1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "ice_devlink.h" 17 #include "ice_hwmon.h" 18 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 19 * ice tracepoint functions. This must be done exactly once across the 20 * ice driver. 21 */ 22 #define CREATE_TRACE_POINTS 23 #include "ice_trace.h" 24 #include "ice_eswitch.h" 25 #include "ice_tc_lib.h" 26 #include "ice_vsi_vlan_ops.h" 27 #include <net/xdp_sock_drv.h> 28 29 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 30 static const char ice_driver_string[] = DRV_SUMMARY; 31 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 32 33 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 34 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 35 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 36 37 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 38 MODULE_DESCRIPTION(DRV_SUMMARY); 39 MODULE_LICENSE("GPL v2"); 40 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 41 42 static int debug = -1; 43 module_param(debug, int, 0644); 44 #ifndef CONFIG_DYNAMIC_DEBUG 45 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 46 #else 47 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 48 #endif /* !CONFIG_DYNAMIC_DEBUG */ 49 50 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 51 EXPORT_SYMBOL(ice_xdp_locking_key); 52 53 /** 54 * ice_hw_to_dev - Get device pointer from the hardware structure 55 * @hw: pointer to the device HW structure 56 * 57 * Used to access the device pointer from compilation units which can't easily 58 * include the definition of struct ice_pf without leading to circular header 59 * dependencies. 60 */ 61 struct device *ice_hw_to_dev(struct ice_hw *hw) 62 { 63 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 64 65 return &pf->pdev->dev; 66 } 67 68 static struct workqueue_struct *ice_wq; 69 struct workqueue_struct *ice_lag_wq; 70 static const struct net_device_ops ice_netdev_safe_mode_ops; 71 static const struct net_device_ops ice_netdev_ops; 72 73 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 74 75 static void ice_vsi_release_all(struct ice_pf *pf); 76 77 static int ice_rebuild_channels(struct ice_pf *pf); 78 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 79 80 static int 81 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 82 void *cb_priv, enum tc_setup_type type, void *type_data, 83 void *data, 84 void (*cleanup)(struct flow_block_cb *block_cb)); 85 86 bool netif_is_ice(const struct net_device *dev) 87 { 88 return dev && (dev->netdev_ops == &ice_netdev_ops); 89 } 90 91 /** 92 * ice_get_tx_pending - returns number of Tx descriptors not processed 93 * @ring: the ring of descriptors 94 */ 95 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 96 { 97 u16 head, tail; 98 99 head = ring->next_to_clean; 100 tail = ring->next_to_use; 101 102 if (head != tail) 103 return (head < tail) ? 104 tail - head : (tail + ring->count - head); 105 return 0; 106 } 107 108 /** 109 * ice_check_for_hang_subtask - check for and recover hung queues 110 * @pf: pointer to PF struct 111 */ 112 static void ice_check_for_hang_subtask(struct ice_pf *pf) 113 { 114 struct ice_vsi *vsi = NULL; 115 struct ice_hw *hw; 116 unsigned int i; 117 int packets; 118 u32 v; 119 120 ice_for_each_vsi(pf, v) 121 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 122 vsi = pf->vsi[v]; 123 break; 124 } 125 126 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 127 return; 128 129 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 130 return; 131 132 hw = &vsi->back->hw; 133 134 ice_for_each_txq(vsi, i) { 135 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 136 struct ice_ring_stats *ring_stats; 137 138 if (!tx_ring) 139 continue; 140 if (ice_ring_ch_enabled(tx_ring)) 141 continue; 142 143 ring_stats = tx_ring->ring_stats; 144 if (!ring_stats) 145 continue; 146 147 if (tx_ring->desc) { 148 /* If packet counter has not changed the queue is 149 * likely stalled, so force an interrupt for this 150 * queue. 151 * 152 * prev_pkt would be negative if there was no 153 * pending work. 154 */ 155 packets = ring_stats->stats.pkts & INT_MAX; 156 if (ring_stats->tx_stats.prev_pkt == packets) { 157 /* Trigger sw interrupt to revive the queue */ 158 ice_trigger_sw_intr(hw, tx_ring->q_vector); 159 continue; 160 } 161 162 /* Memory barrier between read of packet count and call 163 * to ice_get_tx_pending() 164 */ 165 smp_rmb(); 166 ring_stats->tx_stats.prev_pkt = 167 ice_get_tx_pending(tx_ring) ? packets : -1; 168 } 169 } 170 } 171 172 /** 173 * ice_init_mac_fltr - Set initial MAC filters 174 * @pf: board private structure 175 * 176 * Set initial set of MAC filters for PF VSI; configure filters for permanent 177 * address and broadcast address. If an error is encountered, netdevice will be 178 * unregistered. 179 */ 180 static int ice_init_mac_fltr(struct ice_pf *pf) 181 { 182 struct ice_vsi *vsi; 183 u8 *perm_addr; 184 185 vsi = ice_get_main_vsi(pf); 186 if (!vsi) 187 return -EINVAL; 188 189 perm_addr = vsi->port_info->mac.perm_addr; 190 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 191 } 192 193 /** 194 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 195 * @netdev: the net device on which the sync is happening 196 * @addr: MAC address to sync 197 * 198 * This is a callback function which is called by the in kernel device sync 199 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 200 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 201 * MAC filters from the hardware. 202 */ 203 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 204 { 205 struct ice_netdev_priv *np = netdev_priv(netdev); 206 struct ice_vsi *vsi = np->vsi; 207 208 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 209 ICE_FWD_TO_VSI)) 210 return -EINVAL; 211 212 return 0; 213 } 214 215 /** 216 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 217 * @netdev: the net device on which the unsync is happening 218 * @addr: MAC address to unsync 219 * 220 * This is a callback function which is called by the in kernel device unsync 221 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 222 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 223 * delete the MAC filters from the hardware. 224 */ 225 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 226 { 227 struct ice_netdev_priv *np = netdev_priv(netdev); 228 struct ice_vsi *vsi = np->vsi; 229 230 /* Under some circumstances, we might receive a request to delete our 231 * own device address from our uc list. Because we store the device 232 * address in the VSI's MAC filter list, we need to ignore such 233 * requests and not delete our device address from this list. 234 */ 235 if (ether_addr_equal(addr, netdev->dev_addr)) 236 return 0; 237 238 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 239 ICE_FWD_TO_VSI)) 240 return -EINVAL; 241 242 return 0; 243 } 244 245 /** 246 * ice_vsi_fltr_changed - check if filter state changed 247 * @vsi: VSI to be checked 248 * 249 * returns true if filter state has changed, false otherwise. 250 */ 251 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 252 { 253 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 254 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 255 } 256 257 /** 258 * ice_set_promisc - Enable promiscuous mode for a given PF 259 * @vsi: the VSI being configured 260 * @promisc_m: mask of promiscuous config bits 261 * 262 */ 263 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 264 { 265 int status; 266 267 if (vsi->type != ICE_VSI_PF) 268 return 0; 269 270 if (ice_vsi_has_non_zero_vlans(vsi)) { 271 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 272 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 273 promisc_m); 274 } else { 275 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 276 promisc_m, 0); 277 } 278 if (status && status != -EEXIST) 279 return status; 280 281 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 282 vsi->vsi_num, promisc_m); 283 return 0; 284 } 285 286 /** 287 * ice_clear_promisc - Disable promiscuous mode for a given PF 288 * @vsi: the VSI being configured 289 * @promisc_m: mask of promiscuous config bits 290 * 291 */ 292 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 293 { 294 int status; 295 296 if (vsi->type != ICE_VSI_PF) 297 return 0; 298 299 if (ice_vsi_has_non_zero_vlans(vsi)) { 300 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 301 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 302 promisc_m); 303 } else { 304 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 305 promisc_m, 0); 306 } 307 308 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 309 vsi->vsi_num, promisc_m); 310 return status; 311 } 312 313 /** 314 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 315 * @vsi: ptr to the VSI 316 * 317 * Push any outstanding VSI filter changes through the AdminQ. 318 */ 319 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 320 { 321 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 322 struct device *dev = ice_pf_to_dev(vsi->back); 323 struct net_device *netdev = vsi->netdev; 324 bool promisc_forced_on = false; 325 struct ice_pf *pf = vsi->back; 326 struct ice_hw *hw = &pf->hw; 327 u32 changed_flags = 0; 328 int err; 329 330 if (!vsi->netdev) 331 return -EINVAL; 332 333 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 334 usleep_range(1000, 2000); 335 336 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 337 vsi->current_netdev_flags = vsi->netdev->flags; 338 339 INIT_LIST_HEAD(&vsi->tmp_sync_list); 340 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 341 342 if (ice_vsi_fltr_changed(vsi)) { 343 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 344 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 345 346 /* grab the netdev's addr_list_lock */ 347 netif_addr_lock_bh(netdev); 348 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 349 ice_add_mac_to_unsync_list); 350 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 351 ice_add_mac_to_unsync_list); 352 /* our temp lists are populated. release lock */ 353 netif_addr_unlock_bh(netdev); 354 } 355 356 /* Remove MAC addresses in the unsync list */ 357 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 358 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 359 if (err) { 360 netdev_err(netdev, "Failed to delete MAC filters\n"); 361 /* if we failed because of alloc failures, just bail */ 362 if (err == -ENOMEM) 363 goto out; 364 } 365 366 /* Add MAC addresses in the sync list */ 367 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 368 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 369 /* If filter is added successfully or already exists, do not go into 370 * 'if' condition and report it as error. Instead continue processing 371 * rest of the function. 372 */ 373 if (err && err != -EEXIST) { 374 netdev_err(netdev, "Failed to add MAC filters\n"); 375 /* If there is no more space for new umac filters, VSI 376 * should go into promiscuous mode. There should be some 377 * space reserved for promiscuous filters. 378 */ 379 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 380 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 381 vsi->state)) { 382 promisc_forced_on = true; 383 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 384 vsi->vsi_num); 385 } else { 386 goto out; 387 } 388 } 389 err = 0; 390 /* check for changes in promiscuous modes */ 391 if (changed_flags & IFF_ALLMULTI) { 392 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 393 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 394 if (err) { 395 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 396 goto out_promisc; 397 } 398 } else { 399 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 400 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 401 if (err) { 402 vsi->current_netdev_flags |= IFF_ALLMULTI; 403 goto out_promisc; 404 } 405 } 406 } 407 408 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 409 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 410 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 411 if (vsi->current_netdev_flags & IFF_PROMISC) { 412 /* Apply Rx filter rule to get traffic from wire */ 413 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 414 err = ice_set_dflt_vsi(vsi); 415 if (err && err != -EEXIST) { 416 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 417 err, vsi->vsi_num); 418 vsi->current_netdev_flags &= 419 ~IFF_PROMISC; 420 goto out_promisc; 421 } 422 err = 0; 423 vlan_ops->dis_rx_filtering(vsi); 424 425 /* promiscuous mode implies allmulticast so 426 * that VSIs that are in promiscuous mode are 427 * subscribed to multicast packets coming to 428 * the port 429 */ 430 err = ice_set_promisc(vsi, 431 ICE_MCAST_PROMISC_BITS); 432 if (err) 433 goto out_promisc; 434 } 435 } else { 436 /* Clear Rx filter to remove traffic from wire */ 437 if (ice_is_vsi_dflt_vsi(vsi)) { 438 err = ice_clear_dflt_vsi(vsi); 439 if (err) { 440 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 441 err, vsi->vsi_num); 442 vsi->current_netdev_flags |= 443 IFF_PROMISC; 444 goto out_promisc; 445 } 446 if (vsi->netdev->features & 447 NETIF_F_HW_VLAN_CTAG_FILTER) 448 vlan_ops->ena_rx_filtering(vsi); 449 } 450 451 /* disable allmulti here, but only if allmulti is not 452 * still enabled for the netdev 453 */ 454 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 455 err = ice_clear_promisc(vsi, 456 ICE_MCAST_PROMISC_BITS); 457 if (err) { 458 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 459 err, vsi->vsi_num); 460 } 461 } 462 } 463 } 464 goto exit; 465 466 out_promisc: 467 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 468 goto exit; 469 out: 470 /* if something went wrong then set the changed flag so we try again */ 471 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 472 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 473 exit: 474 clear_bit(ICE_CFG_BUSY, vsi->state); 475 return err; 476 } 477 478 /** 479 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 480 * @pf: board private structure 481 */ 482 static void ice_sync_fltr_subtask(struct ice_pf *pf) 483 { 484 int v; 485 486 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 487 return; 488 489 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 490 491 ice_for_each_vsi(pf, v) 492 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 493 ice_vsi_sync_fltr(pf->vsi[v])) { 494 /* come back and try again later */ 495 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 496 break; 497 } 498 } 499 500 /** 501 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 502 * @pf: the PF 503 * @locked: is the rtnl_lock already held 504 */ 505 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 506 { 507 int node; 508 int v; 509 510 ice_for_each_vsi(pf, v) 511 if (pf->vsi[v]) 512 ice_dis_vsi(pf->vsi[v], locked); 513 514 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 515 pf->pf_agg_node[node].num_vsis = 0; 516 517 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 518 pf->vf_agg_node[node].num_vsis = 0; 519 } 520 521 /** 522 * ice_clear_sw_switch_recipes - clear switch recipes 523 * @pf: board private structure 524 * 525 * Mark switch recipes as not created in sw structures. There are cases where 526 * rules (especially advanced rules) need to be restored, either re-read from 527 * hardware or added again. For example after the reset. 'recp_created' flag 528 * prevents from doing that and need to be cleared upfront. 529 */ 530 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 531 { 532 struct ice_sw_recipe *recp; 533 u8 i; 534 535 recp = pf->hw.switch_info->recp_list; 536 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 537 recp[i].recp_created = false; 538 } 539 540 /** 541 * ice_prepare_for_reset - prep for reset 542 * @pf: board private structure 543 * @reset_type: reset type requested 544 * 545 * Inform or close all dependent features in prep for reset. 546 */ 547 static void 548 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 549 { 550 struct ice_hw *hw = &pf->hw; 551 struct ice_vsi *vsi; 552 struct ice_vf *vf; 553 unsigned int bkt; 554 555 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 556 557 /* already prepared for reset */ 558 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 559 return; 560 561 ice_unplug_aux_dev(pf); 562 563 /* Notify VFs of impending reset */ 564 if (ice_check_sq_alive(hw, &hw->mailboxq)) 565 ice_vc_notify_reset(pf); 566 567 /* Disable VFs until reset is completed */ 568 mutex_lock(&pf->vfs.table_lock); 569 ice_for_each_vf(pf, bkt, vf) 570 ice_set_vf_state_dis(vf); 571 mutex_unlock(&pf->vfs.table_lock); 572 573 if (ice_is_eswitch_mode_switchdev(pf)) { 574 if (reset_type != ICE_RESET_PFR) 575 ice_clear_sw_switch_recipes(pf); 576 } 577 578 /* release ADQ specific HW and SW resources */ 579 vsi = ice_get_main_vsi(pf); 580 if (!vsi) 581 goto skip; 582 583 /* to be on safe side, reset orig_rss_size so that normal flow 584 * of deciding rss_size can take precedence 585 */ 586 vsi->orig_rss_size = 0; 587 588 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 589 if (reset_type == ICE_RESET_PFR) { 590 vsi->old_ena_tc = vsi->all_enatc; 591 vsi->old_numtc = vsi->all_numtc; 592 } else { 593 ice_remove_q_channels(vsi, true); 594 595 /* for other reset type, do not support channel rebuild 596 * hence reset needed info 597 */ 598 vsi->old_ena_tc = 0; 599 vsi->all_enatc = 0; 600 vsi->old_numtc = 0; 601 vsi->all_numtc = 0; 602 vsi->req_txq = 0; 603 vsi->req_rxq = 0; 604 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 605 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 606 } 607 } 608 skip: 609 610 /* clear SW filtering DB */ 611 ice_clear_hw_tbls(hw); 612 /* disable the VSIs and their queues that are not already DOWN */ 613 ice_pf_dis_all_vsi(pf, false); 614 615 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 616 ice_ptp_prepare_for_reset(pf); 617 618 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 619 ice_gnss_exit(pf); 620 621 if (hw->port_info) 622 ice_sched_clear_port(hw->port_info); 623 624 ice_shutdown_all_ctrlq(hw); 625 626 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 627 } 628 629 /** 630 * ice_do_reset - Initiate one of many types of resets 631 * @pf: board private structure 632 * @reset_type: reset type requested before this function was called. 633 */ 634 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 635 { 636 struct device *dev = ice_pf_to_dev(pf); 637 struct ice_hw *hw = &pf->hw; 638 639 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 640 641 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 642 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 643 reset_type = ICE_RESET_CORER; 644 } 645 646 ice_prepare_for_reset(pf, reset_type); 647 648 /* trigger the reset */ 649 if (ice_reset(hw, reset_type)) { 650 dev_err(dev, "reset %d failed\n", reset_type); 651 set_bit(ICE_RESET_FAILED, pf->state); 652 clear_bit(ICE_RESET_OICR_RECV, pf->state); 653 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 654 clear_bit(ICE_PFR_REQ, pf->state); 655 clear_bit(ICE_CORER_REQ, pf->state); 656 clear_bit(ICE_GLOBR_REQ, pf->state); 657 wake_up(&pf->reset_wait_queue); 658 return; 659 } 660 661 /* PFR is a bit of a special case because it doesn't result in an OICR 662 * interrupt. So for PFR, rebuild after the reset and clear the reset- 663 * associated state bits. 664 */ 665 if (reset_type == ICE_RESET_PFR) { 666 pf->pfr_count++; 667 ice_rebuild(pf, reset_type); 668 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 669 clear_bit(ICE_PFR_REQ, pf->state); 670 wake_up(&pf->reset_wait_queue); 671 ice_reset_all_vfs(pf); 672 } 673 } 674 675 /** 676 * ice_reset_subtask - Set up for resetting the device and driver 677 * @pf: board private structure 678 */ 679 static void ice_reset_subtask(struct ice_pf *pf) 680 { 681 enum ice_reset_req reset_type = ICE_RESET_INVAL; 682 683 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 684 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 685 * of reset is pending and sets bits in pf->state indicating the reset 686 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 687 * prepare for pending reset if not already (for PF software-initiated 688 * global resets the software should already be prepared for it as 689 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 690 * by firmware or software on other PFs, that bit is not set so prepare 691 * for the reset now), poll for reset done, rebuild and return. 692 */ 693 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 694 /* Perform the largest reset requested */ 695 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 696 reset_type = ICE_RESET_CORER; 697 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 698 reset_type = ICE_RESET_GLOBR; 699 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 700 reset_type = ICE_RESET_EMPR; 701 /* return if no valid reset type requested */ 702 if (reset_type == ICE_RESET_INVAL) 703 return; 704 ice_prepare_for_reset(pf, reset_type); 705 706 /* make sure we are ready to rebuild */ 707 if (ice_check_reset(&pf->hw)) { 708 set_bit(ICE_RESET_FAILED, pf->state); 709 } else { 710 /* done with reset. start rebuild */ 711 pf->hw.reset_ongoing = false; 712 ice_rebuild(pf, reset_type); 713 /* clear bit to resume normal operations, but 714 * ICE_NEEDS_RESTART bit is set in case rebuild failed 715 */ 716 clear_bit(ICE_RESET_OICR_RECV, pf->state); 717 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 718 clear_bit(ICE_PFR_REQ, pf->state); 719 clear_bit(ICE_CORER_REQ, pf->state); 720 clear_bit(ICE_GLOBR_REQ, pf->state); 721 wake_up(&pf->reset_wait_queue); 722 ice_reset_all_vfs(pf); 723 } 724 725 return; 726 } 727 728 /* No pending resets to finish processing. Check for new resets */ 729 if (test_bit(ICE_PFR_REQ, pf->state)) { 730 reset_type = ICE_RESET_PFR; 731 if (pf->lag && pf->lag->bonded) { 732 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 733 reset_type = ICE_RESET_CORER; 734 } 735 } 736 if (test_bit(ICE_CORER_REQ, pf->state)) 737 reset_type = ICE_RESET_CORER; 738 if (test_bit(ICE_GLOBR_REQ, pf->state)) 739 reset_type = ICE_RESET_GLOBR; 740 /* If no valid reset type requested just return */ 741 if (reset_type == ICE_RESET_INVAL) 742 return; 743 744 /* reset if not already down or busy */ 745 if (!test_bit(ICE_DOWN, pf->state) && 746 !test_bit(ICE_CFG_BUSY, pf->state)) { 747 ice_do_reset(pf, reset_type); 748 } 749 } 750 751 /** 752 * ice_print_topo_conflict - print topology conflict message 753 * @vsi: the VSI whose topology status is being checked 754 */ 755 static void ice_print_topo_conflict(struct ice_vsi *vsi) 756 { 757 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 758 case ICE_AQ_LINK_TOPO_CONFLICT: 759 case ICE_AQ_LINK_MEDIA_CONFLICT: 760 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 761 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 762 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 763 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 764 break; 765 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 766 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 767 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 768 else 769 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 770 break; 771 default: 772 break; 773 } 774 } 775 776 /** 777 * ice_print_link_msg - print link up or down message 778 * @vsi: the VSI whose link status is being queried 779 * @isup: boolean for if the link is now up or down 780 */ 781 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 782 { 783 struct ice_aqc_get_phy_caps_data *caps; 784 const char *an_advertised; 785 const char *fec_req; 786 const char *speed; 787 const char *fec; 788 const char *fc; 789 const char *an; 790 int status; 791 792 if (!vsi) 793 return; 794 795 if (vsi->current_isup == isup) 796 return; 797 798 vsi->current_isup = isup; 799 800 if (!isup) { 801 netdev_info(vsi->netdev, "NIC Link is Down\n"); 802 return; 803 } 804 805 switch (vsi->port_info->phy.link_info.link_speed) { 806 case ICE_AQ_LINK_SPEED_100GB: 807 speed = "100 G"; 808 break; 809 case ICE_AQ_LINK_SPEED_50GB: 810 speed = "50 G"; 811 break; 812 case ICE_AQ_LINK_SPEED_40GB: 813 speed = "40 G"; 814 break; 815 case ICE_AQ_LINK_SPEED_25GB: 816 speed = "25 G"; 817 break; 818 case ICE_AQ_LINK_SPEED_20GB: 819 speed = "20 G"; 820 break; 821 case ICE_AQ_LINK_SPEED_10GB: 822 speed = "10 G"; 823 break; 824 case ICE_AQ_LINK_SPEED_5GB: 825 speed = "5 G"; 826 break; 827 case ICE_AQ_LINK_SPEED_2500MB: 828 speed = "2.5 G"; 829 break; 830 case ICE_AQ_LINK_SPEED_1000MB: 831 speed = "1 G"; 832 break; 833 case ICE_AQ_LINK_SPEED_100MB: 834 speed = "100 M"; 835 break; 836 default: 837 speed = "Unknown "; 838 break; 839 } 840 841 switch (vsi->port_info->fc.current_mode) { 842 case ICE_FC_FULL: 843 fc = "Rx/Tx"; 844 break; 845 case ICE_FC_TX_PAUSE: 846 fc = "Tx"; 847 break; 848 case ICE_FC_RX_PAUSE: 849 fc = "Rx"; 850 break; 851 case ICE_FC_NONE: 852 fc = "None"; 853 break; 854 default: 855 fc = "Unknown"; 856 break; 857 } 858 859 /* Get FEC mode based on negotiated link info */ 860 switch (vsi->port_info->phy.link_info.fec_info) { 861 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 862 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 863 fec = "RS-FEC"; 864 break; 865 case ICE_AQ_LINK_25G_KR_FEC_EN: 866 fec = "FC-FEC/BASE-R"; 867 break; 868 default: 869 fec = "NONE"; 870 break; 871 } 872 873 /* check if autoneg completed, might be false due to not supported */ 874 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 875 an = "True"; 876 else 877 an = "False"; 878 879 /* Get FEC mode requested based on PHY caps last SW configuration */ 880 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 881 if (!caps) { 882 fec_req = "Unknown"; 883 an_advertised = "Unknown"; 884 goto done; 885 } 886 887 status = ice_aq_get_phy_caps(vsi->port_info, false, 888 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 889 if (status) 890 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 891 892 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 893 894 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 895 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 896 fec_req = "RS-FEC"; 897 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 898 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 899 fec_req = "FC-FEC/BASE-R"; 900 else 901 fec_req = "NONE"; 902 903 kfree(caps); 904 905 done: 906 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 907 speed, fec_req, fec, an_advertised, an, fc); 908 ice_print_topo_conflict(vsi); 909 } 910 911 /** 912 * ice_vsi_link_event - update the VSI's netdev 913 * @vsi: the VSI on which the link event occurred 914 * @link_up: whether or not the VSI needs to be set up or down 915 */ 916 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 917 { 918 if (!vsi) 919 return; 920 921 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 922 return; 923 924 if (vsi->type == ICE_VSI_PF) { 925 if (link_up == netif_carrier_ok(vsi->netdev)) 926 return; 927 928 if (link_up) { 929 netif_carrier_on(vsi->netdev); 930 netif_tx_wake_all_queues(vsi->netdev); 931 } else { 932 netif_carrier_off(vsi->netdev); 933 netif_tx_stop_all_queues(vsi->netdev); 934 } 935 } 936 } 937 938 /** 939 * ice_set_dflt_mib - send a default config MIB to the FW 940 * @pf: private PF struct 941 * 942 * This function sends a default configuration MIB to the FW. 943 * 944 * If this function errors out at any point, the driver is still able to 945 * function. The main impact is that LFC may not operate as expected. 946 * Therefore an error state in this function should be treated with a DBG 947 * message and continue on with driver rebuild/reenable. 948 */ 949 static void ice_set_dflt_mib(struct ice_pf *pf) 950 { 951 struct device *dev = ice_pf_to_dev(pf); 952 u8 mib_type, *buf, *lldpmib = NULL; 953 u16 len, typelen, offset = 0; 954 struct ice_lldp_org_tlv *tlv; 955 struct ice_hw *hw = &pf->hw; 956 u32 ouisubtype; 957 958 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 959 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 960 if (!lldpmib) { 961 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 962 __func__); 963 return; 964 } 965 966 /* Add ETS CFG TLV */ 967 tlv = (struct ice_lldp_org_tlv *)lldpmib; 968 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 969 ICE_IEEE_ETS_TLV_LEN); 970 tlv->typelen = htons(typelen); 971 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 972 ICE_IEEE_SUBTYPE_ETS_CFG); 973 tlv->ouisubtype = htonl(ouisubtype); 974 975 buf = tlv->tlvinfo; 976 buf[0] = 0; 977 978 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 979 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 980 * Octets 13 - 20 are TSA values - leave as zeros 981 */ 982 buf[5] = 0x64; 983 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 984 offset += len + 2; 985 tlv = (struct ice_lldp_org_tlv *) 986 ((char *)tlv + sizeof(tlv->typelen) + len); 987 988 /* Add ETS REC TLV */ 989 buf = tlv->tlvinfo; 990 tlv->typelen = htons(typelen); 991 992 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 993 ICE_IEEE_SUBTYPE_ETS_REC); 994 tlv->ouisubtype = htonl(ouisubtype); 995 996 /* First octet of buf is reserved 997 * Octets 1 - 4 map UP to TC - all UPs map to zero 998 * Octets 5 - 12 are BW values - set TC 0 to 100%. 999 * Octets 13 - 20 are TSA value - leave as zeros 1000 */ 1001 buf[5] = 0x64; 1002 offset += len + 2; 1003 tlv = (struct ice_lldp_org_tlv *) 1004 ((char *)tlv + sizeof(tlv->typelen) + len); 1005 1006 /* Add PFC CFG TLV */ 1007 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1008 ICE_IEEE_PFC_TLV_LEN); 1009 tlv->typelen = htons(typelen); 1010 1011 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1012 ICE_IEEE_SUBTYPE_PFC_CFG); 1013 tlv->ouisubtype = htonl(ouisubtype); 1014 1015 /* Octet 1 left as all zeros - PFC disabled */ 1016 buf[0] = 0x08; 1017 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 1018 offset += len + 2; 1019 1020 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1021 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1022 1023 kfree(lldpmib); 1024 } 1025 1026 /** 1027 * ice_check_phy_fw_load - check if PHY FW load failed 1028 * @pf: pointer to PF struct 1029 * @link_cfg_err: bitmap from the link info structure 1030 * 1031 * check if external PHY FW load failed and print an error message if it did 1032 */ 1033 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1034 { 1035 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1036 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1037 return; 1038 } 1039 1040 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1041 return; 1042 1043 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1044 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1045 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1046 } 1047 } 1048 1049 /** 1050 * ice_check_module_power 1051 * @pf: pointer to PF struct 1052 * @link_cfg_err: bitmap from the link info structure 1053 * 1054 * check module power level returned by a previous call to aq_get_link_info 1055 * and print error messages if module power level is not supported 1056 */ 1057 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1058 { 1059 /* if module power level is supported, clear the flag */ 1060 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1061 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1062 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1063 return; 1064 } 1065 1066 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1067 * above block didn't clear this bit, there's nothing to do 1068 */ 1069 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1070 return; 1071 1072 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1073 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1074 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1075 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1076 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1077 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1078 } 1079 } 1080 1081 /** 1082 * ice_check_link_cfg_err - check if link configuration failed 1083 * @pf: pointer to the PF struct 1084 * @link_cfg_err: bitmap from the link info structure 1085 * 1086 * print if any link configuration failure happens due to the value in the 1087 * link_cfg_err parameter in the link info structure 1088 */ 1089 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1090 { 1091 ice_check_module_power(pf, link_cfg_err); 1092 ice_check_phy_fw_load(pf, link_cfg_err); 1093 } 1094 1095 /** 1096 * ice_link_event - process the link event 1097 * @pf: PF that the link event is associated with 1098 * @pi: port_info for the port that the link event is associated with 1099 * @link_up: true if the physical link is up and false if it is down 1100 * @link_speed: current link speed received from the link event 1101 * 1102 * Returns 0 on success and negative on failure 1103 */ 1104 static int 1105 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1106 u16 link_speed) 1107 { 1108 struct device *dev = ice_pf_to_dev(pf); 1109 struct ice_phy_info *phy_info; 1110 struct ice_vsi *vsi; 1111 u16 old_link_speed; 1112 bool old_link; 1113 int status; 1114 1115 phy_info = &pi->phy; 1116 phy_info->link_info_old = phy_info->link_info; 1117 1118 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1119 old_link_speed = phy_info->link_info_old.link_speed; 1120 1121 /* update the link info structures and re-enable link events, 1122 * don't bail on failure due to other book keeping needed 1123 */ 1124 status = ice_update_link_info(pi); 1125 if (status) 1126 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1127 pi->lport, status, 1128 ice_aq_str(pi->hw->adminq.sq_last_status)); 1129 1130 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1131 1132 /* Check if the link state is up after updating link info, and treat 1133 * this event as an UP event since the link is actually UP now. 1134 */ 1135 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1136 link_up = true; 1137 1138 vsi = ice_get_main_vsi(pf); 1139 if (!vsi || !vsi->port_info) 1140 return -EINVAL; 1141 1142 /* turn off PHY if media was removed */ 1143 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1144 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1145 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1146 ice_set_link(vsi, false); 1147 } 1148 1149 /* if the old link up/down and speed is the same as the new */ 1150 if (link_up == old_link && link_speed == old_link_speed) 1151 return 0; 1152 1153 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1154 1155 if (ice_is_dcb_active(pf)) { 1156 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1157 ice_dcb_rebuild(pf); 1158 } else { 1159 if (link_up) 1160 ice_set_dflt_mib(pf); 1161 } 1162 ice_vsi_link_event(vsi, link_up); 1163 ice_print_link_msg(vsi, link_up); 1164 1165 ice_vc_notify_link_state(pf); 1166 1167 return 0; 1168 } 1169 1170 /** 1171 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1172 * @pf: board private structure 1173 */ 1174 static void ice_watchdog_subtask(struct ice_pf *pf) 1175 { 1176 int i; 1177 1178 /* if interface is down do nothing */ 1179 if (test_bit(ICE_DOWN, pf->state) || 1180 test_bit(ICE_CFG_BUSY, pf->state)) 1181 return; 1182 1183 /* make sure we don't do these things too often */ 1184 if (time_before(jiffies, 1185 pf->serv_tmr_prev + pf->serv_tmr_period)) 1186 return; 1187 1188 pf->serv_tmr_prev = jiffies; 1189 1190 /* Update the stats for active netdevs so the network stack 1191 * can look at updated numbers whenever it cares to 1192 */ 1193 ice_update_pf_stats(pf); 1194 ice_for_each_vsi(pf, i) 1195 if (pf->vsi[i] && pf->vsi[i]->netdev) 1196 ice_update_vsi_stats(pf->vsi[i]); 1197 } 1198 1199 /** 1200 * ice_init_link_events - enable/initialize link events 1201 * @pi: pointer to the port_info instance 1202 * 1203 * Returns -EIO on failure, 0 on success 1204 */ 1205 static int ice_init_link_events(struct ice_port_info *pi) 1206 { 1207 u16 mask; 1208 1209 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1210 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1211 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1212 1213 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1214 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1215 pi->lport); 1216 return -EIO; 1217 } 1218 1219 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1220 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1221 pi->lport); 1222 return -EIO; 1223 } 1224 1225 return 0; 1226 } 1227 1228 /** 1229 * ice_handle_link_event - handle link event via ARQ 1230 * @pf: PF that the link event is associated with 1231 * @event: event structure containing link status info 1232 */ 1233 static int 1234 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1235 { 1236 struct ice_aqc_get_link_status_data *link_data; 1237 struct ice_port_info *port_info; 1238 int status; 1239 1240 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1241 port_info = pf->hw.port_info; 1242 if (!port_info) 1243 return -EINVAL; 1244 1245 status = ice_link_event(pf, port_info, 1246 !!