1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018-2023, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include <linux/crash_dump.h> 10 #include "ice.h" 11 #include "ice_base.h" 12 #include "ice_lib.h" 13 #include "ice_fltr.h" 14 #include "ice_dcb_lib.h" 15 #include "ice_dcb_nl.h" 16 #include "devlink/devlink.h" 17 #include "devlink/port.h" 18 #include "ice_sf_eth.h" 19 #include "ice_hwmon.h" 20 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 21 * ice tracepoint functions. This must be done exactly once across the 22 * ice driver. 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "ice_trace.h" 26 #include "ice_eswitch.h" 27 #include "ice_tc_lib.h" 28 #include "ice_vsi_vlan_ops.h" 29 #include <net/xdp_sock_drv.h> 30 31 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 32 static const char ice_driver_string[] = DRV_SUMMARY; 33 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 34 35 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 36 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 37 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 38 39 MODULE_DESCRIPTION(DRV_SUMMARY); 40 MODULE_IMPORT_NS("LIBIE"); 41 MODULE_IMPORT_NS("LIBIE_ADMINQ"); 42 MODULE_IMPORT_NS("LIBIE_FWLOG"); 43 MODULE_LICENSE("GPL v2"); 44 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 45 46 static int debug = -1; 47 module_param(debug, int, 0644); 48 #ifndef CONFIG_DYNAMIC_DEBUG 49 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 50 #else 51 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 52 #endif /* !CONFIG_DYNAMIC_DEBUG */ 53 54 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 55 EXPORT_SYMBOL(ice_xdp_locking_key); 56 57 /** 58 * ice_hw_to_dev - Get device pointer from the hardware structure 59 * @hw: pointer to the device HW structure 60 * 61 * Used to access the device pointer from compilation units which can't easily 62 * include the definition of struct ice_pf without leading to circular header 63 * dependencies. 64 */ 65 struct device *ice_hw_to_dev(struct ice_hw *hw) 66 { 67 struct ice_pf *pf = container_of(hw, struct ice_pf, hw); 68 69 return &pf->pdev->dev; 70 } 71 72 static struct workqueue_struct *ice_wq; 73 struct workqueue_struct *ice_lag_wq; 74 static const struct net_device_ops ice_netdev_safe_mode_ops; 75 static const struct net_device_ops ice_netdev_ops; 76 77 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 78 79 static void ice_vsi_release_all(struct ice_pf *pf); 80 81 static int ice_rebuild_channels(struct ice_pf *pf); 82 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 83 84 static int 85 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 86 void *cb_priv, enum tc_setup_type type, void *type_data, 87 void *data, 88 void (*cleanup)(struct flow_block_cb *block_cb)); 89 90 bool netif_is_ice(const struct net_device *dev) 91 { 92 return dev && (dev->netdev_ops == &ice_netdev_ops || 93 dev->netdev_ops == &ice_netdev_safe_mode_ops); 94 } 95 96 /** 97 * ice_get_tx_pending - returns number of Tx descriptors not processed 98 * @ring: the ring of descriptors 99 */ 100 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 101 { 102 u16 head, tail; 103 104 head = ring->next_to_clean; 105 tail = ring->next_to_use; 106 107 if (head != tail) 108 return (head < tail) ? 109 tail - head : (tail + ring->count - head); 110 return 0; 111 } 112 113 /** 114 * ice_check_for_hang_subtask - check for and recover hung queues 115 * @pf: pointer to PF struct 116 */ 117 static void ice_check_for_hang_subtask(struct ice_pf *pf) 118 { 119 struct ice_vsi *vsi = NULL; 120 struct ice_hw *hw; 121 unsigned int i; 122 int packets; 123 u32 v; 124 125 ice_for_each_vsi(pf, v) 126 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 127 vsi = pf->vsi[v]; 128 break; 129 } 130 131 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 132 return; 133 134 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 135 return; 136 137 hw = &vsi->back->hw; 138 139 ice_for_each_txq(vsi, i) { 140 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 141 struct ice_ring_stats *ring_stats; 142 143 if (!tx_ring) 144 continue; 145 if (ice_ring_ch_enabled(tx_ring)) 146 continue; 147 148 ring_stats = tx_ring->ring_stats; 149 if (!ring_stats) 150 continue; 151 152 if (tx_ring->desc) { 153 /* If packet counter has not changed the queue is 154 * likely stalled, so force an interrupt for this 155 * queue. 156 * 157 * prev_pkt would be negative if there was no 158 * pending work. 159 */ 160 packets = ring_stats->stats.pkts & INT_MAX; 161 if (ring_stats->tx_stats.prev_pkt == packets) { 162 /* Trigger sw interrupt to revive the queue */ 163 ice_trigger_sw_intr(hw, tx_ring->q_vector); 164 continue; 165 } 166 167 /* Memory barrier between read of packet count and call 168 * to ice_get_tx_pending() 169 */ 170 smp_rmb(); 171 ring_stats->tx_stats.prev_pkt = 172 ice_get_tx_pending(tx_ring) ? packets : -1; 173 } 174 } 175 } 176 177 /** 178 * ice_init_mac_fltr - Set initial MAC filters 179 * @pf: board private structure 180 * 181 * Set initial set of MAC filters for PF VSI; configure filters for permanent 182 * address and broadcast address. If an error is encountered, netdevice will be 183 * unregistered. 184 */ 185 static int ice_init_mac_fltr(struct ice_pf *pf) 186 { 187 struct ice_vsi *vsi; 188 u8 *perm_addr; 189 190 vsi = ice_get_main_vsi(pf); 191 if (!vsi) 192 return -EINVAL; 193 194 perm_addr = vsi->port_info->mac.perm_addr; 195 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 196 } 197 198 /** 199 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 200 * @netdev: the net device on which the sync is happening 201 * @addr: MAC address to sync 202 * 203 * This is a callback function which is called by the in kernel device sync 204 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 205 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 206 * MAC filters from the hardware. 207 */ 208 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 209 { 210 struct ice_netdev_priv *np = netdev_priv(netdev); 211 struct ice_vsi *vsi = np->vsi; 212 213 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 214 ICE_FWD_TO_VSI)) 215 return -EINVAL; 216 217 return 0; 218 } 219 220 /** 221 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 222 * @netdev: the net device on which the unsync is happening 223 * @addr: MAC address to unsync 224 * 225 * This is a callback function which is called by the in kernel device unsync 226 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 227 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 228 * delete the MAC filters from the hardware. 229 */ 230 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 231 { 232 struct ice_netdev_priv *np = netdev_priv(netdev); 233 struct ice_vsi *vsi = np->vsi; 234 235 /* Under some circumstances, we might receive a request to delete our 236 * own device address from our uc list. Because we store the device 237 * address in the VSI's MAC filter list, we need to ignore such 238 * requests and not delete our device address from this list. 239 */ 240 if (ether_addr_equal(addr, netdev->dev_addr)) 241 return 0; 242 243 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 244 ICE_FWD_TO_VSI)) 245 return -EINVAL; 246 247 return 0; 248 } 249 250 /** 251 * ice_vsi_fltr_changed - check if filter state changed 252 * @vsi: VSI to be checked 253 * 254 * returns true if filter state has changed, false otherwise. 255 */ 256 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 257 { 258 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 259 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 260 } 261 262 /** 263 * ice_set_promisc - Enable promiscuous mode for a given PF 264 * @vsi: the VSI being configured 265 * @promisc_m: mask of promiscuous config bits 266 * 267 */ 268 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 269 { 270 int status; 271 272 if (vsi->type != ICE_VSI_PF) 273 return 0; 274 275 if (ice_vsi_has_non_zero_vlans(vsi)) { 276 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 277 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, 278 promisc_m); 279 } else { 280 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 281 promisc_m, 0); 282 } 283 if (status && status != -EEXIST) 284 return status; 285 286 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n", 287 vsi->vsi_num, promisc_m); 288 return 0; 289 } 290 291 /** 292 * ice_clear_promisc - Disable promiscuous mode for a given PF 293 * @vsi: the VSI being configured 294 * @promisc_m: mask of promiscuous config bits 295 * 296 */ 297 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 298 { 299 int status; 300 301 if (vsi->type != ICE_VSI_PF) 302 return 0; 303 304 if (ice_vsi_has_non_zero_vlans(vsi)) { 305 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX); 306 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, 307 promisc_m); 308 } else { 309 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 310 promisc_m, 0); 311 } 312 313 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n", 314 vsi->vsi_num, promisc_m); 315 return status; 316 } 317 318 /** 319 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 320 * @vsi: ptr to the VSI 321 * 322 * Push any outstanding VSI filter changes through the AdminQ. 323 */ 324 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 325 { 326 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 327 struct device *dev = ice_pf_to_dev(vsi->back); 328 struct net_device *netdev = vsi->netdev; 329 bool promisc_forced_on = false; 330 struct ice_pf *pf = vsi->back; 331 struct ice_hw *hw = &pf->hw; 332 u32 changed_flags = 0; 333 int err; 334 335 if (!vsi->netdev) 336 return -EINVAL; 337 338 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 339 usleep_range(1000, 2000); 340 341 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 342 vsi->current_netdev_flags = vsi->netdev->flags; 343 344 INIT_LIST_HEAD(&vsi->tmp_sync_list); 345 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 346 347 if (ice_vsi_fltr_changed(vsi)) { 348 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 349 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 350 351 /* grab the netdev's addr_list_lock */ 352 netif_addr_lock_bh(netdev); 353 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 354 ice_add_mac_to_unsync_list); 355 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 356 ice_add_mac_to_unsync_list); 357 /* our temp lists are populated. release lock */ 358 netif_addr_unlock_bh(netdev); 359 } 360 361 /* Remove MAC addresses in the unsync list */ 362 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 363 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 364 if (err) { 365 netdev_err(netdev, "Failed to delete MAC filters\n"); 366 /* if we failed because of alloc failures, just bail */ 367 if (err == -ENOMEM) 368 goto out; 369 } 370 371 /* Add MAC addresses in the sync list */ 372 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 373 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 374 /* If filter is added successfully or already exists, do not go into 375 * 'if' condition and report it as error. Instead continue processing 376 * rest of the function. 377 */ 378 if (err && err != -EEXIST) { 379 netdev_err(netdev, "Failed to add MAC filters\n"); 380 /* If there is no more space for new umac filters, VSI 381 * should go into promiscuous mode. There should be some 382 * space reserved for promiscuous filters. 383 */ 384 if (hw->adminq.sq_last_status == LIBIE_AQ_RC_ENOSPC && 385 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 386 vsi->state)) { 387 promisc_forced_on = true; 388 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 389 vsi->vsi_num); 390 } else { 391 goto out; 392 } 393 } 394 err = 0; 395 /* check for changes in promiscuous modes */ 396 if (changed_flags & IFF_ALLMULTI) { 397 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 398 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS); 399 if (err) { 400 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 401 goto out_promisc; 402 } 403 } else { 404 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 405 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS); 406 if (err) { 407 vsi->current_netdev_flags |= IFF_ALLMULTI; 408 goto out_promisc; 409 } 410 } 411 } 412 413 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 414 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 415 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 416 if (vsi->current_netdev_flags & IFF_PROMISC) { 417 /* Apply Rx filter rule to get traffic from wire */ 418 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) { 419 err = ice_set_dflt_vsi(vsi); 420 if (err && err != -EEXIST) { 421 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 422 err, vsi->vsi_num); 423 vsi->current_netdev_flags &= 424 ~IFF_PROMISC; 425 goto out_promisc; 426 } 427 err = 0; 428 vlan_ops->dis_rx_filtering(vsi); 429 430 /* promiscuous mode implies allmulticast so 431 * that VSIs that are in promiscuous mode are 432 * subscribed to multicast packets coming to 433 * the port 434 */ 435 err = ice_set_promisc(vsi, 436 ICE_MCAST_PROMISC_BITS); 437 if (err) 438 goto out_promisc; 439 } 440 } else { 441 /* Clear Rx filter to remove traffic from wire */ 442 if (ice_is_vsi_dflt_vsi(vsi)) { 443 err = ice_clear_dflt_vsi(vsi); 444 if (err) { 445 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 446 err, vsi->vsi_num); 447 vsi->current_netdev_flags |= 448 IFF_PROMISC; 449 goto out_promisc; 450 } 451 if (vsi->netdev->features & 452 NETIF_F_HW_VLAN_CTAG_FILTER) 453 vlan_ops->ena_rx_filtering(vsi); 454 } 455 456 /* disable allmulti here, but only if allmulti is not 457 * still enabled for the netdev 458 */ 459 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) { 460 err = ice_clear_promisc(vsi, 461 ICE_MCAST_PROMISC_BITS); 462 if (err) { 463 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n", 464 err, vsi->vsi_num); 465 } 466 } 467 } 468 } 469 goto exit; 470 471 out_promisc: 472 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 473 goto exit; 474 out: 475 /* if something went wrong then set the changed flag so we try again */ 476 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 477 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 478 exit: 479 clear_bit(ICE_CFG_BUSY, vsi->state); 480 return err; 481 } 482 483 /** 484 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 485 * @pf: board private structure 486 */ 487 static void ice_sync_fltr_subtask(struct ice_pf *pf) 488 { 489 int v; 490 491 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 492 return; 493 494 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 495 496 ice_for_each_vsi(pf, v) 497 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 498 ice_vsi_sync_fltr(pf->vsi[v])) { 499 /* come back and try again later */ 500 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 501 break; 502 } 503 } 504 505 /** 506 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 507 * @pf: the PF 508 * @locked: is the rtnl_lock already held 509 */ 510 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 511 { 512 int node; 513 int v; 514 515 ice_for_each_vsi(pf, v) 516 if (pf->vsi[v]) 517 ice_dis_vsi(pf->vsi[v], locked); 518 519 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 520 pf->pf_agg_node[node].num_vsis = 0; 521 522 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 523 pf->vf_agg_node[node].num_vsis = 0; 524 } 525 526 /** 527 * ice_prepare_for_reset - prep for reset 528 * @pf: board private structure 529 * @reset_type: reset type requested 530 * 531 * Inform or close all dependent features in prep for reset. 532 */ 533 static void 534 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 535 { 536 struct ice_hw *hw = &pf->hw; 537 struct ice_vsi *vsi; 538 struct ice_vf *vf; 539 unsigned int bkt; 540 541 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 542 543 /* already prepared for reset */ 544 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 545 return; 546 547 synchronize_irq(pf->oicr_irq.virq); 548 549 ice_unplug_aux_dev(pf); 550 551 /* Notify VFs of impending reset */ 552 if (ice_check_sq_alive(hw, &hw->mailboxq)) 553 ice_vc_notify_reset(pf); 554 555 /* Disable VFs until reset is completed */ 556 mutex_lock(&pf->vfs.table_lock); 557 ice_for_each_vf(pf, bkt, vf) 558 ice_set_vf_state_dis(vf); 559 mutex_unlock(&pf->vfs.table_lock); 560 561 if (ice_is_eswitch_mode_switchdev(pf)) { 562 rtnl_lock(); 563 ice_eswitch_br_fdb_flush(pf->eswitch.br_offloads->bridge); 564 rtnl_unlock(); 565 } 566 567 /* release ADQ specific HW and SW resources */ 568 vsi = ice_get_main_vsi(pf); 569 if (!vsi) 570 goto skip; 571 572 /* to be on safe side, reset orig_rss_size so that normal flow 573 * of deciding rss_size can take precedence 574 */ 575 vsi->orig_rss_size = 0; 576 577 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 578 if (reset_type == ICE_RESET_PFR) { 579 vsi->old_ena_tc = vsi->all_enatc; 580 vsi->old_numtc = vsi->all_numtc; 581 } else { 582 ice_remove_q_channels(vsi, true); 583 584 /* for other reset type, do not support channel rebuild 585 * hence reset needed info 586 */ 587 vsi->old_ena_tc = 0; 588 vsi->all_enatc = 0; 589 vsi->old_numtc = 0; 590 vsi->all_numtc = 0; 591 vsi->req_txq = 0; 592 vsi->req_rxq = 0; 593 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 594 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 595 } 596 } 597 598 if (vsi->netdev) 599 netif_device_detach(vsi->netdev); 600 skip: 601 602 /* clear SW filtering DB */ 603 ice_clear_hw_tbls(hw); 604 /* disable the VSIs and their queues that are not already DOWN */ 605 set_bit(ICE_VSI_REBUILD_PENDING, ice_get_main_vsi(pf)->state); 606 ice_pf_dis_all_vsi(pf, false); 607 608 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 609 ice_ptp_prepare_for_reset(pf, reset_type); 610 611 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 612 ice_gnss_exit(pf); 613 614 if (hw->port_info) 615 ice_sched_clear_port(hw->port_info); 616 617 ice_shutdown_all_ctrlq(hw, false); 618 619 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 620 } 621 622 /** 623 * ice_do_reset - Initiate one of many types of resets 624 * @pf: board private structure 625 * @reset_type: reset type requested before this function was called. 626 */ 627 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 628 { 629 struct device *dev = ice_pf_to_dev(pf); 630 struct ice_hw *hw = &pf->hw; 631 632 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 633 634 if (pf->lag && pf->lag->bonded && reset_type == ICE_RESET_PFR) { 635 dev_dbg(dev, "PFR on a bonded interface, promoting to CORER\n"); 636 reset_type = ICE_RESET_CORER; 637 } 638 639 ice_prepare_for_reset(pf, reset_type); 640 641 /* trigger the reset */ 642 if (ice_reset(hw, reset_type)) { 643 dev_err(dev, "reset %d failed\n", reset_type); 644 set_bit(ICE_RESET_FAILED, pf->state); 645 clear_bit(ICE_RESET_OICR_RECV, pf->state); 646 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 647 clear_bit(ICE_PFR_REQ, pf->state); 648 clear_bit(ICE_CORER_REQ, pf->state); 649 clear_bit(ICE_GLOBR_REQ, pf->state); 650 wake_up(&pf->reset_wait_queue); 651 return; 652 } 653 654 /* PFR is a bit of a special case because it doesn't result in an OICR 655 * interrupt. So for PFR, rebuild after the reset and clear the reset- 656 * associated state bits. 657 */ 658 if (reset_type == ICE_RESET_PFR) { 659 pf->pfr_count++; 660 ice_rebuild(pf, reset_type); 661 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 662 clear_bit(ICE_PFR_REQ, pf->state); 663 wake_up(&pf->reset_wait_queue); 664 ice_reset_all_vfs(pf); 665 } 666 } 667 668 /** 669 * ice_reset_subtask - Set up for resetting the device and driver 670 * @pf: board private structure 671 */ 672 static void ice_reset_subtask(struct ice_pf *pf) 673 { 674 enum ice_reset_req reset_type = ICE_RESET_INVAL; 675 676 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 677 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 678 * of reset is pending and sets bits in pf->state indicating the reset 679 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 680 * prepare for pending reset if not already (for PF software-initiated 681 * global resets the software should already be prepared for it as 682 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 683 * by firmware or software on other PFs, that bit is not set so prepare 684 * for the reset now), poll for reset done, rebuild and return. 685 */ 686 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 687 /* Perform the largest reset requested */ 688 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 689 reset_type = ICE_RESET_CORER; 690 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 691 reset_type = ICE_RESET_GLOBR; 692 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 693 reset_type = ICE_RESET_EMPR; 694 /* return if no valid reset type requested */ 695 if (reset_type == ICE_RESET_INVAL) 696 return; 697 ice_prepare_for_reset(pf, reset_type); 698 699 /* make sure we are ready to rebuild */ 700 if (ice_check_reset(&pf->hw)) { 701 set_bit(ICE_RESET_FAILED, pf->state); 702 } else { 703 /* done with reset. start rebuild */ 704 pf->hw.reset_ongoing = false; 705 ice_rebuild(pf, reset_type); 706 /* clear bit to resume normal operations, but 707 * ICE_NEEDS_RESTART bit is set in case rebuild failed 708 */ 709 clear_bit(ICE_RESET_OICR_RECV, pf->state); 710 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 711 clear_bit(ICE_PFR_REQ, pf->state); 712 clear_bit(ICE_CORER_REQ, pf->state); 713 clear_bit(ICE_GLOBR_REQ, pf->state); 714 wake_up(&pf->reset_wait_queue); 715 ice_reset_all_vfs(pf); 716 } 717 718 return; 719 } 720 721 /* No pending resets to finish processing. Check for new resets */ 722 if (test_bit(ICE_PFR_REQ, pf->state)) { 723 reset_type = ICE_RESET_PFR; 724 if (pf->lag && pf->lag->bonded) { 725 dev_dbg(ice_pf_to_dev(pf), "PFR on a bonded interface, promoting to CORER\n"); 726 reset_type = ICE_RESET_CORER; 727 } 728 } 729 if (test_bit(ICE_CORER_REQ, pf->state)) 730 reset_type = ICE_RESET_CORER; 731 if (test_bit(ICE_GLOBR_REQ, pf->state)) 732 reset_type = ICE_RESET_GLOBR; 733 /* If no valid reset type requested just return */ 734 if (reset_type == ICE_RESET_INVAL) 735 return; 736 737 /* reset if not already down or busy */ 738 if (!test_bit(ICE_DOWN, pf->state) && 739 !test_bit(ICE_CFG_BUSY, pf->state)) { 740 ice_do_reset(pf, reset_type); 741 } 742 } 743 744 /** 745 * ice_print_topo_conflict - print topology conflict message 746 * @vsi: the VSI whose topology status is being checked 747 */ 748 static void ice_print_topo_conflict(struct ice_vsi *vsi) 749 { 750 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 751 case ICE_AQ_LINK_TOPO_CONFLICT: 752 case ICE_AQ_LINK_MEDIA_CONFLICT: 753 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 754 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 755 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 756 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 757 break; 758 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 759 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 760 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 761 else 762 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 763 break; 764 default: 765 break; 766 } 767 } 768 769 /** 770 * ice_print_link_msg - print link up or down message 771 * @vsi: the VSI whose link status is being queried 772 * @isup: boolean for if the link is now up or down 773 */ 774 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 775 { 776 struct ice_aqc_get_phy_caps_data *caps; 777 const char *an_advertised; 778 const char *fec_req; 779 const char *speed; 780 const char *fec; 781 const char *fc; 782 const char *an; 783 int status; 784 785 if (!vsi) 786 return; 787 788 if (vsi->current_isup == isup) 789 return; 790 791 vsi->current_isup = isup; 792 793 if (!isup) { 794 netdev_info(vsi->netdev, "NIC Link is Down\n"); 795 return; 796 } 797 798 switch (vsi->port_info->phy.link_info.link_speed) { 799 case ICE_AQ_LINK_SPEED_200GB: 800 speed = "200 G"; 801 break; 802 case ICE_AQ_LINK_SPEED_100GB: 803 speed = "100 G"; 804 break; 805 case ICE_AQ_LINK_SPEED_50GB: 806 speed = "50 G"; 807 break; 808 case ICE_AQ_LINK_SPEED_40GB: 809 speed = "40 G"; 810 break; 811 case ICE_AQ_LINK_SPEED_25GB: 812 speed = "25 G"; 813 break; 814 case ICE_AQ_LINK_SPEED_20GB: 815 speed = "20 G"; 816 break; 817 case ICE_AQ_LINK_SPEED_10GB: 818 speed = "10 G"; 819 break; 820 case ICE_AQ_LINK_SPEED_5GB: 821 speed = "5 G"; 822 break; 823 case ICE_AQ_LINK_SPEED_2500MB: 824 speed = "2.5 G"; 825 break; 826 case ICE_AQ_LINK_SPEED_1000MB: 827 speed = "1 G"; 828 break; 829 case ICE_AQ_LINK_SPEED_100MB: 830 speed = "100 M"; 831 break; 832 default: 833 speed = "Unknown "; 834 break; 835 } 836 837 switch (vsi->port_info->fc.current_mode) { 838 case ICE_FC_FULL: 839 fc = "Rx/Tx"; 840 break; 841 case ICE_FC_TX_PAUSE: 842 fc = "Tx"; 843 break; 844 case ICE_FC_RX_PAUSE: 845 fc = "Rx"; 846 break; 847 case ICE_FC_NONE: 848 fc = "None"; 849 break; 850 default: 851 fc = "Unknown"; 852 break; 853 } 854 855 /* Get FEC mode based on negotiated link info */ 856 switch (vsi->port_info->phy.link_info.fec_info) { 857 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 858 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 859 fec = "RS-FEC"; 860 break; 861 case ICE_AQ_LINK_25G_KR_FEC_EN: 862 fec = "FC-FEC/BASE-R"; 863 break; 864 default: 865 fec = "NONE"; 866 break; 867 } 868 869 /* check if autoneg completed, might be false due to not supported */ 870 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 871 an = "True"; 872 else 873 an = "False"; 874 875 /* Get FEC mode requested based on PHY caps last SW configuration */ 876 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 877 if (!caps) { 878 fec_req = "Unknown"; 879 an_advertised = "Unknown"; 880 goto done; 881 } 882 883 status = ice_aq_get_phy_caps(vsi->port_info, false, 884 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 885 if (status) 886 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 887 888 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 889 890 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 891 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 892 fec_req = "RS-FEC"; 893 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 894 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 895 fec_req = "FC-FEC/BASE-R"; 896 else 897 fec_req = "NONE"; 898 899 kfree(caps); 900 901 done: 902 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 903 speed, fec_req, fec, an_advertised, an, fc); 904 ice_print_topo_conflict(vsi); 905 } 906 907 /** 908 * ice_vsi_link_event - update the VSI's netdev 909 * @vsi: the VSI on which the link event occurred 910 * @link_up: whether or not the VSI needs to be set up or down 911 */ 912 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 913 { 914 if (!vsi) 915 return; 916 917 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 918 return; 919 920 if (vsi->type == ICE_VSI_PF) { 921 if (link_up == netif_carrier_ok(vsi->netdev)) 922 return; 923 924 if (link_up) { 925 netif_carrier_on(vsi->netdev); 926 netif_tx_wake_all_queues(vsi->netdev); 927 } else { 928 netif_carrier_off(vsi->netdev); 929 netif_tx_stop_all_queues(vsi->netdev); 930 } 931 } 932 } 933 934 /** 935 * ice_set_dflt_mib - send a default config MIB to the FW 936 * @pf: private PF struct 937 * 938 * This function sends a default configuration MIB to the FW. 939 * 940 * If this function errors out at any point, the driver is still able to 941 * function. The main impact is that LFC may not operate as expected. 942 * Therefore an error state in this function should be treated with a DBG 943 * message and continue on with driver rebuild/reenable. 944 */ 945 static void ice_set_dflt_mib(struct ice_pf *pf) 946 { 947 struct device *dev = ice_pf_to_dev(pf); 948 u8 mib_type, *buf, *lldpmib = NULL; 949 u16 len, typelen, offset = 0; 950 struct ice_lldp_org_tlv *tlv; 951 struct ice_hw *hw = &pf->hw; 952 u32 ouisubtype; 953 954 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 955 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 956 if (!lldpmib) { 957 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 958 __func__); 959 return; 960 } 961 962 /* Add ETS CFG TLV */ 963 tlv = (struct ice_lldp_org_tlv *)lldpmib; 964 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 965 ICE_IEEE_ETS_TLV_LEN); 966 tlv->typelen = htons(typelen); 967 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 968 ICE_IEEE_SUBTYPE_ETS_CFG); 969 tlv->ouisubtype = htonl(ouisubtype); 970 971 buf = tlv->tlvinfo; 972 buf[0] = 0; 973 974 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 975 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 976 * Octets 13 - 20 are TSA values - leave as zeros 977 */ 978 buf[5] = 0x64; 979 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 980 offset += len + 2; 981 tlv = (struct ice_lldp_org_tlv *) 982 ((char *)tlv + sizeof(tlv->typelen) + len); 983 984 /* Add ETS REC TLV */ 985 buf = tlv->tlvinfo; 986 tlv->typelen = htons(typelen); 987 988 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 989 ICE_IEEE_SUBTYPE_ETS_REC); 990 tlv->ouisubtype = htonl(ouisubtype); 991 992 /* First octet of buf is reserved 993 * Octets 1 - 4 map UP to TC - all UPs map to zero 994 * Octets 5 - 12 are BW values - set TC 0 to 100%. 995 * Octets 13 - 20 are TSA value - leave as zeros 996 */ 997 buf[5] = 0x64; 998 offset += len + 2; 999 tlv = (struct ice_lldp_org_tlv *) 1000 ((char *)tlv + sizeof(tlv->typelen) + len); 1001 1002 /* Add PFC CFG TLV */ 1003 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 1004 ICE_IEEE_PFC_TLV_LEN); 1005 tlv->typelen = htons(typelen); 1006 1007 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 1008 ICE_IEEE_SUBTYPE_PFC_CFG); 1009 tlv->ouisubtype = htonl(ouisubtype); 1010 1011 /* Octet 1 left as all zeros - PFC disabled */ 1012 buf[0] = 0x08; 1013 len = FIELD_GET(ICE_LLDP_TLV_LEN_M, typelen); 1014 offset += len + 2; 1015 1016 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 1017 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 1018 1019 kfree(lldpmib); 1020 } 1021 1022 /** 1023 * ice_check_phy_fw_load - check if PHY FW load failed 1024 * @pf: pointer to PF struct 1025 * @link_cfg_err: bitmap from the link info structure 1026 * 1027 * check if external PHY FW load failed and print an error message if it did 1028 */ 1029 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 1030 { 1031 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 1032 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1033 return; 1034 } 1035 1036 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 1037 return; 1038 1039 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 1040 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 1041 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 1042 } 1043 } 1044 1045 /** 1046 * ice_check_module_power 1047 * @pf: pointer to PF struct 1048 * @link_cfg_err: bitmap from the link info structure 1049 * 1050 * check module power level returned by a previous call to aq_get_link_info 1051 * and print error messages if module power level is not supported 1052 */ 1053 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 1054 { 1055 /* if module power level is supported, clear the flag */ 1056 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1057 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1058 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1059 return; 1060 } 1061 1062 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1063 * above block didn't clear this bit, there's nothing to do 1064 */ 1065 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1066 return; 1067 1068 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1069 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1070 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1071 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1072 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1073 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1074 } 1075 } 1076 1077 /** 1078 * ice_check_link_cfg_err - check if link configuration failed 1079 * @pf: pointer to the PF struct 1080 * @link_cfg_err: bitmap from the link info structure 1081 * 1082 * print if any link configuration failure happens due to the value in the 1083 * link_cfg_err parameter in the link info structure 1084 */ 1085 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1086 { 1087 ice_check_module_power(pf, link_cfg_err); 1088 ice_check_phy_fw_load(pf, link_cfg_err); 1089 } 1090 1091 /** 1092 * ice_link_event - process the link event 1093 * @pf: PF that the link event is associated with 1094 * @pi: port_info for the port that the link event is associated with 1095 * @link_up: true if the physical link is up and false if it is down 1096 * @link_speed: current link speed received from the link event 1097 * 1098 * Returns 0 on success and negative on failure 1099 */ 1100 static int 1101 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1102 u16 link_speed) 1103 { 1104 struct device *dev = ice_pf_to_dev(pf); 1105 struct ice_phy_info *phy_info; 1106 struct ice_vsi *vsi; 1107 u16 old_link_speed; 1108 bool old_link; 1109 int status; 1110 1111 phy_info = &pi->phy; 1112 phy_info->link_info_old = phy_info->link_info; 1113 1114 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1115 old_link_speed = phy_info->link_info_old.link_speed; 1116 1117 /* update the link info structures and re-enable link events, 1118 * don't bail on failure due to other book keeping needed 1119 */ 1120 status = ice_update_link_info(pi); 1121 if (status) 1122 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1123 pi->lport, status, 1124 libie_aq_str(pi->hw->adminq.sq_last_status)); 1125 1126 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1127 1128 /* Check if the link state is up after updating link info, and treat 1129 * this event as an UP event since the link is actually UP now. 1130 */ 1131 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1132 link_up = true; 1133 1134 vsi = ice_get_main_vsi(pf); 1135 if (!vsi || !vsi->port_info) 1136 return -EINVAL; 1137 1138 /* turn off PHY if media was removed */ 1139 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1140 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1141 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1142 ice_set_link(vsi, false); 1143 } 1144 1145 /* if the old link up/down and speed is the same as the new */ 1146 if (link_up == old_link && link_speed == old_link_speed) 1147 return 0; 1148 1149 if (!link_up && old_link) 1150 pf->link_down_events++; 1151 1152 ice_ptp_link_change(pf, link_up); 1153 1154 if (ice_is_dcb_active(pf)) { 1155 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1156 ice_dcb_rebuild(pf); 1157 } else { 1158 if (link_up) 1159 ice_set_dflt_mib(pf); 1160 } 1161 ice_vsi_link_event(vsi, link_up); 1162 ice_print_link_msg(vsi, link_up); 1163 1164 ice_vc_notify_link_state(pf); 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1171 * @pf: board private structure 1172 */ 1173 static void ice_watchdog_subtask(struct ice_pf *pf) 1174 { 1175 int i; 1176 1177 /* if interface is down do nothing */ 1178 if (test_bit(ICE_DOWN, pf->state) || 1179 test_bit(ICE_CFG_BUSY, pf->state)) 1180 return; 1181 1182 /* make sure we don't do these things too often */ 1183 if (time_before(jiffies, 1184 pf->serv_tmr_prev + pf->serv_tmr_period)) 1185 return; 1186 1187 pf->serv_tmr_prev = jiffies; 1188 1189 /* Update the stats for active netdevs so the network stack 1190 * can look at updated numbers whenever it cares to 1191 */ 1192 ice_update_pf_stats(pf); 1193 ice_for_each_vsi(pf, i) 1194 if (pf->vsi[i] && pf->vsi[i]->netdev) 1195 ice_update_vsi_stats(pf->vsi[i]); 1196 } 1197 1198 /** 1199 * ice_init_link_events - enable/initialize link events 1200 * @pi: pointer to the port_info instance 1201 * 1202 * Returns -EIO on failure, 0 on success 1203 */ 1204 static int ice_init_link_events(struct ice_port_info *pi) 1205 { 1206 u16 mask; 1207 1208 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1209 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1210 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1211 1212 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1213 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1214 pi->lport); 1215 return -EIO; 1216 } 1217 1218 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1219 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1220 pi->lport); 1221 return -EIO; 1222 } 1223 1224 return 0; 1225 } 1226 1227 /** 1228 * ice_handle_link_event - handle link event via ARQ 1229 * @pf: PF that the link event is associated with 1230 * @event: event structure containing link status info 1231 */ 1232 static int 1233 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1234 { 1235 struct ice_aqc_get_link_status_data *link_data; 1236 struct ice_port_info *port_info; 1237 int status; 1238 1239 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1240 port_info = pf->hw.port_info; 1241 if (!port_info) 1242 return -EINVAL; 1243 1244 status = ice_link_event(pf, port_info, 1245 !!