1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <generated/utsrelease.h> 9 #include "ice.h" 10 #include "ice_base.h" 11 #include "ice_lib.h" 12 #include "ice_fltr.h" 13 #include "ice_dcb_lib.h" 14 #include "ice_dcb_nl.h" 15 #include "ice_devlink.h" 16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the 17 * ice tracepoint functions. This must be done exactly once across the 18 * ice driver. 19 */ 20 #define CREATE_TRACE_POINTS 21 #include "ice_trace.h" 22 #include "ice_eswitch.h" 23 #include "ice_tc_lib.h" 24 #include "ice_vsi_vlan_ops.h" 25 26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver" 27 static const char ice_driver_string[] = DRV_SUMMARY; 28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation."; 29 30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */ 31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/" 32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg" 33 34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 35 MODULE_DESCRIPTION(DRV_SUMMARY); 36 MODULE_LICENSE("GPL v2"); 37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE); 38 39 static int debug = -1; 40 module_param(debug, int, 0644); 41 #ifndef CONFIG_DYNAMIC_DEBUG 42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)"); 43 #else 44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)"); 45 #endif /* !CONFIG_DYNAMIC_DEBUG */ 46 47 static DEFINE_IDA(ice_aux_ida); 48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key); 49 EXPORT_SYMBOL(ice_xdp_locking_key); 50 51 static struct workqueue_struct *ice_wq; 52 static const struct net_device_ops ice_netdev_safe_mode_ops; 53 static const struct net_device_ops ice_netdev_ops; 54 55 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); 56 57 static void ice_vsi_release_all(struct ice_pf *pf); 58 59 static int ice_rebuild_channels(struct ice_pf *pf); 60 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr); 61 62 static int 63 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 64 void *cb_priv, enum tc_setup_type type, void *type_data, 65 void *data, 66 void (*cleanup)(struct flow_block_cb *block_cb)); 67 68 bool netif_is_ice(struct net_device *dev) 69 { 70 return dev && (dev->netdev_ops == &ice_netdev_ops); 71 } 72 73 /** 74 * ice_get_tx_pending - returns number of Tx descriptors not processed 75 * @ring: the ring of descriptors 76 */ 77 static u16 ice_get_tx_pending(struct ice_tx_ring *ring) 78 { 79 u16 head, tail; 80 81 head = ring->next_to_clean; 82 tail = ring->next_to_use; 83 84 if (head != tail) 85 return (head < tail) ? 86 tail - head : (tail + ring->count - head); 87 return 0; 88 } 89 90 /** 91 * ice_check_for_hang_subtask - check for and recover hung queues 92 * @pf: pointer to PF struct 93 */ 94 static void ice_check_for_hang_subtask(struct ice_pf *pf) 95 { 96 struct ice_vsi *vsi = NULL; 97 struct ice_hw *hw; 98 unsigned int i; 99 int packets; 100 u32 v; 101 102 ice_for_each_vsi(pf, v) 103 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) { 104 vsi = pf->vsi[v]; 105 break; 106 } 107 108 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state)) 109 return; 110 111 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev))) 112 return; 113 114 hw = &vsi->back->hw; 115 116 ice_for_each_txq(vsi, i) { 117 struct ice_tx_ring *tx_ring = vsi->tx_rings[i]; 118 119 if (!tx_ring) 120 continue; 121 if (ice_ring_ch_enabled(tx_ring)) 122 continue; 123 124 if (tx_ring->desc) { 125 /* If packet counter has not changed the queue is 126 * likely stalled, so force an interrupt for this 127 * queue. 128 * 129 * prev_pkt would be negative if there was no 130 * pending work. 131 */ 132 packets = tx_ring->stats.pkts & INT_MAX; 133 if (tx_ring->tx_stats.prev_pkt == packets) { 134 /* Trigger sw interrupt to revive the queue */ 135 ice_trigger_sw_intr(hw, tx_ring->q_vector); 136 continue; 137 } 138 139 /* Memory barrier between read of packet count and call 140 * to ice_get_tx_pending() 141 */ 142 smp_rmb(); 143 tx_ring->tx_stats.prev_pkt = 144 ice_get_tx_pending(tx_ring) ? packets : -1; 145 } 146 } 147 } 148 149 /** 150 * ice_init_mac_fltr - Set initial MAC filters 151 * @pf: board private structure 152 * 153 * Set initial set of MAC filters for PF VSI; configure filters for permanent 154 * address and broadcast address. If an error is encountered, netdevice will be 155 * unregistered. 156 */ 157 static int ice_init_mac_fltr(struct ice_pf *pf) 158 { 159 struct ice_vsi *vsi; 160 u8 *perm_addr; 161 162 vsi = ice_get_main_vsi(pf); 163 if (!vsi) 164 return -EINVAL; 165 166 perm_addr = vsi->port_info->mac.perm_addr; 167 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI); 168 } 169 170 /** 171 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced 172 * @netdev: the net device on which the sync is happening 173 * @addr: MAC address to sync 174 * 175 * This is a callback function which is called by the in kernel device sync 176 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only 177 * populates the tmp_sync_list, which is later used by ice_add_mac to add the 178 * MAC filters from the hardware. 179 */ 180 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr) 181 { 182 struct ice_netdev_priv *np = netdev_priv(netdev); 183 struct ice_vsi *vsi = np->vsi; 184 185 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr, 186 ICE_FWD_TO_VSI)) 187 return -EINVAL; 188 189 return 0; 190 } 191 192 /** 193 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced 194 * @netdev: the net device on which the unsync is happening 195 * @addr: MAC address to unsync 196 * 197 * This is a callback function which is called by the in kernel device unsync 198 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only 199 * populates the tmp_unsync_list, which is later used by ice_remove_mac to 200 * delete the MAC filters from the hardware. 201 */ 202 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr) 203 { 204 struct ice_netdev_priv *np = netdev_priv(netdev); 205 struct ice_vsi *vsi = np->vsi; 206 207 /* Under some circumstances, we might receive a request to delete our 208 * own device address from our uc list. Because we store the device 209 * address in the VSI's MAC filter list, we need to ignore such 210 * requests and not delete our device address from this list. 211 */ 212 if (ether_addr_equal(addr, netdev->dev_addr)) 213 return 0; 214 215 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr, 216 ICE_FWD_TO_VSI)) 217 return -EINVAL; 218 219 return 0; 220 } 221 222 /** 223 * ice_vsi_fltr_changed - check if filter state changed 224 * @vsi: VSI to be checked 225 * 226 * returns true if filter state has changed, false otherwise. 227 */ 228 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi) 229 { 230 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) || 231 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) || 232 test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 233 } 234 235 /** 236 * ice_set_promisc - Enable promiscuous mode for a given PF 237 * @vsi: the VSI being configured 238 * @promisc_m: mask of promiscuous config bits 239 * 240 */ 241 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m) 242 { 243 int status; 244 245 if (vsi->type != ICE_VSI_PF) 246 return 0; 247 248 if (ice_vsi_has_non_zero_vlans(vsi)) 249 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 250 else 251 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 252 return status; 253 } 254 255 /** 256 * ice_clear_promisc - Disable promiscuous mode for a given PF 257 * @vsi: the VSI being configured 258 * @promisc_m: mask of promiscuous config bits 259 * 260 */ 261 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m) 262 { 263 int status; 264 265 if (vsi->type != ICE_VSI_PF) 266 return 0; 267 268 if (ice_vsi_has_non_zero_vlans(vsi)) 269 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi, promisc_m); 270 else 271 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m, 0); 272 return status; 273 } 274 275 /** 276 * ice_vsi_sync_fltr - Update the VSI filter list to the HW 277 * @vsi: ptr to the VSI 278 * 279 * Push any outstanding VSI filter changes through the AdminQ. 280 */ 281 static int ice_vsi_sync_fltr(struct ice_vsi *vsi) 282 { 283 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 284 struct device *dev = ice_pf_to_dev(vsi->back); 285 struct net_device *netdev = vsi->netdev; 286 bool promisc_forced_on = false; 287 struct ice_pf *pf = vsi->back; 288 struct ice_hw *hw = &pf->hw; 289 u32 changed_flags = 0; 290 u8 promisc_m; 291 int err; 292 293 if (!vsi->netdev) 294 return -EINVAL; 295 296 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state)) 297 usleep_range(1000, 2000); 298 299 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; 300 vsi->current_netdev_flags = vsi->netdev->flags; 301 302 INIT_LIST_HEAD(&vsi->tmp_sync_list); 303 INIT_LIST_HEAD(&vsi->tmp_unsync_list); 304 305 if (ice_vsi_fltr_changed(vsi)) { 306 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 307 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 308 clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 309 310 /* grab the netdev's addr_list_lock */ 311 netif_addr_lock_bh(netdev); 312 __dev_uc_sync(netdev, ice_add_mac_to_sync_list, 313 ice_add_mac_to_unsync_list); 314 __dev_mc_sync(netdev, ice_add_mac_to_sync_list, 315 ice_add_mac_to_unsync_list); 316 /* our temp lists are populated. release lock */ 317 netif_addr_unlock_bh(netdev); 318 } 319 320 /* Remove MAC addresses in the unsync list */ 321 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list); 322 ice_fltr_free_list(dev, &vsi->tmp_unsync_list); 323 if (err) { 324 netdev_err(netdev, "Failed to delete MAC filters\n"); 325 /* if we failed because of alloc failures, just bail */ 326 if (err == -ENOMEM) 327 goto out; 328 } 329 330 /* Add MAC addresses in the sync list */ 331 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list); 332 ice_fltr_free_list(dev, &vsi->tmp_sync_list); 333 /* If filter is added successfully or already exists, do not go into 334 * 'if' condition and report it as error. Instead continue processing 335 * rest of the function. 336 */ 337 if (err && err != -EEXIST) { 338 netdev_err(netdev, "Failed to add MAC filters\n"); 339 /* If there is no more space for new umac filters, VSI 340 * should go into promiscuous mode. There should be some 341 * space reserved for promiscuous filters. 342 */ 343 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC && 344 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC, 345 vsi->state)) { 346 promisc_forced_on = true; 347 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n", 348 vsi->vsi_num); 349 } else { 350 goto out; 351 } 352 } 353 err = 0; 354 /* check for changes in promiscuous modes */ 355 if (changed_flags & IFF_ALLMULTI) { 356 if (vsi->current_netdev_flags & IFF_ALLMULTI) { 357 if (ice_vsi_has_non_zero_vlans(vsi)) 358 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 359 else 360 promisc_m = ICE_MCAST_PROMISC_BITS; 361 362 err = ice_set_promisc(vsi, promisc_m); 363 if (err) { 364 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n", 365 vsi->vsi_num); 366 vsi->current_netdev_flags &= ~IFF_ALLMULTI; 367 goto out_promisc; 368 } 369 } else { 370 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */ 371 if (ice_vsi_has_non_zero_vlans(vsi)) 372 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS; 373 else 374 promisc_m = ICE_MCAST_PROMISC_BITS; 375 376 err = ice_clear_promisc(vsi, promisc_m); 377 if (err) { 378 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n", 379 vsi->vsi_num); 380 vsi->current_netdev_flags |= IFF_ALLMULTI; 381 goto out_promisc; 382 } 383 } 384 } 385 386 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) || 387 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) { 388 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 389 if (vsi->current_netdev_flags & IFF_PROMISC) { 390 /* Apply Rx filter rule to get traffic from wire */ 391 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) { 392 err = ice_set_dflt_vsi(pf->first_sw, vsi); 393 if (err && err != -EEXIST) { 394 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n", 395 err, vsi->vsi_num); 396 vsi->current_netdev_flags &= 397 ~IFF_PROMISC; 398 goto out_promisc; 399 } 400 err = 0; 401 vlan_ops->dis_rx_filtering(vsi); 402 } 403 } else { 404 /* Clear Rx filter to remove traffic from wire */ 405 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) { 406 err = ice_clear_dflt_vsi(pf->first_sw); 407 if (err) { 408 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n", 409 err, vsi->vsi_num); 410 vsi->current_netdev_flags |= 411 IFF_PROMISC; 412 goto out_promisc; 413 } 414 if (vsi->current_netdev_flags & 415 NETIF_F_HW_VLAN_CTAG_FILTER) 416 vlan_ops->ena_rx_filtering(vsi); 417 } 418 } 419 } 420 goto exit; 421 422 out_promisc: 423 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state); 424 goto exit; 425 out: 426 /* if something went wrong then set the changed flag so we try again */ 427 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 428 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 429 exit: 430 clear_bit(ICE_CFG_BUSY, vsi->state); 431 return err; 432 } 433 434 /** 435 * ice_sync_fltr_subtask - Sync the VSI filter list with HW 436 * @pf: board private structure 437 */ 438 static void ice_sync_fltr_subtask(struct ice_pf *pf) 439 { 440 int v; 441 442 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags))) 443 return; 444 445 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 446 447 ice_for_each_vsi(pf, v) 448 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) && 449 ice_vsi_sync_fltr(pf->vsi[v])) { 450 /* come back and try again later */ 451 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags); 452 break; 453 } 454 } 455 456 /** 457 * ice_pf_dis_all_vsi - Pause all VSIs on a PF 458 * @pf: the PF 459 * @locked: is the rtnl_lock already held 460 */ 461 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked) 462 { 463 int node; 464 int v; 465 466 ice_for_each_vsi(pf, v) 467 if (pf->vsi[v]) 468 ice_dis_vsi(pf->vsi[v], locked); 469 470 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++) 471 pf->pf_agg_node[node].num_vsis = 0; 472 473 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++) 474 pf->vf_agg_node[node].num_vsis = 0; 475 } 476 477 /** 478 * ice_clear_sw_switch_recipes - clear switch recipes 479 * @pf: board private structure 480 * 481 * Mark switch recipes as not created in sw structures. There are cases where 482 * rules (especially advanced rules) need to be restored, either re-read from 483 * hardware or added again. For example after the reset. 'recp_created' flag 484 * prevents from doing that and need to be cleared upfront. 485 */ 486 static void ice_clear_sw_switch_recipes(struct ice_pf *pf) 487 { 488 struct ice_sw_recipe *recp; 489 u8 i; 490 491 recp = pf->hw.switch_info->recp_list; 492 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) 493 recp[i].recp_created = false; 494 } 495 496 /** 497 * ice_prepare_for_reset - prep for reset 498 * @pf: board private structure 499 * @reset_type: reset type requested 500 * 501 * Inform or close all dependent features in prep for reset. 502 */ 503 static void 504 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 505 { 506 struct ice_hw *hw = &pf->hw; 507 struct ice_vsi *vsi; 508 unsigned int i; 509 510 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type); 511 512 /* already prepared for reset */ 513 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state)) 514 return; 515 516 ice_unplug_aux_dev(pf); 517 518 /* Notify VFs of impending reset */ 519 if (ice_check_sq_alive(hw, &hw->mailboxq)) 520 ice_vc_notify_reset(pf); 521 522 /* Disable VFs until reset is completed */ 523 ice_for_each_vf(pf, i) 524 ice_set_vf_state_qs_dis(&pf->vf[i]); 525 526 if (ice_is_eswitch_mode_switchdev(pf)) { 527 if (reset_type != ICE_RESET_PFR) 528 ice_clear_sw_switch_recipes(pf); 529 } 530 531 /* release ADQ specific HW and SW resources */ 532 vsi = ice_get_main_vsi(pf); 533 if (!vsi) 534 goto skip; 535 536 /* to be on safe side, reset orig_rss_size so that normal flow 537 * of deciding rss_size can take precedence 538 */ 539 vsi->orig_rss_size = 0; 540 541 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 542 if (reset_type == ICE_RESET_PFR) { 543 vsi->old_ena_tc = vsi->all_enatc; 544 vsi->old_numtc = vsi->all_numtc; 545 } else { 546 ice_remove_q_channels(vsi, true); 547 548 /* for other reset type, do not support channel rebuild 549 * hence reset needed info 550 */ 551 vsi->old_ena_tc = 0; 552 vsi->all_enatc = 0; 553 vsi->old_numtc = 0; 554 vsi->all_numtc = 0; 555 vsi->req_txq = 0; 556 vsi->req_rxq = 0; 557 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 558 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt)); 559 } 560 } 561 skip: 562 563 /* clear SW filtering DB */ 564 ice_clear_hw_tbls(hw); 565 /* disable the VSIs and their queues that are not already DOWN */ 566 ice_pf_dis_all_vsi(pf, false); 567 568 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 569 ice_ptp_prepare_for_reset(pf); 570 571 if (hw->port_info) 572 ice_sched_clear_port(hw->port_info); 573 574 ice_shutdown_all_ctrlq(hw); 575 576 set_bit(ICE_PREPARED_FOR_RESET, pf->state); 577 } 578 579 /** 580 * ice_do_reset - Initiate one of many types of resets 581 * @pf: board private structure 582 * @reset_type: reset type requested before this function was called. 583 */ 584 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type) 585 { 586 struct device *dev = ice_pf_to_dev(pf); 587 struct ice_hw *hw = &pf->hw; 588 589 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type); 590 591 ice_prepare_for_reset(pf, reset_type); 592 593 /* trigger the reset */ 594 if (ice_reset(hw, reset_type)) { 595 dev_err(dev, "reset %d failed\n", reset_type); 596 set_bit(ICE_RESET_FAILED, pf->state); 597 clear_bit(ICE_RESET_OICR_RECV, pf->state); 598 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 599 clear_bit(ICE_PFR_REQ, pf->state); 600 clear_bit(ICE_CORER_REQ, pf->state); 601 clear_bit(ICE_GLOBR_REQ, pf->state); 602 wake_up(&pf->reset_wait_queue); 603 return; 604 } 605 606 /* PFR is a bit of a special case because it doesn't result in an OICR 607 * interrupt. So for PFR, rebuild after the reset and clear the reset- 608 * associated state bits. 609 */ 610 if (reset_type == ICE_RESET_PFR) { 611 pf->pfr_count++; 612 ice_rebuild(pf, reset_type); 613 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 614 clear_bit(ICE_PFR_REQ, pf->state); 615 wake_up(&pf->reset_wait_queue); 616 ice_reset_all_vfs(pf, true); 617 } 618 } 619 620 /** 621 * ice_reset_subtask - Set up for resetting the device and driver 622 * @pf: board private structure 623 */ 624 static void ice_reset_subtask(struct ice_pf *pf) 625 { 626 enum ice_reset_req reset_type = ICE_RESET_INVAL; 627 628 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an 629 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type 630 * of reset is pending and sets bits in pf->state indicating the reset 631 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set 632 * prepare for pending reset if not already (for PF software-initiated 633 * global resets the software should already be prepared for it as 634 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated 635 * by firmware or software on other PFs, that bit is not set so prepare 636 * for the reset now), poll for reset done, rebuild and return. 637 */ 638 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) { 639 /* Perform the largest reset requested */ 640 if (test_and_clear_bit(ICE_CORER_RECV, pf->state)) 641 reset_type = ICE_RESET_CORER; 642 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state)) 643 reset_type = ICE_RESET_GLOBR; 644 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state)) 645 reset_type = ICE_RESET_EMPR; 646 /* return if no valid reset type requested */ 647 if (reset_type == ICE_RESET_INVAL) 648 return; 649 ice_prepare_for_reset(pf, reset_type); 650 651 /* make sure we are ready to rebuild */ 652 if (ice_check_reset(&pf->hw)) { 653 set_bit(ICE_RESET_FAILED, pf->state); 654 } else { 655 /* done with reset. start rebuild */ 656 pf->hw.reset_ongoing = false; 657 ice_rebuild(pf, reset_type); 658 /* clear bit to resume normal operations, but 659 * ICE_NEEDS_RESTART bit is set in case rebuild failed 660 */ 661 clear_bit(ICE_RESET_OICR_RECV, pf->state); 662 clear_bit(ICE_PREPARED_FOR_RESET, pf->state); 663 clear_bit(ICE_PFR_REQ, pf->state); 664 clear_bit(ICE_CORER_REQ, pf->state); 665 clear_bit(ICE_GLOBR_REQ, pf->state); 666 wake_up(&pf->reset_wait_queue); 667 ice_reset_all_vfs(pf, true); 668 } 669 670 return; 671 } 672 673 /* No pending resets to finish processing. Check for new resets */ 674 if (test_bit(ICE_PFR_REQ, pf->state)) 675 reset_type = ICE_RESET_PFR; 676 if (test_bit(ICE_CORER_REQ, pf->state)) 677 reset_type = ICE_RESET_CORER; 678 if (test_bit(ICE_GLOBR_REQ, pf->state)) 679 reset_type = ICE_RESET_GLOBR; 680 /* If no valid reset type requested just return */ 681 if (reset_type == ICE_RESET_INVAL) 682 return; 683 684 /* reset if not already down or busy */ 685 if (!test_bit(ICE_DOWN, pf->state) && 686 !test_bit(ICE_CFG_BUSY, pf->state)) { 687 ice_do_reset(pf, reset_type); 688 } 689 } 690 691 /** 692 * ice_print_topo_conflict - print topology conflict message 693 * @vsi: the VSI whose topology status is being checked 694 */ 695 static void ice_print_topo_conflict(struct ice_vsi *vsi) 696 { 697 switch (vsi->port_info->phy.link_info.topo_media_conflict) { 698 case ICE_AQ_LINK_TOPO_CONFLICT: 699 case ICE_AQ_LINK_MEDIA_CONFLICT: 700 case ICE_AQ_LINK_TOPO_UNREACH_PRT: 701 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT: 702 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA: 703 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n"); 704 break; 705 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA: 706 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags)) 707 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n"); 708 else 709 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n"); 710 break; 711 default: 712 break; 713 } 714 } 715 716 /** 717 * ice_print_link_msg - print link up or down message 718 * @vsi: the VSI whose link status is being queried 719 * @isup: boolean for if the link is now up or down 720 */ 721 void ice_print_link_msg(struct ice_vsi *vsi, bool isup) 722 { 723 struct ice_aqc_get_phy_caps_data *caps; 724 const char *an_advertised; 725 const char *fec_req; 726 const char *speed; 727 const char *fec; 728 const char *fc; 729 const char *an; 730 int status; 731 732 if (!vsi) 733 return; 734 735 if (vsi->current_isup == isup) 736 return; 737 738 vsi->current_isup = isup; 739 740 if (!isup) { 741 netdev_info(vsi->netdev, "NIC Link is Down\n"); 742 return; 743 } 744 745 switch (vsi->port_info->phy.link_info.link_speed) { 746 case ICE_AQ_LINK_SPEED_100GB: 747 speed = "100 G"; 748 break; 749 case ICE_AQ_LINK_SPEED_50GB: 750 speed = "50 G"; 751 break; 752 case ICE_AQ_LINK_SPEED_40GB: 753 speed = "40 G"; 754 break; 755 case ICE_AQ_LINK_SPEED_25GB: 756 speed = "25 G"; 757 break; 758 case ICE_AQ_LINK_SPEED_20GB: 759 speed = "20 G"; 760 break; 761 case ICE_AQ_LINK_SPEED_10GB: 762 speed = "10 G"; 763 break; 764 case ICE_AQ_LINK_SPEED_5GB: 765 speed = "5 G"; 766 break; 767 case ICE_AQ_LINK_SPEED_2500MB: 768 speed = "2.5 G"; 769 break; 770 case ICE_AQ_LINK_SPEED_1000MB: 771 speed = "1 G"; 772 break; 773 case ICE_AQ_LINK_SPEED_100MB: 774 speed = "100 M"; 775 break; 776 default: 777 speed = "Unknown "; 778 break; 779 } 780 781 switch (vsi->port_info->fc.current_mode) { 782 case ICE_FC_FULL: 783 fc = "Rx/Tx"; 784 break; 785 case ICE_FC_TX_PAUSE: 786 fc = "Tx"; 787 break; 788 case ICE_FC_RX_PAUSE: 789 fc = "Rx"; 790 break; 791 case ICE_FC_NONE: 792 fc = "None"; 793 break; 794 default: 795 fc = "Unknown"; 796 break; 797 } 798 799 /* Get FEC mode based on negotiated link info */ 800 switch (vsi->port_info->phy.link_info.fec_info) { 801 case ICE_AQ_LINK_25G_RS_528_FEC_EN: 802 case ICE_AQ_LINK_25G_RS_544_FEC_EN: 803 fec = "RS-FEC"; 804 break; 805 case ICE_AQ_LINK_25G_KR_FEC_EN: 806 fec = "FC-FEC/BASE-R"; 807 break; 808 default: 809 fec = "NONE"; 810 break; 811 } 812 813 /* check if autoneg completed, might be false due to not supported */ 814 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED) 815 an = "True"; 816 else 817 an = "False"; 818 819 /* Get FEC mode requested based on PHY caps last SW configuration */ 820 caps = kzalloc(sizeof(*caps), GFP_KERNEL); 821 if (!caps) { 822 fec_req = "Unknown"; 823 an_advertised = "Unknown"; 824 goto done; 825 } 826 827 status = ice_aq_get_phy_caps(vsi->port_info, false, 828 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL); 829 if (status) 830 netdev_info(vsi->netdev, "Get phy capability failed.\n"); 831 832 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off"; 833 834 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ || 835 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ) 836 fec_req = "RS-FEC"; 837 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ || 838 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ) 839 fec_req = "FC-FEC/BASE-R"; 840 else 841 fec_req = "NONE"; 842 843 kfree(caps); 844 845 done: 846 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n", 847 speed, fec_req, fec, an_advertised, an, fc); 848 ice_print_topo_conflict(vsi); 849 } 850 851 /** 852 * ice_vsi_link_event - update the VSI's netdev 853 * @vsi: the VSI on which the link event occurred 854 * @link_up: whether or not the VSI needs to be set up or down 855 */ 856 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up) 857 { 858 if (!vsi) 859 return; 860 861 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev) 862 return; 863 864 if (vsi->type == ICE_VSI_PF) { 865 if (link_up == netif_carrier_ok(vsi->netdev)) 866 return; 867 868 if (link_up) { 869 netif_carrier_on(vsi->netdev); 870 netif_tx_wake_all_queues(vsi->netdev); 871 } else { 872 netif_carrier_off(vsi->netdev); 873 netif_tx_stop_all_queues(vsi->netdev); 874 } 875 } 876 } 877 878 /** 879 * ice_set_dflt_mib - send a default config MIB to the FW 880 * @pf: private PF struct 881 * 882 * This function sends a default configuration MIB to the FW. 883 * 884 * If this function errors out at any point, the driver is still able to 885 * function. The main impact is that LFC may not operate as expected. 886 * Therefore an error state in this function should be treated with a DBG 887 * message and continue on with driver rebuild/reenable. 888 */ 889 static void ice_set_dflt_mib(struct ice_pf *pf) 890 { 891 struct device *dev = ice_pf_to_dev(pf); 892 u8 mib_type, *buf, *lldpmib = NULL; 893 u16 len, typelen, offset = 0; 894 struct ice_lldp_org_tlv *tlv; 895 struct ice_hw *hw = &pf->hw; 896 u32 ouisubtype; 897 898 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB; 899 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL); 900 if (!lldpmib) { 901 dev_dbg(dev, "%s Failed to allocate MIB memory\n", 902 __func__); 903 return; 904 } 905 906 /* Add ETS CFG TLV */ 907 tlv = (struct ice_lldp_org_tlv *)lldpmib; 908 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 909 ICE_IEEE_ETS_TLV_LEN); 910 tlv->typelen = htons(typelen); 911 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 912 ICE_IEEE_SUBTYPE_ETS_CFG); 913 tlv->ouisubtype = htonl(ouisubtype); 914 915 buf = tlv->tlvinfo; 916 buf[0] = 0; 917 918 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0. 919 * Octets 5 - 12 are BW values, set octet 5 to 100% BW. 920 * Octets 13 - 20 are TSA values - leave as zeros 921 */ 922 buf[5] = 0x64; 923 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 924 offset += len + 2; 925 tlv = (struct ice_lldp_org_tlv *) 926 ((char *)tlv + sizeof(tlv->typelen) + len); 927 928 /* Add ETS REC TLV */ 929 buf = tlv->tlvinfo; 930 tlv->typelen = htons(typelen); 931 932 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 933 ICE_IEEE_SUBTYPE_ETS_REC); 934 tlv->ouisubtype = htonl(ouisubtype); 935 936 /* First octet of buf is reserved 937 * Octets 1 - 4 map UP to TC - all UPs map to zero 938 * Octets 5 - 12 are BW values - set TC 0 to 100%. 939 * Octets 13 - 20 are TSA value - leave as zeros 940 */ 941 buf[5] = 0x64; 942 offset += len + 2; 943 tlv = (struct ice_lldp_org_tlv *) 944 ((char *)tlv + sizeof(tlv->typelen) + len); 945 946 /* Add PFC CFG TLV */ 947 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) | 948 ICE_IEEE_PFC_TLV_LEN); 949 tlv->typelen = htons(typelen); 950 951 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) | 952 ICE_IEEE_SUBTYPE_PFC_CFG); 953 tlv->ouisubtype = htonl(ouisubtype); 954 955 /* Octet 1 left as all zeros - PFC disabled */ 956 buf[0] = 0x08; 957 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S; 958 offset += len + 2; 959 960 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL)) 961 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__); 962 963 kfree(lldpmib); 964 } 965 966 /** 967 * ice_check_phy_fw_load - check if PHY FW load failed 968 * @pf: pointer to PF struct 969 * @link_cfg_err: bitmap from the link info structure 970 * 971 * check if external PHY FW load failed and print an error message if it did 972 */ 973 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err) 974 { 975 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) { 976 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 977 return; 978 } 979 980 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags)) 981 return; 982 983 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) { 984 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n"); 985 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags); 986 } 987 } 988 989 /** 990 * ice_check_module_power 991 * @pf: pointer to PF struct 992 * @link_cfg_err: bitmap from the link info structure 993 * 994 * check module power level returned by a previous call to aq_get_link_info 995 * and print error messages if module power level is not supported 996 */ 997 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err) 998 { 999 /* if module power level is supported, clear the flag */ 1000 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT | 1001 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) { 1002 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1003 return; 1004 } 1005 1006 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the 1007 * above block didn't clear this bit, there's nothing to do 1008 */ 1009 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags)) 1010 return; 1011 1012 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) { 1013 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n"); 1014 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1015 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) { 1016 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n"); 1017 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags); 1018 } 1019 } 1020 1021 /** 1022 * ice_check_link_cfg_err - check if link configuration failed 1023 * @pf: pointer to the PF struct 1024 * @link_cfg_err: bitmap from the link info structure 1025 * 1026 * print if any link configuration failure happens due to the value in the 1027 * link_cfg_err parameter in the link info structure 1028 */ 1029 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err) 1030 { 1031 ice_check_module_power(pf, link_cfg_err); 1032 ice_check_phy_fw_load(pf, link_cfg_err); 1033 } 1034 1035 /** 1036 * ice_link_event - process the link event 1037 * @pf: PF that the link event is associated with 1038 * @pi: port_info for the port that the link event is associated with 1039 * @link_up: true if the physical link is up and false if it is down 1040 * @link_speed: current link speed received from the link event 1041 * 1042 * Returns 0 on success and negative on failure 1043 */ 1044 static int 1045 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up, 1046 u16 link_speed) 1047 { 1048 struct device *dev = ice_pf_to_dev(pf); 1049 struct ice_phy_info *phy_info; 1050 struct ice_vsi *vsi; 1051 u16 old_link_speed; 1052 bool old_link; 1053 int status; 1054 1055 phy_info = &pi->phy; 1056 phy_info->link_info_old = phy_info->link_info; 1057 1058 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP); 1059 old_link_speed = phy_info->link_info_old.link_speed; 1060 1061 /* update the link info structures and re-enable link events, 1062 * don't bail on failure due to other book keeping needed 1063 */ 1064 status = ice_update_link_info(pi); 1065 if (status) 1066 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n", 1067 pi->lport, status, 1068 ice_aq_str(pi->hw->adminq.sq_last_status)); 1069 1070 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 1071 1072 /* Check if the link state is up after updating link info, and treat 1073 * this event as an UP event since the link is actually UP now. 1074 */ 1075 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP) 1076 link_up = true; 1077 1078 vsi = ice_get_main_vsi(pf); 1079 if (!vsi || !vsi->port_info) 1080 return -EINVAL; 1081 1082 /* turn off PHY if media was removed */ 1083 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) && 1084 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) { 1085 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 1086 ice_set_link(vsi, false); 1087 } 1088 1089 /* if the old link up/down and speed is the same as the new */ 1090 if (link_up == old_link && link_speed == old_link_speed) 1091 return 0; 1092 1093 if (!ice_is_e810(&pf->hw)) 1094 ice_ptp_link_change(pf, pf->hw.pf_id, link_up); 1095 1096 if (ice_is_dcb_active(pf)) { 1097 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 1098 ice_dcb_rebuild(pf); 1099 } else { 1100 if (link_up) 1101 ice_set_dflt_mib(pf); 1102 } 1103 ice_vsi_link_event(vsi, link_up); 1104 ice_print_link_msg(vsi, link_up); 1105 1106 ice_vc_notify_link_state(pf); 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * ice_watchdog_subtask - periodic tasks not using event driven scheduling 1113 * @pf: board private structure 1114 */ 1115 static void ice_watchdog_subtask(struct ice_pf *pf) 1116 { 1117 int i; 1118 1119 /* if interface is down do nothing */ 1120 if (test_bit(ICE_DOWN, pf->state) || 1121 test_bit(ICE_CFG_BUSY, pf->state)) 1122 return; 1123 1124 /* make sure we don't do these things too often */ 1125 if (time_before(jiffies, 1126 pf->serv_tmr_prev + pf->serv_tmr_period)) 1127 return; 1128 1129 pf->serv_tmr_prev = jiffies; 1130 1131 /* Update the stats for active netdevs so the network stack 1132 * can look at updated numbers whenever it cares to 1133 */ 1134 ice_update_pf_stats(pf); 1135 ice_for_each_vsi(pf, i) 1136 if (pf->vsi[i] && pf->vsi[i]->netdev) 1137 ice_update_vsi_stats(pf->vsi[i]); 1138 } 1139 1140 /** 1141 * ice_init_link_events - enable/initialize link events 1142 * @pi: pointer to the port_info instance 1143 * 1144 * Returns -EIO on failure, 0 on success 1145 */ 1146 static int ice_init_link_events(struct ice_port_info *pi) 1147 { 1148 u16 mask; 1149 1150 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA | 1151 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL | 1152 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL)); 1153 1154 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) { 1155 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n", 1156 pi->lport); 1157 return -EIO; 1158 } 1159 1160 if (ice_aq_get_link_info(pi, true, NULL, NULL)) { 1161 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n", 1162 pi->lport); 1163 return -EIO; 1164 } 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * ice_handle_link_event - handle link event via ARQ 1171 * @pf: PF that the link event is associated with 1172 * @event: event structure containing link status info 1173 */ 1174 static int 1175 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event) 1176 { 1177 struct ice_aqc_get_link_status_data *link_data; 1178 struct ice_port_info *port_info; 1179 int status; 1180 1181 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf; 1182 port_info = pf->hw.port_info; 1183 if (!port_info) 1184 return -EINVAL; 1185 1186 status = ice_link_event(pf, port_info, 1187 !!