 8476 return err; 8477 default: 8478 return -EOPNOTSUPP; 8479 } 8480 return -EOPNOTSUPP; 8481 } 8482 8483 static struct ice_indr_block_priv * 8484 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8485 struct net_device *netdev) 8486 { 8487 struct ice_indr_block_priv *cb_priv; 8488 8489 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8490 if (!cb_priv->netdev) 8491 return NULL; 8492 if (cb_priv->netdev == netdev) 8493 return cb_priv; 8494 } 8495 return NULL; 8496 } 8497 8498 static int 8499 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8500 void *indr_priv) 8501 { 8502 struct ice_indr_block_priv *priv = indr_priv; 8503 struct ice_netdev_priv *np = priv->np; 8504 8505 switch (type) { 8506 case TC_SETUP_CLSFLOWER: 8507 return ice_setup_tc_cls_flower(np, priv->netdev, 8508 (struct flow_cls_offload *) 8509 type_data); 8510 default: 8511 return -EOPNOTSUPP; 8512 } 8513 } 8514 8515 static int 8516 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8517 struct ice_netdev_priv *np, 8518 struct flow_block_offload *f, void *data, 8519 void (*cleanup)(struct flow_block_cb *block_cb)) 8520 { 8521 struct ice_indr_block_priv *indr_priv; 8522 struct flow_block_cb *block_cb; 8523 8524 if (!ice_is_tunnel_supported(netdev) && 8525 !(is_vlan_dev(netdev) && 8526 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8527 return -EOPNOTSUPP; 8528 8529 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8530 return -EOPNOTSUPP; 8531 8532 switch (f->command) { 8533 case FLOW_BLOCK_BIND: 8534 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8535 if (indr_priv) 8536 return -EEXIST; 8537 8538 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8539 if (!indr_priv) 8540 return -ENOMEM; 8541 8542 indr_priv->netdev = netdev; 8543 indr_priv->np = np; 8544 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8545 8546 block_cb = 8547 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8548 indr_priv, indr_priv, 8549 ice_rep_indr_tc_block_unbind, 8550 f, netdev, sch, data, np, 8551 cleanup); 8552 8553 if (IS_ERR(block_cb)) { 8554 list_del(&indr_priv->list); 8555 kfree(indr_priv); 8556 return PTR_ERR(block_cb); 8557 } 8558 flow_block_cb_add(block_cb, f); 8559 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8560 break; 8561 case FLOW_BLOCK_UNBIND: 8562 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8563 if (!indr_priv) 8564 return -ENOENT; 8565 8566 block_cb = flow_block_cb_lookup(f->block, 8567 ice_indr_setup_block_cb, 8568 indr_priv); 8569 if (!block_cb) 8570 return -ENOENT; 8571 8572 flow_indr_block_cb_remove(block_cb, f); 8573 8574 list_del(&block_cb->driver_list); 8575 break; 8576 default: 8577 return -EOPNOTSUPP; 8578 } 8579 return 0; 8580 } 8581 8582 static int 8583 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8584 void *cb_priv, enum tc_setup_type type, void *type_data, 8585 void *data, 8586 void (*cleanup)(struct flow_block_cb *block_cb)) 8587 { 8588 switch (type) { 8589 case TC_SETUP_BLOCK: 8590 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8591 data, cleanup); 8592 8593 default: 8594 return -EOPNOTSUPP; 8595 } 8596 } 8597 8598 /** 8599 * ice_open - Called when a network interface becomes active 8600 * @netdev: network interface device structure 8601 * 8602 * The open entry point is called when a network interface is made 8603 * active by the system (IFF_UP). At this point all resources needed 8604 * for transmit and receive operations are allocated, the interrupt 8605 * handler is registered with the OS, the netdev watchdog is enabled, 8606 * and the stack is notified that the interface is ready. 8607 * 8608 * Returns 0 on success, negative value on failure 8609 */ 8610 int ice_open(struct net_device *netdev) 8611 { 8612 struct ice_netdev_priv *np = netdev_priv(netdev); 8613 struct ice_pf *pf = np->vsi->back; 8614 8615 if (ice_is_reset_in_progress(pf->state)) { 8616 netdev_err(netdev, "can't open net device while reset is in progress"); 8617 return -EBUSY; 8618 } 8619 8620 return ice_open_internal(netdev); 8621 } 8622 8623 /** 8624 * ice_open_internal - Called when a network interface becomes active 8625 * @netdev: network interface device structure 8626 * 8627 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8628 * handling routine 8629 * 8630 * Returns 0 on success, negative value on failure 8631 */ 8632 int ice_open_internal(struct net_device *netdev) 8633 { 8634 struct ice_netdev_priv *np = netdev_priv(netdev); 8635 struct ice_vsi *vsi = np->vsi; 8636 struct ice_pf *pf = vsi->back; 8637 struct ice_port_info *pi; 8638 int err; 8639 8640 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8641 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8642 return -EIO; 8643 } 8644 8645 netif_carrier_off(netdev); 8646 8647 pi = vsi->port_info; 8648 err = ice_update_link_info(pi); 8649 if (err) { 8650 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8651 return err; 8652 } 8653 8654 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8655 8656 /* Set PHY if there is media, otherwise, turn off PHY */ 8657 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8658 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8659 