(link_data->link_info & ICE_AQ_LINK_UP), 1246 le16_to_cpu(link_data->link_speed)); 1247 if (status) 1248 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1249 status); 1250 1251 return status; 1252 } 1253 1254 /** 1255 * ice_aq_prep_for_event - Prepare to wait for an AdminQ event from firmware 1256 * @pf: pointer to the PF private structure 1257 * @task: intermediate helper storage and identifier for waiting 1258 * @opcode: the opcode to wait for 1259 * 1260 * Prepares to wait for a specific AdminQ completion event on the ARQ for 1261 * a given PF. Actual wait would be done by a call to ice_aq_wait_for_event(). 1262 * 1263 * Calls are separated to allow caller registering for event before sending 1264 * the command, which mitigates a race between registering and FW responding. 1265 * 1266 * To obtain only the descriptor contents, pass an task->event with null 1267 * msg_buf. If the complete data buffer is desired, allocate the 1268 * task->event.msg_buf with enough space ahead of time. 1269 */ 1270 void ice_aq_prep_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1271 u16 opcode) 1272 { 1273 INIT_HLIST_NODE(&task->entry); 1274 task->opcode = opcode; 1275 task->state = ICE_AQ_TASK_WAITING; 1276 1277 spin_lock_bh(&pf->aq_wait_lock); 1278 hlist_add_head(&task->entry, &pf->aq_wait_list); 1279 spin_unlock_bh(&pf->aq_wait_lock); 1280 } 1281 1282 /** 1283 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1284 * @pf: pointer to the PF private structure 1285 * @task: ptr prepared by ice_aq_prep_for_event() 1286 * @timeout: how long to wait, in jiffies 1287 * 1288 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1289 * current thread will be put to sleep until the specified event occurs or 1290 * until the given timeout is reached. 1291 * 1292 * Returns: zero on success, or a negative error code on failure. 1293 */ 1294 int ice_aq_wait_for_event(struct ice_pf *pf, struct ice_aq_task *task, 1295 unsigned long timeout) 1296 { 1297 enum ice_aq_task_state *state = &task->state; 1298 struct device *dev = ice_pf_to_dev(pf); 1299 unsigned long start = jiffies; 1300 long ret; 1301 int err; 1302 1303 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, 1304 *state != ICE_AQ_TASK_WAITING, 1305 timeout); 1306 switch (*state) { 1307 case ICE_AQ_TASK_NOT_PREPARED: 1308 WARN(1, "call to %s without ice_aq_prep_for_event()", __func__); 1309 err = -EINVAL; 1310 break; 1311 case ICE_AQ_TASK_WAITING: 1312 err = ret < 0 ? ret : -ETIMEDOUT; 1313 break; 1314 case ICE_AQ_TASK_CANCELED: 1315 err = ret < 0 ? ret : -ECANCELED; 1316 break; 1317 case ICE_AQ_TASK_COMPLETE: 1318 err = ret < 0 ? ret : 0; 1319 break; 1320 default: 1321 WARN(1, "Unexpected AdminQ wait task state %u", *state); 1322 err = -EINVAL; 1323 break; 1324 } 1325 1326 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1327 jiffies_to_msecs(jiffies - start), 1328 jiffies_to_msecs(timeout), 1329 task->opcode); 1330 1331 spin_lock_bh(&pf->aq_wait_lock); 1332 hlist_del(&task->entry); 1333 spin_unlock_bh(&pf->aq_wait_lock); 1334 1335 return err; 1336 } 1337 1338 /** 1339 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1340 * @pf: pointer to the PF private structure 1341 * @opcode: the opcode of the event 1342 * @event: the event to check 1343 * 1344 * Loops over the current list of pending threads waiting for an AdminQ event. 1345 * For each matching task, copy the contents of the event into the task 1346 * structure and wake up the thread. 1347 * 1348 * If multiple threads wait for the same opcode, they will all be woken up. 1349 * 1350 * Note that event->msg_buf will only be duplicated if the event has a buffer 1351 * with enough space already allocated. Otherwise, only the descriptor and 1352 * message length will be copied. 1353 * 1354 * Returns: true if an event was found, false otherwise 1355 */ 1356 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1357 struct ice_rq_event_info *event) 1358 { 1359 struct ice_rq_event_info *task_ev; 1360 struct ice_aq_task *task; 1361 bool found = false; 1362 1363 spin_lock_bh(&pf->aq_wait_lock); 1364 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1365 if (task->state != ICE_AQ_TASK_WAITING) 1366 continue; 1367 if (task->opcode != opcode) 1368 continue; 1369 1370 task_ev = &task->event; 1371 memcpy(&task_ev->desc, &event->desc, sizeof(event->desc)); 1372 task_ev->msg_len = event->msg_len; 1373 1374 /* Only copy the data buffer if a destination was set */ 1375 if (task_ev->msg_buf && task_ev->buf_len >= event->buf_len) { 1376 memcpy(task_ev->msg_buf, event->msg_buf, 1377 event->buf_len); 1378 task_ev->buf_len = event->buf_len; 1379 } 1380 1381 task->state = ICE_AQ_TASK_COMPLETE; 1382 found = true; 1383 } 1384 spin_unlock_bh(&pf->aq_wait_lock); 1385 1386 if (found) 1387 wake_up(&pf->aq_wait_queue); 1388 } 1389 1390 /** 1391 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1392 * @pf: the PF private structure 1393 * 1394 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1395 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1396 */ 1397 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1398 { 1399 struct ice_aq_task *task; 1400 1401 spin_lock_bh(&pf->aq_wait_lock); 1402 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1403 task->state = ICE_AQ_TASK_CANCELED; 1404 spin_unlock_bh(&pf->aq_wait_lock); 1405 1406 wake_up(&pf->aq_wait_queue); 1407 } 1408 1409 #define ICE_MBX_OVERFLOW_WATERMARK 64 1410 1411 /** 1412 * __ice_clean_ctrlq - helper function to clean controlq rings 1413 * @pf: ptr to struct ice_pf 1414 * @q_type: specific Control queue type 1415 */ 1416 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1417 { 1418 struct device *dev = ice_pf_to_dev(pf); 1419 struct ice_rq_event_info event; 1420 struct ice_hw *hw = &pf->hw; 1421 struct ice_ctl_q_info *cq; 1422 u16 pending, i = 0; 1423 const char *qtype; 1424 u32 oldval, val; 1425 1426 /* Do not clean control queue if/when PF reset fails */ 1427 if (test_bit(ICE_RESET_FAILED, pf->state)) 1428 return 0; 1429 1430 switch (q_type) { 1431 case ICE_CTL_Q_ADMIN: 1432 cq = &hw->adminq; 1433 qtype = "Admin"; 1434 break; 1435 case ICE_CTL_Q_SB: 1436 cq = &hw->sbq; 1437 qtype = "Sideband"; 1438 break; 1439 case ICE_CTL_Q_MAILBOX: 1440 cq = &hw->mailboxq; 1441 qtype = "Mailbox"; 1442 /* we are going to try to detect a malicious VF, so set the 1443 * state to begin detection 1444 */ 1445 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1446 break; 1447 default: 1448 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1449 return 0; 1450 } 1451 1452 /* check for error indications - PF_xx_AxQLEN register layout for 1453 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1454 */ 1455 val = rd32(hw, cq->rq.len); 1456 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1457 PF_FW_ARQLEN_ARQCRIT_M)) { 1458 oldval = val; 1459 if (val & PF_FW_ARQLEN_ARQVFE_M) 1460 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1461 qtype); 1462 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1463 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1464 qtype); 1465 } 1466 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1467 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1468 qtype); 1469 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1470 PF_FW_ARQLEN_ARQCRIT_M); 1471 if (oldval != val) 1472 wr32(hw, cq->rq.len, val); 1473 } 1474 1475 val = rd32(hw, cq->sq.len); 1476 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1477 PF_FW_ATQLEN_ATQCRIT_M)) { 1478 oldval = val; 1479 if (val & PF_FW_ATQLEN_ATQVFE_M) 1480 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1481 qtype); 1482 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1483 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1484 qtype); 1485 } 1486 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1487 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1488 qtype); 1489 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1490 PF_FW_ATQLEN_ATQCRIT_M); 1491 if (oldval != val) 1492 wr32(hw, cq->sq.len, val); 1493 } 1494 1495 event.buf_len = cq->rq_buf_size; 1496 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1497 if (!event.msg_buf) 1498 return 0; 1499 1500 do { 1501 struct ice_mbx_data data = {}; 1502 u16 opcode; 1503 int ret; 1504 1505 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1506 if (ret == -EALREADY) 1507 break; 1508 if (ret) { 1509 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1510 ret); 1511 break; 1512 } 1513 1514 opcode = le16_to_cpu(event.desc.opcode); 1515 1516 /* Notify any thread that might be waiting for this event */ 1517 ice_aq_check_events(pf, opcode, &event); 1518 1519 switch (opcode) { 1520 case ice_aqc_opc_get_link_status: 1521 if (ice_handle_link_event(pf, &event)) 1522 dev_err(dev, "Could not handle link event\n"); 1523 break; 1524 case ice_aqc_opc_event_lan_overflow: 1525 ice_vf_lan_overflow_event(pf, &event); 1526 break; 1527 case ice_mbx_opc_send_msg_to_pf: 1528 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) { 1529 ice_vc_process_vf_msg(pf, &event, NULL); 1530 ice_mbx_vf_dec_trig_e830(hw, &event); 1531 } else { 1532 u16 val = hw->mailboxq.num_rq_entries; 1533 1534 data.max_num_msgs_mbx = val; 1535 val = ICE_MBX_OVERFLOW_WATERMARK; 1536 data.async_watermark_val = val; 1537 data.num_msg_proc = i; 1538 data.num_pending_arq = pending; 1539 1540 ice_vc_process_vf_msg(pf, &event, &data); 1541 } 1542 break; 1543 case ice_aqc_opc_fw_logs_event: 1544 libie_get_fwlog_data(&hw->fwlog, event.msg_buf, 1545 le16_to_cpu(event.desc.datalen)); 1546 break; 1547 case ice_aqc_opc_lldp_set_mib_change: 1548 ice_dcb_process_lldp_set_mib_change(pf, &event); 1549 break; 1550 case ice_aqc_opc_get_health_status: 1551 ice_process_health_status_event(pf, &event); 1552 break; 1553 default: 1554 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1555 qtype, opcode); 1556 break; 1557 } 1558 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1559 1560 kfree(event.msg_buf); 1561 1562 return pending && (i == ICE_DFLT_IRQ_WORK); 1563 } 1564 1565 /** 1566 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1567 * @hw: pointer to hardware info 1568 * @cq: control queue information 1569 * 1570 * returns true if there are pending messages in a queue, false if there aren't 1571 */ 1572 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1573 { 1574 u16 ntu; 1575 1576 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1577 return cq->rq.next_to_clean != ntu; 1578 } 1579 1580 /** 1581 * ice_clean_adminq_subtask - clean the AdminQ rings 1582 * @pf: board private structure 1583 */ 1584 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1585 { 1586 struct ice_hw *hw = &pf->hw; 1587 1588 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1589 return; 1590 1591 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1592 return; 1593 1594 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1595 1596 /* There might be a situation where new messages arrive to a control 1597 * queue between processing the last message and clearing the 1598 * EVENT_PENDING bit. So before exiting, check queue head again (using 1599 * ice_ctrlq_pending) and process new messages if any. 1600 */ 1601 if (ice_ctrlq_pending(hw, &hw->adminq)) 1602 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1603 1604 ice_flush(hw); 1605 } 1606 1607 /** 1608 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1609 * @pf: board private structure 1610 */ 1611 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1612 { 1613 struct ice_hw *hw = &pf->hw; 1614 1615 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1616 return; 1617 1618 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1619 return; 1620 1621 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1622 1623 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1624 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1625 1626 ice_flush(hw); 1627 } 1628 1629 /** 1630 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1631 * @pf: board private structure 1632 */ 1633 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1634 { 1635 struct ice_hw *hw = &pf->hw; 1636 1637 /* if mac_type is not generic, sideband is not supported 1638 * and there's nothing to do here 1639 */ 1640 if (!ice_is_generic_mac(hw)) { 1641 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1642 return; 1643 } 1644 1645 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1646 return; 1647 1648 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1649 return; 1650 1651 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1652 1653 if (ice_ctrlq_pending(hw, &hw->sbq)) 1654 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1655 1656 ice_flush(hw); 1657 } 1658 1659 /** 1660 * ice_service_task_schedule - schedule the service task to wake up 1661 * @pf: board private structure 1662 * 1663 * If not already scheduled, this puts the task into the work queue. 1664 */ 1665 void ice_service_task_schedule(struct ice_pf *pf) 1666 { 1667 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1668 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1669 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1670 queue_work(ice_wq, &pf->serv_task); 1671 } 1672 1673 /** 1674 * ice_service_task_complete - finish up the service task 1675 * @pf: board private structure 1676 */ 1677 static void ice_service_task_complete(struct ice_pf *pf) 1678 { 1679 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1680 1681 /* force memory (pf->state) to sync before next service task */ 1682 smp_mb__before_atomic(); 1683 clear_bit(ICE_SERVICE_SCHED, pf->state); 1684 } 1685 1686 /** 1687 * ice_service_task_stop - stop service task and cancel works 1688 * @pf: board private structure 1689 * 1690 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1691 * 1 otherwise. 1692 */ 1693 static int ice_service_task_stop(struct ice_pf *pf) 1694 { 1695 int ret; 1696 1697 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1698 1699 if (pf->serv_tmr.function) 1700 timer_delete_sync(&pf->serv_tmr); 1701 if (pf->serv_task.func) 1702 cancel_work_sync(&pf->serv_task); 1703 1704 clear_bit(ICE_SERVICE_SCHED, pf->state); 1705 return ret; 1706 } 1707 1708 /** 1709 * ice_service_task_restart - restart service task and schedule works 1710 * @pf: board private structure 1711 * 1712 * This function is needed for suspend and resume works (e.g WoL scenario) 1713 */ 1714 static void ice_service_task_restart(struct ice_pf *pf) 1715 { 1716 clear_bit(ICE_SERVICE_DIS, pf->state); 1717 ice_service_task_schedule(pf); 1718 } 1719 1720 /** 1721 * ice_service_timer - timer callback to schedule service task 1722 * @t: pointer to timer_list 1723 */ 1724 static void ice_service_timer(struct timer_list *t) 1725 { 1726 struct ice_pf *pf = timer_container_of(pf, t, serv_tmr); 1727 1728 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1729 ice_service_task_schedule(pf); 1730 } 1731 1732 /** 1733 * ice_mdd_maybe_reset_vf - reset VF after MDD event 1734 * @pf: pointer to the PF structure 1735 * @vf: pointer to the VF structure 1736 * @reset_vf_tx: whether Tx MDD has occurred 1737 * @reset_vf_rx: whether Rx MDD has occurred 1738 * 1739 * Since the queue can get stuck on VF MDD events, the PF can be configured to 1740 * automatically reset the VF by enabling the private ethtool flag 1741 * mdd-auto-reset-vf. 1742 */ 1743 static void ice_mdd_maybe_reset_vf(struct ice_pf *pf, struct ice_vf *vf, 1744 bool reset_vf_tx, bool reset_vf_rx) 1745 { 1746 struct device *dev = ice_pf_to_dev(pf); 1747 1748 if (!test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) 1749 return; 1750 1751 /* VF MDD event counters will be cleared by reset, so print the event 1752 * prior to reset. 1753 */ 1754 if (reset_vf_tx) 1755 ice_print_vf_tx_mdd_event(vf); 1756 1757 if (reset_vf_rx) 1758 ice_print_vf_rx_mdd_event(vf); 1759 1760 dev_info(dev, "PF-to-VF reset on PF %d VF %d due to MDD event\n", 1761 pf->hw.pf_id, vf->vf_id); 1762 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); 1763 } 1764 1765 /** 1766 * ice_handle_mdd_event - handle malicious driver detect event 1767 * @pf: pointer to the PF structure 1768 * 1769 * Called from service task. OICR interrupt handler indicates MDD event. 1770 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1771 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1772 * disable the queue, the PF can be configured to reset the VF using ethtool 1773 * private flag mdd-auto-reset-vf. 1774 */ 1775 static void ice_handle_mdd_event(struct ice_pf *pf) 1776 { 1777 struct device *dev = ice_pf_to_dev(pf); 1778 struct ice_hw *hw = &pf->hw; 1779 struct ice_vf *vf; 1780 unsigned int bkt; 1781 u32 reg; 1782 1783 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1784 /* Since the VF MDD event logging is rate limited, check if 1785 * there are pending MDD events. 1786 */ 1787 ice_print_vfs_mdd_events(pf); 1788 return; 1789 } 1790 1791 /* find what triggered an MDD event */ 1792 reg = rd32(hw, GL_MDET_TX_PQM); 1793 if (reg & GL_MDET_TX_PQM_VALID_M) { 1794 u8 pf_num = FIELD_GET(GL_MDET_TX_PQM_PF_NUM_M, reg); 1795 u16 vf_num = FIELD_GET(GL_MDET_TX_PQM_VF_NUM_M, reg); 1796 u8 event = FIELD_GET(GL_MDET_TX_PQM_MAL_TYPE_M, reg); 1797 u16 queue = FIELD_GET(GL_MDET_TX_PQM_QNUM_M, reg); 1798 1799 if (netif_msg_tx_err(pf)) 1800 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1801 event, queue, pf_num, vf_num); 1802 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_PQM, pf_num, vf_num, 1803 event, queue); 1804 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1805 } 1806 1807 reg = rd32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw)); 1808 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1809 u8 pf_num = FIELD_GET(GL_MDET_TX_TCLAN_PF_NUM_M, reg); 1810 u16 vf_num = FIELD_GET(GL_MDET_TX_TCLAN_VF_NUM_M, reg); 1811 u8 event = FIELD_GET(GL_MDET_TX_TCLAN_MAL_TYPE_M, reg); 1812 u16 queue = FIELD_GET(GL_MDET_TX_TCLAN_QNUM_M, reg); 1813 1814 if (netif_msg_tx_err(pf)) 1815 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1816 event, queue, pf_num, vf_num); 1817 ice_report_mdd_event(pf, ICE_MDD_SRC_TX_TCLAN, pf_num, vf_num, 1818 event, queue); 1819 wr32(hw, GL_MDET_TX_TCLAN_BY_MAC(hw), U32_MAX); 1820 } 1821 1822 reg = rd32(hw, GL_MDET_RX); 1823 if (reg & GL_MDET_RX_VALID_M) { 1824 u8 pf_num = FIELD_GET(GL_MDET_RX_PF_NUM_M, reg); 1825 u16 vf_num = FIELD_GET(GL_MDET_RX_VF_NUM_M, reg); 1826 u8 event = FIELD_GET(GL_MDET_RX_MAL_TYPE_M, reg); 1827 u16 queue = FIELD_GET(GL_MDET_RX_QNUM_M, reg); 1828 1829 if (netif_msg_rx_err(pf)) 1830 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1831 event, queue, pf_num, vf_num); 1832 ice_report_mdd_event(pf, ICE_MDD_SRC_RX, pf_num, vf_num, event, 1833 queue); 1834 wr32(hw, GL_MDET_RX, 0xffffffff); 1835 } 1836 1837 /* check to see if this PF caused an MDD event */ 1838 reg = rd32(hw, PF_MDET_TX_PQM); 1839 if (reg & PF_MDET_TX_PQM_VALID_M) { 1840 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1841 if (netif_msg_tx_err(pf)) 1842 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1843 } 1844 1845 reg = rd32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw)); 1846 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1847 wr32(hw, PF_MDET_TX_TCLAN_BY_MAC(hw), 0xffff); 1848 if (netif_msg_tx_err(pf)) 1849 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1850 } 1851 1852 reg = rd32(hw, PF_MDET_RX); 1853 if (reg & PF_MDET_RX_VALID_M) { 1854 wr32(hw, PF_MDET_RX, 0xFFFF); 1855 if (netif_msg_rx_err(pf)) 1856 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1857 } 1858 1859 /* Check to see if one of the VFs caused an MDD event, and then 1860 * increment counters and set print pending 1861 */ 1862 mutex_lock(&pf->vfs.table_lock); 1863 ice_for_each_vf(pf, bkt, vf) { 1864 bool reset_vf_tx = false, reset_vf_rx = false; 1865 1866 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id)); 1867 if (reg & VP_MDET_TX_PQM_VALID_M) { 1868 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF); 1869 vf->mdd_tx_events.count++; 1870 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1871 if (netif_msg_tx_err(pf)) 1872 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1873 vf->vf_id); 1874 1875 reset_vf_tx = true; 1876 } 1877 1878 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id)); 1879 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1880 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF); 1881 vf->mdd_tx_events.count++; 1882 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1883 if (netif_msg_tx_err(pf)) 1884 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1885 vf->vf_id); 1886 1887 reset_vf_tx = true; 1888 } 1889 1890 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id)); 1891 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1892 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF); 1893 vf->mdd_tx_events.count++; 1894 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1895 if (netif_msg_tx_err(pf)) 1896 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1897 vf->vf_id); 1898 1899 reset_vf_tx = true; 1900 } 1901 1902 reg = rd32(hw, VP_MDET_RX(vf->vf_id)); 1903 if (reg & VP_MDET_RX_VALID_M) { 1904 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF); 1905 vf->mdd_rx_events.count++; 1906 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1907 if (netif_msg_rx_err(pf)) 1908 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1909 vf->vf_id); 1910 1911 reset_vf_rx = true; 1912 } 1913 1914 if (reset_vf_tx || reset_vf_rx) 1915 ice_mdd_maybe_reset_vf(pf, vf, reset_vf_tx, 1916 reset_vf_rx); 1917 } 1918 mutex_unlock(&pf->vfs.table_lock); 1919 1920 ice_print_vfs_mdd_events(pf); 1921 } 1922 1923 /** 1924 * ice_force_phys_link_state - Force the physical link state 1925 * @vsi: VSI to force the physical link state to up/down 1926 * @link_up: true/false indicates to set the physical link to up/down 1927 * 1928 * Force the physical link state by getting the current PHY capabilities from 1929 * hardware and setting the PHY config based on the determined capabilities. If 1930 * link changes a link event will be triggered because both the Enable Automatic 1931 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1932 * 1933 * Returns 0 on success, negative on failure 1934 */ 1935 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1936 { 1937 struct ice_aqc_get_phy_caps_data *pcaps; 1938 struct ice_aqc_set_phy_cfg_data *cfg; 1939 struct ice_port_info *pi; 1940 struct device *dev; 1941 int retcode; 1942 1943 if (!vsi || !vsi->port_info || !vsi->back) 1944 return -EINVAL; 1945 if (vsi->type != ICE_VSI_PF) 1946 return 0; 1947 1948 dev = ice_pf_to_dev(vsi->back); 1949 1950 pi = vsi->port_info; 1951 1952 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1953 if (!pcaps) 1954 return -ENOMEM; 1955 1956 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1957 NULL); 1958 if (retcode) { 1959 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1960 vsi->vsi_num, retcode); 1961 retcode = -EIO; 1962 goto out; 1963 } 1964 1965 /* No change in link */ 1966 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1967 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1968 goto out; 1969 1970 /* Use the current user PHY configuration. The current user PHY 1971 * configuration is initialized during probe from PHY capabilities 1972 * software mode, and updated on set PHY configuration. 1973 */ 1974 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1975 if (!cfg) { 1976 retcode = -ENOMEM; 1977 goto out; 1978 } 1979 1980 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1981 if (link_up) 1982 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1983 else 1984 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1985 1986 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1987 if (retcode) { 1988 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1989 vsi->vsi_num, retcode); 1990 retcode = -EIO; 1991 } 1992 1993 kfree(cfg); 1994 out: 1995 kfree(pcaps); 1996 return retcode; 1997 } 1998 1999 /** 2000 * ice_init_nvm_phy_type - Initialize the NVM PHY type 2001 * @pi: port info structure 2002 * 2003 * Initialize nvm_phy_type_[low|high] for link lenient mode support 2004 */ 2005 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 2006 { 2007 struct ice_aqc_get_phy_caps_data *pcaps; 2008 struct ice_pf *pf = pi->hw->back; 2009 int err; 2010 2011 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2012 if (!pcaps) 2013 return -ENOMEM; 2014 2015 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 2016 pcaps, NULL); 2017 2018 if (err) { 2019 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2020 goto out; 2021 } 2022 2023 pf->nvm_phy_type_hi = pcaps->phy_type_high; 2024 pf->nvm_phy_type_lo = pcaps->phy_type_low; 2025 2026 out: 2027 kfree(pcaps); 2028 return err; 2029 } 2030 2031 /** 2032 * ice_init_link_dflt_override - Initialize link default override 2033 * @pi: port info structure 2034 * 2035 * Initialize link default override and PHY total port shutdown during probe 2036 */ 2037 static void ice_init_link_dflt_override(struct ice_port_info *pi) 2038 { 2039 struct ice_link_default_override_tlv *ldo; 2040 struct ice_pf *pf = pi->hw->back; 2041 2042 ldo = &pf->link_dflt_override; 2043 if (ice_get_link_default_override(ldo, pi)) 2044 return; 2045 2046 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 2047 return; 2048 2049 /* Enable Total Port Shutdown (override/replace link-down-on-close 2050 * ethtool private flag) for ports with Port Disable bit set. 2051 */ 2052 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 2053 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 2054 } 2055 2056 /** 2057 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 2058 * @pi: port info structure 2059 * 2060 * If default override is enabled, initialize the user PHY cfg speed and FEC 2061 * settings using the default override mask from the NVM. 2062 * 2063 * The PHY should only be configured with the default override settings the 2064 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 2065 * is used to indicate that the user PHY cfg default override is initialized 2066 * and the PHY has not been configured with the default override settings. The 2067 * state is set here, and cleared in ice_configure_phy the first time the PHY is 2068 * configured. 2069 * 2070 * This function should be called only if the FW doesn't support default 2071 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 2072 */ 2073 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 2074 { 2075 struct ice_link_default_override_tlv *ldo; 2076 struct ice_aqc_set_phy_cfg_data *cfg; 2077 struct ice_phy_info *phy = &pi->phy; 2078 struct ice_pf *pf = pi->hw->back; 2079 2080 ldo = &pf->link_dflt_override; 2081 2082 /* If link default override is enabled, use to mask NVM PHY capabilities 2083 * for speed and FEC default configuration. 2084 */ 2085 cfg = &phy->curr_user_phy_cfg; 2086 2087 if (ldo->phy_type_low || ldo->phy_type_high) { 2088 cfg->phy_type_low = pf->nvm_phy_type_lo & 2089 cpu_to_le64(ldo->phy_type_low); 2090 cfg->phy_type_high = pf->nvm_phy_type_hi & 2091 cpu_to_le64(ldo->phy_type_high); 2092 } 2093 cfg->link_fec_opt = ldo->fec_options; 2094 phy->curr_user_fec_req = ICE_FEC_AUTO; 2095 2096 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 2097 } 2098 2099 /** 2100 * ice_init_phy_user_cfg - Initialize the PHY user configuration 2101 * @pi: port info structure 2102 * 2103 * Initialize the current user PHY configuration, speed, FEC, and FC requested 2104 * mode to default. The PHY defaults are from get PHY capabilities topology 2105 * with media so call when media is first available. An error is returned if 2106 * called when media is not available. The PHY initialization completed state is 2107 * set here. 2108 * 2109 * These configurations are used when setting PHY 2110 * configuration. The user PHY configuration is updated on set PHY 2111 * configuration. Returns 0 on success, negative on failure 2112 */ 2113 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2114 { 2115 struct ice_aqc_get_phy_caps_data *pcaps; 2116 struct ice_phy_info *phy = &pi->phy; 2117 struct ice_pf *pf = pi->hw->back; 2118 int err; 2119 2120 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2121 return -EIO; 2122 2123 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2124 if (!pcaps) 2125 return -ENOMEM; 2126 2127 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2128 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2129 pcaps, NULL); 2130 else 2131 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2132 pcaps, NULL); 2133 if (err) { 2134 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2135 goto err_out; 2136 } 2137 2138 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2139 2140 /* check if lenient mode is supported and enabled */ 2141 if (ice_fw_supports_link_override(pi->hw) && 2142 !(pcaps->module_compliance_enforcement & 2143 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2144 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2145 2146 /* if the FW supports default PHY configuration mode, then the driver 2147 * does not have to apply link override settings. If not, 2148 * initialize user PHY configuration with link override values 2149 */ 2150 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2151 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2152 ice_init_phy_cfg_dflt_override(pi); 2153 goto out; 2154 } 2155 } 2156 2157 /* if link default override is not enabled, set user flow control and 2158 * FEC settings based on what get_phy_caps returned 2159 */ 2160 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2161 pcaps->link_fec_options); 2162 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2163 2164 out: 2165 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2166 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2167 err_out: 2168 kfree(pcaps); 2169 return err; 2170 } 2171 2172 /** 2173 * ice_configure_phy - configure PHY 2174 * @vsi: VSI of PHY 2175 * 2176 * Set the PHY configuration. If the current PHY configuration is the same as 2177 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2178 * configure the based get PHY capabilities for topology with media. 2179 */ 2180 static int ice_configure_phy(struct ice_vsi *vsi) 2181 { 2182 struct device *dev = ice_pf_to_dev(vsi->back); 2183 struct ice_port_info *pi = vsi->port_info; 2184 struct ice_aqc_get_phy_caps_data *pcaps; 2185 struct ice_aqc_set_phy_cfg_data *cfg; 2186 struct ice_phy_info *phy = &pi->phy; 2187 struct ice_pf *pf = vsi->back; 2188 int err; 2189 2190 /* Ensure we have media as we cannot configure a medialess port */ 2191 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2192 return -ENOMEDIUM; 2193 2194 ice_print_topo_conflict(vsi); 2195 2196 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2197 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2198 return -EPERM; 2199 2200 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2201 return ice_force_phys_link_state(vsi, true); 2202 2203 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2204 if (!pcaps) 2205 return -ENOMEM; 2206 2207 /* Get current PHY config */ 2208 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2209 NULL); 2210 if (err) { 2211 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2212 vsi->vsi_num, err); 2213 goto done; 2214 } 2215 2216 /* If PHY enable link is configured and configuration has not changed, 2217 * there's nothing to do 2218 */ 2219 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2220 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2221 goto done; 2222 2223 /* Use PHY topology as baseline for configuration */ 2224 memset(pcaps, 0, sizeof(*pcaps)); 2225 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2226 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2227 pcaps, NULL); 2228 else 2229 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2230 pcaps, NULL); 2231 if (err) { 2232 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2233 vsi->vsi_num, err); 2234 goto done; 2235 } 2236 2237 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2238 if (!cfg) { 2239 err = -ENOMEM; 2240 goto done; 2241 } 2242 2243 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2244 2245 /* Speed - If default override pending, use curr_user_phy_cfg set in 2246 * ice_init_phy_user_cfg_ldo. 2247 */ 2248 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2249 vsi->back->state)) { 2250 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2251 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2252 } else { 2253 u64 phy_low = 0, phy_high = 0; 2254 2255 ice_update_phy_type(&phy_low, &phy_high, 2256 pi->phy.curr_user_speed_req); 2257 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2258 cfg->phy_type_high = pcaps->phy_type_high & 2259 cpu_to_le64(phy_high); 2260 } 2261 2262 /* Can't provide what was requested; use PHY capabilities */ 2263 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2264 cfg->phy_type_low = pcaps->phy_type_low; 2265 cfg->phy_type_high = pcaps->phy_type_high; 2266 } 2267 2268 /* FEC */ 2269 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2270 2271 /* Can't provide what was requested; use PHY capabilities */ 2272 if (cfg->link_fec_opt != 2273 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2274 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2275 cfg->link_fec_opt = pcaps->link_fec_options; 2276 } 2277 2278 /* Flow Control - always supported; no need to check against 2279 * capabilities 2280 */ 2281 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2282 2283 /* Enable link and link update */ 2284 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2285 2286 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2287 if (err) 2288 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2289 vsi->vsi_num, err); 2290 2291 kfree(cfg); 2292 done: 2293 kfree(pcaps); 2294 return err; 2295 } 2296 2297 /** 2298 * ice_check_media_subtask - Check for media 2299 * @pf: pointer to PF struct 2300 * 2301 * If media is available, then initialize PHY user configuration if it is not 2302 * been, and configure the PHY if the interface is up. 2303 */ 2304 static void ice_check_media_subtask(struct ice_pf *pf) 2305 { 2306 struct ice_port_info *pi; 2307 struct ice_vsi *vsi; 2308 int err; 2309 2310 /* No need to check for media if it's already present */ 2311 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2312 return; 2313 2314 vsi = ice_get_main_vsi(pf); 2315 if (!vsi) 2316 return; 2317 2318 /* Refresh link info and check if media is present */ 2319 pi = vsi->port_info; 2320 err = ice_update_link_info(pi); 2321 if (err) 2322 return; 2323 2324 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2325 2326 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2327 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2328 ice_init_phy_user_cfg(pi); 2329 2330 /* PHY settings are reset on media insertion, reconfigure 2331 * PHY to preserve settings. 