1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Intel Corporation. */ 3 4 #include "ice.h" 5 #include "ice_base.h" 6 #include "ice_flow.h" 7 #include "ice_lib.h" 8 #include "ice_fltr.h" 9 #include "ice_dcb_lib.h" 10 #include "ice_type.h" 11 #include "ice_vsi_vlan_ops.h" 12 13 /** 14 * ice_vsi_type_str - maps VSI type enum to string equivalents 15 * @vsi_type: VSI type enum 16 */ 17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) 18 { 19 switch (vsi_type) { 20 case ICE_VSI_PF: 21 return "ICE_VSI_PF"; 22 case ICE_VSI_VF: 23 return "ICE_VSI_VF"; 24 case ICE_VSI_SF: 25 return "ICE_VSI_SF"; 26 case ICE_VSI_CTRL: 27 return "ICE_VSI_CTRL"; 28 case ICE_VSI_CHNL: 29 return "ICE_VSI_CHNL"; 30 case ICE_VSI_LB: 31 return "ICE_VSI_LB"; 32 default: 33 return "unknown"; 34 } 35 } 36 37 /** 38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings 39 * @vsi: the VSI being configured 40 * @ena: start or stop the Rx rings 41 * 42 * First enable/disable all of the Rx rings, flush any remaining writes, and 43 * then verify that they have all been enabled/disabled successfully. This will 44 * let all of the register writes complete when enabling/disabling the Rx rings 45 * before waiting for the change in hardware to complete. 46 */ 47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) 48 { 49 int ret = 0; 50 u16 i; 51 52 ice_for_each_rxq(vsi, i) 53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); 54 55 ice_flush(&vsi->back->hw); 56 57 ice_for_each_rxq(vsi, i) { 58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); 59 if (ret) 60 break; 61 } 62 63 return ret; 64 } 65 66 /** 67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI 68 * @vsi: VSI pointer 69 * 70 * On error: returns error code (negative) 71 * On success: returns 0 72 */ 73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) 74 { 75 struct ice_pf *pf = vsi->back; 76 struct device *dev; 77 78 dev = ice_pf_to_dev(pf); 79 if (vsi->type == ICE_VSI_CHNL) 80 return 0; 81 82 /* allocate memory for both Tx and Rx ring pointers */ 83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, 84 sizeof(*vsi->tx_rings), GFP_KERNEL); 85 if (!vsi->tx_rings) 86 return -ENOMEM; 87 88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, 89 sizeof(*vsi->rx_rings), GFP_KERNEL); 90 if (!vsi->rx_rings) 91 goto err_rings; 92 93 /* txq_map needs to have enough space to track both Tx (stack) rings 94 * and XDP rings; at this point vsi->num_xdp_txq might not be set, 95 * so use num_possible_cpus() as we want to always provide XDP ring 96 * per CPU, regardless of queue count settings from user that might 97 * have come from ethtool's set_channels() callback; 98 */ 99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), 100 sizeof(*vsi->txq_map), GFP_KERNEL); 101 102 if (!vsi->txq_map) 103 goto err_txq_map; 104 105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, 106 sizeof(*vsi->rxq_map), GFP_KERNEL); 107 if (!vsi->rxq_map) 108 goto err_rxq_map; 109 110 /* There is no need to allocate q_vectors for a loopback VSI. */ 111 if (vsi->type == ICE_VSI_LB) 112 return 0; 113 114 /* allocate memory for q_vector pointers */ 115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, 116 sizeof(*vsi->q_vectors), GFP_KERNEL); 117 if (!vsi->q_vectors) 118 goto err_vectors; 119 120 return 0; 121 122 err_vectors: 123 devm_kfree(dev, vsi->rxq_map); 124 err_rxq_map: 125 devm_kfree(dev, vsi->txq_map); 126 err_txq_map: 127 devm_kfree(dev, vsi->rx_rings); 128 err_rings: 129 devm_kfree(dev, vsi->tx_rings); 130 return -ENOMEM; 131 } 132 133 /** 134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI 135 * @vsi: the VSI being configured 136 */ 137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi) 138 { 139 switch (vsi->type) { 140 case ICE_VSI_PF: 141 case ICE_VSI_SF: 142 case ICE_VSI_CTRL: 143 case ICE_VSI_LB: 144 /* a user could change the values of num_[tr]x_desc using 145 * ethtool -G so we should keep those values instead of 146 * overwriting them with the defaults. 147 */ 148 if (!vsi->num_rx_desc) 149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; 150 if (!vsi->num_tx_desc) 151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; 152 break; 153 default: 154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", 155 vsi->type); 156 break; 157 } 158 } 159 160 /** 161 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI 162 * @vsi: the VSI being configured 163 * 164 * Return 0 on success and a negative value on error 165 */ 166 static void ice_vsi_set_num_qs(struct ice_vsi *vsi) 167 { 168 enum ice_vsi_type vsi_type = vsi->type; 169 struct ice_pf *pf = vsi->back; 170 struct ice_vf *vf = vsi->vf; 171 172 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) 173 return; 174 175 switch (vsi_type) { 176 case ICE_VSI_PF: 177 if (vsi->req_txq) { 178 vsi->alloc_txq = vsi->req_txq; 179 vsi->num_txq = vsi->req_txq; 180 } else { 181 vsi->alloc_txq = min3(pf->num_lan_msix, 182 ice_get_avail_txq_count(pf), 183 (u16)num_online_cpus()); 184 } 185 186 pf->num_lan_tx = vsi->alloc_txq; 187 188 /* only 1 Rx queue unless RSS is enabled */ 189 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 190 vsi->alloc_rxq = 1; 191 } else { 192 if (vsi->req_rxq) { 193 vsi->alloc_rxq = vsi->req_rxq; 194 vsi->num_rxq = vsi->req_rxq; 195 } else { 196 vsi->alloc_rxq = min3(pf->num_lan_msix, 197 ice_get_avail_rxq_count(pf), 198 (u16)num_online_cpus()); 199 } 200 } 201 202 pf->num_lan_rx = vsi->alloc_rxq; 203 204 vsi->num_q_vectors = min_t(int, pf->num_lan_msix, 205 max_t(int, vsi->alloc_rxq, 206 vsi->alloc_txq)); 207 break; 208 case ICE_VSI_SF: 209 vsi->alloc_txq = 1; 210 vsi->alloc_rxq = 1; 211 vsi->num_q_vectors = 1; 212 vsi->irq_dyn_alloc = true; 213 break; 214 case ICE_VSI_VF: 215 if (vf->num_req_qs) 216 vf->num_vf_qs = vf->num_req_qs; 217 vsi->alloc_txq = vf->num_vf_qs; 218 vsi->alloc_rxq = vf->num_vf_qs; 219 /* pf->vfs.num_msix_per includes (VF miscellaneous vector + 220 * data queue interrupts). Since vsi->num_q_vectors is number 221 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the 222 * original vector count 223 */ 224 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF; 225 break; 226 case ICE_VSI_CTRL: 227 vsi->alloc_txq = 1; 228 vsi->alloc_rxq = 1; 229 vsi->num_q_vectors = 1; 230 break; 231 case ICE_VSI_CHNL: 232 vsi->alloc_txq = 0; 233 vsi->alloc_rxq = 0; 234 break; 235 case ICE_VSI_LB: 236 vsi->alloc_txq = 1; 237 vsi->alloc_rxq = 1; 238 break; 239 default: 240 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); 241 break; 242 } 243 244 ice_vsi_set_num_desc(vsi); 245 } 246 247 /** 248 * ice_get_free_slot - get the next non-NULL location index in array 249 * @array: array to search 250 * @size: size of the array 251 * @curr: last known occupied index to be used as a search hint 252 * 253 * void * is being used to keep the functionality generic. This lets us use this 254 * function on any array of pointers. 255 */ 256 static int ice_get_free_slot(void *array, int size, int curr) 257 { 258 int **tmp_array = (int **)array; 259 int next; 260 261 if (curr < (size - 1) && !tmp_array[curr + 1]) { 262 next = curr + 1; 263 } else { 264 int i = 0; 265 266 while ((i < size) && (tmp_array[i])) 267 i++; 268 if (i == size) 269 next = ICE_NO_VSI; 270 else 271 next = i; 272 } 273 return next; 274 } 275 276 /** 277 * ice_vsi_delete_from_hw - delete a VSI from the switch 278 * @vsi: pointer to VSI being removed 279 */ 280 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) 281 { 282 struct ice_pf *pf = vsi->back; 283 struct ice_vsi_ctx *ctxt; 284 int status; 285 286 ice_fltr_remove_all(vsi); 287 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 288 if (!ctxt) 289 return; 290 291 if (vsi->type == ICE_VSI_VF) 292 ctxt->vf_num = vsi->vf->vf_id; 293 ctxt->vsi_num = vsi->vsi_num; 294 295 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); 296 297 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); 298 if (status) 299 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", 300 vsi->vsi_num, status); 301 302 kfree(ctxt); 303 } 304 305 /** 306 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI 307 * @vsi: pointer to VSI being cleared 308 */ 309 static void ice_vsi_free_arrays(struct ice_vsi *vsi) 310 { 311 struct ice_pf *pf = vsi->back; 312 struct device *dev; 313 314 dev = ice_pf_to_dev(pf); 315 316 /* free the ring and vector containers */ 317 devm_kfree(dev, vsi->q_vectors); 318 vsi->q_vectors = NULL; 319 devm_kfree(dev, vsi->tx_rings); 320 vsi->tx_rings = NULL; 321 devm_kfree(dev, vsi->rx_rings); 322 vsi->rx_rings = NULL; 323 devm_kfree(dev, vsi->txq_map); 324 vsi->txq_map = NULL; 325 devm_kfree(dev, vsi->rxq_map); 326 vsi->rxq_map = NULL; 327 } 328 329 /** 330 * ice_vsi_free_stats - Free the ring statistics structures 331 * @vsi: VSI pointer 332 */ 333 static void ice_vsi_free_stats(struct ice_vsi *vsi) 334 { 335 struct ice_vsi_stats *vsi_stat; 336 struct ice_pf *pf = vsi->back; 337 int i; 338 339 if (vsi->type == ICE_VSI_CHNL) 340 return; 341 if (!pf->vsi_stats) 342 return; 343 344 vsi_stat = pf->vsi_stats[vsi->idx]; 345 if (!vsi_stat) 346 return; 347 348 ice_for_each_alloc_txq(vsi, i) { 349 if (vsi_stat->tx_ring_stats[i]) { 350 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 351 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 352 } 353 } 354 355 ice_for_each_alloc_rxq(vsi, i) { 356 if (vsi_stat->rx_ring_stats[i]) { 357 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 358 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 359 } 360 } 361 362 kfree(vsi_stat->tx_ring_stats); 363 kfree(vsi_stat->rx_ring_stats); 364 kfree(vsi_stat); 365 pf->vsi_stats[vsi->idx] = NULL; 366 } 367 368 /** 369 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI 370 * @vsi: VSI which is having stats allocated 371 */ 372 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) 373 { 374 struct ice_ring_stats **tx_ring_stats; 375 struct ice_ring_stats **rx_ring_stats; 376 struct ice_vsi_stats *vsi_stats; 377 struct ice_pf *pf = vsi->back; 378 u16 i; 379 380 vsi_stats = pf->vsi_stats[vsi->idx]; 381 tx_ring_stats = vsi_stats->tx_ring_stats; 382 rx_ring_stats = vsi_stats->rx_ring_stats; 383 384 /* Allocate Tx ring stats */ 385 ice_for_each_alloc_txq(vsi, i) { 386 struct ice_ring_stats *ring_stats; 387 struct ice_tx_ring *ring; 388 389 ring = vsi->tx_rings[i]; 390 ring_stats = tx_ring_stats[i]; 391 392 if (!ring_stats) { 393 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 394 if (!ring_stats) 395 goto err_out; 396 397 WRITE_ONCE(tx_ring_stats[i], ring_stats); 398 } 399 400 ring->ring_stats = ring_stats; 401 } 402 403 /* Allocate Rx ring stats */ 404 ice_for_each_alloc_rxq(vsi, i) { 405 struct ice_ring_stats *ring_stats; 406 struct ice_rx_ring *ring; 407 408 ring = vsi->rx_rings[i]; 409 ring_stats = rx_ring_stats[i]; 410 411 if (!ring_stats) { 412 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); 413 if (!ring_stats) 414 goto err_out; 415 416 WRITE_ONCE(rx_ring_stats[i], ring_stats); 417 } 418 419 ring->ring_stats = ring_stats; 420 } 421 422 return 0; 423 424 err_out: 425 ice_vsi_free_stats(vsi); 426 return -ENOMEM; 427 } 428 429 /** 430 * ice_vsi_free - clean up and deallocate the provided VSI 431 * @vsi: pointer to VSI being cleared 432 * 433 * This deallocates the VSI's queue resources, removes it from the PF's 434 * VSI array if necessary, and deallocates the VSI 435 */ 436 void ice_vsi_free(struct ice_vsi *vsi) 437 { 438 struct ice_pf *pf = NULL; 439 struct device *dev; 440 441 if (!vsi || !vsi->back) 442 return; 443 444 pf = vsi->back; 445 dev = ice_pf_to_dev(pf); 446 447 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { 448 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); 449 return; 450 } 451 452 mutex_lock(&pf->sw_mutex); 453 /* updates the PF for this cleared VSI */ 454 455 pf->vsi[vsi->idx] = NULL; 456 pf->next_vsi = vsi->idx; 457 458 ice_vsi_free_stats(vsi); 459 ice_vsi_free_arrays(vsi); 460 mutex_destroy(&vsi->xdp_state_lock); 461 mutex_unlock(&pf->sw_mutex); 462 devm_kfree(dev, vsi); 463 } 464 465 void ice_vsi_delete(struct ice_vsi *vsi) 466 { 467 ice_vsi_delete_from_hw(vsi); 468 ice_vsi_free(vsi); 469 } 470 471 /** 472 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI 473 * @irq: interrupt number 474 * @data: pointer to a q_vector 475 */ 476 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) 477 { 478 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 479 480 if (!q_vector->tx.tx_ring) 481 return IRQ_HANDLED; 482 483 #define FDIR_RX_DESC_CLEAN_BUDGET 64 484 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); 485 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); 486 487 return IRQ_HANDLED; 488 } 489 490 /** 491 * ice_msix_clean_rings - MSIX mode Interrupt Handler 492 * @irq: interrupt number 493 * @data: pointer to a q_vector 494 */ 495 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) 496 { 497 struct ice_q_vector *q_vector = (struct ice_q_vector *)data; 498 499 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) 500 return IRQ_HANDLED; 501 502 q_vector->total_events++; 503 504 napi_schedule(&q_vector->napi); 505 506 return IRQ_HANDLED; 507 } 508 509 /** 510 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays 511 * @vsi: VSI pointer 512 */ 513 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) 514 { 515 struct ice_vsi_stats *vsi_stat; 516 struct ice_pf *pf = vsi->back; 517 518 if (vsi->type == ICE_VSI_CHNL) 519 return 0; 520 if (!pf->vsi_stats) 521 return -ENOENT; 522 523 if (pf->vsi_stats[vsi->idx]) 524 /* realloc will happen in rebuild path */ 525 return 0; 526 527 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); 528 if (!vsi_stat) 529 return -ENOMEM; 530 531 vsi_stat->tx_ring_stats = 532 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), 533 GFP_KERNEL); 534 if (!vsi_stat->tx_ring_stats) 535 goto err_alloc_tx; 536 537 vsi_stat->rx_ring_stats = 538 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), 539 GFP_KERNEL); 540 if (!vsi_stat->rx_ring_stats) 541 goto err_alloc_rx; 542 543 pf->vsi_stats[vsi->idx] = vsi_stat; 544 545 return 0; 546 547 err_alloc_rx: 548 kfree(vsi_stat->rx_ring_stats); 549 err_alloc_tx: 550 kfree(vsi_stat->tx_ring_stats); 551 kfree(vsi_stat); 552 pf->vsi_stats[vsi->idx] = NULL; 553 return -ENOMEM; 554 } 555 556 /** 557 * ice_vsi_alloc_def - set default values for already allocated VSI 558 * @vsi: ptr to VSI 559 * @ch: ptr to channel 560 */ 561 static int 562 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) 563 { 564 if (vsi->type != ICE_VSI_CHNL) { 565 ice_vsi_set_num_qs(vsi); 566 if (ice_vsi_alloc_arrays(vsi)) 567 return -ENOMEM; 568 } 569 570 switch (vsi->type) { 571 case ICE_VSI_PF: 572 case ICE_VSI_SF: 573 /* Setup default MSIX irq handler for VSI */ 574 vsi->irq_handler = ice_msix_clean_rings; 575 break; 576 case ICE_VSI_CTRL: 577 /* Setup ctrl VSI MSIX irq handler */ 578 vsi->irq_handler = ice_msix_clean_ctrl_vsi; 579 break; 580 case ICE_VSI_CHNL: 581 if (!ch) 582 return -EINVAL; 583 584 vsi->num_rxq = ch->num_rxq; 585 vsi->num_txq = ch->num_txq; 586 vsi->next_base_q = ch->base_q; 587 break; 588 case ICE_VSI_VF: 589 case ICE_VSI_LB: 590 break; 591 default: 592 ice_vsi_free_arrays(vsi); 593 return -EINVAL; 594 } 595 596 return 0; 597 } 598 599 /** 600 * ice_vsi_alloc - Allocates the next available struct VSI in the PF 601 * @pf: board private structure 602 * 603 * Reserves a VSI index from the PF and allocates an empty VSI structure 604 * without a type. The VSI structure must later be initialized by calling 605 * ice_vsi_cfg(). 