xref: /linux/drivers/net/ethernet/intel/ice/ice_main.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include "ice.h"
9 #include "ice_base.h"
10 #include "ice_lib.h"
11 #include "ice_dcb_lib.h"
12 #include "ice_dcb_nl.h"
13 
14 #define DRV_VERSION_MAJOR 0
15 #define DRV_VERSION_MINOR 8
16 #define DRV_VERSION_BUILD 2
17 
18 #define DRV_VERSION	__stringify(DRV_VERSION_MAJOR) "." \
19 			__stringify(DRV_VERSION_MINOR) "." \
20 			__stringify(DRV_VERSION_BUILD) "-k"
21 #define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
22 const char ice_drv_ver[] = DRV_VERSION;
23 static const char ice_driver_string[] = DRV_SUMMARY;
24 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
25 
26 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
27 #define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
28 #define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
29 
30 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
31 MODULE_DESCRIPTION(DRV_SUMMARY);
32 MODULE_LICENSE("GPL v2");
33 MODULE_VERSION(DRV_VERSION);
34 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
35 
36 static int debug = -1;
37 module_param(debug, int, 0644);
38 #ifndef CONFIG_DYNAMIC_DEBUG
39 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
40 #else
41 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
42 #endif /* !CONFIG_DYNAMIC_DEBUG */
43 
44 static struct workqueue_struct *ice_wq;
45 static const struct net_device_ops ice_netdev_safe_mode_ops;
46 static const struct net_device_ops ice_netdev_ops;
47 static int ice_vsi_open(struct ice_vsi *vsi);
48 
49 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
50 
51 static void ice_vsi_release_all(struct ice_pf *pf);
52 
53 /**
54  * ice_get_tx_pending - returns number of Tx descriptors not processed
55  * @ring: the ring of descriptors
56  */
57 static u16 ice_get_tx_pending(struct ice_ring *ring)
58 {
59 	u16 head, tail;
60 
61 	head = ring->next_to_clean;
62 	tail = ring->next_to_use;
63 
64 	if (head != tail)
65 		return (head < tail) ?
66 			tail - head : (tail + ring->count - head);
67 	return 0;
68 }
69 
70 /**
71  * ice_check_for_hang_subtask - check for and recover hung queues
72  * @pf: pointer to PF struct
73  */
74 static void ice_check_for_hang_subtask(struct ice_pf *pf)
75 {
76 	struct ice_vsi *vsi = NULL;
77 	struct ice_hw *hw;
78 	unsigned int i;
79 	int packets;
80 	u32 v;
81 
82 	ice_for_each_vsi(pf, v)
83 		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
84 			vsi = pf->vsi[v];
85 			break;
86 		}
87 
88 	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
89 		return;
90 
91 	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
92 		return;
93 
94 	hw = &vsi->back->hw;
95 
96 	for (i = 0; i < vsi->num_txq; i++) {
97 		struct ice_ring *tx_ring = vsi->tx_rings[i];
98 
99 		if (tx_ring && tx_ring->desc) {
100 			/* If packet counter has not changed the queue is
101 			 * likely stalled, so force an interrupt for this
102 			 * queue.
103 			 *
104 			 * prev_pkt would be negative if there was no
105 			 * pending work.
106 			 */
107 			packets = tx_ring->stats.pkts & INT_MAX;
108 			if (tx_ring->tx_stats.prev_pkt == packets) {
109 				/* Trigger sw interrupt to revive the queue */
110 				ice_trigger_sw_intr(hw, tx_ring->q_vector);
111 				continue;
112 			}
113 
114 			/* Memory barrier between read of packet count and call
115 			 * to ice_get_tx_pending()
116 			 */
117 			smp_rmb();
118 			tx_ring->tx_stats.prev_pkt =
119 			    ice_get_tx_pending(tx_ring) ? packets : -1;
120 		}
121 	}
122 }
123 
124 /**
125  * ice_init_mac_fltr - Set initial MAC filters
126  * @pf: board private structure
127  *
128  * Set initial set of MAC filters for PF VSI; configure filters for permanent
129  * address and broadcast address. If an error is encountered, netdevice will be
130  * unregistered.
131  */
132 static int ice_init_mac_fltr(struct ice_pf *pf)
133 {
134 	enum ice_status status;
135 	u8 broadcast[ETH_ALEN];
136 	struct ice_vsi *vsi;
137 
138 	vsi = ice_get_main_vsi(pf);
139 	if (!vsi)
140 		return -EINVAL;
141 
142 	/* To add a MAC filter, first add the MAC to a list and then
143 	 * pass the list to ice_add_mac.
144 	 */
145 
146 	 /* Add a unicast MAC filter so the VSI can get its packets */
147 	status = ice_vsi_cfg_mac_fltr(vsi, vsi->port_info->mac.perm_addr, true);
148 	if (status)
149 		goto unregister;
150 
151 	/* VSI needs to receive broadcast traffic, so add the broadcast
152 	 * MAC address to the list as well.
153 	 */
154 	eth_broadcast_addr(broadcast);
155 	status = ice_vsi_cfg_mac_fltr(vsi, broadcast, true);
156 	if (status)
157 		goto unregister;
158 
159 	return 0;
160 unregister:
161 	/* We aren't useful with no MAC filters, so unregister if we
162 	 * had an error
163 	 */
164 	if (status && vsi->netdev->reg_state == NETREG_REGISTERED) {
165 		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %d. Unregistering device\n",
166 			status);
167 		unregister_netdev(vsi->netdev);
168 		free_netdev(vsi->netdev);
169 		vsi->netdev = NULL;
170 	}
171 
172 	return -EIO;
173 }
174 
175 /**
176  * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
177  * @netdev: the net device on which the sync is happening
178  * @addr: MAC address to sync
179  *
180  * This is a callback function which is called by the in kernel device sync
181  * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
182  * populates the tmp_sync_list, which is later used by ice_add_mac to add the
183  * MAC filters from the hardware.
184  */
185 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
186 {
187 	struct ice_netdev_priv *np = netdev_priv(netdev);
188 	struct ice_vsi *vsi = np->vsi;
189 
190 	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
191 		return -EINVAL;
192 
193 	return 0;
194 }
195 
196 /**
197  * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
198  * @netdev: the net device on which the unsync is happening
199  * @addr: MAC address to unsync
200  *
201  * This is a callback function which is called by the in kernel device unsync
202  * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
203  * populates the tmp_unsync_list, which is later used by ice_remove_mac to
204  * delete the MAC filters from the hardware.
205  */
206 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
207 {
208 	struct ice_netdev_priv *np = netdev_priv(netdev);
209 	struct ice_vsi *vsi = np->vsi;
210 
211 	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
212 		return -EINVAL;
213 
214 	return 0;
215 }
216 
217 /**
218  * ice_vsi_fltr_changed - check if filter state changed
219  * @vsi: VSI to be checked
220  *
221  * returns true if filter state has changed, false otherwise.
222  */
223 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
224 {
225 	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
226 	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
227 	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
228 }
229 
230 /**
231  * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
232  * @vsi: the VSI being configured
233  * @promisc_m: mask of promiscuous config bits
234  * @set_promisc: enable or disable promisc flag request
235  *
236  */
237 static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
238 {
239 	struct ice_hw *hw = &vsi->back->hw;
240 	enum ice_status status = 0;
241 
242 	if (vsi->type != ICE_VSI_PF)
243 		return 0;
244 
245 	if (vsi->vlan_ena) {
246 		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
247 						  set_promisc);
248 	} else {
249 		if (set_promisc)
250 			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
251 						     0);
252 		else
253 			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
254 						       0);
255 	}
256 
257 	if (status)
258 		return -EIO;
259 
260 	return 0;
261 }
262 
263 /**
264  * ice_vsi_sync_fltr - Update the VSI filter list to the HW
265  * @vsi: ptr to the VSI
266  *
267  * Push any outstanding VSI filter changes through the AdminQ.
268  */
269 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
270 {
271 	struct device *dev = ice_pf_to_dev(vsi->back);
272 	struct net_device *netdev = vsi->netdev;
273 	bool promisc_forced_on = false;
274 	struct ice_pf *pf = vsi->back;
275 	struct ice_hw *hw = &pf->hw;
276 	enum ice_status status = 0;
277 	u32 changed_flags = 0;
278 	u8 promisc_m;
279 	int err = 0;
280 
281 	if (!vsi->netdev)
282 		return -EINVAL;
283 
284 	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
285 		usleep_range(1000, 2000);
286 
287 	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
288 	vsi->current_netdev_flags = vsi->netdev->flags;
289 
290 	INIT_LIST_HEAD(&vsi->tmp_sync_list);
291 	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
292 
293 	if (ice_vsi_fltr_changed(vsi)) {
294 		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
295 		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
296 		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
297 
298 		/* grab the netdev's addr_list_lock */
299 		netif_addr_lock_bh(netdev);
300 		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
301 			      ice_add_mac_to_unsync_list);
302 		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
303 			      ice_add_mac_to_unsync_list);
304 		/* our temp lists are populated. release lock */
305 		netif_addr_unlock_bh(netdev);
306 	}
307 
308 	/* Remove MAC addresses in the unsync list */
309 	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
310 	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
311 	if (status) {
312 		netdev_err(netdev, "Failed to delete MAC filters\n");
313 		/* if we failed because of alloc failures, just bail */
314 		if (status == ICE_ERR_NO_MEMORY) {
315 			err = -ENOMEM;
316 			goto out;
317 		}
318 	}
319 
320 	/* Add MAC addresses in the sync list */
321 	status = ice_add_mac(hw, &vsi->tmp_sync_list);
322 	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
323 	/* If filter is added successfully or already exists, do not go into
324 	 * 'if' condition and report it as error. Instead continue processing
325 	 * rest of the function.
326 	 */
327 	if (status && status != ICE_ERR_ALREADY_EXISTS) {
328 		netdev_err(netdev, "Failed to add MAC filters\n");
329 		/* If there is no more space for new umac filters, VSI
330 		 * should go into promiscuous mode. There should be some
331 		 * space reserved for promiscuous filters.
332 		 */
333 		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
334 		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
335 				      vsi->state)) {
336 			promisc_forced_on = true;
337 			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
338 				    vsi->vsi_num);
339 		} else {
340 			err = -EIO;
341 			goto out;
342 		}
343 	}
344 	/* check for changes in promiscuous modes */
345 	if (changed_flags & IFF_ALLMULTI) {
346 		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
347 			if (vsi->vlan_ena)
348 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
349 			else
350 				promisc_m = ICE_MCAST_PROMISC_BITS;
351 
352 			err = ice_cfg_promisc(vsi, promisc_m, true);
353 			if (err) {
354 				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
355 					   vsi->vsi_num);
356 				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
357 				goto out_promisc;
358 			}
359 		} else if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
360 			if (vsi->vlan_ena)
361 				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
362 			else
363 				promisc_m = ICE_MCAST_PROMISC_BITS;
364 
365 			err = ice_cfg_promisc(vsi, promisc_m, false);
366 			if (err) {
367 				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
368 					   vsi->vsi_num);
369 				vsi->current_netdev_flags |= IFF_ALLMULTI;
370 				goto out_promisc;
371 			}
372 		}
373 	}
374 
375 	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
376 	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
377 		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
378 		if (vsi->current_netdev_flags & IFF_PROMISC) {
379 			/* Apply Rx filter rule to get traffic from wire */
380 			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
381 				err = ice_set_dflt_vsi(pf->first_sw, vsi);
382 				if (err && err != -EEXIST) {
383 					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
384 						   err, vsi->vsi_num);
385 					vsi->current_netdev_flags &=
386 						~IFF_PROMISC;
387 					goto out_promisc;
388 				}
389 			}
390 		} else {
391 			/* Clear Rx filter to remove traffic from wire */
392 			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
393 				err = ice_clear_dflt_vsi(pf->first_sw);
394 				if (err) {
395 					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
396 						   err, vsi->vsi_num);
397 					vsi->current_netdev_flags |=
398 						IFF_PROMISC;
399 					goto out_promisc;
400 				}
401 			}
402 		}
403 	}
404 	goto exit;
405 
406 out_promisc:
407 	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
408 	goto exit;
409 out:
410 	/* if something went wrong then set the changed flag so we try again */
411 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
412 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
413 exit:
414 	clear_bit(__ICE_CFG_BUSY, vsi->state);
415 	return err;
416 }
417 
418 /**
419  * ice_sync_fltr_subtask - Sync the VSI filter list with HW
420  * @pf: board private structure
421  */
422 static void ice_sync_fltr_subtask(struct ice_pf *pf)
423 {
424 	int v;
425 
426 	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
427 		return;
428 
429 	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430 
431 	ice_for_each_vsi(pf, v)
432 		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
433 		    ice_vsi_sync_fltr(pf->vsi[v])) {
434 			/* come back and try again later */
435 			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
436 			break;
437 		}
438 }
439 
440 /**
441  * ice_pf_dis_all_vsi - Pause all VSIs on a PF
442  * @pf: the PF
443  * @locked: is the rtnl_lock already held
444  */
445 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
446 {
447 	int v;
448 
449 	ice_for_each_vsi(pf, v)
450 		if (pf->vsi[v])
451 			ice_dis_vsi(pf->vsi[v], locked);
452 }
453 
454 /**
455  * ice_prepare_for_reset - prep for the core to reset
456  * @pf: board private structure
457  *
458  * Inform or close all dependent features in prep for reset.
459  */
460 static void
461 ice_prepare_for_reset(struct ice_pf *pf)
462 {
463 	struct ice_hw *hw = &pf->hw;
464 	int i;
465 
466 	/* already prepared for reset */
467 	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
468 		return;
469 
470 	/* Notify VFs of impending reset */
471 	if (ice_check_sq_alive(hw, &hw->mailboxq))
472 		ice_vc_notify_reset(pf);
473 
474 	/* Disable VFs until reset is completed */
475 	ice_for_each_vf(pf, i)
476 		ice_set_vf_state_qs_dis(&pf->vf[i]);
477 
478 	/* clear SW filtering DB */
479 	ice_clear_hw_tbls(hw);
480 	/* disable the VSIs and their queues that are not already DOWN */
481 	ice_pf_dis_all_vsi(pf, false);
482 
483 	if (hw->port_info)
484 		ice_sched_clear_port(hw->port_info);
485 
486 	ice_shutdown_all_ctrlq(hw);
487 
488 	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
489 }
490 
491 /**
492  * ice_do_reset - Initiate one of many types of resets
493  * @pf: board private structure
494  * @reset_type: reset type requested
495  * before this function was called.
496  */
497 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
498 {
499 	struct device *dev = ice_pf_to_dev(pf);
500 	struct ice_hw *hw = &pf->hw;
501 
502 	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
503 	WARN_ON(in_interrupt());
504 
505 	ice_prepare_for_reset(pf);
506 
507 	/* trigger the reset */
508 	if (ice_reset(hw, reset_type)) {
509 		dev_err(dev, "reset %d failed\n", reset_type);
510 		set_bit(__ICE_RESET_FAILED, pf->state);
511 		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
512 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
513 		clear_bit(__ICE_PFR_REQ, pf->state);
514 		clear_bit(__ICE_CORER_REQ, pf->state);
515 		clear_bit(__ICE_GLOBR_REQ, pf->state);
516 		return;
517 	}
518 
519 	/* PFR is a bit of a special case because it doesn't result in an OICR
520 	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
521 	 * associated state bits.
522 	 */
523 	if (reset_type == ICE_RESET_PFR) {
524 		pf->pfr_count++;
525 		ice_rebuild(pf, reset_type);
526 		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
527 		clear_bit(__ICE_PFR_REQ, pf->state);
528 		ice_reset_all_vfs(pf, true);
529 	}
530 }
531 
532 /**
533  * ice_reset_subtask - Set up for resetting the device and driver
534  * @pf: board private structure
535  */
536 static void ice_reset_subtask(struct ice_pf *pf)
537 {
538 	enum ice_reset_req reset_type = ICE_RESET_INVAL;
539 
540 	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
541 	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
542 	 * of reset is pending and sets bits in pf->state indicating the reset
543 	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
544 	 * prepare for pending reset if not already (for PF software-initiated
545 	 * global resets the software should already be prepared for it as
546 	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
547 	 * by firmware or software on other PFs, that bit is not set so prepare
548 	 * for the reset now), poll for reset done, rebuild and return.