(link_data->link_info & ICE_AQ_LINK_UP), 1188 le16_to_cpu(link_data->link_speed)); 1189 if (status) 1190 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n", 1191 status); 1192 1193 return status; 1194 } 1195 1196 enum ice_aq_task_state { 1197 ICE_AQ_TASK_WAITING = 0, 1198 ICE_AQ_TASK_COMPLETE, 1199 ICE_AQ_TASK_CANCELED, 1200 }; 1201 1202 struct ice_aq_task { 1203 struct hlist_node entry; 1204 1205 u16 opcode; 1206 struct ice_rq_event_info *event; 1207 enum ice_aq_task_state state; 1208 }; 1209 1210 /** 1211 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware 1212 * @pf: pointer to the PF private structure 1213 * @opcode: the opcode to wait for 1214 * @timeout: how long to wait, in jiffies 1215 * @event: storage for the event info 1216 * 1217 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The 1218 * current thread will be put to sleep until the specified event occurs or 1219 * until the given timeout is reached. 1220 * 1221 * To obtain only the descriptor contents, pass an event without an allocated 1222 * msg_buf. If the complete data buffer is desired, allocate the 1223 * event->msg_buf with enough space ahead of time. 1224 * 1225 * Returns: zero on success, or a negative error code on failure. 1226 */ 1227 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout, 1228 struct ice_rq_event_info *event) 1229 { 1230 struct device *dev = ice_pf_to_dev(pf); 1231 struct ice_aq_task *task; 1232 unsigned long start; 1233 long ret; 1234 int err; 1235 1236 task = kzalloc(sizeof(*task), GFP_KERNEL); 1237 if (!task) 1238 return -ENOMEM; 1239 1240 INIT_HLIST_NODE(&task->entry); 1241 task->opcode = opcode; 1242 task->event = event; 1243 task->state = ICE_AQ_TASK_WAITING; 1244 1245 spin_lock_bh(&pf->aq_wait_lock); 1246 hlist_add_head(&task->entry, &pf->aq_wait_list); 1247 spin_unlock_bh(&pf->aq_wait_lock); 1248 1249 start = jiffies; 1250 1251 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state, 1252 timeout); 1253 switch (task->state) { 1254 case ICE_AQ_TASK_WAITING: 1255 err = ret < 0 ? ret : -ETIMEDOUT; 1256 break; 1257 case ICE_AQ_TASK_CANCELED: 1258 err = ret < 0 ? ret : -ECANCELED; 1259 break; 1260 case ICE_AQ_TASK_COMPLETE: 1261 err = ret < 0 ? ret : 0; 1262 break; 1263 default: 1264 WARN(1, "Unexpected AdminQ wait task state %u", task->state); 1265 err = -EINVAL; 1266 break; 1267 } 1268 1269 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n", 1270 jiffies_to_msecs(jiffies - start), 1271 jiffies_to_msecs(timeout), 1272 opcode); 1273 1274 spin_lock_bh(&pf->aq_wait_lock); 1275 hlist_del(&task->entry); 1276 spin_unlock_bh(&pf->aq_wait_lock); 1277 kfree(task); 1278 1279 return err; 1280 } 1281 1282 /** 1283 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event 1284 * @pf: pointer to the PF private structure 1285 * @opcode: the opcode of the event 1286 * @event: the event to check 1287 * 1288 * Loops over the current list of pending threads waiting for an AdminQ event. 1289 * For each matching task, copy the contents of the event into the task 1290 * structure and wake up the thread. 1291 * 1292 * If multiple threads wait for the same opcode, they will all be woken up. 1293 * 1294 * Note that event->msg_buf will only be duplicated if the event has a buffer 1295 * with enough space already allocated. Otherwise, only the descriptor and 1296 * message length will be copied. 1297 * 1298 * Returns: true if an event was found, false otherwise 1299 */ 1300 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode, 1301 struct ice_rq_event_info *event) 1302 { 1303 struct ice_aq_task *task; 1304 bool found = false; 1305 1306 spin_lock_bh(&pf->aq_wait_lock); 1307 hlist_for_each_entry(task, &pf->aq_wait_list, entry) { 1308 if (task->state || task->opcode != opcode) 1309 continue; 1310 1311 memcpy(&task->event->desc, &event->desc, sizeof(event->desc)); 1312 task->event->msg_len = event->msg_len; 1313 1314 /* Only copy the data buffer if a destination was set */ 1315 if (task->event->msg_buf && 1316 task->event->buf_len > event->buf_len) { 1317 memcpy(task->event->msg_buf, event->msg_buf, 1318 event->buf_len); 1319 task->event->buf_len = event->buf_len; 1320 } 1321 1322 task->state = ICE_AQ_TASK_COMPLETE; 1323 found = true; 1324 } 1325 spin_unlock_bh(&pf->aq_wait_lock); 1326 1327 if (found) 1328 wake_up(&pf->aq_wait_queue); 1329 } 1330 1331 /** 1332 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks 1333 * @pf: the PF private structure 1334 * 1335 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads. 1336 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED. 1337 */ 1338 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf) 1339 { 1340 struct ice_aq_task *task; 1341 1342 spin_lock_bh(&pf->aq_wait_lock); 1343 hlist_for_each_entry(task, &pf->aq_wait_list, entry) 1344 task->state = ICE_AQ_TASK_CANCELED; 1345 spin_unlock_bh(&pf->aq_wait_lock); 1346 1347 wake_up(&pf->aq_wait_queue); 1348 } 1349 1350 /** 1351 * __ice_clean_ctrlq - helper function to clean controlq rings 1352 * @pf: ptr to struct ice_pf 1353 * @q_type: specific Control queue type 1354 */ 1355 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type) 1356 { 1357 struct device *dev = ice_pf_to_dev(pf); 1358 struct ice_rq_event_info event; 1359 struct ice_hw *hw = &pf->hw; 1360 struct ice_ctl_q_info *cq; 1361 u16 pending, i = 0; 1362 const char *qtype; 1363 u32 oldval, val; 1364 1365 /* Do not clean control queue if/when PF reset fails */ 1366 if (test_bit(ICE_RESET_FAILED, pf->state)) 1367 return 0; 1368 1369 switch (q_type) { 1370 case ICE_CTL_Q_ADMIN: 1371 cq = &hw->adminq; 1372 qtype = "Admin"; 1373 break; 1374 case ICE_CTL_Q_SB: 1375 cq = &hw->sbq; 1376 qtype = "Sideband"; 1377 break; 1378 case ICE_CTL_Q_MAILBOX: 1379 cq = &hw->mailboxq; 1380 qtype = "Mailbox"; 1381 /* we are going to try to detect a malicious VF, so set the 1382 * state to begin detection 1383 */ 1384 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT; 1385 break; 1386 default: 1387 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type); 1388 return 0; 1389 } 1390 1391 /* check for error indications - PF_xx_AxQLEN register layout for 1392 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN. 1393 */ 1394 val = rd32(hw, cq->rq.len); 1395 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1396 PF_FW_ARQLEN_ARQCRIT_M)) { 1397 oldval = val; 1398 if (val & PF_FW_ARQLEN_ARQVFE_M) 1399 dev_dbg(dev, "%s Receive Queue VF Error detected\n", 1400 qtype); 1401 if (val & PF_FW_ARQLEN_ARQOVFL_M) { 1402 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n", 1403 qtype); 1404 } 1405 if (val & PF_FW_ARQLEN_ARQCRIT_M) 1406 dev_dbg(dev, "%s Receive Queue Critical Error detected\n", 1407 qtype); 1408 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M | 1409 PF_FW_ARQLEN_ARQCRIT_M); 1410 if (oldval != val) 1411 wr32(hw, cq->rq.len, val); 1412 } 1413 1414 val = rd32(hw, cq->sq.len); 1415 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1416 PF_FW_ATQLEN_ATQCRIT_M)) { 1417 oldval = val; 1418 if (val & PF_FW_ATQLEN_ATQVFE_M) 1419 dev_dbg(dev, "%s Send Queue VF Error detected\n", 1420 qtype); 1421 if (val & PF_FW_ATQLEN_ATQOVFL_M) { 1422 dev_dbg(dev, "%s Send Queue Overflow Error detected\n", 1423 qtype); 1424 } 1425 if (val & PF_FW_ATQLEN_ATQCRIT_M) 1426 dev_dbg(dev, "%s Send Queue Critical Error detected\n", 1427 qtype); 1428 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M | 1429 PF_FW_ATQLEN_ATQCRIT_M); 1430 if (oldval != val) 1431 wr32(hw, cq->sq.len, val); 1432 } 1433 1434 event.buf_len = cq->rq_buf_size; 1435 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); 1436 if (!event.msg_buf) 1437 return 0; 1438 1439 do { 1440 u16 opcode; 1441 int ret; 1442 1443 ret = ice_clean_rq_elem(hw, cq, &event, &pending); 1444 if (ret == -EALREADY) 1445 break; 1446 if (ret) { 1447 dev_err(dev, "%s Receive Queue event error %d\n", qtype, 1448 ret); 1449 break; 1450 } 1451 1452 opcode = le16_to_cpu(event.desc.opcode); 1453 1454 /* Notify any thread that might be waiting for this event */ 1455 ice_aq_check_events(pf, opcode, &event); 1456 1457 switch (opcode) { 1458 case ice_aqc_opc_get_link_status: 1459 if (ice_handle_link_event(pf, &event)) 1460 dev_err(dev, "Could not handle link event\n"); 1461 break; 1462 case ice_aqc_opc_event_lan_overflow: 1463 ice_vf_lan_overflow_event(pf, &event); 1464 break; 1465 case ice_mbx_opc_send_msg_to_pf: 1466 if (!ice_is_malicious_vf(pf, &event, i, pending)) 1467 ice_vc_process_vf_msg(pf, &event); 1468 break; 1469 case ice_aqc_opc_fw_logging: 1470 ice_output_fw_log(hw, &event.desc, event.msg_buf); 1471 break; 1472 case ice_aqc_opc_lldp_set_mib_change: 1473 ice_dcb_process_lldp_set_mib_change(pf, &event); 1474 break; 1475 default: 1476 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n", 1477 qtype, opcode); 1478 break; 1479 } 1480 } while (pending && (i++ < ICE_DFLT_IRQ_WORK)); 1481 1482 kfree(event.msg_buf); 1483 1484 return pending && (i == ICE_DFLT_IRQ_WORK); 1485 } 1486 1487 /** 1488 * ice_ctrlq_pending - check if there is a difference between ntc and ntu 1489 * @hw: pointer to hardware info 1490 * @cq: control queue information 1491 * 1492 * returns true if there are pending messages in a queue, false if there aren't 1493 */ 1494 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq) 1495 { 1496 u16 ntu; 1497 1498 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask); 1499 return cq->rq.next_to_clean != ntu; 1500 } 1501 1502 /** 1503 * ice_clean_adminq_subtask - clean the AdminQ rings 1504 * @pf: board private structure 1505 */ 1506 static void ice_clean_adminq_subtask(struct ice_pf *pf) 1507 { 1508 struct ice_hw *hw = &pf->hw; 1509 1510 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 1511 return; 1512 1513 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN)) 1514 return; 1515 1516 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 1517 1518 /* There might be a situation where new messages arrive to a control 1519 * queue between processing the last message and clearing the 1520 * EVENT_PENDING bit. So before exiting, check queue head again (using 1521 * ice_ctrlq_pending) and process new messages if any. 1522 */ 1523 if (ice_ctrlq_pending(hw, &hw->adminq)) 1524 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN); 1525 1526 ice_flush(hw); 1527 } 1528 1529 /** 1530 * ice_clean_mailboxq_subtask - clean the MailboxQ rings 1531 * @pf: board private structure 1532 */ 1533 static void ice_clean_mailboxq_subtask(struct ice_pf *pf) 1534 { 1535 struct ice_hw *hw = &pf->hw; 1536 1537 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state)) 1538 return; 1539 1540 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX)) 1541 return; 1542 1543 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 1544 1545 if (ice_ctrlq_pending(hw, &hw->mailboxq)) 1546 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX); 1547 1548 ice_flush(hw); 1549 } 1550 1551 /** 1552 * ice_clean_sbq_subtask - clean the Sideband Queue rings 1553 * @pf: board private structure 1554 */ 1555 static void ice_clean_sbq_subtask(struct ice_pf *pf) 1556 { 1557 struct ice_hw *hw = &pf->hw; 1558 1559 /* Nothing to do here if sideband queue is not supported */ 1560 if (!ice_is_sbq_supported(hw)) { 1561 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1562 return; 1563 } 1564 1565 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state)) 1566 return; 1567 1568 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB)) 1569 return; 1570 1571 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 1572 1573 if (ice_ctrlq_pending(hw, &hw->sbq)) 1574 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB); 1575 1576 ice_flush(hw); 1577 } 1578 1579 /** 1580 * ice_service_task_schedule - schedule the service task to wake up 1581 * @pf: board private structure 1582 * 1583 * If not already scheduled, this puts the task into the work queue. 1584 */ 1585 void ice_service_task_schedule(struct ice_pf *pf) 1586 { 1587 if (!test_bit(ICE_SERVICE_DIS, pf->state) && 1588 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) && 1589 !test_bit(ICE_NEEDS_RESTART, pf->state)) 1590 queue_work(ice_wq, &pf->serv_task); 1591 } 1592 1593 /** 1594 * ice_service_task_complete - finish up the service task 1595 * @pf: board private structure 1596 */ 1597 static void ice_service_task_complete(struct ice_pf *pf) 1598 { 1599 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state)); 1600 1601 /* force memory (pf->state) to sync before next service task */ 1602 smp_mb__before_atomic(); 1603 clear_bit(ICE_SERVICE_SCHED, pf->state); 1604 } 1605 1606 /** 1607 * ice_service_task_stop - stop service task and cancel works 1608 * @pf: board private structure 1609 * 1610 * Return 0 if the ICE_SERVICE_DIS bit was not already set, 1611 * 1 otherwise. 1612 */ 1613 static int ice_service_task_stop(struct ice_pf *pf) 1614 { 1615 int ret; 1616 1617 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state); 1618 1619 if (pf->serv_tmr.function) 1620 del_timer_sync(&pf->serv_tmr); 1621 if (pf->serv_task.func) 1622 cancel_work_sync(&pf->serv_task); 1623 1624 clear_bit(ICE_SERVICE_SCHED, pf->state); 1625 return ret; 1626 } 1627 1628 /** 1629 * ice_service_task_restart - restart service task and schedule works 1630 * @pf: board private structure 1631 * 1632 * This function is needed for suspend and resume works (e.g WoL scenario) 1633 */ 1634 static void ice_service_task_restart(struct ice_pf *pf) 1635 { 1636 clear_bit(ICE_SERVICE_DIS, pf->state); 1637 ice_service_task_schedule(pf); 1638 } 1639 1640 /** 1641 * ice_service_timer - timer callback to schedule service task 1642 * @t: pointer to timer_list 1643 */ 1644 static void ice_service_timer(struct timer_list *t) 1645 { 1646 struct ice_pf *pf = from_timer(pf, t, serv_tmr); 1647 1648 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies)); 1649 ice_service_task_schedule(pf); 1650 } 1651 1652 /** 1653 * ice_handle_mdd_event - handle malicious driver detect event 1654 * @pf: pointer to the PF structure 1655 * 1656 * Called from service task. OICR interrupt handler indicates MDD event. 1657 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log 1658 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events 1659 * disable the queue, the PF can be configured to reset the VF using ethtool 1660 * private flag mdd-auto-reset-vf. 1661 */ 1662 static void ice_handle_mdd_event(struct ice_pf *pf) 1663 { 1664 struct device *dev = ice_pf_to_dev(pf); 1665 struct ice_hw *hw = &pf->hw; 1666 unsigned int i; 1667 u32 reg; 1668 1669 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) { 1670 /* Since the VF MDD event logging is rate limited, check if 1671 * there are pending MDD events. 1672 */ 1673 ice_print_vfs_mdd_events(pf); 1674 return; 1675 } 1676 1677 /* find what triggered an MDD event */ 1678 reg = rd32(hw, GL_MDET_TX_PQM); 1679 if (reg & GL_MDET_TX_PQM_VALID_M) { 1680 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >> 1681 GL_MDET_TX_PQM_PF_NUM_S; 1682 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >> 1683 GL_MDET_TX_PQM_VF_NUM_S; 1684 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >> 1685 GL_MDET_TX_PQM_MAL_TYPE_S; 1686 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >> 1687 GL_MDET_TX_PQM_QNUM_S); 1688 1689 if (netif_msg_tx_err(pf)) 1690 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1691 event, queue, pf_num, vf_num); 1692 wr32(hw, GL_MDET_TX_PQM, 0xffffffff); 1693 } 1694 1695 reg = rd32(hw, GL_MDET_TX_TCLAN); 1696 if (reg & GL_MDET_TX_TCLAN_VALID_M) { 1697 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >> 1698 GL_MDET_TX_TCLAN_PF_NUM_S; 1699 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >> 1700 GL_MDET_TX_TCLAN_VF_NUM_S; 1701 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >> 1702 GL_MDET_TX_TCLAN_MAL_TYPE_S; 1703 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >> 1704 GL_MDET_TX_TCLAN_QNUM_S); 1705 1706 if (netif_msg_tx_err(pf)) 1707 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n", 1708 event, queue, pf_num, vf_num); 1709 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff); 1710 } 1711 1712 reg = rd32(hw, GL_MDET_RX); 1713 if (reg & GL_MDET_RX_VALID_M) { 1714 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >> 1715 GL_MDET_RX_PF_NUM_S; 1716 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >> 1717 GL_MDET_RX_VF_NUM_S; 1718 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >> 1719 GL_MDET_RX_MAL_TYPE_S; 1720 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >> 1721 GL_MDET_RX_QNUM_S); 1722 1723 if (netif_msg_rx_err(pf)) 1724 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n", 1725 event, queue, pf_num, vf_num); 1726 wr32(hw, GL_MDET_RX, 0xffffffff); 1727 } 1728 1729 /* check to see if this PF caused an MDD event */ 1730 reg = rd32(hw, PF_MDET_TX_PQM); 1731 if (reg & PF_MDET_TX_PQM_VALID_M) { 1732 wr32(hw, PF_MDET_TX_PQM, 0xFFFF); 1733 if (netif_msg_tx_err(pf)) 1734 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n"); 1735 } 1736 1737 reg = rd32(hw, PF_MDET_TX_TCLAN); 1738 if (reg & PF_MDET_TX_TCLAN_VALID_M) { 1739 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF); 1740 if (netif_msg_tx_err(pf)) 1741 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n"); 1742 } 1743 1744 reg = rd32(hw, PF_MDET_RX); 1745 if (reg & PF_MDET_RX_VALID_M) { 1746 wr32(hw, PF_MDET_RX, 0xFFFF); 1747 if (netif_msg_rx_err(pf)) 1748 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n"); 1749 } 1750 1751 /* Check to see if one of the VFs caused an MDD event, and then 1752 * increment counters and set print pending 1753 */ 1754 ice_for_each_vf(pf, i) { 1755 struct ice_vf *vf = &pf->vf[i]; 1756 1757 reg = rd32(hw, VP_MDET_TX_PQM(i)); 1758 if (reg & VP_MDET_TX_PQM_VALID_M) { 1759 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF); 1760 vf->mdd_tx_events.count++; 1761 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1762 if (netif_msg_tx_err(pf)) 1763 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n", 1764 i); 1765 } 1766 1767 reg = rd32(hw, VP_MDET_TX_TCLAN(i)); 1768 if (reg & VP_MDET_TX_TCLAN_VALID_M) { 1769 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF); 1770 vf->mdd_tx_events.count++; 1771 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1772 if (netif_msg_tx_err(pf)) 1773 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n", 1774 i); 1775 } 1776 1777 reg = rd32(hw, VP_MDET_TX_TDPU(i)); 1778 if (reg & VP_MDET_TX_TDPU_VALID_M) { 1779 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF); 1780 vf->mdd_tx_events.count++; 1781 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1782 if (netif_msg_tx_err(pf)) 1783 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n", 1784 i); 1785 } 1786 1787 reg = rd32(hw, VP_MDET_RX(i)); 1788 if (reg & VP_MDET_RX_VALID_M) { 1789 wr32(hw, VP_MDET_RX(i), 0xFFFF); 1790 vf->mdd_rx_events.count++; 1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state); 1792 if (netif_msg_rx_err(pf)) 1793 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n", 1794 i); 1795 1796 /* Since the queue is disabled on VF Rx MDD events, the 1797 * PF can be configured to reset the VF through ethtool 1798 * private flag mdd-auto-reset-vf. 1799 */ 1800 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) { 1801 /* VF MDD event counters will be cleared by 1802 * reset, so print the event prior to reset. 1803 */ 1804 ice_print_vf_rx_mdd_event(vf); 1805 mutex_lock(&pf->vf[i].cfg_lock); 1806 ice_reset_vf(&pf->vf[i], false); 1807 mutex_unlock(&pf->vf[i].cfg_lock); 1808 } 1809 } 1810 } 1811 1812 ice_print_vfs_mdd_events(pf); 1813 } 1814 1815 /** 1816 * ice_force_phys_link_state - Force the physical link state 1817 * @vsi: VSI to force the physical link state to up/down 1818 * @link_up: true/false indicates to set the physical link to up/down 1819 * 1820 * Force the physical link state by getting the current PHY capabilities from 1821 * hardware and setting the PHY config based on the determined capabilities. If 1822 * link changes a link event will be triggered because both the Enable Automatic 1823 * Link Update and LESM Enable bits are set when setting the PHY capabilities. 1824 * 1825 * Returns 0 on success, negative on failure 1826 */ 1827 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up) 1828 { 1829 struct ice_aqc_get_phy_caps_data *pcaps; 1830 struct ice_aqc_set_phy_cfg_data *cfg; 1831 struct ice_port_info *pi; 1832 struct device *dev; 1833 int retcode; 1834 1835 if (!vsi || !vsi->port_info || !vsi->back) 1836 return -EINVAL; 1837 if (vsi->type != ICE_VSI_PF) 1838 return 0; 1839 1840 dev = ice_pf_to_dev(vsi->back); 1841 1842 pi = vsi->port_info; 1843 1844 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1845 if (!pcaps) 1846 return -ENOMEM; 1847 1848 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 1849 NULL); 1850 if (retcode) { 1851 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n", 1852 vsi->vsi_num, retcode); 1853 retcode = -EIO; 1854 goto out; 1855 } 1856 1857 /* No change in link */ 1858 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) && 1859 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP)) 1860 goto out; 1861 1862 /* Use the current user PHY configuration. The current user PHY 1863 * configuration is initialized during probe from PHY capabilities 1864 * software mode, and updated on set PHY configuration. 1865 */ 1866 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL); 1867 if (!cfg) { 1868 retcode = -ENOMEM; 1869 goto out; 1870 } 1871 1872 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT; 1873 if (link_up) 1874 cfg->caps |= ICE_AQ_PHY_ENA_LINK; 1875 else 1876 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK; 1877 1878 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL); 1879 if (retcode) { 1880 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 1881 vsi->vsi_num, retcode); 1882 retcode = -EIO; 1883 } 1884 1885 kfree(cfg); 1886 out: 1887 kfree(pcaps); 1888 return retcode; 1889 } 1890 1891 /** 1892 * ice_init_nvm_phy_type - Initialize the NVM PHY type 1893 * @pi: port info structure 1894 * 1895 * Initialize nvm_phy_type_[low|high] for link lenient mode support 1896 */ 1897 static int ice_init_nvm_phy_type(struct ice_port_info *pi) 1898 { 1899 struct ice_aqc_get_phy_caps_data *pcaps; 1900 struct ice_pf *pf = pi->hw->back; 1901 int err; 1902 1903 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1904 if (!pcaps) 1905 return -ENOMEM; 1906 1907 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, 1908 pcaps, NULL); 1909 1910 if (err) { 1911 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 1912 goto out; 1913 } 1914 1915 pf->nvm_phy_type_hi = pcaps->phy_type_high; 1916 pf->nvm_phy_type_lo = pcaps->phy_type_low; 1917 1918 out: 1919 kfree(pcaps); 1920 return err; 1921 } 1922 1923 /** 1924 * ice_init_link_dflt_override - Initialize link default override 1925 * @pi: port info structure 1926 * 1927 * Initialize link default override and PHY total port shutdown during probe 1928 */ 1929 static void ice_init_link_dflt_override(struct ice_port_info *pi) 1930 { 1931 struct ice_link_default_override_tlv *ldo; 1932 struct ice_pf *pf = pi->hw->back; 1933 1934 ldo = &pf->link_dflt_override; 1935 if (ice_get_link_default_override(ldo, pi)) 1936 return; 1937 1938 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS)) 1939 return; 1940 1941 /* Enable Total Port Shutdown (override/replace link-down-on-close 1942 * ethtool private flag) for ports with Port Disable bit set. 1943 */ 1944 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags); 1945 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags); 1946 } 1947 1948 /** 1949 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings 1950 * @pi: port info structure 1951 * 1952 * If default override is enabled, initialize the user PHY cfg speed and FEC 1953 * settings using the default override mask from the NVM. 1954 * 1955 * The PHY should only be configured with the default override settings the 1956 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state 1957 * is used to indicate that the user PHY cfg default override is initialized 1958 * and the PHY has not been configured with the default override settings. The 1959 * state is set here, and cleared in ice_configure_phy the first time the PHY is 1960 * configured. 1961 * 1962 * This function should be called only if the FW doesn't support default 1963 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg. 1964 */ 1965 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi) 1966 { 1967 struct ice_link_default_override_tlv *ldo; 1968 struct ice_aqc_set_phy_cfg_data *cfg; 1969 struct ice_phy_info *phy = &pi->phy; 1970 struct ice_pf *pf = pi->hw->back; 1971 1972 ldo = &pf->link_dflt_override; 1973 1974 /* If link default override is enabled, use to mask NVM PHY capabilities 1975 * for speed and FEC default configuration. 1976 */ 1977 cfg = &phy->curr_user_phy_cfg; 1978 1979 if (ldo->phy_type_low || ldo->phy_type_high) { 1980 cfg->phy_type_low = pf->nvm_phy_type_lo & 1981 cpu_to_le64(ldo->phy_type_low); 1982 cfg->phy_type_high = pf->nvm_phy_type_hi & 1983 cpu_to_le64(ldo->phy_type_high); 1984 } 1985 cfg->link_fec_opt = ldo->fec_options; 1986 phy->curr_user_fec_req = ICE_FEC_AUTO; 1987 1988 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state); 1989 } 1990 1991 /** 1992 * ice_init_phy_user_cfg - Initialize the PHY user configuration 1993 * @pi: port info structure 1994 * 1995 * Initialize the current user PHY configuration, speed, FEC, and FC requested 1996 * mode to default. The PHY defaults are from get PHY capabilities topology 1997 * with media so call when media is first available. An error is returned if 1998 * called when media is not available. The PHY initialization completed state is 1999 * set here. 2000 * 2001 * These configurations are used when setting PHY 2002 * configuration. The user PHY configuration is updated on set PHY 2003 * configuration. Returns 0 on success, negative on failure 2004 */ 2005 static int ice_init_phy_user_cfg(struct ice_port_info *pi) 2006 { 2007 struct ice_aqc_get_phy_caps_data *pcaps; 2008 struct ice_phy_info *phy = &pi->phy; 2009 struct ice_pf *pf = pi->hw->back; 2010 int err; 2011 2012 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2013 return -EIO; 2014 2015 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2016 if (!pcaps) 2017 return -ENOMEM; 2018 2019 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2020 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2021 pcaps, NULL); 2022 else 2023 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2024 pcaps, NULL); 2025 if (err) { 2026 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n"); 2027 goto err_out; 2028 } 2029 2030 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg); 2031 2032 /* check if lenient mode is supported and enabled */ 2033 if (ice_fw_supports_link_override(pi->hw) && 2034 !(pcaps->module_compliance_enforcement & 2035 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) { 2036 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags); 2037 2038 /* if the FW supports default PHY configuration mode, then the driver 2039 * does not have to apply link override settings. If not, 2040 * initialize user PHY configuration with link override values 2041 */ 2042 if (!ice_fw_supports_report_dflt_cfg(pi->hw) && 2043 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) { 2044 ice_init_phy_cfg_dflt_override(pi); 2045 goto out; 2046 } 2047 } 2048 2049 /* if link default override is not enabled, set user flow control and 2050 * FEC settings based on what get_phy_caps returned 2051 */ 2052 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps, 2053 pcaps->link_fec_options); 2054 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps); 2055 2056 out: 2057 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M; 2058 set_bit(ICE_PHY_INIT_COMPLETE, pf->state); 2059 err_out: 2060 kfree(pcaps); 2061 return err; 2062 } 2063 2064 /** 2065 * ice_configure_phy - configure PHY 2066 * @vsi: VSI of PHY 2067 * 2068 * Set the PHY configuration. If the current PHY configuration is the same as 2069 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise 2070 * configure the based get PHY capabilities for topology with media. 2071 */ 2072 static int ice_configure_phy(struct ice_vsi *vsi) 2073 { 2074 struct device *dev = ice_pf_to_dev(vsi->back); 2075 struct ice_port_info *pi = vsi->port_info; 2076 struct ice_aqc_get_phy_caps_data *pcaps; 2077 struct ice_aqc_set_phy_cfg_data *cfg; 2078 struct ice_phy_info *phy = &pi->phy; 2079 struct ice_pf *pf = vsi->back; 2080 int err; 2081 2082 /* Ensure we have media as we cannot configure a medialess port */ 2083 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) 2084 return -EPERM; 2085 2086 ice_print_topo_conflict(vsi); 2087 2088 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) && 2089 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA) 2090 return -EPERM; 2091 2092 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) 2093 return ice_force_phys_link_state(vsi, true); 2094 2095 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 2096 if (!pcaps) 2097 return -ENOMEM; 2098 2099 /* Get current PHY config */ 2100 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps, 2101 NULL); 2102 if (err) { 2103 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n", 2104 vsi->vsi_num, err); 2105 goto done; 2106 } 2107 2108 /* If PHY enable link is configured and configuration has not changed, 2109 * there's nothing to do 2110 */ 2111 if (pcaps->caps & ICE_AQC_PHY_EN_LINK && 2112 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg)) 2113 goto done; 2114 2115 /* Use PHY topology as baseline for configuration */ 2116 memset(pcaps, 0, sizeof(*pcaps)); 2117 if (ice_fw_supports_report_dflt_cfg(pi->hw)) 2118 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG, 2119 pcaps, NULL); 2120 else 2121 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA, 2122 pcaps, NULL); 2123 if (err) { 2124 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n", 2125 vsi->vsi_num, err); 2126 goto done; 2127 } 2128 2129 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); 2130 if (!cfg) { 2131 err = -ENOMEM; 2132 goto done; 2133 } 2134 2135 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg); 2136 2137 /* Speed - If default override pending, use curr_user_phy_cfg set in 2138 * ice_init_phy_user_cfg_ldo. 2139 */ 2140 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, 2141 vsi->back->state)) { 2142 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low; 2143 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high; 2144 } else { 2145 u64 phy_low = 0, phy_high = 0; 2146 2147 ice_update_phy_type(&phy_low, &phy_high, 2148 pi->phy.curr_user_speed_req); 2149 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low); 2150 cfg->phy_type_high = pcaps->phy_type_high & 2151 cpu_to_le64(phy_high); 2152 } 2153 2154 /* Can't provide what was requested; use PHY capabilities */ 2155 if (!cfg->phy_type_low && !cfg->phy_type_high) { 2156 cfg->phy_type_low = pcaps->phy_type_low; 2157 cfg->phy_type_high = pcaps->phy_type_high; 2158 } 2159 2160 /* FEC */ 2161 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req); 2162 2163 /* Can't provide what was requested; use PHY capabilities */ 2164 if (cfg->link_fec_opt != 2165 (cfg->link_fec_opt & pcaps->link_fec_options)) { 2166 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC; 2167 cfg->link_fec_opt = pcaps->link_fec_options; 2168 } 2169 2170 /* Flow Control - always supported; no need to check against 2171 * capabilities 2172 */ 2173 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req); 2174 2175 /* Enable link and link update */ 2176 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK; 2177 2178 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL); 2179 if (err) 2180 dev_err(dev, "Failed to set phy config, VSI %d error %d\n", 2181 vsi->vsi_num, err); 2182 2183 kfree(cfg); 2184 done: 2185 kfree(pcaps); 2186 return err; 2187 } 2188 2189 /** 2190 * ice_check_media_subtask - Check for media 2191 * @pf: pointer to PF struct 2192 * 2193 * If media is available, then initialize PHY user configuration if it is not 2194 * been, and configure the PHY if the interface is up. 2195 */ 2196 static void ice_check_media_subtask(struct ice_pf *pf) 2197 { 2198 struct ice_port_info *pi; 2199 struct ice_vsi *vsi; 2200 int err; 2201 2202 /* No need to check for media if it's already present */ 2203 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags)) 2204 return; 2205 2206 vsi = ice_get_main_vsi(pf); 2207 if (!vsi) 2208 return; 2209 2210 /* Refresh link info and check if media is present */ 2211 pi = vsi->port_info; 2212 err = ice_update_link_info(pi); 2213 if (err) 2214 return; 2215 2216 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 2217 2218 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 2219 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) 2220 ice_init_phy_user_cfg(pi); 2221 2222 /* PHY settings are reset on media insertion, reconfigure 2223 * PHY to preserve settings. 