606 * 607 * returns a pointer to a VSI on success, NULL on failure. 608 */ 609 struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) 610 { 611 struct device *dev = ice_pf_to_dev(pf); 612 struct ice_vsi *vsi = NULL; 613 614 /* Need to protect the allocation of the VSIs at the PF level */ 615 mutex_lock(&pf->sw_mutex); 616 617 /* If we have already allocated our maximum number of VSIs, 618 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index 619 * is available to be populated 620 */ 621 if (pf->next_vsi == ICE_NO_VSI) { 622 dev_dbg(dev, "out of VSI slots!\n"); 623 goto unlock_pf; 624 } 625 626 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); 627 if (!vsi) 628 goto unlock_pf; 629 630 vsi->back = pf; 631 set_bit(ICE_VSI_DOWN, vsi->state); 632 633 /* fill slot and make note of the index */ 634 vsi->idx = pf->next_vsi; 635 pf->vsi[pf->next_vsi] = vsi; 636 637 /* prepare pf->next_vsi for next use */ 638 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, 639 pf->next_vsi); 640 641 mutex_init(&vsi->xdp_state_lock); 642 643 unlock_pf: 644 mutex_unlock(&pf->sw_mutex); 645 return vsi; 646 } 647 648 /** 649 * ice_alloc_fd_res - Allocate FD resource for a VSI 650 * @vsi: pointer to the ice_vsi 651 * 652 * This allocates the FD resources 653 * 654 * Returns 0 on success, -EPERM on no-op or -EIO on failure 655 */ 656 static int ice_alloc_fd_res(struct ice_vsi *vsi) 657 { 658 struct ice_pf *pf = vsi->back; 659 u32 g_val, b_val; 660 661 /* Flow Director filters are only allocated/assigned to the PF VSI or 662 * CHNL VSI which passes the traffic. The CTRL VSI is only used to 663 * add/delete filters so resources are not allocated to it 664 */ 665 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) 666 return -EPERM; 667 668 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || 669 vsi->type == ICE_VSI_CHNL)) 670 return -EPERM; 671 672 /* FD filters from guaranteed pool per VSI */ 673 g_val = pf->hw.func_caps.fd_fltr_guar; 674 if (!g_val) 675 return -EPERM; 676 677 /* FD filters from best effort pool */ 678 b_val = pf->hw.func_caps.fd_fltr_best_effort; 679 if (!b_val) 680 return -EPERM; 681 682 /* PF main VSI gets only 64 FD resources from guaranteed pool 683 * when ADQ is configured. 684 */ 685 #define ICE_PF_VSI_GFLTR 64 686 687 /* determine FD filter resources per VSI from shared(best effort) and 688 * dedicated pool 689 */ 690 if (vsi->type == ICE_VSI_PF) { 691 vsi->num_gfltr = g_val; 692 /* if MQPRIO is configured, main VSI doesn't get all FD 693 * resources from guaranteed pool. PF VSI gets 64 FD resources 694 */ 695 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { 696 if (g_val < ICE_PF_VSI_GFLTR) 697 return -EPERM; 698 /* allow bare minimum entries for PF VSI */ 699 vsi->num_gfltr = ICE_PF_VSI_GFLTR; 700 } 701 702 /* each VSI gets same "best_effort" quota */ 703 vsi->num_bfltr = b_val; 704 } else if (vsi->type == ICE_VSI_VF) { 705 vsi->num_gfltr = 0; 706 707 /* each VSI gets same "best_effort" quota */ 708 vsi->num_bfltr = b_val; 709 } else { 710 struct ice_vsi *main_vsi; 711 int numtc; 712 713 main_vsi = ice_get_main_vsi(pf); 714 if (!main_vsi) 715 return -EPERM; 716 717 if (!main_vsi->all_numtc) 718 return -EINVAL; 719 720 /* figure out ADQ numtc */ 721 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; 722 723 /* only one TC but still asking resources for channels, 724 * invalid config 725 */ 726 if (numtc < ICE_CHNL_START_TC) 727 return -EPERM; 728 729 g_val -= ICE_PF_VSI_GFLTR; 730 /* channel VSIs gets equal share from guaranteed pool */ 731 vsi->num_gfltr = g_val / numtc; 732 733 /* each VSI gets same "best_effort" quota */ 734 vsi->num_bfltr = b_val; 735 } 736 737 return 0; 738 } 739 740 /** 741 * ice_vsi_get_qs - Assign queues from PF to VSI 742 * @vsi: the VSI to assign queues to 743 * 744 * Returns 0 on success and a negative value on error 745 */ 746 static int ice_vsi_get_qs(struct ice_vsi *vsi) 747 { 748 struct ice_pf *pf = vsi->back; 749 struct ice_qs_cfg tx_qs_cfg = { 750 .qs_mutex = &pf->avail_q_mutex, 751 .pf_map = pf->avail_txqs, 752 .pf_map_size = pf->max_pf_txqs, 753 .q_count = vsi->alloc_txq, 754 .scatter_count = ICE_MAX_SCATTER_TXQS, 755 .vsi_map = vsi->txq_map, 756 .vsi_map_offset = 0, 757 .mapping_mode = ICE_VSI_MAP_CONTIG 758 }; 759 struct ice_qs_cfg rx_qs_cfg = { 760 .qs_mutex = &pf->avail_q_mutex, 761 .pf_map = pf->avail_rxqs, 762 .pf_map_size = pf->max_pf_rxqs, 763 .q_count = vsi->alloc_rxq, 764 .scatter_count = ICE_MAX_SCATTER_RXQS, 765 .vsi_map = vsi->rxq_map, 766 .vsi_map_offset = 0, 767 .mapping_mode = ICE_VSI_MAP_CONTIG 768 }; 769 int ret; 770 771 if (vsi->type == ICE_VSI_CHNL) 772 return 0; 773 774 ret = __ice_vsi_get_qs(&tx_qs_cfg); 775 if (ret) 776 return ret; 777 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; 778 779 ret = __ice_vsi_get_qs(&rx_qs_cfg); 780 if (ret) 781 return ret; 782 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; 783 784 return 0; 785 } 786 787 /** 788 * ice_vsi_put_qs - Release queues from VSI to PF 789 * @vsi: the VSI that is going to release queues 790 */ 791 static void ice_vsi_put_qs(struct ice_vsi *vsi) 792 { 793 struct ice_pf *pf = vsi->back; 794 int i; 795 796 mutex_lock(&pf->avail_q_mutex); 797 798 ice_for_each_alloc_txq(vsi, i) { 799 clear_bit(vsi->txq_map[i], pf->avail_txqs); 800 vsi->txq_map[i] = ICE_INVAL_Q_INDEX; 801 } 802 803 ice_for_each_alloc_rxq(vsi, i) { 804 clear_bit(vsi->rxq_map[i], pf->avail_rxqs); 805 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; 806 } 807 808 mutex_unlock(&pf->avail_q_mutex); 809 } 810 811 /** 812 * ice_is_safe_mode 813 * @pf: pointer to the PF struct 814 * 815 * returns true if driver is in safe mode, false otherwise 816 */ 817 bool ice_is_safe_mode(struct ice_pf *pf) 818 { 819 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); 820 } 821 822 /** 823 * ice_is_rdma_ena 824 * @pf: pointer to the PF struct 825 * 826 * returns true if RDMA is currently supported, false otherwise 827 */ 828 bool ice_is_rdma_ena(struct ice_pf *pf) 829 { 830 return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); 831 } 832 833 /** 834 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration 835 * @vsi: the VSI being cleaned up 836 * 837 * This function deletes RSS input set for all flows that were configured 838 * for this VSI 839 */ 840 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) 841 { 842 struct ice_pf *pf = vsi->back; 843 int status; 844 845 if (ice_is_safe_mode(pf)) 846 return; 847 848 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); 849 if (status) 850 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", 851 vsi->vsi_num, status); 852 } 853 854 /** 855 * ice_rss_clean - Delete RSS related VSI structures and configuration 856 * @vsi: the VSI being removed 857 */ 858 static void ice_rss_clean(struct ice_vsi *vsi) 859 { 860 struct ice_pf *pf = vsi->back; 861 struct device *dev; 862 863 dev = ice_pf_to_dev(pf); 864 865 devm_kfree(dev, vsi->rss_hkey_user); 866 devm_kfree(dev, vsi->rss_lut_user); 867 868 ice_vsi_clean_rss_flow_fld(vsi); 869 /* remove RSS replay list */ 870 if (!ice_is_safe_mode(pf)) 871 ice_rem_vsi_rss_list(&pf->hw, vsi->idx); 872 } 873 874 /** 875 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type 876 * @vsi: the VSI being configured 877 */ 878 static void ice_vsi_set_rss_params(struct ice_vsi *vsi) 879 { 880 struct ice_hw_common_caps *cap; 881 struct ice_pf *pf = vsi->back; 882 u16 max_rss_size; 883 884 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 885 vsi->rss_size = 1; 886 return; 887 } 888 889 cap = &pf->hw.func_caps.common_cap; 890 max_rss_size = BIT(cap->rss_table_entry_width); 891 switch (vsi->type) { 892 case ICE_VSI_CHNL: 893 case ICE_VSI_PF: 894 /* PF VSI will inherit RSS instance of PF */ 895 vsi->rss_table_size = (u16)cap->rss_table_size; 896 if (vsi->type == ICE_VSI_CHNL) 897 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); 898 else 899 vsi->rss_size = min_t(u16, num_online_cpus(), 900 max_rss_size); 901 vsi->rss_lut_type = ICE_LUT_PF; 902 break; 903 case ICE_VSI_SF: 904 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 905 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size); 906 vsi->rss_lut_type = ICE_LUT_VSI; 907 break; 908 case ICE_VSI_VF: 909 /* VF VSI will get a small RSS table. 910 * For VSI_LUT, LUT size should be set to 64 bytes. 911 */ 912 vsi->rss_table_size = ICE_LUT_VSI_SIZE; 913 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; 914 vsi->rss_lut_type = ICE_LUT_VSI; 915 break; 916 case ICE_VSI_LB: 917 break; 918 default: 919 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", 920 ice_vsi_type_str(vsi->type)); 921 break; 922 } 923 } 924 925 /** 926 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI 927 * @hw: HW structure used to determine the VLAN mode of the device 928 * @ctxt: the VSI context being set 929 * 930 * This initializes a default VSI context for all sections except the Queues. 931 */ 932 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) 933 { 934 u32 table = 0; 935 936 memset(&ctxt->info, 0, sizeof(ctxt->info)); 937 /* VSI's should be allocated from shared pool */ 938 ctxt->alloc_from_pool = true; 939 /* Src pruning enabled by default */ 940 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; 941 /* Traffic from VSI can be sent to LAN */ 942 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; 943 /* allow all untagged/tagged packets by default on Tx */ 944 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M, 945 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL); 946 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which 947 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. 948 * 949 * DVM - leave inner VLAN in packet by default 950 */ 951 if (ice_is_dvm_ena(hw)) { 952 ctxt->info.inner_vlan_flags |= 953 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M, 954 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING); 955 ctxt->info.outer_vlan_flags = 956 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M, 957 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL); 958 ctxt->info.outer_vlan_flags |= 959 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M, 960 ICE_AQ_VSI_OUTER_TAG_VLAN_8100); 961 ctxt->info.outer_vlan_flags |= 962 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, 963 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); 964 } 965 /* Have 1:1 UP mapping for both ingress/egress tables */ 966 table |= ICE_UP_TABLE_TRANSLATE(0, 0); 967 table |= ICE_UP_TABLE_TRANSLATE(1, 1); 968 table |= ICE_UP_TABLE_TRANSLATE(2, 2); 969 table |= ICE_UP_TABLE_TRANSLATE(3, 3); 970 table |= ICE_UP_TABLE_TRANSLATE(4, 4); 971 table |= ICE_UP_TABLE_TRANSLATE(5, 5); 972 table |= ICE_UP_TABLE_TRANSLATE(6, 6); 973 table |= ICE_UP_TABLE_TRANSLATE(7, 7); 974 ctxt->info.ingress_table = cpu_to_le32(table); 975 ctxt->info.egress_table = cpu_to_le32(table); 976 /* Have 1:1 UP mapping for outer to inner UP table */ 977 ctxt->info.outer_up_table = cpu_to_le32(table); 978 /* No Outer tag support outer_tag_flags remains to zero */ 979 } 980 981 /** 982 * ice_vsi_setup_q_map - Setup a VSI queue map 983 * @vsi: the VSI being configured 984 * @ctxt: VSI context structure 985 */ 986 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 987 { 988 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; 989 u16 num_txq_per_tc, num_rxq_per_tc; 990 u16 qcount_tx = vsi->alloc_txq; 991 u16 qcount_rx = vsi->alloc_rxq; 992 u8 netdev_tc = 0; 993 int i; 994 995 if (!vsi->tc_cfg.numtc) { 996 /* at least TC0 should be enabled by default */ 997 vsi->tc_cfg.numtc = 1; 998 vsi->tc_cfg.ena_tc = 1; 999 } 1000 1001 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); 1002 if (!num_rxq_per_tc) 1003 num_rxq_per_tc = 1; 1004 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; 1005 if (!num_txq_per_tc) 1006 num_txq_per_tc = 1; 1007 1008 /* find the (rounded up) power-of-2 of qcount */ 1009 pow = (u16)order_base_2(num_rxq_per_tc); 1010 1011 /* TC mapping is a function of the number of Rx queues assigned to the 1012 * VSI for each traffic class and the offset of these queues. 1013 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of 1014 * queues allocated to TC0. No:of queues is a power-of-2. 1015 * 1016 * If TC is not enabled, the queue offset is set to 0, and allocate one 1017 * queue, this way, traffic for the given TC will be sent to the default 1018 * queue. 