(link_data->link_info & ICE_AQ_LINK_UP), 1247 le16_to_cpu(link_data->link_speed)); 1248 if (status) 1249 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1250 status); 1251 1252 return status; 1253 } 1254 1255 /** 1256 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1257 * @pf: pointer to the PF private structure 1258 * @task: intermediate helper storage and identifier for waiting 1259 * @opcode: the opcode to wait for 1260 * 1261 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1262 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1263 * 1264 * Calls are separated to allow caller registering for event before sending 1265 * the command, which mitigates a race between registering and FW responding. 1266 * 1267 * To obtain only the descriptor contents, pass an task->event with null 1268 * msg_buf. If the complete data buffer is desired, allocate the 1269 * task->event.msg_buf with enough space ahead of time. 1270 */ 1271 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1272 u16 opcode) 1273 { 1274 INIT_HLIST_NODE(&task->entry); 1275 task->opcode = opcode; 1276 task->state = ICE_AQ_TASK_WAITING; 1277 1278 spin_lock_bh(&pf->aq_wait_lock); 1279 hlist_add_head(&task->entry, &pf->aq_wait_list); 1280 spin_unlock_bh(&pf->aq_wait_lock); 1281 } 1282 1283 /** 1284 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1285 * @pf: pointer to the PF private structure 1286 * @task: ptr prepared by ice_aq_prep_for_event() 1287 * @timeout: how long to wait, in jiffies 1288 * 1289 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1290 * current thread will be put to sleep until the specified event occurs or 1291 * until the given timeout is reached. 1292 * 1293 * Returns: zero on success, or a negative error code on failure. 1294 */ 1295 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1296 unsigned long timeout) 1297 { 1298 enum ice_aq_task_state *state = &task->state; 1299 struct device *dev = ice_pf_to_dev(pf); 1300 unsigned long start = jiffies; 1301 long ret; 1302 int err; 1303 1304 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1305 *state != ICE_AQ_TASK_WAITING, 1306 timeout); 1307 switch (*state) { 1308 case ICE_AQ_TASK_NOT_PREPARED: 1309 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1310 err = -EINVAL; 1311 break; 1312 case ICE_AQ_TASK_WAITING: 1313 err = ret < 0 ? ret : -ETIMEDOUT; 1314 break; 1315 case ICE_AQ_TASK_CANCELED: 1316 err = ret < 0 ? ret : -ECANCELED; 1317 break; 1318 case ICE_AQ_TASK_COMPLETE: 1319 err = ret < 0 ? ret : 0; 1320 break; 1321 default: 1322 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1323 err = -EINVAL; 1324 break; 1325 } 1326 1327 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1328 jiffies_to_msecs(jiffies - start), 1329 jiffies_to_msecs(timeout), 1330 task->opcode); 1331 1332 spin_lock_bh(&pf->aq_wait_lock); 1333 hlist_del(&task->entry); 1334 spin_unlock_bh(&pf->aq_wait_lock); 1335 1336 return err; 1337 } 1338 1339 /** 1340 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1341 * @pf: pointer to the PF private structure 1342 * @opcode: the opcode of the event 1343 * @event: the event to check 1344 * 1345 * Loops over the current list of pending threads waiting for an AdminQ event. 1346 * For each matching task, copy the contents of the event into the task 1347 * structure and wake up the thread. 1348 * 1349 * If multiple threads wait for the same opcode, they will all be woken up. 1350 * 1351 * Note that event->msg_buf will only be duplicated if the event has a buffer 1352 * with enough space already allocated. Otherwise, only the descriptor and 1353 * message length will be copied. 1354 * 1355 * Returns: true if an event was found, false otherwise 1356 */ 1357 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1358 struct ice_rq_event_info *event) 1359 { 1360 struct ice_rq_event_info *task_ev; 1361 struct ice_aq_task *task; 1362 bool found = false; 1363 1364 spin_lock_bh(&pf->aq_wait_lock); 1365 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1366 if (task->state != ICE_AQ_TASK_WAITING) 1367 continue; 1368 if (task->opcode != opcode) 1369 continue; 1370 1371 task_ev = &task->event; 1372 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1373 task_ev->msg_len = event->msg_len; 1374 1375 /* Only copy the data buffer if a destination was set */ 1376 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1377 memcpy(task_ev->msg_buf, event->msg_buf, 1378 event->buf_len); 1379 task_ev->buf_len = event->buf_len; 1380 } 1381 1382 task->state = ICE_AQ_TASK_COMPLETE; 1383 found = true; 1384 } 1385 spin_unlock_bh(&pf->aq_wait_lock); 1386 1387 if (found) 1388 wake_up(&pf->aq_wait_queue); 1389 } 1390 1391 /** 1392 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1393 * @pf: the PF private structure 1394 * 1395 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1396 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1397 */ 1398 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1399 { 1400 struct ice_aq_task *task; 1401 1402 spin_lock_bh(&pf->aq_wait_lock); 1403 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1404 task->state = ICE_AQ_TASK_CANCELED; 1405 spin_unlock_bh(&pf->aq_wait_lock); 1406 1407 wake_up(&pf->aq_wait_queue); 1408 } 1409 1410 #define ICE_MBX_OVERFLOW_WATERMARK 64 1411 1412 /** 1413 * __ice_clean_ctrlq - helper function to clean controlq rings 1414 * @pf: ptr to struct ice_pf 1415 * @q_type: specific Control queue type 1416 */ 1417 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1418 { 1419 struct device *dev = ice_pf_to_dev(pf); 1420 struct ice_rq_event_info event; 1421 struct ice_hw *hw = &pf->hw; 1422 struct ice_ctl_q_info *cq; 1423 u16 pending, i = 0; 1424 const char *qtype; 1425 u32 oldval, val; 1426 1427 /* Do not clean control queue if/when PF reset fails */ 1428 if (test_bit(ICE_RESET_FAILED, pf->state)) 1429 return 0; 1430 1431 switch (q_type) { 1432 case ICE_CTL_Q_ADMIN: 1433 cq = &hw->adminq; 1434 qtype = "Admin"; 1435 break; 1436 case ICE_CTL_Q_SB: 1437 cq = &hw->sbq; 1438 qtype = "Sideband"; 1439 break; 1440 case ICE_CTL_Q_MAILBOX: 1441 cq = &hw->mailboxq; 1442 qtype = "Mailbox"; 1443 /* we are going to try to detect a malicious VF, so set the 1444 * state to begin detection 1445 */ 1446 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1447 break; 1448 default: 1449 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1450 return 0; 1451 } 1452 1453 /* check for error indications - PF_xx_AxQLEN register layout for 1454 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1455 */ 1456 val = rd32(hw, cq->rq.len); 1457 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1458 PF_FW_ARQLEN_ARQCRIT_M)) { 1459 oldval = val; 1460 if (val & PF_FW_ARQLEN_ARQVFE_M) 1461 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1462 qtype); 1463 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1464 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1465 qtype); 1466 } 1467 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1468 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1469 qtype); 1470 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1471 PF_FW_ARQLEN_ARQCRIT_M); 1472 if (oldval != val) 1473 wr32(hw, cq->rq.len, val); 1474 } 1475 1476 val = rd32(hw, cq->sq.len); 1477 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1478 PF_FW_ATQLEN_ATQCRIT_M)) { 1479 oldval = val; 1480 if (val & PF_FW_ATQLEN_ATQVFE_M) 1481 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1482 qtype); 1483 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1484 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1485 qtype); 1486 } 1487 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1488 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1489 qtype); 1490 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1491 PF_FW_ATQLEN_ATQCRIT_M); 1492 if (oldval != val) 1493 wr32(hw, cq->sq.len, val); 1494 } 1495 1496 event.buf_len = cq->rq_buf_size; 1497 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1498 if (!event.msg_buf) 1499 return 0; 1500 1501 do { 1502 struct ice_mbx_data data = {}; 1503 u16 opcode; 1504 int ret; 1505 1506 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1507 if (ret == -EALREADY) 1508 break; 1509 if (ret) { 1510 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1511 ret); 1512 break; 1513 } 1514 1515 opcode = le16_to_cpu(event.desc.opcode); 1516 1517 /* Notify any thread that might be waiting for this event */ 1518 ice_aq_check_events(pf, opcode, &event); 1519 1520 switch (opcode) { 1521 case ice_aqc_opc_get_link_status: 1522 if (ice_handle_link_event(pf, &event)) 1523 dev_err(dev, "Could not handle link event\n"); 1524 break; 1525 case ice_aqc_opc_event_lan_overflow: 1526 ice_vf_lan_overflow_event(pf, &event); 1527 break; 1528 case ice_mbx_opc_send_msg_to_pf: 1529 data.num_msg_proc = i; 1530 data.num_pending_arq = pending; 1531 data.max_num_msgs_mbx = hw->mailboxq.num_rq_entries; 1532 data.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; 1533 1534 ice_vc_process_vf_msg(pf, &event, &data); 1535 break; 1536 case ice_aqc_opc_fw_logging: 1537 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1538 break; 1539 case ice_aqc_opc_lldp_set_mib_change: 1540 ice_dcb_process_lldp_set_mib_change(pf, &event); 1541 break; 1542 default: 1543 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1544 qtype, opcode); 1545 break; 1546 } 1547 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1548 1549 kfree(event.msg_buf); 1550 1551 return pending && (i == ICE_DFLT_IRQ_WORK); 1552 } 1553 1554 /** 1555 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1556 * @hw: pointer to hardware info 1557 * @cq: control queue information 1558 * 1559 * returns true if there are pending messages in a queue, false if there aren't 1560 */ 1561 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1562 { 1563 u16 ntu; 1564 1565 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1566 return cq->rq.next_to_clean != ntu; 1567 } 1568 1569 /** 1570 * ice_clean_adminq_subtask - clean the AdminQ rings 1571 * @pf: board private structure 1572 */ 1573 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1574 { 1575 struct ice_hw *hw = &pf->hw; 1576 1577 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1578 return; 1579 1580 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1581 return; 1582 1583 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1584 1585 /* There might be a situation where new messages arrive to a control 1586 * queue between processing the last message and clearing the 1587 * EVENT_PENDING bit. So before exiting, check queue head again (using 1588 * ice_ctrlq_pending) and process new messages if any. 1589 */ 1590 if (ice_ctrlq_pending(hw, &hw->adminq)) 1591 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1592 1593 ice_flush(hw); 1594 } 1595 1596 /** 1597 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1598 * @pf: board private structure 1599 */ 1600 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1601 { 1602 struct ice_hw *hw = &pf->hw; 1603 1604 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1605 return; 1606 1607 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1608 return; 1609 1610 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1611 1612 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1613 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1614 1615 ice_flush(hw); 1616 } 1617 1618 /** 1619 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1620 * @pf: board private structure 1621 */ 1622 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1623 { 1624 struct ice_hw *hw = &pf->hw; 1625 1626 /* Nothing to do here if sideband queue is not supported */ 1627 if (!ice_is_sbq_supported(hw)) { 1628 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1629 return; 1630 } 1631 1632 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1633 return; 1634 1635 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1636 return; 1637 1638 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1639 1640 if (ice_ctrlq_pending(hw, &hw->sbq)) 1641 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1642 1643 ice_flush(hw); 1644 } 1645 1646 /** 1647 * ice_service_task_schedule - schedule the service task to wake up 1648 * @pf: board private structure 1649 * 1650 * If not already scheduled, this puts the task into the work queue. 1651 */ 1652 void ice_service_task_schedule(struct ice_pf *pf) 1653 { 1654 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1655 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1656 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1657 queue_work(ice_wq, &pf->serv_task); 1658 } 1659 1660 /** 1661 * ice_service_task_complete - finish up the service task 1662 * @pf: board private structure 1663 */ 1664 static void ice_service_task_complete(struct ice_pf *pf) 1665 { 1666 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1667 1668 /* force memory (pf->state) to sync before next service task */ 1669 smp_mb__before_atomic(); 1670 clear_bit(ICE_SERVICE_SCHED, pf->state); 1671 } 1672 1673 /** 1674 * ice_service_task_stop - stop service task and cancel works 1675 * @pf: board private structure 1676 * 1677 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1678 * 1 otherwise. 1679 */ 1680 static int ice_service_task_stop(struct ice_pf *pf) 1681 { 1682 int ret; 1683 1684 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1685 1686 if (pf->serv_tmr.function) 1687 del_timer_sync(&pf->serv_tmr); 1688 if (pf->serv_task.func) 1689 cancel_work_sync(&pf->serv_task); 1690 1691 clear_bit(ICE_SERVICE_SCHED, pf->state); 1692 return ret; 1693 } 1694 1695 /** 1696 * ice_service_task_restart - restart service task and schedule works 1697 * @pf: board private structure 1698 * 1699 * This function is needed for suspend and resume works (e.g WoL scenario) 1700 */ 1701 static void ice_service_task_restart(struct ice_pf *pf) 1702 { 1703 clear_bit(ICE_SERVICE_DIS, pf->state); 1704 ice_service_task_schedule(pf); 1705 } 1706 1707 /** 1708 * ice_service_timer - timer callback to schedule service task 1709 * @t: pointer to timer_list 1710 */ 1711 static void ice_service_timer(struct timer_list *t) 1712 { 1713 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1714 1715 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1716 ice_service_task_schedule(pf); 1717 } 1718 1719 /** 1720 * ice_handle_mdd_event - handle malicious driver detect event 1721 * @pf: pointer to the PF structure 1722 * 1723 * Called from service task. OICR interrupt handler indicates MDD event. 1724 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1725 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1726 * disable the queue, the PF can be configured to reset the VF using ethtool 1727 * private flag mdd-auto-reset-vf. 1728 */ 1729 static void ice_handle_mdd_event(struct ice_pf *pf) 1730 { 1731 struct device *dev = ice_pf_to_dev(pf); 1732 struct ice_hw *hw = &pf->hw; 1733 struct ice_vf *vf; 1734 unsigned int bkt; 1735 u32 reg; 1736 1737 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1738 /* Since the VF MDD event logging is rate limited, check if 1739 * there are pending MDD events. 1740 */ 1741 ice_print_vfs_mdd_events(pf); 1742 return; 1743 } 1744 1745 /* find what triggered an MDD event */ 1746 reg = rd32(hw, GL_MDET_TX_PQM); 1747 if (reg & GL_MDET_TX_PQM_VALID_M) { 1748 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1749 GL_MDET_TX_PQM_PF_NUM_S; 1750 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1751 GL_MDET_TX_PQM_VF_NUM_S; 1752 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1753 GL_MDET_TX_PQM_MAL_TYPE_S; 1754 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1755 GL_MDET_TX_PQM_QNUM_S); 1756 1757 if (netif_msg_tx_err(pf)) 1758 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1759 event, queue, pf_num, vf_num); 1760 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1761 } 1762 1763 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1764 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1765 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1766 GL_MDET_TX_TCLAN_PF_NUM_S; 1767 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1768 GL_MDET_TX_TCLAN_VF_NUM_S; 1769 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1770 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1771 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1772 GL_MDET_TX_TCLAN_QNUM_S); 1773 1774 if (netif_msg_tx_err(pf)) 1775 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1776 event, queue, pf_num, vf_num); 1777 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1778 } 1779 1780 reg = rd32(hw, GL_MDET_RX); 1781 if (reg & GL_MDET_RX_VALID_M) { 1782 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1783 GL_MDET_RX_PF_NUM_S; 1784 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1785 GL_MDET_RX_VF_NUM_S; 1786 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1787 GL_MDET_RX_MAL_TYPE_S; 1788 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1789 GL_MDET_RX_QNUM_S); 1790 1791 if (netif_msg_rx_err(pf)) 1792 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1793 event, queue, pf_num, vf_num); 1794 wr32(hw, GL_MDET_RX, 0xffffffff); 1795 } 1796 1797 /* check to see if this PF caused an MDD event */ 1798 reg = rd32(hw, PF_MDET_TX_PQM); 1799 if (reg & PF_MDET_TX_PQM_VALID_M) { 1800 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1801 if (netif_msg_tx_err(pf)) 1802 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1803 } 1804 1805 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1806 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1807 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1808 if (netif_msg_tx_err(pf)) 1809 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1810 } 1811 1812 reg = rd32(hw, PF_MDET_RX); 1813 if (reg & PF_MDET_RX_VALID_M) { 1814 wr32(hw, PF_MDET_RX, 0xFFFF); 1815 if (netif_msg_rx_err(pf)) 1816 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1817 } 1818 1819 /* Check to see if one of the VFs caused an MDD event, and then 1820 * increment counters and set print pending 1821 */ 1822 mutex_lock(&pf->vfs.table_lock); 1823 ice_for_each_vf(pf, bkt, vf) { 1824 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1825 if (reg & VP_MDET_TX_PQM_VALID_M) { 1826 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1827 vf->mdd_tx_events.count++; 1828 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1829 if (netif_msg_tx_err(pf)) 1830 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1831 vf->vf_id); 1832 } 1833 1834 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1835 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1836 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1837 vf->mdd_tx_events.count++; 1838 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1839 if (netif_msg_tx_err(pf)) 1840 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1841 vf->vf_id); 1842 } 1843 1844 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1845 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1846 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1847 vf->mdd_tx_events.count++; 1848 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1849 if (netif_msg_tx_err(pf)) 1850 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1851 vf->vf_id); 1852 } 1853 1854 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1855 if (reg & VP_MDET_RX_VALID_M) { 1856 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1857 vf->mdd_rx_events.count++; 1858 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1859 if (netif_msg_rx_err(pf)) 1860 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1861 vf->vf_id); 1862 1863 /* Since the queue is disabled on VF Rx MDD events, the 1864 * PF can be configured to reset the VF through ethtool 1865 * private flag mdd-auto-reset-vf. 1866 */ 1867 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1868 /* VF MDD event counters will be cleared by 1869 * reset, so print the event prior to reset. 1870 */ 1871 ice_print_vf_rx_mdd_event(vf); 1872 ice_reset_vf(vf, ICE_VF_RESET_LOCK); 1873 } 1874 } 1875 } 1876 mutex_unlock(&pf->vfs.table_lock); 1877 1878 ice_print_vfs_mdd_events(pf); 1879 } 1880 1881 /** 1882 * ice_force_phys_link_state - Force the physical link state 1883 * @vsi: VSI to force the physical link state to up/down 1884 * @link_up: true/false indicates to set the physical link to up/down 1885 * 1886 * Force the physical link state by getting the current PHY capabilities from 1887 * hardware and setting the PHY config based on the determined capabilities. If 1888 * link changes a link event will be triggered because both the Enable Automatic 1889 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1890 * 1891 * Returns 0 on success, negative on failure 1892 */ 1893 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1894 { 1895 struct ice_aqc_get_phy_caps_data *pcaps; 1896 struct ice_aqc_set_phy_cfg_data *cfg; 1897 struct ice_port_info *pi; 1898 struct device *dev; 1899 int retcode; 1900 1901 if (!vsi || !vsi->port_info || !vsi->back) 1902 return -EINVAL; 1903 if (vsi->type != ICE_VSI_PF) 1904 return 0; 1905 1906 dev = ice_pf_to_dev(vsi->back); 1907 1908 pi = vsi->port_info; 1909 1910 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1911 if (!pcaps) 1912 return -ENOMEM; 1913 1914 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1915 NULL); 1916 if (retcode) { 1917 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1918 vsi->vsi_num, retcode); 1919 retcode = -EIO; 1920 goto out; 1921 } 1922 1923 /* No change in link */ 1924 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1925 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1926 goto out; 1927 1928 /* Use the current user PHY configuration. The current user PHY 1929 * configuration is initialized during probe from PHY capabilities 1930 * software mode, and updated on set PHY configuration. 1931 */ 1932 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1933 if (!cfg) { 1934 retcode = -ENOMEM; 1935 goto out; 1936 } 1937 1938 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1939 if (link_up) 1940 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1941 else 1942 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1943 1944 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1945 if (retcode) { 1946 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1947 vsi->vsi_num, retcode); 1948 retcode = -EIO; 1949 } 1950 1951 kfree(cfg); 1952 out: 1953 kfree(pcaps); 1954 return retcode; 1955 } 1956 1957 /** 1958 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1959 * @pi: port info structure 1960 * 1961 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1962 */ 1963 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1964 { 1965 struct ice_aqc_get_phy_caps_data *pcaps; 1966 struct ice_pf *pf = pi->hw->back; 1967 int err; 1968 1969 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1970 if (!pcaps) 1971 return -ENOMEM; 1972 1973 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1974 pcaps, NULL); 1975 1976 if (err) { 1977 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1978 goto out; 1979 } 1980 1981 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1982 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1983 1984 out: 1985 kfree(pcaps); 1986 return err; 1987 } 1988 1989 /** 1990 * ice_init_link_dflt_override - Initialize link default override 1991 * @pi: port info structure 1992 * 1993 * Initialize link default override and PHY total port shutdown during probe 1994 */ 1995 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1996 { 1997 struct ice_link_default_override_tlv *ldo; 1998 struct ice_pf *pf = pi->hw->back; 1999 2000 ldo = &pf->link_dflt_override; 2001 if (ice_get_link_default_override(ldo, pi)) 2002 return; 2003 2004 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2005 return; 2006 2007 /* Enable Total Port Shutdown (override/replace link-down-on-close 2008 * ethtool private flag) for ports with Port Disable bit set. 2009 */ 2010 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2011 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2012 } 2013 2014 /** 2015 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2016 * @pi: port info structure 2017 * 2018 * If default override is enabled, initialize the user PHY cfg speed and FEC 2019 * settings using the default override mask from the NVM. 2020 * 2021 * The PHY should only be configured with the default override settings the 2022 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2023 * is used to indicate that the user PHY cfg default override is initialized 2024 * and the PHY has not been configured with the default override settings. The 2025 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2026 * configured. 2027 * 2028 * This function should be called only if the FW doesn't support default 2029 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2030 */ 2031 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2032 { 2033 struct ice_link_default_override_tlv *ldo; 2034 struct ice_aqc_set_phy_cfg_data *cfg; 2035 struct ice_phy_info *phy = &pi->phy; 2036 struct ice_pf *pf = pi->hw->back; 2037 2038 ldo = &pf->link_dflt_override; 2039 2040 /* If link default override is enabled, use to mask NVM PHY capabilities 2041 * for speed and FEC default configuration. 2042 */ 2043 cfg = &phy->curr_user_phy_cfg; 2044 2045 if (ldo->phy_type_low || ldo->phy_type_high) { 2046 cfg->phy_type_low = pf->nvm_phy_type_lo & 2047 cpu_to_le64(ldo->phy_type_low); 2048 cfg->phy_type_high = pf->nvm_phy_type_hi & 2049 cpu_to_le64(ldo->phy_type_high); 2050 } 2051 cfg->link_fec_opt = ldo->fec_options; 2052 phy->curr_user_fec_req = ICE_FEC_AUTO; 2053 2054 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2055 } 2056 2057 /** 2058 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2059 * @pi: port info structure 2060 * 2061 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2062 * mode to default. The PHY defaults are from get PHY capabilities topology 2063 * with media so call when media is first available. An error is returned if 2064 * called when media is not available. The PHY initialization completed state is 2065 * set here. 2066 * 2067 * These configurations are used when setting PHY 2068 * configuration. The user PHY configuration is updated on set PHY 2069 * configuration. Returns 0 on success, negative on failure 2070 */ 2071 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2072 { 2073 struct ice_aqc_get_phy_caps_data *pcaps; 2074 struct ice_phy_info *phy = &pi->phy; 2075 struct ice_pf *pf = pi->hw->back; 2076 int err; 2077 2078 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2079 return -EIO; 2080 2081 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2082 if (!pcaps) 2083 return -ENOMEM; 2084 2085 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2086 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2087 pcaps, NULL); 2088 else 2089 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2090 pcaps, NULL); 2091 if (err) { 2092 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2093 goto err_out; 2094 } 2095 2096 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2097 2098 /* check if lenient mode is supported and enabled */ 2099 if (ice_fw_supports_link_override(pi->hw) && 2100 !(pcaps->module_compliance_enforcement & 2101 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2102 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2103 2104 /* if the FW supports default PHY configuration mode, then the driver 2105 * does not have to apply link override settings. If not, 2106 * initialize user PHY configuration with link override values 2107 */ 2108 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2109 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2110 ice_init_phy_cfg_dflt_override(pi); 2111 goto out; 2112 } 2113 } 2114 2115 /* if link default override is not enabled, set user flow control and 2116 * FEC settings based on what get_phy_caps returned 2117 */ 2118 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2119 pcaps->link_fec_options); 2120 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2121 2122 out: 2123 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2124 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2125 err_out: 2126 kfree(pcaps); 2127 return err; 2128 } 2129 2130 /** 2131 * ice_configure_phy - configure PHY 2132 * @vsi: VSI of PHY 2133 * 2134 * Set the PHY configuration. If the current PHY configuration is the same as 2135 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2136 * configure the based get PHY capabilities for topology with media. 2137 */ 2138 static int ice_configure_phy(struct ice_vsi *vsi) 2139 { 2140 struct device *dev = ice_pf_to_dev(vsi->back); 2141 struct ice_port_info *pi = vsi->port_info; 2142 struct ice_aqc_get_phy_caps_data *pcaps; 2143 struct ice_aqc_set_phy_cfg_data *cfg; 2144 struct ice_phy_info *phy = &pi->phy; 2145 struct ice_pf *pf = vsi->back; 2146 int err; 2147 2148 /* Ensure we have media as we cannot configure a medialess port */ 2149 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2150 return -EPERM; 2151 2152 ice_print_topo_conflict(vsi); 2153 2154 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2155 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2156 return -EPERM; 2157 2158 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2159 return ice_force_phys_link_state(vsi, true); 2160 2161 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2162 if (!pcaps) 2163 return -ENOMEM; 2164 2165 /* Get current PHY config */ 2166 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2167 NULL); 2168 if (err) { 2169 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2170 vsi->vsi_num, err); 2171 goto done; 2172 } 2173 2174 /* If PHY enable link is configured and configuration has not changed, 2175 * there's nothing to do 2176 */ 2177 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2178 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2179 goto done; 2180 2181 /* Use PHY topology as baseline for configuration */ 2182 memset(pcaps, 0, sizeof(*pcaps)); 2183 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2184 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2185 pcaps, NULL); 2186 else 2187 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2188 pcaps, NULL); 2189 if (err) { 2190 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2191 vsi->vsi_num, err); 2192 goto done; 2193 } 2194 2195 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2196 if (!cfg) { 2197 err = -ENOMEM; 2198 goto done; 2199 } 2200 2201 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2202 2203 /* Speed - If default override pending, use curr_user_phy_cfg set in 2204 * ice_init_phy_user_cfg_ldo. 2205 */ 2206 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2207 vsi->back->state)) { 2208 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2209 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2210 } else { 2211 u64 phy_low = 0, phy_high = 0; 2212 2213 ice_update_phy_type(&phy_low, &phy_high, 2214 pi->phy.curr_user_speed_req); 2215 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2216 cfg->phy_type_high = pcaps->phy_type_high & 2217 cpu_to_le64(phy_high); 2218 } 2219 2220 /* Can't provide what was requested; use PHY capabilities */ 2221 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2222 cfg->phy_type_low = pcaps->phy_type_low; 2223 cfg->phy_type_high = pcaps->phy_type_high; 2224 } 2225 2226 /* FEC */ 2227 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2228 2229 /* Can't provide what was requested; use PHY capabilities */ 2230 if (cfg->link_fec_opt != 2231 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2232 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2233 cfg->link_fec_opt = pcaps->link_fec_options; 2234 } 2235 2236 /* Flow Control - always supported; no need to check against 2237 * capabilities 2238 */ 2239 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2240 2241 /* Enable link and link update */ 2242 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2243 2244 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2245 if (err) 2246 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2247 vsi->vsi_num, err); 2248 2249 kfree(cfg); 2250 done: 2251 kfree(pcaps); 2252 return err; 2253 } 2254 2255 /** 2256 * ice_check_media_subtask - Check for media 2257 * @pf: pointer to PF struct 2258 * 2259 * If media is available, then initialize PHY user configuration if it is not 2260 * been, and configure the PHY if the interface is up. 2261 */ 2262 static void ice_check_media_subtask(struct ice_pf *pf) 2263 { 2264 struct ice_port_info *pi; 2265 struct ice_vsi *vsi; 2266 int err; 2267 2268 /* No need to check for media if it's already present */ 2269 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2270 return; 2271 2272 vsi = ice_get_main_vsi(pf); 2273 if (!vsi) 2274 return; 2275 2276 /* Refresh link info and check if media is present */ 2277 pi = vsi->port_info; 2278 err = ice_update_link_info(pi); 2279 if (err) 2280 return; 2281 2282 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2283 2284 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2285 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2286 ice_init_phy_user_cfg(pi); 2287 2288 /* PHY settings are reset on media insertion, reconfigure 2289 * PHY to preserve settings. 