2224 */ 2225 if (test_bit(ICE_VSI_DOWN, vsi->state) && 2226 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) 2227 return; 2228 2229 err = ice_configure_phy(vsi); 2230 if (!err) 2231 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 2232 2233 /* A Link Status Event will be generated; the event handler 2234 * will complete bringing the interface up 2235 */ 2236 } 2237 } 2238 2239 /** 2240 * ice_service_task - manage and run subtasks 2241 * @work: pointer to work_struct contained by the PF struct 2242 */ 2243 static void ice_service_task(struct work_struct *work) 2244 { 2245 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task); 2246 unsigned long start_time = jiffies; 2247 2248 /* subtasks */ 2249 2250 /* process reset requests first */ 2251 ice_reset_subtask(pf); 2252 2253 /* bail if a reset/recovery cycle is pending or rebuild failed */ 2254 if (ice_is_reset_in_progress(pf->state) || 2255 test_bit(ICE_SUSPENDED, pf->state) || 2256 test_bit(ICE_NEEDS_RESTART, pf->state)) { 2257 ice_service_task_complete(pf); 2258 return; 2259 } 2260 2261 if (test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) 2262 ice_plug_aux_dev(pf); 2263 2264 ice_clean_adminq_subtask(pf); 2265 ice_check_media_subtask(pf); 2266 ice_check_for_hang_subtask(pf); 2267 ice_sync_fltr_subtask(pf); 2268 ice_handle_mdd_event(pf); 2269 ice_watchdog_subtask(pf); 2270 2271 if (ice_is_safe_mode(pf)) { 2272 ice_service_task_complete(pf); 2273 return; 2274 } 2275 2276 ice_process_vflr_event(pf); 2277 ice_clean_mailboxq_subtask(pf); 2278 ice_clean_sbq_subtask(pf); 2279 ice_sync_arfs_fltrs(pf); 2280 ice_flush_fdir_ctx(pf); 2281 2282 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */ 2283 ice_service_task_complete(pf); 2284 2285 /* If the tasks have taken longer than one service timer period 2286 * or there is more work to be done, reset the service timer to 2287 * schedule the service task now. 2288 */ 2289 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) || 2290 test_bit(ICE_MDD_EVENT_PENDING, pf->state) || 2291 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) || 2292 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) || 2293 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) || 2294 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) || 2295 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state)) 2296 mod_timer(&pf->serv_tmr, jiffies); 2297 } 2298 2299 /** 2300 * ice_set_ctrlq_len - helper function to set controlq length 2301 * @hw: pointer to the HW instance 2302 */ 2303 static void ice_set_ctrlq_len(struct ice_hw *hw) 2304 { 2305 hw->adminq.num_rq_entries = ICE_AQ_LEN; 2306 hw->adminq.num_sq_entries = ICE_AQ_LEN; 2307 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN; 2308 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN; 2309 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M; 2310 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN; 2311 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2312 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN; 2313 hw->sbq.num_rq_entries = ICE_SBQ_LEN; 2314 hw->sbq.num_sq_entries = ICE_SBQ_LEN; 2315 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2316 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN; 2317 } 2318 2319 /** 2320 * ice_schedule_reset - schedule a reset 2321 * @pf: board private structure 2322 * @reset: reset being requested 2323 */ 2324 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset) 2325 { 2326 struct device *dev = ice_pf_to_dev(pf); 2327 2328 /* bail out if earlier reset has failed */ 2329 if (test_bit(ICE_RESET_FAILED, pf->state)) { 2330 dev_dbg(dev, "earlier reset has failed\n"); 2331 return -EIO; 2332 } 2333 /* bail if reset/recovery already in progress */ 2334 if (ice_is_reset_in_progress(pf->state)) { 2335 dev_dbg(dev, "Reset already in progress\n"); 2336 return -EBUSY; 2337 } 2338 2339 ice_unplug_aux_dev(pf); 2340 2341 switch (reset) { 2342 case ICE_RESET_PFR: 2343 set_bit(ICE_PFR_REQ, pf->state); 2344 break; 2345 case ICE_RESET_CORER: 2346 set_bit(ICE_CORER_REQ, pf->state); 2347 break; 2348 case ICE_RESET_GLOBR: 2349 set_bit(ICE_GLOBR_REQ, pf->state); 2350 break; 2351 default: 2352 return -EINVAL; 2353 } 2354 2355 ice_service_task_schedule(pf); 2356 return 0; 2357 } 2358 2359 /** 2360 * ice_irq_affinity_notify - Callback for affinity changes 2361 * @notify: context as to what irq was changed 2362 * @mask: the new affinity mask 2363 * 2364 * This is a callback function used by the irq_set_affinity_notifier function 2365 * so that we may register to receive changes to the irq affinity masks. 2366 */ 2367 static void 2368 ice_irq_affinity_notify(struct irq_affinity_notify *notify, 2369 const cpumask_t *mask) 2370 { 2371 struct ice_q_vector *q_vector = 2372 container_of(notify, struct ice_q_vector, affinity_notify); 2373 2374 cpumask_copy(&q_vector->affinity_mask, mask); 2375 } 2376 2377 /** 2378 * ice_irq_affinity_release - Callback for affinity notifier release 2379 * @ref: internal core kernel usage 2380 * 2381 * This is a callback function used by the irq_set_affinity_notifier function 2382 * to inform the current notification subscriber that they will no longer 2383 * receive notifications. 2384 */ 2385 static void ice_irq_affinity_release(struct kref __always_unused *ref) {} 2386 2387 /** 2388 * ice_vsi_ena_irq - Enable IRQ for the given VSI 2389 * @vsi: the VSI being configured 2390 */ 2391 static int ice_vsi_ena_irq(struct ice_vsi *vsi) 2392 { 2393 struct ice_hw *hw = &vsi->back->hw; 2394 int i; 2395 2396 ice_for_each_q_vector(vsi, i) 2397 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]); 2398 2399 ice_flush(hw); 2400 return 0; 2401 } 2402 2403 /** 2404 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI 2405 * @vsi: the VSI being configured 2406 * @basename: name for the vector 2407 */ 2408 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename) 2409 { 2410 int q_vectors = vsi->num_q_vectors; 2411 struct ice_pf *pf = vsi->back; 2412 int base = vsi->base_vector; 2413 struct device *dev; 2414 int rx_int_idx = 0; 2415 int tx_int_idx = 0; 2416 int vector, err; 2417 int irq_num; 2418 2419 dev = ice_pf_to_dev(pf); 2420 for (vector = 0; vector < q_vectors; vector++) { 2421 struct ice_q_vector *q_vector = vsi->q_vectors[vector]; 2422 2423 irq_num = pf->msix_entries[base + vector].vector; 2424 2425 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) { 2426 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2427 "%s-%s-%d", basename, "TxRx", rx_int_idx++); 2428 tx_int_idx++; 2429 } else if (q_vector->rx.rx_ring) { 2430 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2431 "%s-%s-%d", basename, "rx", rx_int_idx++); 2432 } else if (q_vector->tx.tx_ring) { 2433 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 2434 "%s-%s-%d", basename, "tx", tx_int_idx++); 2435 } else { 2436 /* skip this unused q_vector */ 2437 continue; 2438 } 2439 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) 2440 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2441 IRQF_SHARED, q_vector->name, 2442 q_vector); 2443 else 2444 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 2445 0, q_vector->name, q_vector); 2446 if (err) { 2447 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n", 2448 err); 2449 goto free_q_irqs; 2450 } 2451 2452 /* register for affinity change notifications */ 2453 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) { 2454 struct irq_affinity_notify *affinity_notify; 2455 2456 affinity_notify = &q_vector->affinity_notify; 2457 affinity_notify->notify = ice_irq_affinity_notify; 2458 affinity_notify->release = ice_irq_affinity_release; 2459 irq_set_affinity_notifier(irq_num, affinity_notify); 2460 } 2461 2462 /* assign the mask for this irq */ 2463 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask); 2464 } 2465 2466 vsi->irqs_ready = true; 2467 return 0; 2468 2469 free_q_irqs: 2470 while (vector) { 2471 vector--; 2472 irq_num = pf->msix_entries[base + vector].vector; 2473 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2474 irq_set_affinity_notifier(irq_num, NULL); 2475 irq_set_affinity_hint(irq_num, NULL); 2476 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]); 2477 } 2478 return err; 2479 } 2480 2481 /** 2482 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP 2483 * @vsi: VSI to setup Tx rings used by XDP 2484 * 2485 * Return 0 on success and negative value on error 2486 */ 2487 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi) 2488 { 2489 struct device *dev = ice_pf_to_dev(vsi->back); 2490 struct ice_tx_desc *tx_desc; 2491 int i, j; 2492 2493 ice_for_each_xdp_txq(vsi, i) { 2494 u16 xdp_q_idx = vsi->alloc_txq + i; 2495 struct ice_tx_ring *xdp_ring; 2496 2497 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL); 2498 2499 if (!xdp_ring) 2500 goto free_xdp_rings; 2501 2502 xdp_ring->q_index = xdp_q_idx; 2503 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx]; 2504 xdp_ring->vsi = vsi; 2505 xdp_ring->netdev = NULL; 2506 xdp_ring->dev = dev; 2507 xdp_ring->count = vsi->num_tx_desc; 2508 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1; 2509 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1; 2510 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring); 2511 if (ice_setup_tx_ring(xdp_ring)) 2512 goto free_xdp_rings; 2513 ice_set_ring_xdp(xdp_ring); 2514 xdp_ring->xsk_pool = ice_tx_xsk_pool(xdp_ring); 2515 spin_lock_init(&xdp_ring->tx_lock); 2516 for (j = 0; j < xdp_ring->count; j++) { 2517 tx_desc = ICE_TX_DESC(xdp_ring, j); 2518 tx_desc->cmd_type_offset_bsz = cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE); 2519 } 2520 } 2521 2522 ice_for_each_rxq(vsi, i) { 2523 if (static_key_enabled(&ice_xdp_locking_key)) 2524 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq]; 2525 else 2526 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i]; 2527 } 2528 2529 return 0; 2530 2531 free_xdp_rings: 2532 for (; i >= 0; i--) 2533 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) 2534 ice_free_tx_ring(vsi->xdp_rings[i]); 2535 return -ENOMEM; 2536 } 2537 2538 /** 2539 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI 2540 * @vsi: VSI to set the bpf prog on 2541 * @prog: the bpf prog pointer 2542 */ 2543 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog) 2544 { 2545 struct bpf_prog *old_prog; 2546 int i; 2547 2548 old_prog = xchg(&vsi->xdp_prog, prog); 2549 if (old_prog) 2550 bpf_prog_put(old_prog); 2551 2552 ice_for_each_rxq(vsi, i) 2553 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog); 2554 } 2555 2556 /** 2557 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP 2558 * @vsi: VSI to bring up Tx rings used by XDP 2559 * @prog: bpf program that will be assigned to VSI 2560 * 2561 * Return 0 on success and negative value on error 2562 */ 2563 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog) 2564 { 2565 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2566 int xdp_rings_rem = vsi->num_xdp_txq; 2567 struct ice_pf *pf = vsi->back; 2568 struct ice_qs_cfg xdp_qs_cfg = { 2569 .qs_mutex = &pf->avail_q_mutex, 2570 .pf_map = pf->avail_txqs, 2571 .pf_map_size = pf->max_pf_txqs, 2572 .q_count = vsi->num_xdp_txq, 2573 .scatter_count = ICE_MAX_SCATTER_TXQS, 2574 .vsi_map = vsi->txq_map, 2575 .vsi_map_offset = vsi->alloc_txq, 2576 .mapping_mode = ICE_VSI_MAP_CONTIG 2577 }; 2578 struct device *dev; 2579 int i, v_idx; 2580 int status; 2581 2582 dev = ice_pf_to_dev(pf); 2583 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq, 2584 sizeof(*vsi->xdp_rings), GFP_KERNEL); 2585 if (!vsi->xdp_rings) 2586 return -ENOMEM; 2587 2588 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode; 2589 if (__ice_vsi_get_qs(&xdp_qs_cfg)) 2590 goto err_map_xdp; 2591 2592 if (static_key_enabled(&ice_xdp_locking_key)) 2593 netdev_warn(vsi->netdev, 2594 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n"); 2595 2596 if (ice_xdp_alloc_setup_rings(vsi)) 2597 goto clear_xdp_rings; 2598 2599 /* follow the logic from ice_vsi_map_rings_to_vectors */ 2600 ice_for_each_q_vector(vsi, v_idx) { 2601 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2602 int xdp_rings_per_v, q_id, q_base; 2603 2604 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem, 2605 vsi->num_q_vectors - v_idx); 2606 q_base = vsi->num_xdp_txq - xdp_rings_rem; 2607 2608 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) { 2609 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id]; 2610 2611 xdp_ring->q_vector = q_vector; 2612 xdp_ring->next = q_vector->tx.tx_ring; 2613 q_vector->tx.tx_ring = xdp_ring; 2614 } 2615 xdp_rings_rem -= xdp_rings_per_v; 2616 } 2617 2618 /* omit the scheduler update if in reset path; XDP queues will be 2619 * taken into account at the end of ice_vsi_rebuild, where 2620 * ice_cfg_vsi_lan is being called 2621 */ 2622 if (ice_is_reset_in_progress(pf->state)) 2623 return 0; 2624 2625 /* tell the Tx scheduler that right now we have 2626 * additional queues 2627 */ 2628 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2629 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq; 2630 2631 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2632 max_txqs); 2633 if (status) { 2634 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n", 2635 status); 2636 goto clear_xdp_rings; 2637 } 2638 2639 /* assign the prog only when it's not already present on VSI; 2640 * this flow is a subject of both ethtool -L and ndo_bpf flows; 2641 * VSI rebuild that happens under ethtool -L can expose us to 2642 * the bpf_prog refcount issues as we would be swapping same 2643 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put 2644 * on it as it would be treated as an 'old_prog'; for ndo_bpf 2645 * this is not harmful as dev_xdp_install bumps the refcount 2646 * before calling the op exposed by the driver; 2647 */ 2648 if (!ice_is_xdp_ena_vsi(vsi)) 2649 ice_vsi_assign_bpf_prog(vsi, prog); 2650 2651 return 0; 2652 clear_xdp_rings: 2653 ice_for_each_xdp_txq(vsi, i) 2654 if (vsi->xdp_rings[i]) { 2655 kfree_rcu(vsi->xdp_rings[i], rcu); 2656 vsi->xdp_rings[i] = NULL; 2657 } 2658 2659 err_map_xdp: 2660 mutex_lock(&pf->avail_q_mutex); 2661 ice_for_each_xdp_txq(vsi, i) { 2662 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2663 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2664 } 2665 mutex_unlock(&pf->avail_q_mutex); 2666 2667 devm_kfree(dev, vsi->xdp_rings); 2668 return -ENOMEM; 2669 } 2670 2671 /** 2672 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings 2673 * @vsi: VSI to remove XDP rings 2674 * 2675 * Detach XDP rings from irq vectors, clean up the PF bitmap and free 2676 * resources 2677 */ 2678 int ice_destroy_xdp_rings(struct ice_vsi *vsi) 2679 { 2680 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2681 struct ice_pf *pf = vsi->back; 2682 int i, v_idx; 2683 2684 /* q_vectors are freed in reset path so there's no point in detaching 2685 * rings; in case of rebuild being triggered not from reset bits 2686 * in pf->state won't be set, so additionally check first q_vector 2687 * against NULL 2688 */ 2689 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2690 goto free_qmap; 2691 2692 ice_for_each_q_vector(vsi, v_idx) { 2693 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2694 struct ice_tx_ring *ring; 2695 2696 ice_for_each_tx_ring(ring, q_vector->tx) 2697 if (!ring->tx_buf || !ice_ring_is_xdp(ring)) 2698 break; 2699 2700 /* restore the value of last node prior to XDP setup */ 2701 q_vector->tx.tx_ring = ring; 2702 } 2703 2704 free_qmap: 2705 mutex_lock(&pf->avail_q_mutex); 2706 ice_for_each_xdp_txq(vsi, i) { 2707 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs); 2708 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX; 2709 } 2710 mutex_unlock(&pf->avail_q_mutex); 2711 2712 ice_for_each_xdp_txq(vsi, i) 2713 if (vsi->xdp_rings[i]) { 2714 if (vsi->xdp_rings[i]->desc) 2715 ice_free_tx_ring(vsi->xdp_rings[i]); 2716 kfree_rcu(vsi->xdp_rings[i], rcu); 2717 vsi->xdp_rings[i] = NULL; 2718 } 2719 2720 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings); 2721 vsi->xdp_rings = NULL; 2722 2723 if (static_key_enabled(&ice_xdp_locking_key)) 2724 static_branch_dec(&ice_xdp_locking_key); 2725 2726 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0]) 2727 return 0; 2728 2729 ice_vsi_assign_bpf_prog(vsi, NULL); 2730 2731 /* notify Tx scheduler that we destroyed XDP queues and bring 2732 * back the old number of child nodes 2733 */ 2734 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2735 max_txqs[i] = vsi->num_txq; 2736 2737 /* change number of XDP Tx queues to 0 */ 2738 vsi->num_xdp_txq = 0; 2739 2740 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2741 max_txqs); 2742 } 2743 2744 /** 2745 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI 2746 * @vsi: VSI to schedule napi on 2747 */ 2748 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi) 2749 { 2750 int i; 2751 2752 ice_for_each_rxq(vsi, i) { 2753 struct ice_rx_ring *rx_ring = vsi->rx_rings[i]; 2754 2755 if (rx_ring->xsk_pool) 2756 napi_schedule(&rx_ring->q_vector->napi); 2757 } 2758 } 2759 2760 /** 2761 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have 2762 * @vsi: VSI to determine the count of XDP Tx qs 2763 * 2764 * returns 0 if Tx qs count is higher than at least half of CPU count, 2765 * -ENOMEM otherwise 2766 */ 2767 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi) 2768 { 2769 u16 avail = ice_get_avail_txq_count(vsi->back); 2770 u16 cpus = num_possible_cpus(); 2771 2772 if (avail < cpus / 2) 2773 return -ENOMEM; 2774 2775 vsi->num_xdp_txq = min_t(u16, avail, cpus); 2776 2777 if (vsi->num_xdp_txq < cpus) 2778 static_branch_inc(&ice_xdp_locking_key); 2779 2780 return 0; 2781 } 2782 2783 /** 2784 * ice_xdp_setup_prog - Add or remove XDP eBPF program 2785 * @vsi: VSI to setup XDP for 2786 * @prog: XDP program 2787 * @extack: netlink extended ack 2788 */ 2789 static int 2790 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog, 2791 struct netlink_ext_ack *extack) 2792 { 2793 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD; 2794 bool if_running = netif_running(vsi->netdev); 2795 int ret = 0, xdp_ring_err = 0; 2796 2797 if (frame_size > vsi->rx_buf_len) { 2798 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP"); 2799 return -EOPNOTSUPP; 2800 } 2801 2802 /* need to stop netdev while setting up the program for Rx rings */ 2803 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 2804 ret = ice_down(vsi); 2805 if (ret) { 2806 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed"); 2807 return ret; 2808 } 2809 } 2810 2811 if (!ice_is_xdp_ena_vsi(vsi) && prog) { 2812 xdp_ring_err = ice_vsi_determine_xdp_res(vsi); 2813 if (xdp_ring_err) { 2814 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP"); 2815 } else { 2816 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog); 2817 if (xdp_ring_err) 2818 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed"); 2819 } 2820 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) { 2821 xdp_ring_err = ice_destroy_xdp_rings(vsi); 2822 if (xdp_ring_err) 2823 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed"); 2824 } else { 2825 /* safe to call even when prog == vsi->xdp_prog as 2826 * dev_xdp_install in net/core/dev.c incremented prog's 2827 * refcount so corresponding bpf_prog_put won't cause 2828 * underflow 2829 */ 2830 ice_vsi_assign_bpf_prog(vsi, prog); 2831 } 2832 2833 if (if_running) 2834 ret = ice_up(vsi); 2835 2836 if (!ret && prog) 2837 ice_vsi_rx_napi_schedule(vsi); 2838 2839 return (ret || xdp_ring_err) ? -ENOMEM : 0; 2840 } 2841 2842 /** 2843 * ice_xdp_safe_mode - XDP handler for safe mode 2844 * @dev: netdevice 2845 * @xdp: XDP command 2846 */ 2847 static int ice_xdp_safe_mode(struct net_device __always_unused *dev, 2848 struct netdev_bpf *xdp) 2849 { 2850 NL_SET_ERR_MSG_MOD(xdp->extack, 2851 "Please provide working DDP firmware package in order to use XDP\n" 2852 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst"); 2853 return -EOPNOTSUPP; 2854 } 2855 2856 /** 2857 * ice_xdp - implements XDP handler 2858 * @dev: netdevice 2859 * @xdp: XDP command 2860 */ 2861 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2862 { 2863 struct ice_netdev_priv *np = netdev_priv(dev); 2864 struct ice_vsi *vsi = np->vsi; 2865 2866 if (vsi->type != ICE_VSI_PF) { 2867 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI"); 2868 return -EINVAL; 2869 } 2870 2871 switch (xdp->command) { 2872 case XDP_SETUP_PROG: 2873 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack); 2874 case XDP_SETUP_XSK_POOL: 2875 return ice_xsk_pool_setup(vsi, xdp->xsk.pool, 2876 xdp->xsk.queue_id); 2877 default: 2878 return -EINVAL; 2879 } 2880 } 2881 2882 /** 2883 * ice_ena_misc_vector - enable the non-queue interrupts 2884 * @pf: board private structure 2885 */ 2886 static void ice_ena_misc_vector(struct ice_pf *pf) 2887 { 2888 struct ice_hw *hw = &pf->hw; 2889 u32 val; 2890 2891 /* Disable anti-spoof detection interrupt to prevent spurious event 2892 * interrupts during a function reset. Anti-spoof functionally is 2893 * still supported. 2894 */ 2895 val = rd32(hw, GL_MDCK_TX_TDPU); 2896 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M; 2897 wr32(hw, GL_MDCK_TX_TDPU, val); 2898 2899 /* clear things first */ 2900 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */ 2901 rd32(hw, PFINT_OICR); /* read to clear */ 2902 2903 val = (PFINT_OICR_ECC_ERR_M | 2904 PFINT_OICR_MAL_DETECT_M | 2905 PFINT_OICR_GRST_M | 2906 PFINT_OICR_PCI_EXCEPTION_M | 2907 PFINT_OICR_VFLR_M | 2908 PFINT_OICR_HMC_ERR_M | 2909 PFINT_OICR_PE_PUSH_M | 2910 PFINT_OICR_PE_CRITERR_M); 2911 2912 wr32(hw, PFINT_OICR_ENA, val); 2913 2914 /* SW_ITR_IDX = 0, but don't change INTENA */ 2915 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), 2916 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M); 2917 } 2918 2919 /** 2920 * ice_misc_intr - misc interrupt handler 2921 * @irq: interrupt number 2922 * @data: pointer to a q_vector 2923 */ 2924 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data) 2925 { 2926 struct ice_pf *pf = (struct ice_pf *)data; 2927 struct ice_hw *hw = &pf->hw; 2928 irqreturn_t ret = IRQ_NONE; 2929 struct device *dev; 2930 u32 oicr, ena_mask; 2931 2932 dev = ice_pf_to_dev(pf); 2933 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state); 2934 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state); 2935 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state); 2936 2937 oicr = rd32(hw, PFINT_OICR); 2938 ena_mask = rd32(hw, PFINT_OICR_ENA); 2939 2940 if (oicr & PFINT_OICR_SWINT_M) { 2941 ena_mask &= ~PFINT_OICR_SWINT_M; 2942 pf->sw_int_count++; 2943 } 2944 2945 if (oicr & PFINT_OICR_MAL_DETECT_M) { 2946 ena_mask &= ~PFINT_OICR_MAL_DETECT_M; 2947 set_bit(ICE_MDD_EVENT_PENDING, pf->state); 2948 } 2949 if (oicr & PFINT_OICR_VFLR_M) { 2950 /* disable any further VFLR event notifications */ 2951 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) { 2952 u32 reg = rd32(hw, PFINT_OICR_ENA); 2953 2954 reg &= ~PFINT_OICR_VFLR_M; 2955 wr32(hw, PFINT_OICR_ENA, reg); 2956 } else { 2957 ena_mask &= ~PFINT_OICR_VFLR_M; 2958 set_bit(ICE_VFLR_EVENT_PENDING, pf->state); 2959 } 2960 } 2961 2962 if (oicr & PFINT_OICR_GRST_M) { 2963 u32 reset; 2964 2965 /* we have a reset warning */ 2966 ena_mask &= ~PFINT_OICR_GRST_M; 2967 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >> 2968 GLGEN_RSTAT_RESET_TYPE_S; 2969 2970 if (reset == ICE_RESET_CORER) 2971 pf->corer_count++; 2972 else if (reset == ICE_RESET_GLOBR) 2973 pf->globr_count++; 2974 else if (reset == ICE_RESET_EMPR) 2975 pf->empr_count++; 2976 else 2977 dev_dbg(dev, "Invalid reset type %d\n", reset); 2978 2979 /* If a reset cycle isn't already in progress, we set a bit in 2980 * pf->state so that the service task can start a reset/rebuild. 2981 */ 2982 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) { 2983 if (reset == ICE_RESET_CORER) 2984 set_bit(ICE_CORER_RECV, pf->state); 2985 else if (reset == ICE_RESET_GLOBR) 2986 set_bit(ICE_GLOBR_RECV, pf->state); 2987 else 2988 set_bit(ICE_EMPR_RECV, pf->state); 2989 2990 /* There are couple of different bits at play here. 2991 * hw->reset_ongoing indicates whether the hardware is 2992 * in reset. This is set to true when a reset interrupt 2993 * is received and set back to false after the driver 2994 * has determined that the hardware is out of reset. 2995 * 2996 * ICE_RESET_OICR_RECV in pf->state indicates 2997 * that a post reset rebuild is required before the 2998 * driver is operational again. This is set above. 2999 * 3000 * As this is the start of the reset/rebuild cycle, set 3001 * both to indicate that. 3002 */ 3003 hw->reset_ongoing = true; 3004 } 3005 } 3006 3007 if (oicr & PFINT_OICR_TSYN_TX_M) { 3008 ena_mask &= ~PFINT_OICR_TSYN_TX_M; 3009 ice_ptp_process_ts(pf); 3010 } 3011 3012 if (oicr & PFINT_OICR_TSYN_EVNT_M) { 3013 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned; 3014 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx)); 3015 3016 /* Save EVENTs from GTSYN register */ 3017 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M | 3018 GLTSYN_STAT_EVENT1_M | 3019 GLTSYN_STAT_EVENT2_M); 3020 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M; 3021 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work); 3022 } 3023 3024 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M) 3025 if (oicr & ICE_AUX_CRIT_ERR) { 3026 struct iidc_event *event; 3027 3028 ena_mask &= ~ICE_AUX_CRIT_ERR; 3029 event = kzalloc(sizeof(*event), GFP_KERNEL); 3030 if (event) { 3031 set_bit(IIDC_EVENT_CRIT_ERR, event->type); 3032 /* report the entire OICR value to AUX driver */ 3033 event->reg = oicr; 3034 ice_send_event_to_aux(pf, event); 3035 kfree(event); 3036 } 3037 } 3038 3039 /* Report any remaining unexpected interrupts */ 3040 oicr &= ena_mask; 3041 if (oicr) { 3042 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr); 3043 /* If a critical error is pending there is no choice but to 3044 * reset the device. 3045 */ 3046 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M | 3047 PFINT_OICR_ECC_ERR_M)) { 3048 set_bit(ICE_PFR_REQ, pf->state); 3049 ice_service_task_schedule(pf); 3050 } 3051 } 3052 ret = IRQ_HANDLED; 3053 3054 ice_service_task_schedule(pf); 3055 ice_irq_dynamic_ena(hw, NULL, NULL); 3056 3057 return ret; 3058 } 3059 3060 /** 3061 * ice_dis_ctrlq_interrupts - disable control queue interrupts 3062 * @hw: pointer to HW structure 3063 */ 3064 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw) 3065 { 3066 /* disable Admin queue Interrupt causes */ 3067 wr32(hw, PFINT_FW_CTL, 3068 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M); 3069 3070 /* disable Mailbox queue Interrupt causes */ 3071 wr32(hw, PFINT_MBX_CTL, 3072 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M); 3073 3074 wr32(hw, PFINT_SB_CTL, 3075 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M); 3076 3077 /* disable Control queue Interrupt causes */ 3078 wr32(hw, PFINT_OICR_CTL, 3079 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M); 3080 3081 ice_flush(hw); 3082 } 3083 3084 /** 3085 * ice_free_irq_msix_misc - Unroll misc vector setup 3086 * @pf: board private structure 3087 */ 3088 static void ice_free_irq_msix_misc(struct ice_pf *pf) 3089 { 3090 struct ice_hw *hw = &pf->hw; 3091 3092 ice_dis_ctrlq_interrupts(hw); 3093 3094 /* disable OICR interrupt */ 3095 wr32(hw, PFINT_OICR_ENA, 0); 3096 ice_flush(hw); 3097 3098 if (pf->msix_entries) { 3099 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector); 3100 devm_free_irq(ice_pf_to_dev(pf), 3101 pf->msix_entries[pf->oicr_idx].vector, pf); 3102 } 3103 3104 pf->num_avail_sw_msix += 1; 3105 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID); 3106 } 3107 3108 /** 3109 * ice_ena_ctrlq_interrupts - enable control queue interrupts 3110 * @hw: pointer to HW structure 3111 * @reg_idx: HW vector index to associate the control queue interrupts with 3112 */ 3113 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx) 3114 { 3115 u32 val; 3116 3117 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) | 3118 PFINT_OICR_CTL_CAUSE_ENA_M); 3119 wr32(hw, PFINT_OICR_CTL, val); 3120 3121 /* enable Admin queue Interrupt causes */ 3122 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) | 3123 PFINT_FW_CTL_CAUSE_ENA_M); 3124 wr32(hw, PFINT_FW_CTL, val); 3125 3126 /* enable Mailbox queue Interrupt causes */ 3127 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) | 3128 PFINT_MBX_CTL_CAUSE_ENA_M); 3129 wr32(hw, PFINT_MBX_CTL, val); 3130 3131 /* This enables Sideband queue Interrupt causes */ 3132 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) | 3133 PFINT_SB_CTL_CAUSE_ENA_M); 3134 wr32(hw, PFINT_SB_CTL, val); 3135 3136 ice_flush(hw); 3137 } 3138 3139 /** 3140 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events 3141 * @pf: board private structure 3142 * 3143 * This sets up the handler for MSIX 0, which is used to manage the 3144 * non-queue interrupts, e.g. AdminQ and errors. This is not used 3145 * when in MSI or Legacy interrupt mode. 3146 */ 3147 static int ice_req_irq_msix_misc(struct ice_pf *pf) 3148 { 3149 struct device *dev = ice_pf_to_dev(pf); 3150 struct ice_hw *hw = &pf->hw; 3151 int oicr_idx, err = 0; 3152 3153 if (!pf->int_name[0]) 3154 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", 3155 dev_driver_string(dev), dev_name(dev)); 3156 3157 /* Do not request IRQ but do enable OICR interrupt since settings are 3158 * lost during reset. Note that this function is called only during 3159 * rebuild path and not while reset is in progress. 