1019 * 1020 * Setup number and offset of Rx queues for all TCs for the VSI 1021 */ 1022 ice_for_each_traffic_class(i) { 1023 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 1024 /* TC is not enabled */ 1025 vsi->tc_cfg.tc_info[i].qoffset = 0; 1026 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 1027 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 1028 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 1029 ctxt->info.tc_mapping[i] = 0; 1030 continue; 1031 } 1032 1033 /* TC is enabled */ 1034 vsi->tc_cfg.tc_info[i].qoffset = offset; 1035 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; 1036 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; 1037 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 1038 1039 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1040 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1041 offset += num_rxq_per_tc; 1042 tx_count += num_txq_per_tc; 1043 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); 1044 } 1045 1046 /* if offset is non-zero, means it is calculated correctly based on 1047 * enabled TCs for a given VSI otherwise qcount_rx will always 1048 * be correct and non-zero because it is based off - VSI's 1049 * allocated Rx queues which is at least 1 (hence qcount_tx will be 1050 * at least 1) 1051 */ 1052 if (offset) 1053 rx_count = offset; 1054 else 1055 rx_count = num_rxq_per_tc; 1056 1057 if (rx_count > vsi->alloc_rxq) { 1058 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 1059 rx_count, vsi->alloc_rxq); 1060 return -EINVAL; 1061 } 1062 1063 if (tx_count > vsi->alloc_txq) { 1064 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 1065 tx_count, vsi->alloc_txq); 1066 return -EINVAL; 1067 } 1068 1069 vsi->num_txq = tx_count; 1070 vsi->num_rxq = rx_count; 1071 1072 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { 1073 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); 1074 /* since there is a chance that num_rxq could have been changed 1075 * in the above for loop, make num_txq equal to num_rxq. 1076 */ 1077 vsi->num_txq = vsi->num_rxq; 1078 } 1079 1080 /* Rx queue mapping */ 1081 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1082 /* q_mapping buffer holds the info for the first queue allocated for 1083 * this VSI in the PF space and also the number of queues associated 1084 * with this VSI. 1085 */ 1086 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 1087 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); 1088 1089 return 0; 1090 } 1091 1092 /** 1093 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI 1094 * @ctxt: the VSI context being set 1095 * @vsi: the VSI being configured 1096 */ 1097 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1098 { 1099 u8 dflt_q_group, dflt_q_prio; 1100 u16 dflt_q, report_q, val; 1101 1102 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && 1103 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) 1104 return; 1105 1106 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; 1107 ctxt->info.valid_sections |= cpu_to_le16(val); 1108 dflt_q = 0; 1109 dflt_q_group = 0; 1110 report_q = 0; 1111 dflt_q_prio = 0; 1112 1113 /* enable flow director filtering/programming */ 1114 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; 1115 ctxt->info.fd_options = cpu_to_le16(val); 1116 /* max of allocated flow director filters */ 1117 ctxt->info.max_fd_fltr_dedicated = 1118 cpu_to_le16(vsi->num_gfltr); 1119 /* max of shared flow director filters any VSI may program */ 1120 ctxt->info.max_fd_fltr_shared = 1121 cpu_to_le16(vsi->num_bfltr); 1122 /* default queue index within the VSI of the default FD */ 1123 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q); 1124 /* target queue or queue group to the FD filter */ 1125 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group); 1126 ctxt->info.fd_def_q = cpu_to_le16(val); 1127 /* queue index on which FD filter completion is reported */ 1128 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q); 1129 /* priority of the default qindex action */ 1130 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio); 1131 ctxt->info.fd_report_opt = cpu_to_le16(val); 1132 } 1133 1134 /** 1135 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI 1136 * @ctxt: the VSI context being set 1137 * @vsi: the VSI being configured 1138 */ 1139 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) 1140 { 1141 u8 lut_type, hash_type; 1142 struct device *dev; 1143 struct ice_pf *pf; 1144 1145 pf = vsi->back; 1146 dev = ice_pf_to_dev(pf); 1147 1148 switch (vsi->type) { 1149 case ICE_VSI_CHNL: 1150 case ICE_VSI_PF: 1151 /* PF VSI will inherit RSS instance of PF */ 1152 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; 1153 break; 1154 case ICE_VSI_VF: 1155 case ICE_VSI_SF: 1156 /* VF VSI will gets a small RSS table which is a VSI LUT type */ 1157 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; 1158 break; 1159 default: 1160 dev_dbg(dev, "Unsupported VSI type %s\n", 1161 ice_vsi_type_str(vsi->type)); 1162 return; 1163 } 1164 1165 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; 1166 vsi->rss_hfunc = hash_type; 1167 1168 ctxt->info.q_opt_rss = 1169 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | 1170 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); 1171 } 1172 1173 static void 1174 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) 1175 { 1176 struct ice_pf *pf = vsi->back; 1177 u16 qcount, qmap; 1178 u8 offset = 0; 1179 int pow; 1180 1181 qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); 1182 1183 pow = order_base_2(qcount); 1184 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); 1185 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 1186 1187 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 1188 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); 1189 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); 1190 ctxt->info.q_mapping[1] = cpu_to_le16(qcount); 1191 } 1192 1193 /** 1194 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not 1195 * @vsi: VSI to check whether or not VLAN pruning is enabled. 1196 * 1197 * returns true if Rx VLAN pruning is enabled and false otherwise. 1198 */ 1199 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) 1200 { 1201 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1202 } 1203 1204 /** 1205 * ice_vsi_init - Create and initialize a VSI 1206 * @vsi: the VSI being configured 1207 * @vsi_flags: VSI configuration flags 1208 * 1209 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to 1210 * reconfigure an existing context. 1211 * 1212 * This initializes a VSI context depending on the VSI type to be added and 1213 * passes it down to the add_vsi aq command to create a new VSI. 1214 */ 1215 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) 1216 { 1217 struct ice_pf *pf = vsi->back; 1218 struct ice_hw *hw = &pf->hw; 1219 struct ice_vsi_ctx *ctxt; 1220 struct device *dev; 1221 int ret = 0; 1222 1223 dev = ice_pf_to_dev(pf); 1224 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 1225 if (!ctxt) 1226 return -ENOMEM; 1227 1228 switch (vsi->type) { 1229 case ICE_VSI_CTRL: 1230 case ICE_VSI_LB: 1231 case ICE_VSI_PF: 1232 ctxt->flags = ICE_AQ_VSI_TYPE_PF; 1233 break; 1234 case ICE_VSI_SF: 1235 case ICE_VSI_CHNL: 1236 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; 1237 break; 1238 case ICE_VSI_VF: 1239 ctxt->flags = ICE_AQ_VSI_TYPE_VF; 1240 /* VF number here is the absolute VF number (0-255) */ 1241 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; 1242 break; 1243 default: 1244 ret = -ENODEV; 1245 goto out; 1246 } 1247 1248 /* Handle VLAN pruning for channel VSI if main VSI has VLAN 1249 * prune enabled 1250 */ 1251 if (vsi->type == ICE_VSI_CHNL) { 1252 struct ice_vsi *main_vsi; 1253 1254 main_vsi = ice_get_main_vsi(pf); 1255 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) 1256 ctxt->info.sw_flags2 |= 1257 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1258 else 1259 ctxt->info.sw_flags2 &= 1260 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; 1261 } 1262 1263 ice_set_dflt_vsi_ctx(hw, ctxt); 1264 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) 1265 ice_set_fd_vsi_ctx(ctxt, vsi); 1266 /* if the switch is in VEB mode, allow VSI loopback */ 1267 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) 1268 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; 1269 1270 /* Set LUT type and HASH type if RSS is enabled */ 1271 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && 1272 vsi->type != ICE_VSI_CTRL) { 1273 ice_set_rss_vsi_ctx(ctxt, vsi); 1274 /* if updating VSI context, make sure to set valid_section: 1275 * to indicate which section of VSI context being updated 1276 */ 1277 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1278 ctxt->info.valid_sections |= 1279 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); 1280 } 1281 1282 ctxt->info.sw_id = vsi->port_info->sw_id; 1283 if (vsi->type == ICE_VSI_CHNL) { 1284 ice_chnl_vsi_setup_q_map(vsi, ctxt); 1285 } else { 1286 ret = ice_vsi_setup_q_map(vsi, ctxt); 1287 if (ret) 1288 goto out; 1289 1290 if (!(vsi_flags & ICE_VSI_FLAG_INIT)) 1291 /* means VSI being updated */ 1292 /* must to indicate which section of VSI context are 1293 * being modified 1294 */ 1295 ctxt->info.valid_sections |= 1296 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 1297 } 1298 1299 /* Allow control frames out of main VSI */ 1300 if (vsi->type == ICE_VSI_PF) { 1301 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 1302 ctxt->info.valid_sections |= 1303 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 1304 } 1305 1306 if (vsi_flags & ICE_VSI_FLAG_INIT) { 1307 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); 1308 if (ret) { 1309 dev_err(dev, "Add VSI failed, err %d\n", ret); 1310 ret = -EIO; 1311 goto out; 1312 } 1313 } else { 1314 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); 1315 if (ret) { 1316 dev_err(dev, "Update VSI failed, err %d\n", ret); 1317 ret = -EIO; 1318 goto out; 1319 } 1320 } 1321 1322 /* keep context for update VSI operations */ 1323 vsi->info = ctxt->info; 1324 1325 /* record VSI number returned */ 1326 vsi->vsi_num = ctxt->vsi_num; 1327 1328 out: 1329 kfree(ctxt); 1330 return ret; 1331 } 1332 1333 /** 1334 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI 1335 * @vsi: the VSI having rings deallocated 1336 */ 1337 static void ice_vsi_clear_rings(struct ice_vsi *vsi) 1338 { 1339 int i; 1340 1341 /* Avoid stale references by clearing map from vector to ring */ 1342 if (vsi->q_vectors) { 1343 ice_for_each_q_vector(vsi, i) { 1344 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1345 1346 if (q_vector) { 1347 q_vector->tx.tx_ring = NULL; 1348 q_vector->rx.rx_ring = NULL; 1349 } 1350 } 1351 } 1352 1353 if (vsi->tx_rings) { 1354 ice_for_each_alloc_txq(vsi, i) { 1355 if (vsi->tx_rings[i]) { 1356 kfree_rcu(vsi->tx_rings[i], rcu); 1357 WRITE_ONCE(vsi->tx_rings[i], NULL); 1358 } 1359 } 1360 } 1361 if (vsi->rx_rings) { 1362 ice_for_each_alloc_rxq(vsi, i) { 1363 if (vsi->rx_rings[i]) { 1364 kfree_rcu(vsi->rx_rings[i], rcu); 1365 WRITE_ONCE(vsi->rx_rings[i], NULL); 1366 } 1367 } 1368 } 1369 } 1370 1371 /** 1372 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI 1373 * @vsi: VSI which is having rings allocated 1374 */ 1375 static int ice_vsi_alloc_rings(struct ice_vsi *vsi) 1376 { 1377 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); 1378 struct ice_pf *pf = vsi->back; 1379 struct device *dev; 1380 u16 i; 1381 1382 dev = ice_pf_to_dev(pf); 1383 /* Allocate Tx rings */ 1384 ice_for_each_alloc_txq(vsi, i) { 1385 struct ice_tx_ring *ring; 1386 1387 /* allocate with kzalloc(), free with kfree_rcu() */ 1388 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1389 1390 if (!ring) 1391 goto err_out; 1392 1393 ring->q_index = i; 1394 ring->reg_idx = vsi->txq_map[i]; 1395 ring->vsi = vsi; 1396 ring->tx_tstamps = &pf->ptp.port.tx; 1397 ring->dev = dev; 1398 ring->count = vsi->num_tx_desc; 1399 ring->txq_teid = ICE_INVAL_TEID; 1400 if (dvm_ena) 1401 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; 1402 else 1403 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; 1404 WRITE_ONCE(vsi->tx_rings[i], ring); 1405 } 1406 1407 /* Allocate Rx rings */ 1408 ice_for_each_alloc_rxq(vsi, i) { 1409 struct ice_rx_ring *ring; 1410 1411 /* allocate with kzalloc(), free with kfree_rcu() */ 1412 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 1413 if (!ring) 1414 goto err_out; 1415 1416 ring->q_index = i; 1417 ring->reg_idx = vsi->rxq_map[i]; 1418 ring->vsi = vsi; 1419 ring->netdev = vsi->netdev; 1420 ring->dev = dev; 1421 ring->count = vsi->num_rx_desc; 1422 ring->cached_phctime = pf->ptp.cached_phc_time; 1423 WRITE_ONCE(vsi->rx_rings[i], ring); 1424 } 1425 1426 return 0; 1427 1428 err_out: 1429 ice_vsi_clear_rings(vsi); 1430 return -ENOMEM; 1431 } 1432 1433 /** 1434 * ice_vsi_manage_rss_lut - disable/enable RSS 1435 * @vsi: the VSI being changed 1436 * @ena: boolean value indicating if this is an enable or disable request 1437 * 1438 * In the event of disable request for RSS, this function will zero out RSS 1439 * LUT, while in the event of enable request for RSS, it will reconfigure RSS 1440 * LUT. 1441 */ 1442 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) 1443 { 1444 u8 *lut; 1445 1446 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1447 if (!lut) 1448 return; 1449 1450 if (ena) { 1451 if (vsi->rss_lut_user) 1452 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1453 else 1454 ice_fill_rss_lut(lut, vsi->rss_table_size, 1455 vsi->rss_size); 1456 } 1457 1458 ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1459 kfree(lut); 1460 } 1461 1462 /** 1463 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI 1464 * @vsi: VSI to be configured 1465 * @disable: set to true to have FCS / CRC in the frame data 1466 */ 1467 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) 1468 { 1469 int i; 1470 1471 ice_for_each_rxq(vsi, i) 1472 if (disable) 1473 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; 1474 else 1475 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; 1476 } 1477 1478 /** 1479 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI 1480 * @vsi: VSI to be configured 1481 */ 1482 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) 1483 { 1484 struct ice_pf *pf = vsi->back; 1485 struct device *dev; 1486 u8 *lut, *key; 1487 int err; 1488 1489 dev = ice_pf_to_dev(pf); 1490 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && 1491 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { 1492 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); 1493 } else { 1494 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); 1495 1496 /* If orig_rss_size is valid and it is less than determined 1497 * main VSI's rss_size, update main VSI's rss_size to be 1498 * orig_rss_size so that when tc-qdisc is deleted, main VSI 1499 * RSS table gets programmed to be correct (whatever it was 1500 * to begin with (prior to setup-tc for ADQ config) 1501 */ 1502 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && 1503 vsi->orig_rss_size <= vsi->num_rxq) { 1504 vsi->rss_size = vsi->orig_rss_size; 1505 /* now orig_rss_size is used, reset it to zero */ 1506 vsi->orig_rss_size = 0; 1507 } 1508 } 1509 1510 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); 1511 if (!lut) 1512 return -ENOMEM; 1513 1514 if (vsi->rss_lut_user) 1515 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); 1516 else 1517 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); 1518 1519 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); 1520 if (err) { 1521 dev_err(dev, "set_rss_lut failed, error %d\n", err); 1522 goto ice_vsi_cfg_rss_exit; 1523 } 1524 1525 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); 1526 if (!key) { 1527 err = -ENOMEM; 1528 goto ice_vsi_cfg_rss_exit; 1529 } 1530 1531 if (vsi->rss_hkey_user) 1532 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1533 else 1534 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); 1535 1536 err = ice_set_rss_key(vsi, key); 1537 if (err) 1538 dev_err(dev, "set_rss_key failed, error %d\n", err); 1539 1540 kfree(key); 1541 ice_vsi_cfg_rss_exit: 