1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_devlink.h" 11 12 /** 13 * ice_vsi_type_str - maps VSI type enum to string equivalents 14 * @vsi_type: VSI type enum 15 */ 16 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 17 { 18 switch (vsi_type) { 19 case ICE_VSI_PF: 20 return "ICE_VSI_PF"; 21 case ICE_VSI_VF: 22 return "ICE_VSI_VF"; 23 case ICE_VSI_CTRL: 24 return "ICE_VSI_CTRL"; 25 case ICE_VSI_LB: 26 return "ICE_VSI_LB"; 27 case ICE_VSI_SWITCHDEV_CTRL: 28 return "ICE_VSI_SWITCHDEV_CTRL"; 29 default: 30 return "unknown"; 31 } 32 } 33 34 /** 35 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 36 * @vsi: the VSI being configured 37 * @ena: start or stop the Rx rings 38 * 39 * First enable/disable all of the Rx rings, flush any remaining writes, and 40 * then verify that they have all been enabled/disabled successfully. This will 41 * let all of the register writes complete when enabling/disabling the Rx rings 42 * before waiting for the change in hardware to complete. 43 */ 44 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 45 { 46 int ret = 0; 47 u16 i; 48 49 for (i = 0; i < vsi->num_rxq; i++) 50 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 51 52 ice_flush(&vsi->back->hw); 53 54 for (i = 0; i < vsi->num_rxq; i++) { 55 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 56 if (ret) 57 break; 58 } 59 60 return ret; 61 } 62 63 /** 64 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 65 * @vsi: VSI pointer 66 * 67 * On error: returns error code (negative) 68 * On success: returns 0 69 */ 70 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 71 { 72 struct ice_pf *pf = vsi->back; 73 struct device *dev; 74 75 dev = ice_pf_to_dev(pf); 76 77 /* allocate memory for both Tx and Rx ring pointers */ 78 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 79 sizeof(*vsi->tx_rings), GFP_KERNEL); 80 if (!vsi->tx_rings) 81 return -ENOMEM; 82 83 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 84 sizeof(*vsi->rx_rings), GFP_KERNEL); 85 if (!vsi->rx_rings) 86 goto err_rings; 87 88 /* XDP will have vsi->alloc_txq Tx queues as well, so double the size */ 89 vsi->txq_map = devm_kcalloc(dev, (2 * vsi->alloc_txq), 90 sizeof(*vsi->txq_map), GFP_KERNEL); 91 92 if (!vsi->txq_map) 93 goto err_txq_map; 94 95 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 96 sizeof(*vsi->rxq_map), GFP_KERNEL); 97 if (!vsi->rxq_map) 98 goto err_rxq_map; 99 100 /* There is no need to allocate q_vectors for a loopback VSI. */ 101 if (vsi->type == ICE_VSI_LB) 102 return 0; 103 104 /* allocate memory for q_vector pointers */ 105 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 106 sizeof(*vsi->q_vectors), GFP_KERNEL); 107 if (!vsi->q_vectors) 108 goto err_vectors; 109 110 vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); 111 if (!vsi->af_xdp_zc_qps) 112 goto err_zc_qps; 113 114 return 0; 115 116 err_zc_qps: 117 devm_kfree(dev, vsi->q_vectors); 118 err_vectors: 119 devm_kfree(dev, vsi->rxq_map); 120 err_rxq_map: 121 devm_kfree(dev, vsi->txq_map); 122 err_txq_map: 123 devm_kfree(dev, vsi->rx_rings); 124 err_rings: 125 devm_kfree(dev, vsi->tx_rings); 126 return -ENOMEM; 127 } 128 129 /** 130 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 131 * @vsi: the VSI being configured 132 */ 133 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 134 { 135 switch (vsi->type) { 136 case ICE_VSI_PF: 137 case ICE_VSI_SWITCHDEV_CTRL: 138 case ICE_VSI_CTRL: 139 case ICE_VSI_LB: 140 /* a user could change the values of num_[tr]x_desc using 141 * ethtool -G so we should keep those values instead of 142 * overwriting them with the defaults. 143 */ 144 if (!vsi->num_rx_desc) 145 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 146 if (!vsi->num_tx_desc) 147 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 148 break; 149 default: 150 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 151 vsi->type); 152 break; 153 } 154 } 155 156 /** 157 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 158 * @vsi: the VSI being configured 159 * @vf_id: ID of the VF being configured 160 * 161 * Return 0 on success and a negative value on error 162 */ 163 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id) 164 { 165 struct ice_pf *pf = vsi->back; 166 struct ice_vf *vf = NULL; 167 168 if (vsi->type == ICE_VSI_VF) 169 vsi->vf_id = vf_id; 170 else 171 vsi->vf_id = ICE_INVAL_VFID; 172 173 switch (vsi->type) { 174 case ICE_VSI_PF: 175 if (vsi->req_txq) { 176 vsi->alloc_txq = vsi->req_txq; 177 vsi->num_txq = vsi->req_txq; 178 } else { 179 vsi->alloc_txq = min3(pf->num_lan_msix, 180 ice_get_avail_txq_count(pf), 181 (u16)num_online_cpus()); 182 } 183 184 pf->num_lan_tx = vsi->alloc_txq; 185 186 /* only 1 Rx queue unless RSS is enabled */ 187 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 188 vsi->alloc_rxq = 1; 189 } else { 190 if (vsi->req_rxq) { 191 vsi->alloc_rxq = vsi->req_rxq; 192 vsi->num_rxq = vsi->req_rxq; 193 } else { 194 vsi->alloc_rxq = min3(pf->num_lan_msix, 195 ice_get_avail_rxq_count(pf), 196 (u16)num_online_cpus()); 197 } 198 } 199 200 pf->num_lan_rx = vsi->alloc_rxq; 201 202 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 203 max_t(int, vsi->alloc_rxq, 204 vsi->alloc_txq)); 205 break; 206 case ICE_VSI_SWITCHDEV_CTRL: 207 /* The number of queues for ctrl VSI is equal to number of VFs. 208 * Each ring is associated to the corresponding VF_PR netdev. 209 */ 210 vsi->alloc_txq = pf->num_alloc_vfs; 211 vsi->alloc_rxq = pf->num_alloc_vfs; 212 vsi->num_q_vectors = 1; 213 break; 214 case ICE_VSI_VF: 215 vf = &pf->vf[vsi->vf_id]; 216 if (vf->num_req_qs) 217 vf->num_vf_qs = vf->num_req_qs; 218 vsi->alloc_txq = vf->num_vf_qs; 219 vsi->alloc_rxq = vf->num_vf_qs; 220 /* pf->num_msix_per_vf includes (VF miscellaneous vector + 221 * data queue interrupts). Since vsi->num_q_vectors is number 222 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 223 * original vector count 224 */ 225 vsi->num_q_vectors = pf->num_msix_per_vf - ICE_NONQ_VECS_VF; 226 break; 227 case ICE_VSI_CTRL: 228 vsi->alloc_txq = 1; 229 vsi->alloc_rxq = 1; 230 vsi->num_q_vectors = 1; 231 break; 232 case ICE_VSI_LB: 233 vsi->alloc_txq = 1; 234 vsi->alloc_rxq = 1; 235 break; 236 default: 237 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi->type); 238 break; 239 } 240 241 ice_vsi_set_num_desc(vsi); 242 } 243 244 /** 245 * ice_get_free_slot - get the next non-NULL location index in array 246 * @array: array to search 247 * @size: size of the array 248 * @curr: last known occupied index to be used as a search hint 249 * 250 * void * is being used to keep the functionality generic. This lets us use this 251 * function on any array of pointers. 252 */ 253 static int ice_get_free_slot(void *array, int size, int curr) 254 { 255 int **tmp_array = (int **)array; 256 int next; 257 258 if (curr < (size - 1) && !tmp_array[curr + 1]) { 259 next = curr + 1; 260 } else { 261 int i = 0; 262 263 while ((i < size) && (tmp_array[i])) 264 i++; 265 if (i == size) 266 next = ICE_NO_VSI; 267 else 268 next = i; 269 } 270 return next; 271 } 272 273 /** 274 * ice_vsi_delete - delete a VSI from the switch 275 * @vsi: pointer to VSI being removed 276 */ 277 static void ice_vsi_delete(struct ice_vsi *vsi) 278 { 279 struct ice_pf *pf = vsi->back; 280 struct ice_vsi_ctx *ctxt; 281 enum ice_status status; 282 283 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 284 if (!ctxt) 285 return; 286 287 if (vsi->type == ICE_VSI_VF) 288 ctxt->vf_num = vsi->vf_id; 289 ctxt->vsi_num = vsi->vsi_num; 290 291 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 292 293 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 294 if (status) 295 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %s\n", 296 vsi->vsi_num, ice_stat_str(status)); 297 298 kfree(ctxt); 299 } 300 301 /** 302 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 303 * @vsi: pointer to VSI being cleared 304 */ 305 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 306 { 307 struct ice_pf *pf = vsi->back; 308 struct device *dev; 309 310 dev = ice_pf_to_dev(pf); 311 312 if (vsi->af_xdp_zc_qps) { 313 bitmap_free(vsi->af_xdp_zc_qps); 314 vsi->af_xdp_zc_qps = NULL; 315 } 316 /* free the ring and vector containers */ 317 if (vsi->q_vectors) { 318 devm_kfree(dev, vsi->q_vectors); 319 vsi->q_vectors = NULL; 320 } 321 if (vsi->tx_rings) { 322 devm_kfree(dev, vsi->tx_rings); 323 vsi->tx_rings = NULL; 324 } 325 if (vsi->rx_rings) { 326 devm_kfree(dev, vsi->rx_rings); 327 vsi->rx_rings = NULL; 328 } 329 if (vsi->txq_map) { 330 devm_kfree(dev, vsi->txq_map); 331 vsi->txq_map = NULL; 332 } 333 if (vsi->rxq_map) { 334 devm_kfree(dev, vsi->rxq_map); 335 vsi->rxq_map = NULL; 336 } 337 } 338 339 /** 340 * ice_vsi_clear - clean up and deallocate the provided VSI 341 * @vsi: pointer to VSI being cleared 342 * 343 * This deallocates the VSI's queue resources, removes it from the PF's 344 * VSI array if necessary, and deallocates the VSI 345 * 346 * Returns 0 on success, negative on failure 347 */ 348 static int ice_vsi_clear(struct ice_vsi *vsi) 349 { 350 struct ice_pf *pf = NULL; 351 struct device *dev; 352 353 if (!vsi) 354 return 0; 355 356 if (!vsi->back) 357 return -EINVAL; 358 359 pf = vsi->back; 360 dev = ice_pf_to_dev(pf); 361 362 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 363 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 364 return -EINVAL; 365 } 366 367 mutex_lock(&pf->sw_mutex); 368 /* updates the PF for this cleared VSI */ 369 370 pf->vsi[vsi->idx] = NULL; 371 if (vsi->idx < pf->next_vsi && vsi->type != ICE_VSI_CTRL) 372 pf->next_vsi = vsi->idx; 373 if (vsi->idx < pf->next_vsi && vsi->type == ICE_VSI_CTRL && 374 vsi->vf_id != ICE_INVAL_VFID) 375 pf->next_vsi = vsi->idx; 376 377 ice_vsi_free_arrays(vsi); 378 mutex_unlock(&pf->sw_mutex); 379 devm_kfree(dev, vsi); 380 381 return 0; 382 } 383 384 /** 385 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 386 * @irq: interrupt number 387 * @data: pointer to a q_vector 388 */ 389 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 390 { 391 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 392 393 if (!q_vector->tx.ring) 394 return IRQ_HANDLED; 395 396 #define FDIR_RX_DESC_CLEAN_BUDGET 64 397 ice_clean_rx_irq(q_vector->rx.ring, FDIR_RX_DESC_CLEAN_BUDGET); 398 ice_clean_ctrl_tx_irq(q_vector->tx.ring); 399 400 return IRQ_HANDLED; 401 } 402 403 /** 404 * ice_msix_clean_rings - MSIX mode Interrupt Handler 405 * @irq: interrupt number 406 * @data: pointer to a q_vector 407 */ 408 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 409 { 410 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 411 412 if (!q_vector->tx.ring && !q_vector->rx.ring) 413 return IRQ_HANDLED; 414 415 q_vector->total_events++; 416 417 napi_schedule(&q_vector->napi); 418 419 return IRQ_HANDLED; 420 } 421 422 static irqreturn_t ice_eswitch_msix_clean_rings(int __always_unused irq, void *data) 423 { 424 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 425 struct ice_pf *pf = q_vector->vsi->back; 426 int i; 427 428 if (!q_vector->tx.ring && !q_vector->rx.ring) 429 return IRQ_HANDLED; 430 431 ice_for_each_vf(pf, i) 432 napi_schedule(&pf->vf[i].repr->q_vector->napi); 433 434 return IRQ_HANDLED; 435 } 436 437 /** 438 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 439 * @pf: board private structure 440 * @vsi_type: type of VSI 441 * @vf_id: ID of the VF being configured 442 * 443 * returns a pointer to a VSI on success, NULL on failure. 444 */ 445 static struct ice_vsi * 446 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type vsi_type, u16 vf_id) 447 { 448 struct device *dev = ice_pf_to_dev(pf); 449 struct ice_vsi *vsi = NULL; 450 451 /* Need to protect the allocation of the VSIs at the PF level */ 452 mutex_lock(&pf->sw_mutex); 453 454 /* If we have already allocated our maximum number of VSIs, 455 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 456 * is available to be populated 457 */ 458 if (pf->next_vsi == ICE_NO_VSI) { 459 dev_dbg(dev, "out of VSI slots!