3160 */ 3161 if (ice_is_reset_in_progress(pf->state)) 3162 goto skip_req_irq; 3163 3164 /* reserve one vector in irq_tracker for misc interrupts */ 3165 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3166 if (oicr_idx < 0) 3167 return oicr_idx; 3168 3169 pf->num_avail_sw_msix -= 1; 3170 pf->oicr_idx = (u16)oicr_idx; 3171 3172 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector, 3173 ice_misc_intr, 0, pf->int_name, pf); 3174 if (err) { 3175 dev_err(dev, "devm_request_irq for %s failed: %d\n", 3176 pf->int_name, err); 3177 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID); 3178 pf->num_avail_sw_msix += 1; 3179 return err; 3180 } 3181 3182 skip_req_irq: 3183 ice_ena_misc_vector(pf); 3184 3185 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx); 3186 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx), 3187 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S); 3188 3189 ice_flush(hw); 3190 ice_irq_dynamic_ena(hw, NULL, NULL); 3191 3192 return 0; 3193 } 3194 3195 /** 3196 * ice_napi_add - register NAPI handler for the VSI 3197 * @vsi: VSI for which NAPI handler is to be registered 3198 * 3199 * This function is only called in the driver's load path. Registering the NAPI 3200 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 3201 * reset/rebuild, etc.) 3202 */ 3203 static void ice_napi_add(struct ice_vsi *vsi) 3204 { 3205 int v_idx; 3206 3207 if (!vsi->netdev) 3208 return; 3209 3210 ice_for_each_q_vector(vsi, v_idx) 3211 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 3212 ice_napi_poll, NAPI_POLL_WEIGHT); 3213 } 3214 3215 /** 3216 * ice_set_ops - set netdev and ethtools ops for the given netdev 3217 * @netdev: netdev instance 3218 */ 3219 static void ice_set_ops(struct net_device *netdev) 3220 { 3221 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3222 3223 if (ice_is_safe_mode(pf)) { 3224 netdev->netdev_ops = &ice_netdev_safe_mode_ops; 3225 ice_set_ethtool_safe_mode_ops(netdev); 3226 return; 3227 } 3228 3229 netdev->netdev_ops = &ice_netdev_ops; 3230 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic; 3231 ice_set_ethtool_ops(netdev); 3232 } 3233 3234 /** 3235 * ice_set_netdev_features - set features for the given netdev 3236 * @netdev: netdev instance 3237 */ 3238 static void ice_set_netdev_features(struct net_device *netdev) 3239 { 3240 struct ice_pf *pf = ice_netdev_to_pf(netdev); 3241 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw); 3242 netdev_features_t csumo_features; 3243 netdev_features_t vlano_features; 3244 netdev_features_t dflt_features; 3245 netdev_features_t tso_features; 3246 3247 if (ice_is_safe_mode(pf)) { 3248 /* safe mode */ 3249 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA; 3250 netdev->hw_features = netdev->features; 3251 return; 3252 } 3253 3254 dflt_features = NETIF_F_SG | 3255 NETIF_F_HIGHDMA | 3256 NETIF_F_NTUPLE | 3257 NETIF_F_RXHASH; 3258 3259 csumo_features = NETIF_F_RXCSUM | 3260 NETIF_F_IP_CSUM | 3261 NETIF_F_SCTP_CRC | 3262 NETIF_F_IPV6_CSUM; 3263 3264 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER | 3265 NETIF_F_HW_VLAN_CTAG_TX | 3266 NETIF_F_HW_VLAN_CTAG_RX; 3267 3268 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */ 3269 if (is_dvm_ena) 3270 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER; 3271 3272 tso_features = NETIF_F_TSO | 3273 NETIF_F_TSO_ECN | 3274 NETIF_F_TSO6 | 3275 NETIF_F_GSO_GRE | 3276 NETIF_F_GSO_UDP_TUNNEL | 3277 NETIF_F_GSO_GRE_CSUM | 3278 NETIF_F_GSO_UDP_TUNNEL_CSUM | 3279 NETIF_F_GSO_PARTIAL | 3280 NETIF_F_GSO_IPXIP4 | 3281 NETIF_F_GSO_IPXIP6 | 3282 NETIF_F_GSO_UDP_L4; 3283 3284 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM | 3285 NETIF_F_GSO_GRE_CSUM; 3286 /* set features that user can change */ 3287 netdev->hw_features = dflt_features | csumo_features | 3288 vlano_features | tso_features; 3289 3290 /* add support for HW_CSUM on packets with MPLS header */ 3291 netdev->mpls_features = NETIF_F_HW_CSUM; 3292 3293 /* enable features */ 3294 netdev->features |= netdev->hw_features; 3295 3296 netdev->hw_features |= NETIF_F_HW_TC; 3297 3298 /* encap and VLAN devices inherit default, csumo and tso features */ 3299 netdev->hw_enc_features |= dflt_features | csumo_features | 3300 tso_features; 3301 netdev->vlan_features |= dflt_features | csumo_features | 3302 tso_features; 3303 3304 /* advertise support but don't enable by default since only one type of 3305 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one 3306 * type turns on the other has to be turned off. This is enforced by the 3307 * ice_fix_features() ndo callback. 3308 */ 3309 if (is_dvm_ena) 3310 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX | 3311 NETIF_F_HW_VLAN_STAG_TX; 3312 } 3313 3314 /** 3315 * ice_cfg_netdev - Allocate, configure and register a netdev 3316 * @vsi: the VSI associated with the new netdev 3317 * 3318 * Returns 0 on success, negative value on failure 3319 */ 3320 static int ice_cfg_netdev(struct ice_vsi *vsi) 3321 { 3322 struct ice_netdev_priv *np; 3323 struct net_device *netdev; 3324 u8 mac_addr[ETH_ALEN]; 3325 3326 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq, 3327 vsi->alloc_rxq); 3328 if (!netdev) 3329 return -ENOMEM; 3330 3331 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3332 vsi->netdev = netdev; 3333 np = netdev_priv(netdev); 3334 np->vsi = vsi; 3335 3336 ice_set_netdev_features(netdev); 3337 3338 ice_set_ops(netdev); 3339 3340 if (vsi->type == ICE_VSI_PF) { 3341 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back)); 3342 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 3343 eth_hw_addr_set(netdev, mac_addr); 3344 ether_addr_copy(netdev->perm_addr, mac_addr); 3345 } 3346 3347 netdev->priv_flags |= IFF_UNICAST_FLT; 3348 3349 /* Setup netdev TC information */ 3350 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc); 3351 3352 /* setup watchdog timeout value to be 5 second */ 3353 netdev->watchdog_timeo = 5 * HZ; 3354 3355 netdev->min_mtu = ETH_MIN_MTU; 3356 netdev->max_mtu = ICE_MAX_MTU; 3357 3358 return 0; 3359 } 3360 3361 /** 3362 * ice_fill_rss_lut - Fill the RSS lookup table with default values 3363 * @lut: Lookup table 3364 * @rss_table_size: Lookup table size 3365 * @rss_size: Range of queue number for hashing 3366 */ 3367 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size) 3368 { 3369 u16 i; 3370 3371 for (i = 0; i < rss_table_size; i++) 3372 lut[i] = i % rss_size; 3373 } 3374 3375 /** 3376 * ice_pf_vsi_setup - Set up a PF VSI 3377 * @pf: board private structure 3378 * @pi: pointer to the port_info instance 3379 * 3380 * Returns pointer to the successfully allocated VSI software struct 3381 * on success, otherwise returns NULL on failure. 3382 */ 3383 static struct ice_vsi * 3384 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3385 { 3386 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID, NULL); 3387 } 3388 3389 static struct ice_vsi * 3390 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 3391 struct ice_channel *ch) 3392 { 3393 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, ICE_INVAL_VFID, ch); 3394 } 3395 3396 /** 3397 * ice_ctrl_vsi_setup - Set up a control VSI 3398 * @pf: board private structure 3399 * @pi: pointer to the port_info instance 3400 * 3401 * Returns pointer to the successfully allocated VSI software struct 3402 * on success, otherwise returns NULL on failure. 3403 */ 3404 static struct ice_vsi * 3405 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3406 { 3407 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID, NULL); 3408 } 3409 3410 /** 3411 * ice_lb_vsi_setup - Set up a loopback VSI 3412 * @pf: board private structure 3413 * @pi: pointer to the port_info instance 3414 * 3415 * Returns pointer to the successfully allocated VSI software struct 3416 * on success, otherwise returns NULL on failure. 3417 */ 3418 struct ice_vsi * 3419 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi) 3420 { 3421 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID, NULL); 3422 } 3423 3424 /** 3425 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload 3426 * @netdev: network interface to be adjusted 3427 * @proto: VLAN TPID 3428 * @vid: VLAN ID to be added 3429 * 3430 * net_device_ops implementation for adding VLAN IDs 3431 */ 3432 static int 3433 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) 3434 { 3435 struct ice_netdev_priv *np = netdev_priv(netdev); 3436 struct ice_vsi_vlan_ops *vlan_ops; 3437 struct ice_vsi *vsi = np->vsi; 3438 struct ice_vlan vlan; 3439 int ret; 3440 3441 /* VLAN 0 is added by default during load/reset */ 3442 if (!vid) 3443 return 0; 3444 3445 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3446 3447 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged 3448 * packets aren't pruned by the device's internal switch on Rx 3449 */ 3450 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3451 ret = vlan_ops->add_vlan(vsi, &vlan); 3452 if (!ret) 3453 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3454 3455 return ret; 3456 } 3457 3458 /** 3459 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload 3460 * @netdev: network interface to be adjusted 3461 * @proto: VLAN TPID 3462 * @vid: VLAN ID to be removed 3463 * 3464 * net_device_ops implementation for removing VLAN IDs 3465 */ 3466 static int 3467 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) 3468 { 3469 struct ice_netdev_priv *np = netdev_priv(netdev); 3470 struct ice_vsi_vlan_ops *vlan_ops; 3471 struct ice_vsi *vsi = np->vsi; 3472 struct ice_vlan vlan; 3473 int ret; 3474 3475 /* don't allow removal of VLAN 0 */ 3476 if (!vid) 3477 return 0; 3478 3479 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3480 3481 /* Make sure VLAN delete is successful before updating VLAN 3482 * information 3483 */ 3484 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0); 3485 ret = vlan_ops->del_vlan(vsi, &vlan); 3486 if (ret) 3487 return ret; 3488 3489 set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state); 3490 return 0; 3491 } 3492 3493 /** 3494 * ice_rep_indr_tc_block_unbind 3495 * @cb_priv: indirection block private data 3496 */ 3497 static void ice_rep_indr_tc_block_unbind(void *cb_priv) 3498 { 3499 struct ice_indr_block_priv *indr_priv = cb_priv; 3500 3501 list_del(&indr_priv->list); 3502 kfree(indr_priv); 3503 } 3504 3505 /** 3506 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications 3507 * @vsi: VSI struct which has the netdev 3508 */ 3509 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi) 3510 { 3511 struct ice_netdev_priv *np = netdev_priv(vsi->netdev); 3512 3513 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np, 3514 ice_rep_indr_tc_block_unbind); 3515 } 3516 3517 /** 3518 * ice_tc_indir_block_remove - clean indirect TC block notifications 3519 * @pf: PF structure 3520 */ 3521 static void ice_tc_indir_block_remove(struct ice_pf *pf) 3522 { 3523 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); 3524 3525 if (!pf_vsi) 3526 return; 3527 3528 ice_tc_indir_block_unregister(pf_vsi); 3529 } 3530 3531 /** 3532 * ice_tc_indir_block_register - Register TC indirect block notifications 3533 * @vsi: VSI struct which has the netdev 3534 * 3535 * Returns 0 on success, negative value on failure 3536 */ 3537 static int ice_tc_indir_block_register(struct ice_vsi *vsi) 3538 { 3539 struct ice_netdev_priv *np; 3540 3541 if (!vsi || !vsi->netdev) 3542 return -EINVAL; 3543 3544 np = netdev_priv(vsi->netdev); 3545 3546 INIT_LIST_HEAD(&np->tc_indr_block_priv_list); 3547 return flow_indr_dev_register(ice_indr_setup_tc_cb, np); 3548 } 3549 3550 /** 3551 * ice_setup_pf_sw - Setup the HW switch on startup or after reset 3552 * @pf: board private structure 3553 * 3554 * Returns 0 on success, negative value on failure 3555 */ 3556 static int ice_setup_pf_sw(struct ice_pf *pf) 3557 { 3558 struct device *dev = ice_pf_to_dev(pf); 3559 bool dvm = ice_is_dvm_ena(&pf->hw); 3560 struct ice_vsi *vsi; 3561 int status; 3562 3563 if (ice_is_reset_in_progress(pf->state)) 3564 return -EBUSY; 3565 3566 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 3567 if (status) 3568 return -EIO; 3569 3570 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info); 3571 if (!vsi) 3572 return -ENOMEM; 3573 3574 /* init channel list */ 3575 INIT_LIST_HEAD(&vsi->ch_list); 3576 3577 status = ice_cfg_netdev(vsi); 3578 if (status) 3579 goto unroll_vsi_setup; 3580 /* netdev has to be configured before setting frame size */ 3581 ice_vsi_cfg_frame_size(vsi); 3582 3583 /* init indirect block notifications */ 3584 status = ice_tc_indir_block_register(vsi); 3585 if (status) { 3586 dev_err(dev, "Failed to register netdev notifier\n"); 3587 goto unroll_cfg_netdev; 3588 } 3589 3590 /* Setup DCB netlink interface */ 3591 ice_dcbnl_setup(vsi); 3592 3593 /* registering the NAPI handler requires both the queues and 3594 * netdev to be created, which are done in ice_pf_vsi_setup() 3595 * and ice_cfg_netdev() respectively 3596 */ 3597 ice_napi_add(vsi); 3598 3599 status = ice_set_cpu_rx_rmap(vsi); 3600 if (status) { 3601 dev_err(dev, "Failed to set CPU Rx map VSI %d error %d\n", 3602 vsi->vsi_num, status); 3603 goto unroll_napi_add; 3604 } 3605 status = ice_init_mac_fltr(pf); 3606 if (status) 3607 goto free_cpu_rx_map; 3608 3609 return 0; 3610 3611 free_cpu_rx_map: 3612 ice_free_cpu_rx_rmap(vsi); 3613 unroll_napi_add: 3614 ice_tc_indir_block_unregister(vsi); 3615 unroll_cfg_netdev: 3616 if (vsi) { 3617 ice_napi_del(vsi); 3618 if (vsi->netdev) { 3619 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 3620 free_netdev(vsi->netdev); 3621 vsi->netdev = NULL; 3622 } 3623 } 3624 3625 unroll_vsi_setup: 3626 ice_vsi_release(vsi); 3627 return status; 3628 } 3629 3630 /** 3631 * ice_get_avail_q_count - Get count of queues in use 3632 * @pf_qmap: bitmap to get queue use count from 3633 * @lock: pointer to a mutex that protects access to pf_qmap 3634 * @size: size of the bitmap 3635 */ 3636 static u16 3637 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size) 3638 { 3639 unsigned long bit; 3640 u16 count = 0; 3641 3642 mutex_lock(lock); 3643 for_each_clear_bit(bit, pf_qmap, size) 3644 count++; 3645 mutex_unlock(lock); 3646 3647 return count; 3648 } 3649 3650 /** 3651 * ice_get_avail_txq_count - Get count of Tx queues in use 3652 * @pf: pointer to an ice_pf instance 3653 */ 3654 u16 ice_get_avail_txq_count(struct ice_pf *pf) 3655 { 3656 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex, 3657 pf->max_pf_txqs); 3658 } 3659 3660 /** 3661 * ice_get_avail_rxq_count - Get count of Rx queues in use 3662 * @pf: pointer to an ice_pf instance 3663 */ 3664 u16 ice_get_avail_rxq_count(struct ice_pf *pf) 3665 { 3666 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex, 3667 pf->max_pf_rxqs); 3668 } 3669 3670 /** 3671 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf 3672 * @pf: board private structure to initialize 3673 */ 3674 static void ice_deinit_pf(struct ice_pf *pf) 3675 { 3676 ice_service_task_stop(pf); 3677 mutex_destroy(&pf->sw_mutex); 3678 mutex_destroy(&pf->tc_mutex); 3679 mutex_destroy(&pf->avail_q_mutex); 3680 3681 if (pf->avail_txqs) { 3682 bitmap_free(pf->avail_txqs); 3683 pf->avail_txqs = NULL; 3684 } 3685 3686 if (pf->avail_rxqs) { 3687 bitmap_free(pf->avail_rxqs); 3688 pf->avail_rxqs = NULL; 3689 } 3690 3691 if (pf->ptp.clock) 3692 ptp_clock_unregister(pf->ptp.clock); 3693 } 3694 3695 /** 3696 * ice_set_pf_caps - set PFs capability flags 3697 * @pf: pointer to the PF instance 3698 */ 3699 static void ice_set_pf_caps(struct ice_pf *pf) 3700 { 3701 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps; 3702 3703 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3704 if (func_caps->common_cap.rdma) 3705 set_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3706 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3707 if (func_caps->common_cap.dcb) 3708 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 3709 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3710 if (func_caps->common_cap.sr_iov_1_1) { 3711 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags); 3712 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs, 3713 ICE_MAX_VF_COUNT); 3714 } 3715 clear_bit(ICE_FLAG_RSS_ENA, pf->flags); 3716 if (func_caps->common_cap.rss_table_size) 3717 set_bit(ICE_FLAG_RSS_ENA, pf->flags); 3718 3719 clear_bit(ICE_FLAG_FD_ENA, pf->flags); 3720 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) { 3721 u16 unused; 3722 3723 /* ctrl_vsi_idx will be set to a valid value when flow director 3724 * is setup by ice_init_fdir 3725 */ 3726 pf->ctrl_vsi_idx = ICE_NO_VSI; 3727 set_bit(ICE_FLAG_FD_ENA, pf->flags); 3728 /* force guaranteed filter pool for PF */ 3729 ice_alloc_fd_guar_item(&pf->hw, &unused, 3730 func_caps->fd_fltr_guar); 3731 /* force shared filter pool for PF */ 3732 ice_alloc_fd_shrd_item(&pf->hw, &unused, 3733 func_caps->fd_fltr_best_effort); 3734 } 3735 3736 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3737 if (func_caps->common_cap.ieee_1588) 3738 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags); 3739 3740 pf->max_pf_txqs = func_caps->common_cap.num_txq; 3741 pf->max_pf_rxqs = func_caps->common_cap.num_rxq; 3742 } 3743 3744 /** 3745 * ice_init_pf - Initialize general software structures (struct ice_pf) 3746 * @pf: board private structure to initialize 3747 */ 3748 static int ice_init_pf(struct ice_pf *pf) 3749 { 3750 ice_set_pf_caps(pf); 3751 3752 mutex_init(&pf->sw_mutex); 3753 mutex_init(&pf->tc_mutex); 3754 3755 INIT_HLIST_HEAD(&pf->aq_wait_list); 3756 spin_lock_init(&pf->aq_wait_lock); 3757 init_waitqueue_head(&pf->aq_wait_queue); 3758 3759 init_waitqueue_head(&pf->reset_wait_queue); 3760 3761 /* setup service timer and periodic service task */ 3762 timer_setup(&pf->serv_tmr, ice_service_timer, 0); 3763 pf->serv_tmr_period = HZ; 3764 INIT_WORK(&pf->serv_task, ice_service_task); 3765 clear_bit(ICE_SERVICE_SCHED, pf->state); 3766 3767 mutex_init(&pf->avail_q_mutex); 3768 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL); 3769 if (!pf->avail_txqs) 3770 return -ENOMEM; 3771 3772 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL); 3773 if (!pf->avail_rxqs) { 3774 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs); 3775 pf->avail_txqs = NULL; 3776 return -ENOMEM; 3777 } 3778 3779 return 0; 3780 } 3781 3782 /** 3783 * ice_ena_msix_range - Request a range of MSIX vectors from the OS 3784 * @pf: board private structure 3785 * 3786 * compute the number of MSIX vectors required (v_budget) and request from 3787 * the OS. Return the number of vectors reserved or negative on failure 3788 */ 3789 static int ice_ena_msix_range(struct ice_pf *pf) 3790 { 3791 int num_cpus, v_left, v_actual, v_other, v_budget = 0; 3792 struct device *dev = ice_pf_to_dev(pf); 3793 int needed, err, i; 3794 3795 v_left = pf->hw.func_caps.common_cap.num_msix_vectors; 3796 num_cpus = num_online_cpus(); 3797 3798 /* reserve for LAN miscellaneous handler */ 3799 needed = ICE_MIN_LAN_OICR_MSIX; 3800 if (v_left < needed) 3801 goto no_hw_vecs_left_err; 3802 v_budget += needed; 3803 v_left -= needed; 3804 3805 /* reserve for flow director */ 3806 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 3807 needed = ICE_FDIR_MSIX; 3808 if (v_left < needed) 3809 goto no_hw_vecs_left_err; 3810 v_budget += needed; 3811 v_left -= needed; 3812 } 3813 3814 /* reserve for switchdev */ 3815 needed = ICE_ESWITCH_MSIX; 3816 if (v_left < needed) 3817 goto no_hw_vecs_left_err; 3818 v_budget += needed; 3819 v_left -= needed; 3820 3821 /* total used for non-traffic vectors */ 3822 v_other = v_budget; 3823 3824 /* reserve vectors for LAN traffic */ 3825 needed = num_cpus; 3826 if (v_left < needed) 3827 goto no_hw_vecs_left_err; 3828 pf->num_lan_msix = needed; 3829 v_budget += needed; 3830 v_left -= needed; 3831 3832 /* reserve vectors for RDMA auxiliary driver */ 3833 if (ice_is_rdma_ena(pf)) { 3834 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX; 3835 if (v_left < needed) 3836 goto no_hw_vecs_left_err; 3837 pf->num_rdma_msix = needed; 3838 v_budget += needed; 3839 v_left -= needed; 3840 } 3841 3842 pf->msix_entries = devm_kcalloc(dev, v_budget, 3843 sizeof(*pf->msix_entries), GFP_KERNEL); 3844 if (!pf->msix_entries) { 3845 err = -ENOMEM; 3846 goto exit_err; 3847 } 3848 3849 for (i = 0; i < v_budget; i++) 3850 pf->msix_entries[i].entry = i; 3851 3852 /* actually reserve the vectors */ 3853 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries, 3854 ICE_MIN_MSIX, v_budget); 3855 if (v_actual < 0) { 3856 dev_err(dev, "unable to reserve MSI-X vectors\n"); 3857 err = v_actual; 3858 goto msix_err; 3859 } 3860 3861 if (v_actual < v_budget) { 3862 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n", 3863 v_budget, v_actual); 3864 3865 if (v_actual < ICE_MIN_MSIX) { 3866 /* error if we can't get minimum vectors */ 3867 pci_disable_msix(pf->pdev); 3868 err = -ERANGE; 3869 goto msix_err; 3870 } else { 3871 int v_remain = v_actual - v_other; 3872 int v_rdma = 0, v_min_rdma = 0; 3873 3874 if (ice_is_rdma_ena(pf)) { 3875 /* Need at least 1 interrupt in addition to 3876 * AEQ MSIX 3877 */ 3878 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1; 3879 v_min_rdma = ICE_MIN_RDMA_MSIX; 3880 } 3881 3882 if (v_actual == ICE_MIN_MSIX || 3883 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) { 3884 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n"); 3885 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags); 3886 3887 pf->num_rdma_msix = 0; 3888 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX; 3889 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) || 3890 (v_remain - v_rdma < v_rdma)) { 3891 /* Support minimum RDMA and give remaining 3892 * vectors to LAN MSIX 3893 */ 3894 pf->num_rdma_msix = v_min_rdma; 3895 pf->num_lan_msix = v_remain - v_min_rdma; 3896 } else { 3897 /* Split remaining MSIX with RDMA after 3898 * accounting for AEQ MSIX 3899 */ 3900 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 + 3901 ICE_RDMA_NUM_AEQ_MSIX; 3902 pf->num_lan_msix = v_remain - pf->num_rdma_msix; 3903 } 3904 3905 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n", 3906 pf->num_lan_msix); 3907 3908 if (ice_is_rdma_ena(pf)) 3909 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n", 3910 pf->num_rdma_msix); 3911 } 3912 } 3913 3914 return v_actual; 3915 3916 msix_err: 3917 devm_kfree(dev, pf->msix_entries); 3918 goto exit_err; 3919 3920 no_hw_vecs_left_err: 3921 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n", 3922 needed, v_left); 3923 err = -ERANGE; 3924 exit_err: 3925 pf->num_rdma_msix = 0; 3926 pf->num_lan_msix = 0; 3927 return err; 3928 } 3929 3930 /** 3931 * ice_dis_msix - Disable MSI-X interrupt setup in OS 3932 * @pf: board private structure 3933 */ 3934 static void ice_dis_msix(struct ice_pf *pf) 3935 { 3936 pci_disable_msix(pf->pdev); 3937 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries); 3938 pf->msix_entries = NULL; 3939 } 3940 3941 /** 3942 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme 3943 * @pf: board private structure 3944 */ 3945 static void ice_clear_interrupt_scheme(struct ice_pf *pf) 3946 { 3947 ice_dis_msix(pf); 3948 3949 if (pf->irq_tracker) { 3950 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker); 3951 pf->irq_tracker = NULL; 3952 } 3953 } 3954 3955 /** 3956 * ice_init_interrupt_scheme - Determine proper interrupt scheme 3957 * @pf: board private structure to initialize 3958 */ 3959 static int ice_init_interrupt_scheme(struct ice_pf *pf) 3960 { 3961 int vectors; 3962 3963 vectors = ice_ena_msix_range(pf); 3964 3965 if (vectors < 0) 3966 return vectors; 3967 3968 /* set up vector assignment tracking */ 3969 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf), 3970 struct_size(pf->irq_tracker, list, vectors), 3971 GFP_KERNEL); 3972 if (!pf->irq_tracker) { 3973 ice_dis_msix(pf); 3974 return -ENOMEM; 3975 } 3976 3977 /* populate SW interrupts pool with number of OS granted IRQs. */ 3978 pf->num_avail_sw_msix = (u16)vectors; 3979 pf->irq_tracker->num_entries = (u16)vectors; 3980 pf->irq_tracker->end = pf->irq_tracker->num_entries; 3981 3982 return 0; 3983 } 3984 3985 /** 3986 * ice_is_wol_supported - check if WoL is supported 3987 * @hw: pointer to hardware info 3988 * 3989 * Check if WoL is supported based on the HW configuration. 3990 * Returns true if NVM supports and enables WoL for this port, false otherwise 3991 */ 3992 bool ice_is_wol_supported(struct ice_hw *hw) 3993 { 3994 u16 wol_ctrl; 3995 3996 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control 3997 * word) indicates WoL is not supported on the corresponding PF ID. 3998 */ 3999 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl)) 4000 return false; 4001 4002 return !(BIT(hw->port_info->lport) & wol_ctrl); 4003 } 4004 4005 /** 4006 * ice_vsi_recfg_qs - Change the number of queues on a VSI 4007 * @vsi: VSI being changed 4008 * @new_rx: new number of Rx queues 4009 * @new_tx: new number of Tx queues 4010 * 4011 * Only change the number of queues if new_tx, or new_rx is non-0. 4012 * 4013 * Returns 0 on success. 4014 */ 4015 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx) 4016 { 4017 struct ice_pf *pf = vsi->back; 4018 int err = 0, timeout = 50; 4019 4020 if (!new_rx && !new_tx) 4021 return -EINVAL; 4022 4023 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) { 4024 timeout--; 4025 if (!timeout) 4026 return -EBUSY; 4027 usleep_range(1000, 2000); 4028 } 4029 4030 if (new_tx) 4031 vsi->req_txq = (u16)new_tx; 4032 if (new_rx) 4033 vsi->req_rxq = (u16)new_rx; 4034 4035 /* set for the next time the netdev is started */ 4036 if (!netif_running(vsi->netdev)) { 4037 ice_vsi_rebuild(vsi, false); 4038 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n"); 4039 goto done; 4040 } 4041 4042 ice_vsi_close(vsi); 4043 ice_vsi_rebuild(vsi, false); 4044 ice_pf_dcb_recfg(pf); 4045 ice_vsi_open(vsi); 4046 done: 4047 clear_bit(ICE_CFG_BUSY, pf->state); 4048 return err; 4049 } 4050 4051 /** 4052 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode 4053 * @pf: PF to configure 4054 * 4055 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF 4056 * VSI can still Tx/Rx VLAN tagged packets. 4057 */ 4058 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf) 4059 { 4060 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4061 struct ice_vsi_ctx *ctxt; 4062 struct ice_hw *hw; 4063 int status; 4064 4065 if (!vsi) 4066 return; 4067 4068 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 4069 if (!ctxt) 4070 return; 4071 4072 hw = &pf->hw; 4073 ctxt->info = vsi->info; 4074 4075 ctxt->info.valid_sections = 4076 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | 4077 ICE_AQ_VSI_PROP_SECURITY_VALID | 4078 ICE_AQ_VSI_PROP_SW_VALID); 4079 4080 /* disable VLAN anti-spoof */ 4081 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 4082 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 4083 4084 /* disable VLAN pruning and keep all other settings */ 4085 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 4086 4087 /* allow all VLANs on Tx and don't strip on Rx */ 4088 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL | 4089 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING; 4090 4091 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 4092 if (status) { 4093 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n", 4094 status, ice_aq_str(hw->adminq.sq_last_status)); 4095 } else { 4096 vsi->info.sec_flags = ctxt->info.sec_flags; 4097 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 4098 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags; 4099 } 4100 4101 kfree(ctxt); 4102 } 4103 4104 /** 4105 * ice_log_pkg_init - log result of DDP package load 4106 * @hw: pointer to hardware info 4107 * @state: state of package load 4108 */ 4109 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state) 4110 { 4111 struct ice_pf *pf = hw->back; 4112 struct device *dev; 4113 4114 dev = ice_pf_to_dev(pf); 4115 4116 switch (state) { 4117 case ICE_DDP_PKG_SUCCESS: 4118 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n", 4119 hw->active_pkg_name, 4120 hw->active_pkg_ver.major, 4121 hw->active_pkg_ver.minor, 4122 hw->active_pkg_ver.update, 4123 hw->active_pkg_ver.draft); 4124 break; 4125 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED: 4126 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n", 4127 hw->active_pkg_name, 4128 hw->active_pkg_ver.major, 4129 hw->active_pkg_ver.minor, 4130 hw->active_pkg_ver.update, 4131 hw->active_pkg_ver.draft); 4132 break; 4133 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED: 4134 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n", 4135 hw->active_pkg_name, 4136 hw->active_pkg_ver.major, 4137 hw->active_pkg_ver.minor, 4138 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4139 break; 4140 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED: 4141 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n", 4142 hw->active_pkg_name, 4143 hw->active_pkg_ver.major, 4144 hw->active_pkg_ver.minor, 4145 hw->active_pkg_ver.update, 4146 hw->active_pkg_ver.draft, 4147 hw->pkg_name, 4148 hw->pkg_ver.major, 4149 hw->pkg_ver.minor, 4150 hw->pkg_ver.update, 4151 hw->pkg_ver.draft); 4152 break; 4153 case ICE_DDP_PKG_FW_MISMATCH: 4154 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n"); 4155 break; 4156 case ICE_DDP_PKG_INVALID_FILE: 4157 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n"); 4158 break; 4159 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH: 4160 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n"); 4161 break; 4162 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW: 4163 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n", 4164 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR); 4165 break; 4166 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID: 4167 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n"); 4168 break; 4169 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW: 4170 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n"); 4171 break; 4172 case ICE_DDP_PKG_LOAD_ERROR: 4173 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n"); 4174 /* poll for reset to complete */ 4175 if (ice_check_reset(hw)) 4176 dev_err(dev, "Error resetting device. Please reload the driver\n"); 4177 break; 4178 case ICE_DDP_PKG_ERR: 4179 default: 4180 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n"); 4181 break; 4182 } 4183 } 4184 4185 /** 4186 * ice_load_pkg - load/reload the DDP Package file 4187 * @firmware: firmware structure when firmware requested or NULL for reload 4188 * @pf: pointer to the PF instance 4189 * 4190 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and 4191 * initialize HW tables. 4192 */ 4193 static void 4194 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf) 4195 { 4196 enum ice_ddp_state state = ICE_DDP_PKG_ERR; 4197 struct device *dev = ice_pf_to_dev(pf); 4198 struct ice_hw *hw = &pf->hw; 4199 4200 /* Load DDP Package */ 4201 if (firmware && !hw->pkg_copy) { 4202 state = ice_copy_and_init_pkg(hw, firmware->data, 4203 firmware->size); 4204 ice_log_pkg_init(hw, state); 4205 } else if (!firmware && hw->pkg_copy) { 4206 /* Reload package during rebuild after CORER/GLOBR reset */ 4207 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size); 4208 ice_log_pkg_init(hw, state); 4209 } else { 4210 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n"); 4211 } 4212 4213 if (!ice_is_init_pkg_successful(state)) { 4214 /* Safe Mode */ 4215 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4216 return; 4217 } 4218 4219 /* Successful download package is the precondition for advanced 4220 * features, hence setting the ICE_FLAG_ADV_FEATURES flag 4221 */ 4222 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 4223 } 4224 4225 /** 4226 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines 4227 * @pf: pointer to the PF structure 4228 * 4229 * There is no error returned here because the driver should be able to handle 4230 * 128 Byte cache lines, so we only print a warning in case issues are seen, 4231 * specifically with Tx. 4232 */ 4233 static void ice_verify_cacheline_size(struct ice_pf *pf) 4234 { 4235 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M) 4236 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n", 4237 ICE_CACHE_LINE_BYTES); 4238 } 4239 4240 /** 4241 * ice_send_version - update firmware with driver version 4242 * @pf: PF struct 4243 * 4244 * Returns 0 on success, else error code 4245 */ 4246 static int ice_send_version(struct ice_pf *pf) 4247 { 4248 struct ice_driver_ver dv; 4249 4250 dv.major_ver = 0xff; 4251 dv.minor_ver = 0xff; 4252 dv.build_ver = 0xff; 4253 dv.subbuild_ver = 0; 4254 strscpy((char *)dv.driver_string, UTS_RELEASE, 4255 sizeof(dv.driver_string)); 4256 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL); 4257 } 4258 4259 /** 4260 * ice_init_fdir - Initialize flow director VSI and configuration 4261 * @pf: pointer to the PF instance 4262 * 4263 * returns 0 on success, negative on error 4264 */ 4265 static int ice_init_fdir(struct ice_pf *pf) 4266 { 4267 struct device *dev = ice_pf_to_dev(pf); 4268 struct ice_vsi *ctrl_vsi; 4269 int err; 4270 4271 /* Side Band Flow Director needs to have a control VSI. 4272 * Allocate it and store it in the PF. 4273 */ 4274 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info); 4275 if (!ctrl_vsi) { 4276 dev_dbg(dev, "could not create control VSI\n"); 4277 return -ENOMEM; 4278 } 4279 4280 err = ice_vsi_open_ctrl(ctrl_vsi); 4281 if (err) { 4282 dev_dbg(dev, "could not open control VSI\n"); 4283 goto err_vsi_open; 4284 } 4285 4286 mutex_init(&pf->hw.fdir_fltr_lock); 4287 4288 err = ice_fdir_create_dflt_rules(pf); 4289 if (err) 4290 goto err_fdir_rule; 4291 4292 return 0; 4293 4294 err_fdir_rule: 4295 ice_fdir_release_flows(&pf->hw); 4296 ice_vsi_close(ctrl_vsi); 4297 err_vsi_open: 4298 ice_vsi_release(ctrl_vsi); 4299 if (pf->ctrl_vsi_idx != ICE_NO_VSI) { 4300 pf->vsi[pf->ctrl_vsi_idx] = NULL; 4301 pf->ctrl_vsi_idx = ICE_NO_VSI; 4302 } 4303 return err; 4304 } 4305 4306 /** 4307 * ice_get_opt_fw_name - return optional firmware file name or NULL 4308 * @pf: pointer to the PF instance 4309 */ 4310 static char *ice_get_opt_fw_name(struct ice_pf *pf) 4311 { 4312 /* Optional firmware name same as default with additional dash 4313 * followed by a EUI-64 identifier (PCIe Device Serial Number) 4314 */ 4315 struct pci_dev *pdev = pf->pdev; 4316 char *opt_fw_filename; 4317 u64 dsn; 4318 4319 /* Determine the name of the optional file using the DSN (two 4320 * dwords following the start of the DSN Capability). 4321 */ 4322 dsn = pci_get_dsn(pdev); 4323 if (!dsn) 4324 return NULL; 4325 4326 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL); 4327 if (!opt_fw_filename) 4328 return NULL; 4329 4330 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg", 4331 ICE_DDP_PKG_PATH, dsn); 4332 4333 return opt_fw_filename; 4334 } 4335 4336 /** 4337 * ice_request_fw - Device initialization routine 4338 * @pf: pointer to the PF instance 4339 */ 4340 static void ice_request_fw(struct ice_pf *pf) 4341 { 4342 char *opt_fw_filename = ice_get_opt_fw_name(pf); 4343 const struct firmware *firmware = NULL; 4344 struct device *dev = ice_pf_to_dev(pf); 4345 int err = 0; 4346 4347 /* optional device-specific DDP (if present) overrides the default DDP 4348 * package file. kernel logs a debug message if the file doesn't exist, 4349 * and warning messages for other errors. 