2332 */ 2333 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2334 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2335 return; 2336 2337 err = ice_configure_phy(vsi); 2338 if (!err) 2339 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2340 2341 /* A Link Status Event will be generated; the event handler 2342 * will complete bringing the interface up 2343 */ 2344 } 2345 } 2346 2347 static void ice_service_task_recovery_mode(struct work_struct *work) 2348 { 2349 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2350 2351 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2352 ice_clean_adminq_subtask(pf); 2353 2354 ice_service_task_complete(pf); 2355 2356 mod_timer(&pf->serv_tmr, jiffies + msecs_to_jiffies(100)); 2357 } 2358 2359 /** 2360 * ice_service_task - manage and run subtasks 2361 * @work: pointer to work_struct contained by the PF struct 2362 */ 2363 static void ice_service_task(struct work_struct *work) 2364 { 2365 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2366 unsigned long start_time = jiffies; 2367 2368 if (pf->health_reporters.tx_hang_buf.tx_ring) { 2369 ice_report_tx_hang(pf); 2370 pf->health_reporters.tx_hang_buf.tx_ring = NULL; 2371 } 2372 2373 ice_reset_subtask(pf); 2374 2375 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2376 if (ice_is_reset_in_progress(pf->state) || 2377 test_bit(ICE_SUSPENDED, pf->state) || 2378 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2379 ice_service_task_complete(pf); 2380 return; 2381 } 2382 2383 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) { 2384 struct iidc_rdma_event *event; 2385 2386 event = kzalloc(sizeof(*event), GFP_KERNEL); 2387 if (event) { 2388 set_bit(IIDC_RDMA_EVENT_CRIT_ERR, event->type); 2389 /* report the entire OICR value to AUX driver */ 2390 swap(event->reg, pf->oicr_err_reg); 2391 ice_send_event_to_aux(pf, event); 2392 kfree(event); 2393 } 2394 } 2395 2396 /* unplug aux dev per request, if an unplug request came in 2397 * while processing a plug request, this will handle it 2398 */ 2399 if (test_and_clear_bit(ICE_FLAG_UNPLUG_AUX_DEV, pf->flags)) 2400 ice_unplug_aux_dev(pf); 2401 2402 /* Plug aux device per request */ 2403 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2404 ice_plug_aux_dev(pf); 2405 2406 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) { 2407 struct iidc_rdma_event *event; 2408 2409 event = kzalloc(sizeof(*event), GFP_KERNEL); 2410 if (event) { 2411 set_bit(IIDC_RDMA_EVENT_AFTER_MTU_CHANGE, event->type); 2412 ice_send_event_to_aux(pf, event); 2413 kfree(event); 2414 } 2415 } 2416 2417 ice_clean_adminq_subtask(pf); 2418 ice_check_media_subtask(pf); 2419 ice_check_for_hang_subtask(pf); 2420 ice_sync_fltr_subtask(pf); 2421 ice_handle_mdd_event(pf); 2422 ice_watchdog_subtask(pf); 2423 2424 if (ice_is_safe_mode(pf)) { 2425 ice_service_task_complete(pf); 2426 return; 2427 } 2428 2429 ice_process_vflr_event(pf); 2430 ice_clean_mailboxq_subtask(pf); 2431 ice_clean_sbq_subtask(pf); 2432 ice_sync_arfs_fltrs(pf); 2433 ice_flush_fdir_ctx(pf); 2434 2435 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2436 ice_service_task_complete(pf); 2437 2438 /* If the tasks have taken longer than one service timer period 2439 * or there is more work to be done, reset the service timer to 2440 * schedule the service task now. 2441 */ 2442 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2443 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2444 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2445 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2446 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2447 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2448 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2449 mod_timer(&pf->serv_tmr, jiffies); 2450 } 2451 2452 /** 2453 * ice_set_ctrlq_len - helper function to set controlq length 2454 * @hw: pointer to the HW instance 2455 */ 2456 static void ice_set_ctrlq_len(struct ice_hw *hw) 2457 { 2458 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2459 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2460 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2461 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2462 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2463 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2464 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2465 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2466 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2467 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2468 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2469 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2470 } 2471 2472 /** 2473 * ice_schedule_reset - schedule a reset 2474 * @pf: board private structure 2475 * @reset: reset being requested 2476 */ 2477 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2478 { 2479 struct device *dev = ice_pf_to_dev(pf); 2480 2481 /* bail out if earlier reset has failed */ 2482 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2483 dev_dbg(dev, "earlier reset has failed\n"); 2484 return -EIO; 2485 } 2486 /* bail if reset/recovery already in progress */ 2487 if (ice_is_reset_in_progress(pf->state)) { 2488 dev_dbg(dev, "Reset already in progress\n"); 2489 return -EBUSY; 2490 } 2491 2492 switch (reset) { 2493 case ICE_RESET_PFR: 2494 set_bit(ICE_PFR_REQ, pf->state); 2495 break; 2496 case ICE_RESET_CORER: 2497 set_bit(ICE_CORER_REQ, pf->state); 2498 break; 2499 case ICE_RESET_GLOBR: 2500 set_bit(ICE_GLOBR_REQ, pf->state); 2501 break; 2502 default: 2503 return -EINVAL; 2504 } 2505 2506 ice_service_task_schedule(pf); 2507 return 0; 2508 } 2509 2510 /** 2511 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2512 * @vsi: the VSI being configured 2513 */ 2514 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2515 { 2516 struct ice_hw *hw = &vsi->back->hw; 2517 int i; 2518 2519 ice_for_each_q_vector(vsi, i) 2520 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2521 2522 ice_flush(hw); 2523 return 0; 2524 } 2525 2526 /** 2527 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2528 * @vsi: the VSI being configured 2529 * @basename: name for the vector 2530 */ 2531 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2532 { 2533 int q_vectors = vsi->num_q_vectors; 2534 struct ice_pf *pf = vsi->back; 2535 struct device *dev; 2536 int rx_int_idx = 0; 2537 int tx_int_idx = 0; 2538 int vector, err; 2539 int irq_num; 2540 2541 dev = ice_pf_to_dev(pf); 2542 for (vector = 0; vector < q_vectors; vector++) { 2543 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2544 2545 irq_num = q_vector->irq.virq; 2546 2547 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2548 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2549 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2550 tx_int_idx++; 2551 } else if (q_vector->rx.rx_ring) { 2552 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2553 "%s-%s-%d", basename, "rx", rx_int_idx++); 2554 } else if (q_vector->tx.tx_ring) { 2555 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2556 "%s-%s-%d", basename, "tx", tx_int_idx++); 2557 } else { 2558 /* skip this unused q_vector */ 2559 continue; 2560 } 2561 if (vsi->type == ICE_VSI_CTRL && vsi->vf) 2562 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2563 IRQF_SHARED, q_vector->name, 2564 q_vector); 2565 else 2566 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2567 0, q_vector->name, q_vector); 2568 if (err) { 2569 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2570 err); 2571 goto free_q_irqs; 2572 } 2573 } 2574 2575 err = ice_set_cpu_rx_rmap(vsi); 2576 if (err) { 2577 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n", 2578 vsi->vsi_num, ERR_PTR(err)); 2579 goto free_q_irqs; 2580 } 2581 2582 vsi->irqs_ready = true; 2583 return 0; 2584 2585 free_q_irqs: 2586 while (vector--) { 2587 irq_num = vsi->q_vectors[vector]->irq.virq; 2588 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2589 } 2590 return err; 2591 } 2592 2593 /** 2594 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2595 * @vsi: VSI to setup Tx rings used by XDP 2596 * 2597 * Return 0 on success and negative value on error 2598 */ 2599 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2600 { 2601 struct device *dev = ice_pf_to_dev(vsi->back); 2602 struct ice_tx_desc *tx_desc; 2603 int i, j; 2604 2605 ice_for_each_xdp_txq(vsi, i) { 2606 u16 xdp_q_idx = vsi->alloc_txq + i; 2607 struct ice_ring_stats *ring_stats; 2608 struct ice_tx_ring *xdp_ring; 2609 2610 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2611 if (!xdp_ring) 2612 goto free_xdp_rings; 2613 2614 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 2615 if (!ring_stats) { 2616 ice_free_tx_ring(xdp_ring); 2617 goto free_xdp_rings; 2618 } 2619 2620 xdp_ring->ring_stats = ring_stats; 2621 xdp_ring->q_index = xdp_q_idx; 2622 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2623 xdp_ring->vsi = vsi; 2624 xdp_ring->netdev = NULL; 2625 xdp_ring->dev = dev; 2626 xdp_ring->count = vsi->num_tx_desc; 2627 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2628 if (ice_setup_tx_ring(xdp_ring)) 2629 goto free_xdp_rings; 2630 ice_set_ring_xdp(xdp_ring); 2631 spin_lock_init(&xdp_ring->tx_lock); 2632 for (j = 0; j < xdp_ring->count; j++) { 2633 tx_desc = ICE_TX_DESC(xdp_ring, j); 2634 tx_desc->cmd_type_offset_bsz = 0; 2635 } 2636 } 2637 2638 return 0; 2639 2640 free_xdp_rings: 2641 for (; i >= 0; i--) { 2642 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) { 2643 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2644 vsi->xdp_rings[i]->ring_stats = NULL; 2645 ice_free_tx_ring(vsi->xdp_rings[i]); 2646 } 2647 } 2648 return -ENOMEM; 2649 } 2650 2651 /** 2652 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2653 * @vsi: VSI to set the bpf prog on 2654 * @prog: the bpf prog pointer 2655 */ 2656 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2657 { 2658 struct bpf_prog *old_prog; 2659 int i; 2660 2661 old_prog = xchg(&vsi->xdp_prog, prog); 2662 ice_for_each_rxq(vsi, i) 2663 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2664 2665 if (old_prog) 2666 bpf_prog_put(old_prog); 2667 } 2668 2669 static struct ice_tx_ring *ice_xdp_ring_from_qid(struct ice_vsi *vsi, int qid) 2670 { 2671 struct ice_q_vector *q_vector; 2672 struct ice_tx_ring *ring; 2673 2674 if (static_key_enabled(&ice_xdp_locking_key)) 2675 return vsi->xdp_rings[qid % vsi->num_xdp_txq]; 2676 2677 q_vector = vsi->rx_rings[qid]->q_vector; 2678 ice_for_each_tx_ring(ring, q_vector->tx) 2679 if (ice_ring_is_xdp(ring)) 2680 return ring; 2681 2682 return NULL; 2683 } 2684 2685 /** 2686 * ice_map_xdp_rings - Map XDP rings to interrupt vectors 2687 * @vsi: the VSI with XDP rings being configured 2688 * 2689 * Map XDP rings to interrupt vectors and perform the configuration steps 2690 * dependent on the mapping. 2691 */ 2692 void ice_map_xdp_rings(struct ice_vsi *vsi) 2693 { 2694 int xdp_rings_rem = vsi->num_xdp_txq; 2695 int v_idx, q_idx; 2696 2697 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2698 ice_for_each_q_vector(vsi, v_idx) { 2699 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2700 int xdp_rings_per_v, q_id, q_base; 2701 2702 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2703 vsi->num_q_vectors - v_idx); 2704 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2705 2706 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2707 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2708 2709 xdp_ring->q_vector = q_vector; 2710 xdp_ring->next = q_vector->tx.tx_ring; 2711 q_vector->tx.tx_ring = xdp_ring; 2712 } 2713 xdp_rings_rem -= xdp_rings_per_v; 2714 } 2715 2716 ice_for_each_rxq(vsi, q_idx) { 2717 vsi->rx_rings[q_idx]->xdp_ring = ice_xdp_ring_from_qid(vsi, 2718 q_idx); 2719 ice_tx_xsk_pool(vsi, q_idx); 2720 } 2721 } 2722 2723 /** 2724 * ice_unmap_xdp_rings - Unmap XDP rings from interrupt vectors 2725 * @vsi: the VSI with XDP rings being unmapped 2726 */ 2727 static void ice_unmap_xdp_rings(struct ice_vsi *vsi) 2728 { 2729 int v_idx; 2730 2731 ice_for_each_q_vector(vsi, v_idx) { 2732 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2733 struct ice_tx_ring *ring; 2734 2735 ice_for_each_tx_ring(ring, q_vector->tx) 2736 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2737 break; 2738 2739 /* restore the value of last node prior to XDP setup */ 2740 q_vector->tx.tx_ring = ring; 2741 } 2742 } 2743 2744 /** 2745 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2746 * @vsi: VSI to bring up Tx rings used by XDP 2747 * @prog: bpf program that will be assigned to VSI 2748 * @cfg_type: create from scratch or restore the existing configuration 2749 * 2750 * Return 0 on success and negative value on error 2751 */ 2752 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog, 2753 enum ice_xdp_cfg cfg_type) 2754 { 2755 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2756 struct ice_pf *pf = vsi->back; 2757 struct ice_qs_cfg xdp_qs_cfg = { 2758 .qs_mutex = &pf->avail_q_mutex, 2759 .pf_map = pf->avail_txqs, 2760 .pf_map_size = pf->max_pf_txqs, 2761 .q_count = vsi->num_xdp_txq, 2762 .scatter_count = ICE_MAX_SCATTER_TXQS, 2763 .vsi_map = vsi->txq_map, 2764 .vsi_map_offset = vsi->alloc_txq, 2765 .mapping_mode = ICE_VSI_MAP_CONTIG 2766 }; 2767 struct device *dev; 2768 int status, i; 2769 2770 dev = ice_pf_to_dev(pf); 2771 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2772 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2773 if (!vsi->xdp_rings) 2774 return -ENOMEM; 2775 2776 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2777 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2778 goto err_map_xdp; 2779 2780 if (static_key_enabled(&ice_xdp_locking_key)) 2781 netdev_warn(vsi->netdev, 2782 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2783 2784 if (ice_xdp_alloc_setup_rings(vsi)) 2785 goto clear_xdp_rings; 2786 2787 /* omit the scheduler update if in reset path; XDP queues will be 2788 * taken into account at the end of ice_vsi_rebuild, where 2789 * ice_cfg_vsi_lan is being called 2790 */ 2791 if (cfg_type == ICE_XDP_CFG_PART) 2792 return 0; 2793 2794 ice_map_xdp_rings(vsi); 2795 2796 /* tell the Tx scheduler that right now we have 2797 * additional queues 2798 */ 2799 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2800 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2801 2802 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2803 max_txqs); 2804 if (status) { 2805 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2806 status); 2807 goto unmap_xdp_rings; 2808 } 2809 2810 /* assign the prog only when it's not already present on VSI; 2811 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2812 * VSI rebuild that happens under ethtool -L can expose us to 2813 * the bpf_prog refcount issues as we would be swapping same 2814 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2815 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2816 * this is not harmful as dev_xdp_install bumps the refcount 2817 * before calling the op exposed by the driver; 2818 */ 2819 if (!ice_is_xdp_ena_vsi(vsi)) 2820 ice_vsi_assign_bpf_prog(vsi, prog); 2821 2822 return 0; 2823 unmap_xdp_rings: 2824 ice_unmap_xdp_rings(vsi); 2825 clear_xdp_rings: 2826 ice_for_each_xdp_txq(vsi, i) 2827 if (vsi->xdp_rings[i]) { 2828 kfree_rcu(vsi->xdp_rings[i], rcu); 2829 vsi->xdp_rings[i] = NULL; 2830 } 2831 2832 err_map_xdp: 2833 mutex_lock(&pf->avail_q_mutex); 2834 ice_for_each_xdp_txq(vsi, i) { 2835 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2836 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2837 } 2838 mutex_unlock(&pf->avail_q_mutex); 2839 2840 devm_kfree(dev, vsi->xdp_rings); 2841 vsi->xdp_rings = NULL; 2842 2843 return -ENOMEM; 2844 } 2845 2846 /** 2847 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2848 * @vsi: VSI to remove XDP rings 2849 * @cfg_type: disable XDP permanently or allow it to be restored later 2850 * 2851 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2852 * resources 2853 */ 2854 int ice_destroy_xdp_rings(struct ice_vsi *vsi, enum ice_xdp_cfg cfg_type) 2855 { 2856 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2857 struct ice_pf *pf = vsi->back; 2858 int i; 2859 2860 /* q_vectors are freed in reset path so there's no point in detaching 2861 * rings 2862 */ 2863 if (cfg_type == ICE_XDP_CFG_PART) 2864 goto free_qmap; 2865 2866 ice_unmap_xdp_rings(vsi); 2867 2868 free_qmap: 2869 mutex_lock(&pf->avail_q_mutex); 2870 ice_for_each_xdp_txq(vsi, i) { 2871 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2872 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2873 } 2874 mutex_unlock(&pf->avail_q_mutex); 2875 2876 ice_for_each_xdp_txq(vsi, i) 2877 if (vsi->xdp_rings[i]) { 2878 if (vsi->xdp_rings[i]->desc) { 2879 synchronize_rcu(); 2880 ice_free_tx_ring(vsi->xdp_rings[i]); 2881 } 2882 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu); 2883 vsi->xdp_rings[i]->ring_stats = NULL; 2884 kfree_rcu(vsi->xdp_rings[i], rcu); 2885 vsi->xdp_rings[i] = NULL; 2886 } 2887 2888 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2889 vsi->xdp_rings = NULL; 2890 2891 if (static_key_enabled(&ice_xdp_locking_key)) 2892 static_branch_dec(&ice_xdp_locking_key); 2893 2894 if (cfg_type == ICE_XDP_CFG_PART) 2895 return 0; 2896 2897 ice_vsi_assign_bpf_prog(vsi, NULL); 2898 2899 /* notify Tx scheduler that we destroyed XDP queues and bring 2900 * back the old number of child nodes 2901 */ 2902 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2903 max_txqs[i] = vsi->num_txq; 2904 2905 /* change number of XDP Tx queues to 0 */ 2906 vsi->num_xdp_txq = 0; 2907 2908 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2909 max_txqs); 2910 } 2911 2912 /** 2913 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2914 * @vsi: VSI to schedule napi on 2915 */ 2916 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2917 { 2918 int i; 2919 2920 ice_for_each_rxq(vsi, i) { 2921 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2922 2923 if (READ_ONCE(rx_ring->xsk_pool)) 2924 napi_schedule(&rx_ring->q_vector->napi); 2925 } 2926 } 2927 2928 /** 2929 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2930 * @vsi: VSI to determine the count of XDP Tx qs 2931 * 2932 * returns 0 if Tx qs count is higher than at least half of CPU count, 2933 * -ENOMEM otherwise 2934 */ 2935 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2936 { 2937 u16 avail = ice_get_avail_txq_count(vsi->back); 2938 u16 cpus = num_possible_cpus(); 2939 2940 if (avail < cpus / 2) 2941 return -ENOMEM; 2942 2943 if (vsi->type == ICE_VSI_SF) 2944 avail = vsi->alloc_txq; 2945 2946 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2947 2948 if (vsi->num_xdp_txq < cpus) 2949 static_branch_inc(&ice_xdp_locking_key); 2950 2951 return 0; 2952 } 2953 2954 /** 2955 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 2956 * @vsi: Pointer to VSI structure 2957 */ 2958 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 2959 { 2960 if (test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 2961 return ICE_RXBUF_1664; 2962 else 2963 return ICE_RXBUF_3072; 2964 } 2965 2966 /** 2967 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2968 * @vsi: VSI to setup XDP for 2969 * @prog: XDP program 2970 * @extack: netlink extended ack 2971 */ 2972 static int 2973 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2974 struct netlink_ext_ack *extack) 2975 { 2976 unsigned int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2977 int ret = 0, xdp_ring_err = 0; 2978 bool if_running; 2979 2980 if (prog && !prog->aux->xdp_has_frags) { 2981 if (frame_size > ice_max_xdp_frame_size(vsi)) { 2982 NL_SET_ERR_MSG_MOD(extack, 2983 "MTU is too large for linear frames and XDP prog does not support frags"); 2984 return -EOPNOTSUPP; 2985 } 2986 } 2987 2988 /* hot swap progs and avoid toggling link */ 2989 if (ice_is_xdp_ena_vsi(vsi) == !!prog || 2990 test_bit(ICE_VSI_REBUILD_PENDING, vsi->state)) { 2991 ice_vsi_assign_bpf_prog(vsi, prog); 2992 return 0; 2993 } 2994 2995 if_running = netif_running(vsi->netdev) && 2996 !test_and_set_bit(ICE_VSI_DOWN, vsi->state); 2997 2998 /* need to stop netdev while setting up the program for Rx rings */ 2999 if (if_running) { 3000 ret = ice_down(vsi); 3001 if (ret) { 3002 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 3003 return ret; 3004 } 3005 } 3006 3007 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 3008 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 3009 if (xdp_ring_err) { 3010 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 3011 goto resume_if; 3012 } else { 3013 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog, 3014 ICE_XDP_CFG_FULL); 3015 if (xdp_ring_err) { 3016 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 3017 goto resume_if; 3018 } 3019 } 3020 xdp_features_set_redirect_target(vsi->netdev, true); 3021 /* reallocate Rx queues that are used for zero-copy */ 3022 xdp_ring_err = ice_realloc_zc_buf(vsi, true); 3023 if (xdp_ring_err) 3024 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed"); 3025 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 3026 xdp_features_clear_redirect_target(vsi->netdev); 3027 xdp_ring_err = ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_FULL); 3028 if (xdp_ring_err) 3029 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 3030 /* reallocate Rx queues that were used for zero-copy */ 3031 xdp_ring_err = ice_realloc_zc_buf(vsi, false); 3032 if (xdp_ring_err) 3033 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed"); 3034 } 3035 3036 resume_if: 3037 if (if_running) 3038 ret = ice_up(vsi); 3039 3040 if (!ret && prog) 3041 ice_vsi_rx_napi_schedule(vsi); 3042 3043 return (ret || xdp_ring_err) ? -ENOMEM : 0; 3044 } 3045 3046 /** 3047 * ice_xdp_safe_mode - XDP handler for safe mode 3048 * @dev: netdevice 3049 * @xdp: XDP command 3050 */ 3051 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 3052 struct netdev_bpf *xdp) 3053 { 3054 NL_SET_ERR_MSG_MOD(xdp->extack, 3055 "Please provide working DDP firmware package in order to use XDP\n" 3056 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 3057 return -EOPNOTSUPP; 3058 } 3059 3060 /** 3061 * ice_xdp - implements XDP handler 3062 * @dev: netdevice 3063 * @xdp: XDP command 3064 */ 3065 int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 3066 { 3067 struct ice_netdev_priv *np = netdev_priv(dev); 3068 struct ice_vsi *vsi = np->vsi; 3069 int ret; 3070 3071 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_SF) { 3072 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF or SF VSI"); 3073 return -EINVAL; 3074 } 3075 3076 mutex_lock(&vsi->xdp_state_lock); 3077 3078 switch (xdp->command) { 3079 case XDP_SETUP_PROG: 3080 ret = ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 3081 break; 3082 case XDP_SETUP_XSK_POOL: 3083 ret = ice_xsk_pool_setup(vsi, xdp->xsk.pool, xdp->xsk.queue_id); 3084 break; 3085 default: 3086 ret = -EINVAL; 3087 } 3088 3089 mutex_unlock(&vsi->xdp_state_lock); 3090 return ret; 3091 } 3092 3093 /** 3094 * ice_ena_misc_vector - enable the non-queue interrupts 3095 * @pf: board private structure 3096 */ 3097 static void ice_ena_misc_vector(struct ice_pf *pf) 3098 { 3099 struct ice_hw *hw = &pf->hw; 3100 u32 pf_intr_start_offset; 3101 u32 val; 3102 3103 /* Disable anti-spoof detection interrupt to prevent spurious event 3104 * interrupts during a function reset. Anti-spoof functionally is 3105 * still supported. 3106 */ 3107 val = rd32(hw, GL_MDCK_TX_TDPU); 3108 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 3109 wr32(hw, GL_MDCK_TX_TDPU, val); 3110 3111 /* clear things first */ 3112 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 3113 rd32(hw, PFINT_OICR); /* read to clear */ 3114 3115 val = (PFINT_OICR_ECC_ERR_M | 3116 PFINT_OICR_MAL_DETECT_M | 3117 PFINT_OICR_GRST_M | 3118 PFINT_OICR_PCI_EXCEPTION_M | 3119 PFINT_OICR_VFLR_M | 3120 PFINT_OICR_HMC_ERR_M | 3121 PFINT_OICR_PE_PUSH_M | 3122 PFINT_OICR_PE_CRITERR_M); 3123 3124 wr32(hw, PFINT_OICR_ENA, val); 3125 3126 /* SW_ITR_IDX = 0, but don't change INTENA */ 3127 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index), 3128 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3129 3130 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3131 return; 3132 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3133 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3134 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 3135 } 3136 3137 /** 3138 * ice_ll_ts_intr - ll_ts interrupt handler 3139 * @irq: interrupt number 3140 * @data: pointer to a q_vector 3141 */ 3142 static irqreturn_t ice_ll_ts_intr(int __always_unused irq, void *data) 3143 { 3144 struct ice_pf *pf = data; 3145 u32 pf_intr_start_offset; 3146 struct ice_ptp_tx *tx; 3147 unsigned long flags; 3148 struct ice_hw *hw; 3149 u32 val; 3150 u8 idx; 3151 3152 hw = &pf->hw; 3153 tx = &pf->ptp.port.tx; 3154 spin_lock_irqsave(&tx->lock, flags); 3155 if (tx->init) { 3156 ice_ptp_complete_tx_single_tstamp(tx); 3157 3158 idx = find_next_bit_wrap(tx->in_use, tx->len, 3159 tx->last_ll_ts_idx_read + 1); 3160 if (idx != tx->len) 3161 ice_ptp_req_tx_single_tstamp(tx, idx); 3162 } 3163 spin_unlock_irqrestore(&tx->lock, flags); 3164 3165 val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M | 3166 (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); 3167 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3168 wr32(hw, GLINT_DYN_CTL(pf->ll_ts_irq.index + pf_intr_start_offset), 3169 val); 3170 3171 return IRQ_HANDLED; 3172 } 3173 3174 /** 3175 * ice_misc_intr - misc interrupt handler 3176 * @irq: interrupt number 3177 * @data: pointer to a q_vector 3178 */ 3179 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 3180 { 3181 struct ice_pf *pf = (struct ice_pf *)data; 3182 irqreturn_t ret = IRQ_HANDLED; 3183 struct ice_hw *hw = &pf->hw; 3184 struct device *dev; 3185 u32 oicr, ena_mask; 3186 3187 dev = ice_pf_to_dev(pf); 3188 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 3189 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 3190 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 3191 3192 oicr = rd32(hw, PFINT_OICR); 3193 ena_mask = rd32(hw, PFINT_OICR_ENA); 3194 3195 if (oicr & PFINT_OICR_SWINT_M) { 3196 ena_mask &= ~PFINT_OICR_SWINT_M; 3197 pf->sw_int_count++; 3198 } 3199 3200 if (oicr & PFINT_OICR_MAL_DETECT_M) { 3201 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 3202 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 3203 } 3204 if (oicr & PFINT_OICR_VFLR_M) { 3205 /* disable any further VFLR event notifications */ 3206 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 3207 u32 reg = rd32(hw, PFINT_OICR_ENA); 3208 3209 reg &= ~PFINT_OICR_VFLR_M; 3210 wr32(hw, PFINT_OICR_ENA, reg); 3211 } else { 3212 ena_mask &= ~PFINT_OICR_VFLR_M; 3213 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 3214 } 3215 } 3216 3217 if (oicr & PFINT_OICR_GRST_M) { 3218 u32 reset; 3219 3220 /* we have a reset warning */ 3221 ena_mask &= ~PFINT_OICR_GRST_M; 3222 reset = FIELD_GET(GLGEN_RSTAT_RESET_TYPE_M, 3223 rd32(hw, GLGEN_RSTAT)); 3224 3225 if (reset == ICE_RESET_CORER) 3226 pf->corer_count++; 3227 else if (reset == ICE_RESET_GLOBR) 3228 pf->globr_count++; 3229 else if (reset == ICE_RESET_EMPR) 3230 pf->empr_count++; 3231 else 3232 dev_dbg(dev, "Invalid reset type %d\n", reset); 3233 3234 /* If a reset cycle isn't already in progress, we set a bit in 3235 * pf->state so that the service task can start a reset/rebuild. 3236 */ 3237 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 3238 if (reset == ICE_RESET_CORER) 3239 set_bit(ICE_CORER_RECV, pf->state); 3240 else if (reset == ICE_RESET_GLOBR) 3241 set_bit(ICE_GLOBR_RECV, pf->state); 3242 else 3243 set_bit(ICE_EMPR_RECV, pf->state); 3244 3245 /* There are couple of different bits at play here. 3246 * hw->reset_ongoing indicates whether the hardware is 3247 * in reset. This is set to true when a reset interrupt 3248 * is received and set back to false after the driver 3249 * has determined that the hardware is out of reset. 3250 * 3251 * ICE_RESET_OICR_RECV in pf->state indicates 3252 * that a post reset rebuild is required before the 3253 * driver is operational again. This is set above. 3254 * 3255 * As this is the start of the reset/rebuild cycle, set 3256 * both to indicate that. 3257 */ 3258 hw->reset_ongoing = true; 3259 } 3260 } 3261 3262 if (oicr & PFINT_OICR_TSYN_TX_M) { 3263 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3264 3265 ret = ice_ptp_ts_irq(pf); 3266 } 3267 3268 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3269 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3270 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3271 3272 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3273 3274 if (ice_pf_src_tmr_owned(pf)) { 3275 /* Save EVENTs from GLTSYN register */ 3276 pf->ptp.ext_ts_irq |= gltsyn_stat & 3277 (GLTSYN_STAT_EVENT0_M | 3278 GLTSYN_STAT_EVENT1_M | 3279 GLTSYN_STAT_EVENT2_M); 3280 3281 ice_ptp_extts_event(pf); 3282 } 3283 } 3284 3285 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3286 if (oicr & ICE_AUX_CRIT_ERR) { 3287 pf->oicr_err_reg |= oicr; 3288 set_bit(ICE_AUX_ERR_PENDING, pf->state); 3289 ena_mask &= ~ICE_AUX_CRIT_ERR; 3290 } 3291 3292 /* Report any remaining unexpected interrupts */ 3293 oicr &= ena_mask; 3294 if (oicr) { 3295 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3296 /* If a critical error is pending there is no choice but to 3297 * reset the device. 3298 */ 3299 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3300 PFINT_OICR_ECC_ERR_M)) { 3301 set_bit(ICE_PFR_REQ, pf->state); 3302 } 3303 } 3304 ice_service_task_schedule(pf); 3305 if (ret == IRQ_HANDLED) 3306 ice_irq_dynamic_ena(hw, NULL, NULL); 3307 3308 return ret; 3309 } 3310 3311 /** 3312 * ice_misc_intr_thread_fn - misc interrupt thread function 3313 * @irq: interrupt number 3314 * @data: pointer to a q_vector 3315 */ 3316 static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data) 3317 { 3318 struct ice_pf *pf = data; 3319 struct ice_hw *hw; 3320 3321 hw = &pf->hw; 3322 3323 if (ice_is_reset_in_progress(pf->state)) 3324 goto skip_irq; 3325 3326 if (test_and_clear_bit(ICE_MISC_THREAD_TX_TSTAMP, pf->misc_thread)) { 3327 /* Process outstanding Tx timestamps. If there is more work, 3328 * re-arm the interrupt to trigger again. 3329 */ 3330 if (ice_ptp_process_ts(pf) == ICE_TX_TSTAMP_WORK_PENDING) { 3331 wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M); 3332 ice_flush(hw); 3333 } 3334 } 3335 3336 skip_irq: 3337 ice_irq_dynamic_ena(hw, NULL, NULL); 3338 3339 return IRQ_HANDLED; 3340 } 3341 3342 /** 3343 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3344 * @hw: pointer to HW structure 3345 */ 3346 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3347 { 3348 /* disable Admin queue Interrupt causes */ 3349 wr32(hw, PFINT_FW_CTL, 3350 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3351 3352 /* disable Mailbox queue Interrupt causes */ 3353 wr32(hw, PFINT_MBX_CTL, 3354 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3355 3356 wr32(hw, PFINT_SB_CTL, 3357 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3358 3359 /* disable Control queue Interrupt causes */ 3360 wr32(hw, PFINT_OICR_CTL, 3361 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3362 3363 ice_flush(hw); 3364 } 3365 3366 /** 3367 * ice_free_irq_msix_ll_ts- Unroll ll_ts vector setup 3368 * @pf: board private structure 3369 */ 3370 static void ice_free_irq_msix_ll_ts(struct ice_pf *pf) 3371 { 3372 int irq_num = pf->ll_ts_irq.virq; 3373 3374 synchronize_irq(irq_num); 3375 devm_free_irq(ice_pf_to_dev(pf), irq_num, pf); 3376 3377 ice_free_irq(pf, pf->ll_ts_irq); 3378 } 3379 3380 /** 3381 * ice_free_irq_msix_misc - Unroll misc vector setup 3382 * @pf: board private structure 3383 */ 3384 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3385 { 3386 int misc_irq_num = pf->oicr_irq.virq; 3387 struct ice_hw *hw = &pf->hw; 3388 3389 ice_dis_ctrlq_interrupts(hw); 3390 3391 /* disable OICR interrupt */ 3392 wr32(hw, PFINT_OICR_ENA, 0); 3393 ice_flush(hw); 3394 3395 synchronize_irq(misc_irq_num); 3396 devm_free_irq(ice_pf_to_dev(pf), misc_irq_num, pf); 3397 3398 ice_free_irq(pf, pf->oicr_irq); 3399 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3400 ice_free_irq_msix_ll_ts(pf); 3401 } 3402 3403 /** 3404 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3405 * @hw: pointer to HW structure 3406 * @reg_idx: HW vector index to associate the control queue interrupts with 3407 */ 3408 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3409 { 3410 u32 val; 3411 3412 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3413 PFINT_OICR_CTL_CAUSE_ENA_M); 3414 wr32(hw, PFINT_OICR_CTL, val); 3415 3416 /* enable Admin queue Interrupt causes */ 3417 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3418 PFINT_FW_CTL_CAUSE_ENA_M); 3419 wr32(hw, PFINT_FW_CTL, val); 3420 3421 /* enable Mailbox queue Interrupt causes */ 3422 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3423 PFINT_MBX_CTL_CAUSE_ENA_M); 3424 wr32(hw, PFINT_MBX_CTL, val); 3425 3426 if (!hw->dev_caps.ts_dev_info.ts_ll_int_read) { 3427 /* enable Sideband queue Interrupt causes */ 3428 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3429 PFINT_SB_CTL_CAUSE_ENA_M); 3430 wr32(hw, PFINT_SB_CTL, val); 3431 } 3432 3433 ice_flush(hw); 3434 } 3435 3436 /** 3437 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3438 * @pf: board private structure 3439 * 3440 * This sets up the handler for MSIX 0, which is used to manage the 3441 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3442 * when in MSI or Legacy interrupt mode. 3443 */ 3444 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3445 { 3446 struct device *dev = ice_pf_to_dev(pf); 3447 struct ice_hw *hw = &pf->hw; 3448 u32 pf_intr_start_offset; 3449 struct msi_map irq; 3450 int err = 0; 3451 3452 if (!pf->int_name[0]) 3453 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3454 dev_driver_string(dev), dev_name(dev)); 3455 3456 if (!pf->int_name_ll_ts[0]) 3457 snprintf(pf->int_name_ll_ts, sizeof(pf->int_name_ll_ts) - 1, 3458 "%s-%s:ll_ts", dev_driver_string(dev), dev_name(dev)); 3459 /* Do not request IRQ but do enable OICR interrupt since settings are 3460 * lost during reset. Note that this function is called only during 3461 * rebuild path and not while reset is in progress. 3462 */ 3463 if (ice_is_reset_in_progress(pf->state)) 3464 goto skip_req_irq; 3465 3466 /* reserve one vector in irq_tracker for misc interrupts */ 3467 irq = ice_alloc_irq(pf, false); 3468 if (irq.index < 0) 3469 return irq.index; 3470 3471 pf->oicr_irq = irq; 3472 err = devm_request_threaded_irq(dev, pf->oicr_irq.virq, ice_misc_intr, 3473 ice_misc_intr_thread_fn, 0, 3474 pf->int_name, pf); 3475 if (err) { 3476 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n", 3477 pf->int_name, err); 3478 ice_free_irq(pf, pf->oicr_irq); 3479 return err; 3480 } 3481 3482 /* reserve one vector in irq_tracker for ll_ts interrupt */ 3483 if (!pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3484 goto skip_req_irq; 3485 3486 irq = ice_alloc_irq(pf, false); 3487 if (irq.index < 0) 3488 return irq.index; 3489 3490 pf->ll_ts_irq = irq; 3491 err = devm_request_irq(dev, pf->ll_ts_irq.virq, ice_ll_ts_intr, 0, 3492 pf->int_name_ll_ts, pf); 3493 if (err) { 3494 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3495 pf->int_name_ll_ts, err); 3496 ice_free_irq(pf, pf->ll_ts_irq); 3497 return err; 3498 } 3499 3500 skip_req_irq: 3501 ice_ena_misc_vector(pf); 3502 3503 ice_ena_ctrlq_interrupts(hw, pf->oicr_irq.index); 3504 /* This enables LL TS interrupt */ 3505 pf_intr_start_offset = rd32(hw, PFINT_ALLOC) & PFINT_ALLOC_FIRST; 3506 if (pf->hw.dev_caps.ts_dev_info.ts_ll_int_read) 3507 wr32(hw, PFINT_SB_CTL, 3508 ((pf->ll_ts_irq.index + pf_intr_start_offset) & 3509 PFINT_SB_CTL_MSIX_INDX_M) | PFINT_SB_CTL_CAUSE_ENA_M); 3510 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_irq.index), 3511 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3512 3513 ice_flush(hw); 3514 ice_irq_dynamic_ena(hw, NULL, NULL); 3515 3516 return 0; 3517 } 3518 3519 /** 3520 * ice_set_ops - set netdev and ethtools ops for the given netdev 3521 * @vsi: the VSI associated with the new netdev 3522 */ 3523 static void ice_set_ops(struct ice_vsi *vsi) 3524 { 3525 struct net_device *netdev = vsi->netdev; 3526 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3527 3528 if (ice_is_safe_mode(pf)) { 3529 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3530 ice_set_ethtool_safe_mode_ops(netdev); 3531 return; 3532 } 3533 3534 netdev->netdev_ops = &ice_netdev_ops; 3535 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3536 netdev->xdp_metadata_ops = &ice_xdp_md_ops; 3537 ice_set_ethtool_ops(netdev); 3538 3539 if (vsi->type != ICE_VSI_PF) 3540 return; 3541 3542 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | 3543 NETDEV_XDP_ACT_XSK_ZEROCOPY | 3544 NETDEV_XDP_ACT_RX_SG; 3545 netdev->xdp_zc_max_segs = ICE_MAX_BUF_TXD; 3546 } 3547 3548 /** 3549 * ice_set_netdev_features - set features for the given netdev 3550 * @netdev: netdev instance 3551 */ 3552 void ice_set_netdev_features(struct net_device *netdev) 3553 { 3554 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3555 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3556 netdev_features_t csumo_features; 3557 netdev_features_t vlano_features; 3558 netdev_features_t dflt_features; 3559 netdev_features_t tso_features; 3560 3561 if (ice_is_safe_mode(pf)) { 3562 /* safe mode */ 3563 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3564 netdev->hw_features = netdev->features; 3565 return; 3566 } 3567 3568 dflt_features = NETIF_F_SG | 3569 NETIF_F_HIGHDMA | 3570 NETIF_F_NTUPLE | 3571 NETIF_F_RXHASH; 3572 3573 csumo_features = NETIF_F_RXCSUM | 3574 NETIF_F_IP_CSUM | 3575 NETIF_F_SCTP_CRC | 3576 NETIF_F_IPV6_CSUM; 3577 3578 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3579 NETIF_F_HW_VLAN_CTAG_TX | 3580 NETIF_F_HW_VLAN_CTAG_RX; 3581 3582 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3583 if (is_dvm_ena) 3584 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3585 3586 tso_features = NETIF_F_TSO | 3587 NETIF_F_TSO_ECN | 3588 NETIF_F_TSO6 | 3589 NETIF_F_GSO_GRE | 3590 NETIF_F_GSO_UDP_TUNNEL | 3591 NETIF_F_GSO_GRE_CSUM | 3592 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3593 NETIF_F_GSO_PARTIAL | 3594 NETIF_F_GSO_IPXIP4 | 3595 NETIF_F_GSO_IPXIP6 | 3596 NETIF_F_GSO_UDP_L4; 3597 3598 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3599 NETIF_F_GSO_GRE_CSUM; 3600 /* set features that user can change */ 3601 netdev->hw_features = dflt_features | csumo_features | 3602 vlano_features | tso_features; 3603 3604 /* add support for HW_CSUM on packets with MPLS header */ 3605 netdev->mpls_features = NETIF_F_HW_CSUM | 3606 NETIF_F_TSO | 3607 NETIF_F_TSO6; 3608 3609 /* enable features */ 3610 netdev->features |= netdev->hw_features; 3611 3612 netdev->hw_features |= NETIF_F_HW_TC; 3613 netdev->hw_features |= NETIF_F_LOOPBACK; 3614 3615 /* encap and VLAN devices inherit default, csumo and tso features */ 3616 netdev->hw_enc_features |= dflt_features | csumo_features | 3617 tso_features; 3618 netdev->vlan_features |= dflt_features | csumo_features | 3619 tso_features; 3620 3621 /* advertise support but don't enable by default since only one type of 3622 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3623 * type turns on the other has to be turned off. This is enforced by the 3624 * ice_fix_features() ndo callback. 