\n"); 460 goto unlock_pf; 461 } 462 463 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 464 if (!vsi) 465 goto unlock_pf; 466 467 vsi->type = vsi_type; 468 vsi->back = pf; 469 set_bit(ICE_VSI_DOWN, vsi->state); 470 471 if (vsi_type == ICE_VSI_VF) 472 ice_vsi_set_num_qs(vsi, vf_id); 473 else 474 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 475 476 switch (vsi->type) { 477 case ICE_VSI_SWITCHDEV_CTRL: 478 if (ice_vsi_alloc_arrays(vsi)) 479 goto err_rings; 480 481 /* Setup eswitch MSIX irq handler for VSI */ 482 vsi->irq_handler = ice_eswitch_msix_clean_rings; 483 break; 484 case ICE_VSI_PF: 485 if (ice_vsi_alloc_arrays(vsi)) 486 goto err_rings; 487 488 /* Setup default MSIX irq handler for VSI */ 489 vsi->irq_handler = ice_msix_clean_rings; 490 break; 491 case ICE_VSI_CTRL: 492 if (ice_vsi_alloc_arrays(vsi)) 493 goto err_rings; 494 495 /* Setup ctrl VSI MSIX irq handler */ 496 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 497 break; 498 case ICE_VSI_VF: 499 if (ice_vsi_alloc_arrays(vsi)) 500 goto err_rings; 501 break; 502 case ICE_VSI_LB: 503 if (ice_vsi_alloc_arrays(vsi)) 504 goto err_rings; 505 break; 506 default: 507 dev_warn(dev, "Unknown VSI type %d\n", vsi->type); 508 goto unlock_pf; 509 } 510 511 if (vsi->type == ICE_VSI_CTRL && vf_id == ICE_INVAL_VFID) { 512 /* Use the last VSI slot as the index for PF control VSI */ 513 vsi->idx = pf->num_alloc_vsi - 1; 514 pf->ctrl_vsi_idx = vsi->idx; 515 pf->vsi[vsi->idx] = vsi; 516 } else { 517 /* fill slot and make note of the index */ 518 vsi->idx = pf->next_vsi; 519 pf->vsi[pf->next_vsi] = vsi; 520 521 /* prepare pf->next_vsi for next use */ 522 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 523 pf->next_vsi); 524 } 525 526 if (vsi->type == ICE_VSI_CTRL && vf_id != ICE_INVAL_VFID) 527 pf->vf[vf_id].ctrl_vsi_idx = vsi->idx; 528 goto unlock_pf; 529 530 err_rings: 531 devm_kfree(dev, vsi); 532 vsi = NULL; 533 unlock_pf: 534 mutex_unlock(&pf->sw_mutex); 535 return vsi; 536 } 537 538 /** 539 * ice_alloc_fd_res - Allocate FD resource for a VSI 540 * @vsi: pointer to the ice_vsi 541 * 542 * This allocates the FD resources 543 * 544 * Returns 0 on success, -EPERM on no-op or -EIO on failure 545 */ 546 static int ice_alloc_fd_res(struct ice_vsi *vsi) 547 { 548 struct ice_pf *pf = vsi->back; 549 u32 g_val, b_val; 550 551 /* Flow Director filters are only allocated/assigned to the PF VSI which 552 * passes the traffic. The CTRL VSI is only used to add/delete filters 553 * so we don't allocate resources to it 554 */ 555 556 /* FD filters from guaranteed pool per VSI */ 557 g_val = pf->hw.func_caps.fd_fltr_guar; 558 if (!g_val) 559 return -EPERM; 560 561 /* FD filters from best effort pool */ 562 b_val = pf->hw.func_caps.fd_fltr_best_effort; 563 if (!b_val) 564 return -EPERM; 565 566 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF)) 567 return -EPERM; 568 569 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 570 return -EPERM; 571 572 vsi->num_gfltr = g_val / pf->num_alloc_vsi; 573 574 /* each VSI gets same "best_effort" quota */ 575 vsi->num_bfltr = b_val; 576 577 if (vsi->type == ICE_VSI_VF) { 578 vsi->num_gfltr = 0; 579 580 /* each VSI gets same "best_effort" quota */ 581 vsi->num_bfltr = b_val; 582 } 583 584 return 0; 585 } 586 587 /** 588 * ice_vsi_get_qs - Assign queues from PF to VSI 589 * @vsi: the VSI to assign queues to 590 * 591 * Returns 0 on success and a negative value on error 592 */ 593 static int ice_vsi_get_qs(struct ice_vsi *vsi) 594 { 595 struct ice_pf *pf = vsi->back; 596 struct ice_qs_cfg tx_qs_cfg = { 597 .qs_mutex = &pf->avail_q_mutex, 598 .pf_map = pf->avail_txqs, 599 .pf_map_size = pf->max_pf_txqs, 600 .q_count = vsi->alloc_txq, 601 .scatter_count = ICE_MAX_SCATTER_TXQS, 602 .vsi_map = vsi->txq_map, 603 .vsi_map_offset = 0, 604 .mapping_mode = ICE_VSI_MAP_CONTIG 605 }; 606 struct ice_qs_cfg rx_qs_cfg = { 607 .qs_mutex = &pf->avail_q_mutex, 608 .pf_map = pf->avail_rxqs, 609 .pf_map_size = pf->max_pf_rxqs, 610 .q_count = vsi->alloc_rxq, 611 .scatter_count = ICE_MAX_SCATTER_RXQS, 612 .vsi_map = vsi->rxq_map, 613 .vsi_map_offset = 0, 614 .mapping_mode = ICE_VSI_MAP_CONTIG 615 }; 616 int ret; 617 618 ret = __ice_vsi_get_qs(&tx_qs_cfg); 619 if (ret) 620 return ret; 621 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 622 623 ret = __ice_vsi_get_qs(&rx_qs_cfg); 624 if (ret) 625 return ret; 626 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 627 628 return 0; 629 } 630 631 /** 632 * ice_vsi_put_qs - Release queues from VSI to PF 633 * @vsi: the VSI that is going to release queues 634 */ 635 static void ice_vsi_put_qs(struct ice_vsi *vsi) 636 { 637 struct ice_pf *pf = vsi->back; 638 int i; 639 640 mutex_lock(&pf->avail_q_mutex); 641 642 for (i = 0; i < vsi->alloc_txq; i++) { 643 clear_bit(vsi->txq_map[i], pf->avail_txqs); 644 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 645 } 646 647 for (i = 0; i < vsi->alloc_rxq; i++) { 648 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 649 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 650 } 651 652 mutex_unlock(&pf->avail_q_mutex); 653 } 654 655 /** 656 * ice_is_safe_mode 657 * @pf: pointer to the PF struct 658 * 659 * returns true if driver is in safe mode, false otherwise 660 */ 661 bool ice_is_safe_mode(struct ice_pf *pf) 662 { 663 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 664 } 665 666 /** 667 * ice_is_aux_ena 668 * @pf: pointer to the PF struct 669 * 670 * returns true if AUX devices/drivers are supported, false otherwise 671 */ 672 bool ice_is_aux_ena(struct ice_pf *pf) 673 { 674 return test_bit(ICE_FLAG_AUX_ENA, pf->flags); 675 } 676 677 /** 678 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 679 * @vsi: the VSI being cleaned up 680 * 681 * This function deletes RSS input set for all flows that were configured 682 * for this VSI 683 */ 684 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 685 { 686 struct ice_pf *pf = vsi->back; 687 enum ice_status status; 688 689 if (ice_is_safe_mode(pf)) 690 return; 691 692 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 693 if (status) 694 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %s\n", 695 vsi->vsi_num, ice_stat_str(status)); 696 } 697 698 /** 699 * ice_rss_clean - Delete RSS related VSI structures and configuration 700 * @vsi: the VSI being removed 701 */ 702 static void ice_rss_clean(struct ice_vsi *vsi) 703 { 704 struct ice_pf *pf = vsi->back; 705 struct device *dev; 706 707 dev = ice_pf_to_dev(pf); 708 709 if (vsi->rss_hkey_user) 710 devm_kfree(dev, vsi->rss_hkey_user); 711 if (vsi->rss_lut_user) 712 devm_kfree(dev, vsi->rss_lut_user); 713 714 ice_vsi_clean_rss_flow_fld(vsi); 715 /* remove RSS replay list */ 716 if (!ice_is_safe_mode(pf)) 717 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 718 } 719 720 /** 721 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 722 * @vsi: the VSI being configured 723 */ 724 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 725 { 726 struct ice_hw_common_caps *cap; 727 struct ice_pf *pf = vsi->back; 728 729 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 730 vsi->rss_size = 1; 731 return; 732 } 733 734 cap = &pf->hw.func_caps.common_cap; 735 switch (vsi->type) { 736 case ICE_VSI_PF: 737 /* PF VSI will inherit RSS instance of PF */ 738 vsi->rss_table_size = (u16)cap->rss_table_size; 739 vsi->rss_size = min_t(u16, num_online_cpus(), 740 BIT(cap->rss_table_entry_width)); 741 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF; 742 break; 743 case ICE_VSI_SWITCHDEV_CTRL: 744 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 745 vsi->rss_size = min_t(u16, num_online_cpus(), 746 BIT(cap->rss_table_entry_width)); 747 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 748 break; 749 case ICE_VSI_VF: 750 /* VF VSI will get a small RSS table. 751 * For VSI_LUT, LUT size should be set to 64 bytes. 752 */ 753 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE; 754 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 755 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI; 756 break; 757 case ICE_VSI_LB: 758 break; 759 default: 760 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 761 ice_vsi_type_str(vsi->type)); 762 break; 763 } 764 } 765 766 /** 767 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 768 * @ctxt: the VSI context being set 769 * 770 * This initializes a default VSI context for all sections except the Queues. 771 */ 772 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt) 773 { 774 u32 table = 0; 775 776 memset(&ctxt->info, 0, sizeof(ctxt->info)); 777 /* VSI's should be allocated from shared pool */ 778 ctxt->alloc_from_pool = true; 779 /* Src pruning enabled by default */ 780 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 781 /* Traffic from VSI can be sent to LAN */ 782 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 783 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy 784 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all 785 * packets untagged/tagged. 786 */ 787 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL & 788 ICE_AQ_VSI_VLAN_MODE_M) >> 789 ICE_AQ_VSI_VLAN_MODE_S); 790 /* Have 1:1 UP mapping for both ingress/egress tables */ 791 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 792 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 793 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 794 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 795 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 796 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 797 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 798 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 799 ctxt->info.ingress_table = cpu_to_le32(table); 800 ctxt->info.egress_table = cpu_to_le32(table); 801 /* Have 1:1 UP mapping for outer to inner UP table */ 802 ctxt->info.outer_up_table = cpu_to_le32(table); 803 /* No Outer tag support outer_tag_flags remains to zero */ 804 } 805 806 /** 807 * ice_vsi_setup_q_map - Setup a VSI queue map 808 * @vsi: the VSI being configured 809 * @ctxt: VSI context structure 810 */ 811 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 812 { 813 u16 offset = 0, qmap = 0, tx_count = 0, pow = 0; 814 u16 num_txq_per_tc, num_rxq_per_tc; 815 u16 qcount_tx = vsi->alloc_txq; 816 u16 qcount_rx = vsi->alloc_rxq; 817 bool ena_tc0 = false; 818 u8 netdev_tc = 0; 819 int i; 820 821 /* at least TC0 should be enabled by default */ 822 if (vsi->tc_cfg.numtc) { 823 if (!(vsi->tc_cfg.ena_tc & BIT(0))) 824 ena_tc0 = true; 825 } else { 826 ena_tc0 = true; 827 } 828 829 if (ena_tc0) { 830 vsi->tc_cfg.numtc++; 831 vsi->tc_cfg.ena_tc |= 1; 832 } 833 834 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 835 if (!num_rxq_per_tc) 836 num_rxq_per_tc = 1; 837 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 838 if (!num_txq_per_tc) 839 num_txq_per_tc = 1; 840 841 /* find the (rounded up) power-of-2 of qcount */ 842 pow = (u16)order_base_2(num_rxq_per_tc); 843 844 /* TC mapping is a function of the number of Rx queues assigned to the 845 * VSI for each traffic class and the offset of these queues. 846 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 847 * queues allocated to TC0. No:of queues is a power-of-2. 848 * 849 * If TC is not enabled, the queue offset is set to 0, and allocate one 850 * queue, this way, traffic for the given TC will be sent to the default 851 * queue. 852 * 853 * Setup number and offset of Rx queues for all TCs for the VSI 854 */ 855 ice_for_each_traffic_class(i) { 856 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 857 /* TC is not enabled */ 858 vsi->tc_cfg.tc_info[i].qoffset = 0; 859 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 860 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 861 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 862 ctxt->info.tc_mapping[i] = 0; 863 continue; 864 } 865 866 /* TC is enabled */ 867 vsi->tc_cfg.tc_info[i].qoffset = offset; 868 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 869 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 870 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 871 872 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) & 873 ICE_AQ_VSI_TC_Q_OFFSET_M) | 874 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) & 875 ICE_AQ_VSI_TC_Q_NUM_M); 876 offset += num_rxq_per_tc; 877 tx_count += num_txq_per_tc; 878 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 879 } 880 881 /* if offset is non-zero, means it is calculated correctly based on 882 * enabled TCs for a given VSI otherwise qcount_rx will always 883 * be correct and non-zero because it is based off - VSI's 884 * allocated Rx queues which is at least 1 (hence qcount_tx will be 885 * at least 1) 886 */ 887 if (offset) 888 vsi->num_rxq = offset; 889 else 890 vsi->num_rxq = num_rxq_per_tc; 891 892 vsi->num_txq = tx_count; 893 894 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 895 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 896 /* since there is a chance that num_rxq could have been changed 897 * in the above for loop, make num_txq equal to num_rxq. 898 */ 899 vsi->num_txq = vsi->num_rxq; 900 } 901 902 /* Rx queue mapping */ 903 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 904 /* q_mapping buffer holds the info for the first queue allocated for 905 * this VSI in the PF space and also the number of queues associated 906 * with this VSI. 907 */ 908 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 909 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 910 } 911 912 /** 913 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 914 * @ctxt: the VSI context being set 915 * @vsi: the VSI being configured 916 */ 917 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 918 { 919 u8 dflt_q_group, dflt_q_prio; 920 u16 dflt_q, report_q, val; 921 922 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 923 vsi->type != ICE_VSI_VF) 924 return; 925 926 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 927 ctxt->info.valid_sections |= cpu_to_le16(val); 928 dflt_q = 0; 929 dflt_q_group = 0; 930 report_q = 0; 931 dflt_q_prio = 0; 932 933 /* enable flow director filtering/programming */ 934 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 935 ctxt->info.fd_options = cpu_to_le16(val); 936 /* max of allocated flow director filters */ 937 ctxt->info.max_fd_fltr_dedicated = 938 cpu_to_le16(vsi->num_gfltr); 939 /* max of shared flow director filters any VSI may program */ 940 ctxt->info.max_fd_fltr_shared = 941 cpu_to_le16(vsi->num_bfltr); 942 /* default queue index within the VSI of the default FD */ 943 val = ((dflt_q << ICE_AQ_VSI_FD_DEF_Q_S) & 944 ICE_AQ_VSI_FD_DEF_Q_M); 945 /* target queue or queue group to the FD filter */ 946 val |= ((dflt_q_group << ICE_AQ_VSI_FD_DEF_GRP_S) & 947 ICE_AQ_VSI_FD_DEF_GRP_M); 948 ctxt->info.fd_def_q = cpu_to_le16(val); 949 /* queue index on which FD filter completion is reported */ 950 val = ((report_q << ICE_AQ_VSI_FD_REPORT_Q_S) & 951 ICE_AQ_VSI_FD_REPORT_Q_M); 952 /* priority of the default qindex action */ 953 val |= ((dflt_q_prio << ICE_AQ_VSI_FD_DEF_PRIORITY_S) & 954 ICE_AQ_VSI_FD_DEF_PRIORITY_M); 955 ctxt->info.fd_report_opt = cpu_to_le16(val); 956 } 957 958 /** 959 