4350 */ 4351 if (opt_fw_filename) { 4352 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev); 4353 if (err) { 4354 kfree(opt_fw_filename); 4355 goto dflt_pkg_load; 4356 } 4357 4358 /* request for firmware was successful. Download to device */ 4359 ice_load_pkg(firmware, pf); 4360 kfree(opt_fw_filename); 4361 release_firmware(firmware); 4362 return; 4363 } 4364 4365 dflt_pkg_load: 4366 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev); 4367 if (err) { 4368 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n"); 4369 return; 4370 } 4371 4372 /* request for firmware was successful. Download to device */ 4373 ice_load_pkg(firmware, pf); 4374 release_firmware(firmware); 4375 } 4376 4377 /** 4378 * ice_print_wake_reason - show the wake up cause in the log 4379 * @pf: pointer to the PF struct 4380 */ 4381 static void ice_print_wake_reason(struct ice_pf *pf) 4382 { 4383 u32 wus = pf->wakeup_reason; 4384 const char *wake_str; 4385 4386 /* if no wake event, nothing to print */ 4387 if (!wus) 4388 return; 4389 4390 if (wus & PFPM_WUS_LNKC_M) 4391 wake_str = "Link\n"; 4392 else if (wus & PFPM_WUS_MAG_M) 4393 wake_str = "Magic Packet\n"; 4394 else if (wus & PFPM_WUS_MNG_M) 4395 wake_str = "Management\n"; 4396 else if (wus & PFPM_WUS_FW_RST_WK_M) 4397 wake_str = "Firmware Reset\n"; 4398 else 4399 wake_str = "Unknown\n"; 4400 4401 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str); 4402 } 4403 4404 /** 4405 * ice_register_netdev - register netdev and devlink port 4406 * @pf: pointer to the PF struct 4407 */ 4408 static int ice_register_netdev(struct ice_pf *pf) 4409 { 4410 struct ice_vsi *vsi; 4411 int err = 0; 4412 4413 vsi = ice_get_main_vsi(pf); 4414 if (!vsi || !vsi->netdev) 4415 return -EIO; 4416 4417 err = register_netdev(vsi->netdev); 4418 if (err) 4419 goto err_register_netdev; 4420 4421 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4422 netif_carrier_off(vsi->netdev); 4423 netif_tx_stop_all_queues(vsi->netdev); 4424 err = ice_devlink_create_pf_port(pf); 4425 if (err) 4426 goto err_devlink_create; 4427 4428 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev); 4429 4430 return 0; 4431 err_devlink_create: 4432 unregister_netdev(vsi->netdev); 4433 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 4434 err_register_netdev: 4435 free_netdev(vsi->netdev); 4436 vsi->netdev = NULL; 4437 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 4438 return err; 4439 } 4440 4441 /** 4442 * ice_probe - Device initialization routine 4443 * @pdev: PCI device information struct 4444 * @ent: entry in ice_pci_tbl 4445 * 4446 * Returns 0 on success, negative on failure 4447 */ 4448 static int 4449 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent) 4450 { 4451 struct device *dev = &pdev->dev; 4452 struct ice_pf *pf; 4453 struct ice_hw *hw; 4454 int i, err; 4455 4456 if (pdev->is_virtfn) { 4457 dev_err(dev, "can't probe a virtual function\n"); 4458 return -EINVAL; 4459 } 4460 4461 /* this driver uses devres, see 4462 * Documentation/driver-api/driver-model/devres.rst 4463 */ 4464 err = pcim_enable_device(pdev); 4465 if (err) 4466 return err; 4467 4468 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev)); 4469 if (err) { 4470 dev_err(dev, "BAR0 I/O map error %d\n", err); 4471 return err; 4472 } 4473 4474 pf = ice_allocate_pf(dev); 4475 if (!pf) 4476 return -ENOMEM; 4477 4478 /* initialize Auxiliary index to invalid value */ 4479 pf->aux_idx = -1; 4480 4481 /* set up for high or low DMA */ 4482 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); 4483 if (err) { 4484 dev_err(dev, "DMA configuration failed: 0x%x\n", err); 4485 return err; 4486 } 4487 4488 pci_enable_pcie_error_reporting(pdev); 4489 pci_set_master(pdev); 4490 4491 pf->pdev = pdev; 4492 pci_set_drvdata(pdev, pf); 4493 set_bit(ICE_DOWN, pf->state); 4494 /* Disable service task until DOWN bit is cleared */ 4495 set_bit(ICE_SERVICE_DIS, pf->state); 4496 4497 hw = &pf->hw; 4498 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0]; 4499 pci_save_state(pdev); 4500 4501 hw->back = pf; 4502 hw->vendor_id = pdev->vendor; 4503 hw->device_id = pdev->device; 4504 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); 4505 hw->subsystem_vendor_id = pdev->subsystem_vendor; 4506 hw->subsystem_device_id = pdev->subsystem_device; 4507 hw->bus.device = PCI_SLOT(pdev->devfn); 4508 hw->bus.func = PCI_FUNC(pdev->devfn); 4509 ice_set_ctrlq_len(hw); 4510 4511 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M); 4512 4513 #ifndef CONFIG_DYNAMIC_DEBUG 4514 if (debug < -1) 4515 hw->debug_mask = debug; 4516 #endif 4517 4518 err = ice_init_hw(hw); 4519 if (err) { 4520 dev_err(dev, "ice_init_hw failed: %d\n", err); 4521 err = -EIO; 4522 goto err_exit_unroll; 4523 } 4524 4525 ice_init_feature_support(pf); 4526 4527 ice_request_fw(pf); 4528 4529 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be 4530 * set in pf->state, which will cause ice_is_safe_mode to return 4531 * true 4532 */ 4533 if (ice_is_safe_mode(pf)) { 4534 /* we already got function/device capabilities but these don't 4535 * reflect what the driver needs to do in safe mode. Instead of 4536 * adding conditional logic everywhere to ignore these 4537 * device/function capabilities, override them. 4538 */ 4539 ice_set_safe_mode_caps(hw); 4540 } 4541 4542 err = ice_init_pf(pf); 4543 if (err) { 4544 dev_err(dev, "ice_init_pf failed: %d\n", err); 4545 goto err_init_pf_unroll; 4546 } 4547 4548 ice_devlink_init_regions(pf); 4549 4550 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port; 4551 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port; 4552 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP; 4553 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared; 4554 i = 0; 4555 if (pf->hw.tnl.valid_count[TNL_VXLAN]) { 4556 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4557 pf->hw.tnl.valid_count[TNL_VXLAN]; 4558 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4559 UDP_TUNNEL_TYPE_VXLAN; 4560 i++; 4561 } 4562 if (pf->hw.tnl.valid_count[TNL_GENEVE]) { 4563 pf->hw.udp_tunnel_nic.tables[i].n_entries = 4564 pf->hw.tnl.valid_count[TNL_GENEVE]; 4565 pf->hw.udp_tunnel_nic.tables[i].tunnel_types = 4566 UDP_TUNNEL_TYPE_GENEVE; 4567 i++; 4568 } 4569 4570 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi; 4571 if (!pf->num_alloc_vsi) { 4572 err = -EIO; 4573 goto err_init_pf_unroll; 4574 } 4575 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) { 4576 dev_warn(&pf->pdev->dev, 4577 "limiting the VSI count due to UDP tunnel limitation %d > %d\n", 4578 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES); 4579 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES; 4580 } 4581 4582 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi), 4583 GFP_KERNEL); 4584 if (!pf->vsi) { 4585 err = -ENOMEM; 4586 goto err_init_pf_unroll; 4587 } 4588 4589 err = ice_init_interrupt_scheme(pf); 4590 if (err) { 4591 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err); 4592 err = -EIO; 4593 goto err_init_vsi_unroll; 4594 } 4595 4596 /* In case of MSIX we are going to setup the misc vector right here 4597 * to handle admin queue events etc. In case of legacy and MSI 4598 * the misc functionality and queue processing is combined in 4599 * the same vector and that gets setup at open. 4600 */ 4601 err = ice_req_irq_msix_misc(pf); 4602 if (err) { 4603 dev_err(dev, "setup of misc vector failed: %d\n", err); 4604 goto err_init_interrupt_unroll; 4605 } 4606 4607 /* create switch struct for the switch element created by FW on boot */ 4608 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL); 4609 if (!pf->first_sw) { 4610 err = -ENOMEM; 4611 goto err_msix_misc_unroll; 4612 } 4613 4614 if (hw->evb_veb) 4615 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB; 4616 else 4617 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA; 4618 4619 pf->first_sw->pf = pf; 4620 4621 /* record the sw_id available for later use */ 4622 pf->first_sw->sw_id = hw->port_info->sw_id; 4623 4624 err = ice_setup_pf_sw(pf); 4625 if (err) { 4626 dev_err(dev, "probe failed due to setup PF switch: %d\n", err); 4627 goto err_alloc_sw_unroll; 4628 } 4629 4630 clear_bit(ICE_SERVICE_DIS, pf->state); 4631 4632 /* tell the firmware we are up */ 4633 err = ice_send_version(pf); 4634 if (err) { 4635 dev_err(dev, "probe failed sending driver version %s. error: %d\n", 4636 UTS_RELEASE, err); 4637 goto err_send_version_unroll; 4638 } 4639 4640 /* since everything is good, start the service timer */ 4641 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 4642 4643 err = ice_init_link_events(pf->hw.port_info); 4644 if (err) { 4645 dev_err(dev, "ice_init_link_events failed: %d\n", err); 4646 goto err_send_version_unroll; 4647 } 4648 4649 /* not a fatal error if this fails */ 4650 err = ice_init_nvm_phy_type(pf->hw.port_info); 4651 if (err) 4652 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err); 4653 4654 /* not a fatal error if this fails */ 4655 err = ice_update_link_info(pf->hw.port_info); 4656 if (err) 4657 dev_err(dev, "ice_update_link_info failed: %d\n", err); 4658 4659 ice_init_link_dflt_override(pf->hw.port_info); 4660 4661 ice_check_link_cfg_err(pf, 4662 pf->hw.port_info->phy.link_info.link_cfg_err); 4663 4664 /* if media available, initialize PHY settings */ 4665 if (pf->hw.port_info->phy.link_info.link_info & 4666 ICE_AQ_MEDIA_AVAILABLE) { 4667 /* not a fatal error if this fails */ 4668 err = ice_init_phy_user_cfg(pf->hw.port_info); 4669 if (err) 4670 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err); 4671 4672 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) { 4673 struct ice_vsi *vsi = ice_get_main_vsi(pf); 4674 4675 if (vsi) 4676 ice_configure_phy(vsi); 4677 } 4678 } else { 4679 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 4680 } 4681 4682 ice_verify_cacheline_size(pf); 4683 4684 /* Save wakeup reason register for later use */ 4685 pf->wakeup_reason = rd32(hw, PFPM_WUS); 4686 4687 /* check for a power management event */ 4688 ice_print_wake_reason(pf); 4689 4690 /* clear wake status, all bits */ 4691 wr32(hw, PFPM_WUS, U32_MAX); 4692 4693 /* Disable WoL at init, wait for user to enable */ 4694 device_set_wakeup_enable(dev, false); 4695 4696 if (ice_is_safe_mode(pf)) { 4697 ice_set_safe_mode_vlan_cfg(pf); 4698 goto probe_done; 4699 } 4700 4701 /* initialize DDP driven features */ 4702 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4703 ice_ptp_init(pf); 4704 4705 /* Note: Flow director init failure is non-fatal to load */ 4706 if (ice_init_fdir(pf)) 4707 dev_err(dev, "could not initialize flow director\n"); 4708 4709 /* Note: DCB init failure is non-fatal to load */ 4710 if (ice_init_pf_dcb(pf, false)) { 4711 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags); 4712 clear_bit(ICE_FLAG_DCB_ENA, pf->flags); 4713 } else { 4714 ice_cfg_lldp_mib_change(&pf->hw, true); 4715 } 4716 4717 if (ice_init_lag(pf)) 4718 dev_warn(dev, "Failed to init link aggregation support\n"); 4719 4720 /* print PCI link speed and width */ 4721 pcie_print_link_status(pf->pdev); 4722 4723 probe_done: 4724 err = ice_register_netdev(pf); 4725 if (err) 4726 goto err_netdev_reg; 4727 4728 err = ice_devlink_register_params(pf); 4729 if (err) 4730 goto err_netdev_reg; 4731 4732 /* ready to go, so clear down state bit */ 4733 clear_bit(ICE_DOWN, pf->state); 4734 if (ice_is_rdma_ena(pf)) { 4735 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL); 4736 if (pf->aux_idx < 0) { 4737 dev_err(dev, "Failed to allocate device ID for AUX driver\n"); 4738 err = -ENOMEM; 4739 goto err_devlink_reg_param; 4740 } 4741 4742 err = ice_init_rdma(pf); 4743 if (err) { 4744 dev_err(dev, "Failed to initialize RDMA: %d\n", err); 4745 err = -EIO; 4746 goto err_init_aux_unroll; 4747 } 4748 } else { 4749 dev_warn(dev, "RDMA is not supported on this device\n"); 4750 } 4751 4752 ice_devlink_register(pf); 4753 return 0; 4754 4755 err_init_aux_unroll: 4756 pf->adev = NULL; 4757 ida_free(&ice_aux_ida, pf->aux_idx); 4758 err_devlink_reg_param: 4759 ice_devlink_unregister_params(pf); 4760 err_netdev_reg: 4761 err_send_version_unroll: 4762 ice_vsi_release_all(pf); 4763 err_alloc_sw_unroll: 4764 set_bit(ICE_SERVICE_DIS, pf->state); 4765 set_bit(ICE_DOWN, pf->state); 4766 devm_kfree(dev, pf->first_sw); 4767 err_msix_misc_unroll: 4768 ice_free_irq_msix_misc(pf); 4769 err_init_interrupt_unroll: 4770 ice_clear_interrupt_scheme(pf); 4771 err_init_vsi_unroll: 4772 devm_kfree(dev, pf->vsi); 4773 err_init_pf_unroll: 4774 ice_deinit_pf(pf); 4775 ice_devlink_destroy_regions(pf); 4776 ice_deinit_hw(hw); 4777 err_exit_unroll: 4778 pci_disable_pcie_error_reporting(pdev); 4779 pci_disable_device(pdev); 4780 return err; 4781 } 4782 4783 /** 4784 * ice_set_wake - enable or disable Wake on LAN 4785 * @pf: pointer to the PF struct 4786 * 4787 * Simple helper for WoL control 4788 */ 4789 static void ice_set_wake(struct ice_pf *pf) 4790 { 4791 struct ice_hw *hw = &pf->hw; 4792 bool wol = pf->wol_ena; 4793 4794 /* clear wake state, otherwise new wake events won't fire */ 4795 wr32(hw, PFPM_WUS, U32_MAX); 4796 4797 /* enable / disable APM wake up, no RMW needed */ 4798 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0); 4799 4800 /* set magic packet filter enabled */ 4801 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0); 4802 } 4803 4804 /** 4805 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet 4806 * @pf: pointer to the PF struct 4807 * 4808 * Issue firmware command to enable multicast magic wake, making 4809 * sure that any locally administered address (LAA) is used for 4810 * wake, and that PF reset doesn't undo the LAA. 4811 */ 4812 static void ice_setup_mc_magic_wake(struct ice_pf *pf) 4813 { 4814 struct device *dev = ice_pf_to_dev(pf); 4815 struct ice_hw *hw = &pf->hw; 4816 u8 mac_addr[ETH_ALEN]; 4817 struct ice_vsi *vsi; 4818 int status; 4819 u8 flags; 4820 4821 if (!pf->wol_ena) 4822 return; 4823 4824 vsi = ice_get_main_vsi(pf); 4825 if (!vsi) 4826 return; 4827 4828 /* Get current MAC address in case it's an LAA */ 4829 if (vsi->netdev) 4830 ether_addr_copy(mac_addr, vsi->netdev->dev_addr); 4831 else 4832 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr); 4833 4834 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN | 4835 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL | 4836 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP; 4837 4838 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL); 4839 if (status) 4840 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n", 4841 status, ice_aq_str(hw->adminq.sq_last_status)); 4842 } 4843 4844 /** 4845 * ice_remove - Device removal routine 4846 * @pdev: PCI device information struct 4847 */ 4848 static void ice_remove(struct pci_dev *pdev) 4849 { 4850 struct ice_pf *pf = pci_get_drvdata(pdev); 4851 int i; 4852 4853 ice_devlink_unregister(pf); 4854 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) { 4855 if (!ice_is_reset_in_progress(pf->state)) 4856 break; 4857 msleep(100); 4858 } 4859 4860 ice_tc_indir_block_remove(pf); 4861 4862 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) { 4863 set_bit(ICE_VF_RESETS_DISABLED, pf->state); 4864 ice_free_vfs(pf); 4865 } 4866 4867 ice_service_task_stop(pf); 4868 4869 ice_aq_cancel_waiting_tasks(pf); 4870 ice_unplug_aux_dev(pf); 4871 if (pf->aux_idx >= 0) 4872 ida_free(&ice_aux_ida, pf->aux_idx); 4873 ice_devlink_unregister_params(pf); 4874 set_bit(ICE_DOWN, pf->state); 4875 4876 mutex_destroy(&(&pf->hw)->fdir_fltr_lock); 4877 ice_deinit_lag(pf); 4878 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 4879 ice_ptp_release(pf); 4880 if (!ice_is_safe_mode(pf)) 4881 ice_remove_arfs(pf); 4882 ice_setup_mc_magic_wake(pf); 4883 ice_vsi_release_all(pf); 4884 ice_set_wake(pf); 4885 ice_free_irq_msix_misc(pf); 4886 ice_for_each_vsi(pf, i) { 4887 if (!pf->vsi[i]) 4888 continue; 4889 ice_vsi_free_q_vectors(pf->vsi[i]); 4890 } 4891 ice_deinit_pf(pf); 4892 ice_devlink_destroy_regions(pf); 4893 ice_deinit_hw(&pf->hw); 4894 4895 /* Issue a PFR as part of the prescribed driver unload flow. Do not 4896 * do it via ice_schedule_reset() since there is no need to rebuild 4897 * and the service task is already stopped. 4898 */ 4899 ice_reset(&pf->hw, ICE_RESET_PFR); 4900 pci_wait_for_pending_transaction(pdev); 4901 ice_clear_interrupt_scheme(pf); 4902 pci_disable_pcie_error_reporting(pdev); 4903 pci_disable_device(pdev); 4904 } 4905 4906 /** 4907 * ice_shutdown - PCI callback for shutting down device 4908 * @pdev: PCI device information struct 4909 */ 4910 static void ice_shutdown(struct pci_dev *pdev) 4911 { 4912 struct ice_pf *pf = pci_get_drvdata(pdev); 4913 4914 ice_remove(pdev); 4915 4916 if (system_state == SYSTEM_POWER_OFF) { 4917 pci_wake_from_d3(pdev, pf->wol_ena); 4918 pci_set_power_state(pdev, PCI_D3hot); 4919 } 4920 } 4921 4922 #ifdef CONFIG_PM 4923 /** 4924 * ice_prepare_for_shutdown - prep for PCI shutdown 4925 * @pf: board private structure 4926 * 4927 * Inform or close all dependent features in prep for PCI device shutdown 4928 */ 4929 static void ice_prepare_for_shutdown(struct ice_pf *pf) 4930 { 4931 struct ice_hw *hw = &pf->hw; 4932 u32 v; 4933 4934 /* Notify VFs of impending reset */ 4935 if (ice_check_sq_alive(hw, &hw->mailboxq)) 4936 ice_vc_notify_reset(pf); 4937 4938 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n"); 4939 4940 /* disable the VSIs and their queues that are not already DOWN */ 4941 ice_pf_dis_all_vsi(pf, false); 4942 4943 ice_for_each_vsi(pf, v) 4944 if (pf->vsi[v]) 4945 pf->vsi[v]->vsi_num = 0; 4946 4947 ice_shutdown_all_ctrlq(hw); 4948 } 4949 4950 /** 4951 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme 4952 * @pf: board private structure to reinitialize 4953 * 4954 * This routine reinitialize interrupt scheme that was cleared during 4955 * power management suspend callback. 4956 * 4957 * This should be called during resume routine to re-allocate the q_vectors 4958 * and reacquire interrupts. 4959 */ 4960 static int ice_reinit_interrupt_scheme(struct ice_pf *pf) 4961 { 4962 struct device *dev = ice_pf_to_dev(pf); 4963 int ret, v; 4964 4965 /* Since we clear MSIX flag during suspend, we need to 4966 * set it back during resume... 4967 */ 4968 4969 ret = ice_init_interrupt_scheme(pf); 4970 if (ret) { 4971 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret); 4972 return ret; 4973 } 4974 4975 /* Remap vectors and rings, after successful re-init interrupts */ 4976 ice_for_each_vsi(pf, v) { 4977 if (!pf->vsi[v]) 4978 continue; 4979 4980 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]); 4981 if (ret) 4982 goto err_reinit; 4983 ice_vsi_map_rings_to_vectors(pf->vsi[v]); 4984 } 4985 4986 ret = ice_req_irq_msix_misc(pf); 4987 if (ret) { 4988 dev_err(dev, "Setting up misc vector failed after device suspend %d\n", 4989 ret); 4990 goto err_reinit; 4991 } 4992 4993 return 0; 4994 4995 err_reinit: 4996 while (v--) 4997 if (pf->vsi[v]) 4998 ice_vsi_free_q_vectors(pf->vsi[v]); 4999 5000 return ret; 5001 } 5002 5003 /** 5004 * ice_suspend 5005 * @dev: generic device information structure 5006 * 5007 * Power Management callback to quiesce the device and prepare 5008 * for D3 transition. 5009 */ 5010 static int __maybe_unused ice_suspend(struct device *dev) 5011 { 5012 struct pci_dev *pdev = to_pci_dev(dev); 5013 struct ice_pf *pf; 5014 int disabled, v; 5015 5016 pf = pci_get_drvdata(pdev); 5017 5018 if (!ice_pf_state_is_nominal(pf)) { 5019 dev_err(dev, "Device is not ready, no need to suspend it\n"); 5020 return -EBUSY; 5021 } 5022 5023 /* Stop watchdog tasks until resume completion. 5024 * Even though it is most likely that the service task is 5025 * disabled if the device is suspended or down, the service task's 5026 * state is controlled by a different state bit, and we should 5027 * store and honor whatever state that bit is in at this point. 5028 */ 5029 disabled = ice_service_task_stop(pf); 5030 5031 ice_unplug_aux_dev(pf); 5032 5033 /* Already suspended?, then there is nothing to do */ 5034 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) { 5035 if (!disabled) 5036 ice_service_task_restart(pf); 5037 return 0; 5038 } 5039 5040 if (test_bit(ICE_DOWN, pf->state) || 5041 ice_is_reset_in_progress(pf->state)) { 5042 dev_err(dev, "can't suspend device in reset or already down\n"); 5043 if (!disabled) 5044 ice_service_task_restart(pf); 5045 return 0; 5046 } 5047 5048 ice_setup_mc_magic_wake(pf); 5049 5050 ice_prepare_for_shutdown(pf); 5051 5052 ice_set_wake(pf); 5053 5054 /* Free vectors, clear the interrupt scheme and release IRQs 5055 * for proper hibernation, especially with large number of CPUs. 5056 * Otherwise hibernation might fail when mapping all the vectors back 5057 * to CPU0. 5058 */ 5059 ice_free_irq_msix_misc(pf); 5060 ice_for_each_vsi(pf, v) { 5061 if (!pf->vsi[v]) 5062 continue; 5063 ice_vsi_free_q_vectors(pf->vsi[v]); 5064 } 5065 ice_free_cpu_rx_rmap(ice_get_main_vsi(pf)); 5066 ice_clear_interrupt_scheme(pf); 5067 5068 pci_save_state(pdev); 5069 pci_wake_from_d3(pdev, pf->wol_ena); 5070 pci_set_power_state(pdev, PCI_D3hot); 5071 return 0; 5072 } 5073 5074 /** 5075 * ice_resume - PM callback for waking up from D3 5076 * @dev: generic device information structure 5077 */ 5078 static int __maybe_unused ice_resume(struct device *dev) 5079 { 5080 struct pci_dev *pdev = to_pci_dev(dev); 5081 enum ice_reset_req reset_type; 5082 struct ice_pf *pf; 5083 struct ice_hw *hw; 5084 int ret; 5085 5086 pci_set_power_state(pdev, PCI_D0); 5087 pci_restore_state(pdev); 5088 pci_save_state(pdev); 5089 5090 if (!pci_device_is_present(pdev)) 5091 return -ENODEV; 5092 5093 ret = pci_enable_device_mem(pdev); 5094 if (ret) { 5095 dev_err(dev, "Cannot enable device after suspend\n"); 5096 return ret; 5097 } 5098 5099 pf = pci_get_drvdata(pdev); 5100 hw = &pf->hw; 5101 5102 pf->wakeup_reason = rd32(hw, PFPM_WUS); 5103 ice_print_wake_reason(pf); 5104 5105 /* We cleared the interrupt scheme when we suspended, so we need to 5106 * restore it now to resume device functionality. 5107 */ 5108 ret = ice_reinit_interrupt_scheme(pf); 5109 if (ret) 5110 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret); 5111 5112 clear_bit(ICE_DOWN, pf->state); 5113 /* Now perform PF reset and rebuild */ 5114 reset_type = ICE_RESET_PFR; 5115 /* re-enable service task for reset, but allow reset to schedule it */ 5116 clear_bit(ICE_SERVICE_DIS, pf->state); 5117 5118 if (ice_schedule_reset(pf, reset_type)) 5119 dev_err(dev, "Reset during resume failed.\n"); 5120 5121 clear_bit(ICE_SUSPENDED, pf->state); 5122 ice_service_task_restart(pf); 5123 5124 /* Restart the service task */ 5125 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5126 5127 return 0; 5128 } 5129 #endif /* CONFIG_PM */ 5130 5131 /** 5132 * ice_pci_err_detected - warning that PCI error has been detected 5133 * @pdev: PCI device information struct 5134 * @err: the type of PCI error 5135 * 5136 * Called to warn that something happened on the PCI bus and the error handling 5137 * is in progress. Allows the driver to gracefully prepare/handle PCI errors. 5138 */ 5139 static pci_ers_result_t 5140 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err) 5141 { 5142 struct ice_pf *pf = pci_get_drvdata(pdev); 5143 5144 if (!pf) { 5145 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n", 5146 __func__, err); 5147 return PCI_ERS_RESULT_DISCONNECT; 5148 } 5149 5150 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5151 ice_service_task_stop(pf); 5152 5153 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5154 set_bit(ICE_PFR_REQ, pf->state); 5155 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5156 } 5157 } 5158 5159 return PCI_ERS_RESULT_NEED_RESET; 5160 } 5161 5162 /** 5163 * ice_pci_err_slot_reset - a PCI slot reset has just happened 5164 * @pdev: PCI device information struct 5165 * 5166 * Called to determine if the driver can recover from the PCI slot reset by 5167 * using a register read to determine if the device is recoverable. 5168 */ 5169 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev) 5170 { 5171 struct ice_pf *pf = pci_get_drvdata(pdev); 5172 pci_ers_result_t result; 5173 int err; 5174 u32 reg; 5175 5176 err = pci_enable_device_mem(pdev); 5177 if (err) { 5178 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n", 5179 err); 5180 result = PCI_ERS_RESULT_DISCONNECT; 5181 } else { 5182 pci_set_master(pdev); 5183 pci_restore_state(pdev); 5184 pci_save_state(pdev); 5185 pci_wake_from_d3(pdev, false); 5186 5187 /* Check for life */ 5188 reg = rd32(&pf->hw, GLGEN_RTRIG); 5189 if (!reg) 5190 result = PCI_ERS_RESULT_RECOVERED; 5191 else 5192 result = PCI_ERS_RESULT_DISCONNECT; 5193 } 5194 5195 err = pci_aer_clear_nonfatal_status(pdev); 5196 if (err) 5197 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n", 5198 err); 5199 /* non-fatal, continue */ 5200 5201 return result; 5202 } 5203 5204 /** 5205 * ice_pci_err_resume - restart operations after PCI error recovery 5206 * @pdev: PCI device information struct 5207 * 5208 * Called to allow the driver to bring things back up after PCI error and/or 5209 * reset recovery have finished 5210 */ 5211 static void ice_pci_err_resume(struct pci_dev *pdev) 5212 { 5213 struct ice_pf *pf = pci_get_drvdata(pdev); 5214 5215 if (!pf) { 5216 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n", 5217 __func__); 5218 return; 5219 } 5220 5221 if (test_bit(ICE_SUSPENDED, pf->state)) { 5222 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n", 5223 __func__); 5224 return; 5225 } 5226 5227 ice_restore_all_vfs_msi_state(pdev); 5228 5229 ice_do_reset(pf, ICE_RESET_PFR); 5230 ice_service_task_restart(pf); 5231 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period)); 5232 } 5233 5234 /** 5235 * ice_pci_err_reset_prepare - prepare device driver for PCI reset 5236 * @pdev: PCI device information struct 5237 */ 5238 static void ice_pci_err_reset_prepare(struct pci_dev *pdev) 5239 { 5240 struct ice_pf *pf = pci_get_drvdata(pdev); 5241 5242 if (!test_bit(ICE_SUSPENDED, pf->state)) { 5243 ice_service_task_stop(pf); 5244 5245 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) { 5246 set_bit(ICE_PFR_REQ, pf->state); 5247 ice_prepare_for_reset(pf, ICE_RESET_PFR); 5248 } 5249 } 5250 } 5251 5252 /** 5253 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin 5254 * @pdev: PCI device information struct 5255 */ 5256 static void ice_pci_err_reset_done(struct pci_dev *pdev) 5257 { 5258 ice_pci_err_resume(pdev); 5259 } 5260 5261 /* ice_pci_tbl - PCI Device ID Table 5262 * 5263 * Wildcard entries (PCI_ANY_ID) should come last 5264 * Last entry must be all 0s 5265 * 5266 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 5267 * Class, Class Mask, private data (not used) } 5268 */ 5269 static const struct pci_device_id ice_pci_tbl[] = { 5270 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 }, 5271 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 }, 5272 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 }, 5273 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 }, 5274 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 }, 5275 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 }, 5276 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 }, 5277 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 }, 5278 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 }, 5279 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 }, 5280 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 }, 5281 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 }, 5282 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 }, 5283 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 }, 5284 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 }, 5285 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 }, 5286 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 }, 5287 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 }, 5288 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 }, 5289 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 }, 5290 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 }, 5291 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 }, 5292 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 }, 5293 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 }, 5294 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 }, 5295 /* required last entry */ 5296 { 0, } 5297 }; 5298 MODULE_DEVICE_TABLE(pci, ice_pci_tbl); 5299 5300 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume); 5301 5302 static const struct pci_error_handlers ice_pci_err_handler = { 5303 .error_detected = ice_pci_err_detected, 5304 .slot_reset = ice_pci_err_slot_reset, 5305 .reset_prepare = ice_pci_err_reset_prepare, 5306 .reset_done = ice_pci_err_reset_done, 5307 .resume = ice_pci_err_resume 5308 }; 5309 5310 static struct pci_driver ice_driver = { 5311 .name = KBUILD_MODNAME, 5312 .id_table = ice_pci_tbl, 5313 .probe = ice_probe, 5314 .remove = ice_remove, 5315 #ifdef CONFIG_PM 5316 .driver.pm = &ice_pm_ops, 5317 #endif /* CONFIG_PM */ 5318 .shutdown = ice_shutdown, 5319 .sriov_configure = ice_sriov_configure, 5320 .err_handler = &ice_pci_err_handler 5321 }; 5322 5323 /** 5324 * ice_module_init - Driver registration routine 5325 * 5326 * ice_module_init is the first routine called when the driver is 5327 * loaded. All it does is register with the PCI subsystem. 5328 */ 5329 static int __init ice_module_init(void) 5330 { 5331 int status; 5332 5333 pr_info("%s\n", ice_driver_string); 5334 pr_info("%s\n", ice_copyright); 5335 5336 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME); 5337 if (!ice_wq) { 5338 pr_err("Failed to create workqueue\n"); 5339 return -ENOMEM; 5340 } 5341 5342 status = pci_register_driver(&ice_driver); 5343 if (status) { 5344 pr_err("failed to register PCI driver, err %d\n", status); 5345 destroy_workqueue(ice_wq); 5346 } 5347 5348 return status; 5349 } 5350 module_init(ice_module_init); 5351 5352 /** 5353 * ice_module_exit - Driver exit cleanup routine 5354 * 5355 * ice_module_exit is called just before the driver is removed 5356 * from memory. 5357 */ 5358 static void __exit ice_module_exit(void) 5359 { 5360 pci_unregister_driver(&ice_driver); 5361 destroy_workqueue(ice_wq); 5362 pr_info("module unloaded\n"); 5363 } 5364 module_exit(ice_module_exit); 5365 5366 /** 5367 * ice_set_mac_address - NDO callback to set MAC address 5368 * @netdev: network interface device structure 5369 * @pi: pointer to an address structure 5370 * 5371 * Returns 0 on success, negative on failure 5372 */ 5373 static int ice_set_mac_address(struct net_device *netdev, void *pi) 5374 { 5375 struct ice_netdev_priv *np = netdev_priv(netdev); 5376 struct ice_vsi *vsi = np->vsi; 5377 struct ice_pf *pf = vsi->back; 5378 struct ice_hw *hw = &pf->hw; 5379 struct sockaddr *addr = pi; 5380 u8 old_mac[ETH_ALEN]; 5381 u8 flags = 0; 5382 u8 *mac; 5383 int err; 5384 5385 mac = (u8 *)addr->sa_data; 5386 5387 if (!is_valid_ether_addr(mac)) 5388 return -EADDRNOTAVAIL; 5389 5390 if (ether_addr_equal(netdev->dev_addr, mac)) { 5391 netdev_dbg(netdev, "already using mac %pM\n", mac); 5392 return 0; 5393 } 5394 5395 if (test_bit(ICE_DOWN, pf->state) || 5396 ice_is_reset_in_progress(pf->state)) { 5397 netdev_err(netdev, "can't set mac %pM. device not ready\n", 5398 mac); 5399 return -EBUSY; 5400 } 5401 5402 if (ice_chnl_dmac_fltr_cnt(pf)) { 5403 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n", 5404 mac); 5405 return -EAGAIN; 5406 } 5407 5408 netif_addr_lock_bh(netdev); 5409 ether_addr_copy(old_mac, netdev->dev_addr); 5410 /* change the netdev's MAC address */ 5411 eth_hw_addr_set(netdev, mac); 5412 netif_addr_unlock_bh(netdev); 5413 5414 /* Clean up old MAC filter. Not an error if old filter doesn't exist */ 5415 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI); 5416 if (err && err != -ENOENT) { 5417 err = -EADDRNOTAVAIL; 5418 goto err_update_filters; 5419 } 5420 5421 /* Add filter for new MAC. If filter exists, return success */ 5422 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI); 5423 if (err == -EEXIST) 5424 /* Although this MAC filter is already present in hardware it's 5425 * possible in some cases (e.g. bonding) that dev_addr was 5426 * modified outside of the driver and needs to be restored back 5427 * to this value. 