2290 */ 2291 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2292 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2293 return; 2294 2295 err = ice_configure_phy(vsi); 2296 if (!err) 2297 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2298 2299 /* A Link Status Event will be generated; the event handler 2300 * will complete bringing the interface up 2301 */ 2302 } 2303 } 2304 2305 /** 2306 * ice_service_task - manage and run subtasks 2307 * @work: pointer to work_struct contained by the PF struct 2308 */ 2309 static void ice_service_task(struct work_struct *work) 2310 { 2311 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2312 unsigned long start_time = jiffies; 2313 2314 /* subtasks */ 2315 2316 /* process reset requests first */ 2317 ice_reset_subtask(pf); 2318 2319 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2320 if (ice_is_reset_in_progress(pf->state) || 2321 test_bit(ICE_SUSPENDED, pf->state) || 2322 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2323 ice_service_task_complete(pf); 2324 return; 2325 } 2326 2327 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2328 struct iidc_event *event; 2329 2330 event = kzalloc(sizeof(*event), GFP_KERNEL); 2331 if (event) { 2332 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 2333 /* report the entire OICR value to AUX driver */ 2334 swap(event->reg, pf->oicr_err_reg); 2335 ice_send_event_to_aux(pf, event); 2336 kfree(event); 2337 } 2338 } 2339 2340 /* unplug aux dev per request, if an unplug request came in 2341 * while processing a plug request, this will handle it 2342 */ 2343 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2344 ice_unplug_aux_dev(pf); 2345 2346 /* Plug aux device per request */ 2347 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2348 ice_plug_aux_dev(pf); 2349 2350 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2351 struct iidc_event *event; 2352 2353 event = kzalloc(sizeof(*event), GFP_KERNEL); 2354 if (event) { 2355 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 2356 ice_send_event_to_aux(pf, event); 2357 kfree(event); 2358 } 2359 } 2360 2361 ice_clean_adminq_subtask(pf); 2362 ice_check_media_subtask(pf); 2363 ice_check_for_hang_subtask(pf); 2364 ice_sync_fltr_subtask(pf); 2365 ice_handle_mdd_event(pf); 2366 ice_watchdog_subtask(pf); 2367 2368 if (ice_is_safe_mode(pf)) { 2369 ice_service_task_complete(pf); 2370 return; 2371 } 2372 2373 ice_process_vflr_event(pf); 2374 ice_clean_mailboxq_subtask(pf); 2375 ice_clean_sbq_subtask(pf); 2376 ice_sync_arfs_fltrs(pf); 2377 ice_flush_fdir_ctx(pf); 2378 2379 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2380 ice_service_task_complete(pf); 2381 2382 /* If the tasks have taken longer than one service timer period 2383 * or there is more work to be done, reset the service timer to 2384 * schedule the service task now. 2385 */ 2386 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2387 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2388 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2389 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2390 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2391 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2392 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2393 mod_timer(&pf->serv_tmr, jiffies); 2394 } 2395 2396 /** 2397 * ice_set_ctrlq_len - helper function to set controlq length 2398 * @hw: pointer to the HW instance 2399 */ 2400 static void ice_set_ctrlq_len(struct ice_hw *hw) 2401 { 2402 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2403 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2404 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2405 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2406 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2407 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2408 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2409 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2410 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2411 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2412 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2413 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2414 } 2415 2416 /** 2417 * ice_schedule_reset - schedule a reset 2418 * @pf: board private structure 2419 * @reset: reset being requested 2420 */ 2421 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2422 { 2423 struct device *dev = ice_pf_to_dev(pf); 2424 2425 /* bail out if earlier reset has failed */ 2426 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2427 dev_dbg(dev, "earlier reset has failed\n"); 2428 return -EIO; 2429 } 2430 /* bail if reset/recovery already in progress */ 2431 if (ice_is_reset_in_progress(pf->state)) { 2432 dev_dbg(dev, "Reset already in progress\n"); 2433 return -EBUSY; 2434 } 2435 2436 switch (reset) { 2437 case ICE_RESET_PFR: 2438 set_bit(ICE_PFR_REQ, pf->state); 2439 break; 2440 case ICE_RESET_CORER: 2441 set_bit(ICE_CORER_REQ, pf->state); 2442 break; 2443 case ICE_RESET_GLOBR: 2444 set_bit(ICE_GLOBR_REQ, pf->state); 2445 break; 2446 default: 2447 return -EINVAL; 2448 } 2449 2450 ice_service_task_schedule(pf); 2451 return 0; 2452 } 2453 2454 /** 2455 * ice_irq_affinity_notify - Callback for affinity changes 2456 * @notify: context as to what irq was changed 2457 * @mask: the new affinity mask 2458 * 2459 * This is a callback function used by the irq_set_affinity_notifier function 2460 * so that we may register to receive changes to the irq affinity masks. 2461 */ 2462 static void 2463 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2464 const cpumask_t *mask) 2465 { 2466 struct ice_q_vector *q_vector = 2467 container_of(notify, struct ice_q_vector, affinity_notify); 2468 2469 cpumask_copy(&q_vector->affinity_mask, mask); 2470 } 2471 2472 /** 2473 * ice_irq_affinity_release - Callback for affinity notifier release 2474 * @ref: internal core kernel usage 2475 * 2476 * This is a callback function used by the irq_set_affinity_notifier function 2477 * to inform the current notification subscriber that they will no longer 2478 * receive notifications. 2479 */ 2480 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2481 2482 /** 2483 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2484 * @vsi: the VSI being configured 2485 */ 2486 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2487 { 2488 struct ice_hw *hw = &vsi->back->hw; 2489 int i; 2490 2491 ice_for_each_q_vector(vsi, i) 2492 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2493 2494 ice_flush(hw); 2495 return 0; 2496 } 2497 2498 /** 2499 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2500 * @vsi: the VSI being configured 2501 * @basename: name for the vector 2502 */ 2503 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2504 { 2505 int q_vectors = vsi->num_q_vectors; 2506 struct ice_pf *pf = vsi->back; 2507 struct device *dev; 2508 int rx_int_idx = 0; 2509 int tx_int_idx = 0; 2510 int vector, err; 2511 int irq_num; 2512 2513 dev = ice_pf_to_dev(pf); 2514 for (vector = 0; vector < q_vectors; vector++) { 2515 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2516 2517 irq_num = q_vector->irq.virq; 2518 2519 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2520 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2521 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2522 tx_int_idx++; 2523 } else if (q_vector->rx.rx_ring) { 2524 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2525 "%s-%s-%d", basename, "rx", rx_int_idx++); 2526 } else if (q_vector->tx.tx_ring) { 2527 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2528 "%s-%s-%d", basename, "tx", tx_int_idx++); 2529 } else { 2530 /* skip this unused q_vector */ 2531 continue; 2532 } 2533 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2534 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2535 IRQF_SHARED, q_vector->name, 2536 q_vector); 2537 else 2538 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2539 0, q_vector->name, q_vector); 2540 if (err) { 2541 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2542 err); 2543 goto free_q_irqs; 2544 } 2545 2546 /* register for affinity change notifications */ 2547 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2548 struct irq_affinity_notify *affinity_notify; 2549 2550 affinity_notify = &q_vector->affinity_notify; 2551 affinity_notify->notify = ice_irq_affinity_notify; 2552 affinity_notify->release = ice_irq_affinity_release; 2553 irq_set_affinity_notifier(irq_num, affinity_notify); 2554 } 2555 2556 /* assign the mask for this irq */ 2557 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2558 } 2559 2560 err = ice_set_cpu_rx_rmap(vsi); 2561 if (err) { 2562 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2563 vsi->vsi_num, ERR_PTR(err)); 2564 goto free_q_irqs; 2565 } 2566 2567 vsi->irqs_ready = true; 2568 return 0; 2569 2570 free_q_irqs: 2571 while (vector--) { 2572 irq_num = vsi->q_vectors[vector]->irq.virq; 2573 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2574 irq_set_affinity_notifier(irq_num, NULL); 2575 irq_set_affinity_hint(irq_num, NULL); 2576 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2577 } 2578 return err; 2579 } 2580 2581 /** 2582 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2583 * @vsi: VSI to setup Tx rings used by XDP 2584 * 2585 * Return 0 on success and negative value on error 2586 */ 2587 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2588 { 2589 struct device *dev = ice_pf_to_dev(vsi->back); 2590 struct ice_tx_desc *tx_desc; 2591 int i, j; 2592 2593 ice_for_each_xdp_txq(vsi, i) { 2594 u16 xdp_q_idx = vsi->alloc_txq + i; 2595 struct ice_ring_stats *ring_stats; 2596 struct ice_tx_ring *xdp_ring; 2597 2598 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2599 if (!xdp_ring) 2600 goto free_xdp_rings; 2601 2602 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2603 if (!ring_stats) { 2604 ice_free_tx_ring(xdp_ring); 2605 goto free_xdp_rings; 2606 } 2607 2608 xdp_ring->ring_stats = ring_stats; 2609 xdp_ring->q_index = xdp_q_idx; 2610 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2611 xdp_ring->vsi = vsi; 2612 xdp_ring->netdev = NULL; 2613 xdp_ring->dev = dev; 2614 xdp_ring->count = vsi->num_tx_desc; 2615 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2616 if (ice_setup_tx_ring(xdp_ring)) 2617 goto free_xdp_rings; 2618 ice_set_ring_xdp(xdp_ring); 2619 spin_lock_init(&xdp_ring->tx_lock); 2620 for (j = 0; j < xdp_ring->count; j++) { 2621 tx_desc = ICE_TX_DESC(xdp_ring, j); 2622 tx_desc->cmd_type_offset_bsz = 0; 2623 } 2624 } 2625 2626 return 0; 2627 2628 free_xdp_rings: 2629 for (; i >= 0; i--) { 2630 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2631 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2632 vsi->xdp_rings[i]->ring_stats = NULL; 2633 ice_free_tx_ring(vsi->xdp_rings[i]); 2634 } 2635 } 2636 return -ENOMEM; 2637 } 2638 2639 /** 2640 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2641 * @vsi: VSI to set the bpf prog on 2642 * @prog: the bpf prog pointer 2643 */ 2644 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2645 { 2646 struct bpf_prog *old_prog; 2647 int i; 2648 2649 old_prog = xchg(&vsi->xdp_prog, prog); 2650 ice_for_each_rxq(vsi, i) 2651 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2652 2653 if (old_prog) 2654 bpf_prog_put(old_prog); 2655 } 2656 2657 /** 2658 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2659 * @vsi: VSI to bring up Tx rings used by XDP 2660 * @prog: bpf program that will be assigned to VSI 2661 * 2662 * Return 0 on success and negative value on error 2663 */ 2664 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2665 { 2666 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2667 int xdp_rings_rem = vsi->num_xdp_txq; 2668 struct ice_pf *pf = vsi->back; 2669 struct ice_qs_cfg xdp_qs_cfg = { 2670 .qs_mutex = &pf->avail_q_mutex, 2671 .pf_map = pf->avail_txqs, 2672 .pf_map_size = pf->max_pf_txqs, 2673 .q_count = vsi->num_xdp_txq, 2674 .scatter_count = ICE_MAX_SCATTER_TXQS, 2675 .vsi_map = vsi->txq_map, 2676 .vsi_map_offset = vsi->alloc_txq, 2677 .mapping_mode = ICE_VSI_MAP_CONTIG 2678 }; 2679 struct device *dev; 2680 int i, v_idx; 2681 int status; 2682 2683 dev = ice_pf_to_dev(pf); 2684 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2685 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2686 if (!vsi->xdp_rings) 2687 return -ENOMEM; 2688 2689 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2690 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2691 goto err_map_xdp; 2692 2693 if (static_key_enabled(&ice_xdp_locking_key)) 2694 netdev_warn(vsi->netdev, 2695 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2696 2697 if (ice_xdp_alloc_setup_rings(vsi)) 2698 goto clear_xdp_rings; 2699 2700 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2701 ice_for_each_q_vector(vsi, v_idx) { 2702 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2703 int xdp_rings_per_v, q_id, q_base; 2704 2705 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2706 vsi->num_q_vectors - v_idx); 2707 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2708 2709 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2710 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2711 2712 xdp_ring->q_vector = q_vector; 2713 xdp_ring->next = q_vector->tx.tx_ring; 2714 q_vector->tx.tx_ring = xdp_ring; 2715 } 2716 xdp_rings_rem -= xdp_rings_per_v; 2717 } 2718 2719 ice_for_each_rxq(vsi, i) { 2720 if (static_key_enabled(&ice_xdp_locking_key)) { 2721 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2722 } else { 2723 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector; 2724 struct ice_tx_ring *ring; 2725 2726 ice_for_each_tx_ring(ring, q_vector->tx) { 2727 if (ice_ring_is_xdp(ring)) { 2728 vsi->rx_rings[i]->xdp_ring = ring; 2729 break; 2730 } 2731 } 2732 } 2733 ice_tx_xsk_pool(vsi, i); 2734 } 2735 2736 /* omit the scheduler update if in reset path; XDP queues will be 2737 * taken into account at the end of ice_vsi_rebuild, where 2738 * ice_cfg_vsi_lan is being called 2739 */ 2740 if (ice_is_reset_in_progress(pf->state)) 2741 return 0; 2742 2743 /* tell the Tx scheduler that right now we have 2744 * additional queues 2745 */ 2746 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2747 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2748 2749 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2750 max_txqs); 2751 if (status) { 2752 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2753 status); 2754 goto clear_xdp_rings; 2755 } 2756 2757 /* assign the prog only when it's not already present on VSI; 2758 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2759 * VSI rebuild that happens under ethtool -L can expose us to 2760 * the bpf_prog refcount issues as we would be swapping same 2761 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2762 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2763 * this is not harmful as dev_xdp_install bumps the refcount 2764 * before calling the op exposed by the driver; 2765 */ 2766 if (!ice_is_xdp_ena_vsi(vsi)) 2767 ice_vsi_assign_bpf_prog(vsi, prog); 2768 2769 return 0; 2770 clear_xdp_rings: 2771 ice_for_each_xdp_txq(vsi, i) 2772 if (vsi->xdp_rings[i]) { 2773 kfree_rcu(vsi->xdp_rings[i], rcu); 2774 vsi->xdp_rings[i] = NULL; 2775 } 2776 2777 err_map_xdp: 2778 mutex_lock(&pf->avail_q_mutex); 2779 ice_for_each_xdp_txq(vsi, i) { 2780 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2781 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2782 } 2783 mutex_unlock(&pf->avail_q_mutex); 2784 2785 devm_kfree(dev, vsi->xdp_rings); 2786 return -ENOMEM; 2787 } 2788 2789 /** 2790 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2791 * @vsi: VSI to remove XDP rings 2792 * 2793 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2794 * resources 2795 */ 2796 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2797 { 2798 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2799 struct ice_pf *pf = vsi->back; 2800 int i, v_idx; 2801 2802 /* q_vectors are freed in reset path so there's no point in detaching 2803 * rings; in case of rebuild being triggered not from reset bits 2804 * in pf->state won't be set, so additionally check first q_vector 2805 * against NULL 2806 */ 2807 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2808 goto free_qmap; 2809 2810 ice_for_each_q_vector(vsi, v_idx) { 2811 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2812 struct ice_tx_ring *ring; 2813 2814 ice_for_each_tx_ring(ring, q_vector->tx) 2815 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2816 break; 2817 2818 /* restore the value of last node prior to XDP setup */ 2819 q_vector->tx.tx_ring = ring; 2820 } 2821 2822 free_qmap: 2823 mutex_lock(&pf->avail_q_mutex); 2824 ice_for_each_xdp_txq(vsi, i) { 2825 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2826 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2827 } 2828 mutex_unlock(&pf->avail_q_mutex); 2829 2830 ice_for_each_xdp_txq(vsi, i) 2831 if (vsi->xdp_rings[i]) { 2832 if (vsi->xdp_rings[i]->desc) { 2833 synchronize_rcu(); 2834 ice_free_tx_ring(vsi->xdp_rings[i]); 2835 } 2836 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2837 vsi->xdp_rings[i]->ring_stats = NULL; 2838 kfree_rcu(vsi->xdp_rings[i], rcu); 2839 vsi->xdp_rings[i] = NULL; 2840 } 2841 2842 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2843 vsi->xdp_rings = NULL; 2844 2845 if (static_key_enabled(&ice_xdp_locking_key)) 2846 static_branch_dec(&ice_xdp_locking_key); 2847 2848 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2849 return 0; 2850 2851 ice_vsi_assign_bpf_prog(vsi, NULL); 2852 2853 /* notify Tx scheduler that we destroyed XDP queues and bring 2854 * back the old number of child nodes 2855 */ 2856 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2857 max_txqs[i] = vsi->num_txq; 2858 2859 /* change number of XDP Tx queues to 0 */ 2860 vsi->num_xdp_txq = 0; 2861 2862 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2863 max_txqs); 2864 } 2865 2866 /** 2867 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2868 * @vsi: VSI to schedule napi on 2869 */ 2870 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2871 { 2872 int i; 2873 2874 ice_for_each_rxq(vsi, i) { 2875 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2876 2877 if (rx_ring->xsk_pool) 2878 napi_schedule(&rx_ring->q_vector->napi); 2879 } 2880 } 2881 2882 /** 2883 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2884 * @vsi: VSI to determine the count of XDP Tx qs 2885 * 2886 * returns 0 if Tx qs count is higher than at least half of CPU count, 2887 * -ENOMEM otherwise 2888 */ 2889 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2890 { 2891 u16 avail = ice_get_avail_txq_count(vsi->back); 2892 u16 cpus = num_possible_cpus(); 2893 2894 if (avail < cpus / 2) 2895 return -ENOMEM; 2896 2897 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2898 2899 if (vsi->num_xdp_txq < cpus) 2900 static_branch_inc(&ice_xdp_locking_key); 2901 2902 return 0; 2903 } 2904 2905 /** 2906 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2907 * @vsi: Pointer to VSI structure 2908 */ 2909 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2910 { 2911 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2912 return ICE_RXBUF_1664; 2913 else 2914 return ICE_RXBUF_3072; 2915 } 2916 2917 /** 2918 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2919 * @vsi: VSI to setup XDP for 2920 * @prog: XDP program 2921 * @extack: netlink extended ack 2922 */ 2923 static int 2924 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2925 struct netlink_ext_ack *extack) 2926 { 2927 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2928 bool if_running = netif_running(vsi->netdev); 2929 int ret = 0, xdp_ring_err = 0; 2930 2931 if (prog && !prog->aux->xdp_has_frags) { 2932 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2933 NL_SET_ERR_MSG_MOD(extack, 2934 "MTU is too large for linear frames and XDP prog does not support frags"); 2935 return -EOPNOTSUPP; 2936 } 2937 } 2938 2939 /* hot swap progs and avoid toggling link */ 2940 if (ice_is_xdp_ena_vsi(vsi) == !!prog) { 2941 ice_vsi_assign_bpf_prog(vsi, prog); 2942 return 0; 2943 } 2944 2945 /* need to stop netdev while setting up the program for Rx rings */ 2946 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2947 ret = ice_down(vsi); 2948 if (ret) { 2949 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2950 return ret; 2951 } 2952 } 2953 2954 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2955 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2956 if (xdp_ring_err) { 2957 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2958 } else { 2959 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2960 if (xdp_ring_err) 2961 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2962 } 2963 xdp_features_set_redirect_target(vsi->netdev, true); 2964 /* reallocate Rx queues that are used for zero-copy */ 2965 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 2966 if (xdp_ring_err) 2967 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 2968 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2969 xdp_features_clear_redirect_target(vsi->netdev); 2970 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2971 if (xdp_ring_err) 2972 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2973 /* reallocate Rx queues that were used for zero-copy */ 2974 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 2975 if (xdp_ring_err) 2976 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 2977 } 2978 2979 if (if_running) 2980 ret = ice_up(vsi); 2981 2982 if (!ret && prog) 2983 ice_vsi_rx_napi_schedule(vsi); 2984 2985 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2986 } 2987 2988 /** 2989 * ice_xdp_safe_mode - XDP handler for safe mode 2990 * @dev: netdevice 2991 * @xdp: XDP command 2992 */ 2993 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2994 struct netdev_bpf *xdp) 2995 { 2996 NL_SET_ERR_MSG_MOD(xdp->extack, 2997 "Please provide working DDP firmware package in order to use XDP\n" 2998 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2999 return -EOPNOTSUPP; 3000 } 3001 3002 /** 3003 * ice_xdp - implements XDP handler 3004 * @dev: netdevice 3005 * @xdp: XDP command 3006 */ 3007 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3008 { 3009 struct ice_netdev_priv *np = netdev_priv(dev); 3010 struct ice_vsi *vsi = np->vsi; 3011 3012 if (vsi->type != ICE_VSI_PF) { 3013 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 3014 return -EINVAL; 3015 } 3016 3017 switch (xdp->command) { 3018 case XDP_SETUP_PROG: 3019 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3020 case XDP_SETUP_XSK_POOL: 3021 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 3022 xdp->xsk.queue_id); 3023 default: 3024 return -EINVAL; 3025 } 3026 } 3027 3028 /** 3029 * ice_ena_misc_vector - enable the non-queue interrupts 3030 * @pf: board private structure 3031 */ 3032 static void ice_ena_misc_vector(struct ice_pf *pf) 3033 { 3034 struct ice_hw *hw = &pf->hw; 3035 u32 val; 3036 3037 /* Disable anti-spoof detection interrupt to prevent spurious event 3038 * interrupts during a function reset. Anti-spoof functionally is 3039 * still supported. 3040 */ 3041 val = rd32(hw, GL_MDCK_TX_TDPU); 3042 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3043 wr32(hw, GL_MDCK_TX_TDPU, val); 3044 3045 /* clear things first */ 3046 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3047 rd32(hw, PFINT_OICR); /* read to clear */ 3048 3049 val = (PFINT_OICR_ECC_ERR_M | 3050 PFINT_OICR_MAL_DETECT_M | 3051 PFINT_OICR_GRST_M | 3052 PFINT_OICR_PCI_EXCEPTION_M | 3053 PFINT_OICR_VFLR_M | 3054 PFINT_OICR_HMC_ERR_M | 3055 PFINT_OICR_PE_PUSH_M | 3056 PFINT_OICR_PE_CRITERR_M); 3057 3058 wr32(hw, PFINT_OICR_ENA, val); 3059 3060 /* SW_ITR_IDX = 0, but don't change INTENA */ 3061 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3062 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3063 } 3064 3065 /** 3066 * ice_misc_intr - misc interrupt handler 3067 * @irq: interrupt number 3068 * @data: pointer to a q_vector 3069 */ 3070 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3071 { 3072 struct ice_pf *pf = (struct ice_pf *)data; 3073 struct ice_hw *hw = &pf->hw; 3074 struct device *dev; 3075 u32 oicr, ena_mask; 3076 3077 dev = ice_pf_to_dev(pf); 3078 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3079 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3080 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3081 3082 oicr = rd32(hw, PFINT_OICR); 3083 ena_mask = rd32(hw, PFINT_OICR_ENA); 3084 3085 if (oicr & PFINT_OICR_SWINT_M) { 3086 ena_mask &= ~PFINT_OICR_SWINT_M; 3087 pf->sw_int_count++; 3088 } 3089 3090 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3091 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3092 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3093 } 3094 if (oicr & PFINT_OICR_VFLR_M) { 3095 /* disable any further VFLR event notifications */ 3096 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3097 u32 reg = rd32(hw, PFINT_OICR_ENA); 3098 3099 reg &= ~PFINT_OICR_VFLR_M; 3100 wr32(hw, PFINT_OICR_ENA, reg); 3101 } else { 3102 ena_mask &= ~PFINT_OICR_VFLR_M; 3103 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3104 } 3105 } 3106 3107 if (oicr & PFINT_OICR_GRST_M) { 3108 u32 reset; 3109 3110 /* we have a reset warning */ 3111 ena_mask &= ~PFINT_OICR_GRST_M; 3112 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 3113 GLGEN_RSTAT_RESET_TYPE_S; 3114 3115 if (reset == ICE_RESET_CORER) 3116 pf->corer_count++; 3117 else if (reset == ICE_RESET_GLOBR) 3118 pf->globr_count++; 3119 else if (reset == ICE_RESET_EMPR) 3120 pf->empr_count++; 3121 else 3122 dev_dbg(dev, "Invalid reset type %d\n", reset); 3123 3124 /* If a reset cycle isn't already in progress, we set a bit in 3125 * pf->state so that the service task can start a reset/rebuild. 3126 */ 3127 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3128 if (reset == ICE_RESET_CORER) 3129 set_bit(ICE_CORER_RECV, pf->state); 3130 else if (reset == ICE_RESET_GLOBR) 3131 set_bit(ICE_GLOBR_RECV, pf->state); 3132 else 3133 set_bit(ICE_EMPR_RECV, pf->state); 3134 3135 /* There are couple of different bits at play here. 3136 * hw->reset_ongoing indicates whether the hardware is 3137 * in reset. This is set to true when a reset interrupt 3138 * is received and set back to false after the driver 3139 * has determined that the hardware is out of reset. 3140 * 3141 * ICE_RESET_OICR_RECV in pf->state indicates 3142 * that a post reset rebuild is required before the 3143 * driver is operational again. This is set above. 3144 * 3145 * As this is the start of the reset/rebuild cycle, set 3146 * both to indicate that. 3147 */ 3148 hw->reset_ongoing = true; 3149 } 3150 } 3151 3152 if (oicr & PFINT_OICR_TSYN_TX_M) { 3153 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3154 if (ice_ptp_pf_handles_tx_interrupt(pf)) 3155 set_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread); 3156 } 3157 3158 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3159 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3160 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3161 3162 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3163 3164 if (ice_pf_src_tmr_owned(pf)) { 3165 /* Save EVENTs from GLTSYN register */ 3166 pf->ptp.ext_ts_irq |= gltsyn_stat & 3167 (GLTSYN_STAT_EVENT0_M | 3168 GLTSYN_STAT_EVENT1_M | 3169 GLTSYN_STAT_EVENT2_M); 3170 3171 set_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread); 3172 } 3173 } 3174 3175 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3176 if (oicr & ICE_AUX_CRIT_ERR) { 3177 pf->oicr_err_reg |= oicr; 3178 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3179 ena_mask &= ~ICE_AUX_CRIT_ERR; 3180 } 3181 3182 /* Report any remaining unexpected interrupts */ 3183 oicr &= ena_mask; 3184 if (oicr) { 3185 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3186 /* If a critical error is pending there is no choice but to 3187 * reset the device. 3188 */ 3189 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3190 PFINT_OICR_ECC_ERR_M)) { 3191 set_bit(ICE_PFR_REQ, pf->state); 3192 } 3193 } 3194 3195 return IRQ_WAKE_THREAD; 3196 } 3197 3198 /** 3199 * ice_misc_intr_thread_fn - misc interrupt thread function 3200 * @irq: interrupt number 3201 * @data: pointer to a q_vector 3202 */ 3203 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3204 { 3205 struct ice_pf *pf = data; 3206 struct ice_hw *hw; 3207 3208 hw = &pf->hw; 3209 3210 if (ice_is_reset_in_progress(pf->state)) 3211 return IRQ_HANDLED; 3212 3213 ice_service_task_schedule(pf); 3214 3215 if (test_and_clear_bit(ICE_MISC_THREAD_EXTTS_EVENT, pf->misc_thread)) 3216 ice_ptp_extts_event(pf); 3217 3218 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3219 /* Process outstanding Tx timestamps. If there is more work, 3220 * re-arm the interrupt to trigger again. 3221 */ 3222 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3223 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3224 ice_flush(hw); 3225 } 3226 } 3227 3228 ice_irq_dynamic_ena(hw, NULL, NULL); 3229 3230 return IRQ_HANDLED; 3231 } 3232 3233 /** 3234 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3235 * @hw: pointer to HW structure 3236 */ 3237 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3238 { 3239 /* disable Admin queue Interrupt causes */ 3240 wr32(hw, PFINT_FW_CTL, 3241 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3242 3243 /* disable Mailbox queue Interrupt causes */ 3244 wr32(hw, PFINT_MBX_CTL, 3245 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3246 3247 wr32(hw, PFINT_SB_CTL, 3248 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3249 3250 /* disable Control queue Interrupt causes */ 3251 wr32(hw, PFINT_OICR_CTL, 3252 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3253 3254 ice_flush(hw); 3255 } 3256 3257 /** 3258 * ice_free_irq_msix_misc - Unroll misc vector setup 3259 * @pf: board private structure 3260 */ 3261 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3262 { 3263 int misc_irq_num = pf->oicr_irq.virq; 3264 struct ice_hw *hw = &pf->hw; 3265 3266 ice_dis_ctrlq_interrupts(hw); 3267 3268 /* disable OICR interrupt */ 3269 wr32(hw, PFINT_OICR_ENA, 0); 3270 ice_flush(hw); 3271 3272 synchronize_irq(misc_irq_num); 3273 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3274 3275 ice_free_irq(pf, pf->oicr_irq); 3276 } 3277 3278 /** 3279 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3280 * @hw: pointer to HW structure 3281 * @reg_idx: HW vector index to associate the control queue interrupts with 3282 */ 3283 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3284 { 3285 u32 val; 3286 3287 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3288 PFINT_OICR_CTL_CAUSE_ENA_M); 3289 wr32(hw, PFINT_OICR_CTL, val); 3290 3291 /* enable Admin queue Interrupt causes */ 3292 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3293 PFINT_FW_CTL_CAUSE_ENA_M); 3294 wr32(hw, PFINT_FW_CTL, val); 3295 3296 /* enable Mailbox queue Interrupt causes */ 3297 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3298 PFINT_MBX_CTL_CAUSE_ENA_M); 3299 wr32(hw, PFINT_MBX_CTL, val); 3300 3301 /* This enables Sideband queue Interrupt causes */ 3302 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3303 PFINT_SB_CTL_CAUSE_ENA_M); 3304 wr32(hw, PFINT_SB_CTL, val); 3305 3306 ice_flush(hw); 3307 } 3308 3309 /** 3310 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3311 * @pf: board private structure 3312 * 3313 * This sets up the handler for MSIX 0, which is used to manage the 3314 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3315 * when in MSI or Legacy interrupt mode. 3316 */ 3317 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3318 { 3319 struct device *dev = ice_pf_to_dev(pf); 3320 struct ice_hw *hw = &pf->hw; 3321 struct msi_map oicr_irq; 3322 int err = 0; 3323 3324 if (!pf->int_name[0]) 3325 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3326 dev_driver_string(dev), dev_name(dev)); 3327 3328 /* Do not request IRQ but do enable OICR interrupt since settings are 3329 * lost during reset. Note that this function is called only during 3330 * rebuild path and not while reset is in progress. 