549 	 */
550 	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
551 		/* Perform the largest reset requested */
552 		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
553 			reset_type = ICE_RESET_CORER;
554 		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
555 			reset_type = ICE_RESET_GLOBR;
556 		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
557 			reset_type = ICE_RESET_EMPR;
558 		/* return if no valid reset type requested */
559 		if (reset_type == ICE_RESET_INVAL)
560 			return;
561 		ice_prepare_for_reset(pf);
562 
563 		/* make sure we are ready to rebuild */
564 		if (ice_check_reset(&pf->hw)) {
565 			set_bit(__ICE_RESET_FAILED, pf->state);
566 		} else {
567 			/* done with reset. start rebuild */
568 			pf->hw.reset_ongoing = false;
569 			ice_rebuild(pf, reset_type);
570 			/* clear bit to resume normal operations, but
571 			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
572 			 */
573 			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
574 			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
575 			clear_bit(__ICE_PFR_REQ, pf->state);
576 			clear_bit(__ICE_CORER_REQ, pf->state);
577 			clear_bit(__ICE_GLOBR_REQ, pf->state);
578 			ice_reset_all_vfs(pf, true);
579 		}
580 
581 		return;
582 	}
583 
584 	/* No pending resets to finish processing. Check for new resets */
585 	if (test_bit(__ICE_PFR_REQ, pf->state))
586 		reset_type = ICE_RESET_PFR;
587 	if (test_bit(__ICE_CORER_REQ, pf->state))
588 		reset_type = ICE_RESET_CORER;
589 	if (test_bit(__ICE_GLOBR_REQ, pf->state))
590 		reset_type = ICE_RESET_GLOBR;
591 	/* If no valid reset type requested just return */
592 	if (reset_type == ICE_RESET_INVAL)
593 		return;
594 
595 	/* reset if not already down or busy */
596 	if (!test_bit(__ICE_DOWN, pf->state) &&
597 	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
598 		ice_do_reset(pf, reset_type);
599 	}
600 }
601 
602 /**
603  * ice_print_topo_conflict - print topology conflict message
604  * @vsi: the VSI whose topology status is being checked
605  */
606 static void ice_print_topo_conflict(struct ice_vsi *vsi)
607 {
608 	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
609 	case ICE_AQ_LINK_TOPO_CONFLICT:
610 	case ICE_AQ_LINK_MEDIA_CONFLICT:
611 	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
612 	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
613 	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
614 		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
615 		break;
616 	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
617 		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
618 		break;
619 	default:
620 		break;
621 	}
622 }
623 
624 /**
625  * ice_print_link_msg - print link up or down message
626  * @vsi: the VSI whose link status is being queried
627  * @isup: boolean for if the link is now up or down
628  */
629 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
630 {
631 	struct ice_aqc_get_phy_caps_data *caps;
632 	enum ice_status status;
633 	const char *fec_req;
634 	const char *speed;
635 	const char *fec;
636 	const char *fc;
637 	const char *an;
638 
639 	if (!vsi)
640 		return;
641 
642 	if (vsi->current_isup == isup)
643 		return;
644 
645 	vsi->current_isup = isup;
646 
647 	if (!isup) {
648 		netdev_info(vsi->netdev, "NIC Link is Down\n");
649 		return;
650 	}
651 
652 	switch (vsi->port_info->phy.link_info.link_speed) {
653 	case ICE_AQ_LINK_SPEED_100GB:
654 		speed = "100 G";
655 		break;
656 	case ICE_AQ_LINK_SPEED_50GB:
657 		speed = "50 G";
658 		break;
659 	case ICE_AQ_LINK_SPEED_40GB:
660 		speed = "40 G";
661 		break;
662 	case ICE_AQ_LINK_SPEED_25GB:
663 		speed = "25 G";
664 		break;
665 	case ICE_AQ_LINK_SPEED_20GB:
666 		speed = "20 G";
667 		break;
668 	case ICE_AQ_LINK_SPEED_10GB:
669 		speed = "10 G";
670 		break;
671 	case ICE_AQ_LINK_SPEED_5GB:
672 		speed = "5 G";
673 		break;
674 	case ICE_AQ_LINK_SPEED_2500MB:
675 		speed = "2.5 G";
676 		break;
677 	case ICE_AQ_LINK_SPEED_1000MB:
678 		speed = "1 G";
679 		break;
680 	case ICE_AQ_LINK_SPEED_100MB:
681 		speed = "100 M";
682 		break;
683 	default:
684 		speed = "Unknown";
685 		break;
686 	}
687 
688 	switch (vsi->port_info->fc.current_mode) {
689 	case ICE_FC_FULL:
690 		fc = "Rx/Tx";
691 		break;
692 	case ICE_FC_TX_PAUSE:
693 		fc = "Tx";
694 		break;
695 	case ICE_FC_RX_PAUSE:
696 		fc = "Rx";
697 		break;
698 	case ICE_FC_NONE:
699 		fc = "None";
700 		break;
701 	default:
702 		fc = "Unknown";
703 		break;
704 	}
705 
706 	/* Get FEC mode based on negotiated link info */
707 	switch (vsi->port_info->phy.link_info.fec_info) {
708 	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
709 		/* fall through */
710 	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
711 		fec = "RS-FEC";
712 		break;
713 	case ICE_AQ_LINK_25G_KR_FEC_EN:
714 		fec = "FC-FEC/BASE-R";
715 		break;
716 	default:
717 		fec = "NONE";
718 		break;
719 	}
720 
721 	/* check if autoneg completed, might be false due to not supported */
722 	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
723 		an = "True";
724 	else
725 		an = "False";
726 
727 	/* Get FEC mode requested based on PHY caps last SW configuration */
728 	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
729 	if (!caps) {
730 		fec_req = "Unknown";
731 		goto done;
732 	}
733 
734 	status = ice_aq_get_phy_caps(vsi->port_info, false,
735 				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
736 	if (status)
737 		netdev_info(vsi->netdev, "Get phy capability failed.\n");
738 
739 	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
740 	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
741 		fec_req = "RS-FEC";
742 	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
743 		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
744 		fec_req = "FC-FEC/BASE-R";
745 	else
746 		fec_req = "NONE";
747 
748 	kfree(caps);
749 
750 done:
751 	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg: %s, Flow Control: %s\n",
752 		    speed, fec_req, fec, an, fc);
753 	ice_print_topo_conflict(vsi);
754 }
755 
756 /**
757  * ice_vsi_link_event - update the VSI's netdev
758  * @vsi: the VSI on which the link event occurred
759  * @link_up: whether or not the VSI needs to be set up or down
760  */
761 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
762 {
763 	if (!vsi)
764 		return;
765 
766 	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
767 		return;
768 
769 	if (vsi->type == ICE_VSI_PF) {
770 		if (link_up == netif_carrier_ok(vsi->netdev))
771 			return;
772 
773 		if (link_up) {
774 			netif_carrier_on(vsi->netdev);
775 			netif_tx_wake_all_queues(vsi->netdev);
776 		} else {
777 			netif_carrier_off(vsi->netdev);
778 			netif_tx_stop_all_queues(vsi->netdev);
779 		}
780 	}
781 }
782 
783 /**
784  * ice_link_event - process the link event
785  * @pf: PF that the link event is associated with
786  * @pi: port_info for the port that the link event is associated with
787  * @link_up: true if the physical link is up and false if it is down
788  * @link_speed: current link speed received from the link event
789  *
790  * Returns 0 on success and negative on failure
791  */
792 static int
793 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
794 	       u16 link_speed)
795 {
796 	struct device *dev = ice_pf_to_dev(pf);
797 	struct ice_phy_info *phy_info;
798 	struct ice_vsi *vsi;
799 	u16 old_link_speed;
800 	bool old_link;
801 	int result;
802 
803 	phy_info = &pi->phy;
804 	phy_info->link_info_old = phy_info->link_info;
805 
806 	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
807 	old_link_speed = phy_info->link_info_old.link_speed;
808 
809 	/* update the link info structures and re-enable link events,
810 	 * don't bail on failure due to other book keeping needed
811 	 */
812 	result = ice_update_link_info(pi);
813 	if (result)
814 		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
815 			pi->lport);
816 
817 	/* if the old link up/down and speed is the same as the new */
818 	if (link_up == old_link && link_speed == old_link_speed)
819 		return result;
820 
821 	vsi = ice_get_main_vsi(pf);
822 	if (!vsi || !vsi->port_info)
823 		return -EINVAL;
824 
825 	/* turn off PHY if media was removed */
826 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
827 	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
828 		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
829 
830 		result = ice_aq_set_link_restart_an(pi, false, NULL);
831 		if (result) {
832 			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
833 				vsi->vsi_num, result);
834 			return result;
835 		}
836 	}
837 
838 	ice_dcb_rebuild(pf);
839 	ice_vsi_link_event(vsi, link_up);
840 	ice_print_link_msg(vsi, link_up);
841 
842 	ice_vc_notify_link_state(pf);
843 
844 	return result;
845 }
846 
847 /**
848  * ice_watchdog_subtask - periodic tasks not using event driven scheduling
849  * @pf: board private structure
850  */
851 static void ice_watchdog_subtask(struct ice_pf *pf)
852 {
853 	int i;
854 
855 	/* if interface is down do nothing */
856 	if (test_bit(__ICE_DOWN, pf->state) ||
857 	    test_bit(__ICE_CFG_BUSY, pf->state))
858 		return;
859 
860 	/* make sure we don't do these things too often */
861 	if (time_before(jiffies,
862 			pf->serv_tmr_prev + pf->serv_tmr_period))
863 		return;
864 
865 	pf->serv_tmr_prev = jiffies;
866 
867 	/* Update the stats for active netdevs so the network stack
868 	 * can look at updated numbers whenever it cares to
869 	 */
870 	ice_update_pf_stats(pf);
871 	ice_for_each_vsi(pf, i)
872 		if (pf->vsi[i] && pf->vsi[i]->netdev)
873 			ice_update_vsi_stats(pf->vsi[i]);
874 }
875 
876 /**
877  * ice_init_link_events - enable/initialize link events
878  * @pi: pointer to the port_info instance
879  *
880  * Returns -EIO on failure, 0 on success
881  */
882 static int ice_init_link_events(struct ice_port_info *pi)
883 {
884 	u16 mask;
885 
886 	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
887 		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
888 
889 	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
890 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
891 			pi->lport);
892 		return -EIO;
893 	}
894 
895 	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
896 		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
897 			pi->lport);
898 		return -EIO;
899 	}
900 
901 	return 0;
902 }
903 
904 /**
905  * ice_handle_link_event - handle link event via ARQ
906  * @pf: PF that the link event is associated with
907  * @event: event structure containing link status info
908  */
909 static int
910 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
911 {
912 	struct ice_aqc_get_link_status_data *link_data;
913 	struct ice_port_info *port_info;
914 	int status;
915 
916 	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
917 	port_info = pf->hw.port_info;
918 	if (!port_info)
919 		return -EINVAL;
920 
921 	status = ice_link_event(pf, port_info,
922 				!!(link_data->link_info & ICE_AQ_LINK_UP),
923 				le16_to_cpu(link_data->link_speed));
924 	if (status)
925 		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
926 			status);
927 
928 	return status;
929 }
930 
931 /**
932  * __ice_clean_ctrlq - helper function to clean controlq rings
933  * @pf: ptr to struct ice_pf
934  * @q_type: specific Control queue type
935  */
936 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
937 {
938 	struct device *dev = ice_pf_to_dev(pf);
939 	struct ice_rq_event_info event;
940 	struct ice_hw *hw = &pf->hw;
941 	struct ice_ctl_q_info *cq;
942 	u16 pending, i = 0;
943 	const char *qtype;
944 	u32 oldval, val;
945 
946 	/* Do not clean control queue if/when PF reset fails */
947 	if (test_bit(__ICE_RESET_FAILED, pf->state))
948 		return 0;
949 
950 	switch (q_type) {
951 	case ICE_CTL_Q_ADMIN:
952 		cq = &hw->adminq;
953 		qtype = "Admin";
954 		break;
955 	case ICE_CTL_Q_MAILBOX:
956 		cq = &hw->mailboxq;
957 		qtype = "Mailbox";
958 		break;
959 	default:
960 		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
961 		return 0;
962 	}
963 
964 	/* check for error indications - PF_xx_AxQLEN register layout for
965 	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
966 	 */
967 	val = rd32(hw, cq->rq.len);
968 	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
969 		   PF_FW_ARQLEN_ARQCRIT_M)) {
970 		oldval = val;
971 		if (val & PF_FW_ARQLEN_ARQVFE_M)
972 			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
973 				qtype);
974 		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
975 			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
976 				qtype);
977 		}
978 		if (val & PF_FW_ARQLEN_ARQCRIT_M)
979 			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
980 				qtype);
981 		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
982 			 PF_FW_ARQLEN_ARQCRIT_M);
983 		if (oldval != val)
984 			wr32(hw, cq->rq.len, val);
985 	}
986 
987 	val = rd32(hw, cq->sq.len);
988 	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
989 		   PF_FW_ATQLEN_ATQCRIT_M)) {
990 		oldval = val;
991 		if (val & PF_FW_ATQLEN_ATQVFE_M)
992 			dev_dbg(dev, "%s Send Queue VF Error detected\n",
993 				qtype);
994 		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
995 			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
996 				qtype);
997 		}
998 		if (val & PF_FW_ATQLEN_ATQCRIT_M)
999 			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1000 				qtype);
1001 		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1002 			 PF_FW_ATQLEN_ATQCRIT_M);
1003 		if (oldval != val)
1004 			wr32(hw, cq->sq.len, val);
1005 	}
1006 
1007 	event.buf_len = cq->rq_buf_size;
1008 	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1009 	if (!event.msg_buf)
1010 		return 0;
1011 
1012 	do {
1013 		enum ice_status ret;
1014 		u16 opcode;
1015 
1016 		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1017 		if (ret == ICE_ERR_AQ_NO_WORK)
1018 			break;
1019 		if (ret) {
1020 			dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1021 				ret);
1022 			break;
1023 		}
1024 
1025 		opcode = le16_to_cpu(event.desc.opcode);
1026 
1027 		switch (opcode) {
1028 		case ice_aqc_opc_get_link_status:
1029 			if (ice_handle_link_event(pf, &event))
1030 				dev_err(dev, "Could not handle link event\n");
1031 			break;
1032 		case ice_mbx_opc_send_msg_to_pf:
1033 			ice_vc_process_vf_msg(pf, &event);
1034 			break;
1035 		case ice_aqc_opc_fw_logging:
1036 			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1037 			break;
1038 		case ice_aqc_opc_lldp_set_mib_change:
1039 			ice_dcb_process_lldp_set_mib_change(pf, &event);
1040 			break;
1041 		default:
1042 			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1043 				qtype, opcode);
1044 			break;
1045 		}
1046 	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1047 
1048 	kfree(event.msg_buf);
1049 
1050 	return pending && (i == ICE_DFLT_IRQ_WORK);
1051 }
1052 
1053 /**
1054  * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1055  * @hw: pointer to hardware info
1056  * @cq: control queue information
1057  *
1058  * returns true if there are pending messages in a queue, false if there aren't
1059  */
1060 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1061 {
1062 	u16 ntu;
1063 
1064 	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1065 	return cq->rq.next_to_clean != ntu;
1066 }
1067 
1068 /**
1069  * ice_clean_adminq_subtask - clean the AdminQ rings
1070  * @pf: board private structure
1071  */
1072 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1073 {
1074 	struct ice_hw *hw = &pf->hw;
1075 
1076 	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1077 		return;
1078 
1079 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1080 		return;
1081 
1082 	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1083 
1084 	/* There might be a situation where new messages arrive to a control
1085 	 * queue between processing the last message and clearing the
1086 	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1087 	 * ice_ctrlq_pending) and process new messages if any.
1088 	 */
1089 	if (ice_ctrlq_pending(hw, &hw->adminq))
1090 		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1091 
1092 	ice_flush(hw);
1093 }
1094 
1095 /**
1096  * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1097  * @pf: board private structure
1098  */
1099 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1100 {
1101 	struct ice_hw *hw = &pf->hw;
1102 
1103 	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1104 		return;
1105 
1106 	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1107 		return;
1108 
1109 	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1110 
1111 	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1112 		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1113 
1114 	ice_flush(hw);
1115 }
1116 
1117 /**
1118  * ice_service_task_schedule - schedule the service task to wake up
1119  * @pf: board private structure
1120  *
1121  * If not already scheduled, this puts the task into the work queue.
1122  */
1123 static void ice_service_task_schedule(struct ice_pf *pf)
1124 {
1125 	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1126 	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1127 	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1128 		queue_work(ice_wq, &pf->serv_task);
1129 }
1130 
1131 /**
1132  * ice_service_task_complete - finish up the service task
1133  * @pf: board private structure
1134  */
1135 static void ice_service_task_complete(struct ice_pf *pf)
1136 {
1137 	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1138 
1139 	/* force memory (pf->state) to sync before next service task */
1140 	smp_mb__before_atomic();
1141 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1142 }
1143 
1144 /**
1145  * ice_service_task_stop - stop service task and cancel works
1146  * @pf: board private structure
1147  */
1148 static void ice_service_task_stop(struct ice_pf *pf)
1149 {
1150 	set_bit(__ICE_SERVICE_DIS, pf->state);
1151 
1152 	if (pf->serv_tmr.function)
1153 		del_timer_sync(&pf->serv_tmr);
1154 	if (pf->serv_task.func)
1155 		cancel_work_sync(&pf->serv_task);
1156 
1157 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1158 }
1159 
1160 /**
1161  * ice_service_task_restart - restart service task and schedule works
1162  * @pf: board private structure
1163  *
1164  * This function is needed for suspend and resume works (e.g WoL scenario)
1165  */
1166 static void ice_service_task_restart(struct ice_pf *pf)
1167 {
1168 	clear_bit(__ICE_SERVICE_DIS, pf->state);
1169 	ice_service_task_schedule(pf);
1170 }
1171 
1172 /**
1173  * ice_service_timer - timer callback to schedule service task
1174  * @t: pointer to timer_list
1175  */
1176 static void ice_service_timer(struct timer_list *t)
1177 {
1178 	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1179 
1180 	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1181 	ice_service_task_schedule(pf);
1182 }
1183 
1184 /**
1185  * ice_handle_mdd_event - handle malicious driver detect event
1186  * @pf: pointer to the PF structure
1187  *
1188  * Called from service task. OICR interrupt handler indicates MDD event
1189  */
1190 static void ice_handle_mdd_event(struct ice_pf *pf)
1191 {
1192 	struct device *dev = ice_pf_to_dev(pf);
1193 	struct ice_hw *hw = &pf->hw;
1194 	bool mdd_detected = false;
1195 	u32 reg;
1196 	int i;
1197 
1198 	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state))
1199 		return;
1200 
1201 	/* find what triggered the MDD event */
1202 	reg = rd32(hw, GL_MDET_TX_PQM);
1203 	if (reg & GL_MDET_TX_PQM_VALID_M) {
1204 		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1205 				GL_MDET_TX_PQM_PF_NUM_S;
1206 		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1207 				GL_MDET_TX_PQM_VF_NUM_S;
1208 		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1209 				GL_MDET_TX_PQM_MAL_TYPE_S;
1210 		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1211 				GL_MDET_TX_PQM_QNUM_S);
1212 
1213 		if (netif_msg_tx_err(pf))
1214 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1215 				 event, queue, pf_num, vf_num);
1216 		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1217 		mdd_detected = true;
1218 	}
1219 
1220 	reg = rd32(hw, GL_MDET_TX_TCLAN);
1221 	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1222 		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1223 				GL_MDET_TX_TCLAN_PF_NUM_S;
1224 		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1225 				GL_MDET_TX_TCLAN_VF_NUM_S;
1226 		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1227 				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1228 		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1229 				GL_MDET_TX_TCLAN_QNUM_S);
1230 
1231 		if (netif_msg_tx_err(pf))
1232 			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1233 				 event, queue, pf_num, vf_num);
1234 		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1235 		mdd_detected = true;
1236 	}
1237 
1238 	reg = rd32(hw, GL_MDET_RX);
1239 	if (reg & GL_MDET_RX_VALID_M) {
1240 		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1241 				GL_MDET_RX_PF_NUM_S;
1242 		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1243 				GL_MDET_RX_VF_NUM_S;
1244 		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1245 				GL_MDET_RX_MAL_TYPE_S;
1246 		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1247 				GL_MDET_RX_QNUM_S);
1248 
1249 		if (netif_msg_rx_err(pf))
1250 			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1251 				 event, queue, pf_num, vf_num);
1252 		wr32(hw, GL_MDET_RX, 0xffffffff);
1253 		mdd_detected = true;
1254 	}
1255 
1256 	if (mdd_detected) {
1257 		bool pf_mdd_detected = false;
1258 
1259 		reg = rd32(hw, PF_MDET_TX_PQM);
1260 		if (reg & PF_MDET_TX_PQM_VALID_M) {
1261 			wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1262 			dev_info(dev, "TX driver issue detected, PF reset issued\n");
1263 			pf_mdd_detected = true;
1264 		}
1265 
1266 		reg = rd32(hw, PF_MDET_TX_TCLAN);
1267 		if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1268 			wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1269 			dev_info(dev, "TX driver issue detected, PF reset issued\n");
1270 			pf_mdd_detected = true;
1271 		}
1272 
1273 		reg = rd32(hw, PF_MDET_RX);
1274 		if (reg & PF_MDET_RX_VALID_M) {
1275 			wr32(hw, PF_MDET_RX, 0xFFFF);
1276 			dev_info(dev, "RX driver issue detected, PF reset issued\n");
1277 			pf_mdd_detected = true;
1278 		}
1279 		/* Queue belongs to the PF initiate a reset */
1280 		if (pf_mdd_detected) {
1281 			set_bit(__ICE_NEEDS_RESTART, pf->state);
1282 			ice_service_task_schedule(pf);
1283 		}
1284 	}
1285 
1286 	/* check to see if one of the VFs caused the MDD */
1287 	ice_for_each_vf(pf, i) {
1288 		struct ice_vf *vf = &pf->vf[i];
1289 
1290 		bool vf_mdd_detected = false;
1291 
1292 		reg = rd32(hw, VP_MDET_TX_PQM(i));
1293 		if (reg & VP_MDET_TX_PQM_VALID_M) {
1294 			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1295 			vf_mdd_detected = true;
1296 			dev_info(dev, "TX driver issue detected on VF %d\n",
1297 				 i);
1298 		}
1299 
1300 		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1301 		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1302 			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1303 			vf_mdd_detected = true;
1304 			dev_info(dev, "TX driver issue detected on VF %d\n",
1305 				 i);
1306 		}
1307 
1308 		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1309 		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1310 			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1311 			vf_mdd_detected = true;
1312 			dev_info(dev, "TX driver issue detected on VF %d\n",
1313 				 i);
1314 		}
1315 
1316 		reg = rd32(hw, VP_MDET_RX(i));
1317 		if (reg & VP_MDET_RX_VALID_M) {
1318 			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1319 			vf_mdd_detected = true;
1320 			dev_info(dev, "RX driver issue detected on VF %d\n",
1321 				 i);
1322 		}
1323 
1324 		if (vf_mdd_detected) {
1325 			vf->num_mdd_events++;
1326 			if (vf->num_mdd_events &&
1327 			    vf->num_mdd_events <= ICE_MDD_EVENTS_THRESHOLD)
1328 				dev_info(dev, "VF %d has had %llu MDD events since last boot, Admin might need to reload AVF driver with this number of events\n",
1329 					 i, vf->num_mdd_events);
1330 		}
1331 	}
1332 }
1333 
1334 /**
1335  * ice_force_phys_link_state - Force the physical link state
1336  * @vsi: VSI to force the physical link state to up/down
1337  * @link_up: true/false indicates to set the physical link to up/down
1338  *
1339  * Force the physical link state by getting the current PHY capabilities from
1340  * hardware and setting the PHY config based on the determined capabilities. If
1341  * link changes a link event will be triggered because both the Enable Automatic
1342  * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1343  *
1344  * Returns 0 on success, negative on failure
1345  */
1346 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1347 {
1348 	struct ice_aqc_get_phy_caps_data *pcaps;
1349 	struct ice_aqc_set_phy_cfg_data *cfg;
1350 	struct ice_port_info *pi;
1351 	struct device *dev;
1352 	int retcode;
1353 
1354 	if (!vsi || !vsi->port_info || !vsi->back)
1355 		return -EINVAL;
1356 	if (vsi->type != ICE_VSI_PF)
1357 		return 0;
1358 
1359 	dev = ice_pf_to_dev(vsi->back);
1360 
1361 	pi = vsi->port_info;
1362 
1363 	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1364 	if (!pcaps)
1365 		return -ENOMEM;
1366 
1367 	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1368 				      NULL);
1369 	if (retcode) {
1370 		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1371 			vsi->vsi_num, retcode);
1372 		retcode = -EIO;
1373 		goto out;
1374 	}
1375 
1376 	/* No change in link */
1377 	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1378 	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1379 		goto out;
1380 
1381 	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1382 	if (!cfg) {
1383 		retcode = -ENOMEM;
1384 		goto out;
1385 	}
1386 
1387 	cfg->phy_type_low = pcaps->phy_type_low;
1388 	cfg->phy_type_high = pcaps->phy_type_high;
1389 	cfg->caps = pcaps->caps | ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1390 	cfg->low_power_ctrl = pcaps->low_power_ctrl;
1391 	cfg->eee_cap = pcaps->eee_cap;
1392 	cfg->eeer_value = pcaps->eeer_value;
1393 	cfg->link_fec_opt = pcaps->link_fec_options;
1394 	if (link_up)
1395 		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1396 	else
1397 		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1398 
1399 	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi->lport, cfg, NULL);
1400 	if (retcode) {
1401 		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1402 			vsi->vsi_num, retcode);
1403 		retcode = -EIO;
1404 	}
1405 
1406 	kfree(cfg);
1407 out:
1408 	kfree(pcaps);
1409 	return retcode;
1410 }
1411 
1412 /**
1413  * ice_check_media_subtask - Check for media; bring link up if detected.