1542 kfree(lut); 1543 return err; 1544 } 1545 1546 /** 1547 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows 1548 * @vsi: VSI to be configured 1549 * 1550 * This function will only be called during the VF VSI setup. Upon successful 1551 * completion of package download, this function will configure default RSS 1552 * input sets for VF VSI. 1553 */ 1554 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) 1555 { 1556 struct ice_pf *pf = vsi->back; 1557 struct device *dev; 1558 int status; 1559 1560 dev = ice_pf_to_dev(pf); 1561 if (ice_is_safe_mode(pf)) { 1562 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1563 vsi->vsi_num); 1564 return; 1565 } 1566 1567 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA); 1568 if (status) 1569 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", 1570 vsi->vsi_num, status); 1571 } 1572 1573 static const struct ice_rss_hash_cfg default_rss_cfgs[] = { 1574 /* configure RSS for IPv4 with input set IP src/dst */ 1575 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false}, 1576 /* configure RSS for IPv6 with input set IPv6 src/dst */ 1577 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false}, 1578 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ 1579 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4, 1580 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1581 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ 1582 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4, 1583 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false}, 1584 /* configure RSS for sctp4 with input set IP src/dst - only support 1585 * RSS on SCTPv4 on outer headers (non-tunneled) 1586 */ 1587 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4, 1588 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1589 /* configure RSS for gtpc4 with input set IPv4 src/dst */ 1590 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4, 1591 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false}, 1592 /* configure RSS for gtpc4t with input set IPv4 src/dst */ 1593 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4, 1594 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, 1595 /* configure RSS for gtpu4 with input set IPv4 src/dst */ 1596 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4, 1597 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, 1598 /* configure RSS for gtpu4e with input set IPv4 src/dst */ 1599 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4, 1600 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false}, 1601 /* configure RSS for gtpu4u with input set IPv4 src/dst */ 1602 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4, 1603 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false}, 1604 /* configure RSS for gtpu4d with input set IPv4 src/dst */ 1605 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4, 1606 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false}, 1607 1608 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ 1609 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6, 1610 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1611 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ 1612 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6, 1613 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false}, 1614 /* configure RSS for sctp6 with input set IPv6 src/dst - only support 1615 * RSS on SCTPv6 on outer headers (non-tunneled) 1616 */ 1617 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6, 1618 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1619 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */ 1620 {ICE_FLOW_SEG_HDR_ESP, 1621 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false}, 1622 /* configure RSS for gtpc6 with input set IPv6 src/dst */ 1623 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6, 1624 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false}, 1625 /* configure RSS for gtpc6t with input set IPv6 src/dst */ 1626 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6, 1627 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, 1628 /* configure RSS for gtpu6 with input set IPv6 src/dst */ 1629 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6, 1630 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, 1631 /* configure RSS for gtpu6e with input set IPv6 src/dst */ 1632 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6, 1633 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false}, 1634 /* configure RSS for gtpu6u with input set IPv6 src/dst */ 1635 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6, 1636 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false}, 1637 /* configure RSS for gtpu6d with input set IPv6 src/dst */ 1638 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6, 1639 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false}, 1640 }; 1641 1642 /** 1643 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows 1644 * @vsi: VSI to be configured 1645 * 1646 * This function will only be called after successful download package call 1647 * during initialization of PF. Since the downloaded package will erase the 1648 * RSS section, this function will configure RSS input sets for different 1649 * flow types. The last profile added has the highest priority, therefore 2 1650 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles 1651 * (i.e. IPv4 src/dst TCP src/dst port). 1652 */ 1653 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) 1654 { 1655 u16 vsi_num = vsi->vsi_num; 1656 struct ice_pf *pf = vsi->back; 1657 struct ice_hw *hw = &pf->hw; 1658 struct device *dev; 1659 int status; 1660 u32 i; 1661 1662 dev = ice_pf_to_dev(pf); 1663 if (ice_is_safe_mode(pf)) { 1664 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", 1665 vsi_num); 1666 return; 1667 } 1668 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) { 1669 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i]; 1670 1671 status = ice_add_rss_cfg(hw, vsi, cfg); 1672 if (status) 1673 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n", 1674 cfg->addl_hdrs, cfg->hash_flds, 1675 cfg->hdr_type, cfg->symm); 1676 } 1677 } 1678 1679 /** 1680 * ice_pf_state_is_nominal - checks the PF for nominal state 1681 * @pf: pointer to PF to check 1682 * 1683 * Check the PF's state for a collection of bits that would indicate 1684 * the PF is in a state that would inhibit normal operation for 1685 * driver functionality. 1686 * 1687 * Returns true if PF is in a nominal state, false otherwise 1688 */ 1689 bool ice_pf_state_is_nominal(struct ice_pf *pf) 1690 { 1691 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; 1692 1693 if (!pf) 1694 return false; 1695 1696 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); 1697 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) 1698 return false; 1699 1700 return true; 1701 } 1702 1703 /** 1704 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters 1705 * @vsi: the VSI to be updated 1706 */ 1707 void ice_update_eth_stats(struct ice_vsi *vsi) 1708 { 1709 struct ice_eth_stats *prev_es, *cur_es; 1710 struct ice_hw *hw = &vsi->back->hw; 1711 struct ice_pf *pf = vsi->back; 1712 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ 1713 1714 prev_es = &vsi->eth_stats_prev; 1715 cur_es = &vsi->eth_stats; 1716 1717 if (ice_is_reset_in_progress(pf->state)) 1718 vsi->stat_offsets_loaded = false; 1719 1720 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, 1721 &prev_es->rx_bytes, &cur_es->rx_bytes); 1722 1723 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, 1724 &prev_es->rx_unicast, &cur_es->rx_unicast); 1725 1726 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, 1727 &prev_es->rx_multicast, &cur_es->rx_multicast); 1728 1729 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, 1730 &prev_es->rx_broadcast, &cur_es->rx_broadcast); 1731 1732 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, 1733 &prev_es->rx_discards, &cur_es->rx_discards); 1734 1735 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, 1736 &prev_es->tx_bytes, &cur_es->tx_bytes); 1737 1738 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, 1739 &prev_es->tx_unicast, &cur_es->tx_unicast); 1740 1741 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, 1742 &prev_es->tx_multicast, &cur_es->tx_multicast); 1743 1744 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, 1745 &prev_es->tx_broadcast, &cur_es->tx_broadcast); 1746 1747 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, 1748 &prev_es->tx_errors, &cur_es->tx_errors); 1749 1750 vsi->stat_offsets_loaded = true; 1751 } 1752 1753 /** 1754 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register 1755 * @hw: HW pointer 1756 * @pf_q: index of the Rx queue in the PF's queue space 1757 * @rxdid: flexible descriptor RXDID 1758 * @prio: priority for the RXDID for this queue 1759 * @ena_ts: true to enable timestamp and false to disable timestamp 1760 */ 1761 void 1762 ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, 1763 bool ena_ts) 1764 { 1765 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); 1766 1767 /* clear any previous values */ 1768 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | 1769 QRXFLXP_CNTXT_RXDID_PRIO_M | 1770 QRXFLXP_CNTXT_TS_M); 1771 1772 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid); 1773 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio); 1774 1775 if (ena_ts) 1776 /* Enable TimeSync on this queue */ 1777 regval |= QRXFLXP_CNTXT_TS_M; 1778 1779 wr32(hw, QRXFLXP_CNTXT(pf_q), regval); 1780 } 1781 1782 /** 1783 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value 1784 * @intrl: interrupt rate limit in usecs 1785 * @gran: interrupt rate limit granularity in usecs 1786 * 1787 * This function converts a decimal interrupt rate limit in usecs to the format 1788 * expected by firmware. 1789 */ 1790 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) 1791 { 1792 u32 val = intrl / gran; 1793 1794 if (val) 1795 return val | GLINT_RATE_INTRL_ENA_M; 1796 return 0; 1797 } 1798 1799 /** 1800 * ice_write_intrl - write throttle rate limit to interrupt specific register 1801 * @q_vector: pointer to interrupt specific structure 1802 * @intrl: throttle rate limit in microseconds to write 1803 */ 1804 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) 1805 { 1806 struct ice_hw *hw = &q_vector->vsi->back->hw; 1807 1808 wr32(hw, GLINT_RATE(q_vector->reg_idx), 1809 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); 1810 } 1811 1812 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) 1813 { 1814 switch (rc->type) { 1815 case ICE_RX_CONTAINER: 1816 if (rc->rx_ring) 1817 return rc->rx_ring->q_vector; 1818 break; 1819 case ICE_TX_CONTAINER: 1820 if (rc->tx_ring) 1821 return rc->tx_ring->q_vector; 1822 break; 1823 default: 1824 break; 1825 } 1826 1827 return NULL; 1828 } 1829 1830 /** 1831 * __ice_write_itr - write throttle rate to register 1832 * @q_vector: pointer to interrupt data structure 1833 * @rc: pointer to ring container 1834 * @itr: throttle rate in microseconds to write 1835 */ 1836 static void __ice_write_itr(struct ice_q_vector *q_vector, 1837 struct ice_ring_container *rc, u16 itr) 1838 { 1839 struct ice_hw *hw = &q_vector->vsi->back->hw; 1840 1841 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), 1842 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); 1843 } 1844 1845 /** 1846 * ice_write_itr - write throttle rate to queue specific register 1847 * @rc: pointer to ring container 1848 * @itr: throttle rate in microseconds to write 1849 */ 1850 void ice_write_itr(struct ice_ring_container *rc, u16 itr) 1851 { 1852 struct ice_q_vector *q_vector; 1853 1854 q_vector = ice_pull_qvec_from_rc(rc); 1855 if (!q_vector) 1856 return; 1857 1858 __ice_write_itr(q_vector, rc, itr); 1859 } 1860 1861 /** 1862 * ice_set_q_vector_intrl - set up interrupt rate limiting 1863 * @q_vector: the vector to be configured 1864 * 1865 * Interrupt rate limiting is local to the vector, not per-queue so we must 1866 * detect if either ring container has dynamic moderation enabled to decide 1867 * what to set the interrupt rate limit to via INTRL settings. In the case that 1868 * dynamic moderation is disabled on both, write the value with the cached 1869 * setting to make sure INTRL register matches the user visible value. 1870 */ 1871 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) 1872 { 1873 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { 1874 /* in the case of dynamic enabled, cap each vector to no more 1875 * than (4 us) 250,000 ints/sec, which allows low latency 1876 * but still less than 500,000 interrupts per second, which 1877 * reduces CPU a bit in the case of the lowest latency 1878 * setting. The 4 here is a value in microseconds. 1879 */ 1880 ice_write_intrl(q_vector, 4); 1881 } else { 1882 ice_write_intrl(q_vector, q_vector->intrl); 1883 } 1884 } 1885 1886 /** 1887 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW 1888 * @vsi: the VSI being configured 1889 * 1890 * This configures MSIX mode interrupts for the PF VSI, and should not be used 1891 * for the VF VSI. 1892 */ 1893 void ice_vsi_cfg_msix(struct ice_vsi *vsi) 1894 { 1895 struct ice_pf *pf = vsi->back; 1896 struct ice_hw *hw = &pf->hw; 1897 u16 txq = 0, rxq = 0; 1898 int i, q; 1899 1900 ice_for_each_q_vector(vsi, i) { 1901 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 1902 u16 reg_idx = q_vector->reg_idx; 1903 1904 ice_cfg_itr(hw, q_vector); 1905 1906 /* Both Transmit Queue Interrupt Cause Control register 1907 * and Receive Queue Interrupt Cause control register 1908 * expects MSIX_INDX field to be the vector index 1909 * within the function space and not the absolute 1910 * vector index across PF or across device. 