3331 */ 3332 if (ice_is_reset_in_progress(pf->state)) 3333 goto skip_req_irq; 3334 3335 /* reserve one vector in irq_tracker for misc interrupts */ 3336 oicr_irq = ice_alloc_irq(pf, false); 3337 if (oicr_irq.index < 0) 3338 return oicr_irq.index; 3339 3340 pf->oicr_irq = oicr_irq; 3341 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3342 ice_misc_intr_thread_fn, 0, 3343 pf->int_name, pf); 3344 if (err) { 3345 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3346 pf->int_name, err); 3347 ice_free_irq(pf, pf->oicr_irq); 3348 return err; 3349 } 3350 3351 skip_req_irq: 3352 ice_ena_misc_vector(pf); 3353 3354 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3355 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3356 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3357 3358 ice_flush(hw); 3359 ice_irq_dynamic_ena(hw, NULL, NULL); 3360 3361 return 0; 3362 } 3363 3364 /** 3365 * ice_napi_add - register NAPI handler for the VSI 3366 * @vsi: VSI for which NAPI handler is to be registered 3367 * 3368 * This function is only called in the driver's load path. Registering the NAPI 3369 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3370 * reset/rebuild, etc.) 3371 */ 3372 static void ice_napi_add(struct ice_vsi *vsi) 3373 { 3374 int v_idx; 3375 3376 if (!vsi->netdev) 3377 return; 3378 3379 ice_for_each_q_vector(vsi, v_idx) { 3380 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3381 ice_napi_poll); 3382 ice_q_vector_set_napi_queues(vsi->q_vectors[v_idx], false); 3383 } 3384 } 3385 3386 /** 3387 * ice_set_ops - set netdev and ethtools ops for the given netdev 3388 * @vsi: the VSI associated with the new netdev 3389 */ 3390 static void ice_set_ops(struct ice_vsi *vsi) 3391 { 3392 struct net_device *netdev = vsi->netdev; 3393 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3394 3395 if (ice_is_safe_mode(pf)) { 3396 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3397 ice_set_ethtool_safe_mode_ops(netdev); 3398 return; 3399 } 3400 3401 netdev->netdev_ops = &ice_netdev_ops; 3402 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3403 ice_set_ethtool_ops(netdev); 3404 3405 if (vsi->type != ICE_VSI_PF) 3406 return; 3407 3408 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3409 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3410 NETDEV_XDP_ACT_RX_SG; 3411 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3412 } 3413 3414 /** 3415 * ice_set_netdev_features - set features for the given netdev 3416 * @netdev: netdev instance 3417 */ 3418 static void ice_set_netdev_features(struct net_device *netdev) 3419 { 3420 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3421 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3422 netdev_features_t csumo_features; 3423 netdev_features_t vlano_features; 3424 netdev_features_t dflt_features; 3425 netdev_features_t tso_features; 3426 3427 if (ice_is_safe_mode(pf)) { 3428 /* safe mode */ 3429 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3430 netdev->hw_features = netdev->features; 3431 return; 3432 } 3433 3434 dflt_features = NETIF_F_SG | 3435 NETIF_F_HIGHDMA | 3436 NETIF_F_NTUPLE | 3437 NETIF_F_RXHASH; 3438 3439 csumo_features = NETIF_F_RXCSUM | 3440 NETIF_F_IP_CSUM | 3441 NETIF_F_SCTP_CRC | 3442 NETIF_F_IPV6_CSUM; 3443 3444 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3445 NETIF_F_HW_VLAN_CTAG_TX | 3446 NETIF_F_HW_VLAN_CTAG_RX; 3447 3448 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3449 if (is_dvm_ena) 3450 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3451 3452 tso_features = NETIF_F_TSO | 3453 NETIF_F_TSO_ECN | 3454 NETIF_F_TSO6 | 3455 NETIF_F_GSO_GRE | 3456 NETIF_F_GSO_UDP_TUNNEL | 3457 NETIF_F_GSO_GRE_CSUM | 3458 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3459 NETIF_F_GSO_PARTIAL | 3460 NETIF_F_GSO_IPXIP4 | 3461 NETIF_F_GSO_IPXIP6 | 3462 NETIF_F_GSO_UDP_L4; 3463 3464 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3465 NETIF_F_GSO_GRE_CSUM; 3466 /* set features that user can change */ 3467 netdev->hw_features = dflt_features | csumo_features | 3468 vlano_features | tso_features; 3469 3470 /* add support for HW_CSUM on packets with MPLS header */ 3471 netdev->mpls_features = NETIF_F_HW_CSUM | 3472 NETIF_F_TSO | 3473 NETIF_F_TSO6; 3474 3475 /* enable features */ 3476 netdev->features |= netdev->hw_features; 3477 3478 netdev->hw_features |= NETIF_F_HW_TC; 3479 netdev->hw_features |= NETIF_F_LOOPBACK; 3480 3481 /* encap and VLAN devices inherit default, csumo and tso features */ 3482 netdev->hw_enc_features |= dflt_features | csumo_features | 3483 tso_features; 3484 netdev->vlan_features |= dflt_features | csumo_features | 3485 tso_features; 3486 3487 /* advertise support but don't enable by default since only one type of 3488 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3489 * type turns on the other has to be turned off. This is enforced by the 3490 * ice_fix_features() ndo callback. 3491 */ 3492 if (is_dvm_ena) 3493 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3494 NETIF_F_HW_VLAN_STAG_TX; 3495 3496 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3497 * be changed at runtime 3498 */ 3499 netdev->hw_features |= NETIF_F_RXFCS; 3500 3501 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3502 } 3503 3504 /** 3505 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3506 * @lut: Lookup table 3507 * @rss_table_size: Lookup table size 3508 * @rss_size: Range of queue number for hashing 3509 */ 3510 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3511 { 3512 u16 i; 3513 3514 for (i = 0; i < rss_table_size; i++) 3515 lut[i] = i % rss_size; 3516 } 3517 3518 /** 3519 * ice_pf_vsi_setup - Set up a PF VSI 3520 * @pf: board private structure 3521 * @pi: pointer to the port_info instance 3522 * 3523 * Returns pointer to the successfully allocated VSI software struct 3524 * on success, otherwise returns NULL on failure. 3525 */ 3526 static struct ice_vsi * 3527 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3528 { 3529 struct ice_vsi_cfg_params params = {}; 3530 3531 params.type = ICE_VSI_PF; 3532 params.pi = pi; 3533 params.flags = ICE_VSI_FLAG_INIT; 3534 3535 return ice_vsi_setup(pf, ¶ms); 3536 } 3537 3538 static struct ice_vsi * 3539 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3540 struct ice_channel *ch) 3541 { 3542 struct ice_vsi_cfg_params params = {}; 3543 3544 params.type = ICE_VSI_CHNL; 3545 params.pi = pi; 3546 params.ch = ch; 3547 params.flags = ICE_VSI_FLAG_INIT; 3548 3549 return ice_vsi_setup(pf, ¶ms); 3550 } 3551 3552 /** 3553 * ice_ctrl_vsi_setup - Set up a control VSI 3554 * @pf: board private structure 3555 * @pi: pointer to the port_info instance 3556 * 3557 * Returns pointer to the successfully allocated VSI software struct 3558 * on success, otherwise returns NULL on failure. 3559 */ 3560 static struct ice_vsi * 3561 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3562 { 3563 struct ice_vsi_cfg_params params = {}; 3564 3565 params.type = ICE_VSI_CTRL; 3566 params.pi = pi; 3567 params.flags = ICE_VSI_FLAG_INIT; 3568 3569 return ice_vsi_setup(pf, ¶ms); 3570 } 3571 3572 /** 3573 * ice_lb_vsi_setup - Set up a loopback VSI 3574 * @pf: board private structure 3575 * @pi: pointer to the port_info instance 3576 * 3577 * Returns pointer to the successfully allocated VSI software struct 3578 * on success, otherwise returns NULL on failure. 3579 */ 3580 struct ice_vsi * 3581 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3582 { 3583 struct ice_vsi_cfg_params params = {}; 3584 3585 params.type = ICE_VSI_LB; 3586 params.pi = pi; 3587 params.flags = ICE_VSI_FLAG_INIT; 3588 3589 return ice_vsi_setup(pf, ¶ms); 3590 } 3591 3592 /** 3593 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3594 * @netdev: network interface to be adjusted 3595 * @proto: VLAN TPID 3596 * @vid: VLAN ID to be added 3597 * 3598 * net_device_ops implementation for adding VLAN IDs 3599 */ 3600 static int 3601 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3602 { 3603 struct ice_netdev_priv *np = netdev_priv(netdev); 3604 struct ice_vsi_vlan_ops *vlan_ops; 3605 struct ice_vsi *vsi = np->vsi; 3606 struct ice_vlan vlan; 3607 int ret; 3608 3609 /* VLAN 0 is added by default during load/reset */ 3610 if (!vid) 3611 return 0; 3612 3613 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3614 usleep_range(1000, 2000); 3615 3616 /* Add multicast promisc rule for the VLAN ID to be added if 3617 * all-multicast is currently enabled. 3618 */ 3619 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3620 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3621 ICE_MCAST_VLAN_PROMISC_BITS, 3622 vid); 3623 if (ret) 3624 goto finish; 3625 } 3626 3627 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3628 3629 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3630 * packets aren't pruned by the device's internal switch on Rx 3631 */ 3632 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3633 ret = vlan_ops->add_vlan(vsi, &vlan); 3634 if (ret) 3635 goto finish; 3636 3637 /* If all-multicast is currently enabled and this VLAN ID is only one 3638 * besides VLAN-0 we have to update look-up type of multicast promisc 3639 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3640 */ 3641 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3642 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3643 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3644 ICE_MCAST_PROMISC_BITS, 0); 3645 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3646 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3647 } 3648 3649 finish: 3650 clear_bit(ICE_CFG_BUSY, vsi->state); 3651 3652 return ret; 3653 } 3654 3655 /** 3656 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3657 * @netdev: network interface to be adjusted 3658 * @proto: VLAN TPID 3659 * @vid: VLAN ID to be removed 3660 * 3661 * net_device_ops implementation for removing VLAN IDs 3662 */ 3663 static int 3664 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3665 { 3666 struct ice_netdev_priv *np = netdev_priv(netdev); 3667 struct ice_vsi_vlan_ops *vlan_ops; 3668 struct ice_vsi *vsi = np->vsi; 3669 struct ice_vlan vlan; 3670 int ret; 3671 3672 /* don't allow removal of VLAN 0 */ 3673 if (!vid) 3674 return 0; 3675 3676 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3677 usleep_range(1000, 2000); 3678 3679 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3680 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3681 if (ret) { 3682 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3683 vsi->vsi_num); 3684 vsi->current_netdev_flags |= IFF_ALLMULTI; 3685 } 3686 3687 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3688 3689 /* Make sure VLAN delete is successful before updating VLAN 3690 * information 3691 */ 3692 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3693 ret = vlan_ops->del_vlan(vsi, &vlan); 3694 if (ret) 3695 goto finish; 3696 3697 /* Remove multicast promisc rule for the removed VLAN ID if 3698 * all-multicast is enabled. 3699 */ 3700 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3701 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3702 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3703 3704 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3705 /* Update look-up type of multicast promisc rule for VLAN 0 3706 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3707 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3708 */ 3709 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3710 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3711 ICE_MCAST_VLAN_PROMISC_BITS, 3712 0); 3713 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3714 ICE_MCAST_PROMISC_BITS, 0); 3715 } 3716 } 3717 3718 finish: 3719 clear_bit(ICE_CFG_BUSY, vsi->state); 3720 3721 return ret; 3722 } 3723 3724 /** 3725 * ice_rep_indr_tc_block_unbind 3726 * @cb_priv: indirection block private data 3727 */ 3728 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3729 { 3730 struct ice_indr_block_priv *indr_priv = cb_priv; 3731 3732 list_del(&indr_priv->list); 3733 kfree(indr_priv); 3734 } 3735 3736 /** 3737 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3738 * @vsi: VSI struct which has the netdev 3739 */ 3740 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3741 { 3742 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3743 3744 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3745 ice_rep_indr_tc_block_unbind); 3746 } 3747 3748 /** 3749 * ice_tc_indir_block_register - Register TC indirect block notifications 3750 * @vsi: VSI struct which has the netdev 3751 * 3752 * Returns 0 on success, negative value on failure 3753 */ 3754 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3755 { 3756 struct ice_netdev_priv *np; 3757 3758 if (!vsi || !vsi->netdev) 3759 return -EINVAL; 3760 3761 np = netdev_priv(vsi->netdev); 3762 3763 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3764 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3765 } 3766 3767 /** 3768 * ice_get_avail_q_count - Get count of queues in use 3769 * @pf_qmap: bitmap to get queue use count from 3770 * @lock: pointer to a mutex that protects access to pf_qmap 3771 * @size: size of the bitmap 3772 */ 3773 static u16 3774 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3775 { 3776 unsigned long bit; 3777 u16 count = 0; 3778 3779 mutex_lock(lock); 3780 for_each_clear_bit(bit, pf_qmap, size) 3781 count++; 3782 mutex_unlock(lock); 3783 3784 return count; 3785 } 3786 3787 /** 3788 * ice_get_avail_txq_count - Get count of Tx queues in use 3789 * @pf: pointer to an ice_pf instance 3790 */ 3791 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3792 { 3793 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3794 pf->max_pf_txqs); 3795 } 3796 3797 /** 3798 * ice_get_avail_rxq_count - Get count of Rx queues in use 3799 * @pf: pointer to an ice_pf instance 3800 */ 3801 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3802 { 3803 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3804 pf->max_pf_rxqs); 3805 } 3806 3807 /** 3808 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3809 * @pf: board private structure to initialize 3810 */ 3811 static void ice_deinit_pf(struct ice_pf *pf) 3812 { 3813 ice_service_task_stop(pf); 3814 mutex_destroy(&pf->lag_mutex); 3815 mutex_destroy(&pf->adev_mutex); 3816 mutex_destroy(&pf->sw_mutex); 3817 mutex_destroy(&pf->tc_mutex); 3818 mutex_destroy(&pf->avail_q_mutex); 3819 mutex_destroy(&pf->vfs.table_lock); 3820 3821 if (pf->avail_txqs) { 3822 bitmap_free(pf->avail_txqs); 3823 pf->avail_txqs = NULL; 3824 } 3825 3826 if (pf->avail_rxqs) { 3827 bitmap_free(pf->avail_rxqs); 3828 pf->avail_rxqs = NULL; 3829 } 3830 3831 if (pf->ptp.clock) 3832 ptp_clock_unregister(pf->ptp.clock); 3833 } 3834 3835 /** 3836 * ice_set_pf_caps - set PFs capability flags 3837 * @pf: pointer to the PF instance 3838 */ 3839 static void ice_set_pf_caps(struct ice_pf *pf) 3840 { 3841 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3842 3843 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3844 if (func_caps->common_cap.rdma) 3845 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3846 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3847 if (func_caps->common_cap.dcb) 3848 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3849 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3850 if (func_caps->common_cap.sr_iov_1_1) { 3851 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3852 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 3853 ICE_MAX_SRIOV_VFS); 3854 } 3855 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3856 if (func_caps->common_cap.rss_table_size) 3857 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3858 3859 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3860 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3861 u16 unused; 3862 3863 /* ctrl_vsi_idx will be set to a valid value when flow director 3864 * is setup by ice_init_fdir 3865 */ 3866 pf->ctrl_vsi_idx = ICE_NO_VSI; 3867 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3868 /* force guaranteed filter pool for PF */ 3869 ice_alloc_fd_guar_item(&pf->hw, &unused, 3870 func_caps->fd_fltr_guar); 3871 /* force shared filter pool for PF */ 3872 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3873 func_caps->fd_fltr_best_effort); 3874 } 3875 3876 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3877 if (func_caps->common_cap.ieee_1588 && 3878 !(pf->hw.mac_type == ICE_MAC_E830)) 3879 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3880 3881 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3882 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3883 } 3884 3885 /** 3886 * ice_init_pf - Initialize general software structures (struct ice_pf) 3887 * @pf: board private structure to initialize 3888 */ 3889 static int ice_init_pf(struct ice_pf *pf) 3890 { 3891 ice_set_pf_caps(pf); 3892 3893 mutex_init(&pf->sw_mutex); 3894 mutex_init(&pf->tc_mutex); 3895 mutex_init(&pf->adev_mutex); 3896 mutex_init(&pf->lag_mutex); 3897 3898 INIT_HLIST_HEAD(&pf->aq_wait_list); 3899 spin_lock_init(&pf->aq_wait_lock); 3900 init_waitqueue_head(&pf->aq_wait_queue); 3901 3902 init_waitqueue_head(&pf->reset_wait_queue); 3903 3904 /* setup service timer and periodic service task */ 3905 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3906 pf->serv_tmr_period = HZ; 3907 INIT_WORK(&pf->serv_task, ice_service_task); 3908 clear_bit(ICE_SERVICE_SCHED, pf->state); 3909 3910 mutex_init(&pf->avail_q_mutex); 3911 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3912 if (!pf->avail_txqs) 3913 return -ENOMEM; 3914 3915 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3916 if (!pf->avail_rxqs) { 3917 bitmap_free(pf->avail_txqs); 3918 pf->avail_txqs = NULL; 3919 return -ENOMEM; 3920 } 3921 3922 mutex_init(&pf->vfs.table_lock); 3923 hash_init(pf->vfs.table); 3924 ice_mbx_init_snapshot(&pf->hw); 3925 3926 return 0; 3927 } 3928 3929 /** 3930 * ice_is_wol_supported - check if WoL is supported 3931 * @hw: pointer to hardware info 3932 * 3933 * Check if WoL is supported based on the HW configuration. 3934 * Returns true if NVM supports and enables WoL for this port, false otherwise 3935 */ 3936 bool ice_is_wol_supported(struct ice_hw *hw) 3937 { 3938 u16 wol_ctrl; 3939 3940 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3941 * word) indicates WoL is not supported on the corresponding PF ID. 3942 */ 3943 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 3944 return false; 3945 3946 return !(BIT(hw->port_info->lport) & wol_ctrl); 3947 } 3948 3949 /** 3950 * ice_vsi_recfg_qs - Change the number of queues on a VSI 3951 * @vsi: VSI being changed 3952 * @new_rx: new number of Rx queues 3953 * @new_tx: new number of Tx queues 3954 * @locked: is adev device_lock held 3955 * 3956 * Only change the number of queues if new_tx, or new_rx is non-0. 3957 * 3958 * Returns 0 on success. 3959 */ 3960 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 3961 { 3962 struct ice_pf *pf = vsi->back; 3963 int err = 0, timeout = 50; 3964 3965 if (!new_rx && !new_tx) 3966 return -EINVAL; 3967 3968 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 3969 timeout--; 3970 if (!timeout) 3971 return -EBUSY; 3972 usleep_range(1000, 2000); 3973 } 3974 3975 if (new_tx) 3976 vsi->req_txq = (u16)new_tx; 3977 if (new_rx) 3978 vsi->req_rxq = (u16)new_rx; 3979 3980 /* set for the next time the netdev is started */ 3981 if (!netif_running(vsi->netdev)) { 3982 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3983 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 3984 goto done; 3985 } 3986 3987 ice_vsi_close(vsi); 3988 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 3989 ice_pf_dcb_recfg(pf, locked); 3990 ice_vsi_open(vsi); 3991 done: 3992 clear_bit(ICE_CFG_BUSY, pf->state); 3993 return err; 3994 } 3995 3996 /** 3997 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 3998 * @pf: PF to configure 3999 * 4000 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4001 * VSI can still Tx/Rx VLAN tagged packets. 4002 */ 4003 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4004 { 4005 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4006 struct ice_vsi_ctx *ctxt; 4007 struct ice_hw *hw; 4008 int status; 4009 4010 if (!vsi) 4011 return; 4012 4013 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4014 if (!ctxt) 4015 return; 4016 4017 hw = &pf->hw; 4018 ctxt->info = vsi->info; 4019 4020 ctxt->info.valid_sections = 4021 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4022 ICE_AQ_VSI_PROP_SECURITY_VALID | 4023 ICE_AQ_VSI_PROP_SW_VALID); 4024 4025 /* disable VLAN anti-spoof */ 4026 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4027 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4028 4029 /* disable VLAN pruning and keep all other settings */ 4030 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4031 4032 /* allow all VLANs on Tx and don't strip on Rx */ 4033 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4034 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4035 4036 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4037 if (status) { 4038 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4039 status, ice_aq_str(hw->adminq.sq_last_status)); 4040 } else { 4041 vsi->info.sec_flags = ctxt->info.sec_flags; 4042 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4043 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4044 } 4045 4046 kfree(ctxt); 4047 } 4048 4049 /** 4050 * ice_log_pkg_init - log result of DDP package load 4051 * @hw: pointer to hardware info 4052 * @state: state of package load 4053 */ 4054 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4055 { 4056 struct ice_pf *pf = hw->back; 4057 struct device *dev; 4058 4059 dev = ice_pf_to_dev(pf); 4060 4061 switch (state) { 4062 case ICE_DDP_PKG_SUCCESS: 4063 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4064 hw->active_pkg_name, 4065 hw->active_pkg_ver.major, 4066 hw->active_pkg_ver.minor, 4067 hw->active_pkg_ver.update, 4068 hw->active_pkg_ver.draft); 4069 break; 4070 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4071 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4072 hw->active_pkg_name, 4073 hw->active_pkg_ver.major, 4074 hw->active_pkg_ver.minor, 4075 hw->active_pkg_ver.update, 4076 hw->active_pkg_ver.draft); 4077 break; 4078 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4079 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4080 hw->active_pkg_name, 4081 hw->active_pkg_ver.major, 4082 hw->active_pkg_ver.minor, 4083 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4084 break; 4085 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4086 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4087 hw->active_pkg_name, 4088 hw->active_pkg_ver.major, 4089 hw->active_pkg_ver.minor, 4090 hw->active_pkg_ver.update, 4091 hw->active_pkg_ver.draft, 4092 hw->pkg_name, 4093 hw->pkg_ver.major, 4094 hw->pkg_ver.minor, 4095 hw->pkg_ver.update, 4096 hw->pkg_ver.draft); 4097 break; 4098 case ICE_DDP_PKG_FW_MISMATCH: 4099 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4100 break; 4101 case ICE_DDP_PKG_INVALID_FILE: 4102 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4103 break; 4104 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4105 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4106 break; 4107 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4108 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4109 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4110 break; 4111 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4112 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4113 break; 4114 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4115 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4116 break; 4117 case ICE_DDP_PKG_LOAD_ERROR: 4118 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4119 /* poll for reset to complete */ 4120 if (ice_check_reset(hw)) 4121 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4122 break; 4123 case ICE_DDP_PKG_ERR: 4124 default: 4125 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4126 break; 4127 } 4128 } 4129 4130 /** 4131 * ice_load_pkg - load/reload the DDP Package file 4132 * @firmware: firmware structure when firmware requested or NULL for reload 4133 * @pf: pointer to the PF instance 4134 * 4135 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4136 * initialize HW tables. 4137 */ 4138 static void 4139 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4140 { 4141 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4142 struct device *dev = ice_pf_to_dev(pf); 4143 struct ice_hw *hw = &pf->hw; 4144 4145 /* Load DDP Package */ 4146 if (firmware && !hw->pkg_copy) { 4147 state = ice_copy_and_init_pkg(hw, firmware->data, 4148 firmware->size); 4149 ice_log_pkg_init(hw, state); 4150 } else if (!firmware && hw->pkg_copy) { 4151 /* Reload package during rebuild after CORER/GLOBR reset */ 4152 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4153 ice_log_pkg_init(hw, state); 4154 } else { 4155 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4156 } 4157 4158 if (!ice_is_init_pkg_successful(state)) { 4159 /* Safe Mode */ 4160 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4161 return; 4162 } 4163 4164 /* Successful download package is the precondition for advanced 4165 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4166 */ 4167 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4168 } 4169 4170 /** 4171 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4172 * @pf: pointer to the PF structure 4173 * 4174 * There is no error returned here because the driver should be able to handle 4175 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4176 * specifically with Tx. 4177 */ 4178 static void ice_verify_cacheline_size(struct ice_pf *pf) 4179 { 4180 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4181 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4182 ICE_CACHE_LINE_BYTES); 4183 } 4184 4185 /** 4186 * ice_send_version - update firmware with driver version 4187 * @pf: PF struct 4188 * 4189 * Returns 0 on success, else error code 4190 */ 4191 static int ice_send_version(struct ice_pf *pf) 4192 { 4193 struct ice_driver_ver dv; 4194 4195 dv.major_ver = 0xff; 4196 dv.minor_ver = 0xff; 4197 dv.build_ver = 0xff; 4198 dv.subbuild_ver = 0; 4199 strscpy((char *)dv.driver_string, UTS_RELEASE, 4200 sizeof(dv.driver_string)); 4201 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4202 } 4203 4204 /** 4205 * ice_init_fdir - Initialize flow director VSI and configuration 4206 * @pf: pointer to the PF instance 4207 * 4208 * returns 0 on success, negative on error 4209 */ 4210 static int ice_init_fdir(struct ice_pf *pf) 4211 { 4212 struct device *dev = ice_pf_to_dev(pf); 4213 struct ice_vsi *ctrl_vsi; 4214 int err; 4215 4216 /* Side Band Flow Director needs to have a control VSI. 4217 * Allocate it and store it in the PF. 4218 */ 4219 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4220 if (!ctrl_vsi) { 4221 dev_dbg(dev, "could not create control VSI\n"); 4222 return -ENOMEM; 4223 } 4224 4225 err = ice_vsi_open_ctrl(ctrl_vsi); 4226 if (err) { 4227 dev_dbg(dev, "could not open control VSI\n"); 4228 goto err_vsi_open; 4229 } 4230 4231 mutex_init(&pf->hw.fdir_fltr_lock); 4232 4233 err = ice_fdir_create_dflt_rules(pf); 4234 if (err) 4235 goto err_fdir_rule; 4236 4237 return 0; 4238 4239 err_fdir_rule: 4240 ice_fdir_release_flows(&pf->hw); 4241 ice_vsi_close(ctrl_vsi); 4242 err_vsi_open: 4243 ice_vsi_release(ctrl_vsi); 4244 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4245 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4246 pf->ctrl_vsi_idx = ICE_NO_VSI; 4247 } 4248 return err; 4249 } 4250 4251 static void ice_deinit_fdir(struct ice_pf *pf) 4252 { 4253 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4254 4255 if (!vsi) 4256 return; 4257 4258 ice_vsi_manage_fdir(vsi, false); 4259 ice_vsi_release(vsi); 4260 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4261 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4262 pf->ctrl_vsi_idx = ICE_NO_VSI; 4263 } 4264 4265 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4266 } 4267 4268 /** 4269 * ice_get_opt_fw_name - return optional firmware file name or NULL 4270 * @pf: pointer to the PF instance 4271 */ 4272 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4273 { 4274 /* Optional firmware name same as default with additional dash 4275 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4276 */ 4277 struct pci_dev *pdev = pf->pdev; 4278 char *opt_fw_filename; 4279 u64 dsn; 4280 4281 /* Determine the name of the optional file using the DSN (two 4282 * dwords following the start of the DSN Capability). 4283 */ 4284 dsn = pci_get_dsn(pdev); 4285 if (!dsn) 4286 return NULL; 4287 4288 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4289 if (!opt_fw_filename) 4290 return NULL; 4291 4292 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4293 ICE_DDP_PKG_PATH, dsn); 4294 4295 return opt_fw_filename; 4296 } 4297 4298 /** 4299 * ice_request_fw - Device initialization routine 4300 * @pf: pointer to the PF instance 4301 */ 4302 static void ice_request_fw(struct ice_pf *pf) 4303 { 4304 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4305 const struct firmware *firmware = NULL; 4306 struct device *dev = ice_pf_to_dev(pf); 4307 int err = 0; 4308 4309 /* optional device-specific DDP (if present) overrides the default DDP 4310 * package file. kernel logs a debug message if the file doesn't exist, 4311 * and warning messages for other errors. 4312 */ 4313 if (opt_fw_filename) { 4314 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4315 if (err) { 4316 kfree(opt_fw_filename); 4317 goto dflt_pkg_load; 4318 } 4319 4320 /* request for firmware was successful. Download to device */ 4321 ice_load_pkg(firmware, pf); 4322 kfree(opt_fw_filename); 4323 release_firmware(firmware); 4324 return; 4325 } 4326 4327 dflt_pkg_load: 4328 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4329 if (err) { 4330 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4331 return; 4332 } 4333 4334 /* request for firmware was successful. Download to device */ 4335 ice_load_pkg(firmware, pf); 4336 release_firmware(firmware); 4337 } 4338 4339 /** 4340 * ice_print_wake_reason - show the wake up cause in the log 4341 * @pf: pointer to the PF struct 4342 */ 4343 static void ice_print_wake_reason(struct ice_pf *pf) 4344 { 4345 u32 wus = pf->wakeup_reason; 4346 const char *wake_str; 4347 4348 /* if no wake event, nothing to print */ 4349 if (!wus) 4350 return; 4351 4352 if (wus & PFPM_WUS_LNKC_M) 4353 wake_str = "Link\n"; 4354 else if (wus & PFPM_WUS_MAG_M) 4355 wake_str = "Magic Packet\n"; 4356 else if (wus & PFPM_WUS_MNG_M) 4357 wake_str = "Management\n"; 4358 else if (wus & PFPM_WUS_FW_RST_WK_M) 4359 wake_str = "Firmware Reset\n"; 4360 else 4361 wake_str = "Unknown\n"; 4362 4363 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4364 } 4365 4366 /** 4367 * ice_register_netdev - register netdev 4368 * @vsi: pointer to the VSI struct 4369 */ 4370 static int ice_register_netdev(struct ice_vsi *vsi) 4371 { 4372 int err; 4373 4374 if (!vsi || !vsi->netdev) 4375 return -EIO; 4376 4377 err = register_netdev(vsi->netdev); 4378 if (err) 4379 return err; 4380 4381 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4382 netif_carrier_off(vsi->netdev); 4383 netif_tx_stop_all_queues(vsi->netdev); 4384 4385 return 0; 4386 } 4387 4388 static void ice_unregister_netdev(struct ice_vsi *vsi) 4389 { 4390 if (!vsi || !vsi->netdev) 4391 return; 4392 4393 unregister_netdev(vsi->netdev); 4394 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4395 } 4396 4397 /** 4398 * ice_cfg_netdev - Allocate, configure and register a netdev 4399 * @vsi: the VSI associated with the new netdev 4400 * 4401 * Returns 0 on success, negative value on failure 4402 */ 4403 static int ice_cfg_netdev(struct ice_vsi *vsi) 4404 { 4405 struct ice_netdev_priv *np; 4406 struct net_device *netdev; 4407 u8 mac_addr[ETH_ALEN]; 4408 4409 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4410 vsi->alloc_rxq); 4411 if (!netdev) 4412 return -ENOMEM; 4413 4414 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4415 vsi->netdev = netdev; 4416 np = netdev_priv(netdev); 4417 np->vsi = vsi; 4418 4419 ice_set_netdev_features(netdev); 4420 ice_set_ops(vsi); 4421 4422 if (vsi->type == ICE_VSI_PF) { 4423 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4424 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4425 eth_hw_addr_set(netdev, mac_addr); 4426 } 4427 4428 netdev->priv_flags |= IFF_UNICAST_FLT; 4429 4430 /* Setup netdev TC information */ 4431 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4432 4433 netdev->max_mtu = ICE_MAX_MTU; 4434 4435 return 0; 4436 } 4437 4438 static void ice_decfg_netdev(struct ice_vsi *vsi) 4439 { 4440 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4441 free_netdev(vsi->netdev); 4442 vsi->netdev = NULL; 4443 } 4444 4445 static int ice_start_eth(struct ice_vsi *vsi) 4446 { 4447 int err; 4448 4449 err = ice_init_mac_fltr(vsi->back); 4450 if (err) 4451 return err; 4452 4453 err = ice_vsi_open(vsi); 4454 if (err) 4455 ice_fltr_remove_all(vsi); 4456 4457 return err; 4458 } 4459 4460 static void ice_stop_eth(struct ice_vsi *vsi) 4461 { 4462 ice_fltr_remove_all(vsi); 4463 ice_vsi_close(vsi); 4464 } 4465 4466 static int ice_init_eth(struct ice_pf *pf) 4467 { 4468 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4469 int err; 4470 4471 if (!vsi) 4472 return -EINVAL; 4473 4474 /* init channel list */ 4475 INIT_LIST_HEAD(&vsi->ch_list); 4476 4477 err = ice_cfg_netdev(vsi); 4478 if (err) 4479 return err; 4480 /* Setup DCB netlink interface */ 4481 ice_dcbnl_setup(vsi); 4482 4483 err = ice_init_mac_fltr(pf); 4484 if (err) 4485 goto err_init_mac_fltr; 4486 4487 err = ice_devlink_create_pf_port(pf); 4488 if (err) 4489 goto err_devlink_create_pf_port; 4490 4491 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 4492 4493 err = ice_register_netdev(vsi); 4494 if (err) 4495 goto err_register_netdev; 4496 4497 err = ice_tc_indir_block_register(vsi); 4498 if (err) 4499 goto err_tc_indir_block_register; 4500 4501 ice_napi_add(vsi); 4502 4503 return 0; 4504 4505 err_tc_indir_block_register: 4506 ice_unregister_netdev(vsi); 4507 err_register_netdev: 4508 ice_devlink_destroy_pf_port(pf); 4509 err_devlink_create_pf_port: 4510 err_init_mac_fltr: 4511 ice_decfg_netdev(vsi); 4512 return err; 4513 } 4514 4515 static void ice_deinit_eth(struct ice_pf *pf) 4516 { 4517 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4518 4519 if (!vsi) 4520 return; 4521 4522 ice_vsi_close(vsi); 4523 ice_unregister_netdev(vsi); 4524 ice_devlink_destroy_pf_port(pf); 4525 ice_tc_indir_block_unregister(vsi); 4526 ice_decfg_netdev(vsi); 4527 } 4528 4529 /** 4530 * ice_wait_for_fw - wait for full FW readiness 4531 * @hw: pointer to the hardware structure 4532 * @timeout: milliseconds that can elapse before timing out 4533 */ 4534 static int ice_wait_for_fw(struct ice_hw *hw, u32 timeout) 4535 { 4536 int fw_loading; 4537 u32 elapsed = 0; 4538 4539 while (elapsed <= timeout) { 4540 fw_loading = rd32(hw, GL_MNG_FWSM) & GL_MNG_FWSM_FW_LOADING_M; 4541 4542 /* firmware was not yet loaded, we have to wait more */ 4543 if (fw_loading) { 4544 elapsed += 100; 4545 msleep(100); 4546 continue; 4547 } 4548 return 0; 4549 } 4550 4551 return -ETIMEDOUT; 4552 } 4553 4554 static int ice_init_dev(struct ice_pf *pf) 4555 { 4556 struct device *dev = ice_pf_to_dev(pf); 4557 struct ice_hw *hw = &pf->hw; 4558 int err; 4559 4560 err = ice_init_hw(hw); 4561 if (err) { 4562 dev_err(dev, "ice_init_hw failed: %d\n", err); 4563 return err; 4564 } 4565 4566 /* Some cards require longer initialization times 4567 * due to necessity of loading FW from an external source. 4568 * This can take even half a minute. 