3625 */ 3626 if (is_dvm_ena) 3627 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3628 NETIF_F_HW_VLAN_STAG_TX; 3629 3630 /* Leave CRC / FCS stripping enabled by default, but allow the value to 3631 * be changed at runtime 3632 */ 3633 netdev->hw_features |= NETIF_F_RXFCS; 3634 3635 /* Allow core to manage IRQs affinity */ 3636 netif_set_affinity_auto(netdev); 3637 3638 /* Mutual exclusivity for TSO and GCS is enforced by the set features 3639 * ndo callback. 3640 */ 3641 if (ice_is_feature_supported(pf, ICE_F_GCS)) 3642 netdev->hw_features |= NETIF_F_HW_CSUM; 3643 3644 netif_set_tso_max_size(netdev, ICE_MAX_TSO_SIZE); 3645 } 3646 3647 /** 3648 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3649 * @lut: Lookup table 3650 * @rss_table_size: Lookup table size 3651 * @rss_size: Range of queue number for hashing 3652 */ 3653 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3654 { 3655 u16 i; 3656 3657 for (i = 0; i < rss_table_size; i++) 3658 lut[i] = i % rss_size; 3659 } 3660 3661 /** 3662 * ice_pf_vsi_setup - Set up a PF VSI 3663 * @pf: board private structure 3664 * @pi: pointer to the port_info instance 3665 * 3666 * Returns pointer to the successfully allocated VSI software struct 3667 * on success, otherwise returns NULL on failure. 3668 */ 3669 static struct ice_vsi * 3670 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3671 { 3672 struct ice_vsi_cfg_params params = {}; 3673 3674 params.type = ICE_VSI_PF; 3675 params.port_info = pi; 3676 params.flags = ICE_VSI_FLAG_INIT; 3677 3678 return ice_vsi_setup(pf, ¶ms); 3679 } 3680 3681 static struct ice_vsi * 3682 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3683 struct ice_channel *ch) 3684 { 3685 struct ice_vsi_cfg_params params = {}; 3686 3687 params.type = ICE_VSI_CHNL; 3688 params.port_info = pi; 3689 params.ch = ch; 3690 params.flags = ICE_VSI_FLAG_INIT; 3691 3692 return ice_vsi_setup(pf, ¶ms); 3693 } 3694 3695 /** 3696 * ice_ctrl_vsi_setup - Set up a control VSI 3697 * @pf: board private structure 3698 * @pi: pointer to the port_info instance 3699 * 3700 * Returns pointer to the successfully allocated VSI software struct 3701 * on success, otherwise returns NULL on failure. 3702 */ 3703 static struct ice_vsi * 3704 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3705 { 3706 struct ice_vsi_cfg_params params = {}; 3707 3708 params.type = ICE_VSI_CTRL; 3709 params.port_info = pi; 3710 params.flags = ICE_VSI_FLAG_INIT; 3711 3712 return ice_vsi_setup(pf, ¶ms); 3713 } 3714 3715 /** 3716 * ice_lb_vsi_setup - Set up a loopback VSI 3717 * @pf: board private structure 3718 * @pi: pointer to the port_info instance 3719 * 3720 * Returns pointer to the successfully allocated VSI software struct 3721 * on success, otherwise returns NULL on failure. 3722 */ 3723 struct ice_vsi * 3724 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3725 { 3726 struct ice_vsi_cfg_params params = {}; 3727 3728 params.type = ICE_VSI_LB; 3729 params.port_info = pi; 3730 params.flags = ICE_VSI_FLAG_INIT; 3731 3732 return ice_vsi_setup(pf, ¶ms); 3733 } 3734 3735 /** 3736 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3737 * @netdev: network interface to be adjusted 3738 * @proto: VLAN TPID 3739 * @vid: VLAN ID to be added 3740 * 3741 * net_device_ops implementation for adding VLAN IDs 3742 */ 3743 int ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3744 { 3745 struct ice_netdev_priv *np = netdev_priv(netdev); 3746 struct ice_vsi_vlan_ops *vlan_ops; 3747 struct ice_vsi *vsi = np->vsi; 3748 struct ice_vlan vlan; 3749 int ret; 3750 3751 /* VLAN 0 is added by default during load/reset */ 3752 if (!vid) 3753 return 0; 3754 3755 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3756 usleep_range(1000, 2000); 3757 3758 /* Add multicast promisc rule for the VLAN ID to be added if 3759 * all-multicast is currently enabled. 3760 */ 3761 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3762 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3763 ICE_MCAST_VLAN_PROMISC_BITS, 3764 vid); 3765 if (ret) 3766 goto finish; 3767 } 3768 3769 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3770 3771 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3772 * packets aren't pruned by the device's internal switch on Rx 3773 */ 3774 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3775 ret = vlan_ops->add_vlan(vsi, &vlan); 3776 if (ret) 3777 goto finish; 3778 3779 /* If all-multicast is currently enabled and this VLAN ID is only one 3780 * besides VLAN-0 we have to update look-up type of multicast promisc 3781 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN. 3782 */ 3783 if ((vsi->current_netdev_flags & IFF_ALLMULTI) && 3784 ice_vsi_num_non_zero_vlans(vsi) == 1) { 3785 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3786 ICE_MCAST_PROMISC_BITS, 0); 3787 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3788 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3789 } 3790 3791 finish: 3792 clear_bit(ICE_CFG_BUSY, vsi->state); 3793 3794 return ret; 3795 } 3796 3797 /** 3798 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3799 * @netdev: network interface to be adjusted 3800 * @proto: VLAN TPID 3801 * @vid: VLAN ID to be removed 3802 * 3803 * net_device_ops implementation for removing VLAN IDs 3804 */ 3805 int ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3806 { 3807 struct ice_netdev_priv *np = netdev_priv(netdev); 3808 struct ice_vsi_vlan_ops *vlan_ops; 3809 struct ice_vsi *vsi = np->vsi; 3810 struct ice_vlan vlan; 3811 int ret; 3812 3813 /* don't allow removal of VLAN 0 */ 3814 if (!vid) 3815 return 0; 3816 3817 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 3818 usleep_range(1000, 2000); 3819 3820 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3821 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3822 if (ret) { 3823 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n", 3824 vsi->vsi_num); 3825 vsi->current_netdev_flags |= IFF_ALLMULTI; 3826 } 3827 3828 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3829 3830 /* Make sure VLAN delete is successful before updating VLAN 3831 * information 3832 */ 3833 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3834 ret = vlan_ops->del_vlan(vsi, &vlan); 3835 if (ret) 3836 goto finish; 3837 3838 /* Remove multicast promisc rule for the removed VLAN ID if 3839 * all-multicast is enabled. 3840 */ 3841 if (vsi->current_netdev_flags & IFF_ALLMULTI) 3842 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3843 ICE_MCAST_VLAN_PROMISC_BITS, vid); 3844 3845 if (!ice_vsi_has_non_zero_vlans(vsi)) { 3846 /* Update look-up type of multicast promisc rule for VLAN 0 3847 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when 3848 * all-multicast is enabled and VLAN 0 is the only VLAN rule. 3849 */ 3850 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 3851 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3852 ICE_MCAST_VLAN_PROMISC_BITS, 3853 0); 3854 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, 3855 ICE_MCAST_PROMISC_BITS, 0); 3856 } 3857 } 3858 3859 finish: 3860 clear_bit(ICE_CFG_BUSY, vsi->state); 3861 3862 return ret; 3863 } 3864 3865 /** 3866 * ice_rep_indr_tc_block_unbind 3867 * @cb_priv: indirection block private data 3868 */ 3869 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3870 { 3871 struct ice_indr_block_priv *indr_priv = cb_priv; 3872 3873 list_del(&indr_priv->list); 3874 kfree(indr_priv); 3875 } 3876 3877 /** 3878 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3879 * @vsi: VSI struct which has the netdev 3880 */ 3881 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3882 { 3883 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3884 3885 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3886 ice_rep_indr_tc_block_unbind); 3887 } 3888 3889 /** 3890 * ice_tc_indir_block_register - Register TC indirect block notifications 3891 * @vsi: VSI struct which has the netdev 3892 * 3893 * Returns 0 on success, negative value on failure 3894 */ 3895 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3896 { 3897 struct ice_netdev_priv *np; 3898 3899 if (!vsi || !vsi->netdev) 3900 return -EINVAL; 3901 3902 np = netdev_priv(vsi->netdev); 3903 3904 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3905 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3906 } 3907 3908 /** 3909 * ice_get_avail_q_count - Get count of queues in use 3910 * @pf_qmap: bitmap to get queue use count from 3911 * @lock: pointer to a mutex that protects access to pf_qmap 3912 * @size: size of the bitmap 3913 */ 3914 static u16 3915 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3916 { 3917 unsigned long bit; 3918 u16 count = 0; 3919 3920 mutex_lock(lock); 3921 for_each_clear_bit(bit, pf_qmap, size) 3922 count++; 3923 mutex_unlock(lock); 3924 3925 return count; 3926 } 3927 3928 /** 3929 * ice_get_avail_txq_count - Get count of Tx queues in use 3930 * @pf: pointer to an ice_pf instance 3931 */ 3932 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3933 { 3934 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3935 pf->max_pf_txqs); 3936 } 3937 3938 /** 3939 * ice_get_avail_rxq_count - Get count of Rx queues in use 3940 * @pf: pointer to an ice_pf instance 3941 */ 3942 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3943 { 3944 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3945 pf->max_pf_rxqs); 3946 } 3947 3948 /** 3949 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3950 * @pf: board private structure to initialize 3951 */ 3952 static void ice_deinit_pf(struct ice_pf *pf) 3953 { 3954 ice_service_task_stop(pf); 3955 mutex_destroy(&pf->lag_mutex); 3956 mutex_destroy(&pf->adev_mutex); 3957 mutex_destroy(&pf->sw_mutex); 3958 mutex_destroy(&pf->tc_mutex); 3959 mutex_destroy(&pf->avail_q_mutex); 3960 mutex_destroy(&pf->vfs.table_lock); 3961 3962 if (pf->avail_txqs) { 3963 bitmap_free(pf->avail_txqs); 3964 pf->avail_txqs = NULL; 3965 } 3966 3967 if (pf->avail_rxqs) { 3968 bitmap_free(pf->avail_rxqs); 3969 pf->avail_rxqs = NULL; 3970 } 3971 3972 if (pf->txtime_txqs) { 3973 bitmap_free(pf->txtime_txqs); 3974 pf->txtime_txqs = NULL; 3975 } 3976 3977 if (pf->ptp.clock) 3978 ptp_clock_unregister(pf->ptp.clock); 3979 3980 xa_destroy(&pf->dyn_ports); 3981 xa_destroy(&pf->sf_nums); 3982 } 3983 3984 /** 3985 * ice_set_pf_caps - set PFs capability flags 3986 * @pf: pointer to the PF instance 3987 */ 3988 static void ice_set_pf_caps(struct ice_pf *pf) 3989 { 3990 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3991 3992 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3993 if (func_caps->common_cap.rdma) 3994 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3995 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3996 if (func_caps->common_cap.dcb) 3997 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3998 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3999 if (func_caps->common_cap.sr_iov_1_1) { 4000 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 4001 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs, 4002 ICE_MAX_SRIOV_VFS); 4003 } 4004 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 4005 if (func_caps->common_cap.rss_table_size) 4006 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 4007 4008 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 4009 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 4010 u16 unused; 4011 4012 /* ctrl_vsi_idx will be set to a valid value when flow director 4013 * is setup by ice_init_fdir 4014 */ 4015 pf->ctrl_vsi_idx = ICE_NO_VSI; 4016 set_bit(ICE_FLAG_FD_ENA, pf->flags); 4017 /* force guaranteed filter pool for PF */ 4018 ice_alloc_fd_guar_item(&pf->hw, &unused, 4019 func_caps->fd_fltr_guar); 4020 /* force shared filter pool for PF */ 4021 ice_alloc_fd_shrd_item(&pf->hw, &unused, 4022 func_caps->fd_fltr_best_effort); 4023 } 4024 4025 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4026 if (func_caps->common_cap.ieee_1588) 4027 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 4028 4029 pf->max_pf_txqs = func_caps->common_cap.num_txq; 4030 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 4031 } 4032 4033 /** 4034 * ice_init_pf - Initialize general software structures (struct ice_pf) 4035 * @pf: board private structure to initialize 4036 */ 4037 static int ice_init_pf(struct ice_pf *pf) 4038 { 4039 ice_set_pf_caps(pf); 4040 4041 mutex_init(&pf->sw_mutex); 4042 mutex_init(&pf->tc_mutex); 4043 mutex_init(&pf->adev_mutex); 4044 mutex_init(&pf->lag_mutex); 4045 4046 INIT_HLIST_HEAD(&pf->aq_wait_list); 4047 spin_lock_init(&pf->aq_wait_lock); 4048 init_waitqueue_head(&pf->aq_wait_queue); 4049 4050 init_waitqueue_head(&pf->reset_wait_queue); 4051 4052 /* setup service timer and periodic service task */ 4053 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 4054 pf->serv_tmr_period = HZ; 4055 INIT_WORK(&pf->serv_task, ice_service_task); 4056 clear_bit(ICE_SERVICE_SCHED, pf->state); 4057 4058 mutex_init(&pf->avail_q_mutex); 4059 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4060 if (!pf->avail_txqs) 4061 return -ENOMEM; 4062 4063 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 4064 if (!pf->avail_rxqs) { 4065 bitmap_free(pf->avail_txqs); 4066 pf->avail_txqs = NULL; 4067 return -ENOMEM; 4068 } 4069 4070 pf->txtime_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 4071 if (!pf->txtime_txqs) { 4072 bitmap_free(pf->avail_txqs); 4073 pf->avail_txqs = NULL; 4074 bitmap_free(pf->avail_rxqs); 4075 pf->avail_rxqs = NULL; 4076 return -ENOMEM; 4077 } 4078 4079 mutex_init(&pf->vfs.table_lock); 4080 hash_init(pf->vfs.table); 4081 if (ice_is_feature_supported(pf, ICE_F_MBX_LIMIT)) 4082 wr32(&pf->hw, E830_MBX_PF_IN_FLIGHT_VF_MSGS_THRESH, 4083 ICE_MBX_OVERFLOW_WATERMARK); 4084 else 4085 ice_mbx_init_snapshot(&pf->hw); 4086 4087 xa_init(&pf->dyn_ports); 4088 xa_init(&pf->sf_nums); 4089 4090 return 0; 4091 } 4092 4093 /** 4094 * ice_is_wol_supported - check if WoL is supported 4095 * @hw: pointer to hardware info 4096 * 4097 * Check if WoL is supported based on the HW configuration. 4098 * Returns true if NVM supports and enables WoL for this port, false otherwise 4099 */ 4100 bool ice_is_wol_supported(struct ice_hw *hw) 4101 { 4102 u16 wol_ctrl; 4103 4104 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 4105 * word) indicates WoL is not supported on the corresponding PF ID. 4106 */ 4107 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4108 return false; 4109 4110 return !(BIT(hw->port_info->lport) & wol_ctrl); 4111 } 4112 4113 /** 4114 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4115 * @vsi: VSI being changed 4116 * @new_rx: new number of Rx queues 4117 * @new_tx: new number of Tx queues 4118 * @locked: is adev device_lock held 4119 * 4120 * Only change the number of queues if new_tx, or new_rx is non-0. 4121 * 4122 * Returns 0 on success. 4123 */ 4124 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked) 4125 { 4126 struct ice_pf *pf = vsi->back; 4127 int i, err = 0, timeout = 50; 4128 4129 if (!new_rx && !new_tx) 4130 return -EINVAL; 4131 4132 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4133 timeout--; 4134 if (!timeout) 4135 return -EBUSY; 4136 usleep_range(1000, 2000); 4137 } 4138 4139 if (new_tx) 4140 vsi->req_txq = (u16)new_tx; 4141 if (new_rx) 4142 vsi->req_rxq = (u16)new_rx; 4143 4144 /* set for the next time the netdev is started */ 4145 if (!netif_running(vsi->netdev)) { 4146 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4147 if (err) 4148 goto rebuild_err; 4149 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4150 goto done; 4151 } 4152 4153 ice_vsi_close(vsi); 4154 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 4155 if (err) 4156 goto rebuild_err; 4157 4158 ice_for_each_traffic_class(i) { 4159 if (vsi->tc_cfg.ena_tc & BIT(i)) 4160 netdev_set_tc_queue(vsi->netdev, 4161 vsi->tc_cfg.tc_info[i].netdev_tc, 4162 vsi->tc_cfg.tc_info[i].qcount_tx, 4163 vsi->tc_cfg.tc_info[i].qoffset); 4164 } 4165 ice_pf_dcb_recfg(pf, locked); 4166 ice_vsi_open(vsi); 4167 goto done; 4168 4169 rebuild_err: 4170 dev_err(ice_pf_to_dev(pf), "Error during VSI rebuild: %d. Unload and reload the driver.\n", 4171 err); 4172 done: 4173 clear_bit(ICE_CFG_BUSY, pf->state); 4174 return err; 4175 } 4176 4177 /** 4178 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4179 * @pf: PF to configure 4180 * 4181 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4182 * VSI can still Tx/Rx VLAN tagged packets. 4183 */ 4184 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4185 { 4186 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4187 struct ice_vsi_ctx *ctxt; 4188 struct ice_hw *hw; 4189 int status; 4190 4191 if (!vsi) 4192 return; 4193 4194 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4195 if (!ctxt) 4196 return; 4197 4198 hw = &pf->hw; 4199 ctxt->info = vsi->info; 4200 4201 ctxt->info.valid_sections = 4202 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4203 ICE_AQ_VSI_PROP_SECURITY_VALID | 4204 ICE_AQ_VSI_PROP_SW_VALID); 4205 4206 /* disable VLAN anti-spoof */ 4207 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4208 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4209 4210 /* disable VLAN pruning and keep all other settings */ 4211 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4212 4213 /* allow all VLANs on Tx and don't strip on Rx */ 4214 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4215 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4216 4217 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4218 if (status) { 4219 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4220 status, libie_aq_str(hw->adminq.sq_last_status)); 4221 } else { 4222 vsi->info.sec_flags = ctxt->info.sec_flags; 4223 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4224 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4225 } 4226 4227 kfree(ctxt); 4228 } 4229 4230 /** 4231 * ice_log_pkg_init - log result of DDP package load 4232 * @hw: pointer to hardware info 4233 * @state: state of package load 4234 */ 4235 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4236 { 4237 struct ice_pf *pf = hw->back; 4238 struct device *dev; 4239 4240 dev = ice_pf_to_dev(pf); 4241 4242 switch (state) { 4243 case ICE_DDP_PKG_SUCCESS: 4244 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4245 hw->active_pkg_name, 4246 hw->active_pkg_ver.major, 4247 hw->active_pkg_ver.minor, 4248 hw->active_pkg_ver.update, 4249 hw->active_pkg_ver.draft); 4250 break; 4251 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4252 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4253 hw->active_pkg_name, 4254 hw->active_pkg_ver.major, 4255 hw->active_pkg_ver.minor, 4256 hw->active_pkg_ver.update, 4257 hw->active_pkg_ver.draft); 4258 break; 4259 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4260 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4261 hw->active_pkg_name, 4262 hw->active_pkg_ver.major, 4263 hw->active_pkg_ver.minor, 4264 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4265 break; 4266 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4267 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4268 hw->active_pkg_name, 4269 hw->active_pkg_ver.major, 4270 hw->active_pkg_ver.minor, 4271 hw->active_pkg_ver.update, 4272 hw->active_pkg_ver.draft, 4273 hw->pkg_name, 4274 hw->pkg_ver.major, 4275 hw->pkg_ver.minor, 4276 hw->pkg_ver.update, 4277 hw->pkg_ver.draft); 4278 break; 4279 case ICE_DDP_PKG_FW_MISMATCH: 4280 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4281 break; 4282 case ICE_DDP_PKG_INVALID_FILE: 4283 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4284 break; 4285 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4286 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4287 break; 4288 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4289 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4290 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4291 break; 4292 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4293 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4294 break; 4295 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4296 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4297 break; 4298 case ICE_DDP_PKG_LOAD_ERROR: 4299 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4300 /* poll for reset to complete */ 4301 if (ice_check_reset(hw)) 4302 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4303 break; 4304 case ICE_DDP_PKG_ERR: 4305 default: 4306 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4307 break; 4308 } 4309 } 4310 4311 /** 4312 * ice_load_pkg - load/reload the DDP Package file 4313 * @firmware: firmware structure when firmware requested or NULL for reload 4314 * @pf: pointer to the PF instance 4315 * 4316 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4317 * initialize HW tables. 4318 */ 4319 static void 4320 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4321 { 4322 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4323 struct device *dev = ice_pf_to_dev(pf); 4324 struct ice_hw *hw = &pf->hw; 4325 4326 /* Load DDP Package */ 4327 if (firmware && !hw->pkg_copy) { 4328 state = ice_copy_and_init_pkg(hw, firmware->data, 4329 firmware->size); 4330 ice_log_pkg_init(hw, state); 4331 } else if (!firmware && hw->pkg_copy) { 4332 /* Reload package during rebuild after CORER/GLOBR reset */ 4333 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4334 ice_log_pkg_init(hw, state); 4335 } else { 4336 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4337 } 4338 4339 if (!ice_is_init_pkg_successful(state)) { 4340 /* Safe Mode */ 4341 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4342 return; 4343 } 4344 4345 /* Successful download package is the precondition for advanced 4346 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4347 */ 4348 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4349 } 4350 4351 /** 4352 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4353 * @pf: pointer to the PF structure 4354 * 4355 * There is no error returned here because the driver should be able to handle 4356 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4357 * specifically with Tx. 4358 */ 4359 static void ice_verify_cacheline_size(struct ice_pf *pf) 4360 { 4361 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4362 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4363 ICE_CACHE_LINE_BYTES); 4364 } 4365 4366 /** 4367 * ice_send_version - update firmware with driver version 4368 * @pf: PF struct 4369 * 4370 * Returns 0 on success, else error code 4371 */ 4372 static int ice_send_version(struct ice_pf *pf) 4373 { 4374 struct ice_driver_ver dv; 4375 4376 dv.major_ver = 0xff; 4377 dv.minor_ver = 0xff; 4378 dv.build_ver = 0xff; 4379 dv.subbuild_ver = 0; 4380 strscpy((char *)dv.driver_string, UTS_RELEASE, 4381 sizeof(dv.driver_string)); 4382 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4383 } 4384 4385 /** 4386 * ice_init_fdir - Initialize flow director VSI and configuration 4387 * @pf: pointer to the PF instance 4388 * 4389 * returns 0 on success, negative on error 4390 */ 4391 static int ice_init_fdir(struct ice_pf *pf) 4392 { 4393 struct device *dev = ice_pf_to_dev(pf); 4394 struct ice_vsi *ctrl_vsi; 4395 int err; 4396 4397 /* Side Band Flow Director needs to have a control VSI. 4398 * Allocate it and store it in the PF. 4399 */ 4400 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4401 if (!ctrl_vsi) { 4402 dev_dbg(dev, "could not create control VSI\n"); 4403 return -ENOMEM; 4404 } 4405 4406 err = ice_vsi_open_ctrl(ctrl_vsi); 4407 if (err) { 4408 dev_dbg(dev, "could not open control VSI\n"); 4409 goto err_vsi_open; 4410 } 4411 4412 mutex_init(&pf->hw.fdir_fltr_lock); 4413 4414 err = ice_fdir_create_dflt_rules(pf); 4415 if (err) 4416 goto err_fdir_rule; 4417 4418 return 0; 4419 4420 err_fdir_rule: 4421 ice_fdir_release_flows(&pf->hw); 4422 ice_vsi_close(ctrl_vsi); 4423 err_vsi_open: 4424 ice_vsi_release(ctrl_vsi); 4425 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4426 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4427 pf->ctrl_vsi_idx = ICE_NO_VSI; 4428 } 4429 return err; 4430 } 4431 4432 static void ice_deinit_fdir(struct ice_pf *pf) 4433 { 4434 struct ice_vsi *vsi = ice_get_ctrl_vsi(pf); 4435 4436 if (!vsi) 4437 return; 4438 4439 ice_vsi_manage_fdir(vsi, false); 4440 ice_vsi_release(vsi); 4441 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4442 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4443 pf->ctrl_vsi_idx = ICE_NO_VSI; 4444 } 4445 4446 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4447 } 4448 4449 /** 4450 * ice_get_opt_fw_name - return optional firmware file name or NULL 4451 * @pf: pointer to the PF instance 4452 */ 4453 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4454 { 4455 /* Optional firmware name same as default with additional dash 4456 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4457 */ 4458 struct pci_dev *pdev = pf->pdev; 4459 char *opt_fw_filename; 4460 u64 dsn; 4461 4462 /* Determine the name of the optional file using the DSN (two 4463 * dwords following the start of the DSN Capability). 4464 */ 4465 dsn = pci_get_dsn(pdev); 4466 if (!dsn) 4467 return NULL; 4468 4469 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4470 if (!opt_fw_filename) 4471 return NULL; 4472 4473 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4474 ICE_DDP_PKG_PATH, dsn); 4475 4476 return opt_fw_filename; 4477 } 4478 4479 /** 4480 * ice_request_fw - Device initialization routine 4481 * @pf: pointer to the PF instance 4482 * @firmware: double pointer to firmware struct 4483 * 4484 * Return: zero when successful, negative values otherwise. 4485 */ 4486 static int ice_request_fw(struct ice_pf *pf, const struct firmware **firmware) 4487 { 4488 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4489 struct device *dev = ice_pf_to_dev(pf); 4490 int err = 0; 4491 4492 /* optional device-specific DDP (if present) overrides the default DDP 4493 * package file. kernel logs a debug message if the file doesn't exist, 4494 * and warning messages for other errors. 4495 */ 4496 if (opt_fw_filename) { 4497 err = firmware_request_nowarn(firmware, opt_fw_filename, dev); 4498 kfree(opt_fw_filename); 4499 if (!err) 4500 return err; 4501 } 4502 err = request_firmware(firmware, ICE_DDP_PKG_FILE, dev); 4503 if (err) 4504 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4505 4506 return err; 4507 } 4508 4509 /** 4510 * ice_init_tx_topology - performs Tx topology initialization 4511 * @hw: pointer to the hardware structure 4512 * @firmware: pointer to firmware structure 4513 * 4514 * Return: zero when init was successful, negative values otherwise. 4515 */ 4516 static int 4517 ice_init_tx_topology(struct ice_hw *hw, const struct firmware *firmware) 4518 { 4519 u8 num_tx_sched_layers = hw->num_tx_sched_layers; 4520 struct ice_pf *pf = hw->back; 4521 struct device *dev; 4522 int err; 4523 4524 dev = ice_pf_to_dev(pf); 4525 err = ice_cfg_tx_topo(hw, firmware->data, firmware->size); 4526 if (!err) { 4527 if (hw->num_tx_sched_layers > num_tx_sched_layers) 4528 dev_info(dev, "Tx scheduling layers switching feature disabled\n"); 4529 else 4530 dev_info(dev, "Tx scheduling layers switching feature enabled\n"); 4531 return 0; 4532 } else if (err == -ENODEV) { 4533 /* If we failed to re-initialize the device, we can no longer 4534 * continue loading. 4535 */ 4536 dev_warn(dev, "Failed to initialize hardware after applying Tx scheduling configuration.\n"); 4537 return err; 4538 } else if (err == -EIO) { 4539 dev_info(dev, "DDP package does not support Tx scheduling layers switching feature - please update to the latest DDP package and try again\n"); 4540 return 0; 4541 } else if (err == -EEXIST) { 4542 return 0; 4543 } 4544 4545 /* Do not treat this as a fatal error. */ 4546 dev_info(dev, "Failed to apply Tx scheduling configuration, err %pe\n", 4547 ERR_PTR(err)); 4548 return 0; 4549 } 4550 4551 /** 4552 * ice_init_supported_rxdids - Initialize supported Rx descriptor IDs 4553 * @hw: pointer to the hardware structure 4554 * @pf: pointer to pf structure 4555 * 4556 * The pf->supported_rxdids bitmap is used to indicate to VFs which descriptor 4557 * formats the PF hardware supports. The exact list of supported RXDIDs 4558 * depends on the loaded DDP package. The IDs can be determined by reading the 4559 * GLFLXP_RXDID_FLAGS register after the DDP package is loaded. 4560 * 4561 * Note that the legacy 32-byte RXDID 0 is always supported but is not listed 4562 * in the DDP package. The 16-byte legacy descriptor is never supported by 4563 * VFs. 4564 */ 4565 static void ice_init_supported_rxdids(struct ice_hw *hw, struct ice_pf *pf) 4566 { 4567 pf->supported_rxdids = BIT(ICE_RXDID_LEGACY_1); 4568 4569 for (int i = ICE_RXDID_FLEX_NIC; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) { 4570 u32 regval; 4571 4572 regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0)); 4573 if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) 4574 & GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) 4575 pf->supported_rxdids |= BIT(i); 4576 } 4577 } 4578 4579 /** 4580 * ice_init_ddp_config - DDP related configuration 4581 * @hw: pointer to the hardware structure 4582 * @pf: pointer to pf structure 4583 * 4584 * This function loads DDP file from the disk, then initializes Tx 4585 * topology. At the end DDP package is loaded on the card. 4586 * 4587 * Return: zero when init was successful, negative values otherwise. 4588 */ 4589 static int ice_init_ddp_config(struct ice_hw *hw, struct ice_pf *pf) 4590 { 4591 struct device *dev = ice_pf_to_dev(pf); 4592 const struct firmware *firmware = NULL; 4593 int err; 4594 4595 err = ice_request_fw(pf, &firmware); 4596 if (err) { 4597 dev_err(dev, "Fail during requesting FW: %d\n", err); 4598 return err; 4599 } 4600 4601 err = ice_init_tx_topology(hw, firmware); 4602 if (err) { 4603 dev_err(dev, "Fail during initialization of Tx topology: %d\n", 4604 err); 4605 release_firmware(firmware); 4606 return err; 4607 } 4608 4609 /* Download firmware to device */ 4610 ice_load_pkg(firmware, pf); 4611 release_firmware(firmware); 4612 4613 /* Initialize the supported Rx descriptor IDs after loading DDP */ 4614 ice_init_supported_rxdids(hw, pf); 4615 4616 return 0; 4617 } 4618 4619 /** 4620 * ice_print_wake_reason - show the wake up cause in the log 4621 * @pf: pointer to the PF struct 4622 */ 4623 static void ice_print_wake_reason(struct ice_pf *pf) 4624 { 4625 u32 wus = pf->wakeup_reason; 4626 const char *wake_str; 4627 4628 /* if no wake event, nothing to print */ 4629 if (!wus) 4630 return; 4631 4632 if (wus & PFPM_WUS_LNKC_M) 4633 wake_str = "Link\n"; 4634 else if (wus & PFPM_WUS_MAG_M) 4635 wake_str = "Magic Packet\n"; 4636 else if (wus & PFPM_WUS_MNG_M) 4637 wake_str = "Management\n"; 4638 else if (wus & PFPM_WUS_FW_RST_WK_M) 4639 wake_str = "Firmware Reset\n"; 4640 else 4641 wake_str = "Unknown\n"; 4642 4643 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4644 } 4645 4646 /** 4647 * ice_register_netdev - register netdev 4648 * @vsi: pointer to the VSI struct 4649 */ 4650 static int ice_register_netdev(struct ice_vsi *vsi) 4651 { 4652 int err; 4653 4654 if (!vsi || !vsi->netdev) 4655 return -EIO; 4656 4657 err = register_netdev(vsi->netdev); 4658 if (err) 4659 return err; 4660 4661 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4662 netif_carrier_off(vsi->netdev); 4663 netif_tx_stop_all_queues(vsi->netdev); 4664 4665 return 0; 4666 } 4667 4668 static void ice_unregister_netdev(struct ice_vsi *vsi) 4669 { 4670 if (!vsi || !vsi->netdev) 4671 return; 4672 4673 unregister_netdev(vsi->netdev); 4674 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4675 } 4676 4677 /** 4678 * ice_cfg_netdev - Allocate, configure and register a netdev 4679 * @vsi: the VSI associated with the new netdev 4680 * 4681 * Returns 0 on success, negative value on failure 4682 */ 4683 static int ice_cfg_netdev(struct ice_vsi *vsi) 4684 { 4685 struct ice_netdev_priv *np; 4686 struct net_device *netdev; 4687 u8 mac_addr[ETH_ALEN]; 4688 4689 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 4690 vsi->alloc_rxq); 4691 if (!netdev) 4692 return -ENOMEM; 4693 4694 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4695 vsi->netdev = netdev; 4696 np = netdev_priv(netdev); 4697 np->vsi = vsi; 4698 4699 ice_set_netdev_features(netdev); 4700 ice_set_ops(vsi); 4701 4702 if (vsi->type == ICE_VSI_PF) { 4703 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 4704 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4705 eth_hw_addr_set(netdev, mac_addr); 4706 } 4707 4708 netdev->priv_flags |= IFF_UNICAST_FLT; 4709 4710 /* Setup netdev TC information */ 4711 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 4712 4713 netdev->max_mtu = ICE_MAX_MTU; 4714 4715 return 0; 4716 } 4717 4718 static void ice_decfg_netdev(struct ice_vsi *vsi) 4719 { 4720 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4721 free_netdev(vsi->netdev); 4722 vsi->netdev = NULL; 4723 } 4724 4725 int ice_init_dev(struct ice_pf *pf) 4726 { 4727 struct device *dev = ice_pf_to_dev(pf); 4728 struct ice_hw *hw = &pf->hw; 4729 int err; 4730 4731 ice_init_feature_support(pf); 4732 4733 err = ice_init_ddp_config(hw, pf); 4734 4735 /* if ice_init_ddp_config fails, ICE_FLAG_ADV_FEATURES bit won't be 4736 * set in pf->state, which will cause ice_is_safe_mode to return 4737 * true 4738 */ 4739 if (err || ice_is_safe_mode(pf)) { 4740 /* we already got function/device capabilities but these don't 4741 * reflect what the driver needs to do in safe mode. Instead of 4742 * adding conditional logic everywhere to ignore these 4743 * device/function capabilities, override them. 4744 */ 4745 ice_set_safe_mode_caps(hw); 4746 } 4747 4748 err = ice_init_pf(pf); 4749 if (err) { 4750 dev_err(dev, "ice_init_pf failed: %d\n", err); 4751 return err; 4752 } 4753 4754 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4755 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4756 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4757 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4758 pf->hw.udp_tunnel_nic.tables[0].n_entries = 4759 pf->hw.tnl.valid_count[TNL_VXLAN]; 4760 pf->hw.udp_tunnel_nic.tables[0].tunnel_types = 4761 UDP_TUNNEL_TYPE_VXLAN; 4762 } 4763 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4764 pf->hw.udp_tunnel_nic.tables[1].n_entries = 4765 pf->hw.tnl.valid_count[TNL_GENEVE]; 4766 pf->hw.udp_tunnel_nic.tables[1].tunnel_types = 4767 UDP_TUNNEL_TYPE_GENEVE; 4768 } 4769 4770 err = ice_init_interrupt_scheme(pf); 4771 if (err) { 4772 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4773 err = -EIO; 4774 goto unroll_pf_init; 4775 } 4776 4777 /* In case of MSIX we are going to setup the misc vector right here 4778 * to handle admin queue events etc. In case of legacy and MSI 4779 * the misc functionality and queue processing is combined in 4780 * the same vector and that gets setup at open. 4781 */ 4782 err = ice_req_irq_msix_misc(pf); 4783 if (err) { 4784 dev_err(dev, "setup of misc vector failed: %d\n", err); 4785 goto unroll_irq_scheme_init; 4786 } 4787 4788 return 0; 4789 4790 unroll_irq_scheme_init: 4791 ice_clear_interrupt_scheme(pf); 4792 unroll_pf_init: 4793 ice_deinit_pf(pf); 4794 return err; 4795 } 4796 4797 void ice_deinit_dev(struct ice_pf *pf) 4798 { 4799 ice_free_irq_msix_misc(pf); 4800 ice_deinit_pf(pf); 4801 ice_deinit_hw(&pf->hw); 4802 4803 /* Service task is already stopped, so call reset directly. */ 4804 ice_reset(&pf->hw, ICE_RESET_PFR); 4805 pci_wait_for_pending_transaction(pf->pdev); 4806 ice_clear_interrupt_scheme(pf); 4807 } 4808 4809 static void ice_init_features(struct ice_pf *pf) 4810 { 4811 struct device *dev = ice_pf_to_dev(pf); 4812 4813 if (ice_is_safe_mode(pf)) 4814 return; 4815 4816 /* initialize DDP driven features */ 4817 