1414  * @pf: pointer to PF struct
1415  */
1416 static void ice_check_media_subtask(struct ice_pf *pf)
1417 {
1418 	struct ice_port_info *pi;
1419 	struct ice_vsi *vsi;
1420 	int err;
1421 
1422 	vsi = ice_get_main_vsi(pf);
1423 	if (!vsi)
1424 		return;
1425 
1426 	/* No need to check for media if it's already present or the interface
1427 	 * is down
1428 	 */
1429 	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) ||
1430 	    test_bit(__ICE_DOWN, vsi->state))
1431 		return;
1432 
1433 	/* Refresh link info and check if media is present */
1434 	pi = vsi->port_info;
1435 	err = ice_update_link_info(pi);
1436 	if (err)
1437 		return;
1438 
1439 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1440 		err = ice_force_phys_link_state(vsi, true);
1441 		if (err)
1442 			return;
1443 		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1444 
1445 		/* A Link Status Event will be generated; the event handler
1446 		 * will complete bringing the interface up
1447 		 */
1448 	}
1449 }
1450 
1451 /**
1452  * ice_service_task - manage and run subtasks
1453  * @work: pointer to work_struct contained by the PF struct
1454  */
1455 static void ice_service_task(struct work_struct *work)
1456 {
1457 	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
1458 	unsigned long start_time = jiffies;
1459 
1460 	/* subtasks */
1461 
1462 	/* process reset requests first */
1463 	ice_reset_subtask(pf);
1464 
1465 	/* bail if a reset/recovery cycle is pending or rebuild failed */
1466 	if (ice_is_reset_in_progress(pf->state) ||
1467 	    test_bit(__ICE_SUSPENDED, pf->state) ||
1468 	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
1469 		ice_service_task_complete(pf);
1470 		return;
1471 	}
1472 
1473 	ice_clean_adminq_subtask(pf);
1474 	ice_check_media_subtask(pf);
1475 	ice_check_for_hang_subtask(pf);
1476 	ice_sync_fltr_subtask(pf);
1477 	ice_handle_mdd_event(pf);
1478 	ice_watchdog_subtask(pf);
1479 
1480 	if (ice_is_safe_mode(pf)) {
1481 		ice_service_task_complete(pf);
1482 		return;
1483 	}
1484 
1485 	ice_process_vflr_event(pf);
1486 	ice_clean_mailboxq_subtask(pf);
1487 
1488 	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1489 	ice_service_task_complete(pf);
1490 
1491 	/* If the tasks have taken longer than one service timer period
1492 	 * or there is more work to be done, reset the service timer to
1493 	 * schedule the service task now.
1494 	 */
1495 	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1496 	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
1497 	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
1498 	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
1499 	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1500 		mod_timer(&pf->serv_tmr, jiffies);
1501 }
1502 
1503 /**
1504  * ice_set_ctrlq_len - helper function to set controlq length
1505  * @hw: pointer to the HW instance
1506  */
1507 static void ice_set_ctrlq_len(struct ice_hw *hw)
1508 {
1509 	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1510 	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1511 	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1512 	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1513 	hw->mailboxq.num_rq_entries = ICE_MBXRQ_LEN;
1514 	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
1515 	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1516 	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
1517 }
1518 
1519 /**
1520  * ice_schedule_reset - schedule a reset
1521  * @pf: board private structure
1522  * @reset: reset being requested
1523  */
1524 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
1525 {
1526 	struct device *dev = ice_pf_to_dev(pf);
1527 
1528 	/* bail out if earlier reset has failed */
1529 	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
1530 		dev_dbg(dev, "earlier reset has failed\n");
1531 		return -EIO;
1532 	}
1533 	/* bail if reset/recovery already in progress */
1534 	if (ice_is_reset_in_progress(pf->state)) {
1535 		dev_dbg(dev, "Reset already in progress\n");
1536 		return -EBUSY;
1537 	}
1538 
1539 	switch (reset) {
1540 	case ICE_RESET_PFR:
1541 		set_bit(__ICE_PFR_REQ, pf->state);
1542 		break;
1543 	case ICE_RESET_CORER:
1544 		set_bit(__ICE_CORER_REQ, pf->state);
1545 		break;
1546 	case ICE_RESET_GLOBR:
1547 		set_bit(__ICE_GLOBR_REQ, pf->state);
1548 		break;
1549 	default:
1550 		return -EINVAL;
1551 	}
1552 
1553 	ice_service_task_schedule(pf);
1554 	return 0;
1555 }
1556 
1557 /**
1558  * ice_irq_affinity_notify - Callback for affinity changes
1559  * @notify: context as to what irq was changed
1560  * @mask: the new affinity mask
1561  *
1562  * This is a callback function used by the irq_set_affinity_notifier function
1563  * so that we may register to receive changes to the irq affinity masks.
1564  */
1565 static void
1566 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1567 			const cpumask_t *mask)
1568 {
1569 	struct ice_q_vector *q_vector =
1570 		container_of(notify, struct ice_q_vector, affinity_notify);
1571 
1572 	cpumask_copy(&q_vector->affinity_mask, mask);
1573 }
1574 
1575 /**
1576  * ice_irq_affinity_release - Callback for affinity notifier release
1577  * @ref: internal core kernel usage
1578  *
1579  * This is a callback function used by the irq_set_affinity_notifier function
1580  * to inform the current notification subscriber that they will no longer
1581  * receive notifications.
1582  */
1583 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1584 
1585 /**
1586  * ice_vsi_ena_irq - Enable IRQ for the given VSI
1587  * @vsi: the VSI being configured
1588  */
1589 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1590 {
1591 	struct ice_hw *hw = &vsi->back->hw;
1592 	int i;
1593 
1594 	ice_for_each_q_vector(vsi, i)
1595 		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1596 
1597 	ice_flush(hw);
1598 	return 0;
1599 }
1600 
1601 /**
1602  * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1603  * @vsi: the VSI being configured
1604  * @basename: name for the vector
1605  */
1606 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1607 {
1608 	int q_vectors = vsi->num_q_vectors;
1609 	struct ice_pf *pf = vsi->back;
1610 	int base = vsi->base_vector;
1611 	struct device *dev;
1612 	int rx_int_idx = 0;
1613 	int tx_int_idx = 0;
1614 	int vector, err;
1615 	int irq_num;
1616 
1617 	dev = ice_pf_to_dev(pf);
1618 	for (vector = 0; vector < q_vectors; vector++) {
1619 		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1620 
1621 		irq_num = pf->msix_entries[base + vector].vector;
1622 
1623 		if (q_vector->tx.ring && q_vector->rx.ring) {
1624 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1625 				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1626 			tx_int_idx++;
1627 		} else if (q_vector->rx.ring) {
1628 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1629 				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1630 		} else if (q_vector->tx.ring) {
1631 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1632 				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1633 		} else {
1634 			/* skip this unused q_vector */
1635 			continue;
1636 		}
1637 		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
1638 				       q_vector->name, q_vector);
1639 		if (err) {
1640 			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
1641 				   err);
1642 			goto free_q_irqs;
1643 		}
1644 
1645 		/* register for affinity change notifications */
1646 		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1647 		q_vector->affinity_notify.release = ice_irq_affinity_release;
1648 		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1649 
1650 		/* assign the mask for this irq */
1651 		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1652 	}
1653 
1654 	vsi->irqs_ready = true;
1655 	return 0;
1656 
1657 free_q_irqs:
1658 	while (vector) {
1659 		vector--;
1660 		irq_num = pf->msix_entries[base + vector].vector,
1661 		irq_set_affinity_notifier(irq_num, NULL);
1662 		irq_set_affinity_hint(irq_num, NULL);
1663 		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
1664 	}
1665 	return err;
1666 }
1667 
1668 /**
1669  * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
1670  * @vsi: VSI to setup Tx rings used by XDP
1671  *
1672  * Return 0 on success and negative value on error
1673  */
1674 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
1675 {
1676 	struct device *dev = ice_pf_to_dev(vsi->back);
1677 	int i;
1678 
1679 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1680 		u16 xdp_q_idx = vsi->alloc_txq + i;
1681 		struct ice_ring *xdp_ring;
1682 
1683 		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
1684 
1685 		if (!xdp_ring)
1686 			goto free_xdp_rings;
1687 
1688 		xdp_ring->q_index = xdp_q_idx;
1689 		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
1690 		xdp_ring->ring_active = false;
1691 		xdp_ring->vsi = vsi;
1692 		xdp_ring->netdev = NULL;
1693 		xdp_ring->dev = dev;
1694 		xdp_ring->count = vsi->num_tx_desc;
1695 		vsi->xdp_rings[i] = xdp_ring;
1696 		if (ice_setup_tx_ring(xdp_ring))
1697 			goto free_xdp_rings;
1698 		ice_set_ring_xdp(xdp_ring);
1699 		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
1700 	}
1701 
1702 	return 0;
1703 
1704 free_xdp_rings:
1705 	for (; i >= 0; i--)
1706 		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
1707 			ice_free_tx_ring(vsi->xdp_rings[i]);
1708 	return -ENOMEM;
1709 }
1710 
1711 /**
1712  * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
1713  * @vsi: VSI to set the bpf prog on
1714  * @prog: the bpf prog pointer
1715  */
1716 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
1717 {
1718 	struct bpf_prog *old_prog;
1719 	int i;
1720 
1721 	old_prog = xchg(&vsi->xdp_prog, prog);
1722 	if (old_prog)
1723 		bpf_prog_put(old_prog);
1724 
1725 	ice_for_each_rxq(vsi, i)
1726 		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
1727 }
1728 
1729 /**
1730  * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
1731  * @vsi: VSI to bring up Tx rings used by XDP
1732  * @prog: bpf program that will be assigned to VSI
1733  *
1734  * Return 0 on success and negative value on error
1735  */
1736 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
1737 {
1738 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1739 	int xdp_rings_rem = vsi->num_xdp_txq;
1740 	struct ice_pf *pf = vsi->back;
1741 	struct ice_qs_cfg xdp_qs_cfg = {
1742 		.qs_mutex = &pf->avail_q_mutex,
1743 		.pf_map = pf->avail_txqs,
1744 		.pf_map_size = pf->max_pf_txqs,
1745 		.q_count = vsi->num_xdp_txq,
1746 		.scatter_count = ICE_MAX_SCATTER_TXQS,
1747 		.vsi_map = vsi->txq_map,
1748 		.vsi_map_offset = vsi->alloc_txq,
1749 		.mapping_mode = ICE_VSI_MAP_CONTIG
1750 	};
1751 	enum ice_status status;
1752 	struct device *dev;
1753 	int i, v_idx;
1754 
1755 	dev = ice_pf_to_dev(pf);
1756 	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
1757 				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
1758 	if (!vsi->xdp_rings)
1759 		return -ENOMEM;
1760 
1761 	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
1762 	if (__ice_vsi_get_qs(&xdp_qs_cfg))
1763 		goto err_map_xdp;
1764 
1765 	if (ice_xdp_alloc_setup_rings(vsi))
1766 		goto clear_xdp_rings;
1767 
1768 	/* follow the logic from ice_vsi_map_rings_to_vectors */
1769 	ice_for_each_q_vector(vsi, v_idx) {
1770 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1771 		int xdp_rings_per_v, q_id, q_base;
1772 
1773 		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
1774 					       vsi->num_q_vectors - v_idx);
1775 		q_base = vsi->num_xdp_txq - xdp_rings_rem;
1776 
1777 		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
1778 			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
1779 
1780 			xdp_ring->q_vector = q_vector;
1781 			xdp_ring->next = q_vector->tx.ring;
1782 			q_vector->tx.ring = xdp_ring;
1783 		}
1784 		xdp_rings_rem -= xdp_rings_per_v;
1785 	}
1786 
1787 	/* omit the scheduler update if in reset path; XDP queues will be
1788 	 * taken into account at the end of ice_vsi_rebuild, where
1789 	 * ice_cfg_vsi_lan is being called
1790 	 */
1791 	if (ice_is_reset_in_progress(pf->state))
1792 		return 0;
1793 
1794 	/* tell the Tx scheduler that right now we have
1795 	 * additional queues
1796 	 */
1797 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
1798 		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
1799 
1800 	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1801 				 max_txqs);
1802 	if (status) {
1803 		dev_err(dev, "Failed VSI LAN queue config for XDP, error:%d\n",
1804 			status);
1805 		goto clear_xdp_rings;
1806 	}
1807 	ice_vsi_assign_bpf_prog(vsi, prog);
1808 
1809 	return 0;
1810 clear_xdp_rings:
1811 	for (i = 0; i < vsi->num_xdp_txq; i++)
1812 		if (vsi->xdp_rings[i]) {
1813 			kfree_rcu(vsi->xdp_rings[i], rcu);
1814 			vsi->xdp_rings[i] = NULL;
1815 		}
1816 
1817 err_map_xdp:
1818 	mutex_lock(&pf->avail_q_mutex);
1819 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1820 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1821 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1822 	}
1823 	mutex_unlock(&pf->avail_q_mutex);
1824 
1825 	devm_kfree(dev, vsi->xdp_rings);
1826 	return -ENOMEM;
1827 }
1828 
1829 /**
1830  * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
1831  * @vsi: VSI to remove XDP rings
1832  *
1833  * Detach XDP rings from irq vectors, clean up the PF bitmap and free
1834  * resources
1835  */
1836 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
1837 {
1838 	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
1839 	struct ice_pf *pf = vsi->back;
1840 	int i, v_idx;
1841 
1842 	/* q_vectors are freed in reset path so there's no point in detaching
1843 	 * rings; in case of rebuild being triggered not from reset reset bits
1844 	 * in pf->state won't be set, so additionally check first q_vector
1845 	 * against NULL
1846 	 */
1847 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1848 		goto free_qmap;
1849 
1850 	ice_for_each_q_vector(vsi, v_idx) {
1851 		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
1852 		struct ice_ring *ring;
1853 
1854 		ice_for_each_ring(ring, q_vector->tx)
1855 			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
1856 				break;
1857 
1858 		/* restore the value of last node prior to XDP setup */
1859 		q_vector->tx.ring = ring;
1860 	}
1861 
1862 free_qmap:
1863 	mutex_lock(&pf->avail_q_mutex);
1864 	for (i = 0; i < vsi->num_xdp_txq; i++) {
1865 		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
1866 		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
1867 	}
1868 	mutex_unlock(&pf->avail_q_mutex);
1869 
1870 	for (i = 0; i < vsi->num_xdp_txq; i++)
1871 		if (vsi->xdp_rings[i]) {
1872 			if (vsi->xdp_rings[i]->desc)
1873 				ice_free_tx_ring(vsi->xdp_rings[i]);
1874 			kfree_rcu(vsi->xdp_rings[i], rcu);
1875 			vsi->xdp_rings[i] = NULL;
1876 		}
1877 
1878 	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
1879 	vsi->xdp_rings = NULL;
1880 
1881 	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
1882 		return 0;
1883 
1884 	ice_vsi_assign_bpf_prog(vsi, NULL);
1885 
1886 	/* notify Tx scheduler that we destroyed XDP queues and bring
1887 	 * back the old number of child nodes
1888 	 */
1889 	for (i = 0; i < vsi->tc_cfg.numtc; i++)
1890 		max_txqs[i] = vsi->num_txq;
1891 
1892 	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
1893 			       max_txqs);
1894 }
1895 
1896 /**
1897  * ice_xdp_setup_prog - Add or remove XDP eBPF program
1898  * @vsi: VSI to setup XDP for
1899  * @prog: XDP program
1900  * @extack: netlink extended ack
1901  */
1902 static int
1903 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
1904 		   struct netlink_ext_ack *extack)
1905 {
1906 	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
1907 	bool if_running = netif_running(vsi->netdev);
1908 	int ret = 0, xdp_ring_err = 0;
1909 
1910 	if (frame_size > vsi->rx_buf_len) {
1911 		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
1912 		return -EOPNOTSUPP;
1913 	}
1914 
1915 	/* need to stop netdev while setting up the program for Rx rings */
1916 	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
1917 		ret = ice_down(vsi);
1918 		if (ret) {
1919 			NL_SET_ERR_MSG_MOD(extack,
1920 					   "Preparing device for XDP attach failed");
1921 			return ret;
1922 		}
1923 	}
1924 
1925 	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
1926 		vsi->num_xdp_txq = vsi->alloc_txq;
1927 		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
1928 		if (xdp_ring_err)
1929 			NL_SET_ERR_MSG_MOD(extack,
1930 					   "Setting up XDP Tx resources failed");
1931 	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
1932 		xdp_ring_err = ice_destroy_xdp_rings(vsi);
1933 		if (xdp_ring_err)
1934 			NL_SET_ERR_MSG_MOD(extack,
1935 					   "Freeing XDP Tx resources failed");
1936 	} else {
1937 		ice_vsi_assign_bpf_prog(vsi, prog);
1938 	}
1939 
1940 	if (if_running)
1941 		ret = ice_up(vsi);
1942 
1943 	if (!ret && prog && vsi->xsk_umems) {
1944 		int i;
1945 
1946 		ice_for_each_rxq(vsi, i) {
1947 			struct ice_ring *rx_ring = vsi->rx_rings[i];
1948 
1949 			if (rx_ring->xsk_umem)
1950 				napi_schedule(&rx_ring->q_vector->napi);
1951 		}
1952 	}
1953 
1954 	return (ret || xdp_ring_err) ? -ENOMEM : 0;
1955 }
1956 
1957 /**
1958  * ice_xdp - implements XDP handler
1959  * @dev: netdevice
1960  * @xdp: XDP command
1961  */
1962 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
1963 {
1964 	struct ice_netdev_priv *np = netdev_priv(dev);
1965 	struct ice_vsi *vsi = np->vsi;
1966 
1967 	if (vsi->type != ICE_VSI_PF) {
1968 		NL_SET_ERR_MSG_MOD(xdp->extack,
1969 				   "XDP can be loaded only on PF VSI");
1970 		return -EINVAL;
1971 	}
1972 
1973 	switch (xdp->command) {
1974 	case XDP_SETUP_PROG:
1975 		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
1976 	case XDP_QUERY_PROG:
1977 		xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
1978 		return 0;
1979 	case XDP_SETUP_XSK_UMEM:
1980 		return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
1981 					  xdp->xsk.queue_id);
1982 	default:
1983 		return -EINVAL;
1984 	}
1985 }
1986 
1987 /**
1988  * ice_ena_misc_vector - enable the non-queue interrupts
1989  * @pf: board private structure
1990  */
1991 static void ice_ena_misc_vector(struct ice_pf *pf)
1992 {
1993 	struct ice_hw *hw = &pf->hw;
1994 	u32 val;
1995 
1996 	/* clear things first */
1997 	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
1998 	rd32(hw, PFINT_OICR);		/* read to clear */
1999 
2000 	val = (PFINT_OICR_ECC_ERR_M |
2001 	       PFINT_OICR_MAL_DETECT_M |
2002 	       PFINT_OICR_GRST_M |
2003 	       PFINT_OICR_PCI_EXCEPTION_M |
2004 	       PFINT_OICR_VFLR_M |
2005 	       PFINT_OICR_HMC_ERR_M |
2006 	       PFINT_OICR_PE_CRITERR_M);
2007 
2008 	wr32(hw, PFINT_OICR_ENA, val);
2009 
2010 	/* SW_ITR_IDX = 0, but don't change INTENA */
2011 	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2012 	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2013 }
2014 
2015 /**
2016  * ice_misc_intr - misc interrupt handler
2017  * @irq: interrupt number
2018  * @data: pointer to a q_vector
2019  */
2020 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2021 {
2022 	struct ice_pf *pf = (struct ice_pf *)data;
2023 	struct ice_hw *hw = &pf->hw;
2024 	irqreturn_t ret = IRQ_NONE;
2025 	struct device *dev;
2026 	u32 oicr, ena_mask;
2027 
2028 	dev = ice_pf_to_dev(pf);
2029 	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2030 	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2031 
2032 	oicr = rd32(hw, PFINT_OICR);
2033 	ena_mask = rd32(hw, PFINT_OICR_ENA);
2034 
2035 	if (oicr & PFINT_OICR_SWINT_M) {
2036 		ena_mask &= ~PFINT_OICR_SWINT_M;
2037 		pf->sw_int_count++;
2038 	}
2039 
2040 	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2041 		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2042 		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2043 	}
2044 	if (oicr & PFINT_OICR_VFLR_M) {
2045 		ena_mask &= ~PFINT_OICR_VFLR_M;
2046 		set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2047 	}
2048 
2049 	if (oicr & PFINT_OICR_GRST_M) {
2050 		u32 reset;
2051 
2052 		/* we have a reset warning */
2053 		ena_mask &= ~PFINT_OICR_GRST_M;
2054 		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2055 			GLGEN_RSTAT_RESET_TYPE_S;
2056 
2057 		if (reset == ICE_RESET_CORER)
2058 			pf->corer_count++;
2059 		else if (reset == ICE_RESET_GLOBR)
2060 			pf->globr_count++;
2061 		else if (reset == ICE_RESET_EMPR)
2062 			pf->empr_count++;
2063 		else
2064 			dev_dbg(dev, "Invalid reset type %d\n", reset);
2065 
2066 		/* If a reset cycle isn't already in progress, we set a bit in
2067 		 * pf->state so that the service task can start a reset/rebuild.