4569 */ 4570 if (ice_is_pf_c827(hw)) { 4571 err = ice_wait_for_fw(hw, 30000); 4572 if (err) { 4573 dev_err(dev, "ice_wait_for_fw timed out"); 4574 return err; 4575 } 4576 } 4577 4578 ice_init_feature_support(pf); 4579 4580 ice_request_fw(pf); 4581 4582 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4583 * set in pf->state, which will cause ice_is_safe_mode to return 4584 * true 4585 */ 4586 if (ice_is_safe_mode(pf)) { 4587 /* we already got function/device capabilities but these don't 4588 * reflect what the driver needs to do in safe mode. Instead of 4589 * adding conditional logic everywhere to ignore these 4590 * device/function capabilities, override them. 4591 */ 4592 ice_set_safe_mode_caps(hw); 4593 } 4594 4595 err = ice_init_pf(pf); 4596 if (err) { 4597 dev_err(dev, "ice_init_pf failed: %d\n", err); 4598 goto err_init_pf; 4599 } 4600 4601 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4602 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4603 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4604 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4605 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4606 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4607 pf->hw.tnl.valid_count[TNL_VXLAN]; 4608 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4609 UDP_TUNNEL_TYPE_VXLAN; 4610 } 4611 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4612 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4613 pf->hw.tnl.valid_count[TNL_GENEVE]; 4614 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4615 UDP_TUNNEL_TYPE_GENEVE; 4616 } 4617 4618 err = ice_init_interrupt_scheme(pf); 4619 if (err) { 4620 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4621 err = -EIO; 4622 goto err_init_interrupt_scheme; 4623 } 4624 4625 /* In case of MSIX we are going to setup the misc vector right here 4626 * to handle admin queue events etc. In case of legacy and MSI 4627 * the misc functionality and queue processing is combined in 4628 * the same vector and that gets setup at open. 4629 */ 4630 err = ice_req_irq_msix_misc(pf); 4631 if (err) { 4632 dev_err(dev, "setup of misc vector failed: %d\n", err); 4633 goto err_req_irq_msix_misc; 4634 } 4635 4636 return 0; 4637 4638 err_req_irq_msix_misc: 4639 ice_clear_interrupt_scheme(pf); 4640 err_init_interrupt_scheme: 4641 ice_deinit_pf(pf); 4642 err_init_pf: 4643 ice_deinit_hw(hw); 4644 return err; 4645 } 4646 4647 static void ice_deinit_dev(struct ice_pf *pf) 4648 { 4649 ice_free_irq_msix_misc(pf); 4650 ice_deinit_pf(pf); 4651 ice_deinit_hw(&pf->hw); 4652 4653 /* Service task is already stopped, so call reset directly. */ 4654 ice_reset(&pf->hw, ICE_RESET_PFR); 4655 pci_wait_for_pending_transaction(pf->pdev); 4656 ice_clear_interrupt_scheme(pf); 4657 } 4658 4659 static void ice_init_features(struct ice_pf *pf) 4660 { 4661 struct device *dev = ice_pf_to_dev(pf); 4662 4663 if (ice_is_safe_mode(pf)) 4664 return; 4665 4666 /* initialize DDP driven features */ 4667 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4668 ice_ptp_init(pf); 4669 4670 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4671 ice_gnss_init(pf); 4672 4673 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4674 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4675 ice_dpll_init(pf); 4676 4677 /* Note: Flow director init failure is non-fatal to load */ 4678 if (ice_init_fdir(pf)) 4679 dev_err(dev, "could not initialize flow director\n"); 4680 4681 /* Note: DCB init failure is non-fatal to load */ 4682 if (ice_init_pf_dcb(pf, false)) { 4683 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4684 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4685 } else { 4686 ice_cfg_lldp_mib_change(&pf->hw, true); 4687 } 4688 4689 if (ice_init_lag(pf)) 4690 dev_warn(dev, "Failed to init link aggregation support\n"); 4691 4692 ice_hwmon_init(pf); 4693 } 4694 4695 static void ice_deinit_features(struct ice_pf *pf) 4696 { 4697 if (ice_is_safe_mode(pf)) 4698 return; 4699 4700 ice_deinit_lag(pf); 4701 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4702 ice_cfg_lldp_mib_change(&pf->hw, false); 4703 ice_deinit_fdir(pf); 4704 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4705 ice_gnss_exit(pf); 4706 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4707 ice_ptp_release(pf); 4708 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4709 ice_dpll_deinit(pf); 4710 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4711 xa_destroy(&pf->eswitch.reprs); 4712 } 4713 4714 static void ice_init_wakeup(struct ice_pf *pf) 4715 { 4716 /* Save wakeup reason register for later use */ 4717 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4718 4719 /* check for a power management event */ 4720 ice_print_wake_reason(pf); 4721 4722 /* clear wake status, all bits */ 4723 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4724 4725 /* Disable WoL at init, wait for user to enable */ 4726 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4727 } 4728 4729 static int ice_init_link(struct ice_pf *pf) 4730 { 4731 struct device *dev = ice_pf_to_dev(pf); 4732 int err; 4733 4734 err = ice_init_link_events(pf->hw.port_info); 4735 if (err) { 4736 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4737 return err; 4738 } 4739 4740 /* not a fatal error if this fails */ 4741 err = ice_init_nvm_phy_type(pf->hw.port_info); 4742 if (err) 4743 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4744 4745 /* not a fatal error if this fails */ 4746 err = ice_update_link_info(pf->hw.port_info); 4747 if (err) 4748 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4749 4750 ice_init_link_dflt_override(pf->hw.port_info); 4751 4752 ice_check_link_cfg_err(pf, 4753 pf->hw.port_info->phy.link_info.link_cfg_err); 4754 4755 /* if media available, initialize PHY settings */ 4756 if (pf->hw.port_info->phy.link_info.link_info & 4757 ICE_AQ_MEDIA_AVAILABLE) { 4758 /* not a fatal error if this fails */ 4759 err = ice_init_phy_user_cfg(pf->hw.port_info); 4760 if (err) 4761 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4762 4763 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4764 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4765 4766 if (vsi) 4767 ice_configure_phy(vsi); 4768 } 4769 } else { 4770 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4771 } 4772 4773 return err; 4774 } 4775 4776 static int ice_init_pf_sw(struct ice_pf *pf) 4777 { 4778 bool dvm = ice_is_dvm_ena(&pf->hw); 4779 struct ice_vsi *vsi; 4780 int err; 4781 4782 /* create switch struct for the switch element created by FW on boot */ 4783 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4784 if (!pf->first_sw) 4785 return -ENOMEM; 4786 4787 if (pf->hw.evb_veb) 4788 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4789 else 4790 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4791 4792 pf->first_sw->pf = pf; 4793 4794 /* record the sw_id available for later use */ 4795 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4796 4797 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4798 if (err) 4799 goto err_aq_set_port_params; 4800 4801 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4802 if (!vsi) { 4803 err = -ENOMEM; 4804 goto err_pf_vsi_setup; 4805 } 4806 4807 return 0; 4808 4809 err_pf_vsi_setup: 4810 err_aq_set_port_params: 4811 kfree(pf->first_sw); 4812 return err; 4813 } 4814 4815 static void ice_deinit_pf_sw(struct ice_pf *pf) 4816 { 4817 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4818 4819 if (!vsi) 4820 return; 4821 4822 ice_vsi_release(vsi); 4823 kfree(pf->first_sw); 4824 } 4825 4826 static int ice_alloc_vsis(struct ice_pf *pf) 4827 { 4828 struct device *dev = ice_pf_to_dev(pf); 4829 4830 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4831 if (!pf->num_alloc_vsi) 4832 return -EIO; 4833 4834 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4835 dev_warn(dev, 4836 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4837 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4838 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4839 } 4840 4841 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4842 GFP_KERNEL); 4843 if (!pf->vsi) 4844 return -ENOMEM; 4845 4846 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4847 sizeof(*pf->vsi_stats), GFP_KERNEL); 4848 if (!pf->vsi_stats) { 4849 devm_kfree(dev, pf->vsi); 4850 return -ENOMEM; 4851 } 4852 4853 return 0; 4854 } 4855 4856 static void ice_dealloc_vsis(struct ice_pf *pf) 4857 { 4858 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 4859 pf->vsi_stats = NULL; 4860 4861 pf->num_alloc_vsi = 0; 4862 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 4863 pf->vsi = NULL; 4864 } 4865 4866 static int ice_init_devlink(struct ice_pf *pf) 4867 { 4868 int err; 4869 4870 err = ice_devlink_register_params(pf); 4871 if (err) 4872 return err; 4873 4874 ice_devlink_init_regions(pf); 4875 ice_devlink_register(pf); 4876 4877 return 0; 4878 } 4879 4880 static void ice_deinit_devlink(struct ice_pf *pf) 4881 { 4882 ice_devlink_unregister(pf); 4883 ice_devlink_destroy_regions(pf); 4884 ice_devlink_unregister_params(pf); 4885 } 4886 4887 static int ice_init(struct ice_pf *pf) 4888 { 4889 int err; 4890 4891 err = ice_init_dev(pf); 4892 if (err) 4893 return err; 4894 4895 err = ice_alloc_vsis(pf); 4896 if (err) 4897 goto err_alloc_vsis; 4898 4899 err = ice_init_pf_sw(pf); 4900 if (err) 4901 goto err_init_pf_sw; 4902 4903 ice_init_wakeup(pf); 4904 4905 err = ice_init_link(pf); 4906 if (err) 4907 goto err_init_link; 4908 4909 err = ice_send_version(pf); 4910 if (err) 4911 goto err_init_link; 4912 4913 ice_verify_cacheline_size(pf); 4914 4915 if (ice_is_safe_mode(pf)) 4916 ice_set_safe_mode_vlan_cfg(pf); 4917 else 4918 /* print PCI link speed and width */ 4919 pcie_print_link_status(pf->pdev); 4920 4921 /* ready to go, so clear down state bit */ 4922 clear_bit(ICE_DOWN, pf->state); 4923 clear_bit(ICE_SERVICE_DIS, pf->state); 4924 4925 /* since everything is good, start the service timer */ 4926 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4927 4928 return 0; 4929 4930 err_init_link: 4931 ice_deinit_pf_sw(pf); 4932 err_init_pf_sw: 4933 ice_dealloc_vsis(pf); 4934 err_alloc_vsis: 4935 ice_deinit_dev(pf); 4936 return err; 4937 } 4938 4939 static void ice_deinit(struct ice_pf *pf) 4940 { 4941 set_bit(ICE_SERVICE_DIS, pf->state); 4942 set_bit(ICE_DOWN, pf->state); 4943 4944 ice_deinit_pf_sw(pf); 4945 ice_dealloc_vsis(pf); 4946 ice_deinit_dev(pf); 4947 } 4948 4949 /** 4950 * ice_load - load pf by init hw and starting VSI 4951 * @pf: pointer to the pf instance 4952 */ 4953 int ice_load(struct ice_pf *pf) 4954 { 4955 struct ice_vsi_cfg_params params = {}; 4956 struct ice_vsi *vsi; 4957 int err; 4958 4959 err = ice_init_dev(pf); 4960 if (err) 4961 return err; 4962 4963 vsi = ice_get_main_vsi(pf); 4964 4965 params = ice_vsi_to_params(vsi); 4966 params.flags = ICE_VSI_FLAG_INIT; 4967 4968 rtnl_lock(); 4969 err = ice_vsi_cfg(vsi, ¶ms); 4970 if (err) 4971 goto err_vsi_cfg; 4972 4973 err = ice_start_eth(ice_get_main_vsi(pf)); 4974 if (err) 4975 goto err_start_eth; 4976 rtnl_unlock(); 4977 4978 err = ice_init_rdma(pf); 4979 if (err) 4980 goto err_init_rdma; 4981 4982 ice_init_features(pf); 4983 ice_service_task_restart(pf); 4984 4985 clear_bit(ICE_DOWN, pf->state); 4986 4987 return 0; 4988 4989 err_init_rdma: 4990 ice_vsi_close(ice_get_main_vsi(pf)); 4991 rtnl_lock(); 4992 err_start_eth: 4993 ice_vsi_decfg(ice_get_main_vsi(pf)); 4994 err_vsi_cfg: 4995 rtnl_unlock(); 4996 ice_deinit_dev(pf); 4997 return err; 4998 } 4999 5000 /** 5001 * ice_unload - unload pf by stopping VSI and deinit hw 5002 * @pf: pointer to the pf instance 5003 */ 5004 void ice_unload(struct ice_pf *pf) 5005 { 5006 ice_deinit_features(pf); 5007 ice_deinit_rdma(pf); 5008 rtnl_lock(); 5009 ice_stop_eth(ice_get_main_vsi(pf)); 5010 ice_vsi_decfg(ice_get_main_vsi(pf)); 5011 rtnl_unlock(); 5012 ice_deinit_dev(pf); 5013 } 5014 5015 /** 5016 * ice_probe - Device initialization routine 5017 * @pdev: PCI device information struct 5018 * @ent: entry in ice_pci_tbl 5019 * 5020 * Returns 0 on success, negative on failure 5021 */ 5022 static int 5023 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5024 { 5025 struct device *dev = &pdev->dev; 5026 struct ice_pf *pf; 5027 struct ice_hw *hw; 5028 int err; 5029 5030 if (pdev->is_virtfn) { 5031 dev_err(dev, "can't probe a virtual function\n"); 5032 return -EINVAL; 5033 } 5034 5035 /* when under a kdump kernel initiate a reset before enabling the 5036 * device in order to clear out any pending DMA transactions. These 5037 * transactions can cause some systems to machine check when doing 5038 * the pcim_enable_device() below. 5039 */ 5040 if (is_kdump_kernel()) { 5041 pci_save_state(pdev); 5042 pci_clear_master(pdev); 5043 err = pcie_flr(pdev); 5044 if (err) 5045 return err; 5046 pci_restore_state(pdev); 5047 } 5048 5049 /* this driver uses devres, see 5050 * Documentation/driver-api/driver-model/devres.rst 5051 */ 5052 err = pcim_enable_device(pdev); 5053 if (err) 5054 return err; 5055 5056 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5057 if (err) { 5058 dev_err(dev, "BAR0 I/O map error %d\n", err); 5059 return err; 5060 } 5061 5062 pf = ice_allocate_pf(dev); 5063 if (!pf) 5064 return -ENOMEM; 5065 5066 /* initialize Auxiliary index to invalid value */ 5067 pf->aux_idx = -1; 5068 5069 /* set up for high or low DMA */ 5070 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5071 if (err) { 5072 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5073 return err; 5074 } 5075 5076 pci_set_master(pdev); 5077 5078 pf->pdev = pdev; 5079 pci_set_drvdata(pdev, pf); 5080 set_bit(ICE_DOWN, pf->state); 5081 /* Disable service task until DOWN bit is cleared */ 5082 set_bit(ICE_SERVICE_DIS, pf->state); 5083 5084 hw = &pf->hw; 5085 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5086 pci_save_state(pdev); 5087 5088 hw->back = pf; 5089 hw->port_info = NULL; 5090 hw->vendor_id = pdev->vendor; 5091 hw->device_id = pdev->device; 5092 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5093 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5094 hw->subsystem_device_id = pdev->subsystem_device; 5095 hw->bus.device = PCI_SLOT(pdev->devfn); 5096 hw->bus.func = PCI_FUNC(pdev->devfn); 5097 ice_set_ctrlq_len(hw); 5098 5099 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5100 5101 #ifndef CONFIG_DYNAMIC_DEBUG 5102 if (debug < -1) 5103 hw->debug_mask = debug; 5104 #endif 5105 5106 err = ice_init(pf); 5107 if (err) 5108 goto err_init; 5109 5110 err = ice_init_eth(pf); 5111 if (err) 5112 goto err_init_eth; 5113 5114 err = ice_init_rdma(pf); 5115 if (err) 5116 goto err_init_rdma; 5117 5118 err = ice_init_devlink(pf); 5119 if (err) 5120 goto err_init_devlink; 5121 5122 ice_init_features(pf); 5123 5124 return 0; 5125 5126 err_init_devlink: 5127 ice_deinit_rdma(pf); 5128 err_init_rdma: 5129 ice_deinit_eth(pf); 5130 err_init_eth: 5131 ice_deinit(pf); 5132 err_init: 5133 pci_disable_device(pdev); 5134 return err; 5135 } 5136 5137 /** 5138 * ice_set_wake - enable or disable Wake on LAN 5139 * @pf: pointer to the PF struct 5140 * 5141 * Simple helper for WoL control 5142 */ 5143 static void ice_set_wake(struct ice_pf *pf) 5144 { 5145 struct ice_hw *hw = &pf->hw; 5146 bool wol = pf->wol_ena; 5147 5148 /* clear wake state, otherwise new wake events won't fire */ 5149 wr32(hw, PFPM_WUS, U32_MAX); 5150 5151 /* enable / disable APM wake up, no RMW needed */ 5152 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5153 5154 /* set magic packet filter enabled */ 5155 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5156 } 5157 5158 /** 5159 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5160 * @pf: pointer to the PF struct 5161 * 5162 * Issue firmware command to enable multicast magic wake, making 5163 * sure that any locally administered address (LAA) is used for 5164 * wake, and that PF reset doesn't undo the LAA. 5165 */ 5166 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5167 { 5168 struct device *dev = ice_pf_to_dev(pf); 5169 struct ice_hw *hw = &pf->hw; 5170 u8 mac_addr[ETH_ALEN]; 5171 struct ice_vsi *vsi; 5172 int status; 5173 u8 flags; 5174 5175 if (!pf->wol_ena) 5176 return; 5177 5178 vsi = ice_get_main_vsi(pf); 5179 if (!vsi) 5180 return; 5181 5182 /* Get current MAC address in case it's an LAA */ 5183 if (vsi->netdev) 5184 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5185 else 5186 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5187 5188 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5189 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5190 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5191 5192 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5193 if (status) 5194 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5195 status, ice_aq_str(hw->adminq.sq_last_status)); 5196 } 5197 5198 /** 5199 * ice_remove - Device removal routine 5200 * @pdev: PCI device information struct 5201 */ 5202 static void ice_remove(struct pci_dev *pdev) 5203 { 5204 struct ice_pf *pf = pci_get_drvdata(pdev); 5205 int i; 5206 5207 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5208 if (!ice_is_reset_in_progress(pf->state)) 5209 break; 5210 msleep(100); 5211 } 5212 5213 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5214 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5215 ice_free_vfs(pf); 5216 } 5217 5218 ice_hwmon_exit(pf); 5219 5220 ice_service_task_stop(pf); 5221 ice_aq_cancel_waiting_tasks(pf); 5222 set_bit(ICE_DOWN, pf->state); 5223 5224 if (!ice_is_safe_mode(pf)) 5225 ice_remove_arfs(pf); 5226 ice_deinit_features(pf); 5227 ice_deinit_devlink(pf); 5228 ice_deinit_rdma(pf); 5229 ice_deinit_eth(pf); 5230 ice_deinit(pf); 5231 5232 ice_vsi_release_all(pf); 5233 5234 ice_setup_mc_magic_wake(pf); 5235 ice_set_wake(pf); 5236 5237 pci_disable_device(pdev); 5238 } 5239 5240 /** 5241 * ice_shutdown - PCI callback for shutting down device 5242 * @pdev: PCI device information struct 5243 */ 5244 static void ice_shutdown(struct pci_dev *pdev) 5245 { 5246 struct ice_pf *pf = pci_get_drvdata(pdev); 5247 5248 ice_remove(pdev); 5249 5250 if (system_state == SYSTEM_POWER_OFF) { 5251 pci_wake_from_d3(pdev, pf->wol_ena); 5252 pci_set_power_state(pdev, PCI_D3hot); 5253 } 5254 } 5255 5256 #ifdef CONFIG_PM 5257 /** 5258 * ice_prepare_for_shutdown - prep for PCI shutdown 5259 * @pf: board private structure 5260 * 5261 * Inform or close all dependent features in prep for PCI device shutdown 5262 */ 5263 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5264 { 5265 struct ice_hw *hw = &pf->hw; 5266 u32 v; 5267 5268 /* Notify VFs of impending reset */ 5269 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5270 ice_vc_notify_reset(pf); 5271 5272 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5273 5274 /* disable the VSIs and their queues that are not already DOWN */ 5275 ice_pf_dis_all_vsi(pf, false); 5276 5277 ice_for_each_vsi(pf, v) 5278 if (pf->vsi[v]) 5279 pf->vsi[v]->vsi_num = 0; 5280 5281 ice_shutdown_all_ctrlq(hw); 5282 } 5283 5284 /** 5285 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5286 * @pf: board private structure to reinitialize 5287 * 5288 * This routine reinitialize interrupt scheme that was cleared during 5289 * power management suspend callback. 5290 * 5291 * This should be called during resume routine to re-allocate the q_vectors 5292 * and reacquire interrupts. 5293 */ 5294 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5295 { 5296 struct device *dev = ice_pf_to_dev(pf); 5297 int ret, v; 5298 5299 /* Since we clear MSIX flag during suspend, we need to 5300 * set it back during resume... 5301 */ 5302 5303 ret = ice_init_interrupt_scheme(pf); 5304 if (ret) { 5305 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5306 return ret; 5307 } 5308 5309 /* Remap vectors and rings, after successful re-init interrupts */ 5310 ice_for_each_vsi(pf, v) { 5311 if (!pf->vsi[v]) 5312 continue; 5313 5314 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5315 if (ret) 5316 goto err_reinit; 5317 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5318 } 5319 5320 ret = ice_req_irq_msix_misc(pf); 5321 if (ret) { 5322 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5323 ret); 5324 goto err_reinit; 5325 } 5326 5327 return 0; 5328 5329 err_reinit: 5330 while (v--) 5331 if (pf->vsi[v]) 5332 ice_vsi_free_q_vectors(pf->vsi[v]); 5333 5334 return ret; 5335 } 5336 5337 /** 5338 * ice_suspend 5339 * @dev: generic device information structure 5340 * 5341 * Power Management callback to quiesce the device and prepare 5342 * for D3 transition. 5343 */ 5344 static int __maybe_unused ice_suspend(struct device *dev) 5345 { 5346 struct pci_dev *pdev = to_pci_dev(dev); 5347 struct ice_pf *pf; 5348 int disabled, v; 5349 5350 pf = pci_get_drvdata(pdev); 5351 5352 if (!ice_pf_state_is_nominal(pf)) { 5353 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5354 return -EBUSY; 5355 } 5356 5357 /* Stop watchdog tasks until resume completion. 5358 * Even though it is most likely that the service task is 5359 * disabled if the device is suspended or down, the service task's 5360 * state is controlled by a different state bit, and we should 5361 * store and honor whatever state that bit is in at this point. 5362 */ 5363 disabled = ice_service_task_stop(pf); 5364 5365 ice_unplug_aux_dev(pf); 5366 5367 /* Already suspended?, then there is nothing to do */ 5368 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5369 if (!disabled) 5370 ice_service_task_restart(pf); 5371 return 0; 5372 } 5373 5374 if (test_bit(ICE_DOWN, pf->state) || 5375 ice_is_reset_in_progress(pf->state)) { 5376 dev_err(dev, "can't suspend device in reset or already down\n"); 5377 if (!disabled) 5378 ice_service_task_restart(pf); 5379 return 0; 5380 } 5381 5382 ice_setup_mc_magic_wake(pf); 5383 5384 ice_prepare_for_shutdown(pf); 5385 5386 ice_set_wake(pf); 5387 5388 /* Free vectors, clear the interrupt scheme and release IRQs 5389 * for proper hibernation, especially with large number of CPUs. 5390 * Otherwise hibernation might fail when mapping all the vectors back 5391 * to CPU0. 5392 */ 5393 ice_free_irq_msix_misc(pf); 5394 ice_for_each_vsi(pf, v) { 5395 if (!pf->vsi[v]) 5396 continue; 5397 ice_vsi_free_q_vectors(pf->vsi[v]); 5398 } 5399 ice_clear_interrupt_scheme(pf); 5400 5401 pci_save_state(pdev); 5402 pci_wake_from_d3(pdev, pf->wol_ena); 5403 pci_set_power_state(pdev, PCI_D3hot); 5404 return 0; 5405 } 5406 5407 /** 5408 * ice_resume - PM callback for waking up from D3 5409 * @dev: generic device information structure 5410 */ 5411 static int __maybe_unused ice_resume(struct device *dev) 5412 { 5413 struct pci_dev *pdev = to_pci_dev(dev); 5414 enum ice_reset_req reset_type; 5415 struct ice_pf *pf; 5416 struct ice_hw *hw; 5417 int ret; 5418 5419 pci_set_power_state(pdev, PCI_D0); 5420 pci_restore_state(pdev); 5421 pci_save_state(pdev); 5422 5423 if (!pci_device_is_present(pdev)) 5424 return -ENODEV; 5425 5426 ret = pci_enable_device_mem(pdev); 5427 if (ret) { 5428 dev_err(dev, "Cannot enable device after suspend\n"); 5429 return ret; 5430 } 5431 5432 pf = pci_get_drvdata(pdev); 5433 hw = &pf->hw; 5434 5435 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5436 ice_print_wake_reason(pf); 5437 5438 /* We cleared the interrupt scheme when we suspended, so we need to 5439 * restore it now to resume device functionality. 5440 */ 5441 ret = ice_reinit_interrupt_scheme(pf); 5442 if (ret) 5443 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5444 5445 clear_bit(ICE_DOWN, pf->state); 5446 /* Now perform PF reset and rebuild */ 5447 reset_type = ICE_RESET_PFR; 5448 /* re-enable service task for reset, but allow reset to schedule it */ 5449 clear_bit(ICE_SERVICE_DIS, pf->state); 5450 5451 if (ice_schedule_reset(pf, reset_type)) 5452 dev_err(dev, "Reset during resume failed.\n"); 5453 5454 clear_bit(ICE_SUSPENDED, pf->state); 5455 ice_service_task_restart(pf); 5456 5457 /* Restart the service task */ 5458 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5459 5460 return 0; 5461 } 5462 #endif /* CONFIG_PM */ 5463 5464 /** 5465 * ice_pci_err_detected - warning that PCI error has been detected 5466 * @pdev: PCI device information struct 5467 * @err: the type of PCI error 5468 * 5469 * Called to warn that something happened on the PCI bus and the error handling 5470 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5471 */ 5472 static pci_ers_result_t 5473 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5474 { 5475 struct ice_pf *pf = pci_get_drvdata(pdev); 5476 5477 if (!pf) { 5478 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5479 __func__, err); 5480 return PCI_ERS_RESULT_DISCONNECT; 5481 } 5482 5483 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5484 ice_service_task_stop(pf); 5485 5486 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5487 set_bit(ICE_PFR_REQ, pf->state); 5488 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5489 } 5490 } 5491 5492 return PCI_ERS_RESULT_NEED_RESET; 5493 } 5494 5495 /** 5496 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5497 * @pdev: PCI device information struct 5498 * 5499 * Called to determine if the driver can recover from the PCI slot reset by 5500 * using a register read to determine if the device is recoverable. 5501 */ 5502 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5503 { 5504 struct ice_pf *pf = pci_get_drvdata(pdev); 5505 pci_ers_result_t result; 5506 int err; 5507 u32 reg; 5508 5509 err = pci_enable_device_mem(pdev); 5510 if (err) { 5511 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5512 err); 5513 result = PCI_ERS_RESULT_DISCONNECT; 5514 } else { 5515 pci_set_master(pdev); 5516 pci_restore_state(pdev); 5517 pci_save_state(pdev); 5518 pci_wake_from_d3(pdev, false); 5519 5520 /* Check for life */ 5521 reg = rd32(&pf->hw, GLGEN_RTRIG); 5522 if (!reg) 5523 result = PCI_ERS_RESULT_RECOVERED; 5524 else 5525 result = PCI_ERS_RESULT_DISCONNECT; 5526 } 5527 5528 return result; 5529 } 5530 5531 /** 5532 * ice_pci_err_resume - restart operations after PCI error recovery 5533 * @pdev: PCI device information struct 5534 * 5535 * Called to allow the driver to bring things back up after PCI error and/or 5536 * reset recovery have finished 5537 */ 5538 static void ice_pci_err_resume(struct pci_dev *pdev) 5539 { 5540 struct ice_pf *pf = pci_get_drvdata(pdev); 5541 5542 if (!pf) { 5543 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5544 __func__); 5545 return; 5546 } 5547 5548 if (test_bit(ICE_SUSPENDED, pf->state)) { 5549 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5550 __func__); 5551 return; 5552 } 5553 5554 ice_restore_all_vfs_msi_state(pf); 5555 5556 ice_do_reset(pf, ICE_RESET_PFR); 5557 ice_service_task_restart(pf); 5558 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5559 } 5560 5561 /** 5562 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5563 * @pdev: PCI device information struct 5564 */ 5565 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5566 { 5567 struct ice_pf *pf = pci_get_drvdata(pdev); 5568 5569 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5570 ice_service_task_stop(pf); 5571 5572 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5573 set_bit(ICE_PFR_REQ, pf->state); 5574 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5575 } 5576 } 5577 } 5578 5579 /** 5580 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5581 * @pdev: PCI device information struct 5582 */ 5583 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5584 { 5585 ice_pci_err_resume(pdev); 5586 } 5587 5588 /* ice_pci_tbl - PCI Device ID Table 5589 * 5590 * Wildcard entries (PCI_ANY_ID) should come last 5591 * Last entry must be all 0s 5592 * 5593 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5594 * Class, Class Mask, private data (not used) } 5595 */ 5596 static const struct pci_device_id ice_pci_tbl[] = { 5597 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5598 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5599 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5600 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5601 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5602 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5603 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5604 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5605 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5606 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5607 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5608 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5609 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5610 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5611 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5612 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5613 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5614 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5615 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5616 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5617 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5618 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5619 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5620 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5621 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5622 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5623 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_BACKPLANE) }, 5624 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_QSFP56) }, 5625 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP) }, 5626 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_SFP_DD) }, 5627 /* required last entry */ 5628 {} 5629 }; 5630 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5631 5632 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5633 5634 static const struct pci_error_handlers ice_pci_err_handler = { 5635 .error_detected = ice_pci_err_detected, 5636 .slot_reset = ice_pci_err_slot_reset, 5637 .reset_prepare = ice_pci_err_reset_prepare, 5638 .reset_done = ice_pci_err_reset_done, 5639 .resume = ice_pci_err_resume 5640 }; 5641 5642 static struct pci_driver ice_driver = { 5643 .name = KBUILD_MODNAME, 5644 .id_table = ice_pci_tbl, 5645 .probe = ice_probe, 5646 .remove = ice_remove, 5647 #ifdef CONFIG_PM 5648 .driver.pm = &ice_pm_ops, 5649 #endif /* CONFIG_PM */ 5650 .shutdown = ice_shutdown, 5651 .sriov_configure = ice_sriov_configure, 5652 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5653 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5654 .err_handler = &ice_pci_err_handler 5655 }; 5656 5657 /** 5658 * ice_module_init - Driver registration routine 5659 * 5660 * ice_module_init is the first routine called when the driver is 5661 * loaded. All it does is register with the PCI subsystem. 5662 */ 5663 static int __init ice_module_init(void) 5664 { 5665 int status = -ENOMEM; 5666 5667 pr_info("%s\n", ice_driver_string); 5668 pr_info("%s\n", ice_copyright); 5669 5670 ice_adv_lnk_speed_maps_init(); 5671 5672 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME); 5673 if (!ice_wq) { 5674 pr_err("Failed to create workqueue\n"); 5675 return status; 5676 } 5677 5678 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5679 if (!ice_lag_wq) { 5680 pr_err("Failed to create LAG workqueue\n"); 5681 goto err_dest_wq; 5682 } 5683 5684 status = pci_register_driver(&ice_driver); 5685 if (status) { 5686 pr_err("failed to register PCI driver, err %d\n", status); 5687 goto err_dest_lag_wq; 5688 } 5689 5690 return 0; 5691 5692 err_dest_lag_wq: 5693 destroy_workqueue(ice_lag_wq); 5694 err_dest_wq: 5695 destroy_workqueue(ice_wq); 5696 return status; 5697 } 5698 module_init(ice_module_init); 5699 5700 /** 5701 * ice_module_exit - Driver exit cleanup routine 5702 * 5703 * ice_module_exit is called just before the driver is removed 5704 * from memory. 5705 */ 5706 static void __exit ice_module_exit(void) 5707 { 5708 pci_unregister_driver(&ice_driver); 5709 destroy_workqueue(ice_wq); 5710 destroy_workqueue(ice_lag_wq); 5711 pr_info("module unloaded\n"); 5712 } 5713 module_exit(ice_module_exit); 5714 5715 /** 5716 * ice_set_mac_address - NDO callback to set MAC address 5717 * @netdev: network interface device structure 5718 * @pi: pointer to an address structure 5719 * 5720 * Returns 0 on success, negative on failure 5721 */ 5722 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5723 { 5724 struct ice_netdev_priv *np = netdev_priv(netdev); 5725 struct ice_vsi *vsi = np->vsi; 5726 struct ice_pf *pf = vsi->back; 5727 struct ice_hw *hw = &pf->hw; 5728 struct sockaddr *addr = pi; 5729 u8 old_mac[ETH_ALEN]; 5730 u8 flags = 0; 5731 u8 *mac; 5732 int err; 5733 5734 mac = (u8 *)addr->sa_data; 5735 5736 if (!is_valid_ether_addr(mac)) 5737 return -EADDRNOTAVAIL; 5738 5739 if (test_bit(ICE_DOWN, pf->state) || 5740 ice_is_reset_in_progress(pf->state)) { 5741 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5742 mac); 5743 return -EBUSY; 5744 } 5745 5746 if (ice_chnl_dmac_fltr_cnt(pf)) { 5747 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5748 mac); 5749 return -EAGAIN; 5750 } 5751 5752 netif_addr_lock_bh(netdev); 5753 ether_addr_copy(old_mac, netdev->dev_addr); 5754 /* change the netdev's MAC address */ 5755 eth_hw_addr_set(netdev, mac); 5756 netif_addr_unlock_bh(netdev); 5757 5758 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5759 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5760 if (err && err != -ENOENT) { 5761 err = -EADDRNOTAVAIL; 5762 goto err_update_filters; 5763 } 5764 5765 /* Add filter for new MAC. If filter exists, return success */ 5766 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5767 if (err == -EEXIST) { 5768 /* Although this MAC filter is already present in hardware it's 5769 * possible in some cases (e.g. bonding) that dev_addr was 5770 * modified outside of the driver and needs to be restored back 5771 * to this value. 