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 960 * @ctxt: the VSI context being set 961 * @vsi: the VSI being configured 962 */ 963 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 964 { 965 u8 lut_type, hash_type; 966 struct device *dev; 967 struct ice_pf *pf; 968 969 pf = vsi->back; 970 dev = ice_pf_to_dev(pf); 971 972 switch (vsi->type) { 973 case ICE_VSI_PF: 974 /* PF VSI will inherit RSS instance of PF */ 975 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 976 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 977 break; 978 case ICE_VSI_VF: 979 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 980 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 981 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ; 982 break; 983 default: 984 dev_dbg(dev, "Unsupported VSI type %s\n", 985 ice_vsi_type_str(vsi->type)); 986 return; 987 } 988 989 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) & 990 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) | 991 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) & 992 ICE_AQ_VSI_Q_OPT_RSS_HASH_M); 993 } 994 995 /** 996 * ice_vsi_init - Create and initialize a VSI 997 * @vsi: the VSI being configured 998 * @init_vsi: is this call creating a VSI 999 * 1000 * This initializes a VSI context depending on the VSI type to be added and 1001 * passes it down to the add_vsi aq command to create a new VSI. 1002 */ 1003 static int ice_vsi_init(struct ice_vsi *vsi, bool init_vsi) 1004 { 1005 struct ice_pf *pf = vsi->back; 1006 struct ice_hw *hw = &pf->hw; 1007 struct ice_vsi_ctx *ctxt; 1008 struct device *dev; 1009 int ret = 0; 1010 1011 dev = ice_pf_to_dev(pf); 1012 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1013 if (!ctxt) 1014 return -ENOMEM; 1015 1016 switch (vsi->type) { 1017 case ICE_VSI_CTRL: 1018 case ICE_VSI_LB: 1019 case ICE_VSI_PF: 1020 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1021 break; 1022 case ICE_VSI_SWITCHDEV_CTRL: 1023 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1024 break; 1025 case ICE_VSI_VF: 1026 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1027 /* VF number here is the absolute VF number (0-255) */ 1028 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id; 1029 break; 1030 default: 1031 ret = -ENODEV; 1032 goto out; 1033 } 1034 1035 ice_set_dflt_vsi_ctx(ctxt); 1036 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1037 ice_set_fd_vsi_ctx(ctxt, vsi); 1038 /* if the switch is in VEB mode, allow VSI loopback */ 1039 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1040 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1041 1042 /* Set LUT type and HASH type if RSS is enabled */ 1043 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1044 vsi->type != ICE_VSI_CTRL) { 1045 ice_set_rss_vsi_ctx(ctxt, vsi); 1046 /* if updating VSI context, make sure to set valid_section: 1047 * to indicate which section of VSI context being updated 1048 */ 1049 if (!init_vsi) 1050 ctxt->info.valid_sections |= 1051 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1052 } 1053 1054 ctxt->info.sw_id = vsi->port_info->sw_id; 1055 ice_vsi_setup_q_map(vsi, ctxt); 1056 if (!init_vsi) /* means VSI being updated */ 1057 /* must to indicate which section of VSI context are 1058 * being modified 1059 */ 1060 ctxt->info.valid_sections |= 1061 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1062 1063 /* enable/disable MAC and VLAN anti-spoof when spoofchk is on/off 1064 * respectively 1065 */ 1066 if (vsi->type == ICE_VSI_VF) { 1067 ctxt->info.valid_sections |= 1068 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1069 if (pf->vf[vsi->vf_id].spoofchk) { 1070 ctxt->info.sec_flags |= 1071 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1072 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1073 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 1074 } else { 1075 ctxt->info.sec_flags &= 1076 ~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 1077 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 1078 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S)); 1079 } 1080 } 1081 1082 /* Allow control frames out of main VSI */ 1083 if (vsi->type == ICE_VSI_PF) { 1084 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1085 ctxt->info.valid_sections |= 1086 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1087 } 1088 1089 if (init_vsi) { 1090 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1091 if (ret) { 1092 dev_err(dev, "Add VSI failed, err %d\n", ret); 1093 ret = -EIO; 1094 goto out; 1095 } 1096 } else { 1097 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1098 if (ret) { 1099 dev_err(dev, "Update VSI failed, err %d\n", ret); 1100 ret = -EIO; 1101 goto out; 1102 } 1103 } 1104 1105 /* keep context for update VSI operations */ 1106 vsi->info = ctxt->info; 1107 1108 /* record VSI number returned */ 1109 vsi->vsi_num = ctxt->vsi_num; 1110 1111 out: 1112 kfree(ctxt); 1113 return ret; 1114 } 1115 1116 /** 1117 * ice_free_res - free a block of resources 1118 * @res: pointer to the resource 1119 * @index: starting index previously returned by ice_get_res 1120 * @id: identifier to track owner 1121 * 1122 * Returns number of resources freed 1123 */ 1124 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id) 1125 { 1126 int count = 0; 1127 int i; 1128 1129 if (!res || index >= res->end) 1130 return -EINVAL; 1131 1132 id |= ICE_RES_VALID_BIT; 1133 for (i = index; i < res->end && res->list[i] == id; i++) { 1134 res->list[i] = 0; 1135 count++; 1136 } 1137 1138 return count; 1139 } 1140 1141 /** 1142 * ice_search_res - Search the tracker for a block of resources 1143 * @res: pointer to the resource 1144 * @needed: size of the block needed 1145 * @id: identifier to track owner 1146 * 1147 * Returns the base item index of the block, or -ENOMEM for error 1148 */ 1149 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id) 1150 { 1151 u16 start = 0, end = 0; 1152 1153 if (needed > res->end) 1154 return -ENOMEM; 1155 1156 id |= ICE_RES_VALID_BIT; 1157 1158 do { 1159 /* skip already allocated entries */ 1160 if (res->list[end++] & ICE_RES_VALID_BIT) { 1161 start = end; 1162 if ((start + needed) > res->end) 1163 break; 1164 } 1165 1166 if (end == (start + needed)) { 1167 int i = start; 1168 1169 /* there was enough, so assign it to the requestor */ 1170 while (i != end) 1171 res->list[i++] = id; 1172 1173 return start; 1174 } 1175 } while (end < res->end); 1176 1177 return -ENOMEM; 1178 } 1179 1180 /** 1181 * ice_get_free_res_count - Get free count from a resource tracker 1182 * @res: Resource tracker instance 1183 */ 1184 static u16 ice_get_free_res_count(struct ice_res_tracker *res) 1185 { 1186 u16 i, count = 0; 1187 1188 for (i = 0; i < res->end; i++) 1189 if (!(res->list[i] & ICE_RES_VALID_BIT)) 1190 count++; 1191 1192 return count; 1193 } 1194 1195 /** 1196 * ice_get_res - get a block of resources 1197 * @pf: board private structure 1198 * @res: pointer to the resource 1199 * @needed: size of the block needed 1200 * @id: identifier to track owner 1201 * 1202 * Returns the base item index of the block, or negative for error 1203 */ 1204 int 1205 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id) 1206 { 1207 if (!res || !pf) 1208 return -EINVAL; 1209 1210 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) { 1211 dev_err(ice_pf_to_dev(pf), "param err: needed=%d, num_entries = %d id=0x%04x\n", 1212 needed, res->num_entries, id); 1213 return -EINVAL; 1214 } 1215 1216 return ice_search_res(res, needed, id); 1217 } 1218 1219 /** 1220 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI 1221 * @vsi: ptr to the VSI 1222 * 1223 * This should only be called after ice_vsi_alloc() which allocates the 1224 * corresponding SW VSI structure and initializes num_queue_pairs for the 1225 * newly allocated VSI. 1226 * 1227 * Returns 0 on success or negative on failure 1228 */ 1229 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi) 1230 { 1231 struct ice_pf *pf = vsi->back; 1232 struct device *dev; 1233 u16 num_q_vectors; 1234 int base; 1235 1236 dev = ice_pf_to_dev(pf); 1237 /* SRIOV doesn't grab irq_tracker entries for each VSI */ 1238 if (vsi->type == ICE_VSI_VF) 1239 return 0; 1240 1241 if (vsi->base_vector) { 1242 dev_dbg(dev, "VSI %d has non-zero base vector %d\n", 1243 vsi->vsi_num, vsi->base_vector); 1244 return -EEXIST; 1245 } 1246 1247 num_q_vectors = vsi->num_q_vectors; 1248 /* reserve slots from OS requested IRQs */ 1249 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 1250 int i; 1251 1252 ice_for_each_vf(pf, i) { 1253 struct ice_vf *vf = &pf->vf[i]; 1254 1255 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) { 1256 base = pf->vsi[vf->ctrl_vsi_idx]->base_vector; 1257 break; 1258 } 1259 } 1260 if (i == pf->num_alloc_vfs) 1261 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1262 ICE_RES_VF_CTRL_VEC_ID); 1263 } else { 1264 base = ice_get_res(pf, pf->irq_tracker, num_q_vectors, 1265 vsi->idx); 1266 } 1267 1268 if (base < 0) { 1269 dev_err(dev, "%d MSI-X interrupts available. %s %d failed to get %d MSI-X vectors\n", 1270 ice_get_free_res_count(pf->irq_tracker), 1271 ice_vsi_type_str(vsi->type), vsi->idx, num_q_vectors); 1272 return -ENOENT; 1273 } 1274 vsi->base_vector = (u16)base; 1275 pf->num_avail_sw_msix -= num_q_vectors; 1276 1277 return 0; 1278 } 1279 1280 /** 1281 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1282 * @vsi: the VSI having rings deallocated 1283 */ 1284 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1285 { 1286 int i; 1287 1288 /* Avoid stale references by clearing map from vector to ring */ 1289 if (vsi->q_vectors) { 1290 ice_for_each_q_vector(vsi, i) { 1291 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1292 1293 if (q_vector) { 1294 q_vector->tx.ring = NULL; 1295 q_vector->rx.ring = NULL; 1296 } 1297 } 1298 } 1299 1300 if (vsi->tx_rings) { 1301 for (i = 0; i < vsi->alloc_txq; i++) { 1302 if (vsi->tx_rings[i]) { 1303 kfree_rcu(vsi->tx_rings[i], rcu); 1304 WRITE_ONCE(vsi->tx_rings[i], NULL); 1305 } 1306 } 1307 } 1308 if (vsi->rx_rings) { 1309 for (i = 0; i < vsi->alloc_rxq; i++) { 1310 if (vsi->rx_rings[i]) { 1311 kfree_rcu(vsi->rx_rings[i], rcu); 1312 WRITE_ONCE(vsi->rx_rings[i], NULL); 1313 } 1314 } 1315 } 1316 } 1317 1318 /** 1319 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1320 * @vsi: VSI which is having rings allocated 1321 */ 1322 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1323 { 1324 struct ice_pf *pf = vsi->back; 1325 struct device *dev; 1326 u16 i; 1327 1328 dev = ice_pf_to_dev(pf); 1329 /* Allocate Tx rings */ 1330 for (i = 0; i < vsi->alloc_txq; i++) { 1331 struct ice_ring *ring; 1332 1333 /* allocate with kzalloc(), free with kfree_rcu() */ 1334 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1335 1336 if (!ring) 1337 goto err_out; 1338 1339 ring->q_index = i; 1340 ring->reg_idx = vsi->txq_map[i]; 1341 ring->ring_active = false; 1342 ring->vsi = vsi; 1343 ring->tx_tstamps = &pf->ptp.port.tx; 1344 ring->dev = dev; 1345 ring->count = vsi->num_tx_desc; 1346 WRITE_ONCE(vsi->tx_rings[i], ring); 1347 } 1348 1349 /* Allocate Rx rings */ 1350 for (i = 0; i < vsi->alloc_rxq; i++) { 1351 struct ice_ring *ring; 1352 1353 /* allocate with kzalloc(), free with kfree_rcu() */ 1354 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1355 if (!ring) 1356 goto err_out; 1357 1358 ring->q_index = i; 1359 ring->reg_idx = vsi->rxq_map[i]; 1360 ring->ring_active = false; 1361 ring->vsi = vsi; 1362 ring->netdev = vsi->netdev; 1363 ring->dev = dev; 1364 ring->count = vsi->num_rx_desc; 1365 WRITE_ONCE(vsi->rx_rings[i], ring); 1366 } 1367 1368 return 0; 1369 1370 err_out: 1371 ice_vsi_clear_rings(vsi); 1372 return -ENOMEM; 1373 } 1374 1375 /** 1376 * ice_vsi_manage_rss_lut - disable/enable RSS 1377 * @vsi: the VSI being changed 1378 * @ena: boolean value indicating if this is an enable or disable request 1379 * 1380 * In the event of disable request for RSS, this function will zero out RSS 1381 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1382 * LUT. 1383 */ 1384 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1385 { 1386 u8 *lut; 1387 1388 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1389 if (!lut) 1390 return; 1391 1392 if (ena) { 1393 if (vsi->rss_lut_user) 1394 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1395 else 1396 ice_fill_rss_lut(lut, vsi->rss_table_size, 1397 vsi->rss_size); 1398 } 1399 1400 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1401 kfree(lut); 1402 } 1403 1404 /** 1405 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1406 * @vsi: VSI to be configured 1407 */ 1408 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1409 { 1410 struct ice_pf *pf = vsi->back; 1411 struct device *dev; 1412 u8 *lut, *key; 1413 int err; 1414 1415 dev = ice_pf_to_dev(pf); 1416 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1417 1418 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1419 if (!lut) 1420 return -ENOMEM; 1421 1422 if (vsi->rss_lut_user) 1423 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1424 else 1425 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1426 1427 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1428 if (err) { 1429 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1430 goto ice_vsi_cfg_rss_exit; 1431 } 1432 1433 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1434 if (!key) { 1435 err = -ENOMEM; 1436 goto ice_vsi_cfg_rss_exit; 1437 } 1438 1439 if (vsi->rss_hkey_user) 1440 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1441 else 1442 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1443 1444 err = ice_set_rss_key(vsi, key); 1445 if (err) 1446 dev_err(dev, "set_rss_key failed, error %d\n", err); 1447 1448 kfree(key); 1449 ice_vsi_cfg_rss_exit: 1450 kfree(lut); 1451 return err; 1452 } 1453 1454 /** 1455 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1456 * @vsi: VSI to be configured 1457 * 1458 * This function will only be called during the VF VSI setup. Upon successful 1459 * completion of package download, this function will configure default RSS 1460 * input sets for VF VSI. 1461 */ 1462 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1463 { 1464 struct ice_pf *pf = vsi->back; 1465 enum ice_status status; 1466 struct device *dev; 1467 1468 dev = ice_pf_to_dev(pf); 1469 if (ice_is_safe_mode(pf)) { 1470 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1471 vsi->vsi_num); 1472 return; 1473 } 1474 1475 status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, ICE_DEFAULT_RSS_HENA); 1476 if (status) 1477 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %s\n", 1478 vsi->vsi_num, ice_stat_str(status)); 1479 } 1480 1481 /** 1482 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1483 * @vsi: VSI to be configured 1484 * 1485 * This function will only be called after successful download package call 1486 * during initialization of PF. Since the downloaded package will erase the 1487 * RSS section, this function will configure RSS input sets for different 1488 * flow types. The last profile added has the highest priority, therefore 2 1489 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1490 * (i.e. IPv4 src/dst TCP src/dst port). 