2068 		 * We also make note of which reset happened so that peer
2069 		 * devices/drivers can be informed.
2070 		 */
2071 		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2072 			if (reset == ICE_RESET_CORER)
2073 				set_bit(__ICE_CORER_RECV, pf->state);
2074 			else if (reset == ICE_RESET_GLOBR)
2075 				set_bit(__ICE_GLOBR_RECV, pf->state);
2076 			else
2077 				set_bit(__ICE_EMPR_RECV, pf->state);
2078 
2079 			/* There are couple of different bits at play here.
2080 			 * hw->reset_ongoing indicates whether the hardware is
2081 			 * in reset. This is set to true when a reset interrupt
2082 			 * is received and set back to false after the driver
2083 			 * has determined that the hardware is out of reset.
2084 			 *
2085 			 * __ICE_RESET_OICR_RECV in pf->state indicates
2086 			 * that a post reset rebuild is required before the
2087 			 * driver is operational again. This is set above.
2088 			 *
2089 			 * As this is the start of the reset/rebuild cycle, set
2090 			 * both to indicate that.
2091 			 */
2092 			hw->reset_ongoing = true;
2093 		}
2094 	}
2095 
2096 	if (oicr & PFINT_OICR_HMC_ERR_M) {
2097 		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2098 		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2099 			rd32(hw, PFHMC_ERRORINFO),
2100 			rd32(hw, PFHMC_ERRORDATA));
2101 	}
2102 
2103 	/* Report any remaining unexpected interrupts */
2104 	oicr &= ena_mask;
2105 	if (oicr) {
2106 		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2107 		/* If a critical error is pending there is no choice but to
2108 		 * reset the device.
2109 		 */
2110 		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2111 			    PFINT_OICR_PCI_EXCEPTION_M |
2112 			    PFINT_OICR_ECC_ERR_M)) {
2113 			set_bit(__ICE_PFR_REQ, pf->state);
2114 			ice_service_task_schedule(pf);
2115 		}
2116 	}
2117 	ret = IRQ_HANDLED;
2118 
2119 	if (!test_bit(__ICE_DOWN, pf->state)) {
2120 		ice_service_task_schedule(pf);
2121 		ice_irq_dynamic_ena(hw, NULL, NULL);
2122 	}
2123 
2124 	return ret;
2125 }
2126 
2127 /**
2128  * ice_dis_ctrlq_interrupts - disable control queue interrupts
2129  * @hw: pointer to HW structure
2130  */
2131 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2132 {
2133 	/* disable Admin queue Interrupt causes */
2134 	wr32(hw, PFINT_FW_CTL,
2135 	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2136 
2137 	/* disable Mailbox queue Interrupt causes */
2138 	wr32(hw, PFINT_MBX_CTL,
2139 	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2140 
2141 	/* disable Control queue Interrupt causes */
2142 	wr32(hw, PFINT_OICR_CTL,
2143 	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2144 
2145 	ice_flush(hw);
2146 }
2147 
2148 /**
2149  * ice_free_irq_msix_misc - Unroll misc vector setup
2150  * @pf: board private structure
2151  */
2152 static void ice_free_irq_msix_misc(struct ice_pf *pf)
2153 {
2154 	struct ice_hw *hw = &pf->hw;
2155 
2156 	ice_dis_ctrlq_interrupts(hw);
2157 
2158 	/* disable OICR interrupt */
2159 	wr32(hw, PFINT_OICR_ENA, 0);
2160 	ice_flush(hw);
2161 
2162 	if (pf->msix_entries) {
2163 		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2164 		devm_free_irq(ice_pf_to_dev(pf),
2165 			      pf->msix_entries[pf->oicr_idx].vector, pf);
2166 	}
2167 
2168 	pf->num_avail_sw_msix += 1;
2169 	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2170 }
2171 
2172 /**
2173  * ice_ena_ctrlq_interrupts - enable control queue interrupts
2174  * @hw: pointer to HW structure
2175  * @reg_idx: HW vector index to associate the control queue interrupts with
2176  */
2177 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2178 {
2179 	u32 val;
2180 
2181 	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2182 	       PFINT_OICR_CTL_CAUSE_ENA_M);
2183 	wr32(hw, PFINT_OICR_CTL, val);
2184 
2185 	/* enable Admin queue Interrupt causes */
2186 	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2187 	       PFINT_FW_CTL_CAUSE_ENA_M);
2188 	wr32(hw, PFINT_FW_CTL, val);
2189 
2190 	/* enable Mailbox queue Interrupt causes */
2191 	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2192 	       PFINT_MBX_CTL_CAUSE_ENA_M);
2193 	wr32(hw, PFINT_MBX_CTL, val);
2194 
2195 	ice_flush(hw);
2196 }
2197 
2198 /**
2199  * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2200  * @pf: board private structure
2201  *
2202  * This sets up the handler for MSIX 0, which is used to manage the
2203  * non-queue interrupts, e.g. AdminQ and errors. This is not used
2204  * when in MSI or Legacy interrupt mode.
2205  */
2206 static int ice_req_irq_msix_misc(struct ice_pf *pf)
2207 {
2208 	struct device *dev = ice_pf_to_dev(pf);
2209 	struct ice_hw *hw = &pf->hw;
2210 	int oicr_idx, err = 0;
2211 
2212 	if (!pf->int_name[0])
2213 		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2214 			 dev_driver_string(dev), dev_name(dev));
2215 
2216 	/* Do not request IRQ but do enable OICR interrupt since settings are
2217 	 * lost during reset. Note that this function is called only during
2218 	 * rebuild path and not while reset is in progress.
2219 	 */
2220 	if (ice_is_reset_in_progress(pf->state))
2221 		goto skip_req_irq;
2222 
2223 	/* reserve one vector in irq_tracker for misc interrupts */
2224 	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2225 	if (oicr_idx < 0)
2226 		return oicr_idx;
2227 
2228 	pf->num_avail_sw_msix -= 1;
2229 	pf->oicr_idx = oicr_idx;
2230 
2231 	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2232 			       ice_misc_intr, 0, pf->int_name, pf);
2233 	if (err) {
2234 		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2235 			pf->int_name, err);
2236 		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2237 		pf->num_avail_sw_msix += 1;
2238 		return err;
2239 	}
2240 
2241 skip_req_irq:
2242 	ice_ena_misc_vector(pf);
2243 
2244 	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2245 	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2246 	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2247 
2248 	ice_flush(hw);
2249 	ice_irq_dynamic_ena(hw, NULL, NULL);
2250 
2251 	return 0;
2252 }
2253 
2254 /**
2255  * ice_napi_add - register NAPI handler for the VSI
2256  * @vsi: VSI for which NAPI handler is to be registered
2257  *
2258  * This function is only called in the driver's load path. Registering the NAPI
2259  * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2260  * reset/rebuild, etc.)
2261  */
2262 static void ice_napi_add(struct ice_vsi *vsi)
2263 {
2264 	int v_idx;
2265 
2266 	if (!vsi->netdev)
2267 		return;
2268 
2269 	ice_for_each_q_vector(vsi, v_idx)
2270 		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2271 			       ice_napi_poll, NAPI_POLL_WEIGHT);
2272 }
2273 
2274 /**
2275  * ice_set_ops - set netdev and ethtools ops for the given netdev
2276  * @netdev: netdev instance
2277  */
2278 static void ice_set_ops(struct net_device *netdev)
2279 {
2280 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2281 
2282 	if (ice_is_safe_mode(pf)) {
2283 		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2284 		ice_set_ethtool_safe_mode_ops(netdev);
2285 		return;
2286 	}
2287 
2288 	netdev->netdev_ops = &ice_netdev_ops;
2289 	ice_set_ethtool_ops(netdev);
2290 }
2291 
2292 /**
2293  * ice_set_netdev_features - set features for the given netdev
2294  * @netdev: netdev instance
2295  */
2296 static void ice_set_netdev_features(struct net_device *netdev)
2297 {
2298 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2299 	netdev_features_t csumo_features;
2300 	netdev_features_t vlano_features;
2301 	netdev_features_t dflt_features;
2302 	netdev_features_t tso_features;
2303 
2304 	if (ice_is_safe_mode(pf)) {
2305 		/* safe mode */
2306 		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2307 		netdev->hw_features = netdev->features;
2308 		return;
2309 	}
2310 
2311 	dflt_features = NETIF_F_SG	|
2312 			NETIF_F_HIGHDMA	|
2313 			NETIF_F_RXHASH;
2314 
2315 	csumo_features = NETIF_F_RXCSUM	  |
2316 			 NETIF_F_IP_CSUM  |
2317 			 NETIF_F_SCTP_CRC |
2318 			 NETIF_F_IPV6_CSUM;
2319 
2320 	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2321 			 NETIF_F_HW_VLAN_CTAG_TX     |
2322 			 NETIF_F_HW_VLAN_CTAG_RX;
2323 
2324 	tso_features = NETIF_F_TSO		|
2325 		       NETIF_F_GSO_UDP_L4;
2326 
2327 	/* set features that user can change */
2328 	netdev->hw_features = dflt_features | csumo_features |
2329 			      vlano_features | tso_features;
2330 
2331 	/* enable features */
2332 	netdev->features |= netdev->hw_features;
2333 	/* encap and VLAN devices inherit default, csumo and tso features */
2334 	netdev->hw_enc_features |= dflt_features | csumo_features |
2335 				   tso_features;
2336 	netdev->vlan_features |= dflt_features | csumo_features |
2337 				 tso_features;
2338 }
2339 
2340 /**
2341  * ice_cfg_netdev - Allocate, configure and register a netdev
2342  * @vsi: the VSI associated with the new netdev
2343  *
2344  * Returns 0 on success, negative value on failure
2345  */
2346 static int ice_cfg_netdev(struct ice_vsi *vsi)
2347 {
2348 	struct ice_pf *pf = vsi->back;
2349 	struct ice_netdev_priv *np;
2350 	struct net_device *netdev;
2351 	u8 mac_addr[ETH_ALEN];
2352 	int err;
2353 
2354 	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2355 				    vsi->alloc_rxq);
2356 	if (!netdev)
2357 		return -ENOMEM;
2358 
2359 	vsi->netdev = netdev;
2360 	np = netdev_priv(netdev);
2361 	np->vsi = vsi;
2362 
2363 	ice_set_netdev_features(netdev);
2364 
2365 	ice_set_ops(netdev);
2366 
2367 	if (vsi->type == ICE_VSI_PF) {
2368 		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2369 		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2370 		ether_addr_copy(netdev->dev_addr, mac_addr);
2371 		ether_addr_copy(netdev->perm_addr, mac_addr);
2372 	}
2373 
2374 	netdev->priv_flags |= IFF_UNICAST_FLT;
2375 
2376 	/* Setup netdev TC information */
2377 	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2378 
2379 	/* setup watchdog timeout value to be 5 second */
2380 	netdev->watchdog_timeo = 5 * HZ;
2381 
2382 	netdev->min_mtu = ETH_MIN_MTU;
2383 	netdev->max_mtu = ICE_MAX_MTU;
2384 
2385 	err = register_netdev(vsi->netdev);
2386 	if (err)
2387 		return err;
2388 
2389 	netif_carrier_off(vsi->netdev);
2390 
2391 	/* make sure transmit queues start off as stopped */
2392 	netif_tx_stop_all_queues(vsi->netdev);
2393 
2394 	return 0;
2395 }
2396 
2397 /**
2398  * ice_fill_rss_lut - Fill the RSS lookup table with default values
2399  * @lut: Lookup table
2400  * @rss_table_size: Lookup table size
2401  * @rss_size: Range of queue number for hashing
2402  */
2403 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2404 {
2405 	u16 i;
2406 
2407 	for (i = 0; i < rss_table_size; i++)
2408 		lut[i] = i % rss_size;
2409 }
2410 
2411 /**
2412  * ice_pf_vsi_setup - Set up a PF VSI
2413  * @pf: board private structure
2414  * @pi: pointer to the port_info instance
2415  *
2416  * Returns pointer to the successfully allocated VSI software struct
2417  * on success, otherwise returns NULL on failure.
2418  */
2419 static struct ice_vsi *
2420 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2421 {
2422 	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
2423 }
2424 
2425 /**
2426  * ice_lb_vsi_setup - Set up a loopback VSI
2427  * @pf: board private structure
2428  * @pi: pointer to the port_info instance
2429  *
2430  * Returns pointer to the successfully allocated VSI software struct
2431  * on success, otherwise returns NULL on failure.
2432  */
2433 struct ice_vsi *
2434 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
2435 {
2436 	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
2437 }
2438 
2439 /**
2440  * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
2441  * @netdev: network interface to be adjusted
2442  * @proto: unused protocol
2443  * @vid: VLAN ID to be added
2444  *
2445  * net_device_ops implementation for adding VLAN IDs
2446  */
2447 static int
2448 ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
2449 		    u16 vid)
2450 {
2451 	struct ice_netdev_priv *np = netdev_priv(netdev);
2452 	struct ice_vsi *vsi = np->vsi;
2453 	int ret;
2454 
2455 	if (vid >= VLAN_N_VID) {
2456 		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2457 			   vid, VLAN_N_VID);
2458 		return -EINVAL;
2459 	}
2460 
2461 	if (vsi->info.pvid)
2462 		return -EINVAL;
2463 
2464 	/* Enable VLAN pruning when VLAN 0 is added */
2465 	if (unlikely(!vid)) {
2466 		ret = ice_cfg_vlan_pruning(vsi, true, false);
2467 		if (ret)
2468 			return ret;
2469 	}
2470 
2471 	/* Add all VLAN IDs including 0 to the switch filter. VLAN ID 0 is
2472 	 * needed to continue allowing all untagged packets since VLAN prune
2473 	 * list is applied to all packets by the switch
2474 	 */
2475 	ret = ice_vsi_add_vlan(vsi, vid);
2476 	if (!ret) {
2477 		vsi->vlan_ena = true;
2478 		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2479 	}
2480 
2481 	return ret;
2482 }
2483 
2484 /**
2485  * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
2486  * @netdev: network interface to be adjusted
2487  * @proto: unused protocol
2488  * @vid: VLAN ID to be removed
2489  *
2490  * net_device_ops implementation for removing VLAN IDs
2491  */
2492 static int
2493 ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
2494 		     u16 vid)
2495 {
2496 	struct ice_netdev_priv *np = netdev_priv(netdev);
2497 	struct ice_vsi *vsi = np->vsi;
2498 	int ret;
2499 
2500 	if (vsi->info.pvid)
2501 		return -EINVAL;
2502 
2503 	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
2504 	 * information
2505 	 */
2506 	ret = ice_vsi_kill_vlan(vsi, vid);
2507 	if (ret)
2508 		return ret;
2509 
2510 	/* Disable VLAN pruning when VLAN 0 is removed */
2511 	if (unlikely(!vid))
2512 		ret = ice_cfg_vlan_pruning(vsi, false, false);
2513 
2514 	vsi->vlan_ena = false;
2515 	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
2516 	return ret;
2517 }
2518 
2519 /**
2520  * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2521  * @pf: board private structure
2522  *
2523  * Returns 0 on success, negative value on failure
2524  */
2525 static int ice_setup_pf_sw(struct ice_pf *pf)
2526 {
2527 	struct ice_vsi *vsi;
2528 	int status = 0;
2529 
2530 	if (ice_is_reset_in_progress(pf->state))
2531 		return -EBUSY;
2532 
2533 	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
2534 	if (!vsi) {
2535 		status = -ENOMEM;
2536 		goto unroll_vsi_setup;
2537 	}
2538 
2539 	status = ice_cfg_netdev(vsi);
2540 	if (status) {
2541 		status = -ENODEV;
2542 		goto unroll_vsi_setup;
2543 	}
2544 	/* netdev has to be configured before setting frame size */
2545 	ice_vsi_cfg_frame_size(vsi);
2546 
2547 	/* Setup DCB netlink interface */
2548 	ice_dcbnl_setup(vsi);
2549 
2550 	/* registering the NAPI handler requires both the queues and
2551 	 * netdev to be created, which are done in ice_pf_vsi_setup()
2552 	 * and ice_cfg_netdev() respectively
2553 	 */
2554 	ice_napi_add(vsi);
2555 
2556 	status = ice_init_mac_fltr(pf);
2557 	if (status)
2558 		goto unroll_napi_add;
2559 
2560 	return status;
2561 
2562 unroll_napi_add:
2563 	if (vsi) {
2564 		ice_napi_del(vsi);
2565 		if (vsi->netdev) {
2566 			if (vsi->netdev->reg_state == NETREG_REGISTERED)
2567 				unregister_netdev(vsi->netdev);
2568 			free_netdev(vsi->netdev);
2569 			vsi->netdev = NULL;
2570 		}
2571 	}
2572 
2573 unroll_vsi_setup:
2574 	if (vsi) {
2575 		ice_vsi_free_q_vectors(vsi);
2576 		ice_vsi_delete(vsi);
2577 		ice_vsi_put_qs(vsi);
2578 		ice_vsi_clear(vsi);
2579 	}
2580 	return status;
2581 }
2582 
2583 /**
2584  * ice_get_avail_q_count - Get count of queues in use
2585  * @pf_qmap: bitmap to get queue use count from
2586  * @lock: pointer to a mutex that protects access to pf_qmap
2587  * @size: size of the bitmap
2588  */
2589 static u16
2590 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
2591 {
2592 	u16 count = 0, bit;
2593 
2594 	mutex_lock(lock);
2595 	for_each_clear_bit(bit, pf_qmap, size)
2596 		count++;
2597 	mutex_unlock(lock);
2598 
2599 	return count;
2600 }
2601 
2602 /**
2603  * ice_get_avail_txq_count - Get count of Tx queues in use
2604  * @pf: pointer to an ice_pf instance
2605  */
2606 u16 ice_get_avail_txq_count(struct ice_pf *pf)
2607 {
2608 	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
2609 				     pf->max_pf_txqs);
2610 }
2611 
2612 /**
2613  * ice_get_avail_rxq_count - Get count of Rx queues in use
2614  * @pf: pointer to an ice_pf instance
2615  */
2616 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
2617 {
2618 	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
2619 				     pf->max_pf_rxqs);
2620 }
2621 
2622 /**
2623  * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
2624  * @pf: board private structure to initialize
2625  */
2626 static void ice_deinit_pf(struct ice_pf *pf)
2627 {
2628 	ice_service_task_stop(pf);
2629 	mutex_destroy(&pf->sw_mutex);
2630 	mutex_destroy(&pf->tc_mutex);
2631 	mutex_destroy(&pf->avail_q_mutex);
2632 
2633 	if (pf->avail_txqs) {
2634 		bitmap_free(pf->avail_txqs);
2635 		pf->avail_txqs = NULL;
2636 	}
2637 
2638 	if (pf->avail_rxqs) {
2639 		bitmap_free(pf->avail_rxqs);
2640 		pf->avail_rxqs = NULL;
2641 	}
2642 }
2643 
2644 /**
2645  * ice_set_pf_caps - set PFs capability flags
2646  * @pf: pointer to the PF instance
2647  */
2648 static void ice_set_pf_caps(struct ice_pf *pf)
2649 {
2650 	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
2651 
2652 	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2653 	if (func_caps->common_cap.dcb)
2654 		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
2655 	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2656 	if (func_caps->common_cap.sr_iov_1_1) {
2657 		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
2658 		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
2659 					      ICE_MAX_VF_COUNT);
2660 	}
2661 	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
2662 	if (func_caps->common_cap.rss_table_size)
2663 		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
2664 
2665 	pf->max_pf_txqs = func_caps->common_cap.num_txq;
2666 	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
2667 }
2668 
2669 /**
2670  * ice_init_pf - Initialize general software structures (struct ice_pf)
2671  * @pf: board private structure to initialize
2672  */
2673 static int ice_init_pf(struct ice_pf *pf)
2674 {
2675 	ice_set_pf_caps(pf);
2676 
2677 	mutex_init(&pf->sw_mutex);
2678 	mutex_init(&pf->tc_mutex);
2679 
2680 	/* setup service timer and periodic service task */
2681 	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
2682 	pf->serv_tmr_period = HZ;
2683 	INIT_WORK(&pf->serv_task, ice_service_task);
2684 	clear_bit(__ICE_SERVICE_SCHED, pf->state);
2685 
2686 	mutex_init(&pf->avail_q_mutex);
2687 	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
2688 	if (!pf->avail_txqs)
2689 		return -ENOMEM;
2690 
2691 	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
2692 	if (!pf->avail_rxqs) {
2693 		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
2694 		pf->avail_txqs = NULL;
2695 		return -ENOMEM;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 /**
2702  * ice_ena_msix_range - Request a range of MSIX vectors from the OS
2703  * @pf: board private structure
2704  *
2705  * compute the number of MSIX vectors required (v_budget) and request from
2706  * the OS. Return the number of vectors reserved or negative on failure
2707  */
2708 static int ice_ena_msix_range(struct ice_pf *pf)
2709 {
2710 	struct device *dev = ice_pf_to_dev(pf);
2711 	int v_left, v_actual, v_budget = 0;
2712 	int needed, err, i;
2713 
2714 	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
2715 
2716 	/* reserve one vector for miscellaneous handler */
2717 	needed = 1;
2718 	if (v_left < needed)
2719 		goto no_hw_vecs_left_err;
2720 	v_budget += needed;
2721 	v_left -= needed;
2722 
2723 	/* reserve vectors for LAN traffic */
2724 	needed = min_t(int, num_online_cpus(), v_left);
2725 	if (v_left < needed)
2726 		goto no_hw_vecs_left_err;
2727 	pf->num_lan_msix = needed;
2728 	v_budget += needed;
2729 	v_left -= needed;
2730 
2731 	pf->msix_entries = devm_kcalloc(dev, v_budget,
2732 					sizeof(*pf->msix_entries), GFP_KERNEL);
2733 
2734 	if (!pf->msix_entries) {
2735 		err = -ENOMEM;
2736 		goto exit_err;
2737 	}
2738 
2739 	for (i = 0; i < v_budget; i++)
2740 		pf->msix_entries[i].entry = i;
2741 
2742 	/* actually reserve the vectors */
2743 	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
2744 					 ICE_MIN_MSIX, v_budget);
2745 
2746 	if (v_actual < 0) {
2747 		dev_err(dev, "unable to reserve MSI-X vectors\n");
2748 		err = v_actual;
2749 		goto msix_err;
2750 	}
2751 
2752 	if (v_actual < v_budget) {
2753 		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
2754 			 v_budget, v_actual);
2755 /* 2 vectors for LAN (traffic + OICR) */
2756 #define ICE_MIN_LAN_VECS 2
2757 
2758 		if (v_actual < ICE_MIN_LAN_VECS) {
2759 			/* error if we can't get minimum vectors */
2760 			pci_disable_msix(pf->pdev);
2761 			err = -ERANGE;
2762 			goto msix_err;
2763 		} else {
2764 			pf->num_lan_msix = ICE_MIN_LAN_VECS;
2765 		}
2766 	}
2767 
2768 	return v_actual;
2769 
2770 msix_err:
2771 	devm_kfree(dev, pf->msix_entries);
2772 	goto exit_err;
2773 
2774 no_hw_vecs_left_err:
2775 	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
2776 		needed, v_left);
2777 	err = -ERANGE;
2778 exit_err:
2779 	pf->num_lan_msix = 0;
2780 	return err;
2781 }
2782 
2783 /**
2784  * ice_dis_msix - Disable MSI-X interrupt setup in OS
2785  * @pf: board private structure
2786  */
2787 static void ice_dis_msix(struct ice_pf *pf)
2788 {
2789 	pci_disable_msix(pf->pdev);
2790 	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
2791 	pf->msix_entries = NULL;
2792 }
2793 
2794 /**
2795  * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
2796  * @pf: board private structure
2797  */
2798 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
2799 {
2800 	ice_dis_msix(pf);
2801 
2802 	if (pf->irq_tracker) {
2803 		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
2804 		pf->irq_tracker = NULL;
2805 	}
2806 }
2807 
2808 /**
2809  * ice_init_interrupt_scheme - Determine proper interrupt scheme
2810  * @pf: board private structure to initialize
2811  */
2812 static int ice_init_interrupt_scheme(struct ice_pf *pf)
2813 {
2814 	int vectors;
2815 
2816 	vectors = ice_ena_msix_range(pf);
2817 
2818 	if (vectors < 0)
2819 		return vectors;
2820 
2821 	/* set up vector assignment tracking */
2822 	pf->irq_tracker =
2823 		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
2824 			     (sizeof(u16) * vectors), GFP_KERNEL);
2825 	if (!pf->irq_tracker) {
2826 		ice_dis_msix(pf);
2827 		return -ENOMEM;
2828 	}
2829 
2830 	/* populate SW interrupts pool with number of OS granted IRQs. */
2831 	pf->num_avail_sw_msix = vectors;
2832 	pf->irq_tracker->num_entries = vectors;
2833 	pf->irq_tracker->end = pf->irq_tracker->num_entries;
2834 
2835 	return 0;
2836 }
2837 
2838 /**
2839  * ice_vsi_recfg_qs - Change the number of queues on a VSI
2840  * @vsi: VSI being changed
2841  * @new_rx: new number of Rx queues
2842  * @new_tx: new number of Tx queues
2843  *
2844  * Only change the number of queues if new_tx, or new_rx is non-0.