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4818 ice_ptp_init(pf); 4819 4820 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4821 ice_gnss_init(pf); 4822 4823 if (ice_is_feature_supported(pf, ICE_F_CGU) || 4824 ice_is_feature_supported(pf, ICE_F_PHY_RCLK)) 4825 ice_dpll_init(pf); 4826 4827 /* Note: Flow director init failure is non-fatal to load */ 4828 if (ice_init_fdir(pf)) 4829 dev_err(dev, "could not initialize flow director\n"); 4830 4831 /* Note: DCB init failure is non-fatal to load */ 4832 if (ice_init_pf_dcb(pf, false)) { 4833 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4834 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4835 } else { 4836 ice_cfg_lldp_mib_change(&pf->hw, true); 4837 } 4838 4839 if (ice_init_lag(pf)) 4840 dev_warn(dev, "Failed to init link aggregation support\n"); 4841 4842 ice_hwmon_init(pf); 4843 } 4844 4845 static void ice_deinit_features(struct ice_pf *pf) 4846 { 4847 if (ice_is_safe_mode(pf)) 4848 return; 4849 4850 ice_deinit_lag(pf); 4851 if (test_bit(ICE_FLAG_DCB_CAPABLE, pf->flags)) 4852 ice_cfg_lldp_mib_change(&pf->hw, false); 4853 ice_deinit_fdir(pf); 4854 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 4855 ice_gnss_exit(pf); 4856 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4857 ice_ptp_release(pf); 4858 if (test_bit(ICE_FLAG_DPLL, pf->flags)) 4859 ice_dpll_deinit(pf); 4860 if (pf->eswitch_mode == DEVLINK_ESWITCH_MODE_SWITCHDEV) 4861 xa_destroy(&pf->eswitch.reprs); 4862 } 4863 4864 static void ice_init_wakeup(struct ice_pf *pf) 4865 { 4866 /* Save wakeup reason register for later use */ 4867 pf->wakeup_reason = rd32(&pf->hw, PFPM_WUS); 4868 4869 /* check for a power management event */ 4870 ice_print_wake_reason(pf); 4871 4872 /* clear wake status, all bits */ 4873 wr32(&pf->hw, PFPM_WUS, U32_MAX); 4874 4875 /* Disable WoL at init, wait for user to enable */ 4876 device_set_wakeup_enable(ice_pf_to_dev(pf), false); 4877 } 4878 4879 static int ice_init_link(struct ice_pf *pf) 4880 { 4881 struct device *dev = ice_pf_to_dev(pf); 4882 int err; 4883 4884 err = ice_init_link_events(pf->hw.port_info); 4885 if (err) { 4886 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4887 return err; 4888 } 4889 4890 /* not a fatal error if this fails */ 4891 err = ice_init_nvm_phy_type(pf->hw.port_info); 4892 if (err) 4893 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4894 4895 /* not a fatal error if this fails */ 4896 err = ice_update_link_info(pf->hw.port_info); 4897 if (err) 4898 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4899 4900 ice_init_link_dflt_override(pf->hw.port_info); 4901 4902 ice_check_link_cfg_err(pf, 4903 pf->hw.port_info->phy.link_info.link_cfg_err); 4904 4905 /* if media available, initialize PHY settings */ 4906 if (pf->hw.port_info->phy.link_info.link_info & 4907 ICE_AQ_MEDIA_AVAILABLE) { 4908 /* not a fatal error if this fails */ 4909 err = ice_init_phy_user_cfg(pf->hw.port_info); 4910 if (err) 4911 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4912 4913 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4914 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4915 4916 if (vsi) 4917 ice_configure_phy(vsi); 4918 } 4919 } else { 4920 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4921 } 4922 4923 return err; 4924 } 4925 4926 static int ice_init_pf_sw(struct ice_pf *pf) 4927 { 4928 bool dvm = ice_is_dvm_ena(&pf->hw); 4929 struct ice_vsi *vsi; 4930 int err; 4931 4932 /* create switch struct for the switch element created by FW on boot */ 4933 pf->first_sw = kzalloc(sizeof(*pf->first_sw), GFP_KERNEL); 4934 if (!pf->first_sw) 4935 return -ENOMEM; 4936 4937 if (pf->hw.evb_veb) 4938 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4939 else 4940 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4941 4942 pf->first_sw->pf = pf; 4943 4944 /* record the sw_id available for later use */ 4945 pf->first_sw->sw_id = pf->hw.port_info->sw_id; 4946 4947 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 4948 if (err) 4949 goto err_aq_set_port_params; 4950 4951 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 4952 if (!vsi) { 4953 err = -ENOMEM; 4954 goto err_pf_vsi_setup; 4955 } 4956 4957 return 0; 4958 4959 err_pf_vsi_setup: 4960 err_aq_set_port_params: 4961 kfree(pf->first_sw); 4962 return err; 4963 } 4964 4965 static void ice_deinit_pf_sw(struct ice_pf *pf) 4966 { 4967 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4968 4969 if (!vsi) 4970 return; 4971 4972 ice_vsi_release(vsi); 4973 kfree(pf->first_sw); 4974 } 4975 4976 static int ice_alloc_vsis(struct ice_pf *pf) 4977 { 4978 struct device *dev = ice_pf_to_dev(pf); 4979 4980 pf->num_alloc_vsi = pf->hw.func_caps.guar_num_vsi; 4981 if (!pf->num_alloc_vsi) 4982 return -EIO; 4983 4984 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4985 dev_warn(dev, 4986 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4987 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4988 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4989 } 4990 4991 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4992 GFP_KERNEL); 4993 if (!pf->vsi) 4994 return -ENOMEM; 4995 4996 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi, 4997 sizeof(*pf->vsi_stats), GFP_KERNEL); 4998 if (!pf->vsi_stats) { 4999 devm_kfree(dev, pf->vsi); 5000 return -ENOMEM; 5001 } 5002 5003 return 0; 5004 } 5005 5006 static void ice_dealloc_vsis(struct ice_pf *pf) 5007 { 5008 devm_kfree(ice_pf_to_dev(pf), pf->vsi_stats); 5009 pf->vsi_stats = NULL; 5010 5011 pf->num_alloc_vsi = 0; 5012 devm_kfree(ice_pf_to_dev(pf), pf->vsi); 5013 pf->vsi = NULL; 5014 } 5015 5016 static int ice_init_devlink(struct ice_pf *pf) 5017 { 5018 int err; 5019 5020 err = ice_devlink_register_params(pf); 5021 if (err) 5022 return err; 5023 5024 ice_devlink_init_regions(pf); 5025 ice_devlink_register(pf); 5026 ice_health_init(pf); 5027 5028 return 0; 5029 } 5030 5031 static void ice_deinit_devlink(struct ice_pf *pf) 5032 { 5033 ice_health_deinit(pf); 5034 ice_devlink_unregister(pf); 5035 ice_devlink_destroy_regions(pf); 5036 ice_devlink_unregister_params(pf); 5037 } 5038 5039 static int ice_init(struct ice_pf *pf) 5040 { 5041 int err; 5042 5043 err = ice_init_dev(pf); 5044 if (err) 5045 return err; 5046 5047 if (pf->hw.mac_type == ICE_MAC_E830) { 5048 err = pci_enable_ptm(pf->pdev, NULL); 5049 if (err) 5050 dev_dbg(ice_pf_to_dev(pf), "PCIe PTM not supported by PCIe bus/controller\n"); 5051 } 5052 5053 err = ice_alloc_vsis(pf); 5054 if (err) 5055 goto err_alloc_vsis; 5056 5057 err = ice_init_pf_sw(pf); 5058 if (err) 5059 goto err_init_pf_sw; 5060 5061 ice_init_wakeup(pf); 5062 5063 err = ice_init_link(pf); 5064 if (err) 5065 goto err_init_link; 5066 5067 err = ice_send_version(pf); 5068 if (err) 5069 goto err_init_link; 5070 5071 ice_verify_cacheline_size(pf); 5072 5073 if (ice_is_safe_mode(pf)) 5074 ice_set_safe_mode_vlan_cfg(pf); 5075 else 5076 /* print PCI link speed and width */ 5077 pcie_print_link_status(pf->pdev); 5078 5079 /* ready to go, so clear down state bit */ 5080 clear_bit(ICE_DOWN, pf->state); 5081 clear_bit(ICE_SERVICE_DIS, pf->state); 5082 5083 /* since everything is good, start the service timer */ 5084 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5085 5086 return 0; 5087 5088 err_init_link: 5089 ice_deinit_pf_sw(pf); 5090 err_init_pf_sw: 5091 ice_dealloc_vsis(pf); 5092 err_alloc_vsis: 5093 ice_deinit_dev(pf); 5094 return err; 5095 } 5096 5097 static void ice_deinit(struct ice_pf *pf) 5098 { 5099 set_bit(ICE_SERVICE_DIS, pf->state); 5100 set_bit(ICE_DOWN, pf->state); 5101 5102 ice_deinit_pf_sw(pf); 5103 ice_dealloc_vsis(pf); 5104 ice_deinit_dev(pf); 5105 } 5106 5107 /** 5108 * ice_load - load pf by init hw and starting VSI 5109 * @pf: pointer to the pf instance 5110 * 5111 * This function has to be called under devl_lock. 5112 */ 5113 int ice_load(struct ice_pf *pf) 5114 { 5115 struct ice_vsi *vsi; 5116 int err; 5117 5118 devl_assert_locked(priv_to_devlink(pf)); 5119 5120 vsi = ice_get_main_vsi(pf); 5121 5122 /* init channel list */ 5123 INIT_LIST_HEAD(&vsi->ch_list); 5124 5125 err = ice_cfg_netdev(vsi); 5126 if (err) 5127 return err; 5128 5129 /* Setup DCB netlink interface */ 5130 ice_dcbnl_setup(vsi); 5131 5132 err = ice_init_mac_fltr(pf); 5133 if (err) 5134 goto err_init_mac_fltr; 5135 5136 err = ice_devlink_create_pf_port(pf); 5137 if (err) 5138 goto err_devlink_create_pf_port; 5139 5140 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port); 5141 5142 err = ice_register_netdev(vsi); 5143 if (err) 5144 goto err_register_netdev; 5145 5146 err = ice_tc_indir_block_register(vsi); 5147 if (err) 5148 goto err_tc_indir_block_register; 5149 5150 ice_napi_add(vsi); 5151 5152 ice_init_features(pf); 5153 5154 err = ice_init_rdma(pf); 5155 if (err) 5156 goto err_init_rdma; 5157 5158 ice_service_task_restart(pf); 5159 5160 clear_bit(ICE_DOWN, pf->state); 5161 5162 return 0; 5163 5164 err_init_rdma: 5165 ice_deinit_features(pf); 5166 ice_tc_indir_block_unregister(vsi); 5167 err_tc_indir_block_register: 5168 ice_unregister_netdev(vsi); 5169 err_register_netdev: 5170 ice_devlink_destroy_pf_port(pf); 5171 err_devlink_create_pf_port: 5172 err_init_mac_fltr: 5173 ice_decfg_netdev(vsi); 5174 return err; 5175 } 5176 5177 /** 5178 * ice_unload - unload pf by stopping VSI and deinit hw 5179 * @pf: pointer to the pf instance 5180 * 5181 * This function has to be called under devl_lock. 5182 */ 5183 void ice_unload(struct ice_pf *pf) 5184 { 5185 struct ice_vsi *vsi = ice_get_main_vsi(pf); 5186 5187 devl_assert_locked(priv_to_devlink(pf)); 5188 5189 ice_deinit_rdma(pf); 5190 ice_deinit_features(pf); 5191 ice_tc_indir_block_unregister(vsi); 5192 ice_unregister_netdev(vsi); 5193 ice_devlink_destroy_pf_port(pf); 5194 ice_decfg_netdev(vsi); 5195 } 5196 5197 static int ice_probe_recovery_mode(struct ice_pf *pf) 5198 { 5199 struct device *dev = ice_pf_to_dev(pf); 5200 int err; 5201 5202 dev_err(dev, "Firmware recovery mode detected. Limiting functionality. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for details on firmware recovery mode\n"); 5203 5204 INIT_HLIST_HEAD(&pf->aq_wait_list); 5205 spin_lock_init(&pf->aq_wait_lock); 5206 init_waitqueue_head(&pf->aq_wait_queue); 5207 5208 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 5209 pf->serv_tmr_period = HZ; 5210 INIT_WORK(&pf->serv_task, ice_service_task_recovery_mode); 5211 clear_bit(ICE_SERVICE_SCHED, pf->state); 5212 err = ice_create_all_ctrlq(&pf->hw); 5213 if (err) 5214 return err; 5215 5216 scoped_guard(devl, priv_to_devlink(pf)) { 5217 err = ice_init_devlink(pf); 5218 if (err) 5219 return err; 5220 } 5221 5222 ice_service_task_restart(pf); 5223 5224 return 0; 5225 } 5226 5227 /** 5228 * ice_probe - Device initialization routine 5229 * @pdev: PCI device information struct 5230 * @ent: entry in ice_pci_tbl 5231 * 5232 * Returns 0 on success, negative on failure 5233 */ 5234 static int 5235 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 5236 { 5237 struct device *dev = &pdev->dev; 5238 struct ice_adapter *adapter; 5239 struct ice_pf *pf; 5240 struct ice_hw *hw; 5241 int err; 5242 5243 if (pdev->is_virtfn) { 5244 dev_err(dev, "can't probe a virtual function\n"); 5245 return -EINVAL; 5246 } 5247 5248 /* when under a kdump kernel initiate a reset before enabling the 5249 * device in order to clear out any pending DMA transactions. These 5250 * transactions can cause some systems to machine check when doing 5251 * the pcim_enable_device() below. 5252 */ 5253 if (is_kdump_kernel()) { 5254 pci_save_state(pdev); 5255 pci_clear_master(pdev); 5256 err = pcie_flr(pdev); 5257 if (err) 5258 return err; 5259 pci_restore_state(pdev); 5260 } 5261 5262 /* this driver uses devres, see 5263 * Documentation/driver-api/driver-model/devres.rst 5264 */ 5265 err = pcim_enable_device(pdev); 5266 if (err) 5267 return err; 5268 5269 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 5270 if (err) { 5271 dev_err(dev, "BAR0 I/O map error %d\n", err); 5272 return err; 5273 } 5274 5275 pf = ice_allocate_pf(dev); 5276 if (!pf) 5277 return -ENOMEM; 5278 5279 /* initialize Auxiliary index to invalid value */ 5280 pf->aux_idx = -1; 5281 5282 /* set up for high or low DMA */ 5283 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 5284 if (err) { 5285 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 5286 return err; 5287 } 5288 5289 pci_set_master(pdev); 5290 pf->pdev = pdev; 5291 pci_set_drvdata(pdev, pf); 5292 set_bit(ICE_DOWN, pf->state); 5293 /* Disable service task until DOWN bit is cleared */ 5294 set_bit(ICE_SERVICE_DIS, pf->state); 5295 5296 hw = &pf->hw; 5297 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 5298 pci_save_state(pdev); 5299 5300 hw->back = pf; 5301 hw->port_info = NULL; 5302 hw->vendor_id = pdev->vendor; 5303 hw->device_id = pdev->device; 5304 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 5305 hw->subsystem_vendor_id = pdev->subsystem_vendor; 5306 hw->subsystem_device_id = pdev->subsystem_device; 5307 hw->bus.device = PCI_SLOT(pdev->devfn); 5308 hw->bus.func = PCI_FUNC(pdev->devfn); 5309 ice_set_ctrlq_len(hw); 5310 5311 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 5312 5313 #ifndef CONFIG_DYNAMIC_DEBUG 5314 if (debug < -1) 5315 hw->debug_mask = debug; 5316 #endif 5317 5318 if (ice_is_recovery_mode(hw)) 5319 return ice_probe_recovery_mode(pf); 5320 5321 err = ice_init_hw(hw); 5322 if (err) { 5323 dev_err(dev, "ice_init_hw failed: %d\n", err); 5324 return err; 5325 } 5326 5327 adapter = ice_adapter_get(pdev); 5328 if (IS_ERR(adapter)) { 5329 err = PTR_ERR(adapter); 5330 goto unroll_hw_init; 5331 } 5332 pf->adapter = adapter; 5333 5334 err = ice_init(pf); 5335 if (err) 5336 goto unroll_adapter; 5337 5338 devl_lock(priv_to_devlink(pf)); 5339 err = ice_load(pf); 5340 if (err) 5341 goto unroll_init; 5342 5343 err = ice_init_devlink(pf); 5344 if (err) 5345 goto unroll_load; 5346 devl_unlock(priv_to_devlink(pf)); 5347 5348 return 0; 5349 5350 unroll_load: 5351 ice_unload(pf); 5352 unroll_init: 5353 devl_unlock(priv_to_devlink(pf)); 5354 ice_deinit(pf); 5355 unroll_adapter: 5356 ice_adapter_put(pdev); 5357 unroll_hw_init: 5358 ice_deinit_hw(hw); 5359 return err; 5360 } 5361 5362 /** 5363 * ice_set_wake - enable or disable Wake on LAN 5364 * @pf: pointer to the PF struct 5365 * 5366 * Simple helper for WoL control 5367 */ 5368 static void ice_set_wake(struct ice_pf *pf) 5369 { 5370 struct ice_hw *hw = &pf->hw; 5371 bool wol = pf->wol_ena; 5372 5373 /* clear wake state, otherwise new wake events won't fire */ 5374 wr32(hw, PFPM_WUS, U32_MAX); 5375 5376 /* enable / disable APM wake up, no RMW needed */ 5377 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 5378 5379 /* set magic packet filter enabled */ 5380 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 5381 } 5382 5383 /** 5384 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 5385 * @pf: pointer to the PF struct 5386 * 5387 * Issue firmware command to enable multicast magic wake, making 5388 * sure that any locally administered address (LAA) is used for 5389 * wake, and that PF reset doesn't undo the LAA. 5390 */ 5391 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 5392 { 5393 struct device *dev = ice_pf_to_dev(pf); 5394 struct ice_hw *hw = &pf->hw; 5395 u8 mac_addr[ETH_ALEN]; 5396 struct ice_vsi *vsi; 5397 int status; 5398 u8 flags; 5399 5400 if (!pf->wol_ena) 5401 return; 5402 5403 vsi = ice_get_main_vsi(pf); 5404 if (!vsi) 5405 return; 5406 5407 /* Get current MAC address in case it's an LAA */ 5408 if (vsi->netdev) 5409 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 5410 else 5411 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 5412 5413 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 5414 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 5415 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 5416 5417 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 5418 if (status) 5419 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 5420 status, libie_aq_str(hw->adminq.sq_last_status)); 5421 } 5422 5423 /** 5424 * ice_remove - Device removal routine 5425 * @pdev: PCI device information struct 5426 */ 5427 static void ice_remove(struct pci_dev *pdev) 5428 { 5429 struct ice_pf *pf = pci_get_drvdata(pdev); 5430 int i; 5431 5432 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 5433 if (!ice_is_reset_in_progress(pf->state)) 5434 break; 5435 msleep(100); 5436 } 5437 5438 if (ice_is_recovery_mode(&pf->hw)) { 5439 ice_service_task_stop(pf); 5440 scoped_guard(devl, priv_to_devlink(pf)) { 5441 ice_deinit_devlink(pf); 5442 } 5443 return; 5444 } 5445 5446 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 5447 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 5448 ice_free_vfs(pf); 5449 } 5450 5451 ice_hwmon_exit(pf); 5452 5453 ice_service_task_stop(pf); 5454 ice_aq_cancel_waiting_tasks(pf); 5455 set_bit(ICE_DOWN, pf->state); 5456 5457 if (!ice_is_safe_mode(pf)) 5458 ice_remove_arfs(pf); 5459 5460 devl_lock(priv_to_devlink(pf)); 5461 ice_dealloc_all_dynamic_ports(pf); 5462 ice_deinit_devlink(pf); 5463 5464 ice_unload(pf); 5465 devl_unlock(priv_to_devlink(pf)); 5466 5467 ice_deinit(pf); 5468 ice_vsi_release_all(pf); 5469 5470 ice_setup_mc_magic_wake(pf); 5471 ice_set_wake(pf); 5472 5473 ice_adapter_put(pdev); 5474 } 5475 5476 /** 5477 * ice_shutdown - PCI callback for shutting down device 5478 * @pdev: PCI device information struct 5479 */ 5480 static void ice_shutdown(struct pci_dev *pdev) 5481 { 5482 struct ice_pf *pf = pci_get_drvdata(pdev); 5483 5484 ice_remove(pdev); 5485 5486 if (system_state == SYSTEM_POWER_OFF) { 5487 pci_wake_from_d3(pdev, pf->wol_ena); 5488 pci_set_power_state(pdev, PCI_D3hot); 5489 } 5490 } 5491 5492 /** 5493 * ice_prepare_for_shutdown - prep for PCI shutdown 5494 * @pf: board private structure 5495 * 5496 * Inform or close all dependent features in prep for PCI device shutdown 5497 */ 5498 static void ice_prepare_for_shutdown(struct ice_pf *pf) 5499 { 5500 struct ice_hw *hw = &pf->hw; 5501 u32 v; 5502 5503 /* Notify VFs of impending reset */ 5504 if (ice_check_sq_alive(hw, &hw->mailboxq)) 5505 ice_vc_notify_reset(pf); 5506 5507 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 5508 5509 /* disable the VSIs and their queues that are not already DOWN */ 5510 ice_pf_dis_all_vsi(pf, false); 5511 5512 ice_for_each_vsi(pf, v) 5513 if (pf->vsi[v]) 5514 pf->vsi[v]->vsi_num = 0; 5515 5516 ice_shutdown_all_ctrlq(hw, true); 5517 } 5518 5519 /** 5520 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 5521 * @pf: board private structure to reinitialize 5522 * 5523 * This routine reinitialize interrupt scheme that was cleared during 5524 * power management suspend callback. 5525 * 5526 * This should be called during resume routine to re-allocate the q_vectors 5527 * and reacquire interrupts. 5528 */ 5529 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 5530 { 5531 struct device *dev = ice_pf_to_dev(pf); 5532 int ret, v; 5533 5534 /* Since we clear MSIX flag during suspend, we need to 5535 * set it back during resume... 5536 */ 5537 5538 ret = ice_init_interrupt_scheme(pf); 5539 if (ret) { 5540 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 5541 return ret; 5542 } 5543 5544 /* Remap vectors and rings, after successful re-init interrupts */ 5545 ice_for_each_vsi(pf, v) { 5546 if (!pf->vsi[v]) 5547 continue; 5548 5549 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 5550 if (ret) 5551 goto err_reinit; 5552 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 5553 rtnl_lock(); 5554 ice_vsi_set_napi_queues(pf->vsi[v]); 5555 rtnl_unlock(); 5556 } 5557 5558 ret = ice_req_irq_msix_misc(pf); 5559 if (ret) { 5560 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 5561 ret); 5562 goto err_reinit; 5563 } 5564 5565 return 0; 5566 5567 err_reinit: 5568 while (v--) 5569 if (pf->vsi[v]) { 5570 rtnl_lock(); 5571 ice_vsi_clear_napi_queues(pf->vsi[v]); 5572 rtnl_unlock(); 5573 ice_vsi_free_q_vectors(pf->vsi[v]); 5574 } 5575 5576 return ret; 5577 } 5578 5579 /** 5580 * ice_suspend 5581 * @dev: generic device information structure 5582 * 5583 * Power Management callback to quiesce the device and prepare 5584 * for D3 transition. 5585 */ 5586 static int ice_suspend(struct device *dev) 5587 { 5588 struct pci_dev *pdev = to_pci_dev(dev); 5589 struct ice_pf *pf; 5590 int disabled, v; 5591 5592 pf = pci_get_drvdata(pdev); 5593 5594 if (!ice_pf_state_is_nominal(pf)) { 5595 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5596 return -EBUSY; 5597 } 5598 5599 /* Stop watchdog tasks until resume completion. 5600 * Even though it is most likely that the service task is 5601 * disabled if the device is suspended or down, the service task's 5602 * state is controlled by a different state bit, and we should 5603 * store and honor whatever state that bit is in at this point. 5604 */ 5605 disabled = ice_service_task_stop(pf); 5606 5607 ice_deinit_rdma(pf); 5608 5609 /* Already suspended?, then there is nothing to do */ 5610 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5611 if (!disabled) 5612 ice_service_task_restart(pf); 5613 return 0; 5614 } 5615 5616 if (test_bit(ICE_DOWN, pf->state) || 5617 ice_is_reset_in_progress(pf->state)) { 5618 dev_err(dev, "can't suspend device in reset or already down\n"); 5619 if (!disabled) 5620 ice_service_task_restart(pf); 5621 return 0; 5622 } 5623 5624 ice_setup_mc_magic_wake(pf); 5625 5626 ice_prepare_for_shutdown(pf); 5627 5628 ice_set_wake(pf); 5629 5630 /* Free vectors, clear the interrupt scheme and release IRQs 5631 * for proper hibernation, especially with large number of CPUs. 5632 * Otherwise hibernation might fail when mapping all the vectors back 5633 * to CPU0. 5634 */ 5635 ice_free_irq_msix_misc(pf); 5636 ice_for_each_vsi(pf, v) { 5637 if (!pf->vsi[v]) 5638 continue; 5639 rtnl_lock(); 5640 ice_vsi_clear_napi_queues(pf->vsi[v]); 5641 rtnl_unlock(); 5642 ice_vsi_free_q_vectors(pf->vsi[v]); 5643 } 5644 ice_clear_interrupt_scheme(pf); 5645 5646 pci_save_state(pdev); 5647 pci_wake_from_d3(pdev, pf->wol_ena); 5648 pci_set_power_state(pdev, PCI_D3hot); 5649 return 0; 5650 } 5651 5652 /** 5653 * ice_resume - PM callback for waking up from D3 5654 * @dev: generic device information structure 5655 */ 5656 static int ice_resume(struct device *dev) 5657 { 5658 struct pci_dev *pdev = to_pci_dev(dev); 5659 enum ice_reset_req reset_type; 5660 struct ice_pf *pf; 5661 struct ice_hw *hw; 5662 int ret; 5663 5664 pci_set_power_state(pdev, PCI_D0); 5665 pci_restore_state(pdev); 5666 pci_save_state(pdev); 5667 5668 if (!pci_device_is_present(pdev)) 5669 return -ENODEV; 5670 5671 ret = pci_enable_device_mem(pdev); 5672 if (ret) { 5673 dev_err(dev, "Cannot enable device after suspend\n"); 5674 return ret; 5675 } 5676 5677 pf = pci_get_drvdata(pdev); 5678 hw = &pf->hw; 5679 5680 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5681 ice_print_wake_reason(pf); 5682 5683 /* We cleared the interrupt scheme when we suspended, so we need to 5684 * restore it now to resume device functionality. 5685 */ 5686 ret = ice_reinit_interrupt_scheme(pf); 5687 if (ret) 5688 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5689 5690 ret = ice_init_rdma(pf); 5691 if (ret) 5692 dev_err(dev, "Reinitialize RDMA during resume failed: %d\n", 5693 ret); 5694 5695 clear_bit(ICE_DOWN, pf->state); 5696 /* Now perform PF reset and rebuild */ 5697 reset_type = ICE_RESET_PFR; 5698 /* re-enable service task for reset, but allow reset to schedule it */ 5699 clear_bit(ICE_SERVICE_DIS, pf->state); 5700 5701 if (ice_schedule_reset(pf, reset_type)) 5702 dev_err(dev, "Reset during resume failed.\n"); 5703 5704 clear_bit(ICE_SUSPENDED, pf->state); 5705 ice_service_task_restart(pf); 5706 5707 /* Restart the service task */ 5708 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5709 5710 return 0; 5711 } 5712 5713 /** 5714 * ice_pci_err_detected - warning that PCI error has been detected 5715 * @pdev: PCI device information struct 5716 * @err: the type of PCI error 5717 * 5718 * Called to warn that something happened on the PCI bus and the error handling 5719 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5720 */ 5721 static pci_ers_result_t 5722 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5723 { 5724 struct ice_pf *pf = pci_get_drvdata(pdev); 5725 5726 if (!pf) { 5727 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5728 __func__, err); 5729 return PCI_ERS_RESULT_DISCONNECT; 5730 } 5731 5732 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5733 ice_service_task_stop(pf); 5734 5735 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5736 set_bit(ICE_PFR_REQ, pf->state); 5737 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5738 } 5739 } 5740 5741 return PCI_ERS_RESULT_NEED_RESET; 5742 } 5743 5744 /** 5745 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5746 * @pdev: PCI device information struct 5747 * 5748 * Called to determine if the driver can recover from the PCI slot reset by 5749 * using a register read to determine if the device is recoverable. 5750 */ 5751 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5752 { 5753 struct ice_pf *pf = pci_get_drvdata(pdev); 5754 pci_ers_result_t result; 5755 int err; 5756 u32 reg; 5757 5758 err = pci_enable_device_mem(pdev); 5759 if (err) { 5760 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5761 err); 5762 result = PCI_ERS_RESULT_DISCONNECT; 5763 } else { 5764 pci_set_master(pdev); 5765 pci_restore_state(pdev); 5766 pci_save_state(pdev); 5767 pci_wake_from_d3(pdev, false); 5768 5769 /* Check for life */ 5770 reg = rd32(&pf->hw, GLGEN_RTRIG); 5771 if (!reg) 5772 result = PCI_ERS_RESULT_RECOVERED; 5773 else 5774 result = PCI_ERS_RESULT_DISCONNECT; 5775 } 5776 5777 return result; 5778 } 5779 5780 /** 5781 * ice_pci_err_resume - restart operations after PCI error recovery 5782 * @pdev: PCI device information struct 5783 * 5784 * Called to allow the driver to bring things back up after PCI error and/or 5785 * reset recovery have finished 5786 */ 5787 static void ice_pci_err_resume(struct pci_dev *pdev) 5788 { 5789 struct ice_pf *pf = pci_get_drvdata(pdev); 5790 5791 if (!pf) { 5792 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5793 __func__); 5794 return; 5795 } 5796 5797 if (test_bit(ICE_SUSPENDED, pf->state)) { 5798 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5799 __func__); 5800 return; 5801 } 5802 5803 ice_restore_all_vfs_msi_state(pf); 5804 5805 ice_do_reset(pf, ICE_RESET_PFR); 5806 ice_service_task_restart(pf); 5807 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5808 } 5809 5810 /** 5811 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5812 * @pdev: PCI device information struct 5813 */ 5814 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5815 { 5816 struct ice_pf *pf = pci_get_drvdata(pdev); 5817 5818 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5819 ice_service_task_stop(pf); 5820 5821 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5822 set_bit(ICE_PFR_REQ, pf->state); 5823 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5824 } 5825 } 5826 } 5827 5828 /** 5829 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5830 * @pdev: PCI device information struct 5831 */ 5832 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5833 { 5834 ice_pci_err_resume(pdev); 5835 } 5836 5837 /* ice_pci_tbl - PCI Device ID Table 5838 * 5839 * Wildcard entries (PCI_ANY_ID) should come last 5840 * Last entry must be all 0s 5841 * 5842 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5843 * Class, Class Mask, private data (not used) } 5844 */ 5845 static const struct pci_device_id ice_pci_tbl[] = { 5846 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE) }, 5847 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP) }, 5848 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP) }, 5849 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE) }, 5850 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP) }, 5851 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP) }, 5852 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE) }, 5853 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP) }, 5854 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP) }, 5855 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T) }, 5856 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII) }, 5857 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE) }, 5858 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP) }, 5859 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP) }, 5860 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T) }, 5861 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII) }, 5862 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE) }, 5863 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP) }, 5864 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T) }, 5865 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII) }, 5866 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE) }, 5867 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP) }, 5868 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T) }, 5869 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE) }, 5870 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP) }, 5871 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT) }, 5872 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_BACKPLANE), }, 5873 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_QSFP), }, 5874 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SFP), }, 5875 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E825C_SGMII), }, 5876 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_BACKPLANE) }, 5877 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_QSFP56) }, 5878 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP) }, 5879 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830CC_SFP_DD) }, 5880 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_BACKPLANE), }, 5881 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_BACKPLANE), }, 5882 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_QSFP), }, 5883 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_QSFP), }, 5884 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830C_SFP), }, 5885 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E830_XXV_SFP), }, 5886 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_BACKPLANE), }, 5887 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_QSFP56), }, 5888 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835CC_SFP), }, 5889 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_BACKPLANE), }, 5890 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_QSFP), }, 5891 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835C_SFP), }, 5892 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_BACKPLANE), }, 5893 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_QSFP), }, 5894 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E835_L_SFP), }, 5895 /* required last entry */ 5896 {} 5897 }; 5898 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5899 5900 static DEFINE_SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5901 5902 static const struct pci_error_handlers ice_pci_err_handler = { 5903 .error_detected = ice_pci_err_detected, 5904 .slot_reset = ice_pci_err_slot_reset, 5905 .reset_prepare = ice_pci_err_reset_prepare, 5906 .reset_done = ice_pci_err_reset_done, 5907 .resume = ice_pci_err_resume 5908 }; 5909 5910 static struct pci_driver ice_driver = { 5911 .name = KBUILD_MODNAME, 5912 .id_table = ice_pci_tbl, 5913 .probe = ice_probe, 5914 .remove = ice_remove, 5915 .driver.pm = pm_sleep_ptr(&ice_pm_ops), 5916 .shutdown = ice_shutdown, 5917 .sriov_configure = ice_sriov_configure, 5918 .sriov_get_vf_total_msix = ice_sriov_get_vf_total_msix, 5919 .sriov_set_msix_vec_count = ice_sriov_set_msix_vec_count, 5920 .err_handler = &ice_pci_err_handler 5921 }; 5922 5923 /** 5924 * ice_module_init - Driver registration routine 5925 * 5926 * ice_module_init is the first routine called when the driver is 5927 * loaded. All it does is register with the PCI subsystem. 5928 */ 5929 static int __init ice_module_init(void) 5930 { 5931 int status = -ENOMEM; 5932 5933 pr_info("%s\n", ice_driver_string); 5934 pr_info("%s\n", ice_copyright); 5935 5936 ice_adv_lnk_speed_maps_init(); 5937 5938 ice_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, KBUILD_MODNAME); 5939 if (!ice_wq) { 5940 pr_err("Failed to create workqueue\n"); 5941 return status; 5942 } 5943 5944 ice_lag_wq = alloc_ordered_workqueue("ice_lag_wq", 0); 5945 if (!ice_lag_wq) { 5946 pr_err("Failed to create LAG workqueue\n"); 5947 goto err_dest_wq; 5948 } 5949 5950 ice_debugfs_init(); 5951 5952 status = pci_register_driver(&ice_driver); 5953 if (status) { 5954 pr_err("failed to register PCI driver, err %d\n", status); 5955 goto err_dest_lag_wq; 5956 } 5957 5958 status = ice_sf_driver_register(); 5959 if (status) { 5960 pr_err("Failed to register SF driver, err %d\n", status); 5961 goto err_sf_driver; 5962 } 5963 5964 return 0; 5965 5966 err_sf_driver: 5967 pci_unregister_driver(&ice_driver); 5968 err_dest_lag_wq: 5969 destroy_workqueue(ice_lag_wq); 5970 ice_debugfs_exit(); 5971 err_dest_wq: 5972 destroy_workqueue(ice_wq); 5973 return status; 5974 } 5975 module_init(ice_module_init); 5976 5977 /** 5978 * ice_module_exit - Driver exit cleanup routine 5979 * 5980 * ice_module_exit is called just before the driver is removed 5981 * from memory. 5982 */ 5983 static void __exit ice_module_exit(void) 5984 { 5985 ice_sf_driver_unregister(); 5986 pci_unregister_driver(&ice_driver); 5987 ice_debugfs_exit(); 5988 destroy_workqueue(ice_wq); 5989 destroy_workqueue(ice_lag_wq); 5990 pr_info("module unloaded\n"); 5991 } 5992 module_exit(ice_module_exit); 5993 5994 /** 5995 * ice_set_mac_address - NDO callback to set MAC address 5996 * @netdev: network interface device structure 5997 * @pi: pointer to an address structure 5998 * 5999 * Returns 0 on success, negative on failure 6000 */ 6001 static int ice_set_mac_address(struct net_device *netdev, void *pi) 6002 { 6003 struct ice_netdev_priv *np = netdev_priv(netdev); 6004 struct ice_vsi *vsi = np->vsi; 6005 struct ice_pf *pf = vsi->back; 6006 struct ice_hw *hw = &pf->hw; 6007 struct sockaddr *addr = pi; 6008 u8 old_mac[ETH_ALEN]; 6009 u8 flags = 0; 6010 u8 *mac; 6011 int err; 6012 6013 mac = (u8 *)addr->sa_data; 6014 6015 if (!is_valid_ether_addr(mac)) 6016 return -EADDRNOTAVAIL; 6017 6018 if (test_bit(ICE_DOWN, pf->state) || 6019 ice_is_reset_in_progress(pf->state)) { 6020 netdev_err(netdev, "can't set mac %pM. device not ready\n", 6021 mac); 6022 return -EBUSY; 6023 } 6024 6025 if (ice_chnl_dmac_fltr_cnt(pf)) { 6026 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 6027 mac); 6028 return -EAGAIN; 6029 } 6030 6031 netif_addr_lock_bh(netdev); 6032 ether_addr_copy(old_mac, netdev->dev_addr); 6033 /* change the netdev's MAC address */ 6034 eth_hw_addr_set(netdev, mac); 6035 netif_addr_unlock_bh(netdev); 6036 6037 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 6038 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 6039 if (err && err != -ENOENT) { 6040 err = -EADDRNOTAVAIL; 6041 goto err_update_filters; 6042 } 6043 6044 /* Add filter for new MAC. If filter exists, return success */ 6045 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 6046 if (err == -EEXIST) { 6047 /* Although this MAC filter is already present in hardware it's 6048 * possible in some cases (e.g. bonding) that dev_addr was 6049 * modified outside of the driver and needs to be restored back 6050 * to this value. 