5772 */ 5773 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5774 5775 return 0; 5776 } else if (err) { 5777 /* error if the new filter addition failed */ 5778 err = -EADDRNOTAVAIL; 5779 } 5780 5781 err_update_filters: 5782 if (err) { 5783 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5784 mac); 5785 netif_addr_lock_bh(netdev); 5786 eth_hw_addr_set(netdev, old_mac); 5787 netif_addr_unlock_bh(netdev); 5788 return err; 5789 } 5790 5791 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5792 netdev->dev_addr); 5793 5794 /* write new MAC address to the firmware */ 5795 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5796 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5797 if (err) { 5798 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5799 mac, err); 5800 } 5801 return 0; 5802 } 5803 5804 /** 5805 * ice_set_rx_mode - NDO callback to set the netdev filters 5806 * @netdev: network interface device structure 5807 */ 5808 static void ice_set_rx_mode(struct net_device *netdev) 5809 { 5810 struct ice_netdev_priv *np = netdev_priv(netdev); 5811 struct ice_vsi *vsi = np->vsi; 5812 5813 if (!vsi || ice_is_switchdev_running(vsi->back)) 5814 return; 5815 5816 /* Set the flags to synchronize filters 5817 * ndo_set_rx_mode may be triggered even without a change in netdev 5818 * flags 5819 */ 5820 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5821 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5822 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5823 5824 /* schedule our worker thread which will take care of 5825 * applying the new filter changes 5826 */ 5827 ice_service_task_schedule(vsi->back); 5828 } 5829 5830 /** 5831 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5832 * @netdev: network interface device structure 5833 * @queue_index: Queue ID 5834 * @maxrate: maximum bandwidth in Mbps 5835 */ 5836 static int 5837 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5838 { 5839 struct ice_netdev_priv *np = netdev_priv(netdev); 5840 struct ice_vsi *vsi = np->vsi; 5841 u16 q_handle; 5842 int status; 5843 u8 tc; 5844 5845 /* Validate maxrate requested is within permitted range */ 5846 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5847 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5848 maxrate, queue_index); 5849 return -EINVAL; 5850 } 5851 5852 q_handle = vsi->tx_rings[queue_index]->q_handle; 5853 tc = ice_dcb_get_tc(vsi, queue_index); 5854 5855 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 5856 if (!vsi) { 5857 netdev_err(netdev, "Invalid VSI for given queue %d\n", 5858 queue_index); 5859 return -EINVAL; 5860 } 5861 5862 /* Set BW back to default, when user set maxrate to 0 */ 5863 if (!maxrate) 5864 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5865 q_handle, ICE_MAX_BW); 5866 else 5867 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5868 q_handle, ICE_MAX_BW, maxrate * 1000); 5869 if (status) 5870 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5871 status); 5872 5873 return status; 5874 } 5875 5876 /** 5877 * ice_fdb_add - add an entry to the hardware database 5878 * @ndm: the input from the stack 5879 * @tb: pointer to array of nladdr (unused) 5880 * @dev: the net device pointer 5881 * @addr: the MAC address entry being added 5882 * @vid: VLAN ID 5883 * @flags: instructions from stack about fdb operation 5884 * @extack: netlink extended ack 5885 */ 5886 static int 5887 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5888 struct net_device *dev, const unsigned char *addr, u16 vid, 5889 u16 flags, struct netlink_ext_ack __always_unused *extack) 5890 { 5891 int err; 5892 5893 if (vid) { 5894 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5895 return -EINVAL; 5896 } 5897 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5898 netdev_err(dev, "FDB only supports static addresses\n"); 5899 return -EINVAL; 5900 } 5901 5902 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5903 err = dev_uc_add_excl(dev, addr); 5904 else if (is_multicast_ether_addr(addr)) 5905 err = dev_mc_add_excl(dev, addr); 5906 else 5907 err = -EINVAL; 5908 5909 /* Only return duplicate errors if NLM_F_EXCL is set */ 5910 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5911 err = 0; 5912 5913 return err; 5914 } 5915 5916 /** 5917 * ice_fdb_del - delete an entry from the hardware database 5918 * @ndm: the input from the stack 5919 * @tb: pointer to array of nladdr (unused) 5920 * @dev: the net device pointer 5921 * @addr: the MAC address entry being added 5922 * @vid: VLAN ID 5923 * @extack: netlink extended ack 5924 */ 5925 static int 5926 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5927 struct net_device *dev, const unsigned char *addr, 5928 __always_unused u16 vid, struct netlink_ext_ack *extack) 5929 { 5930 int err; 5931 5932 if (ndm->ndm_state & NUD_PERMANENT) { 5933 netdev_err(dev, "FDB only supports static addresses\n"); 5934 return -EINVAL; 5935 } 5936 5937 if (is_unicast_ether_addr(addr)) 5938 err = dev_uc_del(dev, addr); 5939 else if (is_multicast_ether_addr(addr)) 5940 err = dev_mc_del(dev, addr); 5941 else 5942 err = -EINVAL; 5943 5944 return err; 5945 } 5946 5947 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5948 NETIF_F_HW_VLAN_CTAG_TX | \ 5949 NETIF_F_HW_VLAN_STAG_RX | \ 5950 NETIF_F_HW_VLAN_STAG_TX) 5951 5952 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5953 NETIF_F_HW_VLAN_STAG_RX) 5954 5955 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5956 NETIF_F_HW_VLAN_STAG_FILTER) 5957 5958 /** 5959 * ice_fix_features - fix the netdev features flags based on device limitations 5960 * @netdev: ptr to the netdev that flags are being fixed on 5961 * @features: features that need to be checked and possibly fixed 5962 * 5963 * Make sure any fixups are made to features in this callback. This enables the 5964 * driver to not have to check unsupported configurations throughout the driver 5965 * because that's the responsiblity of this callback. 5966 * 5967 * Single VLAN Mode (SVM) Supported Features: 5968 * NETIF_F_HW_VLAN_CTAG_FILTER 5969 * NETIF_F_HW_VLAN_CTAG_RX 5970 * NETIF_F_HW_VLAN_CTAG_TX 5971 * 5972 * Double VLAN Mode (DVM) Supported Features: 5973 * NETIF_F_HW_VLAN_CTAG_FILTER 5974 * NETIF_F_HW_VLAN_CTAG_RX 5975 * NETIF_F_HW_VLAN_CTAG_TX 5976 * 5977 * NETIF_F_HW_VLAN_STAG_FILTER 5978 * NETIF_HW_VLAN_STAG_RX 5979 * NETIF_HW_VLAN_STAG_TX 5980 * 5981 * Features that need fixing: 5982 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5983 * These are mutually exlusive as the VSI context cannot support multiple 5984 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5985 * is not done, then default to clearing the requested STAG offload 5986 * settings. 5987 * 5988 * All supported filtering has to be enabled or disabled together. For 5989 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5990 * together. If this is not done, then default to VLAN filtering disabled. 5991 * These are mutually exclusive as there is currently no way to 5992 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5993 * prune rules. 5994 */ 5995 static netdev_features_t 5996 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5997 { 5998 struct ice_netdev_priv *np = netdev_priv(netdev); 5999 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6000 bool cur_ctag, cur_stag, req_ctag, req_stag; 6001 6002 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6003 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6004 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6005 6006 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6007 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6008 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6009 6010 if (req_vlan_fltr != cur_vlan_fltr) { 6011 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6012 if (req_ctag && req_stag) { 6013 features |= NETIF_VLAN_FILTERING_FEATURES; 6014 } else if (!req_ctag && !req_stag) { 6015 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6016 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6017 (!cur_stag && req_stag && !cur_ctag)) { 6018 features |= NETIF_VLAN_FILTERING_FEATURES; 6019 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6020 } else if ((cur_ctag && !req_ctag && cur_stag) || 6021 (cur_stag && !req_stag && cur_ctag)) { 6022 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6023 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6024 } 6025 } else { 6026 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6027 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6028 6029 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6030 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6031 } 6032 } 6033 6034 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6035 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6036 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6037 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6038 NETIF_F_HW_VLAN_STAG_TX); 6039 } 6040 6041 if (!(netdev->features & NETIF_F_RXFCS) && 6042 (features & NETIF_F_RXFCS) && 6043 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6044 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6045 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6046 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6047 } 6048 6049 return features; 6050 } 6051 6052 /** 6053 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6054 * @vsi: PF's VSI 6055 * @features: features used to determine VLAN offload settings 6056 * 6057 * First, determine the vlan_ethertype based on the VLAN offload bits in 6058 * features. Then determine if stripping and insertion should be enabled or 6059 * disabled. Finally enable or disable VLAN stripping and insertion. 6060 */ 6061 static int 6062 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6063 { 6064 bool enable_stripping = true, enable_insertion = true; 6065 struct ice_vsi_vlan_ops *vlan_ops; 6066 int strip_err = 0, insert_err = 0; 6067 u16 vlan_ethertype = 0; 6068 6069 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6070 6071 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6072 vlan_ethertype = ETH_P_8021AD; 6073 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6074 vlan_ethertype = ETH_P_8021Q; 6075 6076 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6077 enable_stripping = false; 6078 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6079 enable_insertion = false; 6080 6081 if (enable_stripping) 6082 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6083 else 6084 strip_err = vlan_ops->dis_stripping(vsi); 6085 6086 if (enable_insertion) 6087 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6088 else 6089 insert_err = vlan_ops->dis_insertion(vsi); 6090 6091 if (strip_err || insert_err) 6092 return -EIO; 6093 6094 return 0; 6095 } 6096 6097 /** 6098 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6099 * @vsi: PF's VSI 6100 * @features: features used to determine VLAN filtering settings 6101 * 6102 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6103 * features. 6104 */ 6105 static int 6106 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6107 { 6108 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6109 int err = 0; 6110 6111 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6112 * if either bit is set 6113 */ 6114 if (features & 6115 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 6116 err = vlan_ops->ena_rx_filtering(vsi); 6117 else 6118 err = vlan_ops->dis_rx_filtering(vsi); 6119 6120 return err; 6121 } 6122 6123 /** 6124 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6125 * @netdev: ptr to the netdev being adjusted 6126 * @features: the feature set that the stack is suggesting 6127 * 6128 * Only update VLAN settings if the requested_vlan_features are different than 6129 * the current_vlan_features. 6130 */ 6131 static int 6132 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6133 { 6134 netdev_features_t current_vlan_features, requested_vlan_features; 6135 struct ice_netdev_priv *np = netdev_priv(netdev); 6136 struct ice_vsi *vsi = np->vsi; 6137 int err; 6138 6139 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6140 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6141 if (current_vlan_features ^ requested_vlan_features) { 6142 if ((features & NETIF_F_RXFCS) && 6143 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6144 dev_err(ice_pf_to_dev(vsi->back), 6145 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6146 return -EIO; 6147 } 6148 6149 err = ice_set_vlan_offload_features(vsi, features); 6150 if (err) 6151 return err; 6152 } 6153 6154 current_vlan_features = netdev->features & 6155 NETIF_VLAN_FILTERING_FEATURES; 6156 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6157 if (current_vlan_features ^ requested_vlan_features) { 6158 err = ice_set_vlan_filtering_features(vsi, features); 6159 if (err) 6160 return err; 6161 } 6162 6163 return 0; 6164 } 6165 6166 /** 6167 * ice_set_loopback - turn on/off loopback mode on underlying PF 6168 * @vsi: ptr to VSI 6169 * @ena: flag to indicate the on/off setting 6170 */ 6171 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6172 { 6173 bool if_running = netif_running(vsi->netdev); 6174 int ret; 6175 6176 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6177 ret = ice_down(vsi); 6178 if (ret) { 6179 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6180 return ret; 6181 } 6182 } 6183 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6184 if (ret) 6185 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6186 if (if_running) 6187 ret = ice_up(vsi); 6188 6189 return ret; 6190 } 6191 6192 /** 6193 * ice_set_features - set the netdev feature flags 6194 * @netdev: ptr to the netdev being adjusted 6195 * @features: the feature set that the stack is suggesting 6196 */ 6197 static int 6198 ice_set_features(struct net_device *netdev, netdev_features_t features) 6199 { 6200 netdev_features_t changed = netdev->features ^ features; 6201 struct ice_netdev_priv *np = netdev_priv(netdev); 6202 struct ice_vsi *vsi = np->vsi; 6203 struct ice_pf *pf = vsi->back; 6204 int ret = 0; 6205 6206 /* Don't set any netdev advanced features with device in Safe Mode */ 6207 if (ice_is_safe_mode(pf)) { 6208 dev_err(ice_pf_to_dev(pf), 6209 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6210 return ret; 6211 } 6212 6213 /* Do not change setting during reset */ 6214 if (ice_is_reset_in_progress(pf->state)) { 6215 dev_err(ice_pf_to_dev(pf), 6216 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6217 return -EBUSY; 6218 } 6219 6220 /* Multiple features can be changed in one call so keep features in 6221 * separate if/else statements to guarantee each feature is checked 6222 */ 6223 if (changed & NETIF_F_RXHASH) 6224 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6225 6226 ret = ice_set_vlan_features(netdev, features); 6227 if (ret) 6228 return ret; 6229 6230 /* Turn on receive of FCS aka CRC, and after setting this 6231 * flag the packet data will have the 4 byte CRC appended 6232 */ 6233 if (changed & NETIF_F_RXFCS) { 6234 if ((features & NETIF_F_RXFCS) && 6235 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6236 dev_err(ice_pf_to_dev(vsi->back), 6237 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6238 return -EIO; 6239 } 6240 6241 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6242 ret = ice_down_up(vsi); 6243 if (ret) 6244 return ret; 6245 } 6246 6247 if (changed & NETIF_F_NTUPLE) { 6248 bool ena = !!(features & NETIF_F_NTUPLE); 6249 6250 ice_vsi_manage_fdir(vsi, ena); 6251 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6252 } 6253 6254 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6255 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6256 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6257 return -EACCES; 6258 } 6259 6260 if (changed & NETIF_F_HW_TC) { 6261 bool ena = !!(features & NETIF_F_HW_TC); 6262 6263 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) : 6264 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 6265 } 6266 6267 if (changed & NETIF_F_LOOPBACK) 6268 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6269 6270 return ret; 6271 } 6272 6273 /** 6274 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6275 * @vsi: VSI to setup VLAN properties for 6276 */ 6277 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6278 { 6279 int err; 6280 6281 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6282 if (err) 6283 return err; 6284 6285 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6286 if (err) 6287 return err; 6288 6289 return ice_vsi_add_vlan_zero(vsi); 6290 } 6291 6292 /** 6293 * ice_vsi_cfg_lan - Setup the VSI lan related config 6294 * @vsi: the VSI being configured 6295 * 6296 * Return 0 on success and negative value on error 6297 */ 6298 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6299 { 6300 int err; 6301 6302 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6303 ice_set_rx_mode(vsi->netdev); 6304 6305 err = ice_vsi_vlan_setup(vsi); 6306 if (err) 6307 return err; 6308 } 6309 ice_vsi_cfg_dcb_rings(vsi); 6310 6311 err = ice_vsi_cfg_lan_txqs(vsi); 6312 if (!err && ice_is_xdp_ena_vsi(vsi)) 6313 err = ice_vsi_cfg_xdp_txqs(vsi); 6314 if (!err) 6315 err = ice_vsi_cfg_rxqs(vsi); 6316 6317 return err; 6318 } 6319 6320 /* THEORY OF MODERATION: 6321 * The ice driver hardware works differently than the hardware that DIMLIB was 6322 * originally made for. ice hardware doesn't have packet count limits that 6323 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6324 * which is hard-coded to a limit of 250,000 ints/second. 6325 * If not using dynamic moderation, the INTRL value can be modified 6326 * by ethtool rx-usecs-high. 6327 */ 6328 struct ice_dim { 6329 /* the throttle rate for interrupts, basically worst case delay before 6330 * an initial interrupt fires, value is stored in microseconds. 6331 */ 6332 u16 itr; 6333 }; 6334 6335 /* Make a different profile for Rx that doesn't allow quite so aggressive 6336 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6337 * second. 6338 */ 6339 static const struct ice_dim rx_profile[] = { 6340 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6341 {8}, /* 125,000 ints/s */ 6342 {16}, /* 62,500 ints/s */ 6343 {62}, /* 16,129 ints/s */ 6344 {126} /* 7,936 ints/s */ 6345 }; 6346 6347 /* The transmit profile, which has the same sorts of values 6348 * as the previous struct 6349 */ 6350 static const struct ice_dim tx_profile[] = { 6351 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6352 {8}, /* 125,000 ints/s */ 6353 {40}, /* 16,125 ints/s */ 6354 {128}, /* 7,812 ints/s */ 6355 {256} /* 3,906 ints/s */ 6356 }; 6357 6358 static void ice_tx_dim_work(struct work_struct *work) 6359 { 6360 struct ice_ring_container *rc; 6361 struct dim *dim; 6362 u16 itr; 6363 6364 dim = container_of(work, struct dim, work); 6365 rc = dim->priv; 6366 6367 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6368 6369 /* look up the values in our local table */ 6370 itr = tx_profile[dim->profile_ix].itr; 6371 6372 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6373 ice_write_itr(rc, itr); 6374 6375 dim->state = DIM_START_MEASURE; 6376 } 6377 6378 static void ice_rx_dim_work(struct work_struct *work) 6379 { 6380 struct ice_ring_container *rc; 6381 struct dim *dim; 6382 u16 itr; 6383 6384 dim = container_of(work, struct dim, work); 6385 rc = dim->priv; 6386 6387 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6388 6389 /* look up the values in our local table */ 6390 itr = rx_profile[dim->profile_ix].itr; 6391 6392 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6393 ice_write_itr(rc, itr); 6394 6395 dim->state = DIM_START_MEASURE; 6396 } 6397 6398 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6399 6400 /** 6401 * ice_init_moderation - set up interrupt moderation 6402 * @q_vector: the vector containing rings to be configured 6403 * 6404 * Set up interrupt moderation registers, with the intent to do the right thing 6405 * when called from reset or from probe, and whether or not dynamic moderation 6406 * is enabled or not. Take special care to write all the registers in both 6407 * dynamic moderation mode or not in order to make sure hardware is in a known 6408 * state. 6409 */ 6410 static void ice_init_moderation(struct ice_q_vector *q_vector) 6411 { 6412 struct ice_ring_container *rc; 6413 bool tx_dynamic, rx_dynamic; 6414 6415 rc = &q_vector->tx; 6416 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6417 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6418 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6419 rc->dim.priv = rc; 6420 tx_dynamic = ITR_IS_DYNAMIC(rc); 6421 6422 /* set the initial TX ITR to match the above */ 6423 ice_write_itr(rc, tx_dynamic ? 6424 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6425 6426 rc = &q_vector->rx; 6427 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6428 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6429 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6430 rc->dim.priv = rc; 6431 rx_dynamic = ITR_IS_DYNAMIC(rc); 6432 6433 /* set the initial RX ITR to match the above */ 6434 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6435 rc->itr_setting); 6436 6437 ice_set_q_vector_intrl(q_vector); 6438 } 6439 6440 /** 6441 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6442 * @vsi: the VSI being configured 6443 */ 6444 static void ice_napi_enable_all(struct ice_vsi *vsi) 6445 { 6446 int q_idx; 6447 6448 if (!vsi->netdev) 6449 return; 6450 6451 ice_for_each_q_vector(vsi, q_idx) { 6452 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6453 6454 ice_init_moderation(q_vector); 6455 6456 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6457 napi_enable(&q_vector->napi); 6458 } 6459 } 6460 6461 /** 6462 * ice_up_complete - Finish the last steps of bringing up a connection 6463 * @vsi: The VSI being configured 6464 * 6465 * Return 0 on success and negative value on error 6466 */ 6467 static int ice_up_complete(struct ice_vsi *vsi) 6468 { 6469 struct ice_pf *pf = vsi->back; 6470 int err; 6471 6472 ice_vsi_cfg_msix(vsi); 6473 6474 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6475 * Tx queue group list was configured and the context bits were 6476 * programmed using ice_vsi_cfg_txqs 6477 */ 6478 err = ice_vsi_start_all_rx_rings(vsi); 6479 if (err) 6480 return err; 6481 6482 clear_bit(ICE_VSI_DOWN, vsi->state); 6483 ice_napi_enable_all(vsi); 6484 ice_vsi_ena_irq(vsi); 6485 6486 if (vsi->port_info && 6487 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6488 vsi->netdev && vsi->type == ICE_VSI_PF) { 6489 ice_print_link_msg(vsi, true); 6490 netif_tx_start_all_queues(vsi->netdev); 6491 netif_carrier_on(vsi->netdev); 6492 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6493 } 6494 6495 /* Perform an initial read of the statistics registers now to 6496 * set the baseline so counters are ready when interface is up 6497 */ 6498 ice_update_eth_stats(vsi); 6499 6500 if (vsi->type == ICE_VSI_PF) 6501 ice_service_task_schedule(pf); 6502 6503 return 0; 6504 } 6505 6506 /** 6507 * ice_up - Bring the connection back up after being down 6508 * @vsi: VSI being configured 6509 */ 6510 int ice_up(struct ice_vsi *vsi) 6511 { 6512 int err; 6513 6514 err = ice_vsi_cfg_lan(vsi); 6515 if (!err) 6516 err = ice_up_complete(vsi); 6517 6518 return err; 6519 } 6520 6521 /** 6522 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6523 * @syncp: pointer to u64_stats_sync 6524 * @stats: stats that pkts and bytes count will be taken from 6525 * @pkts: packets stats counter 6526 * @bytes: bytes stats counter 6527 * 6528 * This function fetches stats from the ring considering the atomic operations 6529 * that needs to be performed to read u64 values in 32 bit machine. 6530 */ 6531 void 6532 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6533 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6534 { 6535 unsigned int start; 6536 6537 do { 6538 start = u64_stats_fetch_begin(syncp); 6539 *pkts = stats.pkts; 6540 *bytes = stats.bytes; 6541 } while (u64_stats_fetch_retry(syncp, start)); 6542 } 6543 6544 /** 6545 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6546 * @vsi: the VSI to be updated 6547 * @vsi_stats: the stats struct to be updated 6548 * @rings: rings to work on 6549 * @count: number of rings 6550 */ 6551 static void 6552 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6553 struct rtnl_link_stats64 *vsi_stats, 6554 struct ice_tx_ring **rings, u16 count) 6555 { 6556 u16 i; 6557 6558 for (i = 0; i < count; i++) { 6559 struct ice_tx_ring *ring; 6560 u64 pkts = 0, bytes = 0; 6561 6562 ring = READ_ONCE(rings[i]); 6563 if (!ring || !ring->ring_stats) 6564 continue; 6565 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6566 ring->ring_stats->stats, &pkts, 6567 &bytes); 6568 vsi_stats->tx_packets += pkts; 6569 vsi_stats->tx_bytes += bytes; 6570 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6571 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6572 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6573 } 6574 } 6575 6576 /** 6577 * ice_update_vsi_ring_stats - Update VSI stats counters 6578 * @vsi: the VSI to be updated 6579 */ 6580 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6581 { 6582 struct rtnl_link_stats64 *net_stats, *stats_prev; 6583 struct rtnl_link_stats64 *vsi_stats; 6584 u64 pkts, bytes; 6585 int i; 6586 6587 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6588 if (!vsi_stats) 6589 return; 6590 6591 /* reset non-netdev (extended) stats */ 6592 vsi->tx_restart = 0; 6593 vsi->tx_busy = 0; 6594 vsi->tx_linearize = 0; 6595 vsi->rx_buf_failed = 0; 6596 vsi->rx_page_failed = 0; 6597 6598 rcu_read_lock(); 6599 6600 /* update Tx rings counters */ 6601 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6602 vsi->num_txq); 6603 6604 /* update Rx rings counters */ 6605 ice_for_each_rxq(vsi, i) { 6606 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6607 struct ice_ring_stats *ring_stats; 6608 6609 ring_stats = ring->ring_stats; 6610 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6611 ring_stats->stats, &pkts, 6612 &bytes); 6613 vsi_stats->rx_packets += pkts; 6614 vsi_stats->rx_bytes += bytes; 6615 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6616 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6617 } 6618 6619 /* update XDP Tx rings counters */ 6620 if (ice_is_xdp_ena_vsi(vsi)) 6621 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6622 vsi->num_xdp_txq); 6623 6624 rcu_read_unlock(); 6625 6626 net_stats = &vsi->net_stats; 6627 stats_prev = &vsi->net_stats_prev; 6628 6629 /* clear prev counters after reset */ 6630 if (vsi_stats->tx_packets < stats_prev->tx_packets || 6631 vsi_stats->rx_packets < stats_prev->rx_packets) { 6632 stats_prev->tx_packets = 0; 6633 stats_prev->tx_bytes = 0; 6634 stats_prev->rx_packets = 0; 6635 stats_prev->rx_bytes = 0; 6636 } 6637 6638 /* update netdev counters */ 6639 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6640 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6641 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6642 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6643 6644 stats_prev->tx_packets = vsi_stats->tx_packets; 6645 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6646 stats_prev->rx_packets = vsi_stats->rx_packets; 6647 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6648 6649 kfree(vsi_stats); 6650 } 6651 6652 /** 6653 * ice_update_vsi_stats - Update VSI stats counters 6654 * @vsi: the VSI to be updated 6655 */ 6656 void ice_update_vsi_stats(struct ice_vsi *vsi) 6657 { 6658 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6659 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6660 struct ice_pf *pf = vsi->back; 6661 6662 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6663 test_bit(ICE_CFG_BUSY, pf->state)) 6664 return; 6665 6666 /* get stats as recorded by Tx/Rx rings */ 6667 ice_update_vsi_ring_stats(vsi); 6668 6669 /* get VSI stats as recorded by the hardware */ 6670 ice_update_eth_stats(vsi); 6671 6672 cur_ns->tx_errors = cur_es->tx_errors; 6673 cur_ns->rx_dropped = cur_es->rx_discards; 6674 cur_ns->tx_dropped = cur_es->tx_discards; 6675 cur_ns->multicast = cur_es->rx_multicast; 6676 6677 /* update some more netdev stats if this is main VSI */ 6678 if (vsi->type == ICE_VSI_PF) { 6679 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6680 cur_ns->rx_errors = pf->stats.crc_errors + 6681 pf->stats.illegal_bytes + 6682 pf->stats.rx_len_errors + 6683 pf->stats.rx_undersize + 6684 pf->hw_csum_rx_error + 6685 pf->stats.rx_jabber + 6686 pf->stats.rx_fragments + 6687 pf->stats.rx_oversize; 6688 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6689 /* record drops from the port level */ 6690 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6691 } 6692 } 6693 6694 /** 6695 * ice_update_pf_stats - Update PF port stats counters 6696 * @pf: PF whose stats needs to be updated 6697 */ 6698 void ice_update_pf_stats(struct ice_pf *pf) 6699 { 6700 struct ice_hw_port_stats *prev_ps, *cur_ps; 6701 struct ice_hw *hw = &pf->hw; 6702 u16 fd_ctr_base; 6703 u8 port; 6704 6705 port = hw->port_info->lport; 6706 prev_ps = &pf->stats_prev; 6707 cur_ps = &pf->stats; 6708 6709 if (ice_is_reset_in_progress(pf->state)) 6710 pf->stat_prev_loaded = false; 6711 6712 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6713 &prev_ps->eth.rx_bytes, 6714 &cur_ps->eth.rx_bytes); 6715 6716 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6717 &prev_ps->eth.rx_unicast, 6718 &cur_ps->eth.rx_unicast); 6719 6720 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6721 &prev_ps->eth.rx_multicast, 6722 &cur_ps->eth.rx_multicast); 6723 6724 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6725 &prev_ps->eth.rx_broadcast, 6726 &cur_ps->eth.rx_broadcast); 6727 6728 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6729 &prev_ps->eth.rx_discards, 6730 &cur_ps->eth.rx_discards); 6731 6732 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6733 &prev_ps->eth.tx_bytes, 6734 &cur_ps->eth.tx_bytes); 6735 6736 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6737 &prev_ps->eth.tx_unicast, 6738 &cur_ps->eth.tx_unicast); 6739 6740 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6741 &prev_ps->eth.tx_multicast, 6742 &cur_ps->eth.tx_multicast); 6743 6744 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6745 &prev_ps->eth.tx_broadcast, 6746 &cur_ps->eth.tx_broadcast); 6747 6748 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6749 &prev_ps->tx_dropped_link_down, 6750 &cur_ps->tx_dropped_link_down); 6751 6752 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6753 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6754 6755 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6756 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6757 6758 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6759 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6760 6761 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6762 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6763 6764 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6765 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6766 6767 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6768 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6769 6770 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6771 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6772 6773 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6774 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6775 6776 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6777 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6778 6779 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6780 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6781 6782 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6783 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6784 6785 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6786 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6787 6788 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6789 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6790 6791 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6792 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6793 6794 fd_ctr_base = hw->fd_ctr_base; 6795 6796 ice_stat_update40(hw, 6797 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6798 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6799 &cur_ps->fd_sb_match); 6800 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6801 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6802 6803 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6804 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6805 6806 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6807 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6808 6809 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6810 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6811 6812 ice_update_dcb_stats(pf); 6813 6814 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6815 &prev_ps->crc_errors, &cur_ps->crc_errors); 6816 6817 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6818 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6819 6820 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6821 &prev_ps->mac_local_faults, 6822 &cur_ps->mac_local_faults); 6823 6824 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6825 &prev_ps->mac_remote_faults, 6826 &cur_ps->mac_remote_faults); 6827 6828 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6829 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6830 6831 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6832 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6833 6834 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6835 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6836 6837 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6838 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6839 6840 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6841 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6842 6843 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6844 6845 pf->stat_prev_loaded = true; 6846 } 6847 6848 /** 6849 * ice_get_stats64 - get statistics for network device structure 6850 * @netdev: network interface device structure 6851 * @stats: main device statistics structure 6852 */ 6853 static 6854 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6855 { 6856 struct ice_netdev_priv *np = netdev_priv(netdev); 6857 struct rtnl_link_stats64 *vsi_stats; 6858 struct ice_vsi *vsi = np->vsi; 6859 6860 vsi_stats = &vsi->net_stats; 6861 6862 if (!vsi->num_txq || !vsi->num_rxq) 6863 return; 6864 6865 /* netdev packet/byte stats come from ring counter. These are obtained 6866 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6867 * But, only call the update routine and read the registers if VSI is 6868 * not down. 6869 */ 6870 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6871 ice_update_vsi_ring_stats(vsi); 6872 stats->tx_packets = vsi_stats->tx_packets; 6873 stats->tx_bytes = vsi_stats->tx_bytes; 6874 stats->rx_packets = vsi_stats->rx_packets; 6875 stats->rx_bytes = vsi_stats->rx_bytes; 6876 6877 /* The rest of the stats can be read from the hardware but instead we 6878 * just return values that the watchdog task has already obtained from 6879 * the hardware. 