1911 * For SR-IOV VF VSIs queue vector index always starts 1912 * with 1 since first vector index(0) is used for OICR 1913 * in VF space. Since VMDq and other PF VSIs are within 1914 * the PF function space, use the vector index that is 1915 * tracked for this PF. 1916 */ 1917 for (q = 0; q < q_vector->num_ring_tx; q++) { 1918 ice_cfg_txq_interrupt(vsi, txq, reg_idx, 1919 q_vector->tx.itr_idx); 1920 txq++; 1921 } 1922 1923 for (q = 0; q < q_vector->num_ring_rx; q++) { 1924 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, 1925 q_vector->rx.itr_idx); 1926 rxq++; 1927 } 1928 } 1929 } 1930 1931 /** 1932 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings 1933 * @vsi: the VSI whose rings are to be enabled 1934 * 1935 * Returns 0 on success and a negative value on error 1936 */ 1937 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) 1938 { 1939 return ice_vsi_ctrl_all_rx_rings(vsi, true); 1940 } 1941 1942 /** 1943 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings 1944 * @vsi: the VSI whose rings are to be disabled 1945 * 1946 * Returns 0 on success and a negative value on error 1947 */ 1948 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) 1949 { 1950 return ice_vsi_ctrl_all_rx_rings(vsi, false); 1951 } 1952 1953 /** 1954 * ice_vsi_stop_tx_rings - Disable Tx rings 1955 * @vsi: the VSI being configured 1956 * @rst_src: reset source 1957 * @rel_vmvf_num: Relative ID of VF/VM 1958 * @rings: Tx ring array to be stopped 1959 * @count: number of Tx ring array elements 1960 */ 1961 static int 1962 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1963 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) 1964 { 1965 u16 q_idx; 1966 1967 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) 1968 return -EINVAL; 1969 1970 for (q_idx = 0; q_idx < count; q_idx++) { 1971 struct ice_txq_meta txq_meta = { }; 1972 int status; 1973 1974 if (!rings || !rings[q_idx]) 1975 return -EINVAL; 1976 1977 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); 1978 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, 1979 rings[q_idx], &txq_meta); 1980 1981 if (status) 1982 return status; 1983 } 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings 1990 * @vsi: the VSI being configured 1991 * @rst_src: reset source 1992 * @rel_vmvf_num: Relative ID of VF/VM 1993 */ 1994 int 1995 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, 1996 u16 rel_vmvf_num) 1997 { 1998 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); 1999 } 2000 2001 /** 2002 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings 2003 * @vsi: the VSI being configured 2004 */ 2005 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) 2006 { 2007 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); 2008 } 2009 2010 /** 2011 * ice_vsi_is_rx_queue_active 2012 * @vsi: the VSI being configured 2013 * 2014 * Return true if at least one queue is active. 2015 */ 2016 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) 2017 { 2018 struct ice_pf *pf = vsi->back; 2019 struct ice_hw *hw = &pf->hw; 2020 int i; 2021 2022 ice_for_each_rxq(vsi, i) { 2023 u32 rx_reg; 2024 int pf_q; 2025 2026 pf_q = vsi->rxq_map[i]; 2027 rx_reg = rd32(hw, QRX_CTRL(pf_q)); 2028 if (rx_reg & QRX_CTRL_QENA_STAT_M) 2029 return true; 2030 } 2031 2032 return false; 2033 } 2034 2035 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) 2036 { 2037 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { 2038 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; 2039 vsi->tc_cfg.numtc = 1; 2040 return; 2041 } 2042 2043 /* set VSI TC information based on DCB config */ 2044 ice_vsi_set_dcb_tc_cfg(vsi); 2045 } 2046 2047 /** 2048 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling 2049 * @vsi: the VSI being configured 2050 * @tx: bool to determine Tx or Rx rule 2051 * @create: bool to determine create or remove Rule 2052 */ 2053 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) 2054 { 2055 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, 2056 enum ice_sw_fwd_act_type act); 2057 struct ice_pf *pf = vsi->back; 2058 struct device *dev; 2059 int status; 2060 2061 dev = ice_pf_to_dev(pf); 2062 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; 2063 2064 if (tx) { 2065 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, 2066 ICE_DROP_PACKET); 2067 } else { 2068 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { 2069 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, 2070 create); 2071 } else { 2072 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, 2073 ICE_FWD_TO_VSI); 2074 } 2075 } 2076 2077 if (status) 2078 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", 2079 create ? "adding" : "removing", tx ? "TX" : "RX", 2080 vsi->vsi_num, status); 2081 } 2082 2083 /** 2084 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it 2085 * @vsi: pointer to the VSI 2086 * 2087 * This function will allocate new scheduler aggregator now if needed and will 2088 * move specified VSI into it. 2089 */ 2090 static void ice_set_agg_vsi(struct ice_vsi *vsi) 2091 { 2092 struct device *dev = ice_pf_to_dev(vsi->back); 2093 struct ice_agg_node *agg_node_iter = NULL; 2094 u32 agg_id = ICE_INVALID_AGG_NODE_ID; 2095 struct ice_agg_node *agg_node = NULL; 2096 int node_offset, max_agg_nodes = 0; 2097 struct ice_port_info *port_info; 2098 struct ice_pf *pf = vsi->back; 2099 u32 agg_node_id_start = 0; 2100 int status; 2101 2102 /* create (as needed) scheduler aggregator node and move VSI into 2103 * corresponding aggregator node 2104 * - PF aggregator node to contains VSIs of type _PF and _CTRL 2105 * - VF aggregator nodes will contain VF VSI 2106 */ 2107 port_info = pf->hw.port_info; 2108 if (!port_info) 2109 return; 2110 2111 switch (vsi->type) { 2112 case ICE_VSI_CTRL: 2113 case ICE_VSI_CHNL: 2114 case ICE_VSI_LB: 2115 case ICE_VSI_PF: 2116 case ICE_VSI_SF: 2117 max_agg_nodes = ICE_MAX_PF_AGG_NODES; 2118 agg_node_id_start = ICE_PF_AGG_NODE_ID_START; 2119 agg_node_iter = &pf->pf_agg_node[0]; 2120 break; 2121 case ICE_VSI_VF: 2122 /* user can create 'n' VFs on a given PF, but since max children 2123 * per aggregator node can be only 64. Following code handles 2124 * aggregator(s) for VF VSIs, either selects a agg_node which 2125 * was already created provided num_vsis < 64, otherwise 2126 * select next available node, which will be created 2127 */ 2128 max_agg_nodes = ICE_MAX_VF_AGG_NODES; 2129 agg_node_id_start = ICE_VF_AGG_NODE_ID_START; 2130 agg_node_iter = &pf->vf_agg_node[0]; 2131 break; 2132 default: 2133 /* other VSI type, handle later if needed */ 2134 dev_dbg(dev, "unexpected VSI type %s\n", 2135 ice_vsi_type_str(vsi->type)); 2136 return; 2137 } 2138 2139 /* find the appropriate aggregator node */ 2140 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { 2141 /* see if we can find space in previously created 2142 * node if num_vsis < 64, otherwise skip 2143 */ 2144 if (agg_node_iter->num_vsis && 2145 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { 2146 agg_node_iter++; 2147 continue; 2148 } 2149 2150 if (agg_node_iter->valid && 2151 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { 2152 agg_id = agg_node_iter->agg_id; 2153 agg_node = agg_node_iter; 2154 break; 2155 } 2156 2157 /* find unclaimed agg_id */ 2158 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { 2159 agg_id = node_offset + agg_node_id_start; 2160 agg_node = agg_node_iter; 2161 break; 2162 } 2163 /* move to next agg_node */ 2164 agg_node_iter++; 2165 } 2166 2167 if (!agg_node) 2168 return; 2169 2170 /* if selected aggregator node was not created, create it */ 2171 if (!agg_node->valid) { 2172 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, 2173 (u8)vsi->tc_cfg.ena_tc); 2174 if (status) { 2175 dev_err(dev, "unable to create aggregator node with agg_id %u\n", 2176 agg_id); 2177 return; 2178 } 2179 /* aggregator node is created, store the needed info */ 2180 agg_node->valid = true; 2181 agg_node->agg_id = agg_id; 2182 } 2183 2184 /* move VSI to corresponding aggregator node */ 2185 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, 2186 (u8)vsi->tc_cfg.ena_tc); 2187 if (status) { 2188 dev_err(dev, "unable to move VSI idx %u into aggregator %u node", 2189 vsi->idx, agg_id); 2190 return; 2191 } 2192 2193 /* keep active children count for aggregator node */ 2194 agg_node->num_vsis++; 2195 2196 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved 2197 * to aggregator node 2198 */ 2199 vsi->agg_node = agg_node; 2200 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", 2201 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, 2202 vsi->agg_node->num_vsis); 2203 } 2204 2205 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) 2206 { 2207 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 2208 struct device *dev = ice_pf_to_dev(pf); 2209 int ret, i; 2210 2211 /* configure VSI nodes based on number of queues and TC's */ 2212 ice_for_each_traffic_class(i) { 2213 if (!(vsi->tc_cfg.ena_tc & BIT(i))) 2214 continue; 2215 2216 if (vsi->type == ICE_VSI_CHNL) { 2217 if (!vsi->alloc_txq && vsi->num_txq) 2218 max_txqs[i] = vsi->num_txq; 2219 else 2220 max_txqs[i] = pf->num_lan_tx; 2221 } else { 2222 max_txqs[i] = vsi->alloc_txq; 2223 } 2224 2225 if (vsi->type == ICE_VSI_PF) 2226 max_txqs[i] += vsi->num_xdp_txq; 2227 } 2228 2229 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); 2230 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, 2231 max_txqs); 2232 if (ret) { 2233 dev_err(dev, "VSI %d failed lan queue config, error %d\n", 2234 vsi->vsi_num, ret); 2235 return ret; 2236 } 2237 2238 return 0; 2239 } 2240 2241 /** 2242 * ice_vsi_cfg_def - configure default VSI based on the type 2243 * @vsi: pointer to VSI 2244 */ 2245 static int ice_vsi_cfg_def(struct ice_vsi *vsi) 2246 { 2247 struct device *dev = ice_pf_to_dev(vsi->back); 2248 struct ice_pf *pf = vsi->back; 2249 int ret; 2250 2251 vsi->vsw = pf->first_sw; 2252 2253 ret = ice_vsi_alloc_def(vsi, vsi->ch); 2254 if (ret) 2255 return ret; 2256 2257 /* allocate memory for Tx/Rx ring stat pointers */ 2258 ret = ice_vsi_alloc_stat_arrays(vsi); 2259 if (ret) 2260 goto unroll_vsi_alloc; 2261 2262 ice_alloc_fd_res(vsi); 2263 2264 ret = ice_vsi_get_qs(vsi); 2265 if (ret) { 2266 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", 2267 vsi->idx); 2268 goto unroll_vsi_alloc_stat; 2269 } 2270 2271 /* set RSS capabilities */ 2272 ice_vsi_set_rss_params(vsi); 2273 2274 /* set TC configuration */ 2275 ice_vsi_set_tc_cfg(vsi); 2276 2277 /* create the VSI */ 2278 ret = ice_vsi_init(vsi, vsi->flags); 2279 if (ret) 2280 goto unroll_get_qs; 2281 2282 ice_vsi_init_vlan_ops(vsi); 2283 2284 switch (vsi->type) { 2285 case ICE_VSI_CTRL: 2286 case ICE_VSI_SF: 2287 case ICE_VSI_PF: 2288 ret = ice_vsi_alloc_q_vectors(vsi); 2289 if (ret) 2290 goto unroll_vsi_init; 2291 2292 ret = ice_vsi_alloc_rings(vsi); 2293 if (ret) 2294 goto unroll_vector_base; 2295 2296 ret = ice_vsi_alloc_ring_stats(vsi); 2297 if (ret) 2298 goto unroll_vector_base; 2299 2300 if (ice_is_xdp_ena_vsi(vsi)) { 2301 ret = ice_vsi_determine_xdp_res(vsi); 2302 if (ret) 2303 goto unroll_vector_base; 2304 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog, 2305 ICE_XDP_CFG_PART); 2306 if (ret) 2307 goto unroll_vector_base; 2308 } 2309 2310 ice_vsi_map_rings_to_vectors(vsi); 2311 2312 vsi->stat_offsets_loaded = false; 2313 2314 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ 2315 if (vsi->type != ICE_VSI_CTRL) 2316 /* Do not exit if configuring RSS had an issue, at 2317 * least receive traffic on first queue. Hence no 2318 * need to capture return value 2319 */ 2320 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2321 ice_vsi_cfg_rss_lut_key(vsi); 2322 ice_vsi_set_rss_flow_fld(vsi); 2323 } 2324 ice_init_arfs(vsi); 2325 break; 2326 case ICE_VSI_CHNL: 2327 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2328 ice_vsi_cfg_rss_lut_key(vsi); 2329 ice_vsi_set_rss_flow_fld(vsi); 2330 } 2331 break; 2332 case ICE_VSI_VF: 2333 /* VF driver will take care of creating netdev for this type and 2334 * map queues to vectors through Virtchnl, PF driver only 2335 * creates a VSI and corresponding structures for bookkeeping 2336 * purpose 2337 */ 2338 ret = ice_vsi_alloc_q_vectors(vsi); 2339 if (ret) 2340 goto unroll_vsi_init; 2341 2342 ret = ice_vsi_alloc_rings(vsi); 2343 if (ret) 2344 goto unroll_alloc_q_vector; 2345 2346 ret = ice_vsi_alloc_ring_stats(vsi); 2347 if (ret) 2348 goto unroll_vector_base; 2349 2350 vsi->stat_offsets_loaded = false; 2351 2352 /* Do not exit if configuring RSS had an issue, at least 2353 * receive traffic on first queue. Hence no need to capture 2354 * return value 2355 */ 2356 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { 2357 ice_vsi_cfg_rss_lut_key(vsi); 2358 ice_vsi_set_vf_rss_flow_fld(vsi); 2359 } 2360 break; 2361 case ICE_VSI_LB: 2362 ret = ice_vsi_alloc_rings(vsi); 2363 if (ret) 2364 goto unroll_vsi_init; 2365 2366 ret = ice_vsi_alloc_ring_stats(vsi); 2367 if (ret) 2368 goto unroll_vector_base; 2369 2370 break; 2371 default: 2372 /* clean up the resources and exit */ 2373 ret = -EINVAL; 2374 goto unroll_vsi_init; 2375 } 2376 2377 return 0; 2378 2379 unroll_vector_base: 2380 /* reclaim SW interrupts back to the common pool */ 2381 unroll_alloc_q_vector: 2382 ice_vsi_free_q_vectors(vsi); 2383 unroll_vsi_init: 2384 ice_vsi_delete_from_hw(vsi); 2385 unroll_get_qs: 2386 ice_vsi_put_qs(vsi); 2387 unroll_vsi_alloc_stat: 2388 ice_vsi_free_stats(vsi); 2389 unroll_vsi_alloc: 2390 ice_vsi_free_arrays(vsi); 2391 return ret; 2392 } 2393 2394 /** 2395 * ice_vsi_cfg - configure a previously allocated VSI 2396 * @vsi: pointer to VSI 2397 */ 2398 int ice_vsi_cfg(struct ice_vsi *vsi) 2399 { 2400 struct ice_pf *pf = vsi->back; 2401 int ret; 2402 2403 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 2404 return -EINVAL; 2405 2406 ret = ice_vsi_cfg_def(vsi); 2407 if (ret) 2408 return ret; 2409 2410 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); 2411 if (ret) 2412 ice_vsi_decfg(vsi); 2413 2414 if (vsi->type == ICE_VSI_CTRL) { 2415 if (vsi->vf) { 2416 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); 2417 vsi->vf->ctrl_vsi_idx = vsi->idx; 2418 } else { 2419 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); 2420 pf->ctrl_vsi_idx = vsi->idx; 2421 } 2422 } 2423 2424 return ret; 2425 } 2426 2427 /** 2428 * ice_vsi_decfg - remove all VSI configuration 2429 * @vsi: pointer to VSI 2430 */ 2431 void ice_vsi_decfg(struct ice_vsi *vsi) 2432 { 2433 struct ice_pf *pf = vsi->back; 2434 int err; 2435 2436 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); 2437 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); 2438 if (err) 2439 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", 2440 vsi->vsi_num, err); 2441 2442 if (vsi->xdp_rings) 2443 /* return value check can be skipped here, it always returns 2444 * 0 if reset is in progress 2445 */ 2446 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART); 2447 2448 ice_vsi_clear_rings(vsi); 2449 ice_vsi_free_q_vectors(vsi); 2450 ice_vsi_put_qs(vsi); 2451 ice_vsi_free_arrays(vsi); 2452 2453 /* SR-IOV determines needed MSIX resources all at once instead of per 2454 * VSI since when VFs are spawned we know how many VFs there are and how 2455 * many interrupts each VF needs. SR-IOV MSIX resources are also 2456 * cleared in the same manner. 2457 */ 2458 2459 if (vsi->type == ICE_VSI_VF && 2460 vsi->agg_node && vsi->agg_node->valid) 2461 vsi->agg_node->num_vsis--; 2462 } 2463 2464 /** 2465 * ice_vsi_setup - Set up a VSI by a given type 2466 * @pf: board private structure 2467 * @params: parameters to use when creating the VSI 2468 * 2469 * This allocates the sw VSI structure and its queue resources. 