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8660 err = ice_init_phy_user_cfg(pi); 8661 if (err) { 8662 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8663 err); 8664 return err; 8665 } 8666 } 8667 8668 err = ice_configure_phy(vsi); 8669 if (err) { 8670 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8671 err); 8672 return err; 8673 } 8674 } else { 8675 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8676 ice_set_link(vsi, false); 8677 } 8678 8679 err = ice_vsi_open(vsi); 8680 if (err) 8681 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8682 vsi->vsi_num, vsi->vsw->sw_id); 8683 8684 /* Update existing tunnels information */ 8685 udp_tunnel_get_rx_info(netdev); 8686 8687 return err; 8688 } 8689 8690 /** 8691 * ice_stop - Disables a network interface 8692 * @netdev: network interface device structure 8693 * 8694 * The stop entry point is called when an interface is de-activated by the OS, 8695 * and the netdevice enters the DOWN state. The hardware is still under the 8696 * driver's control, but the netdev interface is disabled. 8697 * 8698 * Returns success only - not allowed to fail 8699 */ 8700 int ice_stop(struct net_device *netdev) 8701 { 8702 struct ice_netdev_priv *np = netdev_priv(netdev); 8703 struct ice_vsi *vsi = np->vsi; 8704 struct ice_pf *pf = vsi->back; 8705 8706 if (ice_is_reset_in_progress(pf->state)) { 8707 netdev_err(netdev, "can't stop net device while reset is in progress"); 8708 return -EBUSY; 8709 } 8710 8711 ice_vsi_close(vsi); 8712 8713 return 0; 8714 } 8715 8716 /** 8717 * ice_features_check - Validate encapsulated packet conforms to limits 8718 * @skb: skb buffer 8719 * @netdev: This port's netdev 8720 * @features: Offload features that the stack believes apply 8721 */ 8722 static netdev_features_t 8723 ice_features_check(struct sk_buff *skb, 8724 struct net_device __always_unused *netdev, 8725 netdev_features_t features) 8726 { 8727 size_t len; 8728 8729 /* No point in doing any of this if neither checksum nor GSO are 8730 * being requested for this frame. We can rule out both by just 8731 * checking for CHECKSUM_PARTIAL 8732 */ 8733 if (skb->ip_summed != CHECKSUM_PARTIAL) 8734 return features; 8735 8736 /* We cannot support GSO if the MSS is going to be less than 8737 * 64 bytes. If it is then we need to drop support for GSO. 8738 */ 8739 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64)) 8740 features &= ~NETIF_F_GSO_MASK; 8741 8742 len = skb_network_header(skb) - skb->data; 8743 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8744 goto out_rm_features; 8745 8746 len = skb_transport_header(skb) - skb_network_header(skb); 8747 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8748 goto out_rm_features; 8749 8750 if (skb->encapsulation) { 8751 len = skb_inner_network_header(skb) - skb_transport_header(skb); 8752 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8753 goto out_rm_features; 8754 8755 len = skb_inner_transport_header(skb) - 8756 skb_inner_network_header(skb); 8757 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8758 goto out_rm_features; 8759 } 8760 8761 return features; 8762 out_rm_features: 8763 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8764 } 8765 8766 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8767 .ndo_open = ice_open, 8768 .ndo_stop = ice_stop, 8769 .ndo_start_xmit = ice_start_xmit, 8770 .ndo_set_mac_address = ice_set_mac_address, 8771 .ndo_validate_addr = eth_validate_addr, 8772 .ndo_change_mtu = ice_change_mtu, 8773 .ndo_get_stats64 = ice_get_stats64, 8774 .ndo_tx_timeout = ice_tx_timeout, 8775 .ndo_bpf = ice_xdp_safe_mode, 8776 }; 8777 8778 static const struct net_device_ops ice_netdev_ops = { 8779 .ndo_open = ice_open, 8780 .ndo_stop = ice_stop, 8781 .ndo_start_xmit = ice_start_xmit, 8782 .ndo_select_queue = ice_select_queue, 8783 .ndo_features_check = ice_features_check, 8784 .ndo_fix_features = ice_fix_features, 8785 .ndo_set_rx_mode = ice_set_rx_mode, 8786 .ndo_set_mac_address = ice_set_mac_address, 8787 .ndo_validate_addr = eth_validate_addr, 8788 .ndo_change_mtu = ice_change_mtu, 8789 .ndo_get_stats64 = ice_get_stats64, 8790 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8791 .ndo_eth_ioctl = ice_eth_ioctl, 8792 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8793 .ndo_set_vf_mac = ice_set_vf_mac, 8794 .ndo_get_vf_config = ice_get_vf_cfg, 8795 .ndo_set_vf_trust = ice_set_vf_trust, 8796 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8797 .ndo_set_vf_link_state = ice_set_vf_link_state, 8798 .ndo_get_vf_stats = ice_get_vf_stats, 8799 .ndo_set_vf_rate = ice_set_vf_bw, 8800 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8801 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8802 .ndo_setup_tc = ice_setup_tc, 8803 .ndo_set_features = ice_set_features, 8804 .ndo_bridge_getlink = ice_bridge_getlink, 8805 .ndo_bridge_setlink = ice_bridge_setlink, 8806 .ndo_fdb_add = ice_fdb_add, 8807 .ndo_fdb_del = ice_fdb_del, 8808 #ifdef CONFIG_RFS_ACCEL 8809 .ndo_rx_flow_steer = ice_rx_flow_steer, 8810 #endif 8811 .ndo_tx_timeout = ice_tx_timeout, 8812 .ndo_bpf = ice_xdp, 8813 .ndo_xdp_xmit = ice_xdp_xmit, 8814 .ndo_xsk_wakeup = ice_xsk_wakeup, 8815 }; 8816