6880 */ 6881 stats->multicast = vsi_stats->multicast; 6882 stats->tx_errors = vsi_stats->tx_errors; 6883 stats->tx_dropped = vsi_stats->tx_dropped; 6884 stats->rx_errors = vsi_stats->rx_errors; 6885 stats->rx_dropped = vsi_stats->rx_dropped; 6886 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6887 stats->rx_length_errors = vsi_stats->rx_length_errors; 6888 } 6889 6890 /** 6891 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6892 * @vsi: VSI having NAPI disabled 6893 */ 6894 static void ice_napi_disable_all(struct ice_vsi *vsi) 6895 { 6896 int q_idx; 6897 6898 if (!vsi->netdev) 6899 return; 6900 6901 ice_for_each_q_vector(vsi, q_idx) { 6902 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6903 6904 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6905 napi_disable(&q_vector->napi); 6906 6907 cancel_work_sync(&q_vector->tx.dim.work); 6908 cancel_work_sync(&q_vector->rx.dim.work); 6909 } 6910 } 6911 6912 /** 6913 * ice_down - Shutdown the connection 6914 * @vsi: The VSI being stopped 6915 * 6916 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6917 */ 6918 int ice_down(struct ice_vsi *vsi) 6919 { 6920 int i, tx_err, rx_err, vlan_err = 0; 6921 6922 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6923 6924 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6925 vlan_err = ice_vsi_del_vlan_zero(vsi); 6926 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6927 netif_carrier_off(vsi->netdev); 6928 netif_tx_disable(vsi->netdev); 6929 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6930 ice_eswitch_stop_all_tx_queues(vsi->back); 6931 } 6932 6933 ice_vsi_dis_irq(vsi); 6934 6935 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6936 if (tx_err) 6937 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6938 vsi->vsi_num, tx_err); 6939 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6940 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6941 if (tx_err) 6942 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6943 vsi->vsi_num, tx_err); 6944 } 6945 6946 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6947 if (rx_err) 6948 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6949 vsi->vsi_num, rx_err); 6950 6951 ice_napi_disable_all(vsi); 6952 6953 ice_for_each_txq(vsi, i) 6954 ice_clean_tx_ring(vsi->tx_rings[i]); 6955 6956 if (ice_is_xdp_ena_vsi(vsi)) 6957 ice_for_each_xdp_txq(vsi, i) 6958 ice_clean_tx_ring(vsi->xdp_rings[i]); 6959 6960 ice_for_each_rxq(vsi, i) 6961 ice_clean_rx_ring(vsi->rx_rings[i]); 6962 6963 if (tx_err || rx_err || vlan_err) { 6964 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6965 vsi->vsi_num, vsi->vsw->sw_id); 6966 return -EIO; 6967 } 6968 6969 return 0; 6970 } 6971 6972 /** 6973 * ice_down_up - shutdown the VSI connection and bring it up 6974 * @vsi: the VSI to be reconnected 6975 */ 6976 int ice_down_up(struct ice_vsi *vsi) 6977 { 6978 int ret; 6979 6980 /* if DOWN already set, nothing to do */ 6981 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 6982 return 0; 6983 6984 ret = ice_down(vsi); 6985 if (ret) 6986 return ret; 6987 6988 ret = ice_up(vsi); 6989 if (ret) { 6990 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 6991 return ret; 6992 } 6993 6994 return 0; 6995 } 6996 6997 /** 6998 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6999 * @vsi: VSI having resources allocated 7000 * 7001 * Return 0 on success, negative on failure 7002 */ 7003 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7004 { 7005 int i, err = 0; 7006 7007 if (!vsi->num_txq) { 7008 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7009 vsi->vsi_num); 7010 return -EINVAL; 7011 } 7012 7013 ice_for_each_txq(vsi, i) { 7014 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7015 7016 if (!ring) 7017 return -EINVAL; 7018 7019 if (vsi->netdev) 7020 ring->netdev = vsi->netdev; 7021 err = ice_setup_tx_ring(ring); 7022 if (err) 7023 break; 7024 } 7025 7026 return err; 7027 } 7028 7029 /** 7030 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7031 * @vsi: VSI having resources allocated 7032 * 7033 * Return 0 on success, negative on failure 7034 */ 7035 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7036 { 7037 int i, err = 0; 7038 7039 if (!vsi->num_rxq) { 7040 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7041 vsi->vsi_num); 7042 return -EINVAL; 7043 } 7044 7045 ice_for_each_rxq(vsi, i) { 7046 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7047 7048 if (!ring) 7049 return -EINVAL; 7050 7051 if (vsi->netdev) 7052 ring->netdev = vsi->netdev; 7053 err = ice_setup_rx_ring(ring); 7054 if (err) 7055 break; 7056 } 7057 7058 return err; 7059 } 7060 7061 /** 7062 * ice_vsi_open_ctrl - open control VSI for use 7063 * @vsi: the VSI to open 7064 * 7065 * Initialization of the Control VSI 7066 * 7067 * Returns 0 on success, negative value on error 7068 */ 7069 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7070 { 7071 char int_name[ICE_INT_NAME_STR_LEN]; 7072 struct ice_pf *pf = vsi->back; 7073 struct device *dev; 7074 int err; 7075 7076 dev = ice_pf_to_dev(pf); 7077 /* allocate descriptors */ 7078 err = ice_vsi_setup_tx_rings(vsi); 7079 if (err) 7080 goto err_setup_tx; 7081 7082 err = ice_vsi_setup_rx_rings(vsi); 7083 if (err) 7084 goto err_setup_rx; 7085 7086 err = ice_vsi_cfg_lan(vsi); 7087 if (err) 7088 goto err_setup_rx; 7089 7090 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7091 dev_driver_string(dev), dev_name(dev)); 7092 err = ice_vsi_req_irq_msix(vsi, int_name); 7093 if (err) 7094 goto err_setup_rx; 7095 7096 ice_vsi_cfg_msix(vsi); 7097 7098 err = ice_vsi_start_all_rx_rings(vsi); 7099 if (err) 7100 goto err_up_complete; 7101 7102 clear_bit(ICE_VSI_DOWN, vsi->state); 7103 ice_vsi_ena_irq(vsi); 7104 7105 return 0; 7106 7107 err_up_complete: 7108 ice_down(vsi); 7109 err_setup_rx: 7110 ice_vsi_free_rx_rings(vsi); 7111 err_setup_tx: 7112 ice_vsi_free_tx_rings(vsi); 7113 7114 return err; 7115 } 7116 7117 /** 7118 * ice_vsi_open - Called when a network interface is made active 7119 * @vsi: the VSI to open 7120 * 7121 * Initialization of the VSI 7122 * 7123 * Returns 0 on success, negative value on error 7124 */ 7125 int ice_vsi_open(struct ice_vsi *vsi) 7126 { 7127 char int_name[ICE_INT_NAME_STR_LEN]; 7128 struct ice_pf *pf = vsi->back; 7129 int err; 7130 7131 /* allocate descriptors */ 7132 err = ice_vsi_setup_tx_rings(vsi); 7133 if (err) 7134 goto err_setup_tx; 7135 7136 err = ice_vsi_setup_rx_rings(vsi); 7137 if (err) 7138 goto err_setup_rx; 7139 7140 err = ice_vsi_cfg_lan(vsi); 7141 if (err) 7142 goto err_setup_rx; 7143 7144 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7145 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7146 err = ice_vsi_req_irq_msix(vsi, int_name); 7147 if (err) 7148 goto err_setup_rx; 7149 7150 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7151 7152 if (vsi->type == ICE_VSI_PF) { 7153 /* Notify the stack of the actual queue counts. */ 7154 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7155 if (err) 7156 goto err_set_qs; 7157 7158 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7159 if (err) 7160 goto err_set_qs; 7161 } 7162 7163 err = ice_up_complete(vsi); 7164 if (err) 7165 goto err_up_complete; 7166 7167 return 0; 7168 7169 err_up_complete: 7170 ice_down(vsi); 7171 err_set_qs: 7172 ice_vsi_free_irq(vsi); 7173 err_setup_rx: 7174 ice_vsi_free_rx_rings(vsi); 7175 err_setup_tx: 7176 ice_vsi_free_tx_rings(vsi); 7177 7178 return err; 7179 } 7180 7181 /** 7182 * ice_vsi_release_all - Delete all VSIs 7183 * @pf: PF from which all VSIs are being removed 7184 */ 7185 static void ice_vsi_release_all(struct ice_pf *pf) 7186 { 7187 int err, i; 7188 7189 if (!pf->vsi) 7190 return; 7191 7192 ice_for_each_vsi(pf, i) { 7193 if (!pf->vsi[i]) 7194 continue; 7195 7196 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7197 continue; 7198 7199 err = ice_vsi_release(pf->vsi[i]); 7200 if (err) 7201 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7202 i, err, pf->vsi[i]->vsi_num); 7203 } 7204 } 7205 7206 /** 7207 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7208 * @pf: pointer to the PF instance 7209 * @type: VSI type to rebuild 7210 * 7211 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7212 */ 7213 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7214 { 7215 struct device *dev = ice_pf_to_dev(pf); 7216 int i, err; 7217 7218 ice_for_each_vsi(pf, i) { 7219 struct ice_vsi *vsi = pf->vsi[i]; 7220 7221 if (!vsi || vsi->type != type) 7222 continue; 7223 7224 /* rebuild the VSI */ 7225 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7226 if (err) { 7227 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7228 err, vsi->idx, ice_vsi_type_str(type)); 7229 return err; 7230 } 7231 7232 /* replay filters for the VSI */ 7233 err = ice_replay_vsi(&pf->hw, vsi->idx); 7234 if (err) { 7235 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7236 err, vsi->idx, ice_vsi_type_str(type)); 7237 return err; 7238 } 7239 7240 /* Re-map HW VSI number, using VSI handle that has been 7241 * previously validated in ice_replay_vsi() call above 7242 */ 7243 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7244 7245 /* enable the VSI */ 7246 err = ice_ena_vsi(vsi, false); 7247 if (err) { 7248 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7249 err, vsi->idx, ice_vsi_type_str(type)); 7250 return err; 7251 } 7252 7253 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7254 ice_vsi_type_str(type)); 7255 } 7256 7257 return 0; 7258 } 7259 7260 /** 7261 * ice_update_pf_netdev_link - Update PF netdev link status 7262 * @pf: pointer to the PF instance 7263 */ 7264 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7265 { 7266 bool link_up; 7267 int i; 7268 7269 ice_for_each_vsi(pf, i) { 7270 struct ice_vsi *vsi = pf->vsi[i]; 7271 7272 if (!vsi || vsi->type != ICE_VSI_PF) 7273 return; 7274 7275 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7276 if (link_up) { 7277 netif_carrier_on(pf->vsi[i]->netdev); 7278 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7279 } else { 7280 netif_carrier_off(pf->vsi[i]->netdev); 7281 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7282 } 7283 } 7284 } 7285 7286 /** 7287 * ice_rebuild - rebuild after reset 7288 * @pf: PF to rebuild 7289 * @reset_type: type of reset 7290 * 7291 * Do not rebuild VF VSI in this flow because that is already handled via 7292 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7293 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7294 * to reset/rebuild all the VF VSI twice. 7295 */ 7296 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7297 { 7298 struct device *dev = ice_pf_to_dev(pf); 7299 struct ice_hw *hw = &pf->hw; 7300 bool dvm; 7301 int err; 7302 7303 if (test_bit(ICE_DOWN, pf->state)) 7304 goto clear_recovery; 7305 7306 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7307 7308 #define ICE_EMP_RESET_SLEEP_MS 5000 7309 if (reset_type == ICE_RESET_EMPR) { 7310 /* If an EMP reset has occurred, any previously pending flash 7311 * update will have completed. We no longer know whether or 7312 * not the NVM update EMP reset is restricted. 7313 */ 7314 pf->fw_emp_reset_disabled = false; 7315 7316 msleep(ICE_EMP_RESET_SLEEP_MS); 7317 } 7318 7319 err = ice_init_all_ctrlq(hw); 7320 if (err) { 7321 dev_err(dev, "control queues init failed %d\n", err); 7322 goto err_init_ctrlq; 7323 } 7324 7325 /* if DDP was previously loaded successfully */ 7326 if (!ice_is_safe_mode(pf)) { 7327 /* reload the SW DB of filter tables */ 7328 if (reset_type == ICE_RESET_PFR) 7329 ice_fill_blk_tbls(hw); 7330 else 7331 /* Reload DDP Package after CORER/GLOBR reset */ 7332 ice_load_pkg(NULL, pf); 7333 } 7334 7335 err = ice_clear_pf_cfg(hw); 7336 if (err) { 7337 dev_err(dev, "clear PF configuration failed %d\n", err); 7338 goto err_init_ctrlq; 7339 } 7340 7341 ice_clear_pxe_mode(hw); 7342 7343 err = ice_init_nvm(hw); 7344 if (err) { 7345 dev_err(dev, "ice_init_nvm failed %d\n", err); 7346 goto err_init_ctrlq; 7347 } 7348 7349 err = ice_get_caps(hw); 7350 if (err) { 7351 dev_err(dev, "ice_get_caps failed %d\n", err); 7352 goto err_init_ctrlq; 7353 } 7354 7355 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7356 if (err) { 7357 dev_err(dev, "set_mac_cfg failed %d\n", err); 7358 goto err_init_ctrlq; 7359 } 7360 7361 dvm = ice_is_dvm_ena(hw); 7362 7363 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7364 if (err) 7365 goto err_init_ctrlq; 7366 7367 err = ice_sched_init_port(hw->port_info); 7368 if (err) 7369 goto err_sched_init_port; 7370 7371 /* start misc vector */ 7372 err = ice_req_irq_msix_misc(pf); 7373 if (err) { 7374 dev_err(dev, "misc vector setup failed: %d\n", err); 7375 goto err_sched_init_port; 7376 } 7377 7378 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7379 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7380 if (!rd32(hw, PFQF_FD_SIZE)) { 7381 u16 unused, guar, b_effort; 7382 7383 guar = hw->func_caps.fd_fltr_guar; 7384 b_effort = hw->func_caps.fd_fltr_best_effort; 7385 7386 /* force guaranteed filter pool for PF */ 7387 ice_alloc_fd_guar_item(hw, &unused, guar); 7388 /* force shared filter pool for PF */ 7389 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7390 } 7391 } 7392 7393 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7394 ice_dcb_rebuild(pf); 7395 7396 /* If the PF previously had enabled PTP, PTP init needs to happen before 7397 * the VSI rebuild. If not, this causes the PTP link status events to 7398 * fail. 7399 */ 7400 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7401 ice_ptp_reset(pf); 7402 7403 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7404 ice_gnss_init(pf); 7405 7406 /* rebuild PF VSI */ 7407 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7408 if (err) { 7409 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7410 goto err_vsi_rebuild; 7411 } 7412 7413 err = ice_eswitch_rebuild(pf); 7414 if (err) { 7415 dev_err(dev, "Switchdev rebuild failed: %d\n", err); 7416 goto err_vsi_rebuild; 7417 } 7418 7419 if (reset_type == ICE_RESET_PFR) { 7420 err = ice_rebuild_channels(pf); 7421 if (err) { 7422 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7423 err); 7424 goto err_vsi_rebuild; 7425 } 7426 } 7427 7428 /* If Flow Director is active */ 7429 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7430 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7431 if (err) { 7432 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7433 goto err_vsi_rebuild; 7434 } 7435 7436 /* replay HW Flow Director recipes */ 7437 if (hw->fdir_prof) 7438 ice_fdir_replay_flows(hw); 7439 7440 /* replay Flow Director filters */ 7441 ice_fdir_replay_fltrs(pf); 7442 7443 ice_rebuild_arfs(pf); 7444 } 7445 7446 ice_update_pf_netdev_link(pf); 7447 7448 /* tell the firmware we are up */ 7449 err = ice_send_version(pf); 7450 if (err) { 7451 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7452 err); 7453 goto err_vsi_rebuild; 7454 } 7455 7456 ice_replay_post(hw); 7457 7458 /* if we get here, reset flow is successful */ 7459 clear_bit(ICE_RESET_FAILED, pf->state); 7460 7461 ice_plug_aux_dev(pf); 7462 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7463 ice_lag_rebuild(pf); 7464 7465 /* Restore timestamp mode settings after VSI rebuild */ 7466 ice_ptp_restore_timestamp_mode(pf); 7467 return; 7468 7469 err_vsi_rebuild: 7470 err_sched_init_port: 7471 ice_sched_cleanup_all(hw); 7472 err_init_ctrlq: 7473 ice_shutdown_all_ctrlq(hw); 7474 set_bit(ICE_RESET_FAILED, pf->state); 7475 clear_recovery: 7476 /* set this bit in PF state to control service task scheduling */ 7477 set_bit(ICE_NEEDS_RESTART, pf->state); 7478 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7479 } 7480 7481 /** 7482 * ice_change_mtu - NDO callback to change the MTU 7483 * @netdev: network interface device structure 7484 * @new_mtu: new value for maximum frame size 7485 * 7486 * Returns 0 on success, negative on failure 7487 */ 7488 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7489 { 7490 struct ice_netdev_priv *np = netdev_priv(netdev); 7491 struct ice_vsi *vsi = np->vsi; 7492 struct ice_pf *pf = vsi->back; 7493 struct bpf_prog *prog; 7494 u8 count = 0; 7495 int err = 0; 7496 7497 if (new_mtu == (int)netdev->mtu) { 7498 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7499 return 0; 7500 } 7501 7502 prog = vsi->xdp_prog; 7503 if (prog && !prog->aux->xdp_has_frags) { 7504 int frame_size = ice_max_xdp_frame_size(vsi); 7505 7506 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7507 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7508 frame_size - ICE_ETH_PKT_HDR_PAD); 7509 return -EINVAL; 7510 } 7511 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7512 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7513 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7514 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7515 return -EINVAL; 7516 } 7517 } 7518 7519 /* if a reset is in progress, wait for some time for it to complete */ 7520 do { 7521 if (ice_is_reset_in_progress(pf->state)) { 7522 count++; 7523 usleep_range(1000, 2000); 7524 } else { 7525 break; 7526 } 7527 7528 } while (count < 100); 7529 7530 if (count == 100) { 7531 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7532 return -EBUSY; 7533 } 7534 7535 netdev->mtu = (unsigned int)new_mtu; 7536 err = ice_down_up(vsi); 7537 if (err) 7538 return err; 7539 7540 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7541 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7542 7543 return err; 7544 } 7545 7546 /** 7547 * ice_eth_ioctl - Access the hwtstamp interface 7548 * @netdev: network interface device structure 7549 * @ifr: interface request data 7550 * @cmd: ioctl command 7551 */ 7552 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7553 { 7554 struct ice_netdev_priv *np = netdev_priv(netdev); 7555 struct ice_pf *pf = np->vsi->back; 7556 7557 switch (cmd) { 7558 case SIOCGHWTSTAMP: 7559 return ice_ptp_get_ts_config(pf, ifr); 7560 case SIOCSHWTSTAMP: 7561 return ice_ptp_set_ts_config(pf, ifr); 7562 default: 7563 return -EOPNOTSUPP; 7564 } 7565 } 7566 7567 /** 7568 * ice_aq_str - convert AQ err code to a string 7569 * @aq_err: the AQ error code to convert 7570 */ 7571 const char *ice_aq_str(enum ice_aq_err aq_err) 7572 { 7573 switch (aq_err) { 7574 case ICE_AQ_RC_OK: 7575 return "OK"; 7576 case ICE_AQ_RC_EPERM: 7577 return "ICE_AQ_RC_EPERM"; 7578 case ICE_AQ_RC_ENOENT: 7579 return "ICE_AQ_RC_ENOENT"; 7580 case ICE_AQ_RC_ENOMEM: 7581 return "ICE_AQ_RC_ENOMEM"; 7582 case ICE_AQ_RC_EBUSY: 7583 return "ICE_AQ_RC_EBUSY"; 7584 case ICE_AQ_RC_EEXIST: 7585 return "ICE_AQ_RC_EEXIST"; 7586 case ICE_AQ_RC_EINVAL: 7587 return "ICE_AQ_RC_EINVAL"; 7588 case ICE_AQ_RC_ENOSPC: 7589 return "ICE_AQ_RC_ENOSPC"; 7590 case ICE_AQ_RC_ENOSYS: 7591 return "ICE_AQ_RC_ENOSYS"; 7592 case ICE_AQ_RC_EMODE: 7593 return "ICE_AQ_RC_EMODE"; 7594 case ICE_AQ_RC_ENOSEC: 7595 return "ICE_AQ_RC_ENOSEC"; 7596 case ICE_AQ_RC_EBADSIG: 7597 return "ICE_AQ_RC_EBADSIG"; 7598 case ICE_AQ_RC_ESVN: 7599 return "ICE_AQ_RC_ESVN"; 7600 case ICE_AQ_RC_EBADMAN: 7601 return "ICE_AQ_RC_EBADMAN"; 7602 case ICE_AQ_RC_EBADBUF: 7603 return "ICE_AQ_RC_EBADBUF"; 7604 } 7605 7606 return "ICE_AQ_RC_UNKNOWN"; 7607 } 7608 7609 /** 7610 * ice_set_rss_lut - Set RSS LUT 7611 * @vsi: Pointer to VSI structure 7612 * @lut: Lookup table 7613 * @lut_size: Lookup table size 7614 * 7615 * Returns 0 on success, negative on failure 7616 */ 7617 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7618 { 7619 struct ice_aq_get_set_rss_lut_params params = {}; 7620 struct ice_hw *hw = &vsi->back->hw; 7621 int status; 7622 7623 if (!lut) 7624 return -EINVAL; 7625 7626 params.vsi_handle = vsi->idx; 7627 params.lut_size = lut_size; 7628 params.lut_type = vsi->rss_lut_type; 7629 params.lut = lut; 7630 7631 status = ice_aq_set_rss_lut(hw, ¶ms); 7632 if (status) 7633 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7634 status, ice_aq_str(hw->adminq.sq_last_status)); 7635 7636 return status; 7637 } 7638 7639 /** 7640 * ice_set_rss_key - Set RSS key 7641 * @vsi: Pointer to the VSI structure 7642 * @seed: RSS hash seed 7643 * 7644 * Returns 0 on success, negative on failure 7645 */ 7646 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7647 { 7648 struct ice_hw *hw = &vsi->back->hw; 7649 int status; 7650 7651 if (!seed) 7652 return -EINVAL; 7653 7654 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7655 if (status) 7656 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7657 status, ice_aq_str(hw->adminq.sq_last_status)); 7658 7659 return status; 7660 } 7661 7662 /** 7663 * ice_get_rss_lut - Get RSS LUT 7664 * @vsi: Pointer to VSI structure 7665 * @lut: Buffer to store the lookup table entries 7666 * @lut_size: Size of buffer to store the lookup table entries 7667 * 7668 * Returns 0 on success, negative on failure 7669 */ 7670 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7671 { 7672 struct ice_aq_get_set_rss_lut_params params = {}; 7673 struct ice_hw *hw = &vsi->back->hw; 7674 int status; 7675 7676 if (!lut) 7677 return -EINVAL; 7678 7679 params.vsi_handle = vsi->idx; 7680 params.lut_size = lut_size; 7681 params.lut_type = vsi->rss_lut_type; 7682 params.lut = lut; 7683 7684 status = ice_aq_get_rss_lut(hw, ¶ms); 7685 if (status) 7686 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7687 status, ice_aq_str(hw->adminq.sq_last_status)); 7688 7689 return status; 7690 } 7691 7692 /** 7693 * ice_get_rss_key - Get RSS key 7694 * @vsi: Pointer to VSI structure 7695 * @seed: Buffer to store the key in 7696 * 7697 * Returns 0 on success, negative on failure 7698 */ 7699 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7700 { 7701 struct ice_hw *hw = &vsi->back->hw; 7702 int status; 7703 7704 if (!seed) 7705 return -EINVAL; 7706 7707 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7708 if (status) 7709 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7710 status, ice_aq_str(hw->adminq.sq_last_status)); 7711 7712 return status; 7713 } 7714 7715 /** 7716 * ice_bridge_getlink - Get the hardware bridge mode 7717 * @skb: skb buff 7718 * @pid: process ID 7719 * @seq: RTNL message seq 7720 * @dev: the netdev being configured 7721 * @filter_mask: filter mask passed in 7722 * @nlflags: netlink flags passed in 7723 * 7724 * Return the bridge mode (VEB/VEPA) 7725 */ 7726 static int 7727 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7728 struct net_device *dev, u32 filter_mask, int nlflags) 7729 { 7730 struct ice_netdev_priv *np = netdev_priv(dev); 7731 struct ice_vsi *vsi = np->vsi; 7732 struct ice_pf *pf = vsi->back; 7733 u16 bmode; 7734 7735 bmode = pf->first_sw->bridge_mode; 7736 7737 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7738 filter_mask, NULL); 7739 } 7740 7741 /** 7742 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7743 * @vsi: Pointer to VSI structure 7744 * @bmode: Hardware bridge mode (VEB/VEPA) 7745 * 7746 * Returns 0 on success, negative on failure 7747 */ 7748 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7749 { 7750 struct ice_aqc_vsi_props *vsi_props; 7751 struct ice_hw *hw = &vsi->back->hw; 7752 struct ice_vsi_ctx *ctxt; 7753 int ret; 7754 7755 vsi_props = &vsi->info; 7756 7757 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7758 if (!ctxt) 7759 return -ENOMEM; 7760 7761 ctxt->info = vsi->info; 7762 7763 if (bmode == BRIDGE_MODE_VEB) 7764 /* change from VEPA to VEB mode */ 7765 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7766 else 7767 /* change from VEB to VEPA mode */ 7768 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7769 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7770 7771 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7772 if (ret) { 7773 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7774 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7775 goto out; 7776 } 7777 /* Update sw flags for book keeping */ 7778 vsi_props->sw_flags = ctxt->info.sw_flags; 7779 7780 out: 7781 kfree(ctxt); 7782 return ret; 7783 } 7784 7785 /** 7786 * ice_bridge_setlink - Set the hardware bridge mode 7787 * @dev: the netdev being configured 7788 * @nlh: RTNL message 7789 * @flags: bridge setlink flags 7790 * @extack: netlink extended ack 7791 * 7792 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7793 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7794 * not already set for all VSIs connected to this switch. And also update the 7795 * unicast switch filter rules for the corresponding switch of the netdev. 7796 */ 7797 static int 7798 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7799 u16 __always_unused flags, 7800 struct netlink_ext_ack __always_unused *extack) 7801 { 7802 struct ice_netdev_priv *np = netdev_priv(dev); 7803 struct ice_pf *pf = np->vsi->back; 7804 struct nlattr *attr, *br_spec; 7805 struct ice_hw *hw = &pf->hw; 7806 struct ice_sw *pf_sw; 7807 int rem, v, err = 0; 7808 7809 pf_sw = pf->first_sw; 7810 /* find the attribute in the netlink message */ 7811 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7812 7813 nla_for_each_nested(attr, br_spec, rem) { 7814 __u16 mode; 7815 7816 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7817 continue; 7818 mode = nla_get_u16(attr); 7819 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7820 return -EINVAL; 7821 /* Continue if bridge mode is not being flipped */ 7822 if (mode == pf_sw->bridge_mode) 7823 continue; 7824 /* Iterates through the PF VSI list and update the loopback 7825 * mode of the VSI 7826 */ 7827 ice_for_each_vsi(pf, v) { 7828 if (!pf->vsi[v]) 7829 continue; 7830 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7831 if (err) 7832 return err; 7833 } 7834 7835 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7836 /* Update the unicast switch filter rules for the corresponding 7837 * switch of the netdev 7838 */ 7839 err = ice_update_sw_rule_bridge_mode(hw); 7840 if (err) { 7841 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7842 mode, err, 7843 ice_aq_str(hw->adminq.sq_last_status)); 7844 /* revert hw->evb_veb */ 7845 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7846 return err; 7847 } 7848 7849 pf_sw->bridge_mode = mode; 7850 } 7851 7852 return 0; 7853 } 7854 7855 /** 7856 * ice_tx_timeout - Respond to a Tx Hang 7857 * @netdev: network interface device structure 7858 * @txqueue: Tx queue 7859 */ 7860 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7861 { 7862 struct ice_netdev_priv *np = netdev_priv(netdev); 7863 struct ice_tx_ring *tx_ring = NULL; 7864 struct ice_vsi *vsi = np->vsi; 7865 struct ice_pf *pf = vsi->back; 7866 u32 i; 7867 7868 pf->tx_timeout_count++; 7869 7870 /* Check if PFC is enabled for the TC to which the queue belongs 7871 * to. If yes then Tx timeout is not caused by a hung queue, no 7872 * need to reset and rebuild 7873 */ 7874 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7875 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7876 txqueue); 7877 return; 7878 } 7879 7880 /* now that we have an index, find the tx_ring struct */ 7881 ice_for_each_txq(vsi, i) 7882 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7883 if (txqueue == vsi->tx_rings[i]->q_index) { 7884 tx_ring = vsi->tx_rings[i]; 7885 break; 7886 } 7887 7888 /* Reset recovery level if enough time has elapsed after last timeout. 7889 * Also ensure no new reset action happens before next timeout period. 7890 */ 7891 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7892 pf->tx_timeout_recovery_level = 1; 7893 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7894 netdev->watchdog_timeo))) 7895 return; 7896 7897 if (tx_ring) { 7898 struct ice_hw *hw = &pf->hw; 7899 u32 head, val = 0; 7900 7901 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7902 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7903 /* Read interrupt register */ 7904 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7905 7906 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7907 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7908 head, tx_ring->next_to_use, val); 7909 } 7910 7911 pf->tx_timeout_last_recovery = jiffies; 7912 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7913 pf->tx_timeout_recovery_level, txqueue); 7914 7915 switch (pf->tx_timeout_recovery_level) { 7916 case 1: 7917 set_bit(ICE_PFR_REQ, pf->state); 7918 break; 7919 case 2: 7920 set_bit(ICE_CORER_REQ, pf->state); 7921 break; 7922 case 3: 7923 set_bit(ICE_GLOBR_REQ, pf->state); 7924 break; 7925 default: 7926 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7927 set_bit(ICE_DOWN, pf->state); 7928 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7929 set_bit(ICE_SERVICE_DIS, pf->state); 7930 break; 7931 } 7932 7933 ice_service_task_schedule(pf); 7934 pf->tx_timeout_recovery_level++; 7935 } 7936 7937 /** 7938 * ice_setup_tc_cls_flower - flower classifier offloads 7939 * @np: net device to configure 7940 * @filter_dev: device on which filter is added 7941 * @cls_flower: offload data 7942 */ 7943 static int 7944 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7945 struct net_device *filter_dev, 7946 struct flow_cls_offload *cls_flower) 7947 { 7948 struct ice_vsi *vsi = np->vsi; 7949 7950 if (cls_flower->common.chain_index) 7951 return -EOPNOTSUPP; 7952 7953 switch (cls_flower->command) { 7954 case FLOW_CLS_REPLACE: 7955 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7956 case FLOW_CLS_DESTROY: 7957 return ice_del_cls_flower(vsi, cls_flower); 7958 default: 7959 return -EINVAL; 7960 } 7961 } 7962 7963 /** 7964 * ice_setup_tc_block_cb - callback handler registered for TC block 7965 * @type: TC SETUP type 7966 * @type_data: TC flower offload data that contains user input 7967 * @cb_priv: netdev private data 7968 */ 7969 static int 7970 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7971 { 7972 struct ice_netdev_priv *np = cb_priv; 7973 7974 switch (type) { 7975 case TC_SETUP_CLSFLOWER: 7976 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7977 type_data); 7978 default: 7979 return -EOPNOTSUPP; 7980 } 7981 } 7982 7983 /** 7984 * ice_validate_mqprio_qopt - Validate TCF input parameters 7985 * @vsi: Pointer to VSI 7986 * @mqprio_qopt: input parameters for mqprio queue configuration 7987 * 7988 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7989 * needed), and make sure user doesn't specify qcount and BW rate limit 7990 * for TCs, which are more than "num_tc" 7991 */ 7992 static int 7993 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7994 struct tc_mqprio_qopt_offload *mqprio_qopt) 7995 { 7996 int non_power_of_2_qcount = 0; 7997 struct ice_pf *pf = vsi->back; 7998 int max_rss_q_cnt = 0; 7999 u64 sum_min_rate = 0; 8000 struct device *dev; 8001 int i, speed; 8002 u8 num_tc; 8003 8004 if (vsi->type != ICE_VSI_PF) 8005 return -EINVAL; 8006 8007 if (mqprio_qopt->qopt.offset[0] != 0 || 8008 mqprio_qopt->qopt.num_tc < 1 || 8009 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8010 return -EINVAL; 8011 8012 dev = ice_pf_to_dev(pf); 8013 vsi->ch_rss_size = 0; 8014 num_tc = mqprio_qopt->qopt.num_tc; 8015 speed = ice_get_link_speed_kbps(vsi); 8016 8017 for (i = 0; num_tc; i++) { 8018 int qcount = mqprio_qopt->qopt.count[i]; 8019 u64 max_rate, min_rate, rem; 8020 8021 if (!qcount) 8022 return -EINVAL; 8023 8024 if (is_power_of_2(qcount)) { 8025 if (non_power_of_2_qcount && 8026 qcount > non_power_of_2_qcount) { 8027 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8028 qcount, non_power_of_2_qcount); 8029 return -EINVAL; 8030 } 8031 if (qcount > max_rss_q_cnt) 8032 max_rss_q_cnt = qcount; 8033 } else { 8034 if (non_power_of_2_qcount && 8035 qcount != non_power_of_2_qcount) { 8036 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8037 qcount, non_power_of_2_qcount); 8038 return -EINVAL; 8039 } 8040 if (qcount < max_rss_q_cnt) { 8041 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8042 qcount, max_rss_q_cnt); 8043 return -EINVAL; 8044 } 8045 max_rss_q_cnt = qcount; 8046 non_power_of_2_qcount = qcount; 8047 } 8048 8049 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8050 * converts the bandwidth rate limit into Bytes/s when 8051 * passing it down to the driver. So convert input bandwidth 8052 * from Bytes/s to Kbps 8053 */ 8054 max_rate = mqprio_qopt->max_rate[i]; 8055 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8056 8057 /* min_rate is minimum guaranteed rate and it can't be zero */ 8058 min_rate = mqprio_qopt->min_rate[i]; 8059 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8060 sum_min_rate += min_rate; 8061 8062 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8063 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8064 min_rate, ICE_MIN_BW_LIMIT); 8065 return -EINVAL; 8066 } 8067 8068 if (max_rate && max_rate > speed) { 8069 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8070 i, max_rate, speed); 8071 return -EINVAL; 8072 } 8073 8074 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8075 if (rem) { 8076 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8077 i, ICE_MIN_BW_LIMIT); 8078 return -EINVAL; 8079 } 8080 8081 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8082 if (rem) { 8083 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8084 i, ICE_MIN_BW_LIMIT); 8085 return -EINVAL; 8086 } 8087 8088 /* min_rate can't be more than max_rate, except when max_rate 8089 * is zero (implies max_rate sought is max line rate). In such 8090 * a case min_rate can be more than max. 8091 */ 8092 if (max_rate && min_rate > max_rate) { 8093 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8094 min_rate, max_rate); 8095 return -EINVAL; 8096 } 8097 8098 if (i >= mqprio_qopt->qopt.num_tc - 1) 8099 break; 8100 if (mqprio_qopt->qopt.offset[i + 1] != 8101 (mqprio_qopt->qopt.offset[i] + qcount)) 8102 return -EINVAL; 8103 } 8104 if (vsi->num_rxq < 8105 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8106 return -EINVAL; 8107 if (vsi->num_txq < 8108 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8109 return -EINVAL; 8110 8111 if (sum_min_rate && sum_min_rate > (u64)speed) { 8112 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8113 sum_min_rate, speed); 8114 return -EINVAL; 8115 } 8116 8117 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8118 vsi->ch_rss_size = max_rss_q_cnt; 8119 8120 return 0; 8121 } 8122 8123 /** 8124 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8125 * @pf: ptr to PF device 8126 * @vsi: ptr to VSI 8127 */ 8128 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8129 { 8130 struct device *dev = ice_pf_to_dev(pf); 8131 bool added = false; 8132 struct ice_hw *hw; 8133 int flow; 8134 8135 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8136 return -EINVAL; 8137 8138 hw = &pf->hw; 8139 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8140 struct ice_fd_hw_prof *prof; 8141 int tun, status; 8142 u64 entry_h; 8143 8144 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8145 hw->fdir_prof[flow]->cnt)) 8146 continue; 8147 8148 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8149 enum ice_flow_priority prio; 8150 u64 prof_id; 8151 8152 /* add this VSI to FDir profile for this flow */ 8153 prio = ICE_FLOW_PRIO_NORMAL; 8154 prof = hw->fdir_prof[flow]; 8155 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 8156 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 8157 prof->vsi_h[0], vsi->idx, 8158 prio, prof->fdir_seg[tun], 8159 &entry_h); 8160 if (status) { 8161 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8162 vsi->idx, flow); 8163 continue; 8164 } 8165 8166 prof->entry_h[prof->cnt][tun] = entry_h; 8167 } 8168 8169 /* store VSI for filter replay and delete */ 8170 prof->vsi_h[prof->cnt] = vsi->idx; 8171 prof->cnt++; 8172 8173 added = true; 8174 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8175 flow); 8176 } 8177 8178 if (!added) 8179 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8180 8181 return 0; 8182 } 8183 8184 /** 8185 * ice_add_channel - add a channel by adding VSI 8186 * @pf: ptr to PF device 8187 * @sw_id: underlying HW switching element ID 8188 * @ch: ptr to channel structure 8189 * 8190 * Add a channel (VSI) using add_vsi and queue_map 8191 */ 8192 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8193 { 8194 struct device *dev = ice_pf_to_dev(pf); 8195 struct ice_vsi *vsi; 8196 8197 if (ch->type != ICE_VSI_CHNL) { 8198 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8199 return -EINVAL; 8200 } 8201 8202 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8203 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8204 dev_err(dev, "create chnl VSI failure\n"); 8205 return -EINVAL; 8206 } 8207 8208 ice_add_vsi_to_fdir(pf, vsi); 8209 8210 ch->sw_id = sw_id; 8211 ch->vsi_num = vsi->vsi_num; 8212 ch->info.mapping_flags = vsi->info.mapping_flags; 8213 ch->ch_vsi = vsi; 8214 /* set the back pointer of channel for newly created VSI */ 8215 vsi->ch = ch; 8216 8217 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8218 sizeof(vsi->info.q_mapping)); 8219 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8220 sizeof(vsi->info.tc_mapping)); 8221 8222 return 0; 8223 } 8224 8225 /** 8226 * ice_chnl_cfg_res 8227 * @vsi: the VSI being setup 8228 * @ch: ptr to channel structure 8229 * 8230 * Configure channel specific resources such as rings, vector. 