2470 * 2471 * Returns pointer to the successfully allocated and configured VSI sw struct on 2472 * success, NULL on failure. 2473 */ 2474 struct ice_vsi * 2475 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) 2476 { 2477 struct device *dev = ice_pf_to_dev(pf); 2478 struct ice_vsi *vsi; 2479 int ret; 2480 2481 /* ice_vsi_setup can only initialize a new VSI, and we must have 2482 * a port_info structure for it. 2483 */ 2484 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || 2485 WARN_ON(!params->port_info)) 2486 return NULL; 2487 2488 vsi = ice_vsi_alloc(pf); 2489 if (!vsi) { 2490 dev_err(dev, "could not allocate VSI\n"); 2491 return NULL; 2492 } 2493 2494 vsi->params = *params; 2495 ret = ice_vsi_cfg(vsi); 2496 if (ret) 2497 goto err_vsi_cfg; 2498 2499 /* Add switch rule to drop all Tx Flow Control Frames, of look up 2500 * type ETHERTYPE from VSIs, and restrict malicious VF from sending 2501 * out PAUSE or PFC frames. If enabled, FW can still send FC frames. 2502 * The rule is added once for PF VSI in order to create appropriate 2503 * recipe, since VSI/VSI list is ignored with drop action... 2504 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to 2505 * be dropped so that VFs cannot send LLDP packets to reconfig DCB 2506 * settings in the HW. 2507 */ 2508 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { 2509 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, 2510 ICE_DROP_PACKET); 2511 ice_cfg_sw_lldp(vsi, true, true); 2512 } 2513 2514 if (!vsi->agg_node) 2515 ice_set_agg_vsi(vsi); 2516 2517 return vsi; 2518 2519 err_vsi_cfg: 2520 ice_vsi_free(vsi); 2521 2522 return NULL; 2523 } 2524 2525 /** 2526 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW 2527 * @vsi: the VSI being cleaned up 2528 */ 2529 static void ice_vsi_release_msix(struct ice_vsi *vsi) 2530 { 2531 struct ice_pf *pf = vsi->back; 2532 struct ice_hw *hw = &pf->hw; 2533 u32 txq = 0; 2534 u32 rxq = 0; 2535 int i, q; 2536 2537 ice_for_each_q_vector(vsi, i) { 2538 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2539 2540 ice_write_intrl(q_vector, 0); 2541 for (q = 0; q < q_vector->num_ring_tx; q++) { 2542 ice_write_itr(&q_vector->tx, 0); 2543 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); 2544 if (vsi->xdp_rings) { 2545 u32 xdp_txq = txq + vsi->num_xdp_txq; 2546 2547 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); 2548 } 2549 txq++; 2550 } 2551 2552 for (q = 0; q < q_vector->num_ring_rx; q++) { 2553 ice_write_itr(&q_vector->rx, 0); 2554 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); 2555 rxq++; 2556 } 2557 } 2558 2559 ice_flush(hw); 2560 } 2561 2562 /** 2563 * ice_vsi_free_irq - Free the IRQ association with the OS 2564 * @vsi: the VSI being configured 2565 */ 2566 void ice_vsi_free_irq(struct ice_vsi *vsi) 2567 { 2568 struct ice_pf *pf = vsi->back; 2569 int i; 2570 2571 if (!vsi->q_vectors || !vsi->irqs_ready) 2572 return; 2573 2574 ice_vsi_release_msix(vsi); 2575 if (vsi->type == ICE_VSI_VF) 2576 return; 2577 2578 vsi->irqs_ready = false; 2579 ice_free_cpu_rx_rmap(vsi); 2580 2581 ice_for_each_q_vector(vsi, i) { 2582 int irq_num; 2583 2584 irq_num = vsi->q_vectors[i]->irq.virq; 2585 2586 /* free only the irqs that were actually requested */ 2587 if (!vsi->q_vectors[i] || 2588 !(vsi->q_vectors[i]->num_ring_tx || 2589 vsi->q_vectors[i]->num_ring_rx)) 2590 continue; 2591 2592 /* clear the affinity notifier in the IRQ descriptor */ 2593 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) 2594 irq_set_affinity_notifier(irq_num, NULL); 2595 2596 /* clear the affinity_hint in the IRQ descriptor */ 2597 irq_update_affinity_hint(irq_num, NULL); 2598 synchronize_irq(irq_num); 2599 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); 2600 } 2601 } 2602 2603 /** 2604 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues 2605 * @vsi: the VSI having resources freed 2606 */ 2607 void ice_vsi_free_tx_rings(struct ice_vsi *vsi) 2608 { 2609 int i; 2610 2611 if (!vsi->tx_rings) 2612 return; 2613 2614 ice_for_each_txq(vsi, i) 2615 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) 2616 ice_free_tx_ring(vsi->tx_rings[i]); 2617 } 2618 2619 /** 2620 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues 2621 * @vsi: the VSI having resources freed 2622 */ 2623 void ice_vsi_free_rx_rings(struct ice_vsi *vsi) 2624 { 2625 int i; 2626 2627 if (!vsi->rx_rings) 2628 return; 2629 2630 ice_for_each_rxq(vsi, i) 2631 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) 2632 ice_free_rx_ring(vsi->rx_rings[i]); 2633 } 2634 2635 /** 2636 * ice_vsi_close - Shut down a VSI 2637 * @vsi: the VSI being shut down 2638 */ 2639 void ice_vsi_close(struct ice_vsi *vsi) 2640 { 2641 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) 2642 ice_down(vsi); 2643 2644 ice_vsi_clear_napi_queues(vsi); 2645 ice_vsi_free_irq(vsi); 2646 ice_vsi_free_tx_rings(vsi); 2647 ice_vsi_free_rx_rings(vsi); 2648 } 2649 2650 /** 2651 * ice_ena_vsi - resume a VSI 2652 * @vsi: the VSI being resume 2653 * @locked: is the rtnl_lock already held 2654 */ 2655 int ice_ena_vsi(struct ice_vsi *vsi, bool locked) 2656 { 2657 int err = 0; 2658 2659 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) 2660 return 0; 2661 2662 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2663 2664 if (vsi->netdev && (vsi->type == ICE_VSI_PF || 2665 vsi->type == ICE_VSI_SF)) { 2666 if (netif_running(vsi->netdev)) { 2667 if (!locked) 2668 rtnl_lock(); 2669 2670 err = ice_open_internal(vsi->netdev); 2671 2672 if (!locked) 2673 rtnl_unlock(); 2674 } 2675 } else if (vsi->type == ICE_VSI_CTRL) { 2676 err = ice_vsi_open_ctrl(vsi); 2677 } 2678 2679 return err; 2680 } 2681 2682 /** 2683 * ice_dis_vsi - pause a VSI 2684 * @vsi: the VSI being paused 2685 * @locked: is the rtnl_lock already held 2686 */ 2687 void ice_dis_vsi(struct ice_vsi *vsi, bool locked) 2688 { 2689 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state); 2690 2691 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); 2692 2693 if (vsi->netdev && (vsi->type == ICE_VSI_PF || 2694 vsi->type == ICE_VSI_SF)) { 2695 if (netif_running(vsi->netdev)) { 2696 if (!locked) 2697 rtnl_lock(); 2698 already_down = test_bit(ICE_VSI_DOWN, vsi->state); 2699 if (!already_down) 2700 ice_vsi_close(vsi); 2701 2702 if (!locked) 2703 rtnl_unlock(); 2704 } else if (!already_down) { 2705 ice_vsi_close(vsi); 2706 } 2707 } else if (vsi->type == ICE_VSI_CTRL && !already_down) { 2708 ice_vsi_close(vsi); 2709 } 2710 } 2711 2712 /** 2713 * ice_vsi_set_napi_queues - associate netdev queues with napi 2714 * @vsi: VSI pointer 2715 * 2716 * Associate queue[s] with napi for all vectors. 2717 * The caller must hold rtnl_lock. 2718 */ 2719 void ice_vsi_set_napi_queues(struct ice_vsi *vsi) 2720 { 2721 struct net_device *netdev = vsi->netdev; 2722 int q_idx, v_idx; 2723 2724 if (!netdev) 2725 return; 2726 2727 ice_for_each_rxq(vsi, q_idx) 2728 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, 2729 &vsi->rx_rings[q_idx]->q_vector->napi); 2730 2731 ice_for_each_txq(vsi, q_idx) 2732 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, 2733 &vsi->tx_rings[q_idx]->q_vector->napi); 2734 /* Also set the interrupt number for the NAPI */ 2735 ice_for_each_q_vector(vsi, v_idx) { 2736 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx]; 2737 2738 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); 2739 } 2740 } 2741 2742 /** 2743 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi 2744 * @vsi: VSI pointer 2745 * 2746 * Clear the association between all VSI queues queue[s] and napi. 2747 * The caller must hold rtnl_lock. 2748 */ 2749 void ice_vsi_clear_napi_queues(struct ice_vsi *vsi) 2750 { 2751 struct net_device *netdev = vsi->netdev; 2752 int q_idx; 2753 2754 if (!netdev) 2755 return; 2756 2757 ice_for_each_txq(vsi, q_idx) 2758 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL); 2759 2760 ice_for_each_rxq(vsi, q_idx) 2761 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL); 2762 } 2763 2764 /** 2765 * ice_napi_add - register NAPI handler for the VSI 2766 * @vsi: VSI for which NAPI handler is to be registered 2767 * 2768 * This function is only called in the driver's load path. Registering the NAPI 2769 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume, 2770 * reset/rebuild, etc.) 2771 */ 2772 void ice_napi_add(struct ice_vsi *vsi) 2773 { 2774 int v_idx; 2775 2776 if (!vsi->netdev) 2777 return; 2778 2779 ice_for_each_q_vector(vsi, v_idx) 2780 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi, 2781 ice_napi_poll); 2782 } 2783 2784 /** 2785 * ice_vsi_release - Delete a VSI and free its resources 2786 * @vsi: the VSI being removed 2787 * 2788 * Returns 0 on success or < 0 on error 2789 */ 2790 int ice_vsi_release(struct ice_vsi *vsi) 2791 { 2792 struct ice_pf *pf; 2793 2794 if (!vsi->back) 2795 return -ENODEV; 2796 pf = vsi->back; 2797 2798 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) 2799 ice_rss_clean(vsi); 2800 2801 ice_vsi_close(vsi); 2802 2803 /* The Rx rule will only exist to remove if the LLDP FW 2804 * engine is currently stopped 2805 */ 2806 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && 2807 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) 2808 ice_cfg_sw_lldp(vsi, false, false); 2809 2810 ice_vsi_decfg(vsi); 2811 2812 /* retain SW VSI data structure since it is needed to unregister and 2813 * free VSI netdev when PF is not in reset recovery pending state,\ 2814 * for ex: during rmmod. 2815 */ 2816 if (!ice_is_reset_in_progress(pf->state)) 2817 ice_vsi_delete(vsi); 2818 2819 return 0; 2820 } 2821 2822 /** 2823 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors 2824 * @vsi: VSI connected with q_vectors 2825 * @coalesce: array of struct with stored coalesce 2826 * 2827 * Returns array size. 2828 */ 2829 static int 2830 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, 2831 struct ice_coalesce_stored *coalesce) 2832 { 2833 int i; 2834 2835 ice_for_each_q_vector(vsi, i) { 2836 struct ice_q_vector *q_vector = vsi->q_vectors[i]; 2837 2838 coalesce[i].itr_tx = q_vector->tx.itr_settings; 2839 coalesce[i].itr_rx = q_vector->rx.itr_settings; 2840 coalesce[i].intrl = q_vector->intrl; 2841 2842 if (i < vsi->num_txq) 2843 coalesce[i].tx_valid = true; 2844 if (i < vsi->num_rxq) 2845 coalesce[i].rx_valid = true; 2846 } 2847 2848 return vsi->num_q_vectors; 2849 } 2850 2851 /** 2852 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays 2853 * @vsi: VSI connected with q_vectors 2854 * @coalesce: pointer to array of struct with stored coalesce 2855 * @size: size of coalesce array 2856 * 2857 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save 2858 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce 2859 * to default value. 2860 */ 2861 static void 2862 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, 2863 struct ice_coalesce_stored *coalesce, int size) 2864 { 2865 struct ice_ring_container *rc; 2866 int i; 2867 2868 if ((size && !coalesce) || !vsi) 2869 return; 2870 2871 /* There are a couple of cases that have to be handled here: 2872 * 1. The case where the number of queue vectors stays the same, but 2873 * the number of Tx or Rx rings changes (the first for loop) 2874 * 2. The case where the number of queue vectors increased (the 2875 * second for loop) 2876 */ 2877 for (i = 0; i < size && i < vsi->num_q_vectors; i++) { 2878 /* There are 2 cases to handle here and they are the same for 2879 * both Tx and Rx: 2880 * if the entry was valid previously (coalesce[i].[tr]x_valid 2881 * and the loop variable is less than the number of rings 2882 * allocated, then write the previous values 2883 * 2884 * if the entry was not valid previously, but the number of 2885 * rings is less than are allocated (this means the number of 2886 * rings increased from previously), then write out the 2887 * values in the first element 2888 * 2889 * Also, always write the ITR, even if in ITR_IS_DYNAMIC 2890 * as there is no harm because the dynamic algorithm 2891 * will just overwrite. 2892 */ 2893 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { 2894 rc = &vsi->q_vectors[i]->rx; 2895 rc->itr_settings = coalesce[i].itr_rx; 2896 ice_write_itr(rc, rc->itr_setting); 2897 } else if (i < vsi->alloc_rxq) { 2898 rc = &vsi->q_vectors[i]->rx; 2899 rc->itr_settings = coalesce[0].itr_rx; 2900 ice_write_itr(rc, rc->itr_setting); 2901 } 2902 2903 if (i < vsi->alloc_txq && coalesce[i].tx_valid) { 2904 rc = &vsi->q_vectors[i]->tx; 2905 rc->itr_settings = coalesce[i].itr_tx; 2906 ice_write_itr(rc, rc->itr_setting); 2907 } else if (i < vsi->alloc_txq) { 2908 rc = &vsi->q_vectors[i]->tx; 2909 rc->itr_settings = coalesce[0].itr_tx; 2910 ice_write_itr(rc, rc->itr_setting); 2911 } 2912 2913 vsi->q_vectors[i]->intrl = coalesce[i].intrl; 2914 ice_set_q_vector_intrl(vsi->q_vectors[i]); 2915 } 2916 2917 /* the number of queue vectors increased so write whatever is in 2918 * the first element 2919 */ 2920 for (; i < vsi->num_q_vectors; i++) { 2921 /* transmit */ 2922 rc = &vsi->q_vectors[i]->tx; 2923 rc->itr_settings = coalesce[0].itr_tx; 2924 ice_write_itr(rc, rc->itr_setting); 2925 2926 /* receive */ 2927 rc = &vsi->q_vectors[i]->rx; 2928 rc->itr_settings = coalesce[0].itr_rx; 2929 ice_write_itr(rc, rc->itr_setting); 2930 2931 vsi->q_vectors[i]->intrl = coalesce[0].intrl; 2932 ice_set_q_vector_intrl(vsi->q_vectors[i]); 2933 } 2934 } 2935 2936 /** 2937 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones 2938 * @vsi: VSI pointer 2939 */ 2940 static int 2941 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi) 2942 { 2943 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq; 2944 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq; 2945 struct ice_ring_stats **tx_ring_stats; 2946 struct ice_ring_stats **rx_ring_stats; 2947 struct ice_vsi_stats *vsi_stat; 2948 struct ice_pf *pf = vsi->back; 2949 u16 prev_txq = vsi->alloc_txq; 2950 u16 prev_rxq = vsi->alloc_rxq; 2951 int i; 2952 2953 vsi_stat = pf->vsi_stats[vsi->idx]; 2954 2955 if (req_txq < prev_txq) { 2956 for (i = req_txq; i < prev_txq; i++) { 2957 if (vsi_stat->tx_ring_stats[i]) { 2958 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); 2959 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); 2960 } 2961 } 2962 } 2963 2964 tx_ring_stats = vsi_stat->tx_ring_stats; 2965 vsi_stat->tx_ring_stats = 2966 krealloc_array(vsi_stat->tx_ring_stats, req_txq, 2967 sizeof(*vsi_stat->tx_ring_stats), 2968 GFP_KERNEL | __GFP_ZERO); 2969 if (!vsi_stat->tx_ring_stats) { 2970 vsi_stat->tx_ring_stats = tx_ring_stats; 2971 return -ENOMEM; 2972 } 2973 2974 if (req_rxq < prev_rxq) { 2975 for (i = req_rxq; i < prev_rxq; i++) { 2976 if (vsi_stat->rx_ring_stats[i]) { 2977 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); 2978 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); 2979 } 2980 } 2981 } 2982 2983 rx_ring_stats = vsi_stat->rx_ring_stats; 2984 vsi_stat->rx_ring_stats = 2985 krealloc_array(vsi_stat->rx_ring_stats, req_rxq, 2986 sizeof(*vsi_stat->rx_ring_stats), 2987 GFP_KERNEL | __GFP_ZERO); 2988 if (!vsi_stat->rx_ring_stats) { 2989 vsi_stat->rx_ring_stats = rx_ring_stats; 2990 return -ENOMEM; 2991 } 2992 2993 return 0; 2994 } 2995 2996 /** 2997 * ice_vsi_rebuild - Rebuild VSI after reset 2998 * @vsi: VSI to be rebuild 2999 * @vsi_flags: flags used for VSI rebuild flow 3000 * 3001 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or 3002 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. 