6051 */ 6052 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 6053 6054 return 0; 6055 } else if (err) { 6056 /* error if the new filter addition failed */ 6057 err = -EADDRNOTAVAIL; 6058 } 6059 6060 err_update_filters: 6061 if (err) { 6062 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 6063 mac); 6064 netif_addr_lock_bh(netdev); 6065 eth_hw_addr_set(netdev, old_mac); 6066 netif_addr_unlock_bh(netdev); 6067 return err; 6068 } 6069 6070 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 6071 netdev->dev_addr); 6072 6073 /* write new MAC address to the firmware */ 6074 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 6075 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 6076 if (err) { 6077 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 6078 mac, err); 6079 } 6080 return 0; 6081 } 6082 6083 /** 6084 * ice_set_rx_mode - NDO callback to set the netdev filters 6085 * @netdev: network interface device structure 6086 */ 6087 static void ice_set_rx_mode(struct net_device *netdev) 6088 { 6089 struct ice_netdev_priv *np = netdev_priv(netdev); 6090 struct ice_vsi *vsi = np->vsi; 6091 6092 if (!vsi || ice_is_switchdev_running(vsi->back)) 6093 return; 6094 6095 /* Set the flags to synchronize filters 6096 * ndo_set_rx_mode may be triggered even without a change in netdev 6097 * flags 6098 */ 6099 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 6100 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 6101 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 6102 6103 /* schedule our worker thread which will take care of 6104 * applying the new filter changes 6105 */ 6106 ice_service_task_schedule(vsi->back); 6107 } 6108 6109 /** 6110 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 6111 * @netdev: network interface device structure 6112 * @queue_index: Queue ID 6113 * @maxrate: maximum bandwidth in Mbps 6114 */ 6115 static int 6116 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 6117 { 6118 struct ice_netdev_priv *np = netdev_priv(netdev); 6119 struct ice_vsi *vsi = np->vsi; 6120 u16 q_handle; 6121 int status; 6122 u8 tc; 6123 6124 /* Validate maxrate requested is within permitted range */ 6125 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 6126 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 6127 maxrate, queue_index); 6128 return -EINVAL; 6129 } 6130 6131 q_handle = vsi->tx_rings[queue_index]->q_handle; 6132 tc = ice_dcb_get_tc(vsi, queue_index); 6133 6134 vsi = ice_locate_vsi_using_queue(vsi, queue_index); 6135 if (!vsi) { 6136 netdev_err(netdev, "Invalid VSI for given queue %d\n", 6137 queue_index); 6138 return -EINVAL; 6139 } 6140 6141 /* Set BW back to default, when user set maxrate to 0 */ 6142 if (!maxrate) 6143 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 6144 q_handle, ICE_MAX_BW); 6145 else 6146 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 6147 q_handle, ICE_MAX_BW, maxrate * 1000); 6148 if (status) 6149 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 6150 status); 6151 6152 return status; 6153 } 6154 6155 /** 6156 * ice_fdb_add - add an entry to the hardware database 6157 * @ndm: the input from the stack 6158 * @tb: pointer to array of nladdr (unused) 6159 * @dev: the net device pointer 6160 * @addr: the MAC address entry being added 6161 * @vid: VLAN ID 6162 * @flags: instructions from stack about fdb operation 6163 * @notified: whether notification was emitted 6164 * @extack: netlink extended ack 6165 */ 6166 static int 6167 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 6168 struct net_device *dev, const unsigned char *addr, u16 vid, 6169 u16 flags, bool *notified, 6170 struct netlink_ext_ack __always_unused *extack) 6171 { 6172 int err; 6173 6174 if (vid) { 6175 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 6176 return -EINVAL; 6177 } 6178 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 6179 netdev_err(dev, "FDB only supports static addresses\n"); 6180 return -EINVAL; 6181 } 6182 6183 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 6184 err = dev_uc_add_excl(dev, addr); 6185 else if (is_multicast_ether_addr(addr)) 6186 err = dev_mc_add_excl(dev, addr); 6187 else 6188 err = -EINVAL; 6189 6190 /* Only return duplicate errors if NLM_F_EXCL is set */ 6191 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 6192 err = 0; 6193 6194 return err; 6195 } 6196 6197 /** 6198 * ice_fdb_del - delete an entry from the hardware database 6199 * @ndm: the input from the stack 6200 * @tb: pointer to array of nladdr (unused) 6201 * @dev: the net device pointer 6202 * @addr: the MAC address entry being added 6203 * @vid: VLAN ID 6204 * @notified: whether notification was emitted 6205 * @extack: netlink extended ack 6206 */ 6207 static int 6208 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 6209 struct net_device *dev, const unsigned char *addr, 6210 __always_unused u16 vid, bool *notified, 6211 struct netlink_ext_ack *extack) 6212 { 6213 int err; 6214 6215 if (ndm->ndm_state & NUD_PERMANENT) { 6216 netdev_err(dev, "FDB only supports static addresses\n"); 6217 return -EINVAL; 6218 } 6219 6220 if (is_unicast_ether_addr(addr)) 6221 err = dev_uc_del(dev, addr); 6222 else if (is_multicast_ether_addr(addr)) 6223 err = dev_mc_del(dev, addr); 6224 else 6225 err = -EINVAL; 6226 6227 return err; 6228 } 6229 6230 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6231 NETIF_F_HW_VLAN_CTAG_TX | \ 6232 NETIF_F_HW_VLAN_STAG_RX | \ 6233 NETIF_F_HW_VLAN_STAG_TX) 6234 6235 #define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 6236 NETIF_F_HW_VLAN_STAG_RX) 6237 6238 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 6239 NETIF_F_HW_VLAN_STAG_FILTER) 6240 6241 /** 6242 * ice_fix_features - fix the netdev features flags based on device limitations 6243 * @netdev: ptr to the netdev that flags are being fixed on 6244 * @features: features that need to be checked and possibly fixed 6245 * 6246 * Make sure any fixups are made to features in this callback. This enables the 6247 * driver to not have to check unsupported configurations throughout the driver 6248 * because that's the responsiblity of this callback. 6249 * 6250 * Single VLAN Mode (SVM) Supported Features: 6251 * NETIF_F_HW_VLAN_CTAG_FILTER 6252 * NETIF_F_HW_VLAN_CTAG_RX 6253 * NETIF_F_HW_VLAN_CTAG_TX 6254 * 6255 * Double VLAN Mode (DVM) Supported Features: 6256 * NETIF_F_HW_VLAN_CTAG_FILTER 6257 * NETIF_F_HW_VLAN_CTAG_RX 6258 * NETIF_F_HW_VLAN_CTAG_TX 6259 * 6260 * NETIF_F_HW_VLAN_STAG_FILTER 6261 * NETIF_HW_VLAN_STAG_RX 6262 * NETIF_HW_VLAN_STAG_TX 6263 * 6264 * Features that need fixing: 6265 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 6266 * These are mutually exlusive as the VSI context cannot support multiple 6267 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 6268 * is not done, then default to clearing the requested STAG offload 6269 * settings. 6270 * 6271 * All supported filtering has to be enabled or disabled together. For 6272 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 6273 * together. If this is not done, then default to VLAN filtering disabled. 6274 * These are mutually exclusive as there is currently no way to 6275 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 6276 * prune rules. 6277 */ 6278 static netdev_features_t 6279 ice_fix_features(struct net_device *netdev, netdev_features_t features) 6280 { 6281 struct ice_netdev_priv *np = netdev_priv(netdev); 6282 netdev_features_t req_vlan_fltr, cur_vlan_fltr; 6283 bool cur_ctag, cur_stag, req_ctag, req_stag; 6284 6285 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES; 6286 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6287 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6288 6289 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES; 6290 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER; 6291 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER; 6292 6293 if (req_vlan_fltr != cur_vlan_fltr) { 6294 if (ice_is_dvm_ena(&np->vsi->back->hw)) { 6295 if (req_ctag && req_stag) { 6296 features |= NETIF_VLAN_FILTERING_FEATURES; 6297 } else if (!req_ctag && !req_stag) { 6298 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6299 } else if ((!cur_ctag && req_ctag && !cur_stag) || 6300 (!cur_stag && req_stag && !cur_ctag)) { 6301 features |= NETIF_VLAN_FILTERING_FEATURES; 6302 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n"); 6303 } else if ((cur_ctag && !req_ctag && cur_stag) || 6304 (cur_stag && !req_stag && cur_ctag)) { 6305 features &= ~NETIF_VLAN_FILTERING_FEATURES; 6306 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n"); 6307 } 6308 } else { 6309 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER) 6310 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n"); 6311 6312 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER) 6313 features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6314 } 6315 } 6316 6317 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 6318 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 6319 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 6320 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 6321 NETIF_F_HW_VLAN_STAG_TX); 6322 } 6323 6324 if (!(netdev->features & NETIF_F_RXFCS) && 6325 (features & NETIF_F_RXFCS) && 6326 (features & NETIF_VLAN_STRIPPING_FEATURES) && 6327 !ice_vsi_has_non_zero_vlans(np->vsi)) { 6328 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n"); 6329 features &= ~NETIF_VLAN_STRIPPING_FEATURES; 6330 } 6331 6332 return features; 6333 } 6334 6335 /** 6336 * ice_set_rx_rings_vlan_proto - update rings with new stripped VLAN proto 6337 * @vsi: PF's VSI 6338 * @vlan_ethertype: VLAN ethertype (802.1Q or 802.1ad) in network byte order 6339 * 6340 * Store current stripped VLAN proto in ring packet context, 6341 * so it can be accessed more efficiently by packet processing code. 6342 */ 6343 static void 6344 ice_set_rx_rings_vlan_proto(struct ice_vsi *vsi, __be16 vlan_ethertype) 6345 { 6346 u16 i; 6347 6348 ice_for_each_alloc_rxq(vsi, i) 6349 vsi->rx_rings[i]->pkt_ctx.vlan_proto = vlan_ethertype; 6350 } 6351 6352 /** 6353 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 6354 * @vsi: PF's VSI 6355 * @features: features used to determine VLAN offload settings 6356 * 6357 * First, determine the vlan_ethertype based on the VLAN offload bits in 6358 * features. Then determine if stripping and insertion should be enabled or 6359 * disabled. Finally enable or disable VLAN stripping and insertion. 6360 */ 6361 static int 6362 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 6363 { 6364 bool enable_stripping = true, enable_insertion = true; 6365 struct ice_vsi_vlan_ops *vlan_ops; 6366 int strip_err = 0, insert_err = 0; 6367 u16 vlan_ethertype = 0; 6368 6369 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6370 6371 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 6372 vlan_ethertype = ETH_P_8021AD; 6373 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 6374 vlan_ethertype = ETH_P_8021Q; 6375 6376 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 6377 enable_stripping = false; 6378 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 6379 enable_insertion = false; 6380 6381 if (enable_stripping) 6382 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 6383 else 6384 strip_err = vlan_ops->dis_stripping(vsi); 6385 6386 if (enable_insertion) 6387 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 6388 else 6389 insert_err = vlan_ops->dis_insertion(vsi); 6390 6391 if (strip_err || insert_err) 6392 return -EIO; 6393 6394 ice_set_rx_rings_vlan_proto(vsi, enable_stripping ? 6395 htons(vlan_ethertype) : 0); 6396 6397 return 0; 6398 } 6399 6400 /** 6401 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 6402 * @vsi: PF's VSI 6403 * @features: features used to determine VLAN filtering settings 6404 * 6405 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 6406 * features. 6407 */ 6408 static int 6409 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 6410 { 6411 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 6412 int err = 0; 6413 6414 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 6415 * if either bit is set. In switchdev mode Rx filtering should never be 6416 * enabled. 6417 */ 6418 if ((features & 6419 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) && 6420 !ice_is_eswitch_mode_switchdev(vsi->back)) 6421 err = vlan_ops->ena_rx_filtering(vsi); 6422 else 6423 err = vlan_ops->dis_rx_filtering(vsi); 6424 6425 return err; 6426 } 6427 6428 /** 6429 * ice_set_vlan_features - set VLAN settings based on suggested feature set 6430 * @netdev: ptr to the netdev being adjusted 6431 * @features: the feature set that the stack is suggesting 6432 * 6433 * Only update VLAN settings if the requested_vlan_features are different than 6434 * the current_vlan_features. 6435 */ 6436 static int 6437 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 6438 { 6439 netdev_features_t current_vlan_features, requested_vlan_features; 6440 struct ice_netdev_priv *np = netdev_priv(netdev); 6441 struct ice_vsi *vsi = np->vsi; 6442 int err; 6443 6444 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 6445 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 6446 if (current_vlan_features ^ requested_vlan_features) { 6447 if ((features & NETIF_F_RXFCS) && 6448 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6449 dev_err(ice_pf_to_dev(vsi->back), 6450 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n"); 6451 return -EIO; 6452 } 6453 6454 err = ice_set_vlan_offload_features(vsi, features); 6455 if (err) 6456 return err; 6457 } 6458 6459 current_vlan_features = netdev->features & 6460 NETIF_VLAN_FILTERING_FEATURES; 6461 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 6462 if (current_vlan_features ^ requested_vlan_features) { 6463 err = ice_set_vlan_filtering_features(vsi, features); 6464 if (err) 6465 return err; 6466 } 6467 6468 return 0; 6469 } 6470 6471 /** 6472 * ice_set_loopback - turn on/off loopback mode on underlying PF 6473 * @vsi: ptr to VSI 6474 * @ena: flag to indicate the on/off setting 6475 */ 6476 static int ice_set_loopback(struct ice_vsi *vsi, bool ena) 6477 { 6478 bool if_running = netif_running(vsi->netdev); 6479 int ret; 6480 6481 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 6482 ret = ice_down(vsi); 6483 if (ret) { 6484 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n"); 6485 return ret; 6486 } 6487 } 6488 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL); 6489 if (ret) 6490 netdev_err(vsi->netdev, "Failed to toggle loopback state\n"); 6491 if (if_running) 6492 ret = ice_up(vsi); 6493 6494 return ret; 6495 } 6496 6497 /** 6498 * ice_set_features - set the netdev feature flags 6499 * @netdev: ptr to the netdev being adjusted 6500 * @features: the feature set that the stack is suggesting 6501 */ 6502 static int 6503 ice_set_features(struct net_device *netdev, netdev_features_t features) 6504 { 6505 netdev_features_t changed = netdev->features ^ features; 6506 struct ice_netdev_priv *np = netdev_priv(netdev); 6507 struct ice_vsi *vsi = np->vsi; 6508 struct ice_pf *pf = vsi->back; 6509 int ret = 0; 6510 6511 /* Don't set any netdev advanced features with device in Safe Mode */ 6512 if (ice_is_safe_mode(pf)) { 6513 dev_err(ice_pf_to_dev(pf), 6514 "Device is in Safe Mode - not enabling advanced netdev features\n"); 6515 return ret; 6516 } 6517 6518 /* Do not change setting during reset */ 6519 if (ice_is_reset_in_progress(pf->state)) { 6520 dev_err(ice_pf_to_dev(pf), 6521 "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 6522 return -EBUSY; 6523 } 6524 6525 /* Multiple features can be changed in one call so keep features in 6526 * separate if/else statements to guarantee each feature is checked 6527 */ 6528 if (changed & NETIF_F_RXHASH) 6529 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH)); 6530 6531 ret = ice_set_vlan_features(netdev, features); 6532 if (ret) 6533 return ret; 6534 6535 /* Turn on receive of FCS aka CRC, and after setting this 6536 * flag the packet data will have the 4 byte CRC appended 6537 */ 6538 if (changed & NETIF_F_RXFCS) { 6539 if ((features & NETIF_F_RXFCS) && 6540 (features & NETIF_VLAN_STRIPPING_FEATURES)) { 6541 dev_err(ice_pf_to_dev(vsi->back), 6542 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n"); 6543 return -EIO; 6544 } 6545 6546 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS)); 6547 ret = ice_down_up(vsi); 6548 if (ret) 6549 return ret; 6550 } 6551 6552 if (changed & NETIF_F_NTUPLE) { 6553 bool ena = !!(features & NETIF_F_NTUPLE); 6554 6555 ice_vsi_manage_fdir(vsi, ena); 6556 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi); 6557 } 6558 6559 /* don't turn off hw_tc_offload when ADQ is already enabled */ 6560 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 6561 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 6562 return -EACCES; 6563 } 6564 6565 if (changed & NETIF_F_HW_TC) { 6566 bool ena = !!(features & NETIF_F_HW_TC); 6567 6568 assign_bit(ICE_FLAG_CLS_FLOWER, pf->flags, ena); 6569 } 6570 6571 if (changed & NETIF_F_LOOPBACK) 6572 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK)); 6573 6574 /* Due to E830 hardware limitations, TSO (NETIF_F_ALL_TSO) with GCS 6575 * (NETIF_F_HW_CSUM) is not supported. 6576 */ 6577 if (ice_is_feature_supported(pf, ICE_F_GCS) && 6578 ((features & NETIF_F_HW_CSUM) && (features & NETIF_F_ALL_TSO))) { 6579 if (netdev->features & NETIF_F_HW_CSUM) 6580 dev_err(ice_pf_to_dev(pf), "To enable TSO, you must first disable HW checksum.\n"); 6581 else 6582 dev_err(ice_pf_to_dev(pf), "To enable HW checksum, you must first disable TSO.\n"); 6583 return -EIO; 6584 } 6585 6586 return ret; 6587 } 6588 6589 /** 6590 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 6591 * @vsi: VSI to setup VLAN properties for 6592 */ 6593 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 6594 { 6595 int err; 6596 6597 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 6598 if (err) 6599 return err; 6600 6601 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 6602 if (err) 6603 return err; 6604 6605 return ice_vsi_add_vlan_zero(vsi); 6606 } 6607 6608 /** 6609 * ice_vsi_cfg_lan - Setup the VSI lan related config 6610 * @vsi: the VSI being configured 6611 * 6612 * Return 0 on success and negative value on error 6613 */ 6614 int ice_vsi_cfg_lan(struct ice_vsi *vsi) 6615 { 6616 int err; 6617 6618 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6619 ice_set_rx_mode(vsi->netdev); 6620 6621 err = ice_vsi_vlan_setup(vsi); 6622 if (err) 6623 return err; 6624 } 6625 ice_vsi_cfg_dcb_rings(vsi); 6626 6627 err = ice_vsi_cfg_lan_txqs(vsi); 6628 if (!err && ice_is_xdp_ena_vsi(vsi)) 6629 err = ice_vsi_cfg_xdp_txqs(vsi); 6630 if (!err) 6631 err = ice_vsi_cfg_rxqs(vsi); 6632 6633 return err; 6634 } 6635 6636 /* THEORY OF MODERATION: 6637 * The ice driver hardware works differently than the hardware that DIMLIB was 6638 * originally made for. ice hardware doesn't have packet count limits that 6639 * can trigger an interrupt, but it *does* have interrupt rate limit support, 6640 * which is hard-coded to a limit of 250,000 ints/second. 6641 * If not using dynamic moderation, the INTRL value can be modified 6642 * by ethtool rx-usecs-high. 6643 */ 6644 struct ice_dim { 6645 /* the throttle rate for interrupts, basically worst case delay before 6646 * an initial interrupt fires, value is stored in microseconds. 6647 */ 6648 u16 itr; 6649 }; 6650 6651 /* Make a different profile for Rx that doesn't allow quite so aggressive 6652 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 6653 * second. 6654 */ 6655 static const struct ice_dim rx_profile[] = { 6656 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6657 {8}, /* 125,000 ints/s */ 6658 {16}, /* 62,500 ints/s */ 6659 {62}, /* 16,129 ints/s */ 6660 {126} /* 7,936 ints/s */ 6661 }; 6662 6663 /* The transmit profile, which has the same sorts of values 6664 * as the previous struct 6665 */ 6666 static const struct ice_dim tx_profile[] = { 6667 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 6668 {8}, /* 125,000 ints/s */ 6669 {40}, /* 16,125 ints/s */ 6670 {128}, /* 7,812 ints/s */ 6671 {256} /* 3,906 ints/s */ 6672 }; 6673 6674 static void ice_tx_dim_work(struct work_struct *work) 6675 { 6676 struct ice_ring_container *rc; 6677 struct dim *dim; 6678 u16 itr; 6679 6680 dim = container_of(work, struct dim, work); 6681 rc = dim->priv; 6682 6683 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 6684 6685 /* look up the values in our local table */ 6686 itr = tx_profile[dim->profile_ix].itr; 6687 6688 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 6689 ice_write_itr(rc, itr); 6690 6691 dim->state = DIM_START_MEASURE; 6692 } 6693 6694 static void ice_rx_dim_work(struct work_struct *work) 6695 { 6696 struct ice_ring_container *rc; 6697 struct dim *dim; 6698 u16 itr; 6699 6700 dim = container_of(work, struct dim, work); 6701 rc = dim->priv; 6702 6703 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 6704 6705 /* look up the values in our local table */ 6706 itr = rx_profile[dim->profile_ix].itr; 6707 6708 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 6709 ice_write_itr(rc, itr); 6710 6711 dim->state = DIM_START_MEASURE; 6712 } 6713 6714 #define ICE_DIM_DEFAULT_PROFILE_IX 1 6715 6716 /** 6717 * ice_init_moderation - set up interrupt moderation 6718 * @q_vector: the vector containing rings to be configured 6719 * 6720 * Set up interrupt moderation registers, with the intent to do the right thing 6721 * when called from reset or from probe, and whether or not dynamic moderation 6722 * is enabled or not. Take special care to write all the registers in both 6723 * dynamic moderation mode or not in order to make sure hardware is in a known 6724 * state. 6725 */ 6726 static void ice_init_moderation(struct ice_q_vector *q_vector) 6727 { 6728 struct ice_ring_container *rc; 6729 bool tx_dynamic, rx_dynamic; 6730 6731 rc = &q_vector->tx; 6732 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 6733 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6734 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6735 rc->dim.priv = rc; 6736 tx_dynamic = ITR_IS_DYNAMIC(rc); 6737 6738 /* set the initial TX ITR to match the above */ 6739 ice_write_itr(rc, tx_dynamic ? 6740 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 6741 6742 rc = &q_vector->rx; 6743 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 6744 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6745 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6746 rc->dim.priv = rc; 6747 rx_dynamic = ITR_IS_DYNAMIC(rc); 6748 6749 /* set the initial RX ITR to match the above */ 6750 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6751 rc->itr_setting); 6752 6753 ice_set_q_vector_intrl(q_vector); 6754 } 6755 6756 /** 6757 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6758 * @vsi: the VSI being configured 6759 */ 6760 static void ice_napi_enable_all(struct ice_vsi *vsi) 6761 { 6762 int q_idx; 6763 6764 if (!vsi->netdev) 6765 return; 6766 6767 ice_for_each_q_vector(vsi, q_idx) { 6768 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6769 6770 ice_init_moderation(q_vector); 6771 6772 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6773 napi_enable(&q_vector->napi); 6774 } 6775 } 6776 6777 /** 6778 * ice_up_complete - Finish the last steps of bringing up a connection 6779 * @vsi: The VSI being configured 6780 * 6781 * Return 0 on success and negative value on error 6782 */ 6783 static int ice_up_complete(struct ice_vsi *vsi) 6784 { 6785 struct ice_pf *pf = vsi->back; 6786 int err; 6787 6788 ice_vsi_cfg_msix(vsi); 6789 6790 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6791 * Tx queue group list was configured and the context bits were 6792 * programmed using ice_vsi_cfg_txqs 6793 */ 6794 err = ice_vsi_start_all_rx_rings(vsi); 6795 if (err) 6796 return err; 6797 6798 clear_bit(ICE_VSI_DOWN, vsi->state); 6799 ice_napi_enable_all(vsi); 6800 ice_vsi_ena_irq(vsi); 6801 6802 if (vsi->port_info && 6803 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6804 ((vsi->netdev && (vsi->type == ICE_VSI_PF || 6805 vsi->type == ICE_VSI_SF)))) { 6806 ice_print_link_msg(vsi, true); 6807 netif_tx_start_all_queues(vsi->netdev); 6808 netif_carrier_on(vsi->netdev); 6809 ice_ptp_link_change(pf, true); 6810 } 6811 6812 /* Perform an initial read of the statistics registers now to 6813 * set the baseline so counters are ready when interface is up 6814 */ 6815 ice_update_eth_stats(vsi); 6816 6817 if (vsi->type == ICE_VSI_PF) 6818 ice_service_task_schedule(pf); 6819 6820 return 0; 6821 } 6822 6823 /** 6824 * ice_up - Bring the connection back up after being down 6825 * @vsi: VSI being configured 6826 */ 6827 int ice_up(struct ice_vsi *vsi) 6828 { 6829 int err; 6830 6831 err = ice_vsi_cfg_lan(vsi); 6832 if (!err) 6833 err = ice_up_complete(vsi); 6834 6835 return err; 6836 } 6837 6838 /** 6839 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6840 * @syncp: pointer to u64_stats_sync 6841 * @stats: stats that pkts and bytes count will be taken from 6842 * @pkts: packets stats counter 6843 * @bytes: bytes stats counter 6844 * 6845 * This function fetches stats from the ring considering the atomic operations 6846 * that needs to be performed to read u64 values in 32 bit machine. 6847 */ 6848 void 6849 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, 6850 struct ice_q_stats stats, u64 *pkts, u64 *bytes) 6851 { 6852 unsigned int start; 6853 6854 do { 6855 start = u64_stats_fetch_begin(syncp); 6856 *pkts = stats.pkts; 6857 *bytes = stats.bytes; 6858 } while (u64_stats_fetch_retry(syncp, start)); 6859 } 6860 6861 /** 6862 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6863 * @vsi: the VSI to be updated 6864 * @vsi_stats: the stats struct to be updated 6865 * @rings: rings to work on 6866 * @count: number of rings 6867 */ 6868 static void 6869 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6870 struct rtnl_link_stats64 *vsi_stats, 6871 struct ice_tx_ring **rings, u16 count) 6872 { 6873 u16 i; 6874 6875 for (i = 0; i < count; i++) { 6876 struct ice_tx_ring *ring; 6877 u64 pkts = 0, bytes = 0; 6878 6879 ring = READ_ONCE(rings[i]); 6880 if (!ring || !ring->ring_stats) 6881 continue; 6882 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp, 6883 ring->ring_stats->stats, &pkts, 6884 &bytes); 6885 vsi_stats->tx_packets += pkts; 6886 vsi_stats->tx_bytes += bytes; 6887 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q; 6888 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy; 6889 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize; 6890 } 6891 } 6892 6893 /** 6894 * ice_update_vsi_ring_stats - Update VSI stats counters 6895 * @vsi: the VSI to be updated 6896 */ 6897 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6898 { 6899 struct rtnl_link_stats64 *net_stats, *stats_prev; 6900 struct rtnl_link_stats64 *vsi_stats; 6901 struct ice_pf *pf = vsi->back; 6902 u64 pkts, bytes; 6903 int i; 6904 6905 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6906 if (!vsi_stats) 6907 return; 6908 6909 /* reset non-netdev (extended) stats */ 6910 vsi->tx_restart = 0; 6911 vsi->tx_busy = 0; 6912 vsi->tx_linearize = 0; 6913 vsi->rx_buf_failed = 0; 6914 vsi->rx_page_failed = 0; 6915 6916 rcu_read_lock(); 6917 6918 /* update Tx rings counters */ 6919 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6920 vsi->num_txq); 6921 6922 /* update Rx rings counters */ 6923 ice_for_each_rxq(vsi, i) { 6924 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6925 struct ice_ring_stats *ring_stats; 6926 6927 ring_stats = ring->ring_stats; 6928 ice_fetch_u64_stats_per_ring(&ring_stats->syncp, 6929 ring_stats->stats, &pkts, 6930 &bytes); 6931 vsi_stats->rx_packets += pkts; 6932 vsi_stats->rx_bytes += bytes; 6933 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed; 6934 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed; 6935 } 6936 6937 /* update XDP Tx rings counters */ 6938 if (ice_is_xdp_ena_vsi(vsi)) 6939 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6940 vsi->num_xdp_txq); 6941 6942 rcu_read_unlock(); 6943 6944 net_stats = &vsi->net_stats; 6945 stats_prev = &vsi->net_stats_prev; 6946 6947 /* Update netdev counters, but keep in mind that values could start at 6948 * random value after PF reset. And as we increase the reported stat by 6949 * diff of Prev-Cur, we need to be sure that Prev is valid. If it's not, 6950 * let's skip this round. 6951 */ 6952 if (likely(pf->stat_prev_loaded)) { 6953 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets; 6954 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes; 6955 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets; 6956 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes; 6957 } 6958 6959 stats_prev->tx_packets = vsi_stats->tx_packets; 6960 stats_prev->tx_bytes = vsi_stats->tx_bytes; 6961 stats_prev->rx_packets = vsi_stats->rx_packets; 6962 stats_prev->rx_bytes = vsi_stats->rx_bytes; 6963 6964 kfree(vsi_stats); 6965 } 6966 6967 /** 6968 * ice_update_vsi_stats - Update VSI stats counters 6969 * @vsi: the VSI to be updated 6970 */ 6971 void ice_update_vsi_stats(struct ice_vsi *vsi) 6972 { 6973 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6974 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6975 struct ice_pf *pf = vsi->back; 6976 6977 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6978 test_bit(ICE_CFG_BUSY, pf->state)) 6979 return; 6980 6981 /* get stats as recorded by Tx/Rx rings */ 6982 ice_update_vsi_ring_stats(vsi); 6983 6984 /* get VSI stats as recorded by the hardware */ 6985 ice_update_eth_stats(vsi); 6986 6987 cur_ns->tx_errors = cur_es->tx_errors; 6988 cur_ns->rx_dropped = cur_es->rx_discards; 6989 cur_ns->tx_dropped = cur_es->tx_discards; 6990 cur_ns->multicast = cur_es->rx_multicast; 6991 6992 /* update some more netdev stats if this is main VSI */ 6993 if (vsi->type == ICE_VSI_PF) { 6994 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6995 cur_ns->rx_errors = pf->stats.crc_errors + 6996 pf->stats.illegal_bytes + 6997 pf->stats.rx_undersize + 6998 pf->hw_csum_rx_error + 6999 pf->stats.rx_jabber + 7000 pf->stats.rx_fragments + 7001 pf->stats.rx_oversize; 7002 /* record drops from the port level */ 7003 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 7004 } 7005 } 7006 7007 /** 7008 * ice_update_pf_stats - Update PF port stats counters 7009 * @pf: PF whose stats needs to be updated 7010 */ 7011 void ice_update_pf_stats(struct ice_pf *pf) 7012 { 7013 struct ice_hw_port_stats *prev_ps, *cur_ps; 7014 struct ice_hw *hw = &pf->hw; 7015 u16 fd_ctr_base; 7016 u8 port; 7017 7018 port = hw->port_info->lport; 7019 prev_ps = &pf->stats_prev; 7020 cur_ps = &pf->stats; 7021 7022 if (ice_is_reset_in_progress(pf->state)) 7023 pf->stat_prev_loaded = false; 7024 7025 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 7026 &prev_ps->eth.rx_bytes, 7027 &cur_ps->eth.rx_bytes); 7028 7029 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 7030 &prev_ps->eth.rx_unicast, 7031 &cur_ps->eth.rx_unicast); 7032 7033 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 7034 &prev_ps->eth.rx_multicast, 7035 &cur_ps->eth.rx_multicast); 7036 7037 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 7038 &prev_ps->eth.rx_broadcast, 7039 &cur_ps->eth.rx_broadcast); 7040 7041 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 7042 &prev_ps->eth.rx_discards, 7043 &cur_ps->eth.rx_discards); 7044 7045 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 7046 &prev_ps->eth.tx_bytes, 7047 &cur_ps->eth.tx_bytes); 7048 7049 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 7050 &prev_ps->eth.tx_unicast, 7051 &cur_ps->eth.tx_unicast); 7052 7053 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 7054 &prev_ps->eth.tx_multicast, 7055 &cur_ps->eth.tx_multicast); 7056 7057 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 7058 &prev_ps->eth.tx_broadcast, 7059 &cur_ps->eth.tx_broadcast); 7060 7061 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 7062 &prev_ps->tx_dropped_link_down, 7063 &cur_ps->tx_dropped_link_down); 7064 7065 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 7066 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 7067 7068 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 7069 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 7070 7071 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 7072 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 7073 7074 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 7075 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 7076 7077 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 7078 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 7079 7080 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 7081 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 7082 7083 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 7084 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 7085 7086 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 7087 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 7088 7089 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 7090 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 7091 7092 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 7093 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 7094 7095 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 7096 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 7097 7098 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 7099 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 7100 7101 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 7102 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 7103 7104 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 7105 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 7106 7107 fd_ctr_base = hw->fd_ctr_base; 7108 7109 ice_stat_update40(hw, 7110 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 7111 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 7112 &cur_ps->fd_sb_match); 7113 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 7114 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 7115 7116 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 7117 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 7118 7119 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 7120 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 7121 7122 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 7123 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 7124 7125 ice_update_dcb_stats(pf); 7126 7127 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 7128 &prev_ps->crc_errors, &cur_ps->crc_errors); 7129 7130 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 7131 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 7132 7133 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 7134 &prev_ps->mac_local_faults, 7135 &cur_ps->mac_local_faults); 7136 7137 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 7138 &prev_ps->mac_remote_faults, 7139 &cur_ps->mac_remote_faults); 7140 7141 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 7142 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 7143 7144 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 7145 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 7146 7147 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 7148 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 7149 7150 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 7151 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 7152 7153 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 7154 7155 pf->stat_prev_loaded = true; 7156 } 7157 7158 /** 7159 * ice_get_stats64 - get statistics for network device structure 7160 * @netdev: network interface device structure 7161 * @stats: main device statistics structure 7162 */ 7163 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 7164 { 7165 struct ice_netdev_priv *np = netdev_priv(netdev); 7166 struct rtnl_link_stats64 *vsi_stats; 7167 struct ice_vsi *vsi = np->vsi; 7168 7169 vsi_stats = &vsi->net_stats; 7170 7171 if (!vsi->num_txq || !vsi->num_rxq) 7172 return; 7173 7174 /* netdev packet/byte stats come from ring counter. These are obtained 7175 * by summing up ring counters (done by ice_update_vsi_ring_stats). 7176 * But, only call the update routine and read the registers if VSI is 7177 * not down. 7178 */ 7179 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 7180 ice_update_vsi_ring_stats(vsi); 7181 stats->tx_packets = vsi_stats->tx_packets; 7182 stats->tx_bytes = vsi_stats->tx_bytes; 7183 stats->rx_packets = vsi_stats->rx_packets; 7184 stats->rx_bytes = vsi_stats->rx_bytes; 7185 7186 /* The rest of the stats can be read from the hardware but instead we 7187 * just return values that the watchdog task has already obtained from 7188 * the hardware. 