1491 */ 1492 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1493 { 1494 u16 vsi_handle = vsi->idx, vsi_num = vsi->vsi_num; 1495 struct ice_pf *pf = vsi->back; 1496 struct ice_hw *hw = &pf->hw; 1497 enum ice_status status; 1498 struct device *dev; 1499 1500 dev = ice_pf_to_dev(pf); 1501 if (ice_is_safe_mode(pf)) { 1502 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1503 vsi_num); 1504 return; 1505 } 1506 /* configure RSS for IPv4 with input set IP src/dst */ 1507 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1508 ICE_FLOW_SEG_HDR_IPV4); 1509 if (status) 1510 dev_dbg(dev, "ice_add_rss_cfg failed for ipv4 flow, vsi = %d, error = %s\n", 1511 vsi_num, ice_stat_str(status)); 1512 1513 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1514 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1515 ICE_FLOW_SEG_HDR_IPV6); 1516 if (status) 1517 dev_dbg(dev, "ice_add_rss_cfg failed for ipv6 flow, vsi = %d, error = %s\n", 1518 vsi_num, ice_stat_str(status)); 1519 1520 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1521 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV4, 1522 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4); 1523 if (status) 1524 dev_dbg(dev, "ice_add_rss_cfg failed for tcp4 flow, vsi = %d, error = %s\n", 1525 vsi_num, ice_stat_str(status)); 1526 1527 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1528 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV4, 1529 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4); 1530 if (status) 1531 dev_dbg(dev, "ice_add_rss_cfg failed for udp4 flow, vsi = %d, error = %s\n", 1532 vsi_num, ice_stat_str(status)); 1533 1534 /* configure RSS for sctp4 with input set IP src/dst */ 1535 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV4, 1536 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4); 1537 if (status) 1538 dev_dbg(dev, "ice_add_rss_cfg failed for sctp4 flow, vsi = %d, error = %s\n", 1539 vsi_num, ice_stat_str(status)); 1540 1541 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1542 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_TCP_IPV6, 1543 ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6); 1544 if (status) 1545 dev_dbg(dev, "ice_add_rss_cfg failed for tcp6 flow, vsi = %d, error = %s\n", 1546 vsi_num, ice_stat_str(status)); 1547 1548 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1549 status = ice_add_rss_cfg(hw, vsi_handle, ICE_HASH_UDP_IPV6, 1550 ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6); 1551 if (status) 1552 dev_dbg(dev, "ice_add_rss_cfg failed for udp6 flow, vsi = %d, error = %s\n", 1553 vsi_num, ice_stat_str(status)); 1554 1555 /* configure RSS for sctp6 with input set IPv6 src/dst */ 1556 status = ice_add_rss_cfg(hw, vsi_handle, ICE_FLOW_HASH_IPV6, 1557 ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6); 1558 if (status) 1559 dev_dbg(dev, "ice_add_rss_cfg failed for sctp6 flow, vsi = %d, error = %s\n", 1560 vsi_num, ice_stat_str(status)); 1561 } 1562 1563 /** 1564 * ice_pf_state_is_nominal - checks the PF for nominal state 1565 * @pf: pointer to PF to check 1566 * 1567 * Check the PF's state for a collection of bits that would indicate 1568 * the PF is in a state that would inhibit normal operation for 1569 * driver functionality. 1570 * 1571 * Returns true if PF is in a nominal state, false otherwise 1572 */ 1573 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1574 { 1575 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1576 1577 if (!pf) 1578 return false; 1579 1580 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1581 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1582 return false; 1583 1584 return true; 1585 } 1586 1587 /** 1588 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1589 * @vsi: the VSI to be updated 1590 */ 1591 void ice_update_eth_stats(struct ice_vsi *vsi) 1592 { 1593 struct ice_eth_stats *prev_es, *cur_es; 1594 struct ice_hw *hw = &vsi->back->hw; 1595 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1596 1597 prev_es = &vsi->eth_stats_prev; 1598 cur_es = &vsi->eth_stats; 1599 1600 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1601 &prev_es->rx_bytes, &cur_es->rx_bytes); 1602 1603 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1604 &prev_es->rx_unicast, &cur_es->rx_unicast); 1605 1606 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1607 &prev_es->rx_multicast, &cur_es->rx_multicast); 1608 1609 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1610 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1611 1612 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1613 &prev_es->rx_discards, &cur_es->rx_discards); 1614 1615 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1616 &prev_es->tx_bytes, &cur_es->tx_bytes); 1617 1618 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1619 &prev_es->tx_unicast, &cur_es->tx_unicast); 1620 1621 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1622 &prev_es->tx_multicast, &cur_es->tx_multicast); 1623 1624 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1625 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1626 1627 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1628 &prev_es->tx_errors, &cur_es->tx_errors); 1629 1630 vsi->stat_offsets_loaded = true; 1631 } 1632 1633 /** 1634 * ice_vsi_add_vlan - Add VSI membership for given VLAN 1635 * @vsi: the VSI being configured 1636 * @vid: VLAN ID to be added 1637 * @action: filter action to be performed on match 1638 */ 1639 int 1640 ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid, enum ice_sw_fwd_act_type action) 1641 { 1642 struct ice_pf *pf = vsi->back; 1643 struct device *dev; 1644 int err = 0; 1645 1646 dev = ice_pf_to_dev(pf); 1647 1648 if (!ice_fltr_add_vlan(vsi, vid, action)) { 1649 vsi->num_vlan++; 1650 } else { 1651 err = -ENODEV; 1652 dev_err(dev, "Failure Adding VLAN %d on VSI %i\n", vid, 1653 vsi->vsi_num); 1654 } 1655 1656 return err; 1657 } 1658 1659 /** 1660 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN 1661 * @vsi: the VSI being configured 1662 * @vid: VLAN ID to be removed 1663 * 1664 * Returns 0 on success and negative on failure 1665 */ 1666 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid) 1667 { 1668 struct ice_pf *pf = vsi->back; 1669 enum ice_status status; 1670 struct device *dev; 1671 int err = 0; 1672 1673 dev = ice_pf_to_dev(pf); 1674 1675 status = ice_fltr_remove_vlan(vsi, vid, ICE_FWD_TO_VSI); 1676 if (!status) { 1677 vsi->num_vlan--; 1678 } else if (status == ICE_ERR_DOES_NOT_EXIST) { 1679 dev_dbg(dev, "Failed to remove VLAN %d on VSI %i, it does not exist, status: %s\n", 1680 vid, vsi->vsi_num, ice_stat_str(status)); 1681 } else { 1682 dev_err(dev, "Error removing VLAN %d on vsi %i error: %s\n", 1683 vid, vsi->vsi_num, ice_stat_str(status)); 1684 err = -EIO; 1685 } 1686 1687 return err; 1688 } 1689 1690 /** 1691 * ice_vsi_cfg_frame_size - setup max frame size and Rx buffer length 1692 * @vsi: VSI 1693 */ 1694 void ice_vsi_cfg_frame_size(struct ice_vsi *vsi) 1695 { 1696 if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags)) { 1697 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1698 vsi->rx_buf_len = ICE_RXBUF_2048; 1699 #if (PAGE_SIZE < 8192) 1700 } else if (!ICE_2K_TOO_SMALL_WITH_PADDING && 1701 (vsi->netdev->mtu <= ETH_DATA_LEN)) { 1702 vsi->max_frame = ICE_RXBUF_1536 - NET_IP_ALIGN; 1703 vsi->rx_buf_len = ICE_RXBUF_1536 - NET_IP_ALIGN; 1704 #endif 1705 } else { 1706 vsi->max_frame = ICE_AQ_SET_MAC_FRAME_SIZE_MAX; 1707 #if (PAGE_SIZE < 8192) 1708 vsi->rx_buf_len = ICE_RXBUF_3072; 1709 #else 1710 vsi->rx_buf_len = ICE_RXBUF_2048; 1711 #endif 1712 } 1713 } 1714 1715 /** 1716 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1717 * @hw: HW pointer 1718 * @pf_q: index of the Rx queue in the PF's queue space 1719 * @rxdid: flexible descriptor RXDID 1720 * @prio: priority for the RXDID for this queue 1721 * @ena_ts: true to enable timestamp and false to disable timestamp 1722 */ 1723 void 1724 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1725 bool ena_ts) 1726 { 1727 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1728 1729 /* clear any previous values */ 1730 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1731 QRXFLXP_CNTXT_RXDID_PRIO_M | 1732 QRXFLXP_CNTXT_TS_M); 1733 1734 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) & 1735 QRXFLXP_CNTXT_RXDID_IDX_M; 1736 1737 regval |= (prio << QRXFLXP_CNTXT_RXDID_PRIO_S) & 1738 QRXFLXP_CNTXT_RXDID_PRIO_M; 1739 1740 if (ena_ts) 1741 /* Enable TimeSync on this queue */ 1742 regval |= QRXFLXP_CNTXT_TS_M; 1743 1744 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1745 } 1746 1747 int ice_vsi_cfg_single_rxq(struct ice_vsi *vsi, u16 q_idx) 1748 { 1749 if (q_idx >= vsi->num_rxq) 1750 return -EINVAL; 1751 1752 return ice_vsi_cfg_rxq(vsi->rx_rings[q_idx]); 1753 } 1754 1755 int ice_vsi_cfg_single_txq(struct ice_vsi *vsi, struct ice_ring **tx_rings, u16 q_idx) 1756 { 1757 struct ice_aqc_add_tx_qgrp *qg_buf; 1758 int err; 1759 1760 if (q_idx >= vsi->alloc_txq || !tx_rings || !tx_rings[q_idx]) 1761 return -EINVAL; 1762 1763 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1764 if (!qg_buf) 1765 return -ENOMEM; 1766 1767 qg_buf->num_txqs = 1; 1768 1769 err = ice_vsi_cfg_txq(vsi, tx_rings[q_idx], qg_buf); 1770 kfree(qg_buf); 1771 return err; 1772 } 1773 1774 /** 1775 * ice_vsi_cfg_rxqs - Configure the VSI for Rx 1776 * @vsi: the VSI being configured 1777 * 1778 * Return 0 on success and a negative value on error 1779 * Configure the Rx VSI for operation. 1780 */ 1781 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi) 1782 { 1783 u16 i; 1784 1785 if (vsi->type == ICE_VSI_VF) 1786 goto setup_rings; 1787 1788 ice_vsi_cfg_frame_size(vsi); 1789 setup_rings: 1790 /* set up individual rings */ 1791 ice_for_each_rxq(vsi, i) { 1792 int err = ice_vsi_cfg_rxq(vsi->rx_rings[i]); 1793 1794 if (err) 1795 return err; 1796 } 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * ice_vsi_cfg_txqs - Configure the VSI for Tx 1803 * @vsi: the VSI being configured 1804 * @rings: Tx ring array to be configured 1805 * @count: number of Tx ring array elements 1806 * 1807 * Return 0 on success and a negative value on error 1808 * Configure the Tx VSI for operation. 1809 */ 1810 static int 1811 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, u16 count) 1812 { 1813 struct ice_aqc_add_tx_qgrp *qg_buf; 1814 u16 q_idx = 0; 1815 int err = 0; 1816 1817 qg_buf = kzalloc(struct_size(qg_buf, txqs, 1), GFP_KERNEL); 1818 if (!qg_buf) 1819 return -ENOMEM; 1820 1821 qg_buf->num_txqs = 1; 1822 1823 for (q_idx = 0; q_idx < count; q_idx++) { 1824 err = ice_vsi_cfg_txq(vsi, rings[q_idx], qg_buf); 1825 if (err) 1826 goto err_cfg_txqs; 1827 } 1828 1829 err_cfg_txqs: 1830 kfree(qg_buf); 1831 return err; 1832 } 1833 1834 /** 1835 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx 1836 * @vsi: the VSI being configured 1837 * 1838 * Return 0 on success and a negative value on error 1839 * Configure the Tx VSI for operation. 1840 */ 1841 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi) 1842 { 1843 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, vsi->num_txq); 1844 } 1845 1846 /** 1847 * ice_vsi_cfg_xdp_txqs - Configure Tx queues dedicated for XDP in given VSI 1848 * @vsi: the VSI being configured 1849 * 1850 * Return 0 on success and a negative value on error 1851 * Configure the Tx queues dedicated for XDP in given VSI for operation. 1852 */ 1853 int ice_vsi_cfg_xdp_txqs(struct ice_vsi *vsi) 1854 { 1855 int ret; 1856 int i; 1857 1858 ret = ice_vsi_cfg_txqs(vsi, vsi->xdp_rings, vsi->num_xdp_txq); 1859 if (ret) 1860 return ret; 1861 1862 for (i = 0; i < vsi->num_xdp_txq; i++) 1863 vsi->xdp_rings[i]->xsk_pool = ice_xsk_pool(vsi->xdp_rings[i]); 1864 1865 return ret; 1866 } 1867 1868 /** 1869 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1870 * @intrl: interrupt rate limit in usecs 1871 * @gran: interrupt rate limit granularity in usecs 1872 * 1873 * This function converts a decimal interrupt rate limit in usecs to the format 1874 * expected by firmware. 