2845  *
2846  * Returns 0 on success.
2847  */
2848 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
2849 {
2850 	struct ice_pf *pf = vsi->back;
2851 	int err = 0, timeout = 50;
2852 
2853 	if (!new_rx && !new_tx)
2854 		return -EINVAL;
2855 
2856 	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
2857 		timeout--;
2858 		if (!timeout)
2859 			return -EBUSY;
2860 		usleep_range(1000, 2000);
2861 	}
2862 
2863 	if (new_tx)
2864 		vsi->req_txq = new_tx;
2865 	if (new_rx)
2866 		vsi->req_rxq = new_rx;
2867 
2868 	/* set for the next time the netdev is started */
2869 	if (!netif_running(vsi->netdev)) {
2870 		ice_vsi_rebuild(vsi, false);
2871 		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
2872 		goto done;
2873 	}
2874 
2875 	ice_vsi_close(vsi);
2876 	ice_vsi_rebuild(vsi, false);
2877 	ice_pf_dcb_recfg(pf);
2878 	ice_vsi_open(vsi);
2879 done:
2880 	clear_bit(__ICE_CFG_BUSY, pf->state);
2881 	return err;
2882 }
2883 
2884 /**
2885  * ice_log_pkg_init - log result of DDP package load
2886  * @hw: pointer to hardware info
2887  * @status: status of package load
2888  */
2889 static void
2890 ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
2891 {
2892 	struct ice_pf *pf = (struct ice_pf *)hw->back;
2893 	struct device *dev = ice_pf_to_dev(pf);
2894 
2895 	switch (*status) {
2896 	case ICE_SUCCESS:
2897 		/* The package download AdminQ command returned success because
2898 		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
2899 		 * already a package loaded on the device.
2900 		 */
2901 		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
2902 		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
2903 		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
2904 		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
2905 		    !memcmp(hw->pkg_name, hw->active_pkg_name,
2906 			    sizeof(hw->pkg_name))) {
2907 			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
2908 				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
2909 					 hw->active_pkg_name,
2910 					 hw->active_pkg_ver.major,
2911 					 hw->active_pkg_ver.minor,
2912 					 hw->active_pkg_ver.update,
2913 					 hw->active_pkg_ver.draft);
2914 			else
2915 				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
2916 					 hw->active_pkg_name,
2917 					 hw->active_pkg_ver.major,
2918 					 hw->active_pkg_ver.minor,
2919 					 hw->active_pkg_ver.update,
2920 					 hw->active_pkg_ver.draft);
2921 		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
2922 			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
2923 			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
2924 				hw->active_pkg_name,
2925 				hw->active_pkg_ver.major,
2926 				hw->active_pkg_ver.minor,
2927 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2928 			*status = ICE_ERR_NOT_SUPPORTED;
2929 		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2930 			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
2931 			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
2932 				 hw->active_pkg_name,
2933 				 hw->active_pkg_ver.major,
2934 				 hw->active_pkg_ver.minor,
2935 				 hw->active_pkg_ver.update,
2936 				 hw->active_pkg_ver.draft,
2937 				 hw->pkg_name,
2938 				 hw->pkg_ver.major,
2939 				 hw->pkg_ver.minor,
2940 				 hw->pkg_ver.update,
2941 				 hw->pkg_ver.draft);
2942 		} else {
2943 			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
2944 			*status = ICE_ERR_NOT_SUPPORTED;
2945 		}
2946 		break;
2947 	case ICE_ERR_BUF_TOO_SHORT:
2948 		/* fall-through */
2949 	case ICE_ERR_CFG:
2950 		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
2951 		break;
2952 	case ICE_ERR_NOT_SUPPORTED:
2953 		/* Package File version not supported */
2954 		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
2955 		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2956 		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
2957 			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
2958 		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
2959 			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
2960 			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
2961 			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
2962 				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
2963 		break;
2964 	case ICE_ERR_AQ_ERROR:
2965 		switch (hw->pkg_dwnld_status) {
2966 		case ICE_AQ_RC_ENOSEC:
2967 		case ICE_AQ_RC_EBADSIG:
2968 			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
2969 			return;
2970 		case ICE_AQ_RC_ESVN:
2971 			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
2972 			return;
2973 		case ICE_AQ_RC_EBADMAN:
2974 		case ICE_AQ_RC_EBADBUF:
2975 			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
2976 			return;
2977 		default:
2978 			break;
2979 		}
2980 		/* fall-through */
2981 	default:
2982 		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
2983 			*status);
2984 		break;
2985 	}
2986 }
2987 
2988 /**
2989  * ice_load_pkg - load/reload the DDP Package file
2990  * @firmware: firmware structure when firmware requested or NULL for reload
2991  * @pf: pointer to the PF instance
2992  *
2993  * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
2994  * initialize HW tables.
2995  */
2996 static void
2997 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
2998 {
2999 	enum ice_status status = ICE_ERR_PARAM;
3000 	struct device *dev = ice_pf_to_dev(pf);
3001 	struct ice_hw *hw = &pf->hw;
3002 
3003 	/* Load DDP Package */
3004 	if (firmware && !hw->pkg_copy) {
3005 		status = ice_copy_and_init_pkg(hw, firmware->data,
3006 					       firmware->size);
3007 		ice_log_pkg_init(hw, &status);
3008 	} else if (!firmware && hw->pkg_copy) {
3009 		/* Reload package during rebuild after CORER/GLOBR reset */
3010 		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3011 		ice_log_pkg_init(hw, &status);
3012 	} else {
3013 		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3014 	}
3015 
3016 	if (status) {
3017 		/* Safe Mode */
3018 		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3019 		return;
3020 	}
3021 
3022 	/* Successful download package is the precondition for advanced
3023 	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3024 	 */
3025 	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3026 }
3027 
3028 /**
3029  * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3030  * @pf: pointer to the PF structure
3031  *
3032  * There is no error returned here because the driver should be able to handle
3033  * 128 Byte cache lines, so we only print a warning in case issues are seen,
3034  * specifically with Tx.
3035  */
3036 static void ice_verify_cacheline_size(struct ice_pf *pf)
3037 {
3038 	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3039 		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3040 			 ICE_CACHE_LINE_BYTES);
3041 }
3042 
3043 /**
3044  * ice_send_version - update firmware with driver version
3045  * @pf: PF struct
3046  *
3047  * Returns ICE_SUCCESS on success, else error code
3048  */
3049 static enum ice_status ice_send_version(struct ice_pf *pf)
3050 {
3051 	struct ice_driver_ver dv;
3052 
3053 	dv.major_ver = DRV_VERSION_MAJOR;
3054 	dv.minor_ver = DRV_VERSION_MINOR;
3055 	dv.build_ver = DRV_VERSION_BUILD;
3056 	dv.subbuild_ver = 0;
3057 	strscpy((char *)dv.driver_string, DRV_VERSION,
3058 		sizeof(dv.driver_string));
3059 	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3060 }
3061 
3062 /**
3063  * ice_get_opt_fw_name - return optional firmware file name or NULL
3064  * @pf: pointer to the PF instance
3065  */
3066 static char *ice_get_opt_fw_name(struct ice_pf *pf)
3067 {
3068 	/* Optional firmware name same as default with additional dash
3069 	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3070 	 */
3071 	struct pci_dev *pdev = pf->pdev;
3072 	char *opt_fw_filename = NULL;
3073 	u32 dword;
3074 	u8 dsn[8];
3075 	int pos;
3076 
3077 	/* Determine the name of the optional file using the DSN (two
3078 	 * dwords following the start of the DSN Capability).
3079 	 */
3080 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_DSN);
3081 	if (pos) {
3082 		opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3083 		if (!opt_fw_filename)
3084 			return NULL;
3085 
3086 		pci_read_config_dword(pdev, pos + 4, &dword);
3087 		put_unaligned_le32(dword, &dsn[0]);
3088 		pci_read_config_dword(pdev, pos + 8, &dword);
3089 		put_unaligned_le32(dword, &dsn[4]);
3090 		snprintf(opt_fw_filename, NAME_MAX,
3091 			 "%sice-%02x%02x%02x%02x%02x%02x%02x%02x.pkg",
3092 			 ICE_DDP_PKG_PATH,
3093 			 dsn[7], dsn[6], dsn[5], dsn[4],
3094 			 dsn[3], dsn[2], dsn[1], dsn[0]);
3095 	}
3096 
3097 	return opt_fw_filename;
3098 }
3099 
3100 /**
3101  * ice_request_fw - Device initialization routine
3102  * @pf: pointer to the PF instance
3103  */
3104 static void ice_request_fw(struct ice_pf *pf)
3105 {
3106 	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3107 	const struct firmware *firmware = NULL;
3108 	struct device *dev = ice_pf_to_dev(pf);
3109 	int err = 0;
3110 
3111 	/* optional device-specific DDP (if present) overrides the default DDP
3112 	 * package file. kernel logs a debug message if the file doesn't exist,
3113 	 * and warning messages for other errors.
3114 	 */
3115 	if (opt_fw_filename) {
3116 		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3117 		if (err) {
3118 			kfree(opt_fw_filename);
3119 			goto dflt_pkg_load;
3120 		}
3121 
3122 		/* request for firmware was successful. Download to device */
3123 		ice_load_pkg(firmware, pf);
3124 		kfree(opt_fw_filename);
3125 		release_firmware(firmware);
3126 		return;
3127 	}
3128 
3129 dflt_pkg_load:
3130 	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3131 	if (err) {
3132 		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3133 		return;
3134 	}
3135 
3136 	/* request for firmware was successful. Download to device */
3137 	ice_load_pkg(firmware, pf);
3138 	release_firmware(firmware);
3139 }
3140 
3141 /**
3142  * ice_probe - Device initialization routine
3143  * @pdev: PCI device information struct
3144  * @ent: entry in ice_pci_tbl
3145  *
3146  * Returns 0 on success, negative on failure
3147  */
3148 static int
3149 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3150 {
3151 	struct device *dev = &pdev->dev;
3152 	struct ice_pf *pf;
3153 	struct ice_hw *hw;
3154 	int err;
3155 
3156 	/* this driver uses devres, see
3157 	 * Documentation/driver-api/driver-model/devres.rst
3158 	 */
3159 	err = pcim_enable_device(pdev);
3160 	if (err)
3161 		return err;
3162 
3163 	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3164 	if (err) {
3165 		dev_err(dev, "BAR0 I/O map error %d\n", err);
3166 		return err;
3167 	}
3168 
3169 	pf = devm_kzalloc(dev, sizeof(*pf), GFP_KERNEL);
3170 	if (!pf)
3171 		return -ENOMEM;
3172 
3173 	/* set up for high or low DMA */
3174 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3175 	if (err)
3176 		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3177 	if (err) {
3178 		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3179 		return err;
3180 	}
3181 
3182 	pci_enable_pcie_error_reporting(pdev);
3183 	pci_set_master(pdev);
3184 
3185 	pf->pdev = pdev;
3186 	pci_set_drvdata(pdev, pf);
3187 	set_bit(__ICE_DOWN, pf->state);
3188 	/* Disable service task until DOWN bit is cleared */
3189 	set_bit(__ICE_SERVICE_DIS, pf->state);
3190 
3191 	hw = &pf->hw;
3192 	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
3193 	pci_save_state(pdev);
3194 
3195 	hw->back = pf;
3196 	hw->vendor_id = pdev->vendor;
3197 	hw->device_id = pdev->device;
3198 	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3199 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3200 	hw->subsystem_device_id = pdev->subsystem_device;
3201 	hw->bus.device = PCI_SLOT(pdev->devfn);
3202 	hw->bus.func = PCI_FUNC(pdev->devfn);
3203 	ice_set_ctrlq_len(hw);
3204 
3205 	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3206 
3207 #ifndef CONFIG_DYNAMIC_DEBUG
3208 	if (debug < -1)
3209 		hw->debug_mask = debug;
3210 #endif
3211 
3212 	err = ice_init_hw(hw);
3213 	if (err) {
3214 		dev_err(dev, "ice_init_hw failed: %d\n", err);
3215 		err = -EIO;
3216 		goto err_exit_unroll;
3217 	}
3218 
3219 	ice_request_fw(pf);
3220 
3221 	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
3222 	 * set in pf->state, which will cause ice_is_safe_mode to return
3223 	 * true
3224 	 */
3225 	if (ice_is_safe_mode(pf)) {
3226 		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
3227 		/* we already got function/device capabilities but these don't
3228 		 * reflect what the driver needs to do in safe mode. Instead of
3229 		 * adding conditional logic everywhere to ignore these
3230 		 * device/function capabilities, override them.
3231 		 */
3232 		ice_set_safe_mode_caps(hw);
3233 	}
3234 
3235 	err = ice_init_pf(pf);
3236 	if (err) {
3237 		dev_err(dev, "ice_init_pf failed: %d\n", err);
3238 		goto err_init_pf_unroll;
3239 	}
3240 
3241 	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
3242 	if (!pf->num_alloc_vsi) {
3243 		err = -EIO;
3244 		goto err_init_pf_unroll;
3245 	}
3246 
3247 	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
3248 			       GFP_KERNEL);
3249 	if (!pf->vsi) {
3250 		err = -ENOMEM;
3251 		goto err_init_pf_unroll;
3252 	}
3253 
3254 	err = ice_init_interrupt_scheme(pf);
3255 	if (err) {
3256 		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
3257 		err = -EIO;
3258 		goto err_init_interrupt_unroll;
3259 	}
3260 
3261 	/* Driver is mostly up */
3262 	clear_bit(__ICE_DOWN, pf->state);
3263 
3264 	/* In case of MSIX we are going to setup the misc vector right here
3265 	 * to handle admin queue events etc. In case of legacy and MSI
3266 	 * the misc functionality and queue processing is combined in
3267 	 * the same vector and that gets setup at open.