5428 */ 5429 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac); 5430 else if (err) 5431 /* error if the new filter addition failed */ 5432 err = -EADDRNOTAVAIL; 5433 5434 err_update_filters: 5435 if (err) { 5436 netdev_err(netdev, "can't set MAC %pM. filter update failed\n", 5437 mac); 5438 netif_addr_lock_bh(netdev); 5439 eth_hw_addr_set(netdev, old_mac); 5440 netif_addr_unlock_bh(netdev); 5441 return err; 5442 } 5443 5444 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n", 5445 netdev->dev_addr); 5446 5447 /* write new MAC address to the firmware */ 5448 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL; 5449 err = ice_aq_manage_mac_write(hw, mac, flags, NULL); 5450 if (err) { 5451 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n", 5452 mac, err); 5453 } 5454 return 0; 5455 } 5456 5457 /** 5458 * ice_set_rx_mode - NDO callback to set the netdev filters 5459 * @netdev: network interface device structure 5460 */ 5461 static void ice_set_rx_mode(struct net_device *netdev) 5462 { 5463 struct ice_netdev_priv *np = netdev_priv(netdev); 5464 struct ice_vsi *vsi = np->vsi; 5465 5466 if (!vsi) 5467 return; 5468 5469 /* Set the flags to synchronize filters 5470 * ndo_set_rx_mode may be triggered even without a change in netdev 5471 * flags 5472 */ 5473 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state); 5474 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state); 5475 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags); 5476 5477 /* schedule our worker thread which will take care of 5478 * applying the new filter changes 5479 */ 5480 ice_service_task_schedule(vsi->back); 5481 } 5482 5483 /** 5484 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate 5485 * @netdev: network interface device structure 5486 * @queue_index: Queue ID 5487 * @maxrate: maximum bandwidth in Mbps 5488 */ 5489 static int 5490 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate) 5491 { 5492 struct ice_netdev_priv *np = netdev_priv(netdev); 5493 struct ice_vsi *vsi = np->vsi; 5494 u16 q_handle; 5495 int status; 5496 u8 tc; 5497 5498 /* Validate maxrate requested is within permitted range */ 5499 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) { 5500 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n", 5501 maxrate, queue_index); 5502 return -EINVAL; 5503 } 5504 5505 q_handle = vsi->tx_rings[queue_index]->q_handle; 5506 tc = ice_dcb_get_tc(vsi, queue_index); 5507 5508 /* Set BW back to default, when user set maxrate to 0 */ 5509 if (!maxrate) 5510 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc, 5511 q_handle, ICE_MAX_BW); 5512 else 5513 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc, 5514 q_handle, ICE_MAX_BW, maxrate * 1000); 5515 if (status) 5516 netdev_err(netdev, "Unable to set Tx max rate, error %d\n", 5517 status); 5518 5519 return status; 5520 } 5521 5522 /** 5523 * ice_fdb_add - add an entry to the hardware database 5524 * @ndm: the input from the stack 5525 * @tb: pointer to array of nladdr (unused) 5526 * @dev: the net device pointer 5527 * @addr: the MAC address entry being added 5528 * @vid: VLAN ID 5529 * @flags: instructions from stack about fdb operation 5530 * @extack: netlink extended ack 5531 */ 5532 static int 5533 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[], 5534 struct net_device *dev, const unsigned char *addr, u16 vid, 5535 u16 flags, struct netlink_ext_ack __always_unused *extack) 5536 { 5537 int err; 5538 5539 if (vid) { 5540 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n"); 5541 return -EINVAL; 5542 } 5543 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { 5544 netdev_err(dev, "FDB only supports static addresses\n"); 5545 return -EINVAL; 5546 } 5547 5548 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) 5549 err = dev_uc_add_excl(dev, addr); 5550 else if (is_multicast_ether_addr(addr)) 5551 err = dev_mc_add_excl(dev, addr); 5552 else 5553 err = -EINVAL; 5554 5555 /* Only return duplicate errors if NLM_F_EXCL is set */ 5556 if (err == -EEXIST && !(flags & NLM_F_EXCL)) 5557 err = 0; 5558 5559 return err; 5560 } 5561 5562 /** 5563 * ice_fdb_del - delete an entry from the hardware database 5564 * @ndm: the input from the stack 5565 * @tb: pointer to array of nladdr (unused) 5566 * @dev: the net device pointer 5567 * @addr: the MAC address entry being added 5568 * @vid: VLAN ID 5569 */ 5570 static int 5571 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[], 5572 struct net_device *dev, const unsigned char *addr, 5573 __always_unused u16 vid) 5574 { 5575 int err; 5576 5577 if (ndm->ndm_state & NUD_PERMANENT) { 5578 netdev_err(dev, "FDB only supports static addresses\n"); 5579 return -EINVAL; 5580 } 5581 5582 if (is_unicast_ether_addr(addr)) 5583 err = dev_uc_del(dev, addr); 5584 else if (is_multicast_ether_addr(addr)) 5585 err = dev_mc_del(dev, addr); 5586 else 5587 err = -EINVAL; 5588 5589 return err; 5590 } 5591 5592 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \ 5593 NETIF_F_HW_VLAN_CTAG_TX | \ 5594 NETIF_F_HW_VLAN_STAG_RX | \ 5595 NETIF_F_HW_VLAN_STAG_TX) 5596 5597 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \ 5598 NETIF_F_HW_VLAN_STAG_FILTER) 5599 5600 /** 5601 * ice_fix_features - fix the netdev features flags based on device limitations 5602 * @netdev: ptr to the netdev that flags are being fixed on 5603 * @features: features that need to be checked and possibly fixed 5604 * 5605 * Make sure any fixups are made to features in this callback. This enables the 5606 * driver to not have to check unsupported configurations throughout the driver 5607 * because that's the responsiblity of this callback. 5608 * 5609 * Single VLAN Mode (SVM) Supported Features: 5610 * NETIF_F_HW_VLAN_CTAG_FILTER 5611 * NETIF_F_HW_VLAN_CTAG_RX 5612 * NETIF_F_HW_VLAN_CTAG_TX 5613 * 5614 * Double VLAN Mode (DVM) Supported Features: 5615 * NETIF_F_HW_VLAN_CTAG_FILTER 5616 * NETIF_F_HW_VLAN_CTAG_RX 5617 * NETIF_F_HW_VLAN_CTAG_TX 5618 * 5619 * NETIF_F_HW_VLAN_STAG_FILTER 5620 * NETIF_HW_VLAN_STAG_RX 5621 * NETIF_HW_VLAN_STAG_TX 5622 * 5623 * Features that need fixing: 5624 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion. 5625 * These are mutually exlusive as the VSI context cannot support multiple 5626 * VLAN ethertypes simultaneously for stripping and/or insertion. If this 5627 * is not done, then default to clearing the requested STAG offload 5628 * settings. 5629 * 5630 * All supported filtering has to be enabled or disabled together. For 5631 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled 5632 * together. If this is not done, then default to VLAN filtering disabled. 5633 * These are mutually exclusive as there is currently no way to 5634 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN 5635 * prune rules. 5636 */ 5637 static netdev_features_t 5638 ice_fix_features(struct net_device *netdev, netdev_features_t features) 5639 { 5640 struct ice_netdev_priv *np = netdev_priv(netdev); 5641 netdev_features_t supported_vlan_filtering; 5642 netdev_features_t requested_vlan_filtering; 5643 struct ice_vsi *vsi = np->vsi; 5644 5645 requested_vlan_filtering = features & NETIF_VLAN_FILTERING_FEATURES; 5646 5647 /* make sure supported_vlan_filtering works for both SVM and DVM */ 5648 supported_vlan_filtering = NETIF_F_HW_VLAN_CTAG_FILTER; 5649 if (ice_is_dvm_ena(&vsi->back->hw)) 5650 supported_vlan_filtering |= NETIF_F_HW_VLAN_STAG_FILTER; 5651 5652 if (requested_vlan_filtering && 5653 requested_vlan_filtering != supported_vlan_filtering) { 5654 if (requested_vlan_filtering & NETIF_F_HW_VLAN_CTAG_FILTER) { 5655 netdev_warn(netdev, "cannot support requested VLAN filtering settings, enabling all supported VLAN filtering settings\n"); 5656 features |= supported_vlan_filtering; 5657 } else { 5658 netdev_warn(netdev, "cannot support requested VLAN filtering settings, clearing all supported VLAN filtering settings\n"); 5659 features &= ~supported_vlan_filtering; 5660 } 5661 } 5662 5663 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) && 5664 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) { 5665 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n"); 5666 features &= ~(NETIF_F_HW_VLAN_STAG_RX | 5667 NETIF_F_HW_VLAN_STAG_TX); 5668 } 5669 5670 return features; 5671 } 5672 5673 /** 5674 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI 5675 * @vsi: PF's VSI 5676 * @features: features used to determine VLAN offload settings 5677 * 5678 * First, determine the vlan_ethertype based on the VLAN offload bits in 5679 * features. Then determine if stripping and insertion should be enabled or 5680 * disabled. Finally enable or disable VLAN stripping and insertion. 5681 */ 5682 static int 5683 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features) 5684 { 5685 bool enable_stripping = true, enable_insertion = true; 5686 struct ice_vsi_vlan_ops *vlan_ops; 5687 int strip_err = 0, insert_err = 0; 5688 u16 vlan_ethertype = 0; 5689 5690 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5691 5692 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX)) 5693 vlan_ethertype = ETH_P_8021AD; 5694 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) 5695 vlan_ethertype = ETH_P_8021Q; 5696 5697 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX))) 5698 enable_stripping = false; 5699 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX))) 5700 enable_insertion = false; 5701 5702 if (enable_stripping) 5703 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype); 5704 else 5705 strip_err = vlan_ops->dis_stripping(vsi); 5706 5707 if (enable_insertion) 5708 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype); 5709 else 5710 insert_err = vlan_ops->dis_insertion(vsi); 5711 5712 if (strip_err || insert_err) 5713 return -EIO; 5714 5715 return 0; 5716 } 5717 5718 /** 5719 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI 5720 * @vsi: PF's VSI 5721 * @features: features used to determine VLAN filtering settings 5722 * 5723 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the 5724 * features. 5725 */ 5726 static int 5727 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features) 5728 { 5729 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 5730 int err = 0; 5731 5732 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking 5733 * if either bit is set 5734 */ 5735 if (features & 5736 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER)) 5737 err = vlan_ops->ena_rx_filtering(vsi); 5738 else 5739 err = vlan_ops->dis_rx_filtering(vsi); 5740 5741 return err; 5742 } 5743 5744 /** 5745 * ice_set_vlan_features - set VLAN settings based on suggested feature set 5746 * @netdev: ptr to the netdev being adjusted 5747 * @features: the feature set that the stack is suggesting 5748 * 5749 * Only update VLAN settings if the requested_vlan_features are different than 5750 * the current_vlan_features. 5751 */ 5752 static int 5753 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features) 5754 { 5755 netdev_features_t current_vlan_features, requested_vlan_features; 5756 struct ice_netdev_priv *np = netdev_priv(netdev); 5757 struct ice_vsi *vsi = np->vsi; 5758 int err; 5759 5760 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES; 5761 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES; 5762 if (current_vlan_features ^ requested_vlan_features) { 5763 err = ice_set_vlan_offload_features(vsi, features); 5764 if (err) 5765 return err; 5766 } 5767 5768 current_vlan_features = netdev->features & 5769 NETIF_VLAN_FILTERING_FEATURES; 5770 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES; 5771 if (current_vlan_features ^ requested_vlan_features) { 5772 err = ice_set_vlan_filtering_features(vsi, features); 5773 if (err) 5774 return err; 5775 } 5776 5777 return 0; 5778 } 5779 5780 /** 5781 * ice_set_features - set the netdev feature flags 5782 * @netdev: ptr to the netdev being adjusted 5783 * @features: the feature set that the stack is suggesting 5784 */ 5785 static int 5786 ice_set_features(struct net_device *netdev, netdev_features_t features) 5787 { 5788 struct ice_netdev_priv *np = netdev_priv(netdev); 5789 struct ice_vsi *vsi = np->vsi; 5790 struct ice_pf *pf = vsi->back; 5791 int ret = 0; 5792 5793 /* Don't set any netdev advanced features with device in Safe Mode */ 5794 if (ice_is_safe_mode(vsi->back)) { 5795 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n"); 5796 return ret; 5797 } 5798 5799 /* Do not change setting during reset */ 5800 if (ice_is_reset_in_progress(pf->state)) { 5801 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n"); 5802 return -EBUSY; 5803 } 5804 5805 /* Multiple features can be changed in one call so keep features in 5806 * separate if/else statements to guarantee each feature is checked 5807 */ 5808 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH)) 5809 ice_vsi_manage_rss_lut(vsi, true); 5810 else if (!(features & NETIF_F_RXHASH) && 5811 netdev->features & NETIF_F_RXHASH) 5812 ice_vsi_manage_rss_lut(vsi, false); 5813 5814 ret = ice_set_vlan_features(netdev, features); 5815 if (ret) 5816 return ret; 5817 5818 if ((features & NETIF_F_NTUPLE) && 5819 !(netdev->features & NETIF_F_NTUPLE)) { 5820 ice_vsi_manage_fdir(vsi, true); 5821 ice_init_arfs(vsi); 5822 } else if (!(features & NETIF_F_NTUPLE) && 5823 (netdev->features & NETIF_F_NTUPLE)) { 5824 ice_vsi_manage_fdir(vsi, false); 5825 ice_clear_arfs(vsi); 5826 } 5827 5828 /* don't turn off hw_tc_offload when ADQ is already enabled */ 5829 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) { 5830 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n"); 5831 return -EACCES; 5832 } 5833 5834 if ((features & NETIF_F_HW_TC) && 5835 !(netdev->features & NETIF_F_HW_TC)) 5836 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5837 else 5838 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 5839 5840 return 0; 5841 } 5842 5843 /** 5844 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI 5845 * @vsi: VSI to setup VLAN properties for 5846 */ 5847 static int ice_vsi_vlan_setup(struct ice_vsi *vsi) 5848 { 5849 int err; 5850 5851 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features); 5852 if (err) 5853 return err; 5854 5855 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features); 5856 if (err) 5857 return err; 5858 5859 return ice_vsi_add_vlan_zero(vsi); 5860 } 5861 5862 /** 5863 * ice_vsi_cfg - Setup the VSI 5864 * @vsi: the VSI being configured 5865 * 5866 * Return 0 on success and negative value on error 5867 */ 5868 int ice_vsi_cfg(struct ice_vsi *vsi) 5869 { 5870 int err; 5871 5872 if (vsi->netdev) { 5873 ice_set_rx_mode(vsi->netdev); 5874 5875 err = ice_vsi_vlan_setup(vsi); 5876 5877 if (err) 5878 return err; 5879 } 5880 ice_vsi_cfg_dcb_rings(vsi); 5881 5882 err = ice_vsi_cfg_lan_txqs(vsi); 5883 if (!err && ice_is_xdp_ena_vsi(vsi)) 5884 err = ice_vsi_cfg_xdp_txqs(vsi); 5885 if (!err) 5886 err = ice_vsi_cfg_rxqs(vsi); 5887 5888 return err; 5889 } 5890 5891 /* THEORY OF MODERATION: 5892 * The ice driver hardware works differently than the hardware that DIMLIB was 5893 * originally made for. ice hardware doesn't have packet count limits that 5894 * can trigger an interrupt, but it *does* have interrupt rate limit support, 5895 * which is hard-coded to a limit of 250,000 ints/second. 5896 * If not using dynamic moderation, the INTRL value can be modified 5897 * by ethtool rx-usecs-high. 5898 */ 5899 struct ice_dim { 5900 /* the throttle rate for interrupts, basically worst case delay before 5901 * an initial interrupt fires, value is stored in microseconds. 5902 */ 5903 u16 itr; 5904 }; 5905 5906 /* Make a different profile for Rx that doesn't allow quite so aggressive 5907 * moderation at the high end (it maxes out at 126us or about 8k interrupts a 5908 * second. 5909 */ 5910 static const struct ice_dim rx_profile[] = { 5911 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5912 {8}, /* 125,000 ints/s */ 5913 {16}, /* 62,500 ints/s */ 5914 {62}, /* 16,129 ints/s */ 5915 {126} /* 7,936 ints/s */ 5916 }; 5917 5918 /* The transmit profile, which has the same sorts of values 5919 * as the previous struct 5920 */ 5921 static const struct ice_dim tx_profile[] = { 5922 {2}, /* 500,000 ints/s, capped at 250K by INTRL */ 5923 {8}, /* 125,000 ints/s */ 5924 {40}, /* 16,125 ints/s */ 5925 {128}, /* 7,812 ints/s */ 5926 {256} /* 3,906 ints/s */ 5927 }; 5928 5929 static void ice_tx_dim_work(struct work_struct *work) 5930 { 5931 struct ice_ring_container *rc; 5932 struct dim *dim; 5933 u16 itr; 5934 5935 dim = container_of(work, struct dim, work); 5936 rc = (struct ice_ring_container *)dim->priv; 5937 5938 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile)); 5939 5940 /* look up the values in our local table */ 5941 itr = tx_profile[dim->profile_ix].itr; 5942 5943 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim); 5944 ice_write_itr(rc, itr); 5945 5946 dim->state = DIM_START_MEASURE; 5947 } 5948 5949 static void ice_rx_dim_work(struct work_struct *work) 5950 { 5951 struct ice_ring_container *rc; 5952 struct dim *dim; 5953 u16 itr; 5954 5955 dim = container_of(work, struct dim, work); 5956 rc = (struct ice_ring_container *)dim->priv; 5957 5958 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile)); 5959 5960 /* look up the values in our local table */ 5961 itr = rx_profile[dim->profile_ix].itr; 5962 5963 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim); 5964 ice_write_itr(rc, itr); 5965 5966 dim->state = DIM_START_MEASURE; 5967 } 5968 5969 #define ICE_DIM_DEFAULT_PROFILE_IX 1 5970 5971 /** 5972 * ice_init_moderation - set up interrupt moderation 5973 * @q_vector: the vector containing rings to be configured 5974 * 5975 * Set up interrupt moderation registers, with the intent to do the right thing 5976 * when called from reset or from probe, and whether or not dynamic moderation 5977 * is enabled or not. Take special care to write all the registers in both 5978 * dynamic moderation mode or not in order to make sure hardware is in a known 5979 * state. 5980 */ 5981 static void ice_init_moderation(struct ice_q_vector *q_vector) 5982 { 5983 struct ice_ring_container *rc; 5984 bool tx_dynamic, rx_dynamic; 5985 5986 rc = &q_vector->tx; 5987 INIT_WORK(&rc->dim.work, ice_tx_dim_work); 5988 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 5989 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 5990 rc->dim.priv = rc; 5991 tx_dynamic = ITR_IS_DYNAMIC(rc); 5992 5993 /* set the initial TX ITR to match the above */ 5994 ice_write_itr(rc, tx_dynamic ? 5995 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting); 5996 5997 rc = &q_vector->rx; 5998 INIT_WORK(&rc->dim.work, ice_rx_dim_work); 5999 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; 6000 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX; 6001 rc->dim.priv = rc; 6002 rx_dynamic = ITR_IS_DYNAMIC(rc); 6003 6004 /* set the initial RX ITR to match the above */ 6005 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr : 6006 rc->itr_setting); 6007 6008 ice_set_q_vector_intrl(q_vector); 6009 } 6010 6011 /** 6012 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI 6013 * @vsi: the VSI being configured 6014 */ 6015 static void ice_napi_enable_all(struct ice_vsi *vsi) 6016 { 6017 int q_idx; 6018 6019 if (!vsi->netdev) 6020 return; 6021 6022 ice_for_each_q_vector(vsi, q_idx) { 6023 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6024 6025 ice_init_moderation(q_vector); 6026 6027 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6028 napi_enable(&q_vector->napi); 6029 } 6030 } 6031 6032 /** 6033 * ice_up_complete - Finish the last steps of bringing up a connection 6034 * @vsi: The VSI being configured 6035 * 6036 * Return 0 on success and negative value on error 6037 */ 6038 static int ice_up_complete(struct ice_vsi *vsi) 6039 { 6040 struct ice_pf *pf = vsi->back; 6041 int err; 6042 6043 ice_vsi_cfg_msix(vsi); 6044 6045 /* Enable only Rx rings, Tx rings were enabled by the FW when the 6046 * Tx queue group list was configured and the context bits were 6047 * programmed using ice_vsi_cfg_txqs 6048 */ 6049 err = ice_vsi_start_all_rx_rings(vsi); 6050 if (err) 6051 return err; 6052 6053 clear_bit(ICE_VSI_DOWN, vsi->state); 6054 ice_napi_enable_all(vsi); 6055 ice_vsi_ena_irq(vsi); 6056 6057 if (vsi->port_info && 6058 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) && 6059 vsi->netdev) { 6060 ice_print_link_msg(vsi, true); 6061 netif_tx_start_all_queues(vsi->netdev); 6062 netif_carrier_on(vsi->netdev); 6063 if (!ice_is_e810(&pf->hw)) 6064 ice_ptp_link_change(pf, pf->hw.pf_id, true); 6065 } 6066 6067 /* clear this now, and the first stats read will be used as baseline */ 6068 vsi->stat_offsets_loaded = false; 6069 6070 ice_service_task_schedule(pf); 6071 6072 return 0; 6073 } 6074 6075 /** 6076 * ice_up - Bring the connection back up after being down 6077 * @vsi: VSI being configured 6078 */ 6079 int ice_up(struct ice_vsi *vsi) 6080 { 6081 int err; 6082 6083 err = ice_vsi_cfg(vsi); 6084 if (!err) 6085 err = ice_up_complete(vsi); 6086 6087 return err; 6088 } 6089 6090 /** 6091 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring 6092 * @syncp: pointer to u64_stats_sync 6093 * @stats: stats that pkts and bytes count will be taken from 6094 * @pkts: packets stats counter 6095 * @bytes: bytes stats counter 6096 * 6097 * This function fetches stats from the ring considering the atomic operations 6098 * that needs to be performed to read u64 values in 32 bit machine. 6099 */ 6100 static void 6101 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp, struct ice_q_stats stats, 6102 u64 *pkts, u64 *bytes) 6103 { 6104 unsigned int start; 6105 6106 do { 6107 start = u64_stats_fetch_begin_irq(syncp); 6108 *pkts = stats.pkts; 6109 *bytes = stats.bytes; 6110 } while (u64_stats_fetch_retry_irq(syncp, start)); 6111 } 6112 6113 /** 6114 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters 6115 * @vsi: the VSI to be updated 6116 * @vsi_stats: the stats struct to be updated 6117 * @rings: rings to work on 6118 * @count: number of rings 6119 */ 6120 static void 6121 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, 6122 struct rtnl_link_stats64 *vsi_stats, 6123 struct ice_tx_ring **rings, u16 count) 6124 { 6125 u16 i; 6126 6127 for (i = 0; i < count; i++) { 6128 struct ice_tx_ring *ring; 6129 u64 pkts = 0, bytes = 0; 6130 6131 ring = READ_ONCE(rings[i]); 6132 if (ring) 6133 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6134 vsi_stats->tx_packets += pkts; 6135 vsi_stats->tx_bytes += bytes; 6136 vsi->tx_restart += ring->tx_stats.restart_q; 6137 vsi->tx_busy += ring->tx_stats.tx_busy; 6138 vsi->tx_linearize += ring->tx_stats.tx_linearize; 6139 } 6140 } 6141 6142 /** 6143 * ice_update_vsi_ring_stats - Update VSI stats counters 6144 * @vsi: the VSI to be updated 6145 */ 6146 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi) 6147 { 6148 struct rtnl_link_stats64 *vsi_stats; 6149 u64 pkts, bytes; 6150 int i; 6151 6152 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC); 6153 if (!vsi_stats) 6154 return; 6155 6156 /* reset non-netdev (extended) stats */ 6157 vsi->tx_restart = 0; 6158 vsi->tx_busy = 0; 6159 vsi->tx_linearize = 0; 6160 vsi->rx_buf_failed = 0; 6161 vsi->rx_page_failed = 0; 6162 6163 rcu_read_lock(); 6164 6165 /* update Tx rings counters */ 6166 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings, 6167 vsi->num_txq); 6168 6169 /* update Rx rings counters */ 6170 ice_for_each_rxq(vsi, i) { 6171 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]); 6172 6173 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes); 6174 vsi_stats->rx_packets += pkts; 6175 vsi_stats->rx_bytes += bytes; 6176 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed; 6177 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed; 6178 } 6179 6180 /* update XDP Tx rings counters */ 6181 if (ice_is_xdp_ena_vsi(vsi)) 6182 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings, 6183 vsi->num_xdp_txq); 6184 6185 rcu_read_unlock(); 6186 6187 vsi->net_stats.tx_packets = vsi_stats->tx_packets; 6188 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes; 6189 vsi->net_stats.rx_packets = vsi_stats->rx_packets; 6190 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes; 6191 6192 kfree(vsi_stats); 6193 } 6194 6195 /** 6196 * ice_update_vsi_stats - Update VSI stats counters 6197 * @vsi: the VSI to be updated 6198 */ 6199 void ice_update_vsi_stats(struct ice_vsi *vsi) 6200 { 6201 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats; 6202 struct ice_eth_stats *cur_es = &vsi->eth_stats; 6203 struct ice_pf *pf = vsi->back; 6204 6205 if (test_bit(ICE_VSI_DOWN, vsi->state) || 6206 test_bit(ICE_CFG_BUSY, pf->state)) 6207 return; 6208 6209 /* get stats as recorded by Tx/Rx rings */ 6210 ice_update_vsi_ring_stats(vsi); 6211 6212 /* get VSI stats as recorded by the hardware */ 6213 ice_update_eth_stats(vsi); 6214 6215 cur_ns->tx_errors = cur_es->tx_errors; 6216 cur_ns->rx_dropped = cur_es->rx_discards; 6217 cur_ns->tx_dropped = cur_es->tx_discards; 6218 cur_ns->multicast = cur_es->rx_multicast; 6219 6220 /* update some more netdev stats if this is main VSI */ 6221 if (vsi->type == ICE_VSI_PF) { 6222 cur_ns->rx_crc_errors = pf->stats.crc_errors; 6223 cur_ns->rx_errors = pf->stats.crc_errors + 6224 pf->stats.illegal_bytes + 6225 pf->stats.rx_len_errors + 6226 pf->stats.rx_undersize + 6227 pf->hw_csum_rx_error + 6228 pf->stats.rx_jabber + 6229 pf->stats.rx_fragments + 6230 pf->stats.rx_oversize; 6231 cur_ns->rx_length_errors = pf->stats.rx_len_errors; 6232 /* record drops from the port level */ 6233 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards; 6234 } 6235 } 6236 6237 /** 6238 * ice_update_pf_stats - Update PF port stats counters 6239 * @pf: PF whose stats needs to be updated 6240 */ 6241 void ice_update_pf_stats(struct ice_pf *pf) 6242 { 6243 struct ice_hw_port_stats *prev_ps, *cur_ps; 6244 struct ice_hw *hw = &pf->hw; 6245 u16 fd_ctr_base; 6246 u8 port; 6247 6248 port = hw->port_info->lport; 6249 prev_ps = &pf->stats_prev; 6250 cur_ps = &pf->stats; 6251 6252 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded, 6253 &prev_ps->eth.rx_bytes, 6254 &cur_ps->eth.rx_bytes); 6255 6256 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded, 6257 &prev_ps->eth.rx_unicast, 6258 &cur_ps->eth.rx_unicast); 6259 6260 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded, 6261 &prev_ps->eth.rx_multicast, 6262 &cur_ps->eth.rx_multicast); 6263 6264 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded, 6265 &prev_ps->eth.rx_broadcast, 6266 &cur_ps->eth.rx_broadcast); 6267 6268 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded, 6269 &prev_ps->eth.rx_discards, 6270 &cur_ps->eth.rx_discards); 6271 6272 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded, 6273 &prev_ps->eth.tx_bytes, 6274 &cur_ps->eth.tx_bytes); 6275 6276 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded, 6277 &prev_ps->eth.tx_unicast, 6278 &cur_ps->eth.tx_unicast); 6279 6280 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded, 6281 &prev_ps->eth.tx_multicast, 6282 &cur_ps->eth.tx_multicast); 6283 6284 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded, 6285 &prev_ps->eth.tx_broadcast, 6286 &cur_ps->eth.tx_broadcast); 6287 6288 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded, 6289 &prev_ps->tx_dropped_link_down, 6290 &cur_ps->tx_dropped_link_down); 6291 6292 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded, 6293 &prev_ps->rx_size_64, &cur_ps->rx_size_64); 6294 6295 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded, 6296 &prev_ps->rx_size_127, &cur_ps->rx_size_127); 6297 6298 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded, 6299 &prev_ps->rx_size_255, &cur_ps->rx_size_255); 6300 6301 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded, 6302 &prev_ps->rx_size_511, &cur_ps->rx_size_511); 6303 6304 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded, 6305 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023); 6306 6307 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded, 6308 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522); 6309 6310 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded, 6311 &prev_ps->rx_size_big, &cur_ps->rx_size_big); 6312 6313 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded, 6314 &prev_ps->tx_size_64, &cur_ps->tx_size_64); 6315 6316 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded, 6317 &prev_ps->tx_size_127, &cur_ps->tx_size_127); 6318 6319 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded, 6320 &prev_ps->tx_size_255, &cur_ps->tx_size_255); 6321 6322 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded, 6323 &prev_ps->tx_size_511, &cur_ps->tx_size_511); 6324 6325 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded, 6326 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023); 6327 6328 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded, 6329 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522); 6330 6331 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded, 6332 &prev_ps->tx_size_big, &cur_ps->tx_size_big); 6333 6334 fd_ctr_base = hw->fd_ctr_base; 6335 6336 ice_stat_update40(hw, 6337 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)), 6338 pf->stat_prev_loaded, &prev_ps->fd_sb_match, 6339 &cur_ps->fd_sb_match); 6340 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded, 6341 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx); 6342 6343 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded, 6344 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx); 6345 6346 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded, 6347 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx); 6348 6349 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded, 6350 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx); 6351 6352 ice_update_dcb_stats(pf); 6353 6354 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded, 6355 &prev_ps->crc_errors, &cur_ps->crc_errors); 6356 6357 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded, 6358 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes); 6359 6360 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded, 6361 &prev_ps->mac_local_faults, 6362 &cur_ps->mac_local_faults); 6363 6364 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded, 6365 &prev_ps->mac_remote_faults, 6366 &cur_ps->mac_remote_faults); 6367 6368 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded, 6369 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors); 6370 6371 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded, 6372 &prev_ps->rx_undersize, &cur_ps->rx_undersize); 6373 6374 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded, 6375 &prev_ps->rx_fragments, &cur_ps->rx_fragments); 6376 6377 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded, 6378 &prev_ps->rx_oversize, &cur_ps->rx_oversize); 6379 6380 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded, 6381 &prev_ps->rx_jabber, &cur_ps->rx_jabber); 6382 6383 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0; 6384 6385 pf->stat_prev_loaded = true; 6386 } 6387 6388 /** 6389 * ice_get_stats64 - get statistics for network device structure 6390 * @netdev: network interface device structure 6391 * @stats: main device statistics structure 6392 */ 6393 static 6394 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) 6395 { 6396 struct ice_netdev_priv *np = netdev_priv(netdev); 6397 struct rtnl_link_stats64 *vsi_stats; 6398 struct ice_vsi *vsi = np->vsi; 6399 6400 vsi_stats = &vsi->net_stats; 6401 6402 if (!vsi->num_txq || !vsi->num_rxq) 6403 return; 6404 6405 /* netdev packet/byte stats come from ring counter. These are obtained 6406 * by summing up ring counters (done by ice_update_vsi_ring_stats). 6407 * But, only call the update routine and read the registers if VSI is 6408 * not down. 6409 */ 6410 if (!test_bit(ICE_VSI_DOWN, vsi->state)) 6411 ice_update_vsi_ring_stats(vsi); 6412 stats->tx_packets = vsi_stats->tx_packets; 6413 stats->tx_bytes = vsi_stats->tx_bytes; 6414 stats->rx_packets = vsi_stats->rx_packets; 6415 stats->rx_bytes = vsi_stats->rx_bytes; 6416 6417 /* The rest of the stats can be read from the hardware but instead we 6418 * just return values that the watchdog task has already obtained from 6419 * the hardware. 