7189 */ 7190 stats->multicast = vsi_stats->multicast; 7191 stats->tx_errors = vsi_stats->tx_errors; 7192 stats->tx_dropped = vsi_stats->tx_dropped; 7193 stats->rx_errors = vsi_stats->rx_errors; 7194 stats->rx_dropped = vsi_stats->rx_dropped; 7195 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 7196 stats->rx_length_errors = vsi_stats->rx_length_errors; 7197 } 7198 7199 /** 7200 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 7201 * @vsi: VSI having NAPI disabled 7202 */ 7203 static void ice_napi_disable_all(struct ice_vsi *vsi) 7204 { 7205 int q_idx; 7206 7207 if (!vsi->netdev) 7208 return; 7209 7210 ice_for_each_q_vector(vsi, q_idx) { 7211 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 7212 7213 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 7214 napi_disable(&q_vector->napi); 7215 7216 cancel_work_sync(&q_vector->tx.dim.work); 7217 cancel_work_sync(&q_vector->rx.dim.work); 7218 } 7219 } 7220 7221 /** 7222 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 7223 * @vsi: the VSI being un-configured 7224 */ 7225 static void ice_vsi_dis_irq(struct ice_vsi *vsi) 7226 { 7227 struct ice_pf *pf = vsi->back; 7228 struct ice_hw *hw = &pf->hw; 7229 u32 val; 7230 int i; 7231 7232 /* disable interrupt causation from each Rx queue; Tx queues are 7233 * handled in ice_vsi_stop_tx_ring() 7234 */ 7235 if (vsi->rx_rings) { 7236 ice_for_each_rxq(vsi, i) { 7237 if (vsi->rx_rings[i]) { 7238 u16 reg; 7239 7240 reg = vsi->rx_rings[i]->reg_idx; 7241 val = rd32(hw, QINT_RQCTL(reg)); 7242 val &= ~QINT_RQCTL_CAUSE_ENA_M; 7243 wr32(hw, QINT_RQCTL(reg), val); 7244 } 7245 } 7246 } 7247 7248 /* disable each interrupt */ 7249 ice_for_each_q_vector(vsi, i) { 7250 if (!vsi->q_vectors[i]) 7251 continue; 7252 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 7253 } 7254 7255 ice_flush(hw); 7256 7257 /* don't call synchronize_irq() for VF's from the host */ 7258 if (vsi->type == ICE_VSI_VF) 7259 return; 7260 7261 ice_for_each_q_vector(vsi, i) 7262 synchronize_irq(vsi->q_vectors[i]->irq.virq); 7263 } 7264 7265 /** 7266 * ice_down - Shutdown the connection 7267 * @vsi: The VSI being stopped 7268 * 7269 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 7270 */ 7271 int ice_down(struct ice_vsi *vsi) 7272 { 7273 int i, tx_err, rx_err, vlan_err = 0; 7274 7275 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 7276 7277 if (vsi->netdev) { 7278 vlan_err = ice_vsi_del_vlan_zero(vsi); 7279 ice_ptp_link_change(vsi->back, false); 7280 netif_carrier_off(vsi->netdev); 7281 netif_tx_disable(vsi->netdev); 7282 } 7283 7284 ice_vsi_dis_irq(vsi); 7285 7286 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 7287 if (tx_err) 7288 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 7289 vsi->vsi_num, tx_err); 7290 if (!tx_err && vsi->xdp_rings) { 7291 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 7292 if (tx_err) 7293 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 7294 vsi->vsi_num, tx_err); 7295 } 7296 7297 rx_err = ice_vsi_stop_all_rx_rings(vsi); 7298 if (rx_err) 7299 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 7300 vsi->vsi_num, rx_err); 7301 7302 ice_napi_disable_all(vsi); 7303 7304 ice_for_each_txq(vsi, i) 7305 ice_clean_tx_ring(vsi->tx_rings[i]); 7306 7307 if (vsi->xdp_rings) 7308 ice_for_each_xdp_txq(vsi, i) 7309 ice_clean_tx_ring(vsi->xdp_rings[i]); 7310 7311 ice_for_each_rxq(vsi, i) 7312 ice_clean_rx_ring(vsi->rx_rings[i]); 7313 7314 if (tx_err || rx_err || vlan_err) { 7315 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 7316 vsi->vsi_num, vsi->vsw->sw_id); 7317 return -EIO; 7318 } 7319 7320 return 0; 7321 } 7322 7323 /** 7324 * ice_down_up - shutdown the VSI connection and bring it up 7325 * @vsi: the VSI to be reconnected 7326 */ 7327 int ice_down_up(struct ice_vsi *vsi) 7328 { 7329 int ret; 7330 7331 /* if DOWN already set, nothing to do */ 7332 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 7333 return 0; 7334 7335 ret = ice_down(vsi); 7336 if (ret) 7337 return ret; 7338 7339 ret = ice_up(vsi); 7340 if (ret) { 7341 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n"); 7342 return ret; 7343 } 7344 7345 return 0; 7346 } 7347 7348 /** 7349 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 7350 * @vsi: VSI having resources allocated 7351 * 7352 * Return 0 on success, negative on failure 7353 */ 7354 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 7355 { 7356 int i, err = 0; 7357 7358 if (!vsi->num_txq) { 7359 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 7360 vsi->vsi_num); 7361 return -EINVAL; 7362 } 7363 7364 ice_for_each_txq(vsi, i) { 7365 struct ice_tx_ring *ring = vsi->tx_rings[i]; 7366 7367 if (!ring) 7368 return -EINVAL; 7369 7370 if (vsi->netdev) 7371 ring->netdev = vsi->netdev; 7372 err = ice_setup_tx_ring(ring); 7373 if (err) 7374 break; 7375 } 7376 7377 return err; 7378 } 7379 7380 /** 7381 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 7382 * @vsi: VSI having resources allocated 7383 * 7384 * Return 0 on success, negative on failure 7385 */ 7386 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 7387 { 7388 int i, err = 0; 7389 7390 if (!vsi->num_rxq) { 7391 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 7392 vsi->vsi_num); 7393 return -EINVAL; 7394 } 7395 7396 ice_for_each_rxq(vsi, i) { 7397 struct ice_rx_ring *ring = vsi->rx_rings[i]; 7398 7399 if (!ring) 7400 return -EINVAL; 7401 7402 if (vsi->netdev) 7403 ring->netdev = vsi->netdev; 7404 err = ice_setup_rx_ring(ring); 7405 if (err) 7406 break; 7407 } 7408 7409 return err; 7410 } 7411 7412 /** 7413 * ice_vsi_open_ctrl - open control VSI for use 7414 * @vsi: the VSI to open 7415 * 7416 * Initialization of the Control VSI 7417 * 7418 * Returns 0 on success, negative value on error 7419 */ 7420 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 7421 { 7422 char int_name[ICE_INT_NAME_STR_LEN]; 7423 struct ice_pf *pf = vsi->back; 7424 struct device *dev; 7425 int err; 7426 7427 dev = ice_pf_to_dev(pf); 7428 /* allocate descriptors */ 7429 err = ice_vsi_setup_tx_rings(vsi); 7430 if (err) 7431 goto err_setup_tx; 7432 7433 err = ice_vsi_setup_rx_rings(vsi); 7434 if (err) 7435 goto err_setup_rx; 7436 7437 err = ice_vsi_cfg_lan(vsi); 7438 if (err) 7439 goto err_setup_rx; 7440 7441 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 7442 dev_driver_string(dev), dev_name(dev)); 7443 err = ice_vsi_req_irq_msix(vsi, int_name); 7444 if (err) 7445 goto err_setup_rx; 7446 7447 ice_vsi_cfg_msix(vsi); 7448 7449 err = ice_vsi_start_all_rx_rings(vsi); 7450 if (err) 7451 goto err_up_complete; 7452 7453 clear_bit(ICE_VSI_DOWN, vsi->state); 7454 ice_vsi_ena_irq(vsi); 7455 7456 return 0; 7457 7458 err_up_complete: 7459 ice_down(vsi); 7460 err_setup_rx: 7461 ice_vsi_free_rx_rings(vsi); 7462 err_setup_tx: 7463 ice_vsi_free_tx_rings(vsi); 7464 7465 return err; 7466 } 7467 7468 /** 7469 * ice_vsi_open - Called when a network interface is made active 7470 * @vsi: the VSI to open 7471 * 7472 * Initialization of the VSI 7473 * 7474 * Returns 0 on success, negative value on error 7475 */ 7476 int ice_vsi_open(struct ice_vsi *vsi) 7477 { 7478 char int_name[ICE_INT_NAME_STR_LEN]; 7479 struct ice_pf *pf = vsi->back; 7480 int err; 7481 7482 /* allocate descriptors */ 7483 err = ice_vsi_setup_tx_rings(vsi); 7484 if (err) 7485 goto err_setup_tx; 7486 7487 err = ice_vsi_setup_rx_rings(vsi); 7488 if (err) 7489 goto err_setup_rx; 7490 7491 err = ice_vsi_cfg_lan(vsi); 7492 if (err) 7493 goto err_setup_rx; 7494 7495 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 7496 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 7497 err = ice_vsi_req_irq_msix(vsi, int_name); 7498 if (err) 7499 goto err_setup_rx; 7500 7501 if (bitmap_empty(pf->txtime_txqs, pf->max_pf_txqs)) 7502 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 7503 7504 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_SF) { 7505 /* Notify the stack of the actual queue counts. */ 7506 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 7507 if (err) 7508 goto err_set_qs; 7509 7510 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 7511 if (err) 7512 goto err_set_qs; 7513 7514 ice_vsi_set_napi_queues(vsi); 7515 } 7516 7517 err = ice_up_complete(vsi); 7518 if (err) 7519 goto err_up_complete; 7520 7521 return 0; 7522 7523 err_up_complete: 7524 ice_down(vsi); 7525 err_set_qs: 7526 ice_vsi_free_irq(vsi); 7527 err_setup_rx: 7528 ice_vsi_free_rx_rings(vsi); 7529 err_setup_tx: 7530 ice_vsi_free_tx_rings(vsi); 7531 7532 return err; 7533 } 7534 7535 /** 7536 * ice_vsi_release_all - Delete all VSIs 7537 * @pf: PF from which all VSIs are being removed 7538 */ 7539 static void ice_vsi_release_all(struct ice_pf *pf) 7540 { 7541 int err, i; 7542 7543 if (!pf->vsi) 7544 return; 7545 7546 ice_for_each_vsi(pf, i) { 7547 if (!pf->vsi[i]) 7548 continue; 7549 7550 if (pf->vsi[i]->type == ICE_VSI_CHNL) 7551 continue; 7552 7553 err = ice_vsi_release(pf->vsi[i]); 7554 if (err) 7555 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 7556 i, err, pf->vsi[i]->vsi_num); 7557 } 7558 } 7559 7560 /** 7561 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 7562 * @pf: pointer to the PF instance 7563 * @type: VSI type to rebuild 7564 * 7565 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 7566 */ 7567 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 7568 { 7569 struct device *dev = ice_pf_to_dev(pf); 7570 int i, err; 7571 7572 ice_for_each_vsi(pf, i) { 7573 struct ice_vsi *vsi = pf->vsi[i]; 7574 7575 if (!vsi || vsi->type != type) 7576 continue; 7577 7578 /* rebuild the VSI */ 7579 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 7580 if (err) { 7581 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 7582 err, vsi->idx, ice_vsi_type_str(type)); 7583 return err; 7584 } 7585 7586 /* replay filters for the VSI */ 7587 err = ice_replay_vsi(&pf->hw, vsi->idx); 7588 if (err) { 7589 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 7590 err, vsi->idx, ice_vsi_type_str(type)); 7591 return err; 7592 } 7593 7594 /* Re-map HW VSI number, using VSI handle that has been 7595 * previously validated in ice_replay_vsi() call above 7596 */ 7597 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 7598 7599 /* enable the VSI */ 7600 err = ice_ena_vsi(vsi, false); 7601 if (err) { 7602 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 7603 err, vsi->idx, ice_vsi_type_str(type)); 7604 return err; 7605 } 7606 7607 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 7608 ice_vsi_type_str(type)); 7609 } 7610 7611 return 0; 7612 } 7613 7614 /** 7615 * ice_update_pf_netdev_link - Update PF netdev link status 7616 * @pf: pointer to the PF instance 7617 */ 7618 static void ice_update_pf_netdev_link(struct ice_pf *pf) 7619 { 7620 bool link_up; 7621 int i; 7622 7623 ice_for_each_vsi(pf, i) { 7624 struct ice_vsi *vsi = pf->vsi[i]; 7625 7626 if (!vsi || vsi->type != ICE_VSI_PF) 7627 return; 7628 7629 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 7630 if (link_up) { 7631 netif_carrier_on(pf->vsi[i]->netdev); 7632 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 7633 } else { 7634 netif_carrier_off(pf->vsi[i]->netdev); 7635 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 7636 } 7637 } 7638 } 7639 7640 /** 7641 * ice_rebuild - rebuild after reset 7642 * @pf: PF to rebuild 7643 * @reset_type: type of reset 7644 * 7645 * Do not rebuild VF VSI in this flow because that is already handled via 7646 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 7647 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 7648 * to reset/rebuild all the VF VSI twice. 7649 */ 7650 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 7651 { 7652 struct ice_vsi *vsi = ice_get_main_vsi(pf); 7653 struct device *dev = ice_pf_to_dev(pf); 7654 struct ice_hw *hw = &pf->hw; 7655 bool dvm; 7656 int err; 7657 7658 if (test_bit(ICE_DOWN, pf->state)) 7659 goto clear_recovery; 7660 7661 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 7662 7663 #define ICE_EMP_RESET_SLEEP_MS 5000 7664 if (reset_type == ICE_RESET_EMPR) { 7665 /* If an EMP reset has occurred, any previously pending flash 7666 * update will have completed. We no longer know whether or 7667 * not the NVM update EMP reset is restricted. 7668 */ 7669 pf->fw_emp_reset_disabled = false; 7670 7671 msleep(ICE_EMP_RESET_SLEEP_MS); 7672 } 7673 7674 err = ice_init_all_ctrlq(hw); 7675 if (err) { 7676 dev_err(dev, "control queues init failed %d\n", err); 7677 goto err_init_ctrlq; 7678 } 7679 7680 /* if DDP was previously loaded successfully */ 7681 if (!ice_is_safe_mode(pf)) { 7682 /* reload the SW DB of filter tables */ 7683 if (reset_type == ICE_RESET_PFR) 7684 ice_fill_blk_tbls(hw); 7685 else 7686 /* Reload DDP Package after CORER/GLOBR reset */ 7687 ice_load_pkg(NULL, pf); 7688 } 7689 7690 err = ice_clear_pf_cfg(hw); 7691 if (err) { 7692 dev_err(dev, "clear PF configuration failed %d\n", err); 7693 goto err_init_ctrlq; 7694 } 7695 7696 ice_clear_pxe_mode(hw); 7697 7698 err = ice_init_nvm(hw); 7699 if (err) { 7700 dev_err(dev, "ice_init_nvm failed %d\n", err); 7701 goto err_init_ctrlq; 7702 } 7703 7704 err = ice_get_caps(hw); 7705 if (err) { 7706 dev_err(dev, "ice_get_caps failed %d\n", err); 7707 goto err_init_ctrlq; 7708 } 7709 7710 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 7711 if (err) { 7712 dev_err(dev, "set_mac_cfg failed %d\n", err); 7713 goto err_init_ctrlq; 7714 } 7715 7716 dvm = ice_is_dvm_ena(hw); 7717 7718 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 7719 if (err) 7720 goto err_init_ctrlq; 7721 7722 err = ice_sched_init_port(hw->port_info); 7723 if (err) 7724 goto err_sched_init_port; 7725 7726 /* start misc vector */ 7727 err = ice_req_irq_msix_misc(pf); 7728 if (err) { 7729 dev_err(dev, "misc vector setup failed: %d\n", err); 7730 goto err_sched_init_port; 7731 } 7732 7733 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7734 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 7735 if (!rd32(hw, PFQF_FD_SIZE)) { 7736 u16 unused, guar, b_effort; 7737 7738 guar = hw->func_caps.fd_fltr_guar; 7739 b_effort = hw->func_caps.fd_fltr_best_effort; 7740 7741 /* force guaranteed filter pool for PF */ 7742 ice_alloc_fd_guar_item(hw, &unused, guar); 7743 /* force shared filter pool for PF */ 7744 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 7745 } 7746 } 7747 7748 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 7749 ice_dcb_rebuild(pf); 7750 7751 /* If the PF previously had enabled PTP, PTP init needs to happen before 7752 * the VSI rebuild. If not, this causes the PTP link status events to 7753 * fail. 7754 */ 7755 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 7756 ice_ptp_rebuild(pf, reset_type); 7757 7758 if (ice_is_feature_supported(pf, ICE_F_GNSS)) 7759 ice_gnss_init(pf); 7760 7761 /* rebuild PF VSI */ 7762 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 7763 if (err) { 7764 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 7765 goto err_vsi_rebuild; 7766 } 7767 7768 if (reset_type == ICE_RESET_PFR) { 7769 err = ice_rebuild_channels(pf); 7770 if (err) { 7771 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 7772 err); 7773 goto err_vsi_rebuild; 7774 } 7775 } 7776 7777 /* If Flow Director is active */ 7778 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 7779 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 7780 if (err) { 7781 dev_err(dev, "control VSI rebuild failed: %d\n", err); 7782 goto err_vsi_rebuild; 7783 } 7784 7785 /* replay HW Flow Director recipes */ 7786 if (hw->fdir_prof) 7787 ice_fdir_replay_flows(hw); 7788 7789 /* replay Flow Director filters */ 7790 ice_fdir_replay_fltrs(pf); 7791 7792 ice_rebuild_arfs(pf); 7793 } 7794 7795 if (vsi && vsi->netdev) 7796 netif_device_attach(vsi->netdev); 7797 7798 ice_update_pf_netdev_link(pf); 7799 7800 /* tell the firmware we are up */ 7801 err = ice_send_version(pf); 7802 if (err) { 7803 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 7804 err); 7805 goto err_vsi_rebuild; 7806 } 7807 7808 ice_replay_post(hw); 7809 7810 /* if we get here, reset flow is successful */ 7811 clear_bit(ICE_RESET_FAILED, pf->state); 7812 7813 ice_health_clear(pf); 7814 7815 ice_plug_aux_dev(pf); 7816 if (ice_is_feature_supported(pf, ICE_F_SRIOV_LAG)) 7817 ice_lag_rebuild(pf); 7818 7819 /* Restore timestamp mode settings after VSI rebuild */ 7820 ice_ptp_restore_timestamp_mode(pf); 7821 return; 7822 7823 err_vsi_rebuild: 7824 err_sched_init_port: 7825 ice_sched_cleanup_all(hw); 7826 err_init_ctrlq: 7827 ice_shutdown_all_ctrlq(hw, false); 7828 set_bit(ICE_RESET_FAILED, pf->state); 7829 clear_recovery: 7830 /* set this bit in PF state to control service task scheduling */ 7831 set_bit(ICE_NEEDS_RESTART, pf->state); 7832 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 7833 } 7834 7835 /** 7836 * ice_change_mtu - NDO callback to change the MTU 7837 * @netdev: network interface device structure 7838 * @new_mtu: new value for maximum frame size 7839 * 7840 * Returns 0 on success, negative on failure 7841 */ 7842 int ice_change_mtu(struct net_device *netdev, int new_mtu) 7843 { 7844 struct ice_netdev_priv *np = netdev_priv(netdev); 7845 struct ice_vsi *vsi = np->vsi; 7846 struct ice_pf *pf = vsi->back; 7847 struct bpf_prog *prog; 7848 u8 count = 0; 7849 int err = 0; 7850 7851 if (new_mtu == (int)netdev->mtu) { 7852 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7853 return 0; 7854 } 7855 7856 prog = vsi->xdp_prog; 7857 if (prog && !prog->aux->xdp_has_frags) { 7858 int frame_size = ice_max_xdp_frame_size(vsi); 7859 7860 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7861 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7862 frame_size - ICE_ETH_PKT_HDR_PAD); 7863 return -EINVAL; 7864 } 7865 } else if (test_bit(ICE_FLAG_LEGACY_RX, pf->flags)) { 7866 if (new_mtu + ICE_ETH_PKT_HDR_PAD > ICE_MAX_FRAME_LEGACY_RX) { 7867 netdev_err(netdev, "Too big MTU for legacy-rx; Max is %d\n", 7868 ICE_MAX_FRAME_LEGACY_RX - ICE_ETH_PKT_HDR_PAD); 7869 return -EINVAL; 7870 } 7871 } 7872 7873 /* if a reset is in progress, wait for some time for it to complete */ 7874 do { 7875 if (ice_is_reset_in_progress(pf->state)) { 7876 count++; 7877 usleep_range(1000, 2000); 7878 } else { 7879 break; 7880 } 7881 7882 } while (count < 100); 7883 7884 if (count == 100) { 7885 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7886 return -EBUSY; 7887 } 7888 7889 WRITE_ONCE(netdev->mtu, (unsigned int)new_mtu); 7890 err = ice_down_up(vsi); 7891 if (err) 7892 return err; 7893 7894 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7895 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags); 7896 7897 return err; 7898 } 7899 7900 /** 7901 * ice_set_rss_lut - Set RSS LUT 7902 * @vsi: Pointer to VSI structure 7903 * @lut: Lookup table 7904 * @lut_size: Lookup table size 7905 * 7906 * Returns 0 on success, negative on failure 7907 */ 7908 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7909 { 7910 struct ice_aq_get_set_rss_lut_params params = {}; 7911 struct ice_hw *hw = &vsi->back->hw; 7912 int status; 7913 7914 if (!lut) 7915 return -EINVAL; 7916 7917 params.vsi_handle = vsi->idx; 7918 params.lut_size = lut_size; 7919 params.lut_type = vsi->rss_lut_type; 7920 params.lut = lut; 7921 7922 status = ice_aq_set_rss_lut(hw, ¶ms); 7923 if (status) 7924 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7925 status, libie_aq_str(hw->adminq.sq_last_status)); 7926 7927 return status; 7928 } 7929 7930 /** 7931 * ice_set_rss_key - Set RSS key 7932 * @vsi: Pointer to the VSI structure 7933 * @seed: RSS hash seed 7934 * 7935 * Returns 0 on success, negative on failure 7936 */ 7937 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7938 { 7939 struct ice_hw *hw = &vsi->back->hw; 7940 int status; 7941 7942 if (!seed) 7943 return -EINVAL; 7944 7945 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7946 if (status) 7947 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7948 status, libie_aq_str(hw->adminq.sq_last_status)); 7949 7950 return status; 7951 } 7952 7953 /** 7954 * ice_get_rss_lut - Get RSS LUT 7955 * @vsi: Pointer to VSI structure 7956 * @lut: Buffer to store the lookup table entries 7957 * @lut_size: Size of buffer to store the lookup table entries 7958 * 7959 * Returns 0 on success, negative on failure 7960 */ 7961 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7962 { 7963 struct ice_aq_get_set_rss_lut_params params = {}; 7964 struct ice_hw *hw = &vsi->back->hw; 7965 int status; 7966 7967 if (!lut) 7968 return -EINVAL; 7969 7970 params.vsi_handle = vsi->idx; 7971 params.lut_size = lut_size; 7972 params.lut_type = vsi->rss_lut_type; 7973 params.lut = lut; 7974 7975 status = ice_aq_get_rss_lut(hw, ¶ms); 7976 if (status) 7977 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7978 status, libie_aq_str(hw->adminq.sq_last_status)); 7979 7980 return status; 7981 } 7982 7983 /** 7984 * ice_get_rss_key - Get RSS key 7985 * @vsi: Pointer to VSI structure 7986 * @seed: Buffer to store the key in 7987 * 7988 * Returns 0 on success, negative on failure 7989 */ 7990 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7991 { 7992 struct ice_hw *hw = &vsi->back->hw; 7993 int status; 7994 7995 if (!seed) 7996 return -EINVAL; 7997 7998 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7999 if (status) 8000 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 8001 status, libie_aq_str(hw->adminq.sq_last_status)); 8002 8003 return status; 8004 } 8005 8006 /** 8007 * ice_set_rss_hfunc - Set RSS HASH function 8008 * @vsi: Pointer to VSI structure 8009 * @hfunc: hash function (ICE_AQ_VSI_Q_OPT_RSS_*) 8010 * 8011 * Returns 0 on success, negative on failure 8012 */ 8013 int ice_set_rss_hfunc(struct ice_vsi *vsi, u8 hfunc) 8014 { 8015 struct ice_hw *hw = &vsi->back->hw; 8016 struct ice_vsi_ctx *ctx; 8017 bool symm; 8018 int err; 8019 8020 if (hfunc == vsi->rss_hfunc) 8021 return 0; 8022 8023 if (hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ && 8024 hfunc != ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ) 8025 return -EOPNOTSUPP; 8026 8027 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 8028 if (!ctx) 8029 return -ENOMEM; 8030 8031 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 8032 ctx->info.q_opt_rss = vsi->info.q_opt_rss; 8033 ctx->info.q_opt_rss &= ~ICE_AQ_VSI_Q_OPT_RSS_HASH_M; 8034 ctx->info.q_opt_rss |= 8035 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hfunc); 8036 ctx->info.q_opt_tc = vsi->info.q_opt_tc; 8037 ctx->info.q_opt_flags = vsi->info.q_opt_rss; 8038 8039 err = ice_update_vsi(hw, vsi->idx, ctx, NULL); 8040 if (err) { 8041 dev_err(ice_pf_to_dev(vsi->back), "Failed to configure RSS hash for VSI %d, error %d\n", 8042 vsi->vsi_num, err); 8043 } else { 8044 vsi->info.q_opt_rss = ctx->info.q_opt_rss; 8045 vsi->rss_hfunc = hfunc; 8046 netdev_info(vsi->netdev, "Hash function set to: %sToeplitz\n", 8047 hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ ? 8048 "Symmetric " : ""); 8049 } 8050 kfree(ctx); 8051 if (err) 8052 return err; 8053 8054 /* Fix the symmetry setting for all existing RSS configurations */ 8055 symm = !!(hfunc == ICE_AQ_VSI_Q_OPT_RSS_HASH_SYM_TPLZ); 8056 return ice_set_rss_cfg_symm(hw, vsi, symm); 8057 } 8058 8059 /** 8060 * ice_bridge_getlink - Get the hardware bridge mode 8061 * @skb: skb buff 8062 * @pid: process ID 8063 * @seq: RTNL message seq 8064 * @dev: the netdev being configured 8065 * @filter_mask: filter mask passed in 8066 * @nlflags: netlink flags passed in 8067 * 8068 * Return the bridge mode (VEB/VEPA) 8069 */ 8070 static int 8071 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 8072 struct net_device *dev, u32 filter_mask, int nlflags) 8073 { 8074 struct ice_netdev_priv *np = netdev_priv(dev); 8075 struct ice_vsi *vsi = np->vsi; 8076 struct ice_pf *pf = vsi->back; 8077 u16 bmode; 8078 8079 bmode = pf->first_sw->bridge_mode; 8080 8081 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 8082 filter_mask, NULL); 8083 } 8084 8085 /** 8086 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 8087 * @vsi: Pointer to VSI structure 8088 * @bmode: Hardware bridge mode (VEB/VEPA) 8089 * 8090 * Returns 0 on success, negative on failure 8091 */ 8092 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 8093 { 8094 struct ice_aqc_vsi_props *vsi_props; 8095 struct ice_hw *hw = &vsi->back->hw; 8096 struct ice_vsi_ctx *ctxt; 8097 int ret; 8098 8099 vsi_props = &vsi->info; 8100 8101 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 8102 if (!ctxt) 8103 return -ENOMEM; 8104 8105 ctxt->info = vsi->info; 8106 8107 if (bmode == BRIDGE_MODE_VEB) 8108 /* change from VEPA to VEB mode */ 8109 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8110 else 8111 /* change from VEB to VEPA mode */ 8112 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 8113 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 8114 8115 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 8116 if (ret) { 8117 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 8118 bmode, ret, libie_aq_str(hw->adminq.sq_last_status)); 8119 goto out; 8120 } 8121 /* Update sw flags for book keeping */ 8122 vsi_props->sw_flags = ctxt->info.sw_flags; 8123 8124 out: 8125 kfree(ctxt); 8126 return ret; 8127 } 8128 8129 /** 8130 * ice_bridge_setlink - Set the hardware bridge mode 8131 * @dev: the netdev being configured 8132 * @nlh: RTNL message 8133 * @flags: bridge setlink flags 8134 * @extack: netlink extended ack 8135 * 8136 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 8137 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 8138 * not already set for all VSIs connected to this switch. And also update the 8139 * unicast switch filter rules for the corresponding switch of the netdev. 8140 */ 8141 static int 8142 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 8143 u16 __always_unused flags, 8144 struct netlink_ext_ack __always_unused *extack) 8145 { 8146 struct ice_netdev_priv *np = netdev_priv(dev); 8147 struct ice_pf *pf = np->vsi->back; 8148 struct nlattr *attr, *br_spec; 8149 struct ice_hw *hw = &pf->hw; 8150 struct ice_sw *pf_sw; 8151 int rem, v, err = 0; 8152 8153 pf_sw = pf->first_sw; 8154 /* find the attribute in the netlink message */ 8155 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 8156 if (!br_spec) 8157 return -EINVAL; 8158 8159 nla_for_each_nested_type(attr, IFLA_BRIDGE_MODE, br_spec, rem) { 8160 __u16 mode = nla_get_u16(attr); 8161 8162 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 8163 return -EINVAL; 8164 /* Continue if bridge mode is not being flipped */ 8165 if (mode == pf_sw->bridge_mode) 8166 continue; 8167 /* Iterates through the PF VSI list and update the loopback 8168 * mode of the VSI 8169 */ 8170 ice_for_each_vsi(pf, v) { 8171 if (!pf->vsi[v]) 8172 continue; 8173 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 8174 if (err) 8175 return err; 8176 } 8177 8178 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 8179 /* Update the unicast switch filter rules for the corresponding 8180 * switch of the netdev 8181 */ 8182 err = ice_update_sw_rule_bridge_mode(hw); 8183 if (err) { 8184 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 8185 mode, err, 8186 libie_aq_str(hw->adminq.sq_last_status)); 8187 /* revert hw->evb_veb */ 8188 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 8189 return err; 8190 } 8191 8192 pf_sw->bridge_mode = mode; 8193 } 8194 8195 return 0; 8196 } 8197 8198 /** 8199 * ice_tx_timeout - Respond to a Tx Hang 8200 * @netdev: network interface device structure 8201 * @txqueue: Tx queue 8202 */ 8203 void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 8204 { 8205 struct ice_netdev_priv *np = netdev_priv(netdev); 8206 struct ice_tx_ring *tx_ring = NULL; 8207 struct ice_vsi *vsi = np->vsi; 8208 struct ice_pf *pf = vsi->back; 8209 u32 i; 8210 8211 pf->tx_timeout_count++; 8212 8213 /* Check if PFC is enabled for the TC to which the queue belongs 8214 * to. If yes then Tx timeout is not caused by a hung queue, no 8215 * need to reset and rebuild 8216 */ 8217 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 8218 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 8219 txqueue); 8220 return; 8221 } 8222 8223 /* now that we have an index, find the tx_ring struct */ 8224 ice_for_each_txq(vsi, i) 8225 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 8226 if (txqueue == vsi->tx_rings[i]->q_index) { 8227 tx_ring = vsi->tx_rings[i]; 8228 break; 8229 } 8230 8231 /* Reset recovery level if enough time has elapsed after last timeout. 8232 * Also ensure no new reset action happens before next timeout period. 8233 */ 8234 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 8235 pf->tx_timeout_recovery_level = 1; 8236 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 8237 netdev->watchdog_timeo))) 8238 return; 8239 8240 if (tx_ring) { 8241 struct ice_hw *hw = &pf->hw; 8242 u32 head, intr = 0; 8243 8244 head = FIELD_GET(QTX_COMM_HEAD_HEAD_M, 8245 rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue]))); 8246 /* Read interrupt register */ 8247 intr = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 8248 8249 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 8250 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 8251 head, tx_ring->next_to_use, intr); 8252 8253 ice_prep_tx_hang_report(pf, tx_ring, vsi->vsi_num, head, intr); 8254 } 8255 8256 pf->tx_timeout_last_recovery = jiffies; 8257 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 8258 pf->tx_timeout_recovery_level, txqueue); 8259 8260 switch (pf->tx_timeout_recovery_level) { 8261 case 1: 8262 set_bit(ICE_PFR_REQ, pf->state); 8263 break; 8264 case 2: 8265 set_bit(ICE_CORER_REQ, pf->state); 8266 break; 8267 case 3: 8268 set_bit(ICE_GLOBR_REQ, pf->state); 8269 break; 8270 default: 8271 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 8272 set_bit(ICE_DOWN, pf->state); 8273 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 8274 set_bit(ICE_SERVICE_DIS, pf->state); 8275 break; 8276 } 8277 8278 ice_service_task_schedule(pf); 8279 pf->tx_timeout_recovery_level++; 8280 } 8281 8282 /** 8283 * ice_setup_tc_cls_flower - flower classifier offloads 8284 * @np: net device to configure 8285 * @filter_dev: device on which filter is added 8286 * @cls_flower: offload data 8287 * @ingress: if the rule is added to an ingress block 8288 * 8289 * Return: 0 if the flower was successfully added or deleted, 8290 * negative error code otherwise. 8291 */ 8292 static int 8293 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 8294 struct net_device *filter_dev, 8295 struct flow_cls_offload *cls_flower, 8296 bool ingress) 8297 { 8298 struct ice_vsi *vsi = np->vsi; 8299 8300 if (cls_flower->common.chain_index) 8301 return -EOPNOTSUPP; 8302 8303 switch (cls_flower->command) { 8304 case FLOW_CLS_REPLACE: 8305 return ice_add_cls_flower(filter_dev, vsi, cls_flower, ingress); 8306 case FLOW_CLS_DESTROY: 8307 return ice_del_cls_flower(vsi, cls_flower); 8308 default: 8309 return -EINVAL; 8310 } 8311 } 8312 8313 /** 8314 * ice_setup_tc_block_cb_ingress - callback handler for ingress TC block 8315 * @type: TC SETUP type 8316 * @type_data: TC flower offload data that contains user input 8317 * @cb_priv: netdev private data 8318 * 8319 * Return: 0 if the setup was successful, negative error code otherwise. 8320 */ 8321 static int 8322 ice_setup_tc_block_cb_ingress(enum tc_setup_type type, void *type_data, 8323 void *cb_priv) 8324 { 8325 struct ice_netdev_priv *np = cb_priv; 8326 8327 switch (type) { 8328 case TC_SETUP_CLSFLOWER: 8329 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8330 type_data, true); 8331 default: 8332 return -EOPNOTSUPP; 8333 } 8334 } 8335 8336 /** 8337 * ice_setup_tc_block_cb_egress - callback handler for egress TC block 8338 * @type: TC SETUP type 8339 * @type_data: TC flower offload data that contains user input 8340 * @cb_priv: netdev private data 8341 * 8342 * Return: 0 if the setup was successful, negative error code otherwise. 8343 */ 8344 static int 8345 ice_setup_tc_block_cb_egress(enum tc_setup_type type, void *type_data, 8346 void *cb_priv) 8347 { 8348 struct ice_netdev_priv *np = cb_priv; 8349 8350 switch (type) { 8351 case TC_SETUP_CLSFLOWER: 8352 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 8353 type_data, false); 8354 default: 8355 return -EOPNOTSUPP; 8356 } 8357 } 8358 8359 /** 8360 * ice_validate_mqprio_qopt - Validate TCF input parameters 8361 * @vsi: Pointer to VSI 8362 * @mqprio_qopt: input parameters for mqprio queue configuration 8363 * 8364 * This function validates MQPRIO params, such as qcount (power of 2 wherever 8365 * needed), and make sure user doesn't specify qcount and BW rate limit 8366 * for TCs, which are more than "num_tc" 8367 */ 8368 static int 8369 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 8370 struct tc_mqprio_qopt_offload *mqprio_qopt) 8371 { 8372 int non_power_of_2_qcount = 0; 8373 struct ice_pf *pf = vsi->back; 8374 int max_rss_q_cnt = 0; 8375 u64 sum_min_rate = 0; 8376 struct device *dev; 8377 int i, speed; 8378 u8 num_tc; 8379 8380 if (vsi->type != ICE_VSI_PF) 8381 return -EINVAL; 8382 8383 if (mqprio_qopt->qopt.offset[0] != 0 || 8384 mqprio_qopt->qopt.num_tc < 1 || 8385 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 8386 return -EINVAL; 8387 8388 dev = ice_pf_to_dev(pf); 8389 vsi->ch_rss_size = 0; 8390 num_tc = mqprio_qopt->qopt.num_tc; 8391 speed = ice_get_link_speed_kbps(vsi); 8392 8393 for (i = 0; num_tc; i++) { 8394 int qcount = mqprio_qopt->qopt.count[i]; 8395 u64 max_rate, min_rate, rem; 8396 8397 if (!qcount) 8398 return -EINVAL; 8399 8400 if (is_power_of_2(qcount)) { 8401 if (non_power_of_2_qcount && 8402 qcount > non_power_of_2_qcount) { 8403 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 8404 qcount, non_power_of_2_qcount); 8405 return -EINVAL; 8406 } 8407 if (qcount > max_rss_q_cnt) 8408 max_rss_q_cnt = qcount; 8409 } else { 8410 if (non_power_of_2_qcount && 8411 qcount != non_power_of_2_qcount) { 8412 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 8413 qcount, non_power_of_2_qcount); 8414 return -EINVAL; 8415 } 8416 if (qcount < max_rss_q_cnt) { 8417 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 8418 qcount, max_rss_q_cnt); 8419 return -EINVAL; 8420 } 8421 max_rss_q_cnt = qcount; 8422 non_power_of_2_qcount = qcount; 8423 } 8424 8425 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 8426 * converts the bandwidth rate limit into Bytes/s when 8427 * passing it down to the driver. So convert input bandwidth 8428 * from Bytes/s to Kbps 8429 */ 8430 max_rate = mqprio_qopt->max_rate[i]; 8431 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 8432 8433 /* min_rate is minimum guaranteed rate and it can't be zero */ 8434 min_rate = mqprio_qopt->min_rate[i]; 8435 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 8436 sum_min_rate += min_rate; 8437 8438 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 8439 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 8440 min_rate, ICE_MIN_BW_LIMIT); 8441 return -EINVAL; 8442 } 8443 8444 if (max_rate && max_rate > speed) { 8445 dev_err(dev, "TC%d: max_rate(%llu Kbps) > link speed of %u Kbps\n", 8446 i, max_rate, speed); 8447 return -EINVAL; 8448 } 8449 8450 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 8451 if (rem) { 8452 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 8453 i, ICE_MIN_BW_LIMIT); 8454 return -EINVAL; 8455 } 8456 8457 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 8458 if (rem) { 8459 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 8460 i, ICE_MIN_BW_LIMIT); 8461 return -EINVAL; 8462 } 8463 8464 /* min_rate can't be more than max_rate, except when max_rate 8465 * is zero (implies max_rate sought is max line rate). In such 8466 * a case min_rate can be more than max. 8467 */ 8468 if (max_rate && min_rate > max_rate) { 8469 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 8470 min_rate, max_rate); 8471 return -EINVAL; 8472 } 8473 8474 if (i >= mqprio_qopt->qopt.num_tc - 1) 8475 break; 8476 if (mqprio_qopt->qopt.offset[i + 1] != 8477 (mqprio_qopt->qopt.offset[i] + qcount)) 8478 return -EINVAL; 8479 } 8480 if (vsi->num_rxq < 8481 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8482 return -EINVAL; 8483 if (vsi->num_txq < 8484 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 8485 return -EINVAL; 8486 8487 if (sum_min_rate && sum_min_rate > (u64)speed) { 8488 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 8489 sum_min_rate, speed); 8490 return -EINVAL; 8491 } 8492 8493 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 8494 vsi->ch_rss_size = max_rss_q_cnt; 8495 8496 return 0; 8497 } 8498 8499 /** 8500 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 8501 * @pf: ptr to PF device 8502 * @vsi: ptr to VSI 8503 */ 8504 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 8505 { 8506 struct device *dev = ice_pf_to_dev(pf); 8507 bool added = false; 8508 struct ice_hw *hw; 8509 int flow; 8510 8511 if (!