3268 	 */
3269 	err = ice_req_irq_msix_misc(pf);
3270 	if (err) {
3271 		dev_err(dev, "setup of misc vector failed: %d\n", err);
3272 		goto err_init_interrupt_unroll;
3273 	}
3274 
3275 	/* create switch struct for the switch element created by FW on boot */
3276 	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
3277 	if (!pf->first_sw) {
3278 		err = -ENOMEM;
3279 		goto err_msix_misc_unroll;
3280 	}
3281 
3282 	if (hw->evb_veb)
3283 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
3284 	else
3285 		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
3286 
3287 	pf->first_sw->pf = pf;
3288 
3289 	/* record the sw_id available for later use */
3290 	pf->first_sw->sw_id = hw->port_info->sw_id;
3291 
3292 	err = ice_setup_pf_sw(pf);
3293 	if (err) {
3294 		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
3295 		goto err_alloc_sw_unroll;
3296 	}
3297 
3298 	clear_bit(__ICE_SERVICE_DIS, pf->state);
3299 
3300 	/* tell the firmware we are up */
3301 	err = ice_send_version(pf);
3302 	if (err) {
3303 		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
3304 			ice_drv_ver, err);
3305 		goto err_alloc_sw_unroll;
3306 	}
3307 
3308 	/* since everything is good, start the service timer */
3309 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3310 
3311 	err = ice_init_link_events(pf->hw.port_info);
3312 	if (err) {
3313 		dev_err(dev, "ice_init_link_events failed: %d\n", err);
3314 		goto err_alloc_sw_unroll;
3315 	}
3316 
3317 	ice_verify_cacheline_size(pf);
3318 
3319 	/* If no DDP driven features have to be setup, return here */
3320 	if (ice_is_safe_mode(pf))
3321 		return 0;
3322 
3323 	/* initialize DDP driven features */
3324 
3325 	/* Note: DCB init failure is non-fatal to load */
3326 	if (ice_init_pf_dcb(pf, false)) {
3327 		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3328 		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
3329 	} else {
3330 		ice_cfg_lldp_mib_change(&pf->hw, true);
3331 	}
3332 
3333 	/* print PCI link speed and width */
3334 	pcie_print_link_status(pf->pdev);
3335 
3336 	return 0;
3337 
3338 err_alloc_sw_unroll:
3339 	set_bit(__ICE_SERVICE_DIS, pf->state);
3340 	set_bit(__ICE_DOWN, pf->state);
3341 	devm_kfree(dev, pf->first_sw);
3342 err_msix_misc_unroll:
3343 	ice_free_irq_msix_misc(pf);
3344 err_init_interrupt_unroll:
3345 	ice_clear_interrupt_scheme(pf);
3346 	devm_kfree(dev, pf->vsi);
3347 err_init_pf_unroll:
3348 	ice_deinit_pf(pf);
3349 	ice_deinit_hw(hw);
3350 err_exit_unroll:
3351 	pci_disable_pcie_error_reporting(pdev);
3352 	return err;
3353 }
3354 
3355 /**
3356  * ice_remove - Device removal routine
3357  * @pdev: PCI device information struct
3358  */
3359 static void ice_remove(struct pci_dev *pdev)
3360 {
3361 	struct ice_pf *pf = pci_get_drvdata(pdev);
3362 	int i;
3363 
3364 	if (!pf)
3365 		return;
3366 
3367 	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
3368 		if (!ice_is_reset_in_progress(pf->state))
3369 			break;
3370 		msleep(100);
3371 	}
3372 
3373 	set_bit(__ICE_DOWN, pf->state);
3374 	ice_service_task_stop(pf);
3375 
3376 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags))
3377 		ice_free_vfs(pf);
3378 	ice_vsi_release_all(pf);
3379 	ice_free_irq_msix_misc(pf);
3380 	ice_for_each_vsi(pf, i) {
3381 		if (!pf->vsi[i])
3382 			continue;
3383 		ice_vsi_free_q_vectors(pf->vsi[i]);
3384 	}
3385 	ice_deinit_pf(pf);
3386 	ice_deinit_hw(&pf->hw);
3387 	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
3388 	 * do it via ice_schedule_reset() since there is no need to rebuild
3389 	 * and the service task is already stopped.
3390 	 */
3391 	ice_reset(&pf->hw, ICE_RESET_PFR);
3392 	pci_wait_for_pending_transaction(pdev);
3393 	ice_clear_interrupt_scheme(pf);
3394 	pci_disable_pcie_error_reporting(pdev);
3395 }
3396 
3397 /**
3398  * ice_pci_err_detected - warning that PCI error has been detected
3399  * @pdev: PCI device information struct
3400  * @err: the type of PCI error
3401  *
3402  * Called to warn that something happened on the PCI bus and the error handling
3403  * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
3404  */
3405 static pci_ers_result_t
3406 ice_pci_err_detected(struct pci_dev *pdev, enum pci_channel_state err)
3407 {
3408 	struct ice_pf *pf = pci_get_drvdata(pdev);
3409 
3410 	if (!pf) {
3411 		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
3412 			__func__, err);
3413 		return PCI_ERS_RESULT_DISCONNECT;
3414 	}
3415 
3416 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3417 		ice_service_task_stop(pf);
3418 
3419 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3420 			set_bit(__ICE_PFR_REQ, pf->state);
3421 			ice_prepare_for_reset(pf);
3422 		}
3423 	}
3424 
3425 	return PCI_ERS_RESULT_NEED_RESET;
3426 }
3427 
3428 /**
3429  * ice_pci_err_slot_reset - a PCI slot reset has just happened
3430  * @pdev: PCI device information struct
3431  *
3432  * Called to determine if the driver can recover from the PCI slot reset by
3433  * using a register read to determine if the device is recoverable.
3434  */
3435 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
3436 {
3437 	struct ice_pf *pf = pci_get_drvdata(pdev);
3438 	pci_ers_result_t result;
3439 	int err;
3440 	u32 reg;
3441 
3442 	err = pci_enable_device_mem(pdev);
3443 	if (err) {
3444 		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
3445 			err);
3446 		result = PCI_ERS_RESULT_DISCONNECT;
3447 	} else {
3448 		pci_set_master(pdev);
3449 		pci_restore_state(pdev);
3450 		pci_save_state(pdev);
3451 		pci_wake_from_d3(pdev, false);
3452 
3453 		/* Check for life */
3454 		reg = rd32(&pf->hw, GLGEN_RTRIG);
3455 		if (!reg)
3456 			result = PCI_ERS_RESULT_RECOVERED;
3457 		else
3458 			result = PCI_ERS_RESULT_DISCONNECT;
3459 	}
3460 
3461 	err = pci_cleanup_aer_uncorrect_error_status(pdev);
3462 	if (err)
3463 		dev_dbg(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status failed, error %d\n",
3464 			err);
3465 		/* non-fatal, continue */
3466 
3467 	return result;
3468 }
3469 
3470 /**
3471  * ice_pci_err_resume - restart operations after PCI error recovery
3472  * @pdev: PCI device information struct
3473  *
3474  * Called to allow the driver to bring things back up after PCI error and/or
3475  * reset recovery have finished
3476  */
3477 static void ice_pci_err_resume(struct pci_dev *pdev)
3478 {
3479 	struct ice_pf *pf = pci_get_drvdata(pdev);
3480 
3481 	if (!pf) {
3482 		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
3483 			__func__);
3484 		return;
3485 	}
3486 
3487 	if (test_bit(__ICE_SUSPENDED, pf->state)) {
3488 		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
3489 			__func__);
3490 		return;
3491 	}
3492 
3493 	ice_do_reset(pf, ICE_RESET_PFR);
3494 	ice_service_task_restart(pf);
3495 	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3496 }
3497 
3498 /**
3499  * ice_pci_err_reset_prepare - prepare device driver for PCI reset
3500  * @pdev: PCI device information struct
3501  */
3502 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
3503 {
3504 	struct ice_pf *pf = pci_get_drvdata(pdev);
3505 
3506 	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
3507 		ice_service_task_stop(pf);
3508 
3509 		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
3510 			set_bit(__ICE_PFR_REQ, pf->state);
3511 			ice_prepare_for_reset(pf);
3512 		}
3513 	}
3514 }
3515 
3516 /**
3517  * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
3518  * @pdev: PCI device information struct
3519  */
3520 static void ice_pci_err_reset_done(struct pci_dev *pdev)
3521 {
3522 	ice_pci_err_resume(pdev);
3523 }
3524 
3525 /* ice_pci_tbl - PCI Device ID Table
3526  *
3527  * Wildcard entries (PCI_ANY_ID) should come last
3528  * Last entry must be all 0s
3529  *
3530  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3531  *   Class, Class Mask, private data (not used) }
3532  */
3533 static const struct pci_device_id ice_pci_tbl[] = {
3534 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
3535 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
3536 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
3537 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
3538 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
3539 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
3540 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
3541 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
3542 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822X_BACKPLANE), 0 },
3543 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
3544 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
3545 	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
3546 	/* required last entry */
3547 	{ 0, }
3548 };
3549 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3550 
3551 static const struct pci_error_handlers ice_pci_err_handler = {
3552 	.error_detected = ice_pci_err_detected,
3553 	.slot_reset = ice_pci_err_slot_reset,
3554 	.reset_prepare = ice_pci_err_reset_prepare,
3555 	.reset_done = ice_pci_err_reset_done,
3556 	.resume = ice_pci_err_resume
3557 };
3558 
3559 static struct pci_driver ice_driver = {
3560 	.name = KBUILD_MODNAME,
3561 	.id_table = ice_pci_tbl,
3562 	.probe = ice_probe,
3563 	.remove = ice_remove,
3564 	.sriov_configure = ice_sriov_configure,
3565 	.err_handler = &ice_pci_err_handler
3566 };
3567 
3568 /**
3569  * ice_module_init - Driver registration routine
3570  *
3571  * ice_module_init is the first routine called when the driver is
3572  * loaded. All it does is register with the PCI subsystem.
3573  */
3574 static int __init ice_module_init(void)
3575 {
3576 	int status;
3577 
3578 	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3579 	pr_info("%s\n", ice_copyright);
3580 
3581 	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
3582 	if (!ice_wq) {
3583 		pr_err("Failed to create workqueue\n");
3584 		return -ENOMEM;
3585 	}
3586 
3587 	status = pci_register_driver(&ice_driver);
3588 	if (status) {
3589 		pr_err("failed to register PCI driver, err %d\n", status);
3590 		destroy_workqueue(ice_wq);
3591 	}
3592 
3593 	return status;
3594 }
3595 module_init(ice_module_init);
3596 
3597 /**
3598  * ice_module_exit - Driver exit cleanup routine
3599  *
3600  * ice_module_exit is called just before the driver is removed
3601  * from memory.
3602  */
3603 static void __exit ice_module_exit(void)
3604 {
3605 	pci_unregister_driver(&ice_driver);
3606 	destroy_workqueue(ice_wq);
3607 	pr_info("module unloaded\n");
3608 }
3609 module_exit(ice_module_exit);
3610 
3611 /**
3612  * ice_set_mac_address - NDO callback to set MAC address
3613  * @netdev: network interface device structure
3614  * @pi: pointer to an address structure
3615  *
3616  * Returns 0 on success, negative on failure
3617  */
3618 static int ice_set_mac_address(struct net_device *netdev, void *pi)
3619 {
3620 	struct ice_netdev_priv *np = netdev_priv(netdev);
3621 	struct ice_vsi *vsi = np->vsi;
3622 	struct ice_pf *pf = vsi->back;
3623 	struct ice_hw *hw = &pf->hw;
3624 	struct sockaddr *addr = pi;
3625 	enum ice_status status;
3626 	u8 flags = 0;
3627 	int err = 0;
3628 	u8 *mac;
3629 
3630 	mac = (u8 *)addr->sa_data;
3631 
3632 	if (!is_valid_ether_addr(mac))
3633 		return -EADDRNOTAVAIL;
3634 
3635 	if (ether_addr_equal(netdev->dev_addr, mac)) {
3636 		netdev_warn(netdev, "already using mac %pM\n", mac);
3637 		return 0;
3638 	}
3639 
3640 	if (test_bit(__ICE_DOWN, pf->state) ||
3641 	    ice_is_reset_in_progress(pf->state)) {
3642 		netdev_err(netdev, "can't set mac %pM. device not ready\n",
3643 			   mac);
3644 		return -EBUSY;
3645 	}
3646 
3647 	/* When we change the MAC address we also have to change the MAC address
3648 	 * based filter rules that were created previously for the old MAC
3649 	 * address. So first, we remove the old filter rule using ice_remove_mac
3650 	 * and then create a new filter rule using ice_add_mac via
3651 	 * ice_vsi_cfg_mac_fltr function call for both add and/or remove
3652 	 * filters.
3653 	 */
3654 	status = ice_vsi_cfg_mac_fltr(vsi, netdev->dev_addr, false);
3655 	if (status) {
3656 		err = -EADDRNOTAVAIL;
3657 		goto err_update_filters;
3658 	}
3659 
3660 	status = ice_vsi_cfg_mac_fltr(vsi, mac, true);
3661 	if (status) {
3662 		err = -EADDRNOTAVAIL;
3663 		goto err_update_filters;
3664 	}
3665 
3666 err_update_filters:
3667 	if (err) {
3668 		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
3669 			   mac);
3670 		return err;
3671 	}
3672 
3673 	/* change the netdev's MAC address */
3674 	memcpy(netdev->dev_addr, mac, netdev->addr_len);
3675 	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
3676 		   netdev->dev_addr);
3677 
3678 	/* write new MAC address to the firmware */
3679 	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3680 	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3681 	if (status) {
3682 		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
3683 			   mac, status);
3684 	}
3685 	return 0;
3686 }
3687 
3688 /**
3689  * ice_set_rx_mode - NDO callback to set the netdev filters
3690  * @netdev: network interface device structure
3691  */
3692 static void ice_set_rx_mode(struct net_device *netdev)
3693 {
3694 	struct ice_netdev_priv *np = netdev_priv(netdev);
3695 	struct ice_vsi *vsi = np->vsi;
3696 
3697 	if (!vsi)
3698 		return;
3699 
3700 	/* Set the flags to synchronize filters
3701 	 * ndo_set_rx_mode may be triggered even without a change in netdev
3702 	 * flags
3703 	 */
3704 	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3705 	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3706 	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3707 
3708 	/* schedule our worker thread which will take care of
3709 	 * applying the new filter changes
3710 	 */
3711 	ice_service_task_schedule(vsi->back);
3712 }
3713 
3714 /**
3715  * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
3716  * @netdev: network interface device structure
3717  * @queue_index: Queue ID
3718  * @maxrate: maximum bandwidth in Mbps
3719  */
3720 static int
3721 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
3722 {
3723 	struct ice_netdev_priv *np = netdev_priv(netdev);
3724 	struct ice_vsi *vsi = np->vsi;
3725 	enum ice_status status;
3726 	u16 q_handle;
3727 	u8 tc;
3728 
3729 	/* Validate maxrate requested is within permitted range */
3730 	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
3731 		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
3732 			   maxrate, queue_index);
3733 		return -EINVAL;
3734 	}
3735 
3736 	q_handle = vsi->tx_rings[queue_index]->q_handle;
3737 	tc = ice_dcb_get_tc(vsi, queue_index);
3738 
3739 	/* Set BW back to default, when user set maxrate to 0 */
3740 	if (!maxrate)
3741 		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
3742 					       q_handle, ICE_MAX_BW);
3743 	else
3744 		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
3745 					  q_handle, ICE_MAX_BW, maxrate * 1000);
3746 	if (status) {
3747 		netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
3748 			   status);
3749 		return -EIO;
3750 	}
3751 
3752 	return 0;
3753 }
3754 
3755 /**
3756  * ice_fdb_add - add an entry to the hardware database
3757  * @ndm: the input from the stack
3758  * @tb: pointer to array of nladdr (unused)
3759  * @dev: the net device pointer
3760  * @addr: the MAC address entry being added
3761  * @vid: VLAN ID
3762  * @flags: instructions from stack about fdb operation
3763  * @extack: netlink extended ack
3764  */
3765 static int
3766 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3767 	    struct net_device *dev, const unsigned char *addr, u16 vid,
3768 	    u16 flags, struct netlink_ext_ack __always_unused *extack)
3769 {
3770 	int err;
3771 
3772 	if (vid) {
3773 		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3774 		return -EINVAL;
3775 	}
3776 	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3777 		netdev_err(dev, "FDB only supports static addresses\n");
3778 		return -EINVAL;
3779 	}
3780 
3781 	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3782 		err = dev_uc_add_excl(dev, addr);
3783 	else if (is_multicast_ether_addr(addr))
3784 		err = dev_mc_add_excl(dev, addr);
3785 	else
3786 		err = -EINVAL;
3787 
3788 	/* Only return duplicate errors if NLM_F_EXCL is set */
3789 	if (err == -EEXIST && !(flags & NLM_F_EXCL))
3790 		err = 0;
3791 
3792 	return err;
3793 }
3794 
3795 /**
3796  * ice_fdb_del - delete an entry from the hardware database
3797  * @ndm: the input from the stack
3798  * @tb: pointer to array of nladdr (unused)
3799  * @dev: the net device pointer
3800  * @addr: the MAC address entry being added
3801  * @vid: VLAN ID
3802  */
3803 static int
3804 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3805 	    struct net_device *dev, const unsigned char *addr,
3806 	    __always_unused u16 vid)
3807 {
3808 	int err;
3809 
3810 	if (ndm->ndm_state & NUD_PERMANENT) {
3811 		netdev_err(dev, "FDB only supports static addresses\n");
3812 		return -EINVAL;
3813 	}
3814 
3815 	if (is_unicast_ether_addr(addr))
3816 		err = dev_uc_del(dev, addr);
3817 	else if (is_multicast_ether_addr(addr))
3818 		err = dev_mc_del(dev, addr);
3819 	else
3820 		err = -EINVAL;
3821 
3822 	return err;
3823 }
3824 
3825 /**
3826  * ice_set_features - set the netdev feature flags
3827  * @netdev: ptr to the netdev being adjusted
3828  * @features: the feature set that the stack is suggesting
3829  */
3830 static int
3831 ice_set_features(struct net_device *netdev, netdev_features_t features)
3832 {
3833 	struct ice_netdev_priv *np = netdev_priv(netdev);
3834 	struct ice_vsi *vsi = np->vsi;
3835 	struct ice_pf *pf = vsi->back;
3836 	int ret = 0;
3837 
3838 	/* Don't set any netdev advanced features with device in Safe Mode */
3839 	if (ice_is_safe_mode(vsi->back)) {
3840 		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
3841 		return ret;
3842 	}
3843 
3844 	/* Do not change setting during reset */
3845 	if (ice_is_reset_in_progress(pf->state)) {
3846 		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
3847 		return -EBUSY;
3848 	}
3849 
3850 	/* Multiple features can be changed in one call so keep features in
3851 	 * separate if/else statements to guarantee each feature is checked
3852 	 */
3853 	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
3854 		ret = ice_vsi_manage_rss_lut(vsi, true);
3855 	else if (!(features & NETIF_F_RXHASH) &&
3856 		 netdev->features & NETIF_F_RXHASH)
3857 		ret = ice_vsi_manage_rss_lut(vsi, false);
3858 
3859 	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3860 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3861 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3862 	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3863 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3864 		ret = ice_vsi_manage_vlan_stripping(vsi, false);
3865 
3866 	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3867 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3868 		ret = ice_vsi_manage_vlan_insertion(vsi);
3869 	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3870 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3871 		ret = ice_vsi_manage_vlan_insertion(vsi);
3872 
3873 	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3874 	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3875 		ret = ice_cfg_vlan_pruning(vsi, true, false);
3876 	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
3877 		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
3878 		ret = ice_cfg_vlan_pruning(vsi, false, false);
3879 
3880 	return ret;
3881 }
3882 
3883 /**
3884  * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
3885  * @vsi: VSI to setup VLAN properties for
3886  */
3887 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3888 {
3889 	int ret = 0;
3890 
3891 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3892 		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3893 	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3894 		ret = ice_vsi_manage_vlan_insertion(vsi);
3895 
3896 	return ret;
3897 }
3898 
3899 /**
3900  * ice_vsi_cfg - Setup the VSI
3901  * @vsi: the VSI being configured
3902  *
3903  * Return 0 on success and negative value on error
3904  */
3905 int ice_vsi_cfg(struct ice_vsi *vsi)
3906 {
3907 	int err;
3908 
3909 	if (vsi->netdev) {
3910 		ice_set_rx_mode(vsi->netdev);
3911 
3912 		err = ice_vsi_vlan_setup(vsi);
3913 
3914 		if (err)
3915 			return err;
3916 	}
3917 	ice_vsi_cfg_dcb_rings(vsi);
3918 
3919 	err = ice_vsi_cfg_lan_txqs(vsi);
3920 	if (!err && ice_is_xdp_ena_vsi(vsi))
3921 		err = ice_vsi_cfg_xdp_txqs(vsi);
3922 	if (!err)
3923 		err = ice_vsi_cfg_rxqs(vsi);
3924 
3925 	return err;
3926 }
3927 
3928 /**
3929  * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
3930  * @vsi: the VSI being configured
3931  */
3932 static void ice_napi_enable_all(struct ice_vsi *vsi)
3933 {
3934 	int q_idx;
3935 
3936 	if (!vsi->netdev)
3937 		return;
3938 
3939 	ice_for_each_q_vector(vsi, q_idx) {
3940 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
3941 
3942 		if (q_vector->rx.ring || q_vector->tx.ring)
3943 			napi_enable(&q_vector->napi);
3944 	}
3945 }
3946 
3947 /**
3948  * ice_up_complete - Finish the last steps of bringing up a connection
3949  * @vsi: The VSI being configured
3950  *
3951  * Return 0 on success and negative value on error
3952  */
3953 static int ice_up_complete(struct ice_vsi *vsi)
3954 {
3955 	struct ice_pf *pf = vsi->back;
3956 	int err;
3957 
3958 	ice_vsi_cfg_msix(vsi);
3959 
3960 	/* Enable only Rx rings, Tx rings were enabled by the FW when the
3961 	 * Tx queue group list was configured and the context bits were
3962 	 * programmed using ice_vsi_cfg_txqs
3963 	 */
3964 	err = ice_vsi_start_rx_rings(vsi);
3965 	if (err)
3966 		return err;
3967 
3968 	clear_bit(__ICE_DOWN, vsi->state);
3969 	ice_napi_enable_all(vsi);
3970 	ice_vsi_ena_irq(vsi);
3971 
3972 	if (vsi->port_info &&
3973 	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
3974 	    vsi->netdev) {
3975 		ice_print_link_msg(vsi, true);
3976 		netif_tx_start_all_queues(vsi->netdev);
3977 		netif_carrier_on(vsi->netdev);
3978 	}
3979 
3980 	ice_service_task_schedule(pf);
3981 
3982 	return 0;
3983 }
3984 
3985 /**
3986  * ice_up - Bring the connection back up after being down
3987  * @vsi: VSI being configured
3988  */
3989 int ice_up(struct ice_vsi *vsi)
3990 {
3991 	int err;
3992 
3993 	err = ice_vsi_cfg(vsi);
3994 	if (!err)
3995 		err = ice_up_complete(vsi);
3996 
3997 	return err;
3998 }
3999 
4000 /**
4001  * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4002  * @ring: Tx or Rx ring to read stats from
4003  * @pkts: packets stats counter
4004  * @bytes: bytes stats counter
4005  *
4006  * This function fetches stats from the ring considering the atomic operations
4007  * that needs to be performed to read u64 values in 32 bit machine.