6420 */ 6421 stats->multicast = vsi_stats->multicast; 6422 stats->tx_errors = vsi_stats->tx_errors; 6423 stats->tx_dropped = vsi_stats->tx_dropped; 6424 stats->rx_errors = vsi_stats->rx_errors; 6425 stats->rx_dropped = vsi_stats->rx_dropped; 6426 stats->rx_crc_errors = vsi_stats->rx_crc_errors; 6427 stats->rx_length_errors = vsi_stats->rx_length_errors; 6428 } 6429 6430 /** 6431 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI 6432 * @vsi: VSI having NAPI disabled 6433 */ 6434 static void ice_napi_disable_all(struct ice_vsi *vsi) 6435 { 6436 int q_idx; 6437 6438 if (!vsi->netdev) 6439 return; 6440 6441 ice_for_each_q_vector(vsi, q_idx) { 6442 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx]; 6443 6444 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring) 6445 napi_disable(&q_vector->napi); 6446 6447 cancel_work_sync(&q_vector->tx.dim.work); 6448 cancel_work_sync(&q_vector->rx.dim.work); 6449 } 6450 } 6451 6452 /** 6453 * ice_down - Shutdown the connection 6454 * @vsi: The VSI being stopped 6455 * 6456 * Caller of this function is expected to set the vsi->state ICE_DOWN bit 6457 */ 6458 int ice_down(struct ice_vsi *vsi) 6459 { 6460 int i, tx_err, rx_err, link_err = 0, vlan_err = 0; 6461 6462 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state)); 6463 6464 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 6465 vlan_err = ice_vsi_del_vlan_zero(vsi); 6466 if (!ice_is_e810(&vsi->back->hw)) 6467 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false); 6468 netif_carrier_off(vsi->netdev); 6469 netif_tx_disable(vsi->netdev); 6470 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 6471 ice_eswitch_stop_all_tx_queues(vsi->back); 6472 } 6473 6474 ice_vsi_dis_irq(vsi); 6475 6476 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0); 6477 if (tx_err) 6478 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n", 6479 vsi->vsi_num, tx_err); 6480 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) { 6481 tx_err = ice_vsi_stop_xdp_tx_rings(vsi); 6482 if (tx_err) 6483 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n", 6484 vsi->vsi_num, tx_err); 6485 } 6486 6487 rx_err = ice_vsi_stop_all_rx_rings(vsi); 6488 if (rx_err) 6489 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n", 6490 vsi->vsi_num, rx_err); 6491 6492 ice_napi_disable_all(vsi); 6493 6494 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) { 6495 link_err = ice_force_phys_link_state(vsi, false); 6496 if (link_err) 6497 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n", 6498 vsi->vsi_num, link_err); 6499 } 6500 6501 ice_for_each_txq(vsi, i) 6502 ice_clean_tx_ring(vsi->tx_rings[i]); 6503 6504 ice_for_each_rxq(vsi, i) 6505 ice_clean_rx_ring(vsi->rx_rings[i]); 6506 6507 if (tx_err || rx_err || link_err || vlan_err) { 6508 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n", 6509 vsi->vsi_num, vsi->vsw->sw_id); 6510 return -EIO; 6511 } 6512 6513 return 0; 6514 } 6515 6516 /** 6517 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources 6518 * @vsi: VSI having resources allocated 6519 * 6520 * Return 0 on success, negative on failure 6521 */ 6522 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi) 6523 { 6524 int i, err = 0; 6525 6526 if (!vsi->num_txq) { 6527 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n", 6528 vsi->vsi_num); 6529 return -EINVAL; 6530 } 6531 6532 ice_for_each_txq(vsi, i) { 6533 struct ice_tx_ring *ring = vsi->tx_rings[i]; 6534 6535 if (!ring) 6536 return -EINVAL; 6537 6538 if (vsi->netdev) 6539 ring->netdev = vsi->netdev; 6540 err = ice_setup_tx_ring(ring); 6541 if (err) 6542 break; 6543 } 6544 6545 return err; 6546 } 6547 6548 /** 6549 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources 6550 * @vsi: VSI having resources allocated 6551 * 6552 * Return 0 on success, negative on failure 6553 */ 6554 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi) 6555 { 6556 int i, err = 0; 6557 6558 if (!vsi->num_rxq) { 6559 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n", 6560 vsi->vsi_num); 6561 return -EINVAL; 6562 } 6563 6564 ice_for_each_rxq(vsi, i) { 6565 struct ice_rx_ring *ring = vsi->rx_rings[i]; 6566 6567 if (!ring) 6568 return -EINVAL; 6569 6570 if (vsi->netdev) 6571 ring->netdev = vsi->netdev; 6572 err = ice_setup_rx_ring(ring); 6573 if (err) 6574 break; 6575 } 6576 6577 return err; 6578 } 6579 6580 /** 6581 * ice_vsi_open_ctrl - open control VSI for use 6582 * @vsi: the VSI to open 6583 * 6584 * Initialization of the Control VSI 6585 * 6586 * Returns 0 on success, negative value on error 6587 */ 6588 int ice_vsi_open_ctrl(struct ice_vsi *vsi) 6589 { 6590 char int_name[ICE_INT_NAME_STR_LEN]; 6591 struct ice_pf *pf = vsi->back; 6592 struct device *dev; 6593 int err; 6594 6595 dev = ice_pf_to_dev(pf); 6596 /* allocate descriptors */ 6597 err = ice_vsi_setup_tx_rings(vsi); 6598 if (err) 6599 goto err_setup_tx; 6600 6601 err = ice_vsi_setup_rx_rings(vsi); 6602 if (err) 6603 goto err_setup_rx; 6604 6605 err = ice_vsi_cfg(vsi); 6606 if (err) 6607 goto err_setup_rx; 6608 6609 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl", 6610 dev_driver_string(dev), dev_name(dev)); 6611 err = ice_vsi_req_irq_msix(vsi, int_name); 6612 if (err) 6613 goto err_setup_rx; 6614 6615 ice_vsi_cfg_msix(vsi); 6616 6617 err = ice_vsi_start_all_rx_rings(vsi); 6618 if (err) 6619 goto err_up_complete; 6620 6621 clear_bit(ICE_VSI_DOWN, vsi->state); 6622 ice_vsi_ena_irq(vsi); 6623 6624 return 0; 6625 6626 err_up_complete: 6627 ice_down(vsi); 6628 err_setup_rx: 6629 ice_vsi_free_rx_rings(vsi); 6630 err_setup_tx: 6631 ice_vsi_free_tx_rings(vsi); 6632 6633 return err; 6634 } 6635 6636 /** 6637 * ice_vsi_open - Called when a network interface is made active 6638 * @vsi: the VSI to open 6639 * 6640 * Initialization of the VSI 6641 * 6642 * Returns 0 on success, negative value on error 6643 */ 6644 int ice_vsi_open(struct ice_vsi *vsi) 6645 { 6646 char int_name[ICE_INT_NAME_STR_LEN]; 6647 struct ice_pf *pf = vsi->back; 6648 int err; 6649 6650 /* allocate descriptors */ 6651 err = ice_vsi_setup_tx_rings(vsi); 6652 if (err) 6653 goto err_setup_tx; 6654 6655 err = ice_vsi_setup_rx_rings(vsi); 6656 if (err) 6657 goto err_setup_rx; 6658 6659 err = ice_vsi_cfg(vsi); 6660 if (err) 6661 goto err_setup_rx; 6662 6663 snprintf(int_name, sizeof(int_name) - 1, "%s-%s", 6664 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name); 6665 err = ice_vsi_req_irq_msix(vsi, int_name); 6666 if (err) 6667 goto err_setup_rx; 6668 6669 if (vsi->type == ICE_VSI_PF) { 6670 /* Notify the stack of the actual queue counts. */ 6671 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq); 6672 if (err) 6673 goto err_set_qs; 6674 6675 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq); 6676 if (err) 6677 goto err_set_qs; 6678 } 6679 6680 err = ice_up_complete(vsi); 6681 if (err) 6682 goto err_up_complete; 6683 6684 return 0; 6685 6686 err_up_complete: 6687 ice_down(vsi); 6688 err_set_qs: 6689 ice_vsi_free_irq(vsi); 6690 err_setup_rx: 6691 ice_vsi_free_rx_rings(vsi); 6692 err_setup_tx: 6693 ice_vsi_free_tx_rings(vsi); 6694 6695 return err; 6696 } 6697 6698 /** 6699 * ice_vsi_release_all - Delete all VSIs 6700 * @pf: PF from which all VSIs are being removed 6701 */ 6702 static void ice_vsi_release_all(struct ice_pf *pf) 6703 { 6704 int err, i; 6705 6706 if (!pf->vsi) 6707 return; 6708 6709 ice_for_each_vsi(pf, i) { 6710 if (!pf->vsi[i]) 6711 continue; 6712 6713 if (pf->vsi[i]->type == ICE_VSI_CHNL) 6714 continue; 6715 6716 err = ice_vsi_release(pf->vsi[i]); 6717 if (err) 6718 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n", 6719 i, err, pf->vsi[i]->vsi_num); 6720 } 6721 } 6722 6723 /** 6724 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type 6725 * @pf: pointer to the PF instance 6726 * @type: VSI type to rebuild 6727 * 6728 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type 6729 */ 6730 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type) 6731 { 6732 struct device *dev = ice_pf_to_dev(pf); 6733 int i, err; 6734 6735 ice_for_each_vsi(pf, i) { 6736 struct ice_vsi *vsi = pf->vsi[i]; 6737 6738 if (!vsi || vsi->type != type) 6739 continue; 6740 6741 /* rebuild the VSI */ 6742 err = ice_vsi_rebuild(vsi, true); 6743 if (err) { 6744 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n", 6745 err, vsi->idx, ice_vsi_type_str(type)); 6746 return err; 6747 } 6748 6749 /* replay filters for the VSI */ 6750 err = ice_replay_vsi(&pf->hw, vsi->idx); 6751 if (err) { 6752 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n", 6753 err, vsi->idx, ice_vsi_type_str(type)); 6754 return err; 6755 } 6756 6757 /* Re-map HW VSI number, using VSI handle that has been 6758 * previously validated in ice_replay_vsi() call above 6759 */ 6760 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 6761 6762 /* enable the VSI */ 6763 err = ice_ena_vsi(vsi, false); 6764 if (err) { 6765 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n", 6766 err, vsi->idx, ice_vsi_type_str(type)); 6767 return err; 6768 } 6769 6770 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx, 6771 ice_vsi_type_str(type)); 6772 } 6773 6774 return 0; 6775 } 6776 6777 /** 6778 * ice_update_pf_netdev_link - Update PF netdev link status 6779 * @pf: pointer to the PF instance 6780 */ 6781 static void ice_update_pf_netdev_link(struct ice_pf *pf) 6782 { 6783 bool link_up; 6784 int i; 6785 6786 ice_for_each_vsi(pf, i) { 6787 struct ice_vsi *vsi = pf->vsi[i]; 6788 6789 if (!vsi || vsi->type != ICE_VSI_PF) 6790 return; 6791 6792 ice_get_link_status(pf->vsi[i]->port_info, &link_up); 6793 if (link_up) { 6794 netif_carrier_on(pf->vsi[i]->netdev); 6795 netif_tx_wake_all_queues(pf->vsi[i]->netdev); 6796 } else { 6797 netif_carrier_off(pf->vsi[i]->netdev); 6798 netif_tx_stop_all_queues(pf->vsi[i]->netdev); 6799 } 6800 } 6801 } 6802 6803 /** 6804 * ice_rebuild - rebuild after reset 6805 * @pf: PF to rebuild 6806 * @reset_type: type of reset 6807 * 6808 * Do not rebuild VF VSI in this flow because that is already handled via 6809 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a 6810 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want 6811 * to reset/rebuild all the VF VSI twice. 6812 */ 6813 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) 6814 { 6815 struct device *dev = ice_pf_to_dev(pf); 6816 struct ice_hw *hw = &pf->hw; 6817 bool dvm; 6818 int err; 6819 6820 if (test_bit(ICE_DOWN, pf->state)) 6821 goto clear_recovery; 6822 6823 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type); 6824 6825 if (reset_type == ICE_RESET_EMPR) { 6826 /* If an EMP reset has occurred, any previously pending flash 6827 * update will have completed. We no longer know whether or 6828 * not the NVM update EMP reset is restricted. 6829 */ 6830 pf->fw_emp_reset_disabled = false; 6831 } 6832 6833 err = ice_init_all_ctrlq(hw); 6834 if (err) { 6835 dev_err(dev, "control queues init failed %d\n", err); 6836 goto err_init_ctrlq; 6837 } 6838 6839 /* if DDP was previously loaded successfully */ 6840 if (!ice_is_safe_mode(pf)) { 6841 /* reload the SW DB of filter tables */ 6842 if (reset_type == ICE_RESET_PFR) 6843 ice_fill_blk_tbls(hw); 6844 else 6845 /* Reload DDP Package after CORER/GLOBR reset */ 6846 ice_load_pkg(NULL, pf); 6847 } 6848 6849 err = ice_clear_pf_cfg(hw); 6850 if (err) { 6851 dev_err(dev, "clear PF configuration failed %d\n", err); 6852 goto err_init_ctrlq; 6853 } 6854 6855 if (pf->first_sw->dflt_vsi_ena) 6856 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n"); 6857 /* clear the default VSI configuration if it exists */ 6858 pf->first_sw->dflt_vsi = NULL; 6859 pf->first_sw->dflt_vsi_ena = false; 6860 6861 ice_clear_pxe_mode(hw); 6862 6863 err = ice_init_nvm(hw); 6864 if (err) { 6865 dev_err(dev, "ice_init_nvm failed %d\n", err); 6866 goto err_init_ctrlq; 6867 } 6868 6869 err = ice_get_caps(hw); 6870 if (err) { 6871 dev_err(dev, "ice_get_caps failed %d\n", err); 6872 goto err_init_ctrlq; 6873 } 6874 6875 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL); 6876 if (err) { 6877 dev_err(dev, "set_mac_cfg failed %d\n", err); 6878 goto err_init_ctrlq; 6879 } 6880 6881 dvm = ice_is_dvm_ena(hw); 6882 6883 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL); 6884 if (err) 6885 goto err_init_ctrlq; 6886 6887 err = ice_sched_init_port(hw->port_info); 6888 if (err) 6889 goto err_sched_init_port; 6890 6891 /* start misc vector */ 6892 err = ice_req_irq_msix_misc(pf); 6893 if (err) { 6894 dev_err(dev, "misc vector setup failed: %d\n", err); 6895 goto err_sched_init_port; 6896 } 6897 6898 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6899 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M); 6900 if (!rd32(hw, PFQF_FD_SIZE)) { 6901 u16 unused, guar, b_effort; 6902 6903 guar = hw->func_caps.fd_fltr_guar; 6904 b_effort = hw->func_caps.fd_fltr_best_effort; 6905 6906 /* force guaranteed filter pool for PF */ 6907 ice_alloc_fd_guar_item(hw, &unused, guar); 6908 /* force shared filter pool for PF */ 6909 ice_alloc_fd_shrd_item(hw, &unused, b_effort); 6910 } 6911 } 6912 6913 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags)) 6914 ice_dcb_rebuild(pf); 6915 6916 /* If the PF previously had enabled PTP, PTP init needs to happen before 6917 * the VSI rebuild. If not, this causes the PTP link status events to 6918 * fail. 6919 */ 6920 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6921 ice_ptp_reset(pf); 6922 6923 /* rebuild PF VSI */ 6924 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF); 6925 if (err) { 6926 dev_err(dev, "PF VSI rebuild failed: %d\n", err); 6927 goto err_vsi_rebuild; 6928 } 6929 6930 /* configure PTP timestamping after VSI rebuild */ 6931 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags)) 6932 ice_ptp_cfg_timestamp(pf, false); 6933 6934 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL); 6935 if (err) { 6936 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err); 6937 goto err_vsi_rebuild; 6938 } 6939 6940 if (reset_type == ICE_RESET_PFR) { 6941 err = ice_rebuild_channels(pf); 6942 if (err) { 6943 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n", 6944 err); 6945 goto err_vsi_rebuild; 6946 } 6947 } 6948 6949 /* If Flow Director is active */ 6950 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) { 6951 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL); 6952 if (err) { 6953 dev_err(dev, "control VSI rebuild failed: %d\n", err); 6954 goto err_vsi_rebuild; 6955 } 6956 6957 /* replay HW Flow Director recipes */ 6958 if (hw->fdir_prof) 6959 ice_fdir_replay_flows(hw); 6960 6961 /* replay Flow Director filters */ 6962 ice_fdir_replay_fltrs(pf); 6963 6964 ice_rebuild_arfs(pf); 6965 } 6966 6967 ice_update_pf_netdev_link(pf); 6968 6969 /* tell the firmware we are up */ 6970 err = ice_send_version(pf); 6971 if (err) { 6972 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n", 6973 err); 6974 goto err_vsi_rebuild; 6975 } 6976 6977 ice_replay_post(hw); 6978 6979 /* if we get here, reset flow is successful */ 6980 clear_bit(ICE_RESET_FAILED, pf->state); 6981 6982 ice_plug_aux_dev(pf); 6983 return; 6984 6985 err_vsi_rebuild: 6986 err_sched_init_port: 6987 ice_sched_cleanup_all(hw); 6988 err_init_ctrlq: 6989 ice_shutdown_all_ctrlq(hw); 6990 set_bit(ICE_RESET_FAILED, pf->state); 6991 clear_recovery: 6992 /* set this bit in PF state to control service task scheduling */ 6993 set_bit(ICE_NEEDS_RESTART, pf->state); 6994 dev_err(dev, "Rebuild failed, unload and reload driver\n"); 6995 } 6996 6997 /** 6998 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP 6999 * @vsi: Pointer to VSI structure 7000 */ 7001 static int ice_max_xdp_frame_size(struct ice_vsi *vsi) 7002 { 7003 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) 7004 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM; 7005 else 7006 return ICE_RXBUF_3072; 7007 } 7008 7009 /** 7010 * ice_change_mtu - NDO callback to change the MTU 7011 * @netdev: network interface device structure 7012 * @new_mtu: new value for maximum frame size 7013 * 7014 * Returns 0 on success, negative on failure 7015 */ 7016 static int ice_change_mtu(struct net_device *netdev, int new_mtu) 7017 { 7018 struct ice_netdev_priv *np = netdev_priv(netdev); 7019 struct ice_vsi *vsi = np->vsi; 7020 struct ice_pf *pf = vsi->back; 7021 struct iidc_event *event; 7022 u8 count = 0; 7023 int err = 0; 7024 7025 if (new_mtu == (int)netdev->mtu) { 7026 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu); 7027 return 0; 7028 } 7029 7030 if (ice_is_xdp_ena_vsi(vsi)) { 7031 int frame_size = ice_max_xdp_frame_size(vsi); 7032 7033 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) { 7034 netdev_err(netdev, "max MTU for XDP usage is %d\n", 7035 frame_size - ICE_ETH_PKT_HDR_PAD); 7036 return -EINVAL; 7037 } 7038 } 7039 7040 /* if a reset is in progress, wait for some time for it to complete */ 7041 do { 7042 if (ice_is_reset_in_progress(pf->state)) { 7043 count++; 7044 usleep_range(1000, 2000); 7045 } else { 7046 break; 7047 } 7048 7049 } while (count < 100); 7050 7051 if (count == 100) { 7052 netdev_err(netdev, "can't change MTU. Device is busy\n"); 7053 return -EBUSY; 7054 } 7055 7056 event = kzalloc(sizeof(*event), GFP_KERNEL); 7057 if (!event) 7058 return -ENOMEM; 7059 7060 set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 7061 ice_send_event_to_aux(pf, event); 7062 clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type); 7063 7064 netdev->mtu = (unsigned int)new_mtu; 7065 7066 /* if VSI is up, bring it down and then back up */ 7067 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) { 7068 err = ice_down(vsi); 7069 if (err) { 7070 netdev_err(netdev, "change MTU if_down err %d\n", err); 7071 goto event_after; 7072 } 7073 7074 err = ice_up(vsi); 7075 if (err) { 7076 netdev_err(netdev, "change MTU if_up err %d\n", err); 7077 goto event_after; 7078 } 7079 } 7080 7081 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu); 7082 event_after: 7083 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type); 7084 ice_send_event_to_aux(pf, event); 7085 kfree(event); 7086 7087 return err; 7088 } 7089 7090 /** 7091 * ice_eth_ioctl - Access the hwtstamp interface 7092 * @netdev: network interface device structure 7093 * @ifr: interface request data 7094 * @cmd: ioctl command 7095 */ 7096 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7097 { 7098 struct ice_netdev_priv *np = netdev_priv(netdev); 7099 struct ice_pf *pf = np->vsi->back; 7100 7101 switch (cmd) { 7102 case SIOCGHWTSTAMP: 7103 return ice_ptp_get_ts_config(pf, ifr); 7104 case SIOCSHWTSTAMP: 7105 return ice_ptp_set_ts_config(pf, ifr); 7106 default: 7107 return -EOPNOTSUPP; 7108 } 7109 } 7110 7111 /** 7112 * ice_aq_str - convert AQ err code to a string 7113 * @aq_err: the AQ error code to convert 7114 */ 7115 const char *ice_aq_str(enum ice_aq_err aq_err) 7116 { 7117 switch (aq_err) { 7118 case ICE_AQ_RC_OK: 7119 return "OK"; 7120 case ICE_AQ_RC_EPERM: 7121 return "ICE_AQ_RC_EPERM"; 7122 case ICE_AQ_RC_ENOENT: 7123 return "ICE_AQ_RC_ENOENT"; 7124 case ICE_AQ_RC_ENOMEM: 7125 return "ICE_AQ_RC_ENOMEM"; 7126 case ICE_AQ_RC_EBUSY: 7127 return "ICE_AQ_RC_EBUSY"; 7128 case ICE_AQ_RC_EEXIST: 7129 return "ICE_AQ_RC_EEXIST"; 7130 case ICE_AQ_RC_EINVAL: 7131 return "ICE_AQ_RC_EINVAL"; 7132 case ICE_AQ_RC_ENOSPC: 7133 return "ICE_AQ_RC_ENOSPC"; 7134 case ICE_AQ_RC_ENOSYS: 7135 return "ICE_AQ_RC_ENOSYS"; 7136 case ICE_AQ_RC_EMODE: 7137 return "ICE_AQ_RC_EMODE"; 7138 case ICE_AQ_RC_ENOSEC: 7139 return "ICE_AQ_RC_ENOSEC"; 7140 case ICE_AQ_RC_EBADSIG: 7141 return "ICE_AQ_RC_EBADSIG"; 7142 case ICE_AQ_RC_ESVN: 7143 return "ICE_AQ_RC_ESVN"; 7144 case ICE_AQ_RC_EBADMAN: 7145 return "ICE_AQ_RC_EBADMAN"; 7146 case ICE_AQ_RC_EBADBUF: 7147 return "ICE_AQ_RC_EBADBUF"; 7148 } 7149 7150 return "ICE_AQ_RC_UNKNOWN"; 7151 } 7152 7153 /** 7154 * ice_set_rss_lut - Set RSS LUT 7155 * @vsi: Pointer to VSI structure 7156 * @lut: Lookup table 7157 * @lut_size: Lookup table size 7158 * 7159 * Returns 0 on success, negative on failure 7160 */ 7161 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7162 { 7163 struct ice_aq_get_set_rss_lut_params params = {}; 7164 struct ice_hw *hw = &vsi->back->hw; 7165 int status; 7166 7167 if (!lut) 7168 return -EINVAL; 7169 7170 params.vsi_handle = vsi->idx; 7171 params.lut_size = lut_size; 7172 params.lut_type = vsi->rss_lut_type; 7173 params.lut = lut; 7174 7175 status = ice_aq_set_rss_lut(hw, ¶ms); 7176 if (status) 7177 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n", 7178 status, ice_aq_str(hw->adminq.sq_last_status)); 7179 7180 return status; 7181 } 7182 7183 /** 7184 * ice_set_rss_key - Set RSS key 7185 * @vsi: Pointer to the VSI structure 7186 * @seed: RSS hash seed 7187 * 7188 * Returns 0 on success, negative on failure 7189 */ 7190 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed) 7191 { 7192 struct ice_hw *hw = &vsi->back->hw; 7193 int status; 7194 7195 if (!seed) 7196 return -EINVAL; 7197 7198 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7199 if (status) 7200 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n", 7201 status, ice_aq_str(hw->adminq.sq_last_status)); 7202 7203 return status; 7204 } 7205 7206 /** 7207 * ice_get_rss_lut - Get RSS LUT 7208 * @vsi: Pointer to VSI structure 7209 * @lut: Buffer to store the lookup table entries 7210 * @lut_size: Size of buffer to store the lookup table entries 7211 * 7212 * Returns 0 on success, negative on failure 7213 */ 7214 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size) 7215 { 7216 struct ice_aq_get_set_rss_lut_params params = {}; 7217 struct ice_hw *hw = &vsi->back->hw; 7218 int status; 7219 7220 if (!lut) 7221 return -EINVAL; 7222 7223 params.vsi_handle = vsi->idx; 7224 params.lut_size = lut_size; 7225 params.lut_type = vsi->rss_lut_type; 7226 params.lut = lut; 7227 7228 status = ice_aq_get_rss_lut(hw, ¶ms); 7229 if (status) 7230 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n", 7231 status, ice_aq_str(hw->adminq.sq_last_status)); 7232 7233 return status; 7234 } 7235 7236 /** 7237 * ice_get_rss_key - Get RSS key 7238 * @vsi: Pointer to VSI structure 7239 * @seed: Buffer to store the key in 7240 * 7241 * Returns 0 on success, negative on failure 7242 */ 7243 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed) 7244 { 7245 struct ice_hw *hw = &vsi->back->hw; 7246 int status; 7247 7248 if (!seed) 7249 return -EINVAL; 7250 7251 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed); 7252 if (status) 7253 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n", 7254 status, ice_aq_str(hw->adminq.sq_last_status)); 7255 7256 return status; 7257 } 7258 7259 /** 7260 * ice_bridge_getlink - Get the hardware bridge mode 7261 * @skb: skb buff 7262 * @pid: process ID 7263 * @seq: RTNL message seq 7264 * @dev: the netdev being configured 7265 * @filter_mask: filter mask passed in 7266 * @nlflags: netlink flags passed in 7267 * 7268 * Return the bridge mode (VEB/VEPA) 7269 */ 7270 static int 7271 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq, 7272 struct net_device *dev, u32 filter_mask, int nlflags) 7273 { 7274 struct ice_netdev_priv *np = netdev_priv(dev); 7275 struct ice_vsi *vsi = np->vsi; 7276 struct ice_pf *pf = vsi->back; 7277 u16 bmode; 7278 7279 bmode = pf->first_sw->bridge_mode; 7280 7281 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags, 7282 filter_mask, NULL); 7283 } 7284 7285 /** 7286 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA) 7287 * @vsi: Pointer to VSI structure 7288 * @bmode: Hardware bridge mode (VEB/VEPA) 7289 * 7290 * Returns 0 on success, negative on failure 7291 */ 7292 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode) 7293 { 7294 struct ice_aqc_vsi_props *vsi_props; 7295 struct ice_hw *hw = &vsi->back->hw; 7296 struct ice_vsi_ctx *ctxt; 7297 int ret; 7298 7299 vsi_props = &vsi->info; 7300 7301 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 7302 if (!ctxt) 7303 return -ENOMEM; 7304 7305 ctxt->info = vsi->info; 7306 7307 if (bmode == BRIDGE_MODE_VEB) 7308 /* change from VEPA to VEB mode */ 7309 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7310 else 7311 /* change from VEB to VEPA mode */ 7312 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 7313 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 7314 7315 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 7316 if (ret) { 7317 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n", 7318 bmode, ret, ice_aq_str(hw->adminq.sq_last_status)); 7319 goto out; 7320 } 7321 /* Update sw flags for book keeping */ 7322 vsi_props->sw_flags = ctxt->info.sw_flags; 7323 7324 out: 7325 kfree(ctxt); 7326 return ret; 7327 } 7328 7329 /** 7330 * ice_bridge_setlink - Set the hardware bridge mode 7331 * @dev: the netdev being configured 7332 * @nlh: RTNL message 7333 * @flags: bridge setlink flags 7334 * @extack: netlink extended ack 7335 * 7336 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is 7337 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if 7338 * not already set for all VSIs connected to this switch. And also update the 7339 * unicast switch filter rules for the corresponding switch of the netdev. 7340 */ 7341 static int 7342 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh, 7343 u16 __always_unused flags, 7344 struct netlink_ext_ack __always_unused *extack) 7345 { 7346 struct ice_netdev_priv *np = netdev_priv(dev); 7347 struct ice_pf *pf = np->vsi->back; 7348 struct nlattr *attr, *br_spec; 7349 struct ice_hw *hw = &pf->hw; 7350 struct ice_sw *pf_sw; 7351 int rem, v, err = 0; 7352 7353 pf_sw = pf->first_sw; 7354 /* find the attribute in the netlink message */ 7355 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC); 7356 7357 nla_for_each_nested(attr, br_spec, rem) { 7358 __u16 mode; 7359 7360 if (nla_type(attr) != IFLA_BRIDGE_MODE) 7361 continue; 7362 mode = nla_get_u16(attr); 7363 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB) 7364 return -EINVAL; 7365 /* Continue if bridge mode is not being flipped */ 7366 if (mode == pf_sw->bridge_mode) 7367 continue; 7368 /* Iterates through the PF VSI list and update the loopback 7369 * mode of the VSI 7370 */ 7371 ice_for_each_vsi(pf, v) { 7372 if (!pf->vsi[v]) 7373 continue; 7374 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode); 7375 if (err) 7376 return err; 7377 } 7378 7379 hw->evb_veb = (mode == BRIDGE_MODE_VEB); 7380 /* Update the unicast switch filter rules for the corresponding 7381 * switch of the netdev 7382 */ 7383 err = ice_update_sw_rule_bridge_mode(hw); 7384 if (err) { 7385 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n", 7386 mode, err, 7387 ice_aq_str(hw->adminq.sq_last_status)); 7388 /* revert hw->evb_veb */ 7389 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB); 7390 return err; 7391 } 7392 7393 pf_sw->bridge_mode = mode; 7394 } 7395 7396 return 0; 7397 } 7398 7399 /** 7400 * ice_tx_timeout - Respond to a Tx Hang 7401 * @netdev: network interface device structure 7402 * @txqueue: Tx queue 7403 */ 7404 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue) 7405 { 7406 struct ice_netdev_priv *np = netdev_priv(netdev); 7407 struct ice_tx_ring *tx_ring = NULL; 7408 struct ice_vsi *vsi = np->vsi; 7409 struct ice_pf *pf = vsi->back; 7410 u32 i; 7411 7412 pf->tx_timeout_count++; 7413 7414 /* Check if PFC is enabled for the TC to which the queue belongs 7415 * to. If yes then Tx timeout is not caused by a hung queue, no 7416 * need to reset and rebuild 7417 */ 7418 if (ice_is_pfc_causing_hung_q(pf, txqueue)) { 7419 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n", 7420 txqueue); 7421 return; 7422 } 7423 7424 /* now that we have an index, find the tx_ring struct */ 7425 ice_for_each_txq(vsi, i) 7426 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 7427 if (txqueue == vsi->tx_rings[i]->q_index) { 7428 tx_ring = vsi->tx_rings[i]; 7429 break; 7430 } 7431 7432 /* Reset recovery level if enough time has elapsed after last timeout. 7433 * Also ensure no new reset action happens before next timeout period. 7434 */ 7435 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20))) 7436 pf->tx_timeout_recovery_level = 1; 7437 else if (time_before(jiffies, (pf->tx_timeout_last_recovery + 7438 netdev->watchdog_timeo))) 7439 return; 7440 7441 if (tx_ring) { 7442 struct ice_hw *hw = &pf->hw; 7443 u32 head, val = 0; 7444 7445 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) & 7446 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S; 7447 /* Read interrupt register */ 7448 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx)); 7449 7450 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n", 7451 vsi->vsi_num, txqueue, tx_ring->next_to_clean, 7452 head, tx_ring->next_to_use, val); 7453 } 7454 7455 pf->tx_timeout_last_recovery = jiffies; 7456 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n", 7457 pf->tx_timeout_recovery_level, txqueue); 7458 7459 switch (pf->tx_timeout_recovery_level) { 7460 case 1: 7461 set_bit(ICE_PFR_REQ, pf->state); 7462 break; 7463 case 2: 7464 set_bit(ICE_CORER_REQ, pf->state); 7465 break; 7466 case 3: 7467 set_bit(ICE_GLOBR_REQ, pf->state); 7468 break; 7469 default: 7470 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n"); 7471 set_bit(ICE_DOWN, pf->state); 7472 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 7473 set_bit(ICE_SERVICE_DIS, pf->state); 7474 break; 7475 } 7476 7477 ice_service_task_schedule(pf); 7478 pf->tx_timeout_recovery_level++; 7479 } 7480 7481 /** 7482 * ice_setup_tc_cls_flower - flower classifier offloads 7483 * @np: net device to configure 7484 * @filter_dev: device on which filter is added 7485 * @cls_flower: offload data 7486 */ 7487 static int 7488 ice_setup_tc_cls_flower(struct ice_netdev_priv *np, 7489 struct net_device *filter_dev, 7490 struct flow_cls_offload *cls_flower) 7491 { 7492 struct ice_vsi *vsi = np->vsi; 7493 7494 if (cls_flower->common.chain_index) 7495 return -EOPNOTSUPP; 7496 7497 switch (cls_flower->command) { 7498 case FLOW_CLS_REPLACE: 7499 return ice_add_cls_flower(filter_dev, vsi, cls_flower); 7500 case FLOW_CLS_DESTROY: 7501 return ice_del_cls_flower(vsi, cls_flower); 7502 default: 7503 return -EINVAL; 7504 } 7505 } 7506 7507 /** 7508 * ice_setup_tc_block_cb - callback handler registered for TC block 7509 * @type: TC SETUP type 7510 * @type_data: TC flower offload data that contains user input 7511 * @cb_priv: netdev private data 7512 */ 7513 static int 7514 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) 7515 { 7516 struct ice_netdev_priv *np = cb_priv; 7517 7518 switch (type) { 7519 case TC_SETUP_CLSFLOWER: 7520 return ice_setup_tc_cls_flower(np, np->vsi->netdev, 7521 type_data); 7522 default: 7523 return -EOPNOTSUPP; 7524 } 7525 } 7526 7527 /** 7528 * ice_validate_mqprio_qopt - Validate TCF input parameters 7529 * @vsi: Pointer to VSI 7530 * @mqprio_qopt: input parameters for mqprio queue configuration 7531 * 7532 * This function validates MQPRIO params, such as qcount (power of 2 wherever 7533 * needed), and make sure user doesn't specify qcount and BW rate limit 7534 * for TCs, which are more than "num_tc" 7535 */ 7536 static int 7537 ice_validate_mqprio_qopt(struct ice_vsi *vsi, 7538 struct tc_mqprio_qopt_offload *mqprio_qopt) 7539 { 7540 u64 sum_max_rate = 0, sum_min_rate = 0; 7541 int non_power_of_2_qcount = 0; 7542 struct ice_pf *pf = vsi->back; 7543 int max_rss_q_cnt = 0; 7544 struct device *dev; 7545 int i, speed; 7546 u8 num_tc; 7547 7548 if (vsi->type != ICE_VSI_PF) 7549 return -EINVAL; 7550 7551 if (mqprio_qopt->qopt.offset[0] != 0 || 7552 mqprio_qopt->qopt.num_tc < 1 || 7553 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC) 7554 return -EINVAL; 7555 7556 dev = ice_pf_to_dev(pf); 7557 vsi->ch_rss_size = 0; 7558 num_tc = mqprio_qopt->qopt.num_tc; 7559 7560 for (i = 0; num_tc; i++) { 7561 int qcount = mqprio_qopt->qopt.count[i]; 7562 u64 max_rate, min_rate, rem; 7563 7564 if (!qcount) 7565 return -EINVAL; 7566 7567 if (is_power_of_2(qcount)) { 7568 if (non_power_of_2_qcount && 7569 qcount > non_power_of_2_qcount) { 7570 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n", 7571 qcount, non_power_of_2_qcount); 7572 return -EINVAL; 7573 } 7574 if (qcount > max_rss_q_cnt) 7575 max_rss_q_cnt = qcount; 7576 } else { 7577 if (non_power_of_2_qcount && 7578 qcount != non_power_of_2_qcount) { 7579 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n", 7580 qcount, non_power_of_2_qcount); 7581 return -EINVAL; 7582 } 7583 if (qcount < max_rss_q_cnt) { 7584 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n", 7585 qcount, max_rss_q_cnt); 7586 return -EINVAL; 7587 } 7588 max_rss_q_cnt = qcount; 7589 non_power_of_2_qcount = qcount; 7590 } 7591 7592 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but 7593 * converts the bandwidth rate limit into Bytes/s when 7594 * passing it down to the driver. So convert input bandwidth 7595 * from Bytes/s to Kbps 7596 */ 7597 max_rate = mqprio_qopt->max_rate[i]; 7598 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR); 7599 sum_max_rate += max_rate; 7600 7601 /* min_rate is minimum guaranteed rate and it can't be zero */ 7602 min_rate = mqprio_qopt->min_rate[i]; 7603 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR); 7604 sum_min_rate += min_rate; 7605 7606 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) { 7607 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i, 7608 min_rate, ICE_MIN_BW_LIMIT); 7609 return -EINVAL; 7610 } 7611 7612 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem); 7613 if (rem) { 7614 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps", 7615 i, ICE_MIN_BW_LIMIT); 7616 return -EINVAL; 7617 } 7618 7619 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem); 7620 if (rem) { 7621 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps", 7622 i, ICE_MIN_BW_LIMIT); 7623 return -EINVAL; 7624 } 7625 7626 /* min_rate can't be more than max_rate, except when max_rate 7627 * is zero (implies max_rate sought is max line rate). In such 7628 * a case min_rate can be more than max. 7629 */ 7630 if (max_rate && min_rate > max_rate) { 7631 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n", 7632 min_rate, max_rate); 7633 return -EINVAL; 7634 } 7635 7636 if (i >= mqprio_qopt->qopt.num_tc - 1) 7637 break; 7638 if (mqprio_qopt->qopt.offset[i + 1] != 7639 (mqprio_qopt->qopt.offset[i] + qcount)) 7640 return -EINVAL; 7641 } 7642 if (vsi->num_rxq < 7643 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7644 return -EINVAL; 7645 if (vsi->num_txq < 7646 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) 7647 return -EINVAL; 7648 7649 speed = ice_get_link_speed_kbps(vsi); 7650 if (sum_max_rate && sum_max_rate > (u64)speed) { 7651 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n", 7652 sum_max_rate, speed); 7653 return -EINVAL; 7654 } 7655 if (sum_min_rate && sum_min_rate > (u64)speed) { 7656 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n", 7657 sum_min_rate, speed); 7658 return -EINVAL; 7659 } 7660 7661 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */ 7662 vsi->ch_rss_size = max_rss_q_cnt; 7663 7664 return 0; 7665 } 7666 7667 /** 7668 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF 7669 * @pf: ptr to PF device 7670 * @vsi: ptr to VSI 7671 */ 7672 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi) 7673 { 7674 struct device *dev = ice_pf_to_dev(pf); 7675 bool added = false; 7676 struct ice_hw *hw; 7677 int flow; 7678 7679 if (!(vsi->num_gfltr || vsi->num_bfltr)) 7680 return -EINVAL; 7681 7682 hw = &pf->hw; 7683 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) { 7684 struct ice_fd_hw_prof *prof; 7685 int tun, status; 7686 u64 entry_h; 7687 7688 if (!