(vsi->num_gfltr || vsi->num_bfltr)) 8512 return -EINVAL; 8513 8514 hw = &pf->hw; 8515 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 8516 struct ice_fd_hw_prof *prof; 8517 int tun, status; 8518 u64 entry_h; 8519 8520 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 8521 hw->fdir_prof[flow]->cnt)) 8522 continue; 8523 8524 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 8525 enum ice_flow_priority prio; 8526 8527 /* add this VSI to FDir profile for this flow */ 8528 prio = ICE_FLOW_PRIO_NORMAL; 8529 prof = hw->fdir_prof[flow]; 8530 status = ice_flow_add_entry(hw, ICE_BLK_FD, 8531 prof->prof_id[tun], 8532 prof->vsi_h[0], vsi->idx, 8533 prio, prof->fdir_seg[tun], 8534 &entry_h); 8535 if (status) { 8536 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 8537 vsi->idx, flow); 8538 continue; 8539 } 8540 8541 prof->entry_h[prof->cnt][tun] = entry_h; 8542 } 8543 8544 /* store VSI for filter replay and delete */ 8545 prof->vsi_h[prof->cnt] = vsi->idx; 8546 prof->cnt++; 8547 8548 added = true; 8549 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 8550 flow); 8551 } 8552 8553 if (!added) 8554 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 8555 8556 return 0; 8557 } 8558 8559 /** 8560 * ice_add_channel - add a channel by adding VSI 8561 * @pf: ptr to PF device 8562 * @sw_id: underlying HW switching element ID 8563 * @ch: ptr to channel structure 8564 * 8565 * Add a channel (VSI) using add_vsi and queue_map 8566 */ 8567 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 8568 { 8569 struct device *dev = ice_pf_to_dev(pf); 8570 struct ice_vsi *vsi; 8571 8572 if (ch->type != ICE_VSI_CHNL) { 8573 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 8574 return -EINVAL; 8575 } 8576 8577 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 8578 if (!vsi || vsi->type != ICE_VSI_CHNL) { 8579 dev_err(dev, "create chnl VSI failure\n"); 8580 return -EINVAL; 8581 } 8582 8583 ice_add_vsi_to_fdir(pf, vsi); 8584 8585 ch->sw_id = sw_id; 8586 ch->vsi_num = vsi->vsi_num; 8587 ch->info.mapping_flags = vsi->info.mapping_flags; 8588 ch->ch_vsi = vsi; 8589 /* set the back pointer of channel for newly created VSI */ 8590 vsi->ch = ch; 8591 8592 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 8593 sizeof(vsi->info.q_mapping)); 8594 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 8595 sizeof(vsi->info.tc_mapping)); 8596 8597 return 0; 8598 } 8599 8600 /** 8601 * ice_chnl_cfg_res 8602 * @vsi: the VSI being setup 8603 * @ch: ptr to channel structure 8604 * 8605 * Configure channel specific resources such as rings, vector. 8606 */ 8607 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 8608 { 8609 int i; 8610 8611 for (i = 0; i < ch->num_txq; i++) { 8612 struct ice_q_vector *tx_q_vector, *rx_q_vector; 8613 struct ice_ring_container *rc; 8614 struct ice_tx_ring *tx_ring; 8615 struct ice_rx_ring *rx_ring; 8616 8617 tx_ring = vsi->tx_rings[ch->base_q + i]; 8618 rx_ring = vsi->rx_rings[ch->base_q + i]; 8619 if (!tx_ring || !rx_ring) 8620 continue; 8621 8622 /* setup ring being channel enabled */ 8623 tx_ring->ch = ch; 8624 rx_ring->ch = ch; 8625 8626 /* following code block sets up vector specific attributes */ 8627 tx_q_vector = tx_ring->q_vector; 8628 rx_q_vector = rx_ring->q_vector; 8629 if (!tx_q_vector && !rx_q_vector) 8630 continue; 8631 8632 if (tx_q_vector) { 8633 tx_q_vector->ch = ch; 8634 /* setup Tx and Rx ITR setting if DIM is off */ 8635 rc = &tx_q_vector->tx; 8636 if (!ITR_IS_DYNAMIC(rc)) 8637 ice_write_itr(rc, rc->itr_setting); 8638 } 8639 if (rx_q_vector) { 8640 rx_q_vector->ch = ch; 8641 /* setup Tx and Rx ITR setting if DIM is off */ 8642 rc = &rx_q_vector->rx; 8643 if (!ITR_IS_DYNAMIC(rc)) 8644 ice_write_itr(rc, rc->itr_setting); 8645 } 8646 } 8647 8648 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 8649 * GLINT_ITR register would have written to perform in-context 8650 * update, hence perform flush 8651 */ 8652 if (ch->num_txq || ch->num_rxq) 8653 ice_flush(&vsi->back->hw); 8654 } 8655 8656 /** 8657 * ice_cfg_chnl_all_res - configure channel resources 8658 * @vsi: pte to main_vsi 8659 * @ch: ptr to channel structure 8660 * 8661 * This function configures channel specific resources such as flow-director 8662 * counter index, and other resources such as queues, vectors, ITR settings 8663 */ 8664 static void 8665 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 8666 { 8667 /* configure channel (aka ADQ) resources such as queues, vectors, 8668 * ITR settings for channel specific vectors and anything else 8669 */ 8670 ice_chnl_cfg_res(vsi, ch); 8671 } 8672 8673 /** 8674 * ice_setup_hw_channel - setup new channel 8675 * @pf: ptr to PF device 8676 * @vsi: the VSI being setup 8677 * @ch: ptr to channel structure 8678 * @sw_id: underlying HW switching element ID 8679 * @type: type of channel to be created (VMDq2/VF) 8680 * 8681 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8682 * and configures Tx rings accordingly 8683 */ 8684 static int 8685 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8686 struct ice_channel *ch, u16 sw_id, u8 type) 8687 { 8688 struct device *dev = ice_pf_to_dev(pf); 8689 int ret; 8690 8691 ch->base_q = vsi->next_base_q; 8692 ch->type = type; 8693 8694 ret = ice_add_channel(pf, sw_id, ch); 8695 if (ret) { 8696 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 8697 return ret; 8698 } 8699 8700 /* configure/setup ADQ specific resources */ 8701 ice_cfg_chnl_all_res(vsi, ch); 8702 8703 /* make sure to update the next_base_q so that subsequent channel's 8704 * (aka ADQ) VSI queue map is correct 8705 */ 8706 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 8707 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 8708 ch->num_rxq); 8709 8710 return 0; 8711 } 8712 8713 /** 8714 * ice_setup_channel - setup new channel using uplink element 8715 * @pf: ptr to PF device 8716 * @vsi: the VSI being setup 8717 * @ch: ptr to channel structure 8718 * 8719 * Setup new channel (VSI) based on specified type (VMDq2/VF) 8720 * and uplink switching element 8721 */ 8722 static bool 8723 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 8724 struct ice_channel *ch) 8725 { 8726 struct device *dev = ice_pf_to_dev(pf); 8727 u16 sw_id; 8728 int ret; 8729 8730 if (vsi->type != ICE_VSI_PF) { 8731 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 8732 return false; 8733 } 8734 8735 sw_id = pf->first_sw->sw_id; 8736 8737 /* create channel (VSI) */ 8738 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 8739 if (ret) { 8740 dev_err(dev, "failed to setup hw_channel\n"); 8741 return false; 8742 } 8743 dev_dbg(dev, "successfully created channel()\n"); 8744 8745 return ch->ch_vsi ? true : false; 8746 } 8747 8748 /** 8749 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 8750 * @vsi: VSI to be configured 8751 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 8752 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 8753 */ 8754 static int 8755 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 8756 { 8757 int err; 8758 8759 err = ice_set_min_bw_limit(vsi, min_tx_rate); 8760 if (err) 8761 return err; 8762 8763 return ice_set_max_bw_limit(vsi, max_tx_rate); 8764 } 8765 8766 /** 8767 * ice_create_q_channel - function to create channel 8768 * @vsi: VSI to be configured 8769 * @ch: ptr to channel (it contains channel specific params) 8770 * 8771 * This function creates channel (VSI) using num_queues specified by user, 8772 * reconfigs RSS if needed. 8773 */ 8774 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 8775 { 8776 struct ice_pf *pf = vsi->back; 8777 struct device *dev; 8778 8779 if (!ch) 8780 return -EINVAL; 8781 8782 dev = ice_pf_to_dev(pf); 8783 if (!ch->num_txq || !ch->num_rxq) { 8784 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 8785 return -EINVAL; 8786 } 8787 8788 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 8789 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 8790 vsi->cnt_q_avail, ch->num_txq); 8791 return -EINVAL; 8792 } 8793 8794 if (!ice_setup_channel(pf, vsi, ch)) { 8795 dev_info(dev, "Failed to setup channel\n"); 8796 return -EINVAL; 8797 } 8798 /* configure BW rate limit */ 8799 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 8800 int ret; 8801 8802 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 8803 ch->min_tx_rate); 8804 if (ret) 8805 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 8806 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8807 else 8808 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 8809 ch->max_tx_rate, ch->ch_vsi->vsi_num); 8810 } 8811 8812 vsi->cnt_q_avail -= ch->num_txq; 8813 8814 return 0; 8815 } 8816 8817 /** 8818 * ice_rem_all_chnl_fltrs - removes all channel filters 8819 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 8820 * 8821 * Remove all advanced switch filters only if they are channel specific 8822 * tc-flower based filter 8823 */ 8824 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 8825 { 8826 struct ice_tc_flower_fltr *fltr; 8827 struct hlist_node *node; 8828 8829 /* to remove all channel filters, iterate an ordered list of filters */ 8830 hlist_for_each_entry_safe(fltr, node, 8831 &pf->tc_flower_fltr_list, 8832 tc_flower_node) { 8833 struct ice_rule_query_data rule; 8834 int status; 8835 8836 /* for now process only channel specific filters */ 8837 if (!ice_is_chnl_fltr(fltr)) 8838 continue; 8839 8840 rule.rid = fltr->rid; 8841 rule.rule_id = fltr->rule_id; 8842 rule.vsi_handle = fltr->dest_vsi_handle; 8843 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8844 if (status) { 8845 if (status == -ENOENT) 8846 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8847 rule.rule_id); 8848 else 8849 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8850 status); 8851 } else if (fltr->dest_vsi) { 8852 /* update advanced switch filter count */ 8853 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8854 u32 flags = fltr->flags; 8855 8856 fltr->dest_vsi->num_chnl_fltr--; 8857 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8858 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8859 pf->num_dmac_chnl_fltrs--; 8860 } 8861 } 8862 8863 hlist_del(&fltr->tc_flower_node); 8864 kfree(fltr); 8865 } 8866 } 8867 8868 /** 8869 * ice_remove_q_channels - Remove queue channels for the TCs 8870 * @vsi: VSI to be configured 8871 * @rem_fltr: delete advanced switch filter or not 8872 * 8873 * Remove queue channels for the TCs 8874 */ 8875 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8876 { 8877 struct ice_channel *ch, *ch_tmp; 8878 struct ice_pf *pf = vsi->back; 8879 int i; 8880 8881 /* remove all tc-flower based filter if they are channel filters only */ 8882 if (rem_fltr) 8883 ice_rem_all_chnl_fltrs(pf); 8884 8885 /* remove ntuple filters since queue configuration is being changed */ 8886 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8887 struct ice_hw *hw = &pf->hw; 8888 8889 mutex_lock(&hw->fdir_fltr_lock); 8890 ice_fdir_del_all_fltrs(vsi); 8891 mutex_unlock(&hw->fdir_fltr_lock); 8892 } 8893 8894 /* perform cleanup for channels if they exist */ 8895 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8896 struct ice_vsi *ch_vsi; 8897 8898 list_del(&ch->list); 8899 ch_vsi = ch->ch_vsi; 8900 if (!ch_vsi) { 8901 kfree(ch); 8902 continue; 8903 } 8904 8905 /* Reset queue contexts */ 8906 for (i = 0; i < ch->num_rxq; i++) { 8907 struct ice_tx_ring *tx_ring; 8908 struct ice_rx_ring *rx_ring; 8909 8910 tx_ring = vsi->tx_rings[ch->base_q + i]; 8911 rx_ring = vsi->rx_rings[ch->base_q + i]; 8912 if (tx_ring) { 8913 tx_ring->ch = NULL; 8914 if (tx_ring->q_vector) 8915 tx_ring->q_vector->ch = NULL; 8916 } 8917 if (rx_ring) { 8918 rx_ring->ch = NULL; 8919 if (rx_ring->q_vector) 8920 rx_ring->q_vector->ch = NULL; 8921 } 8922 } 8923 8924 /* Release FD resources for the channel VSI */ 8925 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8926 8927 /* clear the VSI from scheduler tree */ 8928 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8929 8930 /* Delete VSI from FW, PF and HW VSI arrays */ 8931 ice_vsi_delete(ch->ch_vsi); 8932 8933 /* free the channel */ 8934 kfree(ch); 8935 } 8936 8937 /* clear the channel VSI map which is stored in main VSI */ 8938 ice_for_each_chnl_tc(i) 8939 vsi->tc_map_vsi[i] = NULL; 8940 8941 /* reset main VSI's all TC information */ 8942 vsi->all_enatc = 0; 8943 vsi->all_numtc = 0; 8944 } 8945 8946 /** 8947 * ice_rebuild_channels - rebuild channel 8948 * @pf: ptr to PF 8949 * 8950 * Recreate channel VSIs and replay filters 8951 */ 8952 static int ice_rebuild_channels(struct ice_pf *pf) 8953 { 8954 struct device *dev = ice_pf_to_dev(pf); 8955 struct ice_vsi *main_vsi; 8956 bool rem_adv_fltr = true; 8957 struct ice_channel *ch; 8958 struct ice_vsi *vsi; 8959 int tc_idx = 1; 8960 int i, err; 8961 8962 main_vsi = ice_get_main_vsi(pf); 8963 if (!main_vsi) 8964 return 0; 8965 8966 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8967 main_vsi->old_numtc == 1) 8968 return 0; /* nothing to be done */ 8969 8970 /* reconfigure main VSI based on old value of TC and cached values 8971 * for MQPRIO opts 8972 */ 8973 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8974 if (err) { 8975 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8976 main_vsi->old_ena_tc, main_vsi->vsi_num); 8977 return err; 8978 } 8979 8980 /* rebuild ADQ VSIs */ 8981 ice_for_each_vsi(pf, i) { 8982 enum ice_vsi_type type; 8983 8984 vsi = pf->vsi[i]; 8985 if (!vsi || vsi->type != ICE_VSI_CHNL) 8986 continue; 8987 8988 type = vsi->type; 8989 8990 /* rebuild ADQ VSI */ 8991 err = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_INIT); 8992 if (err) { 8993 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8994 ice_vsi_type_str(type), vsi->idx, err); 8995 goto cleanup; 8996 } 8997 8998 /* Re-map HW VSI number, using VSI handle that has been 8999 * previously validated in ice_replay_vsi() call above 9000 */ 9001 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 9002 9003 /* replay filters for the VSI */ 9004 err = ice_replay_vsi(&pf->hw, vsi->idx); 9005 if (err) { 9006 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 9007 ice_vsi_type_str(type), err, vsi->idx); 9008 rem_adv_fltr = false; 9009 goto cleanup; 9010 } 9011 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 9012 ice_vsi_type_str(type), vsi->idx); 9013 9014 /* store ADQ VSI at correct TC index in main VSI's 9015 * map of TC to VSI 9016 */ 9017 main_vsi->tc_map_vsi[tc_idx++] = vsi; 9018 } 9019 9020 /* ADQ VSI(s) has been rebuilt successfully, so setup 9021 * channel for main VSI's Tx and Rx rings 9022 */ 9023 list_for_each_entry(ch, &main_vsi->ch_list, list) { 9024 struct ice_vsi *ch_vsi; 9025 9026 ch_vsi = ch->ch_vsi; 9027 if (!ch_vsi) 9028 continue; 9029 9030 /* reconfig channel resources */ 9031 ice_cfg_chnl_all_res(main_vsi, ch); 9032 9033 /* replay BW rate limit if it is non-zero */ 9034 if (!ch->max_tx_rate && !ch->min_tx_rate) 9035 continue; 9036 9037 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 9038 ch->min_tx_rate); 9039 if (err) 9040 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9041 err, ch->max_tx_rate, ch->min_tx_rate, 9042 ch_vsi->vsi_num); 9043 else 9044 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 9045 ch->max_tx_rate, ch->min_tx_rate, 9046 ch_vsi->vsi_num); 9047 } 9048 9049 /* reconfig RSS for main VSI */ 9050 if (main_vsi->ch_rss_size) 9051 ice_vsi_cfg_rss_lut_key(main_vsi); 9052 9053 return 0; 9054 9055 cleanup: 9056 ice_remove_q_channels(main_vsi, rem_adv_fltr); 9057 return err; 9058 } 9059 9060 /** 9061 * ice_create_q_channels - Add queue channel for the given TCs 9062 * @vsi: VSI to be configured 9063 * 9064 * Configures queue channel mapping to the given TCs 9065 */ 9066 static int ice_create_q_channels(struct ice_vsi *vsi) 9067 { 9068 struct ice_pf *pf = vsi->back; 9069 struct ice_channel *ch; 9070 int ret = 0, i; 9071 9072 ice_for_each_chnl_tc(i) { 9073 if (!(vsi->all_enatc & BIT(i))) 9074 continue; 9075 9076 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 9077 if (!ch) { 9078 ret = -ENOMEM; 9079 goto err_free; 9080 } 9081 INIT_LIST_HEAD(&ch->list); 9082 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 9083 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 9084 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 9085 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 9086 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 9087 9088 /* convert to Kbits/s */ 9089 if (ch->max_tx_rate) 9090 ch->max_tx_rate = div_u64(ch->max_tx_rate, 9091 ICE_BW_KBPS_DIVISOR); 9092 if (ch->min_tx_rate) 9093 ch->min_tx_rate = div_u64(ch->min_tx_rate, 9094 ICE_BW_KBPS_DIVISOR); 9095 9096 ret = ice_create_q_channel(vsi, ch); 9097 if (ret) { 9098 dev_err(ice_pf_to_dev(pf), 9099 "failed creating channel TC:%d\n", i); 9100 kfree(ch); 9101 goto err_free; 9102 } 9103 list_add_tail(&ch->list, &vsi->ch_list); 9104 vsi->tc_map_vsi[i] = ch->ch_vsi; 9105 dev_dbg(ice_pf_to_dev(pf), 9106 "successfully created channel: VSI %p\n", ch->ch_vsi); 9107 } 9108 return 0; 9109 9110 err_free: 9111 ice_remove_q_channels(vsi, false); 9112 9113 return ret; 9114 } 9115 9116 /** 9117 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 9118 * @netdev: net device to configure 9119 * @type_data: TC offload data 9120 */ 9121 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 9122 { 9123 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 9124 struct ice_netdev_priv *np = netdev_priv(netdev); 9125 struct ice_vsi *vsi = np->vsi; 9126 struct ice_pf *pf = vsi->back; 9127 u16 mode, ena_tc_qdisc = 0; 9128 int cur_txq, cur_rxq; 9129 u8 hw = 0, num_tcf; 9130 struct device *dev; 9131 int ret, i; 9132 9133 dev = ice_pf_to_dev(pf); 9134 num_tcf = mqprio_qopt->qopt.num_tc; 9135 hw = mqprio_qopt->qopt.hw; 9136 mode = mqprio_qopt->mode; 9137 if (!hw) { 9138 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9139 vsi->ch_rss_size = 0; 9140 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9141 goto config_tcf; 9142 } 9143 9144 /* Generate queue region map for number of TCF requested */ 9145 for (i = 0; i < num_tcf; i++) 9146 ena_tc_qdisc |= BIT(i); 9147 9148 switch (mode) { 9149 case TC_MQPRIO_MODE_CHANNEL: 9150 9151 if (pf->hw.port_info->is_custom_tx_enabled) { 9152 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n"); 9153 return -EBUSY; 9154 } 9155 ice_tear_down_devlink_rate_tree(pf); 9156 9157 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 9158 if (ret) { 9159 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 9160 ret); 9161 return ret; 9162 } 9163 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 9164 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 9165 /* don't assume state of hw_tc_offload during driver load 9166 * and set the flag for TC flower filter if hw_tc_offload 9167 * already ON 9168 */ 9169 if (vsi->netdev->features & NETIF_F_HW_TC) 9170 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 9171 break; 9172 default: 9173 return -EINVAL; 9174 } 9175 9176 config_tcf: 9177 9178 /* Requesting same TCF configuration as already enabled */ 9179 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 9180 mode != TC_MQPRIO_MODE_CHANNEL) 9181 return 0; 9182 9183 /* Pause VSI queues */ 9184 ice_dis_vsi(vsi, true); 9185 9186 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 9187 ice_remove_q_channels(vsi, true); 9188 9189 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9190 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 9191 num_online_cpus()); 9192 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 9193 num_online_cpus()); 9194 } else { 9195 /* logic to rebuild VSI, same like ethtool -L */ 9196 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 9197 9198 for (i = 0; i < num_tcf; i++) { 9199 if (!(ena_tc_qdisc & BIT(i))) 9200 continue; 9201 9202 offset = vsi->mqprio_qopt.qopt.offset[i]; 9203 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 9204 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 9205 } 9206 vsi->req_txq = offset + qcount_tx; 9207 vsi->req_rxq = offset + qcount_rx; 9208 9209 /* store away original rss_size info, so that it gets reused 9210 * form ice_vsi_rebuild during tc-qdisc delete stage - to 9211 * determine, what should be the rss_sizefor main VSI 9212 */ 9213 vsi->orig_rss_size = vsi->rss_size; 9214 } 9215 9216 /* save current values of Tx and Rx queues before calling VSI rebuild 9217 * for fallback option 9218 */ 9219 cur_txq = vsi->num_txq; 9220 cur_rxq = vsi->num_rxq; 9221 9222 /* proceed with rebuild main VSI using correct number of queues */ 9223 ret = ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT); 9224 if (ret) { 9225 /* fallback to current number of queues */ 9226 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 9227 vsi->req_txq = cur_txq; 9228 vsi->req_rxq = cur_rxq; 9229 clear_bit(ICE_RESET_FAILED, pf->state); 9230 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) { 9231 dev_err(dev, "Rebuild of main VSI failed again\n"); 9232 return ret; 9233 } 9234 } 9235 9236 vsi->all_numtc = num_tcf; 9237 vsi->all_enatc = ena_tc_qdisc; 9238 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 9239 if (ret) { 9240 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 9241 vsi->vsi_num); 9242 goto exit; 9243 } 9244 9245 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 9246 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 9247 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 9248 9249 /* set TC0 rate limit if specified */ 9250 if (max_tx_rate || min_tx_rate) { 9251 /* convert to Kbits/s */ 9252 if (max_tx_rate) 9253 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 9254 if (min_tx_rate) 9255 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 9256 9257 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 9258 if (!ret) { 9259 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 9260 max_tx_rate, min_tx_rate, vsi->vsi_num); 9261 } else { 9262 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 9263 max_tx_rate, min_tx_rate, vsi->vsi_num); 9264 goto exit; 9265 } 9266 } 9267 ret = ice_create_q_channels(vsi); 9268 if (ret) { 9269 netdev_err(netdev, "failed configuring queue channels\n"); 9270 goto exit; 9271 } else { 9272 netdev_dbg(netdev, "successfully configured channels\n"); 9273 } 9274 } 9275 9276 if (vsi->ch_rss_size) 9277 ice_vsi_cfg_rss_lut_key(vsi); 9278 9279 exit: 9280 /* if error, reset the all_numtc and all_enatc */ 9281 if (ret) { 9282 vsi->all_numtc = 0; 9283 vsi->all_enatc = 0; 9284 } 9285 /* resume VSI */ 9286 ice_ena_vsi(vsi, true); 9287 9288 return ret; 9289 } 9290 9291 /** 9292 * ice_cfg_txtime - configure Tx Time for the Tx ring 9293 * @tx_ring: pointer to the Tx ring structure 9294 * 9295 * Return: 0 on success, negative value on failure. 9296 */ 9297 static int ice_cfg_txtime(struct ice_tx_ring *tx_ring) 9298 { 9299 int err, timeout = 50; 9300 struct ice_vsi *vsi; 9301 struct device *dev; 9302 struct ice_pf *pf; 9303 u32 queue; 9304 9305 if (!tx_ring) 9306 return -EINVAL; 9307 9308 vsi = tx_ring->vsi; 9309 pf = vsi->back; 9310 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 9311 timeout--; 9312 if (!timeout) 9313 return -EBUSY; 9314 usleep_range(1000, 2000); 9315 } 9316 9317 queue = tx_ring->q_index; 9318 dev = ice_pf_to_dev(pf); 9319 9320 /* Ignore return value, and always attempt to enable queue. */ 9321 ice_qp_dis(vsi, queue); 9322 9323 err = ice_qp_ena(vsi, queue); 9324 if (err) 9325 dev_err(dev, "Failed to enable Tx queue %d for TxTime configuration\n", 9326 queue); 9327 9328 clear_bit(ICE_CFG_BUSY, pf->state); 9329 return err; 9330 } 9331 9332 /** 9333 * ice_offload_txtime - set earliest TxTime first 9334 * @netdev: network interface device structure 9335 * @qopt_off: etf queue option offload from the skb to set 9336 * 9337 * Return: 0 on success, negative value on failure. 9338 */ 9339 static int ice_offload_txtime(struct net_device *netdev, 9340 void *qopt_off) 9341 { 9342 struct ice_netdev_priv *np = netdev_priv(netdev); 9343 struct ice_pf *pf = np->vsi->back; 9344 struct tc_etf_qopt_offload *qopt; 9345 struct ice_vsi *vsi = np->vsi; 9346 struct ice_tx_ring *tx_ring; 9347 int ret = 0; 9348 9349 if (!ice_is_feature_supported(pf, ICE_F_TXTIME)) 9350 return -EOPNOTSUPP; 9351 9352 qopt = qopt_off; 9353 if (!qopt_off || qopt->queue < 0 || qopt->queue >= vsi->num_txq) 9354 return -EINVAL; 9355 9356 if (qopt->enable) 9357 set_bit(qopt->queue, pf->txtime_txqs); 9358 else 9359 clear_bit(qopt->queue, pf->txtime_txqs); 9360 9361 if (netif_running(vsi->netdev)) { 9362 tx_ring = vsi->tx_rings[qopt->queue]; 9363 ret = ice_cfg_txtime(tx_ring); 9364 if (ret) 9365 goto err; 9366 } 9367 9368 netdev_info(netdev, "%s TxTime on queue: %i\n", 9369 str_enable_disable(qopt->enable), qopt->queue); 9370 return 0; 9371 9372 err: 9373 netdev_err(netdev, "Failed to %s TxTime on queue: %i\n", 9374 str_enable_disable(qopt->enable), qopt->queue); 9375 9376 if (qopt->enable) 9377 clear_bit(qopt->queue, pf->txtime_txqs); 9378 return ret; 9379 } 9380 9381 static LIST_HEAD(ice_block_cb_list); 9382 9383 static int 9384 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 9385 void *type_data) 9386 { 9387 struct ice_netdev_priv *np = netdev_priv(netdev); 9388 enum flow_block_binder_type binder_type; 9389 struct iidc_rdma_core_dev_info *cdev; 9390 struct ice_pf *pf = np->vsi->back; 9391 flow_setup_cb_t *flower_handler; 9392 bool locked = false; 9393 int err; 9394 9395 switch (type) { 9396 case TC_SETUP_BLOCK: 9397 binder_type = 9398 ((struct flow_block_offload *)type_data)->binder_type; 9399 9400 switch (binder_type) { 9401 case FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS: 9402 flower_handler = ice_setup_tc_block_cb_ingress; 9403 break; 9404 case FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS: 9405 flower_handler = ice_setup_tc_block_cb_egress; 9406 break; 9407 default: 9408 return -EOPNOTSUPP; 9409 } 9410 9411 return flow_block_cb_setup_simple(type_data, 9412 &ice_block_cb_list, 9413 flower_handler, 9414 np, np, false); 9415 case TC_SETUP_QDISC_MQPRIO: 9416 if (ice_is_eswitch_mode_switchdev(pf)) { 9417 netdev_err(netdev, "TC MQPRIO offload not supported, switchdev is enabled\n"); 9418 return -EOPNOTSUPP; 9419 } 9420 9421 cdev = pf->cdev_info; 9422 if (cdev && cdev->adev) { 9423 mutex_lock(&pf->adev_mutex); 9424 device_lock(&cdev->adev->dev); 9425 locked = true; 9426 if (cdev->adev->dev.driver) { 9427 netdev_err(netdev, "Cannot change qdisc when RDMA is active\n"); 9428 err = -EBUSY; 9429 goto adev_unlock; 9430 } 9431 } 9432 9433 /* setup traffic classifier for receive side */ 9434 mutex_lock(&pf->tc_mutex); 9435 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 9436 mutex_unlock(&pf->tc_mutex); 9437 9438 adev_unlock: 9439 if (locked) { 9440 device_unlock(&cdev->adev->dev); 9441 mutex_unlock(&pf->adev_mutex); 9442 } 9443 return err; 9444 case TC_SETUP_QDISC_ETF: 9445 return ice_offload_txtime(netdev, type_data); 9446 default: 9447 return -EOPNOTSUPP; 9448 } 9449 return -EOPNOTSUPP; 9450 } 9451 9452 static struct ice_indr_block_priv * 9453 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 9454 struct net_device *netdev) 9455 { 9456 struct ice_indr_block_priv *cb_priv; 9457 9458 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 9459 if (!cb_priv->netdev) 9460 return NULL; 9461 if (cb_priv->netdev == netdev) 9462 return cb_priv; 9463 } 9464 return NULL; 9465 } 9466 9467 static int 9468 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 9469 void *indr_priv) 9470 { 9471 struct ice_indr_block_priv *priv = indr_priv; 9472 struct ice_netdev_priv *np = priv->np; 9473 9474 switch (type) { 9475 case TC_SETUP_CLSFLOWER: 9476 return ice_setup_tc_cls_flower(np, priv->netdev, 9477 (struct flow_cls_offload *) 9478 type_data, false); 9479 default: 9480 return -EOPNOTSUPP; 9481 } 9482 } 9483 9484 static int 9485 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 9486 struct ice_netdev_priv *np, 9487 struct flow_block_offload *f, void *data, 9488 void (*cleanup)(struct flow_block_cb *block_cb)) 9489 { 9490 struct ice_indr_block_priv *indr_priv; 9491 struct flow_block_cb *block_cb; 9492 9493 if (!ice_is_tunnel_supported(netdev) && 9494 !(is_vlan_dev(netdev) && 9495 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 9496 return -EOPNOTSUPP; 9497 9498 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 9499 return -EOPNOTSUPP; 9500 9501 switch (f->command) { 9502 case FLOW_BLOCK_BIND: 9503 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9504 if (indr_priv) 9505 return -EEXIST; 9506 9507 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 9508 if (!indr_priv) 9509 return -ENOMEM; 9510 9511 indr_priv->netdev = netdev; 9512 indr_priv->np = np; 9513 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 9514 9515 block_cb = 9516 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 9517 indr_priv, indr_priv, 9518 ice_rep_indr_tc_block_unbind, 9519 f, netdev, sch, data, np, 9520 cleanup); 9521 9522 if (IS_ERR(block_cb)) { 9523 list_del(&indr_priv->list); 9524 kfree(indr_priv); 9525 return PTR_ERR(block_cb); 9526 } 9527 flow_block_cb_add(block_cb, f); 9528 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 9529 break; 9530 case FLOW_BLOCK_UNBIND: 9531 indr_priv = ice_indr_block_priv_lookup(np, netdev); 9532 if (!indr_priv) 9533 return -ENOENT; 9534 9535 block_cb = flow_block_cb_lookup(f->block, 9536 ice_indr_setup_block_cb, 9537 indr_priv); 9538 if (!block_cb) 9539 return -ENOENT; 9540 9541 flow_indr_block_cb_remove(block_cb, f); 9542 9543 list_del(&block_cb->driver_list); 9544 break; 9545 default: 9546 return -EOPNOTSUPP; 9547 } 9548 return 0; 9549 } 9550 9551 static int 9552 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 9553 void *cb_priv, enum tc_setup_type type, void *type_data, 9554 void *data, 9555 void (*cleanup)(struct flow_block_cb *block_cb)) 9556 { 9557 switch (type) { 9558 case TC_SETUP_BLOCK: 9559 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 9560 data, cleanup); 9561 9562 default: 9563 return -EOPNOTSUPP; 9564 } 9565 } 9566 9567 /** 9568 * ice_open - Called when a network interface becomes active 9569 * @netdev: network interface device structure 9570 * 9571 * The open entry point is called when a network interface is made 9572 * active by the system (IFF_UP). At this point all resources needed 9573 * for transmit and receive operations are allocated, the interrupt 9574 * handler is registered with the OS, the netdev watchdog is enabled, 9575 * and the stack is notified that the interface is ready. 9576 * 9577 * Returns 0 on success, negative value on failure 9578 */ 9579 int ice_open(struct net_device *netdev) 9580 { 9581 struct ice_netdev_priv *np = netdev_priv(netdev); 9582 struct ice_pf *pf = np->vsi->back; 9583 9584 if (ice_is_reset_in_progress(pf->state)) { 9585 netdev_err(netdev, "can't open net device while reset is in progress"); 9586 return -EBUSY; 9587 } 9588 9589 return ice_open_internal(netdev); 9590 } 9591 9592 /** 9593 * ice_open_internal - Called when a network interface becomes active 9594 * @netdev: network interface device structure 9595 * 9596 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 9597 * handling routine 9598 * 9599 * Returns 0 on success, negative value on failure 9600 */ 9601 int ice_open_internal(struct net_device *netdev) 9602 { 9603 struct ice_netdev_priv *np = netdev_priv(netdev); 9604 struct ice_vsi *vsi = np->vsi; 9605 struct ice_pf *pf = vsi->back; 9606 struct ice_port_info *pi; 9607 int err; 9608 9609 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 9610 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 9611 return -EIO; 9612 } 9613 9614 netif_carrier_off(netdev); 9615 9616 pi = vsi->port_info; 9617 err = ice_update_link_info(pi); 9618 if (err) { 9619 netdev_err(netdev, "Failed to get link info, error %d\n", err); 9620 return err; 9621 } 9622 9623 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 9624 9625 /* Set PHY if there is media, otherwise, turn off PHY */ 9626 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 9627 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9628 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 9629 err = ice_init_phy_user_cfg(pi); 9630 if (err) { 9631 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 9632 err); 9633 return err; 9634 } 9635 } 9636 9637 err = ice_configure_phy(vsi); 9638 if (err) { 9639 netdev_err(netdev, "Failed to set physical link up, error %d\n", 9640 err); 9641 return err; 9642 } 9643 } else { 9644 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 9645 ice_set_link(vsi, false); 9646 } 9647 9648 err = ice_vsi_open(vsi); 9649 if (err) 9650 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 9651 vsi->vsi_num, vsi->vsw->sw_id); 9652 9653 /* Update existing tunnels information */ 9654 udp_tunnel_get_rx_info(netdev); 9655 9656 return err; 9657 } 9658 9659 /** 9660 * ice_stop - Disables a network interface 9661 * @netdev: network interface device structure 9662 * 9663 * The stop entry point is called when an interface is de-activated by the OS, 9664 * and the netdevice enters the DOWN state. The hardware is still under the 9665 * driver's control, but the netdev interface is disabled. 9666 * 9667 * Returns success only - not allowed to fail 9668 */ 9669 int ice_stop(struct net_device *netdev) 9670 { 9671 struct ice_netdev_priv *np = netdev_priv(netdev); 9672 struct ice_vsi *vsi = np->vsi; 9673 struct ice_pf *pf = vsi->back; 9674 9675 if (ice_is_reset_in_progress(pf->state)) { 9676 netdev_err(netdev, "can't stop net device while reset is in progress"); 9677 return -EBUSY; 9678 } 9679 9680 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 9681 int link_err = ice_force_phys_link_state(vsi, false); 9682 9683 if (link_err) { 9684 if (link_err == -ENOMEDIUM) 9685 netdev_info(vsi->netdev, "Skipping link reconfig - no media attached, VSI %d\n", 9686 vsi->vsi_num); 9687 else 9688 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 9689 vsi->vsi_num, link_err); 9690 9691 ice_vsi_close(vsi); 9692 return -EIO; 9693 } 9694 } 9695 9696 ice_vsi_close(vsi); 9697 9698 return 0; 9699 } 9700 9701 /** 9702 * ice_features_check - Validate encapsulated packet conforms to limits 9703 * @skb: skb buffer 9704 * @netdev: This port's netdev 9705 * @features: Offload features that the stack believes apply 9706 */ 9707 static netdev_features_t 9708 ice_features_check(struct sk_buff *skb, 9709 struct net_device __always_unused *netdev, 9710 netdev_features_t features) 9711 { 9712 bool gso = skb_is_gso(skb); 9713 size_t len; 9714 9715 /* No point in doing any of this if neither checksum nor GSO are 9716 * being requested for this frame. We can rule out both by just 9717 * checking for CHECKSUM_PARTIAL 9718 */ 9719 if (skb->ip_summed != CHECKSUM_PARTIAL) 9720 return features; 9721 9722 /* We cannot support GSO if the MSS is going to be less than 9723 * 64 bytes. If it is then we need to drop support for GSO. 9724 */ 9725 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 9726 features &= ~NETIF_F_GSO_MASK; 9727 9728 len = skb_network_offset(skb); 9729 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 9730 goto out_rm_features; 9731 9732 len = skb_network_header_len(skb); 9733 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9734 goto out_rm_features; 9735 9736 if (skb->encapsulation) { 9737 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 9738 * the case of IPIP frames, the transport header pointer is 9739 * after the inner header! So check to make sure that this 9740 * is a GRE or UDP_TUNNEL frame before doing that math. 9741 */ 9742 if (gso && (skb_shinfo(skb)->gso_type & 9743 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 9744 len = skb_inner_network_header(skb) - 9745 skb_transport_header(skb); 9746 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 9747 goto out_rm_features; 9748 } 9749 9750 len = skb_inner_network_header_len(skb); 9751 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 9752 goto out_rm_features; 9753 } 9754 9755 return features; 9756 out_rm_features: 9757 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 9758 } 9759 9760 static const struct net_device_ops ice_netdev_safe_mode_ops = { 9761 .ndo_open = ice_open, 9762 .ndo_stop = ice_stop, 9763 .ndo_start_xmit = ice_start_xmit, 9764 .ndo_set_mac_address = ice_set_mac_address, 9765 .ndo_validate_addr = eth_validate_addr, 9766 .ndo_change_mtu = ice_change_mtu, 9767 .ndo_get_stats64 = ice_get_stats64, 9768 .ndo_tx_timeout = ice_tx_timeout, 9769 .ndo_bpf = ice_xdp_safe_mode, 9770 }; 9771 9772 static const struct net_device_ops ice_netdev_ops = { 9773 .ndo_open = ice_open, 9774 .ndo_stop = ice_stop, 9775 .ndo_start_xmit = ice_start_xmit, 9776 .ndo_select_queue = ice_select_queue, 9777 .ndo_features_check = ice_features_check, 9778 .ndo_fix_features = ice_fix_features, 9779 .ndo_set_rx_mode = ice_set_rx_mode, 9780 .ndo_set_mac_address = ice_set_mac_address, 9781 .ndo_validate_addr = eth_validate_addr, 9782 .ndo_change_mtu = ice_change_mtu, 9783 .ndo_get_stats64 = ice_get_stats64, 9784 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 9785 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 9786 .ndo_set_vf_mac = ice_set_vf_mac, 9787 .ndo_get_vf_config = ice_get_vf_cfg, 9788 .ndo_set_vf_trust = ice_set_vf_trust, 9789 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 9790 .ndo_set_vf_link_state = ice_set_vf_link_state, 9791 .ndo_get_vf_stats = ice_get_vf_stats, 9792 .ndo_set_vf_rate = ice_set_vf_bw, 9793 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 9794 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 9795 .ndo_setup_tc = ice_setup_tc, 9796 .ndo_set_features = ice_set_features, 9797 .ndo_bridge_getlink = ice_bridge_getlink, 9798 .ndo_bridge_setlink = ice_bridge_setlink, 9799 .ndo_fdb_add = ice_fdb_add, 9800 .ndo_fdb_del = ice_fdb_del, 9801 #ifdef CONFIG_RFS_ACCEL 9802 .ndo_rx_flow_steer = ice_rx_flow_steer, 9803 #endif 9804 .ndo_tx_timeout = ice_tx_timeout, 9805 .ndo_bpf = ice_xdp, 9806 .ndo_xdp_xmit = ice_xdp_xmit, 9807 .ndo_xsk_wakeup = ice_xsk_wakeup, 9808 .ndo_hwtstamp_get = ice_ptp_hwtstamp_get, 9809 .ndo_hwtstamp_set = ice_ptp_hwtstamp_set, 9810 }; 9811