3003 * 3004 * Returns 0 on success and negative value on failure 3005 */ 3006 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) 3007 { 3008 struct ice_coalesce_stored *coalesce; 3009 int prev_num_q_vectors; 3010 struct ice_pf *pf; 3011 int ret; 3012 3013 if (!vsi) 3014 return -EINVAL; 3015 3016 vsi->flags = vsi_flags; 3017 pf = vsi->back; 3018 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) 3019 return -EINVAL; 3020 3021 mutex_lock(&vsi->xdp_state_lock); 3022 3023 ret = ice_vsi_realloc_stat_arrays(vsi); 3024 if (ret) 3025 goto unlock; 3026 3027 ice_vsi_decfg(vsi); 3028 ret = ice_vsi_cfg_def(vsi); 3029 if (ret) 3030 goto unlock; 3031 3032 coalesce = kcalloc(vsi->num_q_vectors, 3033 sizeof(struct ice_coalesce_stored), GFP_KERNEL); 3034 if (!coalesce) { 3035 ret = -ENOMEM; 3036 goto decfg; 3037 } 3038 3039 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); 3040 3041 ret = ice_vsi_cfg_tc_lan(pf, vsi); 3042 if (ret) { 3043 if (vsi_flags & ICE_VSI_FLAG_INIT) { 3044 ret = -EIO; 3045 goto free_coalesce; 3046 } 3047 3048 ret = ice_schedule_reset(pf, ICE_RESET_PFR); 3049 goto free_coalesce; 3050 } 3051 3052 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); 3053 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state); 3054 3055 free_coalesce: 3056 kfree(coalesce); 3057 decfg: 3058 if (ret) 3059 ice_vsi_decfg(vsi); 3060 unlock: 3061 mutex_unlock(&vsi->xdp_state_lock); 3062 return ret; 3063 } 3064 3065 /** 3066 * ice_is_reset_in_progress - check for a reset in progress 3067 * @state: PF state field 3068 */ 3069 bool ice_is_reset_in_progress(unsigned long *state) 3070 { 3071 return test_bit(ICE_RESET_OICR_RECV, state) || 3072 test_bit(ICE_PFR_REQ, state) || 3073 test_bit(ICE_CORER_REQ, state) || 3074 test_bit(ICE_GLOBR_REQ, state); 3075 } 3076 3077 /** 3078 * ice_wait_for_reset - Wait for driver to finish reset and rebuild 3079 * @pf: pointer to the PF structure 3080 * @timeout: length of time to wait, in jiffies 3081 * 3082 * Wait (sleep) for a short time until the driver finishes cleaning up from 3083 * a device reset. The caller must be able to sleep. Use this to delay 3084 * operations that could fail while the driver is cleaning up after a device 3085 * reset. 3086 * 3087 * Returns 0 on success, -EBUSY if the reset is not finished within the 3088 * timeout, and -ERESTARTSYS if the thread was interrupted. 3089 */ 3090 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) 3091 { 3092 long ret; 3093 3094 ret = wait_event_interruptible_timeout(pf->reset_wait_queue, 3095 !ice_is_reset_in_progress(pf->state), 3096 timeout); 3097 if (ret < 0) 3098 return ret; 3099 else if (!ret) 3100 return -EBUSY; 3101 else 3102 return 0; 3103 } 3104 3105 /** 3106 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map 3107 * @vsi: VSI being configured 3108 * @ctx: the context buffer returned from AQ VSI update command 3109 */ 3110 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) 3111 { 3112 vsi->info.mapping_flags = ctx->info.mapping_flags; 3113 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, 3114 sizeof(vsi->info.q_mapping)); 3115 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, 3116 sizeof(vsi->info.tc_mapping)); 3117 } 3118 3119 /** 3120 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration 3121 * @vsi: the VSI being configured 3122 * @ena_tc: TC map to be enabled 3123 */ 3124 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) 3125 { 3126 struct net_device *netdev = vsi->netdev; 3127 struct ice_pf *pf = vsi->back; 3128 int numtc = vsi->tc_cfg.numtc; 3129 struct ice_dcbx_cfg *dcbcfg; 3130 u8 netdev_tc; 3131 int i; 3132 3133 if (!netdev) 3134 return; 3135 3136 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ 3137 if (vsi->type == ICE_VSI_CHNL) 3138 return; 3139 3140 if (!ena_tc) { 3141 netdev_reset_tc(netdev); 3142 return; 3143 } 3144 3145 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) 3146 numtc = vsi->all_numtc; 3147 3148 if (netdev_set_num_tc(netdev, numtc)) 3149 return; 3150 3151 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; 3152 3153 ice_for_each_traffic_class(i) 3154 if (vsi->tc_cfg.ena_tc & BIT(i)) 3155 netdev_set_tc_queue(netdev, 3156 vsi->tc_cfg.tc_info[i].netdev_tc, 3157 vsi->tc_cfg.tc_info[i].qcount_tx, 3158 vsi->tc_cfg.tc_info[i].qoffset); 3159 /* setup TC queue map for CHNL TCs */ 3160 ice_for_each_chnl_tc(i) { 3161 if (!(vsi->all_enatc & BIT(i))) 3162 break; 3163 if (!vsi->mqprio_qopt.qopt.count[i]) 3164 break; 3165 netdev_set_tc_queue(netdev, i, 3166 vsi->mqprio_qopt.qopt.count[i], 3167 vsi->mqprio_qopt.qopt.offset[i]); 3168 } 3169 3170 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3171 return; 3172 3173 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { 3174 u8 ets_tc = dcbcfg->etscfg.prio_table[i]; 3175 3176 /* Get the mapped netdev TC# for the UP */ 3177 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; 3178 netdev_set_prio_tc_map(netdev, i, netdev_tc); 3179 } 3180 } 3181 3182 /** 3183 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config 3184 * @vsi: the VSI being configured, 3185 * @ctxt: VSI context structure 3186 * @ena_tc: number of traffic classes to enable 3187 * 3188 * Prepares VSI tc_config to have queue configurations based on MQPRIO options. 3189 */ 3190 static int 3191 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, 3192 u8 ena_tc) 3193 { 3194 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; 3195 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; 3196 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; 3197 u16 new_txq, new_rxq; 3198 u8 netdev_tc = 0; 3199 int i; 3200 3201 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; 3202 3203 pow = order_base_2(tc0_qcount); 3204 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset); 3205 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); 3206 3207 ice_for_each_traffic_class(i) { 3208 if (!(vsi->tc_cfg.ena_tc & BIT(i))) { 3209 /* TC is not enabled */ 3210 vsi->tc_cfg.tc_info[i].qoffset = 0; 3211 vsi->tc_cfg.tc_info[i].qcount_rx = 1; 3212 vsi->tc_cfg.tc_info[i].qcount_tx = 1; 3213 vsi->tc_cfg.tc_info[i].netdev_tc = 0; 3214 ctxt->info.tc_mapping[i] = 0; 3215 continue; 3216 } 3217 3218 offset = vsi->mqprio_qopt.qopt.offset[i]; 3219 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3220 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3221 vsi->tc_cfg.tc_info[i].qoffset = offset; 3222 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; 3223 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; 3224 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; 3225 } 3226 3227 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { 3228 ice_for_each_chnl_tc(i) { 3229 if (!(vsi->all_enatc & BIT(i))) 3230 continue; 3231 offset = vsi->mqprio_qopt.qopt.offset[i]; 3232 qcount_rx = vsi->mqprio_qopt.qopt.count[i]; 3233 qcount_tx = vsi->mqprio_qopt.qopt.count[i]; 3234 } 3235 } 3236 3237 new_txq = offset + qcount_tx; 3238 if (new_txq > vsi->alloc_txq) { 3239 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", 3240 new_txq, vsi->alloc_txq); 3241 return -EINVAL; 3242 } 3243 3244 new_rxq = offset + qcount_rx; 3245 if (new_rxq > vsi->alloc_rxq) { 3246 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", 3247 new_rxq, vsi->alloc_rxq); 3248 return -EINVAL; 3249 } 3250 3251 /* Set actual Tx/Rx queue pairs */ 3252 vsi->num_txq = new_txq; 3253 vsi->num_rxq = new_rxq; 3254 3255 /* Setup queue TC[0].qmap for given VSI context */ 3256 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); 3257 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); 3258 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); 3259 3260 /* Find queue count available for channel VSIs and starting offset 3261 * for channel VSIs 3262 */ 3263 if (tc0_qcount && tc0_qcount < vsi->num_rxq) { 3264 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; 3265 vsi->next_base_q = tc0_qcount; 3266 } 3267 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); 3268 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); 3269 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", 3270 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); 3271 3272 return 0; 3273 } 3274 3275 /** 3276 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map 3277 * @vsi: VSI to be configured 3278 * @ena_tc: TC bitmap 3279 * 3280 * VSI queues expected to be quiesced before calling this function 3281 */ 3282 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) 3283 { 3284 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; 3285 struct ice_pf *pf = vsi->back; 3286 struct ice_tc_cfg old_tc_cfg; 3287 struct ice_vsi_ctx *ctx; 3288 struct device *dev; 3289 int i, ret = 0; 3290 u8 num_tc = 0; 3291 3292 dev = ice_pf_to_dev(pf); 3293 if (vsi->tc_cfg.ena_tc == ena_tc && 3294 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) 3295 return 0; 3296 3297 ice_for_each_traffic_class(i) { 3298 /* build bitmap of enabled TCs */ 3299 if (ena_tc & BIT(i)) 3300 num_tc++; 3301 /* populate max_txqs per TC */ 3302 max_txqs[i] = vsi->alloc_txq; 3303 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are 3304 * zero for CHNL VSI, hence use num_txq instead as max_txqs 3305 */ 3306 if (vsi->type == ICE_VSI_CHNL && 3307 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3308 max_txqs[i] = vsi->num_txq; 3309 } 3310 3311 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); 3312 vsi->tc_cfg.ena_tc = ena_tc; 3313 vsi->tc_cfg.numtc = num_tc; 3314 3315 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 3316 if (!ctx) 3317 return -ENOMEM; 3318 3319 ctx->vf_num = 0; 3320 ctx->info = vsi->info; 3321 3322 if (vsi->type == ICE_VSI_PF && 3323 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3324 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); 3325 else 3326 ret = ice_vsi_setup_q_map(vsi, ctx); 3327 3328 if (ret) { 3329 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); 3330 goto out; 3331 } 3332 3333 /* must to indicate which section of VSI context are being modified */ 3334 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); 3335 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); 3336 if (ret) { 3337 dev_info(dev, "Failed VSI Update\n"); 3338 goto out; 3339 } 3340 3341 if (vsi->type == ICE_VSI_PF && 3342 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) 3343 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); 3344 else 3345 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 3346 vsi->tc_cfg.ena_tc, max_txqs); 3347 3348 if (ret) { 3349 dev_err(dev, "VSI %d failed TC config, error %d\n", 3350 vsi->vsi_num, ret); 3351 goto out; 3352 } 3353 ice_vsi_update_q_map(vsi, ctx); 3354 vsi->info.valid_sections = 0; 3355 3356 ice_vsi_cfg_netdev_tc(vsi, ena_tc); 3357 out: 3358 kfree(ctx); 3359 return ret; 3360 } 3361 3362 /** 3363 * ice_update_ring_stats - Update ring statistics 3364 * @stats: stats to be updated 3365 * @pkts: number of processed packets 3366 * @bytes: number of processed bytes 3367 * 3368 * This function assumes that caller has acquired a u64_stats_sync lock. 3369 */ 3370 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) 3371 { 3372 stats->bytes += bytes; 3373 stats->pkts += pkts; 3374 } 3375 3376 /** 3377 * ice_update_tx_ring_stats - Update Tx ring specific counters 3378 * @tx_ring: ring to update 3379 * @pkts: number of processed packets 3380 * @bytes: number of processed bytes 3381 */ 3382 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) 3383 { 3384 u64_stats_update_begin(&tx_ring->ring_stats->syncp); 3385 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); 3386 u64_stats_update_end(&tx_ring->ring_stats->syncp); 3387 } 3388 3389 /** 3390 * ice_update_rx_ring_stats - Update Rx ring specific counters 3391 * @rx_ring: ring to update 3392 * @pkts: number of processed packets 3393 * @bytes: number of processed bytes 3394 */ 3395 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) 3396 { 3397 u64_stats_update_begin(&rx_ring->ring_stats->syncp); 3398 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); 3399 u64_stats_update_end(&rx_ring->ring_stats->syncp); 3400 } 3401 3402 /** 3403 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used 3404 * @pi: port info of the switch with default VSI 3405 * 3406 * Return true if the there is a single VSI in default forwarding VSI list 3407 */ 3408 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) 3409 { 3410 bool exists = false; 3411 3412 ice_check_if_dflt_vsi(pi, 0, &exists); 3413 return exists; 3414 } 3415 3416 /** 3417 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI 3418 * @vsi: VSI to compare against default forwarding VSI 3419 * 3420 * If this VSI passed in is the default forwarding VSI then return true, else 3421 * return false 3422 */ 3423 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) 3424 { 3425 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); 3426 } 3427 3428 /** 3429 * ice_set_dflt_vsi - set the default forwarding VSI 3430 * @vsi: VSI getting set as the default forwarding VSI on the switch 3431 * 3432 * If the VSI passed in is already the default VSI and it's enabled just return 3433 * success. 3434 * 3435 * Otherwise try to set the VSI passed in as the switch's default VSI and 3436 * return the result. 3437 */ 3438 int ice_set_dflt_vsi(struct ice_vsi *vsi) 3439 { 3440 struct device *dev; 3441 int status; 3442 3443 if (!vsi) 3444 return -EINVAL; 3445 3446 dev = ice_pf_to_dev(vsi->back); 3447 3448 if (ice_lag_is_switchdev_running(vsi->back)) { 3449 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", 3450 vsi->vsi_num); 3451 return 0; 3452 } 3453 3454 /* the VSI passed in is already the default VSI */ 3455 if (ice_is_vsi_dflt_vsi(vsi)) { 3456 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", 3457 vsi->vsi_num); 3458 return 0; 3459 } 3460 3461 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); 3462 if (status) { 3463 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", 3464 vsi->vsi_num, status); 3465 return status; 3466 } 3467 3468 return 0; 3469 } 3470 3471 /** 3472 * ice_clear_dflt_vsi - clear the default forwarding VSI 3473 * @vsi: VSI to remove from filter list 3474 * 3475 * If the switch has no default VSI or it's not enabled then return error. 