1875 */ 1876 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1877 { 1878 u32 val = intrl / gran; 1879 1880 if (val) 1881 return val | GLINT_RATE_INTRL_ENA_M; 1882 return 0; 1883 } 1884 1885 /** 1886 * ice_write_intrl - write throttle rate limit to interrupt specific register 1887 * @q_vector: pointer to interrupt specific structure 1888 * @intrl: throttle rate limit in microseconds to write 1889 */ 1890 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1891 { 1892 struct ice_hw *hw = &q_vector->vsi->back->hw; 1893 1894 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1895 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1896 } 1897 1898 /** 1899 * __ice_write_itr - write throttle rate to register 1900 * @q_vector: pointer to interrupt data structure 1901 * @rc: pointer to ring container 1902 * @itr: throttle rate in microseconds to write 1903 */ 1904 static void __ice_write_itr(struct ice_q_vector *q_vector, 1905 struct ice_ring_container *rc, u16 itr) 1906 { 1907 struct ice_hw *hw = &q_vector->vsi->back->hw; 1908 1909 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1910 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1911 } 1912 1913 /** 1914 * ice_write_itr - write throttle rate to queue specific register 1915 * @rc: pointer to ring container 1916 * @itr: throttle rate in microseconds to write 1917 */ 1918 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1919 { 1920 struct ice_q_vector *q_vector; 1921 1922 if (!rc->ring) 1923 return; 1924 1925 q_vector = rc->ring->q_vector; 1926 1927 __ice_write_itr(q_vector, rc, itr); 1928 } 1929 1930 /** 1931 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1932 * @vsi: the VSI being configured 1933 * 1934 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1935 * for the VF VSI. 1936 */ 1937 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1938 { 1939 struct ice_pf *pf = vsi->back; 1940 struct ice_hw *hw = &pf->hw; 1941 u16 txq = 0, rxq = 0; 1942 int i, q; 1943 1944 for (i = 0; i < vsi->num_q_vectors; i++) { 1945 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1946 u16 reg_idx = q_vector->reg_idx; 1947 1948 ice_cfg_itr(hw, q_vector); 1949 1950 /* Both Transmit Queue Interrupt Cause Control register 1951 * and Receive Queue Interrupt Cause control register 1952 * expects MSIX_INDX field to be the vector index 1953 * within the function space and not the absolute 1954 * vector index across PF or across device. 1955 * For SR-IOV VF VSIs queue vector index always starts 1956 * with 1 since first vector index(0) is used for OICR 1957 * in VF space. Since VMDq and other PF VSIs are within 1958 * the PF function space, use the vector index that is 1959 * tracked for this PF. 1960 */ 1961 for (q = 0; q < q_vector->num_ring_tx; q++) { 1962 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1963 q_vector->tx.itr_idx); 1964 txq++; 1965 } 1966 1967 for (q = 0; q < q_vector->num_ring_rx; q++) { 1968 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1969 q_vector->rx.itr_idx); 1970 rxq++; 1971 } 1972 } 1973 } 1974 1975 /** 1976 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx 1977 * @vsi: the VSI being changed 1978 */ 1979 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi) 1980 { 1981 struct ice_hw *hw = &vsi->back->hw; 1982 struct ice_vsi_ctx *ctxt; 1983 enum ice_status status; 1984 int ret = 0; 1985 1986 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1987 if (!ctxt) 1988 return -ENOMEM; 1989 1990 /* Here we are configuring the VSI to let the driver add VLAN tags by 1991 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag 1992 * insertion happens in the Tx hot path, in ice_tx_map. 1993 */ 1994 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL; 1995 1996 /* Preserve existing VLAN strip setting */ 1997 ctxt->info.vlan_flags |= (vsi->info.vlan_flags & 1998 ICE_AQ_VSI_VLAN_EMOD_M); 1999 2000 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2001 2002 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2003 if (status) { 2004 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN insert failed, err %s aq_err %s\n", 2005 ice_stat_str(status), 2006 ice_aq_str(hw->adminq.sq_last_status)); 2007 ret = -EIO; 2008 goto out; 2009 } 2010 2011 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2012 out: 2013 kfree(ctxt); 2014 return ret; 2015 } 2016 2017 /** 2018 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx 2019 * @vsi: the VSI being changed 2020 * @ena: boolean value indicating if this is a enable or disable request 2021 */ 2022 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena) 2023 { 2024 struct ice_hw *hw = &vsi->back->hw; 2025 struct ice_vsi_ctx *ctxt; 2026 enum ice_status status; 2027 int ret = 0; 2028 2029 /* do not allow modifying VLAN stripping when a port VLAN is configured 2030 * on this VSI 2031 */ 2032 if (vsi->info.pvid) 2033 return 0; 2034 2035 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2036 if (!ctxt) 2037 return -ENOMEM; 2038 2039 /* Here we are configuring what the VSI should do with the VLAN tag in 2040 * the Rx packet. We can either leave the tag in the packet or put it in 2041 * the Rx descriptor. 2042 */ 2043 if (ena) 2044 /* Strip VLAN tag from Rx packet and put it in the desc */ 2045 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH; 2046 else 2047 /* Disable stripping. Leave tag in packet */ 2048 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; 2049 2050 /* Allow all packets untagged/tagged */ 2051 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; 2052 2053 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID); 2054 2055 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 2056 if (status) { 2057 dev_err(ice_pf_to_dev(vsi->back), "update VSI for VLAN strip failed, ena = %d err %s aq_err %s\n", 2058 ena, ice_stat_str(status), 2059 ice_aq_str(hw->adminq.sq_last_status)); 2060 ret = -EIO; 2061 goto out; 2062 } 2063 2064 vsi->info.vlan_flags = ctxt->info.vlan_flags; 2065 out: 2066 kfree(ctxt); 2067 return ret; 2068 } 2069 2070 /** 2071 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 2072 * @vsi: the VSI whose rings are to be enabled 2073 * 2074 * Returns 0 on success and a negative value on error 2075 */ 2076 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 2077 { 2078 return ice_vsi_ctrl_all_rx_rings(vsi, true); 2079 } 2080 2081 /** 2082 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 2083 * @vsi: the VSI whose rings are to be disabled 2084 * 2085 * Returns 0 on success and a negative value on error 2086 */ 2087 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 2088 { 2089 return ice_vsi_ctrl_all_rx_rings(vsi, false); 2090 } 2091 2092 /** 2093 * ice_vsi_stop_tx_rings - Disable Tx rings 2094 * @vsi: the VSI being configured 2095 * @rst_src: reset source 2096 * @rel_vmvf_num: Relative ID of VF/VM 2097 * @rings: Tx ring array to be stopped 2098 * @count: number of Tx ring array elements 2099 */ 2100 static int 2101 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2102 u16 rel_vmvf_num, struct ice_ring **rings, u16 count) 2103 { 2104 u16 q_idx; 2105 2106 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 2107 return -EINVAL; 2108 2109 for (q_idx = 0; q_idx < count; q_idx++) { 2110 struct ice_txq_meta txq_meta = { }; 2111 int status; 2112 2113 if (!rings || !rings[q_idx]) 2114 return -EINVAL; 2115 2116 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 2117 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 2118 rings[q_idx], &txq_meta); 2119 2120 if (status) 2121 return status; 2122 } 2123 2124 return 0; 2125 } 2126 2127 /** 2128 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 2129 * @vsi: the VSI being configured 2130 * @rst_src: reset source 2131 * @rel_vmvf_num: Relative ID of VF/VM 2132 */ 2133 int 2134 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 2135 u16 rel_vmvf_num) 2136 { 2137 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 2138 } 2139 2140 /** 2141 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2142 * @vsi: the VSI being configured 2143 */ 2144 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2145 { 2146 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2147 } 2148 2149 /** 2150 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 2151 * @vsi: VSI to check whether or not VLAN pruning is enabled. 2152 * 2153 * returns true if Rx VLAN pruning is enabled and false otherwise. 2154 */ 2155 bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 2156 { 2157 if (!vsi) 2158 return false; 2159 2160 return (vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA); 2161 } 2162 2163 /** 2164 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI 2165 * @vsi: VSI to enable or disable VLAN pruning on 2166 * @ena: set to true to enable VLAN pruning and false to disable it 2167 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode 2168 * 2169 * returns 0 if VSI is updated, negative otherwise 2170 */ 2171 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc) 2172 { 2173 struct ice_vsi_ctx *ctxt; 2174 struct ice_pf *pf; 2175 int status; 2176 2177 if (!vsi) 2178 return -EINVAL; 2179 2180 /* Don't enable VLAN pruning if the netdev is currently in promiscuous 2181 * mode. VLAN pruning will be enabled when the interface exits 2182 * promiscuous mode if any VLAN filters are active. 2183 */ 2184 if (vsi->netdev && vsi->netdev->flags & IFF_PROMISC && ena) 2185 return 0; 2186 2187 pf = vsi->back; 2188 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 2189 if (!ctxt) 2190 return -ENOMEM; 2191 2192 ctxt->info = vsi->info; 2193 2194 if (ena) 2195 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2196 else 2197 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 2198 2199 if (!vlan_promisc) 2200 ctxt->info.valid_sections = 2201 cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 2202 2203 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL); 2204 if (status) { 2205 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %s, aq_err = %s\n", 2206 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, 2207 ice_stat_str(status), 2208 ice_aq_str(pf->hw.adminq.sq_last_status)); 2209 goto err_out; 2210 } 2211 2212 vsi->info.sw_flags2 = ctxt->info.sw_flags2; 2213 2214 kfree(ctxt); 2215 return 0; 2216 2217 err_out: 2218 kfree(ctxt); 2219 return -EIO; 2220 } 2221 2222 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2223 { 2224 struct ice_dcbx_cfg *cfg = &vsi->port_info->qos_cfg.local_dcbx_cfg; 2225 2226 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg); 2227 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg); 2228 } 2229 2230 /** 2231 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors 2232 * @vsi: VSI to set the q_vectors register index on 2233 */ 2234 static int 2235 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi) 2236 { 2237 u16 i; 2238 2239 if (!vsi || !vsi->q_vectors) 2240 return -EINVAL; 2241 2242 ice_for_each_q_vector(vsi, i) { 2243 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2244 2245 if (!q_vector) { 2246 dev_err(ice_pf_to_dev(vsi->back), "Failed to set reg_idx on q_vector %d VSI %d\n", 2247 i, vsi->vsi_num); 2248 goto clear_reg_idx; 2249 } 2250 2251 if (vsi->type == ICE_VSI_VF) { 2252 struct ice_vf *vf = &vsi->back->vf[vsi->vf_id]; 2253 2254 q_vector->reg_idx = ice_calc_vf_reg_idx(vf, q_vector); 2255 } else { 2256 q_vector->reg_idx = 2257 q_vector->v_idx + vsi->base_vector; 2258 } 2259 } 2260 2261 return 0; 2262 2263 clear_reg_idx: 2264 ice_for_each_q_vector(vsi, i) { 2265 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2266 2267 if (q_vector) 2268 q_vector->reg_idx = 0; 2269 } 2270 2271 return -EINVAL; 2272 } 2273 2274 /** 2275 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2276 * @vsi: the VSI being configured 2277 * @tx: bool to determine Tx or Rx rule 2278 * @create: bool to determine create or remove Rule 2279 */ 2280 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2281 { 2282 enum ice_status (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2283 enum ice_sw_fwd_act_type act); 2284 struct ice_pf *pf = vsi->back; 2285 enum ice_status status; 2286 struct device *dev; 2287 2288 dev = ice_pf_to_dev(pf); 2289 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2290 2291 if (tx) { 2292 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2293 ICE_DROP_PACKET); 2294 } else { 2295 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2296 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2297 create); 2298 } else { 2299 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2300 ICE_FWD_TO_VSI); 2301 } 2302 } 2303 2304 if (status) 2305 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %s\n", 2306 create ? "adding" : "removing", tx ? "TX" : "RX", 2307 vsi->vsi_num, ice_stat_str(status)); 2308 } 2309 2310 /** 2311 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2312 * @vsi: pointer to the VSI 2313 * 2314 * This function will allocate new scheduler aggregator now if needed and will 2315 * move specified VSI into it. 2316 */ 2317 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2318 { 2319 struct device *dev = ice_pf_to_dev(vsi->back); 2320 struct ice_agg_node *agg_node_iter = NULL; 2321 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2322 struct ice_agg_node *agg_node = NULL; 2323 int node_offset, max_agg_nodes = 0; 2324 struct ice_port_info *port_info; 2325 struct ice_pf *pf = vsi->back; 2326 u32 agg_node_id_start = 0; 2327 enum ice_status status; 2328 2329 /* create (as needed) scheduler aggregator node and move VSI into 2330 * corresponding aggregator node 2331 