4008  */
4009 static void
4010 ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
4011 {
4012 	unsigned int start;
4013 	*pkts = 0;
4014 	*bytes = 0;
4015 
4016 	if (!ring)
4017 		return;
4018 	do {
4019 		start = u64_stats_fetch_begin_irq(&ring->syncp);
4020 		*pkts = ring->stats.pkts;
4021 		*bytes = ring->stats.bytes;
4022 	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4023 }
4024 
4025 /**
4026  * ice_update_vsi_ring_stats - Update VSI stats counters
4027  * @vsi: the VSI to be updated
4028  */
4029 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4030 {
4031 	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4032 	struct ice_ring *ring;
4033 	u64 pkts, bytes;
4034 	int i;
4035 
4036 	/* reset netdev stats */
4037 	vsi_stats->tx_packets = 0;
4038 	vsi_stats->tx_bytes = 0;
4039 	vsi_stats->rx_packets = 0;
4040 	vsi_stats->rx_bytes = 0;
4041 
4042 	/* reset non-netdev (extended) stats */
4043 	vsi->tx_restart = 0;
4044 	vsi->tx_busy = 0;
4045 	vsi->tx_linearize = 0;
4046 	vsi->rx_buf_failed = 0;
4047 	vsi->rx_page_failed = 0;
4048 
4049 	rcu_read_lock();
4050 
4051 	/* update Tx rings counters */
4052 	ice_for_each_txq(vsi, i) {
4053 		ring = READ_ONCE(vsi->tx_rings[i]);
4054 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4055 		vsi_stats->tx_packets += pkts;
4056 		vsi_stats->tx_bytes += bytes;
4057 		vsi->tx_restart += ring->tx_stats.restart_q;
4058 		vsi->tx_busy += ring->tx_stats.tx_busy;
4059 		vsi->tx_linearize += ring->tx_stats.tx_linearize;
4060 	}
4061 
4062 	/* update Rx rings counters */
4063 	ice_for_each_rxq(vsi, i) {
4064 		ring = READ_ONCE(vsi->rx_rings[i]);
4065 		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4066 		vsi_stats->rx_packets += pkts;
4067 		vsi_stats->rx_bytes += bytes;
4068 		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4069 		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
4070 	}
4071 
4072 	rcu_read_unlock();
4073 }
4074 
4075 /**
4076  * ice_update_vsi_stats - Update VSI stats counters
4077  * @vsi: the VSI to be updated
4078  */
4079 void ice_update_vsi_stats(struct ice_vsi *vsi)
4080 {
4081 	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4082 	struct ice_eth_stats *cur_es = &vsi->eth_stats;
4083 	struct ice_pf *pf = vsi->back;
4084 
4085 	if (test_bit(__ICE_DOWN, vsi->state) ||
4086 	    test_bit(__ICE_CFG_BUSY, pf->state))
4087 		return;
4088 
4089 	/* get stats as recorded by Tx/Rx rings */
4090 	ice_update_vsi_ring_stats(vsi);
4091 
4092 	/* get VSI stats as recorded by the hardware */
4093 	ice_update_eth_stats(vsi);
4094 
4095 	cur_ns->tx_errors = cur_es->tx_errors;
4096 	cur_ns->rx_dropped = cur_es->rx_discards;
4097 	cur_ns->tx_dropped = cur_es->tx_discards;
4098 	cur_ns->multicast = cur_es->rx_multicast;
4099 
4100 	/* update some more netdev stats if this is main VSI */
4101 	if (vsi->type == ICE_VSI_PF) {
4102 		cur_ns->rx_crc_errors = pf->stats.crc_errors;
4103 		cur_ns->rx_errors = pf->stats.crc_errors +
4104 				    pf->stats.illegal_bytes;
4105 		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
4106 		/* record drops from the port level */
4107 		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
4108 	}
4109 }
4110 
4111 /**
4112  * ice_update_pf_stats - Update PF port stats counters
4113  * @pf: PF whose stats needs to be updated
4114  */
4115 void ice_update_pf_stats(struct ice_pf *pf)
4116 {
4117 	struct ice_hw_port_stats *prev_ps, *cur_ps;
4118 	struct ice_hw *hw = &pf->hw;
4119 	u8 port;
4120 
4121 	port = hw->port_info->lport;
4122 	prev_ps = &pf->stats_prev;
4123 	cur_ps = &pf->stats;
4124 
4125 	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
4126 			  &prev_ps->eth.rx_bytes,
4127 			  &cur_ps->eth.rx_bytes);
4128 
4129 	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
4130 			  &prev_ps->eth.rx_unicast,
4131 			  &cur_ps->eth.rx_unicast);
4132 
4133 	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
4134 			  &prev_ps->eth.rx_multicast,
4135 			  &cur_ps->eth.rx_multicast);
4136 
4137 	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
4138 			  &prev_ps->eth.rx_broadcast,
4139 			  &cur_ps->eth.rx_broadcast);
4140 
4141 	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
4142 			  &prev_ps->eth.rx_discards,
4143 			  &cur_ps->eth.rx_discards);
4144 
4145 	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
4146 			  &prev_ps->eth.tx_bytes,
4147 			  &cur_ps->eth.tx_bytes);
4148 
4149 	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
4150 			  &prev_ps->eth.tx_unicast,
4151 			  &cur_ps->eth.tx_unicast);
4152 
4153 	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
4154 			  &prev_ps->eth.tx_multicast,
4155 			  &cur_ps->eth.tx_multicast);
4156 
4157 	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
4158 			  &prev_ps->eth.tx_broadcast,
4159 			  &cur_ps->eth.tx_broadcast);
4160 
4161 	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
4162 			  &prev_ps->tx_dropped_link_down,
4163 			  &cur_ps->tx_dropped_link_down);
4164 
4165 	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
4166 			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
4167 
4168 	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
4169 			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
4170 
4171 	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
4172 			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
4173 
4174 	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
4175 			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
4176 
4177 	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
4178 			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4179 
4180 	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
4181 			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4182 
4183 	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
4184 			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4185 
4186 	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
4187 			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
4188 
4189 	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
4190 			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
4191 
4192 	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
4193 			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
4194 
4195 	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
4196 			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
4197 
4198 	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
4199 			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4200 
4201 	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
4202 			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4203 
4204 	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
4205 			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4206 
4207 	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
4208 			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4209 
4210 	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
4211 			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4212 
4213 	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
4214 			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4215 
4216 	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
4217 			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4218 
4219 	ice_update_dcb_stats(pf);
4220 
4221 	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
4222 			  &prev_ps->crc_errors, &cur_ps->crc_errors);
4223 
4224 	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
4225 			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4226 
4227 	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
4228 			  &prev_ps->mac_local_faults,
4229 			  &cur_ps->mac_local_faults);
4230 
4231 	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
4232 			  &prev_ps->mac_remote_faults,
4233 			  &cur_ps->mac_remote_faults);
4234 
4235 	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
4236 			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4237 
4238 	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
4239 			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4240 
4241 	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
4242 			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4243 
4244 	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
4245 			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4246 
4247 	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
4248 			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4249 
4250 	pf->stat_prev_loaded = true;
4251 }
4252 
4253 /**
4254  * ice_get_stats64 - get statistics for network device structure
4255  * @netdev: network interface device structure
4256  * @stats: main device statistics structure
4257  */
4258 static
4259 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4260 {
4261 	struct ice_netdev_priv *np = netdev_priv(netdev);
4262 	struct rtnl_link_stats64 *vsi_stats;
4263 	struct ice_vsi *vsi = np->vsi;
4264 
4265 	vsi_stats = &vsi->net_stats;
4266 
4267 	if (!vsi->num_txq || !vsi->num_rxq)
4268 		return;
4269 
4270 	/* netdev packet/byte stats come from ring counter. These are obtained
4271 	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
4272 	 * But, only call the update routine and read the registers if VSI is
4273 	 * not down.
4274 	 */
4275 	if (!test_bit(__ICE_DOWN, vsi->state))
4276 		ice_update_vsi_ring_stats(vsi);
4277 	stats->tx_packets = vsi_stats->tx_packets;
4278 	stats->tx_bytes = vsi_stats->tx_bytes;
4279 	stats->rx_packets = vsi_stats->rx_packets;
4280 	stats->rx_bytes = vsi_stats->rx_bytes;
4281 
4282 	/* The rest of the stats can be read from the hardware but instead we
4283 	 * just return values that the watchdog task has already obtained from
4284 	 * the hardware.
4285 	 */
4286 	stats->multicast = vsi_stats->multicast;
4287 	stats->tx_errors = vsi_stats->tx_errors;
4288 	stats->tx_dropped = vsi_stats->tx_dropped;
4289 	stats->rx_errors = vsi_stats->rx_errors;
4290 	stats->rx_dropped = vsi_stats->rx_dropped;
4291 	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4292 	stats->rx_length_errors = vsi_stats->rx_length_errors;
4293 }
4294 
4295 /**
4296  * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4297  * @vsi: VSI having NAPI disabled
4298  */
4299 static void ice_napi_disable_all(struct ice_vsi *vsi)
4300 {
4301 	int q_idx;
4302 
4303 	if (!vsi->netdev)
4304 		return;
4305 
4306 	ice_for_each_q_vector(vsi, q_idx) {
4307 		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
4308 
4309 		if (q_vector->rx.ring || q_vector->tx.ring)
4310 			napi_disable(&q_vector->napi);
4311 	}
4312 }
4313 
4314 /**
4315  * ice_down - Shutdown the connection
4316  * @vsi: The VSI being stopped
4317  */
4318 int ice_down(struct ice_vsi *vsi)
4319 {
4320 	int i, tx_err, rx_err, link_err = 0;
4321 
4322 	/* Caller of this function is expected to set the
4323 	 * vsi->state __ICE_DOWN bit
4324 	 */
4325 	if (vsi->netdev) {
4326 		netif_carrier_off(vsi->netdev);
4327 		netif_tx_disable(vsi->netdev);
4328 	}
4329 
4330 	ice_vsi_dis_irq(vsi);
4331 
4332 	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
4333 	if (tx_err)
4334 		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
4335 			   vsi->vsi_num, tx_err);
4336 	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
4337 		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
4338 		if (tx_err)
4339 			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
4340 				   vsi->vsi_num, tx_err);
4341 	}
4342 
4343 	rx_err = ice_vsi_stop_rx_rings(vsi);
4344 	if (rx_err)
4345 		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
4346 			   vsi->vsi_num, rx_err);
4347 
4348 	ice_napi_disable_all(vsi);
4349 
4350 	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
4351 		link_err = ice_force_phys_link_state(vsi, false);
4352 		if (link_err)
4353 			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
4354 				   vsi->vsi_num, link_err);
4355 	}
4356 
4357 	ice_for_each_txq(vsi, i)
4358 		ice_clean_tx_ring(vsi->tx_rings[i]);
4359 
4360 	ice_for_each_rxq(vsi, i)
4361 		ice_clean_rx_ring(vsi->rx_rings[i]);
4362 
4363 	if (tx_err || rx_err || link_err) {
4364 		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
4365 			   vsi->vsi_num, vsi->vsw->sw_id);
4366 		return -EIO;
4367 	}
4368 
4369 	return 0;
4370 }
4371 
4372 /**
4373  * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4374  * @vsi: VSI having resources allocated
4375  *
4376  * Return 0 on success, negative on failure
4377  */
4378 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4379 {
4380 	int i, err = 0;
4381 
4382 	if (!vsi->num_txq) {
4383 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
4384 			vsi->vsi_num);
4385 		return -EINVAL;
4386 	}
4387 
4388 	ice_for_each_txq(vsi, i) {
4389 		struct ice_ring *ring = vsi->tx_rings[i];
4390 
4391 		if (!ring)
4392 			return -EINVAL;
4393 
4394 		ring->netdev = vsi->netdev;
4395 		err = ice_setup_tx_ring(ring);
4396 		if (err)
4397 			break;
4398 	}
4399 
4400 	return err;
4401 }
4402 
4403 /**
4404  * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4405  * @vsi: VSI having resources allocated
4406  *
4407  * Return 0 on success, negative on failure
4408  */
4409 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4410 {
4411 	int i, err = 0;
4412 
4413 	if (!vsi->num_rxq) {
4414 		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
4415 			vsi->vsi_num);
4416 		return -EINVAL;
4417 	}
4418 
4419 	ice_for_each_rxq(vsi, i) {
4420 		struct ice_ring *ring = vsi->rx_rings[i];
4421 
4422 		if (!ring)
4423 			return -EINVAL;
4424 
4425 		ring->netdev = vsi->netdev;
4426 		err = ice_setup_rx_ring(ring);
4427 		if (err)
4428 			break;
4429 	}
4430 
4431 	return err;
4432 }
4433 
4434 /**
4435  * ice_vsi_open - Called when a network interface is made active
4436  * @vsi: the VSI to open
4437  *
4438  * Initialization of the VSI
4439  *
4440  * Returns 0 on success, negative value on error
4441  */
4442 static int ice_vsi_open(struct ice_vsi *vsi)
4443 {
4444 	char int_name[ICE_INT_NAME_STR_LEN];
4445 	struct ice_pf *pf = vsi->back;
4446 	int err;
4447 
4448 	/* allocate descriptors */
4449 	err = ice_vsi_setup_tx_rings(vsi);
4450 	if (err)
4451 		goto err_setup_tx;
4452 
4453 	err = ice_vsi_setup_rx_rings(vsi);
4454 	if (err)
4455 		goto err_setup_rx;
4456 
4457 	err = ice_vsi_cfg(vsi);
4458 	if (err)
4459 		goto err_setup_rx;
4460 
4461 	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4462 		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
4463 	err = ice_vsi_req_irq_msix(vsi, int_name);
4464 	if (err)
4465 		goto err_setup_rx;
4466 
4467 	/* Notify the stack of the actual queue counts. */
4468 	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4469 	if (err)
4470 		goto err_set_qs;
4471 
4472 	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
4473 	if (err)
4474 		goto err_set_qs;
4475 
4476 	err = ice_up_complete(vsi);
4477 	if (err)
4478 		goto err_up_complete;
4479 
4480 	return 0;
4481 
4482 err_up_complete:
4483 	ice_down(vsi);
4484 err_set_qs:
4485 	ice_vsi_free_irq(vsi);
4486 err_setup_rx:
4487 	ice_vsi_free_rx_rings(vsi);
4488 err_setup_tx:
4489 	ice_vsi_free_tx_rings(vsi);
4490 
4491 	return err;
4492 }
4493 
4494 /**
4495  * ice_vsi_release_all - Delete all VSIs
4496  * @pf: PF from which all VSIs are being removed
4497  */
4498 static void ice_vsi_release_all(struct ice_pf *pf)
4499 {
4500 	int err, i;
4501 
4502 	if (!pf->vsi)
4503 		return;
4504 
4505 	ice_for_each_vsi(pf, i) {
4506 		if (!pf->vsi[i])
4507 			continue;
4508 
4509 		err = ice_vsi_release(pf->vsi[i]);
4510 		if (err)
4511 			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
4512 				i, err, pf->vsi[i]->vsi_num);
4513 	}
4514 }
4515 
4516 /**
4517  * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
4518  * @pf: pointer to the PF instance
4519  * @type: VSI type to rebuild
4520  *
4521  * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
4522  */
4523 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
4524 {
4525 	struct device *dev = ice_pf_to_dev(pf);
4526 	enum ice_status status;
4527 	int i, err;
4528 
4529 	ice_for_each_vsi(pf, i) {
4530 		struct ice_vsi *vsi = pf->vsi[i];
4531 
4532 		if (!vsi || vsi->type != type)
4533 			continue;
4534 
4535 		/* rebuild the VSI */
4536 		err = ice_vsi_rebuild(vsi, true);
4537 		if (err) {
4538 			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
4539 				err, vsi->idx, ice_vsi_type_str(type));
4540 			return err;
4541 		}
4542 
4543 		/* replay filters for the VSI */
4544 		status = ice_replay_vsi(&pf->hw, vsi->idx);
4545 		if (status) {
4546 			dev_err(dev, "replay VSI failed, status %d, VSI index %d, type %s\n",
4547 				status, vsi->idx, ice_vsi_type_str(type));
4548 			return -EIO;
4549 		}
4550 
4551 		/* Re-map HW VSI number, using VSI handle that has been
4552 		 * previously validated in ice_replay_vsi() call above
4553 		 */
4554 		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
4555 
4556 		/* enable the VSI */
4557 		err = ice_ena_vsi(vsi, false);
4558 		if (err) {
4559 			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
4560 				err, vsi->idx, ice_vsi_type_str(type));
4561 			return err;
4562 		}
4563 
4564 		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
4565 			 ice_vsi_type_str(type));
4566 	}
4567 
4568 	return 0;
4569 }
4570 
4571 /**
4572  * ice_update_pf_netdev_link - Update PF netdev link status
4573  * @pf: pointer to the PF instance
4574  */
4575 static void ice_update_pf_netdev_link(struct ice_pf *pf)
4576 {
4577 	bool link_up;
4578 	int i;
4579 
4580 	ice_for_each_vsi(pf, i) {
4581 		struct ice_vsi *vsi = pf->vsi[i];
4582 
4583 		if (!vsi || vsi->type != ICE_VSI_PF)
4584 			return;
4585 
4586 		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
4587 		if (link_up) {
4588 			netif_carrier_on(pf->vsi[i]->netdev);
4589 			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
4590 		} else {
4591 			netif_carrier_off(pf->vsi[i]->netdev);
4592 			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
4593 		}
4594 	}
4595 }
4596 
4597 /**
4598  * ice_rebuild - rebuild after reset
4599  * @pf: PF to rebuild
4600  * @reset_type: type of reset
4601  */
4602 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
4603 {
4604 	struct device *dev = ice_pf_to_dev(pf);
4605 	struct ice_hw *hw = &pf->hw;
4606 	enum ice_status ret;
4607 	int err;
4608 
4609 	if (test_bit(__ICE_DOWN, pf->state))
4610 		goto clear_recovery;
4611 
4612 	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
4613 
4614 	ret = ice_init_all_ctrlq(hw);
4615 	if (ret) {
4616 		dev_err(dev, "control queues init failed %d\n", ret);
4617 		goto err_init_ctrlq;
4618 	}
4619 
4620 	/* if DDP was previously loaded successfully */
4621 	if (!ice_is_safe_mode(pf)) {
4622 		/* reload the SW DB of filter tables */
4623 		if (reset_type == ICE_RESET_PFR)
4624 			ice_fill_blk_tbls(hw);
4625 		else
4626 			/* Reload DDP Package after CORER/GLOBR reset */
4627 			ice_load_pkg(NULL, pf);
4628 	}
4629 
4630 	ret = ice_clear_pf_cfg(hw);
4631 	if (ret) {
4632 		dev_err(dev, "clear PF configuration failed %d\n", ret);
4633 		goto err_init_ctrlq;
4634 	}
4635 
4636 	if (pf->first_sw->dflt_vsi_ena)
4637 		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
4638 	/* clear the default VSI configuration if it exists */
4639 	pf->first_sw->dflt_vsi = NULL;
4640 	pf->first_sw->dflt_vsi_ena = false;
4641 
4642 	ice_clear_pxe_mode(hw);
4643 
4644 	ret = ice_get_caps(hw);
4645 	if (ret) {
4646 		dev_err(dev, "ice_get_caps failed %d\n", ret);
4647 		goto err_init_ctrlq;