3476 * 3477 * Otherwise try to clear the default VSI and return the result. 3478 */ 3479 int ice_clear_dflt_vsi(struct ice_vsi *vsi) 3480 { 3481 struct device *dev; 3482 int status; 3483 3484 if (!vsi) 3485 return -EINVAL; 3486 3487 dev = ice_pf_to_dev(vsi->back); 3488 3489 /* there is no default VSI configured */ 3490 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) 3491 return -ENODEV; 3492 3493 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, 3494 ICE_FLTR_RX); 3495 if (status) { 3496 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", 3497 vsi->vsi_num, status); 3498 return -EIO; 3499 } 3500 3501 return 0; 3502 } 3503 3504 /** 3505 * ice_get_link_speed_mbps - get link speed in Mbps 3506 * @vsi: the VSI whose link speed is being queried 3507 * 3508 * Return current VSI link speed and 0 if the speed is unknown. 3509 */ 3510 int ice_get_link_speed_mbps(struct ice_vsi *vsi) 3511 { 3512 unsigned int link_speed; 3513 3514 link_speed = vsi->port_info->phy.link_info.link_speed; 3515 3516 return (int)ice_get_link_speed(fls(link_speed) - 1); 3517 } 3518 3519 /** 3520 * ice_get_link_speed_kbps - get link speed in Kbps 3521 * @vsi: the VSI whose link speed is being queried 3522 * 3523 * Return current VSI link speed and 0 if the speed is unknown. 3524 */ 3525 int ice_get_link_speed_kbps(struct ice_vsi *vsi) 3526 { 3527 int speed_mbps; 3528 3529 speed_mbps = ice_get_link_speed_mbps(vsi); 3530 3531 return speed_mbps * 1000; 3532 } 3533 3534 /** 3535 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate 3536 * @vsi: VSI to be configured 3537 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit 3538 * 3539 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit 3540 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI 3541 * on TC 0. 3542 */ 3543 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) 3544 { 3545 struct ice_pf *pf = vsi->back; 3546 struct device *dev; 3547 int status; 3548 int speed; 3549 3550 dev = ice_pf_to_dev(pf); 3551 if (!vsi->port_info) { 3552 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3553 vsi->idx, vsi->type); 3554 return -EINVAL; 3555 } 3556 3557 speed = ice_get_link_speed_kbps(vsi); 3558 if (min_tx_rate > (u64)speed) { 3559 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3560 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3561 speed); 3562 return -EINVAL; 3563 } 3564 3565 /* Configure min BW for VSI limit */ 3566 if (min_tx_rate) { 3567 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3568 ICE_MIN_BW, min_tx_rate); 3569 if (status) { 3570 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", 3571 min_tx_rate, ice_vsi_type_str(vsi->type), 3572 vsi->idx); 3573 return status; 3574 } 3575 3576 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", 3577 min_tx_rate, ice_vsi_type_str(vsi->type)); 3578 } else { 3579 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3580 vsi->idx, 0, 3581 ICE_MIN_BW); 3582 if (status) { 3583 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", 3584 ice_vsi_type_str(vsi->type), vsi->idx); 3585 return status; 3586 } 3587 3588 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", 3589 ice_vsi_type_str(vsi->type), vsi->idx); 3590 } 3591 3592 return 0; 3593 } 3594 3595 /** 3596 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate 3597 * @vsi: VSI to be configured 3598 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit 3599 * 3600 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit 3601 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI 3602 * on TC 0. 3603 */ 3604 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) 3605 { 3606 struct ice_pf *pf = vsi->back; 3607 struct device *dev; 3608 int status; 3609 int speed; 3610 3611 dev = ice_pf_to_dev(pf); 3612 if (!vsi->port_info) { 3613 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", 3614 vsi->idx, vsi->type); 3615 return -EINVAL; 3616 } 3617 3618 speed = ice_get_link_speed_kbps(vsi); 3619 if (max_tx_rate > (u64)speed) { 3620 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", 3621 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, 3622 speed); 3623 return -EINVAL; 3624 } 3625 3626 /* Configure max BW for VSI limit */ 3627 if (max_tx_rate) { 3628 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, 3629 ICE_MAX_BW, max_tx_rate); 3630 if (status) { 3631 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", 3632 max_tx_rate, ice_vsi_type_str(vsi->type), 3633 vsi->idx); 3634 return status; 3635 } 3636 3637 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", 3638 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); 3639 } else { 3640 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, 3641 vsi->idx, 0, 3642 ICE_MAX_BW); 3643 if (status) { 3644 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", 3645 ice_vsi_type_str(vsi->type), vsi->idx); 3646 return status; 3647 } 3648 3649 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", 3650 ice_vsi_type_str(vsi->type), vsi->idx); 3651 } 3652 3653 return 0; 3654 } 3655 3656 /** 3657 * ice_set_link - turn on/off physical link 3658 * @vsi: VSI to modify physical link on 3659 * @ena: turn on/off physical link 3660 */ 3661 int ice_set_link(struct ice_vsi *vsi, bool ena) 3662 { 3663 struct device *dev = ice_pf_to_dev(vsi->back); 3664 struct ice_port_info *pi = vsi->port_info; 3665 struct ice_hw *hw = pi->hw; 3666 int status; 3667 3668 if (vsi->type != ICE_VSI_PF) 3669 return -EINVAL; 3670 3671 status = ice_aq_set_link_restart_an(pi, ena, NULL); 3672 3673 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. 3674 * this is not a fatal error, so print a warning message and return 3675 * a success code. Return an error if FW returns an error code other 3676 * than ICE_AQ_RC_EMODE 3677 */ 3678 if (status == -EIO) { 3679 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) 3680 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", 3681 (ena ? "ON" : "OFF"), status, 3682 ice_aq_str(hw->adminq.sq_last_status)); 3683 } else if (status) { 3684 dev_err(dev, "can't set link to %s, err %d aq_err %s\n", 3685 (ena ? "ON" : "OFF"), status, 3686 ice_aq_str(hw->adminq.sq_last_status)); 3687 return status; 3688 } 3689 3690 return 0; 3691 } 3692 3693 /** 3694 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI 3695 * @vsi: VSI used to add VLAN filters 3696 * 3697 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based 3698 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't 3699 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via 3700 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. 3701 * 3702 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic 3703 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged 3704 * traffic in SVM, since the VLAN TPID isn't part of filtering. 3705 * 3706 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be 3707 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is 3708 * part of filtering. 3709 */ 3710 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) 3711 { 3712 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3713 struct ice_vlan vlan; 3714 int err; 3715 3716 vlan = ICE_VLAN(0, 0, 0); 3717 err = vlan_ops->add_vlan(vsi, &vlan); 3718 if (err && err != -EEXIST) 3719 return err; 3720 3721 /* in SVM both VLAN 0 filters are identical */ 3722 if (!ice_is_dvm_ena(&vsi->back->hw)) 3723 return 0; 3724 3725 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3726 err = vlan_ops->add_vlan(vsi, &vlan); 3727 if (err && err != -EEXIST) 3728 return err; 3729 3730 return 0; 3731 } 3732 3733 /** 3734 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI 3735 * @vsi: VSI used to add VLAN filters 3736 * 3737 * Delete the VLAN 0 filters in the same manner that they were added in 3738 * ice_vsi_add_vlan_zero. 3739 */ 3740 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) 3741 { 3742 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); 3743 struct ice_vlan vlan; 3744 int err; 3745 3746 vlan = ICE_VLAN(0, 0, 0); 3747 err = vlan_ops->del_vlan(vsi, &vlan); 3748 if (err && err != -EEXIST) 3749 return err; 3750 3751 /* in SVM both VLAN 0 filters are identical */ 3752 if (!ice_is_dvm_ena(&vsi->back->hw)) 3753 return 0; 3754 3755 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); 3756 err = vlan_ops->del_vlan(vsi, &vlan); 3757 if (err && err != -EEXIST) 3758 return err; 3759 3760 /* when deleting the last VLAN filter, make sure to disable the VLAN 3761 * promisc mode so the filter isn't left by accident 3762 */ 3763 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, 3764 ICE_MCAST_VLAN_PROMISC_BITS, 0); 3765 } 3766 3767 /** 3768 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode 3769 * @vsi: VSI used to get the VLAN mode 3770 * 3771 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled 3772 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. 3773 */ 3774 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) 3775 { 3776 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 3777 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 3778 /* no VLAN 0 filter is created when a port VLAN is active */ 3779 if (vsi->type == ICE_VSI_VF) { 3780 if (WARN_ON(!vsi->vf)) 3781 return 0; 3782 3783 if (ice_vf_is_port_vlan_ena(vsi->vf)) 3784 return 0; 3785 } 3786 3787 if (ice_is_dvm_ena(&vsi->back->hw)) 3788 return ICE_DVM_NUM_ZERO_VLAN_FLTRS; 3789 else 3790 return ICE_SVM_NUM_ZERO_VLAN_FLTRS; 3791 } 3792 3793 /** 3794 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs 3795 * @vsi: VSI used to determine if any non-zero VLANs have been added 3796 */ 3797 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) 3798 { 3799 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); 3800 } 3801 3802 /** 3803 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI 3804 * @vsi: VSI used to get the number of non-zero VLANs added 3805 */ 3806 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) 3807 { 3808 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); 3809 } 3810 3811 /** 3812 * ice_is_feature_supported 3813 * @pf: pointer to the struct ice_pf instance 3814 * @f: feature enum to be checked 3815 * 3816 * returns true if feature is supported, false otherwise 3817 */ 3818 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) 3819 { 3820 if (f < 0 || f >= ICE_F_MAX) 3821 return false; 3822 3823 return test_bit(f, pf->features); 3824 } 3825 3826 /** 3827 * ice_set_feature_support 3828 * @pf: pointer to the struct ice_pf instance 3829 * @f: feature enum to set 3830 */ 3831 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) 3832 { 3833 if (f < 0 || f >= ICE_F_MAX) 3834 return; 3835 3836 set_bit(f, pf->features); 3837 } 3838 3839 /** 3840 * ice_clear_feature_support 3841 * @pf: pointer to the struct ice_pf instance 3842 * @f: feature enum to clear 3843 */ 3844 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) 3845 { 3846 if (f < 0 || f >= ICE_F_MAX) 3847 return; 3848 3849 clear_bit(f, pf->features); 3850 } 3851 3852 /** 3853 * ice_init_feature_support 3854 * @pf: pointer to the struct ice_pf instance 3855 * 3856 * called during init to setup supported feature 3857 */ 3858 void ice_init_feature_support(struct ice_pf *pf) 3859 { 3860 switch (pf->hw.device_id) { 3861 case ICE_DEV_ID_E810C_BACKPLANE: 3862 case ICE_DEV_ID_E810C_QSFP: 3863 case ICE_DEV_ID_E810C_SFP: 3864 case ICE_DEV_ID_E810_XXV_BACKPLANE: 3865 case ICE_DEV_ID_E810_XXV_QSFP: 3866 case ICE_DEV_ID_E810_XXV_SFP: 3867 ice_set_feature_support(pf, ICE_F_DSCP); 3868 if (ice_is_phy_rclk_in_netlist(&pf->hw)) 3869 ice_set_feature_support(pf, ICE_F_PHY_RCLK); 3870 /* If we don't own the timer - don't enable other caps */ 3871 if (!ice_pf_src_tmr_owned(pf)) 3872 break; 3873 if (ice_is_cgu_in_netlist(&pf->hw)) 3874 ice_set_feature_support(pf, ICE_F_CGU); 3875 if (ice_is_clock_mux_in_netlist(&pf->hw)) 3876 ice_set_feature_support(pf, ICE_F_SMA_CTRL); 3877 if (ice_gnss_is_gps_present(&pf->hw)) 3878 ice_set_feature_support(pf, ICE_F_GNSS); 3879 break; 3880 default: 3881 break; 3882 } 3883 } 3884 3885 /** 3886 * ice_vsi_update_security - update security block in VSI 3887 * @vsi: pointer to VSI structure 3888 * @fill: function pointer to fill ctx 3889 */ 3890 int 3891 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) 3892 { 3893 struct ice_vsi_ctx ctx = { 0 }; 3894 3895 ctx.info = vsi->info; 3896 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); 3897 fill(&ctx); 3898 3899 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 3900 return -ENODEV; 3901 3902 vsi->info = ctx.info; 3903 return 0; 3904 } 3905 3906 /** 3907 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx 3908 * @ctx: pointer to VSI ctx structure 3909 */ 3910 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) 3911 { 3912 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | 3913 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3914 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3915 } 3916 3917 /** 3918 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx 3919 * @ctx: pointer to VSI ctx structure 3920 */ 3921 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) 3922 { 3923 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & 3924 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << 3925 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); 3926 } 3927 3928 /** 3929 * ice_vsi_ctx_set_allow_override - allow destination override on VSI 3930 * @ctx: pointer to VSI ctx structure 3931 */ 3932 void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) 3933 { 3934 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 3935 } 3936 3937 /** 3938 * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI 3939 * @ctx: pointer to VSI ctx structure 3940 */ 3941 void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) 3942 { 3943 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; 3944 } 3945 3946 /** 3947 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit 3948 * @vsi: pointer to VSI structure 3949 * @set: set or unset the bit 3950 */ 3951 int 3952 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) 3953 { 3954 struct ice_vsi_ctx ctx = { 3955 .info = vsi->info, 3956 }; 3957 3958 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); 3959 if (set) 3960 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 3961 else 3962 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; 3963 3964 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) 3965 return -ENODEV; 3966 3967 vsi->info = ctx.info; 3968 return 0; 3969 } 3970