8231 */ 8232 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8233 { 8234 int i; 8235 8236 for (i = 0; i < ch->num_txq; i++) { 8237 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8238 struct ice_ring_container *rc; 8239 struct ice_tx_ring *tx_ring; 8240 struct ice_rx_ring *rx_ring; 8241 8242 tx_ring = vsi->tx_rings[ch->base_q + i]; 8243 rx_ring = vsi->rx_rings[ch->base_q + i]; 8244 if (!tx_ring || !rx_ring) 8245 continue; 8246 8247 /* setup ring being channel enabled */ 8248 tx_ring->ch = ch; 8249 rx_ring->ch = ch; 8250 8251 /* following code block sets up vector specific attributes */ 8252 tx_q_vector = tx_ring->q_vector; 8253 rx_q_vector = rx_ring->q_vector; 8254 if (!tx_q_vector && !rx_q_vector) 8255 continue; 8256 8257 if (tx_q_vector) { 8258 tx_q_vector->ch = ch; 8259 /* setup Tx and Rx ITR setting if DIM is off */ 8260 rc = &tx_q_vector->tx; 8261 if (!ITR_IS_DYNAMIC(rc)) 8262 ice_write_itr(rc, rc->itr_setting); 8263 } 8264 if (rx_q_vector) { 8265 rx_q_vector->ch = ch; 8266 /* setup Tx and Rx ITR setting if DIM is off */ 8267 rc = &rx_q_vector->rx; 8268 if (!ITR_IS_DYNAMIC(rc)) 8269 ice_write_itr(rc, rc->itr_setting); 8270 } 8271 } 8272 8273 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8274 * GLINT_ITR register would have written to perform in-context 8275 * update, hence perform flush 8276 */ 8277 if (ch->num_txq || ch->num_rxq) 8278 ice_flush(&vsi->back->hw); 8279 } 8280 8281 /** 8282 * ice_cfg_chnl_all_res - configure channel resources 8283 * @vsi: pte to main_vsi 8284 * @ch: ptr to channel structure 8285 * 8286 * This function configures channel specific resources such as flow-director 8287 * counter index, and other resources such as queues, vectors, ITR settings 8288 */ 8289 static void 8290 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8291 { 8292 /* configure channel (aka ADQ) resources such as queues, vectors, 8293 * ITR settings for channel specific vectors and anything else 8294 */ 8295 ice_chnl_cfg_res(vsi, ch); 8296 } 8297 8298 /** 8299 * ice_setup_hw_channel - setup new channel 8300 * @pf: ptr to PF device 8301 * @vsi: the VSI being setup 8302 * @ch: ptr to channel structure 8303 * @sw_id: underlying HW switching element ID 8304 * @type: type of channel to be created (VMDq2/VF) 8305 * 8306 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8307 * and configures Tx rings accordingly 8308 */ 8309 static int 8310 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8311 struct ice_channel *ch, u16 sw_id, u8 type) 8312 { 8313 struct device *dev = ice_pf_to_dev(pf); 8314 int ret; 8315 8316 ch->base_q = vsi->next_base_q; 8317 ch->type = type; 8318 8319 ret = ice_add_channel(pf, sw_id, ch); 8320 if (ret) { 8321 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8322 return ret; 8323 } 8324 8325 /* configure/setup ADQ specific resources */ 8326 ice_cfg_chnl_all_res(vsi, ch); 8327 8328 /* make sure to update the next_base_q so that subsequent channel's 8329 * (aka ADQ) VSI queue map is correct 8330 */ 8331 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8332 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8333 ch->num_rxq); 8334 8335 return 0; 8336 } 8337 8338 /** 8339 * ice_setup_channel - setup new channel using uplink element 8340 * @pf: ptr to PF device 8341 * @vsi: the VSI being setup 8342 * @ch: ptr to channel structure 8343 * 8344 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8345 * and uplink switching element 8346 */ 8347 static bool 8348 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8349 struct ice_channel *ch) 8350 { 8351 struct device *dev = ice_pf_to_dev(pf); 8352 u16 sw_id; 8353 int ret; 8354 8355 if (vsi->type != ICE_VSI_PF) { 8356 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8357 return false; 8358 } 8359 8360 sw_id = pf->first_sw->sw_id; 8361 8362 /* create channel (VSI) */ 8363 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8364 if (ret) { 8365 dev_err(dev, "failed to setup hw_channel\n"); 8366 return false; 8367 } 8368 dev_dbg(dev, "successfully created channel()\n"); 8369 8370 return ch->ch_vsi ? true : false; 8371 } 8372 8373 /** 8374 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8375 * @vsi: VSI to be configured 8376 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8377 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8378 */ 8379 static int 8380 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8381 { 8382 int err; 8383 8384 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8385 if (err) 8386 return err; 8387 8388 return ice_set_max_bw_limit(vsi, max_tx_rate); 8389 } 8390 8391 /** 8392 * ice_create_q_channel - function to create channel 8393 * @vsi: VSI to be configured 8394 * @ch: ptr to channel (it contains channel specific params) 8395 * 8396 * This function creates channel (VSI) using num_queues specified by user, 8397 * reconfigs RSS if needed. 8398 */ 8399 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8400 { 8401 struct ice_pf *pf = vsi->back; 8402 struct device *dev; 8403 8404 if (!ch) 8405 return -EINVAL; 8406 8407 dev = ice_pf_to_dev(pf); 8408 if (!ch->num_txq || !ch->num_rxq) { 8409 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8410 return -EINVAL; 8411 } 8412 8413 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8414 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8415 vsi->cnt_q_avail, ch->num_txq); 8416 return -EINVAL; 8417 } 8418 8419 if (!ice_setup_channel(pf, vsi, ch)) { 8420 dev_info(dev, "Failed to setup channel\n"); 8421 return -EINVAL; 8422 } 8423 /* configure BW rate limit */ 8424 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8425 int ret; 8426 8427 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8428 ch->min_tx_rate); 8429 if (ret) 8430 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8431 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8432 else 8433 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8434 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8435 } 8436 8437 vsi->cnt_q_avail -= ch->num_txq; 8438 8439 return 0; 8440 } 8441 8442 /** 8443 * ice_rem_all_chnl_fltrs - removes all channel filters 8444 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8445 * 8446 * Remove all advanced switch filters only if they are channel specific 8447 * tc-flower based filter 8448 */ 8449 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8450 { 8451 struct ice_tc_flower_fltr *fltr; 8452 struct hlist_node *node; 8453 8454 /* to remove all channel filters, iterate an ordered list of filters */ 8455 hlist_for_each_entry_safe(fltr, node, 8456 &pf->tc_flower_fltr_list, 8457 tc_flower_node) { 8458 struct ice_rule_query_data rule; 8459 int status; 8460 8461 /* for now process only channel specific filters */ 8462 if (!ice_is_chnl_fltr(fltr)) 8463 continue; 8464 8465 rule.rid = fltr->rid; 8466 rule.rule_id = fltr->rule_id; 8467 rule.vsi_handle = fltr->dest_vsi_handle; 8468 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8469 if (status) { 8470 if (status == -ENOENT) 8471 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8472 rule.rule_id); 8473 else 8474 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8475 status); 8476 } else if (fltr->dest_vsi) { 8477 /* update advanced switch filter count */ 8478 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8479 u32 flags = fltr->flags; 8480 8481 fltr->dest_vsi->num_chnl_fltr--; 8482 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8483 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8484 pf->num_dmac_chnl_fltrs--; 8485 } 8486 } 8487 8488 hlist_del(&fltr->tc_flower_node); 8489 kfree(fltr); 8490 } 8491 } 8492 8493 /** 8494 * ice_remove_q_channels - Remove queue channels for the TCs 8495 * @vsi: VSI to be configured 8496 * @rem_fltr: delete advanced switch filter or not 8497 * 8498 * Remove queue channels for the TCs 8499 */ 8500 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8501 { 8502 struct ice_channel *ch, *ch_tmp; 8503 struct ice_pf *pf = vsi->back; 8504 int i; 8505 8506 /* remove all tc-flower based filter if they are channel filters only */ 8507 if (rem_fltr) 8508 ice_rem_all_chnl_fltrs(pf); 8509 8510 /* remove ntuple filters since queue configuration is being changed */ 8511 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8512 struct ice_hw *hw = &pf->hw; 8513 8514 mutex_lock(&hw->fdir_fltr_lock); 8515 ice_fdir_del_all_fltrs(vsi); 8516 mutex_unlock(&hw->fdir_fltr_lock); 8517 } 8518 8519 /* perform cleanup for channels if they exist */ 8520 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8521 struct ice_vsi *ch_vsi; 8522 8523 list_del(&ch->list); 8524 ch_vsi = ch->ch_vsi; 8525 if (!ch_vsi) { 8526 kfree(ch); 8527 continue; 8528 } 8529 8530 /* Reset queue contexts */ 8531 for (i = 0; i < ch->num_rxq; i++) { 8532 struct ice_tx_ring *tx_ring; 8533 struct ice_rx_ring *rx_ring; 8534 8535 tx_ring = vsi->tx_rings[ch->base_q + i]; 8536 rx_ring = vsi->rx_rings[ch->base_q + i]; 8537 if (tx_ring) { 8538 tx_ring->ch = NULL; 8539 if (tx_ring->q_vector) 8540 tx_ring->q_vector->ch = NULL; 8541 } 8542 if (rx_ring) { 8543 rx_ring->ch = NULL; 8544 if (rx_ring->q_vector) 8545 rx_ring->q_vector->ch = NULL; 8546 } 8547 } 8548 8549 /* Release FD resources for the channel VSI */ 8550 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8551 8552 /* clear the VSI from scheduler tree */ 8553 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8554 8555 /* Delete VSI from FW, PF and HW VSI arrays */ 8556 ice_vsi_delete(ch->ch_vsi); 8557 8558 /* free the channel */ 8559 kfree(ch); 8560 } 8561 8562 /* clear the channel VSI map which is stored in main VSI */ 8563 ice_for_each_chnl_tc(i) 8564 vsi->tc_map_vsi[i] = NULL; 8565 8566 /* reset main VSI's all TC information */ 8567 vsi->all_enatc = 0; 8568 vsi->all_numtc = 0; 8569 } 8570 8571 /** 8572 * ice_rebuild_channels - rebuild channel 8573 * @pf: ptr to PF 8574 * 8575 * Recreate channel VSIs and replay filters 8576 */ 8577 static int ice_rebuild_channels(struct ice_pf *pf) 8578 { 8579 struct device *dev = ice_pf_to_dev(pf); 8580 struct ice_vsi *main_vsi; 8581 bool rem_adv_fltr = true; 8582 struct ice_channel *ch; 8583 struct ice_vsi *vsi; 8584 int tc_idx = 1; 8585 int i, err; 8586 8587 main_vsi = ice_get_main_vsi(pf); 8588 if (!main_vsi) 8589 return 0; 8590 8591 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8592 main_vsi->old_numtc == 1) 8593 return 0; /* nothing to be done */ 8594 8595 /* reconfigure main VSI based on old value of TC and cached values 8596 * for MQPRIO opts 8597 */ 8598 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8599 if (err) { 8600 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8601 main_vsi->old_ena_tc, main_vsi->vsi_num); 8602 return err; 8603 } 8604 8605 /* rebuild ADQ VSIs */ 8606 ice_for_each_vsi(pf, i) { 8607 enum ice_vsi_type type; 8608 8609 vsi = pf->vsi[i]; 8610 if (!vsi || vsi->type != ICE_VSI_CHNL) 8611 continue; 8612 8613 type = vsi->type; 8614 8615 /* rebuild ADQ VSI */ 8616 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8617 if (err) { 8618 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8619 ice_vsi_type_str(type), vsi->idx, err); 8620 goto cleanup; 8621 } 8622 8623 /* Re-map HW VSI number, using VSI handle that has been 8624 * previously validated in ice_replay_vsi() call above 8625 */ 8626 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8627 8628 /* replay filters for the VSI */ 8629 err = ice_replay_vsi(&pf->hw, vsi->idx); 8630 if (err) { 8631 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8632 ice_vsi_type_str(type), err, vsi->idx); 8633 rem_adv_fltr = false; 8634 goto cleanup; 8635 } 8636 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8637 ice_vsi_type_str(type), vsi->idx); 8638 8639 /* store ADQ VSI at correct TC index in main VSI's 8640 * map of TC to VSI 8641 */ 8642 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8643 } 8644 8645 /* ADQ VSI(s) has been rebuilt successfully, so setup 8646 * channel for main VSI's Tx and Rx rings 8647 */ 8648 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8649 struct ice_vsi *ch_vsi; 8650 8651 ch_vsi = ch->ch_vsi; 8652 if (!ch_vsi) 8653 continue; 8654 8655 /* reconfig channel resources */ 8656 ice_cfg_chnl_all_res(main_vsi, ch); 8657 8658 /* replay BW rate limit if it is non-zero */ 8659 if (!ch->max_tx_rate && !ch->min_tx_rate) 8660 continue; 8661 8662 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8663 ch->min_tx_rate); 8664 if (err) 8665 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8666 err, ch->max_tx_rate, ch->min_tx_rate, 8667 ch_vsi->vsi_num); 8668 else 8669 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8670 ch->max_tx_rate, ch->min_tx_rate, 8671 ch_vsi->vsi_num); 8672 } 8673 8674 /* reconfig RSS for main VSI */ 8675 if (main_vsi->ch_rss_size) 8676 ice_vsi_cfg_rss_lut_key(main_vsi); 8677 8678 return 0; 8679 8680 cleanup: 8681 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8682 return err; 8683 } 8684 8685 /** 8686 * ice_create_q_channels - Add queue channel for the given TCs 8687 * @vsi: VSI to be configured 8688 * 8689 * Configures queue channel mapping to the given TCs 8690 */ 8691 static int ice_create_q_channels(struct ice_vsi *vsi) 8692 { 8693 struct ice_pf *pf = vsi->back; 8694 struct ice_channel *ch; 8695 int ret = 0, i; 8696 8697 ice_for_each_chnl_tc(i) { 8698 if (!(vsi->all_enatc & BIT(i))) 8699 continue; 8700 8701 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8702 if (!ch) { 8703 ret = -ENOMEM; 8704 goto err_free; 8705 } 8706 INIT_LIST_HEAD(&ch->list); 8707 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8708 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8709 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8710 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8711 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8712 8713 /* convert to Kbits/s */ 8714 if (ch->max_tx_rate) 8715 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8716 ICE_BW_KBPS_DIVISOR); 8717 if (ch->min_tx_rate) 8718 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8719 ICE_BW_KBPS_DIVISOR); 8720 8721 ret = ice_create_q_channel(vsi, ch); 8722 if (ret) { 8723 dev_err(ice_pf_to_dev(pf), 8724 "failed creating channel TC:%d\n", i); 8725 kfree(ch); 8726 goto err_free; 8727 } 8728 list_add_tail(&ch->list, &vsi->ch_list); 8729 vsi->tc_map_vsi[i] = ch->ch_vsi; 8730 dev_dbg(ice_pf_to_dev(pf), 8731 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8732 } 8733 return 0; 8734 8735 err_free: 8736 ice_remove_q_channels(vsi, false); 8737 8738 return ret; 8739 } 8740 8741 /** 8742 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8743 * @netdev: net device to configure 8744 * @type_data: TC offload data 8745 */ 8746 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8747 { 8748 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8749 struct ice_netdev_priv *np = netdev_priv(netdev); 8750 struct ice_vsi *vsi = np->vsi; 8751 struct ice_pf *pf = vsi->back; 8752 u16 mode, ena_tc_qdisc = 0; 8753 int cur_txq, cur_rxq; 8754 u8 hw = 0, num_tcf; 8755 struct device *dev; 8756 int ret, i; 8757 8758 dev = ice_pf_to_dev(pf); 8759 num_tcf = mqprio_qopt->qopt.num_tc; 8760 hw = mqprio_qopt->qopt.hw; 8761 mode = mqprio_qopt->mode; 8762 if (!hw) { 8763 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8764 vsi->ch_rss_size = 0; 8765 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8766 goto config_tcf; 8767 } 8768 8769 /* Generate queue region map for number of TCF requested */ 8770 for (i = 0; i < num_tcf; i++) 8771 ena_tc_qdisc |= BIT(i); 8772 8773 switch (mode) { 8774 case TC_MQPRIO_MODE_CHANNEL: 8775 8776 if (pf->hw.port_info->is_custom_tx_enabled) { 8777 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 8778 return -EBUSY; 8779 } 8780 ice_tear_down_devlink_rate_tree(pf); 8781 8782 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8783 if (ret) { 8784 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8785 ret); 8786 return ret; 8787 } 8788 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8789 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8790 /* don't assume state of hw_tc_offload during driver load 8791 * and set the flag for TC flower filter if hw_tc_offload 8792 * already ON 8793 */ 8794 if (vsi->netdev->features & NETIF_F_HW_TC) 8795 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8796 break; 8797 default: 8798 return -EINVAL; 8799 } 8800 8801 config_tcf: 8802 8803 /* Requesting same TCF configuration as already enabled */ 8804 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8805 mode != TC_MQPRIO_MODE_CHANNEL) 8806 return 0; 8807 8808 /* Pause VSI queues */ 8809 ice_dis_vsi(vsi, true); 8810 8811 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8812 ice_remove_q_channels(vsi, true); 8813 8814 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8815 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8816 num_online_cpus()); 8817 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8818 num_online_cpus()); 8819 } else { 8820 /* logic to rebuild VSI, same like ethtool -L */ 8821 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8822 8823 for (i = 0; i < num_tcf; i++) { 8824 if (!(ena_tc_qdisc & BIT(i))) 8825 continue; 8826 8827 offset = vsi->mqprio_qopt.qopt.offset[i]; 8828 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8829 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8830 } 8831 vsi->req_txq = offset + qcount_tx; 8832 vsi->req_rxq = offset + qcount_rx; 8833 8834 /* store away original rss_size info, so that it gets reused 8835 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8836 * determine, what should be the rss_sizefor main VSI 8837 */ 8838 vsi->orig_rss_size = vsi->rss_size; 8839 } 8840 8841 /* save current values of Tx and Rx queues before calling VSI rebuild 8842 * for fallback option 8843 */ 8844 cur_txq = vsi->num_txq; 8845 cur_rxq = vsi->num_rxq; 8846 8847 /* proceed with rebuild main VSI using correct number of queues */ 8848 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 8849 if (ret) { 8850 /* fallback to current number of queues */ 8851 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8852 vsi->req_txq = cur_txq; 8853 vsi->req_rxq = cur_rxq; 8854 clear_bit(ICE_RESET_FAILED, pf->state); 8855 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 8856 dev_err(dev, "Rebuild of main VSI failed again\n"); 8857 return ret; 8858 } 8859 } 8860 8861 vsi->all_numtc = num_tcf; 8862 vsi->all_enatc = ena_tc_qdisc; 8863 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8864 if (ret) { 8865 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8866 vsi->vsi_num); 8867 goto exit; 8868 } 8869 8870 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8871 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8872 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8873 8874 /* set TC0 rate limit if specified */ 8875 if (max_tx_rate || min_tx_rate) { 8876 /* convert to Kbits/s */ 8877 if (max_tx_rate) 8878 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8879 if (min_tx_rate) 8880 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8881 8882 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8883 if (!ret) { 8884 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8885 max_tx_rate, min_tx_rate, vsi->vsi_num); 8886 } else { 8887 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8888 max_tx_rate, min_tx_rate, vsi->vsi_num); 8889 goto exit; 8890 } 8891 } 8892 ret = ice_create_q_channels(vsi); 8893 if (ret) { 8894 netdev_err(netdev, "failed configuring queue channels\n"); 8895 goto exit; 8896 } else { 8897 netdev_dbg(netdev, "successfully configured channels\n"); 8898 } 8899 } 8900 8901 if (vsi->ch_rss_size) 8902 ice_vsi_cfg_rss_lut_key(vsi); 8903 8904 exit: 8905 /* if error, reset the all_numtc and all_enatc */ 8906 if (ret) { 8907 vsi->all_numtc = 0; 8908 vsi->all_enatc = 0; 8909 } 8910 /* resume VSI */ 8911 ice_ena_vsi(vsi, true); 8912 8913 return ret; 8914 } 8915 8916 static LIST_HEAD(ice_block_cb_list); 8917 8918 static int 8919 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8920 void *type_data) 8921 { 8922 struct ice_netdev_priv *np = netdev_priv(netdev); 8923 struct ice_pf *pf = np->vsi->back; 8924 bool locked = false; 8925 int err; 8926 8927 switch (type) { 8928 case TC_SETUP_BLOCK: 8929 return flow_block_cb_setup_simple(type_data, 8930 &ice_block_cb_list, 8931 ice_setup_tc_block_cb, 8932 np, np, true); 8933 case TC_SETUP_QDISC_MQPRIO: 8934 if (ice_is_eswitch_mode_switchdev(pf)) { 8935 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 8936 return -EOPNOTSUPP; 8937 } 8938 8939 if (pf->adev) { 8940 mutex_lock(&pf->adev_mutex); 8941 device_lock(&pf->adev->dev); 8942 locked = true; 8943 if (pf->adev->dev.driver) { 8944 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 8945 err = -EBUSY; 8946 goto adev_unlock; 8947 } 8948 } 8949 8950 /* setup traffic classifier for receive side */ 8951 mutex_lock(&pf->tc_mutex); 8952 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8953 mutex_unlock(&pf->tc_mutex); 8954 8955 adev_unlock: 8956 if (locked) { 8957 device_unlock(&pf->adev->dev); 8958 mutex_unlock(&pf->adev_mutex); 8959 } 8960 return err; 8961 default: 8962 return -EOPNOTSUPP; 8963 } 8964 return -EOPNOTSUPP; 8965 } 8966 8967 static struct ice_indr_block_priv * 8968 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8969 struct net_device *netdev) 8970 { 8971 struct ice_indr_block_priv *cb_priv; 8972 8973 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8974 if (!cb_priv->netdev) 8975 return NULL; 8976 if (cb_priv->netdev == netdev) 8977 return cb_priv; 8978 } 8979 return NULL; 8980 } 8981 8982 static int 8983 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8984 void *indr_priv) 8985 { 8986 struct ice_indr_block_priv *priv = indr_priv; 8987 struct ice_netdev_priv *np = priv->np; 8988 8989 switch (type) { 8990 case TC_SETUP_CLSFLOWER: 8991 return ice_setup_tc_cls_flower(np, priv->netdev, 8992 (struct flow_cls_offload *) 8993 type_data); 8994 default: 8995 return -EOPNOTSUPP; 8996 } 8997 } 8998 8999 static int 9000 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9001 struct ice_netdev_priv *np, 9002 struct flow_block_offload *f, void *data, 9003 void (*cleanup)(struct flow_block_cb *block_cb)) 9004 { 9005 struct ice_indr_block_priv *indr_priv; 9006 struct flow_block_cb *block_cb; 9007 9008 if (!ice_is_tunnel_supported(netdev) && 9009 !(is_vlan_dev(netdev) && 9010 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9011 return -EOPNOTSUPP; 9012 9013 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9014 return -EOPNOTSUPP; 9015 9016 switch (f->command) { 9017 case FLOW_BLOCK_BIND: 9018 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9019 if (indr_priv) 9020 return -EEXIST; 9021 9022 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9023 if (!indr_priv) 9024 return -ENOMEM; 9025 9026 indr_priv->netdev = netdev; 9027 indr_priv->np = np; 9028 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9029 9030 block_cb = 9031 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9032 indr_priv, indr_priv, 9033 ice_rep_indr_tc_block_unbind, 9034 f, netdev, sch, data, np, 9035 cleanup); 9036 9037 if (IS_ERR(block_cb)) { 9038 list_del(&indr_priv->list); 9039 kfree(indr_priv); 9040 return PTR_ERR(block_cb); 9041 } 9042 flow_block_cb_add(block_cb, f); 9043 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9044 break; 9045 case FLOW_BLOCK_UNBIND: 9046 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9047 if (!indr_priv) 9048 return -ENOENT; 9049 9050 block_cb = flow_block_cb_lookup(f->block, 9051 ice_indr_setup_block_cb, 9052 indr_priv); 9053 if (!block_cb) 9054 return -ENOENT; 9055 9056 flow_indr_block_cb_remove(block_cb, f); 9057 9058 list_del(&block_cb->driver_list); 9059 break; 9060 default: 9061 return -EOPNOTSUPP; 9062 } 9063 return 0; 9064 } 9065 9066 static int 9067 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9068 void *cb_priv, enum tc_setup_type type, void *type_data, 9069 void *data, 9070 void (*cleanup)(struct flow_block_cb *block_cb)) 9071 { 9072 switch (type) { 9073 case TC_SETUP_BLOCK: 9074 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9075 data, cleanup); 9076 9077 default: 9078 return -EOPNOTSUPP; 9079 } 9080 } 9081 9082 /** 9083 * ice_open - Called when a network interface becomes active 9084 * @netdev: network interface device structure 9085 * 9086 * The open entry point is called when a network interface is made 9087 * active by the system (IFF_UP). At this point all resources needed 9088 * for transmit and receive operations are allocated, the interrupt 9089 * handler is registered with the OS, the netdev watchdog is enabled, 9090 * and the stack is notified that the interface is ready. 9091 * 9092 * Returns 0 on success, negative value on failure 9093 */ 9094 int ice_open(struct net_device *netdev) 9095 { 9096 struct ice_netdev_priv *np = netdev_priv(netdev); 9097 struct ice_pf *pf = np->vsi->back; 9098 9099 if (ice_is_reset_in_progress(pf->state)) { 9100 netdev_err(netdev, "can't open net device while reset is in progress"); 9101 return -EBUSY; 9102 } 9103 9104 return ice_open_internal(netdev); 9105 } 9106 9107 /** 9108 * ice_open_internal - Called when a network interface becomes active 9109 * @netdev: network interface device structure 9110 * 9111 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9112 * handling routine 9113 * 9114 * Returns 0 on success, negative value on failure 9115 */ 9116 int ice_open_internal(struct net_device *netdev) 9117 { 9118 struct ice_netdev_priv *np = netdev_priv(netdev); 9119 struct ice_vsi *vsi = np->vsi; 9120 struct ice_pf *pf = vsi->back; 9121 struct ice_port_info *pi; 9122 int err; 9123 9124 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9125 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9126 return -EIO; 9127 } 9128 9129 netif_carrier_off(netdev); 9130 9131 pi = vsi->port_info; 9132 err = ice_update_link_info(pi); 9133 if (err) { 9134 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9135 return err; 9136 } 9137 9138 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9139 9140 /* Set PHY if there is media, otherwise, turn off PHY */ 9141 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9142 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9143 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9144 err = ice_init_phy_user_cfg(pi); 9145 if (err) { 9146 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9147 err); 9148 return err; 9149 } 9150 } 9151 9152 err = ice_configure_phy(vsi); 9153 if (err) { 9154 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9155 err); 9156 return err; 9157 } 9158 } else { 9159 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9160 ice_set_link(vsi, false); 9161 } 9162 9163 err = ice_vsi_open(vsi); 9164 if (err) 9165 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9166 vsi->vsi_num, vsi->vsw->sw_id); 9167 9168 /* Update existing tunnels information */ 9169 udp_tunnel_get_rx_info(netdev); 9170 9171 return err; 9172 } 9173 9174 /** 9175 * ice_stop - Disables a network interface 9176 * @netdev: network interface device structure 9177 * 9178 * The stop entry point is called when an interface is de-activated by the OS, 9179 * and the netdevice enters the DOWN state. The hardware is still under the 9180 * driver's control, but the netdev interface is disabled. 9181 * 9182 * Returns success only - not allowed to fail 9183 */ 9184 int ice_stop(struct net_device *netdev) 9185 { 9186 struct ice_netdev_priv *np = netdev_priv(netdev); 9187 struct ice_vsi *vsi = np->vsi; 9188 struct ice_pf *pf = vsi->back; 9189 9190 if (ice_is_reset_in_progress(pf->state)) { 9191 netdev_err(netdev, "can't stop net device while reset is in progress"); 9192 return -EBUSY; 9193 } 9194 9195 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9196 int link_err = ice_force_phys_link_state(vsi, false); 9197 9198 if (link_err) { 9199 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9200 vsi->vsi_num, link_err); 9201 return -EIO; 9202 } 9203 } 9204 9205 ice_vsi_close(vsi); 9206 9207 return 0; 9208 } 9209 9210 /** 9211 * ice_features_check - Validate encapsulated packet conforms to limits 9212 * @skb: skb buffer 9213 * @netdev: This port's netdev 9214 * @features: Offload features that the stack believes apply 9215 */ 9216 static netdev_features_t 9217 ice_features_check(struct sk_buff *skb, 9218 struct net_device __always_unused *netdev, 9219 netdev_features_t features) 9220 { 9221 bool gso = skb_is_gso(skb); 9222 size_t len; 9223 9224 /* No point in doing any of this if neither checksum nor GSO are 9225 * being requested for this frame. We can rule out both by just 9226 * checking for CHECKSUM_PARTIAL 9227 */ 9228 if (skb->ip_summed != CHECKSUM_PARTIAL) 9229 return features; 9230 9231 /* We cannot support GSO if the MSS is going to be less than 9232 * 64 bytes. If it is then we need to drop support for GSO. 9233 */ 9234 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9235 features &= ~NETIF_F_GSO_MASK; 9236 9237 len = skb_network_offset(skb); 9238 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9239 goto out_rm_features; 9240 9241 len = skb_network_header_len(skb); 9242 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9243 goto out_rm_features; 9244 9245 if (skb->encapsulation) { 9246 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9247 * the case of IPIP frames, the transport header pointer is 9248 * after the inner header! So check to make sure that this 9249 * is a GRE or UDP_TUNNEL frame before doing that math. 9250 */ 9251 if (gso && (skb_shinfo(skb)->gso_type & 9252 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9253 len = skb_inner_network_header(skb) - 9254 skb_transport_header(skb); 9255 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9256 goto out_rm_features; 9257 } 9258 9259 len = skb_inner_network_header_len(skb); 9260 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9261 goto out_rm_features; 9262 } 9263 9264 return features; 9265 out_rm_features: 9266 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9267 } 9268 9269 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9270 .ndo_open = ice_open, 9271 .ndo_stop = ice_stop, 9272 .ndo_start_xmit = ice_start_xmit, 9273 .ndo_set_mac_address = ice_set_mac_address, 9274 .ndo_validate_addr = eth_validate_addr, 9275 .ndo_change_mtu = ice_change_mtu, 9276 .ndo_get_stats64 = ice_get_stats64, 9277 .ndo_tx_timeout = ice_tx_timeout, 9278 .ndo_bpf = ice_xdp_safe_mode, 9279 }; 9280 9281 static const struct net_device_ops ice_netdev_ops = { 9282 .ndo_open = ice_open, 9283 .ndo_stop = ice_stop, 9284 .ndo_start_xmit = ice_start_xmit, 9285 .ndo_select_queue = ice_select_queue, 9286 .ndo_features_check = ice_features_check, 9287 .ndo_fix_features = ice_fix_features, 9288 .ndo_set_rx_mode = ice_set_rx_mode, 9289 .ndo_set_mac_address = ice_set_mac_address, 9290 .ndo_validate_addr = eth_validate_addr, 9291 .ndo_change_mtu = ice_change_mtu, 9292 .ndo_get_stats64 = ice_get_stats64, 9293 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9294 .ndo_eth_ioctl = ice_eth_ioctl, 9295 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9296 .ndo_set_vf_mac = ice_set_vf_mac, 9297 .ndo_get_vf_config = ice_get_vf_cfg, 9298 .ndo_set_vf_trust = ice_set_vf_trust, 9299 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9300 .ndo_set_vf_link_state = ice_set_vf_link_state, 9301 .ndo_get_vf_stats = ice_get_vf_stats, 9302 .ndo_set_vf_rate = ice_set_vf_bw, 9303 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9304 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9305 .ndo_setup_tc = ice_setup_tc, 9306 .ndo_set_features = ice_set_features, 9307 .ndo_bridge_getlink = ice_bridge_getlink, 9308 .ndo_bridge_setlink = ice_bridge_setlink, 9309 .ndo_fdb_add = ice_fdb_add, 9310 .ndo_fdb_del = ice_fdb_del, 9311 #ifdef CONFIG_RFS_ACCEL 9312 .ndo_rx_flow_steer = ice_rx_flow_steer, 9313 #endif 9314 .ndo_tx_timeout = ice_tx_timeout, 9315 .ndo_bpf = ice_xdp, 9316 .ndo_xdp_xmit = ice_xdp_xmit, 9317 .ndo_xsk_wakeup = ice_xsk_wakeup, 9318 }; 9319