(hw->fdir_prof && hw->fdir_prof[flow] && 7689 hw->fdir_prof[flow]->cnt)) 7690 continue; 7691 7692 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) { 7693 enum ice_flow_priority prio; 7694 u64 prof_id; 7695 7696 /* add this VSI to FDir profile for this flow */ 7697 prio = ICE_FLOW_PRIO_NORMAL; 7698 prof = hw->fdir_prof[flow]; 7699 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX; 7700 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id, 7701 prof->vsi_h[0], vsi->idx, 7702 prio, prof->fdir_seg[tun], 7703 &entry_h); 7704 if (status) { 7705 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n", 7706 vsi->idx, flow); 7707 continue; 7708 } 7709 7710 prof->entry_h[prof->cnt][tun] = entry_h; 7711 } 7712 7713 /* store VSI for filter replay and delete */ 7714 prof->vsi_h[prof->cnt] = vsi->idx; 7715 prof->cnt++; 7716 7717 added = true; 7718 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx, 7719 flow); 7720 } 7721 7722 if (!added) 7723 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx); 7724 7725 return 0; 7726 } 7727 7728 /** 7729 * ice_add_channel - add a channel by adding VSI 7730 * @pf: ptr to PF device 7731 * @sw_id: underlying HW switching element ID 7732 * @ch: ptr to channel structure 7733 * 7734 * Add a channel (VSI) using add_vsi and queue_map 7735 */ 7736 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch) 7737 { 7738 struct device *dev = ice_pf_to_dev(pf); 7739 struct ice_vsi *vsi; 7740 7741 if (ch->type != ICE_VSI_CHNL) { 7742 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type); 7743 return -EINVAL; 7744 } 7745 7746 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch); 7747 if (!vsi || vsi->type != ICE_VSI_CHNL) { 7748 dev_err(dev, "create chnl VSI failure\n"); 7749 return -EINVAL; 7750 } 7751 7752 ice_add_vsi_to_fdir(pf, vsi); 7753 7754 ch->sw_id = sw_id; 7755 ch->vsi_num = vsi->vsi_num; 7756 ch->info.mapping_flags = vsi->info.mapping_flags; 7757 ch->ch_vsi = vsi; 7758 /* set the back pointer of channel for newly created VSI */ 7759 vsi->ch = ch; 7760 7761 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping, 7762 sizeof(vsi->info.q_mapping)); 7763 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping, 7764 sizeof(vsi->info.tc_mapping)); 7765 7766 return 0; 7767 } 7768 7769 /** 7770 * ice_chnl_cfg_res 7771 * @vsi: the VSI being setup 7772 * @ch: ptr to channel structure 7773 * 7774 * Configure channel specific resources such as rings, vector. 7775 */ 7776 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch) 7777 { 7778 int i; 7779 7780 for (i = 0; i < ch->num_txq; i++) { 7781 struct ice_q_vector *tx_q_vector, *rx_q_vector; 7782 struct ice_ring_container *rc; 7783 struct ice_tx_ring *tx_ring; 7784 struct ice_rx_ring *rx_ring; 7785 7786 tx_ring = vsi->tx_rings[ch->base_q + i]; 7787 rx_ring = vsi->rx_rings[ch->base_q + i]; 7788 if (!tx_ring || !rx_ring) 7789 continue; 7790 7791 /* setup ring being channel enabled */ 7792 tx_ring->ch = ch; 7793 rx_ring->ch = ch; 7794 7795 /* following code block sets up vector specific attributes */ 7796 tx_q_vector = tx_ring->q_vector; 7797 rx_q_vector = rx_ring->q_vector; 7798 if (!tx_q_vector && !rx_q_vector) 7799 continue; 7800 7801 if (tx_q_vector) { 7802 tx_q_vector->ch = ch; 7803 /* setup Tx and Rx ITR setting if DIM is off */ 7804 rc = &tx_q_vector->tx; 7805 if (!ITR_IS_DYNAMIC(rc)) 7806 ice_write_itr(rc, rc->itr_setting); 7807 } 7808 if (rx_q_vector) { 7809 rx_q_vector->ch = ch; 7810 /* setup Tx and Rx ITR setting if DIM is off */ 7811 rc = &rx_q_vector->rx; 7812 if (!ITR_IS_DYNAMIC(rc)) 7813 ice_write_itr(rc, rc->itr_setting); 7814 } 7815 } 7816 7817 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then 7818 * GLINT_ITR register would have written to perform in-context 7819 * update, hence perform flush 7820 */ 7821 if (ch->num_txq || ch->num_rxq) 7822 ice_flush(&vsi->back->hw); 7823 } 7824 7825 /** 7826 * ice_cfg_chnl_all_res - configure channel resources 7827 * @vsi: pte to main_vsi 7828 * @ch: ptr to channel structure 7829 * 7830 * This function configures channel specific resources such as flow-director 7831 * counter index, and other resources such as queues, vectors, ITR settings 7832 */ 7833 static void 7834 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch) 7835 { 7836 /* configure channel (aka ADQ) resources such as queues, vectors, 7837 * ITR settings for channel specific vectors and anything else 7838 */ 7839 ice_chnl_cfg_res(vsi, ch); 7840 } 7841 7842 /** 7843 * ice_setup_hw_channel - setup new channel 7844 * @pf: ptr to PF device 7845 * @vsi: the VSI being setup 7846 * @ch: ptr to channel structure 7847 * @sw_id: underlying HW switching element ID 7848 * @type: type of channel to be created (VMDq2/VF) 7849 * 7850 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7851 * and configures Tx rings accordingly 7852 */ 7853 static int 7854 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7855 struct ice_channel *ch, u16 sw_id, u8 type) 7856 { 7857 struct device *dev = ice_pf_to_dev(pf); 7858 int ret; 7859 7860 ch->base_q = vsi->next_base_q; 7861 ch->type = type; 7862 7863 ret = ice_add_channel(pf, sw_id, ch); 7864 if (ret) { 7865 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id); 7866 return ret; 7867 } 7868 7869 /* configure/setup ADQ specific resources */ 7870 ice_cfg_chnl_all_res(vsi, ch); 7871 7872 /* make sure to update the next_base_q so that subsequent channel's 7873 * (aka ADQ) VSI queue map is correct 7874 */ 7875 vsi->next_base_q = vsi->next_base_q + ch->num_rxq; 7876 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num, 7877 ch->num_rxq); 7878 7879 return 0; 7880 } 7881 7882 /** 7883 * ice_setup_channel - setup new channel using uplink element 7884 * @pf: ptr to PF device 7885 * @vsi: the VSI being setup 7886 * @ch: ptr to channel structure 7887 * 7888 * Setup new channel (VSI) based on specified type (VMDq2/VF) 7889 * and uplink switching element 7890 */ 7891 static bool 7892 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi, 7893 struct ice_channel *ch) 7894 { 7895 struct device *dev = ice_pf_to_dev(pf); 7896 u16 sw_id; 7897 int ret; 7898 7899 if (vsi->type != ICE_VSI_PF) { 7900 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type); 7901 return false; 7902 } 7903 7904 sw_id = pf->first_sw->sw_id; 7905 7906 /* create channel (VSI) */ 7907 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL); 7908 if (ret) { 7909 dev_err(dev, "failed to setup hw_channel\n"); 7910 return false; 7911 } 7912 dev_dbg(dev, "successfully created channel()\n"); 7913 7914 return ch->ch_vsi ? true : false; 7915 } 7916 7917 /** 7918 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate 7919 * @vsi: VSI to be configured 7920 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit 7921 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit 7922 */ 7923 static int 7924 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate) 7925 { 7926 int err; 7927 7928 err = ice_set_min_bw_limit(vsi, min_tx_rate); 7929 if (err) 7930 return err; 7931 7932 return ice_set_max_bw_limit(vsi, max_tx_rate); 7933 } 7934 7935 /** 7936 * ice_create_q_channel - function to create channel 7937 * @vsi: VSI to be configured 7938 * @ch: ptr to channel (it contains channel specific params) 7939 * 7940 * This function creates channel (VSI) using num_queues specified by user, 7941 * reconfigs RSS if needed. 7942 */ 7943 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch) 7944 { 7945 struct ice_pf *pf = vsi->back; 7946 struct device *dev; 7947 7948 if (!ch) 7949 return -EINVAL; 7950 7951 dev = ice_pf_to_dev(pf); 7952 if (!ch->num_txq || !ch->num_rxq) { 7953 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq); 7954 return -EINVAL; 7955 } 7956 7957 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) { 7958 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n", 7959 vsi->cnt_q_avail, ch->num_txq); 7960 return -EINVAL; 7961 } 7962 7963 if (!ice_setup_channel(pf, vsi, ch)) { 7964 dev_info(dev, "Failed to setup channel\n"); 7965 return -EINVAL; 7966 } 7967 /* configure BW rate limit */ 7968 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) { 7969 int ret; 7970 7971 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate, 7972 ch->min_tx_rate); 7973 if (ret) 7974 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n", 7975 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7976 else 7977 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n", 7978 ch->max_tx_rate, ch->ch_vsi->vsi_num); 7979 } 7980 7981 vsi->cnt_q_avail -= ch->num_txq; 7982 7983 return 0; 7984 } 7985 7986 /** 7987 * ice_rem_all_chnl_fltrs - removes all channel filters 7988 * @pf: ptr to PF, TC-flower based filter are tracked at PF level 7989 * 7990 * Remove all advanced switch filters only if they are channel specific 7991 * tc-flower based filter 7992 */ 7993 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf) 7994 { 7995 struct ice_tc_flower_fltr *fltr; 7996 struct hlist_node *node; 7997 7998 /* to remove all channel filters, iterate an ordered list of filters */ 7999 hlist_for_each_entry_safe(fltr, node, 8000 &pf->tc_flower_fltr_list, 8001 tc_flower_node) { 8002 struct ice_rule_query_data rule; 8003 int status; 8004 8005 /* for now process only channel specific filters */ 8006 if (!ice_is_chnl_fltr(fltr)) 8007 continue; 8008 8009 rule.rid = fltr->rid; 8010 rule.rule_id = fltr->rule_id; 8011 rule.vsi_handle = fltr->dest_id; 8012 status = ice_rem_adv_rule_by_id(&pf->hw, &rule); 8013 if (status) { 8014 if (status == -ENOENT) 8015 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n", 8016 rule.rule_id); 8017 else 8018 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n", 8019 status); 8020 } else if (fltr->dest_vsi) { 8021 /* update advanced switch filter count */ 8022 if (fltr->dest_vsi->type == ICE_VSI_CHNL) { 8023 u32 flags = fltr->flags; 8024 8025 fltr->dest_vsi->num_chnl_fltr--; 8026 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC | 8027 ICE_TC_FLWR_FIELD_ENC_DST_MAC)) 8028 pf->num_dmac_chnl_fltrs--; 8029 } 8030 } 8031 8032 hlist_del(&fltr->tc_flower_node); 8033 kfree(fltr); 8034 } 8035 } 8036 8037 /** 8038 * ice_remove_q_channels - Remove queue channels for the TCs 8039 * @vsi: VSI to be configured 8040 * @rem_fltr: delete advanced switch filter or not 8041 * 8042 * Remove queue channels for the TCs 8043 */ 8044 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr) 8045 { 8046 struct ice_channel *ch, *ch_tmp; 8047 struct ice_pf *pf = vsi->back; 8048 int i; 8049 8050 /* remove all tc-flower based filter if they are channel filters only */ 8051 if (rem_fltr) 8052 ice_rem_all_chnl_fltrs(pf); 8053 8054 /* remove ntuple filters since queue configuration is being changed */ 8055 if (vsi->netdev->features & NETIF_F_NTUPLE) { 8056 struct ice_hw *hw = &pf->hw; 8057 8058 mutex_lock(&hw->fdir_fltr_lock); 8059 ice_fdir_del_all_fltrs(vsi); 8060 mutex_unlock(&hw->fdir_fltr_lock); 8061 } 8062 8063 /* perform cleanup for channels if they exist */ 8064 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) { 8065 struct ice_vsi *ch_vsi; 8066 8067 list_del(&ch->list); 8068 ch_vsi = ch->ch_vsi; 8069 if (!ch_vsi) { 8070 kfree(ch); 8071 continue; 8072 } 8073 8074 /* Reset queue contexts */ 8075 for (i = 0; i < ch->num_rxq; i++) { 8076 struct ice_tx_ring *tx_ring; 8077 struct ice_rx_ring *rx_ring; 8078 8079 tx_ring = vsi->tx_rings[ch->base_q + i]; 8080 rx_ring = vsi->rx_rings[ch->base_q + i]; 8081 if (tx_ring) { 8082 tx_ring->ch = NULL; 8083 if (tx_ring->q_vector) 8084 tx_ring->q_vector->ch = NULL; 8085 } 8086 if (rx_ring) { 8087 rx_ring->ch = NULL; 8088 if (rx_ring->q_vector) 8089 rx_ring->q_vector->ch = NULL; 8090 } 8091 } 8092 8093 /* Release FD resources for the channel VSI */ 8094 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx); 8095 8096 /* clear the VSI from scheduler tree */ 8097 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx); 8098 8099 /* Delete VSI from FW */ 8100 ice_vsi_delete(ch->ch_vsi); 8101 8102 /* Delete VSI from PF and HW VSI arrays */ 8103 ice_vsi_clear(ch->ch_vsi); 8104 8105 /* free the channel */ 8106 kfree(ch); 8107 } 8108 8109 /* clear the channel VSI map which is stored in main VSI */ 8110 ice_for_each_chnl_tc(i) 8111 vsi->tc_map_vsi[i] = NULL; 8112 8113 /* reset main VSI's all TC information */ 8114 vsi->all_enatc = 0; 8115 vsi->all_numtc = 0; 8116 } 8117 8118 /** 8119 * ice_rebuild_channels - rebuild channel 8120 * @pf: ptr to PF 8121 * 8122 * Recreate channel VSIs and replay filters 8123 */ 8124 static int ice_rebuild_channels(struct ice_pf *pf) 8125 { 8126 struct device *dev = ice_pf_to_dev(pf); 8127 struct ice_vsi *main_vsi; 8128 bool rem_adv_fltr = true; 8129 struct ice_channel *ch; 8130 struct ice_vsi *vsi; 8131 int tc_idx = 1; 8132 int i, err; 8133 8134 main_vsi = ice_get_main_vsi(pf); 8135 if (!main_vsi) 8136 return 0; 8137 8138 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) || 8139 main_vsi->old_numtc == 1) 8140 return 0; /* nothing to be done */ 8141 8142 /* reconfigure main VSI based on old value of TC and cached values 8143 * for MQPRIO opts 8144 */ 8145 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc); 8146 if (err) { 8147 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n", 8148 main_vsi->old_ena_tc, main_vsi->vsi_num); 8149 return err; 8150 } 8151 8152 /* rebuild ADQ VSIs */ 8153 ice_for_each_vsi(pf, i) { 8154 enum ice_vsi_type type; 8155 8156 vsi = pf->vsi[i]; 8157 if (!vsi || vsi->type != ICE_VSI_CHNL) 8158 continue; 8159 8160 type = vsi->type; 8161 8162 /* rebuild ADQ VSI */ 8163 err = ice_vsi_rebuild(vsi, true); 8164 if (err) { 8165 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n", 8166 ice_vsi_type_str(type), vsi->idx, err); 8167 goto cleanup; 8168 } 8169 8170 /* Re-map HW VSI number, using VSI handle that has been 8171 * previously validated in ice_replay_vsi() call above 8172 */ 8173 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx); 8174 8175 /* replay filters for the VSI */ 8176 err = ice_replay_vsi(&pf->hw, vsi->idx); 8177 if (err) { 8178 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n", 8179 ice_vsi_type_str(type), err, vsi->idx); 8180 rem_adv_fltr = false; 8181 goto cleanup; 8182 } 8183 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n", 8184 ice_vsi_type_str(type), vsi->idx); 8185 8186 /* store ADQ VSI at correct TC index in main VSI's 8187 * map of TC to VSI 8188 */ 8189 main_vsi->tc_map_vsi[tc_idx++] = vsi; 8190 } 8191 8192 /* ADQ VSI(s) has been rebuilt successfully, so setup 8193 * channel for main VSI's Tx and Rx rings 8194 */ 8195 list_for_each_entry(ch, &main_vsi->ch_list, list) { 8196 struct ice_vsi *ch_vsi; 8197 8198 ch_vsi = ch->ch_vsi; 8199 if (!ch_vsi) 8200 continue; 8201 8202 /* reconfig channel resources */ 8203 ice_cfg_chnl_all_res(main_vsi, ch); 8204 8205 /* replay BW rate limit if it is non-zero */ 8206 if (!ch->max_tx_rate && !ch->min_tx_rate) 8207 continue; 8208 8209 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate, 8210 ch->min_tx_rate); 8211 if (err) 8212 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8213 err, ch->max_tx_rate, ch->min_tx_rate, 8214 ch_vsi->vsi_num); 8215 else 8216 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n", 8217 ch->max_tx_rate, ch->min_tx_rate, 8218 ch_vsi->vsi_num); 8219 } 8220 8221 /* reconfig RSS for main VSI */ 8222 if (main_vsi->ch_rss_size) 8223 ice_vsi_cfg_rss_lut_key(main_vsi); 8224 8225 return 0; 8226 8227 cleanup: 8228 ice_remove_q_channels(main_vsi, rem_adv_fltr); 8229 return err; 8230 } 8231 8232 /** 8233 * ice_create_q_channels - Add queue channel for the given TCs 8234 * @vsi: VSI to be configured 8235 * 8236 * Configures queue channel mapping to the given TCs 8237 */ 8238 static int ice_create_q_channels(struct ice_vsi *vsi) 8239 { 8240 struct ice_pf *pf = vsi->back; 8241 struct ice_channel *ch; 8242 int ret = 0, i; 8243 8244 ice_for_each_chnl_tc(i) { 8245 if (!(vsi->all_enatc & BIT(i))) 8246 continue; 8247 8248 ch = kzalloc(sizeof(*ch), GFP_KERNEL); 8249 if (!ch) { 8250 ret = -ENOMEM; 8251 goto err_free; 8252 } 8253 INIT_LIST_HEAD(&ch->list); 8254 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i]; 8255 ch->num_txq = vsi->mqprio_qopt.qopt.count[i]; 8256 ch->base_q = vsi->mqprio_qopt.qopt.offset[i]; 8257 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i]; 8258 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i]; 8259 8260 /* convert to Kbits/s */ 8261 if (ch->max_tx_rate) 8262 ch->max_tx_rate = div_u64(ch->max_tx_rate, 8263 ICE_BW_KBPS_DIVISOR); 8264 if (ch->min_tx_rate) 8265 ch->min_tx_rate = div_u64(ch->min_tx_rate, 8266 ICE_BW_KBPS_DIVISOR); 8267 8268 ret = ice_create_q_channel(vsi, ch); 8269 if (ret) { 8270 dev_err(ice_pf_to_dev(pf), 8271 "failed creating channel TC:%d\n", i); 8272 kfree(ch); 8273 goto err_free; 8274 } 8275 list_add_tail(&ch->list, &vsi->ch_list); 8276 vsi->tc_map_vsi[i] = ch->ch_vsi; 8277 dev_dbg(ice_pf_to_dev(pf), 8278 "successfully created channel: VSI %pK\n", ch->ch_vsi); 8279 } 8280 return 0; 8281 8282 err_free: 8283 ice_remove_q_channels(vsi, false); 8284 8285 return ret; 8286 } 8287 8288 /** 8289 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes 8290 * @netdev: net device to configure 8291 * @type_data: TC offload data 8292 */ 8293 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data) 8294 { 8295 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 8296 struct ice_netdev_priv *np = netdev_priv(netdev); 8297 struct ice_vsi *vsi = np->vsi; 8298 struct ice_pf *pf = vsi->back; 8299 u16 mode, ena_tc_qdisc = 0; 8300 int cur_txq, cur_rxq; 8301 u8 hw = 0, num_tcf; 8302 struct device *dev; 8303 int ret, i; 8304 8305 dev = ice_pf_to_dev(pf); 8306 num_tcf = mqprio_qopt->qopt.num_tc; 8307 hw = mqprio_qopt->qopt.hw; 8308 mode = mqprio_qopt->mode; 8309 if (!hw) { 8310 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8311 vsi->ch_rss_size = 0; 8312 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8313 goto config_tcf; 8314 } 8315 8316 /* Generate queue region map for number of TCF requested */ 8317 for (i = 0; i < num_tcf; i++) 8318 ena_tc_qdisc |= BIT(i); 8319 8320 switch (mode) { 8321 case TC_MQPRIO_MODE_CHANNEL: 8322 8323 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt); 8324 if (ret) { 8325 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n", 8326 ret); 8327 return ret; 8328 } 8329 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt)); 8330 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags); 8331 /* don't assume state of hw_tc_offload during driver load 8332 * and set the flag for TC flower filter if hw_tc_offload 8333 * already ON 8334 */ 8335 if (vsi->netdev->features & NETIF_F_HW_TC) 8336 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags); 8337 break; 8338 default: 8339 return -EINVAL; 8340 } 8341 8342 config_tcf: 8343 8344 /* Requesting same TCF configuration as already enabled */ 8345 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc && 8346 mode != TC_MQPRIO_MODE_CHANNEL) 8347 return 0; 8348 8349 /* Pause VSI queues */ 8350 ice_dis_vsi(vsi, true); 8351 8352 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 8353 ice_remove_q_channels(vsi, true); 8354 8355 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8356 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf), 8357 num_online_cpus()); 8358 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf), 8359 num_online_cpus()); 8360 } else { 8361 /* logic to rebuild VSI, same like ethtool -L */ 8362 u16 offset = 0, qcount_tx = 0, qcount_rx = 0; 8363 8364 for (i = 0; i < num_tcf; i++) { 8365 if (!(ena_tc_qdisc & BIT(i))) 8366 continue; 8367 8368 offset = vsi->mqprio_qopt.qopt.offset[i]; 8369 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 8370 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 8371 } 8372 vsi->req_txq = offset + qcount_tx; 8373 vsi->req_rxq = offset + qcount_rx; 8374 8375 /* store away original rss_size info, so that it gets reused 8376 * form ice_vsi_rebuild during tc-qdisc delete stage - to 8377 * determine, what should be the rss_sizefor main VSI 8378 */ 8379 vsi->orig_rss_size = vsi->rss_size; 8380 } 8381 8382 /* save current values of Tx and Rx queues before calling VSI rebuild 8383 * for fallback option 8384 */ 8385 cur_txq = vsi->num_txq; 8386 cur_rxq = vsi->num_rxq; 8387 8388 /* proceed with rebuild main VSI using correct number of queues */ 8389 ret = ice_vsi_rebuild(vsi, false); 8390 if (ret) { 8391 /* fallback to current number of queues */ 8392 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n"); 8393 vsi->req_txq = cur_txq; 8394 vsi->req_rxq = cur_rxq; 8395 clear_bit(ICE_RESET_FAILED, pf->state); 8396 if (ice_vsi_rebuild(vsi, false)) { 8397 dev_err(dev, "Rebuild of main VSI failed again\n"); 8398 return ret; 8399 } 8400 } 8401 8402 vsi->all_numtc = num_tcf; 8403 vsi->all_enatc = ena_tc_qdisc; 8404 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc); 8405 if (ret) { 8406 netdev_err(netdev, "failed configuring TC for VSI id=%d\n", 8407 vsi->vsi_num); 8408 goto exit; 8409 } 8410 8411 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 8412 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0]; 8413 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0]; 8414 8415 /* set TC0 rate limit if specified */ 8416 if (max_tx_rate || min_tx_rate) { 8417 /* convert to Kbits/s */ 8418 if (max_tx_rate) 8419 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR); 8420 if (min_tx_rate) 8421 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR); 8422 8423 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate); 8424 if (!ret) { 8425 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n", 8426 max_tx_rate, min_tx_rate, vsi->vsi_num); 8427 } else { 8428 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n", 8429 max_tx_rate, min_tx_rate, vsi->vsi_num); 8430 goto exit; 8431 } 8432 } 8433 ret = ice_create_q_channels(vsi); 8434 if (ret) { 8435 netdev_err(netdev, "failed configuring queue channels\n"); 8436 goto exit; 8437 } else { 8438 netdev_dbg(netdev, "successfully configured channels\n"); 8439 } 8440 } 8441 8442 if (vsi->ch_rss_size) 8443 ice_vsi_cfg_rss_lut_key(vsi); 8444 8445 exit: 8446 /* if error, reset the all_numtc and all_enatc */ 8447 if (ret) { 8448 vsi->all_numtc = 0; 8449 vsi->all_enatc = 0; 8450 } 8451 /* resume VSI */ 8452 ice_ena_vsi(vsi, true); 8453 8454 return ret; 8455 } 8456 8457 static LIST_HEAD(ice_block_cb_list); 8458 8459 static int 8460 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type, 8461 void *type_data) 8462 { 8463 struct ice_netdev_priv *np = netdev_priv(netdev); 8464 struct ice_pf *pf = np->vsi->back; 8465 int err; 8466 8467 switch (type) { 8468 case TC_SETUP_BLOCK: 8469 return flow_block_cb_setup_simple(type_data, 8470 &ice_block_cb_list, 8471 ice_setup_tc_block_cb, 8472 np, np, true); 8473 case TC_SETUP_QDISC_MQPRIO: 8474 /* setup traffic classifier for receive side */ 8475 mutex_lock(&pf->tc_mutex); 8476 err = ice_setup_tc_mqprio_qdisc(netdev, type_data); 8477 mutex_unlock(&pf->tc_mutex); 8478 return err; 8479 default: 8480 return -EOPNOTSUPP; 8481 } 8482 return -EOPNOTSUPP; 8483 } 8484 8485 static struct ice_indr_block_priv * 8486 ice_indr_block_priv_lookup(struct ice_netdev_priv *np, 8487 struct net_device *netdev) 8488 { 8489 struct ice_indr_block_priv *cb_priv; 8490 8491 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) { 8492 if (!cb_priv->netdev) 8493 return NULL; 8494 if (cb_priv->netdev == netdev) 8495 return cb_priv; 8496 } 8497 return NULL; 8498 } 8499 8500 static int 8501 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data, 8502 void *indr_priv) 8503 { 8504 struct ice_indr_block_priv *priv = indr_priv; 8505 struct ice_netdev_priv *np = priv->np; 8506 8507 switch (type) { 8508 case TC_SETUP_CLSFLOWER: 8509 return ice_setup_tc_cls_flower(np, priv->netdev, 8510 (struct flow_cls_offload *) 8511 type_data); 8512 default: 8513 return -EOPNOTSUPP; 8514 } 8515 } 8516 8517 static int 8518 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch, 8519 struct ice_netdev_priv *np, 8520 struct flow_block_offload *f, void *data, 8521 void (*cleanup)(struct flow_block_cb *block_cb)) 8522 { 8523 struct ice_indr_block_priv *indr_priv; 8524 struct flow_block_cb *block_cb; 8525 8526 if (!ice_is_tunnel_supported(netdev) && 8527 !(is_vlan_dev(netdev) && 8528 vlan_dev_real_dev(netdev) == np->vsi->netdev)) 8529 return -EOPNOTSUPP; 8530 8531 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 8532 return -EOPNOTSUPP; 8533 8534 switch (f->command) { 8535 case FLOW_BLOCK_BIND: 8536 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8537 if (indr_priv) 8538 return -EEXIST; 8539 8540 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL); 8541 if (!indr_priv) 8542 return -ENOMEM; 8543 8544 indr_priv->netdev = netdev; 8545 indr_priv->np = np; 8546 list_add(&indr_priv->list, &np->tc_indr_block_priv_list); 8547 8548 block_cb = 8549 flow_indr_block_cb_alloc(ice_indr_setup_block_cb, 8550 indr_priv, indr_priv, 8551 ice_rep_indr_tc_block_unbind, 8552 f, netdev, sch, data, np, 8553 cleanup); 8554 8555 if (IS_ERR(block_cb)) { 8556 list_del(&indr_priv->list); 8557 kfree(indr_priv); 8558 return PTR_ERR(block_cb); 8559 } 8560 flow_block_cb_add(block_cb, f); 8561 list_add_tail(&block_cb->driver_list, &ice_block_cb_list); 8562 break; 8563 case FLOW_BLOCK_UNBIND: 8564 indr_priv = ice_indr_block_priv_lookup(np, netdev); 8565 if (!indr_priv) 8566 return -ENOENT; 8567 8568 block_cb = flow_block_cb_lookup(f->block, 8569 ice_indr_setup_block_cb, 8570 indr_priv); 8571 if (!block_cb) 8572 return -ENOENT; 8573 8574 flow_indr_block_cb_remove(block_cb, f); 8575 8576 list_del(&block_cb->driver_list); 8577 break; 8578 default: 8579 return -EOPNOTSUPP; 8580 } 8581 return 0; 8582 } 8583 8584 static int 8585 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, 8586 void *cb_priv, enum tc_setup_type type, void *type_data, 8587 void *data, 8588 void (*cleanup)(struct flow_block_cb *block_cb)) 8589 { 8590 switch (type) { 8591 case TC_SETUP_BLOCK: 8592 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data, 8593 data, cleanup); 8594 8595 default: 8596 return -EOPNOTSUPP; 8597 } 8598 } 8599 8600 /** 8601 * ice_open - Called when a network interface becomes active 8602 * @netdev: network interface device structure 8603 * 8604 * The open entry point is called when a network interface is made 8605 * active by the system (IFF_UP). At this point all resources needed 8606 * for transmit and receive operations are allocated, the interrupt 8607 * handler is registered with the OS, the netdev watchdog is enabled, 8608 * and the stack is notified that the interface is ready. 8609 * 8610 * Returns 0 on success, negative value on failure 8611 */ 8612 int ice_open(struct net_device *netdev) 8613 { 8614 struct ice_netdev_priv *np = netdev_priv(netdev); 8615 struct ice_pf *pf = np->vsi->back; 8616 8617 if (ice_is_reset_in_progress(pf->state)) { 8618 netdev_err(netdev, "can't open net device while reset is in progress"); 8619 return -EBUSY; 8620 } 8621 8622 return ice_open_internal(netdev); 8623 } 8624 8625 /** 8626 * ice_open_internal - Called when a network interface becomes active 8627 * @netdev: network interface device structure 8628 * 8629 * Internal ice_open implementation. Should not be used directly except for ice_open and reset 8630 * handling routine 8631 * 8632 * Returns 0 on success, negative value on failure 8633 */ 8634 int ice_open_internal(struct net_device *netdev) 8635 { 8636 struct ice_netdev_priv *np = netdev_priv(netdev); 8637 struct ice_vsi *vsi = np->vsi; 8638 struct ice_pf *pf = vsi->back; 8639 struct ice_port_info *pi; 8640 int err; 8641 8642 if (test_bit(ICE_NEEDS_RESTART, pf->state)) { 8643 netdev_err(netdev, "driver needs to be unloaded and reloaded\n"); 8644 return -EIO; 8645 } 8646 8647 netif_carrier_off(netdev); 8648 8649 pi = vsi->port_info; 8650 err = ice_update_link_info(pi); 8651 if (err) { 8652 netdev_err(netdev, "Failed to get link info, error %d\n", err); 8653 return err; 8654 } 8655 8656 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err); 8657 8658 /* Set PHY if there is media, otherwise, turn off PHY */ 8659 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) { 8660 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8661 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) { 8662 err = ice_init_phy_user_cfg(pi); 8663 if (err) { 8664 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n", 8665 err); 8666 return err; 8667 } 8668 } 8669 8670 err = ice_configure_phy(vsi); 8671 if (err) { 8672 netdev_err(netdev, "Failed to set physical link up, error %d\n", 8673 err); 8674 return err; 8675 } 8676 } else { 8677 set_bit(ICE_FLAG_NO_MEDIA, pf->flags); 8678 ice_set_link(vsi, false); 8679 } 8680 8681 err = ice_vsi_open(vsi); 8682 if (err) 8683 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n", 8684 vsi->vsi_num, vsi->vsw->sw_id); 8685 8686 /* Update existing tunnels information */ 8687 udp_tunnel_get_rx_info(netdev); 8688 8689 return err; 8690 } 8691 8692 /** 8693 * ice_stop - Disables a network interface 8694 * @netdev: network interface device structure 8695 * 8696 * The stop entry point is called when an interface is de-activated by the OS, 8697 * and the netdevice enters the DOWN state. The hardware is still under the 8698 * driver's control, but the netdev interface is disabled. 8699 * 8700 * Returns success only - not allowed to fail 8701 */ 8702 int ice_stop(struct net_device *netdev) 8703 { 8704 struct ice_netdev_priv *np = netdev_priv(netdev); 8705 struct ice_vsi *vsi = np->vsi; 8706 struct ice_pf *pf = vsi->back; 8707 8708 if (ice_is_reset_in_progress(pf->state)) { 8709 netdev_err(netdev, "can't stop net device while reset is in progress"); 8710 return -EBUSY; 8711 } 8712 8713 ice_vsi_close(vsi); 8714 8715 return 0; 8716 } 8717 8718 /** 8719 * ice_features_check - Validate encapsulated packet conforms to limits 8720 * @skb: skb buffer 8721 * @netdev: This port's netdev 8722 * @features: Offload features that the stack believes apply 8723 */ 8724 static netdev_features_t 8725 ice_features_check(struct sk_buff *skb, 8726 struct net_device __always_unused *netdev, 8727 netdev_features_t features) 8728 { 8729 bool gso = skb_is_gso(skb); 8730 size_t len; 8731 8732 /* No point in doing any of this if neither checksum nor GSO are 8733 * being requested for this frame. We can rule out both by just 8734 * checking for CHECKSUM_PARTIAL 8735 */ 8736 if (skb->ip_summed != CHECKSUM_PARTIAL) 8737 return features; 8738 8739 /* We cannot support GSO if the MSS is going to be less than 8740 * 64 bytes. If it is then we need to drop support for GSO. 8741 */ 8742 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS)) 8743 features &= ~NETIF_F_GSO_MASK; 8744 8745 len = skb_network_offset(skb); 8746 if (len > ICE_TXD_MACLEN_MAX || len & 0x1) 8747 goto out_rm_features; 8748 8749 len = skb_network_header_len(skb); 8750 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8751 goto out_rm_features; 8752 8753 if (skb->encapsulation) { 8754 /* this must work for VXLAN frames AND IPIP/SIT frames, and in 8755 * the case of IPIP frames, the transport header pointer is 8756 * after the inner header! So check to make sure that this 8757 * is a GRE or UDP_TUNNEL frame before doing that math. 8758 */ 8759 if (gso && (skb_shinfo(skb)->gso_type & 8760 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) { 8761 len = skb_inner_network_header(skb) - 8762 skb_transport_header(skb); 8763 if (len > ICE_TXD_L4LEN_MAX || len & 0x1) 8764 goto out_rm_features; 8765 } 8766 8767 len = skb_inner_network_header_len(skb); 8768 if (len > ICE_TXD_IPLEN_MAX || len & 0x1) 8769 goto out_rm_features; 8770 } 8771 8772 return features; 8773 out_rm_features: 8774 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 8775 } 8776 8777 static const struct net_device_ops ice_netdev_safe_mode_ops = { 8778 .ndo_open = ice_open, 8779 .ndo_stop = ice_stop, 8780 .ndo_start_xmit = ice_start_xmit, 8781 .ndo_set_mac_address = ice_set_mac_address, 8782 .ndo_validate_addr = eth_validate_addr, 8783 .ndo_change_mtu = ice_change_mtu, 8784 .ndo_get_stats64 = ice_get_stats64, 8785 .ndo_tx_timeout = ice_tx_timeout, 8786 .ndo_bpf = ice_xdp_safe_mode, 8787 }; 8788 8789 static const struct net_device_ops ice_netdev_ops = { 8790 .ndo_open = ice_open, 8791 .ndo_stop = ice_stop, 8792 .ndo_start_xmit = ice_start_xmit, 8793 .ndo_select_queue = ice_select_queue, 8794 .ndo_features_check = ice_features_check, 8795 .ndo_fix_features = ice_fix_features, 8796 .ndo_set_rx_mode = ice_set_rx_mode, 8797 .ndo_set_mac_address = ice_set_mac_address, 8798 .ndo_validate_addr = eth_validate_addr, 8799 .ndo_change_mtu = ice_change_mtu, 8800 .ndo_get_stats64 = ice_get_stats64, 8801 .ndo_set_tx_maxrate = ice_set_tx_maxrate, 8802 .ndo_eth_ioctl = ice_eth_ioctl, 8803 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk, 8804 .ndo_set_vf_mac = ice_set_vf_mac, 8805 .ndo_get_vf_config = ice_get_vf_cfg, 8806 .ndo_set_vf_trust = ice_set_vf_trust, 8807 .ndo_set_vf_vlan = ice_set_vf_port_vlan, 8808 .ndo_set_vf_link_state = ice_set_vf_link_state, 8809 .ndo_get_vf_stats = ice_get_vf_stats, 8810 .ndo_set_vf_rate = ice_set_vf_bw, 8811 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid, 8812 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid, 8813 .ndo_setup_tc = ice_setup_tc, 8814 .ndo_set_features = ice_set_features, 8815 .ndo_bridge_getlink = ice_bridge_getlink, 8816 .ndo_bridge_setlink = ice_bridge_setlink, 8817 .ndo_fdb_add = ice_fdb_add, 8818 .ndo_fdb_del = ice_fdb_del, 8819 #ifdef CONFIG_RFS_ACCEL 8820 .ndo_rx_flow_steer = ice_rx_flow_steer, 8821 #endif 8822 .ndo_tx_timeout = ice_tx_timeout, 8823 .ndo_bpf = ice_xdp, 8824 .ndo_xdp_xmit = ice_xdp_xmit, 8825 .ndo_xsk_wakeup = ice_xsk_wakeup, 8826 }; 8827