4648 	}
4649 
4650 	err = ice_sched_init_port(hw->port_info);
4651 	if (err)
4652 		goto err_sched_init_port;
4653 
4654 	err = ice_update_link_info(hw->port_info);
4655 	if (err)
4656 		dev_err(dev, "Get link status error %d\n", err);
4657 
4658 	/* start misc vector */
4659 	err = ice_req_irq_msix_misc(pf);
4660 	if (err) {
4661 		dev_err(dev, "misc vector setup failed: %d\n", err);
4662 		goto err_sched_init_port;
4663 	}
4664 
4665 	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
4666 		ice_dcb_rebuild(pf);
4667 
4668 	/* rebuild PF VSI */
4669 	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
4670 	if (err) {
4671 		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
4672 		goto err_vsi_rebuild;
4673 	}
4674 
4675 	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4676 		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_VF);
4677 		if (err) {
4678 			dev_err(dev, "VF VSI rebuild failed: %d\n", err);
4679 			goto err_vsi_rebuild;
4680 		}
4681 	}
4682 
4683 	ice_update_pf_netdev_link(pf);
4684 
4685 	/* tell the firmware we are up */
4686 	ret = ice_send_version(pf);
4687 	if (ret) {
4688 		dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
4689 			ret);
4690 		goto err_vsi_rebuild;
4691 	}
4692 
4693 	ice_replay_post(hw);
4694 
4695 	/* if we get here, reset flow is successful */
4696 	clear_bit(__ICE_RESET_FAILED, pf->state);
4697 	return;
4698 
4699 err_vsi_rebuild:
4700 err_sched_init_port:
4701 	ice_sched_cleanup_all(hw);
4702 err_init_ctrlq:
4703 	ice_shutdown_all_ctrlq(hw);
4704 	set_bit(__ICE_RESET_FAILED, pf->state);
4705 clear_recovery:
4706 	/* set this bit in PF state to control service task scheduling */
4707 	set_bit(__ICE_NEEDS_RESTART, pf->state);
4708 	dev_err(dev, "Rebuild failed, unload and reload driver\n");
4709 }
4710 
4711 /**
4712  * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
4713  * @vsi: Pointer to VSI structure
4714  */
4715 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
4716 {
4717 	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
4718 		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
4719 	else
4720 		return ICE_RXBUF_3072;
4721 }
4722 
4723 /**
4724  * ice_change_mtu - NDO callback to change the MTU
4725  * @netdev: network interface device structure
4726  * @new_mtu: new value for maximum frame size
4727  *
4728  * Returns 0 on success, negative on failure
4729  */
4730 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
4731 {
4732 	struct ice_netdev_priv *np = netdev_priv(netdev);
4733 	struct ice_vsi *vsi = np->vsi;
4734 	struct ice_pf *pf = vsi->back;
4735 	u8 count = 0;
4736 
4737 	if (new_mtu == netdev->mtu) {
4738 		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
4739 		return 0;
4740 	}
4741 
4742 	if (ice_is_xdp_ena_vsi(vsi)) {
4743 		int frame_size = ice_max_xdp_frame_size(vsi);
4744 
4745 		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
4746 			netdev_err(netdev, "max MTU for XDP usage is %d\n",
4747 				   frame_size - ICE_ETH_PKT_HDR_PAD);
4748 			return -EINVAL;
4749 		}
4750 	}
4751 
4752 	if (new_mtu < netdev->min_mtu) {
4753 		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
4754 			   netdev->min_mtu);
4755 		return -EINVAL;
4756 	} else if (new_mtu > netdev->max_mtu) {
4757 		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
4758 			   netdev->min_mtu);
4759 		return -EINVAL;
4760 	}
4761 	/* if a reset is in progress, wait for some time for it to complete */
4762 	do {
4763 		if (ice_is_reset_in_progress(pf->state)) {
4764 			count++;
4765 			usleep_range(1000, 2000);
4766 		} else {
4767 			break;
4768 		}
4769 
4770 	} while (count < 100);
4771 
4772 	if (count == 100) {
4773 		netdev_err(netdev, "can't change MTU. Device is busy\n");
4774 		return -EBUSY;
4775 	}
4776 
4777 	netdev->mtu = new_mtu;
4778 
4779 	/* if VSI is up, bring it down and then back up */
4780 	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
4781 		int err;
4782 
4783 		err = ice_down(vsi);
4784 		if (err) {
4785 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4786 			return err;
4787 		}
4788 
4789 		err = ice_up(vsi);
4790 		if (err) {
4791 			netdev_err(netdev, "change MTU if_up err %d\n", err);
4792 			return err;
4793 		}
4794 	}
4795 
4796 	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
4797 	return 0;
4798 }
4799 
4800 /**
4801  * ice_set_rss - Set RSS keys and lut
4802  * @vsi: Pointer to VSI structure
4803  * @seed: RSS hash seed
4804  * @lut: Lookup table
4805  * @lut_size: Lookup table size
4806  *
4807  * Returns 0 on success, negative on failure
4808  */
4809 int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4810 {
4811 	struct ice_pf *pf = vsi->back;
4812 	struct ice_hw *hw = &pf->hw;
4813 	enum ice_status status;
4814 	struct device *dev;
4815 
4816 	dev = ice_pf_to_dev(pf);
4817 	if (seed) {
4818 		struct ice_aqc_get_set_rss_keys *buf =
4819 				  (struct ice_aqc_get_set_rss_keys *)seed;
4820 
4821 		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
4822 
4823 		if (status) {
4824 			dev_err(dev, "Cannot set RSS key, err %d aq_err %d\n",
4825 				status, hw->adminq.rq_last_status);
4826 			return -EIO;
4827 		}
4828 	}
4829 
4830 	if (lut) {
4831 		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4832 					    lut, lut_size);
4833 		if (status) {
4834 			dev_err(dev, "Cannot set RSS lut, err %d aq_err %d\n",
4835 				status, hw->adminq.rq_last_status);
4836 			return -EIO;
4837 		}
4838 	}
4839 
4840 	return 0;
4841 }
4842 
4843 /**
4844  * ice_get_rss - Get RSS keys and lut
4845  * @vsi: Pointer to VSI structure
4846  * @seed: Buffer to store the keys
4847  * @lut: Buffer to store the lookup table entries
4848  * @lut_size: Size of buffer to store the lookup table entries
4849  *
4850  * Returns 0 on success, negative on failure
4851  */
4852 int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
4853 {
4854 	struct ice_pf *pf = vsi->back;
4855 	struct ice_hw *hw = &pf->hw;
4856 	enum ice_status status;
4857 	struct device *dev;
4858 
4859 	dev = ice_pf_to_dev(pf);
4860 	if (seed) {
4861 		struct ice_aqc_get_set_rss_keys *buf =
4862 				  (struct ice_aqc_get_set_rss_keys *)seed;
4863 
4864 		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
4865 		if (status) {
4866 			dev_err(dev, "Cannot get RSS key, err %d aq_err %d\n",
4867 				status, hw->adminq.rq_last_status);
4868 			return -EIO;
4869 		}
4870 	}
4871 
4872 	if (lut) {
4873 		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
4874 					    lut, lut_size);
4875 		if (status) {
4876 			dev_err(dev, "Cannot get RSS lut, err %d aq_err %d\n",
4877 				status, hw->adminq.rq_last_status);
4878 			return -EIO;
4879 		}
4880 	}
4881 
4882 	return 0;
4883 }
4884 
4885 /**
4886  * ice_bridge_getlink - Get the hardware bridge mode
4887  * @skb: skb buff
4888  * @pid: process ID
4889  * @seq: RTNL message seq
4890  * @dev: the netdev being configured
4891  * @filter_mask: filter mask passed in
4892  * @nlflags: netlink flags passed in
4893  *
4894  * Return the bridge mode (VEB/VEPA)
4895  */
4896 static int
4897 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
4898 		   struct net_device *dev, u32 filter_mask, int nlflags)
4899 {
4900 	struct ice_netdev_priv *np = netdev_priv(dev);
4901 	struct ice_vsi *vsi = np->vsi;
4902 	struct ice_pf *pf = vsi->back;
4903 	u16 bmode;
4904 
4905 	bmode = pf->first_sw->bridge_mode;
4906 
4907 	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
4908 				       filter_mask, NULL);
4909 }
4910 
4911 /**
4912  * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
4913  * @vsi: Pointer to VSI structure
4914  * @bmode: Hardware bridge mode (VEB/VEPA)
4915  *
4916  * Returns 0 on success, negative on failure
4917  */
4918 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
4919 {
4920 	struct ice_aqc_vsi_props *vsi_props;
4921 	struct ice_hw *hw = &vsi->back->hw;
4922 	struct ice_vsi_ctx *ctxt;
4923 	enum ice_status status;
4924 	int ret = 0;
4925 
4926 	vsi_props = &vsi->info;
4927 
4928 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4929 	if (!ctxt)
4930 		return -ENOMEM;
4931 
4932 	ctxt->info = vsi->info;
4933 
4934 	if (bmode == BRIDGE_MODE_VEB)
4935 		/* change from VEPA to VEB mode */
4936 		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4937 	else
4938 		/* change from VEB to VEPA mode */
4939 		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
4940 	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
4941 
4942 	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4943 	if (status) {
4944 		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %d\n",
4945 			bmode, status, hw->adminq.sq_last_status);
4946 		ret = -EIO;
4947 		goto out;
4948 	}
4949 	/* Update sw flags for book keeping */
4950 	vsi_props->sw_flags = ctxt->info.sw_flags;
4951 
4952 out:
4953 	kfree(ctxt);
4954 	return ret;
4955 }
4956 
4957 /**
4958  * ice_bridge_setlink - Set the hardware bridge mode
4959  * @dev: the netdev being configured
4960  * @nlh: RTNL message
4961  * @flags: bridge setlink flags
4962  * @extack: netlink extended ack
4963  *
4964  * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
4965  * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
4966  * not already set for all VSIs connected to this switch. And also update the
4967  * unicast switch filter rules for the corresponding switch of the netdev.
4968  */
4969 static int
4970 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
4971 		   u16 __always_unused flags,
4972 		   struct netlink_ext_ack __always_unused *extack)
4973 {
4974 	struct ice_netdev_priv *np = netdev_priv(dev);
4975 	struct ice_pf *pf = np->vsi->back;
4976 	struct nlattr *attr, *br_spec;
4977 	struct ice_hw *hw = &pf->hw;
4978 	enum ice_status status;
4979 	struct ice_sw *pf_sw;
4980 	int rem, v, err = 0;
4981 
4982 	pf_sw = pf->first_sw;
4983 	/* find the attribute in the netlink message */
4984 	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
4985 
4986 	nla_for_each_nested(attr, br_spec, rem) {
4987 		__u16 mode;
4988 
4989 		if (nla_type(attr) != IFLA_BRIDGE_MODE)
4990 			continue;
4991 		mode = nla_get_u16(attr);
4992 		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
4993 			return -EINVAL;
4994 		/* Continue  if bridge mode is not being flipped */
4995 		if (mode == pf_sw->bridge_mode)
4996 			continue;
4997 		/* Iterates through the PF VSI list and update the loopback
4998 		 * mode of the VSI
4999 		 */
5000 		ice_for_each_vsi(pf, v) {
5001 			if (!pf->vsi[v])
5002 				continue;
5003 			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
5004 			if (err)
5005 				return err;
5006 		}
5007 
5008 		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
5009 		/* Update the unicast switch filter rules for the corresponding
5010 		 * switch of the netdev
5011 		 */
5012 		status = ice_update_sw_rule_bridge_mode(hw);
5013 		if (status) {
5014 			netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %d\n",
5015 				   mode, status, hw->adminq.sq_last_status);
5016 			/* revert hw->evb_veb */
5017 			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
5018 			return -EIO;
5019 		}
5020 
5021 		pf_sw->bridge_mode = mode;
5022 	}
5023 
5024 	return 0;
5025 }
5026 
5027 /**
5028  * ice_tx_timeout - Respond to a Tx Hang
5029  * @netdev: network interface device structure
5030  */
5031 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5032 {
5033 	struct ice_netdev_priv *np = netdev_priv(netdev);
5034 	struct ice_ring *tx_ring = NULL;
5035 	struct ice_vsi *vsi = np->vsi;
5036 	struct ice_pf *pf = vsi->back;
5037 	u32 i;
5038 
5039 	pf->tx_timeout_count++;
5040 
5041 	/* now that we have an index, find the tx_ring struct */
5042 	for (i = 0; i < vsi->num_txq; i++)
5043 		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
5044 			if (txqueue == vsi->tx_rings[i]->q_index) {
5045 				tx_ring = vsi->tx_rings[i];
5046 				break;
5047 			}
5048 
5049 	/* Reset recovery level if enough time has elapsed after last timeout.
5050 	 * Also ensure no new reset action happens before next timeout period.
5051 	 */
5052 	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
5053 		pf->tx_timeout_recovery_level = 1;
5054 	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
5055 				       netdev->watchdog_timeo)))
5056 		return;
5057 
5058 	if (tx_ring) {
5059 		struct ice_hw *hw = &pf->hw;
5060 		u32 head, val = 0;
5061 
5062 		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
5063 			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
5064 		/* Read interrupt register */
5065 		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
5066 
5067 		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %d, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
5068 			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
5069 			    head, tx_ring->next_to_use, val);
5070 	}
5071 
5072 	pf->tx_timeout_last_recovery = jiffies;
5073 	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %d\n",
5074 		    pf->tx_timeout_recovery_level, txqueue);
5075 
5076 	switch (pf->tx_timeout_recovery_level) {
5077 	case 1:
5078 		set_bit(__ICE_PFR_REQ, pf->state);
5079 		break;
5080 	case 2:
5081 		set_bit(__ICE_CORER_REQ, pf->state);
5082 		break;
5083 	case 3:
5084 		set_bit(__ICE_GLOBR_REQ, pf->state);
5085 		break;
5086 	default:
5087 		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
5088 		set_bit(__ICE_DOWN, pf->state);
5089 		set_bit(__ICE_NEEDS_RESTART, vsi->state);
5090 		set_bit(__ICE_SERVICE_DIS, pf->state);
5091 		break;
5092 	}
5093 
5094 	ice_service_task_schedule(pf);
5095 	pf->tx_timeout_recovery_level++;
5096 }
5097 
5098 /**
5099  * ice_open - Called when a network interface becomes active
5100  * @netdev: network interface device structure
5101  *
5102  * The open entry point is called when a network interface is made
5103  * active by the system (IFF_UP). At this point all resources needed
5104  * for transmit and receive operations are allocated, the interrupt
5105  * handler is registered with the OS, the netdev watchdog is enabled,
5106  * and the stack is notified that the interface is ready.
5107  *
5108  * Returns 0 on success, negative value on failure
5109  */
5110 int ice_open(struct net_device *netdev)
5111 {
5112 	struct ice_netdev_priv *np = netdev_priv(netdev);
5113 	struct ice_vsi *vsi = np->vsi;
5114 	struct ice_port_info *pi;
5115 	int err;
5116 
5117 	if (test_bit(__ICE_NEEDS_RESTART, vsi->back->state)) {
5118 		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
5119 		return -EIO;
5120 	}
5121 
5122 	netif_carrier_off(netdev);
5123 
5124 	pi = vsi->port_info;
5125 	err = ice_update_link_info(pi);
5126 	if (err) {
5127 		netdev_err(netdev, "Failed to get link info, error %d\n",
5128 			   err);
5129 		return err;
5130 	}
5131 
5132 	/* Set PHY if there is media, otherwise, turn off PHY */
5133 	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
5134 		err = ice_force_phys_link_state(vsi, true);
5135 		if (err) {
5136 			netdev_err(netdev, "Failed to set physical link up, error %d\n",
5137 				   err);
5138 			return err;
5139 		}
5140 	} else {
5141 		err = ice_aq_set_link_restart_an(pi, false, NULL);
5142 		if (err) {
5143 			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
5144 				   vsi->vsi_num, err);
5145 			return err;
5146 		}
5147 		set_bit(ICE_FLAG_NO_MEDIA, vsi->back->flags);
5148 	}
5149 
5150 	err = ice_vsi_open(vsi);
5151 	if (err)
5152 		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5153 			   vsi->vsi_num, vsi->vsw->sw_id);
5154 	return err;
5155 }
5156 
5157 /**
5158  * ice_stop - Disables a network interface
5159  * @netdev: network interface device structure
5160  *
5161  * The stop entry point is called when an interface is de-activated by the OS,
5162  * and the netdevice enters the DOWN state. The hardware is still under the
5163  * driver's control, but the netdev interface is disabled.
5164  *
5165  * Returns success only - not allowed to fail
5166  */
5167 int ice_stop(struct net_device *netdev)
5168 {
5169 	struct ice_netdev_priv *np = netdev_priv(netdev);
5170 	struct ice_vsi *vsi = np->vsi;
5171 
5172 	ice_vsi_close(vsi);
5173 
5174 	return 0;
5175 }
5176 
5177 /**
5178  * ice_features_check - Validate encapsulated packet conforms to limits
5179  * @skb: skb buffer
5180  * @netdev: This port's netdev
5181  * @features: Offload features that the stack believes apply
5182  */
5183 static netdev_features_t
5184 ice_features_check(struct sk_buff *skb,
5185 		   struct net_device __always_unused *netdev,
5186 		   netdev_features_t features)
5187 {
5188 	size_t len;
5189 
5190 	/* No point in doing any of this if neither checksum nor GSO are
5191 	 * being requested for this frame. We can rule out both by just
5192 	 * checking for CHECKSUM_PARTIAL
5193 	 */
5194 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5195 		return features;
5196 
5197 	/* We cannot support GSO if the MSS is going to be less than
5198 	 * 64 bytes. If it is then we need to drop support for GSO.
5199 	 */
5200 	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5201 		features &= ~NETIF_F_GSO_MASK;
5202 
5203 	len = skb_network_header(skb) - skb->data;
5204 	if (len & ~(ICE_TXD_MACLEN_MAX))
5205 		goto out_rm_features;
5206 
5207 	len = skb_transport_header(skb) - skb_network_header(skb);
5208 	if (len & ~(ICE_TXD_IPLEN_MAX))
5209 		goto out_rm_features;
5210 
5211 	if (skb->encapsulation) {
5212 		len = skb_inner_network_header(skb) - skb_transport_header(skb);
5213 		if (len & ~(ICE_TXD_L4LEN_MAX))
5214 			goto out_rm_features;
5215 
5216 		len = skb_inner_transport_header(skb) -
5217 		      skb_inner_network_header(skb);
5218 		if (len & ~(ICE_TXD_IPLEN_MAX))
5219 			goto out_rm_features;
5220 	}
5221 
5222 	return features;
5223 out_rm_features:
5224 	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5225 }
5226 
5227 static const struct net_device_ops ice_netdev_safe_mode_ops = {
5228 	.ndo_open = ice_open,
5229 	.ndo_stop = ice_stop,
5230 	.ndo_start_xmit = ice_start_xmit,
5231 	.ndo_set_mac_address = ice_set_mac_address,
5232 	.ndo_validate_addr = eth_validate_addr,
5233 	.ndo_change_mtu = ice_change_mtu,
5234 	.ndo_get_stats64 = ice_get_stats64,
5235 	.ndo_tx_timeout = ice_tx_timeout,
5236 };
5237 
5238 static const struct net_device_ops ice_netdev_ops = {
5239 	.ndo_open = ice_open,
5240 	.ndo_stop = ice_stop,
5241 	.ndo_start_xmit = ice_start_xmit,
5242 	.ndo_features_check = ice_features_check,
5243 	.ndo_set_rx_mode = ice_set_rx_mode,
5244 	.ndo_set_mac_address = ice_set_mac_address,
5245 	.ndo_validate_addr = eth_validate_addr,
5246 	.ndo_change_mtu = ice_change_mtu,
5247 	.ndo_get_stats64 = ice_get_stats64,
5248 	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
5249 	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
5250 	.ndo_set_vf_mac = ice_set_vf_mac,
5251 	.ndo_get_vf_config = ice_get_vf_cfg,
5252 	.ndo_set_vf_trust = ice_set_vf_trust,
5253 	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
5254 	.ndo_set_vf_link_state = ice_set_vf_link_state,
5255 	.ndo_get_vf_stats = ice_get_vf_stats,
5256 	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5257 	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5258 	.ndo_set_features = ice_set_features,
5259 	.ndo_bridge_getlink = ice_bridge_getlink,
5260 	.ndo_bridge_setlink = ice_bridge_setlink,
5261 	.ndo_fdb_add = ice_fdb_add,
5262 	.ndo_fdb_del = ice_fdb_del,
5263 	.ndo_tx_timeout = ice_tx_timeout,
5264 	.ndo_bpf = ice_xdp,
5265 	.ndo_xdp_xmit = ice_xdp_xmit,
5266 	.ndo_xsk_wakeup = ice_xsk_wakeup,
5267 };
5268