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2332 * - VF aggregator nodes will contain VF VSI 2333 */ 2334 port_info = pf->hw.port_info; 2335 if (!port_info) 2336 return; 2337 2338 switch (vsi->type) { 2339 case ICE_VSI_CTRL: 2340 case ICE_VSI_LB: 2341 case ICE_VSI_PF: 2342 case ICE_VSI_SWITCHDEV_CTRL: 2343 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2344 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2345 agg_node_iter = &pf->pf_agg_node[0]; 2346 break; 2347 case ICE_VSI_VF: 2348 /* user can create 'n' VFs on a given PF, but since max children 2349 * per aggregator node can be only 64. Following code handles 2350 * aggregator(s) for VF VSIs, either selects a agg_node which 2351 * was already created provided num_vsis < 64, otherwise 2352 * select next available node, which will be created 2353 */ 2354 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2355 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2356 agg_node_iter = &pf->vf_agg_node[0]; 2357 break; 2358 default: 2359 /* other VSI type, handle later if needed */ 2360 dev_dbg(dev, "unexpected VSI type %s\n", 2361 ice_vsi_type_str(vsi->type)); 2362 return; 2363 } 2364 2365 /* find the appropriate aggregator node */ 2366 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2367 /* see if we can find space in previously created 2368 * node if num_vsis < 64, otherwise skip 2369 */ 2370 if (agg_node_iter->num_vsis && 2371 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2372 agg_node_iter++; 2373 continue; 2374 } 2375 2376 if (agg_node_iter->valid && 2377 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2378 agg_id = agg_node_iter->agg_id; 2379 agg_node = agg_node_iter; 2380 break; 2381 } 2382 2383 /* find unclaimed agg_id */ 2384 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2385 agg_id = node_offset + agg_node_id_start; 2386 agg_node = agg_node_iter; 2387 break; 2388 } 2389 /* move to next agg_node */ 2390 agg_node_iter++; 2391 } 2392 2393 if (!agg_node) 2394 return; 2395 2396 /* if selected aggregator node was not created, create it */ 2397 if (!agg_node->valid) { 2398 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2399 (u8)vsi->tc_cfg.ena_tc); 2400 if (status) { 2401 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2402 agg_id); 2403 return; 2404 } 2405 /* aggregator node is created, store the neeeded info */ 2406 agg_node->valid = true; 2407 agg_node->agg_id = agg_id; 2408 } 2409 2410 /* move VSI to corresponding aggregator node */ 2411 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2412 (u8)vsi->tc_cfg.ena_tc); 2413 if (status) { 2414 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2415 vsi->idx, agg_id); 2416 return; 2417 } 2418 2419 /* keep active children count for aggregator node */ 2420 agg_node->num_vsis++; 2421 2422 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2423 * to aggregator node 2424 */ 2425 vsi->agg_node = agg_node; 2426 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2427 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2428 vsi->agg_node->num_vsis); 2429 } 2430 2431 /** 2432 * ice_vsi_setup - Set up a VSI by a given type 2433 * @pf: board private structure 2434 * @pi: pointer to the port_info instance 2435 * @vsi_type: VSI type 2436 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be 2437 * used only for ICE_VSI_VF VSI type. For other VSI types, should 2438 * fill-in ICE_INVAL_VFID as input. 2439 * 2440 * This allocates the sw VSI structure and its queue resources. 2441 * 2442 * Returns pointer to the successfully allocated and configured VSI sw struct on 2443 * success, NULL on failure. 2444 */ 2445 struct ice_vsi * 2446 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, 2447 enum ice_vsi_type vsi_type, u16 vf_id) 2448 { 2449 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2450 struct device *dev = ice_pf_to_dev(pf); 2451 enum ice_status status; 2452 struct ice_vsi *vsi; 2453 int ret, i; 2454 2455 if (vsi_type == ICE_VSI_VF || vsi_type == ICE_VSI_CTRL) 2456 vsi = ice_vsi_alloc(pf, vsi_type, vf_id); 2457 else 2458 vsi = ice_vsi_alloc(pf, vsi_type, ICE_INVAL_VFID); 2459 2460 if (!vsi) { 2461 dev_err(dev, "could not allocate VSI\n"); 2462 return NULL; 2463 } 2464 2465 vsi->port_info = pi; 2466 vsi->vsw = pf->first_sw; 2467 if (vsi->type == ICE_VSI_PF) 2468 vsi->ethtype = ETH_P_PAUSE; 2469 2470 if (vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CTRL) 2471 vsi->vf_id = vf_id; 2472 2473 ice_alloc_fd_res(vsi); 2474 2475 if (ice_vsi_get_qs(vsi)) { 2476 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2477 vsi->idx); 2478 goto unroll_vsi_alloc; 2479 } 2480 2481 /* set RSS capabilities */ 2482 ice_vsi_set_rss_params(vsi); 2483 2484 /* set TC configuration */ 2485 ice_vsi_set_tc_cfg(vsi); 2486 2487 /* create the VSI */ 2488 ret = ice_vsi_init(vsi, true); 2489 if (ret) 2490 goto unroll_get_qs; 2491 2492 switch (vsi->type) { 2493 case ICE_VSI_CTRL: 2494 case ICE_VSI_SWITCHDEV_CTRL: 2495 case ICE_VSI_PF: 2496 ret = ice_vsi_alloc_q_vectors(vsi); 2497 if (ret) 2498 goto unroll_vsi_init; 2499 2500 ret = ice_vsi_setup_vector_base(vsi); 2501 if (ret) 2502 goto unroll_alloc_q_vector; 2503 2504 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2505 if (ret) 2506 goto unroll_vector_base; 2507 2508 ret = ice_vsi_alloc_rings(vsi); 2509 if (ret) 2510 goto unroll_vector_base; 2511 2512 /* Always add VLAN ID 0 switch rule by default. This is needed 2513 * in order to allow all untagged and 0 tagged priority traffic 2514 * if Rx VLAN pruning is enabled. Also there are cases where we 2515 * don't get the call to add VLAN 0 via ice_vlan_rx_add_vid() 2516 * so this handles those cases (i.e. adding the PF to a bridge 2517 * without the 8021q module loaded). 2518 */ 2519 ret = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI); 2520 if (ret) 2521 goto unroll_clear_rings; 2522 2523 ice_vsi_map_rings_to_vectors(vsi); 2524 2525 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2526 if (vsi->type != ICE_VSI_CTRL) 2527 /* Do not exit if configuring RSS had an issue, at 2528 * least receive traffic on first queue. Hence no 2529 * need to capture return value 2530 */ 2531 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2532 ice_vsi_cfg_rss_lut_key(vsi); 2533 ice_vsi_set_rss_flow_fld(vsi); 2534 } 2535 ice_init_arfs(vsi); 2536 break; 2537 case ICE_VSI_VF: 2538 /* VF driver will take care of creating netdev for this type and 2539 * map queues to vectors through Virtchnl, PF driver only 2540 * creates a VSI and corresponding structures for bookkeeping 2541 * purpose 2542 */ 2543 ret = ice_vsi_alloc_q_vectors(vsi); 2544 if (ret) 2545 goto unroll_vsi_init; 2546 2547 ret = ice_vsi_alloc_rings(vsi); 2548 if (ret) 2549 goto unroll_alloc_q_vector; 2550 2551 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 2552 if (ret) 2553 goto unroll_vector_base; 2554 2555 /* Do not exit if configuring RSS had an issue, at least 2556 * receive traffic on first queue. Hence no need to capture 2557 * return value 2558 */ 2559 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2560 ice_vsi_cfg_rss_lut_key(vsi); 2561 ice_vsi_set_vf_rss_flow_fld(vsi); 2562 } 2563 break; 2564 case ICE_VSI_LB: 2565 ret = ice_vsi_alloc_rings(vsi); 2566 if (ret) 2567 goto unroll_vsi_init; 2568 break; 2569 default: 2570 /* clean up the resources and exit */ 2571 goto unroll_vsi_init; 2572 } 2573 2574 /* configure VSI nodes based on number of queues and TC's */ 2575 for (i = 0; i < vsi->tc_cfg.numtc; i++) 2576 max_txqs[i] = vsi->alloc_txq; 2577 2578 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2579 max_txqs); 2580 if (status) { 2581 dev_err(dev, "VSI %d failed lan queue config, error %s\n", 2582 vsi->vsi_num, ice_stat_str(status)); 2583 goto unroll_clear_rings; 2584 } 2585 2586 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2587 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2588 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2589 * The rule is added once for PF VSI in order to create appropriate 2590 * recipe, since VSI/VSI list is ignored with drop action... 2591 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2592 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2593 * settings in the HW. 2594 */ 2595 if (!ice_is_safe_mode(pf)) 2596 if (vsi->type == ICE_VSI_PF) { 2597 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2598 ICE_DROP_PACKET); 2599 ice_cfg_sw_lldp(vsi, true, true); 2600 } 2601 2602 if (!vsi->agg_node) 2603 ice_set_agg_vsi(vsi); 2604 return vsi; 2605 2606 unroll_clear_rings: 2607 ice_vsi_clear_rings(vsi); 2608 unroll_vector_base: 2609 /* reclaim SW interrupts back to the common pool */ 2610 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2611 pf->num_avail_sw_msix += vsi->num_q_vectors; 2612 unroll_alloc_q_vector: 2613 ice_vsi_free_q_vectors(vsi); 2614 unroll_vsi_init: 2615 ice_vsi_delete(vsi); 2616 unroll_get_qs: 2617 ice_vsi_put_qs(vsi); 2618 unroll_vsi_alloc: 2619 if (vsi_type == ICE_VSI_VF) 2620 ice_enable_lag(pf->lag); 2621 ice_vsi_clear(vsi); 2622 2623 return NULL; 2624 } 2625 2626 /** 2627 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2628 * @vsi: the VSI being cleaned up 2629 */ 2630 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2631 { 2632 struct ice_pf *pf = vsi->back; 2633 struct ice_hw *hw = &pf->hw; 2634 u32 txq = 0; 2635 u32 rxq = 0; 2636 int i, q; 2637 2638 for (i = 0; i < vsi->num_q_vectors; i++) { 2639 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2640 2641 ice_write_intrl(q_vector, 0); 2642 for (q = 0; q < q_vector->num_ring_tx; q++) { 2643 ice_write_itr(&q_vector->tx, 0); 2644 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2645 if (ice_is_xdp_ena_vsi(vsi)) { 2646 u32 xdp_txq = txq + vsi->num_xdp_txq; 2647 2648 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2649 } 2650 txq++; 2651 } 2652 2653 for (q = 0; q < q_vector->num_ring_rx; q++) { 2654 ice_write_itr(&q_vector->rx, 0); 2655 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2656 rxq++; 2657 } 2658 } 2659 2660 ice_flush(hw); 2661 } 2662 2663 /** 2664 * ice_vsi_free_irq - Free the IRQ association with the OS 2665 * @vsi: the VSI being configured 2666 */ 2667 void ice_vsi_free_irq(struct ice_vsi *vsi) 2668 { 2669 struct ice_pf *pf = vsi->back; 2670 int base = vsi->base_vector; 2671 int i; 2672 2673 if (!vsi->q_vectors || !vsi->irqs_ready) 2674 return; 2675 2676 ice_vsi_release_msix(vsi); 2677 if (vsi->type == ICE_VSI_VF) 2678 return; 2679 2680 vsi->irqs_ready = false; 2681 ice_for_each_q_vector(vsi, i) { 2682 u16 vector = i + base; 2683 int irq_num; 2684 2685 irq_num = pf->msix_entries[vector].vector; 2686 2687 /* free only the irqs that were actually requested */ 2688 if (!vsi->q_vectors[i] || 2689 !(vsi->q_vectors[i]->num_ring_tx || 2690 vsi->q_vectors[i]->num_ring_rx)) 2691 continue; 2692 2693 /* clear the affinity notifier in the IRQ descriptor */ 2694 irq_set_affinity_notifier(irq_num, NULL); 2695 2696 /* clear the affinity_mask in the IRQ descriptor */ 2697 irq_set_affinity_hint(irq_num, NULL); 2698 synchronize_irq(irq_num); 2699 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2700 } 2701 } 2702 2703 /** 2704 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2705 * @vsi: the VSI having resources freed 2706 */ 2707 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2708 { 2709 int i; 2710 2711 if (!vsi->tx_rings) 2712 return; 2713 2714 ice_for_each_txq(vsi, i) 2715 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2716 ice_free_tx_ring(vsi->tx_rings[i]); 2717 } 2718 2719 /** 2720 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2721 * @vsi: the VSI having resources freed 2722 */ 2723 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2724 { 2725 int i; 2726 2727 if (!vsi->rx_rings) 2728 return; 2729 2730 ice_for_each_rxq(vsi, i) 2731 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2732 ice_free_rx_ring(vsi->rx_rings[i]); 2733 } 2734 2735 /** 2736 * ice_vsi_close - Shut down a VSI 2737 * @vsi: the VSI being shut down 2738 */ 2739 void ice_vsi_close(struct ice_vsi *vsi) 2740 { 2741 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2742 ice_down(vsi); 2743 2744 ice_vsi_free_irq(vsi); 2745 ice_vsi_free_tx_rings(vsi); 2746 ice_vsi_free_rx_rings(vsi); 2747 } 2748 2749 /** 2750 * ice_ena_vsi - resume a VSI 2751 * @vsi: the VSI being resume 2752 * @locked: is the rtnl_lock already held 2753 */ 2754 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2755 { 2756 int err = 0; 2757 2758 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2759 return 0; 2760 2761 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2762 2763 if (vsi->netdev && vsi->type == ICE_VSI_PF) { 2764 if (netif_running(vsi->netdev)) { 2765 if (!locked) 2766 rtnl_lock(); 2767 2768 err = ice_open_internal(vsi->netdev); 2769 2770 if (!locked) 2771 rtnl_unlock(); 2772 } 2773 } else if (vsi->type == ICE_VSI_CTRL) { 2774 err = ice_vsi_open_ctrl(vsi); 2775 } 2776 2777 return err; 2778 } 2779 2780 /** 2781 * ice_dis_vsi - pause a VSI 2782 * @vsi: the VSI being paused 2783 * @locked: is the rtnl_lock already held 2784 */ 2785 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2786 { 2787 if (test_bit(ICE_VSI_DOWN, vsi->state)) 2788 return; 2789 2790 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2791 2792 if (vsi->type == ICE_VSI_PF && vsi->netdev) { 2793 if (netif_running(vsi->netdev)) { 2794 if (!locked) 2795 rtnl_lock(); 2796 2797 ice_vsi_close(vsi); 2798 2799 if (!locked) 2800 rtnl_unlock(); 2801 } else { 2802 ice_vsi_close(vsi); 2803 } 2804 } else if (vsi->type == ICE_VSI_CTRL || 2805 vsi->type == ICE_VSI_SWITCHDEV_CTRL) { 2806 ice_vsi_close(vsi); 2807 } 2808 } 2809 2810 /** 2811 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI 2812 * @vsi: the VSI being un-configured 2813 */ 2814 void ice_vsi_dis_irq(struct ice_vsi *vsi) 2815 { 2816 int base = vsi->base_vector; 2817 struct ice_pf *pf = vsi->back; 2818 struct ice_hw *hw = &pf->hw; 2819 u32 val; 2820 int i; 2821 2822 /* disable interrupt causation from each queue */ 2823 if (vsi->tx_rings) { 2824 ice_for_each_txq(vsi, i) { 2825 if (vsi->tx_rings[i]) { 2826 u16 reg; 2827 2828 reg = vsi->tx_rings[i]->reg_idx; 2829 val = rd32(hw, QINT_TQCTL(reg)); 2830 val &= ~QINT_TQCTL_CAUSE_ENA_M; 2831 wr32(hw, QINT_TQCTL(reg), val); 2832 } 2833 } 2834 } 2835 2836 if (vsi->rx_rings) { 2837 ice_for_each_rxq(vsi, i) { 2838 if (vsi->rx_rings[i]) { 2839 u16 reg; 2840 2841 reg = vsi->rx_rings[i]->reg_idx; 2842 val = rd32(hw, QINT_RQCTL(reg)); 2843 val &= ~QINT_RQCTL_CAUSE_ENA_M; 2844 wr32(hw, QINT_RQCTL(reg), val); 2845 } 2846 } 2847 } 2848 2849 /* disable each interrupt */ 2850 ice_for_each_q_vector(vsi, i) { 2851 if (!vsi->q_vectors[i]) 2852 continue; 2853 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0); 2854 } 2855 2856 ice_flush(hw); 2857 2858 /* don't call synchronize_irq() for VF's from the host */ 2859 if (vsi->type == ICE_VSI_VF) 2860 return; 2861 2862 ice_for_each_q_vector(vsi, i) 2863 synchronize_irq(pf->msix_entries[i + base].vector); 2864 } 2865 2866 /** 2867 * ice_napi_del - Remove NAPI handler for the VSI 2868 * @vsi: VSI for which NAPI handler is to be removed 2869 */ 2870 void ice_napi_del(struct ice_vsi *vsi) 2871 { 2872 int v_idx; 2873 2874 if (!vsi->netdev) 2875 return; 2876 2877 ice_for_each_q_vector(vsi, v_idx) 2878 netif_napi_del(&vsi->q_vectors[v_idx]->napi); 2879 } 2880 2881 /** 2882 * ice_vsi_release - Delete a VSI and free its resources 2883 * @vsi: the VSI being removed 2884 * 2885 * Returns 0 on success or < 0 on error 2886 */ 2887 int ice_vsi_release(struct ice_vsi *vsi) 2888 { 2889 struct ice_pf *pf; 2890 2891 if (!vsi->back) 2892 return -ENODEV; 2893 pf = vsi->back; 2894 2895 /* do not unregister while driver is in the reset recovery pending 2896 * state. Since reset/rebuild happens through PF service task workqueue, 2897 * it's not a good idea to unregister netdev that is associated to the 2898 * PF that is running the work queue items currently. This is done to 2899 * avoid check_flush_dependency() warning on this wq 2900 */ 2901 if (vsi->netdev && !ice_is_reset_in_progress(pf->state) && 2902 (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state))) { 2903 unregister_netdev(vsi->netdev); 2904 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2905 } 2906 2907 if (vsi->type == ICE_VSI_PF) 2908 ice_devlink_destroy_pf_port(pf); 2909 2910 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2911 ice_rss_clean(vsi); 2912 2913 /* Disable VSI and free resources */ 2914 if (vsi->type != ICE_VSI_LB) 2915 ice_vsi_dis_irq(vsi); 2916 ice_vsi_close(vsi); 2917 2918 /* SR-IOV determines needed MSIX resources all at once instead of per 2919 * VSI since when VFs are spawned we know how many VFs there are and how 2920 * many interrupts each VF needs. SR-IOV MSIX resources are also 2921 * cleared in the same manner. 2922 */ 2923 if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID) { 2924 int i; 2925 2926 ice_for_each_vf(pf, i) { 2927 struct ice_vf *vf = &pf->vf[i]; 2928 2929 if (i != vsi->vf_id && vf->ctrl_vsi_idx != ICE_NO_VSI) 2930 break; 2931 } 2932 if (i == pf->num_alloc_vfs) { 2933 /* No other VFs left that have control VSI, reclaim SW 2934 * interrupts back to the common pool 2935 */ 2936 ice_free_res(pf->irq_tracker, vsi->base_vector, 2937 ICE_RES_VF_CTRL_VEC_ID); 2938 pf->num_avail_sw_msix += vsi->num_q_vectors; 2939 } 2940 } else if (vsi->type != ICE_VSI_VF) { 2941 /* reclaim SW interrupts back to the common pool */ 2942 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 2943 pf->num_avail_sw_msix += vsi->num_q_vectors; 2944 } 2945 2946 if (!ice_is_safe_mode(pf)) { 2947 if (vsi->type == ICE_VSI_PF) { 2948 ice_fltr_remove_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2949 ICE_DROP_PACKET); 2950 ice_cfg_sw_lldp(vsi, true, false); 2951 /* The Rx rule will only exist to remove if the LLDP FW 2952 * engine is currently stopped 2953 */ 2954 if (!test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2955 ice_cfg_sw_lldp(vsi, false, false); 2956 } 2957 } 2958 2959 ice_fltr_remove_all(vsi); 2960 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2961 ice_vsi_delete(vsi); 2962 ice_vsi_free_q_vectors(vsi); 2963 2964 if (vsi->netdev) { 2965 if (test_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state)) { 2966 unregister_netdev(vsi->netdev); 2967 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state); 2968 } 2969 if (test_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state)) { 2970 free_netdev(vsi->netdev); 2971 vsi->netdev = NULL; 2972 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state); 2973 } 2974 } 2975 2976 if (vsi->type == ICE_VSI_VF && 2977 vsi->agg_node && vsi->agg_node->valid) 2978 vsi->agg_node->num_vsis--; 2979 ice_vsi_clear_rings(vsi); 2980 2981 ice_vsi_put_qs(vsi); 2982 2983 /* retain SW VSI data structure since it is needed to unregister and 2984 * free VSI netdev when PF is not in reset recovery pending state,\ 2985 * for ex: during rmmod. 2986 */ 2987 if (!ice_is_reset_in_progress(pf->state)) 2988 ice_vsi_clear(vsi); 2989 2990 return 0; 2991 } 2992 2993 /** 2994 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2995 * @vsi: VSI connected with q_vectors 2996 * @coalesce: array of struct with stored coalesce 2997 * 2998 * Returns array size. 2999 */ 3000 static int 3001 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 3002 struct ice_coalesce_stored *coalesce) 3003 { 3004 int i; 3005 3006 ice_for_each_q_vector(vsi, i) { 3007 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 3008 3009 coalesce[i].itr_tx = q_vector->tx.itr_setting; 3010 coalesce[i].itr_rx = q_vector->rx.itr_setting; 3011 coalesce[i].intrl = q_vector->intrl; 3012 3013 if (i < vsi->num_txq) 3014 coalesce[i].tx_valid = true; 3015 if (i < vsi->num_rxq) 3016 coalesce[i].rx_valid = true; 3017 } 3018 3019 return vsi->num_q_vectors; 3020 } 3021 3022 /** 3023 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 3024 * @vsi: VSI connected with q_vectors 3025 * @coalesce: pointer to array of struct with stored coalesce 3026 * @size: size of coalesce array 3027 * 3028 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 3029 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 3030 * to default value. 3031 */ 3032 static void 3033 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 3034 struct ice_coalesce_stored *coalesce, int size) 3035 { 3036 struct ice_ring_container *rc; 3037 int i; 3038 3039 if ((size && !coalesce) || !vsi) 3040 return; 3041 3042 /* There are a couple of cases that have to be handled here: 3043 * 1. The case where the number of queue vectors stays the same, but 3044 * the number of Tx or Rx rings changes (the first for loop) 3045 * 2. The case where the number of queue vectors increased (the 3046 * second for loop) 3047 */ 3048 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 3049 /* There are 2 cases to handle here and they are the same for 3050 * both Tx and Rx: 3051 * if the entry was valid previously (coalesce[i].[tr]x_valid 3052 * and the loop variable is less than the number of rings 3053 * allocated, then write the previous values 3054 * 3055 * if the entry was not valid previously, but the number of 3056 * rings is less than are allocated (this means the number of 3057 * rings increased from previously), then write out the 3058 * values in the first element 3059 * 3060 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 3061 * as there is no harm because the dynamic algorithm 3062 * will just overwrite. 3063 */ 3064 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 3065 rc = &vsi->q_vectors[i]->rx; 3066 rc->itr_setting = coalesce[i].itr_rx; 3067 ice_write_itr(rc, rc->itr_setting); 3068 } else if (i < vsi->alloc_rxq) { 3069 rc = &vsi->q_vectors[i]->rx; 3070 rc->itr_setting = coalesce[0].itr_rx; 3071 ice_write_itr(rc, rc->itr_setting); 3072 } 3073 3074 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 3075 rc = &vsi->q_vectors[i]->tx; 3076 rc->itr_setting = coalesce[i].itr_tx; 3077 ice_write_itr(rc, rc->itr_setting); 3078 } else if (i < vsi->alloc_txq) { 3079 rc = &vsi->q_vectors[i]->tx; 3080 rc->itr_setting = coalesce[0].itr_tx; 3081 ice_write_itr(rc, rc->itr_setting); 3082 } 3083 3084 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 3085 ice_write_intrl(vsi->q_vectors[i], coalesce[i].intrl); 3086 } 3087 3088 /* the number of queue vectors increased so write whatever is in 3089 * the first element 3090 */ 3091 for (; i < vsi->num_q_vectors; i++) { 3092 /* transmit */ 3093 rc = &vsi->q_vectors[i]->tx; 3094 rc->itr_setting = coalesce[0].itr_tx; 3095 ice_write_itr(rc, rc->itr_setting); 3096 3097 /* receive */ 3098 rc = &vsi->q_vectors[i]->rx; 3099 rc->itr_setting = coalesce[0].itr_rx; 3100 ice_write_itr(rc, rc->itr_setting); 3101 3102 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 3103 ice_write_intrl(vsi->q_vectors[i], coalesce[0].intrl); 3104 } 3105 } 3106 3107 /** 3108 * ice_vsi_rebuild - Rebuild VSI after reset 3109 * @vsi: VSI to be rebuild 3110 * @init_vsi: is this an initialization or a reconfigure of the VSI 3111 * 3112 * Returns 0 on success and negative value on failure 3113 */ 3114 int ice_vsi_rebuild(struct ice_vsi *vsi, bool init_vsi) 3115 { 3116 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3117 struct ice_coalesce_stored *coalesce; 3118 int prev_num_q_vectors = 0; 3119 struct ice_vf *vf = NULL; 3120 enum ice_vsi_type vtype; 3121 enum ice_status status; 3122 struct ice_pf *pf; 3123 int ret, i; 3124 3125 if (!vsi) 3126 return -EINVAL; 3127 3128 pf = vsi->back; 3129 vtype = vsi->type; 3130 if (vtype == ICE_VSI_VF) 3131 vf = &pf->vf[vsi->vf_id]; 3132 3133 coalesce = kcalloc(vsi->num_q_vectors, 3134 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3135 if (!coalesce) 3136 return -ENOMEM; 3137 3138 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3139 3140 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 3141 ice_vsi_free_q_vectors(vsi); 3142 3143 /* SR-IOV determines needed MSIX resources all at once instead of per 3144 * VSI since when VFs are spawned we know how many VFs there are and how 3145 * many interrupts each VF needs. SR-IOV MSIX resources are also 3146 * cleared in the same manner. 3147 */ 3148 if (vtype != ICE_VSI_VF) { 3149 /* reclaim SW interrupts back to the common pool */ 3150 ice_free_res(pf->irq_tracker, vsi->base_vector, vsi->idx); 3151 pf->num_avail_sw_msix += vsi->num_q_vectors; 3152 vsi->base_vector = 0; 3153 } 3154 3155 if (ice_is_xdp_ena_vsi(vsi)) 3156 /* return value check can be skipped here, it always returns 3157 * 0 if reset is in progress 3158 */ 3159 ice_destroy_xdp_rings(vsi); 3160 ice_vsi_put_qs(vsi); 3161 ice_vsi_clear_rings(vsi); 3162 ice_vsi_free_arrays(vsi); 3163 if (vtype == ICE_VSI_VF) 3164 ice_vsi_set_num_qs(vsi, vf->vf_id); 3165 else 3166 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID); 3167 3168 ret = ice_vsi_alloc_arrays(vsi); 3169 if (ret < 0) 3170 goto err_vsi; 3171 3172 ice_vsi_get_qs(vsi); 3173 3174 ice_alloc_fd_res(vsi); 3175 ice_vsi_set_tc_cfg(vsi); 3176 3177 /* Initialize VSI struct elements and create VSI in FW */ 3178 ret = ice_vsi_init(vsi, init_vsi); 3179 if (ret < 0) 3180 goto err_vsi; 3181 3182 switch (vtype) { 3183 case ICE_VSI_CTRL: 3184 case ICE_VSI_SWITCHDEV_CTRL: 3185 case ICE_VSI_PF: 3186 ret = ice_vsi_alloc_q_vectors(vsi); 3187 if (ret) 3188 goto err_rings; 3189 3190 ret = ice_vsi_setup_vector_base(vsi); 3191 if (ret) 3192 goto err_vectors; 3193 3194 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3195 if (ret) 3196 goto err_vectors; 3197 3198 ret = ice_vsi_alloc_rings(vsi); 3199 if (ret) 3200 goto err_vectors; 3201 3202 ice_vsi_map_rings_to_vectors(vsi); 3203 if (ice_is_xdp_ena_vsi(vsi)) { 3204 vsi->num_xdp_txq = vsi->alloc_rxq; 3205 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); 3206 if (ret) 3207 goto err_vectors; 3208 } 3209 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 3210 if (vtype != ICE_VSI_CTRL) 3211 /* Do not exit if configuring RSS had an issue, at 3212 * least receive traffic on first queue. Hence no 3213 * need to capture return value 3214 */ 3215 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 3216 ice_vsi_cfg_rss_lut_key(vsi); 3217 break; 3218 case ICE_VSI_VF: 3219 ret = ice_vsi_alloc_q_vectors(vsi); 3220 if (ret) 3221 goto err_rings; 3222 3223 ret = ice_vsi_set_q_vectors_reg_idx(vsi); 3224 if (ret) 3225 goto err_vectors; 3226 3227 ret = ice_vsi_alloc_rings(vsi); 3228 if (ret) 3229 goto err_vectors; 3230 3231 break; 3232 default: 3233 break; 3234 } 3235 3236 /* configure VSI nodes based on number of queues and TC's */ 3237 for (i = 0; i < vsi->tc_cfg.numtc; i++) { 3238 max_txqs[i] = vsi->alloc_txq; 3239 3240 if (ice_is_xdp_ena_vsi(vsi)) 3241 max_txqs[i] += vsi->num_xdp_txq; 3242 } 3243 3244 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3245 max_txqs); 3246 if (status) { 3247 dev_err(ice_pf_to_dev(pf), "VSI %d failed lan queue config, error %s\n", 3248 vsi->vsi_num, ice_stat_str(status)); 3249 if (init_vsi) { 3250 ret = -EIO; 3251 goto err_vectors; 3252 } else { 3253 return ice_schedule_reset(pf, ICE_RESET_PFR); 3254 } 3255 } 3256 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3257 kfree(coalesce); 3258 3259 return 0; 3260 3261 err_vectors: 3262 ice_vsi_free_q_vectors(vsi); 3263 err_rings: 3264 if (vsi->netdev) { 3265 vsi->current_netdev_flags = 0; 3266 unregister_netdev(vsi->netdev); 3267 free_netdev(vsi->netdev); 3268 vsi->netdev = NULL; 3269 } 3270 err_vsi: 3271 ice_vsi_clear(vsi); 3272 set_bit(ICE_RESET_FAILED, pf->state); 3273 kfree(coalesce); 3274 return ret; 3275 } 3276 3277 /** 3278 * ice_is_reset_in_progress - check for a reset in progress 3279 * @state: PF state field 3280 */ 3281 bool ice_is_reset_in_progress(unsigned long *state) 3282 { 3283 return test_bit(ICE_RESET_OICR_RECV, state) || 3284 test_bit(ICE_PFR_REQ, state) || 3285 test_bit(ICE_CORER_REQ, state) || 3286 test_bit(ICE_GLOBR_REQ, state); 3287 } 3288 3289 /** 3290 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3291 * @pf: pointer to the PF structure 3292 * @timeout: length of time to wait, in jiffies 3293 * 3294 * Wait (sleep) for a short time until the driver finishes cleaning up from 3295 * a device reset. The caller must be able to sleep. Use this to delay 3296 * operations that could fail while the driver is cleaning up after a device 3297 * reset. 3298 * 3299 * Returns 0 on success, -EBUSY if the reset is not finished within the 3300 * timeout, and -ERESTARTSYS if the thread was interrupted. 3301 */ 3302 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3303 { 3304 long ret; 3305 3306 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3307 !ice_is_reset_in_progress(pf->state), 3308 timeout); 3309 if (ret < 0) 3310 return ret; 3311 else if (!ret) 3312 return -EBUSY; 3313 else 3314 return 0; 3315 } 3316 3317 #ifdef CONFIG_DCB 3318 /** 3319 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3320 * @vsi: VSI being configured 3321 * @ctx: the context buffer returned from AQ VSI update command 3322 */ 3323 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3324 { 3325 vsi->info.mapping_flags = ctx->info.mapping_flags; 3326 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3327 sizeof(vsi->info.q_mapping)); 3328 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3329 sizeof(vsi->info.tc_mapping)); 3330 } 3331 3332 /** 3333 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3334 * @vsi: VSI to be configured 3335 * @ena_tc: TC bitmap 3336 * 3337 * VSI queues expected to be quiesced before calling this function 3338 */ 3339 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3340 { 3341 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3342 struct ice_pf *pf = vsi->back; 3343 struct ice_vsi_ctx *ctx; 3344 enum ice_status status; 3345 struct device *dev; 3346 int i, ret = 0; 3347 u8 num_tc = 0; 3348 3349 dev = ice_pf_to_dev(pf); 3350 3351 ice_for_each_traffic_class(i) { 3352 /* build bitmap of enabled TCs */ 3353 if (ena_tc & BIT(i)) 3354 num_tc++; 3355 /* populate max_txqs per TC */ 3356 max_txqs[i] = vsi->alloc_txq; 3357 } 3358 3359 vsi->tc_cfg.ena_tc = ena_tc; 3360 vsi->tc_cfg.numtc = num_tc; 3361 3362 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3363 if (!ctx) 3364 return -ENOMEM; 3365 3366 ctx->vf_num = 0; 3367 ctx->info = vsi->info; 3368 3369 ice_vsi_setup_q_map(vsi, ctx); 3370 3371 /* must to indicate which section of VSI context are being modified */ 3372 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3373 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3374 if (status) { 3375 dev_info(dev, "Failed VSI Update\n"); 3376 ret = -EIO; 3377 goto out; 3378 } 3379 3380 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 3381 max_txqs); 3382 3383 if (status) { 3384 dev_err(dev, "VSI %d failed TC config, error %s\n", 3385 vsi->vsi_num, ice_stat_str(status)); 3386 ret = -EIO; 3387 goto out; 3388 } 3389 ice_vsi_update_q_map(vsi, ctx); 3390 vsi->info.valid_sections = 0; 3391 3392 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3393 out: 3394 kfree(ctx); 3395 return ret; 3396 } 3397 #endif /* CONFIG_DCB */ 3398 3399 /** 3400 * ice_update_ring_stats - Update ring statistics 3401 * @ring: ring to update 3402 * @pkts: number of processed packets 3403 * @bytes: number of processed bytes 3404 * 3405 * This function assumes that caller has acquired a u64_stats_sync lock. 3406 */ 3407 static void ice_update_ring_stats(struct ice_ring *ring, u64 pkts, u64 bytes) 3408 { 3409 ring->stats.bytes += bytes; 3410 ring->stats.pkts += pkts; 3411 } 3412 3413 /** 3414 * ice_update_tx_ring_stats - Update Tx ring specific counters 3415 * @tx_ring: ring to update 3416 * @pkts: number of processed packets 3417 * @bytes: number of processed bytes 3418 */ 3419 void ice_update_tx_ring_stats(struct ice_ring *tx_ring, u64 pkts, u64 bytes) 3420 { 3421 u64_stats_update_begin(&tx_ring->syncp); 3422 ice_update_ring_stats(tx_ring, pkts, bytes); 3423 u64_stats_update_end(&tx_ring->syncp); 3424 } 3425 3426 /** 3427 * ice_update_rx_ring_stats - Update Rx ring specific counters 3428 * @rx_ring: ring to update 3429 * @pkts: number of processed packets 3430 * @bytes: number of processed bytes 3431 */ 3432 void ice_update_rx_ring_stats(struct ice_ring *rx_ring, u64 pkts, u64 bytes) 3433 { 3434 u64_stats_update_begin(&rx_ring->syncp); 3435 ice_update_ring_stats(rx_ring, pkts, bytes); 3436 u64_stats_update_end(&rx_ring->syncp); 3437 } 3438 3439 /** 3440 * ice_status_to_errno - convert from enum ice_status to Linux errno 3441 * @err: ice_status value to convert 3442 */ 3443 int ice_status_to_errno(enum ice_status err) 3444 { 3445 switch (err) { 3446 case ICE_SUCCESS: 3447 return 0; 3448 case ICE_ERR_DOES_NOT_EXIST: 3449 return -ENOENT; 3450 case ICE_ERR_OUT_OF_RANGE: 3451 case ICE_ERR_AQ_ERROR: 3452 case ICE_ERR_AQ_TIMEOUT: 3453 case ICE_ERR_AQ_EMPTY: 3454 case ICE_ERR_AQ_FW_CRITICAL: 3455 return -EIO; 3456 case ICE_ERR_PARAM: 3457 case ICE_ERR_INVAL_SIZE: 3458 return -EINVAL; 3459 case ICE_ERR_NO_MEMORY: 3460 return -ENOMEM; 3461 case ICE_ERR_MAX_LIMIT: 3462 return -EAGAIN; 3463 case ICE_ERR_RESET_ONGOING: 3464 return -EBUSY; 3465 case ICE_ERR_AQ_FULL: 3466 return -ENOSPC; 3467 default: 3468 return -EINVAL; 3469 } 3470 } 3471 3472 /** 3473 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3474 * @sw: switch to check if its default forwarding VSI is free 3475 * 3476 * Return true if the default forwarding VSI is already being used, else returns 3477 * false signalling that it's available to use. 3478 */ 3479 bool ice_is_dflt_vsi_in_use(struct ice_sw *sw) 3480 { 3481 return (sw->dflt_vsi && sw->dflt_vsi_ena); 3482 } 3483 3484 /** 3485 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3486 * @sw: switch for the default forwarding VSI to compare against 3487 * @vsi: VSI to compare against default forwarding VSI 3488 * 3489 * If this VSI passed in is the default forwarding VSI then return true, else 3490 * return false 3491 */ 3492 bool ice_is_vsi_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3493 { 3494 return (sw->dflt_vsi == vsi && sw->dflt_vsi_ena); 3495 } 3496 3497 /** 3498 * ice_set_dflt_vsi - set the default forwarding VSI 3499 * @sw: switch used to assign the default forwarding VSI 3500 * @vsi: VSI getting set as the default forwarding VSI on the switch 3501 * 3502 * If the VSI passed in is already the default VSI and it's enabled just return 3503 * success. 3504 * 3505 * If there is already a default VSI on the switch and it's enabled then return 3506 * -EEXIST since there can only be one default VSI per switch. 3507 * 3508 * Otherwise try to set the VSI passed in as the switch's default VSI and 3509 * return the result. 3510 */ 3511 int ice_set_dflt_vsi(struct ice_sw *sw, struct ice_vsi *vsi) 3512 { 3513 enum ice_status status; 3514 struct device *dev; 3515 3516 if (!sw || !vsi) 3517 return -EINVAL; 3518 3519 dev = ice_pf_to_dev(vsi->back); 3520 3521 /* the VSI passed in is already the default VSI */ 3522 if (ice_is_vsi_dflt_vsi(sw, vsi)) { 3523 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3524 vsi->vsi_num); 3525 return 0; 3526 } 3527 3528 /* another VSI is already the default VSI for this switch */ 3529 if (ice_is_dflt_vsi_in_use(sw)) { 3530 dev_err(dev, "Default forwarding VSI %d already in use, disable it and try again\n", 3531 sw->dflt_vsi->vsi_num); 3532 return -EEXIST; 3533 } 3534 3535 status = ice_cfg_dflt_vsi(&vsi->back->hw, vsi->idx, true, ICE_FLTR_RX); 3536 if (status) { 3537 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %s\n", 3538 vsi->vsi_num, ice_stat_str(status)); 3539 return -EIO; 3540 } 3541 3542 sw->dflt_vsi = vsi; 3543 sw->dflt_vsi_ena = true; 3544 3545 return 0; 3546 } 3547 3548 /** 3549 * ice_clear_dflt_vsi - clear the default forwarding VSI 3550 * @sw: switch used to clear the default VSI 3551 * 3552 * If the switch has no default VSI or it's not enabled then return error. 3553 * 3554 * Otherwise try to clear the default VSI and return the result. 3555 */ 3556 int ice_clear_dflt_vsi(struct ice_sw *sw) 3557 { 3558 struct ice_vsi *dflt_vsi; 3559 enum ice_status status; 3560 struct device *dev; 3561 3562 if (!sw) 3563 return -EINVAL; 3564 3565 dev = ice_pf_to_dev(sw->pf); 3566 3567 dflt_vsi = sw->dflt_vsi; 3568 3569 /* there is no default VSI configured */ 3570 if (!ice_is_dflt_vsi_in_use(sw)) 3571 return -ENODEV; 3572 3573 status = ice_cfg_dflt_vsi(&dflt_vsi->back->hw, dflt_vsi->idx, false, 3574 ICE_FLTR_RX); 3575 if (status) { 3576 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %s\n", 3577 dflt_vsi->vsi_num, ice_stat_str(status)); 3578 return -EIO; 3579 } 3580 3581 sw->dflt_vsi = NULL; 3582 sw->dflt_vsi_ena = false; 3583 3584 return 0; 3585 } 3586 3587 /** 3588 * ice_set_link - turn on/off physical link 3589 * @vsi: VSI to modify physical link on 3590 * @ena: turn on/off physical link 3591 */ 3592 int ice_set_link(struct ice_vsi *vsi, bool ena) 3593 { 3594 struct device *dev = ice_pf_to_dev(vsi->back); 3595 struct ice_port_info *pi = vsi->port_info; 3596 struct ice_hw *hw = pi->hw; 3597 enum ice_status status; 3598 3599 if (vsi->type != ICE_VSI_PF) 3600 return -EINVAL; 3601 3602 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3603 3604 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3605 * this is not a fatal error, so print a warning message and return 3606 * a success code. Return an error if FW returns an error code other 3607 * than ICE_AQ_RC_EMODE 3608 */ 3609 if (status == ICE_ERR_AQ_ERROR) { 3610 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3611 dev_warn(dev, "can't set link to %s, err %s aq_err %s. not fatal, continuing\n", 3612 (ena ? "ON" : "OFF"), ice_stat_str(status), 3613 ice_aq_str(hw->adminq.sq_last_status)); 3614 } else if (status) { 3615 dev_err(dev, "can't set link to %s, err %s aq_err %s\n", 3616 (ena ? "ON" : "OFF"), ice_stat_str(status), 3617 ice_aq_str(hw->adminq.sq_last_status)); 3618 return -EIO; 3619 } 3620 3621 return 0; 3622 } 3623 3624 /** 3625 * ice_is_feature_supported 3626 * @pf: pointer to the struct ice_pf instance 3627 * @f: feature enum to be checked 3628 * 3629 * returns true if feature is supported, false otherwise 3630 */ 3631 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 3632 { 3633 if (f < 0 || f >= ICE_F_MAX) 3634 return false; 3635 3636 return test_bit(f, pf->features); 3637 } 3638 3639 /** 3640 * ice_set_feature_support 3641 * @pf: pointer to the struct ice_pf instance 3642 * @f: feature enum to set 3643 */ 3644 static void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 3645 { 3646 if (f < 0 || f >= ICE_F_MAX) 3647 return; 3648 3649 set_bit(f, pf->features); 3650 } 3651 3652 /** 3653 * ice_init_feature_support 3654 * @pf: pointer to the struct ice_pf instance 3655 * 3656 * called during init to setup supported feature 3657 */ 3658 void ice_init_feature_support(struct ice_pf *pf) 3659 { 3660 switch (pf->hw.device_id) { 3661 case ICE_DEV_ID_E810C_BACKPLANE: 3662 case ICE_DEV_ID_E810C_QSFP: 3663 case ICE_DEV_ID_E810C_SFP: 3664 ice_set_feature_support(pf, ICE_F_DSCP); 3665 break; 3666 default: 3667 break; 3668 } 3669 } 3670 3671 /** 3672 * ice_vsi_update_security - update security block in VSI 3673 * @vsi: pointer to VSI structure 3674 * @fill: function pointer to fill ctx 3675 */ 3676 int 3677 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 3678 { 3679 struct ice_vsi_ctx ctx = { 0 }; 3680 3681 ctx.info = vsi->info; 3682 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 3683 fill(&ctx); 3684 3685 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 3686 return -ENODEV; 3687 3688 vsi->info = ctx.info; 3689 return 0; 3690 } 3691 3692 /** 3693 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 3694 * @ctx: pointer to VSI ctx structure 3695 */ 3696 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 3697 { 3698 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 3699 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3700 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3701 } 3702 3703 /** 3704 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 3705 * @ctx: pointer to VSI ctx structure 3706 */ 3707 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 3708 { 3709 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 3710 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3711 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3712 } 3713 3714 /** 3715 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 3716 * @ctx: pointer to VSI ctx structure 3717 */ 3718 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 3719 { 3720 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 3721 } 3722 3723 /** 3724 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 3725 * @ctx: pointer to VSI ctx structure 3726 */ 3727 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 3728 { 3729 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 3730 } 3731